The Euclidean Steiner Tree Problem:
Simulated Annealing and Other Heuristics

Geoffrey Ross Grimwood

A thesis

submitted to the Victoria University of Wellington
in partial fulfilment of the
requirements for the degree of

Master of Science
in Operations Research

Institute of Statistics and Operations Research
VICTORIA UNIVERSITY OF WELLINGTON

T8

1994




Abstract

In this thesis the Euclidean Steiner tree problem and the optimisation tech-
nique called simulated annealing are studied. In particular, there is an inves-
tigation of whether simulated annealing is a viable solution method for the
problem. The Euclidean Steiner tree problem is a topological network design
problem and is relevant to the design of communication, transportation and
distribution networks. The problem is to find the shortest connection of a set
of points in the Euclidean plane. Simulated annealing is a generally applica-
ble method of finding solutions of combinatorial optimisation problems. The
results of the investigation are very satisfactory. The quality of simulated an-
nealing solutions compare favourably with those of the best known tailored
heuristic method for the Euclidean Steiner tree problem.
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Chapter 1

Introduction and Outline

In this thesis a particular problem and a general method of solving problems
are brought together. The problem is the Euclidean Steiner tree problem and
the method of solution is simulated annealing. The objective of this thesis is
to investigate whether simulated annealing can give solutions of comparable
quality to those produced by existing purpose built, or tailored, heuristics for
the Euclidean Steiner tree problem. Achieving this goal requires an under-
standing of the problem, existing heuristics for the problem and the general
simulated annealing approach to problem solving.

The Euclidean Steiner tree problem is one of finding the shortest connection
of a set of points in the Euclidean plane (see Hwang et al. [19]). It is more than
just finding a simple minimum spanning tree because it is possible to introduce
additional points that help to give a shorter connection. The additional points
are called Steiner points. At first the problem appears to be purely geometrical
in nature. There is a substantial amount of geometry involved but it is also a
combinatorial problem. One of a finite number of possible configurations is
the shortest connection. The problem has been shown to be very difficult and
is highly unlikely to have an efficient method of solution. It is for this reason
that much time and effort is spent on developing approximate methods with
the desirable property of generally finding solutions close to the best.

The problem is one of many that belong in the domain of network design.!
Other problems in this area are the familiar minimum spanning tree and trav-
elling salesman problems. Network design is comprised of three main areas,
topological, routing and capacitated design. These aspects are interrelated,
a change to or evaluation of a solution to one must be considered in light of
effects on the other two components. It is often necessary to reassess the design
problems in such circumstances.

e Topological design is concerned with the number and location of sites
and the interconnection of sites.

e Routing design involves the scheduling and routing of items of interest
across a network.

!See Smith and Winter [36] for a discussion of network design. In particular topological
network design from a computational geometry perspective.



e Capacitated design is concerned with determining the best size of sites
and interconnections to cater for flows across a network.

The Euclidean Steiner tree problem is an example of a topological design
problem, as are the minimum spanning tree and travelling salesman problems.

Simulated annealing is a method of solution often applied to difficult com-
binatorial optimisation problems. It is based on the analogy with the physical
process of annealing. In annealing a substance is heated to melting point and
then allowed to cool very slowly. The substance will eventually be in a state
of low energy. This process can be simulated on a computer for many parti-
cle systems to find minimum energy configurations (see Metropolis et al. [29]).
The analogy with combinatorial optimisation is: possible solutions to a com-
binatorial problem are likened to the states of the substance, and many small
random changes are made to a solution. As the “temperature” decreases
fewer and fewer increasing cost changes are accepted. The final “frozen”
solution is the globally optimal solution to the combinatorial problem (see
Kirkpatrick et al. [23], Cerny [4], Laarhoven [25]).

Simulated annealing has been applied to many problems with mixed suc-
cess, in the sense that tailored heuristics generally outperform annealing in
terms of quality of solution and always in terms of computational effort. How-
ever, it is annealing’s general nature that makes it possible to apply it to prob-
lems that do not have efficient optimal algorithms or tailored heuristics. Or
to variations on problems where the “parent” problem has a tailored heuristic,
but which is utterly useless for solving the variation.

In this thesis there is this chapter and six others. Two chapters can be read
independently of all others, Chapters 2 and 5. The first is an introduction to the
Euclidean Steiner tree problem, the second is an introduction to simulated an-
nealing. There are two threads of chapters beginning with these two chapters
and coming together at Chapter 7 “Simulated Annealing and the Euclidean
Steiner Tree Problem”. Figure 1.1 shows the organisation and dependencies
of chapters. If the reader is primarily interested in the Euclidean Steiner tree
problem and simulated annealing then Chapters 3 and 6 can be omitted. Never-
theless, both are valuable in the sense of gaining an appreciation of the Steiner
problem and simulated annealing respectively.

Chapter 2 is an introduction to the Euclidean Steiner tree problem. The ter-
minology and notation associated with the problem are defined and examples
given. Topologies are fundamental to describing possible solutions to the prob-
lem. In particular, Steiner topologies are defined and an expression is given for
the total number of ways of connecting a set of points. The shortest connection
is one of many Steiner topologies. An important result is that a Steiner topol-
ogy can be decomposed into a union of full Steiner topologies. This result is
at the heart of nearly all optimal algorithms for the problem. The methods for
constructing full Steiner trees for given full topologies are described and shown
by example. Also described is the Steiner polygon. This is used to decompose
a problem into a number of smaller subproblems. Finally, optimal algorithms
are outlined, in particular the first algorithm to be implemented by Cockayne
and others (see [19]). In this chapter there is a section on computational com-
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plexity. The classes NP, NP-complete and NP-hard are informally defined and
their importance explained. The complexity of the Euclidean Steiner tree prob-
lem is described. This introduction within an introduction is needed so that
it is possible to describe the Steiner problem’s complexity and show that the
problem belongs to the class of most difficult problems currently known.

The third chapter is a collection of descriptions and examples of three gen-
eralisations of the Steiner problem. It demonstrates that the problem is a fun-
damental problem of network design, and that most network design problems
are very difficult. The first problem is one of optimally connecting new points
to an existing network, for example new customers to an existing telephone
network. The second is to find the minimum cost network for a communication
systems where cost is dependent on capacity to be provided on links making
up the network and length of links. Steiner trees give good solutions in many
cases although not necessarily the best. The final problem described is the
design and routing of building services, for example heating and ventilation,
and plumbing.

Tailored heuristics for the Euclidean Steiner tree problem are the subject
of Chapter 4. A brief survey of heuristics is given. Two heuristics are de-
scribed in detail. The first is by Smith et al. [37] and uses the geometrical
structures called Voronoi polygons and Delaunay triangulations to find ap-
proximate shortest connections. The heuristic is described by example and
suggestions are made for possible improvements, or at least changes to be
investigated in the hope of giving gains in quality of solution. The second
heuristic is by Beasley and Goffinet [2]. It also uses Voronoi polygons and De-
launay triangulations. Their experience shows it to be the best known heuristic
for the problem. An example of the heuristic is given in an appendix.

Chapter 5 is an introduction to simulated annealing and is based on the
work of Laarhoven [25]. The advantages and disadvantages of tailored heuris-
tics for combinatorial optimisation problems are described, and compared to
those of the simulated annealing approach. The physical process of anneal-
ing, the Metropolis algorithm and the analogy with combinatorial optimisation
which gives simulated annealing are discussed. A mathematical model of an-
nealing using Markov chains is outlined, and used to define conditions for
the asymptotic convergence of the annealing algorithm to a globally optimal
solution. Fundamental to the operation of simulated annealing is the cooling
schedule, this controls the behaviour of the “temperature”, called the control
parameter. General considerations for determining a starting value, change in
and stopping value for the control parameter are described. In a real algorithm
asymptotic convergence is not possible in time bounded by a polynomial in
the problem size. However it is possible to approximate the convergence using
what is known as a polynomial cooling schedule (Laarhoven and Aarts [24],
[25]). The polynomial schedule is described. Finally, modifications to the
standard simulated annealing algorithm are briefly discussed.

The application of simulated annealing to the travelling salesman problem
is investigated in Chapter 6. Much work has been done on using annealing to
solve this archetypical combinatorial problem. This chapter provides a means
of becoming familiar with annealing and investigating the quality of solutions
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and computation time as functions of the polynomial cooling schedule param-
eters. Annealing is applied to random problems of varying size and to test
problems found in the literature which have known optimal solutions. The re-
sults show that the quality and time are primarily dependent on one parameter
of the schedule. The comparison of annealing with the k-opt tailored heuristic
confirms the work of Laarhoven: simulated annealing can not compete with
tailored heuristics for the travelling salesman problem and in general for many
other problems.

Chapter 7 is the chapter in which the Euclidean Steiner tree problem and
simulated annealing threads are brought together to investigate whether sim-
ulated annealing can compete with tailored heuristics, and in particular the
new benchmark heuristic of Beasley and Goffinet. The scarcity of references
on the Euclidean Steiner tree problem and simulated annealing, and the quality
of the tailored heuristics momentarily invokes a feeling of despair. However,
the exercise remains. A very simple annealing transition mechanism is devel-
oped. Random additions, deletions and replacements of points in a solution,
comprising a collection of Steiner points, are described and demonstrated. The
results when applied to randomly generated problems of up to 100 points indi-
cate good quality solutions can be obtained within one to one and a half hours
of CPU time using a particular set of annealing parameters. The annealing is
also applied to Cockayne and Hewgill’s thirty 100 point test problems with
known optimal solutions. Beasley and Goffinet give results for their heuristic
for the same set of problems. The comparison is encouraging. Finally, a sim-
ple local improvement procedure is applied to the annealing solutions for the
one hundred point problems and the comparison with Beasley and Goffinet
is repeated. The differences in quality of solutions are negligible. The initial
despair is replaced by mild excitement when it is shown that simulated anneal-
ing (admittedly with some local improvement) can compete with a tailored
heuristic in terms of quality of solution.

In this thesis there are also a number of appendices containing listings of
the Steiner polygon, travelling salesman and Steiner tree annealing program:s,
Euclidean Steiner tree test problems and travelling salesman test problems,
an example of Beasley and Goffinet’s heuristic and examples of an annealing
transition mechanism for the travelling salesman problem.



Chapter 2

The Euclidean Steiner Tree Problem

In this chapter the Euclidean Steiner tree problem is introduced. It is a rela-
tively lengthy chapter as much is covered. It begins with a brief history of what
is an old problem of mathematics. The variants of the problem and applica-
tions are briefly introduced. This is followed by a section on computational
complexity, which concludes with a discussion of the Euclidean Steiner tree
problem’s complexity. The basic definitions and properties of Steiner trees
and their underlying topology are described. The fundamental geometrical
objects called Steiner polygons and full Steiner trees are defined and examples
of constructing them are shown. The final section is a description of optimal
algorithms developed over the last twenty or so years to solve the Euclidean
Steiner tree problem.!

2.1 A Little History

The origins of the Euclidean Steiner tree problem date back to Fermat’s problem
in the 17" century: given three points find a fourth point that minimises the
sum of the distances from each of the three points to the fourth. Torricelli
(before 1640) showed that the intersection of the three circles circumscribing
the equilateral triangles formed by each side of the triangle made by the three
points is the sought after point and it is called the Torricelli point (if all the
angles in the triangle are less than 120°). Cavalieri (1647) showed that the three
lines from the three given points to the Torricelli point make an angle of 120°
with each other at the Torricelli point. Simpson (1750) proved that the lines
joining the outside points of each equilateral triangle to the opposite vertex of
the given triangle intersect at the Torricelli point. The three lines are called the
Simpson lines. Heinen (1834) proved that the lengths of the Simpson lines are
identical and equal to the sum of the lengths of the lines from the given points
to the Torricelli point. Many others studied Fermat’s problem including the

!The two main sources for this chapter are Winter [42] and Hwangetal. [19] (to a
lesser degree). Two comprehensive surveys exist on the Steiner problems: a paper by
Hwang and Richards [17] and a book by Hwang et al. [19]. Both cover the Euclidean Steiner
tree problem and two other important variants of the Steiner problem, the network (or graph-
ical) and rectilinear problems.



Swiss mathematician Jacob Steiner in the 19" century. Figure 2.1 shows the
numerous geometrical objects.

It was not until 1934 that what is now known as the Euclidean Steiner tree
problem appeared in a paper by Jarnik and Kossler.? Their problem was: find
a shortest connection of » points in the plane. In 1941 Courant and Robbins [8]
discussed the shortest connection problem and, perhaps mistakenly, called the
problem the Steiner problem.> Their problem was: given a set of points in the
Euclidean plane find a shortest connection where additional points may be introduced
as junctions of connecting lines if introduction of the additional points gives a shorter
length connection. This is the Euclidean Steiner tree problem. The additional
points are called Steiner points.

A Circumscribing Circle

The Torrcelli Point

,/ A Given Point

Figure 2.1. The numerous geometrical objects defined to aid solving Fermat’s problem.

In 1961 Melzak [28] was the first to show that the shortest connection could
be found in a finite number of steps and also established many of the basic
properties of the shortest connection. Since then many researchers have given
the Steiner problem a great deal of attention and a vast literature exists on the
Euclidean Steiner tree problem and other variants of the Steiner problem.

2Hwang et al. [19] provide a reference. It is a foreign language journal, possibly Czech or
Slovak.

3Courant and Robbins make no mention of Fermat or Jarnik and Kossler. Further, Steiner
was one of many to delve into Fermat’s problem and perhaps deserved the honour of having
the problem named after him no more than other researchers. But there is no point in worrying
about it now.



2.2 Applications

In this section applications of the Euclidean Steiner tree problem and other
variants of the Steiner problem are described. In Chapter 3 three applications
of the Euclidean Steiner tree problem are described in greater detail.

An obvious application of the Euclidean Steiner tree problem is to finding
the shortest routing of roads, telecommunication links or pipelines. Generali-
sations of the problem provide a greater variety of possible applications at the
expense of added complexity. For example, adding obstacles provides greater
realism, but also tremendously complicates matters. An example would be
the design of a road system in the presence of mountain ranges and lakes. A
turther application is the routing of services in buildings where possible routes
are limited. The inclusion of costs on edges gives the opportunity of analysing
drainage or pipelines networks where the effect of gravity is an important
consideration.

A variant of the Steiner problem is the network Steiner problem. The
problem is to find the shortest network connecting a subset of vertices of a
graph where vertices not in the subset, if any, can be used if a shorter connecting
network results. Many network design problems are generalisations of the
network Steiner problem.*

Another variant is the rectilinear Steiner problem. The rectilinear problem
is in the Euclidean plane but the distance metric is the Manhattan metric not the
Euclidean metric. The distance from point a to bis given by |z, — 3| + |y. — vs|.
The network problem is a generalisation of the rectilinear problem. An algo-
rithm to solve the graphical problem can also be used to solve the rectilinear
problem. However the special geometry and importance of the rectilinear
problem has lead to it being extensively studied and being considered a prob-
lem in its own right. The connection with the graphical problem is that the
rectilinear Steiner tree is a subgraph of the grid graph induced by the points.
The grid graphis formed by drawing horizontal and vertical lines through each
given point. The intersections of these lines (other than at the given points) are
vertices that can be used to give a shorter length connection. The rectilinear
problem is applied to circuit layout on computer chips and boards and the
routing of services in a building.

The final application is from the world of biology. An area of interest
to biologists is the construction of evolutionary trees or phylogenetic trees.
The objective is to take existing species and build a tree joining the species to
hypothetical ancestors. A possible distance measure is the number of likely
steps to evolve from one species to another. The reason for attempting to
construct such a tree may be either to find the relationships between species
or to measure the difference or similarity between species. Steiner trees are an
appropriate mathematical model for these evolutionary trees. Unfortunately
defining a suitable point space and metric for measuring distance within the
space are cause of much debate.

*A network is a collection of points or vertices and a collection of edges joining the vertices.
A network connecting n vertices using exactly n — 1 edges is called a free.



2.3 Computational Complexity

Computational complexity provides a means of calibrating the difficulty of
problems in terms of various resources. If a problem can be shown to be inher-
ently “intractable” then an exact method of solving the problem will generally
be of little practical use. Attention is best focused on finding approximate
solutions, or relaxing the conditions of a problem and searching for a solution
that meets most of the problem requirements. In this section computational
complexity is informally introduced. This is followed by a discussion of the
complexity of the Euclidean Steiner tree problem.”

2.3.1 Preliminary definitions

A problem is a question for which an answer is desired, and is generally stated as
a list of parameters defining the problem and a set of conditions that an answer
or solution to the problem must satisfy. For example, the Euclidean Steiner tree
problem can be stated as: given a set of points A = {ay,...,a,} in the plane,
what is the set of points S = {s1,...,s;}, £ > 0, that gives the minimal length
spanning tree of AUS? An instance of the problem is a particular set of points A.
For example an instance of the Steiner problem is A = {(4,7), (6,9), (9,6)}.
An algorithm is a step-by-step procedure for finding a solution to a problem.
An algorithm solves a problem if for any instance it produces a solution. The
solution to the example instance is S = {(5.9458,7.9885)}.

The efficiency of an algorithm is measured by the resources required to solve a
problem. Time is the usual resource measured, although memory is sometimes
of interest. The most efficient algorithm is generally the fastest algorithm. This
requirement is expressed as a function of the size of a problem. The size is the
length of the input to the algorithm.® The time complexity of an algorithm is a
function from the input size to the maximum running time of the algorithm on
instances of that size.”

The time complexity function provides a simple but extremely powerful
classification of algorithms and problems. An algorithm with time complexity
function f(n) is said to be a polynomial algorithm if f(n) is O(p(n)) where p(n)
is a polynomial function of n.® If f(n) can not be bounded by a polynomial
then the algorithm is said to be super-polynomial. A typical super-polynomial
time is O(c¢") with ¢ > 1 and constant, and is called exponential. Most practical
algorithms seem to be either polynomial or exponential.

5Garey and Johnson [13] is an excellent introduction to the theory of computational com-
plexity and is the source of this informal discussion. The discussion uses terms such as problem,
algorithm and instance. The formal theory uses languages, Turing machines and strings.

®The formal theory measures size as the length of an instance expressed as string of symbols.
An encoding scheme transforms a problem instance into a string.

"The maximum or worst case is used because different instances of the same size can have
different running times. Tests on input or the results of earlier steps in an algorithm may lead
to different steps being performed, hence different running times.

8 f(n) is O(g(n)) if there exists a positive constant ¢ such that | f(n)| < ¢|g(n)]| for all n > 0.
The property of polynomials of importance in computational complexity is the closure property.
If f(n) and g(n) are polynomial then so too are f(n) + g(n), f(n) x g(n) and f(g(n)).
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This scheme also allows classification of the time complexity of problems.
A problem is polynomial if some polynomial algorithm exists to solve the prob-
lem. Problems can be divided into tractable and intractable classes in the sense
that polynomial is tractable and super-polynomial is intractable. It seems most
intractable problems are exponential or worse. It is possible to provide exam-
ples of time complexity functions that upset the classification, for example an
“efficient” algorithm with polynomial time complexity function n° takes more
time than the “inefficient” algorithm with exponential function 2" for n < 20.
However, experience has shown that for many optimisation problems expo-
nential algorithms are of little use for large input sizes, and researchers continue
to devote time to finding polynomial algorithms. Of course, algorithms with
polynomial functions such as 64”n? or 3n*® are of little practical use. But again
experience has shown that in general for “naturally” occurring polynomial
problems the polynomials are of low order with modest coefficients.

2.3.2 Intractability

The notion of intractability is independent of the how the input to an algorithm
is expressed and is independent of the model of computation used. In slightly
more formal terms, the size of the inputs under different methods of reasonable
coding, for example binary and decimal, are only polynomially different, and
therefore an algorithm solving a problem in polynomial time under one coding
will still be polynomial under any other reasonable coding. A reasonable
computer model is one where there is a polynomial bound on the amount of
work that can be done in unit time. Therefore an algorithm with polynomial
time under one model will have polynomial time under any other reasonable
model.

Some problems are provably intractable in the sense that any algorithm must
be super-polynomial, for example tiling problems and some problems in logic.
But what can be said about problems that are neither provably intractable nor
currently possess a polynomial algorithm? Are they inherently intractable?”

2.3.3 NP-completeness

In this section the key notion of NP-completeness is introduced, and is dis-
cussed in terms of decision problems. A decision problem has a “yes” or “no”
solution. This, however, does not mean the theory is solely concerned with
decision problems, optimisation problems can be discussed because every op-
timisation problem has a related decision problem. For example, the travelling
salesman decision problem is: given a set of cities and the distances between
every pair of cities is there a tour with length less than some number K visiting
each city once and only once and returning to the starting city? The decision

There are some problems which are intractable because the size of their solution can not
be bounded by a polynomial, for example list all tours of a travelling salesman problem with
length less than some number K. It is possible to construct an instance with exponentially
many tours satisfying the condition. Solutions to problems of this type and therefore the
problems themselves are of little practical value because of the sheer size of the solutions.
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problem can be used to solve the optimisation problem. For example, let 7'S P
be the travelling salesman optimisation problem and 7'S P(K) be the decision
version defined above. By asking 7'SP(1), T'SP(2), ... until a “yes” solution is
found the 7'S P problem can be solved. This is an example of a reduction and
is discussed below. The reduction imposes a partial ordering on problems, in
the sense of a problem being as hard as another, and allows problems to be
calibrated according to their time complexity into classes. For example, 7'S P
is at least as hard as TS P(K).

Important classes are the class P, short for polynomial, and EXP, exponential.
A problem is in P if it can be solved in polynomial time using a reasonable
model of computation. NP, short for non-deterministic polynomial, contains
problems for which a proposed solution can be checked in polynomial time.
This is not solving the problem in polynomial time, it is simply checking a
proposed solution is correct in polynomial time. For example, given a tour
for the travelling salesman problem it is easy to check it is a valid tour and
compute its length. It is obvious that a problem in P is in NP. The checking
can be replaced by actual solution of the problem, and because this can be
done in polynomial time the problem is in NP. This implies P € NP. What
is not known is whether P = NP. This is a fundamental open question of
mathematics and computer science. It is currently believed P # NP and it is
the difference between P and NP that is of importance. Given a problem in NP
and assuming P # NP is the problem in P or NP — P? Thatis, is the ability to check
a proposed solution the same as finding a solution? It is conjectured that if the
problem is in NP — P then it is intractable.

A further important class is NP-complete. The NP-complete class is such
that if one problem in the class can be proved to have a polynomial algorithm
then all NP-complete problems have a polynomial algorithm. And conversely,
if one problem can be shown to be intractable then all are intractable. The equiv-
alence of NP-complete problems is established through reductions of problems
to other problems. For instance, many combinatorial optimisation problems
can be reduced to general zero-one linear programming problems.

Polynomial reducibility or transformation of one problem to another is fun-
damental to NP-completeness. A polynomial transformation of a problem
instance is a mapping from the coding scheme of one problem to another and
can be performed in polynomial time. This means that if problem }" has a poly-
nomial algorithm and there is a polynomial transformation from problem X to
problem Y then X has a polynomial algorithm. This can be thought of as mean-
ing X is at least as hard as Y. Polynomial transformations can be used to make
statements about problems, for example if X € P and Y can be transformed to
X then Y € P. Further, equivalence classes exist based on transformations, P
is one and NP-complete is another. A problem X is NP-complete if X € NP
and for all other Y € NP, Y can be polynomially reduced to X. Therefore all
NP-complete problems are as hard as each other and are the hardest in NP.
The important, although conditional, property of an NP-complete problem X
is that X € P if and only if P = NP.

To show a problem is NP-complete does not necessarily involve showing
that every problem in NP can be polynomial transformed to it, the equivalence
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relation means it is only necessary to show the problem is in NP and one
NP-complete problem can be transformed to it. The number of NP-complete
problems has grown rapidly since the first NP-complete problem was proven
to be so. This provides an “easy” method of determining or verifying the
apparent intractability of a problem: Try to prove it is NP-complete! If it can not
be done, perhaps because the problem can not be shown to be in NP, then all is
not lost, it is still possible to make “at least as hard as” statements.

2.3.4 NP-hardness

Many problems are not in NP. Optimisation problems and some decision prob-
lems are not in NP. What can be said about them? Decision problems that can
be transformed to a known NP-complete problem are said to be at least as hard
as NP-complete problems and are described as being NP-hard.!® Optimisa-
tion problems with corresponding decision problems in NP-complete are also
NP-hard. Figure 2.2 shows the relationships between the classes of problems.

NP-hard

NP-complete

Figure 2.2. The classification of problems according to complexity.

19 A1l NP-complete problems are NP-hard.
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2.3.5 The Euclidean Steiner tree problem’s complexity

Garey et al. [14] show that Euclidean Steiner tree problem’s related decision
problem is at least as hard as any NP-complete problem. But are unable to show
the decision problem is in NP because of difficulties with irrational numbers.!!
The difficulties are with computers’ inabilities to represent and manipulate ir-
rational numbers because only a finite amount of storage exists. The Euclidean
Steiner tree problem involves irrational numbers: Steiner points can be at any
location in the plane and may be irrational, and the Euclidean metric can give
irrational lengths and therefore make comparison of lengths difficult.

To better match the real world Garey et al. formulate a related discrete
optimisation problem. In this problem the set of points to be connected and
any Steiner points are required to have integer coordinates. And the normal
Euclidean measure is replaced by the discrete Euclidean measure: the length

of the edge joining points « and b is given by [\/(:z;a — )2+ (Yo — yp)? w, where
[2] is the smallest integer greater than or equal to z. This discrete Euclidean
Steiner tree problem can be made to approximate the original problem to any
degree of accuracy by suitable scaling of coordinates. The decision problem of
the discrete optimisation problem is:

Given a set of points with integer coordinates and an integer L is
there a Steiner tree with discrete Euclidean length less than L, where
Steiner points, if any, have integer coordinates?

Garey et al. show this decision problem is NP-complete. They also demon-
strate that the Euclidean Steiner tree problem is at least as hard as the discrete
problem by showing that no polynomial time algorithm which outputs sym-
bolic expressions involving +, —, X, +, v/ for Steiner points exists to solve the
Euclidean Steiner tree problem.

The Euclidean Steiner tree problem’s decision problem is NP-hard but not
in NP, and therefore is not NP-complete. Although limited to “a least as hard
as” statements it seems reasonable to say the Euclidean Steiner tree problem
is an extremely difficult optimisation problem, perhaps more so than optimi-
sation problems whose decision problems are NP-complete, for example the
travelling salesman problem and the other variants of the Steiner problem.
This intractability becomes evident in later sections when the the number of
possible candidates for the shortest connection is determined. It grows very,
very rapidly with increasing problem size.

2.4 Basic Definitions

The problem of finding the shortest network connecting a set of points in the
Euclidean plane is called the Euclidean Steiner tree problem. A formal definition of

Both the Network and Rectilinear Steiner tree problems’ related decision problems are
NP-complete.

121f a polynomial algorithm does exist then all NP-complete problems have a polynomial
time algorithm.
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the problem is: given a set of n points in the Euclidean plane A = {a1,...,a,}
find the shortest connecting network where it is possible to introduce other
points as junctions of edges. Points in A are called A-points, junctions in the
network that are not in A are called Steiner points or S-points. The shortest
connecting network is called the Steiner minimal tree or SMT.

A shortest connecting network with no S-points is called a minimum spanning
tree or MST. All edges in a MST connect A-points only. The MST is important
because its length provides an upper bound on the length of the SMT and it
can be used in the search for the SMT. Finding a MST is straightforward and
can be done quickly.

Figure 2.3 shows the SMT for a set of eight points. This SMT has four
S-points. The MST for the same set of eight points is shown in Figure 2.4. In
this example the SMT is about 5% shorter than the MST.

Figure 2.3. The Steiner minimal tree for a set of eight points.

The structure of a network or the topology can be shown graphically by
another network with the same vertices and edges but with all edges at 90° or
180° to each other. Figure 2.5 shows a six point network on the left and the
graphical representation of the network’s topology on the right. For a given
topology the shortest connecting network is called the relatively minimal tree.
The connection is minimal relative to the given topology.

Each vertex in a network has a degree. The degree is the number of edges
incident on the vertex. For example the degree of vertex A in Figure 2.5 is one
and the degree of D is two.
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Figure 2.4. The minimum spanning tree for a set of eight points.

Figure 2.5. An example of a tree network and a graphical representation of its topology.
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2.5 Basic Properties of Steiner Minimal Trees

Some of the properties of a Steiner minimal tree are:

e The length of the SMT of a set of points A is less than or equal to the
length of the MST of A;

e The length of the SMT is at least ? times the length of the MST;"®
e In a SMT no pair of edges meet at an angle less than 120°;

e The degree of every S-point in a SMT is exactly three. Therefore edges
incident on an S-point make an angle of exactly 120° with each other;

e The number of S-points, £, in a SMT is at most n — 2;
e Every A-point has a degree of at most three;

o If there are k = n —2 S-points in a SMT then the degree of every A-point
is one;

o If a;a; is an edge in a SMT, where both «; and «; are A-points, then a;a;
must be an edge in the MST of the set of A-points;

e No edges of a SMT other than edge v;v; pass through L(v;,v;), where
L(v;,v;) is the lune shape defined by the the intersection of the two cir-
cles of radius |v;v;| centered at v; and v;. This property is illustrated in
Figure 2.6;

e A wedge defined by three A-points with an angle greater than 120° and
containing no other A-points contains no S-points and no part of a SMT
lies in the wedge. In Figure 2.7 an SMT is shown together with two
wedges that have angles greater than or equal to 120° and contain no
other A-points. Neither wedge contains any S-points.

The lune and wedge properties described above are fundamental to the
Steiner polygon defined in Section 2.8.

2.6 Steiner Topologies

Topologies satisfying the following three conditions are called Steiner topologies:
e the number of S-points is at most n — 2;
e every A-point has a degree of at most three;

e all S-points have a degree of exactly three.

13 inf 4 % = @ ~ 0.866 is known as the Steiner ratio and is much studied (see

Du and Hwang [10]). It means that the SMT is never more than about 13% shorter than the
MST. The Steiner ratio and the MST provide measures for comparison of heuristic methods of
computing a SMT.
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Figure 2.6. An example of the lune property of a Steiner minimal tree. The only edge to pass
through the lune L(v;, v;) is edge v;v;.



Figure 2.7. An example of the wedge property of a Steiner minimal tree. A-points a, b and
d form a wedge with angle abd not less than 120° and contain no other A-points. Similarly for
the wedge defined by «, ¢ and d. Neither wedge contains any S-points and no part of the SMT
lies in either wedge.

An important subset of the set of Steiner topologies is the set of full Steiner
topologies. A full Steiner topology for n A-points has exactly n — 2 S-points.
An expression for the number full Steiner topologies is

2-(n=2) (25, — 4)!

Table 2.1 shows the number of full Steiner topologies for different values of n.
The function f(n) grows rapidly. It will be all too obvious in later sections that
this extremely fast growth is the bane of optimal algorithms for the Euclidean
Steiner tree problem.

The number of Steiner topologies with n A-points and £ < n — 2 S-points
where no A-point is of degree 3 is denoted by /'(n, k), and given by

n (n+ k—2)!
o= (g i

This expression can be used to determine the total number of Steiner topolo-
gies for n A-points, F'(n). Hwang et al. [19] give the following expression for
the total number of topologies

n=2 [(n—k=2)/2]

F(n) = ];) S ( ;”‘3 )F(n—ng,k+n3)(k+k7f3)!.

n3=0

In this expression n3 is the number of A-points that have degree three. The
summations are over all possible number of S-points and possible number of
A-points that can have degree three. The expression F'(n — ns, k + n3) gives
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Number of Number of
A-points  full Steiner topologies

n f(n)

2 1

3 1

4 3

5 15

6 105

7 945

8 10,395

9 135,135
10 2,027,025
11 34,459,425
12 654,729,075
20 10%

30 10%7
40 10

50 1074

Table 2.1. The number of full Steiner topologies for different numbers of A-points.

the number of Steiner topologies where the n3 A-points having degree three
are treated as S-points. The function |z gives the largest integer less than or
equal to . Table 2.2 shows the total number of Steiner topologies for different
numbers of A-points.

A relatively minimal tree with a given Steiner topology is called a Steiner
tree or ST. All edges of the tree must have a non-zero length otherwise the tree
is that for a different topology and not necessarily a Steiner topology. Zero
length edges may occur when the position of an S-point coincides with the
position of an A-point or another S-point. Figure 2.8 shows an example of two
relatively minimal trees for different topologies. The topology on the left is a
Steiner topology. As the relative positions of the points change the S-points 5
and 7' come closer together. When they coincide the length of the edge between
the S-points is zero and the topology is no longer a Steiner topology and the
relatively minimal tree is not a Steiner tree. When the topology is a full Steiner
topology the relatively minimal tree is called a full Steiner tree or FST. The tree
on the left in Figure 2.8 is a FST.

Winter proves that at most one ST exists for a given Steiner topology.!* The
proof is based on showing that a relatively minimal tree for a given topology is
unique. This result and knowing that an SMT is an ST suggests that a way of
tinding a SMT is to construct all STs and choose the ST with the smallest length.
Unfortunately it was shown above that the number of Steiner topologies is
exceedingly large for all but very small problems (see Table 2.2).

4Lemma 10-1 Winter [42].
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Number of Number of
A-points  Steiner topologies
3 4
4 31
5 360
6 5,625
7 110,880
8 2,643,795
9 74,035,080
10 2,382,538,725
20 10%
30 10%
40 10%8
50 10%

Table 2.2. The total number of Steiner topologies for different numbers of A-points.

A C
A C
S
S=T
T
B D
B D
C D C
A B A D
S T S=T
B

Figure 2.8. Two relatively minimal trees for different topologies. The positions of 4, B, C
and D have been changed until S and 7" coincide. The tree on the right is a relatively minimal
tree for its topology shown below but the topology is not a Steiner topology and the tree is not

a Steiner tree.

20



2.7 Decomposition of Steiner Trees

An important property of a Steiner topology is that it can be decomposed into
one or more full Steiner topologies. For each full topology the FST can be
constructed separately and all FSTs can be joined to give the ST for the original
topology. An example of the decomposition of a Steiner topology is shown in
Figure 2.9. Each ellipse contains n A-points (A through L) and » — 2 S-points
(U through Y). In this example the position of S-point U is determined by
A-points B, C' and D, and the positions of S-points V and W are determined
by the positions of A-points D, F, I and L.

The decomposition theorem is:

Let 7' be the SMT for the set of n points A. For some division
(A1,...,A;) of Awhere Ui_; A; = A, |A;] >2Viand1 <t <n-1,
the SMT 7' is the union of FSTs T; : = 1,...,t, where each 7; is the
SMT for A;. A;is called a component and the set (|A4],...,|A]) is
called the partition of the division (A, ..., A,).”°

This theorem provides an alternative method for constructing a SMT. In-
stead of finding all STs for all Steiner topologies, construct all FSTs for all full
Steiner topologies of every subset of A. For each subset A; the shortest FST
is 1;. The SMT of A is the shortest tree formed by feasible unions of the 7;.
Although investigating all full Steiner topologies is less work than considering
all Steiner topologies it is still an extremely large task. The number of full Steiner
topologies grows rapidly with increasing problem size (see Table 2.1).

2.8 The Steiner Polygon

An important criterion for decomposing a Euclidean Steiner tree problem into
smaller problems is the Steiner polygon criterion. This criterion is very powerful
because the super-polynomial nature of the Euclidean Steiner tree problem
means a huge reduction in computation time can be achieved by decomposition
into smaller problems.

The SMT of A lies within the convex hull of A, however a generally smaller
region can be found which contains the SMT. Theorem 1.5 of Hwang et al. [19]
uses the wedge and lune properties of a SMT (described in Section 2.5) and
provides a method for generating the smaller region.

A convex hull of a set of points is the smallest convex set containing the
set of points. The first plot in Figure 2.10 shows the convex hull of a set of
ten points. The smallest hull is called the Steiner hull and the A-points on the
boundary form the Steiner polygon or SP. A decomposition occurs when the SP
of A is degenerate. When one or more A-points appear in the SP more than once
then the SP is degenerate. The SP also provides valuable information about
the maximum degree of A-points, and is used to eliminate from consideration
divisions that give infeasible unions of component FSTs. The maximum degree

15Theorem 11-1 Winter [42].

21



....................

Tl TN

Figure 2.9. An example of the decomposition of a Steiner topology. The six regions each
enclose a full Steiner topology. The largest is a four topology for connecting A-points D, £, I
and L using two S-points VV and W.

of each A-point in the SMT is found using the non-degenerate SP. If A-point «;
is not on the SP then the maximum degree of «; is three. If ¢; is on the SP and
the interior angle of the SP at «; is less than 120° then the maximum degree is
one otherwise it is two.

2.8.1 Constructing the Steiner polygon

The SP is constructed iteratively beginning with the convex hull of A, Hy. The
following step is used to modify the current hull:

If two adjacent A-points «¢; and a; on H; and another A-point ay
(possibly already on f;) are such that the triangle a;a.a; contains no
other A-points and the interior angle a;a;a; of the triangle is greater
than or equal to 120° then the edge «;a; is replaced by edges a;ay,
and aya; to give anew hull H;;;. When no changes are possible the
process stops.

The final hull obtained by the above process is the Steiner hull. This process
is called removing wedges. A process to improve upon a SP found by removing
wedges is called removing quadrilaterals. This is described in section 2.8.3 below.

Figure 2.10 shows the construction of a SP for a set of ten points. The first
plot shows the convex hull of the set of ten points, {A,G, H, B, F,D}. The
construction of the SP arbitrarily begins at A. The point adjacent to A (in a
clockwise sense) is (&. Point / is in a position such that the angle A/ is greater
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H
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F
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A F
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A /
H ) B
D
B
F

Figure 2.10. An example of the iterative construction of a SP. In this example all the A-points
are on the Steiner polygon.
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than 120° and the triangle A/G contains no other A-points. Therefore / is added
to the hull to give {A, [, G, H, B, F, D} (see the second plot in Figure 2.10). The
process is repeated but now considering A and its new adjacent point /. There
are no points satisfying the angle and empty triangle conditions. Attention
now moves to / and (. Again no points can be found to add to the hull.
The testing of conditions continues without success until # is reached. H and
adjacent point B provide two candidates for inclusion ¥ and J, both are such
that the angle formed with // and B is greater than 120°, and neither triangle
formed with H and B contains any other points. Either point can be added
and F is arbitrarily chosen (see the third plot). In the next step J is added
between H and E (fourth plot).!® The last point to be added is C, between D
and A (fifth plot). No more changes are possible and the fifth plot shows the SP
{A,I,G,H,J,E,B, F,D,C}. In this particular example all ten points are on the
SP. This is a fortunate result in terms of finding the SMT as it greatly reduces
the number of possible topologies to be considered.

A SP is degenerate if it is self intersecting, that is one or more points ap-
pears more than once in the SP. Figure 2.11 shows the construction of a seven
point degenerate SP. The convex hull contains only three points but the SP
{A,C,F,C,G,B,G, E, D, E} contains all seven points and is degenerate at three
points (C, £ and &). This decomposes the problem from a seven point problem
to four smaller problems, three being trivial two point problems and the fourth
a four point problem. The first degeneracy occurs when considering /' and
its adjacent point 5. The point C' which is already on the hull can be inserted
between /" and B (fifth plot of Figure 2.11). The seventh and eighth plots show
the creation of the degeneracies at £/ and & respectively.

2.8.2 Some findings on Steiner polygons

This section presents some results on degeneracy and the proportion of points
on SPs. This was performed to verify the same results described by Winter.!”
A listing of the program used to find Steiner polygons is in Appendix A. One
hundred SPs for each of n = 4, ...,100 were calculated where n is the number
points. The points were randomly distributed in either the unit square or the
unit circle.!® For each distribution of points and value of n the probability of
degeneracy and the average proportion of points on non-degenerate SPs were
estimated. Figures2.12 and 2.13 show the smoothed estimates of the probability
of degeneracy and the average proportion of points on the polygon for non-
degenerate SPs respectively. The smoothed estimates were obtained using a
simple central moving average.

Winter only gives results for the unit circle distribution and then only for
problems with 4 to 50 points. The above results agree with those of Winter."

16The order of adding points is not important, choosing J first then £ would give the same
result. The Steiner polygon of a set of points is unique.

17Section 12.3 Winter [42].

8Both distributions are used because only after obtaining the unit square results was it
realised that Winter had used the unit circle distribution for his SP experiments.

YPFigures 12-4 and 12-5 Winter [42].

24



Figure 2.11. An example of the iterative construction of a degenerate SP. The polygon is
degenerate at C, £ and G.
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Figure 2.12. The probability of a degenerate SP for randomly selected sets of points. The
solid line is for points distributed in the unit square, the dashed line for the unit circle.
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Figure 2.13. The average proportion of points on a non-degenerate SP for randomly selected
sets of points. The solid line is for points distributed in the unit square, the dashed line for the
unit circle.
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The following comments are made:

e The probability of degeneracy for unit square SPs is higher than for unit
circle SPs and appears constant for high n. Whereas the unit circle prob-
ability tends towards zero or a small constant value as n increases;

e The average proportion of points on a non-degenerate SP for points dis-
tribute randomly in the unit square is higher for all values of n than the
average proportion for unit circle non-degenerate SPs.

Little effort is expended in attempting to explain these differences. Obvi-
ously it is to do with the differing shape and size of the regions and in particular
the fact that a square has corners and a circle does not.?

2.8.3 Removing quadrilaterals

Theorem 1.6 of Hwang et al. [19] provides a method for removing a quadrilat-
eral to give a smaller SP. It is more complicated than removing wedges but
when successful gives a degenerate SP and provides a valuable decomposition
of a problem. The theorem is:

If four points a, b, cand d are four points on the Steiner hull satisfying
the following conditions:

e a and b are A-points;

e abcd is a convex quadrilateral with interior angles dab and abc
both greater than or equal to 120°;

e quadrilateral abcd contains no other A-point;

e the angle bxa > dab 4 abc — 150° where z is the intersection of
the diagonals of the quadrilateral.

Then the quadrilateral abcd can be removed from the hull, and no
part of the SMT can lie inside the quadrilateral.

The theorem requires that only « and bare A-points, cand d canbe any points
on the hull, that is A-points or points on edges joining A-points. Figure 2.14
shows the removal of a quadrilateral. In this example the four points satisfy the
conditions of the theorem. The region R originally enclosed by the SP (found
by removing wedges) is divided into two regions ?; and i, and the line joining
a and b. Therefore the SMT problem is decomposed into two smaller problems:
tinding the SMT of A-points belonging to £, and similarly for /,. The SMT
of the original problem is the two smaller SMTs connect by the segment ab.
The removal of wedges does not give a decomposition (assuming ¢ and d are
A-points) because neither angle dac nor angle dbc are greater than or equal to
120°.

An extension of the theorem suggested by Sarkar [33] is to allow « and b to
be any A-points, instead of A-points on the SP. A brief investigation failed to

20This short section was merely to verify Winter’s results, not to try to explain the differences
between squares and circles.
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Figure 2.14. Removing a quadrilateral from a SP.

29



find a counter-example. And a problem was created that had a SMT within
the SP where the SP was found using the modified theorem. Hwang [21] states
that no proof that he knows of exists for the modified theorem. Further study
is required to gain insight into this aspect of the Steiner polygon.*!

2.9 Construction of Full Steiner Trees

The construction of FSTs is described in three sections below. The first looks at
the simple three point problem, the second at the four point FST and the third
at the linear time construction algorithm of Hwang [20] and hereafter called
Hwang’s linear time FST algorithm which attempts to find the FST for five or more
points. But before studying any of these construction methods definitions of
basic elements used in FST construction are required.

2.9.1 Further definitions

If two A-points a; and «; are joined to S-point s then the edges «;s and ;s must
make an angle of 120° with each other at s. The point s is either on the arc a;a;
of the circumscribing circle of the equilateral triangle defined by «;a;¢;; where
¢;; is to the left of the segment «;a; and s is on the right, or on the arc «;a; of
the circumscribing circle of the equilateral triangle defined by a;a;¢;; where ¢;;
is to the right of the segment «;a; and s is on the left. The points ¢;; and ¢j; are
called equilateral points or E-points.

E-points are the basic building blocks of FST construction. A simple E-point
is the third point of the equilateral triangle formed by two A-points. Each pair
of A-points «;, a; define two E-points. The E-point to the left of the line segment
a;a; looking from a; towards a; is denoted by (a;, a;), the point to the right is
(a;,a;). The E-points are said to be based on a; and «;.

The circles circumscribing the equilateral triangles a;a;(a;,a;) and
a;a;(aj,a;) are called equilateral circles or E-circles. The 120° arcs a;a; and a;a; are
called equilateral arcs or E-arcs. These various objects are shown in Figure 2.15.

Compound E-points or higher order E-points are based on one A-point and
one E-point, or two E-points. The A-points making up an E-point are called
the E-point’s terminal points. Figure 2.16 shows the construction of two com-
pound E-points: e; = ((a4,a3),az) has terminal points a», a3 and a4, and
e2 = (e1, (a1, as)) has terminal points ay, . . ., as.

2.9.2 FST for three points

For three points a1, a, and a3 there is only one full Steiner topology to be
investigated. If the unique FST exists then its only S-point s must lie on either
the E-arc aja, or E-arc aya; and the edges a1s, axs and azs must make a 120°
angle with each other. If the FST does not exist then the SMT is the MST of a;,

2LA complete description of the quadrilateral decomposition can be found in
Hwang et al. [18].
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E-circle

eif:(ai’aj) E-point (a]-,al-)

Figure 2.15. An illustration of the various geometrical objects defined by two A-points.

112.‘
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(ag,as) o

. as o
‘®

eq= ((ay,a3) aj)

‘8 (Ayg,a3)
[ ]

ey=(((ayg,a3) ay) (ag, as))

Figure 2.16. An example of compound E-points. E-point ¢; is based on A-point a; and
E-point (a4, a3). The E-point is on the left when looking from (a4, a3) towards as.
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ay, az. Figures 2.17 and 2.18 show the construction of a three point FST and the
attempt to construct a non-existent FST respectively. In Figure 2.17 the segment
(@, aq)as is called the axis of the FST. The length of the axis is equal to the length
of the FST. The axis is one of the three Simpson lines (see Section 2.1).

Figure 2.18. An example of the non-existence of a three point FST. The axis (a2, a1)az does
not intersect the E-arc.

The FST of Figure 2.17 can be constructed in two other ways. Instead of us-
ing E-point (a,, a1), E-points (a3, a) or (a1, a3) can be used to give axis (a3, a2)a
or (a1, as)ay respectively. The three possible constructions are equivalent. The
three axes are equivalent because the cyclic orders of the A-points are iden-
tical, 213 = 321 = 132. Importantly, this cyclic ordering corresponds to the
clockwise order of the A-points induced by the Steiner polygon.

There are two possible three point full Steiner topologies (see Figure 2.19).
The clockwise cyclic orderings of the A-points are different. The first topology
gives orderings 123 = 231 = 312, the second 132 = 321 = 213. The orderings
are used to form E-points. The bracketing of two A-points, an A-point and
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E-point or two E-points generates an association. An association describes an
axis. The equivalent associations generated by the two topologies are:

(alv aZ)v as = (a27 Cl3), a]; = (Cl3, Cl1), ay = aq, (Clz, Cl3) = ay, (Cl3, Cl1) = as, (alv Clz)

(alv a3)7 ay = (Cl3, aZ)v a]; = (a27 Cl1), as = aq, (Cl3, aZ) = as, (Clz, Cl1) = ay, (alv Cl3)

a; as

aj as ai as

Figure 2.19. The two possible three point full Steiner topologies. The clockwise cyclic
orderings are different: 123 and 132.

To find the FST of three points, if it exists, an attempt is made to construct
the FST of one of the full topologies using one of the equivalent associations. The
topology used depends on the cyclic ordering induced by the Steiner polygon.

2.9.3 FST for four points

The construction of a four point FST is only slightly more complicated than the
three point FST construction. The number of four point full Steiner topologies is
three (see Figure 2.20). Therefore there are three sets of equivalent associations,
for example the first topology of Figure 2.20 generates the following twenty
equivalent associations:

(a1, a2), (as, as) = (az, aq), (a1, az) = (a1, (az,a3)), as = aq, (a1, (az, a3))
= ((a1,a2), a3), a4 = aa, ((a1, a2), a3) = a1, (az, (a3, as)) = (az, (a3, aa)), ar
= aq, ((ag,a3), as) = ((az, a3), aa), a1 = (az, a3), (as, a1) = (a4, a1), (az, a3)
= ((a4,a1), a2), a3 = as, ((as, a1), az) = (aa, (a1, a2)), a3 = as, (a4, (a1, az))

= ap, (az, (as,a1)) = (as, (as,a1)), a2 = az, ((az, a4),a1) = ((a3,a4),a1), az

Fortunately constructing a four point FST can be viewed in a different way
and associations can be pushed aside for the moment (Sarkar [33]). Consider
a quadrilateral of the form shown in Figure 2.21 for points «, b, c and d and a
topology specifying that «, b are connected to S-point « and ¢, d are connected
to S-point v. Three conditions must be satisfied for the FST to exist, they are:

e The quadrilateral must be convex. The diagonals «d and bc must cross;

e The axis must intersect segments ab and cd. The axis of the FST is the
segment from E-point (b, a) to E-point (¢, d);

e The E-circles must not intersect.
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Figure 2.20. The three possible four point full Steiner topologies.
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If all three conditions are satisfied then « and v are given by the intersection
of the axis with the E-arcs (b, a) and (¢, d) respectively. The FST of the points in
Figure 2.21 with the given topology is shown in Figure 2.22.

Figure 2.21. Four points and a particular Steiner topology.

Figure 2.22. The four point FST corresponding to the points and topology in Figure 2.21.
The second condition is a simpler statement of the need for the axis to

intersect the E-arcs. Violation of the third condition gives a network that is not
a Steiner topology (see Figure 2.23).
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Figure 2.23. An example of the violation of the third condition.

2.9.4 Hwang’s linear time FST algorithm

This section describes an algorithm to find the FST for a given topology with
five or more A-points. The algorithm is due to Hwang [20] and has a O(n) time
requirement. The algorithm iteratively reduces a topology by replacing an
S-point of unknown position by an E-point formed by the A-points or E-points
(or both) connected to the S-point in the topology. The position of the E-point,
that is if it is to the left or right, is based on the relative positions of points in
the topology. If at any stage a topology can not be reduced then the FST does
not exist. Once a topology has been reduced to four points (a combination of
A-points and E-points) then the four point FST method described above can
be used. If this FST is found then a process of “unreducing” or expanding
E-points to give S-points is applied. If an S-point can not be found then the
FST does not exist.

Reduction

Given a full Steiner topology 7' with n > 5 A-points. Choose an arbitrary
A-point r. Find the A-point farthest from r in 7" and call this point «, where
“distance” is measured by the number of edges in the unique path from one
point to another in the topology. There will always be at least two choices for
a, which is taken is of no consequence. Because n > 5 the distance from r to
is at least three and there is at least two S-points s; and s; on the path from r
to a. The S-point adjacent to « is called s;. Adjacent to s; is A-point b and the
S-point s,. The point adjacent to s, not on the path from r to « is labelled v. This
point can either be an A-point or a S-point. If it is a S-point it has two adjacent
A-points, ¢ and d. Figure 2.24 shows the labelling of points of a topology. The
tirst is a five point topology where v is an A-point. The second topology is a
six point topology where v is a S-point.
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Figure 2.24. Examples of the labelling of topologies for Hwang's linear time FST algorithm.
In the top topology ¢ and d do not exist because v is not a S-point, compare this with the bottom

topology.
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The rules for reducing the topology are:
1. If v is an A-point:

e Remove «a, b and s; from 7T’

e Add an E-point based on « and b and an edge connecting the E-point
and s;. The E-point is such that it is on the opposite side of the line
ab from v.

2. If vis a S-point and ¢ and d lie on the same side of the line ab:

e Remove «a, b and s; from 7T

e Add an E-point based on @« and b and an edge connecting the E-point
and s;. The E-point is such that it is on the opposite side of the line
ab from c.

3. If v is a S-point and ¢ and d lie on opposite sides of the line ab:

e Remove ¢, d and v from T;

e Add an E-point based on ¢ and d and an edge connecting the E-point
and s;. The E-point is such that it is on the opposite side of the line
cd from a.

4. If none of the above three conditions apply then the lines b and cd must
cross and the FST does not exist.

The labelling and reduction is repeated using the same r until four points
remain in 72> The FST of the four point topology is found, if it exists, using
the four point method described above.

An example of a successful reduction is presented using the points and
topology shown in Figure 2.25. The A-points are 1,...,6 and the S-points
are w, , y and z. The positions of the S-points are not known. A-point 2 is
arbitrarily selected to be r. The farthest points in the topology from 2 are 1
and 6, again arbitrarily, 1 is chosen to be « and 6 is b. The S-points =z and y
are s; and s, respectively. The point adjacent to s, not on the path from r to
a is the A-point 5, labelled v. The labelled points and topology are shown in
Figure 2.26. The points satisfy the first condition of the rules for determining
the reduction: v is an A-point. The points 1, 6 and z are removed and replaced
by an E-point that must be on the opposite side of the line «b from v. Therefore
E-point (1,6) is constructed and connected to y in the topology. If the FST
exists then the S-point ~ must lie on the E-arc (1, 6).

The topology is now a five point full Steiner topology. The labelling and
reduction is repeated. With point 2 as r the farthest points are 3, 4, 5 and (1, 6).
Arbitrarily (1, 6) is chosen as a and therefore 5 is b. The S-points y and = are
51 and s, respectively. The point adjacent to s, not on the path from r to « is
S-point w, this is v. The labelled topology is shown in Figure 2.27. The point
v is a S-point and ¢ and d lie on the same side of the line ab. Therefore (1,6),

22The four points will be at made up of at least one A-point, r, and E-points.
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Figure 2.25. Topology reduction: the original six point topology and positions of points in
the Euclidean plane.
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Figure 2.26. Topology reduction: the labelling of points and replacement of S-point z by
E-point (1, 6).
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5 and y are removed from the topology and replaced by an E-point that is on
the opposite side of the line ab from ¢, this is E-point ((1,6),5). For the FST
to exist the S-point y must lie on the E-arc ((1,6),5). The reduced topology is
shown in Figure 2.28. The reduction process ceases because the topology has
been reduced to a four point topology with points 2, 3, 4 and ((1,6),5).
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Figure 2.27. Topology reduction: the labelled reduced five point topology and replacement
of S-point y by E-point ((1, 6),5)

The four point FST method described above finds the FST for the given
topology. The FST is shown in Figure 2.29. Not shown in the figure is the axis
of the FST. The axis is the segment from E-point (2, ((1,6),5))) to E-point (4, 3).
The length of the segment is the length of the FST of the original six point full
Steiner topology. Although at this stage it is not known if the FST exists. This
is dependent on the successful generation of the S-points y and =.
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Figure 2.28. Topology reduction: the reduced four point topology and points.
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((1,6), 5)

((1,6), 5)

Figure 2.29. The four point topology FST.
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Expansion

Given a successfully constructed four point FST it is necessary to backtrack
and expand the E-points into S-points. This is relatively straightforward and
is equivalent to finding the S-points of a succession of three point problems. If
it is not possible to find a S-point then the FST for the original topology does
not exist. The expansion is shown by example using the reduced topology of
the previous section.

Figure 2.29 shows a segment from z to ((1,6),5). This is equivalent to the
axis of a three point problem for points z, 5 and (1, 6). The S-point y must be
the intersection of the axis and the E-arc ((1,6),5) if the the three point FST is
to exist. Figure 2.30 shows the expansion of E-point ((1, 6),5) to give S-point y.

((1,6), 5)

3 (1,6)

Figure 2.30. Topology expansion: E-point ((1,6), 5) is replaced by S-point y.

The second and final expansion is to find S-point z by expanding
E-point (1,6). Point z is the intersection of the segment y(1,6) and the
E-arc (1,6). Figure 2.31 shows this expansion and the FST of the original

topology.
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(1,6)

w Y

Figure 2.31. Topology expansion: E-point (1, 6) is replaced by S-point z and the six point
FST is found.
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2.9.5 Summary of FST construction methods

The construction of three, four and five or more point FSTs with a given full
Steiner topology has been described above.® The three point FST method is
very straightforward and involves two steps: finding an E-point then attempt-
ing to find the S-point. The four point FST is slightly more complicated, it
involves finding two E-points, the axis and finally the S-points. There are sev-
eral conditions for the existence of the four point FST with a given topology,
namely the quadrilateral is convex, the axis intersects the segments joining
the points giving the respective E-points, and the E-circles (and E-arcs) do not
intersect. The method for constructing five or more point FSTs is the most
complex method. It is necessary to reduce the topology to a four point full
Steiner topology using rules based on the relative positions of points. The four
point FST is found using the four point method and then the E-points formed
during the reduction phase are expanded to give the S-points and the FST of
the original full Steiner topology. The process of finding the FST stops when
it is not possible to reduce the topology any further or an S-point can not be
found, and therefore the original FST does not exist. Or the original FST is
successfully constructed.

