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Abstract

Stroke is a leading cause of death worldwide [1], and is the third leading

cause of death and the leading cause of serious adult disability in New Zealand

[2]. The aim of this project was to quantify perfusion changes in the brains of

20 sheep that underwent a novel surgical model of transient ischemic stroke.

The sheep, with its large, gyrencephalic brain, presents a promising,

potential animal model for stroke that could help to bridge the historical gap

in translational research in stroke therapies [3]. However, we require that an

animal model can replicate human patterns of disease in order for it to be a

meaningful model for research into potential stroke therapies for humans. It

was this replication of human patterns of disease, in terms of perfusion, that

was under investigation in this project.

Dynamic Contrast Enhanced (DCE) MRI images were obtained from each

animal before stroke, and at 24 hours, 3 days, 6 days, and 28 days post-stroke.

It was found that perfusion from the DCE-MRI series was quantifiable using

the extended Tofts model in the form of the parameters Ktrans, ve and vp. The

parameter values calculated from this project reflect known human patterns

of disease in terms of global Ktrans changes in the affected hemisphere [4],

which were found to increase by more than 60% in the stroke hemisphere,

reflecting the increased permeability following blood brain barrier breakdown.

In manually selected regions of cytotoxic and vasogenic edema, it was found

that the estimated parameters in these regions reflected known perfusion

changes in these types of edema in humans [5]. Finally, the peak post-stroke

permeability time point, as determined by Ktrans, was found to align exactly

with when we would expect vasogenic edema, a type of cerebral swelling that

causes increased barrier permeability, to dominate in humans [5].



This thesis is the first time these DCE-MRI datasets have been analysed,

and there remains a wealth of physiological and MRI data available for

this animal cohort. Avenues for future research include investigation into

perfusion-diffusion mismatch in this animal model, further consideration of

individual animal characteristics in analysis, and use of these results as a point

of comparison for future research into pharmaceutical agents for treatment of

stroke, and in new non-contrast perfusion measurement techniques.
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Chapter 1

Introduction

The aim of this project was to quantify the perfusion changes in the brains of

20 sheep.

These animals each underwent a novel surgical procedure that simulated

a stroke, and the sheep themselves were metaphorical guinea pigs for this

model of stroke and how well it can replicate the myriad of physiological

complexities that occur post-stroke in humans.

Replication of human patterns of disease is the primary desirable char-

acteristic for any animal model in translational research. While rodents are

frequently used in all sorts of behavioural and physiological research designed

for future application to humans, the post-stroke human brain is a highly

complex, closed system in terms of pressure and perfusion changes. As such,

the sheep’s large, gyrencephalic brain, susceptible to intracranial pressure

changes and fed by a complex series of arteries presents a potential animal

model for stroke that could help to bridge the gap in translational research

in stroke therapies.

However, in order to prove that the anatomical features that appear to

lend support to the use of this animal model do in fact result in patterns of

disease similar to that in humans, we need to show that what happens in

humans can happen in sheep. That is, known post-stroke patterns of disease

can be replicated in this animal model. Without this, the use of this animal

1



2 CHAPTER 1. INTRODUCTION

model in testing of pharmaceutical agents designed for human application

would be worthless.

This project specifically aims to quantify the perfusion changes seen in the

sheep’s brain at the time points for which DCE-MRI images were acquired for

this animal cohort: prestroke, 24 hours, 3 days, 6 days and 28 days post-stroke.

By quantifying these changes we can

1. determine quantitative, measurable perfusion parameters directly from

the affected ischemic tissue in each animal,

2. measure changes in perfusion in the sheep’s brain and compare to known

post-stroke perfusion changes in humans for validation of this animal

model, and

3. provide a quantitative foundation for future research using this animal

model.

Relevant background information including details on the physiology of

stroke, the physics of NMR and the particular MRI technique under analysis

in this project are given in Chapter 2. The following Chapters detail the

experimental methods used in the animal experiments, divided into methods

used in DCE-MRI analysis and in AIF selection. Chapter 6 presents results,

progressing through hemisphere level analysis down to small ROI level analysis

to isolate perfusion changes in both cytotoxic and vasogenic edema. Results

from small ROI analysis demonstrated that the perfusion changes associated

with vasogenic edema formation occur at the exact time point we would

expect to see according to the human pattern of disease. Finally, conclusions

and avenues for future research are given in Chapter 7.



Chapter 2

Background Information

The main problem under investigation in this thesis can be written simply as:

How does each animal’s cerebral perfusion change over time as a result of

the induced stroke?

When written this way, the problem could be interpreted purely physiolog-

ically. However in this project we wish to approach it quantitatively, through

modelling, fitting and image analysis, and drawing on knowledge from several

areas of physics, including nuclear magnetic resonance, magnetic resonance

imaging, image processing, and multi-compartmental pharmacokinetic models

of perfusion.

Relevant background information is presented in this chapter. The first

two sections introduce important concepts in stroke, physiology and perfusion,

and NMR and MRI physics respectively. The third Section onwards then

draws on information from both of these areas and introduces DCE-MRI

analysis techniques, and a literature review of past stroke research utilising

DCE-MRI.

2.1 Stroke and Perfusion

The aim of this Section is to give an overview of basic physiology pertaining

to perfusion and the mechanism of disease of stroke.

3



4 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.1: Diagram of perfusion at the capillary level. Oxygen and

nutrients carried by the blood are delivered to tissue while waste

products are carried away.

2.1.1 Physiology of Perfusion

Perfusion

Perfusion takes place everywhere in the body where there is a blood supply,

from cortical bone [6] to the liver [7], and is a process of critical importance

for all bodily functions. The cerebrovascular system is made up of a system

of arteries, capillaries and veins that transport blood to and from the brain.

The arteries feeding the brain can be divided into the posterior cerebral

arteries, anterior cerebral arteries, and internal carotid artery which bifurcates

into the middle cerebral artery and posterior communicating artery. This

network of arteries is linked by the posterior and anterior communicating

arteries which form a ring at the base of the skull called the circle of Willis

[8].

The capillaries are characterised by their structure of a single outer layer of
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endothelial cells, which allows for the passage of blood into the extravascular

space in order to deliver oxygen and essential nutrients to a tissue. The

process by which blood passes through the capillary bed within tissue is called

perfusion. This process is important as it regulates the flow of ions, oxygen,

and waste products across the capillary walls.

Cerebral Perfusion

Cerebral perfusion refers to the blood supplied to the brain tissue parenchyma

via a series of blood vessels making up the cerebral circulatory system. Per-

fusion within the brain differs from that in the rest of the body due to the

specialised structure of the capillary walls, which form a thicker, less perme-

able membrane called the blood-brain barrier (BBB) [9]. This specialised

structure is specially adapted for capillaries in the brain due to the increased

sensitivity of neurons to oxygen deprivation due to their high metabolic rate

[9]. As a result, the brain is highly susceptible to irreversible cell damage

arising from changes in blood supply.

2.1.2 Stroke Background

A stroke is the sudden onset of a neurological deficit, such as localised loss

of sensation, as a result of disruption of blood flow to part of the brain. As

outlined in Section 2.1.1, the brain is particularly susceptible to cell damage

and death arising from blood supply change due to the high metabolic rate

of neurons [9]. As such, within a very short amount of time from symptom

onset, stroke can have devastating and irreversible consequences.

Stroke is a leading cause of death and disability worldwide [1]. In New

Zealand, stroke is the third leading cause of death and the leading cause of

serious adult disability [2]. It is estimated that hospitalisation, rehabilitation,

burden on family and caregivers, and the increased disability risk and early

mortality associated with stroke costs New Zealand approximately $1 billion

NZD a year. Due to the ageing population, the number of people experiencing
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stroke in New Zealand is predicted to increase by 40% in the next 10 years,

increasing this figure to $1.7 billion NZD by 2038 [10]. Aside from the

economic cost, the cost to quality of life, and the emotional and physical toll

on the affected and their family members can be immense. Just over half of

stroke survivors will regain functional independence, but the majority will

not return to their prestroke level of functioning [11]. Measures of recovery

post-stroke, and even the definition of “stroke recovery”, remains ambiguous,

and as such measurements of patient outcomes following stroke can vary

greatly depending on how this is defined [11]. In some contexts, recovery

will imply a complete recovery of prestroke functionality, whereas in other

cases recovery may mean only the improvement in some measure of stroke

related impairment [12]. There exist many clinical scales for assessment of

such impairments, such as the modified Rankin score, Barthel index or the

NIH Health Stroke Scale [11]. Each of these scales use practical measurements

such as the patient’s ability to walk, dress, use the stairs or answer questions

correctly [11].

2.1.3 Stroke Disease Mechanism

Ischemic stroke is caused by the blockage of a cerebral blood vessel. This

blockage may be either a dislodged bolus such as a blood clot, as in embolic

stroke, or more commonly, the atherosclerotic build up in the artery [13].

The blockage, if sustained, can lead to cerebral infarction and cause what is

commonly known as an ischaemic stroke. Epidemiologically, ischemic strokes

are the most common type of stroke (87% [1]) and the type of stroke that

will be the focus of this project.

The blockage of an artery feeding the brain can lead to many complex,

interacting effects, one of the most dangerous of which involves the swelling,

and subsequent increase in intracranial pressure in the affected hemisphere.

In humans, the intracranial contents are incompressible, and the parenchyma

is in a state of equilibrium with the blood and cerebrospinal fluid [14]. Changes

in intracranial pressure in turn affect cerebral perfusion pressure and the
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Figure 2.2: Time progression of (a) healthy tissue (b) cytotoxic edema

at 24 hours post-stroke and (c) vasogenic edema between 3 and 5

days post-stroke.

normally carefully governed equilibrium of fluid exchange throughout the

brain can be quickly compromised.

Following a middle cerebral artery (MCA) occlusion, an area of the brain

will have been deprived of oxygen from the blood for a period of time. This

tissue will be damaged following oxygen starvation, due to the high metabolic

demands of cells in the brain. This damage has many dangerous effects,

including the breakdown of the endothelial cells forming the blood brain

barrier, leading to further fluid build up and a vicious cycle of intracranial

hypertension and compromised cerebral perfusion, and cell injury [15].

MCA infarction occurs in 10% of ischemic stroke patients but is associated

with a mortality rate of up to 80% as a result of this dangerous cycle [16].

Cerebral edema also accounts for 5% of all deaths in patients with cerebral

infarction [17].

This build up of fluid is called cerebral edema, or swelling, and is known to

significantly impact the degree of neurological damage that will be sustained

by the patient [18]. The two main types of edema associated with ischemic

stroke are cytotoxic and vasogenic edema [19]. Cytotoxic edema occurs up to
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24 hours following stroke as cell membrane pumps fail and cells accumulate

fluid within the cell membrane, causing them to swell and have restricted

diffusion. Vasogenic edema follows between 3 and 5 days post-stroke and

involves the breakdown of the cell membranes and the blood brain barrier,

causing water and plasma from the intravascular space to leak into the

interstitial space [5].

Clinically Relevant Timepoints

Clinically relevant post-stroke timepoints have been defined to categorise

typical onset times of post-stroke complications. These are the hyperacute

phase, up to 24 hours post-stroke, the acute phase, 1-7 days post-stroke, the

subacute phase, one week to six month post-stroke, and finally the chronic

phase, post six months [20].

The above definitions are taken from the Stroke Recovery and Rehabilita-

tion Roundtable, but there remains much variation in the definition of each of

the phases, particularly in the cutoff point between the subacute and chronic

phase.

2.1.4 Stroke Therapy Literature Review

Pharmacological agents investigated as potential stroke treatments range

from thrombolytics, designed to dissolve a clot causing occlusion, to neuro-

protectants, designed to minimise damage to healthy cells following ischemia.

Over 1000 such drugs have been considered in preclinical trials, however only

one has been approved for routine use in stroke patients; a thrombolytic

agent called tissue plasminogen activator (tPa) [16][21]. This poor translation

from experimental setting to clinical trials is the subject of debate in many

recent publications, and has been attributed to factors such as the choice of

animal model [22], the drugs selected to progress from experimental setting

to clinical trial [21] and study design and publication bias in neuroprotective

publications [23].
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Challenges of Using Animal Models in Stroke Research

A roundtable was formed in 1999 to address the translational failure from

preclinical studies to clinical trials, and to provide recommendations to

improve the quality of preclinical research into potential stroke therapies.

The Stroke Therapy Academic Industry Roundtable has gone on to publish

recommendations periodically, the most recent of which includes revisions in

the context of the latest developments in thrombectomy technology [3].

Previous STAIR recommendations pertaining to animal models in pre-

clinical research remained unchanged in the 2019 publication, and included

guidelines such as recommending the use of both male and female animals,

investigation in at least two independent laboratories, and appropriate use of

randomisation and blinding [3].

Small Animal Models

Small animal models are generally more abundant, cost-effective, and are

associated with fewer ethical restrictions than larger animal models. Rodent

models are the most commonly used animal model in preclinical stroke

research for these reasons, and the rabbit model remains the only animal

model that has successfully yielded a treatment approved for use in stroke

patients; tissue plasminogen activator (tPa) [24].

The use of rodent models has many advantages over other models, such

as their relative cost effectiveness and availability compared to larger animal

models, their genetic homogeneity and fewer public welfare concerns associated

with testing on rats and mice [25]. However, the rodent’s brain differs

structurally and functionally from the human’s due to its relative lack of

white matter [26]. Like other small animal models such as the rabbit, the

rodent’s brain is lissencephalic, or smooth, lacking the sulci and gyri found

in larger animals and humans [26]. Consequently, differences in mortality

rates and intracranial pressure (ICP) changes following middle cerebral artery

occlusion (MCAO) have been observed in studies of rodent models [27] as well
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as high rates of spontaneous reperfusion (80% within 3 hours post MCAO),

contrary to humans [28][3]. These differences are a result of the differing

structure of the rodent brain, such as its comparatively weak tentorium

cerebelli, the superior covering of the cerebellum, which allows for reduction

in ICP following ischemic event [29]. This may be a significant difference due

to the high mortality rate in humans associated with ICP increases.

As such, the rodent brain’s ability to counter ICP increases following

MCA infarction does not align with known human patterns of brain injury.

It has been argued that the differences in neuroanatomy, mechanism of injury

and post MCAO pattern of damage in rodents could be a cause of the poor

translation human clinical trials [22].

Large Animal Models

Large animal models such as sheep and non-human primates possess gyren-

cephalic brains, more comparable in size and structure to the human’s than

small animal models [25]. Animal models such as the sheep or pig also have

a more comparable white to grey matter ratio and cerebrovascular diameter,

better approximating the anatomy of the human brain [22].

It has been shown that the ovine brain demonstrates increased ICP

following an MCA occlusion, even following the loss of cerebrospinal fluid

(CSF) during surgery [27], which is closer to the human pattern of damage

following ischemic stroke than the rodent’s more adaptable brain. Larger

animal models have also been demonstrated to allow for easier physiological

monitoring following surgery than smaller animal models [25].

However, while larger animals’ gyrencephalic brains are closer to the

anatomy of the human brain, providing opportunity for increased translational

ability, the surgical procedures required in order to induce a simulated ischemic

event are often more complex, labour intensive and time consuming than

those required for rodent models [22]. Additionally, the maintenance and

monitoring of the animals during the procedure is financially costly and labour

intensive, often involving prolonged periods under anaesthesia [25].
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Ongoing areas of debate

Aside from the outlined differences in neuroanatomical structure, a fundamen-

tal issue with the use of animal models remains: animal models simulate the

stroke event, not the underlying pathology that would have given rise to the

stroke in a human [26]. It can also be challenging to quantify the neurological

deficit following ischemic stroke in the animals, and a variety of tests have

been investigated for various animal models [26]. In experiments requiring

anaesthesia, the effect of the anaesthetic agent on results also remains an area

of uncertainty [22]. Despite the ongoing debates and areas of uncertainty in

preclinical stroke research involving animal models, the use of such models

has led to the important discoveries of critical cerebral blood flow thresholds

for irreversible cell death, mechanisms of injury in the minutes, hours and

days following MCAO, and the development of models of permanent and

transient MCAO [30].

