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Abstract 
 

Using robots to assist rescue personnel in USAR (Urban Search and Rescue) 

missions is an active area of research. Researchers are developing robots to 

penetrate into rubble to gather information about the environment and to search 

for victims. The School of Engineering and Computer Science of Victoria University 

of Wellington is developing a team of robots, the “robot family” to help at disasters. 

The robot family is a three-tier system. The first tier is “the grandmother” which 

carries second tier “mother robots” to the rubble. The mother robot each launches 

a group of the third tier “daughter robots” that will penetrate the rubble surface. 

The daughter robots will burrow deep into the disaster site. They will be equipped 

with sensors to search for and locate trapped persons. They are designed to be 

small, battery operated, low cost and disposable. The team of robots is 

hierarchically structured and to be remotely monitored by rescue personnel at a 

safe distance from the rubble via a wireless communication link. 

 

This thesis describes the successful implementation of a wireless communication 

platform for the team of robots.  This was verified using a simulated rubble site. A 

suitable ZigBee wireless module was selected by comparing a list of target brands 

to form the wireless network. A group of simulated wireless daughter robot 

models were developed by attaching wireless modules to microcontrollers. An 

automatic routing wireless network was implemented between the robots. They 

were deployed into artificial rubble and the communication system was 

characterised. Proof of concept experiments were carried out and demonstrated 

that rescue personnel using a computer at a safe distance outside the rubble could 

successfully establish reliable communication to monitor or control all robots 

inside the artificial rubble environment. 
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Chapter  1  Introduction 

1.1 The “robot family” for USAR missions 

New Zealand is subject to a variety of natural disasters and non-natural 

emergencies that may give rise to structural collapses, which could trap people. 

Examples of such incidents are listed as follows [1]. 

 Earthquakes, land slips and subsidence 

 Hurricanes, typhoons, storms, tornadoes and floods 

 Technological and construction accidents  

 Terrorist activities 

 

USAR responses are required for such incidents. USAR missions often place rescue 

personnel at risk [2]. Robots are used to assist in such missions by operating in 

dangerous rubble scenarios in order to search for trapped victims. A system of 

robots, “the Robot Family” is proposed as shown in Figure 1.1. The system 

comprises ‘grandmother, mother and daughter’ components, each with distinct 

responsibilities [3][4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The three tier robot family system 

2nd tier 
Mothers penetrate 
the disaster zone 

3rd tier 
Daughters deployed 

into the rubble 

Mother 1 

Mother 2 
Mother 3 
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The grandmother robot helps to carry mother robots close to the rubble vicinity. It 

maintains communication with rescue personnel via a long range wireless link, 

such as a mobile phone network or other radio link which potentially could 

operate over a distance of several kilometres. A proof of concept grandmother 

robot (Figure 1.2) is developed by Cordes in 2004 [5]. The mother robots (Figure 

1.3) developed by Williamson [6], each carry a group of daughter robots to the 

perimeter of the rubble while keeping communication with the grandmother robot 

by a shorter-range wireless link, typically over a distance of a few hundred metres. 

The groups of daughter robots will be deployed by the mother robots when the 

mother detects openings that would allow the daughters to penetrate underneath 

the rubble. 

 

 

Figure 1.2: Grandmother robot, by Jason Craig Cordes 
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Figure 1.3: Mother Robot, by David Williamson 

 

1.2 Projects and objective 

The daughter robots are designed to be small and disposable. They are battery 

operated and consume low power.  As mentioned, their purpose is to penetrate 

beneath the rubble surface in order to search for trapped victims.   A low power 

consumption wireless communication network is required to connect the team of 

robots to facilitate remote monitoring or control of the robots by rescue personnel 

who are situated at a safe distance from the rubble. 

 

The objective of this thesis is to design and characterise a wireless network for the 

team of robots and verify that appropriate communication can be established 

between the robots and rescue personnel outside the rubble. 

 

Studies, literature review and comparisons were carried out on wireless 

networking technologies. ZigBee was chosen as the appropriate one to implement 

the wireless network between the mother robots and the daughter robots. A list of 

ZigBee wireless modules from several brands were acquired and analyzed. A 
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suitable module that provides the required networking mechanism was selected to 

form the wireless network. Investigations were carried out on several 

microcontroller development kit-sets. The most suitable microcontroller was 

chosen and wireless communication modules were attached.  This provided a 

working simulation of a daughter robot. 

 

The rubble environment was simulated by connecting holes and trenches that 

were dug in 50 cm deep soil. The simulated robots were placed in the bottom of 

these holes. The holes and trenches were then covered up by various building 

materials and soil to simulate an actual rubble environment.  

 

An automatic routing wireless network was implemented on the wireless modules 

to provide communication between the robots. Proof of concept experiments were 

carried out and demonstrated that a monitoring computer placed 10 metres 

outside the rubble successfully established reliable communication with all robots 

inside the artificial rubble environment. 
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Chapter  2  Selection of Wireless Link 

2.1 Wireless networking architecture 

Recent research reports have proposed sparse MANET (Mobile Ad-hoc Networks) 

as a suitable communication network for robots and other computing devices for 

search and rescue operations [7] [8]. The sparse MANET concept can be 

implemented into the three-tier robot system. Each tier will have a separate sub-

network. Then all the tiers are interconnected to form a larger MANET [9]. 

 

As described in chapter 1, the three tier robot system can be divided into two 

short-range networks with Grandmother and Mothers connected to one, and the 

Mothers and Daughters connected to another. The Grandmother can be connected 

to Rescue Personnel by a longer range link, say GPRS [10] or UMTS [11] on mobile 

phone or wirelessMAN [12]. 

 

Technically, there should be no difficulty in building the MANETs between the 

rescue personnel, grandmother and mothers. The main concern is maintaining 

real-time communication with the daughters while they are searching in the 

rubble. Signal attenuation is the first factor to be considered and the other factor is 

how to communicate with hundreds of robots at the same time. 

 

2.2  2.4 GHz short-range network for daughter robots 

At the start of a mission, an ad-hoc wireless network is established in-situ between 

the robots. Due to varying situations in the rubble, robots are often disconnected 

from the network and reconnection is required at any time. Attenuations to the 

radio signal in the rubble may not allow a direct link between daughter robots in 

the rubble to the mother outside. The network is required to pass information 

from one robot to another then to a mother robot; this can be achieved by routing 

of packetized data. Three short range wireless technologies that can fulfil such 

requirements are ZigBee, Bluetooth and Wi-Fi. The following summarised the 

three technologies from Bluetooth SIG [13].  
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Bluetooth Wireless Technology 

 Operate Frequency - 2.4 GHz spectrum  

 Operate distance - 10 to 100 metres 

 Data Rate - 3 Mbps  

 Cost of Bluetooth chips - under US$3 

Wi-Fi (IEEE 802.11) 

 Operate Frequency - 2.4 GHz or 5 GHz spectrum  

 Operate distance - indoor usages, can be extended to outdoor  

 Data rate - from 10 Mbps to 100 Mbps (proposals are seeking 

upwards of 500 Mbps) 

 Bluetooth technology costs a third of Wi-Fi to implement  

 Bluetooth technology uses a fifth of the power of Wi-Fi  

ZigBee (IEEE 802.15.4) 

 Operating Frequency - 2.4 GHz, 915 MHz and 868 MHz 

 Operating Distance - 10-100 metres 

 Date Rate - 20 Kbps to 250 Kbps 

 ZigBee and Bluetooth chips are both low cost 

 
Comparing the specifications, ZigBee and Bluetooth are much cheaper to 

implement than Wi-Fi. Kinney Consulting LLC summarised Bluetooth as best suited 

for connecting cell phone to PDA, hands-free audio and PDA to printer; whereas 

ZigBee is better for controls, sensors, lots of devices, low duty cycle small data 

packets and for projects where long battery life is critical [14]. 

 

To differentiate, Wi-Fi has the highest data rate and ZigBee has the lowest. For the 

daughter robots in the rubble, the messages that they will send includes 

temperature and gas data and whether a victim has been found. Such messages 

should have a length at the most of several bytes. The largest messages could be 

sending a kilo-bytes size photo, but that should not be very often except when 
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confirmation of a victim’s situation is required. Thus, the data rate provided by 

ZigBee is adequate. 

 

Summarising, ZigBee is chosen as the communication technology for the daughter 

robot. Investigations by proof of concept experiments and discussions in later 

section supported this selection. 

 

2.3 Radio frequency penetrations in collapsed buildings 

According to Akl, Tummala and Li [15], indoor path loss for wireless data link at 

2.4 GHz in various room conditions at a distance of 10 m to 30 m could be in the 

range from 30 dB to 40 dB. 

 

Estimation of penetration loss through walls and partitions can refer to Osama’s 

theoretical models [16]. A 13 inch thick concrete external wall with insulation and 

metal enforcement could introduce 15 dB attenuation and a 4.5 inch internal dry 

wall could impose 5 dB penetration losses. This estimation also matched with the 

XBee-PRO manufacturer’s test report [17].  

 

As a total estimation, there could be 60 dB losses for a daughter robot inside a 

normal building to communication with a mother robot outside. During USAR 

mission in a collapsed building, the signal loss will be much higher than 60 dB. 

Most ZigBee modules would not have enough power to get through this rubble to 

make a direct link with the outside. 

 

The solution requires network routing between the daughter robots, such that the 

robot that is nearest to the outside of the building can communicate with the 

mother robot with a direct link; other robots that are deeper inside the rubble 

establish a network through to the outermost robot. 
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2.4 ZigBee network for thousands of robots 

ZigBee (IEEE 802.15.4) networking protocol supports cluster tree topology that is 

suitable for the network routing scenario described above [18]. A ZigBee device 

can be configured as an FFD (Full Function Device) or RFD (Reduced Function 

Device). Each device has a 64 bit IEEE address. 16 bit short addresses can be used 

to increase message passing efficiency. This allows a maximum of 65535 devices 

on the network. 

 

The XBee-PRO modules on the daughter robots will be programmed by the v8x17 

version firmware provided by MaxStream to work as FFD, which can function as 

either a router or an end-node in a cluster tree network and carry out message 

routing between devices [18]. This firmware works on top of the ZigBee network 

layout and implements the cluster tree network topology illustrated in Figure 2.1. 

The firmware supports 5 level routing. It allows 6 routers and 14 end-nodes in 

each level. Thus there can be maximum 31100 daughter robots supported with 

one coordinator in one network. 

 

 

Figure 2.1: Cluster Tree ZigBee Network 
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In order to avoid prolonged delay in routing between levels and in practice there 

will not be 100 to 200 daughter robots in a USAR mission, a two level network 

which allows 140 robots or a three level network which allows 860 robots could 

be used.  

 

2.5 ZigBee Modules Comparison 

Four development kit sets or modules were sourced and analysed for their 

suitability for the projects. Significant specifications and features of each are listed 

below. 

2.5.1 Freescale 13193EVB-BDM Development Kit 

 Cost  
NZ$545 (ex. GST) from Arrow Electronics as of 2006 September, for 
a pair of evaluation boards 

 Firmware available 
Full ZigBee stack source codes with application examples for pairs of 
coordinator and end-node 

 Development tool 
Freescale’s CodeWarrior for re-programming the embedded GT60 
microcontroller and 13193EVK software for loading and re-
configuration of application examples on to modules 

 Interfaces 
RS232, USB 1.1, 4 push buttons, 4 LEDs 

 Output power 
0 dBm (1 mW) typical, 3 dBm (2 mW) maximum 

 Input power 
5 V – 9 V DC 

 

 

 

 

 

 

 

 

Figure 2.2: Freescale 13193EVB-BDM Development Kit 
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2.5.2 Panasonic PAN802154HAR00 Module [19] 

 Cost 
US$28.01 (ex. GST) from Arrow Electronics as of 2007 March 

 Firmware available 
One coordinator with three end-nodes and full ZigBee stack source 
code from Freescale 

 Development tool 
Embedded GT60 microcontroller, can be re-programmed by 
Freescale’s CodeWarrior 

 Interfaces 
RS232, 2 analogue input, 8 digital I/O 

 Output power 
0 dBm (1 mW) typical, 3 dBm (2 mW) maximum 

 Input power 
3.0 V - 3.4 V DC (for using with RS232) 

 

 

 

 

 

Figure 2.3: Panasonic PAN802154HAR00 Module 
 

2.5.3 Microchip Technology PICDEM Z 2.4GHz Demo Kit 

 Cost   
US$199.99 (ex. GST) from Microchip as of 2006 July, for a pair of 
development boards 

 Firmware available 
Full ZigBee stack source codes with application examples for pairs of 
coordinator and end-node 

 Development tool 
Microchips’s MPLAB C18 can be used to develop the full ZigBee stack 
source code and re-programming of the embedded PIC18LF4620 
microcontroller  

 

 Interfaces 
RS232, 2 LEDs, 1 temperature sensor, analogue and digital I/O on 
the microcontroller 
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 Output power 
0 dBm (1 mW), typical and maximum 

 Input power 
5 V – 9 V DC 

 

 

 

 

 

 

 

 

Figure 2.4: Microchip Technology PICDEM Z 2.4GHz Demo Kit 

2.5.4 XBee-PRO OEM RF Module [18] 

 Cost   
NZ$47.05 (ex. GST) from TCS (NZ) LTD as of 2007 October 

 Firmware available 
Several versions of firmware that supports mesh and cluster tree 
network of one coordinator with numerous routes and end-nodes, 
but ZigBee Stack source code not provided  

 Development tool 
Firmware programming and re-configuration software provided 

 Interfaces 
RS232 (TTL level), 8 I/O pins reconfigurable as 5 analogue input or 8 
digital I/O  

 Output power 
18 dBm (60 mW) typical, 20 dBm (100 mW) maximum 

 Input power 
2.8 V - 3.4 V DC 

 

 

 

 

 

Figure 2.5: XBee-PRO OEM RF Module on USB adaptor 
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After loading and running demonstration examples on the four ZigBee modules, it 

was found that the time taken to become familiarised with the Freescale 

13193EVB-BDM Development Kit and Microchip Technology PICDEM Z 2.4GHz 

Demo Kit was not justified within the limited project time frame. 

 

Summarizing the specifications and features, and based on the project criteria of 

low cost, small size and easy integration with the robots, the PAN802154 module 

by Panasonic and the XBee-PRO module by MaxStream were selected for 

developing the prototype robots. Technical specifications for the modules are 

listed in Table 2.1 below. 

 

                                        

Figure 2.6: XBee-PRO (left) and PAN802154 (right) Modules 

 

 

Table 2.1: ZigBee module specifications 

 XBee-PRO PAN802154 

RF Output 
Power 

18 dBm   (60 mW) typical 
20 dBm (100 mW) max 

0 dBm (1 mW) typical 
3 dBm (2 mW) max 

Receive 
Sensitivity 

-100 dBm typical -92 dBm typical 

Power 
Consumption 

Tx: 270 mA 
Rx: 55 mA 

Tx: 60 mA 
Rx: 35 mA 

Antenna ¼  monopole integrated 
whip antenna 

Printed onboard 

 

 

 

4.5 cm 

3.2 cm 
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Chapter  3  Prototype Development 

3.1 Rapid Prototype Development 

Due to the limited time allowed for the project, the technique of rapid prototyping 

is applied to the development of prototype robots. The process started from the 

functional design along with mechanical and electrical design to meet the required 

functionalities. The next step is hardware sourcing and combining parts to 

assemble the robot in parallel with programming of the robot. Tests and 

corrections were carried out and then looped back to modification on the design, 

with re-programming and re-assembly if required, as shown in Figure 3.1 below. 

 

Figure 3.1: Rapid Prototype Development 

 

Based on this rapid development concept, several prototype robots were 

developed and illustrated in the following sections. 
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3.2 1st Prototype - Microcontroller with ZigBee 

The design aim of the 1st prototype is a ‘quick start tester’ that allows testing of 

message transfer on the communication link. The prototype does not need to be a 

mobile robot but need to be built in the shortest time. A PIC16F877 target board 

which provides a programmable serial port and interfaces was acquired and 

connected with the XBee-PRO module to form the first prototype. The block 

diagram below illustrates the design. 

