
Cost-effective Detection of

Drive-by-Download Attacks

with Hybrid Client

Honeypots

by

Christian Seifert

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Doctor of Philosophy

in Computer Science.

Victoria University of Wellington

2010

Abstract

With the increasing connectivity of and reliance on computers and net-

works, important aspects of computer systems are under a constant threat.

In particular, drive-by-download attacks have emerged as a new threat to

the integrity of computer systems. Drive-by-download attacks are client-

side attacks that originate from web servers that are visited by web browsers.

As a vulnerable web browser retrieves a malicious web page, the mali-

cious web server can push malware to a user’s machine that can be exe-

cuted without their notice or consent.

The detection of malicious web pages that exist on the Internet is pro-

hibitively expensive. It is estimated that approximately 150 million mali-

cious web pages that launch drive-by-download attacks exist today. So-

called high-interaction client honeypots are devices that are able to detect

these malicious web pages, but they are slow and known to miss attacks.

Detection of malicious web pages in these quantities with client honeypots

would cost millions of US dollars.

Therefore, we have designed a more scalable system called a hybrid

client honeypot. It consists of lightweight client honeypots, the so-called

low-interaction client honeypots, and traditional high-interaction client

honeypots. The lightweight low-interaction client honeypots inspect web

pages at high speed and forward only likely malicious web pages to the

high-interaction client honeypot for a final classification.

For the comparison of client honeypots and evaluation of the hybrid

client honeypot system, we have chosen a cost-based evaluation method:

the true positive cost curve (TPCC). It allows us to evaluate client hon-

eypots against their primary purpose of identification of malicious web

pages. We show that costs of identifying malicious web pages with the

developed hybrid client honeypot systems are reduced by a factor of nine

compared to traditional high-interaction client honeypots.

The five main contributions of our work are:

• High-Interaction Client Honeypot The first main contribution of

our work is the design and implementation of a high-interaction

client honeypot Capture-HPC. It is an open-source, publicly avail-

able client honeypot research platform, which allows researchers and

security professionals to conduct research on malicious web pages

and client honeypots. Based on our client honeypot implementation

and analysis of existing client honeypots, we developed a compo-

nent model of client honeypots. This model allows researchers to

agree on the object of study, allows for focus of specific areas within

the object of study, and provides a framework for communication of

research around client honeypots.

• True Positive Cost Curve As mentioned above, we have chosen a

cost-based evaluation method to compare and evaluate client honey-

pots against their primary purpose of identification of malicious web

pages: the true positive cost curve. It takes into account the unique

characteristics of client honeypots, speed, detection accuracy, and re-

source cost and provides a simple, cost-based mechanism to evalu-

ate and compare client honeypots in an operating environment. As

such, the TPCC provides a foundation for improving client honeypot

technology. The TPCC is the second main contribution of our work.

• Mitigation of Risks to the Experimental Design with HAZOP - Mit-

igation of risks to internal and external validity on the experimen-

tal design using hazard and operability (HAZOP) study is the third

main contribution. This methodology addresses risks to intent (in-

ternal validity) as well as generalizability of results beyond the ex-

perimental setting (external validity) in a systematic and thorough

manner.

• Low-Interaction Client Honeypots - Malicious web pages are usu-

ally part of a malware distribution network that consists of several

servers that are involved as part of the drive-by-download attack.

Development and evaluation of classification methods that assess

whether a web page is part of a malware distribution network is the

fourth main contribution.

• Hybrid Client Honeypot System - The fifth main contribution is the

hybrid client honeypot system. It incorporates the mentioned clas-

sification methods in the form of a low-interaction client honeypot

and a high-interaction client honeypot into a hybrid client honeypot

system that is capable of identifying malicious web pages in a cost ef-

fective way on a large scale. The hybrid client honeypot system out-

performs a high-interaction client honeypot with identical resources

and identical false positive rate.

For my wife, Megan

Acknowledgements

Numerous individuals and organizations have supported me throughout

my studies. I would like to express my sincere gratitude towards them.

Without them, this work would not have been possible.

Foremost, I would like to thank my two supervisors, Dr. Peter Komis-

arczuk and Dr. Ian Welch. They provided me with great guidance and

advice throughout my studies. I especially thank them for their encour-

agement to collaborate with various institutions and individuals. Ramon

Steenson, David Stirling, Vipul Delwadia, Florant Mara, Radu Muschevici,

and Sebastian Krueger have assisted in client honeypot development and

operation, analysis of malicious web pages, exploration of related research

questions, etc. They have been a great help and it has been a pleasure to

work with them.

Mark Davies, the technical manager of the School of Engineering and

Computer Science, has been a key figure enabling my research in the area

of computer security. He assisted in setting up a security lab at the school

that allowed me to deploy and operate honeypots and analyze malicious

web pages.

Further, I would like to thank Dr. Barbara Endicott-Popovsky, Dr. Deb-

orah Frincke, and Dave Dittrich. These individuals have been key in intro-

ducing me to and sparking my interest in the field of computer security.

Dr. Niels Provos has been an inspiration in my studies. His pioneering

work with Honeyd and openness in sharing research results from a corpo-

rate setting have greatly encouraged me. Niels has been highly approach-

i

Acknowledgements ii

able and responsive to my questions and requests for advice.

I would especially expand my thanks to Dr. Barbara Endicott-Popovsky.

As mentioned, she was a key figure in selecting my research area of com-

puter security. During my PhD studies, she invited me as a visiting scholar

to the University of Washington, which greatly enriched my studies. I am

grateful for her guidance, encouragement, and advice whenever I sought

it.

During my visiting scholar appointment at the University of Washing-

ton, I came into contact with two great individuals, Chiraag Aval and Julia

Narvaez. Chiraag and Julia did a fantastic job familiarizing themselves

with the research matter and exploring research questions themselves.

Their enthusiasm for this research area has helped keep me motivated and

focused throughout the years.

In the summer of 2008, I had the opportunity to validate and expand

my research in a corporate setting. Microsoft Corporation invited me to

a summer internship. I especially would like to thank Andrey Zaytsev,

Gayathri Venkataraman, Sasi Parthasarathy, and Sarmad Fayyaz for this

opportunity. Continuation of the internship in the form of a full-time po-

sition with Microsoft allows me to continue to explore and solve problems

in the detection of malicious web pages.

My wife, Megan Gleason, has been a key figure keeping me motivated

and focused throughout the years. Her open ear to my security mono-

logues and acceptance of the security measures on the home network have

been greatly appreciated. Her feedback and proofreading service on nu-

merous papers and articles have earned her an honorary PhD.

Barbara Azzato’s technical editing services have greatly enhanced the

clarity of several papers. Her feedback and advice have significantly im-

proved my writing style.

I’d like to thank several subject matter experts from a variety of orga-

nizations with whom I had the pleasure of discussing the research area of

client honeypots and detection of malicious web pages. These discussions

Acknowledgements iii

were a great motivator and illustrated the collaborative need to solve these

problems. These individuals are Iain Mulholland from HauteSecure, Xeno

Kovah, Darien Kindlund, Kathy Wang from the MITRE organization, Pi-

otr Kijewski from Polish Cert and the SpiderMonkey project, and Dr. Jose

Nazario from Arbor Networks.

In addition, the Honeynet Project has been a great support for dis-

cussing ideas with like-minded individuals and sharing research results

and tools with the support of a credible, known international research or-

ganization. In particular, I would like to thank Lance Spitzner for his con-

tinued encouragement and open arms. The Honeynet Project opened the

door to collaboration with the great minds of Dave Dittrich, David Wat-

son, Jamie Riden, and Dr. Thorsten Holz.

Over the course of my studies, my family and friends have been ex-

tremely supportive and very understanding of my isolation during the

write-up phase.

Finally, I would like to thank the New Zealand government, Inter-

netNZ, and Snort for their financial support throughout my studies.

Contents

1 Introduction 1

1.1 Thesis . 2

1.2 Motivation . 3

1.3 Contributions . 5

1.3.1 High-Interaction Client Honeypot 6

1.3.2 True Positive Cost Curve 6

1.3.3 Mitigation of Risks to the Experimental Design with

HAZOP . 7

1.3.4 Low-Interaction Client Honeypots 8

1.3.5 Hybrid Client Honeypot System 8

1.4 Overview . 9

1.5 Publications . 11

2 Background 14

2.1 Computer Attacks and Intrusion Detection 14

2.2 Web-Based Client-Side Attacks 16

2.2.1 Confidentiality Impact 18

2.2.2 Availability Impact . 19

2.2.3 Integrity Impact . 21

2.3 Drive-by-Download Attacks 23

2.4 Scope . 25

iv

CONTENTS v

3 Related Work 27

3.1 Drive-by-Download Attacks 27

3.2 Intrusion Prevention . 31

3.3 Detection . 33

3.3.1 Client Honeypot Components 35

3.3.2 Client Honeypots Types 35

3.4 Gaps in the Related Work . 44

4 True Positive Cost Curve 48

4.1 Evaluation . 50

4.1.1 Cost and Cost Factors 54

4.1.2 Calculation of Cost . 58

4.2 Improvements to High-Interaction Client Honeypots 60

4.2.1 Visitation Algorithms 63

4.2.2 Visitation Algorithms Summary 83

4.3 Impacts of the Characteristics of the Operating Environment

on High-Interaction Client Honeypots 84

4.4 Summary . 87

5 Experimental Design 89

5.1 HAZOP . 91

5.1.1 Apparatus (Client Honeypot) 97

5.1.2 Subjects (Web Pages) 102

5.1.3 Stimuli (Making the Requests) 103

5.1.4 Summary . 106

5.2 Impacts of Neglecting Hazards 107

5.2.1 URL Source . 107

5.2.2 Time . 112

5.3 Summary . 114

6 Low-Interaction Client Honeypots 116

6.1 Malware Distribution Networks 118

CONTENTS vi

6.2 Classification Method Based on Analysis of Network Traffic 120

6.2.1 Server Relationships 120

6.2.2 Methodology . 123

6.2.3 Results . 125

6.2.4 Discussion . 128

6.2.5 Summary . 129

6.3 Classification Method Based on Static Attributes on the Web

Page . 129

6.3.1 Methodology . 131

6.3.2 Results . 133

6.3.3 Summary . 135

6.4 Summary . 137

7 Hybrid Client Honeypot 139

7.1 Hybrid Client Honeypot System Model 140

7.1.1 Queues . 142

7.1.2 Detection Speed . 147

7.1.3 Detection Accuracy . 149

7.2 Hybrid Client Honeypot System Evaluation 155

7.2.1 Evaluation of Hybrid Client Honeypot System with

TPCC . 155

7.2.2 Initial Evaluation with a Hybrid Client Honeypot

System . 158

7.2.3 Evaluation with a Simulator 161

7.3 Conclusion . 169

8 Conclusions 172

8.1 Contributions . 175

8.1.1 High-Interaction Client Honeypot 175

8.1.2 True Positive Cost Curve 176

8.1.3 Mitigation of Risks to the Experimental Design with

HAZOP . 177

CONTENTS vii

8.1.4 Low-Interaction Client Honeypots 177

8.1.5 Hybrid Client Honeypot System 178

8.1.6 Publications . 179

8.2 Delimitations and Limitations of the Study 180

8.3 Future Work . 181

8.3.1 Evaluation of Antivirus Software 181

8.3.2 Extensions to the TPCC 182

8.3.3 Additional Visitation Algorithms 183

8.3.4 Investigation of False Negatives 183

8.3.5 Expand Client Honeypot Research Platform 184

8.3.6 Improvements on Low-Interaction Client Honeypots 184

8.3.7 Improvements on High-Interaction Client Honeypots 185

8.3.8 Assessment of Malware Distribution Network Mem-

bership . 187

8.4 Summary . 187

A Glossary 189

B Symbols 195

C HAZOP 199

D Examples of Malicious Web Pages 205

List of Figures

2.1 Computer Attack and Intrusion Detection Diagram 15

2.2 Attack on Server vs Attack on Client 17

2.3 Protected Resources . 17

2.4 Publicly Disclosed IE6 Vulnerabilities per Year - * partial data 22

2.5 Publicly Disclosed IE6 Vulnerabilities per Possible Impact . 23

2.6 Drive-by-Download Attack - Step 1 24

2.7 Drive-by-Download Attack - Step 2 24

3.1 Authorized File State Changes of Web Browser and Its Plug-

ins . 37

3.2 Authorized Process State Changes of Web Browser and Its

Plug-ins . 38

4.1 Receiver Operator Characteristics Curve Example 50

4.2 True Positive Cost Curve for High-Interaction Client Hon-

eypots - Example . 53

4.3 Cost Factors . 55

4.4 Client Honeypot Component Diagram 63

4.5 Sequential Algorithm . 67

4.6 Sequential Algorithm Duration Example 68

4.7 Cost per Malicious URL (Sequential Algorithm) 69

4.8 Bulk Algorithm . 70

4.9 Bulk Algorithm Duration Example 71

viii

LIST OF FIGURES ix

4.10 Cost per Malicious URL (Bulk Algorithm) 72

4.11 Bulk & Sequential Algorithm 73

4.12 Bulk & Sequential Algorithm Duration Example 75

4.13 Cost per Malicious URL (Bulk & Sequential Algorithm) . . . 76

4.14 Divide-and-Conquer Algorithm 77

4.15 Divide-and-Conquer Algorithm Example 79

4.16 Cost per Malicious URL (Divide-and-Conquer Algorithm) . 82

4.17 Cost per Malicious URL (All Algorithms) 83

4.18 Cost per Malicious URL with Time Bombs (Sequential Al-

gorithm) . 85

4.19 Cost per Malicious URL with IP Tracking (Bulk & Sequen-

tial Algorithm) . 86

5.1 Flow Diagram of Measurement 93

5.2 Artifacts . 95

5.3 Unique Hosts of Input URLs per Domain 111

5.4 Malicious URLs and Hosts per Domain 112

5.5 Lab Setup . 113

5.6 Monthly Scan Results . 114

6.1 Malware Distribution Network (inspired by Figure 83 of

Microsoft’s SIRv6 [16]) . 119

6.2 DNS Lookup . 121

6.3 DNS Lookup by Local DNS Server 122

6.4 Decision Tree (confidence 25%, minimum object number of

75, and number of countries removed) 127

6.5 Decision Tree . 134

7.1 Hybrid System . 141

7.2 Homogeneous Client Honeypot Queue 143

7.3 Hybrid Client Honeypot Queue 145

7.4 Venn Diagram - Malicious Response Scenarios 150

LIST OF FIGURES x

7.5 Venn Diagram - Benign Response Scenarios 151

7.6 Venn Diagrams - Basic Hybrid Classification 153

7.7 Venn Diagrams - Final Hybrid Classification – False Negatives154

7.8 Hybrid Client Honeypot Simulator Class Diagram 163

7.9 Hybrid Client Honeypot vs. High-interaction Client Hon-

eypot True Positive Cost Curve 165

7.10 Hybrid Client Honeypot with Varying Service Times vs. High-

interaction Client Honeypot True Positive Cost Curve 166

7.11 Hybrid Client Honeypot with Varying False Negative Rates

vs. High-interaction Client Honeypot True Positive Cost

Curve . 167

C.1 HAZOP Analysis Worksheet Apparatus 1 of 2 201

C.2 HAZOP Analysis Worksheet Apparatus 2 of 2 202

C.3 HAZOP Analysis Worksheet Subjects 1 of 1 203

C.4 HAZOP Analysis Worksheet Stimuli 1 of 1 204

D.1 Virtualmagic.co.nz – Obfuscated Exploit 206

D.2 Virtualmagic.co.nz – De-obfuscated Exploit 207

D.3 B-guided.co.nz – Screenshot 208

D.4 B-guided.co.nz – Exploit Import 208

D.5 Stargames.co.nz – Screenshot 209

Chapter 1

Introduction

With the increasing connectivity of and reliance on computers and net-

works, important aspects of computer-related systems, namely confiden-

tiality, integrity and availability, are under a constant threat. Confidential

data, such as credit card numbers, is stolen [140]; office desktop computers

are abused to send email spam [77]; and a power grid outage is caused by

a denial-of-service attack on the underlying power grid computer network

[42]. All are examples of what could happen when computer security mea-

sures fail to protect those aspects.

A particular type of attack that has emerged in recent years is the client-

side attack [2]. These attacks target clients. As the client accesses a mali-

cious server, the server delivers an attack to the client as part of the server’s

response to a client request. Common examples of these attacks are web

servers that attack web browsers. As the web browser requests content

from a web server, the server returns a malicious page that launches, for

example, a so-called drive-by-download attack on the browser. If success-

ful, the web server can push and execute arbitrary programs on the client

machine.

High-interaction client honeypots are security devices that are able to

find these malicious web servers on a network. However, they have not

been suitable for an investigation of malicious web servers on a large scale,

1

CHAPTER 1. INTRODUCTION 2

because their slow speed makes them prohibitively expensive on a larger

scale. This thesis describes improvements upon high-interaction client

honeypots that allow us to collect and analyze a large sample of malicious

web pages in a more cost-effective manner.

With the acquired knowledge of malicious web pages, new alternative

and faster detection techniques are developed. They are combined into a

hybrid client honeypot system that is suitable to quickly detect the major-

ity of malicious web pages. The hybrid client honeypot system is more

cost-effective allowing the operation of such a system on a large scale.

The remainder of this chapter is structured as follows. Section 1.1 in-

troduces the thesis of this dissertation. Section 1.2 provides the motivation

for the thesis and Section 1.3 summarizes the contributions made by this

thesis. Section 1.4 provides an overview of the thesis itself; Section 1.5

presents research discussed in this thesis that has appeared in other pub-

lications.

1.1 Thesis

The goal of this work is to develop a client honeypot system that is capable

of identifying malicious web pages on a large scale in a more cost-effective

and forensically sound manner than is possible with existing client honey-

pot technology today.

Improved high-interaction client honeypots and a methodology that

addresses risks to internal and external validity can be used to obtain

forensically sound information about malicious web pages in a more cost-

effective manner. Utilizing knowledge about malicious web pages, new

alternative and faster detection methods can be developed. These meth-

ods could be based on statistical static and dynamic behavioral detec-

tion techniques. If these methods are applied to a lightweight, so-called

low-interaction client honeypot, these methods can be faster than high-

interaction client honeypots, but could possibly exhibit lower detection

CHAPTER 1. INTRODUCTION 3

accuracy. A hybrid client honeypot system is able to combine the advan-

tages of low- and high-interaction client honeypots into one system, which

is capable to identifying malicious web pages on a large scale in a more

cost-effective and forensically sound manner.

1.2 Motivation

Client-side attacks are a serious threat because of two main reasons: First,

the expectation of an attack occurring via this attack vector is low. A web

browser retrieves a web page that is entirely constructed of text (HTML).

Web pages are very common and web browsers that are used to retrieve

web pages have existed for a long time. The fact that a threat can exist

on these web pages that permits a web server to gain complete control

of the client is a foreign thought. However, new vulnerabilities in web

browsers are regularly disclosed and new exploits keep appearing that

permit these attacks to occur [124]. Second, the danger of malicious web

pages comes from the fact that very little user interaction is necessary to

become compromised. An attack is covert and a simple click on a URL

that points to a malicious web page is sufficient to trigger the attack. If

the attack is successful, the user will not be required to consent to any

malicious action nor will the user notice an attack has occurred.

As described, client-side attacks are a severe threat in themselves, but

are extremely dangerous if viewed in the context of self-propagating code

when combined with traditional server-side attacks. A so-called conta-

gion worm spreads from clients (e.g., web browsers) to servers (e.g., web

servers) and vice versa on existing network traffic like a contagious dis-

ease [136]. Since no abnormal network traffic patterns and volume are

generated, such a contagion worm is very difficult to detect and could po-

tentially subvert millions of machines.

Traditional defenses, such as antivirus software and firewalls, which

are adopted by the majority of corporations and institutions [115], are

CHAPTER 1. INTRODUCTION 4

ineffective to protect against the threat of client-side attacks. Antivirus

technology, which primarily employs signature-based mechanisms, fails

to cope with the volume of malware [127]. And firewall technology, de-

signed to block or permit traffic, does not impact malicious web traffic

once web traffic is permitted in general.

A good mechanism to protect against client-side attacks is patching

[159], which applies a small piece of software to fix the vulnerability on

the client that originally allowed a client-side attack to take place. Because

the majority of client-side attacks make use of known exploits, patching

the operating system, web browser and plug-ins is usually a good strat-

egy to defend against these attacks. However, a recent study examined

vulnerable online web browser populations and estimated at least 45% of

users did not use the most secure web browser version when accessing

web sites; investigating browser plug-ins is estimated to reveal a larger

problem [43]. But even if all users apply patches rigorously, the possibility

of exposure to attacks that target vulnerabilities, so-called zero-day attacks

for which patches are simply not available, still exists.

Alternatively to patching, one can block the user from navigating to a

malicious web page if it is known to be malicious. All major search engines

[48, 172, 126], some web browsers [51, 97], and some web browser plug-

ins [60, 82] take this approach. This approach can protect patched and un-

patched browsers, as well as protect against zero-days and older exploits.

However, for this approach to be successful, one needs to know about ma-

licious web pages and, considering the estimated size of the problem, this

is a challenging task.

Client-side attacks are a large problem in absolute terms. An average

estimate based on existing studies on the prevalence of web pages that

launch drive-by-download attacks is approximately 0.2% [83, 96, 159]. Ac-

cording to a study in January 2005, 11.5 billion publicly indexable web

pages exist [58]. According to Netcraft, approximately 9,800,000 web sites

existed at that time, resulting in about 1,173 pages/site on average. Since

CHAPTER 1. INTRODUCTION 5

January 2005, the Internet has grown significantly. Netcraft reports 66 mil-

lion web sites in July 2008 [100]. Assuming the number of pages per site

has not changed, the Internet consists of approximately 77 billion index-

able web pages. If the estimated percentage of malicious web pages is

applied, it results in approximately 150 million malicious web pages, a

considerable threat that a user of the Internet is exposed to.

To detect 150 million malicious web pages is challenging in itself. How-

ever, if one takes into account that web pages frequently change, the task

increases in difficulty. As we will show in chapter 4, a cost to identify

a malicious web page with a high-interaction client honeypots can be as

high as 0.30 US dollars (based on sequential algorithm and a base rate

of p = 0.04). If such cost is assumed, the cost to identify 150 million mali-

cious web pages would be approximately 45 million US dollars. Consider-

ing the rate of change on the Internet, repeated identification may become

necessary, further increasing the cost. Reducing the cost of identification

of malicious web pages in a forensically sound manner is the goal of this

work.

1.3 Contributions

This thesis makes five main contributions: 1. development of an open-

source high-interaction client honeypot; 2. development and application

of a cost-based evaluation method on client honeypots and improvements

on client honeypots: the true positive cost curve; 3. application of a haz-

ard and operability study on the experimental design to mitigate risks

to internal and external validity; 4. development and evaluation of low-

interaction client honeypots that can assess whether a web page belongs

to a malware distribution network; and 5. development and evaluation

of a cost-effective hybrid client honeypot system that combines a high-

interaction client honeypot with low-interaction client honeypots. Each of

these contributions is discussed below.

CHAPTER 1. INTRODUCTION 6

1.3.1 High-Interaction Client Honeypot

The design and implementation of a high-interaction client honeypot Capture-

HPC, a client honeypot research platform, is a main contribution of this

thesis. While three high-interaction client honeypots existed when this

work commenced [96, 157, 159], these systems either were not publicly

available or did not meet the resource and forensic requirements neces-

sary to conduct research on malicious web servers in a cost-effective man-

ner. As a result, based on forensic requirements we have developed, a new

open-source high-interaction client honeypot, named Capture-HPC, was

created, which allows researchers and security professionals to conduct

research on malicious web pages and client honeypots. Capture-HPC has

been incorporated into the other available open-source high-interaction

client honeypot, HoneyClient [157], and is being used in numerous re-

search and commercial projects [135, 160, 46, 27, 171].

Based on our client honeypot implementation and analysis of existing

client honeypots, we developed a component model of client honeypots.

We identified three core components of a client honeypot: Queuer, Visi-

tor, Analysis Engine. This model allows researchers to agree on the object

of study, allows for focus of specific areas within the object of study, and

provides a framework for communication of research around client hon-

eypots. As increased understanding results from this model, it allows for

improved design and development of client honeypot technology. This

model has been accepted as a client honeypot model by the research com-

munity [116, 169, 33, 142]. It is further discussed in Chapter 4.

1.3.2 True Positive Cost Curve

The true positive cost curve (TPCC) is the second main contribution of this

thesis. The TPCC is a method that takes into account the unique charac-

teristics of client honeypots – speed, detection accuracy, and resource cost

– and provides a simple, cost-based mechanism for evaluating and com-

CHAPTER 1. INTRODUCTION 7

paring client honeypots in an operating environment. As such, the TPCC

provides a foundation for improving client honeypot technology.

The applicability of the TPCC in evaluating client honeypots is demon-

strated through improvements to client honeypot visitation algorithms de-

veloped by us and Wang et al. [159]: the bulk, bulk & sequential, and

divide-and-conquer algorithms. The TPCC showed that the performance

of the bulk algorithm is generally more cost-effective than the other visi-

tation algorithms; however, under certain conditions, namely a low base

rate, the divide-and-conquer algorithm outperforms all other visitation al-

gorithms.

TPCC evaluates a client honeypot in an operating environment. As

such, the TPCC may also be used by an operator to evaluate different con-

figurations and settings of the client honeypot within a specific operating

environment; in other words, the TPCC can be used to tune a client honey-

pot in a specific operating environment. Application of the TPCC in such

a way is demonstrated by tuning a client honeypot in an operating envi-

ronment with malicious web pages that employ time bombs or IP tracking

functionality.

1.3.3 Mitigation of Risks to the Experimental Design with

HAZOP

Mitigation of risks to internal and external validity on the experimental

design using hazard and operability (HAZOP) study is the third main con-

tribution of this thesis. This methodology addresses risks to intent (inter-

nal validity) as well as generalizability of results beyond the experimental

setting (external validity) in a systematic and thorough manner.

Measurement studies are used to illustrate the process of HAZOP. A

major risk identified is uncontrolled variables. We use uncontrolled vari-

ables as an example to illustrate the impact of failure to mitigate risks ap-

propriately. First, it is shown that the URL source can greatly impact mea-

CHAPTER 1. INTRODUCTION 8

surements; second, it is shown that time can also have a major impact on

measurement.

1.3.4 Low-Interaction Client Honeypots

Malicious web pages are usually part of a malware distribution network

that consists of several servers that are involved as part of the drive-by-

download attack. Development and evaluation of classification methods

that can be incorporated into a low-interaction client honeypot network is

the fourth main contribution. These methods are used to assess whether a

web page is part of a malware distribution network. In contrast to the

high-interaction client honeypot, one would not have to load the web

pages in a dedicated system nor monitor the system for unauthorized state

changes. Rather, a simulated client could be used to retrieve the web page

and the server response analyzed directly. The two methods are based on

analyzing the dynamic behavior when loading a web page and statistical

analysis of elements found on the page. As shown in this thesis, the meth-

ods can be used to identify malicious web pages quickly; however, at the

same time, many false alerts would be generated.

1.3.5 Hybrid Client Honeypot System

The fifth main contribution of this thesis is the hybrid client honeypot sys-

tem. A model is developed that is capable of optimizing resources and

estimating cost and detection accuracy of a hybrid client honeypot sys-

tem based on the underlying low- and high-interaction client honeypot

components. The hybrid client honeypot system is capable of identify-

ing malicious web pages in a cost-effective way on a large scale. The hy-

brid client honeypot system outperforms a high-interaction client honey-

pot with identical resources and identical false positive rate.

The model allows assessment of whether low-interaction client honey-

pots can be beneficial when combined into a hybrid client honeypot sys-

CHAPTER 1. INTRODUCTION 9

tem. Two candidate low-interaction client honeypots, based on statistical

static and dynamic behavioral methods, are evaluated. The hybrid client

honeypot model is used to identify a low-interaction client honeypot com-

ponent that could be combined into a beneficial hybrid client honeypot

system.

The model is evaluated with an actual implementation of a hybrid

client honeypot system.

1.4 Overview

The remainder of this thesis is structured as follows.

Chapter 2 presents background information on client-side attacks and

attack detection. The first part of this chapter presents generic mechanisms

and definitions around attack detection. The second part describes web-

based client-side attacks, and the last part of the chapter focuses on the

web-based client-side attack that is the object of this thesis: the drive-by-

download attack.

Chapter 3 places the work presented in the context of related work in

the field. Existing studies on malicious web servers and drive-by-download

attacks are reviewed, showing that these attacks are an increasing prob-

lem. The second section reviews defensive intrusion prevention strategies

and shows that generic strategies are ineffective to counter the threat of

drive-by-download attacks. While our work focuses on the task of identi-

fication of malicious web servers, research on defensive techniques exists

and is also presented. Detection itself, however, is challenging. Intrusion

detection techniques are ineffective to detect drive-by-download attacks

and a more able detection mechanism is needed: client honeypots. Section

3.3 reviews existing detection technology with a focus on client honeypots.

Chapter 3 concludes with a discussion of gaps from the related work that

are addressed by this work.

The true positive cost curve, a cost-based method for evaluating high-

CHAPTER 1. INTRODUCTION 10

interaction client honeypots is the focus of Chapter 4. The TPCC is the

foundation for making improvements to client honeypot technology. Two

new algorithms are presented that aim at improving the detection speed

of client honeypots. Several visitation algorithms are evaluated with the

TPCC. The last part of Chapter 4 illustrates that the TPCC can not only be

used to evaluate client honeypots, but also be used to tune client honey-

pots in an operating environment.

Chapter 5 develops a methodology that is designed to reduce the risk

to internal and external validity on the experimental design. The method-

ology is developed through application of the HAZOP study on the exper-

imental design. The impact of the risks that were specifically addressed

by HAZOP are illustrated through uncontrolled variables onto the inter-

nal and external validity of measurement studies. First, it is shown that

the URL source can greatly impact measurements; second, it is shown that

time can also have a major impact on measurement.

In Chapter 6, several new detection techniques that assess whether

a web page belongs to a malware distribution network are developed

and evaluated. These methods can be incorporated into lightweight low-

interaction client honeypots, which are generally faster than high-interaction

client honeypots at finding malicious web pages on a network. However,

at the same time, they produce false positives and therefore would not be

suitable as stand-alone systems to detect malicious web pages.

In Chapter 7, a hybrid client honeypot system is presented and eval-

uated. The hybrid client honeypot system combines the low- and high-

interaction client honeypots into a cost-effective system. First, a model

is presented that illustrates the impact of the low- and high-interaction

client honeypot components on the overall system. A hybrid implemen-

tation is used to validate the model. The TPCC is used to evaluate the

hybrid client honeypot system against a system of high-interaction client

honeypots with identical resources.

Chapter 8 summarizes the thesis and the contributions made by the

CHAPTER 1. INTRODUCTION 11

thesis and discusses future work. Most of the future work presented in

this chapter touches on further improvement of detection accuracy, un-

derstanding the anti-forensic capabilities of malicious web servers, and

the speed of client honeypots, as well as increasing the understanding of

client-side attacks.

1.5 Publications

Part of the research discussed in this thesis has appeared in other publi-

cations. Several of these papers were co-authored with others, but their

content was primarily the work of the author of this thesis. The following

parts of the thesis are based on previously published work:

• Chapter 4 – We presented early work on the divide-and-conquer visi-

tation algorithm in Application of divide-and-conquer algorithm paradigm

to improve the detection speed of high-interaction client honeypots at the

23rd Annual ACM Symposium on Applied Computing, 2008.

The true positive cost curve as a means of evaluating and tuning

high-interaction client honeypots in an operating environment was

presented in True Positive Cost Curve: A Cost-Based Evaluation Method

for High-Interaction Client Honeypots at the Third International Con-

ference on Emerging Security Information, Systems and Technolo-

gies, SECURWARE, 2009.

The reduction of malicious web pages identified as a result of choos-

ing a visitation algorithm that requires repeated interaction with a

web server to identify malicious web pages was addressed through

utilization of a proxy. The proxy generically implements a record/replay

mechanism, which was presented and discussed in Justifying the Need

for Forensically Ready Protocols: A Case Study of Identifying Malicious

Web Servers Using Client Honeypots at the 4th Annual IFIP WG 11.9

International Conference on Digital Forensics, 2008. The work was

CHAPTER 1. INTRODUCTION 12

published as a book chapter ”Identifying and Analyzing Web Server

Attacks” in Advances in Digital Forensics IV.

• Chapter 5 – A HAZOP analysis was conducted to identify hazards

that threaten internal and external validity of measurement stud-

ies. Several hazards were identified that revolve around the appa-

ratus: the client honeypot. We choose to make our client honeypot

Capture-HPC open source and publicly available, so functional test-

ing and code inspection by the open-source community would re-

duce functional bugs.

Further, the hazard around the Analysis Engine’s capability to iden-

tify unauthorized state changes was addressed with a ”real-time”

kernel-level state monitoring mechanism, which was presented in

Capture - A Behavioral Analysis Tool for Applications and Documents at

the 7th Digital Forensics Research Workshop Conference, 2007.

The measurement studies were presented in a peer-reviewed white

paper of the Know Your Enemy series, KYE: Malicious Web Servers

published by the Honeynet Project and in Measurement Study on Ma-

licious Web Servers in the .nz Domain at the 14th Australasian Confer-

ence on Information Security and Privacy (ACISP), 2009.

• Chapter 6 – The concept of low-interaction client honeypots was first

identified in our Technical Report Taxonomy of Honeypots, 2006.

Early works on a signature-based detection approach incorporated

in a low-interaction client honeypot were presented in HoneyC - The

Low-Interaction Client Honeypot at NZCSRCS, 2007.

The detection mechanism that is based on dynamic behavior when

loading a web page was presented and evaluated in Identification

of Malicious Web Pages Through Analysis of Underlying DNS and Web

Server Relationships at the 3rd IEEE Conference on Local Computer

Networks, 2008.

CHAPTER 1. INTRODUCTION 13

The detection mechanism that is based on analyzing static charac-

teristics on the web page was presented and evaluated in Identifica-

tion of Malicious Web Pages with Static Heuristics at the Australasian

Telecommunication Networks and Applications Conference, 2008.

• Chapter 7 – An abbreviated model and brief evaluation of the static

detection mechanism in a hybrid client honeypot system was pre-

sented in Identification of Malicious Web Pages with Static Heuristics

at the Australasian Telecommunication Networks and Applications

Conference, 2008.

Chapter 2

Background

This thesis is concerned with detection of web-based client-side attacks

launched by malicious web servers. This chapter presents the concept of

intrusion detection, and provides an overview of various types of web-

based client-side attacks, particularly drive-by-download attacks. The chap-

ter closes with a definition of the scope of the thesis.

This work adopts the terminology on intrusion detection from the MAF-

TIA project [20], which is summarized in the glossary in Appendix A. Ad-

ditional terminology around web-based client-side attacks and drive-by-

downloads is also defined in the glossary.

2.1 Computer Attacks and Intrusion Detection

An intrusion detection system is a piece of software and/or hardware de-

signed to detect and alert of attacks that occur on a computer system it is

monitoring. Figure 2.1 shows such a computer system. As activity occurs

on the computer system, the intrusion detection system monitors the ac-

tivity. As regular events occur, the computer system performs a service

and its intended function. If an event is processed by an error that ex-

ists within the system, the system will not or will only partially perform a

service or its intended function and a failure occurs. As the intrusion de-

14

CHAPTER 2. BACKGROUND 15

tection system monitors these regular events, it can either raise or elect not

to raise an alert. If an alert is raised, a false positive is generated, because

an attack has not taken place. If the intrusion detection system elects not

to raise an alert, it correctly ignored the event and therefore a true negative

is generated.

Figure 2.1: Computer Attack and Intrusion Detection Diagram

If the event is malicious, an attack occurs. These attacks are often

wrapped into code that performs the attack, the so-called exploit. The

attack attempts to generate a security failure by trying to exploit an exist-

ing vulnerability within the system. If the attack is successful, a security

policy, which is enforced by the system, can be violated and an intrusion

occurs. The intrusion detection system monitors the system for attacks. If

one is detected, independent of whether the attack is successful, an alert,

in this case a true positive, is generated. If the intrusion detection system

fails to detect an attack and subsequently does not raise an alert, it gen-

erated a false negative. Note that the intrusion detection system does not

CHAPTER 2. BACKGROUND 16

need to assess whether or not the attack has been successful. If an attack

is observed, an alert should be generated. As such, intrusion detection sys-

tem is a misleading term. A more accurate description would be attack

detection system.

The security policy that is potentially violated by an attack attempts

to enforce the confidentiality, availability, and integrity of the computer

system and its data. If the attack is successful, these aspects will be im-

pacted. An impact on availability will be a full or partial denial-of-service;

impact on confidentiality will be information disclosure; and impact on

integrity will be an alteration of the system, often through the execution

of malicious code. These impacts are directly linked to the vulnerability as

described by the Common Vulnerability Scoring System [68], which per-

mits one or more of these impacts to be assigned to each vulnerability. As

such, a vulnerability and also attack that targets a specific vulnerability

are referred to as denial-of-service, information disclosure, and execution

vulnerabilities and attacks.

2.2 Web-Based Client-Side Attacks

A description of how attacks can occur is given above. An adversary

launches an attack on a computer system that exposes vulnerabilities. While

one might get the impression that an interaction that leads to an attack is

initiated by an adversary, this is not always correct, as Figure 2.2 illus-

trates. In a networked environment, an adversary might initiate an inter-

action by attacking vulnerable services exposed by a server as shown on

the left side of the figure. However, an interaction might be initiated by

the victim as well. In this scenario, a client might request a service from a

malicious server, which returns an attack as part of the server’s response

that targets a vulnerability of the client, as shown on the right side of the

figure. Those cases are referred to as client-side attacks.

Web-based client-side attacks are a particular type of client-side at-

CHAPTER 2. BACKGROUND 17

Figure 2.2: Attack on Server vs Attack on Client

tack that occurs on the World Wide Web. These client-side attacks are

launched by malicious web servers that attack the user, operating system,

web browsers and/or one of its plug-ins. During a web-based client-side

attack, the client requests content from a malicious web server and the re-

turned content contains an exploit that executes an attack. That content is

usually, but not limited to, a web page. Figure 2.3 lists specific items that

can be returned by a web server. All these items may contain an exploit.

Figure 2.3: Protected Resources

Several types of web-based client-side attacks exist that target one of

the protected resources shown in Figure 2.3. In this section, we categorize

the types of web-based client-side attacks around the impact they have

on these resources. This categorization was first published in Help Net

Security.

CHAPTER 2. BACKGROUND 18

2.2.1 Confidentiality Impact

Attacks described in this section are all concerned with accessing some

confidential information on the client-side. Cookie-, history-, file-, and

clipboard-stealing attacks are described, as well as attacks that are able to

obtain information about protected internal network topology and user

data (aka phishing attacks.)

A cookie is a piece of data that is sent by the server to be stored on the

client for retrieval at a later time [73]. Cookies are primarily used to allow

the web server to track the client across multiple request/response cycles.

Cookies, according to the same origin security policy [101], can only be

retrieved by the web server that sets them. As a result, web servers are

not able to read cookies from other domains. Cookies themselves are not

likely to represent an attack vector on the web client. However, they are a

high-value target for attackers, as a cookie, with its purpose of identifying

the client, would help with attempts to hijack a session and impersonate

a client [129]. Web mail clients, for instance, utilize cookies to identify

a user at a later time, so users do not have to provide their credentials

each time they would like to access their mail. If an attacker can access

the cookie, unauthorized access to the mail account could be obtained, as

demonstrated recently [104, 53].

The browser history and the browser cache are other confidential pieces

of information attackers can gain access to. As a user visits web pages,

the browser records these web pages in its cache and browser history. If

an attacker can gain access to the cache or browser history, information

such as the user’s email service or bank can be inferred and used in sub-

sequent attacks, such as phishing and cookie-stealing attacks. Cache and

browser history can be obtained via browser vulnerabilities, JavaScript,

cross-side scripting (CSS), inspection of visited link color, and timing at-

tacks [65, 23, 34, 55].

While cookie, cache, and browser history stealing concentrates on as-

sets that are managed by the browser, web-based client-side attacks can

CHAPTER 2. BACKGROUND 19

reach beyond the scope of the browser into the underlying operating sys-

tem. Attacks that allow a web server to access arbitrary files are examples,

such as a recently described technique to exploit Microsoft’s Internet Ex-

plorer 7 ”Header Forwards” [120]. The clipboard is another source that

should be protected. While early versions of web browsers, such as Mi-

crosoft’s Internet Explorer, allowed a web page to access the clipboard

[117], access to the clipboard has since been restricted to allow access

only if specifically granted. Exploit code that seems to get around this

restriction has been observed in the wild [14]. Internal network topology

is another asset that should be protected, but can be accessed. Special

JavaScript network and port scanners exist that allow a malicious web site

to obtain information about the internal network topology, such as exis-

tence of web servers, routers, and hosts [56, 105, 132].