2.2 Physics of MRI

Magnetic resonance imaging takes advantage of differences in T1 and T2 within

tissues to provide contrast in images. These differences can be accentuated by

the sequence of pulses applied to the sample, and the setting of two acquisition

parameters: TE and TR, the echo time and repetition time respectively. The

basic physics of NMR is presented in Section 2.2.1, and pulse sequences

and acquisition methods relevant to this project are covered in the following

sections.

2.2.1 NMR

Nuclear magnetic resonance refers to manipulation of intrinsic properties of

nuclei in a magnetic field in order to gather information about those nuclei.

The property that is manipulated in NMR is called spin, which can be

considered to give the nucleus a magnetic moment and an angular momentum.
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Due to the magnetic moment property of spin, a proportion of spins in a

magnetic field will align with the applied magnetic field, B0. Due to the

angular momentum property of spin, in the situation described above, the

spins precess about the direction of B0.

In NMR we are interested in the net magnetisation of these spins rather

than individual spins, and so we introduce the concept of the magnetisation

vector, M, to describe the direction of the net magnetisation of a sample.

In the case of proton NMR, the target nucleus is hydrogen, or a single

proton, which is perturbed with a radio frequency pulse equal to that of the

resonant precessional frequency of the nucleus. This frequency is defined by

the Larmor equation to be

ω0 = γB0. (2.1)

In this equation, ω0 is the precessional frequency of the nucleus, in rad

sec−1, γ is the gyromagnetic ratio of the nucleus– which for protons is 2.675×
10−8rads−1T−1, and B0 is the magnetic field strength. If we set the frequency

of a pulse to be approximately equal to that of the nucleus’ precessional

frequency, we can detect nuclear spin excitations following application of the

pulse. Depending on the pulse length, the angle of this excitation may be

manipulated, and intrinsic properties of the nucleus can be determined from

the relaxation following excitation.

Free induction decay

Free induction decay refers to the signal detected following spin excitation

due to application of a radio frequency pulse of frequency equal to or close to

the Larmor frequency of a nucleus. This phenomenon is illustrated in Figure

2.3.

Following spin excitation the magnetisation vector precesses about the z

axis and the component of magnetisation in the transverse plane is a decaying

sinusoidal curve. This changing magnetic field in the transverse plane will,

according to Faraday’s law of induction, induce a voltage change in a coil
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(a)

(b)

Figure 2.3: (a) Diagram of relaxation of magnetisation vector fol-

lowing application of a 90 degree pulse (b) Free Induction Decay

measured in transverse plane (c) relaxation of longitudinal component

of magnetisation, Mz
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that can be placed near the sample, and the decay signal can be observed as

an FID curve.

In this example, the pulse applied is a 90 degree pulse, meaning that all

initial magnetisation in the longitudinal direction is flipped into the transverse

plane. The flip angle can be manipulated by adjusting characteristics of the

applied RF pulse and is governed by

θ = γ

∫ t

0

B1(t)dt (2.2)

In the case of an ideal hard pulse, the flip angle induced in the magnetisa-

tion vector is simply

θ = γB1∆T (2.3)

where ∆T is the duration of the hard pulse.

In order to gain information on the nuclei in a sample, there are several

parameters which can be manipulated. The magnitude of the magnetisation

vector is governed by a set of equations called the Bloch equations, which

can be used to calculate intrinsic properties of a nucleus. These equations,

and the intrinsic relaxation times of the nuclei are discussed in the following

sections.

Separable solution of Bloch Equations

The Bloch equations are a set of equations that describe the behaviour of the

magnetisation vector of a nucleus in a magnetic field. As described above, the

magnetisation vector has both a longitudinal and transverse component. The

time evolution of these components following application of a radio frequency

pulse is given below:

Mxy = Mxy,0e
−t/T2

Mz = Mz,ie
−t/T1 +Mz,0(1− et/T1)

(2.4)
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where Mz,i is the initial longitudinal magnetisation following excitation,

Mz,0 is the equilibrium magnetisation in the longitudinal plane, Mxy,0 is the

initial transverse magnetisation following excitation, and T1 and T2 are the

longitudinal and transverse relaxation times respectively.

T1 and T2

T1 refers to the time taken for the longitudinal magnetisation of a sample

to recover to 1 − 1/e of its maximum value. That is, a sample with a T1

of 1 second, such as water, will take 1 second to recover the longitudinal

component by 63%. Similarly for T2, the transverse component of the sample

will take one T2 length of time to decay by 63%.

2.2.2 MRI Pulse Sequences

The work in this project involved images obtained using several common MRI

pulse sequences. These pulse sequences and acquisition techniques involved

in reconstructing these images are outlined in this section, including a general

description of inversion recovery and gradient echo images, and Siemens VIBE

and TWIST images.

GRE and SPGR

Gradient echo (GRE) refers to a pulse sequence in which two gradients are

applied in order to ‘reverse’ an FID through dephasing and rephasing.

Spoiled gradient echo refers to a gradient echo pulse sequence in which

the transverse components of magnetisation are ‘spoiled’, or destroyed by

an RF spoiling pulse, in order to remove the transverse component of the

magnetisation before each RF pulse. The benefit of this is in producing T1

weighted images through selection of TR, TE and the flip angle.

The signal from a spoiled gradient echo pulse sequence is governed by the

SPGR signal equation:
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Chapters/Figures/1-figs/SPGR_PulseSequence.png

Figure 2.4: Pulse sequence diagram of spoiled gradient echo [31]

S = S0
sinα(1− e

−TR
T1 )

1− (cosα)e
−TR
T1

e
−TE
T∗
2 (2.5)

where α is the flip angle of the DCE series. Through selection of sufficiently

small TE, the e
−TE
T∗
2 term approaches unity and its effects can be neglected.

Inversion Recovery

The inversion recovery sequence in MRI is a pulse sequence used with varying

inversion times, TI from which T1 of a sample can be measured.

Through the use of different inversion times, the longitudinal magnetisation

is allowed to relax by different amounts prior to inversion and measurement,

and with knowledge of the inversion times at each acquisition, T1 can be

accurately determined with an inversion recovery sequence.
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VIBE

A Volumetric Interpolated Breath-hold Examination (VIBE) is the vendor

name given to Siemens’ fast gradient echo pulse sequence. This sequence is a

3D spoiled gradient echo sequence which produces T1 weighted images. In

this project, the VIBE sequence was used for acquisition of variable flip angle

images from which T1,0 maps were calculated.

TWIST

TWIST (Time-resolved angiography With Interleaved Stochastic Trajectories)

is the vendor name for Siemens’ high temporal resolution spoiled gradient

echo pulse sequence, designed for fast acquisition of temporally resolved,

contrast enhanced angiography. The underlying pulse sequence in TWIST

is the spoiled gradient echo pulse sequence described previously, and the

implementation of this sequence in this project is described in Section 3.2.

The k-space sampling method used in TWIST is a type of keyhole imaging

that allows for fast imaging of angiography. This sequence has temporal

resolution capabilities of sub one second, however, due to the trade-off between

spatial and temporal resolution, temporal resolution in this project was

considerably slower.

2.3 DCE-MRI Acquisition and Qualitative Anal-

ysis

Perfusion can be mapped through the acquisition of spatio-temporal MRI data.

Dynamic Contrast Enhanced (DCE) is one imaging method for perfusion MRI,

which allows for the extraction of quantitative haemodynamic parameters

associated with perfusion [32]. In this Section the acquisition of DCE-MRI

is detailed, followed by an introduction to qualitative and semi-quantitative

DCE-MRI analysis techniques.
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2.3.1 DCE-MRI Acquisition

DCE-MRI consists of a time series of T1 weighted images obtained before,

during, and after the injection of a Gadolinium based contrast agent. A

power injector is typically used for the injection of contrast agent, with a

standard contrast agent concentration for a subject being 0.1 mMol per kg

[33]. The specific acquisition parameters of the DCE-MRI series analysed

in this project are provided in Section 3.2, whereas the present Section will

cover the general requirements and constraints of DCE-MRI acquisition in

order to obtain images that will allow for quantitative analysis.

Relationship between signal and concentration

The contrast agent typically used in DCE-MRI has a very short relaxivity, R1,

which affects the signal detected in the T1 weighted images as the bolus of

contrast passes through the vasculature over time. The relationship between

signal enhancement in the DCE-MRI images and the concentration of contrast

agent (mMol/L) can only be approximated to be linear at low concentrations

[34], as the MRI signal data, S(t), is a measure of the contrast agent’s effect

on the relaxation times rather than the concentration of contrast agent.

Depiction of the error that arises in measurements of magnetisation mag-

nitude signal at higher contrast agent concentrations is given in Figure 2.5.

As such, although linear approximations exist in converting DCE-MRI

signal to contrast agent concentration [34], in this project a non-linear con-

version method was used, and is detailed further in Section 4.4.1. A second

consequence of the non-linearity between signal and concentration is that at

high concentrations, measurements of signal will eventually saturate, a factor

of particular relevance in AIF estimates.

Spatio-temporal Resolution Considerations

The pulse sequences in DCE-MRI are generally a gradient echo sequence

allowing for acquisition of T1 weighted images [36]. As is the case in most
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Chapters/Figures/1-figs/PLACEHOLDER nonlinearRegime.png

Figure 2.5: Depiction of linear and non-linear regime between mea-

sured and actual concentrations of gadolinium based contrast agent

[35]
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MRI acquisitions, a balance must be struck between spatial and temporal

resolution.

Here, temporal resolution refers to the temporal spacing between sub-

sequent images in a DCE-MRI time series. The temporal resolution of the

DCE-MRI time series impacts which perfusion parameters may be extracted.

The precise definitions of these perfusion parameters are provided in Section

2.4.1, however in general if we wish to measure flow of plasma, which is on

the order of a few seconds, the temporal resolution of the images must be

lower than this [37]. A reference point for the minimum temporal resolution

required for measurement of plasma flow is 2 seconds or lower [38]. Conversely,

slower physiological processes such as the uptake and washout of a bolus of

contrast agent, which in this project was on the order of 25 seconds from

bolus arrival time (BAT) to peak concentration, have lower demands on

temporal resolution. However, for these slower processes we require that the

total acquisition time is sufficient to capture the signal enhancement effects

of the process of interest [37].

In terms of spatial resolution, we require sufficient resolution such that:

1. we are able to distinguish tissues of interest, and

2. there is a voxel entirely situated within an artery to serve as an AIF

with negligible partial volume effects.

There are many techniques allowing for better compromises between

spatial and temporal resolution, such as parallel imaging, zero padding, or

limiting the field of view to only the slices of interest [37].

2.3.2 Qualitative and semi-quantitative DCE-MRI anal-

ysis

As the contrast agent is carried in the blood plasma, cerebral perfusion can

be measured through analysis of the uptake and washout of contrast agent

within a tissue of interest. The curve produced by plotting a voxel’s signal
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Figure 2.6: Examples of different shapes of signal enhancement curves.

intensity, S(t), over time is called the signal enhancement curve and analysis

of these curves can give us information on the type of tissues present within

a voxel.

There exist several qualitative and semi-quantitative methods of analysing

these signal enhancement curves to extract information on the underlying

tissue. The goal of this project was to quantify perfusion to allow for inter-

animal comparison and quantitative characterisation of the animal model

under consideration. As such, the qualitative and semi-quantitative methods

presented in this Section were not applied in this project, but these methods

allow for quick, model-free estimation of tissue characteristics and as such are

presented here, with a full explanation of the quantitative analysis techniques

detailed in Section 2.4.

Qualitative Analysis Techniques

Qualitative methods for analysis of signal enhancement curves typically involve

classification of the curve into one of three types, as shown in Figure 2.7.

With prior empirical knowledge of the typical signal enhancement be-

haviour of different types of tissue, physiological information can be gained

simply from classifying the curve shape. For example, in the classification

of breast lesions, a type I curve indicates a benign lesion whereas a type III
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Chapters/Figures/1-figs/Barnes-threeTypes.png

[39].

(a)

Chapters/Figures/1-figs/Barnes-quantCurve.png

(b)

Figure 2.7: (a) Three types of curve classification, Type I- persistent,

II- plateau and III- washout (b) semi-quantitative measurements from

signal enhancement curve [40]

curve is a strong indicator for malignancy [41].

Semi-quantitative Analysis Techniques

Semi-quantitative analysis methods involve measurement of curve shape

parameters such as time to peak, wash-in or wash-out slope, or area under

the curve (AUC). Similarly to qualitative methods, comparison to known

values for healthy or diseased tissue allows for fast classification or diagnosis

in a clinical setting [42][41].

These methods allow for information on the tissue to be gained simply

from the enhancement curve without further processing required, and typical

healthy or diseased curve types and semi-quantitative curve measurements

in various malignancies are well documented [43]. However, this type of

analysis of the signal enhancement curve does not give any information on

the underlying physiology of the tissue. For this, quantitative methods are

required.
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2.4 Quantitative DCE-MRI Analysis

Quantifying perfusion in DCE-MRI is a much more involved process than the

qualitative and semi-quantitative approaches detailed in Section 2.3.2, but

allows for estimation of physiological parameters associated with perfusion

through the fitting of pharmacokinetic model parameters. This process

requires conversion from DCE-MRI signal to physiological units of contrast

agent (CA) concentration per mL of blood, described further in Chapter

4. Following this conversion, pharmacokinetic modelling of the tissue is

undertaken in order to estimate quantitative perfusion parameters. The

tracer kinetic theory behind the formation of pharmacokinetic models, some

commonly used models, and the parameters we may estimate from application

of these models are detailed in this Section.

2.4.1 General Introduction to Tracer Kinetics

Tracer kinetic theory is used to describe the passage of a tracer, in this case

a bolus of contrast agent, as it passes through the tissue of interest. This

Section will provide a brief introduction to the tracer kinetics, which will be

built upon in the following Section on pharmacokinetic models of perfusion.

The Gadolinium based contrast agent used in this project has very small

molecular size [44] allowing it to pass out of the intravascular space and into

the interstitial space without entering the intracellular space. These different

spaces are visually represented in figure 2.8.

Cerebral blood flow - Fp

Within the intravascular space, the contrast agent is carried in the plasma, the

flow of which is described by the haemodynamic parameter Fp [44], referred

to in this project as the cerebral blood flow. The fraction of blood that is

plasma is defined by the haematocrit, and in humans this value is typically

0.45 [45]. Fp has units of mL of plasma flowing through 100 mL of tissue per

minute, or min−1.
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Fp

Figure 2.8: Simplified representation of the intravascular space, in-

terstitial space and intracellular space and the passage of a tracer,

carried in the plasma by flow Fp[min−1].

Permeability surface area product - PS

The transit of the contrast agent between the intravascular and interstitial

space is described by the permeability surface area product, PS [44]. The

rate at which tracer moves out of the intravascular space and into interstitial

space, and the rate of backflow from the interstitial space to the intravascular

space are assumed to be symmetric, and this assumption of symmetry is

common to all current pharmacokinetic models [37]. This parameter has the

same units as Fp of min −1 [44].

Fractional Volume Parameters

In DCE-MRI, the parameters associated with the relative volumes of the

interstitial and intrasvascular space, as depicted in Figure 2.8, are generally

estimated as a fraction of total tissue volume [44]. That is, the parameter

ve describes the fraction of unit tissue volume that is made up of interstitial

space, the subscript ‘e’ denoting extracellular-extravascular space or EES,

another name for the interstitial space. Similarly, the fractional plasma

volume, vp, describes the fraction of unit tissue volume that is intravascular
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plasma space (IVPS) [44].

The Tissue Concentration Curve

The concentration of contrast agent within the tissue (in mMol of contrast

agent per mL of tissue) is referred to as a voxel’s tissue concentration curve

and is denoted Ct(t) [46]. An alternative expression of the amount of contrast

agent within tissue over time is given by the residue function.