 

Figure 3.2: Block Diagram of 1st Prototype 

 

 

 

 

 

 

 

 

 

Figure 3.3: PIC16F877 target board block diagram 

The above block diagram illustrates the PIC16F877 target board. A 5 V DC 

regulator provides power to the microcontroller and all the ports. The onboard 

MAX232 level shifts the data output to the required level for the RS232 connector 

which can be used for connecting to a computer. The data output can be shared for 

connecting to the XBee-PRO wireless module. 
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Figure 3.4: XBee-PRO adaptor board 

Since the XBee-PRO is an OEM module, an adaptor board is designed to provide the 

necessary voltages and connections. The above schematic diagram shows the 

adaptor board. U1 (TC1262-3.3) provides regulated 3.3 V DC to the circuit.  Data 

lines DOUT and DIN from U2 (the XBee-PRO module) are level shifted by U3 (the 

MAX232) to provide the required signal level to the 9-pin RS232 connector JP3 

which can be used for connecting to a computer. When jumpers are connected 

onto J1 and J2, the header JP2 can be used to directly connect the data line to Port C 

of the PIC16F877 target board on Figure 3.3. The following figure illustrates the 

assembled prototype. 

 

Figure 3.5: 1st Prototype - Xbee-PRO on PIC877 target board 
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3.3 2nd Prototype - The beetle with ZigBee  

The second wireless module candidate is the Panasonic PAN802154. Figure 3.6 

illustrates the block diagram of the module. It has an onboard micro-processing 

unit (MC9S08GT60) which implements the ZigBee stack and a RS232 level shifter 

for direct connection to any serial port. 

 

Figure 3.6: PAN802154 wireless module block diagram 

 

The beetle was developed by modifying a low cost (NZ$30) toy car. The original 27 

MHz radio remote control circuit was taken out and replaced by the PIC16F877 

target board as illustrated above. The 2nd prototype robot is created by connecting 

the Panasonic PAN802154 module to the serial port of the target board inside the 

Beetle as illustrated in the photograph below. 

 

Figure 3.7: 2nd Prototype - The beetle with ZigBee 
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3.4 3rd Prototype - Two-motor robot with ZigBee  

The size of the PIC16F877 target board and the Beetle is large. A new 

microcontroller board based on the PIC18F4550 with a base adaptor board which 

contains motor driving circuit and connectors for the Panasonic PAN802154 

module was developed. The two boards were assembled on a modified two-motor 

body from the Beetle to form the 3rd prototype illustrated in the photographs 

below. 

 

 

Figure 3.8: 3rd Prototype - Two-motor robot with ZigBee 
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Figure 3.9: Two-motor robot - base board schematic diagram 

Figure 3.9 illustrates the schematic diagram of the base adaptor board on the two-

motor robot. It consists of three main parts. They are two identical H-Bridge 

circuits formed by four MOSFET (Q1A-B & Q2A-B or Q3A-B & Q4A-B) driving the 

left and right motors. 

H-Bridge circuit for 

driving left motor 

H-Bridge circuit for 

driving right motor 

Voltage regulator and wireless 

module connectors 
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Each H-Bridge is driven by NAND-Gate Drivers (U1 or U2) that are themselves 

driven by the DIR_LEFT, DIR_RIGHT and PWM signals from the PIC16F4550 target 

board. The PWM signal controls the speed of the motor. The left and right signals 

control which motor to run. 

 

The third part of the schematic is the 3.3 V voltage regulators (U5) that provides 

the required power. The connectors, J2, J3 and J4 work as plug-in sockets for the 

PAN802154 wireless module. JP1 is for connecting the RS232 lines between the 

wireless module and the target board. 

3.5 4th prototype - The SRV-1 Surveyor 

The two-motor robot (the 3rd prototype) demonstrated a scaled down version of 

the beetle (the 2nd prototype). However, using the wire-tail to act as the third 

wheel cannot provide proper movement on uneven surface. A better mechanical 

structure is required. 

 

While searching for a better mechanical structure, a tank like robot (the SRV-1 

Surveyor) was found. This 4th prototype robot is a completed robot bought from 

Surveyor Corporation [20]. The Surveyor contains a Phillips microcontroller with a 

plug-in XBee-PRO module, which is the chosen ZigBee module for the projects 

described in earlier sections. The photographs below illustrate the Surveyor robot 

and the XBee-PRO on a USB adaptor board. 

   

 

 

 

 

 

 

 

 

Figure 3.10: 4th Prototype - The Surveyor 
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3.6 Final Prototype - RoboExp with Sensors 

The final prototype is made by attaching a ZigBee module onto the customizable 

robot kit-set, RoboExp robot purchased from JoinMax [21]. The RoboExp robot 

comes with collision detectors and an ultrasonic detector. A PIR (passive infrared) 

detector and a temperature sensor were designed and added on to the robot. 

Figure 3.11 illustrates the prototype robot. 

 

Figure 3.11: The Final Prototype - RoboExp Robot with sensors 

 

 

 

Figure 3.12: ATMega16L microcontroller of the RoboExp Robot 
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3.6.1 RoboExp Robot with ATMega16L microcontroller 

Figure 3.12 illustrates the controller on the robot. It is based on an ATMega16L 

microcontroller providing 24 I/O ports which can be programmed as motor 

output, analogue input, I2C interface, or digital I/O. These ports facilitate easy 

interfacing of the RoboExp robot’s sensors to the microcontroller. As illustrated in 

Figure 3.11, the PIR sensor is interfaced using a digital input port and the 

temperature sensor is connected onto the I2C interface. 

 

An added advantage of the RoboExp robot to rapid development is that the 

software that comes with the controller provides a drag-drop-and-connect icon 

style programming interface and also supports C++ programming in a text editor. 

This allows a quick start-up of an application in minutes with detail and complex 

algorithm to be developed in a later stage. 

3.6.2 Adding I2C temperature sensor to the RoboExp controller 

To demonstrate easy interfacing of sensors, a digital temperature sensor board 

with based on Microchip’s MCP9803 I2C was designed and constructed. Figure 3.13 

shows the temperature sensor schematic and the finished PCB that was added 

onto the controller. The 6-pin port takes the 5 V DC at pin 2 to power the circuit 

and connects the I2C bus to the controller.  

     

Figure 3.13: Schematic and photo of the I2C temperature sensor 
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The following C code subroutines was written and added to the source files to 

allow the controller to set up and read temperature from the sensor. 

Line SetI2CTemperature subroutine C code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

unsigned int SetI2CTemperature(_TEMPERATURE_ which){ 

 // Initialise I2C temperature module MCP9803 

    struct select *information=&which; 

    unsigned char ddr1=portarray[1][information->group1]; 

    unsigned char ddr2=portarray[1][information->group2]; 

    unsigned char port1=portarray[2][information->group1]; 

    unsigned char port2=portarray[2][information->group2]; 

    unsigned char pin1=portarray[0][information->group1]; 

    unsigned char pin2=portarray[0][information->group2]; 

    unsigned char bit1=information->bit1; 

    unsigned char bit2=information->bit2; 

    SDA_DDR=ddr2; 

    SDA_PORT=port2; 

    SDA_PIN=pin2; 

    SDA_BIT=bit2; 

    SCL_DDR=ddr1; 

    SCL_PORT=port1; 

    SCL_BIT=bit1; 

    unsigned int errorCode=0; 

    Soft_I2C_Start(); 

    Soft_I2C_Write(0x90);  

        // write address byte - R/W bit should be 0 

    Soft_I2C_Write(0x01);   

        // point to configuration register  

    Soft_I2C_Start(); 

    Soft_I2C_Write(0x40);   

        // set to 11bit resolution 

    Soft_I2C_Start(); 

    Soft_I2C_Write(0x90);   

        // write address byte - R/W bit should be 0 

    Soft_I2C_Write(0x0);    

        // point to temperature register 

    Soft_I2C_Stop(); 

    return errorCode;   

  } 

Figure 3.14: Subroutine to setup I2C temperature sensor 

The SetI2CTemperature subroutine sets up the required port address and bits for 

the I2C port. To fulfil the requirements to set up the MCP9803, lines 20 to 27 call 

the Soft_I2C_Start and Soft_I2C_Write subroutines to write the resolution 

parameter (0x40) into the configuration register (0x01) at the I2C address 0x90. 

Lines 28 to 33 set the sensor to point to the temperature register (0x0) and then 

stop to get ready and wait for commands to read temperature values. 
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Line  GetI2CTemperature subroutine C code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

unsigned int GetI2CTemperature(_TEMPERATURE_ which){ 

   // Read from I2C temperature module MCP9803 

    struct select *information=&which; 

    unsigned char ddr1=portarray[1][information->group1]; 

    unsigned char ddr2=portarray[1][information->group2]; 

    unsigned char port1=portarray[2][information->group1]; 

    unsigned char port2=portarray[2][information->group2]; 

    unsigned char pin1=portarray[0][information->group1]; 

    unsigned char pin2=portarray[0][information->group2]; 

    unsigned char bit1=information->bit1; 

    unsigned char bit2=information->bit2; 

    SDA_DDR=ddr2; 

    SDA_PORT=port2; 

    SDA_PIN=pin2; 

    SDA_BIT=bit2; 

    SCL_DDR=ddr1; 

    SCL_PORT=port1; 

    SCL_BIT=bit1; 

    unsigned char byteTwo; 

    unsigned char byteOne; 

    unsigned int temp; 

    Soft_I2C_Start(); 

    Soft_I2C_Write(0x91); 

         // write address byte for reading temperature 

    byteOne=Soft_I2C_Read(0); 

    byteTwo=Soft_I2C_Read(1); 

    Soft_I2C_Stop(); 

    temp = (byteTwo << 8) | byteOne; 

         // combine two bytes to form the reading 

    return temp;   

  } 

Figure 3.15: Subroutine to read I2C temperature reading 

 

The GetI2CTemperature subroutine has the same starting part as the set up 

subroutine, using the same port address and bits for the I2C port. Lines 22 and 23 

call subroutines to put the address 0x91 on the bus for reading the MCP9803 

module. Lines 25 to 27 read the two bytes of the temperature value and then stop 

the operation. Lines 28 and 29 combine the two bytes to form the temperature 

reading and return it. 

 

The Soft_I2C Start, Read, Write and Stop subroutines are provided by the RoboExp 

development software. 
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3.7 Summary of Prototype Development 

The aim of developing all the prototypes is to source and select hardware to build a 

platform that is suitable for further project experiments. The platform must fulfil 

the concept of “rapid prototyping”, such that it can be easily re-configured, re-

programmed and be adapted with sensors and motors for constructing simulated 

robots. 

 

The wireless modules are programmed as pairs of point-to-point wireless modems 

and messages were sent between a computer and the prototypes. The following 

table summarises and comments on these test results. 

 

Table 3.1: Experiments and comments on prototypes 

Proto-
type 

Experiments & Comments 

1st   A pair of XBee-PRO modules at 4800 baud 

 999 bytes message was received properly at the computer by sending 
the one-byte, ‘H’ request message 

 The baud rate is low and need to test motor driving to check noise 
immunity 

2nd   A pair of PAN802154 modules at 4800 baud 

 The Beetle (contains the same PIC16F877 as 1st prototype) 

 Motor driving tested and 999 bytes message tests without problem 

3rd  A new microcontroller board, PIC18F4550 was developed 

 Body of the 2nd prototype was modified to form a two-motor body 

 A pair of PAN802154 modules at 38400 baud 

 Same 999 bytes message and motor driving tests without problem 

4th  A pair of XBee-PRO modules at 115200 baud 

 Using the robot’s Java based remote control program, but intermittent 
loss of photos was found. A new Java program was written to test at 
other baud rates, photos can be captured, but losses still happened. 

 Re-programming of the robot for the same test as the other prototypes 
was not carried out due to time limitation, but expected the robot can 
achieve the same as other prototypes, since photos can be captured. 

Final  RoboExp with the ATMega16L microcontroller was programmed to be 
tested the same as the 3rd prototype 

 Both XBee-PRO and PAN802154 have been used 

 999 bytes message and driving tests were done without problem on 
various baud rates from 9600 to 115200 
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Summarising the above discussions, building a model of daughter robot can start 

from one of the last two prototypes. The Surveyor features an attractive camera 

that allows users to see “what is going on in there”, but some lighting is required. 

The RoboExp is easily reconfigurable and with its I2C ports cater for new sensors 

and actuators. However, both of them need “shape-up” to keep them from getting 

stuck in adverse situations. 

 

The two selected wireless modules are well justified to continue with the next 

stage of experiments as both can be reconfigured with various baud rates and be 

direct connected to a standard RS232 interface on the microcontroller boards. 

Using the structure as the 1st prototype, both of the modules are attached to a 

microcontroller and used for the “feasibility tests” described in next chapter. 

  

3.8 Prototype Robots Cost Analysis 

The final prototype of the daughter robot as described in section 3.6 is based on 

the educational kit set RoboEXP robot [21]. The cost of a kit set is US$159.30. The 

kit set contains parts, such as two motors, two tyres, a front wheel, two collision 

sensors, one sound sensor and two light sensors, for building the robot framework. 

Extra sensors such as an ultrasonic distance detector (US$30), a PIR sensor 

(US$10) and an I2C temperature sensor (US$20) were added for function 

enhancement. Adding an XBee-PRO module (NZ$47.05) completed a wireless 

prototype daughter robot at about US$250. 

 

The 4th prototype, the SRV-1 Surveyor robot costs US$525 from Surveyor 

Corporation. The SRV-1 is completed with a miniaturized camera and a pair of 

laser lights for range finding. It has a pair of mini-size DC motors built into to an 

aluminium chassis, which drives a pair of rubber belts to form a self-laying track 

configuration [20]. 
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The RoboExp robot is cheaper, but the SRV-1 has a better chassis and comes with a 

second XBee-PRO module on a USB adaptor for connecting to the computer. For 

the additional cost of a hundred dollars, the RoboExp can be built onto a similar 

aluminium chassis with motors to make it more or less the same cost and same 

structure. 

 

The cost of these prototypes being of the order of several hundred dollars is 

acceptable and within the budget allocated to this project.  No claim is made here 

what the final cost of a daughter robot might be once factors such as mass 

production and reliability/robustness of the device are taken into account. 

 

If only signal routing is required at locations inside the rubble, further cost cutting 

can be done by using the mini-router describe in later section 4.3.2. This consists of 

two AA-batteries and an XBee-PRO module that can be made below US$30. 
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Chapter  4  RF Signal Tests 

The next stage of the project is to run experiments to verify that the selected 

ZigBee modules can establish a reliable communication link for the daughter 

robots in USAR missions. 

4.1 Wireless Link Test 

4.1.1 Experiment setup 

The 1st prototype illustrated in section 3.2 was used to carry out the experiments. 

The ZigBee modules are used in pairs and configured as wireless modems 

connecting a computer on one side and to the microcontroller on the other side. A 

single byte message was sent from the computer to the microcontroller, which was 

programmed to respond with a 300 byte text message. The communication was 

tested with the 300 byte response message verified for two scenarios described 

below. 

4.1.2 Scenario 1: A normal office building 

Searching for victims in collapsed buildings will be the normal mission that 

daughter robots designed for. It is reasonable to expect that in such a collapse, 

there will be substantial cavities (necessary to contain a surviving victim) as well 

as gaps in the rubble (one of which will admit the daughter search robot).  A four 

level office building (Figure 4.1) was chosen to run the first set of GO/NO GO tests. 

Although this building has obviously not collapsed, it will serve to model the actual 

disaster environment given the commonality of building materials and structural 

layout. 