The last attack presented here that impacts confidentiality is a social

engineering attack called phishing. Social engineering attacks aim at ex-

ploiting the natural human tendency to trust [54]. In a phishing attack,

trust in a web site is abused to fraudulently acquire personal confidential

data, such as credentials and bank account information [161]. These web-

based client-side attacks present the user with a fraudulent web site, often

promoted via spam email that appears to be from a trusted entity, such as

a bank. The web site, however, is in fact in the control of the attacker and

once the user provides personal information to the web site, the attacker

will have obtained this confidential information.

2.2.2 Availability Impact

Attacks that impact availability are concerned with partially or fully con-

suming the client resources, which reduces or leads to a complete fail-

ure of a service the client normally performs. The attacks reviewed are

simple crashes, pop-up floods, browser hijacking, network floods, web

spam/junk pages, and web pages that commit click fraud.

CHAPTER 2. BACKGROUND 20

A denial-of-service is an attack that results in partial or complete con-

sumption of resources that negatively impacts a service [92]. In the setting

of a web-based client-side attack, a web page could cause the lock-up or

crash of the browser or even the operating system or one of its compo-

nents. Many browser vulnerabilities exist that permit a malicious web

server to launch an availability-impacting attack [124].

While the lock-ups and crashes often occur without malicious intent,

there are several availability-impacting attacks for which malicious in-

tent undoubtedly exists. Pop-up floods are used in advertisement attacks

[17]. These attacks lead to the display of many unsolicited pop-up win-

dows. While these pop-ups load, network and computing resources are

consumed, significantly reducing the availability of the client. This could

even lead to browser hijacking, in which the page cannot be left and/or

the pop-up cannot be closed [129].

Since web browsers are capable of loading resources (for instance, im-

ages) from remote network locations, a malicious web page could con-

ceptually lead to flooding of the network with traffic if a browser does

not manage its resources carefully. For instance, a web page that con-

tains a million images from different domains could generate a million

domain name service (DNS) requests, potentially overwhelming the local

DNS server. A web page that contains large data chunks could potentially

clog the network. If browsers are pooled to perform flooding of a network,

they are referred to as Puppetnets [74].

Web spam/junk pages are specific malicious web pages that abuse

search engine functionality. A search engine is tasked with providing

the user with relevant web pages for given user queries. Web spam/junk

pages abuse the algorithm of the search engine to lead to a high ranking

despite the fact that the content of the web pages is not relevant to the user

[59]. As such, these pages abuse the client’s resources by displaying non-

relevant content. On top of that, these and other pages might be involved

in click fraud scams, in which a malicious web page could fraudulently

CHAPTER 2. BACKGROUND 21

simulate clicking of advertisements by the user [64].

2.2.3 Integrity Impact

In the context of web-based client-side attacks, attacks that impact in-

tegrity usually translate into the ability of an attacker to execute arbitrary

code on the client machine. In this section, cross site/domain/zone script-

ing, drive-by-pharming, hosting of malware, and drive-by-download at-

tacks are described.

Cross site/domain/zone scripting is a vulnerability of web pages that

allows execution of injected code in the security context of that page when

the user visits such a page [113, 112]. The injected code could be used to

steal information, but also could permit execution of arbitrary code on the

client if, for instance, the web page is a trusted page in the context of the

web browser.

Drive-by-pharming is a web-based client-side attack that modifies the

DNS settings of a user’s router by merely having a user visit a malicious

web page [64]. These attacks do not impact the integrity of the client ma-

chine directly, but rather impact the integrity of network components the

client relies on.

Hosting of malware is another type of attack that impacts the integrity

of the client. In this attack scenario, the malicious web page hosts malware

and uses social engineering to entice the user to download and execute the

malware. An example of such a technique is a video codec that contains

malware, which is presented to be a requirement to view pornographic

material [24]. Once the user downloads and executes the malware, the

malware has complete control of the machine.

Attacks that do not require user interaction, but rather are capable of

pushing and executing malware without a user’s notice or consent, are

drive-by-download attacks. These attacks usually trigger when a user

merely visits a web page [149]. They are the focus of this work and de-

CHAPTER 2. BACKGROUND 22

scribed in more detail at the end of this chapter.

Impact Summary

The previous section described the impacts an attack may have in the con-

text of web-based client-side attacks on web browsers. An attack may

impact confidentiality, availability, and/or integrity. These attacks do not

pose an equal amount of risk to a system. An inherent risk hierarchy exists

in which attacks that impact the integrity of a system pose a greater risk

to the system than do attacks that impact availability and confidentiality,

because once the integrity is compromised, availability and confidentiality

may be compromised as well.

The impact an attack may have directly maps to specific vulnerabili-

ties of the web browser. According to MITRE’s Common Vulnerabilities

and Exposures (CVE) list, 232 vulnerabilities were publicly disclosed that

allow remote attacks on a standard installation of Internet Explorer 6.0 on

Microsoft Windows XP when our work commenced. Figure 2.4 shows the

publicly disclosed vulnerabilities per year. Despite the code maturity of

the application, the number of publicly disclosed vulnerabilities is not de-

creasing.

Figure 2.4: Publicly Disclosed IE6 Vulnerabilities per Year - * partial data

CHAPTER 2. BACKGROUND 23

Each vulnerability maps to a specific impact it may have on the system

in case of a successful attack. As such, a vulnerability may be referred to

as denial-of-service, information disclosure, and execution vulnerabilities.

Figure 2.5 shows the number of publicly disclosed Internet Explorer 6.0

vulnerabilities per possible impact. The ability of an attacker to execute

arbitrary code that would impact the integrity of the system leads the list

with 95 vulnerabilities, followed by the 56 vulnerabilities that would im-

pact availability. Thirty-four vulnerabilities would impact confidentiality.

It becomes clear from reviewing the graph and description of impacts that

integrity is the impact that exhibits the most risk to a web browser and,

as a result, is most targeted by attackers. Because of this, we focus on the

detection of attacks that impact integrity as part of this work: drive-by-

download attacks.

Figure 2.5: Publicly Disclosed IE6 Vulnerabilities per Possible Impact

2.3 Drive-by-Download Attacks

Detection of drive-by-download attacks is the focus of this work. In this

section, drive-by-download attacks are described in more detail. As men-

tioned above, drive-by-download attacks are a specific type of web-based

client-side attacks. Figures 2.6 and 2.7 show the steps of a typical drive-

by-download attack. First, a web browser requests web pages from a re-

CHAPTER 2. BACKGROUND 24

mote web server. As a response, the server returns a web page to the web

browser that contains attack code that exploits a web browser’s remote

code execution vulnerability (Step 1). If the malware is not delivered as

part of the attack code’s payload, a special payload called a downloader

can optionally first pull and then execute malware on the local workstation

(Step 2). The entire attack happens without the user’s consent or notice.

Figure 2.6: Drive-by-Download Attack - Step 1

Figure 2.7: Drive-by-Download Attack - Step 2

Drive-by-download attacks target vulnerabilities on the client-side by

sending exploits as part of a web server response. The targeted vulnerabil-

ities can naturally reside within the web browser itself. However, through

shared libraries and plug-ins, the attack surface expands to the operat-

ing system as well as other applications residing on the client. Attacks

launched on Microsoft’s Internet Explorer can target a particular type of

plug-in: ActiveX components.

ActiveX components could be abused in several ways. An ActiveX

component may contain a vulnerability that can be exploited by specially

CHAPTER 2. BACKGROUND 25

crafted interaction with such a vulnerable ActiveX component. Alterna-

tively, an ActiveX component may simply expose unsafe application pro-

gramming interface (API) that allows an attacker to push and execute mal-

ware onto the client machine by merely making use of the ActiveX com-

ponent’s exposed functionality. The DownloadAndInstall API of the Sina

ActiveX component is an example of such a component [148].

A cursory inspection of several vulnerability databases reveals that all

operating systems and web browsers contain remote execution vulnera-

bilities that permit drive-by-download attacks to take place [147, 124, 72].

An analysis of the SecurityFocus vulnerability database [124] reveals that,

as of August 2008, MSIE6SP2 and MFF15, two comparable browsers that

shared a majority of the market during the same period, contain 44 and 66

remote execution vulnerabilities, respectively. However, if the dominance

of MSIE6SP2 in the market is taken into consideration [43, 155], the abso-

lute numbers of vulnerabilities are higher for MSIE6SP2 than for MFF15.

An attacker, therefore, gains more return on investment if specializing on

MSIE6SP2 attacks.

Based on this information, the scope of this work is defined.

2.4 Scope

This work focuses on the detection of drive-by-download attacks. Because

of the prevalence of drive-by-download attacks on Internet Explorer 6.0

SP2, this work focuses on detection of drive-by-download attacks that tar-

get this web browser [88]. While major upgrades to the web browser were

released and Internet Explorer 8.0 is its latest version, web servers still at-

tack Internet Explorer 6.0. This can be attributed to the fact that many

users have not upgraded [43] and a continued return on investment exists

for attackers to target the older version of Internet Explorer 6.0.

While it appears that third-party plug-ins are increasingly targeted in

these types of attacks, we have chosen to utilize only attacks that target

CHAPTER 2. BACKGROUND 26

a stock installation of Internet Explorer. This will keep the experimental

setup simple and we assume that this configuration solicits enough at-

tacks to allow us to study drive-by-download attacks and investigate new

detection techniques. It is expected that our work will be generalizable

beyond the particular configuration of the browser.

In this chapter, we have presented the concept of intrusion detection,

provided an overview of various types of web-based client-side attacks,

particularly the drive-by-download attacks, as well as defined the scope

of the thesis. Our work focuses on the detection of drive-by-download

attacks. In the next chapter, related work in this area is reviewed. We

review related work on intrusion detection as well as specific work that

aims at detection of and protection against drive-by-download attacks. We

show the gaps and short comings of the existing work around detection

and illustrate how our work intends to more effectively detect drive-by-

download attacks.

Chapter 3

Related Work

In this chapter, the related work is reviewed and discussed. The problems

of drive-by-download attacks and malicious web servers, as well as char-

acteristics of malicious web servers, are reviewed based on existing white

papers and research studies. The second section reviews defensive intru-

sion prevention strategies and shows that generic strategies are ineffective

to counter the threat of drive-by-download attacks. While our work fo-

cuses on the task of identification of malicious web servers, research on

specific defensive strategies exists and is presented in Section 3.2. Detec-

tion of drive-by-download attacks, however, is challenging and a major

contribution of this work. Intrusion detection techniques are ineffective to

detect drive-by-download attacks and a more able detection mechanism,

i.e., client honeypots, is needed. Section 3.3 reviews existing detection

techniques, in particular client honeypot technology, and demonstrates

where these lack capabilities. This chapter concludes with a discussion

of gaps from the related work that are addressed by our work.

3.1 Drive-by-Download Attacks

Several commercial entities work in the space of intrusion detection. Since

commencement of the work for this PhD, many commercial entities have

27

CHAPTER 3. RELATED WORK 28

appeared that focus on the detection of and protection against drive-by-

download attacks [163, 162, 130, 60, 143, 1, 86, 36, 47, 122, 82]. These enti-

ties actively search for malicious web sites and just recently have started

to publish white papers with their findings on a regular basis [123, 131,

83, 164, 38, 90]. The latest publications available in the second half of 2008

paint a dire picture of the Internet landscape. Financial gain is the pri-

mary motive behind drive-by-download attacks and has attracted a lot

of criminal elements. Sophisticated criminal structures have been estab-

lished to more effectively steal and trade confidential information, such as

credit card numbers or online game account credentials, collected from a

victim’s machine and disseminated [164, 123, 38]. Increasing the chance

of exposure that potential victims will be exposed to malicious web sites

increases the criminal organization’s profits. This is a consistent theme

throughout the various white papers.

The majority of the white papers report a significant increase of web-

based client-side attacks in the middle of 2008, leading to the web becom-

ing the primary attack vector to infect users with malware [123, 131]. To

increase exposure to these attacks, attackers are increasingly turning to

hacking and abusing existing legitimate web sites that have an established

incoming traffic stream. Attackers break into these systems by targeting

the web application [123, 164, 131], with structured query language (SQL)

injection being a primary attack vector [123], but other types of injection

attacks have been observed [164]. Tools such as BSQL Hacker [79] simplify

these attacks and even allow a novice adversary to launch attacks on a

large scale. Thousands of web sites infected by SQL injection attacks have

been observed [121, 76, 91]. No type of web site seems to be immune to

these attacks and even the majority of the top 100 most popular web sites

seem to have been involved in malicious activity in the first half of 2008

[164]. Even knowledgeable and security-conscious organizations, such as

the US consulate in St. Petersburg, have fallen victim [131]. Sophos re-

ports 83% and Websense reports 75% of malicious web sites are legitimate

CHAPTER 3. RELATED WORK 29

sites that have been hacked.

To increase the effectiveness of the malicious web sites, criminals are

highly sensitive to location, language, and economic trends [38]. Specific

regions, for example, are targeted in so-called campaigns. Web exploita-

tion kits that bundle various exploits support these specialized campaigns.

As a result, attacks might differ from country to country [38]. For in-

stance, the majority of malware on Chinese sites might target the theft

of passwords from online gamers [90, 131], whereas malware on Brazilian

sites is designed to steal bank account information [131]. Through specific

campaigns, attackers are seeking to increase their return on investment

through mass penetration of specific weaknesses.

As a result, the security companies in this space pay special attention to

geography. Data from the majority of reports lists two countries as hosting

the majority of web-based client-side attacks: the United States of America

and the People’s Republic of China [123, 141, 131]. Stopbadware.org found

a higher percentage of malicious sites in China and hypothesizes that lack

of economic incentives for Chinese hosting providers to clean their sites

is a reason for this difference. Contact initiated by Stopbadware.org with

US and European hosting providers was fruitful in removing malicious

content, whereas in China these efforts were not. McAfee didn’t inves-

tigate physical location, but rather investigated top level domain names

[83]. Their report shows that web sites in .ro (Romania), .info, and .nu

(Niue) contain the highest percentage of malicious web sites; .cn (China)

is listed as fourth; .us (United States) is in 18th position.

China is named repeatedly in the white papers. Malicious web sites

and the underground economy of the Chinese web were the focus of an

academic study by Zhuge et al. [174]. Measurements on 215,511 popular

Chinese web pages with a high-interaction client honeypot revealed a high

percentage of malicious web pages at 1.38%. Provos et al. also observed

a high fraction of malicious web pages to be located in China [110]. Sim-

ilar measurements on the prevalence of malicious web pages by previous

CHAPTER 3. RELATED WORK 30

studies on more generic web samples showed lower values of 0.2% [96]

and 0.071% [159]. Direct comparison of these values, however, cannot be

conducted due to a lack of information provided by the studies and lack

of information on how malicious web pages behave, which is discussed at

the end of this chapter.

Several studies have investigated whether URLs from various sources

influence the potential exposure to drive-by-download attacks. It comes as

no surprise that questionable content, such as warez, pornography, links

from known bad sites, or spam messages, shows a significantly higher

risk of exposure [159, 110, 96]. However, these studies also observe risk of

exposure to drive-by-download attacks on reputable web pages. A user

avoiding questionable content can lower, but not eliminate, the risk.

Analysis of the components a browser retrieves when loading a page

permits the analyst to pinpoint the source of the actual attack code. Provos

et al. estimate that 2% of all pages that launched drive-by-download at-

tacks were delivering attacks via advertisements [110]. Considering that

reputable web sites with a wide reach could therefore launch attacks, this

represents a particularly dangerous situation for end users. But even pages

that do not host advertisements ”import” exploits from other hosts. Wang

et al. first analyzed these structures in 2005 [159]. A browser that loads

a malicious web page can be redirected via multiple pages on numerous

hosts until the actual exploit is delivered by a central exploit server. Provos

et al. observed that 82% of malicious web pages identified make use of

such a structure. These exploit servers might be contacted by numerous

malicious web pages. Some exploit servers are used by ”well over 21,000”

malicious web pages [110]. These networks of malicious web pages, redi-

rect sites, and exploit servers are also referred to as malware distribution

networks. Characterizing whether a web page belongs to such a network

is a main contribution of our work.

CHAPTER 3. RELATED WORK 31

3.2 Intrusion Prevention

Intrusion prevention is one technique that could be used to defend against

drive-by-download attacks. Widely adopted defensive measures, such as

antivirus software, network address translation (NAT), and packet filters,

have significantly contributed to increased security of computer systems.

However, they are ineffective against drive-by-download attacks.

Antivirus software first appeared in 1988 [167]. The early versions were

highly focused on detection of particular viruses. Shortly after, first gener-

ation scanners appeared that were able to identify viruses based on simple

string matching [144]. Antivirus software initially was tasked with identi-

fying viruses and disinfecting the infected files. The scanning techniques,

as a result, were highly specialized to concentrate on binary data within

executable files. Malware is continuously making an effort to evade detec-

tion by antivirus software. Polymorphism, a technique in which the binary

fingerprint of the malware, but not its underlying functionality, changes,

is widely adopted today. Antivirus software first needs to update its sig-

nature to enable detection of the ”morphed” malware.

Antivirus software is constantly being evaluated and compared [12, 6].

These tests show that detection rates can be as low as 63%. While the aver-

age is higher and better antivirus products detect the majority of malware,

no antivirus product is able to detect all malware. In the area of drive-by-

download attacks, the performance of antivirus products is even worse.

Modification of the entry point, insertion of junk instructions, usage of

binary packers, obfuscated packer, and modification based on existing an-

tivirus signatures are polymorphic techniques observed by Zhuge et al.

on malware pushed by drive-by-download attacks [174]. Malicious web

pages are in a good position to adjust malware frequently to evade de-

tection by antivirus software, because the malware is hosted on a central

machine that is controlled by the attacker. Provos et al. observed that

a small percentage of URLs change the malware as often as every hour

CHAPTER 3. RELATED WORK 32

[111]. The detection rates of antivirus software are therefore rather low,

about 70% on average [110]. This is the antivirus software detection rate

for identifying a malicious binary that is placed as a result of a successful

attack. If the attack doesn’t succeed or its payload doesn’t push a binary,

for instance, in case a user account is added or sensitive documents are

copied, the antivirus would fail to detect such attacks. As such, the true

positive rate of antivirus software on detection of web pages that launch

drive-by-download attacks is likely to be lower.

A packet filter, which is a widely adopted defensive tool [52] that re-

stricts communication between networks based on network protocol char-

acteristics, such as transmission control protocol (TCP) ports, usually does

not prevent a drive-by-download attack from occurring either. Because

a packet filter can either permit traffic or block traffic at the expense of

the service, if system administrator permits browsers to access web pages,

exposure to drive-by-download attacks exists and the packet filter can-

not provide a layer of protection. Similarly NAT, which protects the in-

tranet infrastructure only from access that is initiated from an external

entity, does not provide a layer of protection either, because in drive-by-

download attacks, access is initiated from within the intranet, permitting

external entities to send content, in this case web pages from a web server,

to the machines on the intranet. The drive-by-download attack can thus

occur through the NAT gateway.

Numerous research efforts are under way to directly protect the client

application. BrowserShield, for instance, defuses malicious JavaScript at

run-time by rewriting web pages and any embedded scripts into safe equiv-

alents [114]. Self-defending software is being explored by Michael Ernst

[30]. This research protects commercial off-the-shelve (COTS) software by

detecting attacks in a collaborative environment and automatically apply-

ing generated patches to prevent such attacks in the future. Application

of this method on the Firefox browser serves as a proof-of-concept. Anag-

nostakis et al. use anomaly detection and shadow honeypots to protect,

CHAPTER 3. RELATED WORK 33

among others, client applications, such as a web browser [5]. Before the

web browser is permitted to process the requested data, suspicious data is

forwarded to the shadow honeypot, an instrumented browser that detects

memory violation attacks. If no attack is detected, the data is forwarded to

the end user; if an attack is detected, the data is dropped and the end user

effectively protected. A similar approach that uses execution-based web

content analysis in disposable virtual machines is presented by Moshchuk

et al. [95].

Commercial entities concentrate on blacklisting as a defensive strategy.

In those approaches, a request to retrieve a web page is checked against a

database of known bad web pages before the request is granted. The latest

versions of popular web browsers have adopted a blacklisting approach

[97, 102, 51]. Browsers that lack blacklisting capabilities can be enhanced

with such functionality through a variety of browser plug-ins or network-

based blocking devices [82, 60, 163]. Because a majority of web pages are

accessed via search engines [18], the major search engines Google, Bing,

and Yahoo provide a layer of protection by blacklisting malicious web

pages on their results page [126, 172, 48]. Google went as far as releas-

ing a publicly accessible API to check URLs against Google’s blacklist [50].

Blacklisting, however, can provide protection only if the underlying detec-

tion mechanism that the blacklists are based on is effective.

Existing work on the detection of malicious web pages is reviewed

next.

3.3 Detection

While the research efforts on directly protecting client applications are

promising, the need to effectively detect drive-by-download attacks re-

mains. Detection is important for incident response, economic modeling,

trend analysis, identification of new attack techniques, etc. Intrusion de-

tection systems, in particular network-based misuse intrusion detection

CHAPTER 3. RELATED WORK 34

systems, employ a similar approach to antivirus technology to detect at-

tacks [11]. Snort, a widely adopted open-source intrusion detection system

[118], employs pattern-matching technology that could potentially also

detect malicious web pages as it passes through the network. However,

the attack has to be known by these systems to be detected. In addition,

even known attacks can be missed. Obfuscation, which has been observed

by many studies mentioned above [159, 111, 174], can make detection dif-

ficult. Obfuscation is a technique in which malicious web servers change

the representation of the attack code during transmission so the attack

code cannot be identified. Upon loading of the web page, the obfuscated

attack code is converted into its clear text and is executed. As such, intru-

sion detection systems are mainly ineffective to detect drive-by-download

attacks. Evaluation of detection with intrusion detection signatures is a

contribution of this work.

Honeypots, an alternative to intrusion detection systems, are security

devices that are designed to detect computer intrusions and attacks. They

are dedicated security devices whose value lies in being probed, attacked,

and compromised [133]. A honeypot, for instance, could be a vulnerable

web server that is not contacted by legitimate users. Attackers that scan

for vulnerable web servers will eventually find this web server and attack

it. The operator of the honeypot can observe and study the attack.

The origin of honeypots can be traced far back to military concepts and

usage, but they first appeared in the area of computer security in the 1980s

[139]. They address some of the shortcomings that intrusion detection sys-

tems pose. In particular, they are capable of detecting unknown attacks at

low false positive rates.

To use honeypots to detect drive-by-download attacks, a new type of

honeypot was introduced: the client honeypot. The concept was first ar-

ticulated in 2004 [134] and studies and specific implementations first ap-

peared in 2005 and 2006 [157, 159, 96]. A client honeypot is a honeypot that

finds servers that attack clients. It actively interacts with potentially mali-

CHAPTER 3. RELATED WORK 35

cious servers to determine whether they are malicious or benign. Mostly,

client honeypots today identify drive-by-download attacks on browsers

launched by a web server. However, client honeypots can identify a wider

spectrum of client-side attacks and also are capable of detecting attacks on

client applications other than web browsers.

Next, common client honeypot components are described, followed by

a description of the two major types of client honeypots: low- and high-

interaction client honeypots. For each type, specific implementations are

reviewed and advantages and disadvantages of the various types are sum-

marized.

3.3.1 Client Honeypot Components

A client honeypot actively interacts with potentially malicious servers to

determine whether they are malicious or benign. Based on our client hon-

eypot implementation and analysis of existing client honeypots, we identi-

fied three core components of a client honeypot: Queuer, Visitor, Analysis

Engine. This model has been accepted as a client honeypot model by the

research community [116, 169, 33, 142]. The client, such as a web browser,

is controlled via a Visitor component of the client honeypot, which in-

teracts with potentially malicious web servers. Information about what

server to interact with and the data to be sent to the server is created by a

Queuer component that generates server requests. A Queuer component

could be, for example, a web crawler. Lastly, the Analysis Engine assesses

whether the server the Visitor interacted with is malicious or benign.

3.3.2 Client Honeypots Types

One can classify honeypots by the interaction level. Possible values of

the interaction level are high and low. The high-interaction level denotes

that the honeypot system allows for full functional interaction, whereas a

low-interaction level signifies that the functionality is limited, for example,

CHAPTER 3. RELATED WORK 36

by using emulated services [109]. In the context of client honeypots, the

Visitor component determines the interaction level.

High-Interaction Client Honeypots

As mentioned above, a high-interaction client honeypot can fully interact

with the server. An actual instance of a vulnerable browser on a dedicated

operating system is a natural candidate for a high-interaction client hon-

eypot. As the client interacts with the server, the system, via the Analysis

Engine component, monitors the system for unauthorized state changes,

such as file modifications or process adjustments that would indicate a

successful attack. This approach is not limited to web browsers, and re-

cent research has explored additional client applications, such as instant

messaging applications [171] and office applications [116].

Whether a state change is authorized or unauthorized is determined

by an implied security policy. A browser process, for instance, is expected

to create new files in the browser cache, but is not permitted to create

new files in the startup group. A browser process is expected to open the

default email client when processing a mailto: link, but is not permitted to

execute the command shell. A user might grant exception of the security

policy as the user browses the web. For instance, a user can choose to

download and execute a program when prompted to do so.

Figures 3.1 and 3.2 show the security policy of a web browser for file

system events and process events. A web browser is permitted to read,

create, and modify cache, history, cookies, and temporary files as well as

files that are generated as part of a web browser crash. (While a crash

could indicate an attack, it could also indicate a non-malicious fault. As

such, crashes are ignored as part of our work.) Further, a web browser’s

plug-ins are permitted to read, create, and modify temporary files and

plug-in application and user data, which are specific to the plug-in. Any

file access, creation or modification of files are considered an unautho-

rized state change. Permitted process events are fewer. A web browser is

CHAPTER 3. RELATED WORK 37

Web Browser

Plug-ins

Cache

Plug-in

Application

Data

History

Cookies

Temporary

Files

Crash Data

Plug-in User

Data

Temporary

Files

Figure 3.1: Authorized File State Changes of Web Browser and Its Plug-ins

permitted to create and terminate processes that are linked to its protocol

handler (e.g., the default email client for mailto: protocol) and processes

that are related to a web browser crash and printing. Further, the plug-ins

are permitted to create and terminate plug-in-dependent processes (e.g.,

MSN messenger plug-in is permitted to open the MSN messenger client).

Creation or termination of any other processes is considered an unautho-

rized state change.

Because the system that drives the vulnerable browser is actively ex-

ploited in an attack, it cannot be trusted anymore. As a result, it is reset

into a clean state before the client honeypot proceeds to inspect additional

URLs. All high-interaction client honeypots today use some form of virtu-

alization technology, because it provides an easy way to reset the state of

the operating system and client honeypot into a clean state.

CHAPTER 3. RELATED WORK 38

Figure 3.2: Authorized Process State Changes of Web Browser and Its

Plug-ins

The main advantage of high-interaction client honeypots that monitor

the system for unauthorized state changes is their ability to detect known

as well as unknown attacks, because no knowledge about the attacks is

applied when detecting them. Rather, the effects of successful attacks are

observed. In addition, the false positive rate, given that the security policy

is correct, is negligibly low. For each reported attack, it is guaranteed that

an attack has taken place.

When our work commenced, only a few high-interaction client honey-

pots were mentioned in the literature: HoneyClient [157], HoneyMonkey

[159], University of Washington (UW) client honeypot [96], and the Pez-

zonavante Honeyclient [25]. These client honeypots focus on malicious

web servers, which they interact with by driving a web browser on the

dedicated honeypot system. HoneyClient detects successful attacks by

monitoring changes to a list of files, directories, and system configuration

after the HoneyClient has interacted with a server. HoneyMonkey also

CHAPTER 3. RELATED WORK 39

detects intrusions by monitoring changes to a list of executable files and

registry entries, but HoneyMonkey goes a step further by adding moni-

toring of the child processes to its repertoire to detect client-side attacks.

In addition, HoneyMonkey contains a vulnerability specific exploit detector

that records an identifier on what vulnerability was targeted by a specific

exploit; however, the study merely mentions the existence of such a de-

tector, but does not provide any empirical data on the performance of the

detector. The UW client honeypot uses event triggers of file system ac-

tivity, process creation, registry activity, and browser crashes to identify

client-side attacks.

There were some additional technical differences between the imple-

mentations. The initial version of HoneyClient took snapshots before and

after the client application interacted with a set of servers in sequence.

The snapshot mechanism was slow, but multiple servers between snap-

shots reduced this time to lower levels. Interacting with multiple servers

between snapshots did not allow HoneyClient to determine which server

launched the attack. A similar approach was adopted by HoneyMonkey.

However, HoneyMonkey implements a pipeline in which, once an attack

is identified, the URLs it requested between snapshots are forwarded to a

system that interacts with each server in sequence. A system that monitors

state changes in real time permitted this system to more quickly pinpoint

the server that launched the attack.

All client honeypots interact with a potentially malicious server with

a vulnerable client. Because an attack might not immediately trigger, the

clients wait a period before a final classification. Honeymonkey and UW

client honeypot waited approximately two minutes. Spycrawler sped up

the clock of the client honeypot system, so they could reduce the visitation

time further. Their system was able to inspect approximately 15,000 URLs

per client honeypot system per day. This compares to 4,000 URLs for the

HoneyMonkey system.

In addition, client honeypots have been observed to miss attacks [159,

CHAPTER 3. RELATED WORK 40

96, 174]. This is particularly problematic when conducting studies on

the prevalence of malicious web pages on the Internet. Time bombs, in

which an exploit triggers only after an extensive period has passed; non-

deterministic behavior of malicious web pages; attacks that trigger only

on user interaction; and triggering an attack only when accessing a web

server from a specific network are: all behavior that is suspected or has

been observed by these studies. These all lead to the client honeypot fail-

ing to identify an attack causing a false negative result.

Client honeypots are faced with difficulties in comprehensively detect-

ing malicious web pages. They are slow and, because the detection algo-

rithms are based on monitoring unauthorized state changes in a dedicated

system, they require a lot of computing resources. In addition, they tend to

miss attacks. With the existence of millions of web servers and billions of

web pages, client honeypots may be prohibitively expensive for inspecting

a large portion of the web. Efficiency improvements to high-interaction

client honeypots and the introduction of a hybrid client honeypot system

that significantly reduces the costs of identifying malicious web pages are

major contributions of our work.

Low-Interaction Client Honeypots

The low-interaction client honeypot is the second major type of client hon-

eypot. We note the lack of low-interaction client honeypots for detection

of drive-by-download attacks. Low-interaction client honeypots simulate

clients and assess whether an attack has occurred. Because active exploita-

tion may not occur, the low-interaction client honeypot does not classify

a response by monitoring the system for unauthorized state changes, but

rather by inspecting the response directly. Signatures, heuristics, and se-

curity predicates are possible techniques through which low-interaction

client honeypots are able to detect attacks.

The advantages of low-interaction client honeypots are multifold. Be-

cause a client can be simulated, these types of client honeypots are usu-

CHAPTER 3. RELATED WORK 41

ally more lightweight and able to scale better than high-interaction client

honeypots. In addition, because they are not looking for the effects of an

attack, an attack does not need to trigger for a low-interaction client hon-

eypot to classify a web page as malicious. This allows these honeypots to

detect certain types of attacks that high-interaction client honeypots might

miss. For instance, if an attack triggers only on some action of the user, a

low-interaction client honeypot can still inspect the response and detect

the attack code.

Specific implementations of low-interaction client honeypots that de-

tect drive-by-download attacks have appeared since we identified the lack

of low-interaction client honeypots in our taxonomy. We review these im-

plementations next. Some low-interaction client honeypots detect mali-

cious web sites that contain threats other than drive-by-downloads. We

refer the interested reader to the bibliography [63, 96, 108]. The first imple-

mentation of a low-interaction client honeypot designed to detect drive-

by-downloads was our HoneyC.

Stuurman et al. analyzed a set of malicious and benign web page con-

tent using static techniques to determine whether differences exist that

would permit classification of web pages using low-interaction client hon-

eypots [142]. The researchers investigated obfuscated JavaScript, strings

after deobfuscation, and the existence of iFrames. They observed that ob-

fuscated JavaScript and certain strings are indicators of a malicious web

page. They observed the existence of iFrames on both benign and mali-

cious web pages and concluded that they were not suitable for classifying

pages. However, a low-interaction client honeypot system was not built

by the researchers and an evaluation of these methods as part of a low-

interaction client honeypot was not discussed. Our work presented in

Section 6.3 shows that an iFrame that has specific characteristics can be

a good indicator of whether a page is malicious or benign.

The Caffeine Monkey engine is a tool that is targeted at collection, de-

tection, and analysis of malicious JavaScript [33]. It uses a combination

CHAPTER 3. RELATED WORK 42

of static and dynamic analysis techniques to classify JavaScript. Instead

of looking at absolute numbers of JavaScript elements, ratios of function

calls are taken into account. Obfuscation that might hinder such an anal-

ysis is addressed by automatically deobfuscating the JavaScript code with

an instrumented JavaScript engine.

HoneySpider, a system built by NASK/CERT Polska, GOVCERT.NL

and SURFnet, contains a low-interaction client honeypot that detects ma-

licious web pages based on obfuscation [135]. It uses a machine learning

algorithm built based on x character N-grams. While no published re-

search is available, the researchers report some promising results [69].

Provos et al. used a machine learning algorithm based on a set of

heuristics, such as the existence of iFrames, obfuscated JavaScript, etc.,

to classify a web page [110]. A cross validation predicted a detection accu-

racy of 0.001 false positive and 0.6 true positive rates. However, no details

on the classification method were disclosed.

While these approaches try to inspect static characteristics, Nazario

takes a different approach with the low-interaction client honeypot Phon-

eyc [99]. According to Nazario, Phoneyc was designed to specifically

address the shortcomings of our HoneyC system. Phoneyc is capable

of detecting attacks on scriptable ActiveX components. It uses a simu-

lated browser with ActiveX interface to detect specific attacks through

vulnerability-specific predicates [66], similar to the vulnerability-specific

exploit detector presented by Wang et al. [159]. Phoneyc is therefore in the

position to categorize attacks based on the vulnerabilities they are exploit-

ing. Because it is based on specific predicates, it is not capable of detecting

unknown attacks. While a description of the tool is available, at the time

of this writing no quantitative research that evaluated the approach has

been published. A similar approach to Nazario’s work has been presented

by Buescher et al. [19].

As already mentioned, low-interaction client honeypots have some dis-

advantages over high-interaction client honeypots. Approaches in which

CHAPTER 3. RELATED WORK 43

predefined knowledge is required are not capable of detecting unknown

attacks. Further, interacting with a server using a simulated client runs the

risk of being detected and, as a result, no attack is launched and detection

fails. In the case of a web browser, this could be done passively, such as

evaluation of browser headers as demonstrated by Ruef [119], or actively

by, for example, utilizing functionality usually not present in simulated

clients, such as the ability to initialize ActiveX components, as recently

demonstrated by Hoffman [61]. These capabilities have been observed in

which the web page does not contain an attack if accessed with a simu-

lated client, such as wget, but does contain the attack when accessed with

a real client, such as MSIE6 [165]. The end result will be identical: the

low-interaction client honeypot will not detect an attack.

Low-interaction client honeypots produce false positives. This is an-

other disadvantage. In particular, low-interaction client honeypots that

utilize machine learning methods produce false positives. An example is

obfuscation. While obfuscation is usually encountered on malicious web

pages, obfuscation also has its legitimate use. It is used by advertisement

companies to protect themselves from click-fraud tools and can also be

used to protect from intellectual property theft. A low-interaction client

honeypot that alerts on obfuscated code may produce false positives in

those instances.

Overall, however, low- and high-interaction client honeypots both have

their advantages and disadvantages that on balance do not elevate one

technology over the other. Rather, the purpose and goals of operating a

client honeypot determine which technology should be used. Pouget et

al. compared the interaction levels of server honeypots [106] and con-

cluded they are complementary in nature and allow for more accuracy,

depending on the circumstances of deployment and goals of data collec-

tion. For example, it might be unnecessary to deploy a high-interaction

server honeypot on a global scale as global data is likely to be similar;

low-interaction server honeypots are more suited for this situation. On

CHAPTER 3. RELATED WORK 44

the other hand, low-interaction server honeypots are not suited for an

in-depth investigation of attacker’s actions once a server honeypot has

been successfully compromised. High-interaction server honeypots are

required to meet these goals, as they expose the full functional spectrum

of a computer system to the attacker and therefore allow for collection

of the desired data. A similar approach seems viable for client honey-

pots. A system that combines components to address the false positive

rate of high-interaction honeypots was presented by Anagnostakis et al.

[5]. Anomaly-based intrusion detection is used for an initial assessment of

the data. Once suspicious data with a large false positive rate is identified,

it is forwarded to a honeypot for a final assessment. Application of this ap-

proach to client honeypots was suggested by the researchers. Sidiroglou et

al. present a hybrid system to protect against malicious email attachments

[128]. Suspicious email attachments are opened in an instrumented virtual

machine. If dangerous actions such as writing to the Windows Registry are

detected, the mail is deemed malicious and is quarantined. As part of our

work, we will present a hybrid system of low- and high-interaction client

honeypots that is capable of finding malicious web sites on the network in

a cost-effective way.

3.4 Gaps in the Related Work

Through an overview of the related work, this section identifies some spe-

cific gaps in the existing research that we are planning to fill with our re-

search to detect malicious web pages in a cost-effective way. Four areas are

the focus of our work: client honeypot technology, an evaluation method

of client honeypot technology, a methodology that reduces risk to inter-

nal and external validity, and development of a method to assess whether

a page belongs to a malware distribution network using low-interaction

client honeypots and subsequently hybrid client honeypots in a more cost

effective way.

CHAPTER 3. RELATED WORK 45

First, we focus on client honeypot technology. A review of the related

work shows that several different high-interaction client honeypot sys-

tems exist. However, at the time our work commenced, only MITRE’s

HoneyClient was publically available, whereas Moshchuk’s implementa-

tion and Microsoft’s HoneyMonkey were not publicly available. MITRE’s

HoneyClient did not fulfill our requirements around speed, stability, ex-

tensibility, and ability to collect digital evidence to conduct research in this

area. An open research platform to study malicious web pages was miss-

ing. We addressed this gap through implementation of the open-source

client honeypot Capture-HPC, which is publicly and freely available.

Second, we focus on evaluation techniques. From the description of

the existing high-interaction client honeypots, it appears that they all use

a similar approach to detect malicious web pages, but do contain some

obvious differences, such as visitation algorithm, classification delay, vul-

nerability exposure, etc. However, the differences do not translate into a

metric of increased ability to detect malicious web pages. In general, no

model or method to evaluate client honeypots exists. As a result, compar-

ison of various client honeypots is not possible and research in this area to

further implement improvements is hindered.

In Chapter 4, we address this gap. First, we present a model that allows

one to assess the effectiveness of high-interaction client honeypots and

therefore provides a mechanism to objectively compare high-interaction

client honeypots. The basis of this model is a cost model of operating

client honeypots. Factors that feed into this model are speed, detection

accuracy, resource costs, and the base rate – percentage of the malicious

web servers – pm that a client honeypot is presented with. We present our

high-interaction client honeypot Capture-HPC with improvements on its

visitation algorithm to illustrate how the method can be used to evaluate

high-interaction client honeypots.

Third, we concentrate on the risks to internal and external validity of

the experimental design that aims at identifying malicious web servers on

CHAPTER 3. RELATED WORK 46

the network with client honeypots. Internal validity captures the intent of

the researchers, whereas external validity is about the ability to generalize

results beyond the experimental setting. The related work section presents

various studies and white papers that report on measurement of malicious

web servers on the network. However, the results differ considerably. For

instance, Moshchuk’s study presents percentage of malicious web pages

of 1.5% in May 2005. During the same time frame, Wang observes a per-

centage of 0.071%. These numbers raise the question of whether the risks

to internal and external validity were mitigated as part of the studies’ ex-

perimental setup.

In Chapter 5, we apply the HAZOP study on the experimental design

of the measurement study to identify, prioritize, and mitigate threats to

internal and external validity in a systematic and thorough manner. We

illustrate how the lack of control on dependent variables may pose a risk

to internal and external validity. First, we illustrate that the URL source

can greatly impact measurements; second, we show how time also has

a major impact on measurement. HAZOP allows us to mitigate risks to

internal and external validity of our studies in a systematic and thorough

manner.