The Residue Function

The residue function, R(t) describes the fraction of the contrast agent bolus

remaining within the tissue at time t [46]. This function is therefore zero at

any time before the bolus arrival time (BAT), and reaches 100% or 1 following

the arrival of the bolus [44].

The Impulse Response Function

The impulse response function, H(t), describes the intrinsic perfusion charac-

teristics of the tissue, or in our case, the response of the tissue to the arrival

of the contrast agent bolus. In tissue we assume a linear and stationary

system, that is, that the response of the tissue to the tracer arrival is propor-

tional to the input dose of tracer, and that the response of the tissue is time

independent, or intrinsic to the tissue [44].

This impulse response function is the function we wish to fit in DCE-MRI

analysis. However, as the response of the tissue varies with the input of

contrast agent, in order to estimate the impulse response function, we must

first obtain an estimate of the input function.

The Arterial Input Function

The input of the contrast agent bolus to the tissue of interest is described by

the arterial input function (AIF). This function is crucial to quantification

of DCE-MRI data, as without an estimate of it, we can not remove the
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dependence of our parameters on the shape of the bolus input [42]. That

is, the measured tissue concentration curves, Ct(t), are masked by the input

function of the bolus to the tissue.

Because of this, in order to calculate the impulse response function parame-

ters that are intrinsic to the tissue and invariable with input function, we need

an estimate of this input function. Estimation of the arterial input function

(AIF) is a crucial step in DCE-MRI data analysis, as the AIF estimate is used

in a deconvolution to obtain the desired impulse response function. There

are several different methods for extracting the kinetic parameters of interest

from DCE-MRI data, which are covered in detail in Chapter 5.

2.4.2 Pharmacokinetic Models of Perfusion

Quantitative DCE-MRI analysis is a model based, parametric technique which

requires the use of a multi-compartmental model to represent the perfusion

changes that take place at the capillary level. This Section builds upon the

tracer kinetic theory concepts introduced in Section 2.4.1.

The parameters that may be estimated depend on the selection of phar-

macokinetic model to represent the underlying tissue.

General PK model introduction

A pharmacokinetic model (PK model) of perfusion is a simplified version of

the compartments and movement of fluid involved in perfusion at the capillary

level. Different models make different assumptions about the volumes of cer-

tain compartments or magnitude of flows in or out of different compartments.

Three pharmacokinetic models are presented in this section, each of which

was considered for use in this project in Chapter 4.

Two Compartment Exchange Model

The two compartment exchange model is the most recently developed [42]

and the most general [37] of the pharmacokinetic models considered in this
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ve
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Figure 2.9: Diagram of two compartment model of perfusion with

cerebral blood flow, Fp, PS, ve and vp.

project.

The relationship between the impulse response function and a tissue

concentration curve in this model is given by

Ct(t) = FpH2CXM(t) ∗ Ca(t) (2.6)

where ∗ denotes convolution, Ct(t) is the tissue concentration curve,

H2CXM(t) represents the impulse function specific to the two compartment

model and Ca(t) is the AIF in a feeding artery [42]. It should be noted that in

subsequent models, Ca(t) is denoted more generally as Cp(t), as it is assumed

that plasma concentration in a feeding artery and in the intravascular plasma

is indistinguishable [37].

The two compartment exchange model provides capability to separately

estimate the parameters Fp and PS, however we require sufficient temporal

resolution in our data to distinguish Cp(t) and Ca(t) for the model’s assump-

tions to hold. The requirements on temporal resolution of the data to be

fitted are discussed further in Section 4.5.2.
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Tofts Model

One of the original pharmacokinetic models of perfusion is the Tofts model

[47]. This model simplifies the structures associated with perfusion to two

compartments, the interstitial compartment and the plasma compartment,

illustrated in Figure 2.10.

The interstitial compartment represents the extracellular extravascular

space (EES) and the plasma compartment represents the volume of intravas-

cular space that contains plasma, in which contrast agent is carried. In

this model, it is assumed that the volume of this plasma compartment is

negligible compared to the interstitial compartment volume. As such the

parameters included in this model are ve, the interstitial volume fraction, and

the parameter Ktrans. The impulse response function of tissue in this model is

HTofts(t) = Ktranse
(−Ktranst/ve) (2.7)

and the plasma concentration, Cp masks the tissue concentration curves

in the form

Ct(t) = HTofts(t) ∗ Cp(t) (2.8)

where ∗ denotes convolution.

In the Tofts model the exchange of contrast agent between these two

compartments is governed by the parameter Ktrans, which is a combination

of the effects of cerebral blood flow (Fp) and the vessel’s permeability (PS).

Ktrans therefore represents a combined estimate of these two parameters, and

may reflect either depending on the physiological limitations of the situation.

That is– in a permeability limited tissue, where changes in flow are negligible

compared to changes in permeability, Ktrans reflects vessel barrier permeability.

Alternately in flow limited tissue, where changes in vessel permeability are

negligible compared to changes in flow, Ktrans will reflect changes in cerebral

blood flow [48].
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Figure 2.10: Diagram of original Tofts model of perfusion including

parameters Ktrans and ve.

Extended Tofts Model

An extension of the Tofts model to include the plasma volume fraction term,

vp, is referred to as the extended Tofts model, which is one of the most

commonly used models in DCE-MRI analysis [37][49]. This model, illustrated

in Figure 2.11, allows for calculation of both the interstitial volume fraction

and the plasma volume fraction, and perfusion of contrast agent between

these compartments is governed by Ktrans, as in the original Tofts model.

The form of the tissue impulse response function remains unchanged from

Equation 2.7, but there is an additional vpCp term included in the model of

the tissue concentration curve:

Ct(t) = HexTofts(t) ∗ Cp(t) + vpCp(t). (2.9)

This vpCp(t) term arises due to a key assumption of the extended Tofts

model; that the cerebral blood flow is fast enough such that the transit time

can be considered instantaneous [37]. Given this assumption, the fraction of
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Figure 2.11: Diagram of three parameter extended Tofts model of

perfusion including parameters Ktrans, ve and vp.

contrast agent that does not pass out of the intravascular space is considered

to be proportional to the contrast agent concentration in the plasma, due

to the essentially infinite cerebral blood flow corresponding to instantaneous

transit across the capillary bed [37].

2.5 DCE-MRI in Stroke Literature Review

DCE-MRI analysis techniques have been used in the context of stroke in past

research. Estimates of expected perfusion parameter changes in stroke exist

in literature, but the parameter estimates calculated as part of this project

are the first calculated to characterise this novel ovine model of stroke. This

Section presents a literature review of relevant research providing context on

the use of these perfusion parameters.

A general baseline of the parameter Ktrans in the cerebral white/grey

matter of healthy human subjects is ≈ 0 min−1 [50]. This is due to the
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presence of the specialised layer of endothelial cells in the brain forming

the semi-permeable blood brain barrier (BBB) that carefully regulates the

perfusion across this boundary. When intact, the BBB means that the

permeability surface area product is low. For comparison, literature values for

Ktrans in the healthy lung range from 0.05 to 0.1 min−1 [51], and in diseased

lungs, this parameter may increase to ≤0.5 min−1 [52].

A rodent model of transient stroke found that the Ktrans values calculated

from within the infarct at 24 hours post procedure were consistently higher

than values in the contralateral hemisphere [53]. This was concluded to be

due to the breakdown of the blood brain barrier following the transient middle

cerebral artery occlusion.

Due to the combined nature of Ktrans, many studies have used this pa-

rameter as a measure of blood brain barrier (BBB) permeability, such as

Villringer et al in their study in human stroke patients. This research found

the mean Ktrans values in the affected hemisphere, 0.7 × 10−3 min−1, were

more than three times as high as mirror Ktrans values, 0.2× 10−3 min−1 [4].

Another study similarly used Ktrans as a measurement of BBB permeability

in determining if this parameter could predict hemorrhagic transformation

following ischemic stroke [54].

Hemorrhagic transformation, or HT, refers to the restoration of cerebral

blood flow to blood vessels damaged by ischemic stroke [55], and can be a

serious complication following stroke. Hemorrhagic transformation provides

an example of how interlinked different physiological processes are within the

brain following stroke, as early BBB breakdown has been associated with

both early HT and the severity of the HT [55].

Despite the common usage of Ktrans as a measure of BBB permeability, it

has been noted that the use of Ktrans as a measurement of permeability in

the context of stroke may produce inaccurate permeability measurements due

to the fact that less contrast agent is available in the region of ischemic tissue

[56]. As such, permeability measurements using Ktrans will reflect the reduced

amount of available contrast agent rather than permeability of the vessel.
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The cerebral blood flow (Fp) takes into account this reduced amount of

available contrast agent, as Fp describes the flow of plasma into the region of

interest. As such, reduced Fp may affect the ability of Ktrans to be used as a

measure of permeability.

Although cerebral blood flow in humans is carefully controlled by the pro-

cess of autoregulation, the underlying mechanisms are known to be frequency

dependent, with less buffering capacity against rapid or transient changes in

blood pressure [57]. This is supported by studies in humans showing that

cerebral blood flow recorded using high resolution transcranial doppler ultra-

sound exhibit high levels of shorter-term spontaneous fluctuations [58]. As

such, it is possible that cerebral blood flow is contributing to measurements

of Ktrans that were intended to reflect only barrier permeability. Physiological

interpretation of Ktrans in this project is discussed further in Section 4.5,

and estimation of Fp is highlighted as a relevant area of future research in

characterising this animal model.



Chapter 3

Animal Experiments

This project uses data that was obtained from animal experiments conducted

at the University of Adelaide. This particular surgical model was an adap-

tation of a model of permanent stroke, which allowed for animal survival

post-stroke, and involved a 2 hour transient occlusion. This process is detailed

fully in [59] and is summarised briefly here, along with details of the MRI

acquisition protocol.

3.1 Surgical procedure

This animal cohort consisted of 30 merino sheep (Ovis aries, 15F/ 15M, 18-36

months). Each animal was anaesthetised and a craniotomy performed at

the junction of the parietal and squamous temporal bones. The proximal

MCA was located and occluded for 2 hours with a mini aneurysm clip before

being released to achieve reperfusion. The surgical site was closed following

which animals were removed from anaesthesia and returned to indoor pens to

recover.

33
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Figure 3.1: Resin cast of ovine cerebrovasculature. Middle cerebral

artery is shown with the arrowhead in the left image, and the ideal

location of surgical occlusion is denoted by the arrowhead in the right

image.

3.2 Image Acquisition

21 of the 30 animals underwent MRI prior to surgery, and at 24 hours, 3

days, 6 days and 28 days post-stroke. At each acquisition animals were

anaesthetised and scanning was performed on a 48 channel 3T Siemens

Magnetom Skyra (Siemens Healthcare, Erlangen, Germany) with a posterior

20 channel head coil. The MRI protocol was a comprehensive, one and a

half hour protocol which included acquisition of diffusion weighted images

(DWI), T1 weighted images, T1 weighted DCE-MRI time series, B0 field

mapping and angiography images (MRA). DCE images were acquired with

TE/TR = 1.98/5.06ms and a flip angle of 12◦. Injection commenced after

acquisition of the second DCE scan, allowing for the acquisition of baseline

signal prior to contrast enhancement. A gadolinium based contrast agent

(Gadobutrol, commercial name Gadovist, Bayer, Australia) was administered

via an intravenous catheter (20 G, Terumo SURFLO) placed in the jugular

vein. A power injector was used to administer gadolinium as a bolus (0.1

mL/kg; 3 mL/second) followed by a saline flush (0.5 mL/kg; 5 mL/second).
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1 of the 21 animals that underwent imaging was euthanised prior to

sufficient MRI data being obtained, leaving the cohort of 20 animals analysed

as part of the present research.
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Chapter 4

DCE-MRI Image Processing

Methods

The perfusion information of interest was contained within the DCE time

series images but required several processing steps and inputs from other

images before perfusion parameters could be calculated.

Some of these steps were:

• estimation of B1 field inhomogeneity,

• calculation of T1,0 maps,

• conversion from DCE signal image to R1,

• conversion from R1 to contrast agent concentration,

• determination of AIF estimate,

• conversion from AIF to Cp,

• pharmacokinetic model selection, and

• development of curve fitting techniques to the chosen model.

37
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Due to the different steps involved within AIF selection, these methods

are covered separately in Chapter 5. The specific methods pertaining to the

remaining processing steps listed above are covered in this Chapter, along

with the image processing techniques and tools used to process the DCE

images.

4.1 Overview of Image Processing Tools

There are many existing DCE-MRI analysis tools with functionality to perform

several of the image processing tasks presented in this chapter. These programs

served as a useful validation technique, particularly for synthetic data results,

but due to the number of images and different formats required for each

program, ultimately the majority of image processing was conducted using

Python written as part of this project.

This Section will briefly outline the different software packages and pro-

gramming languages used in this project.

Python 3

The main processing tool used was a series of Jupyter notebooks written in

Python 3. The notebook format allowed for quick tests of various methods,

batch processing of several animals, and access to various existing Python

libraries to process the different image formats used throughout the project.

These formats included NIfTI, tif and DICOM stacks.

The Python code written in Jupyter was also converted into a multi-

processing capable Python file which was able to be run using Victoria

University of Wellington’s high performance computing cluster. This allowed

for much more powerful image processing and was used to process all 90+

4D images at the final stages of analysis to output the extended Tofts model

parameters.
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ROCKETSHIP

After evaluating functionality of several software packages, the Matlab plugin

ROCKETSHIP ([60]) was the most appealing for use in this project due

to the batch processing capability and user friendly GUI. ROCKETSHIP

has functions for T1 map generation from multi flip angle images, as well as

extended Tofts parameter fitting capability, with user defined or automatic

AIF selection.

Parameter bounds and fitting parameters can be set in a user adjustable

preferences text file, and there are many options for setting an AIF selection

method, noise handling, and masking regions of interest.

A downside to the use of ROCKETSHIP in this project was the amount

of time taken to fully process a dataset from DCE image to parameter

maps. Even using Matlab’s parallel pool toolbox, processing times were

still unfeasible for the amount of images, and the fact that each image also

required a user to set the injection duration in run A meant this process could

not be fully automated. The final run in ROCKETSHIP, run D, allowed for

batch processing of images, but required a .mat file as input which would be

generated as part of earlier runs. It was possible to generate .mat files from

the Python results, but this proved more time consuming than keeping all

steps in one language and standard format throughout the processing.

Instead, methods from ROCKETSHIP were adapted from Matlab and

used in the multiprocessing capable Python file which was run on the high

performance computing cluster. ROCKETSHIP was used within Matlab in

this project for calculation of three flip angle maps used for validation of T1

maps in Section 4.3.2, and conversion from signal to concentration of the

synthetic data described in Section 4.6.5.

dcemri.jl

dcemri.jl ([61]) is an opensource toolkit for DCE-MRI analysis that also has

functionality for many of the processing steps described later in this chapter.
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This toolkit was used for validation of synthetic data results, but was not

used for processing of any animal images in this project.

ImageJ

ImageJ [62] is an image processing program with many capabilities including

ROI drawing and analysis, histogram analysis, and conversion to different

image types. The Fiji distribution of ImageJ [63] was used at every stage

of this project to display, analyse, save and modify data in many different

formats. Particularly useful was the hyperstack plugin which allowed for

easy processing of the four dimensional datasets, and the nifti1 plugin which

allowed for conversion from DICOM to analyse/NIfTI format.

3D Slicer

3D Slicer [64] is predominantly a 3D image visualisation tool which also allows

for segmentation, binary mask generation and image registration. 3D Slicer

was used in this project for many processing steps, such as coregistering MRA

image series with DCE image series, exporting binary masks and visualising

structures in 3D.

4.2 B1 Field Inhomogeneity Consideration

The method for T1 map calculation detailed in Section 4.3 relies on the

assumption that the flip angle experienced at each point in the image is

identical. This assumption requires that the B1 field applied for excitation is

perfectly homogeneous throughout the imaging volume. In order to verify

that this assumption is valid, we require data on B1 maps, either in order to

confirm that this field was sufficiently homogeneous such that any impact on

the T1 map would be negligible, or in order to correct for any inhomogeneities

seen in the B1 maps.