 

The main structure of the building is supported by twenty-five 0.6 m by 0.6 m 

concrete columns. The floor of each level is a 0.3 m thick concrete slab. The floor 

area of each level is 30 m by 30 m and 3 m height. Each floor is divided into offices, 

class rooms, laboratories and computer rooms. The main stairway, toilets and the 

lift are grouped at the middle of the building and a back door stairway is on the 

north. 
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Figure 4.1: Office building for GO/NO GO tests 

  

The robot was placed on a desk inside one of the rooms at the north side in second 

floor. The communication test was carried out by moving the computer to various 

locations inside and outside the building. Figure 4.2 illustrates the location of the 

ZigBee and micro-controller module on the second floor.  

 

 

 

 

Figure 4.2: Floor plan for communication test 
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Results on reception of respond message for each floor are summarised in table 4.1 

below. 

 

Table 4.1: Office building communication test results 

 Using XBee-PRO 

with microcontroller 

Using PAN802154 

with microcontroller 

F
lo

o
r 

1
 All bytes received in all rooms, 

corridors, stairways and foyer; 
except in rooms at south-west 
corner of building. 

All bytes received in corridors, 
stairway, and foyer; but no respond 
message in rooms. 

F
lo

o
r 

2
 

All bytes received in all rooms on 
second floor, corridors, and 
stairways. 

All bytes received in rooms at 
north, corridors and stairways; but 
rooms at middle & south end only 
get respond message near 
doorways. 

F
lo

o
r 

3
 All bytes received in rooms at 

north, and corridors; but rooms 
at middle & south end only get 
respond message near doorways. 

All bytes received in north half of 
the corridors, and stairways only. 

F
lo

o
r 

4
 All bytes received in corridors 

and stairways only. 
 

All bytes received at stairways 

only. 

O
u

ts
id

e
 All bytes received within 3m at 

north, north-east corner, and 

outside main entrance (even with 
glass door closed). 

All bytes received only when very 
close to the room of the ZigBee 

modules at north of the building. 

 

From the table, the range of the XBee-PRO module covers a lot more area than the 

PAN802154 module, including areas outside the building. This is mainly due to the 

XBee-PRO’s maximum output power of 100 mW which is much higher than that of 

the PAN802154 at 2 mW. Note that for the actual experiments both devices were 

configured to transmit at their highest output power.  
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4.1.3 Scenario 2: Metallic effects 

Reinforced concrete is the major building material used for the building. Another 

commonly found material is metal from electric appliances, such as computers. 

The following two GO/NO GO tests addressed this. 

 

A. Aluminium shield 

A 1.25 mm thick aluminium dome was used to shield the RF signal transmitting 

from the ZigBee module. A spectrum analyser with a dipole antenna was used to 

measure the received signal strength. Due to the shield was not grounded with 

respect to the RF transmitter; it became a re-radiator that produces secondary 

radiation of the signal [22]. An attenuation of about 15 dB was measured. The 

arrangement is illustrated in Figure 4.3. 

 

 

 

 

 

 

Figure 4.3: Aluminium Shield (Re-radiator) Test 

 

Taking the PAN802154 module as an example, its output RF power is 0dBm. If a 

receiving module is placed at a 30 m distance, the estimated path loss is 30 dB 

[15]. Adding the 15 dB loss due to the aluminium shield, the received signal 

strength should be about -45 dBm, which is well above the module’s sensitivity of  

-92 dBm. As a result, this amount of attenuation should not block the RF link, and 

the modules should be able to maintain proper communication at a range of more 

than 30 m. The XBee-PRO module should perform better, as it has a higher output 

power and better sensitivity. 
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B. Mild steel computer boxes 

A second simulated environment was built by old computers. The computer boxes 

have air vents and openings, and they are not perfectly square. Twelve computers 

(cases with components fully installed) were arranged to form a “castle” (see 

photo and illustrations in Figure 4.4) such that the ZigBee and micro-controller 

modules were enclosed all around (top, left, right, front and rear) by two layers of 

computers on the concrete floor. A double layer structure was used to cover the 

openings, but there are small gaps (about 1 cm) between the computers. 

 

           

 

 

 

 

 

 

 

 

 

Figure 4.4: Mild steel computer boxes enclosing modules 
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Figure 4.5: Test by enclosing modules in mild steel computer boxes  

 

The monitoring computer with a ZigBee module was located in another room (as 

per the floor plan illustrated in Figure 4.5) at 20 m distance, and message passing 

was tested.  

 

The test results showed that the communication is good with the XBee-PRO 

module, but the PAN802154 module gave intermittent results. When the 

monitoring computer is moved into the same room with the enclosed modules, 

both models of ZigBee module can establish proper communication. However, if 

more computer boxes were used to overlap all gaps, communication cannot be 

established. 

 

4.2 Attenuation of RF Signal in Rubble 

High frequency communication, such as the ZigBee technology in the range of MHz 

to GHz, is subject to significant attenuations in a rubble environment. The National 

Institute of Standards and Technology (NIST) have carried out experiments on RF 
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signals before, during, and after the implosion of three large building structures 

[23]. Their measurements showed a 20 to 80 dB of attenuation for RF signals in the 

frequency range 50 MHz to 1.8 GHz after the collapse, depending on the building 

type and location of the transmitter. This high attenuation is a major impediment 

to using these RF signals for direct point-to-point communication between devices 

inside the rubble and rescue persons outside. 

 

The wireless link tests described above confirmed the same performance 

demonstrated by the XBee-PRO modules. A direct communication link is not 

always possible; and a routing wireless network is required to overcome the 

problem. Another often used wireless technology in buildings is Wi-Fi which also 

provides routing of data between devices. The next section compares the two 

technologies. 

 

4.3 ZigBee versus Wi-Fi 

Section 2.2 compared wireless technologies Wi-Fi and ZigBee. Both technologies 

support indoor and outdoor communication and data routing between device 

nodes. The Network-Centric Applied Research (NCAR) Team of Ryerson University 

in Canada has demonstrated communication range extension using Wi-Fi 

repeaters in an artificial rubble environment [24]. The NCAR team used the D-Link 

DWL-2100AP Wi-Fi access point for data routing [25]. This section investigates in 

more detail the suitability of the two technologies on the daughter robots by 

comparing the DWL-2100AP with the XBee-PRO. 

4.3.1 Link Margins 

The link margins for a ZigBee network and a Wi-Fi network can be estimated using 

the 80 dB attenuation measured by NIST as follows: 

A. Link Margin for ZigBee device 

A ZigBee device, XBee-PRO with a typical output power of +18 dBm and 

receiver sensitivity of -100 dBm will have a link margin of 38 dB. 
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B. Link Margin for Wi-Fi access point 

A Wi-Fi access point, DWL-2100AP with a typical output power of +15dBm 

and receiver sensitivity of -89 dBm will have a link margin of 24 dB. 

 

The link margin seems good for both ZigBee and Wi-Fi cases. However, the 

experiments done by NIST were up to 1.8 GHz but ZigBee and Wi-Fi is at a higher 

frequency of 2.4 GHz that will experience greater attenuation. This high level of 

attenuation coupled with multipath fading environmental noise indicates that a 

direct link for continuous data transfer will not be viable for both technologies. 

Thus multiple ZigBee devices or Wi-Fi access points are required to build an ad-

hoc digital network which can route packets of data from one node to another until 

they arrive at the receiving end. 

4.3.2 Cost, size and power 

As described in section 2.4 the manufacturer of XBee-PRO provides firmware 

which allows configuration of the module as a coordinator, router or end-node. A 

cluster-tree wireless network can be formed by one coordinator and multiple 

routers and multiple end-nodes. The module can be programmed to work alone as 

a router and powered directly by two AA-size batteries to form a mini-router as 

shown in Figure 4.6 below. This makes a very low cost and small size routing node, 

such that it can be dropped into any opening or carried by a robot to anywhere in 

the rubble. Of course the size can be even further reduced if a more compact power 

supply is utilised. 

 

Figure 4.6: Mini-router - XBee-PRO with 2 AA-batteries 
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Compared with this mini-router, the access point is double the size, costs three 

times more and requires ten times more power. It is required for the group of 

robots to form an ad-hoc routing network. Due to the size and power 

requirements, it is not viable to have a robot carry a Wi-Fi access point and burrow 

into the rubble.  

 

4.4 Summarizing the Wireless Link Test 

The link test experiments showed that XBee-PRO performed significantly better 

than the PAN802154 module. It can establish a proper communication link when 

buried under commonly found materials in an office building. In most situations it 

can send messages between rooms, corridors and stairways; and in some cases it 

can get through walls and windows to outside the building. As compared with the 

Wi-Fi access point, the XBee-PRO module provides the same networking 

mechanism, but at a much smaller size and lower power consumption. 

 

If we can assume that there is not much change on the material properties after a 

building is collapsed, and if there are still cracks (just like the cracks between 

computer boxes) between materials to allow wireless signals to get through, it is 

possible for the XBee-PRO modules to establish a usable communication link in the 

rubble by either a direct link or by passing a message from one robot to another 

until it gets outside the rubble. This supports the selection of this module for 

developing the daughter robots. 

 

The next stage of the project is to implement the wireless network using the XBee-

PRO modules, and then simulate a real rubble environment and carry out 

experiments to verify communication between robots inside and outside the 

rubble.  
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Chapter  5 Wireless Network Implementation  

MaxStream produces several wireless modules that based on the ZigBee standard. 

XBee-PRO, because of its higher output power, is selected as one of the candidate 

modules for this project. After the analysis, prototyping and tests described in 

chapters 2, 3 and 4, it was chosen as the final module for network implementation. 

Several versions of firmware are available for the module. The version v8x17 is 

selected because it supports the cluster tree network topology as described in 

section 2.4. It also supports API (application programming interface) operation for 

controls by high-level host applications. This chapter describes the development of 

the automatic routing wireless network using the features provided by this 

firmware. High-level program is developed for communication test and analysis. 

 

5.1 X-CTU software for configuring XBee-PRO modules 

MaxStream provides the X-CTU software for configuring and programming 

firmware into the modules. Figure 5.1 illustrates the PC Settings tab of X-CTU [26]. 

        

Figure 5.1: X-CTU port settings 

Serial port settings 
 38400 baud 
 No flow control 
 8 data bit 
 No parity 
 1 stop bit 

 
 
API not enabled 
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5.2 XBee-PRO version v8x17 firmware 

There are five sub-versions of the v8x17 firmware. The following describe the 

versions used for this project. 

5.2.1 Coordinator Firmware - Version v8117 

 

 

Figure 5.2: XBee-PRO coordinator firmware parameters 

Figure 5.2 illustrates the Modem Configuration tab in X-CTU for the version v8117 

firmware used on the XBee-PRO module to configure it as a coordinator on the 

network. The firmware is divided into four parts. Parameters in black colour are 

Read only 
parameters, 

indicated 
by arrows 
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read only; others are configurable. The following table describes usage of the 

parameters during coordinator operations. 

Table 5.1: Firmware parameters for XBee-PRO coordinator operation 

Networking 
CH, ID, SC, SD & NJ – at power up a coordinator will issue an Active Scan for an 

unused channel and PAN ID. SC and SD determine the channels and time for 
scanning. If ID is set to 0xFFFF it will use a random PAN ID. Once a free 
channel and PAN ID is found, they will be written into the parameters, and 
the coordinator will allow nodes to join it for a time period based on the NJ 
parameter. If enabled, the Associate LED (connect to DIO5) will blink once 
per second. 

MY – the network address for the coordinator is always 0. 

SH & SL – Serial number is hard coded in the module. 

RN – defines the back-off exponent in the CSMA-CA algorithm for collision 
avoidance. 0 to disable. 

BH – defines the maximum number of hops for broadcast transmission. 0 will use 
the maximum number of hops. 

NI – the name of the node in string format. 

NT – defines the amount of time a node spends on discovering other nodes when 
a ND (node discover) command or a DN (destination node) command is 
received. 

RF Interfacing 
PL – defines transmitting power; five choices in dBm 10, 12, 14, 16, 18 

CA – defines the CCA (Clear Channel Assessment) threshold level in dBm before 

transmitting a packet. If the detected level on the channel is above the CCA, 

the packet is not transmitted. 
Serial Interfacing and I/O 

BD – defines the baud rate; available choices from 1200 to 115200 

NB – number of bits 

RO – defines the number of inter-character silence that the module will wait, 
before packetizing data to be transmitted. If set to 0, data will be sent when 
they arrive without buffering. 

D7 – configure the DIO7 pin of the module. 1 to use it as CTS flow control, 0 to 
disable. 

D5 – configure the DIO5 pin of the module. 1 to use it as associated indicator to 
flash an LED (1 once per second at power up, twice per second when 
associated to a coordinator), 0 to disable. 

P0 – 1 to enable RSSI (received signal strength indication) by PWM (pulse width 
modulation); 0 to disable. 

AP – 1 to use API (Application Programming Interface) mode, 2 for API with 
escape character control. (For AT mode use firmware v8017) 

Diagnostic Commands 
VR & HV – read only firmware and hardware version of the module 

RP – define the time (x100 ms) that the RSSI signal (see P0 above) will be output 
after last transmission; 0xFF to set output always on. 

AI – stores information regarding last node join request. 
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5.2.2 Router Firmware - Version v8217 

Figure 5.3 illustrates the configuration tab for the version v8217 firmware used on 

the XBee-PRO module to configure it as a router on the network. 

 

 

Figure 5.3: XBee-PRO router firmware parameters 

Read only 
parameters, 

indicated 
by arrows 
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The configuration parameters are divided into five parts. The following table 

describes the purpose of the parameters during router operations. 

Table 5.2: Firmware parameters for XBee-PRO router operation 

Networking 
CH, ID, SC, SD & NJ – at power up a router will scan for a coordinator or another 

router to allow it to join a PAN. SC and SD determine the channels and time 

for scanning. If ID is set to 0xFFFF it will join any available PAN. Once 

successfully joined a PAN the router will allow nodes to join it for a time 

period based on the NJ parameter. If enabled, the Associated LED (connected 

to DIO5) will blink twice a second to indicate successful connection to a PAN. 

CH will store the channel of the PAN. 

DH & DL – stores the 64-bit address of the destination node. This is set to zero for 

the router to send packets to the coordinator. Commands can be sent to the 

module to change this address. 

MY – stores the 16-bit network address is allocated by the coordinator. 

MP – stores the network address of the parent (the router or the coordinator that 

allow joining of the PAN). 

SH & SL – unique serial number hard coded in the module. 

RN – defines the back-off exponent in the CSMA-CA algorithm for collision 

avoidance. 0 to disable. 

BH – defines the maximum number of hops for broadcast transmission. 0 will use 

the maximum number of hops. 

NI – the name of the node in string format. 

NT – defines the amount of time a node spends on discovering other nodes when 

a ND (node discover) command or a DN (destination node) command is 

received. 

RF Interfacing 
– same as for coordinator, see entries in Table 5.1 

Serial Interfacing and I/O 
– same as for coordinator, see entries in Table 5.1 

Diagnostic Commands 
– same as for coordinator, see entries in Table 5.1 

AT Command Options 
This firmware provides operation of the module as a transparent wireless 

modem to the host (a microcontroller to simulate a robot in this project). 

Commands can be sent from the host to control the module (at AT Command 

mode) based on the following parameters. 

CT – stores the timeout (x100 ms) after which the module exits AT Command 

Mode and return to idle mode. 

GT – the Guard Times (x1 ms) is the silence period before and after the CC 

(Command Sequence Character) to prevent inadvertent entrance into AT 

Command Mode. 

CC – the character (‘+’ by default) to be used between the GT to set the module 

into AT Command Mode. 
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5.2.3 Profile files for modules to form a network 

The X-CTU software allows saving and loading firmware parameters from profile 

files in text format. The following table displays the contents of profile files for the 

Coordinator, Router 1 and Router 3. 