The fourth gap in efficiently detecting malicious web pages is filled

through the low-interaction client honeypots which determine whether a

web page belongs to a malware distribution network. Early studies on

malicious web servers identified the structures of a malware distribution

network. Provos et al. and Wang et al. showed that many malicious web

pages utilize centralized exploit servers. However, very little work has

been done to characterize these structures to the point that they can be

used to characterize whether a web page belongs to such a network. We

employ static and dynamic analysis techniques to determine whether a

web page belongs to a malware distribution network.

Equipped with this knowledge, we model, develop, and evaluate a

hybrid client honeypot system that is able to detect malicious web pages

CHAPTER 3. RELATED WORK 47

much more cost-effectively than existing methods. In Chapter 7, we present

this hybrid client honeypot system. It combines a low-interaction client

honeypot that incorporates the method of assessing whether a page be-

longs to a malware distribution network with the traditional high-interaction

client honeypot into a hybrid system. An evaluation shows that such a hy-

brid client honeypot system is capable of detecting malicious web pages

much more cost effectively than existing approaches.

Chapter 4

True Positive Cost Curve

A client honeypot is a honeypot that finds servers that attack clients. It

interacts with servers to determine whether they are malicious or benign.

High-interaction client honeypots classify potentially malicious web pages

by driving a vulnerable web browser to retrieve these pages and monitor-

ing the system for unauthorized state changes, such as file modifications

or process creations that would indicate a successful attack. Whether a

state change is authorized or unauthorized is determined by an implied

security policy that defines what is permitted and prohibited. A browser

process, for instance, is expected to create new files in the browser cache,

but is not permitted to create new files in the program startup group.

High-interaction client honeypots are tasked with classifying web pages

as malicious or benign, and the ability to identify many malicious URLs

quickly is a crucial task. Quick identification makes it possible to react

to the threat in a timely manner, collect a large sample to evaluate attack

trends, and identify zero-day attacks before they are widespread. As men-

tioned in the previous chapter, high-interaction client honeypots present

challenges in achieving this goal: They are inherently slow and are known

to miss attacks.

As research addresses these shortcomings, it becomes increasingly im-

portant to evaluate client honeypot technology. Evaluation not only al-

48

CHAPTER 4. TRUE POSITIVE COST CURVE 49

lows one to compare different technologies and improvements in the tech-

nologies, but also to detect and react to changes in the attack landscape.

In this chapter, we present a method for evaluating high-interaction

client honeypots in an operating environment against their primary pur-

pose, which is to identify malicious web pages in that environment. The

method therefore takes into account the client honeypot technology as

well as the operating environment as factors.

The method presented here is designed to evaluate a client honeypot’s

purpose of identification of malicious web pages. More specifically, it is

designed to evaluate the ability to identify malicious web pages with iden-

tical resources. A client honeypot will evaluate better if it is able to identify

more malicious web pages. Companies that provide blacklisting services

against malicious web pages, such as browser software companies, search

engines, or security perimeter defense companies may want to achieve this

goal. However, alternatively there may be different applications for client

honeypots. For instance, research institutions may want to develop client

honeypots that are able to identify all malicious web pages in a sample,

independent of the cost. This would, for instance, allow them to research

advanced attack scenarios. The evaluation method presented in this chap-

ter would not be suitable to evaluate client honeypots against the latter

scenario.

After the method and the factors it considers are presented, we in-

troduce and evaluate improvements on high-interaction client honeypot

technology with this method. We present new visitation algorithms that

show significant improvements to the ability of client honeypot technol-

ogy to find malicious web pages on the network. In the last part of this

chapter, we show how the characteristics of the operating environment

impact the performance of a high-interaction client honeypot.

CHAPTER 4. TRUE POSITIVE COST CURVE 50

Figure 4.1: Receiver Operator Characteristics Curve Example

4.1 Evaluation

Within the general field of intrusion detection systems (IDSs), the need

for evaluation has been identified for many years [78, 3, 10]. Effective-

ness, efficiency, ease of use, security, interoperability, and transparency

are some characteristics that could be evaluated. The effectiveness of an

IDS at detecting intrusions has received intensive scrutiny in the research

[78, 138, 10, 44, 57, 21, 84]. IDS effectiveness was initially simply expressed

in the form of true positive and false positive rates. For anomaly-based

IDSs, however, these figures are not sufficient, because a sensitivity thresh-

old on those systems can be manipulated that affected these rates. Re-

ceiver operator characteristic (ROC) curves combine the true positive and

false positive rates over a variety of sensitivity threshold settings into one

graph as shown in Figure 4.1 [80]. However, while the concept of true pos-

itive and false positive rates is easily conveyed and understood, the true

CHAPTER 4. TRUE POSITIVE COST CURVE 51

positive and false positive rates are also quite deceiving, because distri-

bution of attacks and non-attacks in the event stream, also known as the

base rate, can lead to a counterintuitive distribution of attacks and non-

attacks in the events for which the IDS raised alerts [10]. As Axelsson

describes, because attacks are usually rare events, a set of alerts usually

consists primarily of false positives. The Bayesian detection rate, express-

ing the probability of an intrusion in the case of an alert, was introduced

to address this shortcoming of the true and false positive rates.

Cost-based models, in which costs are associated with the various con-

ditions around events, attacks, and alerts, have been proposed [138, 44].

Cost and how those costs are linked to the base rate and detection accu-

racy of the system are easily understood. However, Gu et al. offer the

critique that a lack of good risk analysis models makes objective selection

of the cost factors difficult [57]. They propose a new metric, the Intru-

sion Detection Capability CID, which is founded in information theory. Its

value is based on the reduced uncertainty of the input given the intrusion

detection output. It is a numeric value that takes into account the true pos-

itive, false positive, and base rates and combines these into one number.

With this abstraction, however, comes a disadvantage, in that it is diffi-

cult to link to specific quantities of interest to an operator of an IDS. For

instance, an improved CID cannot be easily linked to the ability of an IDS

to detect twice as many attacks as before. A sophisticated framework to

evaluate IDSs was presented by Cardenas et al. [21]. They introduce the

intrusion detection operating characteristic (IDOC) curves as a new IDS

performance tradeoff that combines in an intuitive way the variables that

are more relevant to the intrusion detection evaluation problem.

The evaluation techniques described above could be adopted to evalu-

ate high-interaction client honeypots. However, unique characteristics of

client honeypots make this approach impractical. First, the ability to de-

tect attacks is different. High-interaction client honeypots are dedicated

devices that find malicious web pages on a network and have a negligi-

CHAPTER 4. TRUE POSITIVE COST CURVE 52

ble false positive rate, which is primarily associated with incorrect secu-

rity policies. While IDSs do struggle with false positives, high-interaction

client honeypots primarily struggle with the false negative rate, i.e., their

inability to identify all attacks. Second, high-interaction client honeypots

are active devices that are tasked with finding malicious web pages. Re-

source costs associated with this task are of much greater importance than

with IDSs.

We have developed the true positive cost curve for high-interaction

client honeypots as a method for evaluation of high-interaction client hon-

eypots in an operating environment as presented in this section. The method

borrows some aspects of IDS evaluation, but also incorporates the unique

characteristics of high-interaction client honeypots. At the core of the

method stands the true positive cost curve, a simple yet effective method

for evaluating high-interaction client honeypots in an operating environ-

ment. Because high-interaction client honeypots are primarily tasked with

finding malicious web pages on a network, the true positive cost curve

simply expresses the cost per malicious web page cURL identified over the

base rate p, the percentage of malicious web pages in the sample. Cost

per malicious web page identified was chosen for the evaluation model

because it maps to the primary goal of a high-interaction client honeypot

– to identify malicious web pages – and can easily be compared. A client

honeypot’s performance is better if the overall cost to identify a malicious

web page is lower. The base rate p is plotted on the x-axis to break out

the impact of different base rates on the cost of identifying a malicious

web page. As the base rate p increases and more malicious pages exist in

the sample, the cost to identify a malicious web page is reduced, because

a client honeypot will naturally identify more malicious web pages as it

encounters more malicious web pages.

The example in Figure 4.2 shows the true positive cost curve for high-

interaction client honeypots A and B. The y-axis plots the operating cost

in US dollars to identify one malicious web page. High-interaction client

CHAPTER 4. TRUE POSITIVE COST CURVE 53

Figure 4.2: True Positive Cost Curve for High-Interaction Client Honey-

pots - Example

honeypot A shows a cost cURL of about 0.30 US dollars for p = 0.04,

whereas high-interaction client honeypot B shows a cost cURL of about

0.20 US dollars. Client honeypot A is therefore more performant for that

base rate. However, as the base rate increases, the two costs decrease at

different rates. At a base rate of about p = 0.14, the cost of client honeypot

B becomes lower than the cost of client honeypot A, and it remains lower

with increasing base rate. As the figure shows, client honeypot B is more

performant than high-interaction client honeypot A for greater values of

p.

The example illustrates that the question of which client honeypot per-

forms better than the other is not easily answered. The answer depends

on a variety of factors. Client honeypot A’s performance is better for a

low and typical value of the base rate p. However, if the base rate were

CHAPTER 4. TRUE POSITIVE COST CURVE 54

to change because of a difference in attack landscape or the ability to feed

malicious URLs with a high base rate to the client honeypot, client honey-

pot B would be more effective.

Cost is the central metric for evaluating high-interaction client honey-

pots. The factors that determine this cost are presented next.

4.1.1 Cost and Cost Factors

Cost associated with identifying a malicious web page cURL is a simple yet

effective way to compare client honeypots. Stolfo and Gaffney proposed

to use cost to compare and evaluate IDSs [138, 44]. The main criticism

of useing cost for evaluation is the uncertainty of the cost factors and the

subjective association of cost. In their models, the classification errors of

false positives and false negatives were the main driver of cost. Associa-

tion of a cost that comes with a false alarm is indeed highly subjective. An

operator has to investigate the alarm-associated attack and this can take a

few minutes to days. It is even more difficult to place a price tag on miss-

ing an actual attack. Cost could range from the negligible cost associated

with stealing a few processor cycles to the cost associated with recovering

an entire data center. When carried into intangible assets such as losing a

trade secret or the reputation of a company, association of an attack with a

cost is even more difficult.

Cost needs to directly map to characteristics of the client honeypot in

its ability to identify malicious web pages as well as the characteristics

of the operating environment, as shown in Figure 4.3. These cost factors

should be measurable and map to actual costs in an objective way. The

main cost factors are speed, resource costs, detection accuracy, and the

base rate. Operating characteristics, such as network location and evasion

techniques employed by the attackers, manifest themselves with the de-

tection accuracy for a given base rate. These characteristics are described

below.

CHAPTER 4. TRUE POSITIVE COST CURVE 55

Figure 4.3: Cost Factors

Speed

High-interaction client honeypot speed influences certain operating costs.

Between two otherwise identical high-interaction client honeypots, the

one that is faster will be able to inspect more web pages over a given time

frame and, if their ability to detect malicious pages is identical, the faster

high-interaction client honeypot will detect a greater number of malicious

web pages while consuming fewer resources at a lower cost. The desirable

property of speed is therefore captured as part of the cost measurement.

Speed is expressed as tAlgo: seconds required for client honeypot to

inspect a sample of N URLs.

CHAPTER 4. TRUE POSITIVE COST CURVE 56

Resource Costs

Clearly, resources are consumed while the high-interaction client honey-

pot inspects potentially malicious web pages. These resources, such as

hardware costs as well as costs associated with network and power con-

sumption, are captured by cr. When utilizing machines in a computing

cloud, usage of computing resources is often given in hourly rates that

map to directly to cr.

Detection Accuracy

Detection accuracy is the third factor that largely impacts operating costs.

While a high-interaction client honeypot’s false positive rate is negligible,

the false negative rate FN drives the cost of identifying malicious web

pages using a high-interaction client honeypot. The false negative rate

expresses the failure of a high-interaction client honeypot to detect a mali-

cious web page when it is inspecting one.

A malicious web page can employ techniques that cause the high-interaction

client honeypot to fail at detecting it. The ability of a client honeypot to

detect malicious web pages is heavily influenced by characteristics of the

operating environment. The main characteristics are time bombs, loca-

tion, IP tracking, client honeypot detection, and non-deterministic behav-

ior. These are suspected to exist or have been observed by various studies

[96, 159, 174].

• Time bombs are exploits contained on a malicious web page in which

the exploit triggers only after a given period of time has elapsed.

• Location of a client honeypot is an operating characteristic that in-

fluences detection accuracy. Some malicious web pages selectively

attack a client based on its location. A web server might launch an

attack when accessed from Germany, but not if accessed from New

Zealand. This behavior could even be influenced as granular as spe-

cific networks and IP addresses.

CHAPTER 4. TRUE POSITIVE COST CURVE 57

• IP tracking is a technique used by malicious web pages to launch

an attack just once. Repeated interaction with the same page would

result in the web server hiding the attack by serving a false benign

page and, therefore, a client honeypot would fail to detect the mali-

cious nature of the page.

• Client honeypot detection can cause a client honeypot to fail to de-

tect a malicious web page. Passive fingerprinting [119], active finger-

printing [61], and behavioral aspects, such as access to robots.txt or

not loading embedded images [67], are techniques a malicious web

page can use to identify a client honeypot and selectively serve a

benign web page instead of its usual malicious web page.

• Non-deterministic behavior of malicious web pages brings about spo-

radic attacks, causing a client honeypot to occasionally fail to classify

the web page as malicious.

Between two otherwise identical high-interaction client honeypots, the

one with the lower false negative rate will be able to identify more mali-

cious web pages using the same resources, resulting in an overall lower

cost per malicious web page identified. The desired characteristic of high

detection accuracy is therefore captured as part of our cost measurement.

Base Rate

The base rate p, the percentage of malicious web pages in the sample that

are inspected by the client honeypot, is the last factor that influences costs.

While the base rate is not a characteristic of the client honeypot, but rather

an operating characteristic, it directly impacts a client honeypot’s ability

to identify malicious web pages and therefore impacts cost. A client hon-

eypot might be designed and optimized to identify malicious web pages

with a high base rate, as with high-interaction client honeypot B shown

in Figure 4.2. However, the cost associated with such a high-interaction

CHAPTER 4. TRUE POSITIVE COST CURVE 58

client honeypot might be much higher than the cost of using alternative

client honeypot implementations for low base rates.

4.1.2 Calculation of Cost

cURL =
tAlgocr

Np(1− FN)
(4.1)

The factors described in the previous section are applied to Equation

4.1 to calculate cURL. Time tAlgo, which is the time to inspect the sample

N , is multiplied by the resource costs per time unit cr. It is divided by

the number of malicious web pages identified in the sample, which is the

number of web pages in the sample multiplied by the base rate and the

true positive rate of the client honeypot: Np(1− FN).

A simple example illustrates how these factors can be mapped to our

cost metric. While the base rate and subsequently the detection accuracy

are not known, one can draw on existing measurement studies to estimate

them. The existing measurement studies [159, 96, 110, 174] show an aver-

age base rate of approximately 0.1%. A client honeypot that is capable of

inspecting sample N of 3,000 web pages in tAlgo 24 hours on a small Ama-

zon EC2 cloud computing instance [4] will inspect approximately three

malicious web pages a day. If the false negative rate is 33%, the client

honeypot will identify two of these malicious web pages. With a cost cr

of 0.125 US dollars per hour (equivalent to the hardware specs of a small

Amazon EC2 cloud computing instance [4]), the resource cost for the 24-

hour period is 3.00 US dollars. As a result, the cost to identify a malicious

web page cURL with this client honeypot is approximately 1.50 US dollars.

Were the base rate to increase, the cost would decrease. Assuming a

base rate of 0.5%, the client honeypot would inspect 15 malicious URLs.

With the false negative rate of 33%, the client honeypot would identify

approximately 10 malicious URLs. The cost to identify a malicious web

page would fall to 0.30 US dollars.

CHAPTER 4. TRUE POSITIVE COST CURVE 59

However, this example is greatly simplified. A changing base rate is

most likely to influence the speed and therefore hardware cost. An empir-

ical evaluation utilizing a fully classified sample is desirable.

cURL =
tAlgocr + cMA

Np(1 − FN)
(4.2)

As mentioned above, high-interaction client honeypots have a negligi-

ble false positive rate, which is why the false positive rate is not taken into

account in Equation 4.1. Although false positives were not encountered in

this evaluation, they are conceptually possible; for instance, false positives

could result from incorrectly configured client honeypots (e.g., security

policy, operating system) or advanced attacks that manipulate the client

honeypot without being detected by it. The cost model could be extended

to incorporate false positives by distributing the cost of manually analyz-

ing all web pages that were classified as malicious cMA across the number

of malicious web pages that were confirmed to be malicious, as shown in

Equation 4.2. However, once the cost of manual analysis is taken into ac-

count, special consideration needs to be given to keep this value objective,

such as standardization of consultancy costs and analysis times.

An example illustrates how the false positives could be incorporated

into our cost metric. We assume the identical client honeypot from the

previous example. However, this time the client honeypot produces one

false positive. As a result, three web pages are marked as malicious. A

manual analysis of these three web pages to confirm the client honeypot’s

classification is assumed to take 30 minutes. With an hourly consultancy

rate of 75 US dollars an hour, the cost CMA would be 37.5 US dollars. The

cost to identify the two malicious web pages, according to Equation 4.2,

would rise to 40.50 US dollars or 20.25 US dollars per malicious web page

(cURL).

Despite this, experience has shown that a properly configured high-

interaction client honeypot does not produce false positives. As a con-

sequence, it is assumed the cost of false positives is negligible and, as a

CHAPTER 4. TRUE POSITIVE COST CURVE 60

result, that cost is not incorporated into the cost metric.

In chapter 6, we introduce a new type of client honeypot: the low-

interaction client honeypot. It is capable of classifying web pages with

a simulated client, but as a consequence produces many false positives.

While it is theoretically possible to evaluate these low-interaction client

honeypots with the TPCC, it would be difficult to remain objective and

consistent as all the malicious web pages identified by the low-interaction

client honeypot would need to be manually verified. The cost associated

with such verification is likely to be high and would result in an overpow-

ering cost factor in the evaluation. As a result, we employ the TPCC only

on client honeypots whose false positive rate is negligible.

Next, we present improvements on the visitation algorithm of high-

interaction client honeypots. We introduce two new visitation algorithms

that significantly reduces the cost of the client honeypots. The two visita-

tion algorithms directly influence the factors around speed and detection

accuracy and are therefore good cases to evaluate with the presented cost

metric and true positive cost curve. Following, the impacts of the char-

acteristics of the operating environment on high-interaction client honey-

pots are presented and discussed. The true positive cost curves are used

to demonstrate how the characteristics influence the cost of finding a ma-

licious URL, a true positive, within an operating environment.

4.2 Improvements to High-Interaction Client Hon-

eypots

Speed of a client honeypot is crucial and the improvements that we intro-

duce in this section are primarily targeted at improving the speed of client

honeypots and, as a result, bringing down the cost of identifying malicious

web pages.

An estimation of the size of the threat illustrates why speed is so impor-

CHAPTER 4. TRUE POSITIVE COST CURVE 61

tant. According to a study in January 2005, 11.5 billion publicly indexable

web pages exist [58]. According to Netcraft, approximately 9,800,000 web

sites existed at that time, resulting in about 1173 pages/site on average.

Since Janurary 2005, the Internet has grown significantly. Netcraft reports

66 million web sites in July 2008 [100]. Assuming the number of pages

per site has not changed, the Internet consists of approximately 77 billion

indexable web pages.

Various measurement studies exist that provide insight into the threat

generated by these 77 billion indexable web pages. These studies have

observed a percentage of malicious web pages that attack Microsoft’s In-

ternet Explorer 6 without a service pack (IE6SP0) ranging from 0.071% to

1.5% and a percentage of malicious web pages that attack Microsoft’s In-

ternet Explorer 6 with service pack 2 (IE6SP2) of 0.1% [157, 96]. A study

conducted on Chinese web sites revealed a higher percentage of 1.38%

[174].

Considering the web consists of approximately 77 billion indexable

web pages in July 2008 and applying the values mentioned above, the up-

per bound of malicious web pages that attack IE6SP0 is estimated to be

between 55 million and 1.1 billion. According to Moshchuk, there seems

to be a bias of factor 15 on popular pages [96]. As such, the estimates could

be reduced to one fifteenth, or 3.6 million to 77 million URLs. Google has

already identified several million malicious URLs. As such, a lower bound

of 3.6 million can be assumed. Assuming the measurement studies missed

half of the attacks, the upper bound is likely to be higher at about 150 mil-

lion URLs.

Identification of these malicious web pages is a large task and is in-

feasible with the current performance characteristics of client honeypots.

A client honeypot does have a service time of a few seconds. According

to Wang, most web pages exhibit malicious behavior within the first 30

seconds [158]. Even a sample of 1,000 malicious web pages would take

a long time to collect or consume a lot of resources. With a base rate of

CHAPTER 4. TRUE POSITIVE COST CURVE 62

0.1%, 1,000,000 URLs would need to be inspected. If a client honeypot

spends about 30 seconds to retrieve and inspect a web page, it would take

approximately a year to inspect this number of pages. With significant

resources, for instance 50 client honeypots, this time period could be re-

duced to about one week. The cost to identify 1,000 pages would be ap-

proximately 1,000 US dollars at an hourly rate of 0.125 US dollars per hour.

This number certainly falls into a feasible range for small businesses or re-

search institutions. However, identification of all 150 million malicious

pages would run to millions of US dollars. Even with inspection of only

a small portion of web pages, such as 1%, the cost would be almost one

million US dollars. These figures are infeasible for small businesses and

research institutions.

Being able to sample malicious web pages with high-interaction client

honeypots, however, is an important task for both businesses and research

institutions. A set of malicious web pages used for blacklisting needs

to be comprehensive and up-to-date. Repeated measurement allows re-

searchers to determine attack trends and anticipate future attack techniques.

To collect a sample of sufficient size, the existing client honeypot technol-

ogy needs to be improved upon and speed as a major cost factor is the

hindering characteristic in achieving this goal.

Client honeypots consist of three components, as shown in Figure 4.4,

that offer many opportunities to improve their speed.

• The Queuer component specifies what URLs to visit. A Queuer could

intelligently select URLs based on characteristics of the URL or on

classification history to increase the likelihood of finding a malicious

web page.

• The Analysis Engine component assesses whether a web page is ma-

licious by monitoring unauthorized state changes that result from

a successful attack. Alternative means of detection – for instance,

detection techniques that do not require a classification delay to be

CHAPTER 4. TRUE POSITIVE COST CURVE 63

Queuer

Analysis Engine

Visitor

Figure 4.4: Client Honeypot Component Diagram

observed – could improve the speed of the client honeypot.

• The Visitor component retrieves and processes web pages. The vis-

itor component poses many opportunities for speed improvements,

which will primarily impact the speed of the high-interaction client

honeypot with identical resources. The Visitor component is the fo-

cus of this section.

This section presents these improvements on client honeypot technol-

ogy and evaluates them in the context of a client honeypot’s ability to de-

tect malicious web pages at a lower cost. Some existing algorithms are

reviewed and contrasted to two new algorithms presented in this section.

To evaluate the improvements, the presented true positive cost curves of

high-interaction client honeypots are used.

4.2.1 Visitation Algorithms

The improvements on the Visitor component of a client honeypot will pri-

marily impact the speed of the client honeypot with identical resources.

CHAPTER 4. TRUE POSITIVE COST CURVE 64

These speed improvements will increase the client honeypot’s ability to

inspect a sample of N web pages.

Four visitation algorithms – the sequential, bulk, bulk & sequential

(BAS), and the divide-and-conquer (DAC) – are presented and evaluated.

The sequential, bulk, and divide-and-conquer algorithms are evaluated

using our high-interaction client honeypot Capture-HPC v1 and v2. The

BAS algorithm is an algorithm that is implemented by HoneyMonkey

[159] and not directly available. Nevertheless, it is included in the eval-

uation with the help of a simulator.

The algorithm used by HoneyClient v1, the first publicly available client

honeypot [157], is not included in our comparison, because it does not im-

plement a visitation algorithm that is able to specify which web page is

malicious. Rather, HoneyClient v1 specifies that a malicious URL exists

within a buffer of k web pages and requires additional manual analysis

to determine which URL is the malicious one. While the cost of the man-

ual analysis could be assigned to the cost of HoneyClient, the cost would

certainly fall beyond economical levels even at a small scale. As a result,

HoneyClient is not included in our comparison.

The speed of client honeypots to inspect a sample of N web pages is in-

fluenced by various factors. First, the underlying technology of how state

changes are detected influences speed. HoneyClient v1, for example, takes

snapshots of the system whereas the other implementations use event trig-

gers that permit detection of the state changes as they occur. Independent

of the mechanism to detect the state changes, there are additional factors

that influence the total time tAlgo to inspect a sample of N web pages: the

network bandwidth and average size of the request/response influence

the time ti to retrieve and td to render and display a web page, the clas-

sification delay tw, the overhead of starting the client application ts, and

the overhead of resetting the client honeypot into a clean state after a ma-

licious web page has been encountered tr, which overall is impacted by

the base rate of the web pages p. The classification delay is a purposefully

CHAPTER 4. TRUE POSITIVE COST CURVE 65

introduced waiting period after a web page has been received before a

classification is made. This is introduced because some time passes before

many exploits trigger. This might be due to the nature of the exploit or

intentionally introduced by the attacker to avoid detection. When inspect-

ing web pages with a client honeypot, the classification delay consumes

most of the time. In addition, the time of creating a queue of URLs Tq,

which is usually constant, is added to the duration to inspect web pages.

Tq, ti, td, tw, ts, tr are the six factors that we take into account for determin-

ing the speed of a client honeypot.

The client honeypot evaluation was conducted using the true positive

cost curve described above. Data were collected by operating the client

honeypot on an Intel Core2 Duo CPU E4500 with 2GB of RAM connected

to cable Internet broadband. For the sequential, bulk, and DAC algo-

rithms, the client honeypot, configured with Windows XP SP2 and IE6SP2

within the free VMware Server 1.x, was run against samples of 1,000 web

pages that vary in base rate.

The sample of URLs for our evaluation was constructed by injecting

URLs that point to manually constructed malicious web pages into a sam-

ple of randomly selected benign URLs from the Internet. Because speed is

the focus of our evaluation, a realistic set of URLs that point to web pages

of different size, media composition, and physical location was important

to accurately capture the wide range of load and rendering times. The

benign web pages were randomly sampled by issuing query terms to the

Yahoo! search engine. Because these pages could also contain malicious

pages, they were first inspected with a client honeypot prior to submitting

them to the sample as benign pages.

Because the percentage of malicious web pages was small compared

to the percentage of benign pages in the sample, obtaining malicious web

pages of different size, media composition, and physical location was of

lesser importance; manually constructed malicious web pages were there-

fore crafted using the Metasploit Framework [85]. These pages contain

CHAPTER 4. TRUE POSITIVE COST CURVE 66

an exploit that targets the MS06-014 vulnerability in the Microsoft Data

Access Component [89]. Because the evaluation was assessing speed im-

provements resulting from optimizations on the Visitor component, a wide

distribution of different attack types was of no importance, because the

exploit is expected to have little impact on the performance of the Visitor

component. This assumption is not likely to hold if optimizations on the

Analysis Engine component were to be made. However, some malicious

web pages were modified to exhibit the evasion technique of IP tracking,

in which the web page initially exhibits malicious behavior, but on subse-

quent interactions does not. Those pages were included to create a more

realistic sample. Some of the visitation algorithms require a web page to

be retrieved multiple times before it can be classified as malicious, and

would be negatively affected by IP tracking. However, a proxy server to

cache all responses was used to neutralize the effect of IP tracking. Twenty

percent of the malicious web pages in the sample employed the IP tracking

evasion technique. This percentage was sufficient to include at least one

malicious web page with IP tracking in the sample to illustrate that de-

spite the IP tracking evasion technique, client honeypots – even the ones

that require a web page to be retrieved multiple times before it can be clas-

sified as malicious – can successfully identify all malicious web pages in

the sample.

If not otherwise stated, the client honeypot was configured in the fol-

lowing way: Tq is set to zero, because the time associated with creating a

list of URLs is constant across visitation algorithms. The time to start the

client application ts, in other words the browser, is set to 0.5 second; the

time to retrieve a web page ti is set to 4.3 seconds; the time to render the

web page td is set to 1.3 seconds; and the time to wait after the web page

has been retrieved tw is set to 25 seconds. The time to reset the virtual ma-

chine into a clean state tr is set to 5 seconds. Many of the values are based

on empirical evaluation on the hardware used for the evaluation.

The duration the client honeypot is running to inspect these pages is

CHAPTER 4. TRUE POSITIVE COST CURVE 67

mapped to the costs of operating a small Windows instance of Amazon

EC2 at 0.125 US dollars per hour. The total cost is then divided by the

number of malicious web pages identified to obtain the cost to identify

one malicious web page according to Equation 4.1.

Because the HoneyMonkey system, which implements the BAS algo-

rithm, is not publicly available, this algorithm was evaluated with a sim-

ulator. The simulator is a simple Java program that simulates the compo-

nents of the client honeypot as well as the sample. It tracked the speed

of the client honeypot in a global variable and, as actions of the client

honeypot were conducted, the associated time was added to this global

time variable. E.g., when a malicious URL was encountered, the simulator

added 5 seconds to the global time variable. The simulator was calibrated

using the empirical data collected for the other algorithms to accurately

map to the characteristics of the physical system used in our experiments.

Sequential Algorithm

Figure 4.5: Sequential Algorithm

Capture-HPC v1 uses a sequential algorithm to inspect a sample of N

web pages. It visits web pages sequentially and makes a classification after

each web page has been retrieved. Figure 4.5 contains the pseudo code of

this algorithm. After a queue of URLs has been created, each web page

CHAPTER 4. TRUE POSITIVE COST CURVE 68

Figure 4.6: Sequential Algorithm Duration Example

is visited. After each visitation, the client honeypot waits before checking

for state changes on the system to classify the web page as malicious or

benign. If the web page was indeed malicious, the state of the system is

reset. The computational time complexity is O(n) as the time to inspect

web pages increases by constant CSeq with each additional web page, as

shown in Figure 4.6. The total duration to inspect a sample of web pages

N is given by the following equation:

tSeq = Tq + CSeqN

= Tq + (p(ts + ti + td + tw + tr) + (1− p)(ts + ti + td + tw))N
(4.3)

An empirical evaluation of the algorithm on the sample with various

base rates showed that the client honeypot with the sequential algorithm

was capable of inspecting the sample in approximately 33,000 seconds. A

higher base rate resulted in a slight slowdown of the client honeypot asso-

ciated with the action of resetting the state of the virtual machine. With a

base rate of 0.4%, the client honeypot was capable of inspecting the sam-

ple of 1,000 web pages in 33,749 seconds; with a base rate of 4.4%, the

client honeypot was capable of inspecting the sample in 34,172 seconds.

While the malicious URLs did employ the evasion technique of IP track-

ing, all malicious web pages in the sample were successfully identified by

the client honeypot because no repeated visits were conducted to identify

a malicious web page. With the base rate of 0.4%, this translates to four

malicious web pages identified; with the base rate of 4.4%, to 44 malicious

web pages identified.

Equation 4.1 is used to calculate the cost associated with identifying

CHAPTER 4. TRUE POSITIVE COST CURVE 69

Figure 4.7: Cost per Malicious URL (Sequential Algorithm)

one malicious URL. For the base rate 0.4%, the time tSeq is 33,749 seconds,

or 9.37 hours, with a resource cost cr of 0.125 US dollars per hour. The cost

to identify a malicious web page cURL is therefore 0.290 US dollars. As

the base rate increases, the cost decreases. For the base rate 4.4%, the time

tSeq is 34,172 seconds, or 9.49 hours, with identical resource cost per hour.

However, because the number of malicious URLs increases in the sample,

the cost to identify one malicious web page decreases to 0.027 US dollars.

The costs for the remaining base rates are shown in Figure 4.7.

Bulk Algorithm

The bulk algorithm was introduced with Capture-HPC v2.5. This algo-

rithm visits a buffer of k web pages at the same time and is capable of

specifying which URL in the buffer exhibited malicious behavior. Figure

4.8 contains the pseudo code for this algorithm. After a queue of URLs

has been generated, a buffer of k web pages is taken from the queue and

visited. After the pages have been loaded, the client honeypot waits be-

fore checking for state changes on the system to classify the web pages as

malicious or benign. If a malicious web page was detected in the buffer of

CHAPTER 4. TRUE POSITIVE COST CURVE 70

Figure 4.8: Bulk Algorithm

k web pages, the state of the system is reset before the next buffer of k web

pages is visited.

This algorithm is possible because of an enhanced state monitoring

mechanism that was introduced with Capture-HPC v2.5. While the state

monitoring mechanism of Capture-HPC v1 only reported state changes of

the entire system and, as a result, was not able to link a state change to a

browser process, the enhanced state monitoring mechanism reports state

changes along with the process ID that is responsible for the state change.

This permits inspection of web pages with several browser processes at

once and, if a state change occurs, identification of the specific URL by

the state change and browser process ID mapping. The bulk algorithm is

only available when visitation of several web pages can occur in its own

process. This is possible with Microsoft’s Internet Explorer. However,

Mozilla’s Firefox, for instance, does not have this capability, as it optimizes

all newly started browser processes into one process. While this strategy

reduces resource consumption, it prevents inspection of URLs with the

Mozilla Firefox web browser using the bulk algorithm.

The computational time complexity of the bulk algorithm is O(n) as

the time to inspect web pages increases by constant CBulk with each ad-

ditional web page, as shown in Figure 4.9. As mentioned above, the web

pages are inspected in a buffer of k web pages. This variable is primar-

CHAPTER 4. TRUE POSITIVE COST CURVE 71

Figure 4.9: Bulk Algorithm Duration Example

ily limited by the resources of the machine and operating system. In our

experiments, 54 browser processes could be opened simultaneously. Ad-

ditional browser processes led to a crash of the operating system. Further,

because multiple processes are opened, a lot of resources are consumed,

which slows down normal operations, such as rendering a web page by

a load factor. This load factor LF was experimentally determined to be a

function of k: LF (k) = 4.5k
54

for k > 12 and LF (k) = 1 for k <= 12. It is

applied to determine the time to retrieve and render the page. Rendering

the page is also different from the sequential algorithm, because all pages

need to be rendered before the wait period is applied. As such, ti is re-

placed with max(ti), which is the maximum time it takes to retrieve any

web page in the buffer of k web pages. On the sample inspected, max(ti)

was measured to be 46 seconds. The total duration to inspect a sample of

web pages N is given by the following equation:

tBulk = Tq + CBulkN

= Tq +
(((1− (1− p)k)(tsk +max(ti)LF (k) + tdLF (k) + tw + tr))

k
((1− p)k)(tsk +max(ti)LF (k) + tdLF (k) + tw)

k

)

N

(4.4)

An empirical evaluation of the algorithm on the sample with various

base rates showed that the client honeypot with the bulk algorithm was

capable of inspecting the sample in approximately 5,600 seconds. A very

slight slowdown of the client honeypot associated with the action of re-

CHAPTER 4. TRUE POSITIVE COST CURVE 72

setting the state of the virtual machine is expected with higher base rates.

However, because the time to reset the state is small compared to the time

to visit a buffer of k web pages, the slowdown is not noticeable during

our evaluation. While the malicious URLs did employ the evasion tech-

nique of IP tracking, all malicious web pages in the sample were success-

fully identified by the client honeypot because no repeated visits were con-

ducted to identify a malicious web page. With the base rate of 0.4%, this

translates to four malicious web pages identified; with the base rate of

4.4%, to 44 malicious web pages identified.

Figure 4.10: Cost per Malicious URL (Bulk Algorithm)

Equation 4.1 is used to calculate the cost associated with identifying

one malicious URL. For the base rate 0.4%, the time tBulk is 5,600 seconds,

or 1.59 hours, with a resource cost cr of 0.125 US dollars per hour. The cost

to identify a malicious web page cURL is therefore 0.050 US dollars. As

the base rate increases, the cost decreases. For a base rate 4.4%, the time

tBulk is 5,600 seconds, or 1.59 hours, with identical resource cost per hour.

However, because the number of malicious URLs increases in the sample,

the cost to identify one malicious web page decreases to 0.005 US dollars.

The costs for the remaining base rates are shown in Figure 4.10.

CHAPTER 4. TRUE POSITIVE COST CURVE 73

Bulk & Sequential Algorithm

Figure 4.11: Bulk & Sequential Algorithm

The BAS algorithm is an algorithm used by the HoneyMonkey sys-

tem [159]. It visits a buffer of k web pages at the same time and makes

an initial classification about the entire buffer after the buffer has been in-

spected. This algorithm does not make use of the process ID mapping as

the bulk algorithm does. As a result, after the buffer k has been inspected,

the algorithm is not capable of pinpointing which URL was malicious. To

determine this information, the buffer of k web pages is visited once more

using the sequential algorithm. Figure 4.11 contains the pseudo code of

this algorithm. After a queue of URLs has been created, each buffer of k

web pages is visited. After each visitation, the client honeypot waits before

checking for state changes on the system to classify the buffer as malicious

or benign. As a malicious buffer is detected, the state of the system is re-

set and the buffer is visited once more using the sequential algorithm to

determine which web page is malicious.

CHAPTER 4. TRUE POSITIVE COST CURVE 74

Table 4.1: Optimum k for Bulk & Sequential Algorithm

The size of the buffer k is dependent on the base rate p. If k is too

large, the gain of using a buffer k in the first place is consumed by the

expensive sequential algorithm. If k is too small, the gain of using a buffer

k is minimal. As the base rate changes, the likelihood of a malicious web

page in the set k increases and, as a result, the buffer k should be smaller.

Table 4.1 shows the optimum values of k for various base rates. Because a

buffer k is used, this poses some stress onto the system. However, because

there is no need to have each browser in its own process, resources can

be shared, which results in an overall lower load factor. Experiments on

our test box showed that the load factor is a function of k: LF (k) = 3.3k
54

for k > 16 and LF (k) = 1 for k <= 16 when opening a buffer of URLs

with a shared browser process. Note that the load factor constant is lower

than the load factor constant of the bulk algorithm. This stems from the

fact that there is no need for each browser to be in its own process, which

reduces the load on the system.

Revisitation of a URL, however, poses some risk to the success rate of

detection. Malicious web pages, as identified by our previous work, use

an anti-forensic feature designed to evade detection and make analysis of

the malicious web page more difficult: IP tracking. As a client honeypot

retrieves a web page multiple times, it runs the risk of failing to identify a

malicious web page that employs IP tracking functionality. Alternatively,

one could route all browser requests through a set of IP addresses or one

could use a proxy server to cache all responses, so the second time the

CHAPTER 4. TRUE POSITIVE COST CURVE 75

browser requests a web page, it will be fetched from the local proxy cache

instead of the malicious web server and is the one we adopted for the

purpose of the evaluation of this algorithm. Section 4.3 demonstrates the

impact of the scenario and shows how the two strategies impact costs.

Usage of a proxy has a desirable side effect. Because web pages are

cached on the proxy, the time to retrieve a web page ti is significantly re-

duced when retrieving the web page a second time. Instead of requesting

the web page from the actual web server that is located on the Internet,

the web page is rather requested from the proxy within the local network.

The time ti decreases to insignificant levels.

Figure 4.12: Bulk & Sequential Algorithm Duration Example

The computational time complexity is O(n) as the time to inspect web

pages increases by constant CBAS with each additional web page, as shown

in Figure 4.12. The total duration to inspect a sample of web pages N is

given by the following equation:

tBAS = Tq + CBulkN + CSeqk (4.5)

Because a system that implements this algorithm was not readily avail-

able, a simulator was used to inspect a simulated sample with various

base rates. The simulator showed that the client honeypot with the BAS

algorithm is capable of inspecting the sample in between 6,050 and 18,400

seconds depending on the base rate. The simulator did simulate malicious

CHAPTER 4. TRUE POSITIVE COST CURVE 76

web pages, of which 20% employed the evasion technique of IP tracking.

However, since a proxy was used to cache the web pages, no repeated vis-

its to the web server were made and, as a result, all malicious URLs in the

sample were successfully identified. With the base rate of 0.4%, this trans-

lates to four malicious web pages identified; with the base rate of 4.4%, to

44 malicious web pages identified.

Figure 4.13: Cost per Malicious URL (Bulk & Sequential Algorithm)

Equation 4.1 is used to calculate the cost associated with identifying

one malicious URL. Because web pages are retrieved twice, a proxy is em-

ployed to counter the potential IP tracking functionality, which increases

the hardware cost. A proxy server is capable of serving multiple clients,

but because the clients continuously retrieve content from the web, the

proxy is utilized extensively. With these characteristics, a proxy server is

capable of handling approximately 10 clients, which increases the resource

costs cr from 0.125 US dollars to 0.1375 US dollars. For the base rate 0.4%,

the time tBAS is 6,050 seconds, or 1.68 hours, with a resource cost cr of

0.1375 US dollars per hour. The cost to identify a malicious web page cURL

is therefore 0.058 US dollars. As the base rate increases, the cost decreases.