210 Optimal Algorithms

Several optimal algorithms have been proposed and implemented for the Eu-
clidean Steiner tree problem over the years. All are cursed by the NP-hardness
of the problem to be super-polynomial. However clever programming and
geometry have combined to give implementations capable of solving up to
30-40 point problems in reasonable amounts of time and some 100 point prob-
lems if given enough time.** The first algorithm implemented is Cockayne’s
algorithm and is described in some detail. The amount of processing is evident
from the description and the super-polynomial nature is apparent. The other
main type of algorithm is GEOSTEINER. This algorithm and its successors are
also described.

2.10.1 Cockayne’s algorithm

The first algorithm for the Euclidean Steiner tree problem was proposed by
Melzak. It was firstimplemented by Cockayne and has been improved upon by
Cockayne other researchers. The best implementation can solve up to twelve
point problems in reasonable time. The algorithm attempts to construct FSTs
for all possible subsets of the points and amalgamate the FSTs to form the SMT.
Atits core is the decomposition theorem described in Section 2.7. The algorithm
is generally known as Cockayne’s algorithm. In this section a description is given

23The construction of the two point FST has not been discussed. It is a trivial problem. The
shortest connecting network for two points is a straight line from one point to the other.

24Reasonable being of the order of tens of minutes and enough being 12 hours.

2Section 2.1 Hwang et al. [19].
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of the algorithm as described by Winter [42]. This algorithm is the improved
version of Cockayne’s algorithm called STEINER73.26

The decomposition theorem states that the SMT of a set of points is the
union of FSTs of subsets. Therefore to find the SMT of a set of points A it is
necessary to construct all divisions (Aj,..., A;) of A and for each component
A; find its shortest FST 77, called the minimum length FST. If all 7; of a division
exist then the union (J!_; T} is a candidate for the SMT of A.

To reduce the computational effort a range of tests exist for eliminating
divisions from consideration. Some tests use properties of the Steiner polygon
of A and A; and the minimum spanning tree of A, other tests are geometrical
or combinatorial. The MST is the first candidate for the SMT, and the SP is
used to decompose the problem, if fortunate, and provides information about
the maximum degree of each point in the SMT (see Section 2.8).

The consideration of all divisions of A is streamlined by constructing di-
visions in an order dependent on the number of points in the components of
a division. The partition of division (A1, ..., A;) is (|44],...,|A4), and funda-
mental relationships between the partition and number of edges in a tree made
up of FSTs of the division provide rules for determining allowable partitions.
Each component A; has a minimum length FST or MLFST T;, assuming it exists.
The union of MLFSTs 7' = (Ji_, T} is a tree connecting A if [J!_; A; = A and
|A;| > 2V . Because 7' is a tree connecting n A-points and is the union of ¢ FSTs
containing a total of 3_'_; (| A;| — 2) S-points, it must have n + >_i_; [4;] — 2t — 1
edges. Each 7; is a FST with |4;| A-points and |A;| — 2 S-points, and therefore
has 2 x |A;| — 3 edges, and 7' must have 2 x 3_'_; | A;| — 3t edges. Equating the
two expressions for the number of edges in 7' gives

13 13
n+Z|Ai|_2t_1:2XZ|Ai|_3t7
=1 =1

and rearranging yields

t
Z|A2| :n—l-t—l.
i=1
The possible partitions are easily generated by requiring |A;| > |4, >
... > |A]. In this case the maximum size of component A; is given by |A4;| =
min(|A;_1],n+i—1— Y2} |A;|) where the conditions ¥/, |4;| = n+t—1and
|A;| > 2V ¢ are always maintained. Table 2.3 shows all the allowable partitions
for an eight point set.
For component A; the following tests are performed before attempting to
tind its MLFST. The components A; j =1,...,:—1have already been success-
fully generated and form a partial SMT candidate 1" = U/} 7.

1. The maximum degree of each point in A; must not be exceeded. If «; is
an A-point in A; then it can appear in at most A; — 1 of the components
A1, ..., Ai—1 where M; is the maximum degree of «;.

26See Section 16 Winter [42] or Section 2.1 Hwang et al. [19] for references.
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t Allowable Partitions

(8)

(7,2) (6,3) (5,4)

(6,2,2) (5,3.2) (4,4,2) (4,3,3)
(52,2,2) (4,3,2,2)
(42,222 (33,2,2,2)
(32,2,2,2,2)

7 (22222272)

NOl = WIN -

Table 2.3. All the allowable partitions for an eight point set. The t = 7 partition is the
partition of the MST.

2. The union 7; U T" must not contain any cycles. Cycles can be detected
immediately if a reachability matrix is used. Although this provides a
easy check on cycles the reachability matrix must be updated every time
a tree is added or removed from 7".%

An alternative test that detects cycles, but not necessarily immediately, is
given by the following two conditions:

AN A <1V j=1,...,i—1

i;vm—\ Ui A, | <

If either condition is not satisfied then a cycle exists.?®

The derivation of the second condition is similar to the derivation of
the condition on sizes of allowable partitions. Each 7} is a tree with
|A;] A-points and |A;| — 2 S-points. Therefore the union U;_; 7} has at
most Y_'_; (2|A;] — 3) edges. But Ui_, T} contains | Ui_; A;| A-points and

'_1(|A;] — 2) S-points and must have |U'_; A;| + X0 (|4,]—2) — 1
edges. Therefore

\U”A\+Z|A|— )—1> 22|A|
expanding gives
Ui A, \+Z|A|—2@—1>2Z|A| 3,
7=1

and finally rearranging and changing to a strict inequality by removing
the minus 1 gives the condition above.

3. If | A;| = 2 then the two points in A; must be adjacent in the MST of A.

?’The reachability matrix of 7" is a n x n matrix where n = | A| with element (3, j) equal to 1
if there is a path from «; to a; in 7" or 0 if there is no path.
281t is possible that 7' U T; is not connected.
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4. If |A;| > 3 then the Steiner polygon of A; must not be degenerate.

To find the MLFST of component A; it is necessary to find all the FSTs
and therefore process all the non-equivalent associations (see Section 2.9). All
permutations of the |A;| A-points must be considered, and for all these permu-
tations all possible bracketings of the points must be investigated. The number
of permutations that must be considered is reduced by using properties of the
Steiner polygon of A. The following important result provides the reduction:

The association giving the MLFST of A; is such that the order of
A-points on the SP of A; isidentical to the cyclic order of the A-points
induced by the SP of A;. (The A-points not on the SP can be in
any position in the association.) Therefore only permutations with
the correct cyclic ordering of A-points on the SP of A; must be
generated.”

A further reduction can be achieved by having an A-point not on the SP
as the last point of the permutation. For component A; the number of permu-
tations is reduced from (|A4;| — 1)! to ﬁ%ﬂ where m < |A;| is the number of
A-pointson the SP of A; (whenm = | A;| the number of permutationsis one). For
example, Figure 2.32 shows the Steiner polygon for a set of six points. There are
four points on the SP. The permutations that must be considered where point 5
is arbitrarily selected from the A-points not on the SP to be the end point of
the associations are: (6,1,2,3,4,5),(1,6,2,3,4,5),(1,2,6,3,4,5),(1,2,3,6,4,5)
and (1,2,3,4,6,5). For each of these permutations the non-equivalent associa-
tions are generated and an attempt made to find the FST for each association.
In this six point example the number of permutations is dramatically reduced
from 5! = 120 to 3 = 5. The more points on the SP the better!

®5
® 6

Figure 2.32. An example Steiner polygon for demonstrating the cyclic ordering of A-points
induced by the polygon. Only six permutations must be considered for this example.

To generate non-equivalent associations from permutations pairing vectors
are used. The pairing vector V' for a component of size n has n — 2 elements V;

PTheorem 16-1 Winter [42].
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1,1,1,1) (331,1)
21,1,1) (3321)
2211) 41,1,1)
2221) (421,1)
G111 (4221)
(G211 431,1)
(3221) (4321)

Table 2.4. The pairing vectors for a six point permutation.

j A Vi oAy A A

1 3,6,1,2,5,4 3 1 2 3,6,(1,2),5,4

2 3,6,(1,2),5,4 2 6 (1,2) 3,(6,(1,2)),5,4

3 3,(6,(1,2)),5,4 1 3 (6,(1,2)) (3,(6,(1,2))),5,4
4 (3.(6.(1,2)),54 1 (3.(6.(12)) 5 ((3.(6.(1,2))).5).4

Table 2.5. An example of using a pairing vector to transform a permutation into an asso-
ciation. Pairing vector V = (3,21, 1) transforms permutation (3, 6,1, 2,5, 4) into association

((3,(6,(1,2))),5), 4.

where V; <n—j—-1Vjand V; > V;;1 1 < j < n — 2. The pairing vector is
used in an iterative fashion to transform a permutation into an association. The
initial “association” A is the permutation. The j* association is generated by
replacing the V" and (V] 4 1)"" elements of A’~! with the E-point (A{}J_l, A{/J_}rl),
the new association is A’. The required association is A”~2. The number of
non-equivalent associations of a permutation of size n is %.30 Table 2.4
shows the fourteen pairing vectors for n = 6. Table 2.5 shows the transfor-
mation of permutation (3,6,1,2,5, 4) into association ((3, (6,(1,2))),5),4 using
the pairing vector V = (3,2,1,1).

For each non-equivalent association of each permutation the FST is found,
if it exists. The FST with the shortest length, if any, is the MLFST 7} of A;. The
MLEST must satisfy the following conditions if it is to be part of a candidate
for the SMT:

1. The length of the tree | J'_; 7; must be less than the length of the shortest
candidate for the SMT found to date.

2. A; may have a point in common with at least one of Ai,..., A;_1. The
angle made by edges incident to a common point must be greater than or
equal to 120°. More precisely, for some j < ¢ A; N A; = {ax}, in both T
and 7; there is an edge incident on ;. The edges must make an angle of
at least 120° with each other. (In each tree there is only one edge incident
on a; because the trees are FSTs.)

Atree T' = |J,_, T} that passes all the tests and is made up of components such
that Ui_; A; = A is the new SMT candidate.

3UEquation 16-4 Winter [42].
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For non-degenerate problems up to 12 point problems can be solved in
a reasonable time. The time required is strongly dependent on the number
of points on the Steiner polygon. The more points on the SP then the fewer
permutations to be considered for each component.

2.10.2 Winter’'s GEOSTEINER algorithm

An alternative to Cockayne’s algorithm is GEOSTEINER developed by
Winter [42] [43].3' Some properties of Cockayne’s algorithm are undesirable
and are improved upon by Winter. These undesirable properties are:

e The computation of the minimum length FST for a component is generally
repeated many times;

e S-points must be calculated for every FST;

¢ Only a small number of geometrical tests are used to reduce the amount of
computation. The tests used are the angle test to check the angle between
edges of MLFSTs at points in common, and the check on interior angles
of the Steiner polygon to determine the maximum degree of A-points in
the SMT;

e All associations of the same component are processed at one time. How-
ever associations of different components may have common parts and
could therefore be processed at the same time. Unfortunately the al-
gorithm does not recognise this and the same E-points are constructed
repeatedly.

e The execution time of a problem is strongly dependent on the number of
points on the Steiner polygon.

Clearly there is a substantial amount of repeated and unnecessary compu-
tation. Winter eliminates as much computation as possible by employing an
almost reverse approach compared to Cockayne. Partition, divisions, com-
ponents are not the language of GEOSTEINER, instead proper associations,
dominating edges and points become part of the vocabulary. GEOSTEINER
has two distinct parts. The first involves finding all FSTs that can possibly be
part of the SMT by using powerful geometrical tests to eliminate E-points and
ESTs that can not be part of the SMT. The second part is searching the list of
FSTs and forming feasible unions and finding the shortest feasible union, the
SMT.

The first part is by far the most complicated. All FSTs are found and tested.
This is done once for each FST and therefore each association is processed
once. Winter uses proper associations to generate non-equivalent associations,
and further the order of generation is such that associations with common

3Winter [42] is a Master’s thesis and Winter [43] is a paper published about four years later.
The former is very detailed in description, discussion and justification, while the latter is brief
in comparison but describes a more streamlined version of the algorithm.
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E-points are processed at the same time. An association is an E-point connected
to a terminating A-point. The E-point can be represented as a binary tree of
other E-points or A-points. When connected to the terminating A-point an
extended binary tree is created. A proper association is an association that
when represented as an extended binary tree has a specified well defined
structure which allows only a certain labelling of the A-point leaves of the tree.
As E-points are formed (this is part of the proper association generation) they
and the proper associations are subjected to a number of complex geometrical
tests using both properties of the A-points on which they are based and other
A-points. The tests are used to determine if the E-point is part of a non-existent
FST or the FST can not be part of the SMT. The second part of GEOSTEINER is
the processing of the list of successful FSTs. A standard backtracking disjoint
set union procedure is used to find the SMT.

GEOSTEINER significantly reduces the computation through the proper
association generation mechanism and efficient geometrical tests. The number
of E-points and FSTs surviving the tests is typically very small. E-points are
only constructed once and S-points are only determined after the SMT has been
found by testing feasible unions of FSTs. The execution time of GEOSTEINER
is far less dependent than Cockayne’s algorithm on the number of points on
the Steiner polygon. In fact the efficiency of the tests increases as the number of
points on the SP decreases. These features make GEOSTEINER considerably
taster than Cockayne’s algorithm, and bring the solvable range up to fifteen
points.

2.10.3 Cockayne and Hewgill’s improvements to GEOSTEINER

Cockayne and Hewgill suggest improvements to the construction of feasible
unions part of GEOSTEINER. The first set of improvements nudges the solvable
range up to seventeen points (see Cockayne and Hewgill [6]).** The changes
involve preprocessing of the list of FSTs and the use of decomposition theorems
to partition the list into smaller lists that each provide a SMT for a subset
of A. The second set of improvements provides more substantial gains (see
Cockayne and Hewgill [7]). The gains are based on further preprocessing of
the list of FSTs including removal of FSTs, application of the decomposition
theorems and a more sophisticated search of the list or lists if decomposition
occurred. The solvable range in reasonable time is extended to 30—40 points,
although some 100 point problems have been solved.*

2.10.4 Proposed algorithms

The proposed Luminary algorithm of Hwang and Weng does not find the SMT.3
Instead it finds the unique Steiner tree in the set of degenerate Steiner topologies

32 About 80% of their random 30 point problems were solved as long as decompositions of
no more than 17 points were obtained.

3 Appendix B contains thirty 100 point test problems. These problems are used in later
chapters to test the success or otherwise of heuristics for the Euclidean Steiner tree problem.

#Section 2.8 Hwang et al. [19].
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of full Steiner topology 7. This set is denoted by Ds(7'). A degenerate topology
of T'is obtained from 7' by deleting edges and collapsing the end points of the
edges. To find the SMT all full Steiner topologies must be investigated. The
time to find the unique Steiner tree of Ds(7) is O(n?). Unfortunately the
number of full Steiner topologies for »n points is a super-polynomial function
of n (see Table 2.1).

The proposed Negative Edge algorithm of Trietsch and Hwang is similar to
the Luminary algorithm in that it seeks to find the unique Steiner tree for every
Ds(T').3° Ttuses lower bounds on the lengths of FSTs and the branch and bound
technique to construct a SMT.

$Section 2.7 Hwang et al. [19] and Trietsch and Hwang [39].
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Chapter 3

Selected Applications of the
Euclidean Steiner Tree Problem

Three applications of the Euclidean Steiner tree problem are described in this
chapter. The necessary generalisations of the problem are discussed and either
optimal or approximate methods are presented. The Euclidean Steiner tree
problem is an appropriate starting point from which to consider the problems.
The generalisations are understandably more difficult to solve than the Eu-
clidean Steiner tree problem. Hence optimal solutions to all but the smallest
problems are impossible to find. Regardless of the success or otherwise of the
methods, the applications demonstrate that the Euclidean Steiner tree problem
is a fundamental problem of network design from which many real problems
are derived.

3.1 Augmenting an Existing Network

Trietsch [40][41] investigates generalisations of the Euclidean Steiner tree prob-
lem. The two problems are:

1. Given an existing network and a collection of points, connect the points
to the network at either vertices or arcs of the network by links of minimal
length.

2. Given many existing networks connect the networks using minimal
length links.

Both problems are of considerable practical importance. The first is applicable
to the problem of connecting new customers to an electrical network. The
second is a generalisation of the first problem and is applicable to the following
problems:

e The connection of new computers and communication systems to an
existing network.

e The interconnection of several sewerage systems to a common treatment
plant.
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e The interconnection of electricity supply networks to better cope with
peak time demands and provide backup in times of failure.

A generalisation of the Euclidean Steiner tree problem is an option for such
problems if it is assumed the cost of making a connection to an existing network
and the cost of junctions is negligible, and the Euclidean distance is a good
approximation to the cost of a link. This ignores that cost may be dependent
upon flow along a link and the world is not flat. The standard Euclidean Steiner
tree problem related decision problem is NP-hard, therefore the generalisations
are also NP-hard.

In the remainder of this section extensions of some fundamental properties
of Steiner minimal trees and Steiner polygons are described, and these are used
to aid the solution of an example of the problem of connecting a set of points
to an existing network.!

3.1.1 The problem

The existing network is G(V, A) where V is the set of vertices and A is the set of
arcs spanning V, N is the set of points to be connected to ¢ using minimal length
links. The optimal connection of G and N gives a generalised Steiner minimal
tree, or GSMT. i can be any network, therefore the GSMT isn’t necessarily a
tree. If G contains cycles then so too will the GSMT. The GSMT for G and N
will not always be a Steiner tree for the set of points NV U V. Figure 3.1 shows a
network with vertices A = {A, B, C, D} and ten points that must be connected.

6@

Figure 3.1. The example problem: a network and the ten points which must be connected to
it using minimal length links.

Consider a network consisting of two vertices and one arc, a segment. The
connection of another point to the network will be either by a line to one of the
endpoints, or by a line perpendicular to the segment. This is called the basic
case (see Figure 3.2).

If [N| > 1 then the GSMT will be made up of one or more SMTs of subsets
of N connected to the segment or its endpoints. This extends to a network with

!This is the subject of Trietsch [40]. The example problem used by Trietsch is used here to
demonstrate important properties and the method of solution.
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Figure 3.2. Connecting a point to a segment using the smallest length connection.

more than two vertices and many arcs. A GSMT where N is connected to & by
one link is called a simple GSMT. Any other GSMT is a compound GSMT, and is
a combination of simple GSMTs for subsets of N and A (see Figure 3.3).

Figure 3.3. The GSMT for the example problem is the connection of four simple GSMTs.
Three by perpendicular links and one by connection to an endpoint.

A possible approach to finding the GSMT of & and N is to consider all
subsets M of N in combination with each arc of ¢ and find the simple GSMT
of each combination. Each subproblem involves finding the SMT for | M| + 1
points where the arc is considered a “super-point”. The tree spanning M is
joined to the arc either by a line to an endpoint or by a perpendicular to the
segment. The connecting link may originate from a Steiner point or a given
point of the GSMT. For example, in Figure 3.3 the GSMT of {1,2,3,4} and
arc BD is connected by a link to 4, while the GSMT of {9,10} and arc BC
is connected by a link to the Steiner point. This can be incorporated into a
modified method of finding a full Steiner tree, the cornerstone of the SMT
algorithm, to give a generalised full Steiner tree, or GFST. The shortest collection
of simple GSMTs spanning N U V' is the GSMT. However, knowledge of the
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ordinary Euclidean Steiner tree problem indicates this approach is intractable.
Trietsch offers hope by introducing the generalised Steiner polygon or GSP, and
with ordinary Steiner polygons and convex hulls shows how the search for the
GSMT can be improved.

3.1.2 Two decomposition methods

The Steiner polygon of N and existing network - provide a valuable decompo-
sition if the two intersect. The intersections create disjoint sets of N that can be
solved separately. This is demonstrated in Figure 3.4. The Steiner polygon in-
tersects i at arcs BC and B D, splitting the problem into two smaller problems
for sets of points {1,2,3,4,8,9,10} and {5,6,7}.

Figure 3.4. The Steiner polygonof{1,...,10} intersects the existing network and decomposes
the problem into two smaller problems: {1,2,3,4,8,9,10} and {5, 6,7}.

The second decomposition method uses the Steiner polygon of N UV,
called Q. If @ can be partitioned by sequences of edges of ¢ then the problem
is decomposed into smaller problems with sets of points given by the points in
the disjoint sets of the partition of ) and in /N. For example, in Figure 3.5 the
Steiner polygon of {1,...,10} U {A, B,C, D} is partitioned by the edges AB,
BC and BD into three smaller problems for the sets {1,2,3,4}, {5,6,7} and
{8,9,10}. This is one better than the first decomposition method.

The second method is more powerful than the first, but the first is easier to
grasp and use. Repeated application of the first method does not necessarily
give as good a decomposition as the second method. For instance applying the
firstto {1,2,3,4,8,9,10} in the example problem does not give a decomposition.

Once a decomposition, if any, has been found the arcs of ¢ that must be
considered with subsets M of N can be determined. The rule for deciding
which arcs of ¢ need be considered for connection with M is: only arcs which
can be connected to the convex hull polygon of M by a straight line which does
not cross any other arc of G need be considered for connection to M. Notall arcs
need be considered. For example, in Figure 3.5 arc AB shouldn’t be combined
with any subset of {5,6,7}, and subsets of {1,2,3,4} can be combined with
arcs AB and BD.
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Figure 3.5. The Steiner polygon of {1,...,10} U {4, B, C, D} is partitioned by edges in G
and decomposes the problem into three smaller problems: {1,2,3,4},{5,6,7} and {8,9,10}.

3.1.3 The generalised Steiner polygon

In the standard Euclidean Steiner tree problem the Steiner polygon provides a
method of decomposition and gives a cyclic ordering to points which is benefi-
cial in reducing the effort in constructing full Steiner trees and Steiner minimal
trees. Two further types of Steiner polygon are defined for the generalised
Steiner tree problem: the semi-generalised Steiner polygon, or SGSP, and the gen-
eralised Steiner polygon, or GSP. Both are useful when constructing GSMTs and
have the following properties:

o the GSMT is within the SGSP;
e asimple GSMT is within the GSP;

e the cyclic order of points on the GSP can be used in the construction of
GFSTs.

The method of finding a SGSP and GSP is discussed for the case of a network
G/(V, A) having only two vertices and one arc connecting the two vertices by
a segment. The vertices are called « and b. The segment is considered a
super-point for the purposes of the SGSP and GSP construction. This case is
of prime interest because the GSMTs of subsets of points with one arc are the
fundamental building blocks of larger GSMT problems.

The first step in finding the SGSP is to join all points to all other points using
1(n + 1)n segments, where n = |N|. The segments connecting a point in N to
the super-point are done so as in the basic case, that is by a perpendicular line
to the segment ab or by a line to either « or b. The convex hull polygon of these
segments is the starting point for finding the SGSP. Figures 3.6 and 3.7 show
the initial step of SGSP construction. In the first figure all of the segment ab is
part of the convex hull polygon, in the second the segment cd, a subset of ab, is
part of the convex hull polygon.

The next phase of finding the SGSP is identical to the iterative method of
the ordinary Steiner polygon construction. For each segment k! of the convex
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forming the

Figure 3.6. The first step in constructing the semi-generalised Steiner polygon

convex hull polygon.

forming the
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Figure 3.7. The first step in constructing the semi-generalised Steiner polygon
convex hull polygon. Only segment cd of the segment ab is part of the polygon.



hull polygon, where k,! € N, a third point m € N U {qa, b} is found such that
the triangle formed by the three points contains no other points and the angle
made at mm by the segments km and m/ is greater than or equal to 120°. If such
an m is found then the edge k! is replaced by km and m/. This gives a new
polygon and the step is repeated until no more changes can be made. The final
polygon is the SGSP.

Applying this to the convex hull polygon of Figure 3.6 gives no changes.
Therefore the convex hull polygon is the SGSP. The SGSP for the points and
network shown in Figure 3.7 is shown in Figure 3.8. Only one small change is
possible: a point near the polygon at the top of the figure is incorporated into
the SGSP. The rightmost interior point can not be added because both k and /
must be in V, the point d is not in V.

Figure 3.8. The application of the iterative method to the convex hull polygon of Figure 3.7
gives only one change.

The generalised Steiner polygon is found by a similar iterative process
starting from the semi-generalised Steiner polygon. For each edge &/, where
k € N and [ can be a member of N or any point on the segment ab (or cd), a
third point m € N is found such that the region enclosed by segments £/, km
and m/ contains no other points and the angle made at m by the segments km
and m/ is greater than or equal to 120°. If such an m is found then the edge £/
is replaced by km and m/. The above is repeated using the new polygon until
no further changes are possible. The final polygon is the GSP.

The definition of / allows it to be the super-point, the segment a4 (or possibly
cd depending on the problem). The segments %/, km and m! do not necessarily
form a triangle, the point at which £/ meets b may not be identical to where
ml meets ab. The actual point on the segment b is defined by the basic case.
This is demonstrated in Figure 3.9 using the SGSP of Figure 3.8 as a starting
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point. The new polygon in the figure is the GSP for the problem. The edges kd
(equivalent to kl), km and me (ml) define a region containing no other points
and the angle at m is greater than 120°.> Hence kd is replaced by km and me.

Figure 3.9. The application of the iterative method to the semi-generalised Steiner polygon
of Figure 3.8 gives only one change. The dashed edge is removed and replaced by segments km
and me.

The GSP of the problem in Figure 3.6 is shown in Figure 3.10. The move
from the SGSP to the GSP involves two changes (both on the right hand side
of the figure near b).

The decomposition methods, the SGSP and the GSP provide valuable infor-
mation for the search for the minimal length connection of a set of points to an
existing network. Unfortunately the problem still remains very difficult as it
involves the solution of many Euclidean Steiner tree problems and is tractable
for only small problems and decomposed sub-problems.

3.2 Finding a Minimum Cost Communication Net-
work

The problem of designing a communication network that connects a number
of sites where there is a cost per unit distance of transmission medium can be
considered a generalisation of the Euclidean Steiner tree problem. Gilbert [15]
considers this generalisation. He investigates networks for different forms of

2Trietsch is not clear about whether the angle kme or kmd must be greater than or equal to
120°. He states angle k! must be greater than or equal to 120°. A safe approach is to assume
kmd is the required angle. Angle kme will always be greater.
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a b

Figure 3.10. The generalised Steiner polygon of the problem in Figure 3.6.

cost function and provides a geometrical technique for finding minimal cost
connections.

Gilbert approaches the problem from a Steiner tree perspective by general-
ising properties of Euclidean Steiner trees. Although for a particular problem
the minimal generalised Steiner tree may not be the lowest cost solution, but it
will be a very good solution. The minimum cost network may not necessarily
be a tree, or if a tree it may contain points that have four or more lines incident
on the points.’ The assumptions for using the Euclidean Steiner tree problem as
a starting point are that the world is flat and the cost of a junction is negligible.

3.2.1 The problem

Given a set of sites or cities, A, to be connected by a communication network
where N(z, ) communication channels are required between each pair of cities
A; and A; and the cost per unit distance of providing N channels is f(V). The
objective is to find a network with minimal cost, that is minimise >_;cq d; f (Vi)
where G is the network, / is a link in &, d; is the length of link / and N, is the
number of communication channels required on link /.

Special cases of the function f(/N) lead to particular forms of minimal con-
nection networks:

o f(0) represents the fixed or preliminary cost of a link and is independent of
the number of channels. Examples of such costs are legal fees, surveying
costs, the cost of digging a trench or installing microwave transmitters
(as costs per unit distance).

3The generalised Steiner trees of this section are different to the GSMTs of Trietsch.
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e If f(N)isindependent of N then the minimum cost network is the Steiner
minimal tree of A. In this case the only costs per unit distance are prelim-
inary costs. Using the SMT may be satisfactory approach if preliminary
costs far outweigh the costs of the actual transmission medium (as costs
per unit distance).

e If f(N) = N then the the minimal network is a complete network. This

is a network where every city is connected to every other city by a direct
link.

e If f(N) = a+ bN then simple bounds can be found for the minimum cost.

The additional cost of adding one more channel is b and is independent
of N.

3.2.2 Bounds for a linear cost problem

For minimal network G with cost function f(/N) = « 4+ bN the total network

cost Cg is
CG = GZ dl + bZdI(Nl)

leG leG

Bounds for the total cost can be derived by considering each component of the
expression separately. The total preliminary costs must be at least those of the
SMT of A, thatis aDs where D5 is the length of the SMT. The total transmission
medium related costs are minimised by using a complete network, this has
cost by, d(z,j)N(7,7) where d(z, j) is the distance between cities A; and A;.
A lower bound for C is

Cr = aDs+ b3 d(i, j)N(i, ).
i<y
An upper bound for C¢; is the cost of the complete graph
i<y

where Do = ,;d(7,7), the length of the complete network. The bounds
can be simplified by defining » the average number of channels between cities
weighted by the distance

1 o o
V= D—Zd(lvj)N(lvj)‘
C i<
The bounds for the minimal cost are then

CLDS + bl/DC S CG S CLDC + bl/Dc.

The quantity » can be thought of as a measure of traffic level, and is con-
venient when the number of channels is only known in a relative sense, for
example the number of channels required from A to B is five times the number
from B to C. Gilbert states that the lower bound is accurate at low and high
values of v and at worst is about 11% below the true minimal cost for any ».

63



3.2.3 A three city minimum network

Understanding the construction method of a simple three city network is fun-
damental to the construction of larger networks. The construction is shown
by example and only Steiner topologies are investigated. The method is not
applicable where more than three links can be incident on a point. The main
difference between this method and the ordinary Steiner tree method is that
equilateral triangles are no longer used. Instead triangles with edge lengths
dependent on costs per unit distance are used to find “equilateral points” and
arcs on which “Steiner points” lie.

The three point generalised Steiner tree with one Steiner point can be found
using a ruler and compass. The general case for three points A;, A> and A3 with
respective costs of ¢;, ¢, and ¢; to the S-point is demonstrated. Using any two
points, A; and A, in this case, their E point Aj , is the point which is distance
d; = @ from A; and distance d, = - £ from A,, where d is the distance from
Aq to Az Aj, is on the opposite side of the line passing through A; and A,
from As. The S-point is the intersection of the segment from A;, to A3 and the
arc A; A, of the “E-circle” that circumscribes the three points A;, A; and A .
If the S-point does not exist then the generalised Steiner tree with the given
topology does not exist. Figure 3.11 is an example of the construction.

Figure 3.11. The construction of a three point generalised Steiner tree with one Steiner point.
The dotted circles are used to find the center of the circumscribing circle. The generalised
Steiner tree is shown with bold lines. In this construction the cost per unit distance of the link
to Aj is higher than either of the other two link costs and has pulled the Steiner point closer to
As.
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The example problem is to connect three cities A, B and C at coordinates
(2,3), (4,8) and (9,6) respectively. The communication channel requirements are
10 between A and B, 3 between A and C and 2 between B and €. The cost
per unit distance function is f(/NV) = 100 + 6 N. The SMT for the cities is shown
in Figure 3.12 together with the channel requirements for a network with the
same topology. The link costs per unit distance are 172, 178 and 130 for the
links from the S-point to A, 5 and C respectively. The S-point in the SMT is at
(4.6340,6.5207). The length of the SMT is 10.4033 and has cost 1631. The length
of the complete network is 18.3861 and has cost 2040 (which is determined
below as the upper bound of the minimum cost network).

Figure 3.12. The SMT for the three city problem and the channel requirements for the
topology.

Table 3.1 shows the complete network distances and the weighted channel
requirements. The value of v is 2880 = 1.83. Using this and other quantities
bounds for the cost of the minimum cost network are determined. The lower
bound is 100 x 10.4033 + 6 x 1.83 x 18.3862 = 1242 and upper bound 100 x

18.3862 + 6 x 1.83 x 18.3862 = 2040.

Link Distance Channels Weighted

Channels

(A, B) 5.3852 10 53.852
(A, C) 7.6158 3 22.847
(B,C) 5.3852 2 10.770
18.3862 33.6170

Table 3.1. Distance and channel requirements for the three city problem.

The generalised Steiner tree with the same topology as the SMT above can
easily be found, if it exists, using the method described above. Using 55 and C,
their E-point is 2324130 — 39330 from B and >#2X172 — 52037 from C. The
generalised Steiner tree construction is shown in Figure 3.13. This network is
slightly different to the SMT. The S-point is pulled towards A and B because of

the relatively higher costs per unit distance of the links connecting the points.
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The S-point is at (4.2912,6.6349). The cost of this generalised Steiner tree is
1623, about 0.5% cheaper than the SMT.

Figure 3.13. The example three city problem generalised Steiner tree construction. The
dashed circles are used to find the E-point of B and C. The dotted circles are used to find the
center of the circumscribing circle.

There are three other possibilities to consider. Each has no S-point and has
two links. These are shown in Figure 3.14. The total cost of the first network
is (100 + 6 x 13) x 5.3852 + (100 + 6 x 5) x 5.3852 = 1659. Similar calculations
give costs of 2282 and 1961 for the second and third networks respectively. The
complete network is cheaper than the second! The ten channel requirement for
A to B is needlessly routed through distant C'.

3.2.4 Minimum cost networks for four or more cities

For four or more cities the generalised Steiner tree with a given topology
is found using the same reduction and expansion techniques presented in
Chapter 2. Instead of creating E-points and E-arcs using equilateral triangles
and circles circumscribing the equilateral triangles, the triangles with edge
lengths based on the relative costs of links are used (as demonstrated in the
three city problem above).

A five city problem is solved using the ruler and compass method. The five
cities have channel requirements given in Table 3.2, and Figure 3.15 shows the
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Figure 3.14. The three possible two link networks and the requirements on each link.
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location of the cities, the SMT and the link requirements for the SMT topology.

City B ¢ D E

A 10 3 1 5
B 2 12 2
C 6 4
D 10

Table 3.2. Channel requirements for the five city problem.

Figure 3.15. The example five city problem SMT and channel requirements for the topology.

To find the generalised Steiner tree with the same topology as the SMT it is
necessary to find the E-points corresponding to B and F, and C and D using
the relevant costs per unit distance. The two S-points are the intersections
of the segment joining the E-points and the E-circles. The ruler and compass
construction is shown in Figure 3.16 where a 50 + 5 x NV cost per unit distance
function is used. The two S-points have been pulled towards D and the link
joining the two is shorter than in the SMT. The D link and S-points” links have
the highest channel requirements. The reductions in length are at the expense
of the B, C'and £ links, which have lower channel requirements. Itis important
to note that this network is not necessarily the minimal cost network. There
are many more Steiner topologies to be investigated.

The minimal cost network is not necessarily a generalised Steiner tree and
may in fact have cycles or have four links incident on a point. The Steiner
methods will only find Steiner trees if they exist. And to find the minimal
generalised Steiner tree for a problem it is necessary to investigate all feasible
Steiner topologies. This has been shown in the previous chapter to be an almost
impossible task for all but the smallest problems.
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Figure 3.16. The example five city problem generalised Steiner tree with the same topology
as the SMT. The bold lines show the generalised Steiner tree, the dotted circles are used to find
the E-points, the dashed circles are used to find the centers of the circumscribing circles, and
the solid circles are the E-circles.
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3.3 Building Design using Steiner Trees and Steiner
Circuits

Smith and Liebman [35] investigate the layout of services within buildings and
the formulation of the layout problems as either Euclidean Steiner tree prob-
lems or rectilinear Steiner tree problems. Steiner circuits are introduced as
possible solutions to certain classes of layout problems. The services of a
building include corridors, stairways, elevators, heating, ventilation, air con-
ditioning, plumbing, lighting and other electrical systems. If the lengths of the
service networks are of prime concern and the services represent a significant
portion of the cost of a building then finding optimal length configurations is
of importance.?

Both the Euclidean and rectilinear Steiner problems are undirected and
without costs. For services such as plumbing and drainage flow is only possible
in one direction. These services and heating, ventilation and air conditioning
have links in the network with different costs depending on the points at which
the links begin and finish: different points, or rooms, will have different re-
quirements. Smith and Liebman describe approximate methods using directed
Steiner trees and weighted directed Steiner trees.”

Steiner circuits are networks that visit each given point once and only once,
there are no direct connections between given points and each given point is
connected to a point somewhere along the segment joining the given point
to its adjacent Steiner point in a Steiner tree.® Circuits rather than trees can
be used for services in a building. Circuits tend to minimise the sum of the
shortest paths between all pairs of points, while trees simply minimise the total
service network length.

Figure 3.17 shows a Steiner circuit for six points. The position of the points
along the segments joining the given points to their adjacent Steiner points are
determined by the flow costs for different links. The underlying Steiner tree
for the Steiner circuit is the limiting case of a circuit as the flow costs decrease
to zero. The Steiner tree provides a lower bound for the Steiner circuit in a
similar manner that the minimum spanning tree provides a lower bound for
the optimal travelling salesman tour. Smith and Liebman give an iterative
algorithm for finding a Steiner circuit for general flow and construction costs.
The algorithm solves a travelling salesman problem at every iteration with
added constraints to disallow direct connections between given points.

*Other possible objectives are the minimisation of the number of intersections or bends in
the service networks. Flow characteristics should also be considered for some services. Smith
and Liebman suggest finding an optimal topology first, then considering the size and scale of
service second. To solve both problems simultaneously is too large a task.

SDirected trees with a node to which no edge is directed are called arborescences. The node
to which no edge is directed is called the root node.

®This definition implies the Steiner tree is a full Steiner tree for the points and the tree exists.
Smith and Liebman’s algorithm for a Steiner circuit begins with the SMT, this is not necessarily
a full Steiner tree.
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Figure 3.17. On the left is a six point FST, on the right is a Steiner circuit based on the FST.
The relative flow costs determine the location of junctions on the segments joining the given
points to the Steiner points of the FST.

Smith and Liebman also describe a heuristic for the Euclidean Steiner tree
problem which is further improved by Smith et al. [37]. The improved heuristic
is described and demonstrated by example in Chapter 4.
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Chapter 4

Heuristics for the Euclidean Steiner
Tree Problem

The inherent intractability of the Euclidean Steiner tree problem has encour-
aged the development of methods to find approximate Steiner minimal trees.
These methods, or heuristics, are designed to find good connections of points
in times that are generally low order polynomials of problem size. There is a
trade-off between the quality of a solution and time spent finding the approx-
imate solution. In this chapter two heuristics for the Euclidean Steiner tree
problem are described in detail. Other heuristics are briefly described in the
following section.!

4.1 An Introduction to Heuristics for the Euclidean
Steiner Tree Problem

The simplest heuristic solution to a Euclidean Steiner tree problem is the mini-
mum spanning tree. The MST is relatively easy to find in O(nlogn) time and
its length is guaranteed to never exceed the length of the SMT by about 15.5%.
Improving upon the MST is at the heart of many methods of approximate
solution.

A naive heuristic based on improving the MST is to add a Steiner point, or
S-point, to sets of three points connected by two edges in the MST, and remove
the MST edges and replace them with edges to the S-point. The pairs of edges
in the MST must share a common end point and a reduction in length must be
achieved by introducing the S-point. This requires that the largest angle in the
triangle formed by the three points is less than 120°. Further, cycles must be
avoided when replacing edges. A cycle results if two sets of three points have
two points in common. To overcome this difficulty and attempt to get as large
a reduction as possible in total length the sets of three points are considered in
decreasing order of reduction offered by introducing a S-point, and sets that
do not give rise to a reduction are not considered. An example of this heuristic

!Chapter 4 Hwang et al. [19], Hwang and Richards [17] and Beasley and Goffinet [2] give
introductions to the heuristics for the problem. The first reference is the most extensive.
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is shown in Figure 4.1. The order of the sets of pointsis A, B, I£, D and C'. The
two pairs of sets of points 5, C' and C, D both share two points. To process set
C, after B and D, creates a cycle and is therefore not done. The tree obtained
after adding the S-points for the first four sets in the ordered list is the heuristic
solution, and is shown in Figure 4.2.

Figure 4.1. An example set of points for demonstrating the naive heuristic. The solid lines
are edges of the MST. The five circles each contain three points that can be used to give a
reduction in length by finding their S-point.

One of the early heuristics is by Chang [5]. Chang’s heuristic takes O(n*)
time and for randomly generated problems gives reductions of about 3% on
average. The method of finding sets of three points is more complex than
the heuristic presented above. The three points can be either given points or
already added S-points. The starting point is the MST and changes are made
iteratively. At each step all possible changes are considered and the change
giving the greatest reduction is accepted.

Smith et al. [37] give a very fast heuristic. The heuristic uses two geometrical
constructions called the Delaunay triangulation and Voronoi polygon to find three
and four point subsets which are connected by two and three edges of the MST
respectively. Further, the edges must be part of triangles in the triangulation for
which a S-point exists, and therefore a reduction is possible. Full Steiner trees
are constructed for the subsets and replace the MST edges. The triangles are
considered in decreasing order of reduction. The heuristic requires O(n log n)
time and gives slightly better trees than Chang’s heuristic. This heuristic, the
Delaunay triangulation and Voronoi polygon are discussed in Section 4.2.

Beasley [3] does not use the triangulation or polygon but does use the same
idea of considering three and four point connected subgraphs of the MST.
S-points of the three or four point full Steiner trees giving reductions are added
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Figure 4.2. The approximate Steiner minimal tree found using the naive heuristic.

to the set of points. The MST of the enlarged set of points is found and any
added points are placed in their optimal position or removed depending on
whether they have degree three or two respectively in the MST. The process is
repeated until no further improvements are possible. Beasley’s experimental
results give a solution time of O(n!*'”) and better reductions than the Smith et al.
heuristic. However, this is not surprising because Beasley considers all three
and four point connected subgraphs of the MST, while Smith et al. investigate
only a subset of these subgraphs.

Beasley and Goffinet [2] bring together the power of the Delaunay triangu-
lation and the approach of Beasley’s first heuristic to give a high quality method
with an empirically based time requirement of O(n*!?). The method is enclosed
within a simulated annealing framework to overcome cycling problems that
occur from time to time. This heuristic is discussed in Section 4.3.2

A heuristic by Lundy [27] was developed for finding evolutionary trees.
Simulated annealing based on randomly moving from one full Steiner topology
to another is used to find a full Steiner tree for a set of points. Lundy found this
method compared favourably with existing methods for finding evolutionary
trees.

Hesser et al. [16] implemented a genetic algorithm to solve the Euclidean
Steiner tree problem. A simulated annealing algorithm approach was also de-
veloped for comparison purposes. Both provide good solutions in reasonable
times. In both algorithms the positions of S-points are randomly perturbed,
and a minimum spanning tree is found for the given points and S-points. Lo-
cal optimisation of the MST is also performed: S-points of degree one and the

2Simulated annealing is introduced in Chapter 5.
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edges incident on such points are removed, and for S-points of degree two the
points and incident edges are removed and the adjacent points are reconnected
by direct links.?

4.2 Smith, Lee and Liebman’s Heuristic

One of the better heuristics for the Euclidean Steiner tree problem is by
Smith et al. [37]. It is based on adding a S-point to a set of three points which
form a triangle that has two edges in common with the minimum spanning
tree. The heuristic uses two geometrical structures called the Voronoi polygon
and Delaunay triangulation to find triangles and pairs of triangles which may
give a reduction in length of connection if S-points are added.*

4.2.1 Voronoi polygons and Delaunay triangulations

The Voronoi polygon and Delaunay triangulation are fundamental structures in
computation geometry.” For a set a points A = {ay, ..., a,} in two dimensional
Euclidean space the Voronoi polygon is a collection of regions {V3, ..., V, } such
that any point in V; is closer to «; than to another point in .A. Figure 4.3 shows
the Voronoi polygon for a set of fifteen points. The Delaunay triangulation is
the unique triangulation of A such that no circumscribing circle of any triangle
contains any points in .A. Figure 4.4 shows the Delaunay triangulation of the
same set of fifteen points.

The Voronoi polygon and Delaunay triangulation are intimately related.
They form a dual pair, that is given either it is possible to find the other. The
Voronoi polygon is made up of perpendicular bisectors of segments joining
points in A. The intersections of the bisectors are called Voronoi points. Each
Voronoi pointis the center of a circumscribing circle of a triangle in the Delaunay
triangulation. This is shown in Figure 4.5.

The construction of either a Voronoi polygon or Delaunay triangulation
is a non-trivial task but is not exceptionally complicated. The problem with
practical algorithms is coping with the inherent inaccuracy of using the floating
point arithmetic of computers. For example, if the three points a4, a, and

3Genetic algorithms are a random search technique for finding global optimum. They are
based on an analogy with natural evolution.

*Professor James MacGregor Smith (JMBM TH@cs. umass. edu) of the University of Mas-
sachusetts kindly made his FORTRAN implementation of the heuristic available. The maxi-
mum number of points it can handle was eighty, this was increased to two hundred. Unfor-
tunately it appears the Delaunay triangulation component of the implementation is unreliable
for large point sets (in excess of fifty or sixty) especially when points are very close to one and
other. Scaling of the coordinates did not alleviate this problem. However, use of the program
and assistance offered by Professor Smith were invaluable.

Portune [12] is a survey of the properties and practical algorithms for constructing the
two structures. It isn’t confined to just two dimensions but instead discusses the polygon
and triangulation in d-dimensional Euclidean space. The Voronoi polygon’s primary use is in
answering what is the nearest point? questions. It has been used in crystalography, the study of
equilibrium states of alloys, the prediction of rainfall and pattern recognition.
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Figure 4.3. The Voronoi polygon for fifteen points. For any point in a region the closest given
point is the given point within the same region.
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Figure 4.4. The Delaunay triangulation for fifteen points. The circumscribing circle of each
triangle contains no given points.
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Figure 4.5. The Voronoi polygon and Delaunay triangulation of the fifteen points. The
circles are the circumscribing circles of two of the triangles. The centre of each circle is the
corresponding Voronoi point of the triangle (shown as crosses).
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az form a right angle at a, and a fourth point a4 is introduced very close
to ay then it is possible aj, ay, as will be computed as being colinear and
similarly for ay, a3, a4. This leads to the conclusion that a1, a,, a3 are colinear!
Some implementations use exact integer arithmetic and suitable scaling of
coordinates, however this is at the expense of increased computation time.
Most algorithms find the Delaunay triangulation and then the Voronoi polygon
from the triangulation. To go in the reverse direction is dangerous as the
Voronoi polygon is defined by computed Voronoi points. Some freely available
floating point implementations are:

e voronoi by S. Fortune and available by anonymous ftp from
netlib.ornl.gov;

e ghul | by The National Science and Technology Research Center for
Computation and Visualization of Geometric Structures at the University
of Minnesota and available by anonymous f t p from geom um. edu;

e DELAUNAY_TREE by O. Devillers is a C++ object within the LEDA library
[30] and available by anonymous f t p from f t p. t h- dar nst adt . de or
ftp.uni-sb. de.

The properties of Delaunay triangulations of particular interest in finding
solutions to the Euclidean Steiner tree problem are:

e The minimum spanning tree is a subgraph of the Delaunay triangulation;

e Of all possible triangulations the Delaunay triangulation maximises the
smallest angle in any triangle;

¢ A Delaunay triangulation in two dimensions can be found in O(n log n)
time;®

o There are O(n) triangles in a Delaunay triangulation.

Together these properties mean the Delaunay triangulation provides a way
of quickly identifying triangles which can be used to reduce the length of
the minimum spanning tree. In particular, the second property means there
are triangles similar to equilateral triangles from which the greatest reduction
in length can be achieved. How the Delaunay triangulation (and Voronoi
polygon) are actually used is described below.

4.2.2 The heuristic

Smith et al. [37] use a two phase approach for finding an approximate SMT,
denoted by SMT. The two phases are called reduction and expansion. The first
involves finding triangles and pairs of triangles in the Delaunay triangulation
which have edges in common with the MST. The Voronoi polygon is used to

®The time grows exponentially with dimension. Most algorithms are of practical use for
dimensions of less than five or six.
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tind “best” pairs. To these triangles, or pairs of triangles, are added one or two
S-points, if possible, to give a shorter connection of the points of the triangles.
The second phase involves the concatenation of the locally optimal connections
of points to give SMT. The heuristic is described by solving a simple ten point
example. The coordinates of the points are shown in Table 4.1. The set of points
has a non-degenerate Steiner polygon.

1 (831) 6 (72,64)
2 (2363) 7 (7421)
3 (31,72) 8 (87,56)
4 (4848) 9 (88,110)
5 (49,8) 10 (118,29)

Table 4.1. The example ten point problem coordinates.

Reduction

Figure 4.6 shows the minimum spanning tree, the Delaunay triangulation and
Voronoi polygon of the set of points. Triangles can easily be identified that
have two edges in common with the MST and for which a S-point exists. For
example, the triangle defined by the three points 1, 2 and 4 has a S-point at
coordinate (26.65,52.25) giving a Steiner ratio of 0.952 for the triangle. Adding
this S-point, removing the two MST edges and replacing them with edges from
the three points to the S-point gives a shorter connection. This is the heart
of the heuristic, triangles and S-points are considered in a systematic manner,
giving a shorter connection, an approximate SMT.

Table 4.2 shows S-points and Steiner ratios of those triangles with two edges
in common with the MST and for which a S-point exists. Further, the triangles
are shown in order of increasing Steiner ratio. This is the order in which they
are considered in the expansion phase. These triangles form the set of candidate
triangles from which reductions in the MST are sought.

Triangle Steiner Point Steiner Ratio

(7,8,10) (91.34,37.16) 0.904
(2,34) (29.45,65.03) 0.949
(124) (26.65,52.25) 0.952
(6,7,8) (82.01,54.52) 0.984
(6,89) (77.10,65.48) 0.987

Table 4.2. The example problem candidate triangles.

Expansion

The expansion phase is a process of building SMT by concatenating candi-
date triangles. However, it is not simply a case of combining these triangles
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Figure 4.6. The minimum spanning tree (bold line), Delaunay triangulation and Voronoi
polygon of the ten points.
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without creating cycles, instead pairs of triangles, with at least one from the
candidate set, are considered. For suitable pairs four point full Steiner trees are
constructed. The advantage of this over concatenating individual triangles is
that often a four point Steiner tree gives a better reduction. This is the experi-
ence of Smith et al. They go further and consider forming full Steiner trees of
points making up k triangles. But results show that the additional effort is not
rewarded by proportionate improving reductions.

Smith et al. devise a simple rule for determining which triangles should be
considered for pairing. The rule uses the Voronoi polygon to find the “most reg-
ular” convex quadrilateral formed with neighbouring triangles.” Only triangles
that give a reduction on the MST are used, that is their Steiner ratio is less than
one. It is not necessary for a neighbour triangle to be in the candidate set for it
to be considered for pairing. For a triangle ¢; with corresponding Voronoi point
v; the most regular convex quadrilateral formed with neighbouring triangle ¢;
is with the neighbour that minimises the distance from v; to v;. Figure 4.7
shows two most regular convex quadrilaterals.

A square doesn’t give the maximum possible reduction, but experience
shows that very good reductions are possible using the most regular rule.
Convexity is a necessary requirement for existence of a FST, and helps give
good reductions.® And empirical results indicate that increasing the number
of S-points tends to increase the reduction. This is generally true for convex
sets of points with no interior points. Using the Delaunay triangulation and
Voronoi polygon for constructing the four point sets guarantees there are no
interior points.

Only certain pairs of triangles will give a reduction over the MST. The
triangles must be neighbours and must be connected by three edges of the
MST. A reduction in the connection of the four points using a four point FST
will necessarily reduce the length of the overall MST. Further, if the FST is to be
concatenated to the growing SMT then the points making up the triangles must
belong to disjoint components of SMT, otherwise the concatenation of the four
point FST to the growing SMT will create a cycle. These required properties of
pairs are shown by example below.

The concatenation process begins with an empty SMT. The triangles form-
ing the list of ordered candidate triangles are considered in turn. For each
triangle an attempt is made to form a pair. If a suitable pairing exists, the four
point FST, if it exists, is added to SM\T, otherwise the three point FST of the
candidate triangle is added to SMT. In both cases cycles must not be created.
When all candidate triangles have been processed, it may be necessary to con-
nect disjoint components of SMT and individual points not in any component.
This is done using MST edges.

7“Regular convex quadrilateral” is a long winded way of saying “square”.
8For the FST to exist it is also necessary that the two E-circles must not intersect and the axis
must intersect both E-arcs.
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Figure 4.7. Two most regular convex quadrilaterals. The left hand quadrilateral is formed
by combining triangle (1,4,5) with its “nearest” neighbour triangle (1,2,4). The crosses show
the Voronoi points of the two triangles. Similarly on the right, triangle (7,8,10) has “nearest”
neighbour triangle (6,7,8).
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The example problem’s SMT is constructed by the following sequence of
parings and concatenations:

1. The first candidate triangle is (7,8,10). It forms a most regular convex
quadrilateral with neighbour (6,7,8) (see Figure 4.7). The four points are
connected by three edges of the MST (see Figure 4.5). Unfortunately
neither four point FSTs exist for the points. Therefore, the three points 7,

8 and 10, and their S-point (91.34,37.16) are added to SMT.

2. The next candidate triangle is (2,3,4). It can be paired with (3,6,4). One of
the FSTs does exist (and in fact is the SMT for the four points). The two
S-points are (30.44,66.37) and (48.53,53.38). Points 2 and 3 are connected

to the same S-point. Concatenating this FST to SMT does not create any

cycles. SMT now comprises two components: one connecting points 2,
3,4, and 6, and the other connecting 7, 8, and 10.

3. Candidate triangle (1,2,4) isn’t considered because a cycle is created if
added to SMT.

4. Similarly for triangle (6,7,8).

5. The final candidate triangle is (6,8,9). The three point FST of the triangle
with S-point (77.10,65.48) is concatenated with SMT without creating a

cycle. This addition now means SMT is one component connecting all
but 1 and 5.

6. Points 1 and 5 are connected to SMT by MST edges.

The approximate SMT is shown in Figure 4.8. The MST length is 277.71, the
length of SMT is 266.55. The heuristic gives a reduction 4.02%. The optimal
SMT (also shown in Figure 4.8) has a length of 266.23, a reduction of 4.13%.

4.2.3 Possible changes to the heuristic

The heuristic is fast and gives good reductions using simple rules for ordering
triangles and pairing triangles. However there are a range of changes to both
the rules and method of processing the list of triangles that can possibly improve
the reductions, but generally at the expense of longer computation times. As
with many heuristic techniques there are advantages and disadvantages and
experimenting is often the only means of investigating performance.

The order of processing candidate triangles

Sarkar [33] orders the candidate triangles by decreasing reduction in length in-
stead of increasing Steiner ratio. Smith [38] considered many different orders
but strangely enough not that suggested by Sarkar. However, Smith’s experi-
ence was that the ratio worked best of the methods of ordering he considered.
A justification for using length is: length is the property being minimised,

84



Figure 4.8. The example problem approximate SMT (bold line) and optimal SMT. In the
optimal SMT there is a S-point very close to point 2.
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therefore processing triangles ordered by reduction in length is a more direct
approach than using triangles that have small Steiner ratios. Of course, there is
likely to be a high correlation between reduction in length and Steiner ratio. It
is possible using the ratio order that concatenating a relatively small triangle,
but with a good ratio, may prevent a larger triangle, with a probable large re-
duction in length, from being concatenated in later processing. This is because
a cycle will be created.

Using the example of the previous section, the list of candidate triangles
ordered by reduction in length is slightly different to the ordered by ratio list.
Triangles (1,2,4) and (2,3,4) swap places. The revised order is show in Table 4.3.

Triangle Steiner Point Reduction
in Length

(7,8,10) (91.34,37.16)  7.531
(124) (26.655225)  3.09
234) (29.4565.03)  2.101
(6,78) (82.0154.52)  0.869
(689) (77.10,6548)  0.854

Table 4.3. The example problem candidate triangles ordered by reduction in length.

The processing of the list begins as before with triangle (7,8,10) able to be
paired but not giving a four point FST. This triangle and its S-point become
SMT. Triangle (1,2,4) forms a most regular convex quadrilateral with neighbour
(1,4,5) but can not be paired because the four points are not connected by three
edges of the MST. Therefore triangle (1,2,4) and its S-point are successfully
concatenated to SMT. Neither of the next two candidate triangles can be
concatenated because cycles would be created. The last triangle does not form
any cycles and can not be paired, it is added to SMT. To complete SMT, MST
edges from 4 to 6, and 5 to 7 are required. The approximate SMT obtained is
very similar to the optimal SMT. To two decimal places its length is identical
to the optimal SMT. However, it is not optimal because the angle made by the
edges incident at point 2 is less than 120°. The difference between SMT and the
optimal SMT is the S-point (23.07, 62.99) which is very close to point 2 (23,63).
In this instance using an alternative ordering has given a better SMT than the
standard heuristic.