Table 5.3: Profile files of XBee-PRO modules 

Coordinator.pro Router1.pro Router3.pro 

XBP24_ZigBee_8117.mxi 
FE 
0 
241 
8117 
0 
[A]ID=123 
[A]RN=3 
[A]SC=1FFE 
[A]SD=3 
[A]NJ=FF 
[A]NI= COORDINATOR 
[A]NT=3C 
[A]PL=4 
[A]CA=40 
[A]BD=6 
[A]NB=0 
[A]D7=1 
[A]D5=1 
[A]P0=1 
[A]AP=1 
[A]RP=28 

XBP24_ZigBee_8217.mxi 
FE 
0 
241 
8217 
0 
[A]ID=123 
[A]DH=0 
[A]DL=0 
[A]RN=3 
[A]BH=0 
[A]SC=1FFE 
[A]SD=3 
[A]NJ=FF 
[A]NI=ROUTER1 
[A]NT=3C 
[A]PL=4 
[A]CA=40 
[A]BD=6 
[A]NB=0 
[A]RO=10 
[A]D7=0 
[A]D5=1 
[A]P0=1 
[A]RP=28 
[A]CT=64 
[A]GT=3E8 
[A]CC=2B 

XBP24_ZigBee_8217.mxi 
FE 
0 
241 
8217 
0 
[A]ID=123 
[A]DH=0 
[A]DL=0 
[A]RN=3 
[A]BH=0 
[A]SC=1FFE 
[A]SD=3 
[A]NJ=FF 
[A]NI=ROUTER3 
[A]NT=3C 
[A]PL=0 
[A]CA=40 
[A]BD=6 
[A]NB=0 
[A]RO=3 
[A]D7=0 
[A]D5=1 
[A]P0=1 
[A]RP=28 
[A]CT=64 
[A]GT=3E8 
[A]CC=2B 

 

Four modules, a coordinator and three routers will be used to form the network 

for the experiments. Router 2 will have the same configuration as Router 1 but 

with NI changed to Router 2. Router 3 will be used as the data transmitter which 

programmed to the lowest transmitting power (PL=0, 10 dBm). This will maximise 

the effect of attenuation by the rubble and increase the chance of requiring 

message routing that will better test the performance of the network. In actual 

missions, all modules should be programmed to the maximum power.   
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5.2.4 AT mode versus API mode 

Referring to the firmware parameters in Table 5.2 and Table 5.3, The XBee-PRO 

routers will work in AT mode (no AP parameter in the firmware) as transparent 

wireless modems. During experiments the simulated daughter robots will send 

data directly to the coordinator (address DH=0 and DL=0) through the serial port. 

The PAN ID will be fixed at 123 and no change is required on the router modules at 

real-time. 

 

The coordinator is set to API mode to allow high-level programs to control the 

module at real-time operation. API operation facilitates a frame structure 

communication between the host and the module. Network information can be 

extracted from the coordinator by sending commands to it through API frames. To 

simply the design, it was chosen to use API mode without escaped characters. The 

simulated daughter robots and the simulated mother robot (the monitoring 

computer) will send messages in ASCII characters to avoid conflict with other 

bytes in the structured frames. 

 

5.3 API Programming on the Simulated Mother Robot 

The coordinator will be attached to a computer simulates the mother robot. A 

monitoring and communication analysis program is written to implement the API 

frame structure required for communicating with the coordinator. Borland Delphi 

(version 5), because of its well structured base language (Pascal) is chosen for 

developing the program. Several API frame structures from the XBee-PRO 

firmware are chosen for developing the program. The following summarises the 

chosen API frame structures from the firmware manual. 

5.3.1 AT Commands in API frame structure 

Two AT commands are used, NI to check the node identifier to make sure the 

coordinator is working and ND for node discovery to find all nodes connected to 

the coordinator. The frame structure for sending AT commands is shown in Figure 

5.4. 
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Figure 5.4: AT Command frame structure 

 

The high-level structure is the same for all API frames: Start Delimiter + Length + 

Frame Data + Checksum. For example, to send the NI command, the following 

sequence of bytes is required to form the API frame. 

 

Table 5.4: Byte sequence for NI command in API frame structure 

Bytes Values Description 

1 
2-3 
4 
5 
6-7 
8 

0x7E 
0x00 0x04 
0x08 
0x52 
0x4E 0x49 
0x0E 

All API frames use this start delimiter 
Length = API Identifier + Frame Id + AT Command 
API Identifier 0x08 for AT command 
Frame ID an non-zero value, arbitrary chosen as ‘R’ 
AT Command in ASCII code for ‘N’ and ‘I’ 
Checksum for bytes 1 to 7 

 

A similar byte sequence can be constructed for the ND command by replacing byte 

7 with 0x64 (ASCII code for ‘D’) and byte 8 with the corresponding checksum. 
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5.3.2 API frame for transmit request 

The ZigBee Transmit Request frame is used for sending data to devices on the 

network. The high-level structure is the same, Figure 5.4, but it has 0x10 as the API 

Identifier and a different block for Identifier-specific Data. The detail of the 

Identifier-specific Data block is shown in the table below. 

 

Figure 5.5: API frame for ZigBee Transmit Request 

 

Table 5.5: Identifier-specific Data block for ZigBee Transmit Request 

Bytes Description 

5 
 
6 - 13 
14 - 15 
 
16 
 
17 
 
18 - n 

Identifies the data frame of the host to correlate with a subsequent 
ACK, using 0 will disable response frame 
64-bit Destination Address (Broadcast = 0x000000000000FFFF) 
16-bit Destination Network Address (0xFFFE for Broadcast, or 
when network address is unknown) 
Set maximum hops for broadcast, 0 for using maximum network 
hops value of 10 
0x01 = Disable ACK, 0x02 – Disable Network Address Discovery 
AT Command in ASCII code for ‘N’ and ‘I’ 
Data to send, up to 72 bytes per packet 

 

5.3.3 API frame in respond to AT Command 

In response to an AT Command, a module will send a Frame Data with 0x88 as the 

API Identifier and the Identifier-specific Data block illustrated in Table 5.6. 

Table 5.6: Identifier-specific Data in respond to AT Command 

Bytes Description 

5 
 
6 - 7 
8 
9 - n 

Identifies the UART data frame being reported, 0 to indicate in AT 
Command mode and no response will be given. 
ASCII characters of the command responded to 
Status byte, 0=OK, 1=ERROR 
HEX value of the requested register 
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5.3.4 API frame of ZigBee Received Data Packet 

When an API enabled module receives a data packet (not a command packet) from 

the RF link, it will send to the host an API frame with 0x90 as the API Identifier. 

Table 5.7 illustrates the Identifier-specific Data block within the API frame for the 

data packet. The actual message starts at byte 16 to the end of the block are the 

received data. 

Table 5.7: Identifier-specific Data block of ZigBee Received Data Packet 

Bytes Description 

5 - 12 
13 - 14 
15 
 
16 - n 

64-bit Address of the sender, MSB first, LSB last 
16-bit Address of the sender, MSB first, LSB last 
Options – 0=Packet Acknowledged, 1=Broadcast Address, bits 2-7 
[reserved by manufacturer] 
Data received, up to 72 bytes per packet 

 

5.3.5 ZigBee Tester program on monitoring computer 

The following figure illustrates the user interface of the tester program on the 

monitoring computer. 

 

       

Figure 5.6: ZigBee tester and analysis program 
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Transmitted Packets in HEX 
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Command to send 
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The tester program is based on the Asyn32 Serial Port demo program by TMS 

Software [27]. It comes with a VaComm component which provides procedures for 

controlling and handling serial port events. Standard Borland Delphi components 

were used. Several functions were written to build the user interface (Figure 5.6) 

and to implement required communication tests. They are described below. 

Functions for constructing AT Commands: 

Line Pascal code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

function findChkSum(cmd: String): char; 

var 

  I: Integer; 

  Sum : Integer; 

begin 

  I := 1; Sum := 0; 

  while I <= Length(cmd) do 

  begin 

    Sum := Sum + Integer(cmd[I]); 

    I := I+1; 

  end; 

  I := 255 - Sum; 

  Result := char(I); 

end; 

Figure 5.7: Pascal function for finding Checksum 

 
Line Pascal code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

function getCommand(cmd: String): String; 

var 

  cmdMid: String; 

begin 

  cmdMid :=''; 

  if (Length(cmd)>$FF) then //for long commands 

    cmdMid := char(Length(cmd)-$FF) + char(Length(cmd)) 

  else  //for short commands, e.g. ND & NI 

    cmdMid := char(00) + char(Length(cmd)); 

  Result := APIdelimiter + cmdMid + cmd + findChkSum(cmd); 

end; 

 
NOTE APIdelimiter: char = char($7E);  //const defined elsewhere 

 Call findChkSum (Table 5.8) to get checksum of the command. 

Figure 5.8: Pascal function for constructing the AT Command 
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Button for sending AT Command to coordinator: 

When the “SendCmd to Coordinator” button was clicked, the procedure in Figure 

5.10 will be triggered to call the above functions to construct the AT Command 

using the string in “Message” text box.  

                                            

Figure 5.9: Button for sending AT command 

Line Pascal code 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

procedure TfrmMain.btnSendCmdClick(Sender: TObject); 

var 

  S, Hs: String; 

  I: Integer; 

begin 

  S := getCommand(char($08) + 'R' + edtCmd.Text); 

  Vacomm1.writeText(S); 

  I := 1; 

  Hs:=''; 

  while I <= Length(S) do 

    begin 

       Hs := Hs+ IntToHex(Integer(S[I]),2); 

       I := I + 1; 

    end; 

  Memo2.Lines.Text := 

 Memo2.Lines.Text+ char($0D)  +'TX: ' + Hs +'... '; 

  if (UpperCase(edtCmd.Text) = 'ND') then 

  begin 

    Memo4.Lines.Clear; 

    ComboBox1.Items.Clear; 

    ComboBox1.Items.Add('Broadcast'); 

  end; 

end; 
 

Figure 5.10: Pascal function for sending command to coordinator 

Line 6 calls the getCommand function (Figure 5.8) to create the command string 

from the message box, edtCmd.Text. Line 7 calls the serial port component to send 

the command. Lines 8 to 16 update the display with the command information. 

Lines 17 to 21 check if a network discovery ‘ND’ command is sent, if so, the list of 

device addresses Memo4 will be cleared to wait for new list of devices. ComoBox1 

‘SendCmd to Coordinator’ 

button 

Command ‘Message’ 

text box 
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for selection of devices is also cleared and set to ‘Broadcast’ as the default. This is 

to prepare the interface for sending messages to a device. 

ZigBee message received: 

When a message is received by the ZigBee module and passed to the serial port, 

the OnData event from the VaComm1 component will trigger the VaComm1Data 

procedure. A full listing of the program source code is provided in the Appendix. 

The following pseudo code illustrates the operation of the procedure, where 

RxMsg stores all characters of the received message. 

 

Pseudo code for handing data received: 

1. Read character to C, until no more 

If  C=’s’, it is start of the 300 bytes, CountOneMsg=0, StartOneMessage=true 

If StartOneMessage 

If C is a number between ‘0’ to ‘9’, inc(CountOneMsg) 

If C=’E’, end of message 

StartOneMsg=false 

If CountOneMsg <>300 

Calculate and display number of errors 

If C is a linefeed 

Update accumulated error bytes 

Reset error bytes count 

If C equals 7E this indicates start of a new message 

If length(RxMsg)>0 indicates a second message arrived 

    Call gotMessage(true) to handle second message 

Buffer C into RxMsg, and hex value of C into Hs 

2. Display received hex characters, Hs on Memo3 

3. If length(RxMsg)>0 and first character of RxMsg is 7E 

It indicates a single completed message 

Call gotMessage(false) to handle the message 

 

 



CHAPTER 5 WIRELESS NETWORK IMPLEMENTATION 50 

 

Pseudo code for gotMessage(twoMessage): 

1. Call getCompleteMsg to check any error in RxMsg 

2. If no error – indicates a completed message in RxMsg 

 Update Memo1 & Memo2 to display information 

 If the RxMsg is a response to a Node Discovery command 

  Update Memo4 with received device address 

  Update ComboBox1 to display received device name 

 Clear RxMsg 

3. Else (errors) 

 Update Memo1 to display errors 

 Update error bytes on display 

 If twoMessage=true, indicates first message is incomplete 

  Discard the first message by clearing RxMsg 

 

Two functions, getCompleteMsg and chkATreponse, were written to support the 

data handling procedure. Figure 5.11 listed the getCompleteMsg function.  

Line Pascal code 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

function getCompleteMsg(var Msg: String ): Integer; 

var 

  L: Integer; 

begin 

  L := Integer(Msg[2])*256 + Integer(Msg[3]); 

  if (Length(Msg) = (L+4)) then 

         //completely received one message 

  begin 

    if (Msg[4] = char($90)) then   //it is a ZigBee Message 

       Msg := Copy(Msg,16,Length(Msg)-16) 

                     //Extract the content 

else if (Msg[4] = char($88)) then 

                 //it is an AT command response 

       Msg := chkATresponse(Msg)  // handle AT response 

    else 

       Msg :='Not a proper message!'; 

    Result := 0; 

  end 

  else  //keep RxMsg, but err bytes returned 

  begin 

     Result := Length(Msg)- (L+4)  

  end; 

end; 

Figure 5.11: Pascal function to check a complete message 
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The getCompleteMsg function checks if the length of the data packet is correct; if 

not, it will discard the message.  Then if the response is a ZigBee data packet 

indicated by $90 in byte 4 (section 5.3.4), extract the data. If the response is for AT 

Command indicated by $88 (section 5.3.3), call chkATresponse to handle the 

message. 

 

 The chkATresponse function, listed in Figure 5.12, takes bytes 6 and 7 and checks 

the corresponding ASCII code. If it is ‘NI’, the response is the identifier of the 

coordinator; line 6 and 7 will extract the identifier. If it is ‘ND’, the response 

contains the device address and name. Lines 12 to 20 extract and store the address 

in the variable Raddress and return the node name. 

Line Pascal code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

function chkATresponse(Msg: String): String; 

var 

  I: Integer; 

  S: String; 

begin 

  if (Copy(Msg,6,2) = 'NI') then 

    Result := Copy(Msg,9,Length(Msg)-9) 

  else if (Copy(Msg,6,2) = 'ND') then 

          // each node will response with one message 

    begin  // extract node name 

       I:= 7; 

       if (Length(Msg) > 19) then 

       begin 

          repeat 

             I := I+1; 

             S := S+IntToHex(Integer(Msg[I]),2); 

          until (I=18); 

          Raddress:= S; 

          Rname := Copy(Msg,19,Length(Msg)-9); 

          Result := 'Node:' + Rname  +':'; 

       end 

       else 

          Result := ''; 

    end 

  else 

    Result := 'Not identified'; 

end; 

Figure 5.12: Pascal function to handle AT Command response 
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Button to send message to devices: 

The tester program allows sending messages to ZigBee devices on the network.  In 

Figure 5.13, the ‘Select Device’ (ComboBox1) is showing ‘Broadcast’ and ‘ND’ is 

typed into the Message text box. If the ‘SendMSG to Device’ button is clicked, a 

Broadcast command of ‘ND’ for node discovery will be send to all devices 

connected on the network. 

 

                              

Figure 5.13: Send message to devices 

 

If a user wants to send a message to one of the devices, the user has to choose a 

device by clicking on the ‘Select Device’ (ComboBox1) its OnClick event will trigger 

the ComboBox1Click procedure to put the select device address ComboBox1 onto 

the text box, edtAddress below the ‘SendMSG to Device button’. 

 

When the ‘SendMSG to Device button’ is clicked, the procedure btnSendMSGClick 

(Figure 5.14) will be triggered to send the message. Lines 10 to 21 call the 

getCommand function to construct the command for broadcast, if no device is 

selected. If a device is selected, using its name in the edtAddress box the 

getAddress function will provide the hard coded address of the device. Line 35 

then calls the VaComm1 component to send the command. The rest of the 

procedure updates the display of information. 