For a base rate 4.4%, the time tBAS is 18,400 seconds, or 4.73 hours, with

CHAPTER 4. TRUE POSITIVE COST CURVE 77

identical resource cost per hour. However, because the number of mali-

cious URLs increases in the sample, the cost to identify one malicious web

page decreases to 0.015 US dollars. The costs for the remaining base rates

are shown in Figure 4.13.

Divide-and-Conquer Algorithm

Figure 4.14: Divide-and-Conquer Algorithm

The DAC algorithm was first implemented in Capture-HPC v2.1. The

algorithm makes use of the well-known divide-and-conquer design paradigm.

It visits a buffer of k web pages at the same time and makes a classifica-

tion after the buffer has been inspected. This algorithm does not make use

of the process ID mapping as the bulk algorithm does. As a result, after

the buffer k has been inspected, the algorithm is not capable of pinpoint-

ing which URL was malicious. To determine this information, the buffer

of k web pages is divided in two portions and recursively visited until

the malicious web page or pages are identified. Figure 4.14 contains the

pseudo code of this algorithm. After a queue of URLs has been created,

each buffer of k web pages is visited. After each visitation, the client hon-

CHAPTER 4. TRUE POSITIVE COST CURVE 78

eypot waits before checking for state changes on the system to classify the

buffer as malicious or benign. As a benign buffer is detected, all web pages

in the buffer are classified as benign. As a malicious buffer is detected, the

buffer is split into two and recursively visited. If the buffer k is of size 1

and no unauthorized state change is detected, the web page is classified

as benign; otherwise, it is classified as malicious.

Dividing the sample of URLs N into buffers of size k will select ma-

licious web pages according to the binomial distribution. Depending on

how many malicious web pages have been selected, the number of op-

erations to identify each malicious web page using the algorithm above

differs. With the selection of zero malicious web pages, the algorithm will

operate once on the buffer and exit. If one malicious web page appears in

the group, the algorithm will operate 2log2(k) + 1 times on the buffer to

identify the malicious web page. If two or more malicious web pages m

appear in the group, the algorithm will traverse down the binary tree for

each malicious web page m, so there will be m(2log2(k) + 1) operations.

However, some operations at the top of the binary tree are shared as the

branching occurs lower down the tree. The shared number of operations

has to be subtracted, so the worst case total number of operations to iden-

tify malicious web pages using this approach is:

op(k,m) =



















1 if m = 0,

m(2log2(k) + 1)

(2mlog2(m)−m+ 1) if m > 0.

(4.6)

The number of operations executed that do not identify a malicious web

page is:

opb(k,m) =



















1 if m = 0,

((log2(k) + 1)

(log2(m) + 1))m if m > 0.

(4.7)

and the number of operations executed that do identify malicious web

CHAPTER 4. TRUE POSITIVE COST CURVE 79

pages is:

opm(k,m) = m(log2(k)log2(m) + 2)1 (4.8)

where m > 0.

Figure 4.15: Divide-and-Conquer Algorithm Example

Figure 4.15 shows a simple example. A buffer of 32 web pages is in-

spected by the client honeypot using the DAC algorithm described above.

First, web pages 1-32 are inspected. A malicious web page is detected in

this buffer, so the buffer is divided in two and web pages 1-16 and 17-32

are inspected. Since both halves indicate that malicious web pages exist,

the buffers are further divided and inspected (web pages 1-8, 9-16, 17-24,

and 25-32). In the buffers with web pages 1-8 and 17-24, no malicious web

pages are identified and, as such, no further investigation is made into

those buffers. In the remaining buffers, however, malicious web pages are

once again identified and the algorithm is applied recursively until mali-

cious web pages 10 and 26 are identified. The tree is traversed twice to

identify each web page, but branching took place after buffers with web

pages 1-16 and 16-32 identified a malicious web page. A total of 19 oper-

CHAPTER 4. TRUE POSITIVE COST CURVE 80

ations are counted, of which 11 operations require the state of the client

honeypot to be reset.

As described above, the number of operations to identify a malicious

web page in a buffer is determined by the actual number of malicious

web pages in the buffer. This number of malicious web pages m that are

selected with a buffer of size k and a likelihood of selecting malicious web

pages p is given by the binomial distribution:

f(m; k; p) =

(

k

m

)

pm(1− p)k−m (4.9)

The binomial distribution needs to be taken into account when calcu-

lating the total time to inspect web pages:

tDAC = Tq + CDACN

= Tq +
max(ti)k

N
+

N

k
(f(0; k; p)(tsk + tdLF (k) + tw)

+
∑

0<m≤k

f(m; k; p)(opb(tsk + tdLF (k) + tw)

+ opm(ts + tdLF (k) + tw + tr)

(4.10)

The total time is calculated by adding the time to create the queue of

URLs and to retrieve the web pages. Note that despite the fact that web

pages are repeatedly retrieved, the time to retrieve all web pages is only

taken into account once. This is because, similar to the BAS algorithm,

the web pages are cached on a proxy server and the time to retrieve the

web page from this local proxy is negligible. In addition to this time, the

waiting and reset time according to the binomial distribution and number

of operations necessary to identify the malicious web page(s) is added.

The overall computational complexity of this algorithm is O(n).

The buffer size k can be set to any value according to Equation 4.10.

However, there are good and bad values for k. If k is too small, the algo-

rithm will behave similarly to the sequential algorithm. If the buffer is too

large, we could select too many malicious web pages in the buffer, lead-

ing to less efficient identification than when the buffer is split into smaller

CHAPTER 4. TRUE POSITIVE COST CURVE 81

Table 4.2: Optimum k for Divide-and-Conquer Algorithm

buffers. The optimum value of k is given by the global minimum of the

function that captures the total number of operations taking into account

the binominal distribution. Table 4.2 shows the optimum values of buffer

size with varying values of p.

Because a buffer k is used, this poses some stress onto the system.

However, because there is no need to have each browser in its own pro-

cess, resources can be shared, which results in an overall lower load factor.

Experiments on our test machine showed that the load factor is a function

of k: LF (k) = 3.3k
54

for k > 16 and LF (k) = 1 for k <= 16 when opening

a buffer of URLs with a shared browser process. Note that the load fac-

tor constant is lower than that of the bulk algorithm. This stems from the

fact that there is no need for each browser to be in its own process, which

reduces the load onto the system.

The buffer size k for the bulk algorithm described in section 4.2.1 was

limited to 54 due to operating system crashes. The DAC algorithm does

not have this limitation because each browser is not required to be in its

own process. However, to objectively compare the performance of the

algorithms, we also evaluated the DAC algorithm with a max buffer size

k for base rate 0.4% of 54. The duration and corresponding cost are given

in parentheses and represented by the black line in the Figures below. As

expected, with the un-optimized buffer size, the performance is slightly

worse.

An empirical evaluation of the algorithm on the sample with various

CHAPTER 4. TRUE POSITIVE COST CURVE 82

base rates showed that the client honeypot with the DAC algorithm was

capable of inspecting the sample in between approximately 4,200 (5,000)

and 17,800 seconds. While the malicious URLs did employ the evasion

technique of IP tracking, all malicious web pages in the sample were suc-

cessfully identified by the client honeypot because the proxy cached web

pages locally and, as a result, no repeated visits to the web server needed

to be made. With the base rate of 0.4%, this translates to four malicious

web pages identified; with the base rate of 4.4%, to 44 malicious web pages

identified.

!"!!#$

!"!#$

!"#$

#$

!"!!%$!"!#%$!"!&%$!"!'%$!"!%%$!"!(%$

!"
#$
%

&'
(
%)
*
$$
+
#,
-%

.%

Figure 4.16: Cost per Malicious URL (Divide-and-Conquer Algorithm)

Equation 4.1 is used to calculate the cost associated with identifying

one malicious URL. For the base rate 0.4%, the time tDAC is 4,200 seconds

(5,000 seconds,) or 1.16 hours (1.39 hours,) with a resource cost cr of 0.1375

US dollars per hour. The cost to identify a malicious web page cURL is

therefore 0.040 US dollars (0.043 US dollars). As the base rate increases,

the cost decreases. For the base rate 4.4%, the time tSeq is 17,800 seconds,

or 4.62 hours, with identical resource cost per hour. However, because

the number of malicious URLs increases in the sample, the cost to identify

one malicious web page decreases to 0.014 US dollars. The costs for the

CHAPTER 4. TRUE POSITIVE COST CURVE 83

remaining base rates are shown in Figure 4.16.

4.2.2 Visitation Algorithms Summary

!"!#!$

!"!!%$

!"!%!$

!"!&'$

!"!#($

!"!&'$

!")*'$

!"!)&$

!"!%'$

!"!!&$

!"!&!$

!"&!!$

&"!!!$

!$!$!$!$!$!$

! "
#$
%

&'
(
%)
*
$$
+
#,
-%

.%

+,-.$/01$234$56078$

+,-.$/01$234$59:;<8$

+,-.$/01$234$59:;<$=6078

+,-.$/01$234$5>?+8$

Figure 4.17: Cost per Malicious URL (All Algorithms)

In the previous section, four visitation algorithms were introduced and

compared using the true positive cost curves of high-interaction client

honeypots, which capture the cost associated with identifying one mali-

cious URL. Figure 4.17 shows the true positive cost curve for the sequen-

tial, bulk, BAS, and DAC algorithms. The sequential algorithm is costliest

for all base rates; the cost of identifying one URL is 0.293 US dollars for a

base rate of 0.4% and 0.021 US dollars for a base rate of 5.4%. However, no

one algorithm exists that performs best for all base rates. Rather, the DAC

algorithm seems to perform best for very low base rates, such as 0.4%; the

cost associated with finding a URL with this base rate is 0.040 US dollars

(0.043 US dollars.) As the base rate rises, the bulk algorithm becomes the

best performer, with a cost that stays below that of the DAC algorithm for

all base rates higher than 0.4%. At a base rate of 5.4%, its cost is 0.004 US

dollars compared to 0.013 US dollars for the DAC algorithm.

CHAPTER 4. TRUE POSITIVE COST CURVE 84

The BAS and the DAC algorithms both required a proxy to be incor-

porated into the setup to address the commonly encountered IP tracking

functionality of malicious web pages that would result in false negatives.

The true positive cost curves were able to incorporate the additional cost of

the proxy to allow for a comparison between the client honeypot systems

with different visitation algorithms and hardware setups.

The performance of the algorithms is dependent on the factors of the

operating environment. In the comparison described above, the base rate

was the only major factor varied, while all other factors were kept con-

stant. From this, we conclude that the DAC algorithm performs best for

low base rates, whereas the bulk algorithm performs best for higher base

rates in our operating environment. The following section presents the im-

pact of changes in the operating environment.

4.3 Impacts of the Characteristics of the Operat-

ing Environment on High-Interaction Client

Honeypots

As mentioned in the previous section, the performance of the high-interaction

client honeypot is dependent on the characteristics of the operating envi-

ronment. In this section, we present two examples that demonstrate the

impact of the characteristics of the operating environment on the perfor-

mance of client honeypots. With the help of true positive cost curves, an

operator can tune the client honeypot according to the environment. To

generate the true positive cost curve for client honeypots, we utilize a sim-

ulator because the operating characteristics might be unknown or difficult

to control in a real world setting.

First, the impact of time bombs is illustrated. Time bombs are exploits

embedded in malicious web pages that trigger only after a few seconds

have passed. Time bombs are the primary reason why a high-interaction

CHAPTER 4. TRUE POSITIVE COST CURVE 85

client honeypot waits tw seconds after a web page has been retrieved. The

value in our comparison above was set to 25 seconds, because the major-

ity of web pages seem to launch an attack during that time frame [158].

If attackers change the trigger time of their time bombs, the ability of a

client honeypot to identify malicious web pages, and therefore the cost to

identify a malicious URL, is impacted.

!"#$%&

!"!##&

!"'!%&

!"!#'&

!"'()&

!"!#$&

!"!!*&

!"!*&

!"*&

*&

!"!!+& !"!*+& !"!#+& !"!'+& !"!++& !"!,+&

! "
#$
%

&'
(
%)
*
$$
+
#,
-%

.%

!&-./0.12&34.&56457&

*!&-./0.12&34.&564578&

2/9::./&;<./&#,&7.061=78&

2>?&@&#,&

*!&-./0.12&34.&564578&

2/9::./&;<./&',&7.061=78&

2>?&@&',&

Figure 4.18: Cost per Malicious URL with Time Bombs (Sequential Algo-

rithm)

In a hypothetical scenario, it was assumed that 10% of attackers length-

ened their time bomb setting from 25 to 35 seconds. Independent of the

action taken by the operator, the cost of identifying malicious web pages

will increase, because the strategy employed by attackers makes detection

more difficult. The true positive cost curve for client honeypots, how-

ever, assists the operator deciding whether the classification delay should

CHAPTER 4. TRUE POSITIVE COST CURVE 86

be increased to detect web pages that employ time bombs, or whether

the classification delay should remain unaltered, with the result that some

malicious web pages will not be detected. Figure 4.18 shows the costs

of identifying malicious web pages under the various scenarios using the

sequential algorithm. Cost is the greatest if the classification delay tw is in-

creased to counter the evasion technique employed by the malicious web

pages. Therefore, if 10% of malicious web pages trigger only after 35 sec-

onds, it is best for the operator to ignore these 10% and continue to operate

the client honeypot unchanged with a classification delay tw of 25 seconds.

Figure 4.19: Cost per Malicious URL with IP Tracking (Bulk & Sequential

Algorithm)

Another example illustrates the impact of IP tracking functionality. It

is assumed that approximately 20% of malicious web pages employ the

technique of IP tracking. As mentioned above, IP tracking is a technique

designed to make the analysis and detection of malicious web pages more

CHAPTER 4. TRUE POSITIVE COST CURVE 87

difficult. A malicious web page that employs this technique will trigger an

attack upon first visitation of a client, but ceased to do so with subsequent

visitations. If an operator utilizes a visitation algorithm, such as the BAS

algorithm, which visits a web page repeatedly, a potential for not detect-

ing the web page exists. The operator has the choice of accepting this or

to counter the IP tracking functionality by caching responses on a proxy,

as we have chosen to do in our examples above. The proxy, however,

increases the overall hardware cost. Alternatively, an operator can accept

missing such web pages and, as a result, gets the benefit of the lower hard-

ware costs. Figure 4.19 shows the effect of the two strategies on cost. For

all base rates, the cost to identify a malicious URL is higher without a

proxy than with a proxy. This is primarily attributed to the fact that with-

out a proxy, the client honeypot becomes slower as no caching mechanism

exists and fewer malicious web pages are successfully identified due to the

IP tracking functionality. The true positive cost curve assists an operator

in making this decision.

The previous two examples demonstrate that the true positive cost

curves can be used to assist an operator in adjusting and configuring a

client honeypot based on the operating characteristics of the operating en-

vironment. We illustrated how the phenomena of time bombs can be ad-

dressed in the optimal manner using true positive cost curves; further, we

demonstrated how the true positive cost curves can be used to determine

whether usage of a proxy is the more cost-effective strategy to counter IP

tracking functionality of malicious web pages.

4.4 Summary

In this chapter, we have presented the true positive cost curve model for

evaluating high-interaction client honeypots. The true positive cost curve

is a cost-based model that directly links a client honeypot to its primary

goal of identifying malicious web pages. The model accurately incorpo-

CHAPTER 4. TRUE POSITIVE COST CURVE 88

rates factors relevant to a client honeypot’s performance, such as speed

and detection accuracy, as well as the characteristics of the operating envi-

ronment that may influence a client honeypot’s performance, such as base

rate and evasion techniques utilized by some malicious web pages.

The sequential, bulk, BAS, and DAC algorithms were introduced, pre-

sented, and compared. An empirical evaluation of these algorithms using

the true positive cost curve demonstrated that both the bulk and DAC

algorithms showed superior performance over the other two algorithms.

For low base rates, the DAC algorithm, which we developed in our pre-

vious work, outperformed the bulk algorithm. For higher base rates, the

bulk algorithm showed the best performance.

The effects of changing operational characteristics were also presented,

showing how time bombs and IP tracking functionality influence the per-

formance of a client honeypot in its ability to identify malicious web pages.

The true positive cost curve was used to evaluate different strategies an

operator can use to fine tune a client honeypot system for optimal perfor-

mance within its operating environment.

Chapter 5

Experimental Design

In the previous chapter, we evaluated client honeypots within an operat-

ing environment using the true positive cost curve. As long as the operat-

ing environment stays constant, risks to the validity of such an evaluation

are low. However, risks to validity arise in experimental designs that aim

at identifying malicious web pages. In those settings, there is a risk to the

intent of the experimental design (internal validity) and also risk about the

generalizability beyond the experimental setting (external validity.)

Internal validity captures the intent of a study. If, for instance, one

would like to measure the prevalence of malicious web pages on the net-

work over a 12-month period to make a statement about trends, the inter-

nal validity is easily at risk with flaws in the experimental design. If the re-

searcher chose to operate a client honeypot from one static IP address and

a decreasing trend were observed, it would be questionable whether the

trend is associated with a decreasing prevalence of malicious web pages.

Rather, it is possible that the researcher’s client honeypot’s effectiveness in

detecting malicious web pages is decreasing due to the IP tracking func-

tionality we described in the previous chapter. External validity is the

ability to generalize results beyond an experimental setting. If one, for in-

stance, measures the prevalence of malicious web pages in search engines

by inspecting the top three pages associated with popular search engine

89

CHAPTER 5. EXPERIMENTAL DESIGN 90

queries, one could not generalize their findings to the entire search engine

index. While the researchers have some knowledge about popular URLs,

they have no information about other URLs that are served by the search

engine.

In Chapter 3, we identified that results of various measurement studies

[96, 159] varied widely and raised the question of whether those fluctua-

tions were a direct result of risks to internal and external validity of the

studies resulting from a failure to identify and adequately mitigate the

risks. In this chapter, we present a methodology of identifying and miti-

gating risks in a systematic and thorough manner: the hazard and oper-

ability (HAZOP) study. Application of HAZOP to experimental design in

computer science has previously been proposed by Welch et al. [166].

We apply the HAZOP to the experimental design of measurement stud-

ies of malicious web pages with client honeypots. We choose to focus

on measurement studies, because, as mentioned above, existing studies

appear to fail in identification and mitigation of risks. We also focus on

measurement studies because the measurement is important for economic

modeling, as illustrated by a variety of security-related economic studies

[150, 67, 174, 62]. The business model [37, 39] of the operation behind the

malicious web page can be used to devise strategies to break the business

model. Accurate measurement provides the inputs for accurate business

models. While we focus on measurement studies, HAZOP is not limited

to such studies. In the area of identification of malicious web pages with

client honeypots, whether for measurement studies or studies to develop

new detection methods, many risks identified are universal. Mitigation of

risks identified using the HAZOP were incorporated into our experimen-

tal designs.

This chapter is structured as follows. First, HAZOP is introduced and

applied to the experimental design of a measurement study. The second

part of the chapter illustrates what happens to the validity of a measure-

ment study when risks are not appropriately mitigated. Major threats to

CHAPTER 5. EXPERIMENTAL DESIGN 91

internal and external validity are uncontrolled variables. We illustrate the

impact of uncontrolled variables on the internal and external validity of

measurement studies. First, we illustrate that the URL source can greatly

impact measurements; second, we show how time also has a major impact

on measurement.

5.1 HAZOP

HAZOP is a systematic and thorough technique for identifying hazards

and problems [70]. It originated in the chemical industry and has been

generalized for use in areas as diverse as critical appraisal of proposals to

release genetically modified organisms into the environment and chemical

experiments. HAZOP is a generative technique that aims to discover new,

unforeseen hazards through a structured process involving experts from

the domain being analyzed, so the hazards can be appropriately mitigated.

HAZOP is conducted in the following manner: 1. The process to be

HAZOP-ed is described in detail in the form of a flow chart. 2. Domain-

specific guide words are applied to components of the process to gener-

ate possible deviations from the intended purpose of the component. The

guide words are applied to the artifacts: subjects that participate in the ex-

periment and the apparatus used to conduct the experiment, as well as the

specific stimuli used during the experiment. 3. As the hazards are identi-

fied, severity and likelihood are assessed and mitigation to the hazard is

described. 4. Mitigations for hazards with high severity and/or likelihood

are incorporated into the experimental design.

For example, in the chemical industry, a flow chart showing the flow of

materials around the system to create a chemical compound would have

guide words such as MORE or LESS applied to individual pipes of the ap-

paratus. Experts use these guidewords as prompts to help them identify a

hazard, for example a LESS than flow may lead to a highly unstable chem-

ical compound with risk of explosion. The expert considers this to be a low

CHAPTER 5. EXPERIMENTAL DESIGN 92

likelihood, but the consequence of an explosion would be severe. There-

fore, it is worth mitigating the risk by increasing the carrying capacity of

the pipe.

Key to the use of HAZOP in a new domain are the development of

guide words appropriate to the description of the measurement process

and artifacts that influence the measurement process. These three com-

ponents are described first before the HAZOP is applied to the process of

measuring malicious web pages with high-interaction client honeypots.

The guide words are developed based upon our own experience in op-

erating client honeypots to find malicious web pages on a network and

guidance in the literature on good experimental design and procedure.

The guide words chosen are NO, MORE, LESS, LATE, EARLY, FEWER,

MORE, OUT OF ORDER, INDISTINGUISHABLE, UNRELIABLE, BIASED,

and HISTORY.

We first create a flow chart to show the process under analysis. Figure

5.1 depicts how measurement data of malicious web pages is collected. It

shows the various components and the process steps executed by the com-

ponents to identify malicious web pages on the network using client hon-

eypots: the apparatus (client honeypot) and external entities (web pages,

DNS servers and URL store.) The apparatus itself consists of three compo-

nents: the Queuer, Visitor and Analysis Engine, which are deployed across

two entities: the controller and the actual client, which interacts with po-

tentially malicious web pages. The controller contains the Queuer com-

ponent responsible for feeding URLs to the client. The client contains the

Visitor, which makes requests to potentially malicious web pages, as well

as the Analysis Engine, which records any unauthorized state changes.

The Analysis Engine also resides on the controller. It makes a classifica-

tion based on the state changes and if necessary resets the client into a

clean state before more URLs are fed to the client. Each step of the flow

diagram is described in detail below.

1. The queue on the controller creates a list of potentially malicious

CHAPTER 5. EXPERIMENTAL DESIGN 93

Figure 5.1: Flow Diagram of Measurement

URLs. These URLs are sourced from a URL data store, which could

be a search engine, the web map of the World Wide Web, or some

other means.

2. Once the URLs are sourced, they are sent to the visitor component

on the client.

3. The Visitor component of the client accepts the URLs from the Queuer.

4. The Visitor proceeds to request the web pages. This involves resolv-

ing the host names into IP addresses by making a DNS lookup re-

CHAPTER 5. EXPERIMENTAL DESIGN 94

quests to the local DNS server as well as a HTTP requests to the web

servers that host the potentially malicious web pages.

5. The DNS server accepts the DNS lookup requests by the client and

responds with a IP addresses for the host names contained in the

DNS lookup requests.

6. The web server accepts the HTTP requests by the client and responds

with the web pages requested.

7. The Visitor component displays the web pages and waits a few sec-

onds to give the potential exploit the opportunity to launch an attack.

8. The Analysis Engine on the client reports any unauthorized state

changes that may result from an attack to the Analysis Engine on

the controller.

9. The Analysis Engine on the controller classifies the web pages ac-

cording to the unauthorized state changes. It records this informa-

tion as well as additional data collected, such as network traces, for

later analysis.

10. The next processes depend on this decision point. If the web pages

were classified as malicious, process 11 is executed. If the web pages

were benign, process 1 is executed continuing the data collection.

11. The state of the client is dirty as the malicious web page successfully

exploited the client and was able to modify the client system to its

liking. As such, the client system is no longer trusted and is being

reset into a clean state. Once the client has been reset into a clean

state, process 1 is executed, continuing the data collection.

The description of the flow chart already explicitly mentions the appa-

ratus with its three main components Queuer, Visitor and Analysis Engine.

CHAPTER 5. EXPERIMENTAL DESIGN 95

Figure 5.2: Artifacts

The Visitor has many aspects that need to be considered during the appli-

cation of guide words: the classification delay, the delay that the browser

waits after a page has been visited to give the attack an opportunity to

trigger before the client honeypot makes a classification; the attack surface

exposed by the client; and the usage of a proxy server to proxy requests.

The Analysis Engine uses monitors with particular state monitoring mech-

anisms and security policies to classify web pages. These aspects of the

apparatus need to be considered when applying the guide words.

The subjects are the second artifact. These are the web pages that the

client honeypot is measuring and there are hazards that may be originat-

ing from the web pages. The web pages’ location and malicious nature

and the exploits used are considered when applying the guide words.

Lastly, there are the stimuli used in the experiment to obtain the mea-

surement. In the context of measuring malicious web pages with client

honeypots, the stimulus is the act of making the request to obtain the

CHAPTER 5. EXPERIMENTAL DESIGN 96

web page to examine its malicious nature. In the process, two types of

requests are made: DNS and HTTP requests, which each have specific

properties, such as application and transport protocol specific properties,

such as headers and header values, and source IP address. Further, DNS

and HTTP requests are made at a specific time and using a specific visita-

tion algorithm.

HAZOP was applied to the process of measuring malicious web sites

on the Internet. For example, the BIASED guide word was applied to step

1 (”Create List of Potentially Malicious URL(s)”) of the flow chart from

the perspective of the apparatus. The deviation that URLs selected by

the Queuer introduce bias was identified. The specific consequence was

a threat to external validity because bias in the URLs could threaten the

generalizability of the measurement study. This is a hazard considered to

be of medium severity and high likelihood. The cause for the bias may

be that URLs from particular sources exhibit different malicious behavior

(due to a difference in security practices, malicious intent, etc.) A possi-

ble mitigation may be to have the Queuer create a representative random

sample of input URLs from the larger population to which measurements

will be generalized. In the second part of this chapter, we illustrate how

a lack of control in the input URL source could result in significantly dif-

ferent measurements. The remainder of the HAZOP is described in the

HAZOP analysis work sheet in Appendix C.

Once the HAZOP was conducted, all hazards were examined with re-

gards to severity and likelihood. All hazards of low severity and low/medium

likelihood were accepted as low-risk hazards. All hazards with higher risk

were addressed through mitigation. The hazards posed by the apparatus

(client honeypot), the subjects (web pages), and stimuli (making the re-

quests) as well as mitigation strategies, are summarized next.

CHAPTER 5. EXPERIMENTAL DESIGN 97

5.1.1 Apparatus (Client Honeypot)

Several hazards were identified around the client honeypot technology

used to conduct the measurement. A group of high-priority hazards was

concerned with the functional aspects of correctness of the client honey-

pot. Questions of whether the client honeypot performs what it is de-

signed to do were raised multiple times during the HAZOP. The mitiga-

tion strategy identified was functional testing. Functional testing can be

supported when the technology is transparent and available to a larger

audience, so it can be examined and tested. The open-source community

does provide this level of support and is one driver of why our client hon-

eypot Capture-HPC has been made publicly available as an open-source

project. It appears that many hazards identified as part of the HAZOP are

mitigated through this strategy (in 2008, for instance, Capture-HPC was

downloaded 2003 times; 485 messages around installation issues, bugs,

and feature requests were posted on the mailing list, and 56 bugs were

filed.)

In addition to the correctness of the client honeypot, reliability was a

concern. Especially in a setting in which there are several network com-

ponents involved and attack code is executed, hazards that stem from low

reliability emerge. Continuous monitoring and error handling appear to

be mitigating these hazards and have been implemented as part of the

client honeypot Capture-HPC.

Additional hazards to specific client honeypot components Queuer,

Visitor, and Analysis Engine were identified. These are described in the

next sections.

Queuer

The Queuer, the component of a client honeypot that consumes the URLs

from the URL source and passes the URLs onto the visitor component to

retrieve the corresponding web pages, appears to be particularly suscep-

CHAPTER 5. EXPERIMENTAL DESIGN 98

tible to introducing bias into the measurement, as it is responsible for se-

lecting potentially malicious URLs.

A sample taken from dubious sources, such as links in email spam mes-

sages and hacker web sites, can show very different characteristics in ma-

licious web pages than in web pages sourced from search engines in a

random fashion.

In addition, a Queuer could be simply selecting URLs from a URL

store. An alternative strategy is to process the URLs before they are sent

to the Visitor. For instance, the Queuer component could inspect the URL

for specific characteristics, such as a suspicious path or query string (e.g.

”Exploit.html” or ”ms06-014”) and pass along only URLs where a match

is found. The Queuer could generate URLs based on past URLs and re-

sults of the Analysis Engine. For instance, a Queuer could extract outlink

URLs from web pages sent to the Analysis Engine that are deemed to be

malicious.

While these are all valid strategies, they may introduce bias that threat-

ens external validity. The mitigation strategy could be the creation of a

representative random sample of input URLs from the larger population

to which measurements will be generalized. Alternatively, one could sim-

ply accept the constraint and not generalize. Whatever mitigation strategy

is chosen, the Queuer and its mechanism for selecting URLs need to be de-

scribed in detail, so the potential hazard is appropriately disclosed.

A Queuer also controls which and when URLs are sent to the Visitor to

be retrieved. Sending URLs in a fashion that is not typical human behav-

ior (e.g., visitation of links on the page in order) could indicate to the web

server that a crawler and potential client honeypot are inspecting the page

and the web server could selectively choose not to send an attack, causing

a false negative. Identification of crawlers and client honeypots using such

a technique was described in a recent study [67]. Application of a decep-

tion model known as the deception planning loop has been proposed by

the author [29]. Special steps should be taken to reduce this risk through,

CHAPTER 5. EXPERIMENTAL DESIGN 99

for example, utilization of search engines or DNS host entries that do not

exhibit crawling behavior.

Visitor

The Visitor component visits the web pages denoted by the URLs and,

after the classification delay has passed, lets the Analysis Engine make an

assessment of whether the web pages are malicious or benign.

The attack surface is a factor that threatens a client honeypot’s ability

to detect malicious web pages. The mechanism by which a client honey-

pot detects malicious web pages is exposing vulnerabilities and retrieving

potentially malicious web pages that are capable of attacking these vul-

nerabilities. The state changes that result from such an attack are used as

indicators that an attack has occurred. The exposed vulnerabilities need

to match the attacks. As such, the operating system, the browser, and

the browser plug-ins used by the client directly influence the number of

vulnerabilities exposed and, therefore, the attacks used by malicious web

pages that the client honeypot is capable of detecting. The configuration

of these components also might influence the vulnerabilities and the ease

of exploitation. A browser, for instance, could be configured with lower

security settings, permitting the usage of certain ActiveX controls that oth-

erwise would be restricted. Mitigation would utilize a mix of different ver-

sions and configurations. However, this mix quickly grows to unmanage-

able levels. Alternatively, one could document the configuration and not

generalize beyond the particular configuration used. We have chosen to

investigate malicious web pages that specifically attack Internet Explorer

6 SP2 on a Windows XP SP2 system – a configuration that is widely used

and attacked.

The configuration of the operating system, browser, and plug-ins could

lead to an inability to detect certain malicious web pages that do target

clients at a specific location. A browser exposes a locale that, similarly to

an IP address, could be used to selectively launch attacks. A composition

CHAPTER 5. EXPERIMENTAL DESIGN 100

of plug-ins, for instance the existence of the Baofeng Storm Codec [13],

a popular plug-in in the Chinese domain, could give away a client’s lo-

cale, which could be used to selectively trigger attacks. This hazard could

be mitigated by deploying client honeypots at different physical locations

that are configured to match the locale. This greatly increases the complex-

ity of the study. Alternatively, one could document the configuration and

not generalize beyond the particular configuration used. We have chosen

to investigate malicious web pages that specifically attack systems of the

en-nz locale.

The configuration of a browser could also indicate to attackers whether

a web crawler and potential client honeypot are accessing their site. A

browser that is configured not to load images would be an example. This

could preserve resources of the operator of the client honeypot, but is

likely to indicate to the web server an unusual configuration, which sub-

sequently could lead a malicious web page not launching an attack and

therefore no attack would be detected by the client honeypot. Mitigation

of this hazard is to configure the client honeypot identically to a system

used by end users. This is a mitigation strategy we adopted.

Analysis Engine

The Analysis Engine is the component that assesses whether a web page

successfully launched an attack on the client. It does so by monitoring the

system for unauthorized state changes. The inner workings of the Anal-

ysis Engine influence a client honeypot’s ability to detect malicious web

pages. The hazards revolve around the state monitoring technique, the

monitors, and the security policy.

The state monitoring technique is the way the Analysis Engine detects

unauthorized state changes. There should be a high level of confidence

that the data the Analysis Engine uses to make its classification is correct.

It should be forensically sound. Malicious web pages could take steps to

avoid detection of the state changes. If a malicious web site manipulates

CHAPTER 5. EXPERIMENTAL DESIGN 101

the system using low-level function calls, and the state monitoring tech-

nique is monitoring high-level function calls, for instance, the technique

will fail to detect them and will not truly capture the state changes on a

system. Foiling the state monitoring system that runs within the client

is particularly risky, because with a successful attack, the malware essen-

tially controls the system used for monitoring.

State monitoring techniques can range from monitoring the system by

determining differences between state snapshots of the system, as done

by HoneyClient v1 [157], to monitoring the system in real time at the user

level or kernel level. Kernel-level monitoring is preferable because a ma-

licious web pages would have to gain control of the kernel before it could

foil the state monitoring technique. Alternatively, a state monitoring tech-

nique could inspect a system from the outside. If the client runs within

a virtual guest machine, the state monitoring technique could run on the

host machine and use virtual machine introspection to monitor the sys-

tem [45]. If the client runs on bare-metal hardware, monitoring the system

state through monitoring the hardware state of memory and hard drive

seems at least conceptually a possibility.

At the time of this writing, the kernel-level state monitoring technique

seems to adequately mitigate the hazard of web pages evading the state

monitoring technique.

Beyond the actual state monitoring technique, there are the specific

monitors responsible for monitoring the state of the system. A client hon-

eypot could monitor the file system and processes of the system. How-

ever, the hazard that malicious web pages cause state changes other than

in the file system and processes of the system exists and, therefore, these

web pages would go undetected. Additional monitors would reduce this

risk. For instance, a client honeypot that merely monitors file and pro-

cess changes would not be able to identify an attack that modifies the

browser process and communicates with the attacker of the network. Ad-

ditional monitors would be needed: network monitor, module (e.g., dy-

CHAPTER 5. EXPERIMENTAL DESIGN 102

namic linked library) loading monitor, registry monitor, process threat

monitor, and rootkit monitor are a few examples.

The security policy defines which events reported by the monitors will

result in classification of the web page as malicious or benign. A security

policy that focuses on key elements, such as the ways a malicious web

page can modify the startup sequence of the operating system, will have a

more narrow view than a security policy that monitors the entire system.

An operator might use a narrow security policy for the sake of simplic-

ity and ease of deployment over the more comprehensive complex secu-

rity policy. Similar to the functional testing of the apparatus, the security

policy needs to be tested. Being made publicly available as part of the

open-source software supports this testing. The security policies used by

Capture-HPC are all publicly available and community maintained.

5.1.2 Subjects (Web Pages)

The subjects, which are the web pages, also pose a variety of hazards to

the experimental design of the measurement study. The primary threat is

related to connectivity issues in which a web page may not be able to par-

ticipate in the study because the network components, such as DNS server

and/or HTTP server, are temporarily unreachable. This hazard may be

addressed through retrying retrieval of the web page multiple times and

logging any unsuccessful visits to the web pages. This strategy is imple-

mented as part of Capture-HPC.

Further, a malicious web page may choose not to participate in the

study. It could selectively not launch an attack as part of the study, but do

so when accessed by a regular user. This may be caused by anti-forensic

techniques employed by the malicious web page. The selective behavior

could stem from the fact that the web page somehow identified the client

honeypot. A malicious web page can identify the client honeypot primar-

ily through the means it uses to make requests; this hazard is more closely

CHAPTER 5. EXPERIMENTAL DESIGN 103

reviewed in the following section.

5.1.3 Stimuli (Making the Requests)

Stimuli, in our context the means of making the requests to retrieve the

web page for it to participate in the measurement study, are the final area

that could pose hazards to the measurement study. Since the process

of making the request is part of the apparatus, hazards similar to those

around functional correctness and reliability apply to making the request.

Functional testing and monitoring functionality during the operation are

the primary mitigation strategies for those hazards.

As mentioned in the previous section, a malicious web page may choose

not to participate in the study by analyzing the way requests are made.

Several characteristics of the requests may cause this hazard: location,

time, deceptive nature, and history.

Location

The location from where requests are made may pose a hazard to a mea-

surement study. The two main reasons location is of importance are the

campaigns run by attackers and evasion techniques.

Attackers that operate malicious web pages do so to defraud their vic-

tims. They run campaigns that are highly sensitive to location, language,

and economic trends [37, 39] as a means to increase their return on in-

vestment. As a result, the web page, exploits, and malware can be tuned

according to these factors. For instance, malware found on Chinese sites

might target the theft of passwords from online gamers [90, 131], whereas

malware on Brazilian sites might be designed to steal bank account infor-

mation [131].

For a client honeypot, this manifests itself in an inability to detect cer-

tain malicious web pages that target clients at a specific location. A client

honeypot located in New Zealand accessing a malicious web page that

CHAPTER 5. EXPERIMENTAL DESIGN 104

triggers an attack only if accessed from a client located in Germany will

not be exposed to the attack and therefore will fail at identifying that ma-

licious web page. An assessment of where a client is located is primar-

ily made by mapping the IP address of the client to a specific location

with freely available libraries, such as MaxMind Geolocation Technology

[81]. Web exploitation kits, such as MPack, provide functionality to enable

location-based triggering of attacks.

The geolocation-dependent triggering could easily be extended into a

more fine-grained triggering mechanism as an evasion technique to avoid

specific networks. Malicious web pages could create the illusion of a ma-

licious web page in a sheep skin for entities that find and assess mali-

cious web servers (antivirus and security companies), but could continue

to exhibit malicious behavior when accessed from outside these specific

networks. For the attacker, it would lead to a greatly reduced risk of de-

tection, while at the same time increasing the likelihood of continued op-

eration of the malicious web server, and therefore continued financial gain

for the attacker.

Alternatively, the location of a client honeypot could be identified through

the locale of the system. The locale consists of the language and country

properties of the system and is passed along with a browser HTTP request

in the form of a header value.

As a mitigation strategy, one could distribute and diversify client hon-

eypots across network locations and locales. The goal is to emulate realis-

tic requests as they are coming from a typical user; a user in China should

have a Chinese locale, i.e., usually is located in China and accesses web

pages in China. Distribution and diversification may be infeasible and

may not be necessary. For a measurement study on web pages in a spe-

cific region, one may select a typical location and locale for the client hon-

eypots conducting the measurement study, as we have done in our study

on the New Zealand Internet. Since location and locale pose a hazard to

the measurement study, they should be explicitly documented.

CHAPTER 5. EXPERIMENTAL DESIGN 105

Time

Similar to location, time may be used by malicious web pages to influence

their behavior. A web page with a specific location and target audience

may have specific traffic patterns that are time-dependent. It may see 80%

of the traffic during normal business hours. A malicious web page may,

therefore, disable its malicious behavior during the non-business hours to

reduce the risk of detection. This hazard may be addressed by aligning

the client honeypot to these request patterns.

Deceptive Nature

If a malicious web page detects that it is part of a study, it may choose not

to participate in the study. It could make this decision based on identifying

that the requests were made by a client honeypot. As such, the deceptive

nature of the client honeypot in making the request needs to be closely

aligned with how users make requests. As mentioned above, this could

be related to the time a request is made. In addition, it could be related

to how the content is accessed. A visitor that requests links on a page

in sequence may arouse suspicion, as might a visitor whose identifying

user-agent string does not match the HTTP request headers that usually

come with that user-agent string. Further, a browser that does not load

images or that accesses content at high speeds may be easily identified by

the malicious web page.

A particular way a malicious web page may evade detection is through

time bombs. A malicious web page may simply wait a few seconds before

the attack is triggered. Users usually dwell on the web page for a few sec-

onds to read the content, whereas crawlers scour the web at high speeds

and do not dwell for seconds on the page.

