
Modelling Wireless Robots for

Urban Search and Rescue in

Artificial Rubble

A thesis

submitted in fulfilment

of the requirements for the degree

of

Master of Science in

Electronic and Computer System Engineering

at the

Victoria University of Wellington

By

Tik Wa Charles Tsui

2010

 iii

Abstract

Using robots to assist rescue personnel in USAR (Urban Search and Rescue)

missions is an active area of research. Researchers are developing robots to

penetrate into rubble to gather information about the environment and to search

for victims. The School of Engineering and Computer Science of Victoria University

of Wellington is developing a team of robots, the “robot family” to help at disasters.

The robot family is a three-tier system. The first tier is “the grandmother” which

carries second tier “mother robots” to the rubble. The mother robot each launches

a group of the third tier “daughter robots” that will penetrate the rubble surface.

The daughter robots will burrow deep into the disaster site. They will be equipped

with sensors to search for and locate trapped persons. They are designed to be

small, battery operated, low cost and disposable. The team of robots is

hierarchically structured and to be remotely monitored by rescue personnel at a

safe distance from the rubble via a wireless communication link.

This thesis describes the successful implementation of a wireless communication

platform for the team of robots. This was verified using a simulated rubble site. A

suitable ZigBee wireless module was selected by comparing a list of target brands

to form the wireless network. A group of simulated wireless daughter robot

models were developed by attaching wireless modules to microcontrollers. An

automatic routing wireless network was implemented between the robots. They

were deployed into artificial rubble and the communication system was

characterised. Proof of concept experiments were carried out and demonstrated

that rescue personnel using a computer at a safe distance outside the rubble could

successfully establish reliable communication to monitor or control all robots

inside the artificial rubble environment.

 iv

 v

Acknowledgments

It is a pleasure to thank those who made this thesis possible. First of all, I am

grateful to have Professor Dale Carnegie as my primary supervisor, who provided

continuous guidance and supportive comments through these years.

I would like to say special thanks to Dr. Len Jennings who led me into the project

for urban search and rescue missions by setting up the collaboration between the

Victoria University of Wellington and the Manukau Institute of Technology.

The person that I must mention is Dr. Qing Wei Pan. He has taken up the second

supervisor position without hesitation after Jennings’ left. Without Pan, many of

my practical experiments would not have been successful.

I am in debt to Mr. Sunny Yeung who has provided almost instant technical

support whenever required.

Finally, I would like to acknowledge Mr. Neel Pandey, Head of School, School of

Electrical Engineering and Trades of the Manukau Institute of Technology. Mr.

Pandey provided the resources necessary and support to allow staff time-off that is

vital to facilitate the completion of this thesis.

 vi

 vii

Table of Contents

Chapter 1 Introduction ... 1

1.1 The “robot family” for USAR missions ... 1

1.2 Projects and objective .. 3

Chapter 2 Selection of Wireless Link ... 5

2.1 Wireless networking architecture .. 5

2.2 2.4 GHz short-range network for daughter robots 5

2.3 Radio frequency penetrations in collapsed buildings 7

2.4 ZigBee network for thousands of robots .. 8

2.5 ZigBee Modules Comparison ... 9

2.5.1 Freescale 13193EVB-BDM Development Kit 9

2.5.2 Panasonic PAN802154HAR00 Module [19]10

2.5.3 Microchip Technology PICDEM Z 2.4GHz Demo Kit10

2.5.4 XBee-PRO OEM RF Module [18] ...11

Chapter 3 Prototype Development .. 13

3.1 Rapid Prototype Development ...13

3.2 1st Prototype - Microcontroller with ZigBee ...14

3.3 2nd Prototype - The beetle with ZigBee ...16

3.4 3rd Prototype - Two-motor robot with ZigBee ...17

3.5 4th prototype - The SRV-1 Surveyor ...19

3.6 Final Prototype - RoboExp with Sensors ..20

3.6.1 RoboExp Robot with ATMega16L microcontroller21

3.6.2 Adding I2C temperature sensor to the RoboExp controller21

3.7 Summary of Prototype Development ..24

3.8 Prototype Robots Cost Analysis ...25

 viii

Chapter 4 RF Signal Tests .. 27

4.1 Wireless Link Test ...27

4.1.1 Experiment setup ...27

4.1.2 Scenario 1: A normal office building ...27

4.1.3 Scenario 2: Metallic effects ...30

4.2 Attenuation of RF Signal in Rubble ...32

4.3 ZigBee versus Wi-Fi ..33

4.3.1 Link Margins ...33

4.3.2 Cost, size and power ..34

4.4 Summarizing the Wireless Link Test ...35

Chapter 5 Wireless Network Implementation ... 37

5.1 X-CTU software for configuring XBee-PRO modules37

5.2 XBee-PRO version v8x17 firmware ..38

5.2.1 Coordinator Firmware - Version v8117 ..38

5.2.2 Router Firmware - Version v8217 ...40

5.2.3 Profile files for modules to form a network42

5.2.4 AT mode versus API mode ..43

5.3 API Programming on the Simulated Mother Robot43

5.3.1 AT Commands in API frame structure ...43

5.3.2 API frame for transmit request ...45

5.3.3 API frame in respond to AT Command ..45

5.3.4 API frame of ZigBee Received Data Packet46

5.3.5 ZigBee Tester program on monitoring computer46

5.3.6 Program in data transmitter and monitoring computer54

5.4 Summarising Network Implementation ...56

Chapter 6 Experiments in Artificial Rubble .. 57

6.1 Prototype models for experiments ...57

6.2 Soil environment at rubble site ..58

6.3 Measurement of materials for simulated rubble59

 ix

6.3.1 Measurement equipment ..59

6.3.2 Measurement setup ...61

6.3.3 RF signal background measurement ..62

6.3.4 Measurement of soil attenuation ...63

6.3.5 Attenuation of various building materials ..65

6.4 Design of experiment setup in rubble ...69

6.5 Construction of artificial Rubble ..71

6.6 Data Routing Experiments ...72

6.6.1 Experiment Description and Results ..72

6.6.2 Routing Reconnection Tests ...74

6.7 Summary ...75

Chapter 7 Conclusions .. 77

7.1 Conclusions ..77

7.2 Future work to minimise data loss ...79

7.2.1 Data lost and measures taken ..79

7.2.2 Hardware handshaking on XBee-PRO modules80

7.2.3 Useful data rate ...81

7.2.4 High-level mechanism to avoid data loss ..84

7.3 Contributions of this thesis ..85

7.4 Summary ...86

References 87

Appendix A: CD Contents .. 91

Appendix B: ZigBee Tester Program Source Code... 92

B1. Borland Delphi project file ...92

B2. User interface main form file ..92

B3. Unit file of API functions .. 102

 x

 xi

List of Figures

Figure 1.1: The three tier robot family system .. 1

Figure 1.2: Grandmother robot, by Jason Craig Cordes .. 2

Figure 1.3: Mother Robot, by David Williamson ... 3

Figure 2.1: Cluster Tree ZigBee Network ... 8

Figure 2.2: Freescale 13193EVB-BDM Development Kit ... 9

Figure 2.3: Panasonic PAN802154HAR00 Module ...10

Figure 2.4: Microchip Technology PICDEM Z 2.4GHz Demo Kit11

Figure 2.5: XBee-PRO OEM RF Module on USB adaptor ...11

Figure 2.6: XBee-PRO (left) and PAN802154 (right) Modules12

Figure 3.1: Rapid Prototype Development ..13

Figure 3.2: Block Diagram of 1st Prototype ...14

Figure 3.3: PIC16F877 target board block diagram ...14

Figure 3.4: XBee-PRO adaptor board ...15

Figure 3.5: 1st Prototype - Xbee-PRO on PIC877 target board15

Figure 3.6: PAN802154 wireless module block diagram ...16

Figure 3.7: 2nd Prototype - The beetle with ZigBee ..16

Figure 3.8: 3rd Prototype - Two-motor robot with ZigBee ..17

Figure 3.9: Two-motor robot - base board schematic diagram18

Figure 3.10: 4th Prototype - The Surveyor ..19

Figure 3.11: The Final Prototype - RoboExp Robot with sensors20

Figure 3.12: ATMega16L microcontroller of the RoboExp Robot20

Figure 3.13: Schematic and photo of the I2C temperature sensor21

Figure 3.14: Subroutine to setup I2C temperature sensor ...22

Figure 3.15: Subroutine to read I2C temperature reading ...23

Figure 4.1: Office building for GO/NO GO tests ..28

Figure 4.2: Floor plan for communication test ...28

Figure 4.3: Aluminium Shield (Re-radiator) Test ...30

Figure 4.4: Mild steel computer boxes enclosing modules..31

Figure 4.5: Test by enclosing modules in mild steel computer boxes...................32

 xii

Figure 4.6: Mini-router - XBee-PRO with 2 AA-batteries ...34

Figure 5.1: X-CTU port settings ..37

Figure 5.2: XBee-PRO coordinator firmware parameters ...38

Figure 5.3: XBee-PRO router firmware parameters ..40

Figure 5.4: AT Command frame structure ...44

Figure 5.5: API frame for ZigBee Transmit Request ..45

Figure 5.6: ZigBee tester and analysis program ..46

Figure 5.7: Pascal function for finding Checksum ...47

Figure 5.8: Pascal function for constructing the AT Command47

Figure 5.9: Button for sending AT command ..48

Figure 5.10: Pascal function for sending command to coordinator48

Figure 5.11: Pascal function to check a complete message..50

Figure 5.12: Pascal function to handle AT Command response51

Figure 5.13: Send message to devices ..52

Figure 5.14: Pascal procedure to send message to devices ...53

Figure 5.15: Main loop of data transmitter program ...55

Figure 6.1: Data Transmitter ...57

Figure 6.2: XBee-PRO router with 4 AA-batteries ..58

Figure 6.3: XBee-PRO coordinator on USB adaptor ...58

Figure 6.4: Wi-Spy 2.4x device and spectrum analyser on laptop60

Figure 6.5: Measurement of material attenuations ..61

Figure 6.6: RF signal background spectrum ..62

Figure 6.7: Data Transmitter for tests ...63

Figure 6.8: Spectrums for soil: before (left), after 30 cm soil (right)63

Figure 6.9: RF signal scattering through surrounding ..64

Figure 6.10: Concrete slabs ..65

Figure 6.11: Concrete slabs with wire-mesh ...65

Figure 6.12: Placing bricks for attenuation measurement ...66

Figure 6.13: Placing paving stones for attenuation measurement66

Figure 6.14: Graphical results of attenuation measurement68

Figure 6.15: Sectional view of rubble experiment setup ..69

Figure 6.16: Plan view of rubble experiment setup ..70

 xiii

Figure 6.17: Construction of artificial rubble ..71

Figure 6.18: Building a tunnel in the rubble ..71

Figure 6.19: 9 locations for measuring signal strength above ground73

Figure 6.20: Signal Spectrum for experiment step 2 ..73

Figure 6.21: Received signal strength for experiment step 374

Figure 7.1: XBee-PRO RS232 port connection diagram ..80

Figure 7.2: Full connection scheme for XBee-PRO to RS232 port81

Figure 7.3: XBee-PRO internal data flow diagram ..82

Figure 7.4: Useful bitrate graph by Benoit et al [31] ...83

 xiv

List of Tables

Table 2.1: ZigBee module specifications ..12

Table 3.1: Experiments and comments on prototypes ..24

Table 4.1: Office building communication test results ...29

Table 5.1: Firmware parameters for XBee-PRO coordinator operation39

Table 5.2: Firmware parameters for XBee-PRO router operation41

Table 5.3: Profile files of XBee-PRO modules ..42

Table 5.4: Byte sequence for NI command in API frame structure44

Table 5.5: Identifier-specific Data block for ZigBee Transmit Request45

Table 5.6: Identifier-specific Data in respond to AT Command45

Table 5.7: Identifier-specific Data block of ZigBee Received Data Packet46

Table 6.1: Wi-Spy 2.4x Technical Specifications...59

Table 6.2: Soil attenuations ..64

Table 6.3: Attenuations of various building materials ...67

Table 6.4: Routing experiment steps ..72

CHAPTER 1 INTRODUCTION 1

Chapter 1 Introduction

1.1 The “robot family” for USAR missions

New Zealand is subject to a variety of natural disasters and non-natural

emergencies that may give rise to structural collapses, which could trap people.

Examples of such incidents are listed as follows [1].

 Earthquakes, land slips and subsidence

 Hurricanes, typhoons, storms, tornadoes and floods

 Technological and construction accidents

 Terrorist activities

USAR responses are required for such incidents. USAR missions often place rescue

personnel at risk [2]. Robots are used to assist in such missions by operating in

dangerous rubble scenarios in order to search for trapped victims. A system of

robots, “the Robot Family” is proposed as shown in Figure 1.1. The system

comprises ‘grandmother, mother and daughter’ components, each with distinct

responsibilities [3][4].

Figure 1.1: The three tier robot family system

2nd tier
Mothers penetrate
the disaster zone

3rd tier
Daughters deployed

into the rubble

Mother 1

Mother 2
Mother 3

CHAPTER 1 INTRODUCTION 2

The grandmother robot helps to carry mother robots close to the rubble vicinity. It

maintains communication with rescue personnel via a long range wireless link,

such as a mobile phone network or other radio link which potentially could

operate over a distance of several kilometres. A proof of concept grandmother

robot (Figure 1.2) is developed by Cordes in 2004 [5]. The mother robots (Figure

1.3) developed by Williamson [6], each carry a group of daughter robots to the

perimeter of the rubble while keeping communication with the grandmother robot

by a shorter-range wireless link, typically over a distance of a few hundred metres.

The groups of daughter robots will be deployed by the mother robots when the

mother detects openings that would allow the daughters to penetrate underneath

the rubble.

Figure 1.2: Grandmother robot, by Jason Craig Cordes

CHAPTER 1 INTRODUCTION 3

Figure 1.3: Mother Robot, by David Williamson

1.2 Projects and objective

The daughter robots are designed to be small and disposable. They are battery

operated and consume low power. As mentioned, their purpose is to penetrate

beneath the rubble surface in order to search for trapped victims. A low power

consumption wireless communication network is required to connect the team of

robots to facilitate remote monitoring or control of the robots by rescue personnel

who are situated at a safe distance from the rubble.

The objective of this thesis is to design and characterise a wireless network for the

team of robots and verify that appropriate communication can be established

between the robots and rescue personnel outside the rubble.

Studies, literature review and comparisons were carried out on wireless

networking technologies. ZigBee was chosen as the appropriate one to implement

the wireless network between the mother robots and the daughter robots. A list of

ZigBee wireless modules from several brands were acquired and analyzed. A

CHAPTER 1 INTRODUCTION 4

suitable module that provides the required networking mechanism was selected to

form the wireless network. Investigations were carried out on several

microcontroller development kit-sets. The most suitable microcontroller was

chosen and wireless communication modules were attached. This provided a

working simulation of a daughter robot.

The rubble environment was simulated by connecting holes and trenches that

were dug in 50 cm deep soil. The simulated robots were placed in the bottom of

these holes. The holes and trenches were then covered up by various building

materials and soil to simulate an actual rubble environment.

An automatic routing wireless network was implemented on the wireless modules

to provide communication between the robots. Proof of concept experiments were

carried out and demonstrated that a monitoring computer placed 10 metres

outside the rubble successfully established reliable communication with all robots

inside the artificial rubble environment.

CHAPTER 2 SELECTION OF WIRELESS LINK 5

Chapter 2 Selection of Wireless Link

2.1 Wireless networking architecture

Recent research reports have proposed sparse MANET (Mobile Ad-hoc Networks)

as a suitable communication network for robots and other computing devices for

search and rescue operations [7] [8]. The sparse MANET concept can be

implemented into the three-tier robot system. Each tier will have a separate sub-

network. Then all the tiers are interconnected to form a larger MANET [9].

As described in chapter 1, the three tier robot system can be divided into two

short-range networks with Grandmother and Mothers connected to one, and the

Mothers and Daughters connected to another. The Grandmother can be connected

to Rescue Personnel by a longer range link, say GPRS [10] or UMTS [11] on mobile

phone or wirelessMAN [12].

Technically, there should be no difficulty in building the MANETs between the

rescue personnel, grandmother and mothers. The main concern is maintaining

real-time communication with the daughters while they are searching in the

rubble. Signal attenuation is the first factor to be considered and the other factor is

how to communicate with hundreds of robots at the same time.

2.2 2.4 GHz short-range network for daughter robots

At the start of a mission, an ad-hoc wireless network is established in-situ between

the robots. Due to varying situations in the rubble, robots are often disconnected

from the network and reconnection is required at any time. Attenuations to the

radio signal in the rubble may not allow a direct link between daughter robots in

the rubble to the mother outside. The network is required to pass information

from one robot to another then to a mother robot; this can be achieved by routing

of packetized data. Three short range wireless technologies that can fulfil such

requirements are ZigBee, Bluetooth and Wi-Fi. The following summarised the

three technologies from Bluetooth SIG [13].

CHAPTER 2 SELECTION OF WIRELESS LINK 6

Bluetooth Wireless Technology

 Operate Frequency - 2.4 GHz spectrum

 Operate distance - 10 to 100 metres

 Data Rate - 3 Mbps

 Cost of Bluetooth chips - under US$3

Wi-Fi (IEEE 802.11)

 Operate Frequency - 2.4 GHz or 5 GHz spectrum

 Operate distance - indoor usages, can be extended to outdoor

 Data rate - from 10 Mbps to 100 Mbps (proposals are seeking

upwards of 500 Mbps)

 Bluetooth technology costs a third of Wi-Fi to implement

 Bluetooth technology uses a fifth of the power of Wi-Fi

ZigBee (IEEE 802.15.4)

 Operating Frequency - 2.4 GHz, 915 MHz and 868 MHz

 Operating Distance - 10-100 metres

 Date Rate - 20 Kbps to 250 Kbps

 ZigBee and Bluetooth chips are both low cost

Comparing the specifications, ZigBee and Bluetooth are much cheaper to

implement than Wi-Fi. Kinney Consulting LLC summarised Bluetooth as best suited

for connecting cell phone to PDA, hands-free audio and PDA to printer; whereas

ZigBee is better for controls, sensors, lots of devices, low duty cycle small data

packets and for projects where long battery life is critical [14].

To differentiate, Wi-Fi has the highest data rate and ZigBee has the lowest. For the

daughter robots in the rubble, the messages that they will send includes

temperature and gas data and whether a victim has been found. Such messages

should have a length at the most of several bytes. The largest messages could be

sending a kilo-bytes size photo, but that should not be very often except when

CHAPTER 2 SELECTION OF WIRELESS LINK 7

confirmation of a victim’s situation is required. Thus, the data rate provided by

ZigBee is adequate.

Summarising, ZigBee is chosen as the communication technology for the daughter

robot. Investigations by proof of concept experiments and discussions in later

section supported this selection.

2.3 Radio frequency penetrations in collapsed buildings

According to Akl, Tummala and Li [15], indoor path loss for wireless data link at

2.4 GHz in various room conditions at a distance of 10 m to 30 m could be in the

range from 30 dB to 40 dB.

Estimation of penetration loss through walls and partitions can refer to Osama’s

theoretical models [16]. A 13 inch thick concrete external wall with insulation and

metal enforcement could introduce 15 dB attenuation and a 4.5 inch internal dry

wall could impose 5 dB penetration losses. This estimation also matched with the

XBee-PRO manufacturer’s test report [17].

As a total estimation, there could be 60 dB losses for a daughter robot inside a

normal building to communication with a mother robot outside. During USAR

mission in a collapsed building, the signal loss will be much higher than 60 dB.

Most ZigBee modules would not have enough power to get through this rubble to

make a direct link with the outside.

The solution requires network routing between the daughter robots, such that the

robot that is nearest to the outside of the building can communicate with the

mother robot with a direct link; other robots that are deeper inside the rubble

establish a network through to the outermost robot.