 

Message 

text box 

‘Select Device’ 

ComboBox1 

‘SendMSG to 

Device’ button 

edtAddress box, address 

of destination device 
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Line Pascal code 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

procedure TfrmMain.btnSendMSGClick(Sender: TObject); 

var 

  S, Hs, Addr: String; 

  I: Integer; 

begin 

 

  Addr := Memo4.Lines[0]; 

  if (edtAddress.Text='Broadcast') then 

  begin 

    S := getCommand( 

       char($10)                //ZigBee Transmit Request 

       + char($00)              //no ack 

       + char($00)+ char($00)   //64 bit destination address 

       + char($00)+ char($00)   //   0x0000 0000 0000 FFFF 

       + char($00)+ char($00)   //   for broadcast 

       + char($FF)+ char($FF) 

       + char($FF)+ char($FE)   //16 bit Network address 

                                //  0xFFFE broadcast/unknown 

       + char($00)+ char($00)   // Max Hop + No options 

       + edtCmd.Text            // the message 

       ); 

  end 

  else 

  begin 

     S := getCommand( 

       char($10)                //ZigBee Transmit Request 

       + char($00)              // no ack 

       + getAddress(edtAddress.Text) //  edtAddress.Text 

       + char($FF)+ char($FE)   // 16 bit Network address 

                                //  0xFFFE Broadcast/Unknown 

       + char($00)+ char($00)   // Max Hop + No options 

       + edtCmd.Text            // the message 

       ); 

   end; 

  VaComm1.writeText(S); 

  I := 1; 

  Hs:=''; 

  while I <= Length(S) do 

    begin 

       Hs := Hs+ IntToHex(Integer(S[I]),2); 

       I := I + 1; 

    end; 

  Memo3.Lines.Text := Memo3.Lines.Text  

                 + char($0D)+'TX: ' + Hs +'... '; 

end; 

Figure 5.14: Pascal procedure to send message to devices 
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Port control and other buttons 

The ‘Open Port’ and ‘Close Port’ buttons call the corresponding procedures of the 

VaComm1 component to control the port. A procedure was written to clear all 

display text and reset variables. The ‘Clear Dev List’ button calls a procedure to 

clear ComboBox1, reset its index and reset the address box to ‘Broadcast’. The 

buttons ‘Transmit’ and ‘1000x’ came with the demo program and were not used 

for the tests. 

 

A full listing of this tester program is provided in the Appendix section. 

5.3.6 Program in data transmitter and monitoring computer 

The ZigBee tester program described in section 5.3.5 was used on the laptop to 

record data received by the coordinator. The program displays raw data packets in 

hex format for visual inspection. It also analyses data packets and displays 

statistics of error bytes. 

 

The data transmitter is programmed to continuously send blocks of 500-byte data 

with 100 ms breaks between blocks. Within each of the 500-byte data block, an 

interleave pause of 20 ms is placed between 72 bytes of data. Due to the 

packetization mechanism in the XBee-PRO firmware, this pause will trigger the 

XBee-Pro module to send a packet and allow enough time for the ZigBee stack to 

process the packet, transfer it to the wireless link and allow the coordinator to 

send the data packet as an API frame to the monitoring program. Also, the pause 

includes the time for the monitoring program to process the packet and display 

information.  

 

The main loop of the source code of the data transmitter program is shown in 

Figure 5.15. The program will first check whether the external switch is pressed, if 

so, it sets up the program to run 1000 loops (longRun=1000). Otherwise, it will run 

once only. Within the longRun loops, it will firstly transmit the name of the 

transmitter (‘RT3-‘) by lines 12 to 16. The 20 ms pause will trigger the module to 

send the name in a packet as the starting strings before the 500 bytes data. 
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The for-loop (line 18) controlled by FOR1, repeats the blocks five times. The 500 

bytes is broken down to 50 times of 10 numbers (0 to 9) in ASCII code. The loop 

controlled by FOR10 will send each numbers (line 25) 10 times. Then the loop 

controlled by FOR0, repeats the number loop 50 times.  

Line Data Transmitter main while-loop C code  
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

while ( 1 ) 

{  SetCentiS(50); //wait 500ms for external switch 

   pSwitch = GetTouch(_TOUCH_Sw_);  //read switch status 

   if (pSwitch > 0 ) 

      longRun = 1000; 

   else 

      longRun = 1; 

  while ( longRun != 0 ) // longRun set by external switch 

  {                     // to 1 or 1000 

   for (int FOR3_= 0; _FOR3_< longRun; FOR3++ ) 

   {             //repeat many times 

     uartsend(7,13);  //call the uartsend subroutine 

     uartsend(7,'R'); //    to send the characters 

     uartsend(7,'T');  

     uartsend(7,'3');  

     uartsend(7,'-');  

     SetCentiS(2);  //pause 20ms to send start chars 

     for (int FOR1 = 0; FOR1 < j; FOR1++ ) 

     {             //repeat 5 times 

        uartsend(7,'s'); k = k+1;        

        for (int FOR0 = 0; FOR0_< bCount/10; FOR0++ ) 

        {          //round count 50 times 

           for (int FOR10 = 0; FOR10_<= 9; _FOR10++ ) 

           {       // 10 bytes each round 

     uartsend(7,i+48); 

               k = k + 1; 

               if (k > 71) { SetCentiS(2); k =0;} 

                   //pause 20ms to send packet of 72 bytes 

            } 

      i=i+1; 

      if (i>9) i=0; 

         }   

   uartsend(7,'E'); 

        uartsend(7,_FOR1_+97); //display a, b, c, d, e 

        uartsend(7,'!'); 

        SetCentiS(2);  //pause 20ms to send end chars 

        SetLCD3Char(1, _FOR1); // display counts on LCD 

      } 

     SetCentiS(pauseT);  //pause 100 ms after 500bytes block 

    } 

   longRun = 0;   //long run completed, stop it 

   SetLCD3Char(9, 0); 

   SetLCD3Char(13, 0); //display 0 0 on LCD for loop end 

  } 

} 

Figure 5.15: Main loop of data transmitter program 

Lines 26 and 27 will pause the program for 20 ms after 72 bytes are sent. This 

pause triggers the ZigBee module to send a packet. Lines 30 and 31 control the 
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increment of the number from 0 to 9. Lines 33 to 37 send the ending string and 

display counts on the transmitter’s LCD screen. Line 39 pauses to allow enough 

time for the tester program on the computer to process all the 500 bytes and 

display information on screen. 

 

Several subroutines (SetCentiS to pause, GetTouch to read switch, uartsend to send 

a byte, and SetLCD3char to display a character on the LCD) used in the main loop 

are provided by the RoboExp development software. 

 

5.4 Summarising Network Implementation 

The data transmitter program was debugged, complied and programmed into a 

microcontroller taken from a RoboExp robot, and then attached with the XBee-PRO 

module that has its firmware programmed as Router3. The tester program was 

debugged, complied and test run on the monitoring computer with the coordinator 

attached to the USB port. 

 

Two XBee-PRO modules were programmed with the Router1 and Router 2 

firmware. All the devices and the computer were set up and test run in open space, 

to make sure the programs are executed properly with all the date bytes received, 

before deploying them into the rubble. 
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Chapter  6  Experiments in Artificial Rubble 

This chapter describes the experiments to verify the functioning of the wireless 

network implemented by the firmware and software described in Chapter 5.  The 

wireless network was formed using XBee-PRO modules and each module was 

attached to an ATMega16L microcontroller from the RoboExp robot in order to 

model a daughter robot. 

 

Proof of concept experiments were carried out by deploying the networked robots 

in artificial rubble. The rubble was simulated by connecting holes and trenches 

that were dug in 50 cm deep soil. The simulated robots were placed in the bottom 

of the holes. The holes and trenches were then covered up by various building 

materials and soil to simulate a real rubble environment. Experiments were 

carried out to verify that a monitoring computer placed 10 metres outside the 

rubble can establish proper communication with all robots inside the artificial 

rubble environment. 

6.1 Prototype models for experiments 

A data transmitter was made by attaching an XBee-PRO module to the serial port 

of an ATMega16L microcontroller (Figure 6.1). The micro-controller was 

programmed to continuously send out blocks of 500-byte data with 100 ms breaks 

between blocks.  

 

Figure 6.1: Data Transmitter 
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Figure 6.2: XBee-PRO router with 4 AA-batteries 

Two data routers (Figure 6.2) were made by XBee-PRO modules with a 3 V 

regulator adaptor board, powered by four AA-size batteries to allow prolonged 

tests. 

 

An XBee-PRO module on a USB adaptor board was configured as a coordinator 

(Figure 6.3) and attached to the monitoring laptop computer. 

 

Figure 6.3: XBee-PRO coordinator on USB adaptor 

 

6.2 Soil environment at rubble site 

The test setup was arranged in the backyard of a residence in the eastern suburb of 

Auckland, New Zealand. The geology of the residential area is “Alternating 

SANDSTONE and MUDSTONE of the Waitemata Group” [28]. It has a bottom layer 

of about 10 m deep of clay with a layer of silt on top. The backyard was further 

filled up with a layer of organic soil to make an even surface, on which tough lawn 

was grown. 
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Soil can act as a lossy wave guide when its moisture level is above 25% [29]. That 

is the reason for choosing ground soil as the base foundation to build the artificial 

environment for the experiments. The bottom layer of clay forms a good layer for 

retaining water in the top soil layer. 

 

The soil around the artificial rubble will be kept moisturised by plenty of water. 

Measurements will be taken during the experiments to verify that the RF signal 

will propagate through under soil trench, space, cracks and openings; instead of 

directly going above ground. 

 

6.3 Measurement of materials for simulated rubble 

In order to establish an accurate understanding of the effects on the 2.4 GHz RF 

signals introduced by various materials in the soil environment, a series of 

experiments were carried out.   

6.3.1 Measurement equipment 

Spectrum Analyzer, Wi-Spy 2.4x device 

The Wi-Spy 2.4x device from MetaGeek LLC is a low cost (NZ$470 as of August 

2008) and portable spectrum analyzer which attaches to a USB port of a computer 

[30]. With its Chanalyzer software, RF signal spectrums in the designed range can 

be captured in real-time and recorded for off-line analysis.  

Table 6.1: Wi-Spy 2.4x Technical Specifications 

Bandwidth: 

Frequency Resolution: 

Antenna: 

Amplitude Range: 

Amplitude Resolution: 

Sweep Time: 

2400 to 2495 MHz 

328 KHz 

External RP-SMA 

-110 dBm to -6.5 dBm 

0.5 dBm 

165 millisecond 

 

The above table shows the technical specifications of the Wi-Spy 2.4x device which 

covers the XBee-PRO’s sensitivity of -100 dBm with reasonable frequency and 

amplitude resolution.  
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The device has a long sweep time of 165 ms which may impose a sampling 

problem. The data transmitter is sending packets of data interleaved with 20 ms 

pauses. Each data packet will appear in the RF link as a burst of less than a 

millisecond followed by 20 ms of no signal.  The measuring device must take the 

sample from the RF link at the burst instant. For every 4 sweeps (taking a total of 

660 ms) of the measuring device, there will be a round number of 33 packets 

transmitted (if the burst time is neglected). That would allow a sample to be picked 

up by the measuring device. From this calculation, 90 samples will be recorded in 

59.4 seconds. 

 

In order to display a spectrum with reasonable number of samples on the recorded 

graph, it is expected to take records for minutes for each measurement. The 

transmitter will be continuously sending data packets while the analyzer software 

is picking up samples.  

Special Tripod for multipath signals 

A tripod with a wooden support was built to hold the Wi-Spy 2.4x device and 

antenna to facilitate measurement of received signal strength (Figure 6.4).  

     

Figure 6.4: Wi-Spy 2.4x device and spectrum analyser on laptop 
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To get reliable results and to even out the effect of multipath signals, the 

measuring device was fixed onto the wooden support which allows three position 

settings. Each position is separated by 3 cm (about one quarter wavelength). The 

wooden support was then fixed onto a tripod, which can be positioned securely to 

any location for measurement. 

RF signal spectrum recording on laptop 

The Wi-Spy 2.4x device was connected to a laptop computer (Figure 6.4) with 

spectrum analyser software that will be used for measuring the received RF signal 

power at various locations in the artificial rubble. It was positioned at the centre 

and 20 cm on top of the measuring spot. For each set up, three readings were taken 

by shifting the measuring device to the three position settings on the wooden 

support. The average of the three readings was recorded as the final measured 

result for that setting.            

6.3.2 Measurement setup 

 A 50 cm diameter by 50 cm deep hole was dug in the soil, at a location such that 

there was no underground piping or cable, or any other structure within 2 metres, 

except soil with lawn on top. Figure 6.5 illustrates the measurement setup. 

 

   

                                 

 

 

Figure 6.5: Measurement of material attenuations 
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The data transmitter (Figure 6.1) was placed in the bottom of the hole and then the 

hole was filled up with various building materials; any cracks and openings were 

filled by the soil that was dug out from the hole. Attenuation was found by 

comparing measured results before and after the hole was filled by various 

building materials. 

6.3.3 RF signal background measurement 

The first measurement to be taken is the RF signals at the background of the 

selected site. After the hole was dug, the measurement device was placed at the 

centre above the hole while it is empty. The following background spectrum 

(Figure 6.6) was recorded. 

 

 

 

 

 

Figure 6.6: RF signal background spectrum 

The above spectrum is a record of 2 minutes and 3 seconds. It shows a Wi-Fi 

hotspot at the commonly used channel 7 of 2442 MHz. The Wi-Fi signal is received 

at accumulated peaks (blue area) of about -67 dBm, showing that it is at a nearby 

distance. The accumulated average noise floor is about -110 dBm (green area). 

There are several narrow peaks on accumulated average at 2412 MHz, 2424 MHz, 

2460 MHz and 2472 MHz with levels from -105 dBm to -100 dBm. At the ZigBee 

channel C of 2410 MHz the background noise has peaks at about -79 dBm. 
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From this spectrum result, as long as the XBee-PRO modules are working at the 

ZigBee channel C and having received signals above -79 dBm there should be no 

interruption of communication. If the received signals drop to between -80 dBm 

and -100 dBm, there will be intermittent loss due to signal interference or RF 

packet collision. Experiments and tests will verify this. 

6.3.4 Measurement of soil attenuation 

Soil is the main material for building the artificial rubble. The soil dug out from the 

hole is preserved for all the experiments and tests. Thus the first material to 

measure is the soil at the site. The data transmitter is protected by a thin plastic 

box and placed between two bricks in the bottom of the hole, Figure 6.7, and then 

covered by a thin piece of wood. 

       

Figure 6.7: Data Transmitter for tests 

 

   

    

Figure 6.8: Spectrums for soil: before (left), after 30 cm soil (right) 
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With the transmitter turned on and before the hole was filled with soil the 

spectrum was recorded for 1 minutes and 59 seconds. The result on left side of 

Figure 6.8 shows a ZigBee spectrum of typical signature centred at 2410 MHz 

(channel C) with a peak of -20 dBm. Then soil was used to fill up the hole. The right 

side of Figure 6.7 shows the spectrum recorded for 1 minute 23 seconds after soil 

was filled to depth of 30 cm. Results were taken at three different depths of soil,  

10 cm, 20 cm and 30 cm. At each depth, three readings were taken by moving the 

wooden support on the tripod (Figure 6.4 and 6.5). The average of these readings 

was recorded as the final result. The following table summarises the measurement 

of soil attenuations. 

Table 6.2: Soil attenuations 

Soil Depth Average 

Measured Peak 

Calculated 

Attenuations 

0 cm -20.0 dBm 0 dB 
10 cm -44.5 dBm 24.5 dB 
20 cm -72.0 dBm 52.0 dB 
30 cm -79.0 dBm 59.0 dB 

 

From the results in Table 6.2, there is not much increase of attenuation when soil 

depth increased from 20 cm to 30 cm. This can be explained as when the soil depth 

is 30 cm it is at the same top surface level as the surrounding area. The RF signal 

can scatter though the surface layer of the surrounding area around the hole, and 

those areas are growing with lawn and will have roots and parts of the lawn that 

allow easier path (lower attenuation) for the RF signal. The following figure 

illustrates this scenario. 

 

 

 

 

Figure 6.9: RF signal scattering through surrounding 
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6.3.5 Attenuation of various building materials 

The same measurement experiment was carried out using a variety of standard 

building materials. The following photos illustrate the filling of some of the 

selected materials into the hole on top of the data transmitter during measurement 

of their attenuations. 