Second and third most regular convex quadrilaterals

The heuristic attempts to form a most convex quadrilateral by pairing a can-
didate triangle with the neighbour triangle whose Voronoi point is closest to
the candidate’s. Further, the neighbour must be such that the four points of
the paired triangles are connected by three edges of the MST. If neither the
most regular convex quadrilateral is a valid pairing nor a four point FST of
the quadrilateral exists, then the candidate triangle alone is concatenated, if
possible.
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An alternative is to consider the next most regular quadrilateral, and if this
is also unsuccessful the third most regular, if they exist. Using the example
above with the list ordered by reduction in length it would have been possible
to consider the second most regular pairing of candidate triangle (1,2,4) with
neighbour (2,3,4). In this situation the heuristic would find the optimal SMT.

More complicated processing procedures

Sarkar [33] uses the list in a more complicated fashion. Two ideas are intro-
duced. The first is to process the list without forming SMT, and instead four
point FSTs are inserted into the list. The possibly larger list is then used to
build SMT. The second idea is to perform an exhaustive search of the list using
the disjoint set union procedure with the addition of backtracking in the event
of creating infeasible unions or unions exceeding the length of the best known
SMT. Clearly, both ideas introduce more computation, the first to a lesser
extent than the second.

4.3 Beasley and Goffinet’s Heuristic

Beasley and Goffinet [2] present a heuristic for the Euclidean Steiner tree prob-
lem that uses the Delaunay triangulation iteratively to create more and more
potential S-points. Whereas the heuristic described above uses the Delaunay
triangulation only once to generate candidate triangles, in this heuristic it is
used over and over again together with the minimum spanning tree on a set of
points that changes as the heuristic progresses. Further, all triangles are con-
sidered at the same time and not in a sequence determined by some ordering,
usually the Steiner ratio. Simple rules are used to eliminate S-points and give
a connection that is a Steiner tree, although not necessarily the shortest Steiner
tree. The heuristic is not as fast as that of Smith et al. but experience indicates it
produces better quality solutions. The heuristic and computational experience
are described below. An example is given in Appendix C.?

4.3.1 The basic heuristic

Beasley and Goffinet repeatedly apply three stages of computation, which
together form an iteration. The stages are called expansion, reduction and re-
expansion. Unfortunately when compared to Smith et al. the names of stages
and what they do have been swapped. For this heuristic expansion involves
creating S-points using the Delaunay triangulation, and reduction means using
the MST to remove redundant S-points. Smith et al. use reduction for finding
S-points and candidate triangles, and expansion for concatenating candidate
triangles and quadrilaterals to form a feasible tree.

9Dr John Beasley (j . beasl ey@ c. ac. uk) of Imperial College in London kindly provided
a preprint of the paper. The notation of Beasley and Goffinet [2] is used in this section.
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The heuristic uses several objects, or variables, to control execution and
keep track of best solution, current and previous solution.

V is the set of given points;

S is the current set of S-points, S, is the previous set and 5™ is the set of
S-points giving the best solution found;

L is the length of the MST of V U S, L. is the length of the MST of
V'U Siuse and L™ is the length of the MST of V' U S*;

N is the number of expansions allowed at the current iteration and N* is
the maximum number of expansions allowed.

Initially the sets of S-points are empty, N = 1 and the lengths are all equal to
the length of the MST of V.

Expansion

This stage involves finding the Delaunay triangulation of V' U S' N times. Each
time and for each triangle its S-point is found, if it exists. The S-point is added
to S. The number of S-points grows rapidly especially if N is greater than one.

Reduction

The MST of V' U S may possibly contain S-points that are not of degree three.
The reduction stage eliminates these occurrences. Further, some S-points may
not be in their optimal position, the points are moved.

1.
2.

The MST of V U S is determined.

Any points in S which have degree less than or equal to two are removed
from S, and execution returns to 1.

Any points in S of degree three which are not in their optimal position
are moved to the optimal position. If there is no such optimal position
then the point is removed from S. This step is repeated until no further
reduction in length can be achieved by moving points.

Any points in S of degree four are removed from S and replaced by the
S-points, if any, which optimally connect the four points to which the
original S-point was connected.

Any points in S with degree five or more are removed.

If any changes occurred in any of steps 3, 4 and 5 then execution returns
to 1.
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Re-expansion

The last stage in an iteration is re-expansion. If there any edges in the MST of
V U S which share a common end point and make an angle of less than 120° at
the point then a S-point is added to S. The S-point is based on the three points
connected by the edges. If any S-points have been added in this stage then the
heuristic returns to the reduction stage.

The end of an iteration

An iteration is completed when there are no changes in the re-expansion phase.
The current solution is compared with the best and the best is updated if
necessary, that is if L < L* then L* = L and S* = S. If L = L then
N = N +1, and if N < N~* another iteration begins. However, if N = N*
then the heuristic stops with a solution given by S*. If L # L, then N =1,
Ligst = L, Siase = S and another iteration begins.

The effect of these rules is to repeat an iteration with more Delaunay trian-
gulations in the expansion stage, and therefore more S-points being created, if
the last iteration gave no change in solution. And if a change did occur another
iteration is performed but with only one Delaunay triangulation being used to
find more S-points. The N = N* test provides a stopping rule for the heuristic.
Beasley and Goffinet use N* = 6 in their experiments.

4.3.2 An important enhancement to the heuristic

Beasley and Goffinet’s limited computational experience shows that the heuris-
tic sometimes becomes “trapped”. It cycles between two solutions and never
stops. This is demonstrated in the example in Appendix C, although this is
by chance rather than design of a suitable set of points. They overcome this
nuisance by introducing a random component at the end of each iteration into
the heuristic. As the number of iterations increases the probability of accepting
an increasing length solution decreases. Eventually, a point is reached where
the cycle is broken and the heuristic terminates.!”

To overcome cycling variable 7" is used. This has an initial value of 7j. At
the end of an iteration 7" becomes o', where 0 < & < 1. The rules for deciding
what to do next are amended. If L < Ly then N =1, Lijys = L, Siuste = S
and another iteration begins. If L > L, then the change in solution relative
to the length of the MST of V, Ly, is used in a “coin tossing” experiment. The
relative change is C' = %{i“ If a uniform random number is less than e 7
then N =1, Li,ss = L, Siast = 5. Otherwise N = N+ 1, L = L, and S = Siye¢.

19Beasley and Goffinet call this putting the heuristic within a simple simulated annealing
framework. Simulated annealing is discussed in detail in Chapter 5. Whether to call it
simulated annealing is debatable. Annealing uses many small random changes to a solution
to find a optimal solution. This heuristic does not. Annealing starts from any solution. This
heuristic always starts from the MST. Regardless, the heuristic does work and produces very good
solutions in reasonable times.
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The rules when L = L;,,s and N = N™ are not altered. Beasley and Goffinet use
Ty = 0.7and o = 0.7.

The effect of the above rules is to always accept a decreasing change in
length, but to accept increasing length solutions with a probability that de-
creases as the heuristic progresses. If an increasing length solution is rejected
the number of expansions is increased. This is where the cycle is broken.
Eventually, the increasing cost is rejected N* times and the heuristic stops.

4.3.3 Computational experience

Beasley and Goffinet’s experience indicates the heuristic is the best found to
date. They experiment using randomly generated problems and in particular
Cockayne and Hewgill’s one hundred point problems with known optimal
solutions (see Appendix B). Analysis of the execution times gives an empirical
relationship of O(r*'?). An interesting feature of the heuristic was that the
number of Delaunay triangulations required appears to be independent of the
problem size. Problems on average needed about fifty Delaunay triangulation
calculations. For Cockayne and Hewgill’s problem the heuristic found the
optimal solution in two of the thirty problems. The heuristic gave solutions that
were on average 0.115% above the optimal length, with a worst performance
of 0.470% above optimal. Beasley and Goffinet do not discuss the effects of
changing the “annealing” parameters 7 and «, or the maximum number of
expansions parameter N*. This parameter is six in their experiments.

Beasley and Goffinet’s results for Cockayne and Hewgill’s problems are
used in Chapter 7 as the benchmark for comparing performance of simulated
annealing with other heuristics for the Euclidean Steiner tree problem.
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Chapter 5

Simulated Annealing

In Chapter 4 several heuristics for the Euclidean Steiner tree problem were
presented. In this chapter a type of heuristic called simulated annealing is pre-
sented. It is not a heuristic for a particular problem but a style or method of
solution that can be applied to many problems. This chapter lays the mathe-
matical foundations of simulated annealing. Chapters 6 and 7 investigate the
application of simulated annealing to the travelling salesman problem and the
Euclidean Steiner tree problem respectively. Chapter 6 is also an analysis of
the behaviour of a particular implementation of simulated annealing.

Section 5.1 introduces general properties of heuristics for combinatorial
optimisation problems, and highlights the strengths of simulated annealing
compared to traditional heuristics. The physical process of annealing and
the analogy resulting in simulated annealing are presented in Section 5.2. A
mathematical model of the simulated annealing algorithm and properties of
the model are discussed in Section 5.3. Section 5.4 considers the requirements
for implementing a practicable simulated annealing algorithm, and describes
a particular implementation of the simulated annealing algorithm. Finally,
modifications to the standard simulated annealing algorithm are discussed in
Section 5.5.

5.1 Combinatorial Optimisation and Heuristics

Combinatorial optimisation is the process of finding the the globally optimal con-
figuration of discrete variables with respect to some function of the variables.
Many combinatorial optimisation problems are very difficult and are NP-hard.!

A large number of combinatorial problems are of practical interest and im-
portance, examples are the travelling salesman problem, timetabling, routing
and scheduling, and layout and placement problems. Not being able to de-
termine the globally optimal solutions to such problems in realistic amounts
of time has encouraged the study of approximate algorithms. An approximate
algorithm or heuristic should be able to find a configuration that is “close” to

!Section 2.3 is an introduction to computational complexity, in particular NP-completeness
and NP-hardness.
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a global optimum and do so in a reasonable amount of time. Unfortunately
many heuristics are designed with only the immediate problem in mind and
are therefore of limited use when attempting to solve other combinatorial prob-
lems. Algorithms of this sort are called tailored algorithms.

A technique used in many heuristics is iterative improvement or local search.
From a starting configuration the immediate neighbourhood of configurations
is considered. A neighbour is selected in some way and the cost of this con-
tiguration is compared with the current configuration. If the neighbour has a
lower cost the current configuration is replaced by the neighbour.? If not then
other neighbours are considered. The process stops when all neighbours have
been considered without any reduction in cost. The advantages of iterative
improvement are:

e A single run of the process can be done very quickly on average;
e Given this, many runs can be made from different starting points;

e The process is generally applicable. Three main parts are required for
the process: a means of describing a configuration, an objective or cost
function and some way of describing a neighbourhood or of generating
possible neighbours.

Unfortunately iterative improvement has its disadvantages:

e The process stops at the first local optimum found. It may not necessar-
ily be the global optimum and there is no way to “back out” and look
elsewhere;

e Where the process stops is dependent on where it starts. However this is
overcome, in part, by trying different starting points;

e Inmost cases it is not possible to give an upper bound on the computation
time.

Iterative improvement’s downfall is its blinkered view of the world. It only
accepts configuration changes that give a decrease in cost. Simulated annealing
on the other hand not only accepts decreasing moves but tolerates increasing
moves. Thus it is able to escape the curse of local optimum and look elsewhere
for the elusive global optimum. Simulated annealing has the advantages of
standard iterative improvement but is able to shake off some, if not all, of the
disadvantages most of the time. The reason for using “most” is that simulated
annealing has a probabilistic component and many of its important properties
are asymptotic in nature and are seldom fully realised. Regardless simulated
annealing is a generally applicable, high quality combinatorial optimisation
tool. But is often unable to compete with tailored algorithms because of the
sometimes excessive computation times.

2 Assuming the problem is a minimisation problem.
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5.2 Simulated Annealing — The Overview

Simulated annealing resulted from the observation of the analogy between the
physical process of annealing and of finding a global optimum for a combinato-
rial optimisation problem (Kirkpatrick et al. [23] and Cerny [4]). The physical
process and the analogy are the subjects of the following two sections.

5.2.1 Statistical physics, annealing and the Metropolis algorithm

Statistical physics is the study of aggregate properties of many particle systems.
For such systems only the most probable behaviour of the system is observed.
This most probable behaviour is given by the average of the system and fluctu-
ations about the average at a given temperature. This average is characterised
by the thermal equilibrium. This equilibrium is not a static equilibrium but one
in which the system randomly changes from state to state. The probability dis-
tribution of the states is the Boltzmann distribution. The probability of finding
the system in state ¢ is given by

Ei
C(T)exp (— kBT)
where F; is the energy of the system when in state 7, 1" is the temperature, kg
is Boltzmann'’s constant and C'(7') is a normalising function.
Of interest is the behaviour of the system at very low temperatures. Is a
crystalline structure formed or is a glass formed?®
At low temperatures the lower energy states, or ground states, and states
with energies close to the ground states dominate and as the temperature

approaches zero only the minimum energy states have a non-zero probability
of occurrence.

Experiments to observe ground states of substances use the technique of
annealing. This is the process of melting a substance and then cooling it slowly
and spending long periods of time at very low temperatures close to the freezing
point so that thermal equilibrium is achieved. If this process is done carefully
then the ground state or minimum energy state of the substance is found.
However, if the cooling is too fast then a metastable or locally optimal state can
result, this process is called quenching instead of annealing.

The annealing process was modeled by Metropolis et al. [29] and is known
as the Metropolis algorithm. From a collection of atoms at a given temperature 7',
an atom is selected and given a small random displacement. The change in
the system’s energy is AFE. If AE < 0 the change is accepted, if AL > 0 then

the change is accepted with probability exp (— é—?), where kg is Boltzmann's

constant.* If a large number of changes at temperature T are considered then
the system approaches thermal equilibrium at temperature 7', and the prob-
ability distribution of the states is the Boltzmann distribution. At this point

3A glass is a solid with no structure and with possibly many defects.
4This criterion for accepting or rejecting a change in configuration is called the Metropolis
criterion.
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the temperature is lowered by a small amount and the process of attaining
thermal equilibrium repeated. As the temperature decreases the probability
of accepting an increase in energy decreases. Therefore when the temperature
is very low only decreasing changes are accepted. At some point no further
changes remain to be investigated and the process terminates. If the annealing
has been carefully and slowly performed then the final state of the system is
a globally minimal state, a state of lowest energy. The globally minimal states
are the only states with a non-zero probability of occurrence.

5.2.2 The analogy with combinatorial optimisation

The analogy of physical annealing with combinatorial optimisation is that there
are many states (the positions of the atoms — configurations of the optimisation
problem), and a quantity is minimised (the energy of the atoms — the cost of
the optimisation problem).

The analogy can be extended to the Metropolis algorithm. The configura-
tions of the optimisation variables are equivalent to the positions of the atoms,
the cost is the energy and a quantity called the control parameter, ¢, takes the
place of temperature. Application of the Metropolis algorithm to a combi-
natorial optimisation problem takes the following course: starting at a high
value of ¢ with an initial configuration ¢, a series of trials are performed where
another configuration j is generated, ;j being a neighbour of ¢, the costs of
the two configurations are compared and if AC;; = C(5) — C(2) < 0 then the
change is accepted, but if AC;; > 0 then the change is accepted with proba-
bility exp (—%) A large number of trials are performed and therefore an
“equilibrium” or a stationary distribution of configurations is obtained. The
control parameter is lowered and the sequence of trials is repeated. When the
control parameter has reached zero the process is terminated and the “frozen”
configuration is the solution. The process just described is the “bare bones”
of the simulated annealing algorithm. The algorithm is relatively straight-
forward and can easily be extended to new optimisation problems. Further,
Laarhoven [25] provides some evidence that simulated annealing performs
better than repeated iterative improvement if both are given the same amount
of computation time.

Simulated annealing is sometimes described as a randomised iterative im-
provement algorithm. It uses the concepts of neighbourhood and of always
taking decreasing cost moves, but with the possibility of making increasing
cost moves in the hope of escaping from local optimum. It also has a divide
and conquer aspect, it first deals with the large scale structure of a problem then
concentrates on the fine detail. This is shown in Figure 5.1, the evolution of a
travelling salesman problem solution is shown as a series of tours at different
values of the control parameter. The problem is one with four distinct groups
of cities to be visited. At high values of ¢ the interim solutions are chaotic but
as ¢ decreases the number of links between groups decreases and the details of
the tour within each group are worked on.”

>This is based on an example in Kirkpatrick et al. [23]
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Figure 5.1. Evolution of a travelling salesman problem solution using simulated annealing.
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To implement simulated annealing four components are needed:
e A description of a configuration;

e A generator of moves to other configurations or a neighbourhood de-
scription;

¢ An objective function;

e An annealing schedule or cooling schedule: a description of the sequence of
control parameter values and number of trials at each value of ¢ or a set
of rules describing the calculation of these values.

5.3 Simulated Annealing — The Details

A mathematical model based on Markov chains is described in this section,
and a set of conditions are presented which guarantee a simulated annealing
algorithm finds a globally optimal configuration. The notation follows that of
Laarhoven [25].

5.3.1 A mathematical model

The simulated annealing algorithm can be described using a Markov chain.
Each trial of the annealing algorithm corresponds to a transition and the prob-
ability of a transition being accepted depends only on the costs of the current
configuration and trial configuration. The probability of transition from con-
figuration 7 to configuration j at the £’ trial where X (k) is the outcome of the
k'™ trial is denoted by

Py(k) = P(X(k) = | X(k—1) = 1).

If this probability does not depend on £ then the chain is called a homogeneous
Markov chain otherwise it is an inhomogeneous Markov chain.

For simulated annealing the probabilities depend on the control parameter c,
and if ¢ is constant the transition probability is given by

Gij(e)Aijle) LF ]
Pi(e)=19 1= Y. Gule)Aale) i=j
lER,l#£2

where £ is the set of all configurations, i;; is the probability of generating con-
tiguration j given current configuration « and A;; is the conditional acceptance
probability dependent on the costs of the configurations. Both probabilities
are elements of the matrices G/(¢) and A(c¢) known as the generation matrix and
acceptance matrix respectively. The matrix P(c) with element F;; is the transition
matrix.

Two forms of the simulated annealing algorithm exist: the homogeneous al-
gorithm and the inhomogeneous algorithm. The homogeneous algorithm is where
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a number of transitions are generated at a fixed value of the control parameter.
The control parameter is then decreased and the sequence of transitions is re-
peated. A decrement in the control parameter after every transition gives the
inhomogeneous algorithm. The algorithms are described by either a sequence
of homogeneous Markov chains or one inhomogeneous chain respectively.

5.3.2 Asymptotic convergence of the homogeneous algorithm

In this section conditions on G/(c¢) and A(c) are described to guarantee the
asymptotic convergence of the homogeneous algorithm to a globally minimal
configuration.®

Convergence requires the existence of the stationary distribution of a homo-
geneous Markov chain. The stationary distribution is defined as as the vector
¢ with the i"* component given by

¢ = lim P(X(k) =] X(0) = j) Vj.

If the stationary distribution exists then lim;_.., P(X(k) = ¢) = ¢; and the
stationary distribution is the probability distribution of the configurations after
an infinite number of transitions and is independent of the starting configura-
tion.

Theorem 2.1 of Laarhoven [25] gives the following six conditions for the sta-
tionary distribution of configurations to converge to a uniform distribution on
the set of globally minimal configurations as the control parameter is decreased
to zero:

1. At any value of the control parameter ¢ it must be possible to move
from any configuration to any other configuration in a finite number of
transitions;

2. All generation matrices G/(¢) must be symmetric;

3. The probability of accepting a non-decreasing cost transition from con-
tiguration ¢« to configuration £ must be the same as the the probability of
accepting the two step transition from ¢ to k& via configuration ; where
the cost of j is bounded below by the cost of configuration ¢ and above
by the cost of £;

4. The probability of accepting a decreasing transition is always one;
5. The probability of accepting an increasing transition is non-zero;

6. The probability of accepting increasing transitions must approach zero as
the control parameter approaches zero.

®Similar conditions for the inhomogeneous algorithm can be found in Laarhoven [25] and
Laarhoven and Aarts [24].
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Two conditions can be relaxed without losing the guarantee of convergence:

e The first condition can be changed to:

At any value of the control parameter ¢ it must be possible to
move from any configuration to a globally minimal configuration
in a finite number of transitions.

e The second condition can be changed to:

Either all generation matrices G(¢) must be symmetric or are
given by the uniform distribution over the neighbourhoods of each
configuration, that is

§ o | R; |_1 j € R;
Gij(c) = { 0 otherwise

where R; is the set of neighbours of configuration .

Although this set of conditions provides a guarantee of finding a globally
minimal configuration it requires each Markov chain to be of infinite length,
and for there to be an infinite sequence of Markov chains. This is obviously
unrealistic. However it is possible to approximate the asymptotic behaviour
of the homogeneous simulated annealing algorithm arbitrarily closely in an
exponential number of transitions. But this too may not be acceptable for
large problems or when a solution is sought that is very close to a globally
minimal solution. In Section 5.4.1 a method is described for approximating the
asymptotic behaviour in polynomially bounded time but with the loss of the
guarantee of finding the optimal configuration.

5.4 Cooling Schedules

A cooling schedule is a description of the values of the control parameter
and number of transitions performed at each value of control parameter by a
simulated annealing algorithm. The four components of a schedule are:

e A sequence of finite numbers of transitions to be performed at each value
of the control parameter;

e A finite length sequence of control parameter values {c;} given by:

— An initial value;
— A rule for changing the value;
— A final value.
The arguments for choosing one schedule over another or for designing

a schedule are based on the underlying mathematical model of simulated
annealing.
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The general arguments for constructing a cooling schedule are:

e The initial value of ¢ should allow virtually all transitions and the ap-
proximated stationary distribution of configurations at this value should
be a uniform distribution over all configurations;

e The simulated annealing should stop when there has been no decrease in
cost over a number of consecutive chains, that is the cost has not changed
over a sequence of c;;

e The number of transitions L, and the change or decrement in ¢, should
be related to the idea of being close to the stationary distribution of con-
tigurations. The greater the change from ¢;, to c41 the longer it will take
to regain the stationary distribution at c¢;41. Also, as ¢, approaches zero
transitions are accepted with decreasing probability so L, approaches
infinity.

5.4.1 A polynomial cooling schedule

A polynomial time cooling schedule is concerned with reaching a quasi-
equilibrium in a time with an upper bound of some polynomial function of
the problem size. A finite number of transitions L; must be performed at
control parameter value ¢, with the objective of being “close” to the stationary
distribution of the Markov chain for ¢y, this is the quasi-equilibrium.

The schedule described in the next four sections is due to
Laarhoven and Aarts [24] and Laarhoven [25]. Itis a polynomial time schedule
and therefore provides no guarantee of finding a global minimum. But it is
relatively straightforward and although not giving the fastest execution times
it requires little fine tuning to obtain good performance.’

The four components are the initial value of the control parameter, the
decrement rule, the final value and the number of transitions at each value of
the the control parameter. The schedule is characterised by three parameters:
the initial acceptance ratio, the distance parameter, and the stopping parameter.

Each parameter corresponds to the first three components respectively in
what it determines or controls, and these parameters are independent of the
problem being solved. Whereas, the fourth component, the number of transi-
tions Ly, is problem dependent.

Initial value of the control parameter

The initial value of the control parameter is determined by the initial acceptance
ratio ¢o. It is found by performing a preliminary run of the algorithm starting
with an arbitrary value for the control parameter. Statistics are gathered about
the number of decreasing transitions, proposed increasing transitions and the
increase in cost of such transitions.

"Laarhoven [25] gives empirical evidence based on runs over different instances of three
different combinatorial optimisation problems. The polynomial cooling schedule is compared
with two other schedules.
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Suppose my is the number of transitions to be attempted in the preliminary
run, and during this run the number of decreasing cost and proposed increasing
cost transitions are updated, i and m, respectively, and the average proposed

increase in cost AC"" is also monitored. The approximate acceptance ratio is
given by
( RH))
my + mpexp | ——
¢ mi + mp

This is rearranged to give the following expression for ¢ with ¢ replaced by ¢

)
AC
(5.1)

C = .
In (o)

The sequence of operations to obtain the initial value of the control param-
eter is:

1. The control parameter is given an arbitrary starting value;

2. A transition is attempted and m;, m, and AC™ are updated;
3. Equation 5.1 is used to find a new value of ¢;

4. Steps 2 and 3 are repeated until m transitions have been attempted.

The last value of ¢ is the initial value of the control parameter. The value
of my is arbitrary as the sequence of control parameter values reaches a stable
value reasonably quickly. The value of ¢y should be high, say around 0.9
or 0.95. This means most increasing cost transitions will be accepted and a
uniform quasi-equilibrium can be obtained over all configurations.

Decrement rule for the control parameter

The decrease from ¢, to ¢4 can either be large or small. Each option has its
advantages and disadvantages. Small decreases mean quasi-equilibrium can
be re-established faster (assuming a quasi-equilibrium existed at the end of
the ¢, sequence of transitions) but more sequences will be required. A large
decrease results in fewer sequences but a much greater time to restore the quasi-
equilibrium. The former approach of small decrements and shorter chains is
used by Laarhoven [25] and is used here.

The stationary distributions of consecutive chains are considered close if for
all configurations and values of & the following holds

1 - ¢i(cx)
146  qilcr)

<1446 (5.2)

where ¢ is the distance parameter and ¢;(c) is the probability of being in config-
uration ¢ in the stationary distribution for the chain corresponding to control
parameter value c.
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Theorem 3.1 of Laarhoven [25] gives a condition for Equation 5.2 to be
satisfied. The condition can be rewritten to give an inequality expression for
41 in terms of ¢;, 6 and the difference in cost between a configuration 7 and a
globally minimal configuration :* denoted by AC};+. The condition is

Ck

41 2 (it

Vi, k=1,2,... (5.3)

This is simplified by changing the set of all configurations to the set of “most
probable” configurations occurring in the £ Markov chain. This set is denoted
by R and is defined by

Ry ={te R| ACyx < p, — Ci» + 30y}
where /1, and o}, are respectively the mean and standard deviation of the costs
of configurations in the £”* Markov chain.® Equation 5.3 is replaced by

Ck

AT e
pg—Cix+30p

Cki1 > (5.4)

Obviously the optimal cost C; is generally not known. Allowing for this,
Equation 5.4 is written as an equality to give the decrement rule’

Ck

1 _I_ Ck ln(1—|—6) )

3Uk

Cky41 = (55)

Equation 5.5 is the decrement rule for the control parameter of the poly-
nomial cooling schedule. The sequence {¢;} is not known at the beginning
of a run of the simulated annealing algorithm. Each ¢; is dependent on the
previous value and on the standard deviation of the costs of the configurations
generated in the previous Markov chain, as well as the distance parameter.

Final value of the control parameter

The final value of the control parameter is determined as the algorithm runs.
It is not known at the start. It is not so much the value of ¢; that determines
whether the algorithm terminates but the level of the average cost of config-
urations generated in the k" Markov chain relative to the average cost in the
tirst chain as a function of the control parameter that precipitates termination.

As the algorithm runs the growing sequence { ;1. } is used to generate another
sequence {7, }, where fi,, is the smoothed value of y;. This smoothed sequence
can be viewed as a function of the control parameter ¢ and is used to define
a function A7i(c) = 7i(c) — Cix (although Ci« is generally not known). If it is

81t is assumed the distribution of the costs can be approximated by the normal distribu-
tion. This is verified in Chapter 6 where the behaviour of the polynomial cooling schedule is
investigated when applied to the travelling salesman problem.

Laarhoven [25] states that using a small § takes account of ignoring 1 — C;+ because %

and * as functions of ¢ are practically identical. This is confirmed in Chapter 6.

101



accepted that a reasonable rule for terminating the algorithm is “A%(¢) is small
compared to ;11” and for ¢ < 1

then the algorithm is terminated if

¢y, Ofi(c)

i T < €5 (56)

where the partial derivative is evaluated at ¢; and is estimated from the se-
quence {7, } and ¢, is the stopping parameter.

Equation 5.6 is the stopping condition for the polynomial time cooling
schedule. It depends on the stopping parameter and the sequence of average
costs of each series of generated configurations as a function of the control
parameter.

Number of transitions

This is by far the simplest component of the polynomial cooling schedule to
define but not necessarily the easiest to determine. The number of transitions
at each value of the control parameter should be sufficient for the distribu-
tion of configurations to approach the stationary distribution. The number of
transitions L is defined to be the size of the largest neighbourhood, that is

Lk:r%e}%x|]%i| k=1,2,... (5.7)

Laarhoven [25] compares the polynomial cooling schedule with other
schedules. The empirical analysis applies the simulated annealing algorithm
with the different schedules to the graph partitioning and travelling salesman
problems. The results indicate that the polynomial schedule’s solutions are
often of inferior quality compared to another schedule’s solutions. However,
the difference is slight and is in part compensated for by the minimal tuning
required of the polynomial schedule parameters. The distance parameter 6 of
the polynomial schedule determines the quality of the solutions, whereas the
“better” schedule requires experimentation with three parameters. In general,
the quality of solutions is influenced little by the schedule used provided the reduction
in cooling parameter is carried out carefully and accurately.

5.5 Modifications to the Standard Simulated Anneal-
ing Algorithm
The simulated annealing described above relies on the analogy with the phys-

ical annealing process. Many changes have been suggested that move away
from the analogy, however the algorithms are useful in solving real problems.
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Eglese [11] gives an overview of simulated annealing and includes a survey
of modifications to the standard algorithm.'® Some of the modifications are
easily implemented, others are more complicated, for instance a parallel version
of simulated annealing. Four possible modifications are:

Keeping the best solution. This modification almost goes without saying. To
keep track of the best configuration and its cost has little effect on the running
time of the algorithm;

Sampling a neighbourhood without replacement. This is motivated by the
fact that atlow levels of the control parameter the current configuration is hope-
tully close to the globally minimal configuration, but most of the computation
involves rejecting transitions. Only a small number of improving transitions
are likely to exist and finding them may take some time. Sampling without
replacement would reduce computation. The polynomial schedule presented
above attempts L transitions where L is the size of the largest neighbourhood.
Therefore sampling without replacement would guarantee finding a lower cost
configuration, if it existed, so long as the control parameter was low enough
to reject all increasing cost transitions. If no transitions are accepted then the
current configuration is at least a locally minimal configuration;

Combining simulated annealing with other methods. Simulated annealing
can be used to either provide a good starting configuration for another method
or improve upon a configuration found by another method. The former situa-
tion might be where simulated annealing generates a starting point for a branch
and bound exact algorithm. The latter requires that the initial control param-
eter value be lower than normal otherwise the starting configuration’s good
features are quickly lost as cost increasing transitions are possibly accepted;

Parallel implementation. The implementation of a parallel version of sim-
ulated annealing can be guided by the problem under consideration or by
general strategies to take advantage of parallel processing. A possibility is for
each processor to perform its own simulated annealing algorithm in isolation
and to take the best solution over all processors. An improvement on this
is to use the processors’ abilities to communicate and share information. For
instance all processors can start a new sequence of transitions with the best con-
tiguration over all processors found in the previous sequence. The literature on
parallel implementations and experiments is growing rapidly. The interested
reader is referred to Aarts and Korst [1] and Laarhoven and Aarts [24].

10Reeves [31] contains a more recent survey of simulated annealing including enhancements
and modifications. Changes to the acceptance probability, cooling schedule, neighbourhood,
sampling, cost function, using simulated annealing with other methods and parallel imple-
mentations are discussed.
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Chapter 6

Simulated Annealing and the
Travelling Salesman Problem

This chapter demonstrates and investigates simulated annealing when ap-
plied to the familiar travelling salesman problem. This is a precursor to the
application of simulated annealing to the Euclidean Steiner tree problem in
Chapter 7. The first section of this chapter provides an empirical analysis of
the behaviour of the polynomial cooling schedule described in Section 5.4. The
run times and quality of solutions using different cooling schedule parame-
ters are investigated. The second section compares simulated annealing, using
the polynomial cooling schedule, with a tailored heuristic for the travelling
salesman problem.

6.1 An Empirical Analysis of the Polynomial Cool-
ing Schedule

6.1.1 The travelling salesman problem

To be able to use simulated annealing to find good solutions for the travelling
salesman problem it is necessary to describe a configuration, a neighbourhood
or neighbour generation mechanism and a cost function.

Laarhoven [25] uses a cyclic permutation 7 to describe a configuration or tour.
The k' element, 7(k), of a cyclic permutation gives the successor of city k in the
tour represented by permutation 7.! Although a problem may be symmetric,
using a permutation introduces direction. A tour can be described by two
permutations (see Figure 6.1). For a symmetric problem with n cities there are
1(n — 1)! possible configurations. The cost function requires a distance or cost
matrix giving the distance between every pair of cities. If the distance between

cities ¢ and j is d(¢, j) then the cost of configuration ¢ is given by >";_; d (k, mi(k)).

!The permutation is of the integers 1,...,n where n is the number of cities. 7™ ({) is

m times

—_—
shorthand for #(7(...7({))). #™({) is the m'" city visited after [ in the tour represented by .
The cyclic nature of the permutation is enforced by 7™ ({) = { for m = n only.
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Figure 6.1. An example of cyclic permutations. The tour on the left can be described by
cyclic permutations {2,3,4,5,6,7,1}or {7,1,2,3,4,5, 6}, the clockwise and counter-clockwise
tours respectively. The permutation {6,3,4,7,1,2,5} describes the tour shown on the right. If
a symmetric problem then the permutation {5, 6,2,3,7,1,4} describes the equivalent reverse
tour.

A simple neighbour generation mechanism for the travelling salesman
problem is called the 2-change transition. A 2-change involves replacing two
edges in a tour with two edges not in the tour.? A 2-change requires a pair of
cities / and 7™ (/) m # n. The 2-change reverses the order of visiting cities be-
tween the pair.> An example of a 2-change is shown in Figure 6.2. A 2-change
with m = 1 results in no change in the tour because there are no cities between
l'and 7 () to be visited in reverse order. A 2-change with m = 2 for a symmetric
problem also gives no change because only one city is between [ and 72(1),
namely 7(/), and reversing the order of visiting 7 (/) does not actually change
the tour. The sequence is still I, 7 (1), #2(1).

A neighbour generation mechanism must satisfy two conditions for the sim-
ulated annealing algorithm to asymptotically converge to a globally minimal
configuration (see Section 5.3.2). The two conditions are:

e Either all generation matrices are symmetric, or are given by the uniform
distribution over the neighbourhoods of each configuration;*

e A finite number of transitions must exist with which to transform any
configuration to any other configuration.

The first condition is satisfied if / takes values in the range 1,...,n and m
takes values in either the range 1,...,n — 1, or the range 3,...,n — 1. In the

2A 2-change is a special case of the k-change used in the k-opt heuristic of
Lin and Kernighan [26]. The part of a tour from city { to city «({) is called an edge.

3This definition of a 2-change is applied only to a symmetric and undirected travelling salesman
problem in this chapter. In an asymmetric or directed problem a 2-change does much more than
simply replace two edges.

“The generation matrices give the probability of generating configuration j given current
configuration ¢ (see Section 5.3.1).
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Figure 6.2. An example of a 2-change. The left tour is before the 2-change and the right tour
after the 2-change. The pair of cities is 1 and 7 given by { = 1 and m = 5 (city 7 is the fifth city
visited after city 1 in the tour). The order of visiting cities 6, 2, 3 and 4 is reversed.

former case the generation matrices are symmetric but not uniform over the
neighbourhoods of configurations. In the latter case the matrices are symmetric
and uniform. Laarhoven [25] uses 1, ..., n—1 for symmetric travelling salesman
problems. This gives a neighbourhood size of 2n(n —1). The m = 1and m = 2
transitions result in 2n of the n(n — 1) possible transitions giving the current
configuration. The remaining n(n — 1) — 2n = n(n — 3) give transitions to the
in(n —3) unique configurations. The distribution of neighbours is not uniform
over the neighbourhood, but the generation matrices are symmetric. Limiting
m to 3,...,n — 1 removes transitions to the current configuration, and reduces
the neighbourhood size to n(n — 3). The generation matrices are both uniform
over the neighbourhoods and symmetric.”

Which range for m is better? An important feature, or idea, of simulated
annealing is the sampling of the neighbourhoods in search of lower cost con-
tigurations. Allowing transitions that generate the current configuration is
contrary to this idea. Therefore the 3,...,n — 1 range for m is used for gener-
ating 2-changes for the travelling salesman problem.

The second condition for the generating mechanism is that it is possible to
move from any configuration to any other using a finite number of transitions.
Laarhoven [25] proves this is possible with 2-changes. Appendix E describes
the method of creating the finite sequence of transitions and gives an example.

6.1.2 The initial control parameter value

An analysis of the behaviour of the initial control parameter value is presented
separately to the full analysis of a later section because the initial control pa-

>An example of applying two different 2-changes to the same permutation and giving
identical tours is given in Appendix D.
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rameter value is the starting point of the simulated annealing algorithm, and
therefore of importance. Understanding its behaviour as a function of the initial
acceptance ratio and the supposedly arbitrary number of iterations to deter-
mine the initial value is essential before moving on to study the behaviour of
the polynomial cooling schedule in its entirety (when applied to the travelling
salesman problem).

The initial control parameter is determined by an iterative process. A
sequence of values are generated by attempting transitions starting from a
arbitrary control parameter value. The sequence quickly converges to the
initial control parameter value. The equation to update the value is

E(-I-)

c =
In (s

where 20" is the average increase in cost of proposed increasing cost tran-
sitions, m; is the number of decreasing cost transitions, m, is the number of
proposed increasing cost transitions, and ¢y is the initial acceptance ratio. The
word proposed is used because not all increasing cost transitions are accepted
by the annealing algorithm, but it is all suggested increasing transitions that
are of interest in determining the first control parameter value. The initial
acceptance ratio is one of the parameters of the polynomial cooling schedule
(see Section 5.4). The process ceases when m transitions have been attempted.
Figure 6.3 shows the convergence of the initial control parameter sequences for
a one hundred city Euclidean travelling salesman problem.® The sequences all
quickly stabilise about the true initial value. The travelling salesman problem
simulated annealing program is in Appendix F.

The dependence of the initial control parameter on the initial acceptance
ratio

The initial control parameter is inversely proportional to the natural logarithm
of the reciprocal of an affine function of the initial acceptance ratio. However it
is convenient to consider the relationship between the initial control parameter
and the initial rejection ratio, the complement of the initial acceptance ratio.
Consider the calculation of the initial control parameter value using an
initial acceptance ratio ¢ =1 — r and ¢' = 1 — kr where r is the initial rejection
ratio and % is some scaling factor such that 0 < 1 — kr < 1. After M iterations

of the method for determining ¢y, the number of proposed cost increasing

epe . ~
transitions are m, and m5, and the average proposed increase costs are AC +)

and AC'"" respectively. The ratio of ¢} to cq is

ma(l—r)—(M—my)r

yNalts m
AC In (mé(l—kr)—(M mé)kr)

5O In (shy)

(
2

®Points are randomly distributed in the unit square.
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Figure 6.3. An example of the convergence of the initial control parameter value sequence.
Five sequences are shown using the same one hundred city Euclidean travelling salesman
problem, but different random numbers in the neighbour generation mechanism and annealing
acceptance test.
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This is transformed into a series in terms of r with the assistance of a symbolic
computation package. The series is

IR M (M —2m)*m)

KO (01 = gy (25 ~ S — ) A 1o
) ot ) T+ Or)
ACT k(M — 2mb)m; AC

Clearly the change in the initial control parameter value given a change in the
initial rejection ratio is not a simple function of the scaling factor £. However if it

is assumed the evolution of the sequences are similar, namely A AT
and m, ~ mj, then the approximate ratio of ¢ to ¢ is
1 (k= )M — my)

_ 2
k + pTE r+ O(r).

For small initial rejection ratios a change in the initial rejection ratio by
a factor of  gives an increase in the initial control parameter by a factor of
approximately k. This is observed in Figure 6.4. Initial acceptance ratios of 0.9
and 0.99 give initial control parameter values of 1.77 and 16.41 respectively at
the 1,000 iteration. The initial rejection ratio changes by a factor of 1, from
0.1 to 0.01, and the initial control parameter value increases by a factor of 9.3.
Similarly, for initial acceptance ratios of 0.99 and 0.999, the increase in the initial

control parameter is by a factor of 9.6.7

Convergence and a simple stopping rule

The initial control parameter value is dependent on problem instance. For ex-
ample two instances of the travelling salesman problem with the same number
of cities will give different values, and a problem with costs or distances scaled

up or down will give a different initial value to the original problem. This

dependence is primarily due to the presence of AC™ in the above equation.

If the initial value is so strongly dependent on the problem details then what
is an appropriate value for m?

e Too small and the sequence may not have converged, and the initial
value could be either lower or higher than the true value. A low value
results in the simulated annealing algorithm being prematurely trapped
and proceeding to find a locally optimal solution. A high value can result
in wasted computation because work is done by the algorithm at control
parameter values higher than necessary;

e If mis too large then time is spent needlessly iterating when the sequence
has already converged.

The second situation is the lesser of the two evils. But how large is large
enough, mo = 1,000, mo = 1,000,000...? This question is investigated by

’The empirical analysis uses just one sequence of values at each level of the initial acceptance
ratio. Further, each sequence is terminated at the 1,000?" iteration. Ideally, several longer
sequences at each level should be analysed.
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Figure 6.4. The dependence of the initial control parameter on the initial acceptance ratio.
The three sequences (from top to bottom) are for initial acceptance ratios of 0.999, 0.99 and 0.9,
and each is generated using the same problem and sequence of random numbers.
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side-stepping the problem with m and instead considering convergence and
a simple stopping rule.

The sequences in Figure 6.3 suggest for the particular problem and initial
acceptance ratio parameter used a mo of around 600 is acceptable. But this
might not be appropriate for another problem. A different approach is to use
a simple stopping rule. A possibility is to stop if the current value ¢; is within
+A% of the last value, that is stop if

¢ — Ci—1

<A

The parameter ) is called the initial stopping tolerance.® The iteration i at which
the rule is first satisfied is equivalent to m, and ¢; is ¢g. More elaborate rules can
easily be constructed, for example using some smoothed value of recent ¢; to
compare to the current value or a rule based on statistical confidence intervals,
however the above rule is simple and easily implemented and its performance
is analysed in the remainder of this section.’”

To investigate the initial control parameter’s dependence on A and ¢
one hundred runs of the method to determine ¢y were performed for ¢y =
0.9,0.99,0.999 with the same one hundred city Euclidean travelling salesman
problem. From each run ¢; and ¢ were found at which the stopping rule was
tirst satisfied for A = 0.01%, 0.1%,1%. In addition the true ¢y was found by
performing 100,000 iterations for each ¢, ten times.

Table 6.1 shows the results of the runs. The mean and sample standard
deviation are shown for the true initial value, the estimated initial value and
the number of iterations necessary to find the estimate. Figures 6.5 and 6.6
show the distributions of the estimated value and number of iterations for each
of the nine combinations of ¢y and A.

Both the table and figures show that the better the tolerance, that is the
smaller, the closer the estimated value is likely to be to the true value. In
all cases the mean of the estimated value is less than the true value.!® For
¢ = 0.9 the 1% stopping tolerance estimated value is about 30% below the true
value and the 0.01% value is about 10% below. Similarly for ¢y = 0.999 the
1% stopping tolerance estimated value is about 20% below the true value and
the 0.01% value is about 5% below. The discrepancy between the estimated
and true initial control parameter values decreases with increasing ¢y and
decreasing A. The number of iterations needed to find the estimated value
does not change dramatically with ¢y, for example for A = 0.01% the number
of iterations is 242 and 261 for ¢, equal to 0.9 and 0.999 respectively. However,
what must not be forgotten is that starting the simulated annealing algorithm
with a high initial control parameter greatly increases the computation, but
with the prospect of obtaining a better solution.!!

8This is different to the stopping parameter ¢, used in the polynomial schedule.
The rule for terminating the simulated annealing algorithm which uses ¢; is an example
of a more elaborate rule.
19Tn Figure 6.3 the ¢; sequences approach the true value from below.
These considerations are the subject of Sections 6.1.3 and 6.2.
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Figure 6.5. The estimated initial control parameter as a function of the initial acceptance ratio
and initial stopping tolerance. The top graph is for ¢9 = 0.9, middle for ¢9 = 0.99, and bottom
for ¢o = 0.999. Each boxplot shows the distribution of ¢;. The white area within the shaded
box is the median value, the shaded box shows the inter-quartile range, and the “whiskers”
top and bottom show the extreme values.
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Initial Acceptance  True Initial Control  Initial Stopping Estimated Initial Number

Ratio Parameter Tolerance Control Parameter of Iterations
b0 co A c; i
Mean Standard Mean  Standard Mean Standard
Deviation Deviation Deviation
0.900 168 0.00 0.01% 1.51 019 24213 13115
0.10% 132 0.27 7508 3885
1.00% 1.17 0.43 2356 1235
0.990 1537 0.00 0.10% 14.28 164 23785 12681
0.10% 1331 2.69 8209 4167
1.00% 1251 3.66 25.50 12.67
0.999 15219 025 0.01% 14497 1283 26145 13530
0.10% 13372 2323 7866 4328
1.00% 123.13 33.61 25.16 12.85

Table 6.1. Initial control parameter empirical data. For each initial acceptance ratio one
hundred runs of the method of determining the initial control parameter were performed.
For each run the estimated control parameter values were found using the stopping rule with
different initial stopping tolerances. The true value was found by running the method ten times
for a large number of iterations. The same one hundred city Euclidean travelling salesman
problem was used in each run.

The effort needed to find the initial value is determined by A, and this effort
is negligible compared to that in the simulated annealing algorithm proper.
The number of iterations is likely to be a fraction of the number of transitions
attempted in a chain. For instance, no more than about 600 iterations are
required to find ¢y in the empirical analysis above, and the number of transitions
in a chain for this problem is 3100(100 — 3) = 4,850. The primary decision
problem is deciding upon ¢y, and once determined the initial control parameter
should be found using as small a A as possible to ensure repeated runs of the
simulated annealing algorithm start from more or less the same initial control
parameter value.

An alternative to using a simple stopping rule

The above method of finding ¢ introduces another parameter, the initial stop-
ping tolerance, and the results show that even for small tolerances the estimated
initial control parameter value is less than the true value. Neither is desirable.
Further, the computational effort to find the initial value is relatively insignifi-
cant. So why not try a little harder to get a better initial value?

An alternative is to use a fixed number of iterations for a problem, but a
number that varies with problem size and takes account of the nature of the
problem. The number of transitions parameter L of the polynomial schedule
is such a quantity. It is the size of the largest neighbourhood. For the same
one hundred city problem ten runs at each value of ¢, were performed for
4,850 iterations. The results are shown in Table 6.2. The results show the means
of the estimated values are all within about 1% of the true values. Further the
sample standard deviations are small (from a sample of size 10). The same
analysis is performed for a two hundred city problem where L is 1200(200—3) =
19,700. The true initial values are determined using 400,000 iterations. The

114



results are shown in Table 6.3.

Initial Acceptance True Initial Control  Estimated Initial

Ratio Parameter Control Parameter
Po €0 €4 850
Mean Standard Mean Standard
Deviation Deviation
0.900 1.68 0.00 1.66 0.02
0.990 15.37 0.00 15.45 0.26
0.999 152.19 0.24 152.05 2.62

Table 6.2. Estimated initial control parameter empirical data using the number of transitions
for a one hundred city problem.

Initial Acceptance True Initial Control  Estimated Initial

Ratio Parameter Control Parameter
b0 €0 €19,700
Mean Standard Mean Standard
Deviation Deviation
0.900 1.72 0.00 1.72 0.01
0.990 15.95 0.02 15.94 0.11
0.999 157.97 0.17 158.26 0.89

Table 6.3. Estimated initial control parameter empirical data using the number of transitions
for a two hundred city problem.

Using L is a convenient and accurate method of finding ¢y at the expense of
a longer execution time compared to the stopping rule with A, and is used in
the remainder of this chapter and Chapter 7.

6.1.3 The empirical analysis proper

A variety of experiments are performed using the polynomial cooling schedule
and randomly generated symmetric travelling salesman problems. The ran-
dom problems are used to investigate the behaviour of the polynomial schedule
and its influence on the quality of solution and the execution time.

A preliminary investigation

Figure 6.7 shows the evolution of the control parameter and the smoothed
average cost for each chain for each of five runs of the simulated annealing
algorithm on the same randomly generated twenty city Euclidean travelling
salesman problem.'? Typical behaviour of ¢, and 7, is observed. The control

2The cities have x and y coordinates randomly distributed in the interval (0,100). The
smoothed value is found using a simple five point moving average. The polynomial schedule
parameters are: ¢g = 0.9,6 =0.1and ¢, = 10-°.
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parameter slowly reduces until a point is reached at which few changes oc-
cur, and the standard deviation of the configuration costs in a chain sharply
decreases. This results in an equally sharp drop in the control parameter.

100

Control Parameter

0.01

0 50 100 150 200

Chain

Smoothed Average Cost

400 500 600 700 800 900

Control Parameter

Figure 6.7. The top graph shows the evolution of the control parameter for five runs of the
simulated annealing algorithm for a twenty city Euclidean travelling salesman problem. The
bottom graph shows the smoothed average cost i, as a function of the control parameter for
the same runs.

An assumption of the derivation of the decrement rule for the control pa-
rameter is that the distribution of costs in a chain can be approximated by the
normal distribution (see Section 5.4.1). Figure 6.8 shows boxplots of every fifth
chain’s configuration costs from one run of the simulated annealing algorithm
for a random fifty city problem. Figure 6.9 shows the same information in the
form of normal probability plots. The assumption of normality is given some
credence by the plots. The distributions of early chains, that is at high control
parameter values, are approximately normal, with perhaps slightly longer tails
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than the normal. At low levels of the control parameter the distributions do
not appear to be normal.
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Figure 6.8. The boxplots of the configuration costs for every fifth chain from one run of the
simulated annealing algorithm for a fifty city Euclidean travelling salesman problem.

A further assumption is that Z};:—g and Z—T as functions of ¢, are similar
for small 6, where C;« is the cost of a globally optimal configuration. This is
confirmed in Figure 6.10. The two ratios are plotted side-by-side for each of
three runs for a fifty city problem with é = 0.1. The general shape of the two
functions are similar.

The investigation of the behaviour of the polynomial cooling schedule

To investigate the behaviour of the polynomial cooling schedule ten runs of the
simulated annealing algorithm were performed on three instances of the Eu-
clidean travelling salesman problem with fifty, one hundred and two hundred
cities. For each set of ten runs different schedule parameters were used. A base
set of parameters was used and parameters were varied one at a time from this
base set. The base set of parameters is ¢ = 0.99, § = 1 and ¢, = 107,
and parameters can take on the following values: ¢y € {0.9,0.99,0.999},
6 € {0.1,1,10} and ¢, € {1077,107°,107°}. For example, to investigate the
behaviour of the schedule with respect to ¢, three sets of ten runs were per-
formed with {¢g = 0.9,6 = 1,¢, = 107>}, {dg = 0.99,6 = 1,¢, = 107°} and
{d0=0.999,§ =1,¢, = 1075}.
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Figure 6.9. The normal probability plot of the configuration costs for every fifth chain from
one run of the simulated annealing algorithm for a fifty city Euclidean travelling salesman
problem. The x-axis of each plot is the standard normal variate. A straight line indicates the
distribution of the configuration costs is normal. An “S” shape indicates the distribution has
longer tails than the normal distribution.
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Figure 6.10. The left hand graphs are plots of the function =z g where Cj is the cost of a

globally optimal configuration. The right hand graphs are plots of the function 2 -~ Each row
of graphs is from the same run of the simulated annealing algorithm. All three runs are for the
same Euclidean travelling salesman problem instance.
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The execution times and final solution costs were analysed. The costs were
compared to the optimal cost by computing the percentage the final solution’s
cost is above the optimal cost. The optimal cost was approximated by the best
solution found from many runs of the k-opt heuristic with randomly generated
starting points (see Section 6.2). This approximate optimal solution is called
the near-optimal solution.

Figure 6.11 shows the distribution of each set of runs percentage above
near-optimal when varying each parameter for the fifty, one hundred and
two hundred city problems. The most important feature of the plots is that
the distance parameter ¢ is the primary factor in determining the quality of
solution obtained from the simulated annealing algorithm. A small ¢ gives a
solution more likely to be close to the near-optimal solution. Unfortunately
there is no evidence that the closeness decreases with increasing problem size.
The other two parameters do not influence the quality of solution to the same
extent, if at all.

A similar analysis of the execution times reveals that ¢ is again the determin-
ing factor, and within a set of ten runs there was very little variation. However
execution times do grow rapidly with increasing problem size and decreasing
6. Table 6.4 shows the mean and sample standard deviations of the percentages
above near-optimal and execution times for the three problems and levels of 6.

Problem Distance Percentage Execution Time
Size Parameter above Near-Optimal (seconds)
o Mean  Standard Mean  Standard
Deviation Deviation
50 0.1 0.69 0.67 53.98 1.11
50 1.0 1.04 0.83 8.19 0.25
50 10.0 4.12 3.46 3.09 0.21
100 0.1 1.04 0.63 662.37 9.06
100 1.0 3.32 1.49 96.55 2.36
100 10.0 4.53 2.23 32.83 1.25
200 0.1 1.31 1.07 8597.45 310.30
200 1.0 3.79 1.57 1241.14 60.48
200 10.0 4.40 1.81 398.64 7.45

Table 6.4. Simulated annealing empirical data when using the polynomial cooling schedule
on randomly generated Euclidean travelling salesman problems.

The analysis of the quality of solution and execution times indicates that
care should be exercised in choosing ¢, and a trade-off between quality of
solution and execution time exists. Using a high initial acceptance ratio and
small stopping parameter does not significantly increase execution time and
is a safeguard against early convergence to a local optimum and premature
termination of the algorithm.
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Figure 6.11. Each row (from top to bottom) shows boxplots of the final solution’s cost
as a percentage above near-optimal for fifty, one hundred and two hundred city problems
respectively. Each column contains boxplots of the percentage when only the one parameter
is varied from the base set.
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6.2 A Comparison of Simulated Annealing with a
Tailored Heuristic for the Travelling Salesman
Problem

In this section simulated annealing is compared with the k-opt heuristic of
Lin and Kernighan [26] for the travelling salesman problem and a heuristic
using repeated application of 2-changes. The execution times and quality
of solutions are compared for simulated annealing runs using the polynomial
cooling schedule and repeated runs of the k-opt heuristic and 2-changes for dif-
ferent Euclidean travelling salesman problems from the literature with known
optimal solutions.

6.2.1 The k-opt and repeated 2-change heuristics

The k-opt heuristic is a very fast iterative improvement method for obtaining
good travelling salesman problem solutions. The solutions are often optimal
or very close to optimal. Unlike the 2-change heuristic which always replaces
two edges in a tour with two edges not in the tour, the k-opt heuristic replaces &
edges, a k-change. The number of edges replaced is determined from iteration
toiteration and varies. The method for determining k is itself iterative. Possible
replacements are considered until no further gain is possible or the benefit in
increasing k outweighs the effort in determining the edges involved. The
heuristic terminates at a solution at which no further cost decreasing £-changes
can be made.

The repeated 2-change heuristic is a very simple method for finding a so-
lution. Starting with an arbitrary solution, 2-changes are considered until a
cost decreasing change is found and the solution is changed. The process is re-
peated until all possible 2-changes have been attempted on the current solution
without any change giving a decreasing cost transition. The current solution is
the final solution. An alternative implementation is to consider all 2-changes
for a solution and accept the change giving the greatest decrease in cost.

6.2.2 The empirical comparison

Six problems from the literature with known optimal solutions are used to
compare heuristics. The problems vary in size from 51 cities to 105 cities. The
problems are all symmetric Euclidean problems. These test problems are in
Appendix G.3

3The code for the k-opt heuristic was kindly supplied by D Slowinski
(sl ow@ unkel . cray. com. It is in FORTRAN and was compiled using the Sun FORTRAN
compiler. It has been assumed the implementation of the k-opt heuristic is correct. The pro-
duction of optimal solution costs for the problems with known optimal solutions supports this
assumption.
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Simulated annealing

Table 6.5 shows the average final solution costs and average percentage above
optimal over ten runs of the simulated annealing algorithm with 6 = 0.1,1,10
for each problem. This shows the same behaviour of the polynomial schedule
as in the previous section: a smaller ¢ gives a better solution. Table 6.6 shows
that better solutions are obtained at the expense of greater execution times.