The animals for which perfusion maps were generated as part of this
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project did not have B1 field maps obtained as part of the MRI acquisition

protocol. Due to the fact that data on the B1 field was not available, a

decision had to be made between making one of two assumptions.

1. Assume the B1 field was effectively homogeneous within the region

of interest, and the effect of any inhomogeneities on T1 values will be

negligible.

2. Assume any inhomogeneities in the B1 field during acquisition of the

first cohort of animals will be comparable to the B1 field inhomogeneities

seen in a second cohort of animals for which B1 field maps were obtained.

The second assumption listed here was taken to be preferable, on the

basis that the second cohort of animals was imaged at the same facility and

had identical MRI acquisition procedures for the variable flip angle images

as the cohort under investigation in this project. Investigation into B1 field

inhomogeneities in the second animal cohort was conducted, with the intention

that flip angle discrepancies arising from B1 inhomogeneity in these images

would allow for estimation of uncertainties in the first cohort.

4.2.1 B1 field inhomogeneities in a second animal co-

hort

The animal cohort under investigation in this Section, hereafter referred to

as the second animal cohort, is different from the animals for which perfusion

parameters are being calculated in this project, the primary cohort.

The second animal cohort were imaged at the same facility as the primary

cohort (SAHMRI, Adelaide), but were imaged only once following surgery.

The same MRI protocols for acquisition of variable flip angle images (T1 VIBE)

was used as the primary cohort, allowing for direct comparison of these values,

however these animals also had B1 maps included in the protocol, as well as

a third variable flip angle image. This extra data was used in this project

for validation of methods on the primary cohort of sheep, particularly for the
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comparison of two to three flip angle T1 mapping discussed further in Section

4.3.2.

For each animal in the second cohort, a B1 map was obtained with

TE/TR = 1.83/5000 ms and a flip angle of 8◦. The change in flip angle with

B1 is described by

θ(x, y, z) = θnominal ×B1rel(x, y, z) (4.1)

where θ(x, y, z) is the flip angle experienced at voxel (x, y, z), θnominal is

the expected flip angle given a homogeneous field, and B1rel is the value of

relative change in B1 as measured from the normalised B1 map.

Applying this equation to the 2 degree and 15 degree variable flip angle

images, it was found that with the relative B1 inhomogeneities measured from

within the brain in the second cohort of sheep, we would see a change in flip

angle of ±8%. This finding gave support to the method of neglecting any B1

inhomogeneities in the primary cohort of sheep as being small enough to not

significantly influence T1 maps.

4.3 T1 Map Generation

The first step of DCE-MRI analysis was the generation of a T1,0 map for each

animal at each time point, which is required as input for the conversion of

the DCE-MRI images from signal intensity to concentration.

4.3.1 Algebraic T1 determination

The images used for calculating T1,0 maps were dual flip angle T1 weighted

images (TE/TR = 4.09/1.47ms) obtained immediately prior to DCE-MRI

acquisition. The signal intensity of these images is governed by the spoiled

gradient echo signal equation introduced in Section 2.2.2 and reproduced

here,
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S = S0
sinα(1− e

−TR
T1 )

1− (cosα)e
−TR
T1

e
−TE
T∗
2 . (4.2)

The chosen echo time was short enough that the e
−TE
T∗
2 was sufficiently

close to 1 and could effectively be removed from the equation, giving

S = S0
sinα(1− e

−TR
T1 )

1− (cosα)e
−TR
T1

. (4.3)

At each MRI acquisition, two such VIBE images were acquired at flip

angles α1 = 2◦ and α2 = 15◦ with the identical number of slices and slice

locations as the DCE-MRI series that followed. As the dual flip angle T1 VIBE

images had the same echo and repetition times, the only unknown in this

equation aside from T1 was the S0 term. S0 refers to the equilibrium signal

obtained using full excitation and signal recovery. As this term depends

only on proton density and machine configuration settings which remained

constant between acquisitions, S0 was assumed to be the same for both flip

angle images.

Rearranging of Equation 4.3 written for two flip angle values, α1 and α2,

setting S0,1 and S0,2 as equal, and cancelling the exponential term in each

denominator gave Equation 4.4,

T1 = TR ln

(
S2sinα1cosα2 − S1cosα1sinα2

S2sinα1 − S1sinα2

)−1

, (4.4)

which allowed for voxel by voxel calculation of T1.

4.3.2 Verification of T1 map values

The range of flip angles used for T1 map generation ranges from 2-7 in previous

research [65], but the use of 3 or more flip angles allows for a least fit squares

method rather than an algebraic method as used in this project. As such, it

was desirable to confirm that the method using two flip angles was comparable
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to other methods such as inversion recovery or methods using more than two

flip angles. Ideally an inversion recovery sequence would have allowed for the

most accurate T1 map generation, however due to machine time restrictions–

this sequence was not able to be obtained for all animals, and instead two

flip angle images were obtained for each animal.

Gadovist Sample Verification of T1,0 Methods

In order to verify that the T1 values generated using the dual flip angle

algebraic method given in Section 4.3 were comparable to those found using

inversion recovery, dual flip angle T1 values were calculated in a simple

phantom and compared to the T1 values using an inversion recovery sequence

on an in-house 9.4T Bruker magnet system (Bruker, Germany). This sequence

used 10 different inversion times ranging from 0.01 to 15 seconds. The phantom

consisted of four test tubes of Gadovist at four different concentrations (0.05,

0.10, 0.15 and 0.20 mMol/L). A dual flip angle T1,0 map was generated with

flip angles 2 and 10 degrees and compared to values calculated from the

inversion recovery sequence.

From Figure 4.1, we see the T1 values calculated using dual flip angle

images approximated the values calculated using inversion recovery well. This

result gave us confidence to move forward with the use of the dual flip angle

algebraic T1,0 map method.

Comparison of Dual flip angle to Triple Flip Angle T1,0 Maps

In order to verify that the algebraic T1,0 generation method using just two

flip angles was equivalent to a fitting method with more flip angle images,

three variable flip angle images were obtained in a second cohort of animals

and T1 maps were generated for these animals using both two and three flip

angle images.

Comparison of the algebraic method using two flip angles, and the least

squares fitting method using three flip angles was undertaken to validate the
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Figure 4.1: T1 values calculated from dual flip angle T1 map (±
standard error) and from inversion recovery sequence (± standard

deviation)

algebraic method, and investigate the uncertainty introduced from using two

rather than three flip angle images.

As shown in Figure 4.2, the values calculated using the algebraic method

used in this project, and the values using three flip angles match well within

the region of interest; the cerebrum. This result gave us confidence to move

forward in the analysis using the dual flip angle T1,0 maps.

4.4 Signal to Concentration Conversion

The conversion from arbitrary signal intensity to contrast agent concentration

with physical units of mM/L involved several steps which are outlined here.
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Figure 4.2: Histogram of dual flip angle T1,0 map and three flip angle

T1,0 map generated for the same animal (MB004). The range of values

that represent tissue within the animal’s cerebrum is shown between

the dashed lines.

4.4.1 DCE signal to concentration conversion

The DCE images acquired were T1 weighted spoiled gradient recalled images

(DCE TWIST), with TE/TR = 5.06/1.98ms and a flip angle of 12◦. Similar to

the T1 VIBE images introduced in the previous section, the signal intensity

is governed by the spoiled gradient signal equation, but as the DCE images

were a time series covering the duration of a contrast agent injection, the

signal intensity of a voxel was a function of time, denoted S(t).

Equations to convert DCE signal to contrast agent concentration were

taken from the Quantitative Imaging Biomarkers Alliance DCE MRI Quan-

tification Profile Document [65] and are given below:

1

T1(t)
=
−1

TR
× ln

(
1− A

1− cosθA

)
(4.5)

A = B
S(t)

S(0)
(4.6)
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where S(0) is the baseline signal before contrast agent injection, and

B =
1− E10

1− cosθE10

, (4.7)

E10 = e
−TR
T10 . (4.8)

The equation for conversion from R1(t) to concentration, C(t), is given

by:

C(t) =

(
1

T1(t)
− 1

T1,0

)
1

RGd

, (4.9)

where 1/T1(t) is the R1(t) as converted from the DCE series, using Equa-

tion 4.6, 1/T0 is the values given by the T1,0 map calculated in Section 4.3,

and RGd is the relaxivity of the Gadolinium based contrast agent used in the

experiment.

4.4.2 Determination of RGd

The contrast agent used in the animal experiments analysed in this project was

Gd-DO3A-butrol (commercial name Gadovist, Bayer, Australia). Literature

values for this contrast agent have been published at 3T, and range slightly

from 4.2± 3 in water [66] to 5.0 ±0.3 in plasma [67].

Different literature values are shown in Figure 4.3. The value selected

for use in this project is also shown in this Figure, and was chosen to be 4.7

mMol/L. This value was within error for the Szomolanyi et al. experiments

[69] shown as data point 4 in Figure 4.3, which best approximated physiological

conditions (temperature, mixing of solution), albeit in human plasma rather

than ovine plasma.

With the value of RGd to be used in this project determined, R1 images

could be converted to concentration using Equation 4.9. Following this

conversion to concentration, the TCCs for each voxel were ready to be fit to

the chosen pharmacokinetic model of perfusion.
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Figure 4.3: Different literature values for RGd at 3T (from the left) 1.

Rohrer et al. [67] 2.Noebauer-Huhmann et al. [68] 3.Shen et al. [66]

and 4. Szomolanyi et al. [69]

4.5 Pharmacokinetic Model Selection

There are many pharmacokinetic models of perfusion, some of which are

presented in depth in Section 2.4.2, and each making different assumptions

about the characteristics of the underlying tissue [37]. While some models

allow for calculation of more parameters than others, these models also have

higher requirements of the data in terms of signal to noise ratio and temporal

resolution.

In this section, statistical and physiological considerations in pharmacoki-

netic model selection are presented. Statistical methods for pharmacokinetic

(PK) model selection involved calculation of the Akaike information criterion

(AIC) and Bayesian Information Criterion (BIC) for three potential pharma-

cokinetic models. Physiological considerations involved a literature review

of appropriate acquisition thresholds for accurate estimation of perfusion

parameters, and consideration of the physiological changes within the sheep’s

brain. The literature review proved to be crucial in determining whether a

PK model was a valid choice for fitting in this project. This is because of
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the fact that a complex model with more parameters than a simpler model

with fewer parameters will fit a concentration curve better, but does not

necessarily provide reliable parameter estimates [37].

4.5.1 Statistical Considerations in PK model selection

In this section, the pharmacokinetic models under consideration were the Tofts

model [70], the extended Tofts model [47] and the two compartment exchange

model [36]. These models represent a two parameter, three parameter and

four parameter model respectively. Other pharmacokinetic models considered

in this project are discussed in Section 4.5.3.

In order to measure which out of these potential models was best, two

estimators of error in fit were used. These were the Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC), the results of

which are presented in this Section.

Akaike Information Criterion

The Akaike Information Criterion (AIC) is a statistical measure for reflecting

which out of a set of potential models is the best choice for fitting. This

criterion takes into account the number of independent variables, as well as

the value of the residual of fit for each model. It provides relative preference

for a set of models, but does not allow for calculation of absolute goodness

of fit. As such, the model that returns the lowest AIC index can only be

considered the best model out of the models tested, not necessarily out of all

possible models.

In terms of sum of squared errors, the AIC is written as:

A = 2k + nln(R) (4.10)

where k is the number of independent parameters in the model, n is the

number of samples and R is the sum of the residuals for each voxel, given by
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R =
n∑

t=1

(Ct(t)− f(t))2 (4.11)

where Ct(t) is the tissue concentration curve at a given voxel, f(t) is the

fit produced by a given pharmacokinetic model to the tissue concentration

curve and n is the number of time points, which in this case was 57 for each

voxel.

Taking a sample of 3764 voxels from the affected hemisphere, each with

57 time points, it was found that the Tofts model produced the lowest AIC

for 31% of the voxels, the extended Tofts model produced the lowest AIC for

58% of the voxels and the two compartment model minimised the AIC for

1% of the voxels.

Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is given by

B = nln(R/n) + kln(n), (4.12)

where B is the value for the BIC, R is the sum of residuals as given by

Equation 4.11, k is the number of model parameters and n is the number of

samples, in this case, 57 time samples per tissue concentration curve. The

BIC provides a harsher penalty for extra parameters than the AIC, and it

was likely due to this reason that the BIC was minimised by the Tofts model

for all voxels. The second best model for 100% of voxels sampled was the

extended Tofts model, followed by the two compartment exchange model.

Discussion of Statistical Approach to model selection

Despite the fact that the 2 compartment model was able to consistently

minimise the absolute sum of squared errors, the superiority of fit this model

provided was overcome by the penalty applied for the model having four

parameters in both the AIC and BIC. This penalty applied arises from the
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fact that if a model has more free parameters it is more likely to provide

a good fit to data. This project aimed to extract meaningful physiological

parameters from the data, and as such, selection of a model that simply

provided a good fit without also allowing for meaningful interpretation of the

fitted parameters was not appropriate.

The penalties applied for more parameters by these statistical criteria

were valid for this reason, however in order to determine if certain model

parameters were reasonable to attempt to extract, the physiological situation

and the quality of the data had to be evaluated.

4.5.2 Temporal Resolution in PK model selection

The temporal quality of the data under analysis in this project was identified as

a potential factor influencing which parameters could reasonably be extracted.

The temporal resolution of the DCE-MRI series in this project was one

acquisition of the volume of interest every 5.2 seconds.

In general, in order to estimate the parameter of cerebral blood flow, Fp–

a parameter included in the two compartment exchange model, a temporal

resolution of 2 seconds or less is recommended [37]. The minimum temporal

resolution has been estimated to be even lower for methods involving decon-

volution, which is all three pharmacokinetic models under consideration here,

for which a temporal resolution of any greater than 1.5 seconds per image is

insufficient [71].

The need for a minimum temporal resolution for estimation of flow is

related to the transit time of a tracer, i.e. the time the tracer takes to cross

from the arterial to the venous side of the capillary bed. If this parameter is

on the order of 3-5 seconds, the recommended sampling interval for perfusion

measurements is less than two seconds [38]. A study measuring transit

times in humans found that this parameter in the brain ranged from 3.9-4.3

seconds using positron emission tomography, (PET), and 2.8-3.0 seconds

when measured with DSC-MRI [72]. In terms of ovine transit times, one

recent study has shown that this parameter in lambs and ewes is faster



52 CHAPTER 4. DCE-MRI IMAGE PROCESSING METHODS

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60

S
ig

n
a
l 
In

te
n
s
it
y
 (

a
rb

.)

Time Points (unit time = 5.2 seconds)

Artery Signal

Venous Signal

Figure 4.4: Plot of two signal enhancement curves, artery signal
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of the middle cerebral artery, and venous signal from the sagittal
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than values previously reported in humans, which would demand an even

faster temporal resolution for estimation [73]. Therefore, although the two

compartment exchange model has the capability to provide estimates of Fp

and PS separately, the data under analysis in this project would likely not

allow for meaningful estimation of these parameters at its temporal resolution

of 5.2 seconds.

This concept can be illustrated through analysis of the bolus arrival time

(BAT) of tissue concentration curves obtained from the rete mirabile, located

in the arterial tree upstream of the middle cerebral artery, and the large

sagittal sinus visible in the posterior of the brain. With a temporal resolution

sufficient to measure flow, we would expect a difference in BAT between

arterial input and venous output curves, however in these images the BAT is

indistinguishable, as shown in Figure 4.4, indicating that information on flow

is being lost due to insufficient temporal resolution.

At this temporal resolution of 5.2 seconds, an assumption can be made

that the transit time from arterial side to venous side of a capillary bed

is effectively instantaneous. This results in a cerebral blood flow, Fp, that
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is effectively infinite. It is this exact assumption that the extended Tofts

model is based on, and that defines the parameter Ktrans [37]. The parameter

Ktrans is described in more detail in Section 2.4.2, but is most importantly a

measurement which provides a joint estimate of permeability and flow effects

[42]. With the extended Tofts model’s assumption of infinite cerebral blood

flow, Ktrans reflects permeability changes [37], which, in the context of stroke,

are known to occur in humans due to breakdown of the blood brain barrier

following ischemic event.