     

Figure 6.10: Concrete slabs 

 

   

Figure 6.11: Concrete slabs with wire-mesh 

To simulate reinforced concrete, concrete slabs that were interleaved with wire 

mesh were deployed. On alternate layers, wire mesh is placed alternatively at 90 

degree and 45 degree orientations to maximise its attenuation effect on the RF 

signal. Gaps and openings on the perimeter of the concrete slabs are filled with 

moisturized soil. 
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When measuring the attenuation of bricks, each layer of bricks is placed into the 

hole in alternate 90 degree and 0 degree directions, and with its internal holes in 

horizontal orientation with the bottom of the hole, to maximise its attenuation 

effect on the RF signals.  

 

 

  

Figure 6.12: Placing bricks for attenuation measurement 

 

 

 
 

   

Figure 6.13: Placing paving stones for attenuation measurement 

Bricks with 

internal holes 

placed 

horizontally to 

bottom of hole 
Layers are in 

alternate 

directions 

Gaps and openings 

filled with 

moisturised soil 

Paving stones 

are stacked 

one on top of 

the others 

Gaps and openings 

filled with 

moisturised soil 



CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 67 

 

 

Table 6.3: Attenuations of various building materials 

Soil 

Thickness 

(cm) 

Attenuation 

(dB) 

 

Bricks 

Thickness 

(cm) 

Attenuation 

(dB) 

 

10.0 24.5 

 

1 Layer 7.5 9.0 

 

20.0 52.0 

 

2 Layer 15.0 18.5 

 

25.0 54.5 

 

3 Layer 22.5 22.5 

 

30.0 59.0 

 

4 Layer 30.0 23.5 

       

Concrete 

Thickness 

(cm) 

Attenuation 

(dB) 

 

Paving 

Stones 

Thickness 

(cm) 

Attenuation 

(dB) 

1 Layer 3.5 8.5 

 

1 Layer 4.0 3.3 

2 Layer 7.0 15.0 

 

2 Layer 8.0 8.0 

3 Layer 10.5 17.5 

 

3 Layer 12.0 15.8 

4 Layer 14.0 22.0 

 

4 Layer 16.0 20.0 

5 Layer 17.5 23.0 

 

5 Layer 20.0 22.0 

6 Layer 21.0 23.5 

 

6 Layer 24.0 24.5 

7 Layer 24.5 28.5 

 

7 Layer 28.0 25.0 

8 Layer 28.0 36.0 

 

8 Layer 32.0 26.0 

9 Layer 31.5 39.5 

    

       Concrete 

+ Wire 

Thickness 

(cm) 

Attenuation 

(dB) 

    1 Layer 4.5 9.5 

    2 Layer 9.0 19.5 

    3 Layer 13.5 29.5 

    4 Layer 18.0 36.5 

    5 Layer 22.5 54.5 

    6 Layer 27.0 56.5 

     

The attenuations measured for the various materials are listed in Table 6.3. For 

easy comparison, the results are graphed in Figure 6.14. 
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Figure 6.14: Graphical results of attenuation measurement 

These results show both moisturised soil and concrete slabs with wire-mesh 

produce the highest attenuations of about 55 dB at a depth of 25 cm compared to 

the other materials. This aligns with the XBee-PRO manufacturer’s test report that 

reinforced concrete has the highest attenuation compared to other building 

materials [17]. The results for soil match with the discussion by C.L. Holloway et al, 

who reported that moisturised soils becomes a very good waveguide material, that 

is it will produce high attenuation [29]. 

 

As moisturised soil is much easier to manage and reshape than concrete, it will be 

used as the main material for providing attenuation when building the artificial 

rubble. 
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6.4 Design of experiment setup in rubble 

Recall that the main function of the wireless network is to provide a 

communication link for the daughter robots to send information to the mother 

robots situated on top of the rubble. As illustrated by the link tests and analysis in 

chapter 4, a direct link will not generally be possible between the mother robot 

and a daugther robot that is deep inside the rubble. The following experiment 

serves to verify that when a direct link is not possible, information can be sent 

from one robot to another until it arrives at the mother robot. 

 

Four XBee-PRO modules and a laptop computer were used. Figure 6.15 shows the 

sectional view of the rubble experiment setup. Various materials and soil were 

used to fill up the holes and trench to simulate the rubble environment. At start of 

the experiment, a data transmitter was placed in the bottom of Hole No. 1, to 

simulate a daughter robot situation at the inner most area of the rubble. At later 

tests, two data routers were used for data routing. Router 1 was placed in the 

bottom of Hole No. 2. Router 2 was placed beside Hole No. 2 above ground, to 

simulate two other daughter robots at different locations of the rubble. The XBee-

PRO coordinator is attached to the laptop, to simulate a mother robot outside at a 

distance from the rubble.  

 

 

 

 

 

Figure 6.15: Sectional view of rubble experiment setup 
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The following figure illustrates the plan view of the rubble experiment setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16: Plan view of rubble experiment setup 

Referring back to the attenuation results from Table 6.3 and Figure 6.14, 30 cm soil 

will produce an attenuation of about 59 dB.  Repeating the analysis in section 4.3.1, 

using XBee-PRO with output power of +18 dBm; the coordinator in the house is at a 

10 metre distance which gives a free space path loss of about 60 dB at 2.4 GHz. The 

coordinator will receive the signal at -101 dBm which is just below the sensitivity of     

-100 dBm; that means the coordinator may just be able to receive some useful packets 

by a direct link. 

 

Further signal reduction will be introduced by the tunnel and the materials in Hole 

No. 2. The XBee-PRO on the data transmitter will be programmed to a lower 

transmitting level of +10 dBm; this will further lower the received signal power 

such that a direct link will not be possible. This will achieve the aims of the 

experiment and forces the network to execute message routing mechanism. 
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6.5 Construction of artificial Rubble 

Following the design in the previous section, the artificial rubble was built by 

digging a trench which linked two holes in the soil (Figure 6.17 and 6.18). 

 

Figure 6.17: Construction of artificial rubble 

                                                       

Figure 6.18: Building a tunnel in the rubble 
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6.6 Data Routing Experiments 

When construction of the artificial rubble has come to the stage illustrated as 

Figure 6.17, an open trench connecting two holes was constructed, and tests on 

message passing between the simulated robots were initiated. These are described 

in the following sections. 

6.6.1 Experiment Description and Results 

Table 6.4 listed the sequence of experiment steps carried out to verify functioning 

of the wireless network. 

Table 6.4: Routing experiment steps 

 Experiment Description 

1  Data Transmitter (firmware as Router3 on Table 5.3, section 5.2.3) 
placed in bottom of Hole 1 

 Hole 1 filled up with moisturised soil 

 Trench and hole 2 not filled 

 Data received by coordinator without error 

2  A tunnel of 19 cm height by 13 cm width was built in the trench by 
paving stones 

 The trench was covered with moisturised soil (Figure 6.18 right side) 

 Received signal strength measured at bottom of hole 2 was -50 dBm; 
received spectrum shown on Figure 6.20 

 Both routers were switched off, laptop cannot receive any data 

3  Signal strength received above ground at nine spots as illustrated in 
Figure 6.19 were measured with values between -72.3 dBm to              
-83.3 dBm; graphed results shown on Figure 6.21 

4  Router 1 placed in bottom of hole 2 and switched on 

 Data received by laptop without error 

5  8 pieces of concrete slab placed on top of router 1 

 Intermittently, bytes missing in data received by coordinator 

6  Router 2 placed beside hole 2 above ground and switch on 

 All data received by coordinator without error 



CHAPTER 6 EXPERIMENTS IN ARTIFICIAL RUBBLE 73 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: 9 locations for measuring signal strength above ground 

 

 

 

Figure 6.20: Signal Spectrum for experiment step 2 

Figure 6.20 shows the received signal spectrum in bottom of Hole No. 2 with the 

transmitter placed at the bottom of Hole No.1. The peak signal power is at -50 dBm 

at the ZigBee channel used by the transmitter.  As the transmitter is programmed 

as Router3 on Table 5.3, its transmitting power was set to +10 dBm; this means the 

tunnel introduced an attenuation of 60 dB. 
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Figure 6.21: Received signal strength for experiment step 3 

To ensure the RF signal does not escape above the tunnel, the signal strength is 

measured at nine spot in step 3 of the experiment. Results are illustrated in Figure 

6.21. These results show the attenuation introduced by the rubble was 82.3 dB to 

93.3 dB which is higher than the 80 dB measured by NIST for the collapsed 

buildings. With a 10 metre path loss about 60 dB in free space, the coordinator will 

receive the signal at -132.3 dBm to -143.3 dBm which is well below the receiver 

sensitivity of -100 dBm. This explains why a direct link cannot be established 

between the transmitter and the coordinator as shown by experiment step 2 in 

Table 6.4.  

6.6.2 Routing Reconnection Tests 

Further tests were carried out by switching Router 2 off for 5 minutes and then 

back to on again. The monitoring program shows no data at the instant of 

switching off. Then after about 1 minute, bytes of data reappeared but missing 

bytes were reported. This is back to step 5 in Table 6.4. About 1 minute after 

Router 2 was switched back on; all 500 bytes of data were displayed. This is back 

to step 6 in the table. 

 

The tests demonstrate that the routers can re-establish the network automatically. 

Several runs of this reconnection test were carried out. Results showed that the 
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reconnection time varied between 40 seconds to 90 seconds. This variation 

depends on the power on and reconnection mechanism built-in on the XBee-PRO 

firmware provided by the manufacturer. 

 

6.7 Summary 

The experiment demonstrated that data routing is successfully implemented. By 

switching on and off the routers, it was verified that the routers can automatically 

reconnect with the network and re-establish the communication link from the 

simulated robot deep inside the rubble through the other simulated robots to the 

simulated mother robot at a safe distance from the rubble. 

 

The attenuation results of the various building materials provided the foundation 

for selecting appropriate materials to build the artificial rubble.  It also forms a set 

of useful references for future projects. Measurements showed that the artificial 

rubble produces an environment with attenuations that are comparable to those of 

the collapsed buildings reported by NIST [23].  

 

The equipment developed provides a consistent method for ZigBee communication 

tests and RF signal measurements. It sets a low cost and effective example as 

compared to using a RF anechoic chamber with expensive devices. The artificial 

rubble is a side-product of the project that shows that a manageable, small scale, 

but still very useful disaster site can be built for USAR robots testing, as compared 

to that constructed by the NCAR team in a size of hundred square metres, using 

tons of steel reinforced sewer pipes [24]. 
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Chapter  7  Conclusions 

This chapter describes the conclusions of this thesis, lists the thesis contributions 

and provides suggestions for future research and improvement. 

 

7.1 Conclusions 

The aim of this thesis is to implement a wireless network for the team of robots 

during USAR missions, such that all the daughter robots deep inside the rubble can 

report their findings by sending messages through the wireless network to the 

mother robots outside the rubble. This aim is successfully achieved by the 

following parts of the project. 

 

Selection of wireless modules 

Studies on wireless networking technologies and a literature review on RF signals 

in collapsed buildings were carried out. Several possible candidates of ZigBee 

wireless modules from different brands were sourced. Comparisons on their 

specifications, costs, sizes and development support tools were done. Two models 

were selected for further experimentation. 

 

Development of prototypes 

A list of prototypes was sourced and developed by attaching wireless modules to 

microcontrollers. Sensors were added to the prototypes. They form the 

development platform for building the team of daughter robots. Cost analysis was 

done on the prototypes and concluded that they are low cost and fit within the 

overall project budget guidelines. 

 

RF Signal Tests 

Simulated robots were built using the two selected wireless modules. Wireless link 

tests were carried out in an office building. Artificial scenarios simulate the effect 
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of rubble and the performance of the wireless modules was investigated. Analysis 

of the test results combined with the literature review on wireless technologies in 

rubble environment resulted in the selection of the XBee-PRO as the preferred 

wireless ZigBee module. 

 

Wireless network implementation 

With the selected XBee-PRO module, firmware is chosen for implementing the 

wireless network. Networking features and configuration of the firmware are 

studied. The cluster-tree network model is set up by configuring profile files for 

the firmware. The wireless modules are programmed with profile files that were 

specifically built for the required wireless network structure, a coordinator with 

three routers. 

 

The routers are programmed to AT mode which allows operation as transparent 

modems for the simulated robots. The coordinator is programmed to API mode 

which attaches to the monitor computer to simulate a mother robot. A ZigBee 

tester program is written to run on the monitoring computer which extracts 

network communication information by sending structured API frames to the 

coordinator. One of the routers is attached to a microcontroller which is 

programmed as a data transmitter, sending data at required blocks with specific 

timings for communication tests. 

 

Communication test in artificial rubble 

One of the major tasks for this project is to test the wireless network in a real 

rubble environment. A site was selected and a simulation of a real artificial rubble 

environment was built. A set of measurement experiments were constructed. 

Various building materials were tested and their attenuations to the RF signal 

were measured. After analysing the measurement results, a rubble scenario was 

designed and constructed at the selected site. 
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Moisturized soil is chosen as the base material to form the foundation of the 

rubble. Paving stones and concrete slabs were used together with moisturised soil 

to build the scenarios for stages of the experiment. The simulated daughter robots 

and the mother robot were deployed into the artificial rubble, and a series of 

experiments were carried out. 

 

Results from the experiment were compared with results from other research and 

verified that the artificial rubble can produce attenuations that are very close to 

those from real examples of collapsed buildings. The experiments verified that the 

wireless network provides the required function, allowing a data transmitter that 

simulated a daughter robot at the inner most location of the rubble to send 

information by routing through other robots in the rubble to the simulated mother 

robot located at 10 metres distance from the rubble. Switching on and off the 

routers simulated daughter robots getting out and coming back at any time to 

rejoin the network and re-establish the wireless network. The experiment in the 

artificial rubble verified that the wireless network is fully functional and could be 

useful for the team of USAR robots. 

 

7.2 Future work to minimise data loss 

During development of the data transmitter program and the tester program on 

the monitoring computer, occasional data loss is discovered when testing the 

wireless network in open spaces where all modules are in close proximities and 

where attenuations in open space should not be a factor in data loss.  

 

7.2.1 Data lost and measures taken 

Two data lost scenarios were observed and measures were taken as follows: 

1. Pauses of 20 ms after each 72 bytes of data transmission at the transmitter. 

This allows time for the wireless modules to process and send the data to 

the network. It also allows time for the monitoring computer to receive and 

process the data for display. 



CHAPTER 7 CONCLUSIONS  80 

 

2. Displays on the monitoring computer program need to be cleared every 2 

rounds of 5 blocks of 500 bytes of data; that is 5000 bytes. This is to avoid 

the monitoring program being slowed down when there are too many bytes 

on display. This slow-down affects the taking up of data from the serial port. 

Such data is held up on the port and pushed back to the wireless link. 

Eventually data loss occurs due to buffer overflow. 

 

The following describes other issues that may need to be considered for any future 

projects using a similar set of hardware, firmware and software. 

 

7.2.2 Hardware handshaking on XBee-PRO modules 

A simplified approach was taken when designing the adaptor boards for 

connecting the XBee-PRO module to a RS232 serial port. Figure 7.1 illustrates the 

“quick connection” scheme.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: XBee-PRO RS232 port connection diagram 

This connection scheme does not implement any handshaking between the RS232 
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other without connecting to the other port. Proper communications relied on 

extraction of bit synchronisation signal from the data lines, Rx and Tx. 

 

To avoid data loss, the following full connection scheme is recommend by the 

XBee-PRO manufacturer. 

 

Figure 7.2: Full connection scheme for XBee-PRO to RS232 port 

 

7.2.3 Useful data rate 

Implementing packetization 

As mentioned in section 7.2.1 point 1, a pause after 72 bytes of data is added to 

avoid data loss. It is a requirement for the XBee-PRO firmware to implement 

routing between nodes on the network. During data transfer, according to the 

firmware manual, data is received into the DI (Data In) buffer until one of the 

following happens, data will be sent out to the RF link. 