Problem Distance Cost Average
Parameter =~ Mean  Standard  Percentage
0 Deviation above Known

Optimal

EIL051 0.1 443.15 5.95 3.33%
EIL051 1.0 444.37 4.90 3.61%
EIL051 10.0 453.06 7.15 5.64%
EIL076 0.1 556.46 6.43 2.22%
EIL076 1.0 565.74 8.98 3.93%
EIL076 10.0 57291 6.45 5.24%
KRO124 0.1 21445.30 92.06 0.75%
KRO124 1.0 21849.89  295.62 2.65%
KRO124 10.0 2191251  202.78 2.95%
KRO126 0.1 2104133 17244 1.40%
KRO126 1.0 2121525  360.78 2.24%
KRO126 10.0 2147122  444.33 3.47%
KRO127 0.1 2149281  126.22 0.93%
KRO127 1.0 2164344  165.33 1.64%
KRO127 10.0 22190.73  315.83 4.21%
LIN105 0.1 14566.83 67.09 1.28%
LIN105 1.0 14730.05  276.85 2.41%
LIN105 10.0 15059.14  283.37 4.70%

Table 6.5. Simulated annealing final solution costs and percentages above known optimal.
The digits in the problem name are the problem size except for the KRO problems which are
in fact one hundred city problems.

The average execution times for the ¢ = 0.1 runs are the times used for
repeated runs of the k-opt and 2-change heuristics. For example, each run
of the k-opt and 2-change are allowed 663 seconds of computing time on the
KRO127 problem and 57 seconds on the EIL051 problem. For each problem
there are ten runs.!

4The method of implementing the repeated 2-change istolet! = 1, ..., n and for every [ let
m =3,...,n — 1. Of the n(n — 3) 2-changes only in(n — 3) unique solutions are generated.
Instead of attempting to detect 2-changes that may already have been attempted the 2-change
heuristic was allowed to run for twice the time to compensate for the lack of detection of
duplicated proposed 2-changes.
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Problem Distance

Execution Time

Parameter (seconds)
1) Mean Standard
Deviation
EILO51 0.1 56.96 0.82
EILO51 1.0 8.34 0.39
EILO51 10.0 3.10 0.22
EIL076 0.1 239.06 5.07
EIL076 1.0 40.48 10.21
EIL076 10.0 1291 0.44
KRO124 0.1 679.41 16.92
KRO124 1.0 114.49 40.67
KRO124 10.0 34.10 1.14
KRO126 0.1 658.05 8.81
KRO126 1.0 97.68 2.32
KRO126 10.0 33.02 1.05
KRO127 0.1 663.05 14.98
KRO127 1.0 95.45 1.95
KRO127 10.0 31.74 1.14
LIN105 0.1 807.35 23.57
LIN105 1.0 119.31 2.89
LIN105 10.0 39.58 1.63

Table 6.6. Simulated annealing execution times.
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Problem Mean Mean Mean Mean Average

Simulated Best Number Proportion  Percentage

Annealing  k-opt  of Solutions giving above

Cost Cost Found Optimal Cost k-opt

EIL051 44315 42887 1605 1.3% 3.3%
EIL076 556.46  544.37 3306 8.4% 2.2%
KRO124 2144530 21285.44 5571 0.3% 0.8%
KRO126  21041.33 20750.76 5330 0.5% 1.4%
KRO127  21492.81 21294.29 4538 0.1% 0.9%
LIN105  14566.83 14383.00 5144 5.0% 1.3%

Table 6.7. k-opt heuristic comparison with simulated annealing. The simulated annealing
mean cost is the § = 0.1 mean. The k-opt means are over ten runs each of length equal to the
average simulated annealing execution time for § = 0.1.

Comparison with k-opt heuristic

Table 6.7 shows the results of the k-opt heuristic runs. For all six problems
the k-opt heuristic found the optimal solution some of the time. Therefore the
“Average Percentage above k-opt” column in the table shows the same figures
as the “Average Percentage above Known Optimal” column in Table 6.5. The
k-opt heuristic clearly out-performs simulated annealing.

Comparison with repeated 2-change heuristic

Table 6.8 shows the results of the repeated 2-change runs. For four of the six
problems the repeated 2-change heuristic is better than simulated annealing.
Although for three of the four the difference is less than 1%. For none of the
problems did the 2-change heuristic find the optimal solution. The average
number of solutions found in the runs of the 2-change heuristic is significantly
lower than with the k-opt heuristic. This is partly due to the superiority of
the k-opt method and to its implementation in FORTRAN compared to the
2-change’s implementation in C++.

Summary

The results of the above analysis support the conclusions of Laarhoven [25]. He
showed that k-optis far better than simulated annealing. Thatis, a good tailored
heuristic for a specific problem will generally out-perform simulated annealing.
Laarhoven concludes that simulated annealing is better than repeated applica-
tion of the generation mechanism used in the simulated annealing algorithm
when both are given the same amount of computing time. For example in the
case of the travelling salesman problem, simulated annealing using a 2-change
is better than repeated 2-changes as used above.

However, the comparison above of simulated annealing and repeated 2-
changes favours the latter by a small amount. Laarhoven’s analysis is over ten
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Problem Mean Mean Mean Average

Simulated Best Number  Percentage

Annealing 2-change of Solutions above
Cost Cost Found 2-change

EIL051 443.15 432.27 896 2.5%
EIL076 556.46 560.97 1202 -0.8%
KRO124 2144530 21418.66 1377 0.1%
KRO126 ~ 21041.33 20977.47 1355 0.3%
KRO127  21492.81 21714.56 1374 -1.0%
LIN105  14566.83 14468.78 1394 0.7%

Table 6.8. Repeated 2-change comparison with simulated annealing.

problems (compared to six) and for five of the ten problems only five runs equal
in length to the average simulated annealing time are performed (compared
to ten).!> Three of the problems are 120, 318 and 442 city problems and for
these simulated annealing is better than repeated 2-changes by 1.25%, 3.13%
and 4.50% respectively. The better performance for larger problems is perhaps
reason enough to suggest simulated annealing is the better heuristic.

5For the remaining five problems ten runs are performed in Laarhoven’s investigation.
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Chapter 7

Simulated Annealing and the
Euclidean Steiner Tree Problem

Earlier chapters have shown that the Euclidean Steiner tree problem is a very
difficult problem and that heuristics are the only practical means available for
tinding good solutions in acceptable amounts of time. In Chapter 6 it was
shown that simulated annealing can be successfully applied to the travelling
salesman problem. In this chapter an attempt is made to apply simulated an-
nealing to the Steiner tree problem. The necessary components of an annealing
approach are discussed, experiments are described and the results analysed.

There appears to be little work on applying simulated annealing to finding
Steiner minimal trees. Two papers of most direct relevance are Lundy [27] and
Hesser et al. [16] (both are discussed briefly in Chapter 4).! Lundy uses sim-
ulated annealing to find evolutionary trees for n populations by constructing
a binary tree linking the populations via n — 2 ancestral populations. A two
stage random transition mechanism is used. Firstly, a full Steiner topology is
transformed into a different full topology. Secondly, the n — 2 Steiner points
are sequentially moved to optimal locations (with respect to their immediate
neighbours in the topology). Unfortunately, Lundy’s discussion of using simu-
lated annealing is limited to finding best connections with a »n point full Steiner
topology. Using simulated annealing to find the positions of Steiner points
given a full topology is now redundant because of the existence of Hwang’s
linear time algorithm for finding a full Steiner tree for a given topology (see
Section 2.9.4).

Hesser et al. [16] devote most of their effort to using a genetic algorithm to
find Steiner minimal trees. A simulated annealing algorithm is discussed very
briefly. They give insufficient details on the actual implementation and prob-
lems encountered. It is not clear in either the genetic algorithm or annealing
discussion how the number of Steiner points in a solution can be changed.

Dowsland [9], Schiemangk [34] and Kapsalis et al. [22] are presentations of the application
of simulated annealing and genetic algorithms to the network Steiner problem.
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7.1 Second Thoughts on Using Simulated Annealing

The references cited above provide little guidance on using simulated annealing
with the Euclidean Steiner tree problem. A reaction to the small number of
references of limited assistance is to ask if using simulated annealing is a
fruitless task. An endeavour with no reward and little joy.

The tailored heuristics of Smith et al. [37] and Beasley and Goffinet [2] (see
Chapter 4) give very good solutions and do so in reasonable amounts of time.
Analysis of Cockayne and Hewgill’s one hundred point test problems (see
Appendix B) shows that most Steiner minimal trees are close to the minimum
spanning tree in the sense that the SMT tends to follow the MST. Further, the
SMTs are predominately composed of two, three and four point FSTs. These
structures are the explicit building blocks of the Smith et al. heuristic.” Finally,
the average reduction given by the SMT over the MST is around 3%, the
heuristics also give reductions of around 3%. This indicates that the tailored
heuristics do a good job of finding approximate solutions that are close to
optimal. And the approach of improving upon the MST by using three and
four point FSTs is a correct and successful approach (at least for randomly
generated problems).

So is simulated annealing worth pursuing? Perhaps not from a practical prob-
lem solving point of view. But there is still the intellectual exercise of imple-
menting a simulated annealing approach to the Euclidean Steiner tree problem.
It is certain that simulated annealing will be slower than the tailored heuristics
butitis possible that annealing can give better quality solutions if given enough
time.

A “pure” form of annealing is described in the following sections. Pure in
the sense that little problem specific information is used and very simple tran-
sitions from one solution to another are performed. Information provided by
the minimum spanning tree and Steiner polygon, important in optimal algo-
rithms, is ignored. The annealing schedule, acceptance rule and cost function
work together to give good solutions.

7.2 Solutions and Transition Mechanisms

Fundamental components of a simulated annealing algorithm are a solution, a
means of creating a neighbour solution and a cost function. A restatement of
the Euclidean Steiner tree problem provides insight into what a solution and
cost function are for an annealing implementation. The problem is: given a set
of points A = {a, ..., a,} in the plane, whatis the set of points S = {s1,...,s:},
k > 0, that gives the minimal length spanning tree of AU S?

A solution is a set of points, possibly an empty set. It is also known that the
maximum size of the setis n —2 (see Section 2.5). For the purposes of annealing
the cost of a solution is the length of the minimum spanning tree of the given

Beasley and Goffinet do not explicitly use three and four point FSTs but instead use the
Delaunay triangulation to generate possible Steiner points.
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points and the solution points as a percentage of the minimum spanning tree
of the given points only. A neighbour generation mechanism is some random
change to a solution. In this case, an addition, deletion or replacement of a
point in the solution.

The following three sections describe each type of change. Each is very
simple. More sophisticated changes could be used, but simplicity and ease of
implementation are more important at this early stage of applying annealing
to the Steiner tree problem.

7.2.1 Adding a point

If there are less than n — 2 points in the current solution S then another point
can be added. The size of the current solution is denoted by k. The added point
is the Steiner point of the triangle formed by three distinct randomly selected
points from the n + £ points in AUS. Further, the added point must not already
be in §. It is possible that for many combinations of three points the Steiner
point will not exist. Figures 7.1 and 7.2 show an example of adding a point to
an existing solution containing five points.

It appears from the above example that added points will often be in ridicu-
lous locations from a Steiner minimal tree point of view. However as the
annealing progresses such additions are increasingly likely to not be accepted.
Instead, additions that give decreasing length minimum spanning trees will
be the only changes accepted and the solution will converge to a Steiner tree,
preferably the SMT but not necessarily so. An example of the evolution of a
solution using annealing is given below.

7.2.2 Deleting a point

It is possible to delete a point in the solution if £ > 0. A point is selected
randomly from S. Figure 7.3 shows the result of deleting point A from the
solution in Figure 7.2.

Deletions of “good” Steiner points will occur with decreasing frequency
as the simulated annealing algorithm runs. And “bad” Steiner points, those
not of degree three or with all angles not equal to 120°, are more likely to be
removed.

7.2.3 Replacing a point

Replacing a point is possible if £ > 0. Replacement is a deletion followed by
an addition. It is possible for the solution to be unchanged at the end of the
process but this is unlikely. Figures 7.4 and 7.5 show an example of replacing
a point.

The replace change combines deletion and addition into one. It provides a
means of moving a Steiner point. This is especially important near the end of
the annealing when the control parameter is such that nearly all increasing cost
moves are rejected. Consider a point that gives a minimum spanning tree with
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Figure 7.1. A point defined by the three points 9, 10 and A is added to the existing five point
solution (marked by crosses). The new point is at the intersection of the circle (partly shown)
and the axis of the three point FST (dashed line). The current solution is clearly not optimal
because most of the “Steiner points” are of degree two.
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Figure 7.2. The new solution after adding a point. It does little to improve the quality of the
solution. The new point is above point 6 and in the new minimum spanning tree is directly
connected to 6 and 9. It is not directly connected to two of the points on which it is based, 10
and A.
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Figure 7.3. Point A in Figure 7.2 has been deleted. The minimum spanning tree has a slightly
better “look” in the region of points 1, 2, 3 and 4, but there is still room for much improvement.

132



Figure 7.4. Point A is replaced by the point defined by the triangle formed by points 4, 6 and
8. The new point is the at the intersection of the 120° arc from 4 to 6 and the axis of the three
point FST (dashed line).
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Figure 7.5. Point A in Figure 7.4 is replaced by a point based on 4, 6 and 7. The new point,
to the right of point 4, is connected to 4 and 6 in the new minimum spanning tree but is not
connected to point 7.
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an optimal, or near optimal, topology, but is not quite in the correct location.
It needs to be moved. If only deletion and addition changes are possible it is
unlikely it will be deleted because removing it would give an increase in cost.
The replace change does provide the opportunity for the point to be replaced
or moved to its optimal location with respect to the topology.

In the early stages of the annealing when most increasing cost changes are
accepted it is possible for a replace change to give a dramatic change to the
minimum spanning tree. The replacement of A in Figure 7.4 with a point
defined by 4, 6 and 7 to give the solution shown in Figure 7.5 is a good example
of this.

7.2.4 Which change to use?

At each transition there must be some way of determining which change to
apply. Clearly when k£ = 0 only an addition can be performed, and when
k = n — 2 delete and replace are the only allowable changes. A simple method
is to select a change type randomly with equal probability and allow for the
restrictions imposed when there are no points or » — 2 points in the current
solution. This approach is used in the simulated annealing algorithm presented
in this chapter.

7.2.5 The neighbourhood size

Fundamental to the polynomial cooling schedule is the neighbourhood size.
The maximum neighbourhood size over all possible solutions determines the
number of transitions attempted at each level of the control parameter. This
number is called the chain length (see Section 5.4.1). For the travelling salesman
problem using a 2-change transition the maximum neighbourhood size is O(n?)
and the number of possible solutions is 1(n — 1)! for a symmetric problem (see
Section 6.1.1).

In Section 2.6 an expression for the number of Steiner topologies for n
points is shown, and is calculated for some n (see Table 2.2). The numbers are
frighteningly large! The add, delete and replace changes do not necessarily give
Steiner topologies. The Steiner points can have any degree in the minimum
spanning tree, therefore the number of possible topologies is larger than the
number of Steiner topologies. No attempt is made to count the number of
topologies that can be obtained from the current solution by making a change,
for example adding another point.

An alternative is to consider how many possible changes can be made.
For instance if there are & points in the current solution, how many differ-
ent points can be added? If it is assumed every combination of three points

" —?I; k ) points that can be added. This

is O(n®). What if there are & = n — 2 points and one is replaced? One
of the £ must be deleted and another added by choosing three points from
the remaining » + n — 3 points to form a new point. Again assuming every

has a Steiner point then there are (
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combination of three has a Steiner point then the number of combinations is
(n—2)x ( n g -3 . This is O(n*) and is an upper bound on the maximum
size of a neighbourhood. Unfortunately even for moderate size problems this
is a large number, for example 50* = 6,250, 000 and 100* = 100,000, 000. For
the travelling salesman problem the corresponding numbers are only 1,175 and
4,850. Using an O(n*) chain length is clearly unreasonable. An O(n?) length,
although somewhat arbitrary, at least reduces the computation time and still
gives sufficient numbers of transitions. A chain length of n? is used in the Eu-
clidean Steiner tree problem simulated annealing implementation. However,
the n* length is not completely abandoned. Some experiments are performed
below to show it is excessive and impractical.

Figure 7.6 shows the evolution of a Steiner solution using simulated an-
nealing. The Steiner points move to locations where they are degree three
with all angles approximately equal to 120°. Figure 7.7 shows ten simulated
annealing solutions for one of Cockayne and Hewgill’s test problems. The sim-
ulated annealing program is listed and its implementation briefly discussed in
Appendix H.

7.3 Empirical Results

The relatively simple simulated annealing algorithm described above is eval-
uated in this section. Firstly, performance on randomly generated problems
of different sizes is analysed. This gives an indication of the time complexity
of the algorithm. Secondly, Cockayne and Hewgill’s test problems are used to
compare simulated annealing with the results of Beasley and Goffinet [2]. The
comparison is one of quality, not computation time.

7.3.1 Initial experiments

Results for both computation time and quality of solution are presented when
using the simulated annealing implementation to solve a range of randomly
generated problems varying in size from ten to one hundred points. Chain
lengths of n? and n* are used. Further, using n? a coarse and fine set of polynomial
schedule parameters are used. Coarse in the sense that solutions are found
“quickly” without necessarily being “good” solutions and fine in the sense that
more time is spent looking for good solutions. The two sets of parameters are
shown in Table 7.1.

For problem sizes n = 10,20, ...,90,100, 150,200 the simulated annealing
implementation is used to “solve” a randomly generated problem five times,
each time with a different set of random number generator seeds. This is done
using the coarse and fine parameter sets and a chain length of n?. Further, a
three hour CPU time limit is enforced.? In no cases can solutions to the 150 and

3The three hour limit is arbitrary, but was decided upon after considering the time necessary
to accumulate experimental results and what felt reasonable for a heuristic for the Euclidean
Steiner tree problem.
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Figure 7.6. The six plots show the solution at the end of selected chains of a simulated
annealing run for a fifteen point Euclidean Steiner tree problem. The crosses are the points in
the solution set. The order of the plots is left to right, top to bottom.
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Figure 7.7. Ten simulated annealing solutions for Cockayne and Hewgill’s Problem 3. The
dots are the one hundred given points and the crosses are the Steiner points in the various
solutions. The solutions are all very similar. It is the fine detail that remains to be resolved.

138



Parameter Coarse Fine

Distance Parameter o 10 1
Initial Acceptance Ratio ¢y 09  0.99
Stopping Parameter ¢, 1073 10°°

Table 7.1. The two sets of polynomial cooling schedule parameters used to investigate the
application of simulated annealing to the Euclidean Steiner tree problem. The fine set is the
base set of parameters used in Chapter 6 to study simulated annealing when applied to the
travelling salesman problem.

200 point problems be found within three hours. In addition no 90 and 100
point problems finish within three hours using the fine set. Table 7.2 shows the
mean computation times and sample standard deviations using the coarse and
fine sets. As expected the coarse runs are faster. The computations times are
also less variable than the fine set times.

Problem Size Coarse Fine
n Mean Standard Mean  Standard
Deviation Deviation
10 244 0.20 5.07 0.59
20 19.21 1.04 59.70 4.66
30 83.52 21.67 31424 49.63
40 254.47 80.62 75290 55.63
50 359.42 47.18 1467.04 173.19
60 851.03 35.71 3573.98 1024.90
70 1351.67 118.63 5445.85 478.01
80 2234.71 166.33 8527.74 1637.63
90 2964.75 295.15 - -
100 4606.40 261.42 - -
150 - - - -
200 - - - -

Table 7.2. The mean computation times and sample standard deviations in seconds for the
randomly generated problems. The samples are all of size five. For the larger problems no
solutions were found within a three hour CPU time limit.

A simple least squares regression shows the coarse mean times to be O(n%%)
and the fine mean times to be O(rn%8). Clearly, simulated annealing is unable to
compete with tailored heuristics. For example, Beasley and Goffinet’s heuristic
is O(n*'). For a 100 point problem their heuristic is about 100 times faster than
simulated annealing (as implemented above).

Although much slower can coarse annealing give better quality solutions than
Beasley and Goffinet? The answer to this question is postponed until the section
below which analyses simulated annealing’s performance using Cockayne and
Hewgill’s test problems. Instead at this point the difference in quality of
solution between coarse and fine solutions is studied. If the difference is
small then abandonment of the fine set of schedule parameters is not such a
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dangerous thing to do in favour of the faster coarse set. Regardless, the fine
set is of limited use because it is desired to investigate one hundred point
problems below. One hundred point problems require more than three hours
of computation time using the fine set.*

For each problem the mean, minimum and maximum cost of the five solu-
tions are shown in Table 7.3. The cost is the length of the minimum spanning
tree of the given points and solution points as a percentage of the length of the
minimum spanning tree of the given points only. The differences between the
solutions from coarse and fine solutions are marginal. For all problems the best
fine solution is better than the best coarse solution. However the difference is
small. The largest difference between minima of coarse and fine solutions is
0.19%: the 60 point problem minimum solution costs are 96.70% and 96.51%
for coarse and fine respectively, a difference of 0.19%. Similar maximum differ-
ences for means and maxima are 0.25% and 0.45% respectively. The negligible
difference between the quality of solutions produced by the two parameter sets
is a direct result of the way simulated annealing works: the overall structure
is determined then the fine detail is slowly identified. The coarse set quickly
determines the approximate positions of the Steiner points. The fine set also
does this and takes the process one step further and works on the very fine
detail, that is small changes are made to the positions of already discovered
Steiner points. Unfortunately the gain from this second stage is insignificant
compared to the large increase in computation time.

Problem Size Coarse Fine

n Minimum Mean Maximum Minimum Mean Maximum
10 96.19 96.27 96.49 96.19 96.20 96.22
20 95.64 95.76 95.86 95.57 95.70 95.90
30 96.08 96.21 96.42 95.95 95.96 95.97
40 96.99 97.16 97.28 96.98 97.03 97.12
50 96.59 96.70 96.97 96.51 96.52 96.55
60 96.70 96.76 96.81 96.51 96.56 96.64
70 95.70 95.80 95.94 95.63 95.64 95.65
80 96.19 96.23 96.33 96.13 96.17 96.31
90 96.78 96.83 96.94 - - -

100 96.57 96.60 96.62 - - -

Table 7.3. The minimum, mean and maximum solution costs of the random problems
simulated annealing solutions for both the coarse and fine schedule parameter sets. The fine
solutions are only marginally better than the coarse solutions.

A similar analysis of simulated annealing using a chain length of n* instead
of n? with the coarse set of parameters indicates the computation time to be
O(n**). The quality of solutions is generally between that of the coarse and
fine set using a chain length of n?.

“The rough and ready regression indicates a time of five to six hours is likely using the fine
set compared to about one to one and a half hours for the coarse set.
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7.3.2 Comparison with Beasley and Goffinet’s results

It is shown above that simulated annealing can not compete with the tailored
heuristics for the Euclidean Steiner tree problem in terms of computation time.
However, the quality of annealing solutions may be better. This is investigated
in this section.

Using a chain length of n? and the coarse annealing parameter set, simu-
lated annealing is applied ten times to each of Cockayne and Hewgill’s thirty
100 point test problems.” The annealing results are compared to Beasley and
Goffinet.® Table 7.4 shows the annealing results and Beasley and Goffinet’s
results. An initial browse of the table indicates there to be little difference be-
tween the two heuristics. Further, this is using the coarse annealing schedule
parameters. Table 7.5 shows a simple comparison of the annealing and Beasley
and Goffinet results. The table shows which heuristic is better for each problem
assuming the Beasley and Goffinet values are either minima or means.

Simple statistics are shown in Table 7.6. The statistics show Beasley and
Goffinet’s to be the better heuristic. This heuristic is only bettered by simu-
lated annealing in the worst percentage above optimal measure. Beasley and
Goffinet’s heuristic is clearly the winner assuming their results are means. But
the distinction is less clear when assuming minima. The average percentages
above optimal are 0.12% and 0.11% for simulated annealing and Beasley and
Goffinet’s heuristic respectively. The sign test does not reject the hypothesis
that the two heuristics are of equal quality in favour of Beasley and Goffinet’s
being better.”

The empirical analysis suggests there is little difference, if any, between
coarse simulated annealing and Beasley and Goffinet’s heuristic, assuming
their results are minima.

> Appendix B contains the given points and Steiner points of the optimal solutions to the
test problems.

®The results are shown in Table 4 of Beasley and Goffinet [2]. It is not clear from the paper
if the heuristic solution costs are means or minima from many runs of the heuristic on the
test problems. The heuristic has a small stochastic element to avoid cycling, therefore strictly
several runs are required on the same problem to obtain reliable data (see Section 4.3). There
is no statistical information in the paper. Because of this Beasley and Goffinet’s results are
compared to both minima and means of simulated annealing results.

"Most statistics texts have a chapter on non-parametric statistics. Excluding the ties, sim-
ulated annealing was better 10 times and Beasley and Goffinet’s heuristic 17 times. The
probability of the latter being better than the former 17 or more times in 27 trials assuming
they are identical is 0.5 Y2 - ’C; = 0.06. Small but perhaps not small enough to conclude
they are different.
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Problem Simulated Annealing Beasley
Minimum Mean Maximum and Goffinet

1 0.13 0.29 0.47 0.13

2 0.08 0.16 0.28 0.03

3 0.12 0.21 0.32 0.09

4 0.10 0.22 0.38 0.04

5 0.09 0.14 0.18 0.03

6 0.09 0.16 0.22 0.06

7 0.11 0.20 0.33 0.15

8 0.10 0.24 0.46 0.05

9 0.15 0.24 0.32 0.02
10 0.16 0.27 0.54 0.47
11 0.15 0.26 0.40 0.12
12 0.07 0.12 0.18 0.00
13 0.11 0.19 0.31 0.19
14 0.14 0.26 0.38 0.15
15 0.14 0.23 0.43 0.02
16 0.12 0.17 0.21 0.44
17 0.11 0.17 0.24 0.00
18 0.15 0.20 0.28 0.01
19 0.12 0.16 0.20 0.08
20 0.10 0.18 0.37 0.13
21 0.08 0.21 0.30 0.08
22 0.10 0.20 0.26 0.10
23 0.18 0.26 0.44 0.02
24 0.15 0.20 0.24 0.16
25 0.12 0.25 0.39 0.02
26 0.12 0.18 0.24 0.20
27 0.17 0.27 0.34 0.47
28 0.09 0.13 0.23 0.00
29 0.14 0.20 0.39 0.07
30 0.09 0.14 0.21 0.11
All 0.07 0.20 0.54 0.11

Table 7.4. The simulated annealing results from ten runs on each of Cockayne and Hewgill’s
one hundred point test problems. The minimum, mean and maximum of solution costs as
percentages above optimal from annealing are shown for each problem. The Beasley and
Goffinet solution costs are from [2]. For Problems 17 and 28 their heuristic found the optimal
solution. Problem 12 has a percentage above optimal value of 0.00. This is due to rounding. The
optimal solution length and Beasley and Goffinet’s solution length differ in the fifth decimal
place.
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Problem  Assuming a Minimum Assuming a Mean
Simulated Beasley Simulated Beasley
Annealing and Goffinet Annealing and Goffinet

1 o L [
2 L [
3 L [
4 L [
5 L [
6 L [
7 o L
8 L [
9 L [
10 o L
11 L [
12 L [
13 o L [
14 o L
15 L [
16 o L
17 L [
18 L [
19 L [
20 o L
21 o L [
22 o L [
23 L [
24 o L
25 L [
26 o L
27 o L
28 L [
29 L [
30 o L

Table 7.5. A dot indicates which heuristic is better. The comparison is done assuming the
Beasley and Goffinet value is both a minimum and a mean and therefore is compared to the
simulated annealing minimum and mean respectively. For some problem instances the values
are the same. In these cases dots are placed in both columns, for example Problem 1 assuming
a minimum.
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Assuming a Minimum Assuming a Mean
Simulated Beasley Simulated Beasley
Annealing and Goffinet Annealing and Goffinet

Number of times 13 20 5 26
tirst or tied for first
Average percentage 0.12% 0.11% 0.20% 0.11%
above the optimal
solution

Average rank 1.62 1.38 1.85 1.15
Worst percentage 0.18% 0.47% 0.29% 0.47%
above optimal
solution

Table 7.6. Statistics for comparing the two heuristics. The Assuming a Minimum Simulated
Annealing column uses the minima results of simulated annealing for comparison with Beasley
and Goffinet’s results. The Assuming a Mean Simulated Annealing column uses the means
results of simulated annealing. In all but one category Beasley and Goffinet’s heuristic is better
then simulated annealing for both assumptions.
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7.4 Local Improvement

The simulated annealing solutions are on average 0.20% above optimal. This
is a small margin. Regardless there is room for improvement, especially as
Beasley and Goffinet’s equivalent margin is 0.11%. In this section a very simple
local improvement procedure is applied to the simulated annealing solutions.

A more complicated but perhaps more rewarding improvement mechanism
is to use the simulated annealing solution as the starting point for Beasley and
Goffinet’s heuristic. The heuristic normally begins with an empty set of “Steiner
points” with the best solution equal to the minimum spanning tree of the given
points. It would be hoped that the heuristic preserves the underlying topology
discovered by the annealing and quickly finds the optimal locations of the
Steiner points.

7.4.1 The simple procedure

The local improvement procedure assumes the solution contains points that are
close to their optimal location and are degree three. This assumption means
it is highly likely that the Steiner point defined by a solution point’s three
neighbours does exist.

Although contrary to the assumption the procedure first of all checks for
points of degree one and two and removes them if found. The procedure
performs the following step iteratively until the difference in length of the so-
lutions at the beginning and end of an iteration as a percentage of the minimum
spanning tree of the given points is less than some small number, for example
0.001%. An iteration is a single pass through the set of solution points, where
each point is replaced by the Steiner point defined by its three neighbours,
but only if this gives a reduction in the solution cost after removing degree
one and two points that may be created by the change. During an iteration
it is possible for the size of the solution set to decrease, it can never increase.
Because only a single pass is made a point that has already been processed and
is a neighbour of a point or points that has or have also changed may no longer
be in its optimal position with respect to its neighbours. Such a point is not
re-processed in the iteration.

The procedure is straightforward. No attempts are made to eliminate angles
of less than 120° through the introduction of more Steiner points. However,
only decreasing cost changes are accepted.

7.4.2 Local improvement results

The simulated annealing with local improvement solution costs as a percentage
of optimal are shown in Table 7.7 together with Beasley and Goffinet’s values.
The average percentage above optimal over all problems has decreased by
0.09% from 0.20% to give 0.11%. The reductions achieved are shown in Ta-
ble 7.8. The smallest reduction was 0.03% and the largest 0.23%.

Tables 7.9 and 7.10 show the simple comparison of the heuristics and
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Problem Simulated Annealing Beasley
Minimum Mean Maximum and Goffinet

1 0.03 0.19 0.38 0.13

2 0.02 0.09 0.19 0.03

3 0.07 0.14 0.25 0.09

4 0.05 0.13 0.24 0.04

5 0.04 0.07 0.12 0.03

6 0.04 0.09 0.16 0.06

7 0.05 0.11 0.21 0.15

8 0.03 0.13 0.32 0.05

9 0.08 0.16 0.22 0.02
10 0.08 0.18 0.40 0.47
11 0.08 0.16 0.31 0.12
12 0.01 0.04 0.06 0.00
13 0.02 0.10 0.23 0.19
14 0.07 0.18 0.29 0.15
15 0.03 0.13 0.31 0.02
16 0.05 0.08 0.12 0.44
17 0.03 0.07 0.09 0.00
18 0.04 0.09 0.14 0.01
19 0.06 0.08 0.13 0.08
20 0.04 0.11 0.25 0.13
21 0.03 0.10 0.19 0.08
22 0.02 0.10 0.17 0.10
23 0.05 0.14 0.21 0.02
24 0.06 0.11 0.16 0.16
25 0.06 0.14 0.25 0.02
26 0.05 0.09 0.12 0.20
27 0.11 0.19 0.25 0.47
28 0.02 0.05 0.12 0.00
29 0.06 0.10 0.22 0.07
30 0.02 0.06 0.12 0.11
All 0.01 0.11 0.40 0.11

Table 7.7. The simulated annealing with local improvement results. The values are percentages
above optimal.
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Problem Reduction as a
percentage of optimal
Minimum Mean Maximum

1 0.06 0.09 0.12
2 0.04 0.07 0.12
3 0.04 0.07 0.09
4 0.05 0.09 0.14
5 0.05 0.07 0.10
6 0.05 0.07 0.09
7 0.06 0.09 0.15
8 0.07 0.11 0.14
9 0.05 0.08 0.11
10 0.05 0.09 0.14
11 0.07 0.09 0.13
12 0.05 0.08 0.13
13 0.03 0.09 0.15
14 0.06 0.08 0.10
15 0.05 0.10 0.19
16 0.05 0.09 0.14
17 0.07 0.11 0.14
18 0.06 0.11 0.16
19 0.04 0.08 0.12
20 0.05 0.07 0.12
21 0.05 0.10 0.20
22 0.07 0.10 0.16
23 0.05 0.12 0.23
24 0.05 0.09 0.12
25 0.05 0.11 0.15
26 0.07 0.09 0.12
27 0.06 0.08 0.12
28 0.06 0.09 0.15
29 0.05 0.10 0.17
30 0.06 0.08 0.10
All 0.03 0.09 0.23

Table 7.8. The reductions as percentages of optimal achieved by applying local improvement
to simulated annealing solutions. As many of the simulated annealing solutions are close to
optimal the gain from local improvement is small. The average reduction over all problems is
only 0.09%.
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summary statistics respectively. Simulated annealing dominates Beasley and
Goffinet’s heuristic assuming their results are minima. The average percentage
above optimal for simulated annealing with local improvement is 0.05% com-
pared to Beasley and Goffinet’s 0.11%. Annealing is ranked first two-thirds
of the time. The probability of being ranked first 20 or more times in 30 trials
assuming the heuristics are identical is only 0.02.

Beasley and Goffinet’s heuristic is still ahead of simulated annealing assum-
ing their results to be means. However the lead is not as great as without local
improvement. The average percentages are both 0.11%, and annealing has a
lower worst percentage. Although much closer annealing is second 9 times out
of 28 (the 2 ties are not counted).

7.5 Summary

The above analyses of simulated annealing with and without local improve-
ment indicate very good quality solutions for the Euclidean Steiner tree prob-
lem can be found using annealing. Further, the solutions compare favourably
with those of the best known tailored heuristic for the problem. Both the
annealing and local improvement used are simple minded approaches. More
sophisticated methods may exist. In particular, methods that improve the com-
putation time aspect of annealing, whether it be through modifications to the
annealing schedule or the transition mechanisms employed.

Importantly, it has been demonstrated a simple annealing approach does
work for the problem. To extend annealing to solve generalisations or focus it to
tackle specialisations of the Euclidean Steiner tree problem is now a possibility.®
Although non-trivial tasks, they are likely to be less intensive than constructing
tailored heuristics. This is one advantage of simulated annealing over tailored
heuristics.

The simulated annealing approach developed for the Euclidean Steiner tree
problem can be modified to find good solutions to problems such as aug-
menting an existing telecommunications network or finding a minimum cost
network. Problems less abstract than the underlying Euclidean Steiner tree
problem, but capable of being applied to real situations.

8Chapter 3 looks at three applications of the Euclidean Steiner tree problem. All are gener-
alisations and therefore more difficult to solve.
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Problem  Assuming a Minimum Assuming a Mean
Simulated Beasley Simulated Beasley
Annealing and Goffinet Annealing and Goffinet

1 L L
2 L L
3 L L
4 L L
5 L L
6 L L
7 L L
8 L L
9 L L
10 L L
11 L L
12 L L
13 L L
14 L L
15 L L
16 L L
17 L L
18 L L
19 L L L
20 L L
21 L L
22 L L L
23 L L
24 L L
25 L L
26 L L
27 L L
28 L L
29 L L
30 L L

Table 7.9. The comparison of simulated annealing with local improvement and Beasley and
Goffinet’s heuristic.

149



Assuming a Minimum Assuming a Mean

Simulated Beasley Simulated Beasley
Annealing and Goffinet Annealing and Goffinet

Number of times 20 10 11 21
tirst or tied for first
Average percentage 0.05% 0.11% 0.11% 0.11%
above the optimal
solution

Average rank 1.33 1.67 1.67 1.33
Worst percentage 0.11% 0.47% 0.19% 0.47%
above optimal
solution

Table 7.10. Summary statistics of the simulated annealing with local improvement results.
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Appendix A

Listing of the Steiner Polygon
Program

This appendix is a listing of the C++ program to compute the Steiner polygon.
The LEDA library[30] is used with GNU g++ 2.2.3 on a SPARCstation running
SunOS 4.1.3 with OpenWindows 3.0 and X11 Release 5. One particular machine
is used for running programs: a SPARCstation 10/512 (dual 50MHz processor)
with 160MB main memory and 400MB swap space. The program is run either
directly from the Unix prompt or from S-PLUS 3.1.

The file containing main() is SMT.cc. The various files making up the
program are listed in alphabetical order, except the make file called Makefile is
listed first.

The necessary inputs to the program are the number of points, an integer
giving the desired level of output, and if the output level equals zero then a
list of the point coordinates. An output level of zero is primarily used when
running the program from S-PLUS.

The output of the program depends on the output level input parameter.
The higher the output level the more detailed the output. Table A.1 shows the
output produced for each level of the output level parameter.
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Output Level Description

=0 The number of points, size of the Steiner polygon and
the number of points appearing more once on the Steiner
polygon are output. If this last number is greater than
zero then the Steiner polygon is degenerate.

>3 The coordinates of the points and the Steiner polygon are
output and if the Steiner polygon is degenerate the points

at which it is degenerate are output.

> 11 As for 3 and the details of the construction of the Steiner
polygon are output.

Table A.1. A description of the output produced by the Steiner polygon program.
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A.1 Makefile

PROGRAM = SteinerPolygon
SOURCES = SMT STEINER_POLYGON ANGLE

LEDA = /u/grads/geoff/LEDA
X11 = /usr/openwin/lib

OBJECTS = $(SOURCES:%=%.0)

SUFFIXES = .0 .c .c~ .cc .cc~ .8 .8~ .S .S~ .In .f f~ F F~ 1.1~ \
mod .mod~ .sym .def .def~ .p .p~ .r r~ .y .y~ h .h~ sh.sh~\
.Cps .cps~

SUFFIXES: $(SUFFIXES)
SILENT:
KEEP_STATE:

CCC=g++

CCFLAGS=-02 -I$(LEDA)/incl
CPPFLAGS=

LDFLAGS=

LEDALIBS=-IP -1G -IL
#X11LIBS=-IWx -Ixview -lolgx -1X11
X11LIBS=

COMPILE.cc=$(CCC) $(CCFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
LINK.cc=$(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH)

$(PROGRAM): $(OBJECTS)

@echo — Linking to create $(PROGRAM)

$(LINK.cc) -0 $(PROGRAM) $(OBJECTS) -L$(LEDA) -L$(X11) $(LEDALIBS)
$(X11LIBS) -Im
.CC.0:

@echo -— Compiling $x

$(COMPILE.cc) $<

clean:

@echo -— Removing all intermediate files and the executable file
rm -f *.0 *.cc~ core a.out $(PROGRAM) Makefile~ #.h~ mon.out *~

A.2 ANGLE.h

#i f ndef ANGLE_H
#def i ne ANGLE_.H

#i ncl ude <LEDA/ pl ane. h>
double ANGLE(const point&, const point&, const pointé&);

#endi f
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A.3 ANGLE.cc
#i ncl ude "ANGLE. h"

double ANGLE(const point& g, const point& p, const pointé& r){

// Finds the angle between two line segments qp and pr
// The angle is always less than 180 degrees

point s =r1;

double omega = segment(p, q).direction();
s = s.rotate(p, -omega);

double theta = segment(p, s).direction();
if (theta<0) theta * = -1;

return theta;

A4 IntegerSet.h

#i f ndef INTEGERSET_H
#def i ne INTEGERSET_H

#i ncl ude <LEDA/ basi c. h>

class int_set {
// This is basically the LEDA int_set class with minor changes and additions
charx V;
int size;

int low;
char mask[8];

public:

int_set(){};

int_set(int n);
int_set(int,int);
int_set(const int_set&);
~int_set() { delete V; }

void clear();

void insert(int);

void del(int);

int member(int) const;

int_set& join(const int_set&);
int_set& intersect(const int_set&);

int_set& complement();

int_set& operator=(const int_set&);

154



int_set operator|(const int_set&);
int_set operator&(const int_set&);
int_set operator~();
void print(ostreamé& out = cout) const{
inti;
cout << n {n ;
loop(i, low, low+size-1) if (member(i)) out < string(" ¥8d", i);

cout < n }n;

1

friend void Print(const int_set&, ostreamé& = cout);
friend void Read(int_set&, istreamé& = cin);

friend int Size(const int_set&);

friend int compare(const int_set&, const int_set&);

%
inline void Print(const int_set& S, ostreamé& out){
inti;
cout < " {";
loop(i, S.low, S.low+S.size-1) if (S.member(i)) out < string(" ¥8d" , i);
cout <" }";
}
inline void Read(int_set& S, istreamé& in){ };

inline int Size(const int_set& S){

intn=0;
inti;

loop(i, S.low, S.low+S.size-1) if (S.member(i)) ++n;
return n;

1

inline int compare(const int_set& S, const int_set& T){ return 0; }

#endi f

A.5 PointArray.h

#i f ndef POINTARRAY_H
#def i ne POINTARRAY_H
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#i ncl ude <LEDA/ pl ane. h>
#i ncl ude <LEDA/ basi c. h>
#i ncl ude <LEDA/ array. h>

class PointArray : public array<point>{
private:

int size;
public:

PointArray(int s) : array<point>(1, Max(s, 1)), size(s){ };
~PointArray(){};

void Number(int s){
if((s<1) || (s>high()))
error_handler(1, " Poi nt Array: nunber of points inappropriate");
else size = s;

1

void Print(){

int i;

loop(i, 1, size) cout < (xthis)[i] <" ";
}

¥

#endi f

A.6 SMT.h

#i f ndef SMT_H
#def i ne SMT_H

#i ncl ude <LEDA/ basi c. h>

#i ncl ude <LEDA/ array. h>

#i ncl ude <LEDA/ | i st. h>

#i ncl ude <LEDA/ pl ane. h>

#i ncl ude <LEDA/ ugr aph. h>

#i ncl ude <LEDA/ di cti onary. h>

typedef array<int> IntegerArray;

typedef list<point> PointList;

typedef dictionary<point, int> PointIntegerDictionary;
typedef ugraph Topology;

typedef Topology+ TopologyPtr;

typedef node_array<point> NodePointArray;

typedef array<node> NodeArray;

typedef NodeArray+ NodeArrayPtr;

extern PointIntegerDictionary PointIntegerD;
extern float maxTimeSeconds;

extern int OutputLevel;

extern int numPoints;
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#i ncl ude "Poi nt Array. h"
#i ncl ude "St ei ner Tree. h"
#i ncl ude "l nt eger Set . h"

typedef int_set IntegerSet;
typedef IntegerSet+ IntegerSetPtr;
typedef array <IntegerSetPtr> IntegerSetArray;

extern PointArray Point;

const double _120 = 2«PI/3;
const double _60 = PI/3;

#endi f

A.7 SMT.cc

const int maxPoints = 100;

#i ncl ude "SMT. h"
#i ncl ude "STEI NER.POLYGON. h"
#i ncl ude "ANGLE. h"

PointArray Point(maxPoints);
PointIntegerDictionary PointIntegerD;

int OutputLevel;
int numPoints;

main()

{

numPoints = read_int(" " );

if (numPoints>maxPoints){
cout < string(" SMI:  maxi mum i s¥8d\n" , maxPoints);
exit(1);

1

OutputLevel = read_int(" " );

// Create the global array of points and the global dictionary indexed by
// a point and giving its identification number or name

inti;
point p;

if (OutputLevel==0){
loop(i, 1, numPoints){
Read(p);
Point[i] = p;
PointIntegerD.insert(p, i);
}
}
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if (OutputLevel>1){
init_random();
double radius;
double angle;
loop(i, 1, numPoints){

// radius = random(0,10000)/200;

// angle = Plxrandom(0,719)/360;

// Point[i] = point(int(radiusxcos(angle)) + 50, int(radius*sin(angle)) + 50);
Point[i] = point(random(1,100),random(1,100));
PointIntegerD.insert(Point[i], i);

}
}

if (OutputLevel>1){
cout < " SMI: Poi nts\n";
loop(i, 1, numPoints){
cout < string(" SMI: [ 9%B8d] ",i) < Point[i];
newline;
}
}

// Get the Steiner Polygon for the points

PointList SteinerPolygon;
STEINER_POLYGON(SteinerPolygon, PointList());

// Check if the Steiner Polygon is not degenerate. If it is indicate where
// and stop

IntegerSet SteinerPolygonPoints(1, numPoints);
IntegerSet DegeneratePoints(1, numPoints);
bool Degenerate = false;

forall(p, SteinerPolygon){
i = PointIntegerD.access(p);
if (SteinerPolygonPoints.member(i)){
Degenerate = true;
DegeneratePoints.insert(i);

}

SteinerPolygonPoints.insert(i);

if (Degenerate){
if ((OutputLevel>1) && (OutputLevel<3)){
cout < "SMI: Steiner Polygon\nSMI: “;
forall(p, SteinerPolygon) cout < string(" ¥8d" , PointIntegerD.access(p));
newline;

}

if (OutputLevel>1){
cout < "SMT: Steiner Polygon is degenerate at ";
DegeneratePoints.print();
newline;

}
}

if (OutputLevel==0){
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cout < string(" %d%d%td\n" , numPoints, SteinerPolygon.length(),
Size(DegeneratePoints));

/| if (OutputLevel>=1){

/ cout << "P$x_c(”;

// loop(i, 1, numPoints-1) cout << Point[i].xcoord() << ”,”;
// cout << Point[numPoints].xcoord() << ")\n";

/| cout << "P$y_c(”;

// loop(i, 1, numPoints-1) cout << Point[i].ycoord() << ”,”;
// cout << Point[numPoints].ycoord() << ")\n”;

/)

return 0;

A.8 STEINER POLYGON.h

#i f ndef STEINER_.POLYGON_H
#def i ne STEINER_POLYGON_H

#i ncl ude "SMT. h"
void STEINER_POLYGON(PointList&, PointList&);

#endi f

A.9 STEINER_POLYGON.cc
#i ncl ude "STElI NER.POLYGON. h"

#i ncl ude <LEDA/ pl ane_al g. h>
#i ncl ude "ANGLE. h"

void STEINER_POLYGON(PointList& SteinerPolygon, PointList& Points){

bool Output = OutputLevel>11;
string Function =" STEI NER POLYGON: ";

inti;
bool empty;
point p;

// If the parameter Points is the empty list then the the Steiner Polygon
// for all points is wanted

empty = Points.empty();
if (empty) loop(i, 1, numPoints) Points.append(Point[i]);

// Get the convex hull using the LEDA algorithm
PointList CH;
CONVEX_HULL(CH, Points);
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// Use the convex hull to initialise the Steiner Polygon

SteinerPolygon.clear();
while (ICH.empty()) SteinerPolygon.append(CH.Pop());

if (SteinerPolygon.size()<Points.size()){
// Starting with the convex hull generate the Steiner Polygon

PointList Possible;

list_item LastChange, Current;
bool Change, Empty;

pointq, 1, s, t;

double Angle, omega;
segment Sqs;

Current = SteinerPolygon.first();
do{
Change = false;

// Get points of current and immediately succeeding position on the
// Steiner Polygon

q = SteinerPolygon.inf(Current);
p = SteinerPolygon.inf(SteinerPolygon.cyclic_succ(Current));

// Get a list of possible points for inclusion on the Steiner Polygon

Possible.clear();
forall(r, Points){
if ((r4q) && (rAp){
if (ANGLE(p, q, r)<-60){
Possible.append(r);

}
}

if (Output){
cout < Function < " St ei ner Pol ygon\n" <« Function;
forall(r, SteinerPolygon) cout < string(" ¥8d" , PointIntegerD.access(r));
newline;
cout < Function < string(" Current %3d" , PointIntegerD.access(q));
cout < string(" Next 98d\n", PointIntegerD.access(p));
cout < Function < "Possibilities:";
if (Possible.empty()) cout <" none";
else{
forall(r, Possible)
cout < string(" %8d" , PointIntegerD.access(r));

1

newline;

1

// Consider each possible point in turn for inclusion on the
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// Steiner Polygon
while (('Possible.empty()) && (!Change)){
r = Possible.pop();
if (ANGLE(q, 1, p)>-120){
Angle = ANGLE(p, q, 1);
// Check if any point lies in the triangle with corners p, q, r
Empty = true;
forall(s, Points){

// Don’t use ANGLE to calculate the angle between segments pq and
// gs because need to worry about sign

omega = segment(q, p).direction();
t = s.rotate(q, -omega);
omega = -segment(q, t).direction();

if ((omega>0) && (omega<Angle)){
if ((571) & (52£p) &k (s£Q))]
Sgs = segment(q, s);
Empty = Empty && (Sqgs.intersection(segment(p, r), t));
1
1
1

// Add point r to the Steiner Polygon if there are no points inside
// the triangle

if (Empty){
SteinerPolygon.insert(r, Current, after);
Change = true;
if (Output)
cout < Function < string(" ¥8d enpt y\n", PointIntegerD.access(r));
}

else
if (Output)
cout < Function < string(" %8d not enpt y\n", PointIntegerD.access(r));

1

else{
if (Output)
cout < Function < string(" %8d angl e | ess than 120\n",
PointIntegerD.access(r));

1

if (IChange) Current = SteinerPolygon.cyclic_succ(Current);

+ while (Change || (Current#£SteinerPolygon.first()));
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if ((OutputLevel>7) || (empty && (OutputLevel>3))){
cout < " STEI NER.POLYGON: St ei ner Pol ygon\nSTEI NERPCLYGON: ";
forall(p, SteinerPolygon) cout <« string(" ¥8d" , PointIntegerD.access(p));
newline;

1
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Appendix B

Cockayne and Hewgill’s Test
Problems

This appendix contains some of the thirty one hundred point Euclidean Steiner
tree test problems solved to optimality by Cockayne and Hewgill [7]. The
problems were kindly provided by Professor Ernest Cockayne and he has
given permission for the data and solutions to be reproduced here.!

Only the problems used in the experiments with heuristic methods are
shown in this appendix. The identification numbers of problems corresponds
to Cockayne and Hewgill’s original numbering of the problems. For each test
problem the following are shown:

The coordinates of the one hundred points.

The length of the minimal spanning tree, Steiner minimal tree and the
percentage reduction.

The coordinates of the Steiner points in the Steiner minimal tree;

A table showing the number of full Steiner trees of different sizes making
up the SMT and the number of FSTs as percentages of the total number
of full Steiner trees;

A picture of the minimum spanning tree (dashed line) and Steiner mini-
mal tree (solid line).