CHAPTER 2 SELECTION OF WIRELESS LINK 8

2.4 ZigBee network for thousands of robots

ZigBee (IEEE 802.15.4) networking protocol supports cluster tree topology that is

suitable for the network routing scenario described above [18]. A ZigBee device

can be configured as an FFD (Full Function Device) or RFD (Reduced Function

Device). Each device has a 64 bit IEEE address. 16 bit short addresses can be used

to increase message passing efficiency. This allows a maximum of 65535 devices

on the network.

The XBee-PRO modules on the daughter robots will be programmed by the v8x17

version firmware provided by MaxStream to work as FFD, which can function as

either a router or an end-node in a cluster tree network and carry out message

routing between devices [18]. This firmware works on top of the ZigBee network

layout and implements the cluster tree network topology illustrated in Figure 2.1.

The firmware supports 5 level routing. It allows 6 routers and 14 end-nodes in

each level. Thus there can be maximum 31100 daughter robots supported with

one coordinator in one network.

Figure 2.1: Cluster Tree ZigBee Network

CHAPTER 2 SELECTION OF WIRELESS LINK 9

In order to avoid prolonged delay in routing between levels and in practice there

will not be 100 to 200 daughter robots in a USAR mission, a two level network

which allows 140 robots or a three level network which allows 860 robots could

be used.

2.5 ZigBee Modules Comparison

Four development kit sets or modules were sourced and analysed for their

suitability for the projects. Significant specifications and features of each are listed

below.

2.5.1 Freescale 13193EVB-BDM Development Kit

 Cost
NZ$545 (ex. GST) from Arrow Electronics as of 2006 September, for
a pair of evaluation boards

 Firmware available
Full ZigBee stack source codes with application examples for pairs of
coordinator and end-node

 Development tool
Freescale’s CodeWarrior for re-programming the embedded GT60
microcontroller and 13193EVK software for loading and re-
configuration of application examples on to modules

 Interfaces
RS232, USB 1.1, 4 push buttons, 4 LEDs

 Output power
0 dBm (1 mW) typical, 3 dBm (2 mW) maximum

 Input power
5 V – 9 V DC

Figure 2.2: Freescale 13193EVB-BDM Development Kit

CHAPTER 2 SELECTION OF WIRELESS LINK 10

2.5.2 Panasonic PAN802154HAR00 Module [19]

 Cost
US$28.01 (ex. GST) from Arrow Electronics as of 2007 March

 Firmware available
One coordinator with three end-nodes and full ZigBee stack source
code from Freescale

 Development tool
Embedded GT60 microcontroller, can be re-programmed by
Freescale’s CodeWarrior

 Interfaces
RS232, 2 analogue input, 8 digital I/O

 Output power
0 dBm (1 mW) typical, 3 dBm (2 mW) maximum

 Input power
3.0 V - 3.4 V DC (for using with RS232)

Figure 2.3: Panasonic PAN802154HAR00 Module

2.5.3 Microchip Technology PICDEM Z 2.4GHz Demo Kit

 Cost
US$199.99 (ex. GST) from Microchip as of 2006 July, for a pair of
development boards

 Firmware available
Full ZigBee stack source codes with application examples for pairs of
coordinator and end-node

 Development tool
Microchips’s MPLAB C18 can be used to develop the full ZigBee stack
source code and re-programming of the embedded PIC18LF4620
microcontroller

 Interfaces
RS232, 2 LEDs, 1 temperature sensor, analogue and digital I/O on
the microcontroller

CHAPTER 2 SELECTION OF WIRELESS LINK 11

 Output power
0 dBm (1 mW), typical and maximum

 Input power
5 V – 9 V DC

Figure 2.4: Microchip Technology PICDEM Z 2.4GHz Demo Kit

2.5.4 XBee-PRO OEM RF Module [18]

 Cost
NZ$47.05 (ex. GST) from TCS (NZ) LTD as of 2007 October

 Firmware available
Several versions of firmware that supports mesh and cluster tree
network of one coordinator with numerous routes and end-nodes,
but ZigBee Stack source code not provided

 Development tool
Firmware programming and re-configuration software provided

 Interfaces
RS232 (TTL level), 8 I/O pins reconfigurable as 5 analogue input or 8
digital I/O

 Output power
18 dBm (60 mW) typical, 20 dBm (100 mW) maximum

 Input power
2.8 V - 3.4 V DC

Figure 2.5: XBee-PRO OEM RF Module on USB adaptor

CHAPTER 2 SELECTION OF WIRELESS LINK 12

After loading and running demonstration examples on the four ZigBee modules, it

was found that the time taken to become familiarised with the Freescale

13193EVB-BDM Development Kit and Microchip Technology PICDEM Z 2.4GHz

Demo Kit was not justified within the limited project time frame.

Summarizing the specifications and features, and based on the project criteria of

low cost, small size and easy integration with the robots, the PAN802154 module

by Panasonic and the XBee-PRO module by MaxStream were selected for

developing the prototype robots. Technical specifications for the modules are

listed in Table 2.1 below.

Figure 2.6: XBee-PRO (left) and PAN802154 (right) Modules

Table 2.1: ZigBee module specifications

 XBee-PRO PAN802154

RF Output
Power

18 dBm (60 mW) typical
20 dBm (100 mW) max

0 dBm (1 mW) typical
3 dBm (2 mW) max

Receive
Sensitivity

-100 dBm typical -92 dBm typical

Power
Consumption

Tx: 270 mA
Rx: 55 mA

Tx: 60 mA
Rx: 35 mA

Antenna ¼ monopole integrated
whip antenna

Printed onboard

4.5 cm

3.2 cm

CHAPTER 3 PROTOTYPES DEVELOPMENT 13

Chapter 3 Prototype Development

3.1 Rapid Prototype Development

Due to the limited time allowed for the project, the technique of rapid prototyping

is applied to the development of prototype robots. The process started from the

functional design along with mechanical and electrical design to meet the required

functionalities. The next step is hardware sourcing and combining parts to

assemble the robot in parallel with programming of the robot. Tests and

corrections were carried out and then looped back to modification on the design,

with re-programming and re-assembly if required, as shown in Figure 3.1 below.

Figure 3.1: Rapid Prototype Development

Based on this rapid development concept, several prototype robots were

developed and illustrated in the following sections.

CHAPTER 3 PROTOTYPES DEVELOPMENT 14

3.2 1st Prototype - Microcontroller with ZigBee

The design aim of the 1st prototype is a ‘quick start tester’ that allows testing of

message transfer on the communication link. The prototype does not need to be a

mobile robot but need to be built in the shortest time. A PIC16F877 target board

which provides a programmable serial port and interfaces was acquired and

connected with the XBee-PRO module to form the first prototype. The block

diagram below illustrates the design.

Figure 3.2: Block Diagram of 1st Prototype

Figure 3.3: PIC16F877 target board block diagram

The above block diagram illustrates the PIC16F877 target board. A 5 V DC

regulator provides power to the microcontroller and all the ports. The onboard

MAX232 level shifts the data output to the required level for the RS232 connector

which can be used for connecting to a computer. The data output can be shared for

connecting to the XBee-PRO wireless module.

Port A/E Port B

PIC16F877

Port C Port D 5 V DC

Regulator

Crystal

MAX232

RS232

9-pin

Connector

 LEDs

I/O Headers

I/O Headers

To XBee-PRO

Adaptor

7 to 9

V DC in

CHAPTER 3 PROTOTYPES DEVELOPMENT 15

Figure 3.4: XBee-PRO adaptor board

Since the XBee-PRO is an OEM module, an adaptor board is designed to provide the

necessary voltages and connections. The above schematic diagram shows the

adaptor board. U1 (TC1262-3.3) provides regulated 3.3 V DC to the circuit. Data

lines DOUT and DIN from U2 (the XBee-PRO module) are level shifted by U3 (the

MAX232) to provide the required signal level to the 9-pin RS232 connector JP3

which can be used for connecting to a computer. When jumpers are connected

onto J1 and J2, the header JP2 can be used to directly connect the data line to Port C

of the PIC16F877 target board on Figure 3.3. The following figure illustrates the

assembled prototype.

Figure 3.5: 1st Prototype - Xbee-PRO on PIC877 target board

PIC16F877

microcontroller

on target board

XBee-PRO wireless

module on adaptor

board

CHAPTER 3 PROTOTYPES DEVELOPMENT 16

3.3 2nd Prototype - The beetle with ZigBee

The second wireless module candidate is the Panasonic PAN802154. Figure 3.6

illustrates the block diagram of the module. It has an onboard micro-processing

unit (MC9S08GT60) which implements the ZigBee stack and a RS232 level shifter

for direct connection to any serial port.

Figure 3.6: PAN802154 wireless module block diagram

The beetle was developed by modifying a low cost (NZ$30) toy car. The original 27

MHz radio remote control circuit was taken out and replaced by the PIC16F877

target board as illustrated above. The 2nd prototype robot is created by connecting

the Panasonic PAN802154 module to the serial port of the target board inside the

Beetle as illustrated in the photograph below.

Figure 3.7: 2nd Prototype - The beetle with ZigBee

Data lines to

serial port

DC supply voltage in

PAN802154

wireless

module

Data lines

connected to

serial port

2 x AA

battery to

provide

3 V DC

(Avoiding a

regulator)

CHAPTER 3 PROTOTYPES DEVELOPMENT 17

3.4 3rd Prototype - Two-motor robot with ZigBee

The size of the PIC16F877 target board and the Beetle is large. A new

microcontroller board based on the PIC18F4550 with a base adaptor board which

contains motor driving circuit and connectors for the Panasonic PAN802154

module was developed. The two boards were assembled on a modified two-motor

body from the Beetle to form the 3rd prototype illustrated in the photographs

below.

Figure 3.8: 3rd Prototype - Two-motor robot with ZigBee

PIC14F4550

microcontroller

target board

PAN802154

wireless

module

Base adaptor

board with

motor drivers

and voltage

regulator

circuit

Battery box and

two-motor body

Wire-Tail as

third wheel

CHAPTER 3 PROTOTYPES DEVELOPMENT 18

Figure 3.9: Two-motor robot - base board schematic diagram

Figure 3.9 illustrates the schematic diagram of the base adaptor board on the two-

motor robot. It consists of three main parts. They are two identical H-Bridge

circuits formed by four MOSFET (Q1A-B & Q2A-B or Q3A-B & Q4A-B) driving the

left and right motors.

H-Bridge circuit for

driving left motor

H-Bridge circuit for

driving right motor

Voltage regulator and wireless

module connectors

CHAPTER 3 PROTOTYPES DEVELOPMENT 19

Each H-Bridge is driven by NAND-Gate Drivers (U1 or U2) that are themselves

driven by the DIR_LEFT, DIR_RIGHT and PWM signals from the PIC16F4550 target

board. The PWM signal controls the speed of the motor. The left and right signals

control which motor to run.

The third part of the schematic is the 3.3 V voltage regulators (U5) that provides

the required power. The connectors, J2, J3 and J4 work as plug-in sockets for the

PAN802154 wireless module. JP1 is for connecting the RS232 lines between the

wireless module and the target board.

3.5 4th prototype - The SRV-1 Surveyor

The two-motor robot (the 3rd prototype) demonstrated a scaled down version of

the beetle (the 2nd prototype). However, using the wire-tail to act as the third

wheel cannot provide proper movement on uneven surface. A better mechanical

structure is required.

While searching for a better mechanical structure, a tank like robot (the SRV-1

Surveyor) was found. This 4th prototype robot is a completed robot bought from

Surveyor Corporation [20]. The Surveyor contains a Phillips microcontroller with a

plug-in XBee-PRO module, which is the chosen ZigBee module for the projects

described in earlier sections. The photographs below illustrate the Surveyor robot

and the XBee-PRO on a USB adaptor board.

Figure 3.10: 4th Prototype - The Surveyor

CHAPTER 3 PROTOTYPES DEVELOPMENT 20

3.6 Final Prototype - RoboExp with Sensors

The final prototype is made by attaching a ZigBee module onto the customizable

robot kit-set, RoboExp robot purchased from JoinMax [21]. The RoboExp robot

comes with collision detectors and an ultrasonic detector. A PIR (passive infrared)

detector and a temperature sensor were designed and added on to the robot.

Figure 3.11 illustrates the prototype robot.

Figure 3.11: The Final Prototype - RoboExp Robot with sensors

Figure 3.12: ATMega16L microcontroller of the RoboExp Robot

PIR sensor

Collision

detectors

Ultrasonic

detector

PAN802154

wireless module

connected to

RS232 port

24 I/O ports

ATMega16L

microcontroller

RS232

port

5 V DC

regulator

Temperature

sensor

CHAPTER 3 PROTOTYPES DEVELOPMENT 21

3.6.1 RoboExp Robot with ATMega16L microcontroller

Figure 3.12 illustrates the controller on the robot. It is based on an ATMega16L

microcontroller providing 24 I/O ports which can be programmed as motor

output, analogue input, I2C interface, or digital I/O. These ports facilitate easy

interfacing of the RoboExp robot’s sensors to the microcontroller. As illustrated in

Figure 3.11, the PIR sensor is interfaced using a digital input port and the

temperature sensor is connected onto the I2C interface.

An added advantage of the RoboExp robot to rapid development is that the

software that comes with the controller provides a drag-drop-and-connect icon

style programming interface and also supports C++ programming in a text editor.

This allows a quick start-up of an application in minutes with detail and complex

algorithm to be developed in a later stage.

3.6.2 Adding I2C temperature sensor to the RoboExp controller

To demonstrate easy interfacing of sensors, a digital temperature sensor board

with based on Microchip’s MCP9803 I2C was designed and constructed. Figure 3.13

shows the temperature sensor schematic and the finished PCB that was added

onto the controller. The 6-pin port takes the 5 V DC at pin 2 to power the circuit

and connects the I2C bus to the controller.

Figure 3.13: Schematic and photo of the I2C temperature sensor

CHAPTER 3 PROTOTYPES DEVELOPMENT 22

The following C code subroutines was written and added to the source files to

allow the controller to set up and read temperature from the sensor.

Line SetI2CTemperature subroutine C code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

unsigned int SetI2CTemperature(_TEMPERATURE_ which){

 // Initialise I2C temperature module MCP9803

 struct select *information=&which;

 unsigned char ddr1=portarray[1][information->group1];

 unsigned char ddr2=portarray[1][information->group2];

 unsigned char port1=portarray[2][information->group1];

 unsigned char port2=portarray[2][information->group2];

 unsigned char pin1=portarray[0][information->group1];

 unsigned char pin2=portarray[0][information->group2];

 unsigned char bit1=information->bit1;

 unsigned char bit2=information->bit2;

 SDA_DDR=ddr2;

 SDA_PORT=port2;

 SDA_PIN=pin2;

 SDA_BIT=bit2;

 SCL_DDR=ddr1;

 SCL_PORT=port1;

 SCL_BIT=bit1;

 unsigned int errorCode=0;

 Soft_I2C_Start();

 Soft_I2C_Write(0x90);

 // write address byte - R/W bit should be 0

 Soft_I2C_Write(0x01);

 // point to configuration register

 Soft_I2C_Start();

 Soft_I2C_Write(0x40);

 // set to 11bit resolution

 Soft_I2C_Start();

 Soft_I2C_Write(0x90);

 // write address byte - R/W bit should be 0

 Soft_I2C_Write(0x0);

 // point to temperature register

 Soft_I2C_Stop();

 return errorCode;

 }

Figure 3.14: Subroutine to setup I2C temperature sensor

The SetI2CTemperature subroutine sets up the required port address and bits for

the I2C port. To fulfil the requirements to set up the MCP9803, lines 20 to 27 call

the Soft_I2C_Start and Soft_I2C_Write subroutines to write the resolution

parameter (0x40) into the configuration register (0x01) at the I2C address 0x90.

Lines 28 to 33 set the sensor to point to the temperature register (0x0) and then

stop to get ready and wait for commands to read temperature values.

CHAPTER 3 PROTOTYPES DEVELOPMENT 23

Line GetI2CTemperature subroutine C code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

unsigned int GetI2CTemperature(_TEMPERATURE_ which){

 // Read from I2C temperature module MCP9803

 struct select *information=&which;

 unsigned char ddr1=portarray[1][information->group1];

 unsigned char ddr2=portarray[1][information->group2];

 unsigned char port1=portarray[2][information->group1];

 unsigned char port2=portarray[2][information->group2];

 unsigned char pin1=portarray[0][information->group1];

 unsigned char pin2=portarray[0][information->group2];

 unsigned char bit1=information->bit1;

 unsigned char bit2=information->bit2;

 SDA_DDR=ddr2;

 SDA_PORT=port2;

 SDA_PIN=pin2;

 SDA_BIT=bit2;

 SCL_DDR=ddr1;

 SCL_PORT=port1;

 SCL_BIT=bit1;

 unsigned char byteTwo;

 unsigned char byteOne;

 unsigned int temp;

 Soft_I2C_Start();

 Soft_I2C_Write(0x91);

 // write address byte for reading temperature

 byteOne=Soft_I2C_Read(0);

 byteTwo=Soft_I2C_Read(1);

 Soft_I2C_Stop();

 temp = (byteTwo << 8) | byteOne;

 // combine two bytes to form the reading

 return temp;

 }

Figure 3.15: Subroutine to read I2C temperature reading

The GetI2CTemperature subroutine has the same starting part as the set up

subroutine, using the same port address and bits for the I2C port. Lines 22 and 23

call subroutines to put the address 0x91 on the bus for reading the MCP9803

module. Lines 25 to 27 read the two bytes of the temperature value and then stop

the operation. Lines 28 and 29 combine the two bytes to form the temperature

reading and return it.

The Soft_I2C Start, Read, Write and Stop subroutines are provided by the RoboExp

development software.

CHAPTER 3 PROTOTYPES DEVELOPMENT 24

3.7 Summary of Prototype Development

The aim of developing all the prototypes is to source and select hardware to build a

platform that is suitable for further project experiments. The platform must fulfil

the concept of “rapid prototyping”, such that it can be easily re-configured, re-

programmed and be adapted with sensors and motors for constructing simulated

robots.

The wireless modules are programmed as pairs of point-to-point wireless modems

and messages were sent between a computer and the prototypes. The following

table summarises and comments on these test results.

Table 3.1: Experiments and comments on prototypes

Proto-
type

Experiments & Comments

1st  A pair of XBee-PRO modules at 4800 baud

 999 bytes message was received properly at the computer by sending
the one-byte, ‘H’ request message

 The baud rate is low and need to test motor driving to check noise
immunity

2nd  A pair of PAN802154 modules at 4800 baud

 The Beetle (contains the same PIC16F877 as 1st prototype)

 Motor driving tested and 999 bytes message tests without problem

3rd  A new microcontroller board, PIC18F4550 was developed

 Body of the 2nd prototype was modified to form a two-motor body

 A pair of PAN802154 modules at 38400 baud

 Same 999 bytes message and motor driving tests without problem

4th  A pair of XBee-PRO modules at 115200 baud

 Using the robot’s Java based remote control program, but intermittent
loss of photos was found. A new Java program was written to test at
other baud rates, photos can be captured, but losses still happened.

 Re-programming of the robot for the same test as the other prototypes
was not carried out due to time limitation, but expected the robot can
achieve the same as other prototypes, since photos can be captured.

Final  RoboExp with the ATMega16L microcontroller was programmed to be
tested the same as the 3rd prototype

 Both XBee-PRO and PAN802154 have been used

 999 bytes message and driving tests were done without problem on
various baud rates from 9600 to 115200

CHAPTER 3 PROTOTYPES DEVELOPMENT 25

Summarising the above discussions, building a model of daughter robot can start

from one of the last two prototypes. The Surveyor features an attractive camera

that allows users to see “what is going on in there”, but some lighting is required.

The RoboExp is easily reconfigurable and with its I2C ports cater for new sensors

and actuators. However, both of them need “shape-up” to keep them from getting

stuck in adverse situations.