There are numerous ways a web page may detect a client honeypot

and, to mitigate the hazard, the client honeypot needs to align itself closely

to the behavior of a user who accesses the web page. In our studies, we

CHAPTER 5. EXPERIMENTAL DESIGN 106

mitigate by utilizing links mined from search engines. The links are visited

in a way that appears as if a user had typed the link in the address bar.

The request is made by a real browser with no modifications. The browser

displays the web page for several seconds. This makes it difficult for the

malicious web site to distinguish the client honeypot from a user accessing

the web page and, therefore, it will no longer have the option of opting out

of the study.

History

The history of requests may pose another hazard to a study of malicious

web pages. Particular malicious web pages implement a tracking func-

tionality in which the attack is launched only once upon a target. A client

honeypot requesting the identical page a second time would not lead to

an attack and, therefore, the malicious web page would be missed. This

is particularly problematic with visitation algorithms, such as the divide-

and-conquer algorithm that need to repeatedly interact with the same web

page to classify it.

There are several mitigation strategies against this hazard. One could

simply choose a visitation algorithm that does not require repeated inter-

action (such as the sequential algorithm) or distribute repeated requests

over multiple client honeypots (tracking is often done by storing the IP

address of the client). Further, one could utilize a caching mechanism,

such as a web proxy caching all responses.

5.1.4 Summary

Overall, HAZOP has identified many hazards to a measurement study.

Existing measurement studies on malicious web pages appear not to ad-

dress the threat to external and internal validity. The HAZOP technique

described in this chapter provides a systematic and thorough approach

to identify and address these hazards. Because hazards are plentiful, it is

CHAPTER 5. EXPERIMENTAL DESIGN 107

recommended that the experimental design be described in much greater

detail than in present studies, so the reader can assess whether threats

to external and internal validity have been considered and taken into ac-

count. Currently, these aspects appear to be neglected. In the next section,

we illustrate the impact of such negligence.

5.2 Impacts of Neglecting Hazards

This section presents the impacts of the hazards on the measurement of

web pages that launch drive-by-download attacks using client honeypots.

It is shown that the URL source can significantly impact the base rate. URL

sources from different content categories (e.g., adult, forums, warez, etc.)

and different top-level domains (e.g., .nz vs .com) can lead to elevated

levels of web pages that launch drive-by-download attacks. Further, the

impact of when the measurement is conducted is illustrated. Depending

on when measurements are taken, the number of malicious web pages

differs significantly.

The experiments and data presented in this section are based on two

experiments we conducted in 2007 and 2008.

5.2.1 URL Source

This section shows that the URL source can significantly impact the base

rate. Certain content categories can lead to elevated levels of web pages

that launch drive-by-download attacks. While Moshchuk et al. also in-

vestigated how categories impact measurement [96], their study lacked a

sufficient sample size, which manifests itself in unreliable numbers, and

also lacked a detailed description of their apparatus, subjects, and stimuli.

The work presented in this section is designed to address some of these

shortcomings and confirm or dispute their observations.

Following the discussion of content categories by a presentation on

CHAPTER 5. EXPERIMENTAL DESIGN 108

the impact of top-level domain. As with content category, some studies

exist that investigate the impact of top-level domain on detection rates.

McAfee’s report titled ”Mapping the Mal Web, Revisited” [83] shows per-

centages of malicious web pages for a variety of top-level domains. How-

ever, neither the apparatus, subjects, and stimuli has been disclosed as

part of McAfee’s report. Further, the data presented in the report lacks

top-level domains of interest namely, the .nz and .au domains.

First, the impact of content categories is illustrated. Approximately

220,000 URLs were used for this study. The URLs were categorized along

the content area of the web page denoted by the URL. They were sourced

by issuing keywords of the specific content area to the Yahoo! search en-

gine. The areas were:

• Adult – pages that contain adult entertainment/pornographic mate-

rial

• Music – pages that contain information about popular artists and

bands

• News – pages that contain current news items or news stories in

sports, politics, business, technology, and entertainment

• User content – pages that contain user-generated content, such as

forums and blogs

• Warez – pages that contain hacking information, including exploits,

cracks, serial numbers, etc.

Approximately 220,000 URLs from approximately 100,000 hosts in these

categories were sourced from the Yahoo! search engine. Table 5.1 shows

the detailed breakdown for the different content areas. The URLs were

grouped by content area and then inspected with our high-interaction

client honeypot Capture-HPC v1.1 in the first half of May 2007.

CHAPTER 5. EXPERIMENTAL DESIGN 109

Table 5.1: Input URLs/Hosts by Source

Using these input URLs, a total of 266 malicious URLs from 158 hosts

were identified. No significant overlap of hosts or URLs existed. The per-

centage of malicious URLs within each source ranged from 0.0223% for

music content to 0.5735% for adult content. Table 5.2 shows the break-

down of the various sources.

Table 5.2: Malicious URLs/Hosts by Source

A Chi-Square test (p < 0.01) shows statistical significance between the

adult source and any other source. The base rate of URLs is higher for

adult content than any other content. Between warez, news, user content

and music, no statistically significant differences were detected. Compar-

ing these results with Moshchuk et al.’s study, some differences are ob-

served. Moshchuk et al. also inspected adult, warez, news, and music

content. However, in May 2005, they observed higher percentages for mu-

sic than any other content. Five months later, they observed a higher per-

centage of pirated content. Neither in May nor October 2005 did adult

content show elevated levels over the other categories, as shown in this

CHAPTER 5. EXPERIMENTAL DESIGN 110

study.

As shown above, content categories impact the base rate. Next, it is

demonstrated that top-level domain can have a similar effect. From the

Victoria University network, 664,000 web pages from the .au, .nz, .uk, and

.com domains were compared.

To compare URLs from the various domains, the URLs needed to be

classified with regard to their malicious nature. The number of URLs

needed to be sufficient to detect any statistically significant differences

across the various domains. To achieve this, a large sample of 664,000

URLs needed to be classified. Due to resource constraints, it was not pos-

sible to classify this many URLs using a slow high-interaction client hon-

eypot. Instead, all URLs were inspected using a hybrid system, which is

described in detail in the next chapter.

The data for the comparative study was collected in January and Febru-

ary 2008. The URLs from the .au, .com, .nz, and .uk domains were sourced

from the Yahoo! search engine [35]. Because the national language for all

these domains is English, URLs could be sourced by submitting English

queries to the search engine. By submitting the same queries to the search

engine for each domain, it can be expected that the URLs sourced from

the results page are controlled and differ only in the domain they come

from. Content category bias, such as elevated percentage of adult web

pages over news web pages, should be applied consistently across all four

domains.

The first 1,000 URLs on the results page were used to build the list of

664,000 URLs. If less than 1,000 URLs were shown on the results page,

an identical number of URLs was taken to ensure that bias from one par-

ticular query did not result in bias within the collected data set favoring

one domain over the other. This also ensured that an identical number of

URLs was collected across the domain.

However, due to the number of hosts in each of the domains, the URLs

returned by the search engine results are hosted on a different number of

CHAPTER 5. EXPERIMENTAL DESIGN 111

unique hosts. The number of unique host names of the input URLs per

domain is shown in Figure 5.3. These numbers reflect the general notion

that there are more servers in , for instance, the .com domain than the .uk

domain.

Figure 5.3: Unique Hosts of Input URLs per Domain

In total, 38 malicious URLs from 27 unique hosts were detected. Figure

5.4 shows the number of malicious URLs and hosts per domain. For exam-

ple, of the 168,000 URLs per domain, 26 unique malicious URLs from 16

unique hosts were identified for the .au domain, whereas only three URLs

from three unique hosts were identified for the .nz domain. The statisti-

cal Chi-Square test shows that the difference between the malicious URLs

and hosts identified in the .au domain and any of the other domains is

statistically very significant (URLs: p < 0.0036; hosts: p < 0.0092).

As shown, both content categories and top-level domain do influence

the base rate. Measurement studies that do not control the input URLs

may limit their external validity. As such, in any measurement study, it

is important to disclose how the input URLs were generated and use a

sample of sufficient size. Our results differ from those in Moshchuk et

CHAPTER 5. EXPERIMENTAL DESIGN 112

Figure 5.4: Malicious URLs and Hosts per Domain

al. The reason for these differences could not be determined, as too little

information was disclosed in the published reports.

5.2.2 Time

Moshchuk at al. and our study showed different results, and the two stud-

ies were conducted at different times. Moshchuk et al. collected data in

May and October 2005, whereas our data was collected in May 2007. Time

could have been a factor in the differences observed. The web is highly

dynamic. Just as web pages appear and disappear, the attack landscape

could change. Drive-by-download attacks might shift from pages with

questionable content, such as adult pages, to pages with more legitimate

content, such as news pages. Time therefore is a crucial factor, as investi-

gated in this section.

In addition, all active web servers in the .nz domain were inspected

with the high-interaction client honeypot Capture-HPC v2.1 over an eight-

month period. The data was collected in April 2008 and from June 2008

CHAPTER 5. EXPERIMENTAL DESIGN 113

Figure 5.5: Lab Setup

to November 2008. The URLs were obtained from the .nz domain file.

As URLs were inspected repeatedly, special care was taken to counter the

risk of client honeypot detection, tracking, and resulting false negatives.

All requests were made via a HTTP/DNS proxy server Squid v2.6 and

Pdnsd 1.2.6 [168, 93], as shown in Figure 5.5. The external IP address of

the system was changed with each monthly scan.

Over the eight months, a total of 291 unique malicious URLs of 247,198

input URLs, about 0.12%, were identified. Results of the monthly inspec-

tion of 247,198 URLs with the client honeypot over a period of eight month

are shown in Figure 5.6. (Note that no monthly scan was conducted in

May 2008.) Over the eight-month period, no increasing or decreasing

trend can be detected. However, significant fluctuations between 52 (April

2008) and 97 (July 2008) malicious URLs can be observed.

This data illustrates that time seems to be an important factor and a

CHAPTER 5. EXPERIMENTAL DESIGN 114

Figure 5.6: Monthly Scan Results

hazard to the validity of a measurement study. Just as web sites appear,

malicious web sites might change. An increase might be related to new

vulnerabilities disclosed, allowing for an infection of many malicious web

sites; a decrease might be related to take-down notices of centralized ex-

ploit servers that are utilized by many thousands of web pages. As such,

it is important to disclose the exact times when measurements were taken.

5.3 Summary

Weaknesses in the experimental design of the work on detection of drive-

by-download attacks with client honeypots were identified in Chapter 3.

A goal of our work was to stand on a strong foundation with a solid ex-

perimental design that mitigates risks to internal and external validity.

In this chapter, a methodology for identifying and mitigating risks in

a systematic and thorough manner was presented: the hazard and op-

erability (HAZOP) study. Measurement studies were used to illustrate

the process of HAZOP. Uncontrolled variables were identified as major

CHAPTER 5. EXPERIMENTAL DESIGN 115

risks. We used uncontrolled variables as examples to illustrate the impact

of failure to mitigate risks appropriately. First, it was shown that the URL

source can greatly impact measurements. Certain content categories, such

as adult content, and top-level domains, such as the .au domain, show el-

evated levels of malicious web pages. If URL source is not controlled and

described, the validity of a measurement study may be at risk. Second,

it was shown that time can also have a major impact on measurement.

Monthly measurements on the .nz domain showed significant increases

and decreases in the base rate over monthly periods. As such, time is an

important factor when it comes to disclosing measurement numbers. Mit-

igation of risks identified using the HAZOP were incorporated into our

experimental designs.

Chapter 6

Low-Interaction Client Honeypots

A honeypot can be classified by its interaction level. Possible values of the

interaction level are high and low. The high-interaction level denotes that

the honeypot system allows for full functional interaction. An example of

such a honeypot is the Honeynet [145]. A low-interaction level signifies

that the functionality is limited, for example, by using emulated services.

This strategy is followed by Honeyd [107].

Pouget et al. compared the interaction levels of honeypots [106] and

concluded they are complementary in nature and allow for more accuracy

and better utilization of resources, depending on the circumstances of de-

ployment and goals of data collection. For example, it might be unneces-

sary to deploy a high-interaction honeypot on a global scale, as global data

is likely to be similar; low-interaction honeypots are more suited for this

situation. On the other hand, low-interaction honeypots are not suited

for an in-depth investigation of attacker’s actions once a honeypot has

been successfully compromised. High-interaction honeypots are required

to meet this goal, as they expose the full functional spectrum of a computer

system for the attacker to interact with and therefore allow for collection

of the desired data.

This classification can be also applied to client honeypots. While high-

interaction client honeypots make use of a real dedicated vulnerable sys-

116

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 117

tem and usually monitor the system for unauthorized state changes to de-

tect an attack, low-interaction client honeypots use a simulated client to

interact with the potentially malicious servers. An assessment of whether

an attack has occurred is done by an analysis of the server’s response.

Analysis techniques could apply simple signature matching, static analy-

sis, dynamic analysis, etc.

The main differential aspect of high-interaction and low-interaction

client honeypots is the Visitor component of the client honeypot compo-

nent model. While a change of the Visitor component usually necessitates

a change of the Analysis Engine as described, it is not a requirement for

the client honeypot to be classified as a low-interaction or high-interaction

client honeypot. Rather, the Visitor component is the main classifier for

the interaction level.

Low-interaction client honeypots have advantages as well as disad-

vantages over high-interaction client honeypots. Because low-interaction

client honeypots make use of a lightweight simulated client, they are usu-

ally faster than the real client of a high-interaction client honeypot. Fur-

ther, deployment is usually highly simplified, because the entire client

honeypot can be contained within a stand-alone application. This stands

in contrast to the high-interaction client honeypot, which needs to be de-

ployed exclusively on a dedicated system. However, at the same time, a

low-interaction client honeypot can miss attacks and raise false positives.

In this chapter, we present and evaluate two classification methods that

assess whether a page belongs to a malware distribution network. Mal-

ware distribution networks are responsible for the majority of malicious

web pages [123, 131, 83, 164, 38, 90]. As such, any method that is able

to identify whether a web page belongs to such a network will identify

a majority of the malicious web pages on the Internet. These classifica-

tion methods can utilize simulated clients to make a classification of a web

page. As such, they can be incorporated into a low-interaction client hon-

eypot.

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 118

First, we briefly describe malware distribution networks; that is fol-

lowed by a description and evaluation of two methods that assess whether

a page belongs to such a malware distribution network. The first method

analyzes the network activity that is generated when a browser loads a

page; the second method analyzes static characteristics of the page.

6.1 Malware Distribution Networks

A browser requests a web page through a URL. If that web page launches a

drive-by-download attack, it may or may not host the exploit code directly.

Often, the exploit code is fetched from other web servers, as illustrated in

Figure 6.1. In such a network, several servers may be complicit in the

drive-by-download attack.

• Malicious Web Page – the front-end web page the user navigates to.

These pages are often legitimate web pages that have been abused

by a third-party to join it to the malware distribution network.

• Redirector – the redirector may be the gateway from a malicious

web page to other components of the malware distribution network.

The malicious web page may contact the redirector through a server

or client-side redirect, through importing content from external re-

sources, such as iFrames or external JavaScript, etc. The redirector

is the server that is responsible for pulling in the exploit from the

exploit server.

• Exploit Server – the server that actually hosts the exploit that attacks

the browser vulnerability.

• Malware Distribution Site – the site that hosts the malware that is

pushed upon successful exploitation.

In addition to setting up complex, distributed instances of web servers

to make investigation difficult, attackers also abuse DNS servers. Attack-

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 119

Figure 6.1: Malware Distribution Network (inspired by Figure 83 of Mi-

crosoft’s SIRv6 [16])

ers make use of so-called fast-flux service networks, in which public DNS

records are constantly changing [146]. For example, the host name www.foo.com

might resolve to IP address 192.168.75.3 on one occasion, but to a different

IP address upon the second lookup. Attackers might use this technique

across international borders, e.g., in a case where a U.S.-based DNS server

serves IP addresses throughout the world.

Provos and Wang mentioned that malicious web pages often belong

to a malware distribution network [110, 159, 174]; white papers estimate

that around 70-90% of malicious web pages belong to these networks [123,

131, 83, 164, 38, 90]. Web exploitation kits with functionality that partic-

ularly supports these network structures exist. The methods developed

and presented in this chapter take advantage of the structure of malware

distribution networks in determining whether a web page belongs to such

a network. Because the majority of web pages appear to belong to such

a network, the methods will identify the majority of the overall mali-

cious web pages. Because they can be incorporated into a lightweight

low-interaction client honeypot, they are faster than high-interaction client

honeypots. Next, the two methods are presented.

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 120

6.2 Classification Method Based on Analysis of

Network Traffic

Malicious web pages that belong to a malware distribution network gen-

erate abnormal network traffic by contacting several servers of the mal-

ware distribution network. Some of the structures of malware distribu-

tion networks exist to protect assets of the attacker, such as the exploit

server, make the overall network failure resistant, and make the tracking

and identification of the servers that compose the malware distribution

network more difficult.

This is likely to be achieved through extensive redirect chains and failure-

resistant network structures, such as fast-flux networks. This section in-

troduces a novel classification method that identifies malicious web pages

based on the network traffic that is generated when loading a web page.

The method operates under the assumption that malicious web pages that

are part of a malware distribution network will contact more servers that

are involved in rendering the page from more distributed locations than

will web pages that are not part of such a network.

In Section 6.2.1, the servers involved in rendering a web page are re-

viewed, followed by a description of the characteristics that aid in clas-

sifying malicious web pages. The methodology used in developing this

new classification method and results are presented and discussed in the

remainder of this section.

6.2.1 Server Relationships

When a web page is rendered, several servers are involved. These servers

and their relationships to the malicious web page are described below.

This information provides a foundation for understanding how malicious

web pages can be identified by the classification method presented.

Two types of servers are involved in retrieving and rendering a web

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 121

page: DNS servers and web servers.

DNS Servers DNS servers are responsible for resolving the host name

into routable IP addresses. For example, as shown in Figure 6.2, the DNS

server resolves the host name www.mcs.vuw.ac.nz to the IP address 130.195.5.18.

A client performing such a host lookup does so by sending a DNS request

with the host name to a DNS server, usually located at the Internet service

provider, which then sends a DNS response with the IP address of the host

back to the client.

Figure 6.2: DNS Lookup

This local DNS server, however, does not necessarily know the IP ad-

dress that belongs to the host name. If it does not, it goes through the steps

shown in Figure 6.3. First, the local DNS server contacts one of the 13 root

name servers. The root name server does not know the IP address either,

but refers the local DNS server to an intermediate DNS server that might

know it. (Since the example presented here deals with a host name in the

New Zealand domain, it is likely that this intermediate server is the New

Zealand domain name server.) If that server also does not know the IP

address, it refers to another server that might, and this process iteratively

continues until the responsible DNS server that does know the IP address

is found. This might be a DNS server located with the hosting provider

or the network itself. Once the responsible DNS server is found, it returns

the requested information to the local DNS server, which in turn returns

the information to the client that originally made the request.

Web Servers The other type of server involved in retrieving and ren-

dering a web page is the web server. First is the web server that hosts

the web page denoted by the URL. The web page, however, consists of

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 122

Figure 6.3: DNS Lookup by Local DNS Server

additional content beyond what is denoted by the URL, including such

things as images, JavaScript, Flash content, style sheets, and embedded

web pages, which might or might not be hosted by the same server that

hosts the original web page. HTML, the language of web pages, supports

these constructs to provide a mechanism for a reusable and modular de-

sign. For instance, it allows a web page author to include centralized ele-

ments, such as advertisements and counters, and highly dynamic content,

such as news feeds.

In addition, a web page might also employ redirect directives that in-

struct the browser to fetch a web page located at a different URL. Server-

side redirect directives are part of the HTTP protocol and are delivered

as part of the server response, such as a 302 HTTP response. Client-side

redirect directives are embedded in the web page, such as the JavaScript

windows.location property of the document object model, which can be

set to a new location. As mentioned before, these mechanisms have legit-

imate uses. For instance, if a web site moves from one domain to another,

the redirect directives allow the author to redirect the user from the old

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 123

site to the new site, so the user is presented with up-to-date content.

The classification method presented in the next section identifies char-

acteristics of malicious web pages related to abuse of DNS, HTTP, and

HTML that would indicate more servers involved in rendering the page

from more distributed locations are contacted than web pages that are not

part of such a network.

6.2.2 Methodology

This section describes how the new classification method can take advan-

tage of network traffic that is generated when loading a malicious web

page. Using the high-interaction client honeypot Capture-HPC v2.1, sev-

eral thousand English-language malicious web pages were identified. The

network traffic generated while retrieving both malicious and benign web

pages was recorded, and various attributes were extracted. The extracted

attributes were fed to a J4.8 machine learning algorithm to assess their pre-

dictive nature. The methodology is described below; results are presented

in the following section.

In October and November 2007, several thousand malicious web pages

were inspected using the high-interaction client honeypot. After configur-

ing the client honeypot with a clean installation of Windows XP SP2, sev-

eral thousand potentially malicious web pages were inspected with the

Internet Explorer 6 SP2 web browser. The list of potentially malicious web

pages was generated using known bad sites, such as the MVP’s hosts file

[98]. As the client honeypot inspected potentially malicious web pages,

the network traffic was recorded. In cases where a web page was indeed

malicious, the web page was marked as such and the corresponding net-

work traffic was saved.

Similarly, network traffic was recorded when interacting with benign

web pages using an identically configured system. To collect benign web

pages, English 5 N-grams (an N-gram is a selection of n words from a

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 124

string) randomly selected from the corpus of web pages linked by the

DMOZ Open Directory Project [101] were issued to the Yahoo! search en-

gine [35], and the first 50 URLs on the results page were visited with the

client honeypot. The web pages were marked as benign and the corre-

sponding network traffic was saved.

Some characteristics of web pages might be associated with the coun-

tries where the pages originate or the languages used on the web pages.

For instance, Zhuge et al. observed that a large percentage of malicious

web pages exist in the Chinese domain [174]. Since only benign pages

were collected using English 5 N-grams, all malicious and benign pages

were filtered to exclusively contain English-language web pages. The tool

TextCat [153] was used to perform this filtering. TextCat is based on the

text categorization algorithm presented by Cavnar and Trenkle [22].

Once the network traffic was collected and filtered, attributes that may

characterize whether a web page belongs to a malware distribution net-

work and as a result contacts more servers from more distributed locations

than benign web pages do were extracted. Because some data around the

DNS lookups were not contained in the network traffic, DIG, a DNS query

tool, was used to obtain this information. Similarly, geo location infor-

mation, in which IP addresses are mapped to specific countries, was also

obtained using an additional tool, MaxMind’s GeoLite Country Technol-

ogy [81]. The attributes extracted are described in Table 6.1.

All the extracted attributes served as input for the machine learning al-

gorithm. The extracted attributes were fed into the J4.8 decision tree learn-

ing algorithm implementation of the Waikato University’s Weka Machine

Learning Library [170]. J4.8 builds decision trees using the C4.5, revision

8, decision tree machine learning algorithm. The decision tree built by this

algorithm is a predictive model that can assess whether a web page is ma-

licious or not, which is represented by the value of the leaves. The values

of the remaining attribute nodes determine the path to the child node and

ultimately to the leaf node with the final classification. Decision trees, as

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 125

Attribute Description

Number of Unique

HTTP Servers

The number of unique HTTP servers. Obtained through counting the IP

addresses of packets originating on ports 80, 8080, 8088, 3128, and 443.

Number of Redirects The number of 301, 302, and 303 redirects. Obtained by inspecting the

response code of web pages returned by any HTTP server.

Number of Redirects

to Different Country

The number of 301, 302, and 303 redirects in which the server that issues

the redirect response is located in a different country than the server to

which the browser is being forwarded.

Number of Redirects

to Same Country

The number of 301, 302, and 303 redirects in which the server that issues

the redirect response is located in the same country as the server the

browser is being forwarded to.

Number of Domain

Name Extensions

The number of domain name extensions of all host names that operate a

web server.

Number of Unique

DNS Servers

The number of DNS servers involved in making a DNS lookup. The DIG

tool is used to count the number of responsible DNS servers for each host

name encountered.

Table 6.1: Extracted Dynamic Attributes

opposed to neural nets, explicitly present the acquired knowledge, which

allows an expert to reason about and interpret the data.

The results of this work are presented in the next section.

6.2.3 Results

For this study, 2,623 instances of malicious web pages and 16,809 instances

of benign web pages were input into the machine learning algorithm. Al-

though a ratio of roughly 99.5% benign to 0.5% malicious web pages ex-

ists in the ”real world”, this ratio was not applied to the data input into

the machine learning algorithm because that information would skew the

results. In order to weight the instances of the malicious web pages more

heavily, data from the malicious web pages was amplified using a ratio of

approximately 1 malicious to 6.5 benign.

The data were analyzed using the J4.8 machine learning algorithm. A

stratified ten-fold cross validation was performed to assess the accuracy of

the acquired knowledge. This validation splits the data into ten partitions

and uses each for testing and the remainder for training. The ten result-

ing error estimates are averaged. As shown in Table 6.2, malicious web

pages would be correctly identified as malicious 74.5% of the time and

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 126

missed (i.e., false negatives) 25.5% of the time, while benign web pages

would be correctly identified 97.4% of the time and incorrectly classified

as malicious (i.e., false positives) 2.6% of the time.

Table 6.2: Detection Accuracy

However, if just reviewing these numbers, one might fall into the base-

rate fallacy when trying to assess absolute errors [10]. Because the under-

lying data is not evenly distributed, the false positive rate of benign pages

has a much larger impact on absolute numbers than one might initially

assess. For instance, assume a distribution of benign to malicious web

pages of 99.5 to 0.5 (i.e., in a set of 10,000 pages, 9,950 are benign and 50

are malicious). Using these distributions yields the absolute errors shown

in Table 6.3. This table demonstrates that the impact of incorrect classifi-

cation is much larger for benign web pages despite the low false positive

rate (2.6%) in comparison to the false negative rate (25.5%): 2599 benign

pages would be incorrectly classified as malicious, but only 13 malicious

pages would be classified as benign.

Table 6.3: Detection Accuracy - Absolute Error Rates Example

The decision tree being generated is shown in Figure 6.4. The attribute

”Number of Countries” was removed because it created a model with a

slightly higher error estimate. With six attributes included in the train-

ing data set, the machine learning algorithm selected only two as relevant

in the classification: Number of Domain Name Extensions and Number

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 127

of Unique DNS Servers. Using these two attributes, the decision tree can

make classifications in accord with the classification accuracies presented

above. For example, if (1) a URL causes web content to be retrieved from

hosts having three unique domain name extensions (i.e., the number of

domain name extensions is greater than two) and (2) six DNS servers are

involved to resolve all host names (i.e., the number of unique DNS servers

is greater than five), the web page would be classified as malicious. If,

however, a URL causes web content to be retrieved from a host with only

one unique domain name extension (i.e., the number of domain name ex-

tensions is two or less), the web page would be classified as benign.

Number of

Domain Name

Extensions

Benign

Number of

Unique DNS

Servers

<=2 >2

Number of

Domain Name

Extensions

Malicious

<=5 >5

MaliciousBenign

<=3 >3

Figure 6.4: Decision Tree (confidence 25%, minimum object number of 75,

and number of countries removed)

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 128

6.2.4 Discussion

The knowledge acquired by the machine learning algorithm presents a

simple method for assessing whether a web page is malicious, because

only the host names contacted and the DNS servers involved in the res-

olution of those host names need to be collected in order to assess the

malicious nature of the web page.

The extracted knowledge depicted in the decision tree meets our ex-

pectations. As described above, a malicious web page that is part of a

malware distribution network will contact many web servers from differ-

ent locations. As implied by the constructed decision tree, this structure

is rather uncommon on benign pages. While benign pages might include

web components from a different domain (e.g., a New Zealand web page

[domain co.nz] might include advertisements from an international cor-

poration [domain .com]), the web page usually does not contain content

from more than two different domain extensions.

A downside of the new classification method is that it could be eas-

ily evaded by attackers. Instead of using iFrames or similar methods that

instruct the browser to retrieve content from a specific location, attackers

could use server-side includes in which the various components are first

aggregated in one web page before the web page is served to the client in

its entirety. When retrieving such a web page, it might appear to be com-

ing from only one source despite the various sources aggregated on the

web server itself. This could explain the high percentage of false negatives

shown by the model. However, this evasion technique places a higher

burden on the attacker in terms of setting up and maintaining the attack

page.

The method could be incorporated into a low-interaction client honey-

pot component. However, because the web page with all its components

needs to be loaded in its entirety, and redirects need to be followed simi-

lar to how a real browser behaves, the performance gains of this method

compared to high-interaction client honeypots will be small. Similar to

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 129

how exploits themselves could trigger only upon artificially introduced

delays by the attacker (aka time bombs), redirect chains could be delayed

in a similar manner. As such, the low-interaction client honeypot would

have to disable such delays in its processing of the server response or ac-

cept and process the delays. The result would be performance similar to

a high-interaction client honeypot. If we assume the bulk visitation algo-

rithm is applied, a low-interaction client honeypot that would incorporate

this classification method would be able to process a web page in approx-

imately 2.95 seconds.

6.2.5 Summary

In this section, we presented a novel classification method for assessing

whether a web page belongs to a malware distribution network. The clas-

sification method takes advantage of the fact that malware distribution

networks are composed of many servers and usually make an effort to

distribute these servers over national boundaries. It analyzes the network

activity that is generated when a browser loads a page and makes an as-

sessment of whether the page belongs to a malware distribution network

by taking into account how many DNS servers were contacted and how

many different top-level domains the web page components are sourced

from. A 10-fold cross validation estimates the following error rates in clas-

sifying unseen web pages: a false positive rate of 2.6% and a false negative

rate of 25.5%. A low-interaction client honeypot that incorporates such a

method would have a service time of approximately 3 seconds.

6.3 Classification Method Based on Static Attributes

on the Web Page

In this section, we present the classification method that statically analyzes

the initial HTTP response denoted by the URL for characteristics that as-

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 130

sess whether the page belongs to a malware distribution network. This

method, in contrast to the method described in the previous section, does

not need to retrieve the web page, and the elements it contains, in its en-

tirety nor does it need to follow redirects. Rather, the classification method

is able to extract all information from the page denoted by the URL.

The classification method assesses whether the page belongs to a mal-

ware distribution network through analysis of three core elements con-

tained on a malicious web page: the exploit itself, the delivery mechanism

that joins the web page to the malware distribution network, and mecha-

nisms to hide the exploit or the delivery mechanism from detection.

Exploit The exploit is the central part of the malicious web page and

the core element that must be present for a web page to be considered ma-

licious. The exploit is the attack code that targets a specific vulnerability

of the browser, its plug-ins, or underlying operating system. It is specific

to the vulnerability it is targeting and can make use of a variety of tech-

niques. Less obvious exploits have been found in images. The most com-

mon exploits target vulnerabilities in scriptable ActiveX components. For

example, a popular web exploitation kit, called IcePack, primarily targets

vulnerabilities in ActiveX components with 75% of the supported exploits

being related to ActiveX components.

Exploit Delivery Mechanism While the exploit is the central part of a ma-

licious web page, the web page might not contain the exploit directly. Ex-

ploits might be ”imported” from a different server of the malware distribu-

tion network. There are two types of imports: direct includes of resources

and redirects.

Direct includes of resources are a feature naturally supported by HTML.

The src attribute, which exists on several HTML tags, is able to import re-

sources from local and remote web servers. Even if a tag does not support

the src attribute, scripts are able to effectively source any HTML element

remotely, because scripts can arbitrarily modify an HTML page via the

document object model (DOM) and so import whole HTML elements from

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 131

remote sources.

Alternatively, instead of importing an exploit, an attacker might in-

struct the browser to fetch a new page from a new location altogether.

Redirects can be used to instruct the browser to perform this action. There

are server and client-side redirects. Server-side redirects instruct the browser

to fetch a page from a different location via the HTTP response code (3xx)

and the location header field. Client-side redirects instruct the browser

to fetch a page from a new location via HTML or JavaScript. Client-side

redirects trigger after an HTML page is loaded.

Obfuscation Hiding the exploit or the exploit delivery mechanism through

obfuscation is a common mechanism used by malicious web pages. Script

code is provided in obfuscated form alongside a custom de-obfuscation

function, which can convert the obfuscated code snippet into its clear form.

Once converted, the code can be executed. Alternatively, hiding function-

ality that is naturally supported by HTML elements, such as the hidden

style attribute of iFrames, could be utilized to hide a malicious component

on the page.

All the elements described above have their legitimate purposes, but

attackers also use them. As a result, a web page cannot be classified as

malicious if one merely observes these elements contained in an HTTP

response. A more able mechanism is needed, which is described next.

6.3.1 Methodology

In this section, characteristics of HTTP responses and how the contained

HTML page can be taken advantage of to classify whether a web page

belongs to a malware distribution network are presented. In October and

November 2007, several thousand potentially malicious web pages were

inspected using the high-interaction client honeypot Capture-HPC v2.1

configured with a clean installation of Windows XP SP2 and running the

Internet Explorer 6 SP2 web browser. As the client honeypot inspected

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 132

potentially malicious web pages, the network traffic was recorded. Web

pages identified as malicious were marked as such and the corresponding

HTTP response was saved.

Similarly, the HTTP response was recorded when interacting with be-

nign web pages using an identically configured system. To collect benign

web pages, English 5 N-grams were randomly selected from the corpus

of web pages linked by the DMOZ Open Directory Project [101]. Those

N-grams were issued to the Yahoo! search engine [35], and the first 50

URLs on the results page were visited. The web pages that were not clas-

sified as malicious by the client honeypot were marked as benign and the

corresponding HTTP response was saved.

Once the HTTP responses were collected, attributes of the HTTP re-

sponse and embedded HTML code that aim at capturing the characteris-

tics of a malicious web page were extracted. The attributes include char-

acteristics that capture indications of potential exploits, exploit delivery

mechanism, and obfuscation attempts. The attributes extracted are de-

scribed in Table 6.4.

!"#$%&'() *##'+,-#$.) /$.0'+1#+&2)

34-%5+2.) !&-2#)&6)#7$)2-8,$')&6)"114$#)"29)&,:$0#)#"%.;)

<0'+1#)="%.) !&-2#)&6).0'+1#)#"%.;)

>?14&+#)

@AB)3'&0$..+2%)

C2.#'-0#+&2.)

!&-2#)&6)@AB)1'&0$..+2%)+2.#'-0#+&2.;)C204-9$.)

.1$0+"4)@AB)1'&0$..+2%)+2.#'-0#+&2.D).-07)".)EAB;)

F'"8$.) !&-2#)&6)6'"8$.)"29)+F'"8$.)+204-9+2%)+26&'8"#+&2)

",&-#)#7$).&-'0$;)

G$9+'$0#.) C29+0"#+&2.)&6)'$9+'$0#.;)C204-9$.)'$.1&2.$)0&9$D)

8$#"5'$6'$.7)#"%.D)"29)H"I"<0'+1#)0&9$;)

>?14&+#)

/$4+I$'()

A$07"2+.8)

<0'+1#)="%.) !&-2#)&6).0'+1#)#"%.)+204-9+2%)+26&'8"#+&2)",&-#)#7$)

.&-'0$;)

<0'+1#)

J,6-.0"#+&2)

F-20#+&2.)"29)$4$8$2#.)#7"#)+29+0"#$).0'+1#)

&,6-.0"#+&2D).-07)".)$20&9$9).#'+2%)I"4-$.D)9$0&9+2%)

6-20#+&2.D)$#0;)

K+9+2%)

F'"8$.) C26&'8"#+&2)",&-#)#7$)I+.+,+4+#()"29).+L$)&6)+F'"8$.;)

)

Table 6.4: Extracted Static Attributes

All the extracted attributes were fed into the J4.8 decision tree learn-

ing algorithm implementation of the Waikato University’s Weka Machine

Learning Library [170]. The predictive value of the generated classifier

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 133

was evaluated on new web pages that were not used in the learning phase.

First, a sample of 61,000 URLs randomly selected using the method de-

scribed above was used. All URLs were classified with a low-interaction

client honeypot that incorporated the classification method presented in

this section as well as with the high-interaction client honeypot Capture-

HPC v2.1. The false negative and positive rates were determined. In ad-

dition, the classification method was evaluated with a set of 500,000 URLs

provided by HauteSecure, a leader in web-based threat protection [60].

These URLs had already been analyzed for drive-by-download attacks by

HauteSecure’s technology. Evaluation using these URLs reduced the risk

of potential bias introduced by the high-interaction client honeypot tech-

nology and sampling method.

The sample of 61,000 URLs was also used to assess the performance

gain of the presented classification method using an Amazon EC2 instance

with 1.7GB of RAM, which is equivalent to a CPU capacity of a 1.0-1.2

GHz 2007 Xeon processor, on a 250Mbps connection. The duration of clas-

sifying the sample with the low-interaction client honeypot that incorpo-

rated the classification method was compared to the high-interaction client

honeypot on another test machine with similar specifications (assuming

a divide-and-conquer algorithm, a service time of approximately 10 sec-

onds, and the ability to run three client honeypot instances).

6.3.2 Results

For this study, 5,678 instances of malicious and 16,006 instances of benign

web pages were input into the machine learning algorithm. The generated

classifier was used to classify a new sample. Of the 61,000 URLs included

in the sample, 3,590 URLs were marked as malicious by the presented clas-

sification method. Inspection by a high-interaction client honeypot deter-

mined the false positive and false negative rates of the presented classi-

fication method on the sample. Seven malicious URLs were detected in

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 134

the 3,590 URLs; six malicious URLs were detected in the remaining URLs

marked as benign. This amounts to a false positive rate of 5.88% and a

false negative rate of 46.15% for the new classification method. The evalu-

ation against the 500,000 URLs provided by HauteSecure resulted in simi-

lar metrics (a false positive rate of 9.7% and a false negative rate of 44.4%.)

Figure 6.5: Decision Tree

The decision tree generated is shown in Figure 6.3.2. The decision tree

can be used to classify unseen pages. Starting from the root node, the value

of the attribute shown on the tree node is evaluated, which leads to a spe-

cific child node. Attributes are recursively evaluated until a classification

node that specifies whether a page is malicious or benign is reached.

The decision tree shows that the existence of iFrames is a good classifier

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 135

on the malicious nature of a web page. Existence of a small iFrame on the

web page causes a malicious classification. When the iFrame is missing,

additional attributes are evaluated. The presence of escaped characters

in JavaScript code and the existence of the unescape function are other

good classifiers of a malicious page. These are attributes that directly link

to the exploit delivery mechanism and obfuscation, which exist on pages

that are part of a malware distribution network. Features that capture

the existence of the exploit itself do not appear on the tree. This is likely

to be the case because a majority of the web pages are part of malware

distribution networks. Pages that contain exploits on the front-end web

page are rare occurrences that the machine learning algorithm is likely to

ignore.

Performance in classifying an HTTP response with a low-interaction

client honeypot that incorporates the classification method is greatly in-

creased over the traditional high-interaction client honeypot. The test ma-

chine was able to retrieve and classify 61,000 URLs in 49 minutes. This is

equivalent to 1.79 million web pages a day (approximately a service time

of 0.05 seconds per URL). In contrast, the high-interaction client honeypot

classified 996 URLs in the same period of 49 minutes; this is equivalent

to approximately 29,270 URLs a day (approximately a service time of 2.95

seconds per URL). The presented method is able to inspect 61 times as

many URLs as high-interaction client honeypots in the same period.

6.3.3 Summary

We presented a simple yet effective classification method for assessing

whether a web page belongs to a malware distribution network. The

method requires assessing attributes of only the initial HTTP response.

Evaluation of the classification method on a sample of 61,000 URLs re-

sulted in a false positive rate of 5.88% and false negative rate of 46.15%.

Evaluation with 500,000 URLs provided by HauteSecure resulted in simi-

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 136

lar metrics (a false positive rate of 9.7% and a false negative rate of 44.4%.)

A higher false positive rate on data provided by HauteSecure may be re-

lated to the fact that HauteSecure selected their URLs from a suspicious

pool of URLs. If that is the case, our method would select more URLs

from that suspicious pool, which is supported by the lower false negative

rate. The extracted knowledge in the form of the decision tree captures

two common concepts of malware distribution networks: modular design

and obfuscation. It supports our observation that exploits are usually not

clearly visible on the web page denoted by the URL but are rather deliv-

ered through malware distribution networks; this is an observation sup-

ported by our in-depth analysis of malicious web pages in Appendix D.

Because this classification method is based on common attributes of mali-

cious pages, attackers could structure malicious pages to evade detection

by this method. They merely need to make use of uncommon features. For

instance, an exploit that is not imported via an iFrame and does not make

use of JavaScript could evade detection. However, if attackers commonly

adopt such an approach, the knowledge acquisition, if reapplied, would

potentially adjust itself to capture these common attributes. The necessity

and required frequency of new knowledge acquisition will be explored as

part of future work.