'Professor E ] Cockayne, Department of Mathematics, University of Victoria,
PO Box 1700, Victoria, British Columbia, CANADA V8W 2Y2. His e-mail address is
DIMEC@MNMVM WVi c. CA.
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B.1 Test Problem 1

Minimum Spanning Tree 6.4487

Steiner Minimal Tree

Reduction

6.2555
3.00%

Given Points

O U W~

(0.41010001,0.00510000)
(0.33080000,0.02870000)
(0.16390000,0.05290000)
(0.13200000,0.01300000)
(0.00000000,0.21220000)
(0.01640000,0.24590001)
(0.00980000, 0.34490001)
(0.04230000, 0.44119999)
(0.00330000, 0.49370000)
(0.09300000, 0.78979999)
(0.03550000,0.92110002)
(0.06240000,0.93080002)
(0.14080000,0.99800003)
(0.27930000,0.97329998)
(0.43340001,0.93480003)
(0.67439997,0.87570000)
(0.79540002, 0.95480001)
(0.82590002, 0.94239998)
(0.92729998,0.99110001)
(0.95429999,0.98570001)
(0.98960000, 0.76730001)
(0.94889998,0.64819998)
(0.90280002, 0.57510000)
(0.90469998,0.56629997)
(0.88700002, 0.53210002)
(0.94270003,0.40590000)
(0.86559999,0.37360001)
(0.82980001, 0.27570000)
(0.82929999,0.24130000)
(0.82630002, 0.10580000)
(0.82220000,0.04390000)
(0.73070002, 0.06050000)
(0.47830001,0.03850000)
(0.57359999,0.82029998)
(0.35479999, 0.45559999)
(0.52370000,0.30770001)
(0.06510000,0.26199999)
(0.78369999,0.50360000)
(0.90039998, 0.69569999)
(0.58679998, 0.47459999)
(0.88789999,0.57840002)
(0.11920000,0.93570000)
(0.73189998,0.51859999)
(0.43939999,0.59079999)
(0.55559999,0.45519999)
(0.85240000, 0.82770002)
(0.13740000,0.91880000)
(0.66750002, 0.13570000)
(0.42710000,0.55470002)
(0.72420001,0.22890000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.35330001,0.22270000)
(0.16740000,0.69770002)
(0.86479998,0.45179999)
(0.36669999,0.52689999)
(0.24270000,0.59020001)
(0.66530001,0.45320001)
(0.29629999,0.63779998)
(0.67510003,0.37549999)
(0.18160000,0.84130001)
(0.40540001, 0.33939999)
(0.33829999, 0.43349999)
(0.23469999,0.18070000)
(0.09030000, 0.36370000)
(0.88300002, 0.56720001)
(0.53939998,0.21230000)
(0.32960001,0.11930000)
(0.29310000, 0.55409998)
(0.93190002, 0.74540001)
(0.51109999,0.72140002)
(0.35830000,0.71780002)
(0.61890000, 0.59090000)
(0.82550001, 0.42690000)
(0.34950000,0.49380001)
(0.19820000, 0.76289999)
(0.74550003,0.60939997)
(0.83209997,0.82770002)
(0.08330000, 0.45159999)
(0.43810001, 0.85409999)
(0.57630002, 0.23750000)
(0.11760000,0.38409999)
(0.88080001,0.57380003)
(0.07350000, 0.41000000)
(0.36570001, 0.44610000)
(0.22990000, 0.25260001)
(0.24609999,0.14320000)
(0.12540001, 0.23160000)
(0.53030002, 0.28479999)
(0.81209999,0.88919997)
(0.64330000,0.35350001)
(0.47350001,0.28670001)
(0.26220000, 0.38450000)
(0.01890000, 0.49360001)
(0.59130001,0.60890001)
(0.90630001,0.63169998)
(0.71109998,0.20330000)
(0.13869999,0.91360003)
(0.67199999,0.40400001)
(0.13850001, 0.87150002)
(0.51349998,0.63779998)
(0.91740000, 0.71640003)



Optimal Steiner Points

1 (0.01811600,0.49246973) | 22 (0.66435581,0.47573689)

2 (0.06670050,0.43481049) | 23  (0.62281489,0.49745488)

3 (0.09694912,0.38088533) | 24  (0.74509847,0.52613550)

4 (0.04305354,0.32983685) | 25  (0.51876032,0.79574901)

5 (0.04902345,0.26928234) | 26 (0.51893979,0.64169705)

6 (0.21223302,0.22605994) | 27  (0.12823555,0.93550313)

7 (0.55538243,0.23813596) | 28  (0.15284073,0.97605461)

8  (0.67463833,0.37571213) | 29  (0.29384232,0.67461854)

9 (0.81745493,0.93867135) | 30  (0.20104748,0.72024119)
10 (0.83444732,0.83058530) | 31  (0.16926537,0.83846152)
11 (0.92664230,0.74431312) | 32 (0.15900619, 0.80498970)
12 (0.90189284,0.69552708) | 33  (0.27068156,0.59086955)
13 (0.92096335,0.65143716) | 34  (0.35037538,0.51823884)
14 (0.89600557,0.58111173) | 35 (0.51996708,0.29637322)
15 (0.88191634,0.57339209) | 36  (0.41943192,0.29763186)
16 (0.80710948,0.06610739) | 37  (0.33229166,0.40652397)
17 (0.67891032,0.13654894) | 38  (0.35609362,0.44929621)
18 (0.82150656,0.24990126) | 39  (0.25112855,0.15176702)
19 (0.85125804,0.49070349) | 40  (0.31141061,0.15133408)
20  (0.85496521,0.42990088) | 41  (0.33962229,0.03530093)
21 (0.87710571,0.39921954)

Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 25 43.1%
3 25 43.1%
4 13.8%
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Figure B.1. Cockayne and Hewgill’s Test Problem 1 Steiner minimal tree and minimum

spanning tree.
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B.2 Test Problem 2

Minimum Spanning Tree 6.9352

Steiner Minimal Tree

Reduction

6.7597
2.53%

Given Points

O U W~

(0.16180000,0.01350000)
(0.13100000, 0.04660000)
(0.03960000,0.06190000)
(0.01450000, 0.05730000)
(0.00000000,0.21760000)
(0.00240000, 0.36539999)
(0.06620000,0.53189999)
(0.01020000, 0.66250002)
(0.04240000, 0.71329999)
(0.02270000, 0.83539999)
(0.03990000,0.95109999)
(0.09440000,0.95499998)
(0.24879999,0.98420000)
(0.27180001,0.97680002)
(0.34369999,0.91259998)
(0.42870000,0.93030000)
(0.63230002, 0.94690001)
(0.77130002,0.99390000)
(0.94630003,0.98790002)
(0.95560002,0.97189999)
(0.98140001, 0.85380000)
(0.99640000,0.51690000)
(0.97369999,0.45649999)
(0.98860002, 0.36390001)
(0.98640001,0.29850000)
(0.99440002, 0.28839999)
(0.97850001,0.17810000)
(0.85659999,0.08630000)
(0.81080002, 0.03680000)
(0.75709999,0.03290000)
(0.68309999,0.01540000)
(0.61430001,0.08740000)
(0.56730002, 0.09250000)
(0.54890001,0.10130000)
(0.29480001, 0.11490000)
(0.25290000, 0.18580000)
(0.57270002, 0.88630003)
(0.78259999,0.37630001)
(0.04980000,0.20640001)
(0.75540000,0.83590001)
(0.73729998,0.34020001)
(0.04650000,0.20450000)
(0.52600002, 0.84960002)
(0.43329999,0.30160001)
(0.13150001, 0.39489999)
(0.89539999,0.27309999)
(0.55449998,0.85619998)
(0.78619999,0.54320002)
(0.52460003,0.21470000)
(0.52410001, 0.54240000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.09230000,0.52100003)
(0.14870000,0.54960001)
(0.42559999,0.67830002)
(0.85799998,0.21240000)
(0.06690000,0.33809999)
(0.70620000,0.83910000)
(0.30500001, 0.78659999)
(0.36770001,0.73710001)
(0.88059998, 0.65600002)
(0.59990001,0.38330001)
(0.51200002, 0.49520001)
(0.53179997,0.79350001)
(0.79369998,0.50260001)
(0.72649997,0.78939998)
(0.71190000,0.33750001)
(0.19320001, 0.74390000)
(0.47459999,0.83730000)
(0.79149997,0.93419999)
(0.39179999,0.60119998)
(0.56650001,0.76169997)
(0.72460002, 0.80260003)
(0.74610001,0.16830000)
(0.90200001,0.80839998)
(0.90149999,0.28240001)
(0.52679998,0.71120000)
(0.38679999,0.40770000)
(0.49849999,0.21370000)
(0.12549999,0.50629997)
(0.81080002, 0.38429999)
(0.21430001, 0.32960001)
(0.22149999,0.39500001)
(0.39649999,0.56400001)
(0.21830000,0.54530001)
(0.32130000, 0.63150001)
(0.33730000, 0.40230000)
(0.84899998,0.79979998)
(0.51730001, 0.46239999)
(0.17770000,0.47530001)
(0.55419999,0.77020001)
(0.69239998,0.70400000)
(0.38260001,0.60920000)
(0.49710000, 0.79479998)
(0.50449997,0.59380001)
(0.31369999,0.18290000)
(0.33600000, 0.48289999)
(0.92909998,0.19310001)
(0.75370002, 0.85470003)
(0.22910000, 0.73879999)
(0.23880000, 0.64219999)
(0.76040000,0.79960001)



Optimal Steiner Points

1 (0.29093367,0.16742213) | 17  (0.62538183,0.90591252)
2 (0.04927268,0.94205189) | 18  (0.50598818,0.80247784)
3 (0.97674072,030713668) | 19  (0.50109345,0.82808506)
4 (0.88859707,0.22475575) | 20  ( 0.42209563,0.91715449)
5 (0.81813258,0.15947096) | 21  (0.55856514,0.76198089)
6 (0.84880424,0.08725557) | 22 (0.80139267,0.38891447)
7 (0.51864254,0.20858446) | 23  (0.14960286,0.51008642)
8  (0.35268921,0.41730443) | 24  (0.15961896,0.53608149)
9 (0.30457357,0.77768844) | 25  (0.21663494,0.39242718)
10 (0.96929866,0.85895777) | 26  (0.17557833,0.41821027)
11 (0.48313031,0.66476297) | 27  (0.25246188,0.62370849)
12 (0.37080795,0.63055527) | 28  (0.04665659,0.20531225)
13 (0.39989758,0.67879057) | 29  (0.02320942,0.22563149)
14 (0.87203532,0.78841555) | 30  (0.04331886,0.32993984)
15 (0.72821695,0.81214023) | 31  (0.06065588,0.07739827)
16 (0.74758643,0.81529027)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 45 66.2%
3 16 23.5%
4 6 8.8%
5 1 1.5%
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Figure B.2. Cockayne and Hewgill’s Test Problem 2 Steiner minimal tree and minimum

spanning tree.
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B.3 Test Problem 3

Minimum Spanning Tree 6.9238

Steiner Minimal Tree

Reduction

6.6672
3.71%

Given Points

O U W~

(0.45559999,0.00000000)
(0.37599999,0.03050000)
(0.30390000,0.01360000)
(0.20100001, 0.02720000)
(0.12430000, 0.08460000)
(0.07530000,0.15120000)
(0.00510000,0.24120000)
(0.04800000, 0.48500001)
(0.00300000, 0.76789999)
(0.01260000, 0.78649998)
(0.03430000,0.99680001)
(0.16540000,0.98430002)
(0.19210000,0.96520001)
(0.33440000,0.97350001)
(0.46110001,0.91670001)
(0.46869999,0.91409999)
(0.63700002,0.92390001)
(0.80350000,0.93430001)
(0.81900001,0.94040000)
(0.86830002, 0.93820000)
(0.96390003,0.86879998)
(0.95160002, 0.76650000)
(0.95999998,0.69840002)
(0.96770000, 0.66469997)
(0.99779999,0.50720000)
(0.99449998, 0.40660000)
(0.98119998,0.29710001)
(0.99930000, 0.14960000)
(0.86460000,0.09530000)
(0.84920001, 0.05380000)
(0.59710002,0.00120000)
(0.89399999,0.70359999)
(0.13730000, 0.43259999)
(0.29530001, 0.72509998)
(0.10460000, 0.72899997)
(0.37259999,0.66920000)
(0.53680003,0.80699998)
(0.08540000,0.70080000)
(0.43630001, 0.62930000)
(0.91810000, 0.74460000)
(0.13519999,0.10160000)
(0.66960001,0.26179999)
(0.15570000,0.90539998)
(0.12460000,0.24510001)
(0.85839999,0.81160003)
(0.75550002, 0.32130000)
(0.77869999,0.35920000)
(0.14450000, 0.40300000)
(0.13970000, 0.48220000)
(0.30450001, 0.26850000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.09980000, 0.73379999)
(0.79290003,0.34470001)
(0.28330001, 0.87570000)
(0.86519998, 0.14960000)
(0.74989998,0.21990000)
(0.39750001, 0.41700000)
(0.35450000,0.80510002)
(0.93059999,0.78810000)
(0.91320002, 0.77969998)
(0.19820000, 0.42410001)
(0.10590000, 0.67970002)
(0.93339998,0.26850000)
(0.79809999,0.79159999)
(0.10530000, 0.77579999)
(0.66240001,0.57830000)
(0.26740000, 0.73530000)
(0.50760001,0.26760000)
(0.17540000, 0.45420000)
(0.49550000,0.43720001)
(0.36570001,0.52319998)
(0.23150000,0.05170000)
(0.85530001, 0.38209999)
(0.61960000,0.04510000)
(0.20209999, 0.85509998)
(0.74390000, 0.65109998)
(0.58730000, 0.35569999)
(0.71740001,0.56809998)
(0.32319999,0.18740000)
(0.60640001,0.52920002)
(0.80879998, 0.46869999)
(0.95810002, 0.33039999)
(0.22710000, 0.61690003)
(0.85329998,0.86290002)
(0.53839999,0.57660002)
(0.35859999,0.56830001)
(0.78860003,0.18730000)
(0.14030001, 0.76920003)
(0.28600001,0.46970001)
(0.90179998, 0.69900000)
(0.32859999,0.47530001)
(0.80170000, 0.72090000)
(0.21020000, 0.09600000)
(0.38600001,0.22690000)
(0.63160002, 0.23630001)
(0.87379998,0.20870000)
(0.10150000, 0.42680001)
(0.12280000,0.29080001)
(0.19890000,0.60280001)
(0.47620001,0.30430001)
(0.69809997,0.54949999)



Optimal Steiner Points

1 (0.53867543,0.87091488) | 23 (0.19934767,0.60586357)
2 (0.84923095,0.92547244) | 24  (0.33848494,0.22184609)
3 (0.90165067,0.70028985) | 25  (0.96597528,0.30115864)
4 (0.92152095,0.71504867) | 26  (0.92235458,0.22295967)
5 (0.92523122,0.77936745) | 27 (0.85222131,0.17978683)
6 (0.93189883,0.76704460) | 28  (0.83238029,0.38771516)
7 (0.80321515,0.78849196) | 29  (0.79249889, 0.34607786)
8  (0.85223401,0.81534666) | 30  (0.78175431,0.34871024)
9 (0.60606843,0.54020363) | 31  (0.34826005,0.47832954)
10 (0.66249675,0.57508963) | 32  (0.45460495,0.39932650)
11 (0.69790274,0.55604607) | 33  (0.47693610,0.28386140)
12 (0.09164066,0.76143008) | 34  (0.57728004,0.29402930)
13 (0.01451531,0.78001428) | 35  (0.63351965,0.24811485)
14 (0.13676283,0.77547526) | 36 (0.72364020,0.26304901)
15 (0.18394712,0.85528731) | 37  (0.13276964,0.42547071)
16 (0.18071969,0.96383846) | 38  (0.15275151,0.45569706)
17 (0.32214156,0.87269771) | 39  (0.19976702,0.43507710)
18 (0.35776621,0.92468733) | 40  (0.20639764,0.09118873)
19 (0.32468343,0.72948122) | 41  (0.22151621,0.05315994)
20 (0.39487675,0.62971258) | 42 (0.12813175,0.09961531)
21 (0.09060681,0.70128471) | 43  (0.07120894,0.20902357)
22 (0.10328748,0.72887778) | 44  (0.59619474,0.00270064)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 24 43.6%
3 20 36.4%
4 9 16.4%
5 2 3.6%
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Figure B.3. Cockayne and Hewgill’s Test Problem 3 Steiner minimal tree and minimum
spanning tree.
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B.4 Test Problem 4

Minimum Spanning Tree 6.9214

Steiner Minimal Tree

Reduction

6.7191
2.92%

Given Points

O U W~

(0.69639999,0.00150000)
(0.65969998,0.01550000)
(0.63020003,0.01490000)
(0.44229999,0.03930000)
(0.24259999,0.04580000)
(0.07960000,0.04700000)
(0.06440000,0.11050000)
(0.00890000, 0.15400000)
(0.00000000,0.21610001)
(0.01710000,0.26510000)
(0.08160000, 0.45379999)
(0.06060000, 0.48249999)
(0.04780000,0.59189999)
(0.00760000, 0.88470000)
(0.11030000,0.97509998)
(0.23310000,0.97970003)
(0.32879999,0.96799999)
(0.37689999,0.97880000)
(0.46680000,0.97810000)
(0.60189998,0.96910000)
(0.70620000,0.99089998)
(0.79430002,0.93830001)
(0.96350002,0.92250001)
(0.97450000,0.93190002)
(0.98400003, 0.84539998)
(0.98299998,0.83870000)
(0.99900001, 0.71869999)
(0.98379999,0.54890001)
(0.86119998,0.43939999)
(0.85259998, 0.42969999)
(0.83770001,0.28400001)
(0.86600000,0.23019999)
(0.88550001,0.21840000)
(0.93070000, 0.04640000)
(0.76069999,0.01060000)
(0.27149999,0.66829997)
(0.71300000, 0.18820000)
(0.30050001, 0.32069999)
(0.69749999,0.79200000)
(0.76990002, 0.81140000)
(0.72710001, 0.18850000)
(0.43770000,0.21120000)
(0.20050000,0.50470001)
(0.42899999,0.80809999)
(0.91939998,0.72289997)
(0.18290000,0.39050001)
(0.26210001, 0.46730000)
(0.33890000, 0.22460000)
(0.38069999, 0.64150000)
(0.29980001, 0.71499997)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.21290000,0.12630001)
(0.32960001, 0.77920002)
(0.50720000, 0.75650001)
(0.36600000, 0.73879999)
(0.34290001,0.25440001)
(0.08430000,0.19310001)
(0.43439999,0.29229999)
(0.51220000,0.29609999)
(0.50919998, 0.74839997)
(0.60509998,0.85170001)
(0.35420001,0.39700001)
(0.41859999,0.62699997)
(0.46050000, 0.46239999)
(0.54750001,0.63709998)
(0.26570001,0.93820000)
(0.82840002, 0.59549999)
(0.35310000,0.25580001)
(0.33250001, 0.16630000)
(0.55419999,0.19730000)
(0.82330000,0.40920001)
(0.80390000,0.51150000)
(0.77679998,0.06030000)
(0.38909999,0.75199997)
(0.31009999, 0.73729998)
(0.12120000, 0.45240000)
(0.07830000, 0.87570000)
(0.58450001, 0.16660000)
(0.35380000, 0.73979998)
(0.15650000, 0.67739999)
(0.60890001, 0.18860000)
(0.09470000, 0.86989999)
(0.48170000,0.39879999)
(0.23510000, 0.43340001)
(0.76239997,0.07340000)
(0.29049999, 0.88249999)
(0.73390001, 0.49399999)
(0.57709998, 0.48550001)
(0.45109999,0.21930000)
(0.18760000,0.80180001)
(0.81279999,0.88529998)
(0.33489999,0.13410001)
(0.53250003,0.77929997)
(0.29330000,0.26949999)
(0.73119998, 0.53539997)
(0.60519999,0.18050000)
(0.73769999,0.21460000)
(0.73580003,0.21070001)
(0.83609998, 0.46460000)
(0.70319998,0.16060001)
(0.63690001, 0.40160000)



Optimal Steiner Points

1 (0.01694267,0.16282032) | 20  (0.74431282,0.51729685)
2 (0.05007078,0.15556112) | 21  (0.79583317,0.52263671)
3 (0.08886784,0.08785835) | 22 (0.90017855,0.62070400)
4 (0.32966626,0.13785945) | 23  (0.96887797,0.74253535)
5 (0.24810147,0.10101448) | 24  (0.96453840,0.92220658)
6 (0.06901228,0.88931602) | 25 (0.85625839,0.43871352)
7 (0.20177956,0.71434116) | 26  (0.58538479,0.17263238)
8  (0.26811907,0.68915325) | 27  (0.60982716,0.18613370)
9 (0.33121264,0.75116420) | 28  (0.69915926,0.17134866)
10 (0.28305689,0.93141603) | 29  (0.72632843,0.18956751)
11 (0.36323479,0.73644471) | 30  (0.83391106,0.25470746)
12 (0.50687832,0.75852168) | 31  (0.33879101,0.25200585)
13 (0.43234602,0.78707099) | 32 (0.30068651,0.27380386)
14 (0.60698569,0.83284646) | 33  (0.25003257,0.46293971)
15 (0.41667736,0.25843641) | 34  (0.24541920,0.43712860)
16 (0.44173592,0.21891169) | 35 (0.31137162,0.38152492)
17 (0.47925353,0.31644943) | 36  (0.18434252,0.40911499)
18 (0.48609787,0.44411170) | 37  (0.78335625,0.04855134)
19 (0.63909978,0.44543195)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 35 56.5%
3 18 29.0%
4 8 12.9%
5 1 1.6%
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Figure B.4. Cockayne and Hewgill’s Test Problem 4 Steiner minimal tree and minimum
spanning tree.
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B.5 Test Problem 5

Minimum Spanning Tree 6.9352

Steiner Minimal Tree

Reduction

6.7597
2.53%

Given Points

O U W~

(0.16180000,0.01350000)
(0.13100000, 0.04660000)
(0.03960000,0.06190000)
(0.01450000, 0.05730000)
(0.00000000,0.21760000)
(0.00240000, 0.36539999)
(0.06620000,0.53189999)
(0.01020000, 0.66250002)
(0.04240000, 0.71329999)
(0.02270000, 0.83539999)
(0.03990000,0.95109999)
(0.09440000,0.95499998)
(0.24879999,0.98420000)
(0.27180001,0.97680002)
(0.34369999,0.91259998)
(0.42870000,0.93030000)
(0.63230002, 0.94690001)
(0.77130002,0.99390000)
(0.94630003,0.98790002)
(0.95560002,0.97189999)
(0.98140001, 0.85380000)
(0.99640000,0.51690000)
(0.97369999,0.45649999)
(0.98860002, 0.36390001)
(0.98640001,0.29850000)
(0.99440002, 0.28839999)
(0.97850001,0.17810000)
(0.85659999,0.08630000)
(0.81080002, 0.03680000)
(0.75709999,0.03290000)
(0.68309999,0.01540000)
(0.61430001,0.08740000)
(0.56730002, 0.09250000)
(0.54890001,0.10130000)
(0.29480001, 0.11490000)
(0.25290000, 0.18580000)
(0.57270002, 0.88630003)
(0.78259999,0.37630001)
(0.04980000,0.20640001)
(0.75540000,0.83590001)
(0.73729998,0.34020001)
(0.04650000,0.20450000)
(0.52600002, 0.84960002)
(0.43329999,0.30160001)
(0.13150001, 0.39489999)
(0.89539999,0.27309999)
(0.55449998,0.85619998)
(0.78619999,0.54320002)
(0.52460003,0.21470000)
(0.52410001, 0.54240000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.09230000,0.52100003)
(0.14870000,0.54960001)
(0.42559999,0.67830002)
(0.85799998,0.21240000)
(0.06690000,0.33809999)
(0.70620000,0.83910000)
(0.30500001, 0.78659999)
(0.36770001,0.73710001)
(0.88059998, 0.65600002)
(0.59990001,0.38330001)
(0.51200002, 0.49520001)
(0.53179997,0.79350001)
(0.79369998,0.50260001)
(0.72649997,0.78939998)
(0.71190000,0.33750001)
(0.19320001, 0.74390000)
(0.47459999,0.83730000)
(0.79149997,0.93419999)
(0.39179999,0.60119998)
(0.56650001,0.76169997)
(0.72460002, 0.80260003)
(0.74610001,0.16830000)
(0.90200001,0.80839998)
(0.90149999,0.28240001)
(0.52679998,0.71120000)
(0.38679999,0.40770000)
(0.49849999,0.21370000)
(0.12549999,0.50629997)
(0.81080002, 0.38429999)
(0.21430001, 0.32960001)
(0.22149999,0.39500001)
(0.39649999,0.56400001)
(0.21830000,0.54530001)
(0.32130000, 0.63150001)
(0.33730000, 0.40230000)
(0.84899998,0.79979998)
(0.51730001, 0.46239999)
(0.17770000,0.47530001)
(0.55419999,0.77020001)
(0.69239998,0.70400000)
(0.38260001,0.60920000)
(0.49710000, 0.79479998)
(0.50449997,0.59380001)
(0.31369999,0.18290000)
(0.33600000, 0.48289999)
(0.92909998,0.19310001)
(0.75370002, 0.85470003)
(0.22910000, 0.73879999)
(0.23880000, 0.64219999)
(0.76040000,0.79960001)



Optimal Steiner Points

1 (0.29093367,0.16742213) | 17  (0.62538183,0.90591252)
2 (0.04927268,0.94205189) | 18  (0.50598818,0.80247784)
3 (0.97674072,030713668) | 19  (0.50109345,0.82808506)
4 (0.88859707,0.22475575) | 20  ( 0.42209563,0.91715449)
5 (0.81813258,0.15947096) | 21  (0.55856514,0.76198089)
6 (0.84880424,0.08725557) | 22 (0.80139267,0.38891447)
7 (0.51864254,0.20858446) | 23  (0.14960286,0.51008642)
8  (0.35268921,0.41730443) | 24  (0.15961896,0.53608149)
9 (0.30457357,0.77768844) | 25  (0.21663494,0.39242718)
10 (0.96929866,0.85895777) | 26  (0.17557833,0.41821027)
11 (0.48313031,0.66476297) | 27  (0.25246188,0.62370849)
12 (0.37080795,0.63055527) | 28  (0.04665659,0.20531225)
13 (0.39989758,0.67879057) | 29  (0.02320942,0.22563149)
14 (0.87203532,0.78841555) | 30  (0.04331886,0.32993984)
15 (0.72821695,0.81214023) | 31  (0.06065588,0.07739827)
16 (0.74758643,0.81529027)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 45 66.2%
3 16 23.5%
4 6 8.8%
5 1 1.5%
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Figure B.5. Cockayne and Hewgill’s Test Problem 5 Steiner minimal tree and minimum

spanning tree.
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B.6 Test Problem 6

Minimum Spanning Tree 6.4843

Steiner Minimal Tree

Reduction

6.2857
3.06%

Given Points

O U W~

(0.59299999,0.00190000)
(0.55199999,0.01930000)
(0.49090001,0.04050000)
(0.47900000, 0.04850000)
(0.39260000,0.06470000)
(0.35810000,0.02700000)
(0.17730001, 0.05680000)
(0.09520000,0.01350000)
(0.07000000, 0.05560000)
(0.08620000,0.10570000)
(0.00000000,0.21870001)
(0.00120000,0.29660001)
(0.07430000, 0.41929999)
(0.04390000,0.53950000)
(0.08510000, 0.73740000)
(0.07990000, 0.79519999)
(0.00190000, 0.84230000)
(0.04440000,0.90880001)
(0.12660000,0.89170003)
(0.20299999,0.95130002)
(0.24670000,0.94989997)
(0.52289999,0.85699999)
(0.59560001,0.82770002)
(0.70260000, 0.85560000)
(0.85189998,0.96730000)
(0.91810000,0.93800002)
(0.95520002, 0.76599997)
(0.99879998,0.63700002)
(0.92229998,0.29780000)
(0.91630000,0.23860000)
(0.98699999,0.13270000)
(0.77999997,0.04090000)
(0.65240002, 0.05150000)
(0.48649999,0.34880000)
(0.58630002, 0.61049998)
(0.43460000,0.50480002)
(0.51700002, 0.54659998)
(0.49050000,0.29800001)
(0.70590001, 0.64459997)
(0.81220001, 0.25270000)
(0.76639998,0.59719998)
(0.50880003,0.60460001)
(0.78579998,0.39940000)
(0.38949999,0.56620002)
(0.13609999,0.15510000)
(0.79040003, 0.41380000)
(0.51029998,0.26030001)
(0.18490000, 0.27399999)
(0.18550000, 0.66189998)
(0.05710000, 0.85979998)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.27820000,0.80549997)
(0.50029999,0.54729998)
(0.12330000, 0.79540002)
(0.88480002, 0.82429999)
(0.70770001,0.52719998)
(0.32280001, 0.72079998)
(0.67760003,0.61680001)
(0.76550001,0.61600000)
(0.56809998, 0.65730000)
(0.65679997,0.74010003)
(0.62660003,0.79490000)
(0.13400000,0.20590000)
(0.28600001,0.16329999)
(0.06750000,0.52869999)
(0.15420000,0.81750000)
(0.66920000, 0.75440001)
(0.36469999,0.51560003)
(0.32560000, 0.42850000)
(0.80580002, 0.53439999)
(0.33039999,0.75580001)
(0.42519999,0.43340001)
(0.15290000,0.13830000)
(0.56900001,0.73040003)
(0.77620000,0.76480001)
(0.33309999, 0.40560001)
(0.15340000, 0.66509998)
(0.21170001,0.27520001)
(0.35969999,0.76319999)
(0.81449997,0.72530001)
(0.73890001,0.11530000)
(0.40840000,0.17829999)
(0.49050000, 0.63770002)
(0.75419998,0.20540000)
(0.60589999,0.56559998)
(0.40149999,0.64780003)
(0.08150000, 0.40799999)
(0.47819999,0.28909999)
(0.35810000, 0.41819999)
(0.29789999,0.59609997)
(0.75520003, 0.47819999)
(0.24540000, 0.60540003)
(0.25090000, 0.25520000)
(0.44549999,0.27149999)
(0.35089999,0.27520001)
(0.32200000, 0.42530000)
(0.41920000, 0.69550002)
(0.44369999,0.29040000)
(0.11070000, 0.49480000)
(0.76020002, 0.47679999)
(0.72670001,0.27329999)



Optimal Steiner Points

1 (0.33572266,0.41354921) | 23 (0.33298585,0.75297123)
2 (0.32473150,0.42586771) | 24  (0.41332847,0.44219095)
3 (0.75534678,0.47833419) | 25  (0.41974670,0.49834785)
4 (0.74731833,0.51467597) | 26  (0.38471031,0.52429247)
5 (0.77835697,0.54307520) | 27 (0.37198681,0.59632355)
6 (0.76411480,0.61494327) | 28  (0.48730454,0.29029468)
7 (0.70662832,0.63894469) | 29  (0.09919705,0.49251819)
8 (0.89941216,0.93038964) | 30  (0.07947394,0.40817904)
9 (0.81273288,0.74742651) | 31  (0.12623218,0.19872025)
10 (0.88686061,0.79849929) | 32  (0.01556754,0.23308896)
11 (0.09310788,0.78423339) | 33  (0.14943054,0.13783284)
12 (0.04891216,0.84419721) | 34  (0.13738337,0.10850433)
13 (0.06578566,0.88224077) | 35  (0.08905849,0.10199737)
14 (0.61003745,0.59113866) | 36  (0.41510034,0.07981506)
15 (0.51185787,0.61765742) | 37  (0.40570882,0.24638037)
16 (0.56239378,0.63293397) | 38  (0.28506577,0.23605503)
17 (0.62677687,0.76420271) | 39  (0.44965112,0.28355294)
18 (0.65675950,0.74712169) | 40  (0.90294749,0.25860426)
19 (0.71280932,0.78942549) | 41  (0.76253545,0.23856151)
20 (0.50824606,0.55177724) | 42 (0.73274797,0.08064084)
21 (0.41640759,0.69488448) | 43  (0.59275037,0.00350898)
22 (0.35822287,0.75853449)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 27 48.2%
3 19 33.9%
4 6 10.7%
5 4 7.1%
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Figure B.6. Cockayne and Hewgill’s Test Problem 6 Steiner minimal tree and minimum

spanning tree.
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B.7 Test Problem 7

Minimum Spanning Tree 6.9062

Steiner Minimal Tree

Reduction

6.6879
3.16%

Given Points

O U W~

(0.00210000,0.02050000)
(0.03200000,0.12980001)
(0.00000000,0.22010000)
(0.02950000,0.28020000)
(0.01500000,0.49610001)
(0.04280000, 0.75300002)
(0.00090000,0.81919998)
(0.04870000,0.99210000)
(0.08760000,0.99989998)
(0.12710001,0.96799999)
(0.15950000,0.93669999)
(0.24690001,0.95429999)
(0.44400001,0.97829998)
(0.62120003,0.96590000)
(0.73430002, 0.95959997)
(0.86659998,0.99400002)
(0.90060002,0.99910003)
(0.98170000, 0.87159997)
(0.98650002, 0.72970003)
(0.97520000,0.71039999)
(0.96399999,0.63260001)
(0.94250000, 0.42010000)
(0.98280001, 0.26449999)
(0.93900001,0.17180000)
(0.89310002, 0.12070000)
(0.88550001,0.10050000)
(0.91000003,0.02300000)
(0.78880000,0.06790000)
(0.74640000,0.03670000)
(0.66670001,0.02920000)
(0.61220002, 0.03320000)
(0.55790001,0.08040000)
(0.38589999,0.06330000)
(0.14740001,0.04050000)
(0.59410000, 0.68959999)
(0.81930000, 0.79970002)
(0.51950002, 0.40529999)
(0.52370000,0.52569997)
(0.50080001,0.50309998)
(0.15580000, 0.88819999)
(0.25889999,0.51429999)
(0.36269999,0.66780001)
(0.52939999,0.46570000)
(0.11680000, 0.26859999)
(0.62000000,0.49250001)
(0.65890002, 0.71590000)
(0.24460000,0.38640001)
(0.48379999,0.46380001)
(0.34950000,0.37799999)
(0.70520002, 0.56669998)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.31720001, 0.44569999)
(0.16370000, 0.75470001)
(0.06480000,0.30919999)
(0.68430001, 0.61350000)
(0.54509997,0.77740002)
(0.14550000, 0.83350003)
(0.57330000, 0.43140000)
(0.82830000, 0.41610000)
(0.87779999,0.22409999)
(0.06260000,0.29510000)
(0.56389999,0.28709999)
(0.77179998,0.71749997)
(0.07050000,0.25799999)
(0.15470000, 0.78789997)
(0.78839999,0.51490003)
(0.09590000, 0.51450002)
(0.40009999,0.17230000)
(0.90579998,0.62180001)
(0.15220000,0.79750001)
(0.40390000,0.11350000)
(0.71630001, 0.55350000)
(0.36539999,0.49680001)
(0.20530000, 0.79240000)
(0.26140001, 0.18750000)
(0.79460001,0.46880001)
(0.43520001, 0.72649997)
(0.65350002, 0.45760000)
(0.41980001,0.50989997)
(0.21330000, 0.26589999)
(0.69360000,0.52380002)
(0.81440002, 0.60869998)
(0.08960000,0.20150000)
(0.39280000,0.30329999)
(0.09930000,0.10290000)
(0.68550003,0.56010002)
(0.29080001, 0.26740000)
(0.35670000,0.57730001)
(0.33510000,0.65990001)
(0.60829997,0.45780000)
(0.91149998,0.17090000)
(0.56000000, 0.54479998)
(0.35400000,0.21400000)
(0.36289999,0.63779998)
(0.38299999,0.89490002)
(0.37570000,0.19780000)
(0.91109997,0.81580001)
(0.32839999,0.81260002)
(0.86900002, 0.29409999)
(0.74260002, 0.58810002)
(0.13850001, 0.13030000)



Optimal Steiner Points

1 (0.87362486,0.07515923) | 20  (0.16602536,0.93048739)
2 (0.87952244,0.22548094) | 21  (0.14026660,0.80811292)
3 (0.91627181,021116635) | 22 (0.04784095,0.77745324)
4 (0.92124808,0.17871472) | 23  (0.16730374,0.77773273)
5 (0.87432426,0.38584310) | 24  (0.35473636,0.65736622)
6 (0.60102004,0.70720589) | 25  (0.33905548,0.81293535)
7 (0.69517171,0.68715513) | 26  (0.39346725,0.72518665)
8  (0.71077937,0.58230335) | 27  (0.38067153,0.51587456)
9 (0.77672684,0.57620311) | 28  (0.31908113,0.47400987)
10 (0.69441074,0.55463827) | 29  (0.31093591,0.41044563)
11 (0.70503455,0.56040508) | 30  (0.33721021,0.25944701)
12 (0.64847934,0.47242680) | 31  (0.37603563,0.30617276)
13 (0.62522483,0.47707036) | 32 (0.25724107,0.24462408)
14 (0.95839196,0.63783717) | 33  (0.05546237,0.28094628)
15 (0.95129949,0.87405115) | 34  (0.02995668,0.27950314)
16 (0.89547378,0.99167186) | 35 (0.08718578,0.24945484)
17 (0.48382717,0.47267216) | 36 (0.04822616,0.10236421)
18 (0.50073659,0.48236597) | 37  (0.12925100,0.13043565)
19 (0.54221827,0.43529409) | 38  (0.11269295,0.10270358)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 34 55.7%
3 17 27.9%
4 9 14.8%
5 1 1.6%
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Figure B.7. Cockayne and Hewgill’s Test Problem 7 Steiner minimal tree and minimum
spanning tree.
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B.8 Test Problem 8

Minimum Spanning Tree 6.8273

Steiner Minimal Tree

Reduction

6.5884
3.50%

Given Points

O U W~

(0.43959999,0.00160000)
(0.31459999,0.05160000)
(0.13349999,0.14550000)
(0.10060000, 0.17630000)
(0.00000000,0.22139999)
(0.02180000, 0.48359999)
(0.04140000, 0.54449999)
(0.08000000, 0.66360003)
(0.05930000,0.73710001)
(0.10610000,0.83389997)
(0.08210000,0.96890002)
(0.17919999,0.99650002)
(0.22499999,0.94770002)
(0.33489999,0.93690002)
(0.42580000,0.95380002)
(0.48679999,0.98549998)
(0.51520002, 0.99870002)
(0.58859998,0.96010000)
(0.60689998,0.96319997)
(0.66689998,0.96420002)
(0.72079998, 0.80570000)
(0.79720002, 0.76940000)
(0.98089999, 0.76220000)
(0.96920002, 0.73119998)
(0.95270002, 0.46259999)
(0.94489998,0.31110001)
(0.95940000,0.08330000)
(0.92100000, 0.04760000)
(0.77249998,0.02840000)
(0.70160002, 0.02930000)
(0.57929999,0.05770000)
(0.15620001, 0.82139999)
(0.33649999,0.30109999)
(0.21100000, 0.78469998)
(0.89740002, 0.31680000)
(0.26609999,0.72340000)
(0.58850002, 0.40110001)
(0.85960001, 0.40950000)
(0.82980001,0.27090001)
(0.77499998,0.70649999)
(0.74169999,0.21740000)
(0.24180000, 0.60310000)
(0.76779997,0.19720000)
(0.15700001, 0.42170000)
(0.19040000, 0.87210000)
(0.15060000, 0.64539999)
(0.20240000, 0.46239999)
(0.11290000, 0.82590002)
(0.55019999,0.58929998)
(0.60589999,0.07880000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.72180003,0.05680000)
(0.29460001, 0.75099999)
(0.53109998, 0.46280000)
(0.87639999,0.61110002)
(0.28400001,0.56629997)
(0.57309997,0.60790002)
(0.53310001,0.08820000)
(0.84780002, 0.17260000)
(0.37490001, 0.58630002)
(0.62279999,0.83770001)
(0.83840001,0.10050000)
(0.47639999,0.50749999)
(0.41819999,0.87730002)
(0.25850001,0.81300002)
(0.51789999,0.70050001)
(0.29820001,0.39179999)
(0.85089999,0.51400000)
(0.34580001, 0.17280000)
(0.22360000,0.56169999)
(0.86229998,0.29960001)
(0.16030000, 0.49550000)
(0.53009999,0.26989999)
(0.22900000, 0.54400003)
(0.33019999,0.77450001)
(0.31900001, 0.71340001)
(0.72340000,0.14309999)
(0.39940000, 0.35490000)
(0.23220000,0.19000000)
(0.15520000,0.94630003)
(0.62720001,0.53560001)
(0.35190001, 0.73339999)
(0.60290003,0.94270003)
(0.70829999, 0.42580000)
(0.68140000,0.41710001)
(0.72119999,0.14480001)
(0.17649999,0.86049998)
(0.23999999,0.51969999)
(0.86180001,0.69830000)
(0.82889998,0.41710001)
(0.16689999,0.31180000)
(0.67799997,0.32550001)
(0.59770000,0.27350000)
(0.09650000,0.36989999)
(0.33329999,0.57410002)
(0.57950002, 0.74010003)
(0.12670000,0.57020003)
(0.78469998,0.74290001)
(0.14560001, 0.61650002)
(0.47889999,0.61470002)
(0.45100001, 0.67750001)



Optimal Steiner Points

1 (0.19817641,0.93626440) | 23  (0.81244791,0.20867825)
2 (0.17409205,0.95435423) | 24  (0.22502176,0.46797723)
3 (0.11070519,0.82590252) | 25  (0.34768152,0.34149727)
4 (0.16814695,0.82499790) | 26  (0.31029791,0.20952050)
5 (0.27730405,0.74905694) | 27  (0.13414976,0.15018341)
6 (0.24795458,0.78885150) | 28  (0.17991436,0.46220323)
7 (0.32947022,0.73277044) | 29  (0.12998356,0.37103060)
8  (0.31785038,0.75165254) | 30  (0.84713322,0.10542721)
9 (0.14232218,0.63885260) | 31  (0.92114013,0.06171414)
10 (0.11833809,0.54983211) | 32  (0.72243589,0.14479275)
11 (0.04492720,0.53993303) | 33  (0.75315571,0.19728608)
12 (0.40120572,0.92482287) | 34  (0.69892704,0.08840422)
13 (0.59976608,0.95661968) | 35  (0.57925868,0.05799438)
14 (0.65877718,0.33123475) | 36 (0.53481758,0.07596044)
15 (0.64624834,0.38387197) | 37  (0.72337735,0.04706062)
16 (0.48790532,0.51003802) | 38  (0.88332826,0.32058579)
17 (0.51019531,0.58047521) | 39  (0.85512090,0.41719407)
18 (0.46036673,0.67138112) | 40  (0.88097191,0.46234262)
19 (0.45799515,0.62835628) | 41  (0.78576988,0.76356685)
20 (0.56934732,0.59428436) | 42  (0.78988409,0.72035551)
21 (0.22567004,0.56099081) | 43  (0.88044810,0.68614924)
22 (0.24649400,0.57914948) | 44  (0.63319540,0.81458122)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 23 41.8%
3 20 36.4%
4 12 21.8%
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Figure B.8. Cockayne and Hewgill’s Test Problem 8 Steiner minimal tree and minimum
spanning tree.
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B.9 Test Problem 9

Minimum Spanning Tree 6.5763

Steiner Minimal Tree

Reduction

6.4001
2.68%

Given Points

O U W~

(0.77999997,0.00390000)
(0.69430000,0.00910000)
(0.43610001,0.04490000)
(0.28960001,0.04250000)
(0.18089999,0.04770000)
(0.08260000,0.03180000)
(0.03350000, 0.06360000)
(0.01140000,0.09240000)
(0.00000000,0.22270000)
(0.03470000,0.84930003)
(0.15899999,0.92150003)
(0.24100000,0.95240003)
(0.35370001,0.95429999)
(0.38290000,0.95910001)
(0.65759999,0.98769999)
(0.93839997,0.87529999)
(0.97049999,0.83730000)
(0.89899999,0.76209998)
(0.92919999,0.57480001)
(0.93239999,0.49689999)
(0.96340001, 0.43779999)
(0.94900000, 0.40400001)
(0.99949998,0.30899999)
(0.99260002, 0.26490000)
(0.93809998, 0.16429999)
(0.94300002, 0.12720001)
(0.96859998,0.00470000)
(0.80909997,0.37009999)
(0.56790000,0.12620001)
(0.24100000, 0.72189999)
(0.82819998,0.59140003)
(0.34320000,0.28020000)
(0.76929998,0.47870001)
(0.73989999,0.16960000)
(0.67299998,0.27039999)
(0.20680000, 0.76450002)
(0.16550000,0.22849999)
(0.81050003,0.38440001)
(0.91610003,0.15050000)
(0.39870000,0.09100000)
(0.36149999,0.21220000)
(0.32159999,0.52569997)
(0.56120002, 0.44940001)
(0.86710000,0.54909998)
(0.07590000,0.82130003)
(0.40720001,0.23000000)
(0.67089999,0.47070000)
(0.57239997,0.62739998)
(0.82110000, 0.48320001)
(0.83920002, 0.23649999)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.71480000, 0.45660001)
(0.33579999,0.52999997)
(0.37459999,0.71179998)
(0.80729997,0.47229999)
(0.76440001,0.17470001)
(0.70039999, 0.84600002)
(0.30360001,0.16230001)
(0.40450001,0.60399997)
(0.86580002, 0.73189998)
(0.79809999,0.16660000)
(0.86519998, 0.76859999)
(0.02790000,0.09170000)
(0.48010001,0.52029997)
(0.43860000,0.87870002)
(0.22800000,0.56950003)
(0.88129997,0.51670003)
(0.16900000, 0.83209997)
(0.61430001, 0.79879999)
(0.29789999,0.05950000)
(0.40669999,0.44100001)
(0.53490001, 0.79670000)
(0.37169999,0.59820002)
(0.58990002, 0.87059999)
(0.92150003,0.25009999)
(0.78490001, 0.62000000)
(0.59399998,0.18960001)
(0.19390000, 0.14870000)
(0.75989997,0.34240001)
(0.75459999,0.40070000)
(0.42750001, 0.16530000)
(0.46430001,0.52190000)
(0.62940001,0.28940001)
(0.21830000, 0.56610000)
(0.48570001,0.17749999)
(0.23420000,0.92360002)
(0.69000000, 0.32220000)
(0.90109998, 0.42580000)
(0.79909998,0.12080000)
(0.46470001,0.51270002)
(0.51510000,0.63980001)
(0.60699999,0.12540001)
(0.12130000,0.29249999)
(0.63349998,0.69290000)
(0.16859999,0.13060001)
(0.23940000,0.56129998)
(0.44729999,0.25690001)
(0.52380002, 0.87000000)
(0.43200001, 0.49230000)
(0.41900000, 0.37059999)
(0.54560000,0.26830000)



Optimal Steiner Points

1 (0.87475252,0.75750554) | 20  (0.44194028,0.18372169)
2 (0.95465308,0.83894163) | 21  (0.42430717,0.22756775)
3 (0.80897844,0.62119061) | 22 (0.56591552,0.15927322)
4 (0.15724923,0.84369195) | 23  ( 0.57408518,0.13287896)
5 (0.17374089,0.90695834) | 24  (0.58425897,0.25323039)
6 (0.24515720,0.94628793) | 25  (0.66535997,0.28649887)
7 (0.38203266,0.95717120) | 26  (0.77414429,0.37225941)
8  (0.56398112,0.85192251) | 27  (0.80589980,0.37475681)
9 (0.56721228,0.81998473) | 28  (0.74095732,0.44984269)
10 (0.64318311,0.89155841) | 29  (0.87072378,0.52110761)
11 (0.46701014,0.51844132) | 30  (0.91069561,0.52220935)
12 (0.45253432,0.58678085) | 31  (0.94225907,0.42033026)
13 (0.38805085,0.61078495) | 32  (0.95641232,0.43872863)
14 (0.01659665,0.09638540) | 33  (0.98890156,0.26855800)
15 (0.15984429,0.06384015) | 34  (0.84149784,0.23186667)
16 (0.18769689,0.15026504) | 35  (0.90663511,0.22774442)
17 (0.27509719,0.13098447) | 36  (0.79332864,0.16289812)
18 (0.39886186,0.09102541) | 37  (0.92989427,0.15037653)
19 (0.37191379,0.23010913) | 38  (0.76433778,0.02218480)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 30 49.2%
3 24 39.3%
4 11.5%
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Figure B.9. Cockayne and Hewgill’s Test Problem 9 Steiner minimal tree and minimum

spanning tree.
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B.10 Test Problem 10

Minimum Spanning Tree 6.5572

Steiner Minimal Tree

Reduction

6.3923
2.51%

Given Points

O U W~

(0.63810003,0.00480000)
(0.51929998, 0.05460000)
(0.33000001,0.00610000)
(0.24529999,0.03320000)
(0.22630000,0.05220000)
(0.10060000,0.05200000)
(0.02840000, 0.05240000)
(0.07990000,0.19130000)
(0.10120000,0.23170000)
(0.09000000, 0.27509999)
(0.07860000,0.28060001)
(0.00730000,0.36680001)
(0.03290000,0.51670003)
(0.06850000,0.56449997)
(0.12340000, 0.65590000)
(0.06870000, 0.85089999)
(0.02250000,0.91149998)
(0.20400000,0.90850002)
(0.27500001,0.90910000)
(0.34799999,0.98070002)
(0.44790000,0.97390002)
(0.51249999,0.99989998)
(0.70569998,0.97539997)
(0.85540003,0.91039997)
(0.92350000,0.92970002)
(0.94510001,0.84179997)
(0.93000001,0.80720001)
(0.91860002, 0.78799999)
(0.95700002, 0.67159998)
(0.95550001,0.61390001)
(0.95749998,0.57470000)
(0.99430001, 0.46830001)
(0.96840000, 0.38659999)
(0.88300002, 0.17250000)
(0.89510000,0.11990000)
(0.89920002, 0.09320000)
(0.85670000,0.10610000)
(0.71679997,0.01710000)
(0.15830000, 0.23340000)
(0.69859999,0.17739999)
(0.23649999,0.17690000)
(0.18250000, 0.24660000)
(0.11210000, 0.45330000)
(0.88340002, 0.70920002)
(0.61189997,0.36939999)
(0.87110001, 0.48379999)
(0.93080002, 0.48230001)
(0.64150000, 0.36530000)
(0.73229998,0.59149998)
(0.94180000, 0.45429999)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.42100000, 0.64130002)
(0.85659999,0.73610002)
(0.76200002, 0.82620001)
(0.25119999,0.08020000)
(0.46790001,0.27959999)
(0.18000001, 0.54200000)
(0.14320000,0.19930001)
(0.34020001, 0.21550000)
(0.73350000, 0.57359999)
(0.32699999,0.65460002)
(0.28940001, 0.78920001)
(0.07820000, 0.44250000)
(0.21860000,0.21160001)
(0.44600001,0.40009999)
(0.48330000,0.25760001)
(0.53320003,0.29620001)
(0.26890001,0.08480000)
(0.09850000,0.09510000)
(0.86159998,0.61470002)
(0.72509998, 0.52039999)
(0.65590000, 0.34819999)
(0.62019998,0.38319999)
(0.65820003,0.13249999)
(0.40770000, 0.67850000)
(0.67100000, 0.72860003)
(0.17569999,0.23750000)
(0.26879999,0.51929998)
(0.32820001, 0.54380000)
(0.62809998,0.71010000)
(0.27120000, 0.69319999)
(0.85740000, 0.77079999)
(0.61739999,0.15180001)
(0.18560000, 0.48769999)
(0.51539999,0.85710001)
(0.44679999,0.78939998)
(0.16410001,0.71200001)
(0.88150001, 0.41049999)
(0.44229999,0.65810001)
(0.31540000,0.50110000)
(0.30620000,0.82779998)
(0.35730001,0.25020000)
(0.33880001, 0.61269999)
(0.81419998, 0.78259999)
(0.37830001,0.18120000)
(0.27910000, 0.06540000)
(0.64200002, 0.80229998)
(0.52039999,0.13270000)
(0.71539998,0.15210000)
(0.68500000,0.70209998)
(0.74150002, 0.82249999)



Optimal Steiner Points

1 (0.62075537,0.37538803) | 20  (0.19861998,0.51439369)
2 (0.07207709,0.86639202) | 21  (0.08345477,0.45234513)
3 (0.27074227,0.90296102) | 22 (0.04316983,0.51704234)
4 (0.92721069,0.46887106) | 23  (0.03177483,0.36623207)
5 (0.89477223,0.46015739) | 24  (0.08875221,0.06517898)
6 (0.96232402,0.44513059) | 25  (0.13906252,0.21208841)
7 (0.90070587,0.66072631) | 26  (0.10520209,0.21933006)
8 (0.94143891,0.65328515) | 27  (0.18162698,0.23995665)
9 (0.91002935,0.90830535) | 28  (0.23462112,0.05211904)
10 (0.85241640,0.76694500) | 29  (0.88926721,0.10814950)
11 (0.66459715,0.79212344) | 30  (0.46308586,0.19806066)
12 (0.72014207,0.83211845) | 31  (0.48986691,0.30087006)
13 (0.66834891,0.71969920) | 32  (0.47385830,0.27895787)
14 (0.51697600,0.84806526) | 33  (0.53234792,0.12234996)
15 (0.34344730,0.64114875) | 34  (0.69966704,0.15994471)
16 (0.40542886,0.66459721) | 35  (0.75400937,0.09704275)
17 (0.42252210,0.65061772) | 36  (0.34013134,0.20352948)
18 (0.25449905,0.71809423) | 37  (0.26456875,0.16047919)
19 (0.30856073,0.51579350) | 38  (0.26415071,0.08757840)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 33 54.1%
3 20 32.8%
4 6 9.8%
5 2 3.3%
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spanning tree.

Figure B.10. Cockayne and Hewgill’s Test Problem 10 Steiner minimal tree and minimum
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B.11 Test Problem 11

Minimum Spanning Tree 6.6482

Steiner Minimal Tree

Reduction

6.4507
2.97%

Given Points

O U W~

(0.02970000,0.01310000)
(0.00000000,0.21770000)
(0.00010000,0.33610001)
(0.05170000, 0.50639999)
(0.08280000,0.61680001)
(0.01490000, 0.87360001)
(0.08780000,0.90149999)
(0.13910000,0.99330002)
(0.28410000,0.93730003)
(0.37090001,0.97039998)
(0.46169999,0.96010000)
(0.53350002, 0.94950002)
(0.70929998,0.99699998)
(0.85600001,0.94849998)
(0.95850003,0.95190001)
(0.98559999,0.79420000)
(0.98189998,0.70179999)
(0.87510002, 0.61080003)
(0.88660002, 0.54000002)
(0.87059999, 0.48600000)
(0.86280000, 0.45010000)
(0.87599999,0.40570000)
(0.95910001,0.32949999)
(0.95940000,0.32480001)
(0.88999999,0.25009999)
(0.89840001, 0.15760000)
(0.90009999, 0.02740000)
(0.83319998,0.06490000)
(0.65679997,0.04480000)
(0.51260000,0.02670000)
(0.50250000,0.03130000)
(0.26840001,0.04960000)
(0.18189999,0.03040000)
(0.46380001,0.09130000)
(0.38589999, 0.43439999)
(0.75349998,0.28380001)
(0.46129999,0.40250000)
(0.31270000,0.58289999)
(0.18260001,0.46990001)
(0.41659999,0.17110001)
(0.76080000, 0.34000000)
(0.80100000,0.92089999)
(0.73320001,0.61009997)
(0.81500000, 0.13970000)
(0.13920000,0.88730001)
(0.24540000,0.08810000)
(0.92110002, 0.78619999)
(0.31510001, 0.71980000)
(0.30309999,0.63150001)
(0.68900001,0.26719999)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.51590002, 0.12000000)
(0.22000000,0.12590000)
(0.58010000,0.15700001)
(0.27640000,0.85979998)
(0.21370000,0.17890000)
(0.22900000, 0.40869999)
(0.39969999,0.12530001)
(0.23819999,0.74089998)
(0.58929998,0.17560001)
(0.50389999, 0.83929998)
(0.33980000, 0.15940000)
(0.47540000,0.18040000)
(0.80330002, 0.56629997)
(0.54159999,0.78630000)
(0.15719999,0.41589999)
(0.83179998,0.69190001)
(0.84770000, 0.54409999)
(0.10790000, 0.84039998)
(0.64829999,0.45730001)
(0.56950003,0.35519999)
(0.44929999,0.86949998)
(0.80379999, 0.35580000)
(0.84160000,0.50959998)
(0.24360000,0.89700001)
(0.72119999,0.83270001)
(0.73140001,0.95099998)
(0.28839999,0.87140000)
(0.19340000, 0.78770000)
(0.10300000,0.31060001)
(0.25459999,0.55089998)
(0.65329999,0.47760001)
(0.60259998, 0.12250000)
(0.13390000, 0.75349998)
(0.22460000,0.21670000)
(0.57929999,0.79420000)
(0.59119999,0.77499998)
(0.90219998,0.81699997)
(0.85710001, 0.84460002)
(0.30480000, 0.41440001)
(0.14260000, 0.48679999)
(0.25709999,0.57550001)
(0.66049999,0.32890001)
(0.07450000,0.28729999)
(0.81770003,0.81510001)
(0.88779998,0.25299999)
(0.29760000, 0.43489999)
(0.11500000, 0.80440003)
(0.29510000, 0.12370000)
(0.31150001, 0.64490002)
(0.33960000,0.19190000)



Optimal Steiner Points

1 (0.86950064,0.48561472) | 23  (0.11438908,0.87814867)
2 (0.84278637,0.54150170) | 24  (0.08761436,0.90042007)
3 (0.86863840,0.55324525) | 25  (0.16406506,0.91451341)
4 (0.87308180,0.66990900) | 26  ( 0.30420420,0.71181905)
5 (0.95078123,0.71837711) | 27  (0.25738716,0.57528734)
6 (0.94897252,0.77135211) | 28  (0.29872817,0.59324604)
7 (0.81902921,0.82767630) | 29  (0.08156419,0.52312082)
8  (0.77763551,0.85778737) | 30  (0.03375977,0.28492597)
9 (0.78348303,0.91311318) | 31  (0.29470658,0.42490530)
10 (0.83384788,0.06527777) | 32 (0.18392709,0.43262628)
11 (0.83357793,0.12907864) | 33  (0.18076441,0.47667998)
12 (0.89037198,0.16218986) | 34  (0.62258792,0.36832064)
13 (0.95804143,0.32633543) | 35 (0.69602937,0.28641126)
14 (0.90899301,0.31635308) | 36  (0.74427372,0.29483348)
15 (0.86336243,0.36792225) | 37  (0.34577331,0.16495121)
16 (0.57841259,0.79213655) | 38  (0.39401618,0.15011202)
17 (0.54227591,0.78787190) | 39  (0.46766376,0.16846585)
18 (0.46857592,0.87465572) | 40  (0.49177301,0.12124460)
19 (0.48519829,0.93658072) | 41  (0.47208464,0.09087266)
20 (0.28207970,0.87104613) | 42  (0.57774627,0.14303829)
21 (0.26433325,0.89816087) | 43  (0.24469714,0.06423157)
22 (0.14099927,0.77605540) | 44  (0.24765188,0.10440020)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 28 50.9%
3 15 27.3%
4 7 12.7%
5 5 9.1%
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Figure B.11. Cockayne and Hewgill’s Test Problem 11 Steiner minimal tree and minimum

spanning tree.
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B.12

Test Problem 12

Minimum Spanning Tree 6.8170

Steiner Minimal Tree

Reduction

6.6293
2.75%

Given Points

O U W~

(0.92100000, 0.03650000)
(0.87529999,0.07180000)
(0.77429998,0.06080000)
(0.72899997,0.04220000)
(0.66600001,0.07610000)
(0.36939999,0.06750000)
(0.24370000,0.10090000)
(0.11560000, 0.06580000)
(0.06510000,0.07620000)
(0.03740000,0.14820001)
(0.00000000,0.21210000)
(0.00530000,0.36980000)
(0.05170000, 0.42699999)
(0.02470000,0.57050002)
(0.00770000,0.69840002)
(0.07940000, 0.79360002)
(0.09970000,0.85710001)
(0.03030000,0.97160000)
(0.13740000,0.99260002)
(0.16620000,0.98140001)
(0.22840001,0.98339999)
(0.28259999,0.98610002)
(0.29820001,0.98970002)
(0.42070001,0.95179999)
(0.59340000,0.98170000)
(0.75150001,0.90679997)
(0.99449998,0.99629998)
(0.88340002, 0.78860003)
(0.88279998,0.75900000)
(0.86989999,0.69010001)
(0.87489998,0.65679997)
(0.95719999,0.59520000)
(0.98720002, 0.58490002)
(0.95550001,0.27320001)
(0.99610001,0.23019999)
(0.96149999,0.18120000)
(0.40130001, 0.44290000)
(0.20190001,0.79909998)
(0.46320000,0.80870003)
(0.58630002, 0.45680001)
(0.57560003,0.73329997)
(0.16840000,0.88550001)
(0.19360000, 0.33260000)
(0.32769999,0.21170001)
(0.39980000, 0.42230001)
(0.16750000, 0.13760000)
(0.64539999,0.73930001)
(0.15930000,0.58039999)
(0.13710000, 0.49779999)
(0.23360001,0.50639999)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.38929999,0.79509997)
(0.54380000,0.19010000)
(0.44180000,0.32960001)
(0.61350000, 0.38949999)
(0.48629999,0.49990001)
(0.68000001,0.09120000)
(0.23000000,0.28180000)
(0.76020002, 0.74089998)
(0.74460000,0.67040002)
(0.28830001, 0.68860000)
(0.56040001,0.85039997)
(0.19760001,0.28160000)
(0.61559999,0.13349999)
(0.46390000,0.25180000)
(0.21709999, 0.46529999)
(0.52539998,0.71969998)
(0.41639999,0.71359998)
(0.19700000, 0.81750000)
(0.07120000,0.34709999)
(0.18610001,0.37270001)
(0.11130000, 0.66710001)
(0.52960002, 0.88319999)
(0.47220001, 0.82569999)
(0.31050000, 0.45609999)
(0.68010002, 0.64260000)
(0.06010000, 0.65530002)
(0.88770002, 0.32030001)
(0.95310003,0.19410001)
(0.43220001, 0.49759999)
(0.64240003,0.22300000)
(0.31320000, 0.12360000)
(0.49039999, 0.66820002)
(0.20780000, 0.87050003)
(0.41389999,0.23999999)
(0.84759998,0.61610001)
(0.48750001,0.82179999)
(0.06230000, 0.62059999)
(0.28780001,0.55800003)
(0.42649999,0.86900002)
(0.66240001,0.34000000)
(0.31790000,0.89300001)
(0.25279999,0.28290001)
(0.74659997,0.61570001)
(0.43470001,0.20479999)
(0.56140000, 0.46460000)
(0.74180001, 0.82840002)
(0.18610001,0.92140001)
(0.54519999,0.45030001)
(0.21089999, 0.24470000)
(0.85339999,0.59390002)



Optimal Steiner Points

1 (0.17179719,0.12091646) | 20  (0.03904666,0.37899083)
2 (0.54588515,0.45750681) | 21  (0.21475445,0.49330828)
3 (0.87628871,0.63522017) | 22 (0.16461653,0.51691526)
4 (0.84445387,0.61118829) | 23  (0.07058007,0.64248502)
5 (0.72997183,0.64702809) | 24  (0.10405570,0.64795256)
6 (0.68389952,0.64867067) | 25  (0.03138741,0.69961625)
7 (0.64020312,0.73099667) | 26  (0.26834863,0.51098847)
8 (0.39985302,0.91717690) | 27  (0.39541882,0.43658102)
9 (0.33319470,0.91840178) | 28  (0.31265643,0.12133475)
10 (0.29588544,0.98585582) | 29  (0.32940656,0.21023753)
11 (0.43236887,0.82922912) | 30  (0.43556979,0.22629164)
12 (0.46189630,0.81753498) | 31  (0.46345979,0.24092335)
13 (0.38482198,0.73511636) | 32  (0.60137665,0.17769372)
14 (0.48702112,0.68767571) | 33  (0.66818655,0.08667269)
15 (0.53358090,0.86024660) | 34  (0.67986310,0.09053785)
16 (0.18970349,0.96511817) | 35  (0.72980028,0.04606974)
17 (0.20571819,0.86972076) | 36  (0.89997959,0.07205494)
18 (0.18088686,0.89017415) | 37  (0.95471424,0.19403958)
19 (0.21206191,0.27242219) | 38  (0.97786480,0.23088256)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 35 57.4%
3 17 27.9%
4 6 9.8%
5 3 4.9%
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Figure B.12. Cockayne and Hewgill’s Test Problem 12 Steiner minimal tree and minimum
spanning tree.
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B.13 Test Problem 13

Minimum Spanning Tree 6.6141

Steiner Minimal Tree

Reduction

6.3883
3.41%

Given Points

O U W~

(0.59189999,0.02850000)
(0.40000001,0.07500000)
(0.33300000,0.09590000)
(0.27849999,0.04570000)
(0.17090000,0.03010000)
(0.07900000, 0.12570000)
(0.06270000,0.21799999)
(0.04750000,0.41800001)
(0.03050000, 0.43309999)
(0.02080000, 0.49959999)
(0.09730000, 0.75449997)
(0.04220000,0.93419999)
(0.08950000,0.92390001)
(0.21770000,0.85030001)
(0.28520000, 0.85740000)
(0.53990000,0.92170000)
(0.60470003,0.92129999)
(0.68769997,0.90939999)
(0.85170001,0.95980000)
(0.87819999,0.91750002)
(0.91979998,0.73100001)
(0.97280002, 0.61180001)
(0.93320000,0.52800000)
(0.99339998,0.40709999)
(0.94950002, 0.34290001)
(0.89889997,0.21990000)
(0.90039998, 0.04640000)
(0.84329998,0.05420000)
(0.80379999,0.03920000)
(0.68220001,0.03990000)
(0.63040000, 0.66850001)
(0.40849999,0.69730002)
(0.81300002, 0.40099999)
(0.68919998, 0.85049999)
(0.60979998,0.51270002)
(0.19980000, 0.79900002)
(0.39309999,0.27970001)
(0.30039999, 0.24789999)
(0.81089997,0.34419999)
(0.70300001, 0.79629999)
(0.26199999,0.35910001)
(0.32949999,0.23960000)
(0.55500001,0.40189999)
(0.59609997,0.62210000)
(0.76480001,0.14620000)
(0.88520002, 0.64499998)
(0.76910001,0.50760001)
(0.67790002, 0.41220000)
(0.12830000,0.50389999)
(0.76749998,0.49689999)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.59359998,0.20190001)
(0.72729999,0.56730002)
(0.80820000, 0.78250003)
(0.61799997,0.39070001)
(0.13349999,0.37760001)
(0.90310001, 0.73290002)
(0.07840000, 0.42449999)
(0.16560000,0.37270001)
(0.24079999, 0.41270000)
(0.78850001,0.80729997)
(0.55820000,0.43090001)
(0.69709998,0.59969997)
(0.61510003,0.61119998)
(0.27640000,0.74210000)
(0.39080000, 0.78140002)
(0.25209999,0.11620000)
(0.35769999,0.51990002)
(0.22720000,0.22290000)
(0.88770002, 0.33579999)
(0.30050001,0.73210001)
(0.57020003,0.85039997)
(0.42060000,0.23890001)
(0.59670001,0.32440001)
(0.67930001,0.25510001)
(0.38640001, 0.62529999)
(0.80129999, 0.78899997)
(0.33090001, 0.72680002)
(0.31920001, 0.44639999)
(0.53390002, 0.28099999)
(0.66810000,0.24720000)
(0.58990002, 0.08180000)
(0.27039999,0.31050000)
(0.64300001, 0.84689999)
(0.84930003,0.26199999)
(0.68760002, 0.43590000)
(0.66270000,0.79390001)
(0.49349999,0.43979999)
(0.65300000, 0.71590000)
(0.85519999,0.17690000)
(0.21709999,0.84969997)
(0.59710002, 0.07540000)
(0.51200002, 0.76969999)
(0.86650002, 0.51639998)
(0.34000000,0.27680001)
(0.47560000,0.80570000)
(0.38139999,0.59829998)
(0.75650001,0.61170000)
(0.14540000, 0.36710000)
(0.61960000,0.81330001)
(0.22550000,0.61189997)



Optimal Steiner Points

1 (0.79297870,0.80690259) | 20  (0.67023379,0.78670573)
2 (0.87106723,0.91813284) | 21  (0.92556107,0.53500366)
3 (0.28387374,0.73097122) | 22 (0.94033921,0.60157514)
4 (0.19264634,0.81387591) | 23  ( 0.89098763,0.64682299)
5 (0.14051673,0.81781167) | 24  (0.90891272,0.72757059)
6 (0.32424513,0.24833225) | 25 (0.85209721,0.31756684)
7 (0.23520909,0.21986631) | 26  (0.87692106,0.21888469)
8  (0.27929735,0.25589329) | 27  (0.59648716,0.37816584)
9 (0.17356068,0.05871882) | 28  (0.54992980,0.42305860)
10 (0.25002393,0.09386940) | 29  ( 0.63556308,0.58769339)
11 (0.28094217,0.07196874) | 30  (0.72480363,0.58789068)
12 (0.09604123,0.42676166) | 31  (0.76962018,0.49828723)
13 (0.23373502,0.38896334) | 32 (0.80866796,0.47856015)
14 (0.67855340,0.85956055) | 33  (0.60747707,0.62277120)
15 (0.63641477,0.81843281) | 34  (0.57932395,0.28565159)
16 (0.50992191,0.79025555) | 35  (0.61130589,0.24138406)
17 (0.57177508,0.83482075) | 36  (0.60791427,0.04948321)
18 (0.57120794,0.90281272) | 37  (0.77027714,0.14197519)
19 (0.37512287,0.73550785) | 38  (0.76092148,0.07227451)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 35 57.4%
3 17 27.9%
4 7 11.5%
5 1 1.6%
6 1 1.6%
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Figure B.13. Cockayne and Hewgill’s Test Problem 13 Steiner minimal tree and minimum

spanning tree.