The two selected wireless modules are well justified to continue with the next

stage of experiments as both can be reconfigured with various baud rates and be

direct connected to a standard RS232 interface on the microcontroller boards.

Using the structure as the 1st prototype, both of the modules are attached to a

microcontroller and used for the “feasibility tests” described in next chapter.

3.8 Prototype Robots Cost Analysis

The final prototype of the daughter robot as described in section 3.6 is based on

the educational kit set RoboEXP robot [21]. The cost of a kit set is US$159.30. The

kit set contains parts, such as two motors, two tyres, a front wheel, two collision

sensors, one sound sensor and two light sensors, for building the robot framework.

Extra sensors such as an ultrasonic distance detector (US$30), a PIR sensor

(US$10) and an I2C temperature sensor (US$20) were added for function

enhancement. Adding an XBee-PRO module (NZ$47.05) completed a wireless

prototype daughter robot at about US$250.

The 4th prototype, the SRV-1 Surveyor robot costs US$525 from Surveyor

Corporation. The SRV-1 is completed with a miniaturized camera and a pair of

laser lights for range finding. It has a pair of mini-size DC motors built into to an

aluminium chassis, which drives a pair of rubber belts to form a self-laying track

configuration [20].

CHAPTER 3 PROTOTYPES DEVELOPMENT 26

The RoboExp robot is cheaper, but the SRV-1 has a better chassis and comes with a

second XBee-PRO module on a USB adaptor for connecting to the computer. For

the additional cost of a hundred dollars, the RoboExp can be built onto a similar

aluminium chassis with motors to make it more or less the same cost and same

structure.

The cost of these prototypes being of the order of several hundred dollars is

acceptable and within the budget allocated to this project. No claim is made here

what the final cost of a daughter robot might be once factors such as mass

production and reliability/robustness of the device are taken into account.

If only signal routing is required at locations inside the rubble, further cost cutting

can be done by using the mini-router describe in later section 4.3.2. This consists of

two AA-batteries and an XBee-PRO module that can be made below US$30.

CHAPTER 4 WIRELESS LINK VERIFICATION 27

Chapter 4 RF Signal Tests

The next stage of the project is to run experiments to verify that the selected

ZigBee modules can establish a reliable communication link for the daughter

robots in USAR missions.

4.1 Wireless Link Test

4.1.1 Experiment setup

The 1st prototype illustrated in section 3.2 was used to carry out the experiments.

The ZigBee modules are used in pairs and configured as wireless modems

connecting a computer on one side and to the microcontroller on the other side. A

single byte message was sent from the computer to the microcontroller, which was

programmed to respond with a 300 byte text message. The communication was

tested with the 300 byte response message verified for two scenarios described

below.

4.1.2 Scenario 1: A normal office building

Searching for victims in collapsed buildings will be the normal mission that

daughter robots designed for. It is reasonable to expect that in such a collapse,

there will be substantial cavities (necessary to contain a surviving victim) as well

as gaps in the rubble (one of which will admit the daughter search robot). A four

level office building (Figure 4.1) was chosen to run the first set of GO/NO GO tests.

Although this building has obviously not collapsed, it will serve to model the actual

disaster environment given the commonality of building materials and structural

layout.

The main structure of the building is supported by twenty-five 0.6 m by 0.6 m

concrete columns. The floor of each level is a 0.3 m thick concrete slab. The floor

area of each level is 30 m by 30 m and 3 m height. Each floor is divided into offices,

class rooms, laboratories and computer rooms. The main stairway, toilets and the

lift are grouped at the middle of the building and a back door stairway is on the

north.

CHAPTER 4 WIRELESS LINK VERIFICATION 28

Figure 4.1: Office building for GO/NO GO tests

The robot was placed on a desk inside one of the rooms at the north side in second

floor. The communication test was carried out by moving the computer to various

locations inside and outside the building. Figure 4.2 illustrates the location of the

ZigBee and micro-controller module on the second floor.

Figure 4.2: Floor plan for communication test

North

Monitoring computer is

placed at various locations

ZigBee module with

microcontroller located

in room P203

North side

of building

Main

entrance

to foyer
North side

entrance

25

concrete

columns

CHAPTER 4 WIRELESS LINK VERIFICATION 29

Results on reception of respond message for each floor are summarised in table 4.1

below.

Table 4.1: Office building communication test results

 Using XBee-PRO

with microcontroller

Using PAN802154

with microcontroller

F
lo

o
r

1
 All bytes received in all rooms,

corridors, stairways and foyer;
except in rooms at south-west
corner of building.

All bytes received in corridors,
stairway, and foyer; but no respond
message in rooms.

F
lo

o
r

2

All bytes received in all rooms on
second floor, corridors, and
stairways.

All bytes received in rooms at
north, corridors and stairways; but
rooms at middle & south end only
get respond message near
doorways.

F
lo

o
r

3
 All bytes received in rooms at

north, and corridors; but rooms
at middle & south end only get
respond message near doorways.

All bytes received in north half of
the corridors, and stairways only.

F
lo

o
r

4
 All bytes received in corridors

and stairways only.

All bytes received at stairways

only.

O
u

ts
id

e
 All bytes received within 3m at

north, north-east corner, and

outside main entrance (even with
glass door closed).

All bytes received only when very
close to the room of the ZigBee

modules at north of the building.

From the table, the range of the XBee-PRO module covers a lot more area than the

PAN802154 module, including areas outside the building. This is mainly due to the

XBee-PRO’s maximum output power of 100 mW which is much higher than that of

the PAN802154 at 2 mW. Note that for the actual experiments both devices were

configured to transmit at their highest output power.

CHAPTER 4 WIRELESS LINK VERIFICATION 30

4.1.3 Scenario 2: Metallic effects

Reinforced concrete is the major building material used for the building. Another

commonly found material is metal from electric appliances, such as computers.

The following two GO/NO GO tests addressed this.

A. Aluminium shield

A 1.25 mm thick aluminium dome was used to shield the RF signal transmitting

from the ZigBee module. A spectrum analyser with a dipole antenna was used to

measure the received signal strength. Due to the shield was not grounded with

respect to the RF transmitter; it became a re-radiator that produces secondary

radiation of the signal [22]. An attenuation of about 15 dB was measured. The

arrangement is illustrated in Figure 4.3.

Figure 4.3: Aluminium Shield (Re-radiator) Test

Taking the PAN802154 module as an example, its output RF power is 0dBm. If a

receiving module is placed at a 30 m distance, the estimated path loss is 30 dB

[15]. Adding the 15 dB loss due to the aluminium shield, the received signal

strength should be about -45 dBm, which is well above the module’s sensitivity of

-92 dBm. As a result, this amount of attenuation should not block the RF link, and

the modules should be able to maintain proper communication at a range of more

than 30 m. The XBee-PRO module should perform better, as it has a higher output

power and better sensitivity.

ZigBee
module

Spectrum
Analyser

3m

CHAPTER 4 WIRELESS LINK VERIFICATION 31

B. Mild steel computer boxes

A second simulated environment was built by old computers. The computer boxes

have air vents and openings, and they are not perfectly square. Twelve computers

(cases with components fully installed) were arranged to form a “castle” (see

photo and illustrations in Figure 4.4) such that the ZigBee and micro-controller

modules were enclosed all around (top, left, right, front and rear) by two layers of

computers on the concrete floor. A double layer structure was used to cover the

openings, but there are small gaps (about 1 cm) between the computers.

Figure 4.4: Mild steel computer boxes enclosing modules

Concrete Floor

ZigBee &

Microcontroller

modules

Old

Computers

ZigBee &

microcontroller

modules

Air vents

and

openings

on box

Gaps between

boxes

CHAPTER 4 WIRELESS LINK VERIFICATION 32

Figure 4.5: Test by enclosing modules in mild steel computer boxes

The monitoring computer with a ZigBee module was located in another room (as

per the floor plan illustrated in Figure 4.5) at 20 m distance, and message passing

was tested.

The test results showed that the communication is good with the XBee-PRO

module, but the PAN802154 module gave intermittent results. When the

monitoring computer is moved into the same room with the enclosed modules,

both models of ZigBee module can establish proper communication. However, if

more computer boxes were used to overlap all gaps, communication cannot be

established.

4.2 Attenuation of RF Signal in Rubble

High frequency communication, such as the ZigBee technology in the range of MHz

to GHz, is subject to significant attenuations in a rubble environment. The National

Institute of Standards and Technology (NIST) have carried out experiments on RF

ZigBee and microcontroller module

enclosed in computer cases

Monitoring

computer with

ZigBee module

20m

CHAPTER 4 WIRELESS LINK VERIFICATION 33

signals before, during, and after the implosion of three large building structures

[23]. Their measurements showed a 20 to 80 dB of attenuation for RF signals in the

frequency range 50 MHz to 1.8 GHz after the collapse, depending on the building

type and location of the transmitter. This high attenuation is a major impediment

to using these RF signals for direct point-to-point communication between devices

inside the rubble and rescue persons outside.

The wireless link tests described above confirmed the same performance

demonstrated by the XBee-PRO modules. A direct communication link is not

always possible; and a routing wireless network is required to overcome the

problem. Another often used wireless technology in buildings is Wi-Fi which also

provides routing of data between devices. The next section compares the two

technologies.

4.3 ZigBee versus Wi-Fi

Section 2.2 compared wireless technologies Wi-Fi and ZigBee. Both technologies

support indoor and outdoor communication and data routing between device

nodes. The Network-Centric Applied Research (NCAR) Team of Ryerson University

in Canada has demonstrated communication range extension using Wi-Fi

repeaters in an artificial rubble environment [24]. The NCAR team used the D-Link

DWL-2100AP Wi-Fi access point for data routing [25]. This section investigates in

more detail the suitability of the two technologies on the daughter robots by

comparing the DWL-2100AP with the XBee-PRO.

4.3.1 Link Margins

The link margins for a ZigBee network and a Wi-Fi network can be estimated using

the 80 dB attenuation measured by NIST as follows:

A. Link Margin for ZigBee device

A ZigBee device, XBee-PRO with a typical output power of +18 dBm and

receiver sensitivity of -100 dBm will have a link margin of 38 dB.

CHAPTER 4 WIRELESS LINK VERIFICATION 34

B. Link Margin for Wi-Fi access point

A Wi-Fi access point, DWL-2100AP with a typical output power of +15dBm

and receiver sensitivity of -89 dBm will have a link margin of 24 dB.

The link margin seems good for both ZigBee and Wi-Fi cases. However, the

experiments done by NIST were up to 1.8 GHz but ZigBee and Wi-Fi is at a higher

frequency of 2.4 GHz that will experience greater attenuation. This high level of

attenuation coupled with multipath fading environmental noise indicates that a

direct link for continuous data transfer will not be viable for both technologies.

Thus multiple ZigBee devices or Wi-Fi access points are required to build an ad-

hoc digital network which can route packets of data from one node to another until

they arrive at the receiving end.

4.3.2 Cost, size and power

As described in section 2.4 the manufacturer of XBee-PRO provides firmware

which allows configuration of the module as a coordinator, router or end-node. A

cluster-tree wireless network can be formed by one coordinator and multiple

routers and multiple end-nodes. The module can be programmed to work alone as

a router and powered directly by two AA-size batteries to form a mini-router as

shown in Figure 4.6 below. This makes a very low cost and small size routing node,

such that it can be dropped into any opening or carried by a robot to anywhere in

the rubble. Of course the size can be even further reduced if a more compact power

supply is utilised.

Figure 4.6: Mini-router - XBee-PRO with 2 AA-batteries

CHAPTER 4 WIRELESS LINK VERIFICATION 35

Compared with this mini-router, the access point is double the size, costs three

times more and requires ten times more power. It is required for the group of

robots to form an ad-hoc routing network. Due to the size and power

requirements, it is not viable to have a robot carry a Wi-Fi access point and burrow

into the rubble.

4.4 Summarizing the Wireless Link Test

The link test experiments showed that XBee-PRO performed significantly better

than the PAN802154 module. It can establish a proper communication link when

buried under commonly found materials in an office building. In most situations it

can send messages between rooms, corridors and stairways; and in some cases it

can get through walls and windows to outside the building. As compared with the

Wi-Fi access point, the XBee-PRO module provides the same networking

mechanism, but at a much smaller size and lower power consumption.

If we can assume that there is not much change on the material properties after a

building is collapsed, and if there are still cracks (just like the cracks between

computer boxes) between materials to allow wireless signals to get through, it is

possible for the XBee-PRO modules to establish a usable communication link in the

rubble by either a direct link or by passing a message from one robot to another

until it gets outside the rubble. This supports the selection of this module for

developing the daughter robots.

The next stage of the project is to implement the wireless network using the XBee-

PRO modules, and then simulate a real rubble environment and carry out

experiments to verify communication between robots inside and outside the

rubble.

CHAPTER 4 WIRELESS LINK VERIFICATION 36

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 37

Chapter 5 Wireless Network Implementation

MaxStream produces several wireless modules that based on the ZigBee standard.

XBee-PRO, because of its higher output power, is selected as one of the candidate

modules for this project. After the analysis, prototyping and tests described in

chapters 2, 3 and 4, it was chosen as the final module for network implementation.

Several versions of firmware are available for the module. The version v8x17 is

selected because it supports the cluster tree network topology as described in

section 2.4. It also supports API (application programming interface) operation for

controls by high-level host applications. This chapter describes the development of

the automatic routing wireless network using the features provided by this

firmware. High-level program is developed for communication test and analysis.

5.1 X-CTU software for configuring XBee-PRO modules

MaxStream provides the X-CTU software for configuring and programming

firmware into the modules. Figure 5.1 illustrates the PC Settings tab of X-CTU [26].

Figure 5.1: X-CTU port settings

Serial port settings
 38400 baud
 No flow control
 8 data bit
 No parity
 1 stop bit

API not enabled

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 38

5.2 XBee-PRO version v8x17 firmware

There are five sub-versions of the v8x17 firmware. The following describe the

versions used for this project.

5.2.1 Coordinator Firmware - Version v8117

Figure 5.2: XBee-PRO coordinator firmware parameters

Figure 5.2 illustrates the Modem Configuration tab in X-CTU for the version v8117

firmware used on the XBee-PRO module to configure it as a coordinator on the

network. The firmware is divided into four parts. Parameters in black colour are

Read only
parameters,

indicated
by arrows

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 39

read only; others are configurable. The following table describes usage of the

parameters during coordinator operations.

Table 5.1: Firmware parameters for XBee-PRO coordinator operation

Networking
CH, ID, SC, SD & NJ – at power up a coordinator will issue an Active Scan for an

unused channel and PAN ID. SC and SD determine the channels and time for
scanning. If ID is set to 0xFFFF it will use a random PAN ID. Once a free
channel and PAN ID is found, they will be written into the parameters, and
the coordinator will allow nodes to join it for a time period based on the NJ
parameter. If enabled, the Associate LED (connect to DIO5) will blink once
per second.

MY – the network address for the coordinator is always 0.

SH & SL – Serial number is hard coded in the module.

RN – defines the back-off exponent in the CSMA-CA algorithm for collision
avoidance. 0 to disable.

BH – defines the maximum number of hops for broadcast transmission. 0 will use
the maximum number of hops.

NI – the name of the node in string format.

NT – defines the amount of time a node spends on discovering other nodes when
a ND (node discover) command or a DN (destination node) command is
received.

RF Interfacing
PL – defines transmitting power; five choices in dBm 10, 12, 14, 16, 18

CA – defines the CCA (Clear Channel Assessment) threshold level in dBm before

transmitting a packet. If the detected level on the channel is above the CCA,

the packet is not transmitted.
Serial Interfacing and I/O

BD – defines the baud rate; available choices from 1200 to 115200

NB – number of bits

RO – defines the number of inter-character silence that the module will wait,
before packetizing data to be transmitted. If set to 0, data will be sent when
they arrive without buffering.

D7 – configure the DIO7 pin of the module. 1 to use it as CTS flow control, 0 to
disable.

D5 – configure the DIO5 pin of the module. 1 to use it as associated indicator to
flash an LED (1 once per second at power up, twice per second when
associated to a coordinator), 0 to disable.

P0 – 1 to enable RSSI (received signal strength indication) by PWM (pulse width
modulation); 0 to disable.

AP – 1 to use API (Application Programming Interface) mode, 2 for API with
escape character control. (For AT mode use firmware v8017)

Diagnostic Commands
VR & HV – read only firmware and hardware version of the module

RP – define the time (x100 ms) that the RSSI signal (see P0 above) will be output
after last transmission; 0xFF to set output always on.

AI – stores information regarding last node join request.

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 40

5.2.2 Router Firmware - Version v8217

Figure 5.3 illustrates the configuration tab for the version v8217 firmware used on

the XBee-PRO module to configure it as a router on the network.

Figure 5.3: XBee-PRO router firmware parameters

Read only
parameters,

indicated
by arrows

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 41

The configuration parameters are divided into five parts. The following table

describes the purpose of the parameters during router operations.

Table 5.2: Firmware parameters for XBee-PRO router operation

Networking
CH, ID, SC, SD & NJ – at power up a router will scan for a coordinator or another

router to allow it to join a PAN. SC and SD determine the channels and time

for scanning. If ID is set to 0xFFFF it will join any available PAN. Once

successfully joined a PAN the router will allow nodes to join it for a time

period based on the NJ parameter. If enabled, the Associated LED (connected

to DIO5) will blink twice a second to indicate successful connection to a PAN.

CH will store the channel of the PAN.

DH & DL – stores the 64-bit address of the destination node. This is set to zero for

the router to send packets to the coordinator. Commands can be sent to the

module to change this address.

MY – stores the 16-bit network address is allocated by the coordinator.

MP – stores the network address of the parent (the router or the coordinator that

allow joining of the PAN).

SH & SL – unique serial number hard coded in the module.

RN – defines the back-off exponent in the CSMA-CA algorithm for collision

avoidance. 0 to disable.

BH – defines the maximum number of hops for broadcast transmission. 0 will use

the maximum number of hops.

NI – the name of the node in string format.

NT – defines the amount of time a node spends on discovering other nodes when

a ND (node discover) command or a DN (destination node) command is

received.

RF Interfacing
– same as for coordinator, see entries in Table 5.1

Serial Interfacing and I/O
– same as for coordinator, see entries in Table 5.1

Diagnostic Commands
– same as for coordinator, see entries in Table 5.1

AT Command Options
This firmware provides operation of the module as a transparent wireless

modem to the host (a microcontroller to simulate a robot in this project).

Commands can be sent from the host to control the module (at AT Command

mode) based on the following parameters.

CT – stores the timeout (x100 ms) after which the module exits AT Command

Mode and return to idle mode.

GT – the Guard Times (x1 ms) is the silence period before and after the CC

(Command Sequence Character) to prevent inadvertent entrance into AT

Command Mode.

CC – the character (‘+’ by default) to be used between the GT to set the module

into AT Command Mode.

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 42

5.2.3 Profile files for modules to form a network

The X-CTU software allows saving and loading firmware parameters from profile

files in text format. The following table displays the contents of profile files for the

Coordinator, Router 1 and Router 3.