Speed is the big advantage of the presented method. There are two

reasons for the speed increase. First, the presented classification method

does not require all components of a web page to be downloaded nor is

support for rich functionality, such as JavaScript, required before an as-

sessment can be made. Second, the presented classification method can be

implemented as a threaded stand-alone application. This stands in con-

trast to the requirements of a high-interaction client honeypot, which re-

quires several seconds to classify a page while the presented method only

requires a fraction of that time for classification.

The presented classification method shows better performance over

high-interaction client honeypots. At the same time, the classification method

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 137

produces false positives and misses attacks. The usefulness of the ap-

proach becomes apparent if combined in a hybrid system, which is pre-

sented in the next chapter.

6.4 Summary

In this chapter, we presented and evaluated two novel classification meth-

ods that assess whether a web page belongs to a malware distribution net-

work. The first method takes advantage of the fact that malware distribu-

tion networks are composed of many servers and usually make an effort to

distribute these servers over national boundaries. It analyzes the network

activity that is generated when a browser loads a page and makes an as-

sessment of whether the page belongs to a malware distribution network

by taking into account how many DNS servers were contacted and how

many different top-level domains the web page components are sourced

from. A 10-fold cross validation estimates the following error rates in clas-

sifying unseen web pages: a false positive rate of 2.6% and a false negative

rate of 25.5%. A low-interaction client honeypot that incorporates such a

method would have a service time of approximately 2.95 seconds.

The second method analyzes static characteristics of the page to as-

sess whether a page belongs to a malware distribution network. It cap-

tures characteristics on the page that indicate whether a link to a redi-

rector exists and whether indicators of obfuscation exist. Obfuscation is

one method that attempts to hide malicious elements on the page from

signature-based approaches. An evaluation of this method on an unseen

sample of 61,000 pages resulted in a false positive rate of 5.88% and a false

negative rate of 46.15%. While the detection accuracy is worse than in the

first method, the service time of a low-interaction client honeypot is much

lower. On an Amazon EC2 instance with 1.7GB of RAM, which is equiva-

lent to a CPU capacity of a 1.0-1.2 GHz 2007 Xeon processor, on a 250Mbps

connection, the service time was about 0.05 seconds.

CHAPTER 6. LOW-INTERACTION CLIENT HONEYPOTS 138

Both methods used machine learning – in particular decision trees –

as the basis for developing a classifier that is able to assess the malicious

nature of web pages based on the extracted features. Besides detection ac-

curacy, machine learning has some additional drawbacks: staleness, eva-

sion, and brittleness. First, the methods suffer from staleness in that they

are based on the behavior and characteristics of malicious web pages at

a point in time. As time passes, malicious web pages may adopt new

techniques that change their behavior and characteristics. The detection

accuracy of the method, as a result, may decay over time. Second, the

classifiers capture uncommon behavior of web pages that are common for

malicious web pages. Once this is known, malicious web pages may ad-

just their behavior and characteristics to blend into the crowd of all web

pages. This is likely to be the case as exhibited by the fairly high false neg-

ative rate. Third, the methods are brittle. The decision tree that is used

by the method can quickly lead to incorrect classification if a wrong deci-

sion is made at the top. We chose to use decision trees because they allow

for expert evaluation of the extracted knowledge. According to the detec-

tion accuracy, it appears they are suitable to identify malicious web pages.

However, as they become more stale, brittleness may become an issue.

Despite these shortcomings, both methods appear to be successful in

determining whether a page belongs to a malware distribution network.

However, due to the low base rate, the methods produce a large amount

of false alerts despite low false positive rates. When combining the meth-

ods into a hybrid system using a low-interaction client honeypot with a

high-interaction client honeypot, the complementary nature of the client

honeypots produces a more cost-effective system. Such a hybrid client

honeypot system is presented next. In the future work section, some ideas

on how to address the shortcomings mentioned above will be explored.

Chapter 7

Hybrid Client Honeypot

In Chapter 4, we presented several visitation algorithms that reduce the

overall cost of identifying malicious web pages with high-interaction client

honeypots. The cost reduction was primarily achieved in speeding up

the high-interaction client honeypot’s ability to visit potentially malicious

web pages. However, the overall cost remains high when trying to in-

spect a larger set of web pages. With a base rate of p = 0.004, the cost

to identify one malicious web page is approximately 0.025 US dollars.

If 20,000,000,000 web pages are assumed to exist today, identifying the

80,000,000 malicious web pages would cost approximately 2,030,000 US

dollars. As demonstrated in Chapter 5, the web is highly dynamic, ne-

cessitating frequent scans to keep the list of malicious web sites identified

current. The cost of identifying malicious web pages increases with each

scan. A more cost-efficient solution is needed.

Provos and Wang mentioned that malicious web pages often belong

to a malware distribution network [110, 159]; white papers estimate that

around 70-90% of malicious web pages belong to these networks [123, 131,

83, 164, 38, 90]. In Chapter 6, we introduced client honeypots that are ca-

pable of taking advantage of this fact to detect these malicious web pages.

These client honeypots make use of a simulated client and, as a result, are

a new category of client honeypot: low-interaction client honeypots. They

139

CHAPTER 7. HYBRID CLIENT HONEYPOT 140

can be faster and are capable of detecting malicious web pages that belong

to malware distribution networks.

Unfortunately, low-interaction client honeypots do not have the favor-

able detection characteristics that high-interaction client honeypots do:

They do produce false positives. However, when low-interaction client

honeypots are combined with high-interaction client honeypots into a hy-

brid system, the hybrid system is able to reclaim the favorable detection

characteristics. In a hybrid system, web pages are first inspected by the

low-interaction client honeypot and any positive classifications are for-

warded to a high-interaction client honeypot to filter out false positives,

so the actual malicious web pages remain. In Section 7.1, a model is pre-

sented that illustrates how speed and detection accuracy of the low- and

high-interaction client honeypot components are combined in such a hy-

brid system.

In Section 7.2, a specific hybrid client honeypot implementation is pre-

sented combining the low-interaction client honeypot with a low-interaction

client honeypot that incorporates the static analysis method presented in

Section 6.3. We use the true positive cost curve to show the positive impact

of the hybrid client honeypot system on cost.

7.1 Hybrid Client Honeypot System Model

In the previous chapter, the concept of low-interaction client honeypots

was introduced. Two different low-interaction client honeypot systems

were presented: dynamic and static analysis. The low-interaction client

honeypots stand out in their ability to make a fast classification, but at the

same time, they produce false positives and miss attacks. Because of the

ratio of malicious to benign web pages, even a low percentage of false pos-

itives will lead the client honeypot’s classifications to consist of primarily

false malicious classifications. However, at the same time, the client hon-

eypot will correctly classify the majority of benign web pages as benign.

CHAPTER 7. HYBRID CLIENT HONEYPOT 141

The overall percentage of malicious web pages of all web pages for which

the low-interaction client honeypot raised an alert will be higher than the

input to the low-interaction client honeypot.

Figure 7.1: Hybrid System

The usefulness becomes apparent when combining the low- and high-

interaction client honeypots into a hybrid system as shown in Figure 7.1.

At the front stands a low-interaction client honeypot that initially retrieves

the URLs and classifies them. Since the false positive rate is high, all URLs

that have been classified as malicious are forwarded to the second part

of the hybrid system, the high-interaction client honeypot. It retrieves the

page once again and makes a final classification. Since the high-interaction

client honeypot has a negligible false positive rate, the false positives will

be filtered out.

The overall effect of the combination of low- and high-interaction client

honeypots will be an increase in speed while maintaining favorable de-

tection accuracy. In this section, we present a model that captures these

characteristics. Because of the performance characteristics of low- and

high-interaction client honeypots and the requirement to process a dif-

ferent number of URLs, the allocation needs of low- and high-interaction

client honeypots in a hybrid system are different. To determine these al-

location needs, the hybrid system is modeled in the form of a queue, as

presented in Section 7.1.1. In Sections 7.1.2 and 7.1.3, the speed and detec-

tion accuracy of the system are modeled. In Section 7.2, the hybrid system

is empirically evaluated.

CHAPTER 7. HYBRID CLIENT HONEYPOT 142

7.1.1 Queues

A hybrid client honeypot system consists of low- and high-interaction

client honeypots. These systems can have very different performance char-

acteristics and processing needs. The low-interaction client honeypot is

fast, but needs to process all URLs in the sample because it is at the front

of the hybrid system. The high-interaction client honeypot, on the other

hand, is slow, but needs to process only a fraction of URLs: the URLs that

were classified as malicious by the low-interaction client honeypot. In this

section, we model the hybrid system in the form of a network of multi-

server queues. The model will allow us to optimally allocate resources

of low- and high-interaction client honeypots. First, however, we model

a homogeneous client honeypot system as a multiserver queue and then

expand into the hybrid system.

Homogeneous Client Honeypot System

We model a homogeneous client honeypot system as a multiserver queue.

This model serves as the basis for our model of the hybrid client honeypot

system. The homogeneous client honeypot system consists exclusively of

NTotal homogeneous client honeypot nodes, as shown in Figure 7.2. This

multiserver queue (M/M/N) is filled with rate λ responses per time pe-

riod t. The rate λ is limited by the bandwidth and byte size of responses

to retrieve. Each node classifies a response in service time T , which is a

function of the percentage of malicious web pages p: T (p). The theoretical

maximum processing capacity is:

λmax =
NTotal

T (p)
(7.1)

For example, a homogeneous client honeypot system consists of 30

nodes, NTotal = 30. Each node is able to service a response in 2.95 sec-

onds, T (p) = 2.95. Assuming no limitations on bandwidth exist, λmax is

equal to 10.17 according to Equation 7.1. A homogeneous client honey-

CHAPTER 7. HYBRID CLIENT HONEYPOT 143

Figure 7.2: Homogeneous Client Honeypot Queue

CHAPTER 7. HYBRID CLIENT HONEYPOT 144

pot system of 30 nodes and a service time of 2.95 seconds is capable of

processing 10.17 web pages a second.

Hybrid Client Honeypot System

In this section, we expand the model to model the hybrid client honeypot

system as a network of multiserver queues with a total of NTotal nodes,

as shown in Figure 7.3. The hybrid system consists of two multiserver

queues, homogeneous low- and high-interaction client honeypot queues

that are connected in tandem. The low-interaction client honeypot queue

consists of NL nodes and each node has a service time of TL(p) per re-

sponse. The high-interaction client honeypot queue consists of NH nodes

and each node has a service time of TH(pmf) per response. Responses are

first classified by the low-interaction client honeypot queue. Depending

on that classification, the traffic is partitioned and only a portion of the

traffic with probability pmf is forwarded to the high-interaction client hon-

eypot queue for the final classification.

A response is able to be processed exclusively by the low-interaction

client honeypot queue or by the low- and high-interaction client honeypot

queues. Assuming no bottlenecks exist within the system, the theoretical

maximum rate at which the system is able to classify responses is the input

rate to the system λLmax. To prevent bottlenecks in the system, a certain

number of high-interaction client honeypot nodes need to exist to process

the forwarded responses. The correct ratio of nodes can be determined by

considering the percentage of responses forwarded to the high-interaction

client honeypot as well as the service times of the individual nodes. The

maximum theoretical input rate of each queue is:

λLmax =
NL

TL(p)
(7.2)

λHmax =
NH

TH(pmf)
(7.3)

C
H

A
P

T
E

R
7.

H
Y

B
R

ID
C

L
IE

N
T

H
O

N
E

Y
P

O
T

145

Low-Interaction

Client Honeypot Node 1L

Low-Interaction

Client Honeypot Node 2L

Low-Interaction

Client Honeypot Node NL

λ

NL

λ

NL

λ

NL

Bandwidth

λ = bandwidth rate

to low-interaction

client honeypot

queue

Queue

Server Responses
Dispatching

discipline

C
la
ssifie

d

R
e
sp
o
n
se
s

(1
-p
m
f)λ

Queue

Server Responses
High-Interaction

Client Honeypot Node 1H

High-Interaction

Client Honeypot Node NH

pmf λ

NH

pmf λ

NH

Dispatching

discipline

Classified

Responses

p m
f
λ

P
a
rt
ia
lly
 C
la
ss
ifi
e
d

R
e
sp
o
n
se
s

pmf λ

F
ig

u
re

7.3:
H

y
b

rid
C

lien
t

H
o

n
ey

p
o

t
Q

u
eu

e

CHAPTER 7. HYBRID CLIENT HONEYPOT 146

Considering only a percentage of responses is forwarded to the high-interaction

client honeypot

λHmax = pmfλLmax (7.4)

follows:
NH

TH(pmf)
=

pmfNL

TL(p)
(7.5)

Equation 7.5 represents the ratio of nodes required to prevent bottlenecks

within the hybrid client honeypot system.

Presented with the number of low- and high-interaction client honey-

pot nodes for a hybrid client honeypot system, one can evaluate whether

the number of high-interaction client honeypot nodes represents a bottle-

neck within the system by the following expression:

pmfNL

TL(P)
>

NH

TH(pmf)
(7.6)

If this expression evaluates to true, the high-interaction client honeypot

nodes have problems processing the responses forwarded by the low-

interaction client honeypot nodes. The system would contain a bottleneck,

reducing overall performance. If the expression evaluates to false, the sys-

tem does not contain a bottleneck and throughput is not constrained by

the composition of the queues.

Provided with the number of total nodes NTotal and the service times of

each node, Equation 7.5 can determine the ratio of low- and high-interaction

client honeypot nodes that will not lead to a bottleneck and in which

λmax = λLmax:

NL =
NTotalTL(p)

pmfTH(pmf) + TL(p)
(7.7)

NH =
pmfNTotalTH(pmf)

pmfTH(pmf) + TL(p)
(7.8)

For example, 100 nodes (NTotal = 100), a high-interaction client honey-

pot that is capable of servicing a response in 5.6 seconds (TH(pmf) = 5.6)

and a low-interaction client honeypot that is capable of servicing a re-

sponse in 0.05 seconds (TL(p) = 0.05) are available. The low-interaction

CHAPTER 7. HYBRID CLIENT HONEYPOT 147

client honeypot will forward approximately 5% of all web pages to the

high-interaction client honeypot to inspect (pmf = 0.05). The equations

above allow determination of the best allocation of the nodes for low- and

high-interaction client honeypots. According to Equation 7.7 and 7.8, one

would need 15 low-interaction and 85 high-interaction client honeypots.

With a sense of allocation needs, we turn to more closely model how speed

and detection accuracy will be affected by a hybrid system.

7.1.2 Detection Speed

The detection speed of a hybrid system is greatly influenced by the perfor-

mance of the individual components. However, another factor that influ-

ences speed is the number of malicious classifications coming out of the

low-interaction client honeypot component, because all malicious classifi-

cations are forwarded to the high-interaction client honeypot for a second

inspection. Since the high-interaction client honeypot is quite slow, this

will have a large impact on the hybrid system.

NM = p ∗N (7.9)

NB = N −NM (7.10)

alertsL = FPLNB + TPLNM (7.11)

pmf =
alertsL

N
(7.12)

The number of malicious classifications of the low-interaction client

honeypot can be calculated as follows: If we know p , the percentage of

malicious pages in the set that is being inspected N , then the number of

malicious pages NM and benign pages NB can be determined (Equations

7.9 and 7.10). Taking into account the false positive rate FPL and true

CHAPTER 7. HYBRID CLIENT HONEYPOT 148

positive rate TPL of our low-interaction client honeypot, we can calculate

the number of malicious classifications with Equation 7.11. For example,

assume the p = 0.4% and a true positive rate of 50% and false positive rate

of 5%. If we inspect 10,000 URLs with the low-interaction client honeypot,

680 malicious classifications are reported. Expressed in percentage pmf

according to Equation 7.12, 6.80% of URLs raise an alert.

THy(p) = TL(p) + pmfTH(pmf) (7.13)

The average service time of the hybrid system can then be determined

by adding the service time of the low-interaction client honeypot to the

service time of the high-interaction client honeypot times the percentage

of URLs for which an alert will be raised. According to Equation 7.13,

the average service time of the hybrid system THy for the current example

(TL = 0.05 seconds, pmf = 0.068, TH = 5.6 seconds) is 0.43 seconds.

TTotalHy(p) =
TL(p)N + pmfNTH(pmf)

NTotal

(7.14)

The actual time it takes to inspect the sample of N web pages is de-

pendent on the number of URLs in the sample and the number of nodes

of the hybrid client honeypot system, as shown in Equation 7.14. This is

the lower bound of the processing time, assuming all the nodes are fully

utilized during the processing time. Assuming one node is available in

which the hybrid system URLs are first inspected by the low-interaction

client honeypot and then all URLs for which alerts have been raised are

inspected by the high-interaction client honeypot system, the total time

to inspect the URLs is approximately 1 hour and 12 minutes (TL = 0.05

seconds, N = 10, 000, pmf = 0.068, TH = 5.6 seconds and NTotal = 1.)

This stands in contrast to the 15 hours and 33 minutes it would take to in-

spect with a single high-interaction client honeypot (N = 10, 000, TH = 5.6

seconds and NTotal = 1).

But as illustrated in Section 7.2, speed is not the only factor that makes

for a better client honeypot. Detection accuracy is the other major factor,

CHAPTER 7. HYBRID CLIENT HONEYPOT 149

Table 7.1: Classification Scenarios

as modeled next.

7.1.3 Detection Accuracy

Detection accuracy is described as the overall false positive and false neg-

ative rates of the system. The goal of the hybrid client honeypot system

is to combine the detection accuracy of the individual components into

an overall favorable detection accuracy. A similar model in the context of

anomaly and misuse IDS has been presented by Tombini et al. [151]. The

strength of the negligible false positive rate of the high-interaction client

honeypot nodes within the hybrid system should be emphasized. In addi-

tion, while the false negative rate of the hybrid system is likely to surpass

the false negative rate of the individual components, it remains low, so

more malicious web pages can be identified overall compared to a high-

interaction client honeypot system.

We first present a simplified model and continue to refine the model

throughout this section, with the final model presented at the end of this

section. The simplified model consists of a hybrid client honeypot sys-

tem that is composed of low- and high-interaction client honeypot nodes

that both classify responses. Classification by each node leads to four sce-

narios, as shown in Table 7.1. The nodes agree in their classifications in

Scenarios 1 and 4, but disagree in Scenarios 2 and 3.

Placing the classification in the context of a malicious response allows

CHAPTER 7. HYBRID CLIENT HONEYPOT 150

Table 7.2: Malicious Response Scenarios

Figure 7.4: Venn Diagram - Malicious Response Scenarios

Table 7.3: Benign Response Scenarios

CHAPTER 7. HYBRID CLIENT HONEYPOT 151

Figure 7.5: Venn Diagram - Benign Response Scenarios

us to assess the correctness of the classification, also known as false neg-

atives, as shown in Table 7.2. Figure 7.4 graphically illustrates these clas-

sifications as a Venn diagram. All malicious servers are represented by

the entire space. The set on the left represents the false negatives of the

low-interaction client honeypot node (FNL) and the set on the right rep-

resents the false negatives of the high-interaction client honeypot node

(FNH). The intersection FNL, FNH represents the set where both nodes

raise false negatives, whereas the complement of the two sets represents

the set of true positives. (Table 7.3 and Figure 7.5 show the corresponding

scenarios for benign responses.) These tables and figures, however, do not

communicate the false negative or false positive rates of the hybrid client

honeypot system. We discuss this next.

To determine the false positive and false negative rates of the hybrid

client honeypot system, there needs to be an agreement on how to treat

conflicting classifications. Because the high-interaction client honeypot

has a negligible false positive rate, more trust is put in the classification

made by the high-interaction client honeypot. As such, only if both client

honeypots raise an alert, an alert is accepted. Tables 7.4 and 7.5 show the

outcome of these classifications on the overall classification of the hybrid

CHAPTER 7. HYBRID CLIENT HONEYPOT 152

Table 7.4: Basic Hybrid Client Honeypot Malicious Response Classifica-

tion

Table 7.5: Basic Hybrid Client Honeypot Benign Response Classification

client honeypot system.

Figure 7.6 shows the effect on the overall false negative and false posi-

tive rates of the hybrid client honeypot system. The shaded areas in these

diagrams represent the false negative and false positive rates of the overall

hybrid client honeypot system. It results in a low false positive rate, but

a high false negative rate, in that the false negative rate of the low- and

high-interaction systems are combined. The overall false positive rate and

false negative rate are described by Equations 7.15 and 7.16.

FNHy = FNL ∪ FNH = FNL + FNH − (FNL, FNH) (7.15)

FPHy = FPL ∩ FPH = FPL, FPH (7.16)

Now that the basic overall false positive and false negative rates of our

hybrid client honeypot system are determined, we proceed to refine the

model. As mentioned above, the model holds when all responses are clas-

sified. Such an approach, however, would diminish the performance gains

CHAPTER 7. HYBRID CLIENT HONEYPOT 153

Figure 7.6: Venn Diagrams - Basic Hybrid Classification

Table 7.6: Hybrid Client Honeypot Malicious Response Classification -

Single Classification Input for Scenarios 1 and 2

Table 7.7: Hybrid Client Honeypot Benign Response Classification - Single

Classification Input for Scenarios 1 and 2

CHAPTER 7. HYBRID CLIENT HONEYPOT 154

FNH

True

Positives

Malicious Responses

FNL

Figure 7.7: Venn Diagrams - Final Hybrid Classification – False Negatives

that are the main driver for introducing the hybrid client honeypot system.

As part of the model refinement, we halt the evaluation of responses for

which no alert was raised by the initial low-interaction client honeypot

node. The resulting overall false negative and false positive rates will be

not affected by this adjustment, as illustrated in Tables 7.6 and 7.7 and Fig-

ure 7.6. However, because the high-interaction client honeypot uses the

output of the low-interaction client honeypot as input, there will be no in-

tersection between the FNL and FNH as shown in Figure 7.7. Therefore,

Equation 7.15 can further be simplified:

FNHy = FNL ∪ FNH = FNL + FNH (7.17)

In the hybrid client honeypot system, only a fraction of responses need

to be evaluated by both client honeypot nodes. The percentage of re-

sponses to be forwarded would be the number of responses for which the

low-interaction client honeypot node raises an alert, pmf :

Pmf = TPL ∗ p+ FPL ∗ (1− p) (7.18)

Note that pmf equals pmf of our performance model.

In this section, the detection accuracy of the hybrid system was pre-

sented. The overall false negative and false positive rates are given by

CHAPTER 7. HYBRID CLIENT HONEYPOT 155

Equations 7.15 and 7.16. The false positive rate will be negligible for the

hybrid system, similar to how it is negligible for the high-interaction client

honeypot. However, combining the false negative rates of the low- and

high-interaction client honeypot has increased the false negative rate over-

all.

7.2 Hybrid Client Honeypot System Evaluation

In the previous section, we presented a hybrid client honeypot system

model. It combines a low- and high-interaction systems into a hybrid

client honeypot system that can exhibit favorable detection characteris-

tics. When combined with the fast static analysis method presented in

Chapter 6, Section 6.3, the hybrid system model predicts that the system

is capable of identifying more malicious web pages than a correspond-

ing high-interaction client honeypot system with identical resources and

time. In this section, we closely examine an actual hybrid client honeypot

system that combines the static analysis method and the high-interaction

client honeypot Capture-HPC. First, we inspect a set of web pages with

a hybrid and high-interaction client honeypot system, respectively. This

provides initial support of the model presented in the previous section.

In the second part of this section, we introduce a hybrid client honeypot

simulator that allows us to vary the dependent variables of speed, detec-

tion accuracy, and base rate of the evaluation. The simulator allows us to

generate a true cost positive curve to investigate the behavior in different

operating environments and configurations.

7.2.1 Evaluation of Hybrid Client Honeypot System with

TPCC

When evaluating the hybrid client honeypot with the true positive cost

curve, the factors of detection speed and accuracy are being evaluated.

CHAPTER 7. HYBRID CLIENT HONEYPOT 156

The hybrid client honeypot system incorporates a favorable speed charac-

teristics; however, at the same time, the number of malicious web pages

in a sample is decreased. As long as the hybrid system can identify more

malicious web pages overall than a high-interaction client honeypot given

identical resources, the true positive cost curve will show a favorable eval-

uation.

The number of malicious web pages identified by a hybrid client hon-

eypot system for a given time frame needs to exceed the number of mali-

cious web pages identified by the high-interaction client honeypot system

in an identical time frame, as shown by Equation 7.19.

pλHy(1− FNHy) > pλH(1− FNH) (7.19)

Equation 7.20 shows the identical expression in terms of service time:

p
1

THy(p)
(1− FNHy) > p

1

TH(p)
(1− FNH) (7.20)

Note that we use TH(p) and not TH(pmf because in this comparison, the

high-interaction client honeypot system is exposed to a sample with the

original base rate.

If those conditions are met, the hybrid client honeypot will identify

more malicious web pages given identical resources than a high-interaction

client honeypot system.

This equation allows one to determine whether a low-interaction sys-

tem incorporated into a hybrid client honeypot system can be useful. In

Chapter 6 we introduced two different approaches that could be incorpo-

rated into a low-interaction client honeypot: a method based on analyzing

network traffic and a method based on analyzing static elements on the

page. The speed and detection accuracy varied greatly and the usefulness

of a low-interaction client honeypot was unclear. In the next few para-

graphs, we illustrate the effect of low-interaction client honeypots on a

hypothetical hybrid client honeypot system with the model presented in

the previous section.

CHAPTER 7. HYBRID CLIENT HONEYPOT 157

For the purpose of this illustration, we assume a percentage of mali-

cious web pages p = 0.001. Further, we assume that the high-interaction

client honeypot has a service time of approximately TH(p) = 2.95 seconds

and a false positive and false negative rates of FPH = 0 and FNH = 0,

respectively. The right portion of Equation 7.20 therefore evaluates to

0.000339. For a low-interaction client honeypot to have a positive effect,

the left portion of Equation 7.20 needs to evaluate to a higher value.

First, we turn to a low-interaction client honeypot that incorporates

the method that analyzes network traffic. A 10-fold cross validation es-

timates a false positive rate of FPL = 0.0260 and a false negative rate of

FNL = 0.2550. As no system that implements this classification method

was built, the service time was not recorded. However, for the dynamic

behavior classification method to be successful, a web page needs to be

retrieved in its entirety. This can be accomplished with a regular browser.

As a result, we assume a service time similar to that of a high-interaction

client honeypot: approximately TL = 2.95 seconds. The resulting ser-

vice time of the hybrid system would be approximately THy(p) = 3.02

(pmf = 0.0267) with a false negative rate of FNHy = 0.255. The left por-

tion of Equation 7.20 evaluates to 0.000246, which is lower than the value

for the high-interaction client honeypot system. As such, low-interaction

client honeypots that incorporate the method that analyzes network traffic

seem unsuitable to be combined into a hybrid client honeypot system.

Second, we look at a low-interaction client honeypot that incorporates

the method that analyzes static elements on a page. Its detection accuracy

is not as favorable as the method described in the previous paragraph,

with false positive and false negatives rate of FPL = 0.0588 and FNL =

0.4615. However, at the same time, an implementation showed a service

time of TL(p) = 0.05 seconds. The resulting service time of the hybrid

system would be approximately THy(p) = 1.79 (pmf = 0.5385) with a false

negative rate of FNHy = 0.4615. The left portion of Equation 7.20 evaluates

to 0.002395, which is larger than 0.000339. As such, the static analysis

CHAPTER 7. HYBRID CLIENT HONEYPOT 158

method incorporated into a low-interaction client honeypot as part of a

hybrid system appears to bring benefits.

The values of Equation 7.20 express the number of malicious web pages

detected for a given time period and correspond directly to the values of

the true positive cost curve, which we investigate in greater detail toward

the end of this chapter.

7.2.2 Initial Evaluation with a Hybrid Client Honeypot Sys-

tem

In this section, we inspect a set of web pages with an actual hybrid client

honeypot system. First, we present the implementation of the hybrid sys-

tem, then evaluate the hybrid client honeypot system with a set of ran-

domly selected URLs. The performance of the hybrid system will be com-

pared against the model presented in the previous section. In addition, the

hybrid system’s performance will be compared to a high-interaction client

honeypot system.

Hybrid Client Honeypot System Implementation

Our implementation of the hybrid client honeypot consists of a low-interaction

client honeypot that analyzes static elements on a page to make a classifi-

cation about a page, as described in Section 6.3, and high-interaction client

honeypot Capture-HPC. URLs are first inspected by the low-interaction

client honeypot; if deemed malicious, are forwarded to high-interaction

client honeypot Capture-HPC for a final classification.

The low-interaction client honeypot is a simple emulated browser writ-

ten in Java. It uses the Apache HTTPClient [41] with a spoofed Internet

Explorer user-agent header to retrieve web pages at high speed. The low-

interaction client honeypot retrieves only the page denoted by the URL,

so no embedded images, JavaScript, iFrames, etc. are retrieved. The low-

interaction client honeypot also does not follow redirects. Once retrieved,

CHAPTER 7. HYBRID CLIENT HONEYPOT 159

the HTTP response is parsed using HTMLParser [103] and the features are

extracted and forwarded to the Weka Machine Learning Library [170] for

classification using the tree that was derived from our classified training

set in Section 6.3.

Capture-HPC is the high-interaction client honeypot introduced in pre-

vious chapters. It was configured with a stock installation of Windows XP

SP2 and Internet Explorer 6.0 and with a classification delay of 10 seconds.

The low-interaction client honeypot was deployed on an Amazon EC2

instance with 1.7GB of RAM, which is equivalent to a CPU capacity of

a 1.0-1.2 GHz 2007 Xeon processor, on a 250Mbps connection. The low-

interaction client honeypot exhibited a service time of approximately 0.05

seconds. On hardware with similar specifications, we deployed three in-

stances of our high-interaction client honeypot Capture-HPC. The three

high-interaction client honeypots were capable of inspecting approximately

29,270 URLs a day, which is equivalent to a service time of 2.95 seconds per

URL.

The hybrid client honeypot system was presented with 61,000 unclas-

sified URLs. These URLs were randomly selected by issuing English 5

N-grams to the Yahoo! search engine. Each English 5 N-gram was ran-

domly selected from the corpus of web pages linked by the DMOZ Open

Directory Project [101]. The first 50 URLs on the results page were used

for an initial evaluation of the hybrid client honeypot system.

First, the 61,000 URLs were inspected with the low-interaction client

honeypot. Each URL classified as malicious was also inspected by the

high-interaction client honeypot. To compare the speed and detection ac-

curacy of the hybrid system, all URLs were also inspected by the high-

interaction client honeypot system. The classifications and duration to in-

spect the URLs were recorded.

CHAPTER 7. HYBRID CLIENT HONEYPOT 160

Results

Of the 61,000 URLs included in the sample, 3,590 URLs were marked

as malicious by the low-interaction client honeypot. Inspection of those

3,590 URLs by a high-interaction client honeypot identified seven mali-

cious URLs; the high-interaction client honeypot identified 13 malicious

URLs in the entire sample of 61,000 URLs. If the false positive and negative

rates of the high-interaction client honeypot are assumed to be zero, the

hybrid client honeypot system produced zero false positives, but missed

approximately 46.15% of malicious web pages. The low-interaction client

honeypot produced 3,583 false positives or 5.88% (NB = 61, 000 − 13 =

60987, FPL = 3583

60987
).

A comparison to the model presented in the previous section shows

similar numbers. We determined that p = 13

61000
= 0.000213. The model

predicts the hybrid client honeypot’s false positive rate to be equal to the

false positive rate of the high-interaction client honeypot component, in

our case zero, and the false negative rate to be equal to the union of the

false negative rate of the low- and high-interaction client honeypot com-

ponents. In our case, this was 46.15%. As a result, the model predicts that

the hybrid system will identify approximately six malicious URLs, which

is what occurred.

The speed of the hybrid system also matches the predictions of the

model: The low-interaction client honeypot inspected 61,000 URLs in 49

minutes. The 3,590 URLs for which the low-interaction client honeypot

raised an alert were inspected in 2 hours and 56 minutes. The hybrid client

honeypot therefore spent 3 hours and 45 minutes to inspect 61,000 URLs.

In contrast, the high-interaction client honeypot system spent 49 hours

and 59 minutes to inspect all 61,000 URLs.

The number of malicious URLs needs to be taken into account to deter-

mine the cost of identifying each malicious URL using a hybrid or high-

interaction client honeypot system. If a cost of 0.125 US dollars per hour

is assumed, the hybrid client honeypot cost 0.368 US dollars to identify

CHAPTER 7. HYBRID CLIENT HONEYPOT 161

seven malicious URLs or 0.053 US dollars per URL. This stands in contrast

to a cost of 0.480 US dollars per malicious URL for the high-interaction

client honeypot system, which identified 13 URLs in approximately 50

hours (total cost of 6.24 US dollars).

Conclusion

Our initial experiment has revealed that under certain conditions, the hy-

brid client honeypot system appears to have favorable characteristics in

the detection of malicious web sites. At p = 0.00213, the hybrid client hon-

eypot system was able to identify malicious URLs at a cost of 0.053 US

dollars; this is approximately one-tenth the cost of identifying malicious

URLs with a high-interaction client honeypot system.

The model presented in the previous section appears to predict perfor-

mance well. The data collected with a hybrid client honeypot implemen-

tation consisting of the low-interaction client honeypot and Capture-HPC

matches the predictions of the model.

However, to more comprehensively evaluate the hybrid client honey-

pot system, dependent variables need to be controlled to better under-

stand the conditions in which the hybrid client honeypot system exhibits

favorable characteristics over the high-interaction client honeypot system.

Because the dependent variables, such as detection accuracy, are difficult

to control, we chose to utilize a simulator to explore the hybrid client hon-

eypot system more comprehensively. The simulator and the evaluation of

the hybrid client honeypot system using the true positive cost curve are

presented next.

7.2.3 Evaluation with a Simulator

As mentioned in the previous section, the effectiveness of a hybrid sys-

tem is dependent on the speed and detection accuracy of the components

as well as the base rate of the operating environment. In this section, we

CHAPTER 7. HYBRID CLIENT HONEYPOT 162

explore the effects of these dependent variables on the hybrid client hon-

eypot system using a simple simulator.

While the dependent variables can be varied using the model intro-

duced in the previous section, the simulator provides us with another

means of validation of the model. Similar to a real hybrid client honeypot

system, we can use it to validate against the model. However, with the

simulator, we are also getting greater flexibility. The simulator is a rapid

prototyping platform, which would allow us to quickly change aspects of

the system that may not be exposed by the model. For instance, we could

use it to modify the client honeypot node composition to introduce bot-

tlenecks. Further, we could assess how the performance and detection ac-

curacy of the system changes if we were to chain multiple low-interaction

client honeypots together. The simulator provides us with this flexibility.

Simulator

The simulator is a simple Java program that models a hybrid client honey-

pot system, which allows us to vary the dependent variables of speed and

detection accuracy of the components as well as the base rate of the op-

erating environment. The Java program simulates the hybrid system with

web pages (with a base rate) and low- and high-interaction client honeypot

components (with speed and detection accuracy) capable of classifying the

web pages. As the simulator runs, the malicious classifications and total

time spent making these classifications are recorded and can be retrieved.

Because the service time is merely tallied to the total time spent, and not

to time actually passed, the simulator is capable of determining classifi-

cations and total time spent instantaneously, which allows us to explore

a wide range of hybrid client honeypot systems in varying conditions. In

addition of being able to simulate a hybrid system, the simulator is also ca-

pable of simulating a system that exclusively consists of high-interaction

client honeypots.

The class diagram of the simulator is shown in Figure 7.8. The simu-

CHAPTER 7. HYBRID CLIENT HONEYPOT 163

Figure 7.8: Hybrid Client Honeypot Simulator Class Diagram

lator consists of N low- and high-interaction client honeypots with a de-

tection accuracy expressed in false negative and false positive rates and

service time. Each client honeypot has access to a queue that consists of

multiple web pages that, based on the base rate p, are either malicious or

benign, which is randomly assigned to each web page as it is generated.

The low-interaction client honeypot accesses a queue that consists of all

web pages to be classified, whereas the high-interaction client honeypot

accesses a queue that consists only of web pages that the low-interaction

client honeypot classified as malicious. Classification occurs through ap-

plication of the false positive and false negative rates on the malicious or

benign web page. While a classification is made, the total time is incre-

mented by the service time of the client honeypot. Once all web pages are

processed by the hybrid system, the simulator outputs the results in the

form of malicious classifications made and total time spent to make those

classifications. When simulating a system that consists of high-interaction

client honeypots, the web pages are simply placed in the queue to which

CHAPTER 7. HYBRID CLIENT HONEYPOT 164

the high-interaction client honeypot has access without going through the

low-interaction client honeypot.

The simulator was functionally tested for correctness. In addition, it

was run with parameters identical to those in our implementation pre-

sented in the previous section. With a false negative rate of 46.15%, a

false positive rate of 5.86%, and a service time of 0.05 seconds for the low-

interaction client honeypot, and a false negative rate of 0%, a false positive

rate of 0%, and a service time of 2.95seconds for the high-interaction client

honeypot, and a base rate of p = 0.00213, the simulator classified eight ma-

licious web pages in 3 hours and 51 minutes (this compares to seven ma-

licious classifications in 3 hours and 45 minutes for our actual implemen-

tation) for the hybrid system. The simulator classified 13 malicious web

pages in 49 hours and 59 minutes with a system that consisted exclusively

of high-interaction client honeypots (this compares to 13 malicious classi-

fications in 49 hours and 59 minutes for our actual implementation). The

slight discrepancies are explained by the randomness introduced when

generating web pages based on the base rate and the client honeypot’s

classification based on the false negative and false positive rates.

Results

With the simulator available, the base rate could be manipulated and the

performance of the hybrid system compared to the high-interaction client

honeypot using the true positive cost curve. The true positive cost curve,

while it was specifically developed for evaluation of high-interaction client

honeypots, can be used for evaluation of the hybrid system, because the

hybrid system exhibits similar characteristics in detection accuracy: It ex-

hibits the same negligible false positive rate that high-interaction client

honeypots exhibit. As a result, the true positive cost curve is appropriate

for evaluation of the hybrid system.

First, the hybrid system is compared to the high-interaction client hon-

eypot system with identical parameters. The true positive cost curve is

CHAPTER 7. HYBRID CLIENT HONEYPOT 165

Figure 7.9: Hybrid Client Honeypot vs. High-interaction Client Honeypot

True Positive Cost Curve

created by plotting the cost to identify one malicious URL on varying base

rates for the hybrid system as well as the high-interaction client honeypot,

as shown in Figure 7.9. This true positive cost curve shows a lower cost to

identify malicious URLs for the hybrid system across all base rates. For a

base rate of p = 0.004, the cost of the hybrid system is 0.00356 US dollars

compared to 0.02539 US dollars for the high-interaction client honeypot.

This equates to a factor of 7.13, i.e., the high-interaction client honeypot

system is 7.13 times as expensive as the hybrid system. With increasing

base rate, the cost decreases. At a base rate of p = 0.054, the cost of the

hybrid system is 0.00035 US dollars compared to 0.0019 US dollars for the

high-interaction client honeypot. This equates to a factor of 5.43. Note

that the factor decreases with increasing base rate. This is related to the

fact that the low-interaction client honeypot’s filtering of benign pages for

inspection by the high-interaction client honeypot decreases in effective-

ness, because the number of benign pages is decreasing.

CHAPTER 7. HYBRID CLIENT HONEYPOT 166

The cost of the hybrid system, however, is not always lower than the

cost of the high-interaction client honeypot. Equation 7.20 needs to hold

true for the hybrid client honeypot system to perform better than the high-

interaction client honeypot. The dependent variables are the service time

and the detection accuracy of the hybrid system, which is determined by

the individual components. If a service time of 2.95 seconds and a false

negative rate of zero is assumed for the high-interaction client honeypot,

Equation 7.20 will evaluate to false if the service time of the hybrid system

drops below 1.589 seconds (equivalent to a service time of 1.415 seconds

for the low-interaction client honeypot) with a constant false negative rate

of 0.4615 or if the false negative rate increases to 92.30% with a constant

service time of 0.227 seconds (equivalent to a service time of 0.05 seconds

for our low-interaction client honeypot).

Figure 7.10: Hybrid Client Honeypot with Varying Service Times vs.

High-interaction Client Honeypot True Positive Cost Curve

The simulator’s data supports the model. As shown in Figure 7.10, the

hybrid client honeypot system performs identically to the high-interaction

CHAPTER 7. HYBRID CLIENT HONEYPOT 167

client honeypot as soon as the service time of the hybrid system exceeds

1.589 seconds (or 1.415 seconds of service time for the low-interaction

client honeypot). As such, if the low-interaction client honeypot compo-

nent is faster than 1.415 seconds with our high-interaction client honeypot,

it will be beneficial to combine them into a hybrid system.