202



B.14 Test Problem 14

Minimum Spanning Tree 6.6418

Steiner Minimal Tree

Reduction

6.4425
3.00%

Given Points

O U W~

(0.92909998,0.00150000)
(0.88730001,0.03430000)
(0.70440000,0.04410000)
(0.62040001,0.01200000)
(0.61699998,0.02010000)
(0.52219999,0.03890000)
(0.46599999,0.04200000)
(0.33960000,0.11910000)
(0.20060000, 0.06690000)
(0.10880000, 0.04020000)
(0.05160000, 0.06460000)
(0.00130000, 0.13380000)
(0.01560000,0.28369999)
(0.01730000,0.31779999)
(0.04780000,0.50099999)
(0.05810000,0.60000002)
(0.05510000, 0.61960000)
(0.10520000, 0.75300002)
(0.04150000,0.85000002)
(0.03900000, 0.86540002)
(0.02010000,0.96759999)
(0.06990000,0.96969998)
(0.31140000,0.95840001)
(0.33080000,0.96050000)
(0.36510000,0.99519998)
(0.69959998,0.98920000)
(0.77300000,0.98409998)
(0.91409999, 0.87529999)
(0.90210003,0.82849997)
(0.91060001,0.80409998)
(0.98689997,0.59920001)
(0.99019998, 0.58420002)
(0.99000001,0.39610001)
(0.89289999,0.30000001)
(0.85630000, 0.15660000)
(0.90130001, 0.07500000)
(0.37959999,0.31450000)
(0.48040000, 0.79949999)
(0.19620000,0.21900000)
(0.70480001,0.50209999)
(0.16810000,0.39309999)
(0.25790000,0.21610001)
(0.39109999, 0.47799999)
(0.19120000,0.25920001)
(0.91280001, 0.41370001)
(0.19730000, 0.58759999)
(0.46709999,0.25459999)
(0.26370001,0.69630003)
(0.71200001, 0.73320001)
(0.70300001,0.50239998)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.44880000, 0.64520001)
(0.43830001,0.30840001)
(0.88810003,0.06960000)
(0.41790000, 0.72759998)
(0.35519999,0.17550001)
(0.29800001,0.21780001)
(0.79049999,0.76660001)
(0.20980000, 0.71509999)
(0.40490001, 0.87080002)
(0.63990003,0.53469998)
(0.91439998,0.48019999)
(0.13660000,0.64099997)
(0.61589998,0.27160001)
(0.52300000, 0.43050000)
(0.21210000, 0.63370001)
(0.65530002, 0.36530000)
(0.34950000, 0.67320001)
(0.42860001,0.29780000)
(0.11710000,0.90439999)
(0.53369999,0.42410001)
(0.30219999,0.19650000)
(0.77139997,0.45420000)
(0.15989999, 0.63059998)
(0.18960001,0.20510000)
(0.07880000, 0.12819999)
(0.93540001, 0.48830000)
(0.09050000,0.53939998)
(0.11670000,0.09910000)
(0.21210000,0.28929999)
(0.37270001,0.80729997)
(0.61589998,0.37889999)
(0.60479999,0.89420003)
(0.15019999, 0.14860000)
(0.75919998, 0.72659999)
(0.37639999,0.78240001)
(0.78609997,0.31840000)
(0.84160000,0.33039999)
(0.51150000, 0.77039999)
(0.53689998, 0.85259998)
(0.22120000,0.32049999)
(0.64810002, 0.17540000)
(0.21240000,0.50610000)
(0.48030001,0.23490000)
(0.35339999,0.86500001)
(0.69270003,0.25979999)
(0.90130001, 0.50569999)
(0.53149998,0.84100002)
(0.49730000, 0.24390000)
(0.84759998,0.69199997)
(0.43460000,0.23080000)



Optimal Steiner Points

1 (0.61922485,0.01925489) | 20  (0.29456013,0.21288851)
2 (0.66707152,0.05827904) | 21  (0.34284887,0.16939466)
3 (0.14483953,0.11046796) | 22 (0.43102258,0.29762873)
4 (0.10114908,0.09746037) | 23  ( 0.45142865,0.25570801)
5 (0.08825060,0.06846429) | 24  (0.48165902,0.23982958)
6 (0.02733477,0.15209441) | 25  (0.93260384, 0.58446854)
7 (0.06149560,0.95988131) | 26  (0.98403704,0.59199613)
8  (0.07853726,0.91159052) | 27  (0.79260927,0.75665337)
9 (0.08047359,0.54102814) | 28  (0.83694935,0.74222332)
10 (0.11086824,0.65395558) | 29  (0.90702790,0.80526251)
11 (0.05703405,0.61862624) | 30  (0.87742752,0.32913214)
12 (0.19256891,0.61796516) | 31  (0.92084789,0.39854717)
13 (0.23153998,0.69006556) | 32  (0.91668904,0.48577607)
14 (0.40686280,0.68796849) | 33  (0.72230566,0.31595016)
15 (0.41697675,0.76046836) | 34  (0.69038099,0.36664721)
16 (0.49959019,0.79741275) | 35  (0.73582357,0.45283377)
17 (0.37332177,0.85313499) | 36  (0.65518659,0.24308023)
18 (0.32576925,0.95509577) | 37  (0.89262301,0.07587736)
19 (0.20265977,0.22651595)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 36 58.1%
3 17 27 4%
4 7 11.3%
5 2 3.2%
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Figure B.14. Cockayne and Hewgill’s Test Problem 14 Steiner minimal tree and minimum
spanning tree.
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B.15

Test Problem 15

Minimum Spanning Tree 6.5720

Steiner Minimal Tree

Reduction

6.3584
3.25%

Given Points

O U W~

(0.28929999,0.00980000)
(0.27739999,0.04670000)
(0.00000000,0.21250001)
(0.02290000,0.28119999)
(0.03840000,0.31680000)
(0.02460000,0.47330001)
(0.00780000, 0.70950001)
(0.03370000,0.73030001)
(0.07190000, 0.75129998)
(0.10570000, 0.73699999)
(0.17659999,0.78640002)
(0.18449999,0.81160003)
(0.21250001, 0.86780000)
(0.21840000, 0.87510002)
(0.21370000,0.89330000)
(0.24869999,0.90280002)
(0.32560000,0.90450001)
(0.35530001,0.90710002)
(0.46140000,0.98890001)
(0.63990003,0.96670002)
(0.74489999,0.97180003)
(0.80710000,0.96210003)
(0.85329998,0.97000003)
(0.93229997,0.87599999)
(0.93849999,0.83810002)
(0.91020000, 0.72560000)
(0.92060000,0.71079999)
(0.96789998,0.62320000)
(0.96890002, 0.61989999)
(0.95270002, 0.57139999)
(0.92760003,0.48820001)
(0.98369998, 0.41470000)
(0.97270000, 0.40869999)
(0.96130002, 0.35479999)
(0.97979999,0.29429999)
(0.99129999,0.10410000)
(0.98089999,0.09960000)
(0.81440002, 0.10580000)
(0.67369998,0.07380000)
(0.64780003,0.04210000)
(0.42039999,0.02820000)
(0.88880002, 0.78149998)
(0.31029999, 0.65060002)
(0.80909997,0.26060000)
(0.74150002, 0.49660000)
(0.59050000,0.21160001)
(0.40009999,0.25299999)
(0.46570000, 0.44929999)
(0.47009999,0.26510000)
(0.18430001, 0.73060000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.67439997,0.11940000)
(0.41240001, 0.73490000)
(0.53960001,0.71399999)
(0.68239999,0.93879998)
(0.77840000,0.27590001)
(0.16720000,0.23140000)
(0.21310000, 0.38220000)
(0.29480001,0.34110001)
(0.84030002, 0.52710003)
(0.17540000,0.45950001)
(0.45559999,0.12390000)
(0.87199998, 0.44729999)
(0.18770000, 0.38490000)
(0.76990002, 0.70560002)
(0.77240002, 0.34349999)
(0.53520000, 0.67809999)
(0.33379999,0.78979999)
(0.68550003,0.58829999)
(0.74290001,0.90009999)
(0.26400000, 0.33530000)
(0.60780001, 0.65050000)
(0.75489998,0.18979999)
(0.31250000,0.71340001)
(0.78320003,0.72140002)
(0.27550000, 0.49840000)
(0.71660000,0.37599999)
(0.34729999,0.84899998)
(0.50080001,0.62000000)
(0.56889999,0.77100003)
(0.60689998,0.52749997)
(0.51520002, 0.79650003)
(0.60860002, 0.36840001)
(0.65480000,0.49380001)
(0.67629999,0.38740000)
(0.70779997,0.37180001)
(0.10160000,0.34779999)
(0.45600000,0.70370001)
(0.77429998,0.61269999)
(0.60530001,0.91310000)
(0.22499999,0.54710001)
(0.19270000,0.80309999)
(0.52240002, 0.37760001)
(0.50880003, 0.14659999)
(0.59369999,0.14280000)
(0.44340000, 0.32229999)
(0.45469999,0.85339999)
(0.52179998,0.69340003)
(0.80549997, 0.65249997)
(0.91619998,0.31540000)
(0.52550000,0.91600001)



Optimal Steiner Points

1 (0.16561541,0.75071305) | 20  (0.34620404, 0.74986994)
2 (0.18836774,0.80344957) | 21  (0.52693605,0.69327235)
3 (0.21960859,0.88917702) | 22 (0.53985387,0.66424346)
4 (0.72595912,0.93545151) | 23  ( 0.55035067,0.76494300)
5 (0.74734724,0.96669316) | 24  (0.47777942,0.85453439)
6 (0.64396024,0.95004195) | 25 (0.50893116,0.91518557)
7 (0.80007327,0.65276110) | 26  (0.06884798,0.35342219)
8 (0.77294087,0.70545369) | 27  (0.13954440,0.33736753)
9 (0.89027750,0.78123158) | 28  (0.23295884,0.51167953)
10 (0.95199317,0.32384038) | 29  (0.17610273,0.45928067)
11 (0.88243079,0.47300214) | 30  (0.19193812, 0.38880587)
12 (0.92376304,0.47874552) | 31  (0.44415325,0.27947795)
13 (0.97462314,0.41343871) | 32 (0.49167445,0.38235345)
14 (0.79053986,0.54231960) | 33  (0.57553017,0.16218534)
15 (0.66966784,0.39264622) | 34  (0.66758150,0.11394408)
16 (0.68141735,0.47274497) | 35  (0.75073987,0.15274358)
17 (0.62915874,0.52966708) | 36  (0.78940022,0.25935441)
18 (0.65442932,0.58527493) | 37  (0.41564542,0.03477974)
19 (0.34197149,0.89731139) | 38  (0.29495290,0.02240902)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 33 54.1%
3 20 32.8%
4 6 9.8%
5 2 3.3%
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Figure B.15. Cockayne and Hewgill’s Test Problem 15 Steiner minimal tree and minimum
spanning tree.
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B.16 Test Problem 16

Minimum Spanning Tree 6.8599

Steiner Minimal Tree

Reduction

6.6472
3.10%

Given Points

O U W~

(0.55779999,0.00810000)
(0.36840001,0.01550000)
(0.29499999,0.01160000)
(0.25920001,0.03740000)
(0.17370000,0.02770000)
(0.12260000,0.01930000)
(0.07910000,0.03770000)
(0.09320000,0.07220000)
(0.09430000,0.07760000)
(0.00000000,0.21259999)
(0.01570000, 0.25549999)
(0.04230000,0.26830000)
(0.04700000,0.32300001)
(0.04160000, 0.34529999)
(0.03940000, 0.45339999)
(0.02100000,0.50510001)
(0.03620000,0.69410002)
(0.03130000, 0.75089997)
(0.03450000, 0.75160003)
(0.16190000,0.82880002)
(0.17560001,0.99119997)
(0.41240001,0.99830002)
(0.58389997,0.98960000)
(0.80729997,0.99629998)
(0.85409999,0.83219999)
(0.99119997,0.78839999)
(0.92710000, 0.57470000)
(0.95080000,0.37670001)
(0.97479999,0.28749999)
(0.97909999, 0.24869999)
(0.93269998,0.14800000)
(0.89639997,0.06020000)
(0.84490001, 0.04310000)
(0.62379998,0.01370000)
(0.24429999,0.20680000)
(0.86839998, 0.48060000)
(0.79740000,0.66009998)
(0.68409997,0.40210000)
(0.94290000,0.28110000)
(0.46380001, 0.45490000)
(0.24280000,0.05190000)
(0.54420000,0.18140000)
(0.58359998,0.07330000)
(0.06110000,0.20160000)
(0.74559999,0.19610000)
(0.35080001, 0.65759999)
(0.55400002, 0.48170000)
(0.65149999,0.50690001)
(0.66570002, 0.78460002)
(0.29150000, 0.61530000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.03470000, 0.49930000)
(0.46259999,0.37760001)
(0.80610001,0.33870000)
(0.35089999,0.29980001)
(0.21269999,0.38429999)
(0.23960000,0.57069999)
(0.60189998, 0.11460000)
(0.23770000, 0.48730001)
(0.82730001, 0.44409999)
(0.23130000, 0.81620002)
(0.88520002, 0.20600000)
(0.61330003,0.08220000)
(0.72570002, 0.27579999)
(0.43399999, 0.35670000)
(0.60960001,0.86140001)
(0.27820000, 0.63029999)
(0.90160000, 0.74089998)
(0.65100002, 0.78789997)
(0.33829999,0.70789999)
(0.19910000,0.59579998)
(0.36570001,0.69029999)
(0.49720001, 0.74309999)
(0.72130001, 0.56540000)
(0.74479997,0.32260001)
(0.84380001, 0.54269999)
(0.46509999,0.28999999)
(0.11600000,0.10320000)
(0.29339999,0.40860000)
(0.80839998,0.66890001)
(0.86699998, 0.30660000)
(0.71160001,0.10890000)
(0.80180001, 0.43820000)
(0.54600000, 0.47520000)
(0.34070000, 0.77999997)
(0.64969999,0.22210000)
(0.11630000,0.10400000)
(0.19870000,0.09010000)
(0.10460000,0.19280000)
(0.25350001, 0.68820000)
(0.12520000,0.37720001)
(0.64899999,0.50760001)
(0.14520000,0.69910002)
(0.51959997,0.28380001)
(0.08350000,0.52240002)
(0.63099998,0.88330001)
(0.08640000,0.29870000)
(0.59549999,0.86449999)
(0.44850001, 0.62970001)
(0.12930000, 0.34140000)
(0.36910000,0.06190000)



Optimal Steiner Points

1 (093121392,0.14778271) | 22 (0.16426121,0.82995051)

2 (0.90277630,0.27052647) | 23  (0.23739937,0.58237118)

3 (0.97473443,0.28745160) | 24  (0.28028697,0.61923158)

4 (0.96013677,0.29382080) | 25  ( 0.43444249,0.66837698)

5 (0.03926752,0.49668154) | 26  (0.36949486,0.67985922)

6 (0.35828233,0.02631549) | 27  (0.71050131,0.23321396)

7 (0.20669086,0.06125060) | 28  (0.74252027,0.19553700)

8 (0.09019474,0.04268303) | 29  (0.42657542,0.33702484)

9 (0.09963172,0.18845604) | 30  (0.36087579,0.32623592)
10 (0.01865311,0.25388736) | 31  (0.25265616,0.42124522)
11 (0.01935432,0.22439635) | 32 (0.59007788,0.16710177)
12 (0.06049440,0.29899660) | 33  (0.60443276,0.08631296)
13 (0.13633560,0.36557791) | 34  (0.58500308,0.07264921)
14 (0.03371582,0.75057983) | 35  (0.58882886,0.02992081)
15 (0.04976343,0.71174568) | 36 (0.91086537,0.77045321)
16 (0.60724813,0.81135225) | 37  (0.78598368,0.58992016)
17 (0.60574436,0.85900873) | 38  (0.86471474,0.53252608)
18 (0.62538731,0.88380754) | 39  (0.76725662,0.34721896)
19 (0.57939118,0.98320049) | 40  (0.75473917,0.38660765)
20 (0.19872254,0.72517890) | 41  (0.47343564, 0.44713700)
21 (0.20419426,0.80299270)

Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 31 53.4%
3 15 25.9%
4 10 17.2%
5 2 3.4%
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Figure B.16. Cockayne and Hewgill’s Test Problem 16 Steiner minimal tree and minimum
spanning tree.
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B.17

Test Problem 17

Minimum Spanning Tree 6.8022

Steiner Minimal Tree

Reduction

6.5588
3.58%

Given Points

O U W~

(0.02620000,0.00020000)
(0.02030000,0.00710000)
(0.03920000,0.09980000)
(0.00000000, 0.21269999)
(0.01170000,0.22220001)
(0.00960000,0.36750001)
(0.00580000, 0.64980000)
(0.03680000, 0.84859997)
(0.03400000,0.93089998)
(0.04080000,0.94690001)
(0.17340000,0.93959999)
(0.19720000,0.93720001)
(0.34230000,0.97680002)
(0.35800001,0.96289998)
(0.48469999,0.99769998)
(0.54799998,0.98530000)
(0.75440001,0.93360001)
(0.88239998,0.95639998)
(0.90270001, 0.85380000)
(0.96319997,0.74959999)
(0.90109998, 0.67439997)
(0.92839998,0.59240001)
(0.93860000,0.52969998)
(0.94559997,0.46340001)
(0.95260000,0.41069999)
(0.98299998,0.39660001)
(0.92820001,0.15530001)
(0.90460002, 0.12280000)
(0.92180002, 0.05070000)
(0.78140002, 0.05020000)
(0.74199998,0.02440000)
(0.73079997,0.03880000)
(0.60060000,0.08820000)
(0.49810001, 0.04450000)
(0.29949999,0.02030000)
(0.20029999,0.05130000)
(0.07020000,0.02760000)
(0.05210000,0.02260000)
(0.45510000,0.11280000)
(0.54040003,0.55479997)
(0.04390000,0.38029999)
(0.16750000,0.85310000)
(0.29760000,0.13730000)
(0.64520001,0.12890001)
(0.52329999,0.51459998)
(0.63050002, 0.63889998)
(0.10910000, 0.87629998)
(0.83260000,0.10950000)
(0.90829998,0.42820001)
(0.08520000,0.30540001)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.57179999,0.72229999)
(0.40700001, 0.64469999)
(0.77780002,0.25130001)
(0.80519998, 0.48670000)
(0.37850001, 0.76510000)
(0.51109999,0.34900001)
(0.37259999,0.81389999)
(0.20490000, 0.06080000)
(0.18860000,0.37779999)
(0.69630003,0.41490000)
(0.36890000, 0.49079999)
(0.18220000, 0.65719998)
(0.20379999,0.40390000)
(0.86189997,0.54380000)
(0.84930003,0.10300000)
(0.10010000, 0.79250002)
(0.55839998,0.69319999)
(0.11720000,0.59329998)
(0.18210000,0.09150000)
(0.50700003,0.34619999)
(0.55720001, 0.17410000)
(0.36849999,0.87110001)
(0.79299998,0.15320000)
(0.26760000,0.62110001)
(0.50029999, 0.84829998)
(0.75019997,0.61870003)
(0.86619997,0.27059999)
(0.11150000, 0.69610000)
(0.29370001,0.69059998)
(0.60390002, 0.21940000)
(0.74510002, 0.66780001)
(0.80760002, 0.14290000)
(0.80040002, 0.24670000)
(0.37599999,0.50459999)
(0.12549999,0.62870002)
(0.85219997,0.22490001)
(0.27660000,0.32060000)
(0.67350000, 0.18460000)
(0.86049998,0.53899997)
(0.49320000, 0.78680003)
(0.50700003, 0.62000000)
(0.49910000,0.17690000)
(0.81180000, 0.67320001)
(0.39100000, 0.64010000)
(0.49149999,0.53250003)
(0.57599998,0.29060000)
(0.45750001, 0.46939999)
(0.28140000, 0.57319999)
(0.59979999,0.34240001)
(0.38069999,0.93510002)



Optimal Steiner Points

1 (0.09119984,0.34134009) | 23  (0.93429142,0.43268394)
2 (0.20038204,0.38232243) | 24 (0.86203146,0.54365277)
3 (0.00264791,021213831) | 25  (0.91606402,0.55492198)
4 (0.38151488,0.94710952) | 26  ( 0.89479125,0.66549194)
5 (0.08493913,0.85289276) | 27  (0.57244426,0.32221982)
6 (0.05116645,0.86251813) | 28  (0.89260900,0.10253573)
7 (0.14939879,0.87945729) | 29  (0.60306376,0.19821894)
8  (0.17617927,0.93555307) | 30  (0.64684570,0.17058294)
9 (0.13046984,0.64511192) | 31  (0.76162219,0.19512595)
10 (0.10446084,0.67285466) | 32  (0.78281474,0.24459948)
11 (0.56774133,0.65654427) | 33  (0.84487087,0.24169387)
12 (0.52507979,0.61491698) | 34  (0.82301283,0.11028881)
13 (0.56462979,0.72011244) | 35  (0.74243736,0.03101423)
14 (0.51829410,0.52800518) | 36  (0.49978837,0.17563075)
15 (0.45160717,0.48637578) | 37  (0.46114561,0.11263879)
16 (0.37738493,0.50061029) | 38  (0.31018269,0.11479595)
17 (0.35029542,0.69780910) | 39  (0.27741355,0.05980131)
18 (0.39213437,0.64280647) | 40  (0.20286387,0.06028928)
19 (0.25792682,0.64576578) | 41  (0.17994744,0.08395286)
20 (0.73332411,0.64454550) | 42 (0.07905475,0.05864585)
21 (0.86433035,0.92831200) | 43  (0.02585372,0.00446753)
22 (0.95271540,0.75036871)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 26 46.4%
3 18 32.1%
4 11 19.6%
5 1 1.8%

213



_ A<\ \
< ) ~
I
1 \
| \
\
\
N \
. N
s N
7z N 7
// 4
7 //
//\ S s\~
~ ——
= / RS ’ S - - \
h —= =< / RN / N !
- S~ \/ / \ \
< \
N \
\\ d
\
\
/ ==
<
7
7
RS /
7,
7
/
\\ // \\
- N
\ 7 N N
NP AN /
~ NV
1
SV
/\\ 7/
// T~ 4
< ’
Y, ST~ ’
Y / =<\
y /
N - 7 \
| \) 2 - \
\ ~ A 7 \
\ — N | \ 7 \
\ P < |
~ ~
\ - S < | z
~

Figure B.17. Cockayne and Hewgill’s Test Problem 17 Steiner minimal tree and minimum
spanning tree.
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B.18 Test Problem 18

Minimum Spanning Tree 6.5206

Steiner Minimal Tree

Reduction

6.3008
3.37%

Given Points

O U W~

(0.53899997,0.00340000)
(0.50250000,0.01420000)
(0.27849999,0.04260000)
(0.17630000,0.13270000)
(0.11760000,0.14010000)
(0.03610000,0.21140000)
(0.00000000,0.21290000)
(0.12360000,0.57440001)
(0.00900000, 0.70929998)
(0.05010000,0.82800001)
(0.03360000,0.99010003)
(0.05280000,0.98290002)
(0.10290000,0.92290002)
(0.34189999,0.88940001)
(0.48580000, 0.88540000)
(0.52340001,0.90490001)
(0.59369999,0.96109998)
(0.79860002, 0.94840002)
(0.95510000,0.96530002)
(0.94510001,0.89920002)
(0.87239999,0.76490003)
(0.86269999,0.64770001)
(0.84570003,0.54140002)
(0.83329999,0.45950001)
(0.88370001,0.38420001)
(0.91240001, 0.34299999)
(0.95480001,0.29570001)
(0.98089999,0.28430000)
(0.95889997,0.23520000)
(0.99750000, 0.15870000)
(0.93140000,0.09740000)
(0.92640001,0.09500000)
(0.83759999,0.06380000)
(0.71079999,0.00340000)
(0.65969998,0.00370000)
(0.66570002, 0.58920002)
(0.51999998,0.25389999)
(0.92690003,0.92919999)
(0.05430000, 0.70870000)
(0.46830001, 0.62480003)
(0.30199999,0.58029997)
(0.46720001,0.58039999)
(0.83539999,0.27210000)
(0.19499999,0.52609998)
(0.91270000,0.21150000)
(0.72630000,0.13609999)
(0.51550001,0.25220001)
(0.26820001,0.27309999)
(0.35910001,0.12500000)
(0.21799999,0.37230000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.45800000, 0.17659999)
(0.47180000,0.20280001)
(0.32179999,0.85939997)
(0.48890001, 0.52490002)
(0.67369998,0.18500000)
(0.54540002, 0.61019999)
(0.68019998,0.81510001)
(0.34619999,0.33829999)
(0.76760000,0.84869999)
(0.35040000, 0.72270000)
(0.28839999,0.64420003)
(0.89910001,0.28049999)
(0.39430001,0.69199997)
(0.11160000, 0.82330000)
(0.59359998,0.90840000)
(0.50099999,0.81760001)
(0.52840000,0.39809999)
(0.65460002, 0.07370000)
(0.67250001,0.23320000)
(0.63679999,0.50099999)
(0.13699999,0.77980000)
(0.41069999,0.32710001)
(0.64080000, 0.81599998)
(0.73949999,0.75760001)
(0.63209999,0.16599999)
(0.24160001,0.36149999)
(0.77869999,0.52289999)
(0.42280000, 0.62610000)
(0.43590000,0.32400000)
(0.48690000,0.12780000)
(0.19430000, 0.54689997)
(0.42860001,0.70539999)
(0.24800000, 0.62940001)
(0.42359999,0.26510000)
(0.54320002, 0.27230000)
(0.37459999,0.32580000)
(0.58209997,0.80510002)
(0.15360001,0.18709999)
(0.53600001,0.12830000)
(0.52770001,0.31799999)
(0.69910002, 0.59670001)
(0.84729999,0.34450001)
(0.49649999,0.42640001)
(0.33680001, 0.76080000)
(0.21900000, 0.26690000)
(0.59820002, 0.48050001)
(0.64289999,0.03460000)
(0.39980000, 0.79850000)
(0.24280000,0.31959999)
(0.56779999,0.74949998)



Optimal Steiner Points

1 (0.58223003,0.92000908) | 20  (0.50690854,0.42752105)
2 (0.93058652,0.92894292) | 21  (0.52693975,0.47282496)
3 (0.81125808,0.92728889) | 22 (0.48032719,0.60647428)
4 (0.88254189,0.36242262) | 23  (0.41252196,0.68792278)
5 (0.92281324,0.30424669) | 24  (0.42957523,0.63346475)
6 (0.97006816,0.28112596) | 25  (0.35440007,0.70460629)
7 (0.97034776,0.15966156) | 26  (0.53952342,0.27329788)
8 (0.94339454,021041310) | 27  (0.11826074,0.14413092)
9 (0.08890212,0.84224159) | 28  (0.14842412,0.15552336)
10 (0.12866855,0.78097630) | 29  (0.25427991,0.33909333)
11 (0.07035283,0.70643353) | 30  (0.24515334,0.28442648)
12 (0.18920015,0.56168514) | 31  (0.47369733,0.23160222)
13 (0.27777606,0.62784004) | 32 (0.42513898,0.31819615)
14 (0.35895962,0.79871637) | 33  (0.45400131,0.15685177)
15 (0.32435900,0.85938638) | 34  (0.65994310,0.00410799)
16 (0.47984126,0.83326852) | 35  (0.66464078,0.16749728)
17 (0.56296986,0.79086119) | 36  (0.68593615,0.13424276)
18 (0.72558826,0.80428237) | 37  (0.51112837,0.11387512)
19 (0.81811023,0.51297057) | 38  (0.51131415,0.01931197)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 31 50.8%
3 22 36.1%
4 13.1%
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Figure B.18. Cockayne and Hewgill’s Test Problem 18 Steiner minimal tree and minimum
spanning tree.
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B.19 Test Problem 19

Minimum Spanning Tree 6.6043

Steiner Minimal Tree

Reduction

6.3689
3.57%

Given Points

O U W~

(0.09380000, 0.04090000)
(0.13280000, 0.14420000)
(0.09450000,0.23639999)
(0.08210000,0.27039999)
(0.07720000,0.27440000)
(0.01790000, 0.30669999)
(0.04610000,0.39969999)
(0.01470000, 0.48320001)
(0.00700000,0.58590001)
(0.00320000,0.69029999)
(0.00180000, 0.74680001)
(0.00400000,0.92119998)
(0.18340001, 0.85460001)
(0.19470000, 0.85759997)
(0.30109999,0.91339999)
(0.33050001,0.93049997)
(0.56169999,0.93559998)
(0.65789998,0.93019998)
(0.69559997,0.94290000)
(0.70760000,0.95130002)
(0.76239997,0.94190001)
(0.82849997,0.93879998)
(0.97240001,0.99070001)
(0.99150002, 0.97189999)
(0.97930002, 0.88120002)
(0.98390001, 0.74070001)
(0.98189998,0.56080002)
(0.97850001,0.53149998)
(0.96880001, 0.41520000)
(0.98750001,0.33120000)
(0.95510000,0.27010000)
(0.94919997,0.20660000)
(0.87910002,0.21070001)
(0.78259999,0.08580000)
(0.71670002, 0.05710000)
(0.57590002, 0.12460000)
(0.39739999,0.13090000)
(0.28979999,0.05740000)
(0.21709999,0.09880000)
(0.93390000,0.81290001)
(0.47400001,0.77170002)
(0.59660000,0.60329998)
(0.54479998,0.18979999)
(0.90590000,0.91939998)
(0.73470002, 0.53799999)
(0.34619999,0.16910000)
(0.54780000,0.91090000)
(0.53890002, 0.80440003)
(0.34140000,0.28140000)
(0.13259999,0.81610000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.60479999,0.26949999)
(0.64469999,0.40200001)
(0.35890001,0.19970000)
(0.81930000, 0.54509997)
(0.71829998,0.09530000)
(0.34119999,0.73159999)
(0.09840000, 0.72689998)
(0.85869998,0.39129999)
(0.61129999, 0.64760000)
(0.72039998,0.81779999)
(0.41659999,0.24480000)
(0.14620000,0.69180000)
(0.69169998,0.81370002)
(0.20130000,0.11020000)
(0.88029999, 0.48840001)
(0.42910001, 0.27300000)
(0.75239998,0.29980001)
(0.35859999,0.58719999)
(0.52620000,0.40779999)
(0.60509998, 0.47940001)
(0.18290000, 0.67199999)
(0.68250000,0.41530001)
(0.24230000,0.17640001)
(0.74959999,0.41080001)
(0.68260002, 0.89029998)
(0.76539999,0.53259999)
(0.48429999,0.35139999)
(0.37979999,0.28979999)
(0.90259999,0.47139999)
(0.30350000, 0.47029999)
(0.89020002, 0.29760000)
(0.07740000, 0.36739999)
(0.64190000, 0.67600000)
(0.81250000,0.38960001)
(0.75629997,0.13150001)
(0.95490003,0.39489999)
(0.61290002, 0.86140001)
(0.43290001,0.20819999)
(0.25940001,0.12500000)
(0.71710002, 0.46000001)
(0.73379999,0.31790000)
(0.78549999,0.41790000)
(0.42590001, 0.46540001)
(0.80089998, 0.32069999)
(0.73809999, 0.45400000)
(0.56070000,0.39489999)
(0.86350000, 0.67570001)
(0.91759998,0.31500000)
(0.37509999, 0.67460001)
(0.46970001,0.77209997)



Optimal Steiner Points

1 (0.10386238,0.81002718) | 19  (0.35278931,0.17122671)
2 (0.08251346,0.74458581) | 20  (0.26695853,0.15028504)
3 (0.01634834,0.73060387) | 21  (0.25154573,0.10435888)
4 (0.07170947,0.36662549) | 22 ( 0.49578086,0.39884841)
5 (0.04892113,0.31092206) | 23 (0.60647953,0.42284089)
6 (0.94726777,0.75229347) | 24  (0.72880834, 0.46319970)
7 (0.97384608,0.88122964) | 25  (0.74561489,0.52719307)
8  (0.95222694,0.91914874) | 26  (0.75539660,0.41962892)
9 (0.98309249,0.97194558) | 27  (0.81949860,0.38213617)
10 (0.57427162,0.86234498) | 28  (0.96782517,0.41524136)
11 (0.66695607,0.86222410) | 29  (0.93932074, 0.46984023)
12 (0.69375819,0.81739384) | 30  (0.94457579,0.30802780)
13 (0.67528170,0.92457044) | 31  (0.97142267,0.33535537)
14 (0.37412089,0.71367729) | 32 (0.93718630,0.22092542)
15 (0.35929260,0.50312763) | 33  (0.70929945,0.08658028)
16 (0.75282043,0.30240521) | 34  (0.75304180,0.10913378)
17 (0.41726065,0.26663393) | 35  (0.54386210,0.19214846)
18 (0.41379401,0.22272550) | 36  (0.14620182,0.11520651)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 36 57.1%
3 20 31.7%
4 5 7.9%
5 2 3.2%
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Figure B.19. Cockayne and Hewgill’s Test Problem 19 Steiner minimal tree and minimum

spanning tree.

220



B.20 Test Problem 20

Minimum Spanning Tree 6.9504

Steiner Minimal Tree

Reduction

6.7482
2.91%

Given Points

O U W~

(0.15400000, 0.01480000)
(0.05090000, 0.04940000)
(0.02120000,0.10790000)
(0.00260000,0.11400000)
(0.00000000,0.21310000)
(0.01760000,0.38310000)
(0.03610000, 0.41389999)
(0.10430000,0.52359998)
(0.08940000, 0.62180001)
(0.02060000, 0.84369999)
(0.00530000, 0.87610000)
(0.20990001,0.99229997)
(0.48400000, 0.87419999)
(0.56889999,0.89819998)
(0.69270003,0.96149999)
(0.70050001,0.95400000)
(0.92650002,0.93229997)
(0.99110001,0.93279999)
(0.94540000,0.80210000)
(0.91750002, 0.71060002)
(0.92830002, 0.60089999)
(0.99779999,0.42359999)
(0.97970003,0.38970000)
(0.96439999,0.18260001)
(0.93470001,0.01640000)
(0.82720000,0.02380000)
(0.81440002, 0.02350000)
(0.73799998,0.01760000)
(0.67699999,0.06330000)
(0.55980003,0.06290000)
(0.52410001, 0.04580000)
(0.46000001,0.05760000)
(0.45240000,0.05100000)
(0.39890000,0.05910000)
(0.32200000,0.04970000)
(0.26230001,0.02940000)
(0.08740000, 0.40070000)
(0.35270000,0.60089999)
(0.74680001,0.82510000)
(0.33600000,0.26730001)
(0.17620000,0.18220000)
(0.56510001,0.14229999)
(0.28900000, 0.47589999)
(0.41790000, 0.54490000)
(0.35139999,0.21799999)
(0.22990000, 0.21760000)
(0.48109999,0.29139999)
(0.82139999,0.41450000)
(0.89179999,0.39700001)
(0.80360001,0.29560000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.61680001,0.25600001)
(0.82130003,0.59539998)
(0.71980000, 0.67129999)
(0.85979998, 0.32269999)
(0.53090000, 0.63569999)
(0.59009999,0.61900002)
(0.33059999,0.28520000)
(0.46689999,0.38060001)
(0.36050001,0.29949999)
(0.53839999,0.26910001)
(0.67479998,0.61320001)
(0.66549999,0.11940000)
(0.20110001, 0.18490000)
(0.83530003,0.06730000)
(0.20960000,0.82080001)
(0.41710001, 0.40799999)
(0.19820000,0.90969998)
(0.66200000, 0.67519999)
(0.30100000, 0.49640000)
(0.24560000,0.71139997)
(0.70190001, 0.42660001)
(0.61699998,0.47229999)
(0.32650000, 0.77359998)
(0.57459998,0.17120001)
(0.51650000,0.12270000)
(0.11940000, 0.52859998)
(0.57470000,0.27180001)
(0.23610000,0.12270000)
(0.74910003,0.76480001)
(0.20890000, 0.45490000)
(0.81489998,0.52370000)
(0.21460000, 0.42060000)
(0.15030000, 0.82349998)
(0.39629999,0.75269997)
(0.69900000, 0.40230000)
(0.22450000, 0.67670000)
(0.78439999,0.24270000)
(0.29290000, 0.64459997)
(0.80800003, 0.16630000)
(0.54030001,0.33970001)
(0.77010000,0.26840001)
(0.91140002, 0.25450000)
(0.74379998,0.70220000)
(0.46410000, 0.45449999)
(0.14270000, 0.41540000)
(0.33809999, 0.75029999)
(0.49450001,0.77929997)
(0.59119999,0.57709998)
(0.27710000,0.34009999)
(0.07280000,0.21140000)



Optimal Steiner Points

1 (0.48277599,0.78833091) | 19  (0.77694100,0.26684192)
2 (0.49328816,0.86704540) | 20  (0.84296119,0.03990952)
3 (0.18760964,0.83824867) | 21  (0.53652430,0.11630607)
4 (0.32412088,0.76720899) | 22  ( 0.54728979,0.06689465)
5 (0.26250386,0.75680786) | 23  (0.57765269,0.15257776)
6 (0.24192151,0.68387622) | 24  (0.59597468,0.25045612)
7 (0.03817216,0.40850064) | 25  (0.23047601,0.05127376)
8  (0.95320553,0.91430098) | 26  (0.20692532,0.18442100)
9 (0.82579851,0.59174430) | 27  (0.02367943,0.19335267)
10 (0.90319705,0.62130040) | 28  (0.01043397,0.11687827)
11 (0.60038465,0.60817516) | 29  (0.51615328,0.33283207)
12 (0.66483438,0.62368900) | 30  (0.50762701,0.29894495)
13 (0.67577416,0.66070241) | 31  (0.44478402,0.41094941)
14 (0.85630095,0.30967984) | 32 (0.36386335,0.55934262)
15 (0.86491507,0.38431764) | 33  (0.21840273,0.44746011)
16 (0.70506281,0.42331409) | 34  (0.16415876,0.45411694)
17 (0.79215914,0.44487882) | 35  (0.11180294,0.53080273)
18 (0.97805810,0.39288542) | 36  (0.33513159,0.28290933)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 36 57.1%
3 19 30.2%
4 7 11.1%
5 1 1.6%
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Figure B.20. Cockayne and Hewgill’s Test Problem 20 Steiner minimal tree and minimum
spanning tree.
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B.21 Test Problem 21

Minimum Spanning Tree 6.5704

Steiner Minimal Tree

Reduction

6.3276
3.69%

Given Points

O U W~

(0.87050003,0.00010000)
(0.82309997,0.04710000)
(0.70880002, 0.02020000)
(0.67240000,0.00630000)
(0.63700002, 0.03480000)
(0.58450001,0.01920000)
(0.48600000,0.04230000)
(0.30649999,0.07170000)
(0.15880001,0.11590000)
(0.01190000, 0.15889999)
(0.00000000,0.21830000)
(0.05600000,0.50849998)
(0.12540001, 0.60650003)
(0.13480000, 0.76950002)
(0.08970000, 0.83550000)
(0.00840000,0.97850001)
(0.17340000,0.99680001)
(0.25000000,0.97790003)
(0.44409999,0.96039999)
(0.64150000,0.98930001)
(0.68919998,0.98089999)
(0.72030002, 0.94069999)
(0.77880001, 0.82720000)
(0.91310000,0.81389999)
(0.90640002, 0.65240002)
(0.95709997,0.42870000)
(0.98500001, 0.32460001)
(0.92760003,0.01100000)
(0.30669999,0.85619998)
(0.05310000,0.19599999)
(0.03460000,0.18290000)
(0.65820003,0.11630000)
(0.42469999,0.41890001)
(0.44060001, 0.57660002)
(0.18380000,0.90730000)
(0.62440002, 0.80599999)
(0.27649999,0.59990001)
(0.84189999,0.21600001)
(0.60030001,0.91360003)
(0.21740000, 0.43040001)
(0.51090002, 0.14410000)
(0.85219997,0.47350001)
(0.59140003, 0.52420002)
(0.18940000,0.57910001)
(0.36460000,0.65149999)
(0.30970001, 0.36570001)
(0.67449999,0.04030000)
(0.49890000, 0.06530000)
(0.27180001, 0.33890000)
(0.32679999,0.62230003)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.66869998,0.19100000)
(0.60259998, 0.44900000)
(0.21990000,0.83710003)
(0.77200001, 0.42280000)
(0.77600002, 0.49169999)
(0.35900000, 0.44800001)
(0.42340001, 0.85470003)
(0.63139999,0.69700003)
(0.46370000, 0.79699999)
(0.41729999,0.20530000)
(0.77460003,0.22640000)
(0.21940000,0.94360000)
(0.52300000, 0.75379997)
(0.84710002, 0.61080003)
(0.45649999,0.44119999)
(0.54240000, 0.82340002)
(0.67930001, 0.16630000)
(0.69370002, 0.50940001)
(0.66579998,0.78009999)
(0.83810002, 0.16710000)
(0.50720000, 0.83380002)
(0.76779997,0.33550000)
(0.78960001,0.56029999)
(0.08400000, 0.50900000)
(0.82059997,0.25340000)
(0.71660000,0.35659999)
(0.67869997,0.20750000)
(0.42510000,0.23350000)
(0.21089999,0.69910002)
(0.51209998, 0.70330000)
(0.55930001, 0.74739999)
(0.20960000,0.57580000)
(0.66570002,0.94120002)
(0.36759999,0.83170003)
(0.72000003,0.71569997)
(0.38150001, 0.32440001)
(0.54479998,0.53240001)
(0.21150000, 0.73989999)
(0.47940001,0.29060000)
(0.63040000,0.50000000)
(0.45580000, 0.47799999)
(0.21840000, 0.65829998)
(0.82620001, 0.14420000)
(0.22370000, 0.88840002)
(0.19110000, 0.74529999)
(0.19520000,0.36790001)
(0.65660000,0.93989998)
(0.70359999,0.18410000)
(0.22390001, 0.36300001)
(0.30770001,0.09500000)



Optimal Steiner Points

1 (0.50050420,0.05353669) | 19  (0.58622378,0.83878511)

2 (0.65961027,0.04848860) | 20  (0.68796140,0.73260111)

3 (0.68322301,0.02214162) | 21  (0.68656564,0.76914561)

4 (0.68394154,0.18012255) | 22 (0.53006101,0.74418128)

5 (0.67348439,0.19196799) | 23 (0.17833160,0.76856053)

6 (0.20979050,0.37389311) | 24  (0.23659997,0.86153418)

7 (0.05264945,0.19118457) | 25  (0.20622537,0.91055655)

8 (0.02365880,0.18227082) | 26  (0.22101210,0.96407473)

9 (0.30113667,0.08752259) | 27  (0.20782027,0.73736131)
10 (0.43442035,0.27624550) | 28  (0.13609335,0.58367103)
11 (0.35369825,0.36775303) | 29  (0.23648249,0.60730052)
12 (0.37902808,0.41676891) | 30  (0.36262310,0.63696080)
13 (0.27172738,0.33988684) | 31  (0.47727200,0.52562326)
14 (0.68331718,0.95523530) | 32 (0.61705816,0.49687198)
15 (0.68050253,0.97397083) | 33  (0.79278666,0.46798998)
16 (0.42006719,0.84380466) | 34  (0.76358968,0.51166928)
17 (0.51322085,0.82338446) | 35  (0.74751949,0.36113647)
18  (0.49801710,0.79701835) | 36  (0.79874671,0.25668991)
Number of Number of Percentage

Given Points full Steiner Trees
in full Steiner Tree
2 32 50.8%
3 26 41.3%
4 5 7.9%
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Figure B.21. Cockayne and Hewgill’s Test Problem 21 Steiner minimal tree and minimum
spanning tree.
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B.22 Test Problem 22

Minimum Spanning Tree 6.7205

Steiner Minimal Tree

Reduction

6.5233
2.93%

Given Points

O U W~

(0.82650000,0.00690000)
(0.72880000,0.01740000)
(0.69859999,0.01570000)
(0.57330000,0.03390000)
(0.52340001,0.02380000)
(0.33590001,0.01380000)
(0.21160001, 0.02260000)
(0.14579999,0.05880000)
(0.00000000,0.21340001)
(0.01970000,0.54130000)
(0.04490000, 0.61540002)
(0.01760000,0.69610000)
(0.03060000, 0.71359998)
(0.11040000, 0.82510000)
(0.16270000,0.91240001)
(0.33039999,0.89480001)
(0.39629999,0.92229998)
(0.39989999,0.93360001)
(0.53649998,0.92940003)
(0.77569997,0.94110000)
(0.85110003,0.94090003)
(0.93099999,0.96350002)
(0.89740002, 0.88290000)
(0.95029998,0.76810002)
(0.94889998,0.61619997)
(0.97530001, 0.40759999)
(0.96939999,0.31009999)
(0.97289997,0.06280000)
(0.96259999,0.04610000)
(0.50889999, 0.78259999)
(0.79820001,0.12340000)
(0.83870000,0.21520001)
(0.41389999,0.25080001)
(0.74860001,0.24940000)
(0.91000003,0.31410000)
(0.20080000, 0.54180002)
(0.86119998, 0.85549998)
(0.22200000,0.52240002)
(0.49770001,0.08140000)
(0.76480001, 0.42940000)
(0.11320000, 0.47299999)
(0.20670000,0.23690000)
(0.16869999,0.55010003)
(0.83209997,0.61430001)
(0.47330001, 0.47549999)
(0.41610000,0.91259998)
(0.47839999,0.50790000)
(0.52759999,0.66579998)
(0.13160001,0.23830000)
(0.48879999,0.08500000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.89099997,0.25569999)
(0.71259999,0.73869997)
(0.50790000,0.69970000)
(0.60420001, 0.57359999)
(0.66299999,0.13750000)
(0.52670002, 0.45359999)
(0.43560001,0.39910001)
(0.13820000, 0.35560000)
(0.70999998,0.17090000)
(0.91920000,0.10480000)
(0.86500001,0.11900000)
(0.14320000,0.16949999)
(0.74860001,0.04940000)
(0.09070000, 0.72140002)
(0.48890001,0.10770000)
(0.82639998,0.62699997)
(0.61339998,0.60659999)
(0.42390001, 0.57520002)
(0.56639999,0.08750000)
(0.52850002, 0.87080002)
(0.18990000, 0.78119999)
(0.37239999,0.35789999)
(0.43419999,0.55150002)
(0.50269997,0.44510001)
(0.31360000,0.85619998)
(0.26989999,0.19810000)
(0.16670001,0.42950001)
(0.50300002, 0.75059998)
(0.11280000,0.30039999)
(0.61330003,0.37560001)
(0.63590002, 0.36750001)
(0.54420000, 0.13869999)
(0.36809999, 0.49840000)
(0.13940001, 0.40120000)
(0.49950001, 0.75300002)
(0.23350000,0.25619999)
(0.33820000, 0.48199999)
(0.77039999,0.13920000)
(0.64700001,0.82819998)
(0.37090001,0.06350000)
(0.66949999,0.84050000)
(0.38949999,0.08330000)
(0.28220001, 0.63679999)
(0.51959997,0.24710000)
(0.41020000, 0.75269997)
(0.57260001,0.81840003)
(0.23810001, 0.50360000)
(0.55040002, 0.62540001)
(0.91180003, 0.44250000)
(0.16580001,0.14110000)



Optimal Steiner Points

1 (0.15670282,0.06349860) | 21  (0.43334818,0.53230667)

2 (0.22913000,0.24202374) | 22 (0.47465143,0.50595200)

3 (0.10698643,0.25731272) | 23 (0.43290782,0.57077456)

4 (0.15331289,0.21906909) | 24  (0.52962416,0.63560706)

5 (0.13133049,0.78417844) | 25  (0.60259628,0.59943509)

6 (0.11297057,0.51754069) | 26  (0.49639985,0.75771445)

7 (0.04520500,0.55620104) | 27  (0.54469860,0.82381272)

8 (0.14962688,0.42698854) | 28  (0.66215342,0.82805395)

9 (0.21369836,0.54057050) | 29  (0.88904500,0.92753857)
10 (0.39928046,0.92377889) | 30  (0.88605654,0.85792518)
11 (0.51542622,0.90105504) | 31  (0.83354706,0.62009031)
12 (0.96604568,0.06073669) | 32  (0.91945142,0.64467043)
13 (0.48261690,0.09344303) | 33  (0.52657056,0.45297679)
14 (0.53030998,0.04660446) | 34  (0.94776964,0.32806411)
15 (0.55581272,0.05255927) | 35  (0.96043867,0.40210551)
16 (0.57237875,0.11149763) | 36  (0.80874777,0.11028455)
17 (0.51272041,0.23963921) | 37  (0.78747636,0.05542334)
18 (0.42235488,0.25996923) | 38  (0.74976259,0.17226686)
19 (0.39327842,0.35320291) | 39  (0.77138865,0.21288612)
20 (0.48155969,0.44969139)

Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 31 51.7%
3 20 33.3%
4 8 13.3%
5 1 1.7%
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Figure B.22. Cockayne and Hewgill’s Test Problem 22 Steiner minimal tree and minimum

spanning tree.
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B.23 Test Problem 23