Table 5.3: Profile files of XBee-PRO modules

Coordinator.pro Router1.pro Router3.pro

XBP24_ZigBee_8117.mxi
FE
0
241
8117
0
[A]ID=123
[A]RN=3
[A]SC=1FFE
[A]SD=3
[A]NJ=FF
[A]NI= COORDINATOR
[A]NT=3C
[A]PL=4
[A]CA=40
[A]BD=6
[A]NB=0
[A]D7=1
[A]D5=1
[A]P0=1
[A]AP=1
[A]RP=28

XBP24_ZigBee_8217.mxi
FE
0
241
8217
0
[A]ID=123
[A]DH=0
[A]DL=0
[A]RN=3
[A]BH=0
[A]SC=1FFE
[A]SD=3
[A]NJ=FF
[A]NI=ROUTER1
[A]NT=3C
[A]PL=4
[A]CA=40
[A]BD=6
[A]NB=0
[A]RO=10
[A]D7=0
[A]D5=1
[A]P0=1
[A]RP=28
[A]CT=64
[A]GT=3E8
[A]CC=2B

XBP24_ZigBee_8217.mxi
FE
0
241
8217
0
[A]ID=123
[A]DH=0
[A]DL=0
[A]RN=3
[A]BH=0
[A]SC=1FFE
[A]SD=3
[A]NJ=FF
[A]NI=ROUTER3
[A]NT=3C
[A]PL=0
[A]CA=40
[A]BD=6
[A]NB=0
[A]RO=3
[A]D7=0
[A]D5=1
[A]P0=1
[A]RP=28
[A]CT=64
[A]GT=3E8
[A]CC=2B

Four modules, a coordinator and three routers will be used to form the network

for the experiments. Router 2 will have the same configuration as Router 1 but

with NI changed to Router 2. Router 3 will be used as the data transmitter which

programmed to the lowest transmitting power (PL=0, 10 dBm). This will maximise

the effect of attenuation by the rubble and increase the chance of requiring

message routing that will better test the performance of the network. In actual

missions, all modules should be programmed to the maximum power.

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 43

5.2.4 AT mode versus API mode

Referring to the firmware parameters in Table 5.2 and Table 5.3, The XBee-PRO

routers will work in AT mode (no AP parameter in the firmware) as transparent

wireless modems. During experiments the simulated daughter robots will send

data directly to the coordinator (address DH=0 and DL=0) through the serial port.

The PAN ID will be fixed at 123 and no change is required on the router modules at

real-time.

The coordinator is set to API mode to allow high-level programs to control the

module at real-time operation. API operation facilitates a frame structure

communication between the host and the module. Network information can be

extracted from the coordinator by sending commands to it through API frames. To

simply the design, it was chosen to use API mode without escaped characters. The

simulated daughter robots and the simulated mother robot (the monitoring

computer) will send messages in ASCII characters to avoid conflict with other

bytes in the structured frames.

5.3 API Programming on the Simulated Mother Robot

The coordinator will be attached to a computer simulates the mother robot. A

monitoring and communication analysis program is written to implement the API

frame structure required for communicating with the coordinator. Borland Delphi

(version 5), because of its well structured base language (Pascal) is chosen for

developing the program. Several API frame structures from the XBee-PRO

firmware are chosen for developing the program. The following summarises the

chosen API frame structures from the firmware manual.

5.3.1 AT Commands in API frame structure

Two AT commands are used, NI to check the node identifier to make sure the

coordinator is working and ND for node discovery to find all nodes connected to

the coordinator. The frame structure for sending AT commands is shown in Figure

5.4.

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 44

Figure 5.4: AT Command frame structure

The high-level structure is the same for all API frames: Start Delimiter + Length +

Frame Data + Checksum. For example, to send the NI command, the following

sequence of bytes is required to form the API frame.

Table 5.4: Byte sequence for NI command in API frame structure

Bytes Values Description

1
2-3
4
5
6-7
8

0x7E
0x00 0x04
0x08
0x52
0x4E 0x49
0x0E

All API frames use this start delimiter
Length = API Identifier + Frame Id + AT Command
API Identifier 0x08 for AT command
Frame ID an non-zero value, arbitrary chosen as ‘R’
AT Command in ASCII code for ‘N’ and ‘I’
Checksum for bytes 1 to 7

A similar byte sequence can be constructed for the ND command by replacing byte

7 with 0x64 (ASCII code for ‘D’) and byte 8 with the corresponding checksum.

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 45

5.3.2 API frame for transmit request

The ZigBee Transmit Request frame is used for sending data to devices on the

network. The high-level structure is the same, Figure 5.4, but it has 0x10 as the API

Identifier and a different block for Identifier-specific Data. The detail of the

Identifier-specific Data block is shown in the table below.

Figure 5.5: API frame for ZigBee Transmit Request

Table 5.5: Identifier-specific Data block for ZigBee Transmit Request

Bytes Description

5

6 - 13
14 - 15

16

17

18 - n

Identifies the data frame of the host to correlate with a subsequent
ACK, using 0 will disable response frame
64-bit Destination Address (Broadcast = 0x000000000000FFFF)
16-bit Destination Network Address (0xFFFE for Broadcast, or
when network address is unknown)
Set maximum hops for broadcast, 0 for using maximum network
hops value of 10
0x01 = Disable ACK, 0x02 – Disable Network Address Discovery
AT Command in ASCII code for ‘N’ and ‘I’
Data to send, up to 72 bytes per packet

5.3.3 API frame in respond to AT Command

In response to an AT Command, a module will send a Frame Data with 0x88 as the

API Identifier and the Identifier-specific Data block illustrated in Table 5.6.

Table 5.6: Identifier-specific Data in respond to AT Command

Bytes Description

5

6 - 7
8
9 - n

Identifies the UART data frame being reported, 0 to indicate in AT
Command mode and no response will be given.
ASCII characters of the command responded to
Status byte, 0=OK, 1=ERROR
HEX value of the requested register

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 46

5.3.4 API frame of ZigBee Received Data Packet

When an API enabled module receives a data packet (not a command packet) from

the RF link, it will send to the host an API frame with 0x90 as the API Identifier.

Table 5.7 illustrates the Identifier-specific Data block within the API frame for the

data packet. The actual message starts at byte 16 to the end of the block are the

received data.

Table 5.7: Identifier-specific Data block of ZigBee Received Data Packet

Bytes Description

5 - 12
13 - 14
15

16 - n

64-bit Address of the sender, MSB first, LSB last
16-bit Address of the sender, MSB first, LSB last
Options – 0=Packet Acknowledged, 1=Broadcast Address, bits 2-7
[reserved by manufacturer]
Data received, up to 72 bytes per packet

5.3.5 ZigBee Tester program on monitoring computer

The following figure illustrates the user interface of the tester program on the

monitoring computer.

Figure 5.6: ZigBee tester and analysis program

Received data Packets in
HEX format

Transmitted Packets in HEX
format, followed by received

message in ASCII codes

Addresses of
connected

nodes

Serial
Port

settings

Packet
Check

Results

Summary
of bytes

Command to send

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 47

The tester program is based on the Asyn32 Serial Port demo program by TMS

Software [27]. It comes with a VaComm component which provides procedures for

controlling and handling serial port events. Standard Borland Delphi components

were used. Several functions were written to build the user interface (Figure 5.6)

and to implement required communication tests. They are described below.

Functions for constructing AT Commands:

Line Pascal code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

function findChkSum(cmd: String): char;

var

 I: Integer;

 Sum : Integer;

begin

 I := 1; Sum := 0;

 while I <= Length(cmd) do

 begin

 Sum := Sum + Integer(cmd[I]);

 I := I+1;

 end;

 I := 255 - Sum;

 Result := char(I);

end;

Figure 5.7: Pascal function for finding Checksum

Line Pascal code

1

2

3

4

5

6

7

8

9

10

11

function getCommand(cmd: String): String;

var

 cmdMid: String;

begin

 cmdMid :='';

 if (Length(cmd)>$FF) then //for long commands

 cmdMid := char(Length(cmd)-$FF) + char(Length(cmd))

 else //for short commands, e.g. ND & NI

 cmdMid := char(00) + char(Length(cmd));

 Result := APIdelimiter + cmdMid + cmd + findChkSum(cmd);

end;

NOTE APIdelimiter: char = char($7E); //const defined elsewhere

 Call findChkSum (Table 5.8) to get checksum of the command.

Figure 5.8: Pascal function for constructing the AT Command

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 48

Button for sending AT Command to coordinator:

When the “SendCmd to Coordinator” button was clicked, the procedure in Figure

5.10 will be triggered to call the above functions to construct the AT Command

using the string in “Message” text box.

Figure 5.9: Button for sending AT command

Line Pascal code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

procedure TfrmMain.btnSendCmdClick(Sender: TObject);

var

 S, Hs: String;

 I: Integer;

begin

 S := getCommand(char($08) + 'R' + edtCmd.Text);

 Vacomm1.writeText(S);

 I := 1;

 Hs:='';

 while I <= Length(S) do

 begin

 Hs := Hs+ IntToHex(Integer(S[I]),2);

 I := I + 1;

 end;

 Memo2.Lines.Text :=

 Memo2.Lines.Text+ char($0D) +'TX: ' + Hs +'... ';

 if (UpperCase(edtCmd.Text) = 'ND') then

 begin

 Memo4.Lines.Clear;

 ComboBox1.Items.Clear;

 ComboBox1.Items.Add('Broadcast');

 end;

end;

Figure 5.10: Pascal function for sending command to coordinator

Line 6 calls the getCommand function (Figure 5.8) to create the command string

from the message box, edtCmd.Text. Line 7 calls the serial port component to send

the command. Lines 8 to 16 update the display with the command information.

Lines 17 to 21 check if a network discovery ‘ND’ command is sent, if so, the list of

device addresses Memo4 will be cleared to wait for new list of devices. ComoBox1

‘SendCmd to Coordinator’

button

Command ‘Message’

text box

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 49

for selection of devices is also cleared and set to ‘Broadcast’ as the default. This is

to prepare the interface for sending messages to a device.

ZigBee message received:

When a message is received by the ZigBee module and passed to the serial port,

the OnData event from the VaComm1 component will trigger the VaComm1Data

procedure. A full listing of the program source code is provided in the Appendix.

The following pseudo code illustrates the operation of the procedure, where

RxMsg stores all characters of the received message.

Pseudo code for handing data received:

1. Read character to C, until no more

If C=’s’, it is start of the 300 bytes, CountOneMsg=0, StartOneMessage=true

If StartOneMessage

If C is a number between ‘0’ to ‘9’, inc(CountOneMsg)

If C=’E’, end of message

StartOneMsg=false

If CountOneMsg <>300

Calculate and display number of errors

If C is a linefeed

Update accumulated error bytes

Reset error bytes count

If C equals 7E this indicates start of a new message

If length(RxMsg)>0 indicates a second message arrived

 Call gotMessage(true) to handle second message

Buffer C into RxMsg, and hex value of C into Hs

2. Display received hex characters, Hs on Memo3

3. If length(RxMsg)>0 and first character of RxMsg is 7E

It indicates a single completed message

Call gotMessage(false) to handle the message

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 50

Pseudo code for gotMessage(twoMessage):

1. Call getCompleteMsg to check any error in RxMsg

2. If no error – indicates a completed message in RxMsg

 Update Memo1 & Memo2 to display information

 If the RxMsg is a response to a Node Discovery command

 Update Memo4 with received device address

 Update ComboBox1 to display received device name

 Clear RxMsg

3. Else (errors)

 Update Memo1 to display errors

 Update error bytes on display

 If twoMessage=true, indicates first message is incomplete

 Discard the first message by clearing RxMsg

Two functions, getCompleteMsg and chkATreponse, were written to support the

data handling procedure. Figure 5.11 listed the getCompleteMsg function.

Line Pascal code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

function getCompleteMsg(var Msg: String): Integer;

var

 L: Integer;

begin

 L := Integer(Msg[2])*256 + Integer(Msg[3]);

 if (Length(Msg) = (L+4)) then

 //completely received one message

 begin

 if (Msg[4] = char($90)) then //it is a ZigBee Message

 Msg := Copy(Msg,16,Length(Msg)-16)

 //Extract the content

else if (Msg[4] = char($88)) then

 //it is an AT command response

 Msg := chkATresponse(Msg) // handle AT response

 else

 Msg :='Not a proper message!';

 Result := 0;

 end

 else //keep RxMsg, but err bytes returned

 begin

 Result := Length(Msg)- (L+4)

 end;

end;

Figure 5.11: Pascal function to check a complete message

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 51

The getCompleteMsg function checks if the length of the data packet is correct; if

not, it will discard the message. Then if the response is a ZigBee data packet

indicated by $90 in byte 4 (section 5.3.4), extract the data. If the response is for AT

Command indicated by $88 (section 5.3.3), call chkATresponse to handle the

message.

 The chkATresponse function, listed in Figure 5.12, takes bytes 6 and 7 and checks

the corresponding ASCII code. If it is ‘NI’, the response is the identifier of the

coordinator; line 6 and 7 will extract the identifier. If it is ‘ND’, the response

contains the device address and name. Lines 12 to 20 extract and store the address

in the variable Raddress and return the node name.

Line Pascal code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

function chkATresponse(Msg: String): String;

var

 I: Integer;

 S: String;

begin

 if (Copy(Msg,6,2) = 'NI') then

 Result := Copy(Msg,9,Length(Msg)-9)

 else if (Copy(Msg,6,2) = 'ND') then

 // each node will response with one message

 begin // extract node name

 I:= 7;

 if (Length(Msg) > 19) then

 begin

 repeat

 I := I+1;

 S := S+IntToHex(Integer(Msg[I]),2);

 until (I=18);

 Raddress:= S;

 Rname := Copy(Msg,19,Length(Msg)-9);

 Result := 'Node:' + Rname +':';

 end

 else

 Result := '';

 end

 else

 Result := 'Not identified';

end;

Figure 5.12: Pascal function to handle AT Command response

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 52

Button to send message to devices:

The tester program allows sending messages to ZigBee devices on the network. In

Figure 5.13, the ‘Select Device’ (ComboBox1) is showing ‘Broadcast’ and ‘ND’ is

typed into the Message text box. If the ‘SendMSG to Device’ button is clicked, a

Broadcast command of ‘ND’ for node discovery will be send to all devices

connected on the network.

Figure 5.13: Send message to devices

If a user wants to send a message to one of the devices, the user has to choose a

device by clicking on the ‘Select Device’ (ComboBox1) its OnClick event will trigger

the ComboBox1Click procedure to put the select device address ComboBox1 onto

the text box, edtAddress below the ‘SendMSG to Device button’.

When the ‘SendMSG to Device button’ is clicked, the procedure btnSendMSGClick

(Figure 5.14) will be triggered to send the message. Lines 10 to 21 call the

getCommand function to construct the command for broadcast, if no device is

selected. If a device is selected, using its name in the edtAddress box the

getAddress function will provide the hard coded address of the device. Line 35

then calls the VaComm1 component to send the command. The rest of the

procedure updates the display of information.

Message

text box

‘Select Device’

ComboBox1

‘SendMSG to

Device’ button

edtAddress box, address

of destination device

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 53

Line Pascal code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

procedure TfrmMain.btnSendMSGClick(Sender: TObject);

var

 S, Hs, Addr: String;

 I: Integer;

begin

 Addr := Memo4.Lines[0];

 if (edtAddress.Text='Broadcast') then

 begin

 S := getCommand(

 char($10) //ZigBee Transmit Request

 + char($00) //no ack

 + char($00)+ char($00) //64 bit destination address

 + char($00)+ char($00) // 0x0000 0000 0000 FFFF

 + char($00)+ char($00) // for broadcast

 + char($FF)+ char($FF)

 + char($FF)+ char($FE) //16 bit Network address

 // 0xFFFE broadcast/unknown

 + char($00)+ char($00) // Max Hop + No options

 + edtCmd.Text // the message

);

 end

 else

 begin

 S := getCommand(

 char($10) //ZigBee Transmit Request

 + char($00) // no ack

 + getAddress(edtAddress.Text) // edtAddress.Text

 + char($FF)+ char($FE) // 16 bit Network address

 // 0xFFFE Broadcast/Unknown

 + char($00)+ char($00) // Max Hop + No options

 + edtCmd.Text // the message

);

 end;

 VaComm1.writeText(S);

 I := 1;

 Hs:='';

 while I <= Length(S) do

 begin

 Hs := Hs+ IntToHex(Integer(S[I]),2);

 I := I + 1;

 end;

 Memo3.Lines.Text := Memo3.Lines.Text

 + char($0D)+'TX: ' + Hs +'... ';

end;

Figure 5.14: Pascal procedure to send message to devices

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 54

Port control and other buttons

The ‘Open Port’ and ‘Close Port’ buttons call the corresponding procedures of the

VaComm1 component to control the port. A procedure was written to clear all

display text and reset variables. The ‘Clear Dev List’ button calls a procedure to

clear ComboBox1, reset its index and reset the address box to ‘Broadcast’. The

buttons ‘Transmit’ and ‘1000x’ came with the demo program and were not used

for the tests.

A full listing of this tester program is provided in the Appendix section.

5.3.6 Program in data transmitter and monitoring computer

The ZigBee tester program described in section 5.3.5 was used on the laptop to

record data received by the coordinator. The program displays raw data packets in

hex format for visual inspection. It also analyses data packets and displays

statistics of error bytes.

The data transmitter is programmed to continuously send blocks of 500-byte data

with 100 ms breaks between blocks. Within each of the 500-byte data block, an

interleave pause of 20 ms is placed between 72 bytes of data. Due to the

packetization mechanism in the XBee-PRO firmware, this pause will trigger the

XBee-Pro module to send a packet and allow enough time for the ZigBee stack to

process the packet, transfer it to the wireless link and allow the coordinator to

send the data packet as an API frame to the monitoring program. Also, the pause

includes the time for the monitoring program to process the packet and display

information.

The main loop of the source code of the data transmitter program is shown in

Figure 5.15. The program will first check whether the external switch is pressed, if

so, it sets up the program to run 1000 loops (longRun=1000). Otherwise, it will run

once only. Within the longRun loops, it will firstly transmit the name of the

transmitter (‘RT3-‘) by lines 12 to 16. The 20 ms pause will trigger the module to

send the name in a packet as the starting strings before the 500 bytes data.

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 55

The for-loop (line 18) controlled by FOR1, repeats the blocks five times. The 500

bytes is broken down to 50 times of 10 numbers (0 to 9) in ASCII code. The loop

controlled by FOR10 will send each numbers (line 25) 10 times. Then the loop

controlled by FOR0, repeats the number loop 50 times.

Line Data Transmitter main while-loop C code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

while (1)

{ SetCentiS(50); //wait 500ms for external switch

 pSwitch = GetTouch(_TOUCH_Sw_); //read switch status

 if (pSwitch > 0)

 longRun = 1000;

 else

 longRun = 1;

 while (longRun != 0) // longRun set by external switch

 { // to 1 or 1000

 for (int FOR3_= 0; _FOR3_< longRun; FOR3++)

 { //repeat many times

 uartsend(7,13); //call the uartsend subroutine

 uartsend(7,'R'); // to send the characters

 uartsend(7,'T');

 uartsend(7,'3');

 uartsend(7,'-');

 SetCentiS(2); //pause 20ms to send start chars

 for (int FOR1 = 0; FOR1 < j; FOR1++)

 { //repeat 5 times

 uartsend(7,'s'); k = k+1;

 for (int FOR0 = 0; FOR0_< bCount/10; FOR0++)

 { //round count 50 times

 for (int FOR10 = 0; FOR10_<= 9; _FOR10++)

 { // 10 bytes each round

 uartsend(7,i+48);

 k = k + 1;

 if (k > 71) { SetCentiS(2); k =0;}

 //pause 20ms to send packet of 72 bytes

 }

 i=i+1;

 if (i>9) i=0;

 }

 uartsend(7,'E');

 uartsend(7,_FOR1_+97); //display a, b, c, d, e

 uartsend(7,'!');

 SetCentiS(2); //pause 20ms to send end chars

 SetLCD3Char(1, _FOR1); // display counts on LCD

 }

 SetCentiS(pauseT); //pause 100 ms after 500bytes block

 }

 longRun = 0; //long run completed, stop it

 SetLCD3Char(9, 0);

 SetLCD3Char(13, 0); //display 0 0 on LCD for loop end

 }

}

Figure 5.15: Main loop of data transmitter program

Lines 26 and 27 will pause the program for 20 ms after 72 bytes are sent. This

pause triggers the ZigBee module to send a packet. Lines 30 and 31 control the

CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 56

increment of the number from 0 to 9. Lines 33 to 37 send the ending string and

display counts on the transmitter’s LCD screen. Line 39 pauses to allow enough

time for the tester program on the computer to process all the 500 bytes and

display information on screen.