1. No further data is received for the amount of time determined by the RO 

(Packetization Timeout) parameter. RO sets the number of characters 

(bytes) to wait for timeout. 

2. Maximum number of data (72 bytes) for one packet has been received. 
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Based on the concept of packetization, several experiments were carried out on 

various baud rates (from 19200 to 115200). The microcontroller was programmed 

to send out blocks of 500 bytes repeatedly with 100 ms pause between blocks. An 

extra pause of 20 ms is added after sending 72 bytes to the serial port. This extra 

pause exceeds the RO parameter which is usually set between 3 to 10 bytes. 

Results of the experiments showed that data loss will occur if the extra pause is 

taken out or applied after too many bytes were sent. Adding the pauses makes the 

actual data rate about 28800 bits per second. Due to the limitation on the 

microcontroller program, it cannot be set to a pause value between 10 ms and      

20 ms; otherwise, it may be able to work at a higher bit rate. 

 

Buffering and processing delays 

Further tests showed that data loss will also occur if the 100 ms pause between the 

blocks is decreased to below 30 ms at a baud rate setting of 115200. This cannot 

be explained by the packetization timeout mechanism and does not relate to the 

clearing up of the serial port buffer on the monitoring computer (section 7.2.1 

point 2). 

 

Figure 7.3: XBee-PRO internal data flow diagram 

 

Referring to the Internal Data Flow Diagram (Figure 7.3) provided in the firmware 

manual, the RF data coming into the module has to get through the RF RX buffer 

then transfer to the DO (Data Out) buffer. Data loss will occur when more data is 

passed from the RF RX buffer into the DO buffer than it can handle. The next 

possible time delay to consider is processing in the XBee-PRO module. The ZigBee 
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stack is implemented by the processor in the module. It takes time to process 

networking policies and to implement the routing mechanism. To avoid data loss, 

extra transmission pauses are required between large blocks of data. 

 

With reference to the analysis by Benoit et al [31], a maximum throughput of     

163 Kbps can be achieved using no address (one transmitter and one receiver on 

one network) and no acknowledgement. The worst case scenario is 49.8% 

bandwidth efficiency (125 Kbps) when having long address with 

acknowledgement at packet size of 122 bytes. The networking layer implemented 

by the XBee-PRO firmware (Figures 5.2 and 5.3) to provide routing in a cluster-

tree network topology that uses 64 bit addresses (32 bits for destination address, 

16 bits for network address and 16 bits for parent network address). 

 

From the firmware manual, a passive acknowledge scheme is implemented when 

using broadcast commands. A network level acknowledgement scheme is also 

implemented in the firmware when a device goes into transmit mode. An 

acknowledgment packet will be sent by the receiver and routed back to the source 

device. If a network acknowledgement is not received, the source node will re-

transmit the data. 

 

Figure 7.4: Useful bitrate graph by Benoit et al [31] 

72 Bytes 

105 Kbps 
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Using the “Useful bitrate graph” (Figure 7.4) produced by Benoit et al, the useful 

data rate is at 105 Kbps at packet size of 72 bytes with ACK and 64 bits address. To 

avoid data loss, an application has to be designed to operate the XBee-PRO 

wireless network at or below this useful data rate. 

 

7.2.4 High-level mechanism to avoid data loss 

Combining all of the above analyses, to establish a reliable data link for the 

daughter robots in the rubble, the high-level application software running on the 

monitoring computer and the microcontroller must be designed for a lower actual 

data rate with proper handshaking and acknowledgement mechanisms. 

 

The root cause of data loss is the trade-off on simplified hardware design that does 

not implement hardware handshake between the RS232 interfaces. The above 

sections explained how to avoid data loss by placing pauses between 

transmissions. This is not an efficient approach. Proper handshaking mechanisms 

can be designed into the transmission and receiving software programs. The 

following software mechanisms are suggested but due to limitation on project time 

and budget allocation they were not implemented on the system.  

 

“ACK before next transmit” 

A common technique is to wait for an ACK (acknowledgement) from the receiver of 

the previous data block before sending the next data block. For short messages, 

such as a two bytes temperature value, an ACK may not be necessary. 

“Silence” and “Wake up” 

Since the ZigBee channel has a limited bandwidth of 250 Kbps maximum, when 

there are multiple devices trying to send large amounts of data, the channel can 

easily suffer from too many data packet collisions and eventually none of the 

receivers will get a complete message. A “silence” broadcast command can be sent 

from the coordinator to tell all devices on the same network to go silent. Then a 
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request command, such as capturing a photo and sending it back, can be addressed 

to a particular robot. The robot sends back the photo, which is usually thousands of 

bytes, in blocks of hundreds of bytes using the “ACK before next transmit” 

mechanism to the coordinator. If no ACK is received for any block, a re-

transmission can be done. After the coordinator has received all the blocks and 

verified a completed photo, a “Wake up” command can be broadcasted to all 

devices again to tell them get back to normal. 

 

7.3 Contributions of this thesis 

This thesis has contributed the following regarding the use of wireless USAR 

robots. 

 

 A prototype platform for developing wireless daughter robots is developed 

and can be used for any future projects. 

 The process of configuring the wireless modules and developing the test 

software forms a useful structure for similar projects. 

 The results of material attenuations and the construction of artificial rubble 

can be a good example and provide useful guidelines of building a close to 

real test-bed for wireless robots in rubble. 

 Analysis of results and performance provides measures to get around the 

limitation of actual data rate for developing useful wireless application.  

These results have been published and presented at two conferences during the 

development of this thesis [32] [33]. 
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7.4 Summary 

The project described by this thesis has successfully implemented a wireless 

network for the team of robots in rubble environment. Multiple sensors and 

actuators can be added to the prototype robot without difficulty for any further 

functional enhancement. It was for this reason (to facilitate developments) that a 

mobile platform was constructed to accommodate the communication device. 

 

Attenuations of soil and building materials on 2.4 GHz ZigBee RF signals were 

measured. An artificial close to real rubble environment was designed and 

constructed. A group of simulated USAR robots were developed and deployed into 

the artificial rubble. It was demonstrated that the artificial rubble in the soil 

environment is suitable for testing and verifying the wireless network for USAR 

missions. 

 

The experiments indicated that ZigBee technology implemented by the XBee-PRO 

modules can form a useful mesh wireless network for USAR robots. The modules 

can automatically reconnect after network interruption. Experiments have verified 

that a simulated mother robot at 10 metres away from the rubble can 

communicate with all the robots inside the rubble. 
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Appendix A: CD Contents 

 

The attached CD (in the back cover of the printed copy) contains the following: 

1. Soft copy of this thesis in PDF format 

2. Prototype PCB Altium files 

3. RoboExp Program 

a. Source Files for Data Transmitter 

b. Source files for adding I2C Temperature Sensor 

c. RoboExp development software installer 

4. ZigBee tester program source files (Borland Delphi v5) 

5. Photos 

a. Rubble construction 

b. Attenuation measurement settings 

6. RF signal test records 

a. Samples of measured spectrums 

b. Chanalyzer software installer 

7. XBee-PRO Firmware 

a. Manual 

b. Configuration files 

c. X-CTU software installer 
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Appendix B: ZigBee Tester Program Source Code 

The following files are the full source code listings for ZigBee tester program on 

the monitoring computer. 

B1. Borland Delphi project file 

program APIbyAddress_V3; 

 

uses 

  Forms, 

  formMain in 'formMain.pas' {frmMain}, 

  APIcommands in 'APIcommands.pas'; 

 

{$R *.RES} 

 

begin 

  Application.Initialize; 

  Application.CreateForm(TfrmMain, frmMain); 

  Application.Run; 

end. 

 

B2. User interface main form file 

unit formMain; 

 

interface 

 

uses 

  Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, 

  Dialogs, StdCtrls, ComCtrls, VaConst, VaTypes, VaClasses, VaComm, 

  ExtCtrls, APIcommands; 

 

type 

  TfrmMain = class(TForm) 

    VaComm1: TVaComm; 

    StatusBar1: TStatusBar; 

    Panel1: TPanel; 

    EditTransmit: TEdit; 

    CheckBoxAddLinefeed: TCheckBox; 

    ButtonTransmit: TButton; 

    btnTransmit1000: TButton; 

    Panel2: TPanel; 

    Panel5: TPanel; 

    ButtonOpen: TButton; 

    ButtonClose: TButton; 

    CheckBoxRTS: TCheckBox; 

    CheckBoxDTR: TCheckBox; 

    CheckBoxBREAK: TCheckBox; 

    CheckBoxXON: TCheckBox; 

    Panel6: TPanel; 
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    LabelParity: TLabel; 

    ComboParity: TComboBox; 

    ComboStopbits: TComboBox; 

    LabelStopbits: TLabel; 

    LabelDataBits: TLabel; 

    ComboDatabits: TComboBox; 

    ComboBaudrate: TComboBox; 

    LabelBaudrate: TLabel; 

    Bevel1: TBevel; 

    ButtonReset: TButton; 

    Bevel2: TBevel; 

    Label1: TLabel; 

    ComboPortNum: TComboBox; 

    Memo2: TMemo; 

    btnSendCmd: TButton; 

    edtCmd: TEdit; 

    btnSendMSG: TButton; 

    Memo1: TMemo; 

    Memo3: TMemo; 

    Memo4: TMemo; 

    ComboBox1: TComboBox; 

    Label2: TLabel; 

    Label3: TLabel; 

    Label5: TLabel; 

    Label4: TLabel; 

    edtAddress: TEdit; 

    Label6: TLabel; 

    Label7: TLabel; 

    EdtTotalRxBytes: TEdit; 

    EdtAccErrBytes: TEdit; 

    BtnClearDeviceList: TButton; 

    Label8: TLabel; 

    EdtCountErrMsg: TEdit; 

    Label9: TLabel; 

    procedure FormCreate(Sender: TObject); 

    procedure ButtonOpenClick(Sender: TObject); 

    procedure ButtonCloseClick(Sender: TObject); 

    procedure ButtonResetClick(Sender: TObject); 

    procedure ButtonTransmitClick(Sender: TObject); 

    procedure Comm1TxEmpty(Sender: TObject); 

    procedure Comm1Break(Sender: TObject); 

    procedure Comm1Cts(Sender: TObject); 

    procedure Comm1Dsr(Sender: TObject); 

    procedure Comm1Error(Sender: TObject; Errors: Integer); 

    procedure Comm1Ring(Sender: TObject); 

    procedure Comm1Rlsd(Sender: TObject); 

    procedure ComboBaudrateChange(Sender: TObject); 

    procedure ComboDatabitsChange(Sender: TObject); 

    procedure ComboStopbitsChange(Sender: TObject); 

    procedure ComboParityChange(Sender: TObject); 

    procedure btnTransmit1000Click(Sender: TObject); 

    procedure CheckBoxRTSClick(Sender: TObject); 

    procedure CheckBoxDTRClick(Sender: TObject); 

    procedure CheckBoxBREAKClick(Sender: TObject); 

    procedure CheckBoxXONClick(Sender: TObject); 
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    procedure VaComm1Data(Sender: TObject; Count: Integer); 

    procedure VaComm1Event(Sender: TObject); 

    procedure VaComm1Open(Sender: TObject); 

    procedure VaComm1Close(Sender: TObject); 

    procedure ComboPortNumChange(Sender: TObject); 

    procedure btnSendCmdClick(Sender: TObject); 

    procedure btnSendMSGClick(Sender: TObject); 

    procedure ComboBox1Click(Sender: TObject); 

    procedure Label5DblClick(Sender: TObject); 

    procedure BtnClearDeviceListClick(Sender: TObject); 

  private 

    procedure HandleException(Sender: TObject; E: Exception); 

  public 

    { Public declarations } 

  end; 

 

var 

  frmMain: TfrmMain; 

  RxMsg: String =''; 

  Hs1: String =''; 

  countMsg: Integer =0; 

  NewMsg : boolean = false; 

  CompleteMsg : boolean = false; 

  CountBytes: Integer = 0;  //total byes received by serial port 

  ErrBytes: integer = 0; 

  countOneMsg: Integer = 0; //counter for counting no. of '0'..'9' 

  StartOneMsg: boolean = false; // for counting no. of '0'..'9' 

  DispCount: Integer =0; 

  Count5: Integer =0; 

 

implementation 

 

{$R *.DFM} 

 

procedure TfrmMain.FormCreate(Sender: TObject); 

begin 

  Application.OnException := HandleException; 

 

  with ComboPortNum do 

    ItemIndex := Items.IndexOf('9');        //('3'); 

  with ComboBaudrate do 

    ItemIndex := Items.IndexOf('br57600');  //('br38400'); 

  with ComboDataBits do 

    ItemIndex := Items.IndexOf('db8'); 

  with ComboParity do 

    ItemIndex := Items.IndexOf('paNone'); 

  with ComboStopbits do 

ItemIndex := Items.IndexOf('sb10'); 

 

  VaComm1.BaudRate := TVaBaudrate(ComboBaudrate.ItemIndex); 

  VaComm1.Databits := TVaDataBits(ComboDatabits.ItemIndex); 

  VaComm1.Parity := TVaParity(ComboParity.ItemIndex); 

  VaComm1.StopBits := TVaStopBits(ComboStopbits.ItemIndex); 

end; 
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procedure TfrmMain.HandleException(Sender: TObject; E: Exception); 

begin 

  if E is EVaCommError then 

    with E as EVaCommError do 

      ShowMessage(Message); 

end; 

 

procedure TfrmMain.ButtonOpenClick(Sender: TObject); 

begin 

  VaComm1.Open; 

  Comm1Cts(VaComm1); 

  Comm1Dsr(VaComm1); 

  Comm1Ring(VaComm1); 

  Comm1Rlsd(VaComm1); 

end; 

 

procedure TfrmMain.ButtonCloseClick(Sender: TObject); 

begin 

  VaComm1.Close; 

  Comm1Cts(VaComm1); 

  Comm1Dsr(VaComm1); 

  Comm1Ring(VaComm1); 

  Comm1Rlsd(VaComm1); 

end; 

 

procedure TfrmMain.ButtonResetClick(Sender: TObject); 

begin 

  Memo1.Lines.Clear; 

  Memo2.Lines.Clear; 

  Memo3.Lines.Clear; 

 

  CountBytes := 0;  // total number of byes received by serial port 

  ErrBytes := 0; 

  CountOneMsg := 0; 

  EdtTotalRxBytes.Text := '0'; 

  EdtAccErrBytes.Text := '0'; 

  EdtCountErrMsg.Text := '0'; 

end; 

 

procedure TfrmMain.BtnClearDeviceListClick(Sender: TObject); 

begin 

  Memo4.Lines.Clear; 

 

  ComboBox1.Items.Clear; 

  ComboBox1.Items.Add('Broadcast'); 

  ComboBox1.ItemIndex :=0; 

  edtAddress.Text := 'Broadcast'; 

end; 

 

procedure TfrmMain.ButtonTransmitClick(Sender: TObject); 

var 

  S: string; 

  Ok: Boolean; 

begin 

  S := EditTransmit.Text; 
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  if CheckBoxAddLinefeed.Checked then 

    S := S + #13#10; 

  Ok := VaComm1.WriteText(S); 

  if not Ok then 

Memo1.Lines.add('Error writing to: ' 

      + Format('Port %d', [VaComm1.PortNum])) 

  else 

  begin 

    Memo1.Lines.add(Format('Writing %d characters', [Length(S)])); 

  end; 

end; 

 

procedure TfrmMain.btnTransmit1000Click(Sender: TObject); 

var 

  I: Integer; 

  S: string; 

begin 

  if MessageDlg('This will sent the input a thousand times, 

continue?', 

    mtConfirmation, [mbOk, mbCancel], 0) <> mrOk then exit; 

  S := EditTransmit.Text; 

  if CheckBoxAddLinefeed.Checked then 

    S := S + crlf; 

  for I := 0 to 1000 do 

  begin 

    VaComm1.WriteText(S); 

    Application.ProcessMessages; 

  end; 

end; 