Minimum Spanning Tree 6.9269

Steiner Minimal Tree

Reduction

6.6861
3.48%

Given Points

O U W~

(0.85699999,0.01250000)
(0.81999999,0.01800000)
(0.81089997,0.02780000)
(0.74760002, 0.04300000)
(0.58289999,0.13730000)
(0.46070001,0.06840000)
(0.27039999,0.09660000)
(0.14630000,0.10800000)
(0.04940000,0.02110000)
(0.02990000, 0.17850000)
(0.00000000, 0.21349999)
(0.12170000,0.39420000)
(0.12989999,0.60540003)
(0.07660000,0.66360003)
(0.05320000, 0.72899997)
(0.05940000, 0.74070001)
(0.04210000,0.91339999)
(0.02400000,0.98430002)
(0.08600000,0.94999999)
(0.17490000,0.99930000)
(0.39610001,0.96899998)
(0.55690002,0.98760003)
(0.79229999,0.99269998)
(0.95469999,0.97479999)
(0.96100003,0.91970003)
(0.97119999,0.89029998)
(0.99059999,0.80019999)
(0.97759998,0.79600000)
(0.96929997,0.76310003)
(0.96109998,0.56190002)
(0.99959999,0.44440001)
(0.96149999,0.22300000)
(0.96069998,0.09640000)
(0.90619999,0.02180000)
(0.71950001,0.25900000)
(0.77780002, 0.82249999)
(0.70209998, 0.59230000)
(0.40220001, 0.65030003)
(0.78320003, 0.55739999)
(0.47080001,0.18500000)
(0.15290000,0.18930000)
(0.42559999,0.74269998)
(0.16570000,0.62900001)
(0.57779998,0.18340001)
(0.59299999,0.85909998)
(0.64440000, 0.67360002)
(0.62699997,0.22409999)
(0.63690001, 0.63319999)
(0.46980000,0.17309999)
(0.21699999,0.60100001)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.75569999,0.22700000)
(0.33160001, 0.49849999)
(0.60890001,0.26879999)
(0.32240000, 0.24270000)
(0.71910000, 0.62730002)
(0.65289998,0.31709999)
(0.78390002, 0.73710001)
(0.91880000,0.86180001)
(0.91270000,0.29620001)
(0.84329998,0.88000000)
(0.18960001,0.96230000)
(0.73449999,0.40079999)
(0.15660000,0.29409999)
(0.77200001, 0.44729999)
(0.13540000, 0.17860000)
(0.29690000,0.14480001)
(0.70069999,0.25569999)
(0.48310000, 0.13740000)
(0.40560001,0.34470001)
(0.13200000, 0.72189999)
(0.71050000,0.92670000)
(0.79920000,0.31790000)
(0.61250001, 0.49649999)
(0.80390000, 0.88770002)
(0.39340001, 0.77880001)
(0.58810002, 0.54600000)
(0.79689997,0.70620000)
(0.92919999,0.23989999)
(0.59680003,0.33950001)
(0.49059999,0.49910000)
(0.07820000,0.14810000)
(0.28639999,0.34570000)
(0.36919999,0.84079999)
(0.57870001,0.58789998)
(0.35900000, 0.41589999)
(0.19480000, 0.61659998)
(0.36440000,0.15490000)
(0.32679999,0.16710000)
(0.21870001,0.39410001)
(0.28279999,0.71130002)
(0.59230000,0.63150001)
(0.66750002, 0.64579999)
(0.69660002,0.49919999)
(0.86949998,0.02840000)
(0.13600001,0.92129999)
(0.63370001,0.78890002)
(0.88110000, 0.48080000)
(0.76349998,0.65149999)
(0.47389999,0.54229999)
(0.67960000, 0.67850000)



Optimal Steiner Points

1 (0.94466436,0.49841136) | 23 (0.21106468,0.61471730)

2 (0.10797107,0.14379032) | 24  (0.49459803,0.52583241)

3 (0.12078483,0.11169360) | 25  (0.57409942,0.55713904)

4 (0.36307463,0.36492014) | 26  (0.61491597,0.91329628)

5 (0.31526455,0.33197543) | 27 (0.76812565,0.93429995)

6 (0.21857710,0.39259201) | 28  (0.80900294,0.87927675)

7 (0.16246162,0.36601788) | 29  (0.70437527,0.62032145)

8 (0.33046186,0.16979086) | 30  (0.75338030,0.44504908)

9 (0.46761757,0.17558154) | 31  (0.71139091,0.50098801)
10 (0.48798916,0.14884263) | 32 (0.73286450,0.55131501)
11 (0.56710362,0.15836625) | 33  (0.77758300,0.31876537)
12 (0.98075336,0.80078375) | 34  (0.73931074,0.25820693)
13 (0.95114911,0.85988241) | 35  (0.91121536,0.29453829)
14 (0.05479221,0.94540823) | 36  (0.63288361,0.24178343)
15 (0.05745077,0.73048031) | 37  (0.62261093,0.31072283)
16 (0.08596595,0.70586795) | 38  (0.66104800,0.64904827)
17 (0.07799683,0.66408652) | 39  (0.66009462,0.66569859)
18 (0.13217431,0.61732417) | 40  (0.59520119,0.62771773)
19 (0.17972025,0.96623290) | 41  (0.96014875,0.22221202)
20 (0.13463885,0.93063796) | 42  (0.85697246,0.01256932)
21 (0.40906191,0.74431419) | 43  (0.90536505,0.02379720)
22 (0.37874979,0.70193499)

Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 28 50.0%
3 16 28.6%
4 10 17.9%
5 1 1.8%
6 1 1.8%
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Figure B.23. Cockayne and Hewgill’s Test Problem 23 Steiner minimal tree and minimum
spanning tree.
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B.24 Test Problem 24

Minimum Spanning Tree 6.6309

Steiner Minimal Tree

Reduction

6.4394
2.89%

Given Points

O U W~

(0.80409998, 0.00260000)
(0.78149998,0.02280000)
(0.51169997,0.06600000)
(0.44839999,0.06890000)
(0.41769999,0.02620000)
(0.33090001,0.02580000)
(0.07220000,0.06690000)
(0.05980000,0.09790000)
(0.00000000, 0.21840000)
(0.06210000,0.32339999)
(0.05440000, 0.35550001)
(0.10360000, 0.46689999)
(0.00450000,0.69440001)
(0.02020000,0.90850002)
(0.14860000, 0.85740000)
(0.22460000, 0.84660000)
(0.30260000,0.83490002)
(0.34999999,0.84179997)
(0.36600000,0.87639999)
(0.39910001,0.96689999)
(0.71020001, 0.87879997)
(0.80409998,0.93120003)
(0.83099997,0.96810001)
(0.94180000,0.98290002)
(0.99110001, 0.73600000)
(0.97229999,0.57529998)
(0.95599997,0.45390001)
(0.95169997,0.42320001)
(0.97000003, 0.38540000)
(0.91960001,0.31400001)
(0.95300001,0.20479999)
(0.95260000,0.18220000)
(0.88709998,0.00750000)
(0.84320003,0.02050000)
(0.83010000,0.01410000)
(0.51760000,0.76169997)
(0.50239998,0.52910000)
(0.79589999,0.23400000)
(0.31600001, 0.57239997)
(0.46180001,0.81699997)
(0.81410003,0.60039997)
(0.43259999,0.15770000)
(0.80650002, 0.25700000)
(0.53390002, 0.72229999)
(0.80540001, 0.77649999)
(0.58319998, 0.24879999)
(0.36300001,0.43610001)
(0.87339997,0.14170000)
(0.77130002,0.31920001)
(0.91420001, 0.23019999)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.30550000, 0.42469999)
(0.75900000, 0.71120000)
(0.62910002, 0.80549997)
(0.46410000, 0.84439999)
(0.05540000, 0.68210000)
(0.47060001,0.84380001)
(0.31690001,0.69919997)
(0.74169999,0.31209999)
(0.40640000,0.79259998)
(0.60189998,0.14530000)
(0.82419997,0.88749999)
(0.89029998,0.79369998)
(0.60390002, 0.15590000)
(0.93460000,0.18870001)
(0.46959999,0.38820001)
(0.07690000,0.78310001)
(0.27640000,0.38540000)
(0.40799999,0.22950000)
(0.85769999,0.73280001)
(0.60219997,0.30570000)
(0.58700001,0.22579999)
(0.33939999,0.54900002)
(0.59770000,0.81300002)
(0.73689997,0.35380000)
(0.25340000, 0.66109997)
(0.38499999,0.56169999)
(0.84939998, 0.44830000)
(0.75120002, 0.63309997)
(0.51580000,0.29420000)
(0.83829999,0.81339997)
(0.07020000,0.24390000)
(0.85650003, 0.47839999)
(0.48789999,0.21640000)
(0.21300000, 0.43910000)
(0.47799999,0.62830001)
(0.55909997,0.35800001)
(0.88239998, 0.46419999)
(0.21580000, 0.24730000)
(0.70220000,0.12300000)
(0.42080000, 0.84890002)
(0.67189997,0.47150001)
(0.79990000, 0.45649999)
(0.86979997,0.20330000)
(0.20680000,0.22030000)
(0.21580000, 0.25860000)
(0.37439999,0.39340001)
(0.51249999,0.29730001)
(0.25299999,0.64719999)
(0.38699999,0.28240001)
(0.88690001, 0.48730001)



Optimal Steiner Points

1 (0.20274223,0.23281811) | 21 (0.80646080,0.24006471)

2 (0.08319744,0.25831497) | 22 (0.91099554,0.20706666)

3 (0.03310361,0.20862892) | 23  (0.88075238,0.19477789)

4 (0.11424753,0.44540218) | 24  (0.85998261,0.02772284)

5 (0.27564025,0.40595695) | 25  (0.80436283,0.00424915)

6 (0.04217515,0.69934708) | 26  (0.96940160,0.38545102)

7 (0.09101151,0.84064543) | 27  (0.93118691,0.49050128)

8  (0.51896501,0.77664840) | 28  (0.87779951,0.47308636)

9 (0.43041074,0.83060873) | 29  (0.85879910,0.47395912)
10 (0.45516783,0.82962245) | 30  (0.84625727,0.45437059)
11 (0.46428302,0.84405166) | 31  (0.94668746,0.19012520)
12 (0.36995983,0.86208427) | 32 (0.60570794,0.14909068)
13 (0.79967046,0.90906012) | 33  (0.51524675,0.29409635)
14 (0.85997307,0.77816010) | 34  (0.44109711,0.20049466)
15 (0.83726919,0.79283029) | 35 (0.45717213,0.07837685)
16 (0.75664294,0.63601899) | 36  (0.34947962,0.54272789)
17 (0.52111006,0.34443635) | 37  (0.34629980,0.44649193)
18 (0.67607731,0.38510150) | 38  (0.37874621,0.39918932)
19 (0.60070658,0.33658779) | 39  (0.46054259,0.57677257)
20 (0.74963576,0.32225126)

Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 30 50.0%
3 23 38.3%
4 5 8.3%
5 2 3.3%
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Figure B.24. Cockayne and Hewgill’s Test Problem 24 Steiner minimal tree and minimum

spanning tree.
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B.25 Test Problem 25

Minimum Spanning Tree 6.7339

Steiner Minimal Tree

Reduction

6.5265
3.08%

Given Points

O U W~

(0.34729999,0.00550000)
(0.23040000,0.09420000)
(0.20469999,0.09090000)
(0.14120001, 0.07110000)
(0.10880000, 0.04450000)
(0.05980000,0.01850000)
(0.01790000,0.15920000)
(0.00000000,0.21380000)
(0.01070000,0.41960001)
(0.04410000, 0.69430000)
(0.03730000, 0.70670003)
(0.03250000,0.71280003)
(0.01950000,0.84219998)
(0.12180000,0.97070003)
(0.12080000,0.99910003)
(0.37970001,0.95560002)
(0.59200001,0.98610002)
(0.64039999,0.99680001)
(0.71560001,0.98299998)
(0.76679999,0.97630000)
(0.87010002, 0.93769997)
(0.93409997,0.84719998)
(0.92930001, 0.75849998)
(0.97140002, 0.62550002)
(0.92390001, 0.26600000)
(0.98979998,0.17000000)
(0.90950000,0.07570000)
(0.89459997,0.04010000)
(0.77579999,0.08440000)
(0.68030000, 0.05290000)
(0.62980002, 0.02620000)
(0.53359997,0.06920000)
(0.39520001,0.55110002)
(0.68460000,0.38949999)
(0.29980001,0.19069999)
(0.73350000,0.69660002)
(0.19790000, 0.40869999)
(0.20130000,0.10960000)
(0.59810001, 0.65759999)
(0.21670000,0.23510000)
(0.90820003,0.60159999)
(0.06160000,0.15480000)
(0.67979997,0.15480000)
(0.51980001, 0.86220002)
(0.15400000,0.38180000)
(0.43920001, 0.65270001)
(0.44440001,0.31650001)
(0.16050000,0.30190000)
(0.58260000,0.11800000)
(0.12790000, 0.77509999)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.42890000,0.29760000)
(0.58630002, 0.37259999)
(0.53259999,0.11380000)
(0.82499999,0.33090001)
(0.66990000, 0.46640000)
(0.63900000, 0.42010000)
(0.36840001,0.52010000)
(0.82980001, 0.76840001)
(0.26550001,0.47510001)
(0.21330000,0.52310002)
(0.57969999,0.52069998)
(0.91060001,0.21060000)
(0.83039999,0.11600000)
(0.13530000, 0.45640001)
(0.08540000,0.85170001)
(0.14870000,0.22770000)
(0.65350002,0.91930002)
(0.10680000, 0.49239999)
(0.71630001,0.69980001)
(0.84700000,0.80290002)
(0.17870000, 0.70940000)
(0.49370000, 0.12760000)
(0.27270001,0.58990002)
(0.86989999,0.82569999)
(0.18030000, 0.72250003)
(0.02770000,0.22400001)
(0.75739998, 0.74699998)
(0.52219999,0.68129998)
(0.80199999,0.69450003)
(0.45950001,0.28780001)
(0.81080002, 0.38229999)
(0.11460000,0.25090000)
(0.61470002, 0.73540002)
(0.57380003,0.77740002)
(0.35940000,0.38000000)
(0.23610000,0.11050000)
(0.62430000,0.25960001)
(0.14480001, 0.46340001)
(0.69029999, 0.43279999)
(0.11280000, 0.78170002)
(0.81150001, 0.67650002)
(0.85570002, 0.13220000)
(0.89389998,0.26159999)
(0.59350002, 0.23830000)
(0.40650001,0.21560000)
(0.42739999,0.59780002)
(0.18359999,0.90609998)
(0.26620001,0.83880001)
(0.74710000,0.71810001)
(0.62010002, 0.50680000)



Optimal Steiner Points

1 (0.07195942,0.83462816) | 22 (0.01323256,0.21001352)

2 (0.09190980,0.78471529) | 23  (0.02436871,0.16545367)

3 (0.03500639,0.71243823) | 24  (0.14714077,0.23809958)

4 (0.14074934,0.91467291) | 25  (0.16762093,0.25440601)

5 (0.26285210,0.87077653) | 26  (0.90751314,0.25495481)

6 (0.66712749,0.97004169) | 27  (0.88711274,0.12836054)

7 (0.89723802,0.82385200) | 28  (0.92446512,0.17798556)

8 (0.91382748,0.84857035) | 29  (0.68464303,0.43338802)

9 (0.73279274,0.69816387) | 30  (0.67248875,0.41661885)
10 (0.76153737,0.73380679) | 31  (0.59200341,0.37119284)
11 (0.79179227,0.72705036) | 32 (0.60325956,0.23622674)
12 (0.62404698,0.71247178) | 33 (0.62601304,0.16622630)
13 (0.59236747,0.67166191) | 34  (0.70816332,0.09139054)
14 (0.18186849,0.41224524) | 35  (0.54177243,0.10532154)
15 (0.16728023,0.45842862) | 36  (0.41677481,0.21751334)
16 (0.21668090,0.51239693) | 37  (0.44033733,0.28423160)
17 (0.25650030,0.50359112) | 38  (0.43230900,0.31273296)
18 (0.28881258,0.53889102) | 39  (0.26142073,0.18335445)
19 (0.36799562,0.52138025) | 40  (0.20840517,0.09734409)
20  (0.13530554,0.45796323) | 41  (0.22855642,0.09738006)
21 (0.10673677,0.47459298)

Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 35 60.3%
3 10 17.2%
4 11 19.0%
5 1 1.7%
6 0 0.0%
7 0 0.0%
8 1 1.7%
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Figure B.25. Cockayne and Hewgill’s Test Problem 25 Steiner minimal tree and minimum
spanning tree.
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B.26 Test Problem 26

Minimum Spanning Tree 6.4513

Steiner Minimal Tree

Reduction

6.2851
2.58%

Given Points

O U W~

(0.03370000,0.00280000)
(0.06170000,0.08680000)
(0.06470000,0.13590001)
(0.03610000, 0.24349999)
(0.01680000,0.32720000)
(0.03390000, 0.43689999)
(0.12000000, 0.61430001)
(0.21230000,0.86949998)
(0.19640000,0.95150000)
(0.18880001,0.99550003)
(0.32130000,0.95279998)
(0.37200001,0.99280000)
(0.42230001,0.91289997)
(0.58029997,0.86049998)
(0.68610001,0.88110000)
(0.84890002, 0.83069998)
(0.98089999,0.94679999)
(0.90939999,0.77939999)
(0.90979999,0.56290001)
(0.96280003,0.51779997)
(0.99409997, 0.44659999)
(0.99250001,0.33770001)
(0.92900002, 0.22679999)
(0.95279998,0.12580000)
(0.98900002, 0.10700000)
(0.95679998,0.08220000)
(0.91799998,0.02750000)
(0.87500000,0.02950000)
(0.74500000,0.03930000)
(0.73619998,0.02950000)
(0.60369998,0.04130000)
(0.59960002, 0.04560000)
(0.53850001,0.04250000)
(0.44330001,0.07720000)
(0.35499999,0.15500000)
(0.32690001,0.14970000)
(0.16140001,0.07990000)
(0.07490000,0.07590000)
(0.64590001,0.68129998)
(0.91600001,0.30960000)
(0.80059999, 0.64859998)
(0.56989998,0.28680000)
(0.48710001, 0.43189999)
(0.56680000,0.39160001)
(0.82330000, 0.63129997)
(0.71600002, 0.79799998)
(0.49660000,0.27039999)
(0.83770001,0.56430000)
(0.59399998,0.05710000)
(0.73299998, 0.45150000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.23549999,0.25560001)
(0.70340002, 0.81470001)
(0.24730000,0.55129999)
(0.39240000, 0.86260003)
(0.29830000, 0.63309997)
(0.53839999,0.13720000)
(0.72289997,0.48089999)
(0.78070003,0.54030001)
(0.44589999,0.53740001)
(0.83480000, 0.68449998)
(0.95090002, 0.44000000)
(0.69830000,0.83990002)
(0.68409997,0.41729999)
(0.18140000, 0.47470000)
(0.79850000,0.41760001)
(0.04670000,0.32179999)
(0.88650000, 0.77399999)
(0.19960000, 0.38580000)
(0.41490000,0.14790000)
(0.20670000,0.53219998)
(0.42379999,0.59950000)
(0.49980000,0.56690001)
(0.73549998,0.10690000)
(0.29969999, 0.41220000)
(0.62220001,0.69599998)
(0.25070000, 0.76319999)
(0.65399998,0.24810000)
(0.27000001,0.17930000)
(0.93210000,0.50269997)
(0.49300000,0.31020001)
(0.27410001,0.23270001)
(0.52219999, 0.44610000)
(0.30620000,0.28189999)
(0.50720000, 0.76560003)
(0.82480001, 0.08520000)
(0.66740000,0.10040000)
(0.32409999,0.50349998)
(0.39179999,0.40320000)
(0.35249999,0.47799999)
(0.69489998,0.73790002)
(0.45249999,0.42789999)
(0.52209997,0.35730001)
(0.06690000,0.36669999)
(0.69199997,0.85790002)
(0.60900003,0.22530000)
(0.26120001,0.26080000)
(0.56919998,0.12989999)
(0.59399998, 0.82789999)
(0.44150001,0.81760001)
(0.40160000, 0.42330000)



Optimal Steiner Points

1 (0.72761053,0.45348820) | 22 (0.27353796,0.18129140)

2 (0.22531360,0.92416716) | 23  (0.45196652,0.11223966)

3 (0.39794087,0.86390465) | 24  (0.56381893,0.13833103)

4 (0.41195345,0.91046357) | 25  ( 0.60493529,0.08849120)

5 (0.36291030,0.96259785) | 26  (0.59274685,0.05338743)

6 (0.68254209,0.86712414) | 27  (0.61339867,0.23917001)

7 (0.59792358,0.84331197) | 28  (0.49411857,0.31018621)

8  (0.50731403,0.77884257) | 29  (0.50680226,0.28757814)

9 (0.81357980,0.64848512) | 30  (0.39197758,0.41789842)
10 (0.69479972,0.71019530) | 31  (0.35206005,0.44159243)
11 (0.64590323,0.68220025) | 32 (0.46543807,0.43924969)
12 (0.89351541,0.78227955) | 33  (0.54038048,0.39092314)
13 (0.87804931,0.82541561) | 34  (0.51486635,0.43261138)
14 (0.82649142,0.57001573) | 35  (0.45493606,0.56025368)
15 (0.93936116,0.51672447) | 36  (0.27456123,0.55738926)
16 (0.92254305,0.30649760) | 37  (0.19838072,0.53027773)
17 (0.97780663,0.34466693) | 38  (0.16627660,0.41949940)
18 (0.97084910,0.43054113) | 39  (0.07480076,0.39553776)
19 (0.96739483,0.10505921) | 40  (0.03632101,0.31584987)
20 (0.75974786,0.07595895) | 41  (0.06928910,0.07551537)
21 (0.27146173,0.25631157)

Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 28 48.3%
3 21 36.2%
4 7 12.1%
5 2 3.4%
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Figure B.26. Cockayne and Hewgill’s Test Problem 26 Steiner minimal tree and minimum
spanning tree.
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B.27 Test Problem 27

Minimum Spanning Tree 6.8434

Steiner Minimal Tree

Reduction

6.6462
2.88%

Given Points

O U W~

(0.56760001,0.03110000)
(0.40770000,0.05380000)
(0.26660001,0.04150000)
(0.17030001,0.03720000)
(0.15350001,0.04250000)
(0.02820000,0.03320000)
(0.00000000,0.21410000)
(0.04810000, 0.34509999)
(0.04600000,0.49720001)
(0.02710000,0.55470002)
(0.02780000,0.59640002)
(0.06860000,0.61610001)
(0.08990000,0.66900003)
(0.08160000,0.69520003)
(0.01560000,0.92580003)
(0.29980001,0.99849999)
(0.41710001,0.97049999)
(0.85070002, 0.91339999)
(0.98199999,0.96689999)
(0.92430001,0.89270002)
(0.94040000, 0.78839999)
(0.95359999,0.75760001)
(0.91439998, 0.66630000)
(0.92720002, 0.63029999)
(0.94430000, 0.45350000)
(0.98369998,0.32519999)
(0.97350001,0.18910000)
(0.94040000,0.09090000)
(0.92240000,0.08080000)
(0.84969997,0.08150000)
(0.75379997,0.03360000)
(0.56260002, 0.45300001)
(0.91469997,0.21799999)
(0.88110000, 0.16540000)
(0.35159999,0.81519997)
(0.58179998,0.13190000)
(0.40430000, 0.31529999)
(0.59539998,0.31240001)
(0.51050001, 0.15660000)
(0.25520000, 0.48609999)
(0.23320000, 0.13440000)
(0.44170001,0.40979999)
(0.38299999,0.52399999)
(0.23310000, 0.42800000)
(0.15340000, 0.31680000)
(0.85879999, 0.88720000)
(0.72149998,0.09910000)
(0.93660003,0.34549999)
(0.26789999,0.90740001)
(0.40210000, 0.77480000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.32020000, 0.44090000)
(0.37439999,0.40099999)
(0.10070000,0.27340001)
(0.84050000,0.52139997)
(0.14730000, 0.23670000)
(0.90020001, 0.33379999)
(0.67040002, 0.11090000)
(0.47749999,0.53680003)
(0.88209999,0.21040000)
(0.18330000,0.10130000)
(0.69220001, 0.77350003)
(0.41490000,0.87120003)
(0.65859997,0.62790000)
(0.85380000, 0.52370000)
(0.33590001, 0.81250000)
(0.31540000, 0.66850001)
(0.32600001, 0.72430003)
(0.51169997,0.41170001)
(0.36460000,0.13869999)
(0.55800003, 0.44670001)
(0.41740000,0.80409998)
(0.31389999,0.25470001)
(0.62059999,0.11210000)
(0.07450000,0.17739999)
(0.12300000, 0.77929997)
(0.16410001,0.05890000)
(0.91930002, 0.40750000)
(0.17850000,0.09380000)
(0.73040003,0.17340000)
(0.25029999,0.53850001)
(0.70819998, 0.56559998)
(0.79350001,0.36939999)
(0.71230000, 0.75250000)
(0.93559998,0.09470000)
(0.43000001, 0.70959997)
(0.32949999,0.51249999)
(0.28900000,0.17110001)
(0.65120000,0.80629998)
(0.61350000,0.59350002)
(0.21720000,0.20080000)
(0.62819999,0.52370000)
(0.10350000, 0.14780000)
(0.79460001,0.59810001)
(0.66970003,0.80640000)
(0.70480001, 0.44800001)
(0.79820001,0.20980000)
(0.51490003,0.57950002)
(0.22540000, 0.88720000)
(0.38190001, 0.82050002)
(0.71310002, 0.43650001)



Optimal Steiner Points

1 (0.02900284,0.59562898) | 20  (0.93567187,0.09331275)
2 (0.12947047,0.84392208) | 21  (0.92454535,0.35104257)
3 (0.32796377,0.72246194) | 22 (0.89011675,0.32646346)
4 (0.39462808,0.74270791) | 23  (0.90094590,0.22411239)
5 (0.39674693,0.82295287) | 24  (0.87014025,0.19641618)
6 (0.41284075,0.80334675) | 25  (0.62839180,0.49150938)
7 (0.39156169,0.94185823) | 26  (0.65333343,0.56618309)
8  (0.31313396,0.95813078) | 27  (0.63809395,0.59323865)
9 (0.30699310,0.17939848) | 28  (0.70893091,0.75203073)
10 (0.24542028,0.16486454) | 29  (0.84738117,0.52649134)
11 (0.22023261,0.10521173) | 30  (0.84155113,0.57768244)
12 (0.16131663,0.04512681) | 31  (0.91804653,0.63428050)
13 (0.10965808,0.24502891) | 32  (0.53787422,0.41173458)
14 (0.06763756,0.19913402) | 33  (0.40246186,0.38576010)
15 (0.10484865,0.29852694) | 34  (0.30388790,0.47188836)
16 (0.91066372,0.87728858) | 35  (0.26181546,0.47353253)
17 (0.85928243,0.88774520) | 36  (0.70779985,0.11640321)
18 (0.88428390,0.10392905) | 37  (0.59943014,0.10919104)
19 (0.92220432,0.08457848)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 37 59.7%
3 15 24.2%
4 8 12.9%
5 2 3.2%
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Figure B.27. Cockayne and Hewgill’s Test Problem 27 Steiner minimal tree and minimum
spanning tree.
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B.28 Test Problem 28

Minimum Spanning Tree 6.6698

Steiner Minimal Tree

Reduction

6.4592
3.16%

Given Points

O U W~

(0.46020001,0.01540000)
(0.32339999,0.04880000)
(0.20670000,0.04040000)
(0.17030001,0.01830000)
(0.15290000,0.04910000)
(0.07320000,0.19400001)
(0.00000000,0.21420000)
(0.06990000,0.29789999)
(0.06130000, 0.46219999)
(0.00560000,0.63639998)
(0.00970000, 0.66159999)
(0.04680000,0.89340001)
(0.22690000,0.97390002)
(0.22880000,0.96719998)
(0.26620001,0.94379997)
(0.36939999,0.97380000)
(0.43840000,0.91320002)
(0.50900000, 0.88239998)
(0.56900001,0.92519999)
(0.67430001,0.95850003)
(0.68739998,0.95490003)
(0.73479998,0.92430001)
(0.77319998,0.92940003)
(0.89429998,0.91710001)
(0.94389999,0.92019999)
(0.96249998,0.92079997)
(0.98439997,0.67449999)
(0.99690002, 0.65429997)
(0.97280002, 0.61040002)
(0.96429998,0.39770001)
(0.93889999,0.22090000)
(0.96410000,0.08590000)
(0.82380003,0.03740000)
(0.66350001,0.08120000)
(0.64120001,0.06010000)
(0.53090000,0.01690000)
(0.74449998,0.54250002)
(0.33989999,0.21470000)
(0.32859999,0.36809999)
(0.42150000,0.41350001)
(0.45500001, 0.37509999)
(0.78570002, 0.45570001)
(0.26179999,0.21390000)
(0.45420000,0.26320001)
(0.64780003,0.13320000)
(0.23480000,0.80390000)
(0.61500001, 0.66200000)
(0.20400000, 0.44610000)
(0.38690001,0.17659999)
(0.62059999,0.09310000)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.07970000,0.60780001)
(0.71280003, 0.76429999)
(0.37830001, 0.44270000)
(0.10100000, 0.28839999)
(0.53469998,0.04940000)
(0.33109999,0.53710002)
(0.32720000, 0.76959997)
(0.45750001, 0.61960000)
(0.58160001,0.34509999)
(0.97259998,0.67309999)
(0.29429999,0.45249999)
(0.66170001,0.42390001)
(0.47040001,0.42770001)
(0.82499999,0.35659999)
(0.61110002, 0.39160001)
(0.57910001,0.11810000)
(0.35609999, 0.44909999)
(0.69730002,0.90030003)
(0.16320001, 0.24220000)
(0.25470001,0.36390001)
(0.88810003,0.11380000)
(0.22730000, 0.45690000)
(0.70090002, 0.70730001)
(0.35120001,0.16940001)
(0.24670000,0.56230003)
(0.27489999,0.83840001)
(0.67530000,0.77410001)
(0.31619999,0.47799999)
(0.82910001, 0.11830000)
(0.85350001,0.12080000)
(0.22690000, 0.86710000)
(0.39879999,0.63370001)
(0.95359999,0.65390003)
(0.57709998, 0.65410000)
(0.84320003,0.27689999)
(0.49610001, 0.75370002)
(0.70150000,0.91670001)
(0.71340001, 0.64850003)
(0.34889999,0.36120000)
(0.67970002,0.94739997)
(0.69389999,0.22420000)
(0.87599999,0.36379999)
(0.83999997,0.52230000)
(0.62620002, 0.32900000)
(0.41060001,0.56370002)
(0.70690000, 0.54689997)
(0.34770000, 0.42429999)
(0.10200000, 0.55040002)
(0.72310001, 0.63639998)
(0.57020003,0.60759997)



Optimal Steiner Points

1 (0.98404181,0.67378414) | 20  (0.68079853,0.95271415)
2 (0.95905811,0.61590350) | 21  (0.70246947,0.91921687)
3 (0.24211943,0.94390219) | 22 (0.68419850,0.77804023)
4 (0.21226580,0.89269745) | 23  (0.70671958,0.76160765)
5 (0.24928233,0.83587366) | 24  (0.68985987,0.67598355)
6 (0.01137536,0.64037108) | 25  (0.56425065,0.64354640)
7 (0.33742830,0.37115046) | 26  (0.51101917,0.66355735)
8  (0.11401966,0.25141132) | 27  (0.72231287,0.55559957)
9 (0.07075440,0.20094790) | 28  (0.79296184,0.50384462)
10 (0.17307566,0.03020177) | 29  (0.84377337,0.34555107)
11 (0.31321326,0.06062229) | 30  (0.91335475,0.12441655)
12 (0.35623822,0.17753986) | 31  (0.92479283,0.21496958)
13 (0.33795989,0.21156555) | 32  (0.44752282,0.40586987)
14 (0.83510411,0.11353344) | 33  (0.48517638,0.33422327)
15 (0.34815425,0.44474486) | 34  (0.60198128,0.35141495)
16 (0.31589642,0.46433699) | 35  (0.63389945,0.09539954)
17 (0.31436288,0.52657402) | 36  (0.64797193,0.07851509)
18 (0.42272532,0.61005896) | 37  (0.58401006,0.10174334)
19 (0.10636288,0.49299291) | 38  (0.52479249,0.02467035)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 31 50.8%
3 22 36.1%
4 13.1%
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Figure B.28. Cockayne and Hewgill’s Test Problem 28 Steiner minimal tree and minimum

spanning tree.
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B.29 Test Problem 29

Minimum Spanning Tree 7.1392

Steiner Minimal Tree

Reduction

6.8628
3.87%

Given Points

O U W~

(0.12520000,0.00070000)
(0.01440000, 0.06320000)
(0.00290000,0.18130000)
(0.00000000,0.21430001)
(0.01330000,0.22080000)
(0.01870000,0.24089999)
(0.05800000, 0.36059999)
(0.02230000,0.42230001)
(0.04120000, 0.78920001)
(0.06730000,0.84909999)
(0.01660000,0.92290002)
(0.18460000,0.93550003)
(0.28240001,0.89639997)
(0.45339999,0.97890002)
(0.62339997,0.94330001)
(0.65770000,0.98030001)
(0.75669998,0.93849999)
(0.83450001,0.99010003)
(0.98409998, 0.83490002)
(0.99809998, 0.68250000)
(0.96869999,0.59230000)
(0.94129997,0.32760000)
(0.99280000,0.21619999)
(0.95959997,0.07940000)
(0.80419999,0.07820000)
(0.75580001,0.00220000)
(0.64349997,0.05200000)
(0.46430001,0.08040000)
(0.27480000,0.00800000)
(0.70760000, 0.46520001)
(0.36700001,0.77969998)
(0.22700000, 0.46239999)
(0.10080000, 0.24439999)
(0.22950000, 0.41659999)
(0.42879999,0.67490000)
(0.74260002, 0.41670001)
(0.60210001, 0.37059999)
(0.40480000,0.11400000)
(0.20350000, 0.66490000)
(0.35360000,0.68550003)
(0.32690001,0.39530000)
(0.91930002, 0.25680000)
(0.47650000,0.68599999)
(0.86240000,0.31709999)
(0.79369998,0.50830001)
(0.64270002, 0.59670001)
(0.25549999,0.76709998)
(0.95310003,0.69679999)
(0.67629999,0.77450001)
(0.21150000,0.58410001)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.16249999,0.42940000)
(0.66890001, 0.43309999)
(0.64359999,0.33610001)
(0.27500001, 0.63129997)
(0.90579998, 0.62739998)
(0.51590002, 0.89099997)
(0.28500000,0.60720003)
(0.44760001,0.40750000)
(0.55460000, 0.77850002)
(0.83069998,0.21510001)
(0.62519997,0.65149999)
(0.10400000, 0.73280001)
(0.12800001, 0.52670002)
(0.76109999, 0.41450000)
(0.80049998,0.22100000)
(0.88810003,0.36700001)
(0.64389998, 0.42559999)
(0.96730000, 0.66560000)
(0.48379999,0.31299999)
(0.72799999,0.11590000)
(0.58380002, 0.81510001)
(0.52499998, 0.52440000)
(0.30199999,0.55190003)
(0.90710002, 0.74820000)
(0.22220001, 0.16869999)
(0.65840000,0.09260000)
(0.57190001, 0.77300000)
(0.83480000, 0.50629997)
(0.65869999,0.65230000)
(0.44499999,0.50569999)
(0.61379999,0.12270000)
(0.27390000, 0.17160000)
(0.34189999, 0.44679999)
(0.62400001,0.30870000)
(0.32269999,0.11870000)
(0.81919998,0.47040001)
(0.76650000, 0.66570002)
(0.68870002, 0.74339998)
(0.44670001, 0.48040000)
(0.82099998,0.16329999)
(0.46030000,0.21070001)
(0.41650000,0.24250001)
(0.38620001,0.10960000)
(0.56660002,0.29879999)
(0.05570000,0.12690000)
(0.44549999,0.35130000)
(0.37709999,0.18310000)
(0.85850000, 0.60579997)
(0.67070001,0.35460001)
(0.80610001, 0.36620000)



Optimal Steiner Points

1 (0.65104330,0.09009562) | 23  (0.31723744,0.11784685)

2 (0.78721708,0.11227165) | 24  (0.36419883,0.13072658)

3 (0.82083464,0.20935693) | 25  (0.42079303,0.22314978)

4 (0.87810528,0.26619893) | 26  ( 0.46398282,0.31421509)

5 (0.97835988,0.21040943) | 27  (0.04958661,0.79113722)

6 (0.86147225,0.33750233) | 28  (0.06038254,0.26639175)

7 (0.88865089,0.35488632) | 29  (0.06248225,0.39021587)

8  (0.92733103,0.74717259) | 30  (0.16391233,0.52199656)

9 (0.97098255,0.67682016) | 31  (0.18834332,0.46312642)
10 (0.94684547,0.62830216) | 32 (0.22398014, 0.45845902)
11 (0.64192003,0.64222491) | 33  (0.23718791,0.42663297)
12 (0.65894455,0.97346455) | 34  (0.31830588,0.41600886)
13 (0.56408489,0.87982345) | 35  (0.42613113,0.44576424)
14 (0.57141495,0.77459419) | 36  (0.45094270,0.50034779)
15 (0.59005785,0.79453254) | 37  (0.23081714, 0.62688792)
16 (0.69970238,0.68831575) | 38  (0.28183588,0.62859517)
17 (0.84828967,0.60168499) | 39  (0.37010112,0.69845492)
18  (0.81808001,0.49563107) | 40  (0.35934633,0.77369118)
19 (0.78210711,0.41338220) | 41  (0.29618114,0.79903841)
20 (0.70480204,0.44705135) | 42 (0.28227732,0.89630365)
21 (0.64847296,0.35027033) | 43  (0.00163565,0.21343954)
22 (0.62662953,0.37537819) | 44  (0.04440776,0.07304198)
Number of Number of Percentage

Given Points full Steiner Trees
in full Steiner Tree
2 21 38.2%
3 29 52.7%
4 3 5.5%
5 0 0.0%
6 1 1.8%
7 1 1.8%
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Figure B.29. Cockayne and Hewgill’s Test Problem 29 Steiner minimal tree and minimum
spanning tree.
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B.30 Test Problem 30

Minimum Spanning Tree 6.4715

Steiner Minimal Tree

Reduction

6.2736
3.06%

Given Points

O U W~

(0.31819999,0.01050000)
(0.15989999,0.11050000)
(0.09880000,0.19110000)
(0.07490000,0.19570000)
(0.00000000,0.21439999)
(0.05770000,0.32370001)
(0.01840000, 0.53530002)
(0.02170000,0.79070002)
(0.12080000,0.96079999)
(0.22130001,0.90549999)
(0.32969999,0.88120002)
(0.45019999,0.82810003)
(0.61839998,0.87199998)
(0.69239998,0.96910000)
(0.78590000,0.97100002)
(0.84939998,0.94400001)
(0.84069997,0.87070000)
(0.87519997,0.82550001)
(0.96990001,0.73500001)
(0.95880002, 0.71899998)
(0.96340001, 0.63239998)
(0.97839999,0.60780001)
(0.92449999,0.54900002)
(0.89330000, 0.49050000)
(0.91560000,0.28709999)
(0.94590002, 0.08540000)
(0.95469999,0.03010000)
(0.82190001, 0.06730000)
(0.80489999,0.06150000)
(0.77120000, 0.04890000)
(0.54860002,0.01310000)
(0.19499999,0.74100000)
(0.37959999,0.53939998)
(0.21349999,0.75919998)
(0.58670002, 0.44060001)
(0.88090003,0.58700001)
(0.45550001,0.10060000)
(0.38330001,0.56019998)
(0.51529998, 0.32589999)
(0.60900003,0.55849999)
(0.82880002, 0.87419999)
(0.76480001,0.60280001)
(0.13910000, 0.76179999)
(0.68570000,0.15230000)
(0.81320000,0.09760000)
(0.65789998,0.15889999)
(0.58929998,0.57520002)
(0.43720001,0.32480001)
(0.12780000, 0.46079999)
(0.27329999,0.76230001)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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(0.53490001,0.50880003)
(0.86659998,0.14229999)
(0.83020002, 0.65300000)
(0.44520000, 0.62140000)
(0.72530001,0.58149999)
(0.49649999,0.44020000)
(0.80430001, 0.27140000)
(0.39870000,0.18610001)
(0.61820000, 0.55220002)
(0.72920001,0.93169999)
(0.57760000,0.29420000)
(0.50400001,0.52179998)
(0.28900000, 0.55440003)
(0.12090000, 0.79780000)
(0.62159997,0.54879999)
(0.71380001, 0.27280000)
(0.20039999, 0.64829999)
(0.73470002, 0.80190003)
(0.83980000, 0.48519999)
(0.59109998,0.22059999)
(0.18619999,0.72600001)
(0.63040000, 0.48590001)
(0.69400001, 0.40300000)
(0.55989999,0.77740002)
(0.07420000, 0.54369998)
(0.13660000,0.54540002)
(0.57940000, 0.38450000)
(0.78289998,0.36950001)
(0.81639999,0.64709997)
(0.48249999,0.56269997)
(0.51779997,0.18060000)
(0.82819998, 0.86350000)
(0.34390000, 0.78829998)
(0.62099999,0.39919999)
(0.68750000,0.58899999)
(0.15099999, 0.37639999)
(0.20230000,0.34310001)
(0.62930000,0.50639999)
(0.48750001, 0.75559998)
(0.53839999,0.54759997)
(0.89399999,0.65530002)
(0.11400000, 0.48830000)
(0.86669999,0.17500000)
(0.86489999, 0.78630000)
(0.80559999,0.09440000)
(0.84500003, 0.16740000)
(0.35030001,0.38330001)
(0.43590000,0.52920002)
(0.65319997,0.51080000)
(0.77640003,0.28029999)



Optimal Steiner Points

1 (0.11892650,0.79408896) | 20  (0.36400422,0.82558882)
2 (0.03859857,0.22751573) | 21  (0.49359840,0.76970571)
3 (0.13686892,0.38251278) | 22 (0.83149874,0.87012976)
4 (0.11046983,0.52695489) | 23  (0.83377177,0.93656510)
5 (0.89133435,0.49296498) | 24  (0.78578949,0.96961391)
6 (0.91262746,0.54721111) | 25  (0.73011088,0.94312578)
7 (0.87234563,0.63736016) | 26  (0.86678308,0.12957281)
8 (0.93807560,0.66286331) | 27  (0.80866748,0.09343681)
9 (0.95966136,0.73010248) | 28  (0.81393683,0.06980053)
10 (0.87243849,0.78990608) | 29  (0.85833555,0.16504171)
11 (0.63999796,0.51550269) | 30  (0.85943818,0.24660890)
12 (0.63474971,0.54411596) | 31  (0.76056290,0.35849342)
13 (0.58906782,0.57206112) | 32 (0.75629812,0.29374093)
14 (0.37526453,0.54830533) | 33 (0.59829891,0.40456209)
15  (0.47878200,0.54383886) | 34  (0.58753967,0.44040164)
16 (0.52487618,0.52243602) | 35 (0.55333841,0.32909882)
17 (0.53334218,0.50875252) | 36  (0.58983779,0.21074086)
18 (0.20520735,0.59345633) | 37  (0.45386511,0.07685030)
19 (0.18605141,0.73564816) | 38  (0.45745361,0.14893682)
Number of Number of Percentage
Given Points full Steiner Trees
in full Steiner Tree
2 32 52.5%
3 21 34.4%
4 7 11.5%
5 1 1.6%
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Figure B.30. Cockayne and Hewgill’s Test Problem 30 Steiner minimal tree and minimum
spanning tree.
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Appendix C

An Example of Beasley and
Goffinet’s Heuristic

In Section 4.3 the heuristicby Beasley and Goffinet [2] is described. An example
of using the heuristic is shown in this appendix. The same set of points is
used as in the worked example in Section 4.2 which describes the heuristic by
Smith et al. [37].

The heuristic is demonstrated by the liberal use of pictures showing the
current solution, or the details of changes to a solution in the three different
stages of the heuristic, expansion, reduction and re-expansion. Not all rules of
the heuristic are used. In no situations are there any S-points with a degree of
four or five. However this example does exhibit cycling. Because of this the
example is not worked through to its completion, but stops when the cycling
is first detected. One part of the reduction stage involves repeatedly moving
S-points with degree three. This is necessary when S-points are dependent on
other S-points, that is there is a full Steiner tree of four or more given points. The
repetition is circumvented by moving the S-points to their optimal locations
simultaneously, assuming the FST exists. The pleasing aspect of the example
is that the heuristic finds the optimal solution.

C.1 First Iteration

The first Delaunay triangulation, added S-points and the MST spanning the
given points V and the S-points S are shown in Figure C.1.! Many of the
S-points are of degree two and in some instances of degree one in the MST.

Figure C.2 shows the MST of V' U S where any points in S with degree
two or less in Figure C.1 have been removed. All S-points are in their optimal
positions with respect to the points to which they are directly connected in the
MST. This tree is very similar to the optimal solution shown in Figure 4.8.

The tree in Figure C.2 has two pairs of edges that make an angle of less than
120° with each other at a common point. This occurs at points 2 and 6. Two
S-points are added to remove these occurrences. First a S-point is inserted into

!In all figures in this appendix S-points are shown as crosses.
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Figure C.1. The first expansion Delaunay triangulation and the S-points (crosses) of triangles.
The bold line is the MST of the given points and the S-points.
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Figure C.2. Removing all degree one and two S-points in Figure C.1 leaves only two S-points.
Both are in their optimal location.

256



the triangle formed by points 2, 3 and S-point A (shown in Figure C.2). And
second, a S-point is added to the triangle (6,8,9). The first new S-point and A
are now not in their optimal locations. The points are moved to the optimal
locations given by the four point FST of points 1, 2, 3 and 4. Figure C.3 shows
the solution at the end of the first iteration. There are four S-points, each in
their optimal location and no edges of the MST make angles of less than 120°.
This is in fact the optimal solution to the problem. Of course this is not actually
known and the heuristic continues.

Figure C.3. The solution after adding further S-points to eliminate angles of less than 120°
and moving S-points to their optimal locations.
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C.2 Second Iteration

The length of the solution at the end of the first iteration is different to that
at the beginning of the iteration therefore only one expansion is performed in
the second iteration. Figure C.4 shows the solution at the end of the second
iteration. It was only necessary to remove S-point of degree one and two and
again add a S-points to the triangle (6,8,9) to remove an angle of less than 120°
(as in the previous iteration). The solution is identical to that at the beginning
of the iteration.

Figure C.4. The solution at the end of the second iteration is identical to that at the beginning
of the iteration.
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C.3 Third Iteration

The number of expansions increases to two because the previous iteration gave
no change in solution. Figure C.5 shows the some what chaotic state of the
solution after perform two Delaunay triangulations and adding S-points to
triangles where possible.

Figure C.5. The solution immediately after the two Delaunay triangulations and addition of
many S-points. The vast majority of the S-points are of degree one and two.

Figure C.6 shows the solution after three rounds of removing degree one
and two S-points. Four points survive this, but clearly none are in their optimal
positions.

Figure C.7 shows the solution after the four S-points are moved to their
optimal locations. Unfortunately moving the S-points creates an angle of less
than 120°. An S-point is added to the triangle made by point 4 and S-points A

259



Figure C.6. Four S-points survive the removal one degree one and two points. Three rounds
of this was necessary to move from the solution in Figure C.5 to this solution. Unfortunately
none of the S-points are in their optimal location.
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and B (in Figure C.7). Figure C.8 shows the result of adding the S-point. But
now the three S-points A, B and C must be moved to their optimal positions.
The five point FST with the particular topology for the points 4, 5, 6, 7 and 8
does exist. Figure C.9 shows the solution after moving the three S-points. This
is the solution at the end of the third iteration.

Figure C.7. The four S-points are moved to their optimal positions. S-point B is very close
to point 6. This is the S-point for triangle (4,6,8).
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Figure C.8. S-point C is added to the triangle (4, 4, B) to eliminate an angle of less than
120°. But now S-points A, B and C' are no longer in their optimal locations.
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Figure C.9. The S-points of the FST of points 4, 5, 6, 7, and 8 are in their optimal locations.
This is the solution at the end of the third iteration. It is longer than the solution at the beginning
of the iteration shown in Figure C 4.
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C.4 Fourth Iteration

The solution has changed therefore only one Delaunay triangulation is used
this iteration. Figure C.10 shows the solution after removing all degree one
and two S-points and moving points to their optimal positions.

Figure C.10. All S-points are in their optimal locations. But there are two angles of less than
120°, both are at point 6.

The triangles (A, 6,8) and (6,8,9) both contain an angle of less than 120°.
S-points are added to overcome this. Figure C.11 shows the undesirable result
of doing this. However the remedy is straightforward, the S-point of triangle
(A,6,8) is removed because it is degree two. The solution is shown in Fig-
ure C.12. This is the solution at the end of the fourth iteration. It is different
to the solution at the beginning of the iteration, and is longer than the best
solution found to date.
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Figure C.11. One of the additional S-points adds nothing to the solution because it is degree
two.
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Figure C.12. The solution at the end of the fourth iteration.
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C.5 Fifth Iteration

In this iteration one Delaunay triangulation is performed. The solution at the
end of the iteration is identical to that at the beginning.

C.6 Sixth Iteration

The fifth iteration gave no change so two Delaunay triangulations are used in
this iteration. Figure C.13 shows the solution after expansion and three rounds
of removing degree one and two points. All the S-points are in non-optimal
positions.

Figure C.13. Four S-points survive the degree one and two cull. All the S-points are not
in optimal positions. The now familiar S-points of the 1, 2, 3 and 4 point FST and the new
additions, 4 and B, connecting points 5, 7, 8 and 10 must be moved.
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Attempting to move the S-points to their optimal locations reveals that
S-point A can not exist, so is removed, and 5 becomes the S-point of triangle
(7,8,10). The updated solution is shown in Figure C.14.

Figure C.14. The S-points are moved to their optimal positions. One of the four in Figure C.13
has been removed.

It is necessary to add, yet again, a S-point to the triangle (6,8,9) to remove
an angle of less than 120°. Figure C.15 shows the new solution. This is the
solution at the end of the iteration. It is different to that at the beginning of
the iteration, but the same as at the end of the first iteration. At that point the
number of expansions in the next iteration was also one. Therefore, there is a
cycle of five iterations.

The solution shown in Figure C.15 is the solution produced by the heuristic.
The annealing version of the heuristic is necessary to eventually break the cycle.
The solution is the optimal solution to the ten point example problem.
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Figure C.15. The solution is the same as that at the end of the first iteration shown in
Figure C.3. It is also the best solution found to date and the solution to the ten point example
problem produced by the heuristic.
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Appendix D

A 2-change Example

For a n city symmetric travelling salesman problem two different 2-changes
can be applied to the same cyclic permutation and give the same tour. This is
shown by example in this appendix.

Figure D.1 shows cyclic permutation {6,3,4,7,1,2,5} on the left and the
permutation {6,4,7,3,1,2,5} on the right. The latter is the result of a 2-change
with [ = 2 and m = 3 applied to the former.

Figure D.1. The permutation on the right is the result of applying a 2-change with [ = 2 and
m = 3 to the permutation on the left.

Figure D.2 shows permutation {6,3,4,7,1,2,5} on the left and the permu-
tation {5,6,4,2,7,1,3} on the right. The latter is the result of a 2-change with
[ =4 and m = 6 applied to the former.

Both right hand side permutations in the figures represent the same tour
in the symmetric problem. The difference is the direction of travel around the
tour.
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Figure D.2. The permutation on the right is the result of applying a 2-change with [ = 4 and
m = 6 to the permutation on the left.
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Appendix E

The Finite Sequence of 2-changes
Condition

One of the conditions for the asymptotic convergence of the simulated an-
nealing algorithm to a globally minimal configuration is that it is possible to
obtain any configuration in a finite number of transitions from any other con-
tiguration at any value of the control parameter. In this appendix the method
of Laarhoven [25] for creating a finite sequence of 2-change transitions for
the symmetric travelling salesman problem is described and demonstrated by
example.!

For a problem with n cities it is possible to transform tour : into tour j by
applying a sequence of n 2-changes to cyclic permutation 7; and subsequent
permutations. Define the sequence of permutations {7, ..., r,} where 7y = =;
and 7, = 7;. Permutation ; is obtained from 7;_; using a 2-change with [ = ¢
and m = m, where m; is given by

() = ().

The 2-changes are such that after ¢ transitions the first ¢ cities in tour ¢, repre-
sented by 7, are identical to the first ¢ cities in tour j. The following example
demonstrates the method.

The current eight city tour is described by permutation
m = {5,8,2,6,4,3,1,7}, and the desired tour is given by permutation 7; =
{4,3,6,2,7,5,8,1} (see Figure E.1).> The tours already have three of eight
edges in common, (7,8), (2,3) and (3,6).

The first 2-change requires that 7;"~'(1) = 7,;(1) = 4. Looking at 7; city 4
is the second city visited after city 1. Therefore m; = 3 and the 2-change is
[ =1and m = 3. Figure E.2 shows this 2-change and the new permutation
m = {4,8,2,5,6,3,1,7}.

The second 2-change requires 7;"2"'(2) = 7,;(2) = 3, 7{(2) = 3 therefore
m, = 8. But n = 8 and 7§(2) = 2. Should all cities between 2 and 2 be visited in

Laarhoven does not state whether the method works for all travelling salesman problems
or just symmetric problems. It is conjectured it only works for symmetric problems because of
the undirected nature of such problems. The implication of direction when using permutations
to describe a tour possibly causes difficulties for asymmetric, or directed, problems.

ZReverse direction permutations could have been used.
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Figure E.1. On the left is the current tour, permutation {5, 8,2,6,4,3,1,7}. On the right is
the desired tour, permutation {4, 3,6,2,7,5,8,1}.

Figure E.2. The first 2-change: on the left is the current tour, permutation {5, 8,2,6,4,3,1,7}
and on the right is permutation {4, 8,2,5,6,3, 1,7}, found using 2-change ! = 1 and m = 3.
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reverse direction, that is reverse the entire tour? Or, should this be thought of as
“do no 2-change”? The first option causes problems in later 2-changes because
the work of earlier transitions is destroyed. The second option can be justified
by using the reverse permutation. The reverse permutation gives m, = 2
because city 3 is the immediate successor of 2 in the reverse permutation. A
2-change with m = 2 results in no change to the permutation. The unaltered
reversed permutation is itself reversed to give the original permutation. If it
is not reversed then the problems with the first option occurs.®> The result is
7, = 71, but the first two elements of 7, are not identical to the first two of «;.
However, if the tours represented by the permutations are considered instead
of the permutations themselves then the edges (1,4) and (2,3) are in 7, and ;.
This is the desired result of the method.

The third 2-change requires 7, (3) = 7,(3) = 6, 75(3) = 6, and therefore
m3 = 8. The same situation as above! No 2-change is performed and 73 = 7.

The fourth 2-change requires 75"~ '(4) = 7;(4) = 2, 74(4) = 2, therefore
my4 = 5. Applying the 2-change with [ = 4 and m = 5 to 73 gives the permuta-
tion 74 = {4,3,6,2,8,5,1,7} (see Figure E.3).

Figure E.3. The fourth 2-change: on the left is the current permutation {4, 8,2,5,6,3,1,7}
and on the right is permutation {4, 3,6,2,8,5, 1,7}, found using 2-change ! = 4 and m = 5.

The fifth 2-change requires 7;"* "' (5) = 7;(5) = 7, 73(5) = 7, therefore ms =
3. Applying the 2-change with / = 5 and m = 3 to 74 gives the permutation
75 = {4,3,6,2,7,5,8,1} (see Figure E.4)

3Tt is this ability to reverse permutations for symmetric problems to achieve the desired tour,
although the permutation may be for the tour in the reverse direction, that begs the question
whether it is valid for asymmetric problems. In an asymmetric problem a tour and its reverse
tour can have different costs, perhaps infinite. At any finite value of the control parameter
a transition to an infinite cost configuration is impossible (for the purposes of circumventing
the m = n difficulty). Therefore for some configurations it is not possible to obtain any other
configuration using 2-change transitions. This does not mean simulated annealing will not
find good solutions for asymmetric problems just that asymptotic convergence is no longer
guaranteed.
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Figure E.4. The fifth 2-change: on the left is the current permutation {4,3,6,2,8,5,1,7} and
on the right is permutation {4, 3,6,2,7,5,8,1}, found using 2-change { = 5 and m = 3.

The remaining three 2-changes give no further changes in the permutation,
Tg = Ty = T = ©5. The tour represented by 73 is identical to that represented by
7;. In this case the permutations are identical, but this isn’t always necessarily
so. The tours are identical and this is the desired outcome.
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Appendix F

Listing of the Travelling Salesman
Problem Simulated Annealing
Program

This appendix is a listing of the C++ program for finding the solution of a Eu-
clidean travelling salesman problem using simulated annealing. A polynomial
cooling schedule is used. The file containing main() is Main.cc.!

Table F.1 shows the necessary inputs to the program in the order they must
be presented. The different outputs produced by different output level settings
are shown in Table F.2. If the program is compiled with -DGRAPHICS in the
compiler command a LEDA graphical window is displayed showing details
of the annealing process in the form of the evolving tour. As with normal text

output different types of graphical output are produced, and are explained in
Table F.3.