Several subroutines (SetCentiS to pause, GetTouch to read switch, uartsend to send

a byte, and SetLCD3char to display a character on the LCD) used in the main loop

are provided by the RoboExp development software.

5.4 Summarising Network Implementation

The data transmitter program was debugged, complied and programmed into a

microcontroller taken from a RoboExp robot, and then attached with the XBee-PRO

module that has its firmware programmed as Router3. The tester program was

debugged, complied and test run on the monitoring computer with the coordinator

attached to the USB port.

Two XBee-PRO modules were programmed with the Router1 and Router 2

firmware. All the devices and the computer were set up and test run in open space,

to make sure the programs are executed properly with all the date bytes received,

before deploying them into the rubble.

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 57

Chapter 6 Experiments in Artificial Rubble

This chapter describes the experiments to verify the functioning of the wireless

network implemented by the firmware and software described in Chapter 5. The

wireless network was formed using XBee-PRO modules and each module was

attached to an ATMega16L microcontroller from the RoboExp robot in order to

model a daughter robot.

Proof of concept experiments were carried out by deploying the networked robots

in artificial rubble. The rubble was simulated by connecting holes and trenches

that were dug in 50 cm deep soil. The simulated robots were placed in the bottom

of the holes. The holes and trenches were then covered up by various building

materials and soil to simulate a real rubble environment. Experiments were

carried out to verify that a monitoring computer placed 10 metres outside the

rubble can establish proper communication with all robots inside the artificial

rubble environment.

6.1 Prototype models for experiments

A data transmitter was made by attaching an XBee-PRO module to the serial port

of an ATMega16L microcontroller (Figure 6.1). The micro-controller was

programmed to continuously send out blocks of 500-byte data with 100 ms breaks

between blocks.

Figure 6.1: Data Transmitter

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 58

Figure 6.2: XBee-PRO router with 4 AA-batteries

Two data routers (Figure 6.2) were made by XBee-PRO modules with a 3 V

regulator adaptor board, powered by four AA-size batteries to allow prolonged

tests.

An XBee-PRO module on a USB adaptor board was configured as a coordinator

(Figure 6.3) and attached to the monitoring laptop computer.

Figure 6.3: XBee-PRO coordinator on USB adaptor

6.2 Soil environment at rubble site

The test setup was arranged in the backyard of a residence in the eastern suburb of

Auckland, New Zealand. The geology of the residential area is “Alternating

SANDSTONE and MUDSTONE of the Waitemata Group” [28]. It has a bottom layer

of about 10 m deep of clay with a layer of silt on top. The backyard was further

filled up with a layer of organic soil to make an even surface, on which tough lawn

was grown.

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 59

Soil can act as a lossy wave guide when its moisture level is above 25% [29]. That

is the reason for choosing ground soil as the base foundation to build the artificial

environment for the experiments. The bottom layer of clay forms a good layer for

retaining water in the top soil layer.

The soil around the artificial rubble will be kept moisturised by plenty of water.

Measurements will be taken during the experiments to verify that the RF signal

will propagate through under soil trench, space, cracks and openings; instead of

directly going above ground.

6.3 Measurement of materials for simulated rubble

In order to establish an accurate understanding of the effects on the 2.4 GHz RF

signals introduced by various materials in the soil environment, a series of

experiments were carried out.

6.3.1 Measurement equipment

Spectrum Analyzer, Wi-Spy 2.4x device

The Wi-Spy 2.4x device from MetaGeek LLC is a low cost (NZ$470 as of August

2008) and portable spectrum analyzer which attaches to a USB port of a computer

[30]. With its Chanalyzer software, RF signal spectrums in the designed range can

be captured in real-time and recorded for off-line analysis.

Table 6.1: Wi-Spy 2.4x Technical Specifications

Bandwidth:

Frequency Resolution:

Antenna:

Amplitude Range:

Amplitude Resolution:

Sweep Time:

2400 to 2495 MHz

328 KHz

External RP-SMA

-110 dBm to -6.5 dBm

0.5 dBm

165 millisecond

The above table shows the technical specifications of the Wi-Spy 2.4x device which

covers the XBee-PRO’s sensitivity of -100 dBm with reasonable frequency and

amplitude resolution.

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 60

The device has a long sweep time of 165 ms which may impose a sampling

problem. The data transmitter is sending packets of data interleaved with 20 ms

pauses. Each data packet will appear in the RF link as a burst of less than a

millisecond followed by 20 ms of no signal. The measuring device must take the

sample from the RF link at the burst instant. For every 4 sweeps (taking a total of

660 ms) of the measuring device, there will be a round number of 33 packets

transmitted (if the burst time is neglected). That would allow a sample to be picked

up by the measuring device. From this calculation, 90 samples will be recorded in

59.4 seconds.

In order to display a spectrum with reasonable number of samples on the recorded

graph, it is expected to take records for minutes for each measurement. The

transmitter will be continuously sending data packets while the analyzer software

is picking up samples.

Special Tripod for multipath signals

A tripod with a wooden support was built to hold the Wi-Spy 2.4x device and

antenna to facilitate measurement of received signal strength (Figure 6.4).

Figure 6.4: Wi-Spy 2.4x device and spectrum analyser on laptop

Wi-Spy 2.4x

device fixed to

movable

wooden block

3 position

marks at

3 cm apart

Tripod for

secured support
USB extension cable

for connection to

laptop computer

Chanalyzer

for spectrum

recording

Location

to be

measured

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 61

To get reliable results and to even out the effect of multipath signals, the

measuring device was fixed onto the wooden support which allows three position

settings. Each position is separated by 3 cm (about one quarter wavelength). The

wooden support was then fixed onto a tripod, which can be positioned securely to

any location for measurement.

RF signal spectrum recording on laptop

The Wi-Spy 2.4x device was connected to a laptop computer (Figure 6.4) with

spectrum analyser software that will be used for measuring the received RF signal

power at various locations in the artificial rubble. It was positioned at the centre

and 20 cm on top of the measuring spot. For each set up, three readings were taken

by shifting the measuring device to the three position settings on the wooden

support. The average of the three readings was recorded as the final measured

result for that setting.

6.3.2 Measurement setup

 A 50 cm diameter by 50 cm deep hole was dug in the soil, at a location such that

there was no underground piping or cable, or any other structure within 2 metres,

except soil with lawn on top. Figure 6.5 illustrates the measurement setup.

Figure 6.5: Measurement of material attenuations

Hole dug in soil to

be filled by various

building materials

Data Transmitter

protected by bricks

on two sizes and a

piece of wood on top

Wi-Spy device and

laptop positioned

on top of building

materials

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 62

The data transmitter (Figure 6.1) was placed in the bottom of the hole and then the

hole was filled up with various building materials; any cracks and openings were

filled by the soil that was dug out from the hole. Attenuation was found by

comparing measured results before and after the hole was filled by various

building materials.

6.3.3 RF signal background measurement

The first measurement to be taken is the RF signals at the background of the

selected site. After the hole was dug, the measurement device was placed at the

centre above the hole while it is empty. The following background spectrum

(Figure 6.6) was recorded.

Figure 6.6: RF signal background spectrum

The above spectrum is a record of 2 minutes and 3 seconds. It shows a Wi-Fi

hotspot at the commonly used channel 7 of 2442 MHz. The Wi-Fi signal is received

at accumulated peaks (blue area) of about -67 dBm, showing that it is at a nearby

distance. The accumulated average noise floor is about -110 dBm (green area).

There are several narrow peaks on accumulated average at 2412 MHz, 2424 MHz,

2460 MHz and 2472 MHz with levels from -105 dBm to -100 dBm. At the ZigBee

channel C of 2410 MHz the background noise has peaks at about -79 dBm.

A nearby Wi-Fi

hotspot -67 dBm

at 2442 MHz

Background noise

peak -78 dBm

average -111 dBm at

ZigBee channel C of

2410 MHz

Chart Legend:
Yellow Line = current sweep

Blue area = accumulated peaks

Green area = accumulated average

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 63

From this spectrum result, as long as the XBee-PRO modules are working at the

ZigBee channel C and having received signals above -79 dBm there should be no

interruption of communication. If the received signals drop to between -80 dBm

and -100 dBm, there will be intermittent loss due to signal interference or RF

packet collision. Experiments and tests will verify this.

6.3.4 Measurement of soil attenuation

Soil is the main material for building the artificial rubble. The soil dug out from the

hole is preserved for all the experiments and tests. Thus the first material to

measure is the soil at the site. The data transmitter is protected by a thin plastic

box and placed between two bricks in the bottom of the hole, Figure 6.7, and then

covered by a thin piece of wood.

Figure 6.7: Data Transmitter for tests

Figure 6.8: Spectrums for soil: before (left), after 30 cm soil (right)

Data Transmitter

in plastic box

Data Transmitter

in bottom of hole,

protected by

bricks and wood

Peak -20 dBm

At 2410 MHz

Peak -79 dBm

At 2410 MHz

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 64

With the transmitter turned on and before the hole was filled with soil the

spectrum was recorded for 1 minutes and 59 seconds. The result on left side of

Figure 6.8 shows a ZigBee spectrum of typical signature centred at 2410 MHz

(channel C) with a peak of -20 dBm. Then soil was used to fill up the hole. The right

side of Figure 6.7 shows the spectrum recorded for 1 minute 23 seconds after soil

was filled to depth of 30 cm. Results were taken at three different depths of soil,

10 cm, 20 cm and 30 cm. At each depth, three readings were taken by moving the

wooden support on the tripod (Figure 6.4 and 6.5). The average of these readings

was recorded as the final result. The following table summarises the measurement

of soil attenuations.

Table 6.2: Soil attenuations

Soil Depth Average

Measured Peak

Calculated

Attenuations

0 cm -20.0 dBm 0 dB
10 cm -44.5 dBm 24.5 dB
20 cm -72.0 dBm 52.0 dB
30 cm -79.0 dBm 59.0 dB

From the results in Table 6.2, there is not much increase of attenuation when soil

depth increased from 20 cm to 30 cm. This can be explained as when the soil depth

is 30 cm it is at the same top surface level as the surrounding area. The RF signal

can scatter though the surface layer of the surrounding area around the hole, and

those areas are growing with lawn and will have roots and parts of the lawn that

allow easier path (lower attenuation) for the RF signal. The following figure

illustrates this scenario.

Figure 6.9: RF signal scattering through surrounding

Scattering through surrounding

Top layer with

growing lawn

provides a lower

attenuation path Soil refilled

into hole

Data

Transmitter

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 65

6.3.5 Attenuation of various building materials

The same measurement experiment was carried out using a variety of standard

building materials. The following photos illustrate the filling of some of the

selected materials into the hole on top of the data transmitter during measurement

of their attenuations.

Figure 6.10: Concrete slabs

Figure 6.11: Concrete slabs with wire-mesh

To simulate reinforced concrete, concrete slabs that were interleaved with wire

mesh were deployed. On alternate layers, wire mesh is placed alternatively at 90

degree and 45 degree orientations to maximise its attenuation effect on the RF

signal. Gaps and openings on the perimeter of the concrete slabs are filled with

moisturized soil.

Moisturised soil to fill

up gaps on perimeter

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 66

When measuring the attenuation of bricks, each layer of bricks is placed into the

hole in alternate 90 degree and 0 degree directions, and with its internal holes in

horizontal orientation with the bottom of the hole, to maximise its attenuation

effect on the RF signals.

Figure 6.12: Placing bricks for attenuation measurement

Figure 6.13: Placing paving stones for attenuation measurement

Bricks with

internal holes

placed

horizontally to

bottom of hole
Layers are in

alternate

directions

Gaps and openings

filled with

moisturised soil

Paving stones

are stacked

one on top of

the others

Gaps and openings

filled with

moisturised soil

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 67

Table 6.3: Attenuations of various building materials

Soil

Thickness

(cm)

Attenuation

(dB)

Bricks

Thickness

(cm)

Attenuation

(dB)

10.0 24.5

1 Layer 7.5 9.0

20.0 52.0

2 Layer 15.0 18.5

25.0 54.5

3 Layer 22.5 22.5

30.0 59.0

4 Layer 30.0 23.5

Concrete

Thickness

(cm)

Attenuation

(dB)

Paving

Stones

Thickness

(cm)

Attenuation

(dB)

1 Layer 3.5 8.5

1 Layer 4.0 3.3

2 Layer 7.0 15.0

2 Layer 8.0 8.0

3 Layer 10.5 17.5

3 Layer 12.0 15.8

4 Layer 14.0 22.0

4 Layer 16.0 20.0

5 Layer 17.5 23.0

5 Layer 20.0 22.0

6 Layer 21.0 23.5

6 Layer 24.0 24.5

7 Layer 24.5 28.5

7 Layer 28.0 25.0

8 Layer 28.0 36.0

8 Layer 32.0 26.0

9 Layer 31.5 39.5

 Concrete

+ Wire

Thickness

(cm)

Attenuation

(dB)

 1 Layer 4.5 9.5

 2 Layer 9.0 19.5

 3 Layer 13.5 29.5

 4 Layer 18.0 36.5

 5 Layer 22.5 54.5

 6 Layer 27.0 56.5

The attenuations measured for the various materials are listed in Table 6.3. For

easy comparison, the results are graphed in Figure 6.14.

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 68

Figure 6.14: Graphical results of attenuation measurement

These results show both moisturised soil and concrete slabs with wire-mesh

produce the highest attenuations of about 55 dB at a depth of 25 cm compared to

the other materials. This aligns with the XBee-PRO manufacturer’s test report that

reinforced concrete has the highest attenuation compared to other building

materials [17]. The results for soil match with the discussion by C.L. Holloway et al,

who reported that moisturised soils becomes a very good waveguide material, that

is it will produce high attenuation [29].

As moisturised soil is much easier to manage and reshape than concrete, it will be

used as the main material for providing attenuation when building the artificial

rubble.

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 69

6.4 Design of experiment setup in rubble

Recall that the main function of the wireless network is to provide a

communication link for the daughter robots to send information to the mother

robots situated on top of the rubble. As illustrated by the link tests and analysis in

chapter 4, a direct link will not generally be possible between the mother robot

and a daugther robot that is deep inside the rubble. The following experiment

serves to verify that when a direct link is not possible, information can be sent

from one robot to another until it arrives at the mother robot.

Four XBee-PRO modules and a laptop computer were used. Figure 6.15 shows the

sectional view of the rubble experiment setup. Various materials and soil were

used to fill up the holes and trench to simulate the rubble environment. At start of

the experiment, a data transmitter was placed in the bottom of Hole No. 1, to

simulate a daughter robot situation at the inner most area of the rubble. At later

tests, two data routers were used for data routing. Router 1 was placed in the

bottom of Hole No. 2. Router 2 was placed beside Hole No. 2 above ground, to

simulate two other daughter robots at different locations of the rubble. The XBee-

PRO coordinator is attached to the laptop, to simulate a mother robot outside at a

distance from the rubble.

Figure 6.15: Sectional view of rubble experiment setup

Coordinator

at 10 m away

Data Transmitter

in Hole No. 1

Router 1 in
Hole No. 2

Router 2

Refilled with soil

Equipment to

measure

signal strength

Tunnel

Other

materials

Soil Soil

Laptop

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 70

The following figure illustrates the plan view of the rubble experiment setup.

Figure 6.16: Plan view of rubble experiment setup

Referring back to the attenuation results from Table 6.3 and Figure 6.14, 30 cm soil

will produce an attenuation of about 59 dB. Repeating the analysis in section 4.3.1,

using XBee-PRO with output power of +18 dBm; the coordinator in the house is at a

10 metre distance which gives a free space path loss of about 60 dB at 2.4 GHz. The

coordinator will receive the signal at -101 dBm which is just below the sensitivity of

-100 dBm; that means the coordinator may just be able to receive some useful packets

by a direct link.

Further signal reduction will be introduced by the tunnel and the materials in Hole

No. 2. The XBee-PRO on the data transmitter will be programmed to a lower

transmitting level of +10 dBm; this will further lower the received signal power

such that a direct link will not be possible. This will achieve the aims of the

experiment and forces the network to execute message routing mechanism.

House

Laptop inside

house behind

glass sliding

door; 10 m away

from Router 2

Coordinator

connected to

USB port

10 M

Artificial Rubble

2 Holes

connected

by tunnel Router 1 in

bottom of

Hole No. 2

Router 2

beside Hole

No. 2 above

ground

Data

Transmitter

in bottom of

Hole No. 1

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 71

6.5 Construction of artificial Rubble

Following the design in the previous section, the artificial rubble was built by

digging a trench which linked two holes in the soil (Figure 6.17 and 6.18).

Figure 6.17: Construction of artificial rubble

Figure 6.18: Building a tunnel in the rubble

Hole No. 1

50 cm deep

50 cm diameter

Bricks

Trench

30 cm wide

50 cm deep

250 cm length

Paving Stones

Hole No. 2

50 cm deep

50 cm diameter

The tunnel

was formed by

putting

paving stones

into the trench

and then

filling up with

soil.

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 72

6.6 Data Routing Experiments

When construction of the artificial rubble has come to the stage illustrated as

Figure 6.17, an open trench connecting two holes was constructed, and tests on

message passing between the simulated robots were initiated. These are described

in the following sections.

6.6.1 Experiment Description and Results

Table 6.4 listed the sequence of experiment steps carried out to verify functioning

of the wireless network.

Table 6.4: Routing experiment steps

 Experiment Description

1  Data Transmitter (firmware as Router3 on Table 5.3, section 5.2.3)
placed in bottom of Hole 1

 Hole 1 filled up with moisturised soil

 Trench and hole 2 not filled

 Data received by coordinator without error

2  A tunnel of 19 cm height by 13 cm width was built in the trench by
paving stones

 The trench was covered with moisturised soil (Figure 6.18 right side)

 Received signal strength measured at bottom of hole 2 was -50 dBm;
received spectrum shown on Figure 6.20

 Both routers were switched off, laptop cannot receive any data

3  Signal strength received above ground at nine spots as illustrated in
Figure 6.19 were measured with values between -72.3 dBm to
-83.3 dBm; graphed results shown on Figure 6.21

4  Router 1 placed in bottom of hole 2 and switched on

 Data received by laptop without error

5  8 pieces of concrete slab placed on top of router 1

 Intermittently, bytes missing in data received by coordinator

6  Router 2 placed beside hole 2 above ground and switch on

 All data received by coordinator without error

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 73

Figure 6.19: 9 locations for measuring signal strength above ground

Figure 6.20: Signal Spectrum for experiment step 2

Figure 6.20 shows the received signal spectrum in bottom of Hole No. 2 with the

transmitter placed at the bottom of Hole No.1. The peak signal power is at -50 dBm

at the ZigBee channel used by the transmitter. As the transmitter is programmed

as Router3 on Table 5.3, its transmitting power was set to +10 dBm; this means the

tunnel introduced an attenuation of 60 dB.

50cm

50cm

1 4 7

8 5 2

3 6 9
125cm 125cm

Hole No. 1 Hole No. 2
Trench

Peak -50 dBm

at 2410 MHz

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 74

Figure 6.21: Received signal strength for experiment step 3

To ensure the RF signal does not escape above the tunnel, the signal strength is

measured at nine spot in step 3 of the experiment. Results are illustrated in Figure

6.21. These results show the attenuation introduced by the rubble was 82.3 dB to

93.3 dB which is higher than the 80 dB measured by NIST for the collapsed

buildings. With a 10 metre path loss about 60 dB in free space, the coordinator will

receive the signal at -132.3 dBm to -143.3 dBm which is well below the receiver

sensitivity of -100 dBm. This explains why a direct link cannot be established

between the transmitter and the coordinator as shown by experiment step 2 in

Table 6.4.

6.6.2 Routing Reconnection Tests

Further tests were carried out by switching Router 2 off for 5 minutes and then

back to on again. The monitoring program shows no data at the instant of

switching off. Then after about 1 minute, bytes of data reappeared but missing

bytes were reported. This is back to step 5 in Table 6.4. About 1 minute after

Router 2 was switched back on; all 500 bytes of data were displayed. This is back

to step 6 in the table.