4.5.3 Discussion of PK model selection

Between the Tofts and extended Tofts model, although the BIC indicated

the Tofts model was preferable to the extended Tofts model, the underlying

assumption that vp = 0 in the Tofts model is known to be physiologically

incorrect in post-stroke, particularly in the 6 days post-stroke and after. As

such, taking into account both physiological and statistical considerations,

the extended Tofts model was selected as the best model choice out of these

three models.

Other pharmacokinetic models considered for use in this project include

the Larsson model [74] and the Patlak plot model [75].

The Larsson model requires a gold standard AIF [42] which was not

obtained for the animals in this project.

The Patlak plot model is a graphical model which assumes low permeability,

which would not hold true following blood brain barrier breakdown in the

sheep’s brain post-stroke [5]. An extension of the Patlak plot model has been

developed by Chen et al [76] and although not considered for use in this

project, this model might provide a valid alternative to the extended Tofts

model for this data.
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4.6 Development of Curve fitting Techniques

There were several variables to be considered in order to optimise curve

fitting. This Section describes the methods undertaken to develop reliable,

reproducible curve fitting methods and implement these in a computationally

efficient way.

4.6.1 Curve Fitting Algorithm

The curve fitting package used in this project was from the Python library

scipy and called the function optimize.minimize [77]. This function used the

L-BFGS-B algorithm, described in full in [78].

A function was written that took a vector of the parameters as input, and

output the sum of the squared errors between the fit with these parameters

and the tissue concentration curve. By minimising the sum of squared errors

using optimize.minimize, the values for the model parameters that best fit

each tissue concentration curve were obtained.

4.6.2 Initial Guess

The curve fitting function used in this project required as input an initial

guess of the parameters for the first iteration of curve fitting.

This initial guess proved an important parameter, as setting this guess

too low or too high meant the fit might find a local minima rather than the

set of parameters that minimised the entire fit.

A method that would have ensured a good initial guess for each voxel was

iterating the initial guess for each voxel, and keeping the parameter values

corresponding to the fit with the minimum sum of squared errors.

Due to computational restrictions, the iterative initial guess code in which

each voxel was iterated through many initial guesses was not feasible. However,

analysis of which initial guesses tended to produce better fits, and how much

the fit changed depending on initial guess was undertaken.
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Analysis on initial guess setting was conducted on 7612 voxels from the

DCE series of animal RT090 at 3 days post-stroke. This animal was chosen

as it was the most severely affected animal from within the cohort, and so

was likely to display the widest range of parameter values.

The initial guess for Ktrans was iterated over the values [0.0001, 0.001,

0.005, 0.1], and the initial guesses for ve and vp were iterated over [0.002, 0.02,

0.2]. This iterative initial guess code resulted in 36 combinations of initial

guess being tested.

For each voxel, the combination of parameters that minimised the sum

of squared errors and the combination that maximised the sum of squared

errors was output. The R2 value corresponding to each of these combinations

was output, and the average difference between the best and worst fit R2 was

found to be 0.14. Excluding those voxels for which the best R2 was less than

0.5, the difference reduced to 0.11.

This result indicates that in the worst case, in which the initial guess for

each voxel is the worst possible combination of parameters for all voxels, the

R2 values of all fits would, on average, have an 11% error.

Taking the subset of 3124 voxels for which the best R2 was over 0.5, the

difference between the average best and average worst estimate for the pa-

rameter Ktrans, was found to be 60%. The same average percentage difference

between best and worse ve was found to be more than 90%, and for vp was

7.5%.

The initial guess for vp was not further investigated, given the relative

insensitivity of this parameter to changes in initial guess, and this value was

set to be 0.02.

It was found that Ktrans,0 of 0.1 was the best initial guess for 15% of the

voxels sampled. Ktrans,0 of 0.0001 was the best guess for 35% of the voxels,

and the initial guesses of 0.001 and 0.005 combined were the best options for

the remaining 50% of voxels. The proximity of these guesses to eachother

indicated that an initial guess for Ktrans between 0.001 and 0.005 would be

appropriate for the majority of voxels, and so Ktrans0 was set to be 0.002.
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For the parameter ve, the initial guess was set to 0.2, the default value

given in the software ROCKETSHIP, and further analysis was not conducted

due to the model’s insensitivity to this parameter, discussed further in Section

4.7.2.

The initial guess was therefore set to be [0.002, 0.2, 0.02], and this value

was used for the results presented in later Sections.

4.6.3 Treatment of Noise

This Section covers methods involving both those voxels that produced a

poor fit to the extended Tofts model, and the temporal oscillations seen in

most tissue concentration curves across all animals.

Treatment of poorly fit voxels

At the fitting stage, all voxels were included and voxels that produced a poor

fit were not excluded. Instead, all voxels within the region of interest were

fitted regardless of the goodness of fit, and in analysis steps, values were

excluded based both on sum of squared errors and of coefficient of variation

of fit. These methods are further detailed in Section 6.2.2.

Treatment of physiological ‘noise’

In the concentration data we see a periodic oscillation particularly following

the uptake of the contrast agent.

While we might expect a curve displaying a high signal to noise ratio

would display a smooth washout, the oscillations we see in the tails of each of

the TCCs are representative of the natural dilation and constriction of blood

vessels within the animal. In Figure 4.5 each time point is 5 seconds apart,

and although we see periodicity in these oscillations of about 1/5 sec−1, this

signal is likely being biased and has a natural frequency higher than what we

were able to detect with the 5 second temporal resolution.
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(a)

(b)

Figure 4.5: (a) Four example TCC’s demonstrating physiological noise

and (b) the same TCCs following high pass filtering to isolate the

physiological oscillation component from the contrast washout curve.
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Although not technically noise, these periodic oscillations in the signal

were considered as a potential source of error in curve fitting, as the pharma-

cokinetic models to be used did not include a term for these oscillations, and

therefore the phase distribution of these oscillations throughout the image

was investigated.

The AIF is representative of the concentration curve obtained furthest

upstream of the arterial branches, which feed into the tissue of interest. As

such, inclusion of the periodicity seen in the TCCs in the AIF would solve the

issue of pharmacokinetic models not including this term, but only if the phase

shift in these oscillations between TCCs in different regions of the image and

the AIF was negligible. The steps taken to ensure that these oscillations

would not be excluded in AIF selection are covered in Section 5.1.2.

In order to visualise phase shifts in these oscillations, a sample of 5 TCCs

were selected from different places throughout an image and were high pass

filtered using a first order Butterworth filter [79] with a cut off frequency of

120 Hz to reduce them to only the physiological oscillation component, as

shown in Figure 4.5(b).

These values were then plotted against the high pass filtered AIF for the

same image in order to visualise any phase shift between the AIF and the

TCCs. The same values were then shifted incrementally by integer multiples

of the time increment, 5 seconds.

As expected due to the temporal resolution of the images, the phase shift

between the AIF and TCCs was minimised without any time shift applied.

4.6.4 Computational Considerations in Fitting

Performing a voxel by voxel fit of all voxels within the region of interest proved

computationally expensive. Fitting times for a single animal frequently were

45 minutes to several hours, and given that there were 90 such images to

fit, the limit of the processing power available on a single PC was quickly

reached.

As such, the fitting code was rewritten to a multiprocessing capable file
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(a) (b) (c)

Figure 4.6: QIBA4 synthetic DCE-MRI data.

where a separate node in a high performance computing (HPC) cluster could

fit each row and piece together the fitted image once all rows were fitted.

Voxel by voxel fitting was therefore beneficial, as values calculated for one

voxel were not dependent on values in surrounding voxels.

4.6.5 Synthetic data verification of Curve Fitting Tech-

niques

In order to verify that the chosen fitting method was reliable and accurate, val-

idation was performed on synthetic DCE-MRI datasets. These datasets were

obtained from Daniel P. Barboriak’s synthetic DCE-MRI dataset produced

for the Quantitative Imaging Biomarkers Alliance (QIBA) [80].

In these synthetic datasets, the bottom 20×60 pixels represented a feeding

artery. Above this, each 10×10 square of pixels was simulated to have a

different set of parameters corresponding to the extended Tofts model. As

shown in Figure 4.6, each of these 10×10 segments demonstrates different
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contrast uptake and washout characteristics, which resulted in different tissue

concentration curves (TCCs) for each segment.

This concentration data was fitted to the extended Tofts model using

both the Matlab plugin ROCKETSHIP and the python code written for this

project in order to verify these methods were equivalent.

Parameter maps for Ktrans, ve and vp were generated and compared to

the simulated values.

From Figure 4.7(a) and (c) we see that Ktrans and vp values calculated

using the python code written for this project match the simulated values

well, as do the values calculated in ROCKETSHIP.

Due to being dependent on a good estimate for Ktrans, the estimate of the

parameter ve depends on the corresponding simulated value for Ktrans. As

such, in Figure 4.7(b) we see that the HPC and RS values for ve match well

when the corresponding Ktrans value is above 0.05 min−1, but the estimate

is unreliable when Ktrans < 0.05 min −1. This unreliability in ve estimate is

discussed further in Section 4.7.2, as the values for Ktrans estimated in this

project were predominantly lower than 0.05 min−1.

Despite the inaccuracies in ve estimate at corresponding low Ktrans values,

the results of the python and ROCKETSHIP code provided confidence in

moving forward with applying these fitting methods to the sheep images.
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(a)

(b)

(c)

Figure 4.7: Comparison of synthetic data simulated parameters to

values calculated through fitting in Python code (HPC) and in the

Matlab plugin ROCKETSHIP (RS).
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4.7 Discussion of DCE-MRI Analysis Exper-

imental Methods

The methods presented in this Section demonstrate the varied range of

approaches that were required in extracting kinetic parameters from the

DCE data, including the selection of pharmacokinetic model, the validation

of T1,0 map methods, determination of the best initial guess for fitting and

consideration of physiological noise. Discussion of the methods presented in

this chapter, and consideration of future improvements to these methods is

presented here.

4.7.1 Discussion of T1 map generation

A concern in the generation of T1 maps in this project from the dual flip angle

images was that if any machine settings, such as reciever gain, were altered

between the acquisition of the two images, the assumption that S0 remained

unchanged between the 2 and 25 degree flip angle images would be incorrect.

A representative from Siemens was contacted and confirmed that the

parameters identified from the DICOM tags as changing between acquisitions

were related to the number of phase encoding steps rather than receiver gain

settings. The 2 degree image uses eight averages, while the 15 degree uses six

averages.

Differences in the RF excitation voltage between the 2 and 15 degree

images were also identified, however these differences were identical to the

default Siemens library sequence values and so were not considered as a

potential source of error in T1 mapping from these dual flip angle images.

In order to confidently verify the T1 map generation method used in this

project, running the same dual flip angle and DCE protocol on a look up

table based phantom [65] containing several different samples with known T1

times would be ideal. This would allow for verification of both T1 maps, but

also provide confidence in the R1 values calculated off DCE images, and of
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the expected range of values for concentration of contrast agent.

As this data was not available for this project, validation was performed

through analysis of images and independent experiments conducted on the

9.4T system available at Victoria University of Wellington, and a second

cohort of animals imaged at SAHMRI in Adelaide in 2020.

4.7.2 Discussion of Curve Fitting Techniques

Sensitivity of sum of squared errors

As mentioned in this section, the sensitivity of the extended Tofts model

to changes in each parameter was not equal between the three perfusion

parameters under consideration.

In order to investigate the sensitivity of the model to changes in each

parameter, the sum of squared errors was calculated as a function of each

perfusion parameter.

Several of these Figures are shown in Figure 4.8. Figure 4.8(a) is the

finding which most influenced future decisions in experimental techniques.

This plot shows that as Ktrans approaches 0, the estimate of ve becomes less

and less sensitive, to the point when Ktrans=0, ve can not be estimated.

The effect of the ve estimate’s dependence on Ktrans can be understood

from the extended Tofts model impulse response function, reproduced here:

Ct(t) = Ktranse
Ktranst

ve ∗ Cp(t) + vpCp(t). (4.13)

In the case where Ktrans =0, no information can be gained about ve.

Physiologically, this can be interpreted as for an intact vessel with effectively

zero permeability, where Ktrans =0, the contrast agent will remain in the

plasma space only and no leakage to the interstitial space will occur. As such,

we can not know the fraction of tissue that is interstitial space when Ktrans

=0, and this effect continues at low values of Ktrans in the form of a broad

estimate of ve only.
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In terms of sum of squared errors, which is the optimisation criteria for

curve fitting in this project, this means that a wide range of ve values will be

equivalent to eachother at lower values of Ktrans.

This statement does not hold for the parameter vp or Ktrans to the same

extent. Figure 4.8(a) shows as the true value for Ktrans increases, the sum of

squared errors for Ktrans becomes more and more permissible of a wider range

of values. In this project, the values for Ktrans were expected to be within the

lower range for which the sum of squared errors remained relatively precise.

Figure 4.8(c) shows the effect of the parameter ve on estimates of the

same true value of Ktrans. Compared to Figure 4.8(a), this estimation, even

for the lowest value of ve, remains relatively precise.

Finally, the estimate for vp is unaffected by estimates for Ktrans and ve, as

shown in Equation 4.13, the estimate of this parameter depends only on the

AIF estimate.

In order to exactly quantify the sensitivity of the sum of squared errors to

changes in each parameter, further investigation involving the Cramér-Rao

bound could be undertaken [81].

Discussion of Initial Guess

Setting of the initial guess was an analysis step that took significant investiga-

tion into how much the initial guess could impact fit results, and to determine

the best method of setting initial guess in this project.

Although it would have been preferable to iterate every voxel through

a range of initial guesses, the results on synthetic data indicated that for

some voxels, this would not always have resulted in an improved parameter

estimate. An iterated initial guess was conducted on QIBA synthetic data

[80] and the results are shown in Figure 4.9.
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Figure 4.8: (a) sum of squared errors of ve with different values of

Ktrans (b) sum of squared errors of Ktrans with different values of Ktrans

(c) sum of squared errors of Ktrans with different values of ve, (d) sum

of squared errors of vp with different values of vp
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Figure 4.9: Comparison of synthetic ve value with fitted value, com-

puted with iterated initial guess.

4.7.3 Exploration of existing software packages

The multitude of image processing steps described in this project meant that

fully processing a single animal from DCE data to perfusion parameters was

a time consuming and computationally expensive process. The methods used

in this project were not chosen to reduce time spent on each animal, as this

entire thesis was based around developing best techniques for the processing

and analysis of this particular DCE-MRI dataset. Instead, future research

could focus on exploring usage of existing DCE-MRI processing software,

such as ROCKETSHIP [60], which was used for part of this project, or other

software packages such as dcemri.jl [61].

The downsides of these software packages included

• user interaction was required at some/all processing steps, which was

not feasible for 90+ image series.

• any code customisation (such as implementing an iterated initial guess or

custom AIF selection tool) required learning the programming language
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of the respective software package (e.g. julia for dcemri.jl)

• data needed to be in different formats for different software packages

(e.g. NIfTI and MAT files for ROCKETSHIP)

As such, in this project, keeping all code in the same language and files

in the same format proved more valuable in saving time and computational

resources than adjusting the experimental methods to be inline with an

existing software package.

4.7.4 Summary of DCE-MRI Analysis Methods

In this Section we have seen methods for reliable T1,0 map generation from

dual flip angle T1 weighted images, comparison of this method to inversion

recovery and three flip angle T1 map generation, a method for conversion from

DCE signal to concentration, curve fitting techniques, and validation of these

methods against synthetic DCE-MRI data. As the first research to analyse

these DCE-MRI datasets, care was taken at each step to ensure best possible

approaches were being undertaken, and to ensure the generated perfusion

maps were a reliable foundation for analysis detailed in the following Sections.
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Chapter 5

AIF Selection Methods

Selection of one AIF over another can greatly impact the results of the

extended Tofts model. The importance of best AIF selection in robust

parameter determination therefore cannot be overlooked.