Note that these service times are not absolute service times, but are

dependent on the performance of the high-interaction client honeypot.

If the high-interaction client honeypot were to show service times other

than 2.95 seconds, the service times of the low-interaction client honey-

pot would also change for a hybrid system to be beneficial. The model

presented above can find these varied service times.

Figure 7.11: Hybrid Client Honeypot with Varying False Negative Rates

vs. High-interaction Client Honeypot True Positive Cost Curve

Similar to service time, the simulator’s data also supports the model in

respect to false negative rate. As shown in Figure 7.11, the hybrid client

honeypot system performs identically to the high-interaction client honey-

pot as soon as the false negative rate of the hybrid system exceeds 92.43%.

As such, if the low-interaction client honeypot component exhibits a false

CHAPTER 7. HYBRID CLIENT HONEYPOT 168

negative rate of 92.43% or lower, it will be beneficial to combine it with

our high-interaction client honeypot into a hybrid system. Note that these

rates may change depending on the characteristics of the individual com-

ponents, and the model can be used to obtain the exact rates at which it

is beneficial to combine low- and high-interaction client honeypots into a

hybrid system. In our case, even a low-interaction client honeypot that is

fast but misses almost all malicious pages would be beneficial in a hybrid

system over a high-interaction client honeypot system.

Conclusion

To conclude, the simulator allowed us to vary a wide range of dependent

variables of the hybrid client honeypot system, such as detection speed

and accuracy of the individual components as well as the base rate of the

operating environment. The data collected with the simulator supports

the model of the hybrid client honeypot presented in the previous section.

It showed that combining a low-interaction client honeypot based on the

static analysis detection method with our high-interaction client honeypot

Capture-HPC is beneficial compared to a high-interaction client honeypot

system with identical resources. The true positive cost curve showed that

the hybrid system evaluates better across all base rates.

However, a hybrid client honeypot is not beneficial under all condi-

tions. Equation 7.20 needs to hold for a low-interaction client honeypot to

contribute positively to a hybrid system. The simulator’s data supports

this equation. We showed that once the low-interaction client honeypot’s

speed drops below 1.415 seconds or its false negative rate exceeds 92.30%

combining a low-interaction client honeypot into a hybrid system would

not be beneficial.

CHAPTER 7. HYBRID CLIENT HONEYPOT 169

7.3 Conclusion

In this chapter, we illustrated the usefulness of low-interaction client hon-

eypots when combined into a hybrid client honeypot system in which

classifications of the low-interaction client honeypot are confirmed by the

high-interaction client honeypot. We presented such a hybrid system and

showed the effect of such a system on performance and detection accuracy

using a multiqueue model.

Evaluation on a sample of web pages with an actual hybrid client hon-

eypot system that combined a low-interaction client honeypot that iden-

tifies malicious web pages using a static analysis method with our high-

interaction client honeypot Capture-HPC is indeed favorable over a high-

interaction client honeypot system with identical resources. With a base

rate of p = 0.004, the hybrid system was capable of identifying a malicious

web page at a cost of 0.053 US dollars compared to a high-interaction client

honeypot system that was able to identify a malicious web page at a cost

of 0.480 US dollars. This equates to a factor of nine.

However, the hybrid client honeypot model predicted that combina-

tion of a low-interaction client honeypot into a hybrid system may not al-

ways be beneficial. If the detection accuracy is low or the low-interaction

client honeypot is too slow, it may actually hurt performance when com-

bined into a hybrid system. The model showed that a low-interaction

client honeypot that incorporates the method of analyzing network traf-

fic when loading a page would not be beneficial.

This model was supported by data collected using a simple simulator.

We used it to illustrate the effect of a hybrid system on a varying base rate.

It allowed us to evaluate the hybrid system against the high-interaction

client honeypot using the true positive cost curve. Across all base rates,

the true positive cost curve showed favorable costs for the hybrid system

over the high-interaction client honeypot.

The performance of the hybrid system, however, was highly depen-

CHAPTER 7. HYBRID CLIENT HONEYPOT 170

dent on the performance of the individual components. We explored the

effect of speed and false negative rate of the low-interaction client honey-

pot on the hybrid system. We showed that with a false negative rate of

approximately 46.15%, the service time of the low-interaction client hon-

eypot needs to stay below 1.415 seconds to evaluate better over a high-

interaction client honeypot with identical resources. Similarly, if the ser-

vice time stays constant at 0.05 seconds, but the false negative rate is in-

creased, a hybrid system would evaluate better over a high-interaction

client honeypot system as long as the false negative rate stays below 92.43%.

Initially one would question the usefulness of this system in light of

the false negative rates. As we mentioned in chapter 3, antivirus software

exhibits a false negative rate of approximately 70%. While this is the case,

the antivirus software – in a crawling detection scenario - would behave

similarly to a high-interaction client honeypot. As the antivirus software

primarily focuses on detecting the malicious binary pushed as a result of

a successful attack, the antivirus would require a vulnerable browser and

a classification to give the attack an opportunity to succeed. Only if it suc-

ceedsdoes the antivirus software have the opportunity to detect the attack

- with a false negative rate of approximately 70%. If malware is indeed

pushed, the high-interaction client honeypot is likely to outperform an-

tivirus software as it does not work with signatures. Nevertheless, a hy-

brid client honeypot system – even with a false negative rate of 46.15% –

is more cost effective in detection of malicious web pages than antivirus

software, just as hybrid client honeypots are more cost effective than high-

interaction client honeypots.

At the beginning of this chapter, we mentioned that the cost to identify

80,000,000 malicious web pages embedded in 20,000,000,000 web pages

assuming a base rate of p = 0.004 would be approximately 2,030,000 US

dollars. With the introduction of the hybrid system, this cost can be re-

duced to approximately 285,000 US dollars, a significant reduction. The

hybrid client honeypot system made frequent, comprehensive inspection

CHAPTER 7. HYBRID CLIENT HONEYPOT 171

of web pages on the Internet feasible.

Chapter 8

Conclusions

Drive-by-download attacks are a serious threat to the confidentiality, in-

tegrity, and availability of computers and networks. Client honeypots are

devices that are capable of detecting and subsequently protecting against

these attacks, but they are faced with challenges of their own: They are

slow and are known to miss attacks. A deployment of this detection tech-

nology on a large scale to detect drive-by-download attacks given the bil-

lions of web pages is prohibitively expensive and infeasible.

As part of this work, we developed a hybrid client honeypot system

that is more cost-effective in detecting web pages that launch drive-by-

download attacks than existing client honeypots. We have shown that

the hybrid client honeypot system exhibits characteristics that allow for

deployment on a large scale to inspect large portions of the Internet.

Our conclusions are summarized by chapter:

• Chapter 2 Background The thesis is concerned with the detection of

client-side attacks in a web context. We began this thesis by re-

viewing the general approaches of detecting attacks and defining

the terminology on attack detection that we adopted. We catego-

rized client-side attacks in a web-based context according to the three

impacts an attack can have on computer systems: confidentiality,

availability, and integrity. We analyzed the vulnerability landscape,

172

CHAPTER 8. CONCLUSIONS 173

which resulted in defining the focus of this work: Detection of the

most prevalent type of web-side, client-side attack: drive-by-downloads

on the primary target: Microsoft’s Internet Explorer 6.0.

• Chapter 3 Related Work We then reviewed the related work that con-

cerned itself with the detection of and protection from drive-by-download

attacks. In particular, we concentrated on a review of a particular

detection technology, client honeypots, and analyzed the gaps that

exist in effectively detecting drive-by-download attacks with client

honeypots. We identified four main gaps: lack of a publically and

freely available client honeypot research platform; lack of evaluation

techniques, which hinders research and the evolution of client hon-

eypots; a general weakness in the experimental design of the work

on detection of drive-by-download attacks with client honeypots,

which fails to mitigate the risk to internal and external validity of

the work; and the gap of low-interaction client honeypots able to as-

sess whether a web page belongs to a malware distribution network.

Filling these gaps would allow us to model, develop, and evaluate

a hybrid client honeypot system that is able to detect malicious web

pages in a more cost-effective manner.

• Chapter 4 True Positive Cost Curve We developed a method for high-

interaction client honeypots that can be used to evaluate client hon-

eypots against their primary purpose of identification of malicious

web pages: the true positive cost curve (TPCC.) The TPCC borrows

on existing evaluation methods of intrusion detection systems, but

incorporates the unique factors of client honeypot technology: a neg-

ligible false positive rate and the fact that client honeypots are ac-

tive devices that are tasked with finding malicious web pages; re-

source costs are therefore of much greater importance. The feasibility

and usefulness of the TPCC are illustrated through newly developed

improvements on the visitation algorithm of high-interaction client

CHAPTER 8. CONCLUSIONS 174

honeypots. Further, it is illustrated how the TPCC can evaluate dif-

ferent configuration settings of a client honeypot for optimizations

in a specific operating environment.

• Chapter 5 Experimental Design Weaknesses in the experimental de-

sign of earlier work on detection of drive-by-download attacks with

client honeypots was identified in Chapter 3. A goal of our work

was to stand on a solid foundation with a strong experimental de-

sign that mitigates risks to internal and external validity. In Chapter

5, a methodology of identifying and mitigating risks in a systematic

and thorough manner is presented: the hazard and operability (HA-

ZOP) study. Measurement studies are used to illustrate the process

of HAZOP. A major risk identified is uncontrolled variables. We use

uncontrolled variables as an example to illustrate the impact of fail-

ure to mitigate risks appropriately. First, it is shown that the URL

source can greatly impact measurements; second, it is shown that

time can also have a major impact on measurement. Mitigation of

risks identified using the HAZOP were incorporated into our exper-

imental designs.

• Chapter 6 Low-Interaction Client Honeypots We developed and eval-

uated several new detection techniques that assessed whether a web

page belongs to a malware distribution network. These methods

could be incorporated into a lightweight low-interaction client hon-

eypot that is generally faster than high-interaction client honeypots

at finding malicious web pages on a network. However, at the same

time, they produce false positives and therefore would not be suit-

able as stand-alone systems to detect malicious web pages.

• Chapter 7 Hybrid Client Honeypot The usefulness of these low-interaction

client honeypots when they are combined with high-interaction client

honeypots into a hybrid client honeypot system was illustrated. A

model of a hybrid client honeypot system was developed to assess

CHAPTER 8. CONCLUSIONS 175

the impact of the hybrid client honeypot system’s ability to iden-

tify malicious web pages based on the speed and detection accuracy

of the underlying low- and high-interaction client honeypot compo-

nents. The model showed that not all low-interaction client honey-

pots are suitable to produce hybrid client honeypot systems to detect

more malicious web pages.

A candidate low-interaction client honeypot system, based on the

developed statistical static analysis of initial HTTP responses, was

used to evaluate a model of a hybrid client honeypot system. As

the hybrid client honeypot system exhibited the same characteristics

as a high-interaction client honeypot with a negligible false positive

rate, the TPCC could be used to evaluate the system. It showed that

a hybrid client honeypot system is more cost-effective and could be

used as part of a large-scale deployment to monitor the Internet.

8.1 Contributions

In carrying out this research, we have made five main contributions to the

client honeypot literature:

8.1.1 High-Interaction Client Honeypot

The design and implementation of a high-interaction client honeypot Capture-

HPC, a client honeypot research platform, is a main contribution of this

thesis. While three high-interaction client honeypots existed when this

work commenced [96, 157, 159], these systems either were not publicly

available or did not meet the resource and forensic requirements neces-

sary to conduct research on malicious web servers in a cost-effective man-

ner. As a result, based on forensic requirements we have developed, a

new open-source high-interaction client honeypot, named Capture-HPC,

was created, which allows researchers and security professionals conduct

CHAPTER 8. CONCLUSIONS 176

research on malicious web pages and client honeypots. Capture-HPC has

been incorporated into the other available open-source high-interaction

client honeypot, HoneyClient [157], and is being used in numerous re-

search and commercial projects [135, 160, 46, 27, 171].

Based on our client honeypot implementation and analysis of existing

client honeypots, we developed a component model of client honeypots.

We identified three core components of a client honeypot as shown in Fig-

ure 4.4: Queuer, Visitor, Analysis Engine. This model allows researchers

to agree on the object of study, allows for focus of specific areas within the

object of study, and provides a framework for communication of research

around client honeypots. As increased understanding results from this

model, it allows for improved design and development of client honeypot

technology. This model has been accepted as a client honeypot model by

the research community [116, 169, 33, 142].

8.1.2 True Positive Cost Curve

The true positive cost curve (TPCC) is the second main contribution of this

thesis. The TPCC is a method that takes into account the unique charac-

teristics of client honeypots – speed, detection accuracy, and resource cost

– and provides a simple, cost-based mechanism for evaluating and com-

paring client honeypots in an operating environment. As such, the TPCC

provides a foundation for improving client honeypot technology.

The applicability of the TPCC in evaluating client honeypots is demon-

strated through improvements to client honeypot visitation algorithms de-

veloped by us and Wang et al. [159]: the bulk, bulk & sequential, and

divide-and-conquer algorithms. The TPCC showed that the performance

of the bulk algorithm is generally more cost-effective than the other visi-

tation algorithms; however, under certain conditions, namely a low base

rate, the divide-and-conquer algorithm outperforms all other visitation al-

gorithms.

CHAPTER 8. CONCLUSIONS 177

TPCC evaluates a client honeypot in an operating environment. As

such, the TPCC may also be used by an operator to evaluate different con-

figurations and settings of the client honeypot within a specific operating

environment; in other words, the TPCC can be used to tune a client honey-

pot in a specific operating environment. Application of the TPCC in such

a way is demonstrated by tuning a client honeypot in an operating envi-

ronment with malicious web pages that employ time bombs or IP tracking

functionality.

8.1.3 Mitigation of Risks to the Experimental Design with

HAZOP

Mitigation of risks to internal and external validity on the experimental

design using hazard and operability (HAZOP) study is the third main con-

tribution of this thesis. This methodology addresses risks to intent (inter-

nal validity) as well as generalizability of results beyond the experimental

setting (external validity) in a systematic and thorough manner.

Measurement studies are used to illustrate the process of HAZOP. A

major risk identified is uncontrolled variables. We use uncontrolled vari-

ables as an example to illustrate the impact of failure to mitigate risks ap-

propriately. First, it is shown that the URL source can greatly impact mea-

surements; second, it is shown that time can also have a major impact on

measurement.

8.1.4 Low-Interaction Client Honeypots

Malicious web pages are usually part of a malware distribution network

that consists of several servers that are involved as part of the drive-by-

download attack. Development and evaluation of classification methods

that can be incorporated into a low-interaction client honeypot network is

the fourth main contribution. These methods are used to assess whether a

web page is part of a malware distribution network. In contrast to the

CHAPTER 8. CONCLUSIONS 178

high-interaction client honeypot, one would not have to load the web

pages in a dedicated system nor monitor the system for unauthorized state

changes. Rather, a simulated client could be used to retrieve the web page

and the server response analyzed directly. The two methods are based on

analyzing the dynamic behavior when loading a web page and statistical

analysis of elements found on the page. As shown in this thesis, the meth-

ods can be used to identify malicious web pages quickly; however, at the

same time, many false alerts would be generated.

8.1.5 Hybrid Client Honeypot System

The fifth main contribution of this thesis is the hybrid client honeypot sys-

tem. A model is developed that is capable of optimizing resources and

estimating cost and detection accuracy of a hybrid client honeypot sys-

tem based on the underlying low- and high-interaction client honeypot

components. The hybrid client honeypot system is capable of identify-

ing malicious web pages in a cost-effective way on a large scale. The hy-

brid client honeypot system outperforms a high-interaction client honey-

pot with identical resources and identical false positive rate.

The model allows assessment of whether low-interaction client honey-

pots can be beneficial when combined into a hybrid client honeypot sys-

tem. Two candidate low-interaction client honeypots, based on statistical

static and dynamic behavioral methods, are evaluated. The hybrid client

honeypot model is used to identify a low-interaction client honeypot com-

ponent that could be combined into a beneficial hybrid client honeypot

system.

The model is evaluated with an actual implementation of a hybrid

client honeypot system.

CHAPTER 8. CONCLUSIONS 179

8.1.6 Publications

Part of the research discussed in this thesis has appeared in the following

publications:

• C. Seifert, P. Komisarczuk, and I. Welch, ”True Positive Cost Curve:

A Cost-Based Evaluation Method for High-Interaction Client Hon-

eypots,” in SECURWARE, Athens, 2009.

• C. Seifert, P. Komisarczuk, and I. Welch, ”Application of divide-and-

conquer algorithm paradigm to improve the detection speed of high

interaction client honeypots,” in 23rd Annual ACM Symposium on

Applied Computing Ceara, Brazil, 2008.

• C. Seifert, B. Endicott-Popovsky, D. Frincke, P. Komisarczuk, R. Muschevici,

and I. Welch, ”Justifying the Need for Forensically Ready Protocols:

A Case Study of Identifying Malicious Web Servers Using Client

Honeypots,” in 4th Annual IFIP WG 11.9 International Conference

on Digital Forensics, Kyoto, 2008.

• C. Seifert, B. Endicott-Popovsky, D. Frincke, P. Komisarczuk, R. Muschevici,

and I. Welch, ”Identifying and Analyzing Web Server Attacks,” in

Advances in Digital Forensics IV, I. Ray and S. Shenoi, Eds. New

York: Springer, 2008, pp. 151-162.

• C. Seifert, R. Steenson, I. Welch, P. Komisarczuk, and B. Endicott-

Popovsky, ”Capture - A Behavioral Analysis Tool for Applications

and Documents,” in 7th Digital Forensics Research Workshop Con-

ference, Pittsburgh, 2007.

• C. Seifert, R. Steenson, T. Holz, Y. Bing, and M. A. Davis, ”Know

Your Enemy: Malicious Web Servers,” The Honeynet Project, 2007, p.

available from http://www.honeynet.org/papers/mws/; accessed

on 25 September 2007.

CHAPTER 8. CONCLUSIONS 180

• C. Seifert, V. Delwadia, P. Komisarczuk, D. Stirling, and I. Welch,

”Measurement Study on Malicious Web Servers in the .nz Domain,”

in 14th Australasian Conference on Information Security and Privacy

(ACISP), Brisbane, 2009.

• C. Seifert, I. Welch, and P. Komisarczuk, ”Taxonomy of Honeypots,”

Wellington: Victoria University of Wellington, 2006, pp. available

from http://www.mcs.vuw.ac.nz/comp/Publications/index-byyear-

06.html; accessed on 14 July 2006.

• C. Seifert, I. Welch, and P. Komisarczuk, ”HoneyC - The Low-Interaction

Client Honeypot,” in NZCSRCS, Hamilton, 2007, pp. available from

http://www.mcs.vuw.ac.nz/ cseifert/blog/images/seifert-honeyc.pdf;

accessed on 10 September 2006.

• C. Seifert, I. Welch, P. Komisarczuk, C. Aval, and B. Endicott-Popovsky,

”Identification of Malicious Web Pages Through Analysis of Under-

lying DNS and Web Server Relationships,” in 3rd IEEE Conference

on Local Computer Networks, Montreal, 2008.

• C. Seifert, P. Komisarczuk, and I. Welch, ”Identification of Malicious

Web Pages with Static Heuristics,” in Austalasian Telecommunica-

tion Networks and Applications Conference, Adelaide, 2008.

8.2 Delimitations and Limitations of the Study

The generalizability of our results is limited in a number of ways.

Attack Type The work focuses on the identification of malicious web

pages that launch drive-by-download attacks. The identification utilizes

low-interaction client honeypots that use some characteristic of the page

to assess whether it is malicious. If a different type of client-side attack

does not exhibit a common characteristic that can be observed with a low-

interaction client honeypot, the detection accuracy of the low-interaction

CHAPTER 8. CONCLUSIONS 181

client honeypot would fall and it would invalidate the inclusion of such a

component into a hybrid system. As such, our work on the hybrid client

honeypot can only be generalized to attacks that exhibit some common

characteristics that can be observed with low-interaction client honeypots.

Attack Target The work focuses on the identification of malicious web

pages that launch drive-by-download attacks that target installations of

Microsoft’s Internet Explorer 6.0. While we believe, as a result of our anal-

ysis in Chapter 2, that drive-by-downloads and attacks on Microsoft’s In-

ternet Explorer 6.0 are most prevalent and therefore lent themselves as

a subject of study, our approaches may not be generalizable to different

types of client and even different versions of Internet Explorer. For in-

stance, attacks that target clients that are under a different patch strategy

may be transient and not reside on web pages to be detected. Rather, they

could reside on routers and randomly inject attack code. A crawling strat-

egy to detect such attacks would fail.

8.3 Future Work

The research represents a variety of aspects that deal with the evaluation

of client honeypots, improvement of client honeypots, and study of mali-

cious web pages. Much scope for future work remains. Here we discuss a

few ways this research could be continued.

8.3.1 Evaluation of Antivirus Software

Antivirus software has traditionally focused on identification of malicious

binaries. Just in recent years has the antivirus industry started to include

functionality that is aimed at detection of client-side attacks, such as drive-

by-download attacks, by instrumenting the browser and evaluating inter-

nal client state to determine whether an attack occurs. An evaluation and

comparison of these advanced antivirus solutions is left for future work.

CHAPTER 8. CONCLUSIONS 182

8.3.2 Extensions to the TPCC

The TPCC evaluates client honeypots based on the premise that a client

honeypot performs better if it detects more malicious web pages with

identical resources. As part of future work, the TPCC can be expanded

to incorporate the value of a malicious web page, as not all malicious web

pages are of equal value. For instance, it is much more valuable to detect

a malicious web page that is capable of launching a zero-day attack than a

malicious web page that launches an attack on an older vulnerability that

most users have already patched.

The value of a page could incorporate several factors:

• Attack success probability - the probability that an attack is success-

ful; this value is based on the distribution of vulnerable clients paired

with the exploits available to the specific web page. For example, a

web page that launches a zero-day vulnerability has a higher attack

success probability because all clients are vulnerable.

• Interaction probability - the probability that a randomly selected client

interacts with the malicious web page; a web page that is popular, for

instance, will be of higher value than an unpopular page, because the

likelihood that the popular web page is visited is higher.

• Trigger probability - the probability that a randomly selected mali-

cious web page launches an attack; some malicious web pages may

employ a strategy to evade detection by only occasionally launching

attacks; these web pages may be of lower value as the likelihood that

the page will trigger itself is lower.

To incorporate the notion of the value of a malicious web page, more

data about clients and malicious web pages needs to be detected. For in-

stance, to assess attack success probability, the vulnerabilities of clients

need to be mapped to exploits the malicious web pages are capable of

CHAPTER 8. CONCLUSIONS 183

launching. Both HoneyMonkey and PhoneyC are capable of conducting

such mapping to some extent.

8.3.3 Additional Visitation Algorithms

Four visitation algorithms were presented and evaluated. These visitation

algorithms all followed a synchronous push model in which the client in-

spected a set of k web pages before returning results and continuing to

inspect another set of k web pages. This leads to wasted resources. For

instance, if two URLs are to be inspected by a client honeypot, and one

can be retrieved and classified in 10 seconds, the other in 50 seconds, the

client honeypot would waste 40 seconds of the client honeypot’s resources

waiting for the second URL to be retrieved and classified. A pull model

in which URLs are fetched from the queue as resources become available

are expected to further increase the speed of client honeypots and will be

explored as part of our future work.

8.3.4 Investigation of False Negatives

False negatives are threats to the external validity of measurement studies.

False negatives of high-interaction client honeypots have been observed,

but little research has been done to establish the reason or the magnitude

of the problem. Especially in cases where measurement studies would

indicate a decline in attacks, the question of false negatives needs to be

further examined. A measurement study could conclude there is a decline

in attacks, whereas in reality an increase in false negatives is being mea-

sured.

Two types of false negatives are of particular interest, as we have linked

specific web exploitation frameworks to incorporating such functionality

that would manifest itself in false negatives: IP tracking and network-

dependent triggering. Recall that in IP tracking, a malicious web page

may launch an attack only once and cease to do so on subsequent attacks;

CHAPTER 8. CONCLUSIONS 184

network-dependent triggering assesses the network of the client and trig-

gers only if the network does not reside in a malicious web page’s black-

list. These false negatives may be investigated through the deployment of

a globally distributed client honeypot network or distributed client hon-

eynet.

Further, false negatives may be investigated through case studies that

examine web exploitation kits and reverse engineer malicious web pages.

8.3.5 Expand Client Honeypot Research Platform

Capture-HPC is an open-source, publically and freely available client hon-

eypot research platform. It has been incorporated into the other available

open-source high-interaction client honeypot HoneyClient [157] and is be-

ing used in numerous research and commercial projects [135, 160, 46, 27,

171]. It is primarily used for data collection.

A central data storage and a distributed analysis platform are two com-

ponents that are currently missing from the research platform that would

further the research and successes in this area. The data storage compo-

nent needs to be able to store large amounts of data from various sources

and make this data available through a distributed analysis platform that

is capable of conducting data mining experiments that can be used to de-

velop new classifiers, characterize malicious web pages, visualize trends,

etc.

8.3.6 Improvements on Low-Interaction Client Honeypots

The low-interaction client honeypots described in Chapter 6 were making

decisions about the malicious nature of a web pages based on a classifier

developed. The classifier – in form of a decision tree - had various draw-

backs: staleness, evasion, and brittleness.

A lot of room for improvement exists to address these shortcomings.

First, we would like to explore the staleness aspect of the methods and

CHAPTER 8. CONCLUSIONS 185

answer the question as to whether and how much their detection accu-

racy decays over time. Repeated evaluations of the method with high-

interaction client honeypots would need to be conducted over several months

to answer these questions. If staleness is observed, an automated retrain-

ing may be initiated based on data collected by a high-interaction client

honeypot. This could be based on the existing features, but mechanisms

to explore additional feature sets in an automated way may need to be de-

veloped. Depending on the decay rate of the classifiers, the retraining rate

could be optimized to keep staleness at a minimum.

Second, malicious web pages may evade a low-interaction client hon-

eypot’s malicious classification by adjusting its structure and behavior to

blend into the mix of benign web pages. For instance, it may move the

exploit to an internal script. We would like to explore the robustness of

evasion by combination of several low-interaction client honeypot meth-

ods together. While it may be possible to evade one technique, it becomes

increasingly difficult as new classification methods are added. A voting

scheme could be used to result in a final classification.

Third, brittleness could be addressed by exploration of more flexible

machine learning models. We chose the decision trees because they nicely

allow for expert evaluation of the extracted knowledge. However, if a

node makes an incorrect decision towards the root of the tree, it may re-

sult in an incorrect classification. Alternative classifiers, such as Bayesian

classifier and support vector machine classifier, are classifiers we would

like to explore as part of future work.

8.3.7 Improvements on High-Interaction Client Honeypots

High-interaction client honeypots are crucial to data collection and it is

likely that they will continue to be of importance even with new types of

detection technologies, such as low-interaction client honeypots, appear-

ing. In Chapter 4, we introduced the TPCC and made and evaluated sev-

CHAPTER 8. CONCLUSIONS 186

eral improvements to the visitation algorithm of the Visitor component.

Additional opportunities to improvements exist:

• Visitor - Evasion techniques that a malicious web page employs are

rooted in the fact that the malicious web page detects a client hon-

eypot and chooses not to launch an attack. The Visitor component

is the component that interacts with the web page; deceptive tech-

niques could be used to counter evasion attempts and further im-

prove client honeypot detection of drive-by-download attacks. A

deception model known as the deception planning loop has been

applied to identify the current status of client honeypots [29].

• Queuer - Opportunities exist to improve client honeypots through

improvements on the Queuer component. In Chapter 5, we illus-

trated that URL source can have an impact on the base rate. Further

exploration of how to keep the base rate high through adjustment

of the Queuer component will overall improve client honeypots ac-

cording to the TPCC. A Queuer component, for instance, could be a

crawler that conducts scoring of links prior to adding the link to the

queue to be visited. Input of such a link scoring mechanism may be

the category of the current page, classification of the current page,

classification of the current site, etc.

• Analysis Engine - As client honeypot technology becomes more widely

adopted, attackers will further adjust their attacks to evade detec-

tion. High-interaction client honeypots monitor visible state changes

on the system to assess whether an attack occurs. If an attack were

to reside completely within the client process without causing state

changes, it may go undetected. Further development of the anal-

ysis engine to monitor memory and process state may reveal such

attacks.

CHAPTER 8. CONCLUSIONS 187

8.3.8 Assessment of Malware Distribution Network Mem-

bership

The low-interaction client honeypots described in Chapter 6 assess whether

a page belongs to a malware distribution network through examination of

static elements of the HTTP response and dynamic characteristics of the

servers contacted when loading a page. Additional information could be

collected and utilized to make an assessment of malware distribution net-

work membership, such as specific requests made when loading a page,

malware hashes, malware behavior, etc. With additional information, the

method of assessing malware distribution network membership could be

expanded to assess the membership of a specific malware distribution net-

work. Behavior and data collected about a malicious web page could

be mined to generate malware distribution fingerprints or signatures that

would allow such an assessment to be made.

8.4 Summary

Drive-by-download attacks are a serious threat to the confidentiality, in-

tegrity, and availability of computers and networks. Client honeypots are

devices that are capable of detecting and subsequently protecting against

these attacks, but they are faced with challenges of their own: they are

slow and are known to miss attacks. A deployment of this detection tech-

nology on a large scale to detect drive-by-download attacks given the bil-

lions of web pages is prohibitively expensive and infeasible.

As part of this work, we developed a hybrid client honeypot system

that is more cost-effective in detecting web pages that launch drive-by-

download attacks than existing client honeypots. We have shown that

the hybrid client honeypot system exhibits characteristics that allow for a

deployment on a scale to inspect large portions of the Internet today.

We developed an evaluation method for client honeypots, applied the

CHAPTER 8. CONCLUSIONS 188

HAZOP to mitigate risks of internal and external validity to our exper-

imental design, and developed and evaluated a hybrid client honeypot

that is able to detect malicious web pages more cost-effectively.

Appendix A

Glossary

• ActiveX component - A proprietary web browser plug-in for a Mi-

crosoft web browser that can be placed inside and distributed as part

of a document [87].

• Activity - An event or a sequence of events in a given context.

• Alarm - A report of an error that may lead to security failure, option-

ally including indications whether the error led to security failure.

The report may include diagnostic information about the fault, i.e.,

the activity that threatens the security policy that led to the genera-

tion of the report. Alarms are also referred to as alerts.

• Attack - A malicious activity threatening the security policy. It is

therefore a malicious external fault.

• Attack vector - A generalization of the collection of possible attacks.

• Base rate - The percentage of attacks in a set of events.

• Client - A computer or program that requests and consumes services

from other computers via a network. It is actively initiating requests

to servers.

189

APPENDIX A. GLOSSARY 190

• Denial-of-service - Failure in the assurance of timely and reliable ac-

cess to data.

• Domain name - A textual representation of an Internet address that

permits location and communication to servers on the Internet.

• Downloader - A program that is designed to download and execute

malware. Downloaders are usually small programs. Downloaders

are required in a drive-by-download attack when the available mem-

ory does not hold the malware payload.

• Error - The part of the system state that is liable to lead to failure.

• Event - Something that happens or takes place.

• Exploit - A program or a piece of code that encapsulates an attack.

• Exploit server - A web server that exists exclusively to serve exploits.

These exploits are imported from front-end URLs. As such, no front-

end URL to exploit servers exist.

• Failure - A deviation of a delivered service to fulfill its intended func-

tion.

• False negative - An event corresponding to the occurrence of an at-

tack that is not detected as such. This means that no alarm is raised

due to either a lack of coverage or to excessive latency; also called a

miss.

• False positive - An event corresponding to an alarm generated in the

absence of an attack, i.e., a false alarm.

• Fault - The adjudged or hypothesized cause of an error.

• Front-end URL - A URL that a user navigates to by either clicking a

link or typing the URL in the navigation bar of the web browser.

APPENDIX A. GLOSSARY 191

• HyperText Markup Language (HTML) - A markup language for au-

thoring static web pages [154]. It consists of plain text with instruc-

tions for the browser to render the text in a particular way.

• HyperText Transfer Protocol (HTTP/ HTTPS) - Encapsulation of a

set of rules that allow data to be exchanged between a web browser

and a web server.

• Information disclosure - Failure in the assurance that data is pro-

tected and not disclosed to an unauthorized party.

• Intrusion - A malicious activity threatening the security policy that

leads to a security failure, i.e., to a security policy violation. It is

therefore a malicious external fault that leads to failure.

• Intrusion detection system - A piece of software and/or hardware

designed to detect and alert to attacks that occur on a computer sys-

tem it is monitoring.

• Landing Page - A URL that a user navigates to by either clicking a

link or typing the URL in the navigation bar of the web browser.

• Loss of integrity - Failure in the assurance that data is unaltered by

an unauthorized party.

• Malicious web page - A web page that directly launches a web-based

client-side attack.

• Malicious web site - A web site that contains at least one malicious

web page.

• Malicious web server - A web server that hosts at least one malicious

web site.

• Malware - A malicious program that performs the intended tasks of

an adversary. In a drive-by-download attack, the goal of the attacker

is to push and execute malware on the client machine.

APPENDIX A. GLOSSARY 192

• Patch - A correction of a vulnerability.

• Payload - The initial piece of code that executes once the attack code

successfully exploits a vulnerability. A payload can also be referred

to as shellcode. In a drive-by-download attack, the payload could

be actual malware or code that pulls and executes the malware. The

available memory for the payload could be limited as per the prop-

erties of the vulnerability being exploited.

• Remote code execution vulnerability - A vulnerability that if exploited

successfully, allows an attacker to execute arbitrary code. Integrity

is impacted by attacks that target these vulnerabilities. A drive-by-

download attack exploits remote code execution vulnerabilities of

the operating system, web browser, and/or a web browser plug-in.

• Security failure - A failure against a defined security policy. In the

context of a client, such as a web browser, the impact of the security

failure could be information disclosure, denial of service, and/or loss

of integrity.

• Server - A computer that delivers services to other computers linked

by a network. It is passively awaiting requests for services from

clients.

• Targeted attack - An attack that is aimed at a specific user or organi-

zation. Targeted attacks are not widespread, but rather are designed

to attack a specific target.

• True negative - Correct decision to not rate a non-malicious event as

an attack.

• True positive - Correct generation of an alarm. This means that an

attack has been correctly detected, recognized, and reported.

APPENDIX A. GLOSSARY 193

• URL - A short string that identifies resources on the World Wide Web,

such as documents, images, downloadable files, services, electronic

mailboxes, and other resources [15]. URLs can consist of a proto-

col, a destination port, a server location, a path to the resource, and

optional parameters.

• Vulnerability - An accidental fault or a malicious or non-malicious

intentional fault in the requirements, the specification, the design, or

the configuration of the system, or in the way it is used. The presence

of a vulnerability may enable an error to lead to security failure.

• Web browser - A client that can request web content from web servers.

• Web browser plug-in - A software component that can be added to

a web browser to enhance its capabilities. Web pages can utilize the

additional functionality provided by web browser plug-ins.

• Web exploitation kits - Software that executes on malicious web servers.

The software bundles a variety of exploits that are capable of launch-

ing a drive-by-download attack. In addition, these kits provide a va-

riety of operational services to attackers, for example, the ability to

track the number of users that have visited the malicious web server.

• Web page - A document created with HTML. It is a subset of the

web content that a web server can deliver to a web browser. A web

browser can render such a document on the screen. It usually con-

sists of text, images and embedded multimedia components and pro-

grams.

• Web server - A server that delivers web content to web browsers.

• Web site - A collection of web pages on a web server that are served

under the umbrella of a specific domain name.

APPENDIX A. GLOSSARY 194

• Web-based client-side attack - Attacks launched by malicious web

servers that aim at compromising the integrity, availability, and con-

fidentiality of the user, operating system, or web browser or its plug-

ins.

• Zero-day attack - An attack that targets a vulnerability for which no

patch is available.

Appendix B

Symbols

• p - The base rate of malicious web pages in a sample of N web pages.

p = 0.004 in a sample of N = 1000 web pages denotes that 4 of these

web pages are malicious.

• cURL - The cost in US dollars to identify one malicious web page.

• tAlgo - The time in seconds required for a client honeypot to inspect a

sample of N web pages.

• cr - The resource costs, such as hardware costs, per time period t in

US dollars.

• cMA - The costs associated with manually analyzing a web page per

time period t in US dollars.

• k - The number of web pages in a buffer.

• ti - The average time in seconds required to retrieve a web page over

the network.

• td - The average time in seconds required to render a web page.

• tw - The classification delay in seconds introduced to give an exploit

the opportunity to trigger.

195

APPENDIX B. SYMBOLS 196

• ts - The average time in seconds required start the client application.

• tr - The average time in seconds required reset a virtual machine.

• Tq - The average time in seconds required to generate a list of N URLs

to be inspected by a client honeypot.

• LF (k) - The load factor on the client application when classifying a

set of k web pages.

• pmf - The base rate of malicious web pages in a sample of N web

pages that were classified as malicious by a low-interaction client

honeypot. pmf = 0.04 in a sample of N = 1000 web pages denotes

that 40 of these web pages are malicious.

• N - The sample size of web pages.

• NM - The number of malicious pages in the sample N .

• NB - The number of benign pages in the sample N .

• λ - The rate responses can be processed by a system per time period

t.

• λmax - The maximum rate responses can be processed by a system

per time period t.

• λLmax - The maximum rate responses can be processed by a system

per time period t of low-interaction client honeypot nodes.

• λHmax - The maximum rate responses can be processed by a system

per time period t of high-interaction client honeypot nodes.

• T (p) - The average service time a response can be processed by a

node within a system in seconds.

• TH(pmf) - The service time a response can be processed by a high-

interaction client honeypot node within a system in seconds.

APPENDIX B. SYMBOLS 197

• TL(p) - The service time a response can be processed by a low-interaction

client honeypot node within a system in seconds.

• THy(p) - The average service time a response can be processed by a

hybrid client honeypot system in seconds.

• TTotalHy(p) - The total service time a set of N responses can be pro-

cessed by a hybrid client honeypot system in seconds.

• NTotal - The total number of nodes in system modeled as a multi-

server queue.

• NH - The total number of high-interaction client honeypot nodes in

system modeled as a multiserver queue.

• NL - The total number of low-interaction client honeypot nodes in

system modeled as a multiserver queue.

• alertsL - The number of malicious web pages identified by a low-

interaction client honeypot.

• FP - The false positive rate of a client honeypot.

• TP - The true positive rate of a client honeypot.

• FN - The false negative rate of a client honeypot.

• TN - The true negative rate of a client honeypot.

• FPL - The false positive rate of the low-interaction client honeypot.

• TPL - The true positive rate of the low-interaction client honeypot.

• FNL - The false negative rate of the low-interaction client honeypot.

• TNL - The true negative rate of the low-interaction client honeypot.

• FPH - The false positive rate of the high-interaction client honeypot.

APPENDIX B. SYMBOLS 198

• TPH - The true positive rate of the high-interaction client honeypot.

• FNH - The false negative rate of the high-interaction client honeypot.

• TNH - The true negative rate of the high-interaction client honeypot.

Appendix C

HAZOP

This appendix includes the analysis worksheets of the HAZOP analysis.

Three analysis worksheets are included: The worksheet on the apparatus

(the client honeypot) in Figures C.1 and C.2; the worksheet on the subjects

(web pages) in Figure C.3; and the worksheet on the stimuli (making the

request) in Figure C.4.

Each worksheet contains the following information:

• ID An identifier of the specific risk.

• Guide word the guide word that is applied to components to gener-

ate possible deviations from the intended purpose of the component.

• General deviation a general description of the deviation that could

occur when applying the guide word.

• Specific deviation a specific description of the deviation that could

occur when applying the guide word to components at a specific step

in the process.

• Consequence a possible consequence of a specific deviation.

• Severity an assessment of the impact of the consequence on the ex-

periment. Possible values are High, Medium, and Low.

199

APPENDIX C. HAZOP 200

• Likelihood the likelihood that the deviation occurs. Possible values

are High, Medium, and Low.

• Possible causes a description of why a specific deviation could occur.

• Action required action that could mitigate the deviation from occur-

ring; action that could control the deviation.

APPENDIX C. HAZOP 201

Figure C.1: HAZOP Analysis Worksheet Apparatus 1 of 2

APPENDIX C. HAZOP 202

Figure C.2: HAZOP Analysis Worksheet Apparatus 2 of 2

APPENDIX C. HAZOP 203

Figure C.3: HAZOP Analysis Worksheet Subjects 1 of 1

APPENDIX C. HAZOP 204

Figure C.4: HAZOP Analysis Worksheet Stimuli 1 of 1

Appendix D

Examples of Malicious Web Pages

An in-depth analysis of a few select malicious web pages is presented in

this appendix. During this analysis, malicious web pages were primarily

visually inspected to identify clues that indicate a means of exploitation.