 

procedure TfrmMain.Comm1TxEmpty(Sender: TObject); 

begin 

  Memo1.Lines.add('TxEmpty signal detected...'); 

end; 

 

procedure TfrmMain.Comm1Break(Sender: TObject); 

begin 

  Memo1.Lines.add('Break signal detected...'); 

end; 

 

procedure TfrmMain.Comm1Cts(Sender: TObject); 

begin 

  if VaComm1.CTS then 

    StatusBar1.Panels[0].Text := 'CTS' 

  else StatusBar1.Panels[0].Text := ''; 

end; 

 

procedure TfrmMain.Comm1Dsr(Sender: TObject); 

begin 

  if VaComm1.DSR then 

    StatusBar1.Panels[1].Text := 'DSR' 

  else StatusBar1.Panels[1].Text := ''; 

end; 
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procedure TfrmMain.Comm1Ring(Sender: TObject); 

begin 

  if VaComm1.Ring then 

    StatusBar1.Panels[2].Text := 'RING' 

  else StatusBar1.Panels[2].Text := ''; 

end; 

 

procedure TfrmMain.Comm1Rlsd(Sender: TObject); 

begin 

  if VaComm1.Rlsd then 

    StatusBar1.Panels[3].Text := 'RLSD' 

  else StatusBar1.Panels[3].Text := ''; 

end; 

 

procedure TfrmMain.Comm1Error(Sender: TObject; Errors: Integer); 

begin 

  if (Errors and CE_BREAK > 0) then Memo1.Lines.add(sCE_BREAK); 

  if (Errors and CE_DNS > 0) then Memo1.Lines.add(sCE_DNS); 

  if (Errors and CE_FRAME > 0) then Memo1.Lines.add(sCE_FRAME); 

  if (Errors and CE_IOE > 0) then Memo1.Lines.add(sCE_IOE); 

  if (Errors and CE_MODE > 0) then Memo1.Lines.add(sCE_MODE); 

  if (Errors and CE_OOP > 0) then Memo1.Lines.add(sCE_OOP); 

  if (Errors and CE_OVERRUN > 0) then Memo1.Lines.add(sCE_OVERRUN); 

  if (Errors and CE_PTO > 0) then Memo1.Lines.add(sCE_PTO); 

  if (Errors and CE_RXOVER > 0) then Memo1.Lines.add(sCE_RXOVER); 

  if (Errors and CE_RXPARITY > 0) then Memo1.Lines.add(sCE_RXPARITY); 

  if (Errors and CE_TXFULL > 0) then Memo1.Lines.add(sCE_TXFULL); 

end; 

 

procedure TfrmMain.ComboPortNumChange(Sender: TObject); 

begin 

  try 

    VaComm1.PortNum := ComboPortNum.ItemIndex + 1; 

  except 

    ComboPortNum.ItemIndex := VaComm1.PortNum - 1; 

    raise; 

  end; 

end; 

 

procedure TfrmMain.ComboBaudrateChange(Sender: TObject); 

begin 

  VaComm1.BaudRate := TVaBaudrate(ComboBaudrate.ItemIndex); 

  Memo1.Lines.add('Baudrate: ' + ComboBaudrate.Text); 

end; 

 

procedure TfrmMain.ComboDatabitsChange(Sender: TObject); 

begin 

  VaComm1.Databits := TVaDataBits(ComboDatabits.ItemIndex); 

  Memo1.Lines.add('Databits: ' + ComboDatabits.Text); 

end; 

 

procedure TfrmMain.ComboStopbitsChange(Sender: TObject); 

begin 

  VaComm1.StopBits := TVaStopBits(ComboStopbits.ItemIndex); 

  Memo1.Lines.add('StopBits: ' + ComboStopbits.Text); 
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end; 

 

procedure TfrmMain.ComboParityChange(Sender: TObject); 

begin 

  VaComm1.Parity := TVaParity(ComboParity.ItemIndex); 

  Memo1.Lines.add('Parity: ' + ComboParity.Text); 

end; 

 

procedure TfrmMain.CheckBoxRTSClick(Sender: TObject); 

begin 

  VaComm1.SetRTSState(CheckBoxRTS.Checked); 

end; 

 

procedure TfrmMain.CheckBoxDTRClick(Sender: TObject); 

begin 

  VaComm1.SetDTRState(CheckBoxDTR.Checked); 

end; 

 

procedure TfrmMain.CheckBoxBREAKClick(Sender: TObject); 

begin 

  VaComm1.SetBREAKState(CheckBoxBREAK.Checked); 

end; 

 

procedure TfrmMain.CheckBoxXONClick(Sender: TObject); 

begin 

  VaComm1.SetXONState(CheckBoxXON.Checked); 

end; 

 

procedure TfrmMain.VaComm1Data(Sender: TObject; Count: Integer); 

var 

 

  GetChar: boolean; 

  C: char; 

  CountErr: integer; 

  Hs: string; //hex string 

 

  procedure gotMessage(twoMsg: boolean); 

  var 

     mCount: Integer; 

  begin 

      // Count is bytes in buffer, from Vacomm event 

       mCount := Length(RxMsg); 

 

       CountErr := getCompleteMsg(RxMsg); 

       if (CountErr = 0)then 

       begin     // if last part of message received and it is valid 

          if (DispCount >0) then 

          Memo1.Lines.add('RxBuffer ' + IntToStr(Count) + ' bytes | ' 

               + 'MsgLength=' + IntToStr(mCount)); 

 

          Memo2.Lines.Text := Memo2.Lines.Text + RxMsg; 

          if (Length(Raddress)>0) then 

          begin    // if it's a reponse to ND  (node discovery) 

             // Raddress and Rname will store the node information 

             Memo4.Lines.add(Raddress); 
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             Raddress :=''; 

             ComboBox1.Items.Add(Rname); 

             Rname :=''; 

          end; 

          RxMsg := ''; // clear the message after processed 

       end 

       else  // an error in the message 

       begin 

          Memo1.Lines.add('RxBuffer ' + IntToStr(Count) + ' bytes | ' 

               + 'MsgCount=' + IntToStr(mCount) + ' Err=' 

               + IntToStr(CountErr)); 

          // If CountErr < 0, may be need to wait for some more bytes 

          //  RxMsg will keep as is and continue to receive next char 

          ErrBytes := ErrBytes + CountErr; 

          EdtCountErrMsg.Text := IntToStr(ErrBytes); 

          if ((CountErr > 0) or (twoMsg)) then //discard this message 

            RxMsg:=''; 

          if (DispCount = 0) then 

             DispCount := 2; // display 3 message when error occurs 

       end; 

  end; 

 

begin 

CountBytes:= CountBytes + count; 

// total bytes received by serial port 

    EdtTotalRxBytes.Text := IntToStr(CountBytes); 

  repeat 

    GetChar := Vacomm1.ReadChar(C); 

    if (GetChar) then 

       begin 

       // check byte and count number of bytes if 0..9 

             if (C = 's') then  

             begin  // start counting for one message 

                 StartOneMsg := true; 

                 CountOneMsg :=0; 

                 inc(Count5); 

             end; 

             if StartOneMsg then 

                case C of 

                   '0'..'9': CountOneMsg := CountOneMsg + 1; 

                   'E': begin // end of message 

                         CountErr := StrToInt(EdtAccErrBytes.Text); 

                         StartOneMsg := false; 

                         if (CountOneMsg <> 300) then 

                           begin 

                             CountErr := CountErr  

+ abs(CountOneMsg - 300); 

                             EdtAccErrBytes.Text :=IntToStr(CountErr); 

                           end; 

                        end; 

                end; 

 

       if (C = char($0D)) then 

       //Clear Memo2 if all bytes received without error 

          begin 
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              CountErr := StrToInt(EdtAccErrBytes.Text); 

              Count5 := 0; 

                 if (CountErr = 0) then 

                   Memo2.Lines.Clear; 

               // If memos not clear, will slow down serial 

                // port and stuff receiving buffer. 

          end; 

 

       if (C = char($7E)) then 

          if (Length(RxMsg)>0) then // already got one message 

          begin 

             gotMessage(true); //second message = true 

          end; 

          RxMsg := RxMsg + C;  // buffer the received message 

          Hs := Hs+ IntToHex(Integer(C),2); 

       end; 

  Until (not GetChar);   

// All char in buffer is received 

      // display all buffered data in HEX code 

        Memo3.Lines.Text := Memo3.Lines.Text + Hs +#13; 

   

    // after all characters received from the serial port 

    if ((Length(RxMsg)>0) and (RxMsg[1]=char($7E))) 

    then gotMessage(false); //false for one message only 

 

end; 

 

procedure TfrmMain.VaComm1Event(Sender: TObject); 

begin 

  Memo1.Lines.add('Event signal detected...'); 

end; 

 

procedure TfrmMain.VaComm1Open(Sender: TObject); 

begin 

  Memo1.Lines.add('Port open'); 

end; 

 

procedure TfrmMain.VaComm1Close(Sender: TObject); 

begin 

  Memo1.Lines.Add('Port closed'); 

end; 

 

 

procedure TfrmMain.btnSendCmdClick(Sender: TObject); 

var 

  S, Hs: String; 

  I: Integer; 

begin 

  S := getCommand(char($08) + 'R' + edtCmd.Text); 

  Vacomm1.writeText(S); 

  I := 1; 

  Hs:=''; 

  while I <= Length(S) do 

    begin 

       Hs := Hs+ IntToHex(Integer(S[I]),2); 
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       I := I + 1; 

    end; 

  Memo2.Lines.Text := Memo2.Lines.Text+ char($0D)+'TX: ' + Hs +'... '; 

  if (UpperCase(edtCmd.Text) = 'ND') then 

  begin 

    Memo4.Lines.Clear; 

    ComboBox1.Items.Clear; 

    ComboBox1.Items.Add('Broadcast'); 

  end; 

end; 

 

procedure TfrmMain.btnSendMSGClick(Sender: TObject); 

var 

  S, Hs, Addr: String; 

  I: Integer; 

begin 

 

  Addr := Memo4.Lines[0]; 

  if (edtAddress.Text='Broadcast') then 

  begin 

    S := getCommand( 

       char($10)                //ZigBee Transmit Request 

       + char($00)              // no ack 

       + char($00)+ char($00)   // 64 bit destination address 

       + char($00)+ char($00)   //     0x0000 0000 0000 FFFF 

       + char($00)+ char($00)   //      for broadcast 

       + char($FF)+ char($FF) 

       + char($FF)+ char($FE)   // 16 bit Destination Network address 

                                //    0xFFFE for Broadcast or Unknown 

       + char($00)+ char($00)   // Max Hop + No options 

       + edtCmd.Text            // the message (Max 72 bytes) 

       ); 

  end 

  else 

  begin 

     S := getCommand( 

       char($10)                //ZigBee Transmit Request 

       + char($00)              // no ack 

       +  getAddress(edtAddress.Text) //  edtAddress.Text // 

       + char($FF)+ char($FE)   // 16 bit Destination Network address 

                                //    0xFFFE for Broadcast or Unknown 

       + char($00)+ char($00)   // Max Hop + No options 

       + edtCmd.Text            // the message (Max 72 bytes) 

       ); 

   end; 

  Vacomm1.writeText(S); 

  I := 1; 

  Hs:=''; 

  while I <= Length(S) do 

    begin 

       Hs := Hs+ IntToHex(Integer(S[I]),2); 

       I := I + 1; 

    end; 

  Memo3.Lines.Text := Memo3.Lines.Text+ char($0D)+'TX: ' + Hs +'... '; 

end; 
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procedure TfrmMain.ComboBox1Click(Sender: TObject); 

begin 

        edtAddress.Text := ComboBox1.Items[ComboBox1.ItemIndex]; 

end; 

 

procedure TfrmMain.Label5DblClick(Sender: TObject); 

begin 

        ShowMessage(HelpMessage); 

end; 

 

end.   // end of form main unit 

 

B3. Unit file of API functions 

unit APIcommands; 

 

interface 

 

uses 

  SysUtils; 

 

function findChkSum(cmd: String): char; 

function getCommand(cmd: String): String; 

function getCompleteMsg(var Msg: String): Integer; 

function getAddress(NI: String): String; 

 

const 

 

NJcmd: String = char($08)+ 'RNJ'; 

NDcmd: String = char($08)+ 'RND'; 

APIdelimiter: char = char($7E); 

HelpMessage = 'The comport source codes of this program is based on' 

      + #13 + 'Async32demo (c) Varian Software Services nl 1996-2000.' 

      + #13 + 'ZigBee firmware is MaxStream v8x17 Beta'; 

 

var 

  Raddress: String =''; 

  Rname: String =''; 

implementation 

 

function getAddress(NI: String): String; 

begin 

if (NI='ROUTER4') then  

Result:= (char($00) + char($13)  + char($A2) 

        + char($00) + char($40)  + char($01) +char($84) + char($EF) ) 

        //address of ROUTER4 

else if (NI='ROUTER1') then 

 Result:= (char($00) + char($13)  + char($A2) 

        + char($00)  + char($40)  + char($01) +char($84) + char($F2) ) 

        //address of ROUTER1 
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else if (NI='ROUTER3') then 

 Result:= (char($00) + char($13)  + char($A2) 

        + char($00)  + char($40)  + char($06) +char($05) + char($79) ) 

        //address of ROUTER3 

else if (NI='ROUTER2') then  

 Result:= (char($00) + char($13)  + char($A2) 

        + char($00)  + char($40)  + char($08) +char($AA) + char($FC) ) 

        //address of ROUTER3 

    else Result:= 'NIL'; 

end; 

 

function findChkSum(cmd: String): char; 

var 

  I: Integer; 

  Sum : Integer; 

begin 

  I := 1; Sum := 0; 

  while I <= Length(cmd) do 

  begin 

    Sum := Sum + Integer(cmd[I]); 

    I := I+1; 

  end; 

  I := 255 - Sum; 

  Result := char(I); 

 

end; 

 

function getCommand(cmd: String): String; 

var 

  cmdMid: String; 

begin 

  cmdMid :=''; 

  if (Length(cmd)>$FF) then 

    cmdMid := char(Length(cmd)-$FF) + char(Length(cmd)) 

  else 

    cmdMid := char(00) + char(Length(cmd)); 

  Result := APIdelimiter + cmdMid + cmd + findChkSum(cmd); 

end; 

 

function chkATresponse(Msg: String): String; 

var 

  I: Integer; 

  S: String; 

begin 

  if (Copy(Msg,6,2) = 'NI') then 

    Result := Copy(Msg,9,Length(Msg)-9) 

  else if (Copy(Msg,6,2) = 'ND') then 

          // each node will response with one message 

    begin  // extract node name 

       I:= 7; 

       if (Length(Msg) > 19) then 
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       begin 

          repeat 

             I := I+1; 

             S := S+IntToHex(Integer(Msg[I]),2); 

          until (I=18); 

          Raddress:= S; 

          Rname := Copy(Msg,19,Length(Msg)-9); 

          Result := 'Node:' + Rname  +':'; 

       end 

       else 

          Result := ''; 

    end 

  else 

    Result := 'Not identified'; 

end; 

 

function getCompleteMsg(var Msg: String ): Integer; 

var 

  L: Integer; 

begin 

  L := Integer(Msg[2])*256 + Integer(Msg[3]); 

  if (Length(Msg) = (L+4)) then 

         // completely received & one message only 

  begin 

    if (Msg[4] = char($90)) then        // ZigBee Message 

       Msg := Copy(Msg,16,Length(Msg)-16)   // Extract the content 

    Else if (Msg[4] = char($88)) then   // AT command response 

       Msg := chkATresponse(Msg)       //Copy(Msg,9,Length(Msg)-9) 

    Else 

       Msg :='Not a proper message!'; 

    Result := 0; 

  end 

  else  // RxMsg does not got alter, but err bytes returned 

  begin 

     Result := Length(Msg)- (L+4)  

  end; 

end; 

 

end.  // end of APIcommands unit 

 

 

********* End of Thesis ********* 
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