The tests demonstrate that the routers can re-establish the network automatically.

Several runs of this reconnection test were carried out. Results showed that the

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 75

reconnection time varied between 40 seconds to 90 seconds. This variation

depends on the power on and reconnection mechanism built-in on the XBee-PRO

firmware provided by the manufacturer.

6.7 Summary

The experiment demonstrated that data routing is successfully implemented. By

switching on and off the routers, it was verified that the routers can automatically

reconnect with the network and re-establish the communication link from the

simulated robot deep inside the rubble through the other simulated robots to the

simulated mother robot at a safe distance from the rubble.

The attenuation results of the various building materials provided the foundation

for selecting appropriate materials to build the artificial rubble. It also forms a set

of useful references for future projects. Measurements showed that the artificial

rubble produces an environment with attenuations that are comparable to those of

the collapsed buildings reported by NIST [23].

The equipment developed provides a consistent method for ZigBee communication

tests and RF signal measurements. It sets a low cost and effective example as

compared to using a RF anechoic chamber with expensive devices. The artificial

rubble is a side-product of the project that shows that a manageable, small scale,

but still very useful disaster site can be built for USAR robots testing, as compared

to that constructed by the NCAR team in a size of hundred square metres, using

tons of steel reinforced sewer pipes [24].

CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 76

CHAPTER 7 CONCLUSIONS 77

Chapter 7 Conclusions

This chapter describes the conclusions of this thesis, lists the thesis contributions

and provides suggestions for future research and improvement.

7.1 Conclusions

The aim of this thesis is to implement a wireless network for the team of robots

during USAR missions, such that all the daughter robots deep inside the rubble can

report their findings by sending messages through the wireless network to the

mother robots outside the rubble. This aim is successfully achieved by the

following parts of the project.

Selection of wireless modules

Studies on wireless networking technologies and a literature review on RF signals

in collapsed buildings were carried out. Several possible candidates of ZigBee

wireless modules from different brands were sourced. Comparisons on their

specifications, costs, sizes and development support tools were done. Two models

were selected for further experimentation.

Development of prototypes

A list of prototypes was sourced and developed by attaching wireless modules to

microcontrollers. Sensors were added to the prototypes. They form the

development platform for building the team of daughter robots. Cost analysis was

done on the prototypes and concluded that they are low cost and fit within the

overall project budget guidelines.

RF Signal Tests

Simulated robots were built using the two selected wireless modules. Wireless link

tests were carried out in an office building. Artificial scenarios simulate the effect

CHAPTER 7 CONCLUSIONS 78

of rubble and the performance of the wireless modules was investigated. Analysis

of the test results combined with the literature review on wireless technologies in

rubble environment resulted in the selection of the XBee-PRO as the preferred

wireless ZigBee module.

Wireless network implementation

With the selected XBee-PRO module, firmware is chosen for implementing the

wireless network. Networking features and configuration of the firmware are

studied. The cluster-tree network model is set up by configuring profile files for

the firmware. The wireless modules are programmed with profile files that were

specifically built for the required wireless network structure, a coordinator with

three routers.

The routers are programmed to AT mode which allows operation as transparent

modems for the simulated robots. The coordinator is programmed to API mode

which attaches to the monitor computer to simulate a mother robot. A ZigBee

tester program is written to run on the monitoring computer which extracts

network communication information by sending structured API frames to the

coordinator. One of the routers is attached to a microcontroller which is

programmed as a data transmitter, sending data at required blocks with specific

timings for communication tests.

Communication test in artificial rubble

One of the major tasks for this project is to test the wireless network in a real

rubble environment. A site was selected and a simulation of a real artificial rubble

environment was built. A set of measurement experiments were constructed.

Various building materials were tested and their attenuations to the RF signal

were measured. After analysing the measurement results, a rubble scenario was

designed and constructed at the selected site.

CHAPTER 7 CONCLUSIONS 79

Moisturized soil is chosen as the base material to form the foundation of the

rubble. Paving stones and concrete slabs were used together with moisturised soil

to build the scenarios for stages of the experiment. The simulated daughter robots

and the mother robot were deployed into the artificial rubble, and a series of

experiments were carried out.

Results from the experiment were compared with results from other research and

verified that the artificial rubble can produce attenuations that are very close to

those from real examples of collapsed buildings. The experiments verified that the

wireless network provides the required function, allowing a data transmitter that

simulated a daughter robot at the inner most location of the rubble to send

information by routing through other robots in the rubble to the simulated mother

robot located at 10 metres distance from the rubble. Switching on and off the

routers simulated daughter robots getting out and coming back at any time to

rejoin the network and re-establish the wireless network. The experiment in the

artificial rubble verified that the wireless network is fully functional and could be

useful for the team of USAR robots.

7.2 Future work to minimise data loss

During development of the data transmitter program and the tester program on

the monitoring computer, occasional data loss is discovered when testing the

wireless network in open spaces where all modules are in close proximities and

where attenuations in open space should not be a factor in data loss.

7.2.1 Data lost and measures taken

Two data lost scenarios were observed and measures were taken as follows:

1. Pauses of 20 ms after each 72 bytes of data transmission at the transmitter.

This allows time for the wireless modules to process and send the data to

the network. It also allows time for the monitoring computer to receive and

process the data for display.

CHAPTER 7 CONCLUSIONS 80

2. Displays on the monitoring computer program need to be cleared every 2

rounds of 5 blocks of 500 bytes of data; that is 5000 bytes. This is to avoid

the monitoring program being slowed down when there are too many bytes

on display. This slow-down affects the taking up of data from the serial port.

Such data is held up on the port and pushed back to the wireless link.

Eventually data loss occurs due to buffer overflow.

The following describes other issues that may need to be considered for any future

projects using a similar set of hardware, firmware and software.

7.2.2 Hardware handshaking on XBee-PRO modules

A simplified approach was taken when designing the adaptor boards for

connecting the XBee-PRO module to a RS232 serial port. Figure 7.1 illustrates the

“quick connection” scheme.

Figure 7.1: XBee-PRO RS232 port connection diagram

This connection scheme does not implement any handshaking between the RS232

ports. The control lines, CTS, RTS, DSR, DTR, and DCD are looped back to each

RF link

Microcontroller

Buffers

RS232 Port

CTS

RTS

DSR

DTR

Tx Rx DCD

Data In Data Out

Buffers

CTS

RTS

XBee-PRO

DSR

DTR

DCD

Monitoring Computer

Buffers

RS232 Port

 CTS

 RTS

 DSR

 DTR

 DCD Tx Rx

Data In Data Out

Buffers

 CTS

 RTS

XBee-PRO

 DSR

 DTR

 DCD

CHAPTER 7 CONCLUSIONS 81

other without connecting to the other port. Proper communications relied on

extraction of bit synchronisation signal from the data lines, Rx and Tx.

To avoid data loss, the following full connection scheme is recommend by the

XBee-PRO manufacturer.

Figure 7.2: Full connection scheme for XBee-PRO to RS232 port

7.2.3 Useful data rate

Implementing packetization

As mentioned in section 7.2.1 point 1, a pause after 72 bytes of data is added to

avoid data loss. It is a requirement for the XBee-PRO firmware to implement

routing between nodes on the network. During data transfer, according to the

firmware manual, data is received into the DI (Data In) buffer until one of the

following happens, data will be sent out to the RF link.

1. No further data is received for the amount of time determined by the RO

(Packetization Timeout) parameter. RO sets the number of characters

(bytes) to wait for timeout.

2. Maximum number of data (72 bytes) for one packet has been received.

CHAPTER 7 CONCLUSIONS 82

Based on the concept of packetization, several experiments were carried out on

various baud rates (from 19200 to 115200). The microcontroller was programmed

to send out blocks of 500 bytes repeatedly with 100 ms pause between blocks. An

extra pause of 20 ms is added after sending 72 bytes to the serial port. This extra

pause exceeds the RO parameter which is usually set between 3 to 10 bytes.

Results of the experiments showed that data loss will occur if the extra pause is

taken out or applied after too many bytes were sent. Adding the pauses makes the

actual data rate about 28800 bits per second. Due to the limitation on the

microcontroller program, it cannot be set to a pause value between 10 ms and

20 ms; otherwise, it may be able to work at a higher bit rate.

Buffering and processing delays

Further tests showed that data loss will also occur if the 100 ms pause between the

blocks is decreased to below 30 ms at a baud rate setting of 115200. This cannot

be explained by the packetization timeout mechanism and does not relate to the

clearing up of the serial port buffer on the monitoring computer (section 7.2.1

point 2).

Figure 7.3: XBee-PRO internal data flow diagram

Referring to the Internal Data Flow Diagram (Figure 7.3) provided in the firmware

manual, the RF data coming into the module has to get through the RF RX buffer

then transfer to the DO (Data Out) buffer. Data loss will occur when more data is

passed from the RF RX buffer into the DO buffer than it can handle. The next

possible time delay to consider is processing in the XBee-PRO module. The ZigBee

CHAPTER 7 CONCLUSIONS 83

stack is implemented by the processor in the module. It takes time to process

networking policies and to implement the routing mechanism. To avoid data loss,

extra transmission pauses are required between large blocks of data.

With reference to the analysis by Benoit et al [31], a maximum throughput of

163 Kbps can be achieved using no address (one transmitter and one receiver on

one network) and no acknowledgement. The worst case scenario is 49.8%

bandwidth efficiency (125 Kbps) when having long address with

acknowledgement at packet size of 122 bytes. The networking layer implemented

by the XBee-PRO firmware (Figures 5.2 and 5.3) to provide routing in a cluster-

tree network topology that uses 64 bit addresses (32 bits for destination address,

16 bits for network address and 16 bits for parent network address).

From the firmware manual, a passive acknowledge scheme is implemented when

using broadcast commands. A network level acknowledgement scheme is also

implemented in the firmware when a device goes into transmit mode. An

acknowledgment packet will be sent by the receiver and routed back to the source

device. If a network acknowledgement is not received, the source node will re-

transmit the data.

Figure 7.4: Useful bitrate graph by Benoit et al [31]

72 Bytes

105 Kbps

CHAPTER 7 CONCLUSIONS 84

Using the “Useful bitrate graph” (Figure 7.4) produced by Benoit et al, the useful

data rate is at 105 Kbps at packet size of 72 bytes with ACK and 64 bits address. To

avoid data loss, an application has to be designed to operate the XBee-PRO

wireless network at or below this useful data rate.

7.2.4 High-level mechanism to avoid data loss

Combining all of the above analyses, to establish a reliable data link for the

daughter robots in the rubble, the high-level application software running on the

monitoring computer and the microcontroller must be designed for a lower actual

data rate with proper handshaking and acknowledgement mechanisms.

The root cause of data loss is the trade-off on simplified hardware design that does

not implement hardware handshake between the RS232 interfaces. The above

sections explained how to avoid data loss by placing pauses between

transmissions. This is not an efficient approach. Proper handshaking mechanisms

can be designed into the transmission and receiving software programs. The

following software mechanisms are suggested but due to limitation on project time

and budget allocation they were not implemented on the system.

“ACK before next transmit”

A common technique is to wait for an ACK (acknowledgement) from the receiver of

the previous data block before sending the next data block. For short messages,

such as a two bytes temperature value, an ACK may not be necessary.

“Silence” and “Wake up”

Since the ZigBee channel has a limited bandwidth of 250 Kbps maximum, when

there are multiple devices trying to send large amounts of data, the channel can

easily suffer from too many data packet collisions and eventually none of the

receivers will get a complete message. A “silence” broadcast command can be sent

from the coordinator to tell all devices on the same network to go silent. Then a

CHAPTER 7 CONCLUSIONS 85

request command, such as capturing a photo and sending it back, can be addressed

to a particular robot. The robot sends back the photo, which is usually thousands of

bytes, in blocks of hundreds of bytes using the “ACK before next transmit”

mechanism to the coordinator. If no ACK is received for any block, a re-

transmission can be done. After the coordinator has received all the blocks and

verified a completed photo, a “Wake up” command can be broadcasted to all

devices again to tell them get back to normal.

7.3 Contributions of this thesis

This thesis has contributed the following regarding the use of wireless USAR

robots.

 A prototype platform for developing wireless daughter robots is developed

and can be used for any future projects.

 The process of configuring the wireless modules and developing the test

software forms a useful structure for similar projects.

 The results of material attenuations and the construction of artificial rubble

can be a good example and provide useful guidelines of building a close to

real test-bed for wireless robots in rubble.

 Analysis of results and performance provides measures to get around the

limitation of actual data rate for developing useful wireless application.

These results have been published and presented at two conferences during the

development of this thesis [32] [33].

CHAPTER 7 CONCLUSIONS 86

7.4 Summary

The project described by this thesis has successfully implemented a wireless

network for the team of robots in rubble environment. Multiple sensors and

actuators can be added to the prototype robot without difficulty for any further

functional enhancement. It was for this reason (to facilitate developments) that a

mobile platform was constructed to accommodate the communication device.

Attenuations of soil and building materials on 2.4 GHz ZigBee RF signals were

measured. An artificial close to real rubble environment was designed and

constructed. A group of simulated USAR robots were developed and deployed into

the artificial rubble. It was demonstrated that the artificial rubble in the soil

environment is suitable for testing and verifying the wireless network for USAR

missions.

The experiments indicated that ZigBee technology implemented by the XBee-PRO

modules can form a useful mesh wireless network for USAR robots. The modules

can automatically reconnect after network interruption. Experiments have verified

that a simulated mother robot at 10 metres away from the rubble can

communicate with all the robots inside the rubble.

REFERENCES 87

References

[1] NZ USAR, “Why USAR is needed?” visited on 29th February, 2010,
http://www.usar.govt.nz/usarwebsite.nsf/wpg_URL/About-USAR-Why-
USAR-is-Needed-Index?OpenDocument

[2] D. McGuigan, 2002, “Urban Search and Rescue and the Role of the Engineer”,
retrieved on 1st September 2007, from http://www.usar.govt.nz
/usarwebsite.nsf/Files/McGuiganUSARMasters/$file/McGuiganUSARMaster
s.pdf

[3] School of Chemical and Physical Science, VUW, “Search and Rescue (SAR)”,
retrieved on 30th August 2007, from http://www.vuw.ac.nz/scps
/research/mechatronics/sar.aspx

[4] D. Carnegie, “A Thee-Tier Hierarchical Robotic System for Urban Serach and
rescue Applications”, IEEE International workshop on Safety, Security and
Rescue Robotics (New York, IEEE, 2007), pp. 1-6.

[5] D.A. Carnegie and J. C. Cordes, “The mechanical design and construction of a
mobile outdoor multi-terrain mechatron,” Proceedings of the Institution of
Mechanical Engineersm Part B, Engineering Manufacture, Vol 218, pp 1563-
1575, Nov 2004

[6] D. A. Williamson, “The development of a “Mother” agent for a hierarchical
multi-robot urban search and rescue system: a thesis submitted to the
Victoria University of Wellington”, 2007

[7] The IETF, “Mobile ad-hoc network (MANET) working group”, visited on 30th
August 2007, from http://www.ietf.org/html.charters/manet-charter.html

[8] S. Das, H. Pucha and Y. Hu, “MicroRouting: A Scallable and Robus
Communication Paradigm for Spase Ad Hoc Networks”, in proceedings of the
19th IEEE International Parallel and Distributed Processing Symposium,
2005

[9] Sanderson et al, “Developing Mobile Middleware – An Analysis of Rescue and
Emergency Operations”, (2007), University of Oslo

[10] Third Generation Partnership Program (3GPP), “General Packet Radio
Service (GPRS); Service description”, visited 30th August 2007,
http://www.3gpp.org/ftp/Specs/html-info/23060.htm

[11] Third Generation Partnership Program (3GPP), “Work programme for the
standarization of Universal Mobile Telecommunications System (UMTS)”,
visited 30th August 2007, http://www.3gpp.org/ftp/Specs/html-
info/0001U.htm

REFERENCES 88

[12] IEEE, “IEEE 802.16 WirelessMAN® Standard for Wireless Metropolitan Area
Networks”, visited 30th August 2007, from http://ieee802.org/16/

[13] Bluetooth SIG, “Compare with other technologies”, last accessed on 5th May
2010, visited http://www.bluetooth.com/English/Technology/Works
/Pages/Compare.aspx

[14] Kinney Consulting LLC, “ZigBee Technology: Wireless Control that Simply
Works”, retrieved on 4th September 2007, http://www.zigbee.org/
imwp/idms/popups/pop_download.asp?contentID=5162

[15] R. Akl and X. Li, “Indoor propagation modelling at 2.4 GHz for IEEE 802.11
network”, in proceedings of the Sixth IASTED International Muti-Conference
on Wireless and Optical Communications, Wireless Networks and Emerging
Technologies, 2006

[16] O. W. Ata, “Grade of Service Signal Density Enhancement – Modeling In-
building penetration loss in various morphologies”, in proceeding of the IEEE
Tropical Conference on Wireless Communication Technology, 2003

[17] MaxStream Inc., “Indoor Path Loss”, retrieved on 8th December 2008, from
http://ftp1.digi.com/support/images/XST-AN005a-Indoor.pdf
%20(334.50KB).pdf

[18] MaxStream Inc., “Product Manual v8x17 Beta – ZigBee Protocol”, retrieved on
13th October 2008, from http://www.digi.com/support/kbase/
kbaseresultdetl.jsp?id=2182

[19] Panasonic Corporation of North America, “PAN802154HAR00 ZigBee
Brochure”, retrieved on 4th August 2007, from http://www.panasonic.com
/industrial/components/pdf/zigbee_brochure.pdf

[20] Surveyor Corporation, “SRV-1 Surveyor robot”, visited on 20th March 2010,
http://surveyor-corporation.stores.yahoo.net/srrowestkit.html

[21] JoinMax Digital, “JoinMax RoboEXP Learning Kit V4.0”, visited on 15th March
2010, http://www.roboexp.com/products/list.asp?id=81

[22] Industry Canada, “GL-01 — Guidelines for the Measurement of Radio
Frequency Fields at Frequencies from 3 KHz to 300 GHz”, visited on 30th April
2010, from http://www.icce.ca/eic/site/smt-gst.nsf/eng/sf08511.html

[23] C. L. Holloway, G. Koepke, D. Camell, K. A. Remley, “Radio Propagation
Measurements Before, During, and After the Collapse of Three Large Building
Structures”, in proceedings of the 2008 General Assembly of the International
Union of Radio Science (Union Radio Scientifique Internationale-URSI)

[24] A. Ferworn, N. Tran, J. Tran, G. Zarnett, F. Sharifi, “WiFi repeater deployment
for improved communication in confined-space urban disaster search”, IEEE
International Conference on System of Systems Engineering, pp. 1 – 5, 16-18
April 2007

REFERENCES 89

[25] D-Link Corporation, “DWL-2100AP, High Speed 2.4GHz (802.11g) Wireless
108Mbps1 Access Point”, retrieved on 15 January 2009 from
http://www.dlink.com/products/resource.asp?pid=292&rid=912&sec=0

[26] MaxStream Inc. & Digi International Inc., “X-CTU firmware programming
software”, retrieved on 25th October 2007, from http://www.digi.com/
support/kbase/kbaseresultdetl.jsp?kb=125

[27] TMS Software, “Asyn32 Serial Port demo program”, visited on 15th April
2010, from http://www.tmssoftware.com/site/async32.asp

[28] GHD Ltd, Part 1 of “2001 (March) Pakuranga Creek Catchments
Comprehensive Catchment Discharge Consent Application - Comprehensive
Catchment Study and Management Plan Options”, retrieved on 26 Jan 2009
from http://www.manukau.govt.nz/tec/catchment/pakuranga_pages/pdf
/pakuranga_creek_ccdc1_low.pdf

[29] C.L. Holloway, D.A. Hill, R.A. Dalke, G.A. Hufford, “Radio wave propagation
characteristics in lossy circular waveguidessuch as tunnels, mine shafts, and
boreholes”, IEEE Transactions on Antennas and Propagation, Volume: 48,
Issue: 9, pp. 1354-1366, Sep 2000

[30] MetaGeek LLC, “The Wi-Spy 2.4x device”, last visited on 15th April 2010, from
http://www.metageek.net/products/wi-spy-24x

[31] Benoit et al, “Throughput and delay analysis of unslotted IEEE 802.15.4”,
retrieved on 14th October 2009, from https://www.academypublisher.com
/~academz3/jnw/vol01/no01/jnw01012028.pdf

[32] C. Tsui, L. Jennings and D. Carnegie, "Is ZigBee a suitable communication link
for the 'Robot Family' at disasters?" in proceedings of ENZCON, November
2007

[33] C. Tsui, D. Carnegie and Q. W. Pan, “USAR Robot Communication Using ZigBee
Technology”, CCIS 44, p.380 ff, 2009

REFERENCES 90

APPENDIX 91

Appendix A: CD Contents

The attached CD (in the back cover of the printed copy) contains the following:

1. Soft copy of this thesis in PDF format

2. Prototype PCB Altium files

3. RoboExp Program

a. Source Files for Data Transmitter

b. Source files for adding I2C Temperature Sensor

c. RoboExp development software installer

4. ZigBee tester program source files (Borland Delphi v5)

5. Photos

a. Rubble construction

b. Attenuation measurement settings

6. RF signal test records

a. Samples of measured spectrums

b. Chanalyzer software installer

7. XBee-PRO Firmware

a. Manual

b. Configuration files

c. X-CTU software installer

APPENDIX 92

Appendix B: ZigBee Tester Program Source Code

The following files are the full source code listings for ZigBee tester program on

the monitoring computer.