Exploits primarily target ActiveX components. These exploits usually

instantiate a vulnerable ActiveX component and then use JavaScript to

interact with the object to solicit an overflow vulnerability. This has in-

creasingly been the case as components used by the operating system are

patched through the automatic update functionality, whereas third-party

components are excluded from this automatic update functionality and

remain unpatched. The web exploitation kits seem to take advantage of

this fact and the exploits they use primarily tackle ActiveX components.

An analysis of the web exploitation kits WebAttacker, MPack, and Icepack

showed that 10 out of 15 exploits for Internet Explorer target ActiveX com-

ponents [125].

However, visually inspecting the malicious web pages identified did

not reveal attacks on ActiveX components. While some pages, like http:

//nzinfo.co.nz/ , did contain ActiveX components, it seems the Ac-

tiveX components were not directly involved in the attack, but rather ex-

isted to render rich content on the page. The analysis of several malicious

web pages explains this apparent discrepancy.

205

APPENDIX D. EXAMPLES OF MALICIOUS WEB PAGES 206

VirtualMagic.co.nz

The first analysis is on the malicious web page at http://virtualmagic.

co.nz . This web page was first classified as malicious in April 2008 and

last classified as malicious in August 2008. The network trace used to an-

alyze this page was from the malicious classification on June 24, 2008. As

of February 2009, the web site no longer exists.

Figure D.1: Virtualmagic.co.nz – Obfuscated Exploit

The visible content of the page is sparse. Besides a small black square,

the page is empty. The abbreviated HTML code of the page is shown in

Figure D.1. As shown, the exploit itself is obfuscated in which a custom

JavaScript de-obfuscation function is used to convert the long string of

ASCII values into the exploit code, which is then appended to the web

page via the document.write function. Once this occurs, the exploit code

can execute.

An abbreviated version of the exploit code is shown in Figure D.2.

Once successfully triggered, it will push and execute the malware ldr.exe

onto the end user’s machine. The attack code is a multistep attack that

first obtains the payload via the XMLHTTP object, writes it to disk via the

ADODB (BID: 10514) object, and then executes it with the WScript.Shell or

Shell.Application object (BID: 10652). The vulnerabilities targeted are all

older vulnerabilities for which patches have been available.

APPENDIX D. EXAMPLES OF MALICIOUS WEB PAGES 207

Figure D.2: Virtualmagic.co.nz – De-obfuscated Exploit

Virtualmagic.co.nz illustrates that exploit code can be hidden from plain

view. The example shown here is obvious in that the long string of ASCII

characters is an indication of some suspicious activity. Obfuscated exploit

code, however, can be much more subtle or hidden on other pages that

are loaded as part of the main web page (e.g., through external JavaScript

code).

B-guided.co.nz

The second analysis is on the malicious web page at http://b-guided.

co.nz . This web page was first classified as malicious in April 2008 and

last classified as malicious in June 2008. The network trace used to analyze

this page was from the malicious classification on April 14, 2008. As of

February 2009, the web site exists, but appears to be no longer malicious.

A screenshot of the web page is shown in Figure D.3.

B-guided.co.nz, a guide about New Zealand, is an example in which

APPENDIX D. EXAMPLES OF MALICIOUS WEB PAGES 208

Figure D.3: B-guided.co.nz – Screenshot

the main page contains an exploit import statement. Instead of containing

the exploit directly, either in clear or obfuscated form as shown above, an

import statement is used to pull the exploit from a different server onto

the page. These servers can be centralized exploit servers used by sev-

eral thousands of web pages, which allow attackers to track exploitation

across multiple pages and to update their exploit code easily to increase

the effectiveness of their attacks.

Figure D.4: B-guided.co.nz – Exploit Import

The exploit is pulled onto the page via a simple iFrame statement as

shown in Figure D.4. When opening the page, the page http://google-analysis.

com/in.cgi?9 is opened, which contains the actual exploit. (This link

does not point to the legitimate Google Analytics service [49].) The iFrame

code itself might have been placed by the web site administrator in good

APPENDIX D. EXAMPLES OF MALICIOUS WEB PAGES 209

faith that this code is required to make use of the Google Analytics service.

Alternatively, the code might have been placed there by a third party. Sev-

eral posts on the Internet suggest the latter [152].

B-guided.co.nz illustrates that exploits do not necessarily need to be

contained on the web page that is denoted by the URL. The exploit code

can be imported onto the page from a different server.

Stargames.co.nz

Figure D.5: Stargames.co.nz – Screenshot

The last analysis is on the malicious web page at http://stargames.

co.nz . This web page was classified as malicious only in the month of

July 2008. The network trace used to analyze this page was from the ma-

licious classification on July 14, 2008. As of February 2009, the web site

exists, but appears to be no longer malicious.

A screenshot of the web page is shown in Figure D.5. This screen-

shot shows that the stargames.co.nz web page is not hosted on the web

APPENDIX D. EXAMPLES OF MALICIOUS WEB PAGES 210

site stargames.co.nz. Instead, when navigating to stargames.co.nz, the

browser is redirected via a server side 302 HTTP redirect to http://www.

shuffelmaster.com , which is the page that contains the actual exploit.

This example illustrates again that web pages denoted by the URL

might not contain the exploit directly. Rather, a redirect is used to have

the browser navigate to a page that does. This redirect mechanism could

be a 302 HTTP redirect as shown in our example or it could be, among

other things, a more subtle client-side redirect, such as meta-refresh or set-

ting the JavaScript location property. Redirects are used as a legitimate

means to manage web page content. This particular web page seems to

make use of redirects in a legitimate way and it appears that the redirect

has not been a specific technique to import an exploit. However, redirects

could certainly be used as a way to trick users into navigation of a ma-

licious web page as illustrated by the abuse of the Google ”I feel lucky”

feature [75].

Bibliography

[1] ALADDIN KNOWLEDGE SYSTEMS, LTD. Home page, 1985. Available

from http://www.aladdin.com ; accessed on 4 September 2008.

[2] ALADDIN KNOWLEDGE SYSTEMS, LTD. Aladdin eSafe CSRT 2005

malicious code report: The big threats shift, 2006.

[3] ALLEN, J., CHRISTIE, A., FITHEN, W., MCHUGH, J., PICKEL, J.,

AND STONER, E. State of the practice of intrusion detection tech-

nologies, 2000.

[4] AMAZON, INC. Amazon elastic compute cloud (Amazon EC2),

2006. Available from http://aws.amazon.com/ec2/ ; accessed

on 10 November 2008.

[5] ANAGNOSTAKIS, K., SIDIROGLOU, S., AKRITIDIS, P., XINIDIS, K.,

MARKATOS, E., AND KEROMYTIS, A. Detecting targeted attacks

using shadow honeypots. In 14th USENIX Security Symposium (Bal-

timore, 2005), Usenix.

[6] ANTI-VIRUS COMPARATIVES. Anti-virus comparative August

2008, 2008. Available from http://www.av-comparatives.

org/seiten/ergebnisse_2008_08.php ; accessed 20 Septem-

ber 2008.

[7] ANUPAM, V., KRISTOL, D. M., AND MAYER, A. A user’s and

programmer’s view of the new javascript security model. In 2nd

211

BIBLIOGRAPHY 212

USENIX Symposium on Internet Technologies and Systems (Boulder,

1999), Usenix.

[8] ANUPAM, V., AND MAYER, A. Security of web browser scripting

languages: Vulnerabilities, attacks, and remedies. In 7th USENIX

Security Symposium (San Antonio, 1998), USENIX.

[9] ASADOORIAN, P. Web browser insecurity, 2005. Available

from http://www.sans.org/reading_room/whitepapers/

application/1637.php ; accessed on 25 September 2006.

[10] AXELSSON, S. The base-rate fallacy and its implications for the diffi-

culty of intrusion detection. In 6th ACM Conference on Computer and

Communications Security (Singapore, 1999), ACM Press.

[11] BACE, R. Intrusion Detection. Macmillian Technical Publishing, In-

dianapolis, 2000.

[12] BAECHER, P., KOETTER, M., WICHERSKI, G., AND TILLMANN,

W. Nepenthes - stats:scantest, 2008. Available from http://

nepenthes.mwcollect.org/stats:scannertest ; accessed

on 20 September 2008.

[13] BAOFENG. Baofeng storm codec, 2008. Available from http://

www.baofeng.com ; accessed on 10 November 2008.

[14] BBC NEWS. Clipboards hijacked in web attack, 2008. Available from

http://news.bbc.co.uk/2/hi/technology/7567889.stm ;

accessed on 20 August 2008.

[15] BERNERS-LEE, T. Naming and addressing: URIs, URLs, ..., 1993.

Available from http://www.w3.org/Addressing/ ; accessed on

1 October 2006.

BIBLIOGRAPHY 213

[16] BOSCOVICH, R., DCANAVOR, D., FAULHABER, J., GULLOTTO,

V., JONES, J., LAMBERT, J., LAUDANSKI, P., MADOR, Z., MOR-

DANI, R., O’DEA, H., PARTHASARATHY, S., PENTA, A., SEIFERT,

C., SHOSTACK, A., STATHAKOPOULOS, G., STONE, A., THOM-

LINSON, M., WU, S., AND ZINK, T. Microsoft security intelli-

gence report, 2009. Available from http://go.microsoft.com/

fwlink/?LinkId=147935 ; accessed on 12 April 2009.

[17] BRANT, A., AND DAHL, E. New ad attacks, 2008. Avail-

able from http://pcworld.about.com/magazine/

2302p020id118781.htm ; accessed on 20 August 2008.

[18] BRUEMMER, P. J. Putting SEO in your dashboard, 2006. Available

from http://www.imediaconnection.com/content/9395.

asp ; accessed on 10 October 2008.

[19] BUESCHER, A., MEIER, M., AND BENZMUELLER, R. Monkey-

Wrench - boesartige webseiten in die zange genommen. In 11.

Deutscher IT-Sicherheitskongress (Bonn, 2009).

[20] CACHIN, C., DACIER, M., DAEAK, O., JUBLISCH, K., RANDELL, B.,

RIORDAN, J., TSCHARNER, A., WESPI, A., AND WUEST, C. Towards

a taxonomy of intrusion detection systems and attacks, 2001.

[21] CARDENAS, A., BARAS, J. S., AND SEAMON, K. A framework for

the evaluation of intrusion detection systems. In IEEE Symposium on

Security and Privacy (Oakland, 2006), IEEE.

[22] CAVNAR, W., AND TRANKLE, J. N-gram-based text categorization.

In Third Annual Symposium on Document Analysis and Information Re-

trieval (Las Vegas, 1994), UNLB Publications/Reprographics, pp. pp.

161–175.

BIBLIOGRAPHY 214

[23] COLLIN, J., BORTZ, A., BONEH, D., AND MITCHELL, J. C. Same

origin policy: Protecting browser state from web privacy attacks. In

WWW (Edinburgh, 2006), ACM.

[24] DANCHEV, D. Fake celebrity video sites serving malware, 2008.

Available from http://ddanchev.blogspot.com/2008/06/

fake-celebrity-video-sites-serving.html ; accessed on

10 August 2008.

[25] DANFORD, R. 2nd generation honeyclients. In SANSFIRE (Wash-

ington, D.C., 2006).

[26] DEBAR, H., DACIER, M., AND WESPI, A. Towards a taxonomy of

intrusion-detection systems. Computer Networks 31 (1999), 805–822.

[27] EGELE, M., WURZINGER, P., KRUEGEL, C., AND KIRDA, E. De-

fending browsers against drive-by downloads: Mitigating heap-

spraying code injection attacks, 2009. Available from http://www.

iseclab.org/papers/driveby.pdf ; accessed on 15 May 2009.

[28] ENDICOTT-POPOVSKY, B., FRINCKE, D. A., AND TAYLOR, C. A.

A theoretical framework for organizational network forensic readi-

ness. Journal of Computers 2, 3 (2007), 11.

[29] ENDICOTT-POPOVSKY, B., NARVAEZ, J., SEIFERT, C., FRINCKE, D.,

O’NEIL, L. R., AND AVAL, C. Use of deception to improve client

honeypot detection of drive-by-download attacks. In 5th Interna-

tional Conference on Augmented Cognition (2009).

[30] ERNST, M. Self-defending software: Collaborative learning for se-

curity, 2008.

[31] EUROPEAN NETWORK OF AFFINED HONEYPOTS. D0.1: Survey of

the state-of-the-art, 2005. Available from http://www.fp6-noah.

BIBLIOGRAPHY 215

org/publications/deliverables/D0.1.pdf ; accessed on 20

July 2006.

[32] EUROPEAN NETWORK OF AFFINED HONEYPOTS. D3.1b: Client-side

honeypots, 2008.

[33] FEINSTEIN, B., AND PECK, D. Caffeine Monkey: Automated col-

lection, detection and analysis of malicious JavaScript. In Black Hat

USA 2007 (Las Vegas, 2007).

[34] FELTEN, E. W., AND SCHNEIDER, M. A. Timing attacks on web

privacy. In CCS (Athens, 2000), ACM.

[35] FILO, D., AND WANG, J. Yahoo! search engine, 1994. Available from

http://www.yahoo.com/ ; accessed on 20 November 2007.

[36] FINJAN. Home page, 1996. Available from http://www.finjan.

com; accessed on 4 September 2008.

[37] FINJAN. Web security trends report - Q1/2008, 2008. Available

from http://www.finjan.com/GetObject.aspx?ObjId=

563&Openform=50 ; accessed on 4 September 2008.

[38] FINJAN. Web security trends report - Q2/2008, 2008. Available

from http://www.finjan.com/GetObject.aspx?ObjId=

620&Openform=50 ; accessed on 4 September 2008.

[39] FINJAN. Web security trends report - Q2/2008, 2008. Available

from http://www.finjan.com/GetObject.aspx?ObjId=

620&Openform=50 ; accessed on 4 September 2008.

[40] FORD, S., COVA, M., KRUEGEL, C., AND VIGNA, G. Wepawet,

2008. Available from http://wepawet.cs.ucsb.edu/index.

php ; accessed on 20 July 2009.

BIBLIOGRAPHY 216

[41] FOUNDATION, A. S. HttpClient, 2001. Available from http://hc.

apache.org/httpclient-3.x/ ; accessed on 10 February 2009.

[42] FOXNEWS. CIA: Hackers shut down foreign power grid,

2008. Available from http://www.foxnews.com/story/0,

2933,324547,00.html ; accessed on 10 June 2008.

[43] FREI, S., DUEBENDORFER, T., OLLMAN, G., AND MAY, M. Un-

derstanding the web browser threat: Examination of vulnera-

ble online web browser populations and the ”insecurity iceberg”,

2008. Available from http://www.techzoom.net/papers/

browser_insecurity_iceberg_2008.pdf ; accessed on 10 Au-

gust 2008.

[44] GAFFNEY, J., AND ULVILA, J. Evaluation of intrusion detectors: A

decision theory approach. In IEEE Symposium on Seucirty and Privacy

(Oakland, 2001), IEEE, pp. 50–61.

[45] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine introspec-

tion based architecture for intrusion detection. In 10th Annual Net-

work and Distributed Systems Security Symposium (San Diego, 2003),

The Internet Society, pp. 191–206.

[46] GLEASON, C. Firetrust limited, 2007. Personal Communication.

[47] GOOGLE INC. Home page, 1996. Available from http://www.

google.com ; accessed on 5 September 2008.

[48] GOOGLE INC. Putting a stop to spyware, 2006. Avail-

able from http://googleblog.blogspot.com/2006/01/

putting-stop-to-spyware.html ; accessed on 5 September

2008.

[49] GOOGLE INC. Google Analytics, 2007. Available from http://

www.google.com/analytics ; accessed on 12 February 2009.

BIBLIOGRAPHY 217

[50] GOOGLE INC. Google safe browsing API, 2007. Available

from http://code.google.com/apis/safebrowsing/ ; ac-

cessed on 12 February 2008.

[51] GOOGLE INC. Chrome, 2008. Available from http://www.

google.com ; accessed on 5 September 2008.

[52] GORDON, L. A., LEOB, M. P., LUCYSHYN, W., AND RICHARDSON,

R. CSI/FBI computer crime and security survey, 2006.

[53] GRAHAM, R. Sidejacking with hamster, 2007. Avail-

able from http://erratasec.blogspot.com/2007/08/

sidejacking-with-hamster_05.html ; accessed on 10 August

2008.

[54] GRANGER, S. Social engineering fundamentals, part I: Hacker tac-

tics, 2001. Available from http://www.securityfocus.com/

infocus/1527 ; accessed on 10 August 2008.

[55] GROSSMAN, J. I know where you’ve been, 2006. Avail-

able from http://jeremiahgrossman.blogspot.com/2006/

08/i-know-where-youve-been.html ; accessed on 10 August

2008.

[56] GROSSMAN, J., AND NIEDZIALKOWSKI, T. Hacking intranet web-

sites from the outside. In BlackHat (2006, 2006).

[57] GU, G., FOGLA, P., DAGON, D., LEE, W., AND SKORIC, B. Mea-

suring intrusion detection capability: An information-theoretic ap-

proach. In ASIACCS (Taipei, 2006).

[58] GULLI, A., AND SIGNORINI, A. The indexable web is more than

11.5 billion pages, 2005. Available from http://www.cs.uiowa.

edu/ ˜ asignori/web-size/ ; accessed on 16 October 2006.

BIBLIOGRAPHY 218

[59] GYONGYI, Z., AND GARCIA-MOLINA, H. Web spam taxonomy,

2004.

[60] HAUTESECURE. Home page, 2006. Available from http://

hautesecure.com ; accessed on 4 September 2008.

[61] HOFFMAN, B. Circumventing automated JavaScript analysis. In

Black Hat USA (Las Vegas, 2008).

[62] HOLZ, T., GORECKI, C., RIECK, K., AND FREILING, F. Measuring

and detecting fast-flux service networks. In 15th Annual Network &

Distributed System Security Symposium (San Diego, 2008).

[63] IKINCI, A., HOLZ, T., AND FREILING, F. Monkey-Spider: Detecting

malicious websites with low-interaction honeyclients. In Sicherheit

(Saarbruecken, 2008).

[64] JAKOBSSON, M., AND RAMZAN, Z. Crimeware - Understanding New

Attacks and Defenses. Symantec Press, 2008.

[65] JAKOBSSON, M., AND STAMM, S. Invasive browser sniffing and

countermeasures. In WWW (Edinburgh, 2006), ACM.

[66] JOSHI, A., KING, S., DUNLAP, G., AND CHEN, P. Detecting past

and present intrusions through vulnerability-specific predicates. In

Symposium on Operating Systems Principles (Brighton, 2005), ACM.

[67] KANICH, C., KREIBICH, C., LEVCHENKO, K., ENRIGHT, B.,

VOELKER, G., PAXSON, V., AND SAVAGE, S. Spamalytics: An em-

pirical analysis of spam marketing conversion. In CCS (Alexandria,

2008), ACM.

[68] KAREN, P. M., AND ROMANOSKY, S. A complete guide to the com-

mon vulnerability scoring system, version 2.0, 2007. Available from

http://www.first.org/cvss/cvss-guide.pdf ; accessed on

11 August 2008.

BIBLIOGRAPHY 219

[69] KIJEWSKI, P. Personal communication, 2008.

[70] KLETZ, T. A. Hazop and Hazan: Identifying and Assessing Process In-

dustry Hazards, fourth edition ed. 1999.

[71] KOMISARCZUK, P., SEIFERT, C., PEMBERTON, D., AND WELCH, I.

Grid enabled internet instruments. In IEEE Global Communications

Conference (Washington DC, USA, 2007).

[72] KOUNS, J., SULLO, C., AND MARTIN, B. Open source vulnerability

database, 2004. Available from http://www.osvdb.org ; accessed

on 1 October 2006.

[73] KRISTOL, D., AND MONTULLI, L. RFC2965 - HTTP state man-

agement mechanism, 2000. Available from http://tools.ietf.

org/html/rfc2965 ; accessed on 20 November 2007.

[74] LAM, V., ANTONATOS, S., AKRITIDIS, P., AND ANAGNOSTAKIS, K.

Puppetnets: Misusing web browsers as a distributed attack infras-

tructure. In CCS (Alexandria, 2006), ACM.

[75] LARKIN, E. Hackers rig Google to deliver malware, 2008.

Available from http://www.networkworld.com/news/2008/

012808-google-hack.html ; accessed on 10 January 2009.

[76] LEMON, S. Mass SQL injection attack hits Chinese web sites, 2008.

Available from http://www.computerworld.com/action/

article.do?command=viewArticleBasic&articleId=

9086658 ; accessed on 5 September 2008.

[77] LEVY, E. The making of a spam zombie army. dissecting the Sobig

worms. IEEE Security and Privacy 1, 4 (2003), 58–59.

[78] LIPPMANN, R. P., FRIED, D. J., GRAF, I., HAINES, J. W., KENDALL,

K. R., MCCLUNG, D., WEBER, D., WEBSTER, S. E., WYSCHOGROD,

BIBLIOGRAPHY 220

D., CUNNINGHAM, R., AND ZISSMAN, M. A. Evaluating intrusion

detection systems: The 1998 darpa off-line intrusion detection evalu-

ation. In Proceedings of the DARPA Information Survivability Conference

and Exposition (Los Alam, 2000), IEEE Computer Society, pp. 12–26.

[79] MAVITUNA, F. BSQL hacker, 2008. Available from http://

labs.portcullis.co.uk/application/bsql-hacker/ ; ac-

cessed on 5 September 2008.

[80] MAXION, R. A., AND ROBERTS, R. R. Proper use of ROC

curves in intrusion/ anomaly detection, 2004. Available from

http://www.cs.newcastle.ac.uk/research/pubs/trs/

papers/871.pdf ; accessed on 20 July 2006.

[81] MAXMIND. MaxMind GeoLite country, 2002. Available from http:

//www.maxmind.com/app/geolitecountry ; accessed on 29

October 2007.

[82] MCAFEE, INC. Home page, 2005. Available from http://www.

siteadvisor.com/ ; accessed on 4 September 2008.

[83] MCAFEE, INC. Mapping the mal web, revisited, 2008. Available

from http://us.mcafee.com/root/campaign.asp?cid=

45044 ; accessed on 10 August 2008.

[84] MCHUGH, J. Testing intrusion detection systems: A critique of the

1998 and 1999 DARPA intrusion detection system evaluations as

performed by Lincoln laboratory. In ACM Transactions on Informa-

tion and System Security (2001), vol. 3, ACM, pp. 262–294.

[85] METASPLOIT. The Metasploit framework, version 2.6. Available

from http://www.metasploit.org ; accessed on 13 July 2006.

[86] MICROSOFT CORPORATION. Home page, 1975. Available from

http://www.microsoft.com ; accessed on 4 September 2008.

BIBLIOGRAPHY 221

[87] MICROSOFT CORPORATION. ActiveX controls, 1996. Available from

http://msdn.microsoft.com/library/default.asp?

url=/workshop/components/activex/activex_node_

entry.asp ; accessed on 10 August 2006.

[88] MICROSOFT CORPORATION. Internet Explorer, 2006. Available from

http://www.microsoft.com/windows/ie/default.mspx ;

accessed on 10 September 2006.

[89] MICROSOFT CORPORATION. Microsoft security bulletin MS06-014:

Vulnerability in the microsoft data access components (MDAC)

function could allow code execution (911562), 2006. Avail-

able from http://www.microsoft.com/technet/security/

Bulletin/MS06-014.mspx ; accessed on 14 February 2007.

[90] MICROSOFT CORPORATION. Microsoft security intelligence report,

2008. Available from http://www.microsoft.com/security/

portal/sir.aspx ; accessed on 4 September 2008.

[91] MIMOSO, M. S. SQL injection attack infects hundreds

of thousands of websites, 2008. Available from http:

//searchsecurity.techtarget.com/news/article/0,

289142,sid14_gci1311815,00.html ; accessed on 5 Septem-

ber 2008.

[92] MIRKOVIC, J., DIETRICH, S., DITTRICH, D., AND REIHER, P. Inter-

net Denial of Service: Attack and Defense Mechanisms (Radia Perlman

Series in Computer Networking and Security). Prentice Hall, 2005.

[93] MOESTL, T., AND ROMBOUTS, P. Pdnsd - proxy DNS server, 2000.

Available from http://www.phys.uu.nl/ ˜ rombouts/pdnsd/

index.html ; accessed on 24 September 2007.

[94] MOORE, H. Internet drive-by shootings, 2006. Available

from http://metasploit.blogspot.com/2006/07/

BIBLIOGRAPHY 222

internet-drive-by-shootings.html ; accessed on 1 Oc-

tober 2006.

[95] MOSHCHUK, A., BRAGIN, T., DEVILLE, D., GRIBBLE, S. D., AND

LEVY, H. M. SpyProxy: execution-based detection of malicious web

content. In 16th USENIX Security Symposium on USENIX Security

Symposium (Boston, 2007), ACM.

[96] MOSHCHUK, A., BRAGIN, T., GRIBBLE, S. D., AND LEVY, H. M. A

crawler-based study of spyware on the web. In 13th Annual Network

and Distributed System Security Symposium (San Diego, 2006), The In-

ternet Society.

[97] MOZILLA CORPORATION. Firefox 3.0, 2008.

[98] MVPS.ORG. Blocking unwanted parasites with a hosts file, 1997.

Available from http://www.mvps.org/winhelp2002/hosts.

htm ; accessed on 13 Janurary 2008.

[99] NAZARIO, J. PhoneyC: A virtual client honeypot. In 2nd Usenix

Workshop on Large-Scale Exploits and Emergent Threats (Boston, 2009),

vol. 2007, Usenix.

[100] NETCRAFT. July 2008 web server survey, 2008. Available

from http://news.netcraft.com/archives/2008/07/07/

july_2008_web_server_survey.html ; accessed on 10 August

2008.

[101] NETSCAPE COMMUNICATIONS CORPORATION. The same ori-

gin policy, 1998. Available from http://www.mozilla.org/

projects/security/components/same-origin.html ;

accessed on 10 August 2008.

[102] OPERA SOFTWARE. Opera web browser v9.5, 2008. Available

from http://www.opera.com/index.dml ; accessed on 1 Octo-

ber 2008.

BIBLIOGRAPHY 223

[103] OSWALD, D. HTML parser, 2002. Available from http://

sourceforge.net/projects/htmlparser/ ; accessed on 10

February 2009.

[104] PERRY, M. 365-day: Active https cookie hijacking. In Defcon (Las

Vegas, 2008). Available from https://www.defcon.org/html/

defcon-16/dc-16-speakers.html#Perry ; accessed on 20 Au-

gust 2008.

[105] PETKOV, P. D. JavaScript port scanner, 2006. Avail-

able from http://www.gnucitizen.org/projects/

javascript-port-scanner/ ; accessed on 10 August 2008.

[106] POUGET, F., AND HOLZ, T. A pointillist approach for comparing

honeypots, 2005. This paper compares low interaction and high in-

teraction honeypots.

[107] PROVOS, N. Honeyd virtual honeypot. Available from http://

www.honeyd.org/ ; accessed on 6 July 2006.

[108] PROVOS, N. SpyBye, 2007. Available from http://spybye.org/

index.php?/archives/10-SpyBye-0.3-released.html ;

accessed on 10 October 2008.

[109] PROVOS, N., AND HOLZ, T. Client honeypots. In Virtual Honeypots:

From Botnet Tracking to Intrusion Detection. Addison Wesley Profes-

sional, Upper Saddle River, NJ, 2007, pp. 231–272.

[110] PROVOS, N., MAVROMMATIS, P., RAJAB, M. A., AND MON-

ROSE, F. All your iFRAMEs point to us, 2008. Available from

http://googleonlinesecurity.blogspot.com/2008/02/

all-your-iframe-are-point-to-us.html ; accessed on 15

Feburary 2008.

BIBLIOGRAPHY 224

[111] PROVOS, N., MCNAMEE, D., MAVROMMATIS, P., WANG, K., AND

MODADUGU, N. The ghost in the browser: Analysis of web-based

malware. In HotBots’07 (Cambridge, 2007), Usenix.

[112] RAFAIL, J. Cross-site scripting vulnerabilities, 2001. Available

from http://www.cert.org/archive/pdf/cross_site_

scripting.pdf ; accessed on 10 August 2008.

[113] RAFF, A. Cross-X scripting and redirecting to local resources,

2007. Available from http://aviv.raffon.net/2007/03/

10/CrossXScriptingAndRedirectingToLocalResources.

aspx ; accessed on 10 August 2008.

[114] REIS, C., DUNAGAN, J., WANG, H. J., DUBROVSKY, O., AND ES-

MEIR, S. BrowserShield: Vulnerability-driven filtering of dynamic

HTML. In 7th USENIX Symposium on Operating Systems Design and

Implementation (Seattle, 2006), Usenix.

[115] RICHARDSON, R. CSI/FBI computer crime and security survey,

2008. Available from http://i.cmpnet.com/v2.gocsi.com/

pdf/CSISurvey2007.pdf ; accessed on 10 August 2008.

[116] ROCASPANA, J. R. SHELIA: A client honeypot for client-side at-

tack detection, 2007. Available from http://www.cs.vu.nl/

˜ herbertb/misc/shelia/shelia07.pdf ; accessed on 10 Octo-

ber 2008.

[117] RODRIGUEZ, S. Clipboard exploit, 2003. Available from http://

www.arstdesign.com/articles/clipboardexploit.html ;

accessed on 10 August 2008.

[118] ROESCH, M. Snort-lightweight intrusion detection for networks. In

13th Large Systems Administration Conference (Seattle, 1999), Usenix,

pp. 229–238.

BIBLIOGRAPHY 225

[119] RUEF, M. browserrecon project, 2008. Available from http://www.

computec.ch/projekte/browserrecon/ ; accessed on 20 Au-

gust 2008.

[120] RVDH. Internet Explorer 7 header forwards, 2007. Available

from http://www.0x000000.com/?i=547 ; accessed on 10 Au-

gust 2008.

[121] SANS INSTITUTE. SQL injection attack infects thou-

sands of websites (January 7 and 8, 2008), 2008. Avail-

able from http://www.sans.org/newsletters/

newsbites/newsbites.php?vol=10&issue=2&portal=

18568e8354c1477939922bd793b68360#sID200 ; accessed on 5

September 2008.

[122] SCANSAFE. Home page, 1999. Available from http://www.

scansafe.com ; accessed on 4 September 2008.

[123] SCANSAFE. Global threat report, 2008. Available from

http://www.scansafe.com/__data/assets/pdf_file/

8277/gtr_June2008.pdf ; accessed on 4 September 2008.

[124] SECURITYFOCUS. Vulnerabilties, 2008. Available from http://

www.securityfocus.com/vulnerabilities ; accessed on 10

August 2008.

[125] SEIFERT, C. Know your enemy: Behind the scenes of malicious

web servers, 2007. Available from http:/www.honeynet.org/

papers/wek ; accessed on 7 November 2007.

[126] SEIFERT, C. Live Search: Battling the plague of the web, 2008. Avail-

able from http://blogs.msdn.com/livesearch/archive/

2008/12/02/battling-the-plague-of-the-web.aspx ; ac-

cessed on 5 January 2009.

BIBLIOGRAPHY 226

[127] SEIFERT, C., WELCH, I., KOMISARCZUK, P., AND NARVAEZ,

J. Drive-by-downloads, February 2008 2008. Available

from http://www.mcs.vuw.ac.nz/comp/Publications/

index-byyear-08.html ; accessed on 01 February 2008.

[128] SIDIROGLOU, S., IOANNIDIS, J., KEROMYTIS, A., AND STOLFO, S. J.

An email worm vaccine architecture. In 1st Information Security Prac-

tice and Experience Conference (Singapore, 2005).

[129] SKOUDIS, E., AND ZELTSER, L. Malware: Fighting Malicious Code.

Prentice Hall, 2003.

[130] SOPHOS. Home page, 1997. Available from http://www.sophos.

com; accessed on 4 September 2008.

[131] SOPHOS. Sophos threat report july 2008, 2008. Available from http:

//www.sophos.com/securityreportjul2008 ; accessed on4

September 2008.

[132] SPI LABS. Detecting, analyzing, and exploiting intranet appli-

cations using JavaScript, 2006. Available from http://www.

spidynamics.com/assets/documents/JSportscan.pdf ;

accessed on 10 June 2007.

[133] SPITZNER, L. Honeypots: Tracking Hackers. Addison-Wesley, Boston,

2002.

[134] SPITZNER, L. Honeypots mailing list post: ’SF new col-

umn announcement: Time to dump IE’, 2004. Available from

http://www.securityfocus.com/archive/119/366293/

30/1410/threaded ; accessed 20 September 2008.

[135] SPOOR, R. J., KIJEWSKI, P., AND OVERES, C. The HoneySpider net-

work: Fighting client-side threats. In First (Vancouver, 2008).

BIBLIOGRAPHY 227

[136] STANIFORD, S., PAXSON, V., AND WEAVER, N. How to 0wn the

Internet in your spare time. In 11th USENIX Security Symposium

(San Francisco, 2002), Usenix.

[137] STIRLING, D., WELCH, I., AND KOMISARCZUK, P. Designing work-

flows for grid enabled internet instruments. In Eighth IEEE Interna-

tional Symposium on Cluster Computing and the Grid (CCGRID) (Lyon,

2008).

[138] STOLFO, S. J., FAN, W., LEE, W., PRODROMIDIS, A., AND CHAN,

P. K. Cost-based modeling for fraud and intrusion detection: Re-

sults from the jam project. In DISCEX (Hilton Head, 2000), pp. 130–

144.

[139] STOLL, C. Stalking the wily hacker. Communications of the ACM 31,

5 (1988), 484–497.

[140] STONE-GROSS, B., COVA, M., CAVALLARO, L., GILBERT, B., SZYD-

LOWSKI, M., KEMMERER, R., KRUEGEL, C., AND VIGNA, G. Your

botnet is my botnet: Analysis of a botnet takeover. Tech. rep., UCSB

Technical Report, April 2009.

[141] STOPBADWARE.ORG, . Badware websites report 2008, 2008.

Available from http://www.stopbadware.org/pdf/

StopBadware_Infected_Sites_Report_062408.pdf ; ac-

cessed on 5 September 2008.

[142] STUURMAN, T., AND VERDUIN, A. Honeyclients - low interaction

detection methods. Tech. rep., University of Amsterdam, 2008.

[143] SUNBELT SOFTWARE USA, . Home page, 1994. Available from

http://www.sunbeltsoftware.com ; accessed on 4 September

2004.

[144] SZOR, P. The Art of Computer Virus Research and Defense. Addison-

Wesley Professional, 2005.

BIBLIOGRAPHY 228

[145] THE HONEYNET PROJECT. Honeywall CDROM Eyeore, 2003.

Available from http://project.honeynet.org/tools/

cdrom/eeyore/download.html ; accessed 6 July 2006.

[146] THE HONEYNET PROJECT. Know your enemy: Fast-flux service

networks, 2007. Available from http://www.honeynet.org/

papers/ff/ ; accessed on 25 September 2007.

[147] THE MITRE CORPORATION. CVE - common vulnerabilities and ex-

posures (CVE), 1999. Available from http://cve.mitre.org/

index.html ; accessed on 20 August 2008.

[148] THE MITRE CORPORATION. Insecure method vulnerability in Sina

Inc. DLoader Class ActiveX control (CVE-2008-6442), 2008. Avail-

able from http://cve.mitre.org/index.html ; accessed on 20

March 2009.

[149] THE TECHWEB NETWORK. drive-by download definition:

TechEncyclopedia from TechWeb, 2008. Available from

http://www.techweb.com/encyclopedia/defineterm.

jhtml?term=drive-by+download ; accessed on 10 August 2008.

[150] THOMAS, R., AND MARTIN, J. The underground economy: Price-

less. ;Login December 2006 (2006).

[151] TOMBINI, E., DEBAR, H., ME, L., AND DUCASSE, M. A serial

combination of anomaly and misuse idses applied tohttp traffic. In

20th Annual Computer Security Applications Conference (Tucson, 2004),

IEEE, pp. 428–437.

[152] TUNG, L. Google: Garn, ill swap ya pri-

vacy for security, 2008. Available from http://

www.zdnet.com.au/blogs/securifythis/soa/

Google-G-arn-I-ll-swap-ya-privacy-for-security/0,

139033343,339286907,00.htm ; accessed on 1 Feburary 2009.

BIBLIOGRAPHY 229

[153] VAN NOORD, G. TextCat language guesser, 1994. Available from

http://www.let.rug.nl/ ˜ vannoord/TextCat/ ; accessed on

13 October 2007.

[154] W3C WORLD WIDE WEB CONSORTIUM. Hypertext markup lan-

guage (HTML) home page, 1995. Available from http://www.w3.

org/MarkUp/ ; accessed on 1 October 2006.

[155] W3SCHOOLS. Browser statistics, 1999. Available from http:

//www.w3schools.com/browsers/browsers_stats.asp ;

accessed on 14 September 2006.

[156] WANG, H. J., GUO, C., SIMON, D. R., AND ZUGENMAIER, A.

Shield: Vulnerability-driven network filters for preventing known

vulnerability exploits. In SIGCOMM (Portland, 2004), ACM,

pp. 193–204.

[157] WANG, K. MITRE HoneyClient, 2005. Available from http://

www.honeyclient.org/trac ; accessed on 2 Janurary 2007.

[158] WANG, Y.-M. Personal communication, 2006.

[159] WANG, Y.-M., BECK, D., JIANG, X., ROUSSEV, R., VERBOWSKI, C.,

CHEN, S., AND KING, S. Automated web patrol with Strider Honey-

Monkeys: Finding web sites that exploit browser vulnerabilities. In

13th Annual Network and Distributed System Security Symposium (San

Diego, 2006), Internet Society.

[160] WATSON, D. Global distributed honeynet, phase II, 2008. Personal

Communication.

[161] WATSON, D., HOLZ, T., AND MUELLER, S. Know your enemy:

Phishing, 2005. Available from http://www.honeynet.org/

papers/phishing/ ; accessed on 10 August 2008.

BIBLIOGRAPHY 230

[162] WEBROOT SOFTWARE INC. Home page, 1997. Available from http:

//www.webroot.com/ ; accessed on 4 September 2008.

[163] WEBSENSE INC. Home page, 1994. Available from http://www.

websense.com ; accessed on 4 September 2008.

[164] WEBSENSE INC. State of Internet security, Q1 - Q2, 2008, 2008. Avail-

able from http://www.websense.com/securitylabs/docs/

WSL_Report_1H08_FINAL.pdf ; accessed on 4 September 2008.

[165] WEBSENSE INC. Wget denied, 2008. Available from http://

securitylabs.websense.com/content/Blogs/3183.aspx ;

accessed on 25 September 2008.

[166] WELCH, I., AND MAXION, R. The application of hazop to experi-

mental design. Tech. rep., Victoria University of Wellington, 2009.

[167] WELLS, J. Brief history of computer viruses, 1996. Available from

http://www.research.ibm.com/antivirus/timeline.

htm ; accessed on 17 October 2006.

[168] WESSELS, D., NORDSTROEM, H., ROUSSKOV, A., CHADD, A.,

COLLINS, R., SERASSIO, G., WILTON, S., AND FRANCESCO, C.

Squid web proxy cache, 1996. Available from http://www.

squid-cache.org ; accessed on 25 September 2007.

[169] WIKIPEDIA - THE FREE ENCYCLOPEDIA. Client honeypot,

2006. Available from http://en.wikipedia.org/wiki/

Honeyclient ; accessed on 10 October 2008.

[170] WITTEN, I. H., AND FRANK, E. Data Mining: Practical machine learn-

ing tools and techniques, 2nd ed. Morgan Kaufmann, San Francisco,

2005.

BIBLIOGRAPHY 231

[171] XIE, M., WU, Z., AND WANG, H. HoneyIM: Fast detection and

suppression of instant messaging malware in enterprise-like net-

works. In Computer Security Applications Conference (Miami Beach,

2007), IEEE, pp. 64–73.

[172] YAHOO! INC. A safer way to search, 2008. Available from http://

www.ysearchblog.com/archives/000578.html ; accessed on

14 September 2008.

[173] YUAN, B., AND HOLZ, T. Client-side honeypots, 2007. Thesis.

Rheinisch-Westflischen Technischen Hochschule Aachen.

[174] ZHUGE, J., HOLZ, T., SONG, C., GUO, J., HAN, X., AND ZOU, W.

Studying malicious websites and the underground economy on the

chinese web. Tech. rep., University of Mannheim, 2007.