The gold standard in AIF estimation involves drawing blood from the

subject throughout the contrast injection and image acquisition, and analysing

the contrast agent concentration within each blood sample [39]. Obtaining

a gold standard AIF from each animal would evidently have been a highly

involved process, and was not feasible in these animal studies. Each animal

also displayed vastly different responses to the surgical procedure, implying

that even if a gold standard AIF had been obtained from a single animal, this

AIF would not be representative of the inter-animal differences in cerebral

contrast agent uptake.

As the gold standard AIF measurement method described here is an

invasive and time consuming process, there exist many alternative methods

of estimating an AIF.

These include:

• Using an automated search to return an AIF of the desired shape from

the image data [35]. The algorithm used in this project is described in

Section 5.1.2.

69
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• Selection of an AIF based on knowledge of the subject anatomy. Appli-

cation of this method is covered in Section 5.2.

• Using an averaged population based AIF [82]. This method was not

feasible in this project due to the lack of published data measuring gold

standard AIFs in sheep.

• Blind estimation from the tissue concentration curves [83]. This method

was not able to be successfully implemented in this project, but the

methods attempted are described in Section 5.4.2.

The goal of each of these AIF estimation methods was to determine the

voxel(s) from which the best AIF estimate could be selected. In order to

compare one potential AIF candidate to another, we first must understand

the desirable characteristics of an AIF. Following this, several of the AIF

selection methods were implemented and the best AIF estimates for each

animal on each day were determined.

5.1 AIF Selection Algorithm

5.1.1 Desirable AIF Characteristics

With knowledge of the physiological requirements for an AIF, analysis of

tissue concentration curves can determine if a curve is a good AIF estimate.

As the AIF estimate is designed to model input of a contrast bolus feeding

into surrounding tissue, it is evident that compared to signal enhancement

curves from within the local tissue of interest, the AIF should demonstrate

the earliest signal enhancement and the highest peak concentration.

These characteristics can be measured from the concentration time curves

in terms of the time to peak (tmax) or bolus arrival time (BAT), and the

concentration curve maximum. We also expect the AIF concentration to

drop rapidly following the first peak as the bolus passes through the artery

without perfusing into the surrounding tissue. This will result in a narrow



5.1. AIF SELECTION ALGORITHM 71

Figure 5.1: A synthetic, ideal AIF generated using the programme

JSim [84] showing 1. bolus arrival time 2. time to peak 3. washout

slope 4. full width half maximum

peak, which can be quantified from the full width half maximum (FWHM) of

the first pass peak, or the wash in and wash out slopes.

5.1.2 AIF Search Criteria

While in synthetic data, it is simple to implement a search for the voxel with

the best values for each of these semi-quantitative measures, for the sheep

data, several factors made direct calculation of some of these parameters,

such as bolus arrival time or FWHM, impractical.

Physiological noise, the treatment of which is discussed further in 4.6,

frequently masked the wash out slope values, and the difference in bolus arrival

time in the arteries and veins could not be distinguished due to temporal

resolution, discussed previously in Section 4.5.2.

Instead, an algorithm was developed to find the best AIF candidate based

on the criteria described in Section 5.1.2
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Algorithm Pseudocode

This Section provides a simplified description of the AIF selection algorithm

steps.

1. Apply chosen mask to look only within certain anatomical region of

interest.

2. From within these voxels, return the concentration curve with highest

peak concentration

3. ...where the peak concentration occurs within the injection time frame

4. ... and the standard deviation of points following the peak is below a

user set value (used 0.15 to neglect noise voxels, but include physiological

oscillations. Discussed further in Section 5.4.2.

5. ... and the end signal drops by user set percentage of maximum value.

5.2 Anatomy Based AIF Selection

Along with the DCE-MRI series for each animal at each time point, there

was a wealth of other physiological information available within the various

other image data sets taken as part of the MRI protocol. These include:

T2 weighted images, diffusion weighted images and angiography images. Of

particular interest in AIF selection were the angiography images, as these

images are designed to clearly highlight vasculature, which could provide

useful information for determining the location of any feeding arteries.

5.2.1 Anatomical Masks

In order to narrow down AIF search to physiologically relevant areas, a binary

image mask was created. By applying a mask to an image reduced region in

which an AIF search was performed, thus significantly reducing computational



5.2. ANATOMY BASED AIF SELECTION 73

Figure 5.2: 3D representation of MRA thresholded mask highlighting

vasculature within the anatomy for animal RT107 at 24 hours post-

stroke.

time and improving quality of an AIF estimation. In this project there were

two methods of anatomical mask creation, both using the program 3D slicer.

MRA Thresholded Masks

The first type of mask generated in this project used the MRA images and

involved segmenting through thresholding of the image. This process involved

setting a value above which all voxels were included in the mask. Due to the

nature of the MRA images, this resulted in the segmentation of all major

arteries and veins in the image, represented in 3D in Figure 5.2.

Manual Anatomical Segmentation

The second type of segmentation involved manually painting in areas to be

included in a mask. This method was time consuming, but proved the most

reliable for segmenting out large areas such as the left and right hemisphere
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Figure 5.3: Screen capture of a manually segmented slice of animal

RT107.

for each sheep. Following manual segmentation of 3-4 slices, the remaining

slices could be automatically segmented using the Fill Between Slices function

in 3DSlicer [64]. This resulted in a semi-automated hemisphere segmentation

process which was used for all animals at all time points.

5.2.2 Three Test Anatomy Based Masks

While the mask extracted from the MRA images clearly segments out vascu-

lature, this alone was not ideal for AIF selection due to several factors.

Firstly, this mask included arteries and veins– including the large sagittal

sinus. The inclusion of this vein meant that applying the automated search

to this area often returned AIFs that were actually from a vein rather than

the internal carotid artery. At this stage, AIFs from veins were rejected as

invalid, however as discussed in Section 4.5, the temporal resolution meant
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that there could have been an argument to be made for selection of the large

sagittal sinus as an AIF, and this technique has been described in literature

for the case where temporal resolution means arterial input and venous output

are temporally indistinguishable [37]. While the bolus arrival times between

arterial input and venous output in this data were indistinguishable, AIF

searches in this project were still restricted to only arterial regions due to

the uncertainties in bolus dispersion shape that may be introduced using a

venous output as an AIF.

Secondly, due to the thresholding applied, the MRA mask selected only

the very central portion of vasculature, which would represent the fastest

flowing plasma in the cross section, most likely to contribute to partial volume

effects [85].

Motivated by the fact that the MRA mask alone may not be ideal for AIF

selection, three potential AIF selection masks were created and tested to see

which anatomical segmentation yielded the best AIF. This testing process

involved applying each type of mask to the prestroke and 6 day DCE image

series from a representative subset of four animals, and visually assessing the

AIFs detected from each.

Brain Hemisphere Mask

The first mask under investigation as a potential AIF selection mask was the

whole brain mask, manually segmented for each animal on each acquisition

day.

The benefit of this mask was that for a local AIF, it is preferable to select

from within the tissue of interest, in this project– the left and right brain

hemispheres. The results of applying this mask with the algorithm described

in Section 5.1.2 are given in Figure 5.4.

While the tissue of interest in parameter value calculations was fully

captured by the hemisphere mask, this mask did not always capture the

feeding arteries which are located at the base of the brain. This mask also

did not exclude veins such as the posterior sinus, and as such some of the
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curves displayed in Figure 5.4 may have been selected from veins.

Rough Artery Segmentation Mask

The second mask was a wide segmentation over the location of the arteries

at the base of the brain. This mask is referred to in this project as a rough

artery segmentation, as while it would likely cover the arteries in each of the

animals, a new mask was not made for each animal at each time point, and

the mask itself covered a large area around each artery.

Dilated MRA Mask

The third mask that was tested began with using the initial MRA mask, but

after applying a binary dilation process in ImageJ [62].

The motivation for testing this mask was that dilating the MRA mask

would mean the mask would be able to capture more of artery cross section

than simple thresholding.

5.2.3 3 Test AIF Mask Results

Using the algorithm described in Section 5.1.2, each of the three AIF mask

candidates were tested on a subset of animals with a range of infarct sizes.

(RT090, RT102, RT104 and RT109 from Table 8.3). The results of this test

are shown in Figure 5.4.

There are a few points to note from this Figure. The first is in the whole

brain mask for the prestroke animals, Figure 5.4(a), we see a wide variation

in AIF peak value and shape, whereas the peak concentration value across

the different animals appears more similar in both the dilated MRA mask

and the rough artery segmentation.

The second is the case of the prestroke animal RT090, shown in red. In

5.4(a), it appears that a better AIF has been found than in 5.4(b) or (c).

However, upon investigation of where this AIF was selected from, shown in

Figure 5.5 we see that this is in fact a venous output rather than an AIF. As
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Figure 5.4: Results from AIF search within (a) whole brain mask

in healthy animals (b) whole brain mask in 6d post-stroke animals,

(c) dilated MRA mask in healthy animals (d) dilated MRA mask in

6d post-stroke animals (e) rough artery mask in healthy animals (f)

rough artery mask in 6d post-stroke animals.
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(a)

Figure 5.5: Algorithm found best AIF location for animal RT090

using the whole brain mask. This area is the sagittal sinus, a large

vein that drains blood out of the cerebral parenchyma rather than

feeding in.

such, while the RT090 AIF in both 5.4(e) and (f) has a lower peak value than

that found in (a), these lower peak value AIFs are from a more physiologically

sound location. 5.4.2

Upon comparing 5.4(d) and (f), there is little difference in found AIFs,

which is expected given these masks cover similar regions of the brain. How-

ever, the rough artery segmentation mask appears to detect higher peak value

AIFs for animals RT104 and RT112, likely due to the broader segmentation

associated with this mask. As such the rough artery segmentation mask was

chosen for use in further image processing.

5.3 Physiological Validation of AIFs

One of the established methods for AIF selection from DCE images is enlisting

a specialist, i.e. a radiologist or similarly trained professional, to determine
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from the anatomy where in the image would be an appropriate AIF selection

point. In this project, this exact method was not feasible due to the differences

in human and sheep anatomy, and the total number of images for which an

AIF estimate was needed (90+).

Following selection of semi-automated AIFs, images highlighting the

selected voxel for each AIF were shown to a subject expert (A. J. Sorby-

Adams, personal communication, 13th April, 2021) and the anatomy from

which the AIFs was selected was verified to be the internal carotid artery

(ICA). The ICA was confirmed to be the ideal location in the sheep’s anatomy

from which to select a global AIF, as this location represents a feeding artery

to the brain, and is upstream from the location of the transient occlusion in

the middle cerebral artery.

5.3.1 Preparation for further analysis

Following generation of all AIFs, the final step before curve fitting could

begin was conversion of the AIF from blood concentration Cb, to plasma

concentration, Cp.

This step is required to account for the fact that the contrast agent is

carried only in the plasma within an artery, and so the concentration of the

contrast agent in the plasma of an artery is higher than in the whole blood.

This conversion from blood to plasma concentration used a simple equation:

Cp =
Cb

(1− HTC)
(5.1)

where HTC is the sheep specific haematocrit such that the 1−HTC term

isolates the plasma fraction of the blood. The value for ovine haematocrit

was determined from literature to be 0.28 [86].

Following AIF detection, concentration map generation, and conversion

of AIF to Cp all data analysis and preparation was complete and extended

Tofts model fitting could begin.
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5.4 Discussion of AIF selection methods

Decisions regarding AIF selection methods in this project were made in order

to optimise AIF selection specifically within this dataset. For different areas

of the anatomy, or for images with an improved temporal resolution, different

steps could be taken to optimise AIF selection. An evaluation of strengths and

weaknesses of the chosen AIF selection methods in this project is presented

here, as well as potential alternative methods that could be used in future

research.

5.4.1 Discussion of AIF selection algorithm

The AIF selection algorithm used in this project relied on both the anatomical

mask and the AIF selection criteria, and the chosen mask was a rough

segmentation around both the left and right internal carotid arteries. This

mask, however, was not specific to each animal and as such included a wide

area of pixels around the internal carotid artery in each image. Ideally, the

internal carotid artery would be manually selected in each image and an ROI

placed within it for AIF selection. In this project, this was not a possibility

due to the number of images that required AIF segmentation (90+) and the

availability of experts on sheep anatomy. Instead, the mask used was designed

to be broad enough to include both the left and right ICA in each animal,

and the final location of AIF selection was output as an image which was

then verified as being from a sensible physiological location by an expert in

this subject (A. J. Sorby-Adams, personal communication, 13th April, 2021).

Since the anatomical mask applied was designed to be a broad artery seg-

mentation, selection of an AIF voxel was then determined by the algorithm’s

selection criteria.

The criteria included in the algorithm were time to peak, standard devia-

tion of washout tail, and an interpretation of the washout slope in the form

of percentage drop between the peak and the final concentration.
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Percentage concentration drop

This percentage was set to be 60%, such that AIF voxels were only considered

if the final concentration had dropped by at least 40% of the peak signal.

60% was used as the initial threshold, and following visual evaluation of the

selected AIF, this threshold was relaxed as needed if a suitable AIF meeting

this criteria could not be found.

Washout standard deviation

The criteria of standard deviation of washout peak values proved important in

filtering out noise voxels, but this value needed to be set so that it would not

preferentially exclude tissue concentration values with overall higher concen-

tration values- as high peak concentration was a desirable AIF characteristic.

This value also could not be set so low that the physiological oscillations

described in Section 4.6.3 were excluded, as it was desirable for the AIF to

retain these oscillations for later curve fitting.

Animals with no suitable AIF

In the case of some animals, no visually suitable AIF could be found. In

these cases, the algorithm and mask were adjusted in order to widen the

search scope but either the selected AIFs were too noisy, had too low peak

concentration relative to the peak values in surrounding tissue, or would be

otherwise visually unsuitable. Examples of these AIFs are given in Figure 6.2

in the following Chapter, as these AIFs were excluded at the analysis stage.

The first alternative to exclusion for an animal with a visually unsuitable

AIF was to average the remaining AIFs at each time point. This method,

however, introduced issues with selecting of a synthetic bolus arrival time.

As the remaining AIFs were estimated from different acquisition days, the

variation in bolus arrival time between days meant that in order to average

these AIFs a phase shift needed to be introduced to each to align the peak

concentration values and washout tails. In order to do this, AIFs were
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synthetically shifted in time and padded. Once averaged, however, the actual

bolus arrival time for the AIF was unknown. In this dataset, the difference in

bolus arrival time between venous and arterial tissue concentration curves

was generally negligible, however the averaged AIF would need a bolus arrival

time.

Another alternative to averaging an AIF that was explored was blind AIF

estimation from parameter values, which is discussed in the following Section

as an option for AIF selection in future research using this dataset.

5.4.2 AIF Selection Improvements for Future Research

AIF Blind Estimation

The method explored was adapted from the methods presented in [83], to

simultaneously estimate parameters and AIF from voxels. These methods are

described fully in [83], but, briefly, involved:

1. Select a population based AIF as an initial guess.

2. Estimate the perfusion parameters by fitting a subset of TCCs with

this initial AIF guess.

3. Calculate the tissue impulse response function for each TCC correspond-

ing to these parameters.

4. Update the AIF initial guess to the deconvolution of the tissue con-

centration curve and the impulse response function for each TCC, and

average this result to obtain a new AIF estimate based on the impulse

response functions of all TCCs.

5. Refit the TCCs with the new updated and averaged AIF estimate and

obtain new parameter estimates.

6. Update the tissue impulse response function with the new parameter

estimates.
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7. Steps 4-6 are repeated until AIF estimate converges.

This method was appealing as it offered simultaneous parameter and AIF

estimation, was an objective AIF detection method not relying on subject

specific visual interpretation of the AIF, and also did not require that a

suitable AIF voxel was present in the image.

Preliminary investigation was conducted to investigate this method as an

AIF selection option in this project, using the Schabel-Parker population based

AIF as the initial guess for Step 1 [87]. The AIF estimate was determined to

have converged if the sum of squared errors between subsequent estimates

fell below a set value (1× 10−6. Following this, the AIF estimate was output,

and this process was repeated for all animals.