B1. Borland Delphi project file

program APIbyAddress_V3;

uses

 Forms,

 formMain in 'formMain.pas' {frmMain},

 APIcommands in 'APIcommands.pas';

{$R *.RES}

begin

 Application.Initialize;

 Application.CreateForm(TfrmMain, frmMain);

 Application.Run;

end.

B2. User interface main form file

unit formMain;

interface

uses

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ComCtrls, VaConst, VaTypes, VaClasses, VaComm,

 ExtCtrls, APIcommands;

type

 TfrmMain = class(TForm)

 VaComm1: TVaComm;

 StatusBar1: TStatusBar;

 Panel1: TPanel;

 EditTransmit: TEdit;

 CheckBoxAddLinefeed: TCheckBox;

 ButtonTransmit: TButton;

 btnTransmit1000: TButton;

 Panel2: TPanel;

 Panel5: TPanel;

 ButtonOpen: TButton;

 ButtonClose: TButton;

 CheckBoxRTS: TCheckBox;

 CheckBoxDTR: TCheckBox;

 CheckBoxBREAK: TCheckBox;

 CheckBoxXON: TCheckBox;

 Panel6: TPanel;

APPENDIX 93

 LabelParity: TLabel;

 ComboParity: TComboBox;

 ComboStopbits: TComboBox;

 LabelStopbits: TLabel;

 LabelDataBits: TLabel;

 ComboDatabits: TComboBox;

 ComboBaudrate: TComboBox;

 LabelBaudrate: TLabel;

 Bevel1: TBevel;

 ButtonReset: TButton;

 Bevel2: TBevel;

 Label1: TLabel;

 ComboPortNum: TComboBox;

 Memo2: TMemo;

 btnSendCmd: TButton;

 edtCmd: TEdit;

 btnSendMSG: TButton;

 Memo1: TMemo;

 Memo3: TMemo;

 Memo4: TMemo;

 ComboBox1: TComboBox;

 Label2: TLabel;

 Label3: TLabel;

 Label5: TLabel;

 Label4: TLabel;

 edtAddress: TEdit;

 Label6: TLabel;

 Label7: TLabel;

 EdtTotalRxBytes: TEdit;

 EdtAccErrBytes: TEdit;

 BtnClearDeviceList: TButton;

 Label8: TLabel;

 EdtCountErrMsg: TEdit;

 Label9: TLabel;

 procedure FormCreate(Sender: TObject);

 procedure ButtonOpenClick(Sender: TObject);

 procedure ButtonCloseClick(Sender: TObject);

 procedure ButtonResetClick(Sender: TObject);

 procedure ButtonTransmitClick(Sender: TObject);

 procedure Comm1TxEmpty(Sender: TObject);

 procedure Comm1Break(Sender: TObject);

 procedure Comm1Cts(Sender: TObject);

 procedure Comm1Dsr(Sender: TObject);

 procedure Comm1Error(Sender: TObject; Errors: Integer);

 procedure Comm1Ring(Sender: TObject);

 procedure Comm1Rlsd(Sender: TObject);

 procedure ComboBaudrateChange(Sender: TObject);

 procedure ComboDatabitsChange(Sender: TObject);

 procedure ComboStopbitsChange(Sender: TObject);

 procedure ComboParityChange(Sender: TObject);

 procedure btnTransmit1000Click(Sender: TObject);

 procedure CheckBoxRTSClick(Sender: TObject);

 procedure CheckBoxDTRClick(Sender: TObject);

 procedure CheckBoxBREAKClick(Sender: TObject);

 procedure CheckBoxXONClick(Sender: TObject);

APPENDIX 94

 procedure VaComm1Data(Sender: TObject; Count: Integer);

 procedure VaComm1Event(Sender: TObject);

 procedure VaComm1Open(Sender: TObject);

 procedure VaComm1Close(Sender: TObject);

 procedure ComboPortNumChange(Sender: TObject);

 procedure btnSendCmdClick(Sender: TObject);

 procedure btnSendMSGClick(Sender: TObject);

 procedure ComboBox1Click(Sender: TObject);

 procedure Label5DblClick(Sender: TObject);

 procedure BtnClearDeviceListClick(Sender: TObject);

 private

 procedure HandleException(Sender: TObject; E: Exception);

 public

 { Public declarations }

 end;

var

 frmMain: TfrmMain;

 RxMsg: String ='';

 Hs1: String ='';

 countMsg: Integer =0;

 NewMsg : boolean = false;

 CompleteMsg : boolean = false;

 CountBytes: Integer = 0; //total byes received by serial port

 ErrBytes: integer = 0;

 countOneMsg: Integer = 0; //counter for counting no. of '0'..'9'

 StartOneMsg: boolean = false; // for counting no. of '0'..'9'

 DispCount: Integer =0;

 Count5: Integer =0;

implementation

{$R *.DFM}

procedure TfrmMain.FormCreate(Sender: TObject);

begin

 Application.OnException := HandleException;

 with ComboPortNum do

 ItemIndex := Items.IndexOf('9'); //('3');

 with ComboBaudrate do

 ItemIndex := Items.IndexOf('br57600'); //('br38400');

 with ComboDataBits do

 ItemIndex := Items.IndexOf('db8');

 with ComboParity do

 ItemIndex := Items.IndexOf('paNone');

 with ComboStopbits do

ItemIndex := Items.IndexOf('sb10');

 VaComm1.BaudRate := TVaBaudrate(ComboBaudrate.ItemIndex);

 VaComm1.Databits := TVaDataBits(ComboDatabits.ItemIndex);

 VaComm1.Parity := TVaParity(ComboParity.ItemIndex);

 VaComm1.StopBits := TVaStopBits(ComboStopbits.ItemIndex);

end;

APPENDIX 95

procedure TfrmMain.HandleException(Sender: TObject; E: Exception);

begin

 if E is EVaCommError then

 with E as EVaCommError do

 ShowMessage(Message);

end;

procedure TfrmMain.ButtonOpenClick(Sender: TObject);

begin

 VaComm1.Open;

 Comm1Cts(VaComm1);

 Comm1Dsr(VaComm1);

 Comm1Ring(VaComm1);

 Comm1Rlsd(VaComm1);

end;

procedure TfrmMain.ButtonCloseClick(Sender: TObject);

begin

 VaComm1.Close;

 Comm1Cts(VaComm1);

 Comm1Dsr(VaComm1);

 Comm1Ring(VaComm1);

 Comm1Rlsd(VaComm1);

end;

procedure TfrmMain.ButtonResetClick(Sender: TObject);

begin

 Memo1.Lines.Clear;

 Memo2.Lines.Clear;

 Memo3.Lines.Clear;

 CountBytes := 0; // total number of byes received by serial port

 ErrBytes := 0;

 CountOneMsg := 0;

 EdtTotalRxBytes.Text := '0';

 EdtAccErrBytes.Text := '0';

 EdtCountErrMsg.Text := '0';

end;

procedure TfrmMain.BtnClearDeviceListClick(Sender: TObject);

begin

 Memo4.Lines.Clear;

 ComboBox1.Items.Clear;

 ComboBox1.Items.Add('Broadcast');

 ComboBox1.ItemIndex :=0;

 edtAddress.Text := 'Broadcast';

end;

procedure TfrmMain.ButtonTransmitClick(Sender: TObject);

var

 S: string;

 Ok: Boolean;

begin

 S := EditTransmit.Text;

APPENDIX 96

 if CheckBoxAddLinefeed.Checked then

 S := S + #13#10;

 Ok := VaComm1.WriteText(S);

 if not Ok then

Memo1.Lines.add('Error writing to: '

 + Format('Port %d', [VaComm1.PortNum]))

 else

 begin

 Memo1.Lines.add(Format('Writing %d characters', [Length(S)]));

 end;

end;

procedure TfrmMain.btnTransmit1000Click(Sender: TObject);

var

 I: Integer;

 S: string;

begin

 if MessageDlg('This will sent the input a thousand times,

continue?',

 mtConfirmation, [mbOk, mbCancel], 0) <> mrOk then exit;

 S := EditTransmit.Text;

 if CheckBoxAddLinefeed.Checked then

 S := S + crlf;

 for I := 0 to 1000 do

 begin

 VaComm1.WriteText(S);

 Application.ProcessMessages;

 end;

end;

procedure TfrmMain.Comm1TxEmpty(Sender: TObject);

begin

 Memo1.Lines.add('TxEmpty signal detected...');

end;

procedure TfrmMain.Comm1Break(Sender: TObject);

begin

 Memo1.Lines.add('Break signal detected...');

end;

procedure TfrmMain.Comm1Cts(Sender: TObject);

begin

 if VaComm1.CTS then

 StatusBar1.Panels[0].Text := 'CTS'

 else StatusBar1.Panels[0].Text := '';

end;

procedure TfrmMain.Comm1Dsr(Sender: TObject);

begin

 if VaComm1.DSR then

 StatusBar1.Panels[1].Text := 'DSR'

 else StatusBar1.Panels[1].Text := '';

end;

APPENDIX 97

procedure TfrmMain.Comm1Ring(Sender: TObject);

begin

 if VaComm1.Ring then

 StatusBar1.Panels[2].Text := 'RING'

 else StatusBar1.Panels[2].Text := '';

end;

procedure TfrmMain.Comm1Rlsd(Sender: TObject);

begin

 if VaComm1.Rlsd then

 StatusBar1.Panels[3].Text := 'RLSD'

 else StatusBar1.Panels[3].Text := '';

end;

procedure TfrmMain.Comm1Error(Sender: TObject; Errors: Integer);

begin

 if (Errors and CE_BREAK > 0) then Memo1.Lines.add(sCE_BREAK);

 if (Errors and CE_DNS > 0) then Memo1.Lines.add(sCE_DNS);

 if (Errors and CE_FRAME > 0) then Memo1.Lines.add(sCE_FRAME);

 if (Errors and CE_IOE > 0) then Memo1.Lines.add(sCE_IOE);

 if (Errors and CE_MODE > 0) then Memo1.Lines.add(sCE_MODE);

 if (Errors and CE_OOP > 0) then Memo1.Lines.add(sCE_OOP);

 if (Errors and CE_OVERRUN > 0) then Memo1.Lines.add(sCE_OVERRUN);

 if (Errors and CE_PTO > 0) then Memo1.Lines.add(sCE_PTO);

 if (Errors and CE_RXOVER > 0) then Memo1.Lines.add(sCE_RXOVER);

 if (Errors and CE_RXPARITY > 0) then Memo1.Lines.add(sCE_RXPARITY);

 if (Errors and CE_TXFULL > 0) then Memo1.Lines.add(sCE_TXFULL);

end;

procedure TfrmMain.ComboPortNumChange(Sender: TObject);

begin

 try

 VaComm1.PortNum := ComboPortNum.ItemIndex + 1;

 except

 ComboPortNum.ItemIndex := VaComm1.PortNum - 1;

 raise;

 end;

end;

procedure TfrmMain.ComboBaudrateChange(Sender: TObject);

begin

 VaComm1.BaudRate := TVaBaudrate(ComboBaudrate.ItemIndex);

 Memo1.Lines.add('Baudrate: ' + ComboBaudrate.Text);

end;

procedure TfrmMain.ComboDatabitsChange(Sender: TObject);

begin

 VaComm1.Databits := TVaDataBits(ComboDatabits.ItemIndex);

 Memo1.Lines.add('Databits: ' + ComboDatabits.Text);

end;

procedure TfrmMain.ComboStopbitsChange(Sender: TObject);

begin

 VaComm1.StopBits := TVaStopBits(ComboStopbits.ItemIndex);

 Memo1.Lines.add('StopBits: ' + ComboStopbits.Text);

APPENDIX 98

end;

procedure TfrmMain.ComboParityChange(Sender: TObject);

begin

 VaComm1.Parity := TVaParity(ComboParity.ItemIndex);

 Memo1.Lines.add('Parity: ' + ComboParity.Text);

end;

procedure TfrmMain.CheckBoxRTSClick(Sender: TObject);

begin

 VaComm1.SetRTSState(CheckBoxRTS.Checked);

end;

procedure TfrmMain.CheckBoxDTRClick(Sender: TObject);

begin

 VaComm1.SetDTRState(CheckBoxDTR.Checked);

end;

procedure TfrmMain.CheckBoxBREAKClick(Sender: TObject);

begin

 VaComm1.SetBREAKState(CheckBoxBREAK.Checked);

end;

procedure TfrmMain.CheckBoxXONClick(Sender: TObject);

begin

 VaComm1.SetXONState(CheckBoxXON.Checked);

end;

procedure TfrmMain.VaComm1Data(Sender: TObject; Count: Integer);

var

 GetChar: boolean;

 C: char;

 CountErr: integer;

 Hs: string; //hex string

 procedure gotMessage(twoMsg: boolean);

 var

 mCount: Integer;

 begin

 // Count is bytes in buffer, from Vacomm event

 mCount := Length(RxMsg);

 CountErr := getCompleteMsg(RxMsg);

 if (CountErr = 0)then

 begin // if last part of message received and it is valid

 if (DispCount >0) then

 Memo1.Lines.add('RxBuffer ' + IntToStr(Count) + ' bytes | '

 + 'MsgLength=' + IntToStr(mCount));

 Memo2.Lines.Text := Memo2.Lines.Text + RxMsg;

 if (Length(Raddress)>0) then

 begin // if it's a reponse to ND (node discovery)

 // Raddress and Rname will store the node information

 Memo4.Lines.add(Raddress);

APPENDIX 99

 Raddress :='';

 ComboBox1.Items.Add(Rname);

 Rname :='';

 end;

 RxMsg := ''; // clear the message after processed

 end

 else // an error in the message

 begin

 Memo1.Lines.add('RxBuffer ' + IntToStr(Count) + ' bytes | '

 + 'MsgCount=' + IntToStr(mCount) + ' Err='

 + IntToStr(CountErr));

 // If CountErr < 0, may be need to wait for some more bytes

 // RxMsg will keep as is and continue to receive next char

 ErrBytes := ErrBytes + CountErr;

 EdtCountErrMsg.Text := IntToStr(ErrBytes);

 if ((CountErr > 0) or (twoMsg)) then //discard this message

 RxMsg:='';

 if (DispCount = 0) then

 DispCount := 2; // display 3 message when error occurs

 end;

 end;

begin

CountBytes:= CountBytes + count;

// total bytes received by serial port

 EdtTotalRxBytes.Text := IntToStr(CountBytes);

 repeat

 GetChar := Vacomm1.ReadChar(C);

 if (GetChar) then

 begin

 // check byte and count number of bytes if 0..9

 if (C = 's') then

 begin // start counting for one message

 StartOneMsg := true;

 CountOneMsg :=0;

 inc(Count5);

 end;

 if StartOneMsg then

 case C of

 '0'..'9': CountOneMsg := CountOneMsg + 1;

 'E': begin // end of message

 CountErr := StrToInt(EdtAccErrBytes.Text);

 StartOneMsg := false;

 if (CountOneMsg <> 300) then

 begin

 CountErr := CountErr

+ abs(CountOneMsg - 300);

 EdtAccErrBytes.Text :=IntToStr(CountErr);

 end;

 end;

 end;

 if (C = char($0D)) then

 //Clear Memo2 if all bytes received without error

 begin

APPENDIX 100

 CountErr := StrToInt(EdtAccErrBytes.Text);

 Count5 := 0;

 if (CountErr = 0) then

 Memo2.Lines.Clear;

 // If memos not clear, will slow down serial

 // port and stuff receiving buffer.

 end;

 if (C = char($7E)) then

 if (Length(RxMsg)>0) then // already got one message

 begin

 gotMessage(true); //second message = true

 end;

 RxMsg := RxMsg + C; // buffer the received message

 Hs := Hs+ IntToHex(Integer(C),2);

 end;

 Until (not GetChar);

// All char in buffer is received

 // display all buffered data in HEX code

 Memo3.Lines.Text := Memo3.Lines.Text + Hs +#13;

 // after all characters received from the serial port

 if ((Length(RxMsg)>0) and (RxMsg[1]=char($7E)))

 then gotMessage(false); //false for one message only

end;

procedure TfrmMain.VaComm1Event(Sender: TObject);

begin

 Memo1.Lines.add('Event signal detected...');

end;

procedure TfrmMain.VaComm1Open(Sender: TObject);

begin

 Memo1.Lines.add('Port open');

end;

procedure TfrmMain.VaComm1Close(Sender: TObject);

begin

 Memo1.Lines.Add('Port closed');

end;

procedure TfrmMain.btnSendCmdClick(Sender: TObject);

var

 S, Hs: String;

 I: Integer;

begin

 S := getCommand(char($08) + 'R' + edtCmd.Text);

 Vacomm1.writeText(S);

 I := 1;

 Hs:='';

 while I <= Length(S) do

 begin

 Hs := Hs+ IntToHex(Integer(S[I]),2);

APPENDIX 101

 I := I + 1;

 end;

 Memo2.Lines.Text := Memo2.Lines.Text+ char($0D)+'TX: ' + Hs +'... ';

 if (UpperCase(edtCmd.Text) = 'ND') then

 begin

 Memo4.Lines.Clear;

 ComboBox1.Items.Clear;

 ComboBox1.Items.Add('Broadcast');

 end;

end;

procedure TfrmMain.btnSendMSGClick(Sender: TObject);

var

 S, Hs, Addr: String;

 I: Integer;

begin

 Addr := Memo4.Lines[0];

 if (edtAddress.Text='Broadcast') then

 begin

 S := getCommand(

 char($10) //ZigBee Transmit Request

 + char($00) // no ack

 + char($00)+ char($00) // 64 bit destination address

 + char($00)+ char($00) // 0x0000 0000 0000 FFFF

 + char($00)+ char($00) // for broadcast

 + char($FF)+ char($FF)

 + char($FF)+ char($FE) // 16 bit Destination Network address

 // 0xFFFE for Broadcast or Unknown

 + char($00)+ char($00) // Max Hop + No options

 + edtCmd.Text // the message (Max 72 bytes)

);

 end

 else

 begin

 S := getCommand(

 char($10) //ZigBee Transmit Request

 + char($00) // no ack

 + getAddress(edtAddress.Text) // edtAddress.Text //

 + char($FF)+ char($FE) // 16 bit Destination Network address

 // 0xFFFE for Broadcast or Unknown

 + char($00)+ char($00) // Max Hop + No options

 + edtCmd.Text // the message (Max 72 bytes)

);

 end;

 Vacomm1.writeText(S);

 I := 1;

 Hs:='';

 while I <= Length(S) do

 begin

 Hs := Hs+ IntToHex(Integer(S[I]),2);

 I := I + 1;

 end;

 Memo3.Lines.Text := Memo3.Lines.Text+ char($0D)+'TX: ' + Hs +'... ';

end;

APPENDIX 102

procedure TfrmMain.ComboBox1Click(Sender: TObject);

begin

 edtAddress.Text := ComboBox1.Items[ComboBox1.ItemIndex];

end;

procedure TfrmMain.Label5DblClick(Sender: TObject);

begin

 ShowMessage(HelpMessage);

end;

end. // end of form main unit

B3. Unit file of API functions

unit APIcommands;

interface

uses

 SysUtils;

function findChkSum(cmd: String): char;

function getCommand(cmd: String): String;

function getCompleteMsg(var Msg: String): Integer;

function getAddress(NI: String): String;

const

NJcmd: String = char($08)+ 'RNJ';

NDcmd: String = char($08)+ 'RND';

APIdelimiter: char = char($7E);

HelpMessage = 'The comport source codes of this program is based on'

 + #13 + 'Async32demo (c) Varian Software Services nl 1996-2000.'