There were several issues that arose in this preliminary investigation that

meant this method was not pursued further in this project. The first was

that the AIFs generated using this method failed to reproduce reasonable

parameter estimates once fit to an entire image, and had peak concentrations

much higher than expected with knowledge of the the contrast agent dose.

This was perhaps due to the population based AIF used for the initial guess,

which was based on human uptake of contrast agent in breast cancer patients

[82]. This may have been solved by normalisation of the AIF at each step,

allowing for estimate of the shape of AIF alone but not the peak value.

However, this was not desirable in this project, as an empirical measure of

peak concentration at the feeding artery was not available.

A second issue with this method was that it was not entirely blind in

its application, and required prior knowledge of which TCCs were good

candidates for inclusion in the sample for fitting. In this investigation, the

TCCs included in the sample were selected with prior knowledge of coefficient

of variation (R2 from model fitting with the animal specific AIFs.

While a promising method for simultaneous AIF and parameter estimates,

application of this method remains an area of future investigation for analysis

of this dataset.
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Physiological Noise in AIF Selection

An option for AIF selection methods in future research using this dataset

could be to include a term in the model used to fit that accounts for the

physiological oscillations, and then smoothing could be applied to voxels prior

to AIF selection, allowing for a lower standard deviation threshold to be set.

Altering existing pharmacokinetic models of perfusion was, however, outside

the scope of this project.

BAT Based AIF Selection

In research using datasets with a higher temporal resolution, a criteria for

AIF selection that was not applicable in this project would be bolus arrival

time (BAT). A recent paper has shown that this BAT is a good AIF selection

criteria for both local and global AIFs [88], however in this project this was

not feasible due to low temporal resolution.

5.4.3 Summary of AIF selection methods

The method for AIF determination in this project involved an anatomical

mask segmenting out a broad region around the left and right internal carotid

arteries, and application of an AIF selection algorithm that selected the

highest peak, with sufficiently low standard deviation of washout slope, and

that dropped to a set percentage of the concentration peak by the end of

the acquisition. Several AIF selection methods were attempted, including

using different anatomical masks, blind AIF estimation, and using existing

software packages. The AIF method eventually selected for use in this project

reliably produced visually acceptable AIFs for the majority of animals from a

physiologically sound location, although for some images a suitable AIF voxel

could not be found, leading to exclusion of some images from consideration

in later Sections. Due to the effect the AIF estimate has on the estimated

parameters, the development of the methods detailed in this Section proved

to be one of the most important steps in this project.



Chapter 6

Results and Analysis

The goal of the analysis presented in this chapter is two-fold. The first is

simply to quantify the perfusion changes we see in an animal’s brain as a

result of the stroke. This takes the form of comparing perfusion measurements

over time, and in the infarcted hemisphere to the opposite hemisphere over

time. Secondly, this analysis strives to isolate the perfusion changes resulting

from only the induced stroke, and reject influences from confounding factors

such as ventricle and vasculature signal, noise, outliers, choice of mask and

other unforeseen experimental difficulties of working with an animal model.

The first part of this Chapter reports hemisphere level analysis, conducted

to obtain global, high level parameter changes following stroke. Following this,

parameter histogram level analysis is presented, which allowed for investigation

into the value distribution of Ktrans within each hemisphere. Finally, due to

the heterogeneity of the ischemic tissue in each hemisphere, small ROI based

analysis was conducted in order to isolate voxels from areas of cytotoxic and

vasogenic edema, and compare the changes in perfusion parameters from

within these areas.

85
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6.1 Perfusion Maps

Results presented in this Section were obtained from fitting the extended

Tofts model to the concentration maps generated according to the procedure

outlined in Section 4.6. A unique AIF was generated for each animal on each

acquisition day using the rough artery anatomical segmentation described in

Section 5.2.3 and the AIF detection algorithm described in Section 5.1.2.

Figure 6.1 displays perfusion parameter maps for animal RT090, which

demonstrates one of the most clearly visible infarcts of all animals processed

in this project. Increases in both Ktrans and vp can be observed, particularly

in the 6 day post-stroke image. Another feature of these images is the

vasculature, which is the brightest feature of the vp perfusion maps at each

time point. In the prestroke Ktrans these two symmetrical lobes are instead

dark areas, indicating that the highest plasma volume in the prestroke vp

map corresponds to a low Ktrans area. According to the extended Tofts model,

we would expect vasculature with intact blood vessel wall, in this case the

blood brain barrier, to have Ktrans ≈ 0, which is consistent with the prestroke

findings.

Finally, the ve maps give very little information. At 6 days we see a

small region of decrease corresponding to the ischemic tissue (as determined

from the Ktrans map), whereas the remaining area of the ve map gives no

information. This is likely due to the relative insensitivity of the model to

changes in ve at low values of Ktrans, previously detailed in Section 4.7.2.

6.2 Hemisphere Level Analysis

While perfusion parameter maps such as those shown in Figure 6.1 show

a clear change both over time and between hemispheres, the goal of the

analysis in this Section was to obtain a broad but quantitative overview of

the temporal and inter-hemisphere variations in each parameter. As such,

results in this Section are presented as a single value per hemisphere with an
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Figure 6.1: Extended Tofts parameter maps for animal RT090. (Top

row) Ktrans, (second row) plasma volume fraction, (third row) inter-

stitial volume fraction and (bottom row) residual of fit normalised to

concentration are shown at prestroke and each post-stroke acquisition

day.
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Hemisphere Prestroke 24h 3d 6d 28d

Infarcted/Right 1.00 0.56 0.69 1.19 1.77

(0.11, 0.5, 3.92) (0.09,0.36,1.33) (0.13, 0.40, 2.16) (0.32,0.78,2.39) (0.08,0.38,8.78)

Healthy/Left 1.36 0.60 0.58 0.86 2.31

(0.12, 0.63, 4.99) (0.08, 0.38, 1.76) (0.07,0.33,1.12) (0.25,0.46,2.12) (0.12,0.36,10.96 )

Table 6.1: Mean infarct and mirror hemisphere values of Ktrans (5th

percentile, median, 95th percentile) in min−1 ×10−2 at prestroke

(n=19), 24 hours (n=19), 3 days (n=19), 6 days (n=20) and 28 days

(n=16).

indication of spread of values given as the 5th percentile, median, and 95th

percentile. These results are summarised in Table 6.1

There are two issues with the data presented in Table 6.1. Firstly, from

this Table the values for the comparatively healthy, left hemisphere are higher

at 24 hours and 28 days than that of the stroke hemisphere, which is opposite

to expected trends from literature [4]. Secondly, the 95th percentile value for

several of the acquisition days indicates a very wide spread of values, within

which an inter-hemisphere, temporal change can not be discerned at this level

of analysis.

These results motivated further analysis of possible confounding factors,

the first and most apparent of which was AIF selection.

6.2.1 AIF Based Exclusion

The results presented in Table 6.1 were obtained using subject and acquisition

day specific AIFs found using the procedure described in Section 5.1.2 with no

exclusions. In the present Section, parameter results were included only if the

corresponding AIF was visually acceptable. Examples of visually acceptable

AIFs are shown in Figure 6.2(a) whereas examples of the AIFs determined to

be unsuitable are displayed in Figure 6.2(b).

In the case that the algorithm did not find a visually suitable AIF within

the masked anatomy, the fitted parameter values were excluded from the

results presented in this Section.
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(a) (b)

Figure 6.2: Examples of AIFs deemed to be (a) visually acceptable

and (b) visually unsuitable

For those animals where a visually acceptable AIF was found following

the above procedure, mean parameter values for the right (stroke) and left

(healthy) hemisphere were calculated and are shown in Figure 6.3

From Figure 6.3 we see a difference between the stroke and healthy,

contralateral hemisphere on each acquisition day, including on the prestroke

day on which we would expect no significant inter-hemisphere difference. The

differences seen prior to stroke provide a useful baseline for the level of change

that is not due to the stroke, and as such any inter-hemisphere changes of a

magnitude lower than the differences we see between the hemispheres at the

prestroke timepoint may be rejected as insignificant at this level of analysis.

The 3 day post-stroke values show a small increase in mean Ktrans in both

the stroke and contralateral hemisphere. The 6 day time point shows the

greatest difference between hemispheres, with the mean 6 day Ktrans value

more than 60% higher than the equivalent 6 day mirror hemisphere Ktrans

values; 9.9 (3.5, 8.3, 22)×10−3 min−1 and 6.1 (2.6, 4.9, 17.1) ×10−3 min−1

respectively.

At 28 days, both hemisphere Ktrans values return to levels comparable to

the 24 hour and prestroke values.
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Figure 6.3: Mean Ktrans values in right (stroke) and left (opposite)

hemisphere on each acquisition day; prestroke (n= 14, 6 animals

excluded due to no suitable AIF, 1 animal excluded due to poor

quality concentration map), 24 hours post-stroke (n=20, 1 animal

excluded due to no suitable AIF), 3 days post-stroke (n=18, 1 animal

excluded due to no suitable AIF, 2 animals had no data for this day),

6 days post-stroke (n=18, 2 animals excluded due to no suitable AIF,

1 animal had no data for this day) and 28 days post-stroke (n=12, 6

animals excluded due to no suitable AIF, 3 animals had no data for

this day)
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While the trend in Ktrans values is more apparent following exclusion of

the values corresponding to poor AIFs, the inter-hemisphere difference at

the prestroke time point, the presence of many outliers in Figure 6.3, and

the high 95th percentile values reported above indicated that isolating the

parameter changes within the tissue of interest would require further analysis.

This whole hemisphere level of analysis was useful to determine what

would be required in order to obtain more precise parameter estimates and

to isolate the range of values over which we see a clear temporal change, if

any. The next analysis steps therefore involved:

1. establishing appropriate threshold values for exclusion of outliers and

poorly fit voxels from the analysis, and

2. analysis of the Ktrans histogram to determine the range over which a

significant temporal change may be detected.

These steps are detailed in the following Sections.

6.2.2 Error in Fit Based Exclusion

Subsequent analysis at the hemisphere level involved investigating ways to

exclude poorly fit voxels from the results. Several physiological phenomena

contributed to poorly fit voxels, such as temporal dilation and contraction

of blood vessels, signal from ventricles, which are cerebrospinal fluid filled

spaces within the brain that did not contribute to meaningful signal, and

the inclusion of outliers in the anatomical mask. It was assumed that the

signal from the ventricles and other areas where there was no leakage of

contrast agent would have a poor fit to the extended Tofts model, as the

signal from these areas would not be correlated to the passage of the contrast

bolus. As such, exclusion of voxels with a poor fit would potentially remove

factors masking the subtle perfusion changes as a result of the transient stroke.

Several measures of the goodness of fit between the tissue concentration curve

and extended Tofts fit were investigated, including the sum of squared errors,
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Figure 6.4: Two tissue concentration curves (red) and extended Tofts

parameter fit (green) where (a) SSE = 0.006, R2 = 0.9 and (b) SSE

= 0.004, R2 = 0.5.

a normalised measure of the sum of squared errors, and the coefficient of

variation (R2).

Sum of Squared Errors

The sum of squared errors was the optimization criteria for fitting of each

tissue concentration curve, as described in Section 4.6. However, this measure

was not ideal for voxel exclusion due to the relationship between concentration

value and sum of squared errors.

This is illustrated with the two example fits given in Figure 6.4. Here,

the fit shown in (b) has a lower sum of squared errors than (a), which taking

the sum of squared errors as the measure of goodness of fit, would imply that

the right plot shows a better fit than the left. However, this is due to the

low concentration values of the tissue concentration curve on the right. The

plot on the left has a higher sum of squared errors, due to the concentration

values being higher in this voxel over time.

To negate this effect, another measure of goodness of fit was investigated.
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R2

The coefficient of variation, R2, provided a measure of how the tissue concen-

tration curve (TCC) and the extended Tofts model fit varied over time, and

is given by

R2 = 1− Σi(Ct,i − fi)2

Σi(Ct,i − Ct,i

) (6.1)

where Ct,i denotes the tissue concentration curve value at time point i,

and fi denotes a general fit, in this project, the fit to the extended Tofts

model with parameters Ktrans, ve and vp, at time point i.

As shown in Figure 6.4, the R2 does not vary with the peak concentration

as the sum of squared errors does, making it an attractive choice for exclusion

criteria that does not discriminate against higher concentration values.

While in this Section R2 is being presented as an exclusion criteria, in

the fitting process applied to the data the optimisation metric was the sum

of squared errors. Minimising the sum of squared errors in this case was

equivalent to maximising the R2, as shown in equation 6.1. By minimising

the numerator of this equation, which is in fact the sum of squared errors,

and given that the denominator depends only on the tissue concentration

curve and not the extended Tofts fit, f(t), we maximise R2.

An interesting result of using R2 as a measurement of the error in fit was

in the case of voxels with very low or negative signal enhancement where

the best fit found was a straight horizontal line at zero, the R2 returned was

NaN (meaning ‘not a number’). This was due to the fact that the constant

horizontal line of the fit was not varying in time with the tissue concentration

curve. By isolating all voxels where R2 returned NaN, the voxels with negative

or very low signal enhancement could be detected and excluded from analysis.

The anatomical origins of these voxels is discussed further in Section 6.2.3, but

at this stage of the analysis these voxels were simply excluded via generation

of an R2 map for each animal at each acquisition day and the setting of a

threshold R2 value below which a voxel would be excluded.
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Figure 6.5: Recalculation of data shown in Figure 6.3 with a minimum

R2 threshold of 0.8.

The results presented in Figure 6.3 were recalculated and any voxels below

the threshold of R2 = 0.8 were rejected from analysis. These R2 based voxel

exclusion results are given in Figure 6.5.

Contrary to what was expected, isolation of only the best fit voxels resulted

in a vastly different range of parameter values. As seen on the y-axis of Figure

6.5, the values from the best fit voxels are in the range of Ktrans = 0.05min−1

as opposed to the previous range centred roughly at Ktrans = 0.005min−1 as

shown in Figure 6.3.

This result indicated both that the best fit voxels were those with higher

Ktrans values than the mean values reported previously, and that the broad

trend between hemispheres and over time in Figure 6.3 was not present in
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these voxels.

This order of magnitude difference between mean values indicated that

there might be a subtlety to the distribution of the parameters which a single

mean value could not accurately reflect. Therefore the next analysis step

involved investigation of the parameter histogram to determine the spread of

values and range over which a significant temporal change might be detected.

6.2.3 Histogram Level Analysis

Analysis at the histogram level was conducted to determine the physiologically

relevant range of values, i.e. the range of values over which a meaningful

change could be measured between post-stroke time points.

The histogram for a typical prestroke animal (RT090 from Table 8.3) is

given in Figure 6.6. An example cumulative distribution function is also

included for visualisation purposes in Appendix 8.4.

Figure 6.6 shows a natural division in the histogram atKtrans ≈ 0.015 min−1

and the mean values for both the infarct and opposite hemispheres at 0.014

and 0.033 min−1 respectively. This mean value is shown in Figure 6.3, but

from the histogram we see that this value is heavily influenced by a small

proportion of very high values.

The shape of the histogram in Figure 6.6 indicates that in simply taking

the mean value over the entire hemisphere, we are losing information on the

more subtle changes within the distribution. A method to account for these

two visually distinct segments was splitting the histogram into two segments,

1 and 2, at Ktrans = 0.01min−1. These segments are visualised in red and blue

respectively in Figure 6.7(a).

Following separation of the histogram into two segments, in order to isolate

the physiologically relevant changes from the surrounding values, investigation

of the anatomical structures relating to each of these segments was undertaken.
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Figure 6.6: Histogram for a 3 day post-stroke animal (RT090). The

x axis has been truncated at Ktrans = 0.1 min−1 for visualisation

purposes.

Consideration of Anatomical Structures

Up until now, the two histogram segments under consideration have been

distinguished only by their location in the histogram distribution, with no

investigation into the anatomical origins of these two segments. Analysis of

the anatomical origins of these segments is presented here.

Figure 6.7(a) provides an anatomical representation of the proposed split

histogram segments. A clear distinction can be made between the cerebral

cortex encompassed by segment 1, and the regions in blue.

In Figure 6.7(b) we see a third histogram segment in yellow, from a

post-stroke animal, which represents a central segment between the original

segment 1 and 2, specified as 0.01 < Ktrans ≤ 0.1. This region represents

the ischemic tissue, the area of greatest relevance to perfusion measurements,

however in the two segment analysis model, all of these voxels were included

in segment 2, along with the vasculature and outliers on the edge of the

hemisphere mask. Here we have reached a limitation of the two segment



6.2. HEMISPHERE LEVEL ANALYSIS 97

(a) (b)

Figure 6.7: Visualisation of (a) segment 1 and 2 of histogram of

animal RT090 prestroke (b) three segment visualisation from post-

stroke animal isolating infarct voxels.
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histogram analysis technique’s capability. Introducing a third segment to this

histogram level analysis could further isolate the changes in these relevant

voxels, however this third segment would also include vasculature and may

exclude the infarct penumbra, which would remain in segment 1.

6.2.4 Summary of Hemisphere Level Analysis

This concludes the analysis conducted at the hemisphere level. This broad

level of analysis was useful for establishing hemisphere wide perfusion trends,

and allowed for quantification of perfusion without further knowledge of the

sub-regions within the ischemic tissue. However, at this level of analysis, any

heterogeneity in the ischemic tissue is being masked by taking an average

parameter value for the entire hemisphere. While various exclusion methods

were attempted to remove the confounding influence of ventricle signal from

the effects of the stroke, the clearest trend between stroke and contralateral

hemisphere can be seen in Figure 6.3. At 6 days post-stroke we see a clear

increase, (≥60%), in stroke hemisphere Ktrans values.

While some global trends can be discerned visually in the perfusion pa-

rameter maps and Figure 6.3, analysis of the hemisphere histograms indicated

that the subtle changes we wish to quantify may not be being accurately

represented through this broad level of analysis. As such, further analysis

presented in this Chapter is at the small region of interest (ROI) level, and

aims to account for the heterogeneity of the ischemic tissue.
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6.3 Small ROI Level Analysis

Regions of interest used in this Section are significantly smaller than the

whole hemisphere masks used in Section 6.2. While the use of these large

masks allowed for investigation of broad trends within the hemisphere, the

averaging applied to the volume meant that any subtle perfusion changes

between time points were masked by ventricle and vasculature signal, and

that any information on heterogeneous tissue regions within a hemisphere

was lost.

The goal of analysis in this Section is to account for heterogeneous perfusion

changes within the affected hemisphere. As such, it is important at this level

of analysis that the ventricles and other areas of irrelevant signal are fully

neglected in order to avoid the masking of the physiologically relevant areas.

The simplest way of neglecting these voxels was exclusion through selection

of small regions of interest placed in physiologically relevant areas derived

from diffusion weighted images. Physiological motivation behind the analysis

presented in this Section is given in Section 6.3.1, and subsequent sections

present more detailed results with consideration of different stroke regions as

described in Section 2.1.3

6.3.1 Consideration of ischemic tissue heterogeneity

At the hemisphere level of analysis we considered each hemisphere as one

region of interest within the brain. However, inspection of the diffusion

weighted images reveals that the ischemic tissue in the affected hemisphere is

heterogeneous in nature, implying that there are different regions of the is-

chemic tissue undergoing different physiological processes. As such, averaging

over an entire hemisphere may lead to the cancelling out of these physiological

effects.

Figure 6.8 shows the distinct regions within the ischemic tissue, as well as

clearly showing the ventricles, cerebrospinal fluid filled cavities in the brain

that do not demonstrate any meaningful signal enhancement. The ischemic
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Figure 6.8: (a) Diffusion weighted image and (b) corresponding Ktrans

map of animal RT090 at 6 days post-stroke with physiologically

relevant areas labelled with arrows: (1) ventricle (2) cytotoxic edema

forming infarct core and (3) vasogenic edema and infarct penumbra.

tissue is made up of two types of edema; cytotoxic edema and vasogenic

edema. The cytotoxic edema, labelled with arrow 2 in Figure 6.8 makes up

the area of the affected hemisphere in which intracellular swelling and cell

membrane pumps have failed. As a result, this region appears dark in the

DWI images [5]. The vasogenic edema is the area in which the vessel wall,

i.e. the blood brain barrier, has broken down and as such fluid has filled this

region and diffusion is less restricted. This area therefore appears bright in

DWI images. When comparing the Ktrans map to the DWI images, we see

the area corresponding to both types of edema is in fact heterogeneous also.

In order to quantify the perfusion changes in the different areas of ischemic

tissue, small regions of interest were required.

Of note is the relevant clinical time points of both of these types of edema.

While the cytotoxic edema occurs from several minutes post-stroke and can

endure up to 24 hours, the vasogenic edema forms over time as the blood
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Figure 6.9: Ischemic tissue in the affected hemisphere of animal RT090

at 24h (left) demonstrating predominantly cytotoxic edema and at 6d

(right) demonstrating predominantly vasogenic edema.
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brain barrier breaks down, with the peak vasogenic edema volume expected

between 5 and 6 days post-stroke [5]. As such, the 24 hour post-stroke images

were used for estimates of cytotoxic perfusion parameter values, and the 3

and 6 day images were used for estimates of vasogenic perfusion parameter

values.

6.3.2 Small ROI Generation

The goal of this analysis was to quantify the perfusion in cytotoxic and

vasogenic edema, and in healthy contralateral tissue, and see if these could

be reliably distinguished from perfusion measurements.

These different tissue areas were identified using diffusion weighted images

(DWI). The DWI and perfusion images were co-registered and regions of

interest were manually placed in each tissue type using the programme

3DSlicer [64]. These regions of interest were then exported with the same

geometry as the perfusion maps, and applied to the maps of each parameter.

Each small region of interest was 31.5 cubic millimetres, and six of these

ROIs were placed in cytotoxic and healthy tissue in 24 hour images, and

vasogenic and healthy tissue in the 6 day images, the average values of which

are given in Figure 6.11. As only certain animals had discernible regions of

cytotoxic and vasogenic edema, the n values of this analysis are considerably

lower than in the whole hemisphere level analysis.

6.3.3 Vasogenic, cytotoxic and healthy tissue results.

Results of small ROI analysis of cytotoxic, vasogenic and healthy tissue

showed an increase in Ktrans in areas of vasogenic edema compared to healthy

tissue and cytotoxic edema. Cytotoxic edema shows Ktrans values comparable

to those in the healthy tissue at 24 hours post-stroke, but elevated compared

to Ktrans in healthy tissue at 6 days post-stroke.

The peak we see in hemisphere level Ktrans in Figure 6.3, which is visually

exemplified by animal RT090 in Figure 6.1, corresponds to the formation
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(a)

Figure 6.10: Example of small ROIs placed in region of cytotoxic

edema and healthy contralateral tissue in animal RT109 at 24 hours

post-stroke.



104 CHAPTER 6. RESULTS AND ANALYSIS

Figure 6.11: Average Ktrans values of cytotoxic edema at 24 hours

(n=7), vasogenic edema at 6 days (n=8) and contralateral tissue at

24 hours and 6 days (n=7 and 8 respectively)



6.3. SMALL ROI LEVEL ANALYSIS 105

of vasogenic edema which is known to peak at 6 days post-stroke. By

demonstrating that this novel model of MCA occlusion is able to reproduce

the complex perfusion changes we see in humans post-stroke, we have shown

this animal model is a good candidate for research into stroke treatments, as

it is desirable for the animal model to respond to both ischemic stroke and

treatment in a way that is as close to human patterns of disease as possible.

As such, the findings presented in this Section lend significant support to the

use of this animal model in future research.

Further details on possible avenues for future research, and a summary of

the findings from this project are given in Chapter 7.
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Chapter 7

Conclusion and Future

Research

The analysis presented within this thesis is the first time the DCE-MRI

datasets from this novel animal model of stroke have been analysed. As such,

this project required critical thinking at each stage to determine how best

to proceed, in terms of experimental methods, image processing techniques

and analysis methods. While different options at each step were considered

carefully, as is reported in this thesis, with no time constraints, and unbri-

dled access to reference data, several methods used in this project could be

improved.

The results reported in this project were concluded with estimates for

Ktrans within vasogenic and cytotoxic edema at 24 hours and 6 day post-stroke

time points, but there remains a wealth of data and options for going forward

with analysis, with possible avenues for future research outlined in this section.

7.1 Conclusions

Through the experimental methods described in this thesis, the perfusion

changes within the brains of these animals were quantified. Hemisphere level

changes were detected through various analysis techniques, and more refined
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analysis techniques combining knowledge of the ADC time course in stroke [5]

and physiology of the stroke disease mechanism revealed further distinctions

in perfusion parameters within different types of edema.

It was found that the vasogenic Ktrans values were significantly higher than

cytotoxic Ktrans values, reflecting the barrier permeability changes known to

occur in these types of edema post-stroke. Crucially, the broader increase

in Ktrans within the affected hemisphere also agrees with known changes in

Ktrans in humans [4], providing support to the use of this animal model in

future research into stroke therapies.

Key findings from this project were:

1. Perfusion from the DCE-MRI series obtained from the animal experi-

ments under consideration in this project can be quantified.

2. There are many factors that can significantly impact the parameter

values. In particular, PK model selection, curve fitting techniques and

AIF selection.

3. The perfusion values calculated from this animal model reflect known

human patterns of disease in terms of Ktrans changes in the affected

hemisphere, and in regions of cytotoxic and vasogenic edema.

4. At each step there were often many different ways to proceed, but the

best approaches were those that united knowledge from both physiology

and physics.

Throughout the research reported in this thesis, insights from two areas

of knowledge constantly informed decision making. Broadly, these were

physics and physiology. For example, in AIF selection, knowledge of sheep

anatomy and which artery would serve best as a global AIF was used alongside

an automated search for the curve shape characteristic of an AIF. Or in

determination of areas of cytotoxic and vasogenic edema, MRI physics in

terms of the known ADC time course of ischemic stroke was invaluable in

discerning these two types of edema. A key finding from this project is
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therefore that combining knowledge from MRI physics and from physiology

results in the most sensible experimental methods, as opposed to considering

each problem only a physiology problem, or a signal processing problem.

7.2 Future Research

There is a wealth of physiological and MRI data available for this animal

cohort. Areas of future research specific to the results presented in this thesis

are described in this Section.

Acquisition Improvements

In order to extract perfusion parameters such as separate estimation of Fp and

PS, acquisition of DCE-MRI series with higher temporal resolution, perhaps

on the order of 1.5-2 seconds would be ideal. This may, however, compromise

spatial resolution, and so alternative methods should be explored for reducing

the temporal resolution.

Throughout this project it was invaluable having a point of comparison

for calculated values such as T1, R1 and synthetic DCE-MRI data. Having a

similar point of comparison for the concentration maps would be very useful

for verifying the range of expected concentration values following the injection

of a known dose of CA.

7.2.1 Animal characteristic based analysis

Data relating to the sex of the animals, the infarct size of the animals at

each time point, and whether or not the animal received an experimental

stroke therapy is available for this cohort of animals. Comparing the perfusion

changes between animals who received a therapeutic agent against those that

did not, and analysis based on the volume of the ischemic tissue in each

animal may yield more interesting results from this data.
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Perfusion-Diffusion mismatch

These results would serve as a useful starting point for research comparing

perfusion-diffusion mismatch in this animal model, given that DWI data for

all of these animals is available as part of the comprehensive MRI protocol

obtained. Clinically, perfusion-diffusion mismatch is an important emerging

method of determining the portion of ischemic tissue in the affected hemisphere

that may be salvageable through therapeutic agent.

Future perfusion measurement techniques

The data presented in this thesis represents a perfusion measurement cal-

culated from images. This dataset may serve as a point of comparison for

future research utilising non-contrast perfusion measurement techniques such

as arterial spin labelling.

7.2.2 Summary

The results of this project reflected both a replication of human pattern of

disease, in the form of increased barrier permeability in the stroke hemisphere

and regions of vasogenic edema, and a replication of the period of time in

which we would expect to see such an increase in humans [5][4]. In summary,

this thesis supports the statement that this ovine model of MCAO is a good

animal model candidate for future research into stroke therapies.



Chapter 8

Appendices

8.1 Two compartment exchange model impulse

response function

The full mathematical depiction of the impulse response function used for

the two compartment exchange model is provided here and taken from [42].

H2CXM(t) = Be−m1t + (1−B)e−m2t

m1 = 1
2

(
a+ b+

√
(a+ b)2 − 4bc

)
m2 = 1

2

(
a+ b−

√
(a+ b)2 − 4bc

)
B = m2−c

m2−m1

a =
Fp + PS

vp

b =
PS

ve

c =
Fp

vp

111



112 CHAPTER 8. APPENDICES

8.2 Table of Abbreviations

Acronym Definition

2CXM Two Compartment Exchange Model

BBB Blood Brain Barrier

HPC High Performance Computing Cluster

PS Permeability surface area product

RS ROCKETSHIP Matlab software package

TCC Tissue Concentration Curve

ADC Apparent Diffusion Coefficient (of water molecules)

AIF Arterial Input Function

BAT Bolus Arrival Time

Cp Plasma concentration (of AIF)

Ct Tissue concentration

CA Contrast Agent

CSF Cerebrospinal Fluid

DCE-MRI Dynamic Contrast Enhanced Magnetic Resonance Imaging

DWI Diffusion Weighted Images

Fp Cerebral blood flow

Gd Gadovist

HT Hemorrhagic Transformation

HPC High Performance Computing (Cluster)

ICP Intracranial Pressure

Ktrans Forward transfer constant

MCA(O) Middle Cerebral Artery (Occlusion)

MRA Magnetic Resonance Angiography

MTT Mean Transit Time

PK Pharmacokinetic (model)

TK Tracer Kinetics

R1 Longitudinal relaxation rate

T1 Longitudinal relaxation time

TWIST Time-resolved angiography With Interleaved Stochastic Trajectories

ve Interstitial volume fraction

vp Plasma volume fraction

VIBE Volumetric Interpolated Breath-hold Examination
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8.3 Infarct Size Table

Table of infarct size volumes at 24 hours post-stroke for all animals in this

cohort. Infarct sizes quantified using the program ITK-SNAP by students at

the University of Nottingham [89].

Sheep ID Infarct size (n voxels)

RT102 13705

RT108 9921

RT090 8714

RT114 7780

RT109 7243

RT113 6168

RT110 3047

RT104 2455

RT099 1232

RT100 1129

RT103 1056

RT111 760

RT098 731

RT107 456

RT106 436

RT105 339

RT101 209

RT112 172

RT095 135

RT097 -

RT115 -
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Figure 8.1: Cumulative distribution function for RT090 at 3 days

post-stroke.

8.4 CDF Analysis

Another analysis technique attempted in this project was generation of

cumulative distribution functions. Cumulative distribution functions (CDFs)

were calculated for each animal on each acquisition day.

The motivation behind generation of the CDFs was the fact that, similarly

to the histogram, all voxels could be represented, but the CDF allowed

for better visualisation of regions of change. The y-axis of these functions

represents the probability that a voxel value will be below the corresponding

parameter value on the x-axis. As such, the maximum possible value is 1,

that is, there is a 100% probability that a voxel’s Ktrans value is equal to or

below the maximum Ktrans value set.

While the example provided in Figure 8.1 shows a clear difference in Ktrans

value distribution between prestroke and 3 days post-stroke, and between

affected and healthy hemispheres, not all animals produced CDFs with the

same changes seen here. Analysis was conducted on all CDFs to return the

CDF75 value in both hemispheres, however this did not reveal a significant
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difference except for the most affected animals which were already identified.

The CDF level analysis therefore served only to demonstrate that more

detailed analysis of heterogeneous changes in ischemic tissue was required.
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