 + #13 + 'ZigBee firmware is MaxStream v8x17 Beta';

var

 Raddress: String ='';

 Rname: String ='';

implementation

function getAddress(NI: String): String;

begin

if (NI='ROUTER4') then

Result:= (char($00) + char($13) + char($A2)

 + char($00) + char($40) + char($01) +char($84) + char($EF))

 //address of ROUTER4

else if (NI='ROUTER1') then

 Result:= (char($00) + char($13) + char($A2)

 + char($00) + char($40) + char($01) +char($84) + char($F2))

 //address of ROUTER1

APPENDIX 103

else if (NI='ROUTER3') then

 Result:= (char($00) + char($13) + char($A2)

 + char($00) + char($40) + char($06) +char($05) + char($79))

 //address of ROUTER3

else if (NI='ROUTER2') then

 Result:= (char($00) + char($13) + char($A2)

 + char($00) + char($40) + char($08) +char($AA) + char($FC))

 //address of ROUTER3

 else Result:= 'NIL';

end;

function findChkSum(cmd: String): char;

var

 I: Integer;

 Sum : Integer;

begin

 I := 1; Sum := 0;

 while I <= Length(cmd) do

 begin

 Sum := Sum + Integer(cmd[I]);

 I := I+1;

 end;

 I := 255 - Sum;

 Result := char(I);

end;

function getCommand(cmd: String): String;

var

 cmdMid: String;

begin

 cmdMid :='';

 if (Length(cmd)>$FF) then

 cmdMid := char(Length(cmd)-$FF) + char(Length(cmd))

 else

 cmdMid := char(00) + char(Length(cmd));

 Result := APIdelimiter + cmdMid + cmd + findChkSum(cmd);

end;

function chkATresponse(Msg: String): String;

var

 I: Integer;

 S: String;

begin

 if (Copy(Msg,6,2) = 'NI') then

 Result := Copy(Msg,9,Length(Msg)-9)

 else if (Copy(Msg,6,2) = 'ND') then

 // each node will response with one message

 begin // extract node name

 I:= 7;

 if (Length(Msg) > 19) then

APPENDIX 104

 begin

 repeat

 I := I+1;

 S := S+IntToHex(Integer(Msg[I]),2);

 until (I=18);

 Raddress:= S;

 Rname := Copy(Msg,19,Length(Msg)-9);

 Result := 'Node:' + Rname +':';

 end

 else

 Result := '';

 end

 else

 Result := 'Not identified';

end;

function getCompleteMsg(var Msg: String): Integer;

var

 L: Integer;

begin

 L := Integer(Msg[2])*256 + Integer(Msg[3]);

 if (Length(Msg) = (L+4)) then

 // completely received & one message only

 begin

 if (Msg[4] = char($90)) then // ZigBee Message

 Msg := Copy(Msg,16,Length(Msg)-16) // Extract the content

 Else if (Msg[4] = char($88)) then // AT command response

 Msg := chkATresponse(Msg) //Copy(Msg,9,Length(Msg)-9)

 Else

 Msg :='Not a proper message!';

 Result := 0;

 end

 else // RxMsg does not got alter, but err bytes returned

 begin

 Result := Length(Msg)- (L+4)

 end;

end;

end. // end of APIcommands unit

********* End of Thesis *********

	Introduction
	The “robot family” for USAR missions
	Figure 1.1: The three tier robot family system
	Figure 1.2: Grandmother robot, by Jason Craig Cordes
	Figure 1.3: Mother Robot, by David Williamson

	Projects and objective

	Selection of Wireless Link
	Wireless networking architecture
	2.4 GHz short-range network for daughter robots
	Bluetooth Wireless Technology
	Wi-Fi (IEEE 802.11)
	ZigBee (IEEE 802.15.4)

	Radio frequency penetrations in collapsed buildings
	ZigBee network for thousands of robots
	Figure 2.1: Cluster Tree ZigBee Network

	ZigBee Modules Comparison
	Freescale 13193EVB-BDM Development Kit
	Figure 2.2: Freescale 13193EVB-BDM Development Kit

	Panasonic PAN802154HAR00 Module [19]
	Figure 2.3: Panasonic PAN802154HAR00 Module

	Microchip Technology PICDEM Z 2.4GHz Demo Kit
	Figure 2.4: Microchip Technology PICDEM Z 2.4GHz Demo Kit

	XBee-PRO OEM RF Module [18]
	Figure 2.5: XBee-PRO OEM RF Module on USB adaptor
	Figure 2.6: XBee-PRO (left) and PAN802154 (right) Modules
	Table 2.1: ZigBee module specifications

	Prototype Development
	Rapid Prototype Development
	Figure 3.1: Rapid Prototype Development

	1st Prototype - Microcontroller with ZigBee
	Figure 3.2: Block Diagram of 1st Prototype
	Figure 3.3: PIC16F877 target board block diagram
	Figure 3.4: XBee-PRO adaptor board
	Figure 3.5: 1st Prototype - Xbee-PRO on PIC877 target board

	2nd Prototype - The beetle with ZigBee
	Figure 3.6: PAN802154 wireless module block diagram
	Figure 3.7: 2nd Prototype - The beetle with ZigBee

	3rd Prototype - Two-motor robot with ZigBee
	Figure 3.8: 3rd Prototype - Two-motor robot with ZigBee
	Figure 3.9: Two-motor robot - base board schematic diagram

	4th prototype - The SRV-1 Surveyor
	Figure 3.10: 4th Prototype - The Surveyor

	Final Prototype - RoboExp with Sensors
	Figure 3.11: The Final Prototype - RoboExp Robot with sensors
	Figure 3.12: ATMega16L microcontroller of the RoboExp Robot
	RoboExp Robot with ATMega16L microcontroller
	Adding I2C temperature sensor to the RoboExp controller
	Figure 3.13: Schematic and photo of the I2C temperature sensor
	Figure 3.14: Subroutine to setup I2C temperature sensor
	Figure 3.15: Subroutine to read I2C temperature reading

	Summary of Prototype Development
	Table 3.1: Experiments and comments on prototypes

	Prototype Robots Cost Analysis

	RF Signal Tests
	Wireless Link Test
	Experiment setup
	Scenario 1: A normal office building
	Figure 4.1: Office building for GO/NO GO tests
	Figure 4.2: Floor plan for communication test
	Table 4.1: Office building communication test results

	Scenario 2: Metallic effects
	A. Aluminium shield
	Figure 4.3: Aluminium Shield (Re-radiator) Test

	B. Mild steel computer boxes
	Figure 4.4: Mild steel computer boxes enclosing modules
	Figure 4.5: Test by enclosing modules in mild steel computer boxes

	Attenuation of RF Signal in Rubble
	ZigBee versus Wi-Fi
	Link Margins
	A. Link Margin for ZigBee device
	B. Link Margin for Wi-Fi access point

	Cost, size and power
	Figure 4.6: Mini-router - XBee-PRO with 2 AA-batteries

	Summarizing the Wireless Link Test

	Wireless Network Implementation
	X-CTU software for configuring XBee-PRO modules
	Figure 5.1: X-CTU port settings

	XBee-PRO version v8x17 firmware
	Coordinator Firmware - Version v8117
	Figure 5.2: XBee-PRO coordinator firmware parameters
	Table 5.1: Firmware parameters for XBee-PRO coordinator operation

	Router Firmware - Version v8217
	Figure 5.3: XBee-PRO router firmware parameters
	Table 5.2: Firmware parameters for XBee-PRO router operation

	Profile files for modules to form a network
	Table 5.3: Profile files of XBee-PRO modules

	AT mode versus API mode

	API Programming on the Simulated Mother Robot
	AT Commands in API frame structure
	Figure 5.4: AT Command frame structure
	Table 5.4: Byte sequence for NI command in API frame structure

	API frame for transmit request
	Figure 5.5: API frame for ZigBee Transmit Request
	Table 5.5: Identifier-specific Data block for ZigBee Transmit Request

	API frame in respond to AT Command
	Table 5.6: Identifier-specific Data in respond to AT Command

	API frame of ZigBee Received Data Packet
	Table 5.7: Identifier-specific Data block of ZigBee Received Data Packet

	ZigBee Tester program on monitoring computer
	Figure 5.6: ZigBee tester and analysis program
	Functions for constructing AT Commands:
	Figure 5.7: Pascal function for finding Checksum
	Figure 5.8: Pascal function for constructing the AT Command

	Button for sending AT Command to coordinator:
	Figure 5.9: Button for sending AT command
	Figure 5.10: Pascal function for sending command to coordinator

	ZigBee message received:
	Figure 5.11: Pascal function to check a complete message
	Figure 5.12: Pascal function to handle AT Command response

	Button to send message to devices:
	Figure 5.13: Send message to devices
	Figure 5.14: Pascal procedure to send message to devices

	Port control and other buttons

	Program in data transmitter and monitoring computer
	Figure 5.15: Main loop of data transmitter program

	Summarising Network Implementation

	Experiments in Artificial Rubble
	Prototype models for experiments
	Figure 6.1: Data Transmitter
	Figure 6.2: XBee-PRO router with 4 AA-batteries
	Figure 6.3: XBee-PRO coordinator on USB adaptor

	Soil environment at rubble site
	Measurement of materials for simulated rubble
	Measurement equipment
	Spectrum Analyzer, Wi-Spy 2.4x device
	Table 6.1: Wi-Spy 2.4x Technical Specifications

	Special Tripod for multipath signals
	Figure 6.4: Wi-Spy 2.4x device and spectrum analyser on laptop

	RF signal spectrum recording on laptop

	Measurement setup
	Figure 6.5: Measurement of material attenuations

	RF signal background measurement
	Figure 6.6: RF signal background spectrum

	Measurement of soil attenuation
	Figure 6.7: Data Transmitter for tests
	Figure 6.8: Spectrums for soil: before (left), after 30 cm soil (right)
	Table 6.2: Soil attenuations
	Figure 6.9: RF signal scattering through surrounding

	Attenuation of various building materials
	Figure 6.10: Concrete slabs
	Figure 6.11: Concrete slabs with wire-mesh
	Figure 6.12: Placing bricks for attenuation measurement
	Figure 6.13: Placing paving stones for attenuation measurement
	Table 6.3: Attenuations of various building materials
	Figure 6.14: Graphical results of attenuation measurement

	Design of experiment setup in rubble
	Figure 6.15: Sectional view of rubble experiment setup
	Figure 6.16: Plan view of rubble experiment setup

	Construction of artificial Rubble
	Figure 6.17: Construction of artificial rubble
	Figure 6.18: Building a tunnel in the rubble

	Data Routing Experiments
	Experiment Description and Results
	Table 6.4: Routing experiment steps
	Figure 6.19: 9 locations for measuring signal strength above ground
	Figure 6.20: Signal Spectrum for experiment step 2
	Figure 6.21: Received signal strength for experiment step 3

	Routing Reconnection Tests

	Summary

	Conclusions
	Conclusions
	Selection of wireless modules
	Development of prototypes
	RF Signal Tests
	Wireless network implementation
	Communication test in artificial rubble

	Future work to minimise data loss
	Data lost and measures taken
	Hardware handshaking on XBee-PRO modules
	Figure 7.1: XBee-PRO RS232 port connection diagram
	Figure 7.2: Full connection scheme for XBee-PRO to RS232 port

	Useful data rate
	Implementing packetization
	Buffering and processing delays
	Figure 7.3: XBee-PRO internal data flow diagram
	Figure 7.4: Useful bitrate graph by Benoit et al [31]

	High-level mechanism to avoid data loss
	“ACK before next transmit”
	“Silence” and “Wake up”

	Contributions of this thesis
	Summary

	References
	NZ USAR, “Why USAR is needed?” visited on 29th February, 2010, http://www.usar.govt.nz/usarwebsite.nsf/wpg_URL/About-USAR-Why-USAR-is-Needed-Index?OpenDocument
	D. McGuigan, 2002, “Urban Search and Rescue and the Role of the Engineer”, retrieved on 1st September 2007, from http://www.usar.govt.nz /usarwebsite.nsf/Files/McGuiganUSARMasters/$file/McGuiganUSARMasters.pdf
	School of Chemical and Physical Science, VUW, “Search and Rescue (SAR)”, retrieved on 30th August 2007, from http://www.vuw.ac.nz/scps /research/mechatronics/sar.aspx
	D. Carnegie, “A Thee-Tier Hierarchical Robotic System for Urban Serach and rescue Applications”, IEEE International workshop on Safety, Security and Rescue Robotics (New York, IEEE, 2007), pp. 1-6.
	D.A. Carnegie and J. C. Cordes, “The mechanical design and construction of a mobile outdoor multi-terrain mechatron,” Proceedings of the Institution of Mechanical Engineersm Part B, Engineering Manufacture, Vol 218, pp 1563-1575, Nov 2004
	D. A. Williamson, “The development of a “Mother” agent for a hierarchical multi-robot urban search and rescue system: a thesis submitted to the Victoria University of Wellington”, 2007
	The IETF, “Mobile ad-hoc network (MANET) working group”, visited on 30th August 2007, from http://www.ietf.org/html.charters/manet-charter.html
	S. Das, H. Pucha and Y. Hu, “MicroRouting: A Scallable and Robus Communication Paradigm for Spase Ad Hoc Networks”, in proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, 2005
	Sanderson et al, “Developing Mobile Middleware – An Analysis of Rescue and Emergency Operations”, (2007), University of Oslo
	Third Generation Partnership Program (3GPP), “General Packet Radio Service (GPRS); Service description”, visited 30th August 2007, http://www.3gpp.org/ftp/Specs/html-info/23060.htm
	Third Generation Partnership Program (3GPP), “Work programme for the standarization of Universal Mobile Telecommunications System (UMTS)”, visited 30th August 2007, http://www.3gpp.org/ftp/Specs/html-info/0001U.htm
	IEEE, “IEEE 802.16 WirelessMAN® Standard for Wireless Metropolitan Area Networks”, visited 30th August 2007, from http://ieee802.org/16/
	Bluetooth SIG, “Compare with other technologies”, last accessed on 5th May 2010, visited http://www.bluetooth.com/English/Technology/Works /Pages/Compare.aspx
	Kinney Consulting LLC, “ZigBee Technology: Wireless Control that Simply Works”, retrieved on 4th September 2007, http://www.zigbee.org/ imwp/idms/popups/pop_download.asp?contentID=5162
	R. Akl and X. Li, “Indoor propagation modelling at 2.4 GHz for IEEE 802.11 network”, in proceedings of the Sixth IASTED International Muti-Conference on Wireless and Optical Communications, Wireless Networks and Emerging Technologies, 2006
	O. W. Ata, “Grade of Service Signal Density Enhancement – Modeling In-building penetration loss in various morphologies”, in proceeding of the IEEE Tropical Conference on Wireless Communication Technology, 2003
	MaxStream Inc., “Indoor Path Loss”, retrieved on 8th December 2008, from http://ftp1.digi.com/support/images/XST-AN005a-Indoor.pdf %20(334.50KB).pdf
	MaxStream Inc., “Product Manual v8x17 Beta – ZigBee Protocol”, retrieved on 13th October 2008, from http://www.digi.com/support/kbase/ kbaseresultdetl.jsp?id=2182
	Panasonic Corporation of North America, “PAN802154HAR00 ZigBee Brochure”, retrieved on 4th August 2007, from http://www.panasonic.com /industrial/components/pdf/zigbee_brochure.pdf
	Surveyor Corporation, “SRV-1 Surveyor robot”, visited on 20th March 2010, http://surveyor-corporation.stores.yahoo.net/srrowestkit.html
	JoinMax Digital, “JoinMax RoboEXP Learning Kit V4.0”, visited on 15th March 2010, http://www.roboexp.com/products/list.asp?id=81
	Industry Canada, “GL-01 — Guidelines for the Measurement of Radio Frequency Fields at Frequencies from 3 KHz to 300 GHz”, visited on 30th April 2010, from http://www.icce.ca/eic/site/smt-gst.nsf/eng/sf08511.html
	C. L. Holloway, G. Koepke, D. Camell, K. A. Remley, “Radio Propagation Measurements Before, During, and After the Collapse of Three Large Building Structures”, in proceedings of the 2008 General Assembly of the International Union of Radio Science (Un...
	A. Ferworn, N. Tran, J. Tran, G. Zarnett, F. Sharifi, “WiFi repeater deployment for improved communication in confined-space urban disaster search”, IEEE International Conference on System of Systems Engineering, pp. 1 – 5, 16-18 April 2007
	D-Link Corporation, “DWL-2100AP, High Speed 2.4GHz (802.11g) Wireless 108Mbps1 Access Point”, retrieved on 15 January 2009 from http://www.dlink.com/products/resource.asp?pid=292&rid=912&sec=0
	MaxStream Inc. & Digi International Inc., “X-CTU firmware programming software”, retrieved on 25th October 2007, from http://www.digi.com/ support/kbase/kbaseresultdetl.jsp?kb=125
	TMS Software, “Asyn32 Serial Port demo program”, visited on 15th April 2010, from http://www.tmssoftware.com/site/async32.asp
	GHD Ltd, Part 1 of “2001 (March) Pakuranga Creek Catchments Comprehensive Catchment Discharge Consent Application - Comprehensive Catchment Study and Management Plan Options”, retrieved on 26 Jan 2009 from http://www.manukau.govt.nz/tec/catchment/paku...
	C.L. Holloway, D.A. Hill, R.A. Dalke, G.A. Hufford, “Radio wave propagation characteristics in lossy circular waveguidessuch as tunnels, mine shafts, and boreholes”, IEEE Transactions on Antennas and Propagation, Volume: 48, Issue: 9, pp. 1354-1366, ...
	MetaGeek LLC, “The Wi-Spy 2.4x device”, last visited on 15th April 2010, from http://www.metageek.net/products/wi-spy-24x
	Benoit et al, “Throughput and delay analysis of unslotted IEEE 802.15.4”, retrieved on 14th October 2009, from https://www.academypublisher.com /~academz3/jnw/vol01/no01/jnw01012028.pdf
	C. Tsui, L. Jennings and D. Carnegie, "Is ZigBee a suitable communication link for the 'Robot Family' at disasters?" in proceedings of ENZCON, November 2007
	C. Tsui, D. Carnegie and Q. W. Pan, “USAR Robot Communication Using ZigBee Technology”, CCIS 44, p.380 ff, 2009

	Appendix A: CD Contents
	Appendix B: ZigBee Tester Program Source Code
	B1. Borland Delphi project file
	B2. User interface main form file
	B3. Unit file of API functions