!The preamble to the program listing in Appendix A describes the software and hardware
used for all programs.
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Input Description

Output Level An integer specifying the amount and type
of output.
Annealer Seed An integer seed for the acceptance test gen-

erator of the annealer.

Initial Acceptance Ratio The initial acceptance parameter ¢, of the
polynomial cooling schedule.

Distance Parameter The distance parameter ¢ of the polynomial
cooling schedule.

Stopping Parameter The stopping parameter ¢, of the polyno-
mial cooling schedule.

Not used An integer no longer used but still required
for backward compatibility with earlier ver-
sions of the program and input data sets.

Smoothing Length An integer specifying the number of chains
over which to smooth the average cost in a
chain. The smoothed average in used in de-
termining the stopping ratio, which is com-
pared to the stopping parameter.

Number of Points The number of “cities” for which to find a
tour.

Problem Seed An integer seed for the 2-change operation.

Point Coordinates The coordinates of the points.

Table F.1. A description of the input to the travelling salesman problem simulated annealing
program.
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Output Level Description

=-1 For every transition the control parameter value and cost
of the current configuration are output

>1 The CPU time, the final value of the control parameter, the
value of the stopping ratio, the cost of final configuration,
and the configuration itself are output.

>3 As for 1, and if the program was compiled using -DBEST
the best cost and configuration found at any stage are
output at the end of the annealing.

>5 As for 3, and at the and of each chain the following are
output: the chain number, the control parameter value,
the average cost of configurations found in the chain, the
standard deviation of costs, the value of the next control
parameter, the smoothed average cost and the stop ratio.

> 10 As for 5, and

e the point coordinates and distance matrix are out-
put before annealing begins;

e the schedule parameters are output before anneal-
ing begins;

e for each iteration of the preliminary chain to find
the initial control parameter value the following are
output: the iteration number, the control parameter
value, the number of decreasing cost transitions,
the number of proposed increasing cost transitions,
the average proposed increased cost and the next
control parameter value;

e for each transition of the annealing proper the fol-
lowing are output: the iteration number, the con-
trol parameter value, the change in cost, the value
of the Metropolis criterion, the acceptance test ran-
dom number, a zero if rejected or a one if accepted,
the 2-change / and m, the current configuration and
cost, and finally the neighbour configuration and
cost.

Table F.2. A description of the text output produced by the travelling salesman problem
simulated annealing program.
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Output Level Description

>1 The control parameter value, current configuration cost,
average cost of configurations found in the final chain
and standard deviation of costs are displayed together
with the final configuration.

>3 As for 1, and if the program was compiled using -DBEST
the best cost and configuration found at any stage is dis-
played at the end of the annealing.

>5 As for 3, and at the end of each chain the current and best
configurations are displayed.

> 10 As for 5, and for each transition of the annealing proper
the following are displayed: the current configuration,
the proposed configuration, their costs, the difference and
whether or not the transition is accepted.

Table F.3. A description of the graphical output produced by the travelling salesman problem
simulated annealing program.
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F1 Makefile

#This Makefile takes the .cc files defined by SOURCES and compiles and links
#then to give the program with name defined by PROGRAM.

LEDA = /u/grads/geoff/LEDA
#LEDA is a handy library of graph, list, array and geometrical objects.
X11 = /usr/openwin/lib

TARGET = TSP
SOURCES = Main Annealer TSPProblem

OBJECTS = $(SOURCES:%="%.0)
#OBJECTS is a list of .o filenames corresponding to SOURCES.
SILENT:

#To see all that is happening comment out the .SILENT line. The horrific
#commands that do the compiling and linking will be shown.

SUFFIXES: .cc .0
KEEP_STATE:

CCC =g++

#g++ is the GNU C++ compiler and linker.

INCLUDES= -I$(LEDA)/incl

#INCLUDES is the directory in which to search for LEDA .h files.
CCFLAGS =-02 -DBEST -DTRACE -DGRAPHICS

#-02 is the optimisation flag for the g++ compiler and linker.
CPPFLAGS=

LDFLAGS =

LEDALIBS= -L$(LEDA) -IP -1G -IL -IWx

#LEDALIBS is the directory and list of library archive files in which to
#for LEDA objects and programs. -1P means libP.a etc.

X11LIBS = -L$(X11) -Ixview -lolgx -1X11

COMPILE = $(CCC) $(CCFLAGS) $(INCLUDES) $(CPPFLAGS)-c
#COMPILE is the compile command without linking.

LINK = $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)

#LINK is the link command

.CC.O:
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@echo Compiling -- $x
$(COMPILE) $<

#.cc.o means for each .cc with an old .o or no .o perform the compile command.

$(TARGET): $(OBJECTS)
@echo Linking — $@
$(LINK)-o $(TARGET) $(OBJECTS) $(LEDALIBS) $(X11LIBS) -lm

#(TARGET): $(OBJECTS) means link any new .o files to give a new PROGRAM file
#or link all .o files to give a PROGRAM file if no PROGRAM file exists.

E2 Annealerh

#i f ndef ANNEALER_H
#def i ne ANNEALER_H

// The annealer class that uses Laarhoven’s polynomial schedule.

#i ncl ude <LEDA/ basi c. h>
#i ncl ude <LEDA/ | i st. h>

#i ncl ude "Pr obl em h"
#i ncl ude "Uni f or mGener at or. h"

class Annealer{

public:

Annealer();
~Annealer();

void solve(Problemé& p);

private:

void oneStep();

void getFirstC();

void getNextC();
void traceAnnealer();
void traceOneStep();
void traceSolve();
void traceGetFirstC();
void traceGetNextC();

#i f def GRAPHICS
void graphicsGetNextC();

void graphicsOneStep();
#endi f

// the control parameter

double c;

// the problem

pProblem P;

// the acceptance random number generator
pUniformGenerator URNG;

// the CPU time

float time;

281



// the initial acceptance ratio

double phi0;

// the distance parameter

double delta;

// the stopping parameter

double epsilon;

// the number of chains over which to smooth the average cost in a chain
int smoothingLength;

// not used

int mO;

// the chain length

intL;

// the chain counter

int chain;

// the variable for testing whether to stop annealing
bool stop;

// the standard deviation of costs in a chain
double sigma;

// the list of average cost in a chain
list<double> mulist;

// the smoothed average cost

double smu;

// the previous smoothed average cost
double lastsmu;

// the average cost in a chain

double mu;

// the very first chain’s average cost

double mul;

// the previous control parameter

double lastc;

// the stopping ratio

double stopRatio;

// the number of decreasing cost moves for determining the first
// value of the control parameter

int ml1;

// the number of increasing cost moves

int m2;

// the sum of proposed increasing cost moves
double sumlIncreases;

// the random number for testing acceptance of a move
double t;

// the acceptance probability

double x;

// the counter of transitions in a chain

inti;

¥

#endi f

E3 Annealer.cc
#i ncl ude "Anneal er. h"

#i ncl ude "Tr ace. h"
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// constructor
Annealer::Annealer(){
// read the seed for the acceptance test generator
int seed=read_int();
URNG=new UniformGenerator(seed);
// read the schedule parameters
phi0 = read_real();
delta = read _real();
epsilon = read_real();
mO0 = read_int();
smoothingLength = read-int();
// initialise annealing variables
chain =1;
c=10000;
smu=0;
stopRatio=0;
traceAnnealer();

1

// destructor
Annealer::~Annealer(){
delete URNG;

1

// solve the problem
void Annealer::solve(Problemé& p){
time=used_time();
P=&p;
// get the chain length from the problem
L=P—getL();
// get the first control parameter value
getFirstC();
// anneal
do{
// reset chain statistics
double sumCosts=0;
double sumCostsSquared=0;
// do a chain
loop(i,1,L){
// attempt a move
oneStep();
// collect cost information
double cost=P—getSolutionDistance();
sumCosts+=cost;
sumCostsSquared+=cost*cost;
1
// calculate statistics
mu=sumCosts/L;
double var=sumCostsSquared/L-mu+mu;
if (var<0) sigma=0;
else sigma=sqrt(var);
mulist.append(mu);
// catch the first chain’s average cost
if (chain==1) mul=mu;
// calculate smoothed average values
if (chain>smoothingLength){
double m;
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double sum=0;
forall(m,mulist) sum+=m;
lastsmu=smu;
smu=sum/smoothingLength;
mulist.pop();
1
// find the next value of the control parameter
getNextC();
// stop annealing when the control parameter is zero or
// the stopping rule using the stopping parameter is satisfied
+ while (!stop);
traceSolve();

1

void Annealer::oneStep(){
bool changed=false;
#i f def GRAPHICS
if (trace>10){
Wp—-clear();
P—plotSolution();
1
#endi f
// generate a neighbour configuration
P—generateNeighbour();
#i f def GRAPHICS
graphicsOneStep();
#endi f
// accept or reject the move using the Metropolis criterion
if (P—getChange()>1E-7){
t=URNG—rand();
x=exp(-P—getChange()/c);
if (t<x){
P—updateSolution();
changed=true;

}
}

else{

t=1;

x=1;

if (P—getChange()<-1E-7){
P—updateSolution();
changed=true;
t=0;

}

!
#i f def TRACE

traceOneStep();
#endi f
#i f def GRAPHICS
if (trace>10){
if (t<x){
Wp—draw_text(0,Wp—ymax()-0.1,
string(" %24. 4f Accept ", P—getChange()));
}

else{
Wp—draw_text(0,Wp—ymax()-0.1,
string(" %24. 4f Rej ect ", P—getChange()));
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1
wait(2+waitingtime);
1
#endi f
// If the move was not accepted undo any changes
if (Ichanged)
P—undoChanges();
1

// find the first value of the control parameter
void Annealer::getFirstC(){
m1=0;
m2=0;
lastc=c;
sumlIncreases=0;
// attempt L transitions
loop(i,1,L){
oneStep();
if (P—getChange()>0){
++m?2;
sumIncreases+=P—getChange();

else{
++ml;

}

if (m2>0){
lastc=c;
// update the value of the control parameter
c=(sumIncreases/m?2)/log(m2/(m2+phi0-m1+(1-phi0)));

}

traceGetFirstC();

}
}

// get the next value of the control parameter
void Annealer::getNextC(){
stop=false;
if (chain>smoothingLength){
// calculate the stopping ratio
stopRatio=(c/mul)+(smu-lastsmu)/(c-lastc);
stop=fabs(stopRatio)<epsilon;
!
lastc=c;
// calculate the next value of the control parameter
c=c/(1+cxlog(1+delta)/(3*sigma));
// check if the value is zero
stop|=c<1E-7;
traceGetNextC();
#i f def GRAPHICS
graphicsGetNextC();
#endi f
++chain;

1

void Annealer:traceAnnealer(){
if (trace>10) cout < string(" %d.0. 7f 94.0. 7f 9440. 7f %B6d\n",
phi0,delta, epsilon,smoothingLength);
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1

void Annealer::traceOneStep(){
if (trace==-1){
cout < string(" %21. 7f 9%45. 7f \n", ¢, P—getSolutionDistance());

if (trace>10){
cout < string(" %21. 7f %45. 7f ", ¢, P—getChange());
cout < string(" % 2. 4f %5. 4f ", t, x);
if (t<x){
cout <" 1\n";

else{
cout <" 0\n";
}
}
}
void Annealer:traceSolve(){
if (trace>1){
cout < string(" %21. 7f 9%45. 7f 945. 7f \n" , used_time(time), ¢,
stopRatio);
cout < string(" %21. 7f " , P—getSolutionDistance());
P—printSolution();
newline;
}
#i f def BEST
if (trace>3){
cout < string(" %21. 7f " , P—getBestDistance());
P—printBest();
newline;
}
#endi f
}
void Annealer::traceGetFirstC(){
if (trace>10){

cout < string(" %6d%5. 7f %W d¥Bd", i, lastc, m1, m2);
if (m2>0){
cout < string(" %4.5. 7f %45. 7f \n", sumIncreases/m2, c);
}
else{
cout < string(" %4.5. 7f 9%45. 7f \n", 0.0, ¢);
}
}
}

void Annealer:traceGetNextC(){
if (trace>5){
cout < string(" %6d%5. 7f %d5. 7f ", chain, lastc, mu);
cout < string(" %d5. 7f %45. 7f %45. 7f ", sigma, ¢, smu);
cout < string(" %4.5. 7f \n", stopRatio);
}
}

#i f def GRAPHICS
void Annealer::graphicsGetNextC(){
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if (trace>5){
Wp—-clear();
P—plotSolution(black);
P—plotBest();
Wp—draw_text(0,Wp—ymax()-0.1,
string(" 8. 4f 90. 4f 90. 4f 9®. 4f ",
¢,P—getSolutionDistance(),
mu,sigma));
Wp—flush();
}
}

void Annealer::graphicsOneStep(){
if (trace>10){
P—plotChange();
wait(2+waitingtime);
P—plotSolution(blue);
Wp—flush();

}
#endi f

F4 Generator.h

#i f ndef GENERATOR_H
#def i ne GENERATOR_H

// An integer uniform random number generator using the GNU g++
// library random number generators.

#i ncl ude <ACG. h>
#i ncl ude <Rndl nt. h>

class Generator{
private:
ACG# pRNG;
RandomlInteger+ pRnd;
public:
Generator(int low=1, int high=1, int seed=1){
PRNG = new ACG(seed, 30);
pRnd = new RandomInteger(low, high, pRNG);
}
~Generator(){
delete pRNG;
delete pRnd;
}
long rand(){
return pRnd—asLong();
}
long operator()(){
return rand();

}
¥

typedef Generator *pGenerator;
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#endi f

E5 Main.cc

#i ncl ude "Tr ace. h"
#i ncl ude "Anneal er. h"
#i ncl ude "TSPPr obl em h"

int trace;

#i f def GRAPHICS
windows Wp;
#endi f

main(){

trace=read_int();

#i f def GRAPHICS
window W(600,625);
W.init(-0.1,1.1,-0.1);
W.set_show _coordinates(false);
W.set_ node_width(3);
W.set_-mode(src_mode);
Wp=&W;

#endi f

Annealer A;
TSPProblem P;

A.solve(P);
#i f def GRAPHICS

W.acknowledge(* Done! "),
#endi f

1

F6 Problem.h

#i f ndef PROBLEM_H
#def i ne PROBLEM_H

// A general problem class for use with the annealer defined in
// Annealer.h. This class is the base class for all problems.

#i f def GRAPHICS
#i ncl ude <LEDA/ wi ndow. h>
#endi f

class Problem;
typedef Problems pProblem;
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class Problem{
protected:
double solutionDistance;
double neighbourDistance;
double bestDistance;
double change;
public:
Problem(){
solutionDistance=0;
neighbourDistance=0;
bestDistance=0;
change=0;
}
virtual ~Problem(){};
virtual void generateNeighbour(){};
virtual void updateSolution(){};
virtual void printSolution(){};
virtual void printBest(){};
virtual void undoChanges(){};
#i f def GRAPHICS
virtual void plotSolution(color c=black){};
virtual void plotBest(){};
virtual void plotChange(){};
#endi f
virtual int getL(){
return 0;

double getSolutionDistance(){
return solutionDistance;

1
double getNeighbourDistance(){

return neighbourDistance;

¥
double getBestDistance(){

return bestDistance;

}
double getChange(){

return change;

}
¥

#endi f

E7 TSPProblem.h

#i f ndef TSPPROBLEM_H
#def i ne TSPPROBLEM_H

// The Travelling Salesman Problem class.

#i ncl ude <LEDA/ array. h>
#i ncl ude <LEDA/ poi nt . h>

#i ncl ude "Generator. h"
#i ncl ude "Pr obl em h"
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typedef array<int> TSPSolution;
typedef TSPSolution *pTSPSolution;

typedef array <point> Points;
typedef Points +pPoints;

typedef array2<double> DistanceMatrix;
typedef DistanceMatrix xpDistanceMatrix;

class TSPProblem : public Problem{

public:
TSPProblem();
~TSPProblem();
void generateNeighbour();
void updateSolution();
int getL();
void printSolution();
void printNeighbour();
void printBest();

#i f def GRAPHICS
void plotSolution();
void plotBest();
void plotPoints();

#endi f

private:
// problem size
int n;
// random numbers for the 2-change
intl, m;
// array of point coordinates
pPoints positions;
// array of distances between points
pDistanceMatrix distances;
// current configuration
pTSPSolution solution;
// neighbour configuration
pTSPSolution neighbour;
// best configuration found to date
pTSPSolution best;
// | generator
pGenerator IRNG;
// m generator
pGenerator mRNG;
// array used in 2-change
array<bool># done;
// cost function
double distance(TSPSolution& s);
void newNeighbour();
void traceTSPProblem();
void traceGenerateNeighbour();

¥

typedef TSPProblem *pTSPProblem;
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#endi f

E8 TSPProblem.cc

#i ncl ude "TSPPr obl em h"

#i ncl ude <LEDA/ basi c. h>
#i ncl ude <LEDA/ poi nt . h>

#i ncl ude "Tr ace. h"

//constructor

TSPProblem:: TSPProblem(){
// read the number of points
n=read_int();
// read the seed for the | and m generators
int seed=read_int();
positions=new Points(1,n);
distances=new DistanceMatrix(1,n,1,n);
solution=new TSPSolution(1, n);
neighbour=new TSPSolution(1, n);
best=new TSPSolution(1, n);
IRNG=new Generator(1, n, seed);
mRNG=new Generator(3, n-1, seed);
done=new array<bool>(1,n);
TSPSolution &s = *solution;
TSPSolution &b = *best;
DistanceMatrix &d = *distances;
Points &p = *positions;
inti;

// create an intial configuration equal to 2,3,...

loop(i, 1, n-1){

s[i] =i+1;

b[i] =i+1;
1
s[n] =1;
b[n] =1;
// read the point coordinates
p-read();
int j;
// calculate the distances between all points
loop(i, 1, n){

loop(j, 1, n){

d(i, j) = plil.distance(p[j]);

1

// find the current configuration cost
solutionDistance = distance(s);
bestDistance = solutionDistance;
traceTSPProblem();

1

//destructor
TSPProblem::~TSPProblem(){

n,1

291



delete solution;
delete neighbour;
delete best;
delete distances;
delete IRNG;
delete mRNG;

1

//2-change
void TSPProblem::generateNeighbour(){
1 = IRNG—rand();
m = mRNG—rand();
TSPSolution &s = *solution;
DistanceMatrix &d = *distances;
//ffind the change in cost
register int i;
register piMminusOne = s[1];
loop(i, 2, m-1) piMminusOne = s[piMminusOne];
register int piM = s[piMminusOne];
change = d(l, piMminusOne) + d(s[1], piM) - d(], s[1]) - d(piMminusOne, piM);
#i f def TRACE
traceGenerateNeighbour();
#endi f

1

void TSPProblem::updateSolution(){
/ffind the neighbour tour
newNeighbour();
// calculate the neighbour’s cost
solutionDistance = distance(+*neighbour);
// make the neighbour the new current tour
pTSPSolution s = solution;
solution = neighbour;
neighbour =s;
#i f def BEST
/fupdate the best tour if necessary
if (solutionDistance<bestDistance){
TSPSolution &b = *best;
TSPSolution &s = *solution;
register int i;
loop(i,1,n) b[i] = s[i];
bestDistance = solutionDistance;

}
#endi f

1

int TSPProblem::getL(){
return n*(n-3)/2;

1

void TSPProblem::printSolution(){
solution—print();

1

void TSPProblem::printNeighbour(){
neighbour—print();

1
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void TSPProblem::printBest(){
best—print();

inline double TSPProblem::distance(TSPSolution& s){
double t = 0;
DistanceMatrix &d = *distances;
register int i;
loop(i, 1, n) t += d(i, sli]);
return t;

1

inline void TSPProblem:newNeighbour(){
TSPSolution &s = *solution;
TSPSolution &t = *neighbour;
array<bool> &d = *done;
register int i, j;
/ffind the neighbour configuration given | and m
loop(i, 1, n) d[i] = false;
tlll=1;
loop(i, 2, m){
t{1] = s[t[L];
t{s[1]] = s[t[1]];

[1] = true;
[s[1]] = true;
j =s[ll;
loop(i, 2, m-1){
tIs[jll =j;
d[s[j]] = true;
j=sljl;
}
loop(i, 1, n){
if (!d[i]) tli] = s[il;
}
}

void TSPProblem::trace TSPProblem(){
if (trace>10){
Points &p=+positions;
DistanceMatrix &d=+distances;
inti, j;
loop(i, 1, n) cout < string(" ¥6d%d5. 7f 9%45. 7f \n",
i, pli]-xcoord(),pli].ycoord());

1
d
d

loop(i, 1, n){
loop(j, 1, n){
if (1<)
cout < string(" ¥8d%6dY%d5. 7f \n", 1,j, d(i}));

void TSPProblem::traceGenerateNeighbour(){
if (trace>10){
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newNeighbour();

neighbourDistance = distance(+*neighbour);

cout < string(" %21. 7f ", solutionDistance);

cout < string(" %/d%8d ", 1, m);

printSolution();

cout < string("\n9%21. 7f 9%45. 7f ", neighbourDistance, change);
printNeighbour();

newline;

}
}

#i f def GRAPHICS
void TSPProblem::plotPoints(){
Points &p=+positions;
register int i;
loop(i,1,n) Wp—draw filled_node(pl[i]);

void TSPProblem::plotSolution(){
plotPoints();
register int i;
TSPSolution &s=+solution;
Points &p=+positions;
loop(i,1,n) Wp—draw_segment(p[i],p[s[ill);
}

void TSPProblem::plotBest(){
register int i;
TSPSolution &b=+best;
Points &p=+positions;
loop(i,1,n) Wp—draw_segment(p[i],p[bli]],green);

}
#endi f

FE9 Trace.h

#i f ndef TRACE_H
#def i ne TRACE_H

#i f def GRAPHICS

#i ncl ude <LEDA/ wi ndow. h>
extern window=* Wp;

const int waitingtime=0;
#endi f

extern int trace;

#endi f

E10 UniformGenerator.h

#i f ndef UNIFORMGENERATOR_H
#def i ne UNIFORMGENERATOR_H
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// A uniform random number generator using the GNU g++ library
// random number generators.

#i ncl ude <ACG. h>
#i ncl ude <Uni form h>

class UniformGenerator{
private:
ACG# pRNG;
Uniform# pRnd;
public:
UniformGenerator(){};
UniformGenerator(int seed=1){
PRNG = new ACG(seed, 30);
pRnd = new Uniform(0, 1, pRNG);
}
~UniformGenerator(){
delete pRNG;
delete pRnd;
}
double rand(){
return (*pRnd)();

double operator()(){
return rand();

}
¥

typedef UniformGenerator *pUniformGenerator;

#endi f
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Appendix G

Travelling Salesman Test Problems

The problem data and optimal solutions are from TSPLIB[32], a library of
travelling salesman problems, which is available by anonymous ftp from soft-
lib.cs.rice.edu.For each problem the following are shown:

e The length of the optimal tour;

e A table showing the coordinates and optimal tour. For example, in prob-
lem EIL051 “city” 1 is at position (37,52) and its successor in the optimal
tour is city 22;

e A picture of the optimal tour.
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G.1 Test Problem EIL051

Optimal Tour Length 428.87

Points and Optimal Tour

(37,52) 22 |27 (30,48) 51
(49,49) 16 | 28 (43,67) 3
(52,64) 36 | 29 (58,48) 2
(20,26) 17 | 30 (58,27) 9
(40,30) 38 | 31 (37,69) 28
(21,47) 27 | 32 (38,46) 1
(17,63) 23 | 33 (46,10) 45
(31,62) 26 | 34 (61,33) 30

9 (52,33) 49 | 35 (62,63) 20
10 (51,21) 39 | 36 (63,69) 35
11 (42,41) 32 |37 (32,22) 5
12 (31,32) 47 | 38 (45,35 11
13 (525 25|39 (59,15 33
14 (12,42) 24 | 40 (5,6) 41
15 (36,16) 44 | 41 (10,17) 13
16 (52,41) 50 | 42 (21,10) 19
17 (27,23) 37 |43 (564 7
18 (17,33) 4 |44 (30,15) 42
19 (13,13) 40 | 45 (39,10) 15
20 (57,58) 29 | 46 (32,39) 12
21 (62,42) 34 | 47 (25,32) 18
22 (42,57) 8 | 48 (25,55) 6
23 (16,57) 48 | 49 (48,28) 10
24 (8,52) 43 |50 (56,37) 21
25 (7,38) 14 | 51 (30,40) 46
26 (27,68) 31

O UT =W~
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Figure G.1. Test Problem EIL051 optimal tour.
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G.2 Test Problem EIL076

Optimal Tour Length  544.37

Points and Optimal Tour

(22,22) 33|39 (30,600 72
(36,26) 74 | 40 (30,50) 17
(21,45) 44 | 41 (12,17) 43
(45,35) 75 | 42 (15,14) 64
(55,20) 15 | 43 (16,19) 42
(33,34) 68 | 44 (21,48) 32
(50,50) 53 | 45 (50,30) 29
(55,45) 35 | 46 (51,42) 52

9 (26,59 39 | 47 (50,15) 36
10 (40,66) 31 | 48 (48,21) 30
11 (55,65) 66 | 49 (12,38) 23
12 (3551) 40 | 50 (15,56) 18
13 (62,35 54 | 51 (29,39) 6
14 (62,57) 59 | 52 (54,38) 27
15 (62,24) 57 | 53 (55,57) 14
16 (21,36) 3 |54 (67,41) 19
17 (33,44) 51 | 55 (10,70) 25
18 (9,56) 24 | 56 (6,25 41
19 (62,48) 8 |57 (6527) 13
20 (66,14) 37 | 58 (40,60) 12
21 (44,13) 47 | 59 (70,64) 11
22 (26,13) 62 | 60  (64,4) 70
23 (11,28) 56 | 61  (36,6) 21
24 (7,43) 49 | 62 (30,20) 73
25 (17,64) 50 | 63 (20,30) 16
26 (41,46) 67 | 64  (15,5) 22
27 (55,34) 45 | 65 (50,70) 38
28 (35,16) 61 | 66 (57,72) 65
29 (52,26) 48 | 67 (4542) 34
30 (43,26) 2 | 68 (38,33) 4
31 (31,76) 55|69  (50,4) 71
32 (22,53) 9|70 (66,8 20
33 (26,29 63|71 (59,5 60
34 (50,40) 46 | 72 (35,60) 58
35 (55,500 7 |73 (27,24) 1
36 (54,100 69 | 74 (40,20) 28
37 (60,15) 5 | 75 (40,37) 76
38 (47,66) 10 | 76 (40,40) 26

O UT =W~
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Figure G.2. Test Problem EIL076 optimal tour.
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G.3 Test Problem KRO124

Optimal Tour Length 21285.44

Points and Optimal Tour

(1380, 939)

(2848, 96)
(3510, 1671)

(457,334)
(3888, 666)

(984, 965)
(2721,1482)
(1286, 525)
(2716, 1432)
(738,1325)
(1251,1832)
(2728,1698)
(3815, 169)
(3683, 1533)
(1247, 1945)

(123,862)
(1234, 1946)
(252, 1240)

(611,673)
(2576, 1676)
(928, 1700)

(53, 857)
(1807, 1711)
(274, 1420)
(2574, 946)

(178, 24)
(2678, 1825)
(1795, 962)
(3384, 1498)
(3520, 1079)

(1256,61)
(1424,1728)
(3913,192)
(3085, 1528)
(2573, 1969)
(463,1670)
(3875, 598)
(298,1513)
(3479,821)
(2542, 236)
(3955, 1743)
(1323,280)
(3447, 1830)
(2936, 337)
(1621, 1830)
(3373, 1646)
(1393, 1368)
(3874,1318)

(938,955)
(3022, 474)

47 51
44 52
43 53
97 54
52 55
63 56
9 57
92 58
57 59
84 60
15 61
27 62
76 63
3 64
17 65
94 66
59 67
79 68
90 69
12 70
72 71
70 72
98 73
18 74
81 75
65 76
86 77
67 78
34 79
48 80
89 81
11 82
37 83
83 84
62 85
99 86
5 87
24 88
30 89
54 90
71 91
8 92
46 93
50 94
32 95
29 96
93 97
100 98
6 99
73 | 100
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(2482,1183)
(3854, 923)

(376,825)
(2519, 135)
(2945, 1622)

(953, 268)
(2628,1479)
(2097,981)
(890, 1846)
(2139, 1806)
(2421,1007)
(2290, 1810)
(1115, 1052)
(2588, 302)

(327,265)

(241,341)
(1917, 687)
(2991, 792)
(2573, 599)

(19, 674)
(3911, 1673)
(872,1559)
(2863, 558)
(929,1766)

(839, 620)
(3893,102)
(2178,1619)
(3822,899)
(378,1048)
(1178, 100)
(2599,901)
(3416, 143)
(2961, 1605)
(611,1384)
(3113, 885)
(2597, 1830)
(2586, 1286)

(161,906)
(1429, 134)
(742,1025)
(1625, 1651)
(1187, 706)
(1787,1009)

(22,987)

(3640, 43)
(3756, 882)

(776,392)
(1724, 1642)
(198,1810)
(3950, 1558)



Figure G.3. Test Problem KRO124 optimal tour.
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G.4 Test Problem KRO126

Optimal Tour Length  20750.76

Points and Optimal Tour

O O ONUT =W~

(1357, 1905)
(2650, 802)
(1774,107)
(1307, 964)
(3806, 746)

(2687,1353)

(43,1957)

(3092, 1668)

(185, 1542)
(834, 629)
(40, 462)

(1183,1391)

(2048, 1628)
(1097, 643)

(1838,1732)
(234,1118)

(3314, 1881)
(737,1285)

(779,777)

(2312,1949)
(2576, 189)

(3078, 1541)
(2781,478)
(705,1812)

(3409, 1917)
(323,1714)

(1660, 1556)

(3729,1188)
(693,1383)
(2361, 640)

(2433,1538)
(554, 1825)

(913,317)

(3586, 1909)
(2636, 727)
(1000, 457)
(482,1337)

(3704, 1082)

(3635,1174)

(1362, 1526)
(2049, 417)

(2552,1909)
(3939, 640)

(219,898)
(812,351)
(901, 1552)
(2513, 1572)
(242,584)
(826, 1226)
(3278, 799)
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(86, 1065)
(14,454)
(1327,1893)
(2773, 1286)
(2469, 1838)
(3835, 963)
(1031, 428)
(3853,1712)
(1868, 197)
(1544, 863)
(457,1607)
(3174, 1064)
(192, 1004)
(2318, 1925)
(2232,1374)
(396, 828)
(2365, 1649)
(2499, 658)
(1410, 307)
(2990, 214)
(3646, 1018)
(3394, 1028)
(1779, 90)
(1058, 372)
(2933, 1459)
(3099, 173)
(2178,978)
(138, 1610)
(2082,1753)
(2302,1127)
(805,272)
(22,1617)
(3213,1085)
(99, 536)
(1533, 1780)
(3564, 676)
(29, 6)
(3808, 1375)
(2221,291)
(3499, 1885)
(3124, 408)
(781,671)
(1027,1041)
(3249, 378)
(3297,491)
(213,220)
(721,186)
(3736, 1542)
(868, 731)
(960, 303)



Figure G.4. Test Problem KRO126 optimal tour.
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G.5 Test Problem KRO127

Optimal Tour Length 21294.29

Points and Optimal Tour

O O ONUT =W~

47
48
49
50

(2995, 264)
(202,233)
(981,848)

(1346, 408)

(781, 670)
(1009, 1001)
(2927,1777)
(2982, 949)
(555,1121)
(464,1302)
(3452, 637)
(571,1982)
(2656, 128)
(1623,1723)
(2067, 694)
(1725,927)
(3600, 459)

(1109, 1196)

(366,339)
(778,1282)
(386, 1616)

(3918,1217)

(3332,1049)

(2597, 349)
(811,1295)
(241,1069)
(2658, 360)
(394,1944)
(3786, 1862)

(264, 36)
(2050, 1833)
(3538, 125)
(1646,1817)
(2993, 624)

(547, 25)

(3373,1902)

(460, 267)
(3060, 781)
(1828, 456)
(1021, 962)
(2347, 388)

(3535,1112)

(1529, 581)
(1203, 385)
(1787,1902)
(2740,1101)
(555,1753)

(47,363)
(3935, 540)
(3062, 329)

50 51
100 52
83 53
71 54
53 55
18 56
74 57
52 58
10 59
21 60
90 61
28 62

1 63
65 64
69 65
63 66
94 67
82 68
37 69

9 70
47 71
58 72
42 73
27 74
20 75
87 76
88 77
56 78
36 79
35 80
78 81
97 82
68 83
81 84
51 85
67 86
62 87
66 88
73 89

6 90
24 91
89 92
64 93
93 94
33 95
23 96
12 97

2 98
70 99
34 | 100
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(387,199)
(2901, 920)

(931,512)
(1766, 692)

(401,980)
(149, 1629)
(2214,1977)
(3805, 1619)
(1179, 969)
(1017, 333)
(2834,1512)

(634,294)
(1819, 814)
(1393, 859)
(1768, 1578)
(3023,871)
(3248, 1906)
(1632, 1742)
(2223,990)
(3868, 697)
(1541, 354)
(2374,1944)
(1962, 389)
(3007, 1524)
(3220, 1945)
(2356, 1568)
(1604, 706)
(2028, 1736)
(2581,121)
(2221,1578)
(2944, 632)
(1082, 1561)

(997,942)
(2334, 523)
(1264, 1090)
(1699, 1294)
(235,1059)
(2592, 248)
(3642, 699)
(3599, 514)
(1766, 678)

(240, 619)
(1272, 246)
(3503,301)

(80,1533)
(1677,1238)
(3766, 154)
(3946, 459)
(1994, 1852)

(278,165)



Figure G.5. Test Problem KRO127 optimal tour.
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G.6 Test Problem LIN105

Optimal Tour Length  14383.00

Figure G.6. Test Problem LIN105 optimal tour.
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Points and Optimal Tour

O OO Ul W~

(63,71)
(94,71)
(142, 370)
(173,1276)
(205,1213)
(213, 69)
(244, 69)
(276, 630)
(283,732)
(362, 69)
(394, 69)
(449, 370)
(480, 1276)
(512,1213)
(528,157)
(583, 630)
(591, 732)
(638, 654)
(638, 496)
(638, 314)
(638, 142)
(669, 142)
(677,315)
(677, 496)
(677, 654)
(709, 654)
(709, 496)
(709, 315)
(701, 142)
(764, 220)
(811, 189)
(843,173)
(858, 370)
(890, 1276)
(921,1213)
(992, 630)
(1000, 732)
(1197, 1276)
(1228,1213)
(1276, 205)
(1299, 630)
(1307, 732)
(1362, 654)
(1362, 496)
(1362,291)
(1425, 654)
(1425, 496)
(1425,291)
(1417,173)
(1488,291)
(1488, 496)
(1488, 654)
(1551, 654)

2 54
6 55
1 56
5 57
9 58
7 59
10 60
3 61
8 62
11 63
15 64
19 65
4 66
13 67
103 68
17 69
18 70
25 71
24 72
12 73
22 74
29 75
20 76
27 77
26 78
36 79
16 80
23 81
30 82
31 83
32 84
33 85
28 86
14 87
34 88
37 89
42 90
35 91
38 92
49 93
43 94
41 95
46 96
104 97
48 98
52 99
44 | 100
50 | 101
45 | 102
55 | 103
47 | 104
53 | 105
58
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(1551, 496)
(1551,291)
(1614,291)
(1614, 496)
(1614, 654)
(1732,189)

(1811, 1276)

(1843,1213)
(1913, 630)
(1921,732)
(2087, 370)

(2118, 1276)

(2150, 1213)
(2189, 205)
(2220,189)
(2220, 630)
(2228,732)
(2244,142)
(2276, 315)
(2276, 496)
(2276, 654)
(2315, 654)
(2315, 496)
(2315,315)
(2331,142)
(2346, 315)
(2346, 496)
(2346, 654)
(2362,142)
(2402,157)
(2402, 220)
(2480, 142)
(2496, 370)

(2528, 1276)

(2559, 1213)
(2630, 630)
(2638, 732)

(2756, 69)
(2787, 69)
(2803, 370)
(2835, 1276)
(2866, 1213)
(2906, 69)
(2937, 69)
(2937, 630)
(2945, 732)
(3016, 1276)
(3055, 69)
(3087, 69)
(606, 220)
(1165, 370)
(1780, 370)



Appendix H

Listing of the Euclidean Steiner
Tree Problem Simulated Annealing
Program

This appendix is a listing of the C++ program for finding the solution of a Eu-
clidean Steiner tree problem using simulated annealing. A polynomial cooling
schedule is used. The file containing main() is Main.cc.!

The following program files are not listed in this appendix. They are iden-
tical to those in the listing of the travelling salesman simulated annealing code.
The files are: Annealer.h, Annealer.cc, Generator.h, Problem.h, Trace.h and
UniformGenerator.h.

The most important component of the Steiner simulated annealing code is
the Delaunay triangulation object. This is from the LEDA library. It is useful
because because it is a dynamic implementation. That is, it is possible to add
and delete points at will and always have a Delaunay triangulation on hand
without having to start from scratch each time to determine the triangulation.
The implementation is complex and is not discussed here. The triangulation is
used because it provides an easy way of finding the minimum spanning tree of
a set of points. The Delaunay triangulation is discussed in Section 4.2.1. Other
code for finding Delaunay triangulations was experimented with. However,
this was chosen because it was part of the familiar LEDA library and appeared
to be faster. Unfortunately the code is not without bugs. Occasionally it will
crash. Annoying when it happens but thankfully not too frequent.

The LEDA Delaunay triangulation code was slightly modified to provide
necessary output of a minimum spanning tree as a series of edges. The addi-
tions to the LEDA code are shown in the listings of files DT.h.diff and DT.cc.diff.
These files contain the output of the Unix di f f command used to compare the
LEDA files delaunay_tree.h and _delaunay_tree.c with DT.h and DT.cc respec-
tively.

The inputs, text outputs and graphical output are are of the same to those
for the travelling salesman annealing program. Tables F.1, F2 and E.3 describe

!The preamble to the program listing in Appendix A describes the software and hardware
used for all programs.
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the inputs and outputs of the travelling salesman program.

H.1 Makefile

# $Id: Makefile,v 2.3 1994/06/23 00:57:53 geoff Exp $

# $Log: Makefile,v $

# Revision 2.3 1994/06/23 00:57:53 geoff

# Added $Log$

#

#This Makefile takes the .cc files defined by SOURCES and compiles and links
#them to give the program with name defined by PROGRAM.

LEDA = /u/grads/geoff/LEDA

#LEDA is a handy library of graph, list, array and geometrical objects.

X11 = /usr/openwin/lib

TARGET = ESTP-2
SOURCES = Main Annealer ESTPProblem DT

OBJECTS = $(SOURCES:%="%.0)
#OBJECTS is a list of .o filenames corresponding to SOURCES.
SILENT:

#To see all that is happening comment out the .SILENT line. The horrific
#commands that do the compiling and linking will be shown.

SUFFIXES: .cc .0
KEEP_STATE:

CCC =g++

#g++ is the GNU C++ compiler and linker.

INCLUDES= -I$(LEDA)/incl

#INCLUDES is the directory in which to search for LEDA .h files.
CCFLAGS = -DTRACE -O2

#-02 -DBEST -DGRAPHICS -DTRACE

#-02 is the optimisation flag for the g++ compiler and linker.
CPPFLAGS=

LDFLAGS =

LEDALIBS= -L$(LEDA) -IP -1G -IL -IWx

#LEDALIBS is the directory and list of library archive files in which to
#for LEDA objects and programs. -1P means libP.a etc.

X11LIBS = -L$(X11) -Ixview -lolgx -1X11
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COMPILE = $(CCC) $(CCFLAGS) $(INCLUDES) $(CPPFLAGS)-c
#COMPILE is the compile command without linking.

LINK = $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)

#LINK is the link command

.cc.o:
@echo Compiling -- $x
$(COMPILE) $<

#.cc.o means for each .cc with an old .o or no .o perform the compile command.

$(TARGET): $(OBJECTS)
@echo Linking — $@
$(LINK)-o $(TARGET) $(OBJECTS) $(LEDALIBS) $(X11LIBS) -lm

#(TARGET): $(OBJECTS) means link any new .o files to give a new PROGRAM file
#or link all .o files to give a PROGRAM file if no PROGRAM file exists.

H.2 DTh.diff

1d0

< //Id:DT.h,v2.11994/06/2300: 01 : 33geof fExp
72,79d70

< #i ncl ude <LEDA/ pri o. h>

< #i ncl ude <LEDA array. h>

< #incl ude <LEDA/ | i st . h>

< #i ncl ude "Poi nt . h"

< #include"l'ink.h"

< typedef array<pPoint> APType;

< typedef APType xpAPType;

< typedef list<link> MSTType;

205,206¢197

< void add_link(noeud, priority_queue<DTlink,double>&);
< void links(priority_queue<DTlink,double>&);
>

209d199

< int size();

213a204,205

>

>

226,229d217

< void change_inf(DT_item p, itype i){

< delaunay-tree::change_inf(p,Convert(i));

<}

<

234,235d221

<

< typedef DELAUNAY_TREE<int> DTType;
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H.3 DT.cc.diff

31c30

< #i ncl ude "DT. h"

> #i ncl ude <LEDA/ i npl / del aunay_tree. h>
1556,1598d1554

< void delaunay-tree::add_link(noeud n, priority_queue<DTlink,double>& PQ){
<

< noeudx stack = new noeud[counter+10];
< inttop =0;

< stack[0] =n;

< n—stacked = flag;

< int both=0;

<

<inti;

<

< while (top > 0){

< n = stack[top--];

<

< n—visite = flag;

<

< for (i=U; i<W i++)

< if (both || n—voisin[i] —visite # flag ){
<intj=(i==U)?V:U;
<intk=U+V+W-i;

< if ((n—type == Fini) || ((i == W) && (n—type==Infinil) ) ){
< DTlink dtl(n—s][j], n—s[k]);

< double ax=n—sl[j]—x;

< double ay=n—s[j]—y;

< double bx=n—s[k]—x;

< double by=n—s[k]—y;

< point pa(ax,ay);

< point pb(bx,by);

< double I=pa.distance(pb);

< PQ.insert(dtl,1);

<}

<}

<

< for (i=W; i>U; i--){

< noeud v = n—voisin[i];

< if (v—stacked # flag ){

< stack[++top] = v;

< v—stacked = flag;

<}

<}

<

1600,1602d1555

<

< delete stack;

<

1605,1615d1557

< void delaunay-tree:links(priority_queue<DTlink,double>& PQ){
<

< if (arbre == nouveau) return;

< flag++;
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< addlink(nouveau,PQ);
<

<}

<

< int delaunay_tree::size(){
< return counter;

<}

H.4 ESTPProblem.h

// Id : ESTPProblem.h,v2.31994/08/2307 : 56 : 08¢geof f Eap
#i f ndef ESTPPROBLEM_H
#def i ne ESTPPROBLEM_H

// The Euclidean Steiner Tree Problem class

#i ncl ude <LEDA/ array. h>
#i ncl ude <LEDA/ pl ane. h>
#i ncl ude <LEDA/ | i st. h>
#i ncl ude <LEDA/ set . h>

#i ncl ude <LEDA/ wi ndow. h>

#i ncl ude "Pr obl em h"
#i ncl ude "Uni f or mGener at or. h"
#i ncl ude "DT. h"

typedef set<point> ESTPSolution;
typedef ESTPSolution *pESTPSolution;

typedef array <point> Points;
typedef Points +pPoints;

enum possibleChanges { ADD, DELETE, REPLACE, NONE};
class ESTPProblem : public Problem{

public:
ESTPProblem();
~ESTPProblem();
void generateNeighbour();
void updateSolution();
int getL();
void printSolution();
void printNeighbour();
void undoChanges();

#i f def GRAPHICS
void plotSolution(color c=black);
void plotPoints();
void plotChange();

#endi f

protected:

// problem size
int n;
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// number of Steiner points in solution
intk;

// array of point coordinates

pPoints positions;

// current configuration

pESTPSolution solution;

// neighbour configuration
pESTPSolution neighbour;

// random number generator
pUniformGenerator URNG;

// Delaunay triangulation

DTType DT;

// minimum spanning tree

MSTType MST;

// array of pointers to objects containing point coordinates
// and pointer to the point’s item in the Delaunay triangulation
pAPType AP;

// new and old items in the Delaunay triangulation
DT_item newdyt;

DT_item olddyt;

// new and old elements in the AP array
pPoint oldpt;

pPoint newpt;

// numerous objects for doing geometry
int x,y,z;

point Px,Py,Pz,Ps,Exy;

segment Sxy,Axis;

circle Cxy;

possibleChanges changeType;

double mstlength;

// cost function

double distance(ESTPSolution& s);
void newNeighbour();

void traceESTPProblem();

void traceGenerateNeighbour();

void addPoint();

void deletePoint();

void replacePoint();

bool Opposite(const point& x, const point& y, line& 1);
void traceAddPoint();

void traceDeletePoint();

void traceReplacePoint();

%
typedef ESTPProblem *«pESTPProblem;

#endi f

H.5 ESTPProblem.cc

// Id : ESTPProblem.ce,v2.41994/08/2307 : 56 : 08¢geof f Eap
#i ncl ude "ESTPPr obl em h"

#i ncl ude <LEDA/ partition. h>
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#i ncl ude "Tr ace. h"

// constructor
ESTPProblem:: ESTPProblem(){
// read the number of points
n=read_int();
// read the random nmber generator seed
int seed=read_int();
URNG=new UniformGenerator(seed);
positions=new Points(1,n);
solution=new ESTPSolution;
neighbour=new ESTPSolution;
AP=new APType(1,2+n-2);
ESTPSolution &s=+solution;
Points &p=+positions;
APType &a=+AP;
// read the points
p-read();
register int i;
// construct the initial Delaunay triangulation
loop(i,1,n){
newdt=DT.insert(p[i] i);
newpt=new Point(p[i],newdt);
a[i]=newpt;
1
s.clear();
k=0;
// get the current solution cost
mstlength=100;
solutionDistance=distance(s);
mstlength=solutionDistance;
traceESTPProblem();

1

// destructor
ESTPProblem::~ESTPProblem(){
delete solution;
delete neighbour;
delete URNG;
delete AP;
delete positions;

1

// perform a transition
void ESTPProblem::generateNeighbour(){
changeType=NONE;
// one third change of doing an add, delete or replace
// although the value of k may change that
double PrAdd=1.0/3.0;
double PrDelete=2.0/3.0;
double u;
// repeat until a change is found
do{
u=URNG—rand();
if (u<PrAdd)&&(k<(n-2))){
addPoint();
1
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else{
if ((u<PrDelete)&&(k>0)){
deletePoint();
}
else{
if (k>0){
replacePoint();

1

1
+ while (changeType==NONE);
// get the cost of the neighbour
neighbourDistance=distance(+*neighbour);
change=neighbourDistance-solutionDistance;
#i f def TRACE
traceGenerateNeighbour();
#endi f

// the add transition
void ESTPProblem::addPoint(){
do{
// find three distinct points with which to construct a new point
x=int(URNG—rand()x(n+k))+1;
while (x==(y=int(URNG—rand()*(n+k))+1));
z=int(URNG—rand()x(n+k))+1;
while ((x==2)||(y==2)) z=int(URNG—rand()*(n+k))+1;
/ cout << string("%3d%3d%3d\n", x, y, z);
APType &a=+AP;
Px=a[x]—pt;
Py=aly]—pt;
Pz=a[z]—pt;
// find the equilateral point and axis
Exy=Py.rotate(Px,PI/3);
if ('Opposite(Exy,Pz line(Px,Py))) Exy=Px.rotate(Py,Pl/3);
Sxy=segment(Px,Py);
Axis=segment(Pz,Exy);
point p;
// the axis must cross the E-arc
if (Sxy.intersection(Axis,p)){
/| cout << "Axis intersects Segment xy\n";
// find the equilateral circle
double Cx=(Px.xcoord()+Py.xcoord()+Exy.xcoord())/3;
double Cy=(Px.ycoord()+Py.ycoord()+Exy.ycoord())/3;
point C(Cx, Cy);
Cxy=circle(C, C.distance(Px));
// the third point must be outside the E-circle
if (Cxy.outside(Pz)){
// cout << "z is outside E-circle\n";
// find the intersection of the E-circle and the axis
list<point> plist;
plist=Cxy.intersection(line(Axis));
Ps=plist.pop();
double d=Exy.distance(Ps);
forall(p,plist)
if (Exy.distance(Ps)>d)
Ps=p;
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ESTPSolution &s=+solution;
// the new point must not already be in the solution
if (!s.member(Ps)){

// cout << "Steiner point is not in current solution ”;
// cout << Ps; newline;

/ forall(p,s){

// cout << p; newline;

/

// add it to the triangulation

++k;

newdt=DT.insert(Psn+k);

// cout << "Steiner point added to DT\n";
newpt=new Point(Ps,newdt);

// traceAddPoint();

// list< DT _item> listdt;

// listdt.clear();

// DT.all _items(listdt);

// DT_item dt;

/ forall(dt,listdt){

// cout << DTinf(dt) << " " << DTkey(dt); newline;
/ }

a[n+k]=newpt;

s.insert(Ps);

changeType=ADD;
#i f def TRACE

traceAddPoint();
#endi f

}
}

}
+ while (changeType#ADD);
}

// the delete transition
void ESTPProblem::deletePoint(){
// find a random point and remove it
x=int(URNG—rand()xk)+n+1;
APType &a=+AP;
oldpt=al[x];
ESTPSolution &s=+solution;
s.del(oldpt—pt);
olddt=oldpt—dt;
DT.del item(olddt);
register int i;
loop(i,x+1,n+k){
DT.change_inf(a[i]—dt,i-1);
afi-1]=a[i];
}

/] traceDeletePoint();

/) list< DT item> listdt;
/) listdt.clear();

//  DT.all_items(listdt);
//  DT_item dt;

/] forall(dtlistdt){
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// cout << DTinf(dt) << " " << DTkey(dt); newline;
/Y

—k;

changeType=DELETE;
#i f def TRACE

traceDeletePoint();
#endi f

1

// the replace transition

void ESTPProblem::replacePoint(){
int oldk=k;

#i f def TRACE
traceReplacePoint();

#endi f
deletePoint();
while (k#oldk) addPoint();
changeType=REPLACE;

1

// it is necessary to be able to undo the changes to the triangulation
// if a transition is rejected
void ESTPProblem::undoChanges(){
Mfeout << "UNDO\n";
APType &a=+AP;
ESTPSolution &s=+solution;
if ((changeType==REPLACE)||(changeType==ADD)){
traceGenerateNeighbour();
s.del(newpt—pt);
DT.del_item(newpt—dt);
register int i;
delete newpt;
-k;
!
if ((changeType==REPLACE)||(changeType==DELETE)){
traceGenerateNeighbour();
++k;
newdt=DT.insert(oldpt—pt,n+k);
a[n+k]=new Point(oldpt—ptnewdt);
s.insert(oldpt—pt);

1

/) list< DT item> listdt;

/] listdt.clear();

//  DT.all_items(listdt);

//  DT_item dt;

/] forall(dt listdt){

// cout << DTinf(dt) << " " << DTkey(dt); newline;
/)

#i f def GRAPHICS
solutionDistance=distance(s);
#endi f

1

// a small amout of housekeeping is necessary if a transition
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// is accepted
void ESTPProblem::updateSolution(){
/feout << "ACCEPT\n";
solutionDistance=neighbourDistance;
if ((changeType==DELETE)||(changeType==REPLACE))
delete oldpt;

/) list< DT item> listdt;
/] listdt.clear();
//  DT.all_items(listdt);
//  DT_item dt;
/] forall(dtlistdt){
// cout << DTinf(dt) << " " << DTkey(dt); newline;
/)
}

// the chain length
int ESTPProblem::getL(){

/] return 3;

return n*n;

/) return (n-2)x(2xn-3)*(2xn-4)x(2xn-5)/6;
}

void ESTPProblem::printSolution(){
ESTPSolution &s=+solution;
point p;
cout < string(" \n%21d", k);
forall(p,s)
cout < string(" \n9%21. 7f 9%45. 7f ", p.xcoord(), p.ycoord());
}

void ESTPProblem::printNeighbour(){
1

inline double ESTPProblem::distance(ESTPSolutioné s){
double t=0;
priority_queue<DTlink,double> PQ;
array<partition_item> P(1,n+k);
partition PT;
register int i;
loop(i,1,n+k) P[i]=PT.make_block();
DT.links(PQ);

#i f def GRAPHICS
MST.clear();

#endi f
i=0;
while (i<(n+k-1)){

pg-item pgq=PQ.find_min();
DTlink dt=PQ.key(pq);
int s=DT.inf(dt.s);
int f=DT.inf(dt.f);
if ('PT.same_block(P[s],P[f])){
#i f def GRAPHICS
link 1k(s,f);
MST.append(lk);
#endi f
PT.union_blocks(P[s],P[f]);
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++i;
t+=PQ.inf(pq);

PQ.del_item(pq);
}

return t/mstlength+100.0;

1

inline void ESTPProblem:newNeighbour(){
%

void ESTPProblem::traceESTPProblem(){
if (trace>10){
Points &p=+positions;
inti;
loop(i, 1, n) cout < string(" ¥6d%d5. 7f 9%45. 7f \n",
i, pli]-xcoord(),pli].ycoord());
#i f def GRAPHICS
MST.print("\n’); newline;
#endi f
cout < string(" %d.4. 7f \n" ,solutionDistance);

}
}

void ESTPProblem::traceGenerateNeighbour(){
if (trace>10){
cout < string(" %21. 7f ", solutionDistance);
cout < string(" %d5. 7f %45. 7f ", neighbourDistance, change);
newline;

}
}

#i f def GRAPHICS
void ESTPProblem::plotPoints(){
Points &p=+positions;
ESTPSolution &s=+solution;
point q;
register int i;
loop(i,1,n) Wp—draw filled_node(pl[i]);
forall(q,s) Wp—draw _filled_node(q,red);
}

void ESTPProblem::plotSolution(color c=black){
plotPoints();
APType &a=+AP;
link 1;
forall(1, MST) Wp—draw_edge(a[l.s]—pt,a[l.f]—pt,c);
}

void ESTPProblem::plotChange(){
if ((changeType==REPLACE)||(changeType==DELETE)){

Wp—setnode_width(5);
Wp—draw_filled_node(oldpt—pt,orange);
Wp—setnode_width(3);

if (changeType==REPLACE){

Wp—draw_text(0,Wp—ymax()-0.1,
string(" %8. 4f Repl ace" solutionDistance));
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1

else{
Wp—draw_text(0,Wp—ymax()-0.1,
string(" %8. 4f Del et e " solutionDistance));
}

1

if ((changeType==REPLACE)||(changeType==ADD)){
Wp—setnode_width(5);
Wp—draw _filled_node(newpt—pt,blue);
Wp—draw filled_node(Px,green);
Wp—draw filled_node(Py,green);
Wp—draw filled_node(Pz,green);
Wp—draw filled_node(Exy,green);
Wp—draw_circle(Cxy,green);
Wp—draw_edge(Exy,Pz,green);
Wp—setnode_width(3);
if (changeType==REPLACE){

Wp—draw_text(0,Wp—ymax()-0.1,
string(" %8. 4f Repl ace" solutionDistance));

1

else{
Wp—draw_text(0,Wp—ymax()-0.1,

string(" 8. 4f Add " solutionDistance));
}

1

}
#endi f

void ESTPProblem::trace AddPoint(){
if (trace>9){
COUt € "ADD - - - - e e oo \n";
cout < string(" %d ", x) < Px; newline;
cout < string(" %d ", y) < Py; newline;
cout < string(" %4d ", z) < Pz; newline;
cout < string(" %d ", n+k) < newpt—pt; newline;

1

}
void ESTPProblem::traceDeletePoint(){
if (trace>9){
cout K "DELETE --------mmmm i i \n";
cout < string(" %d ", x) < oldpt—pt; newline;
}
}

void ESTPProblem::traceReplacePoint(){
if (trace>9)
cout < "REPLACE ---------mmmmi i \n";
}
bool ESTPProblem::Opposite(const point& X, const point& y, line& 1){
if (!L.vertical()){
double Ix = L.y_proj(x.xcoord());
double ly = Ly_proj(y.xcoord());
if ((Ix<x.ycoord()) && ly<y.ycoord()) return false;
if ((Ix>x.ycoord()) && ly>y.ycoord()) return false;
return true;
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else{
point p;
Lintersection(line(), p);
double Ix = p.xcoord();
if ((Ix<x.xcoord()) && Ix<y.xcoord()) return false;
if ((Ix>x.xcoord()) && Ix>y.xcoord()) return false;
return true;

H.6 Main.cc

// Id: Main.ce,v2.11994/06/2300: 01 : 33geof fEap
#i ncl ude "Tr ace. h"

#i ncl ude "Anneal er. h"

#i ncl ude "ESTPPr obl em h"

int trace;

#i f def GRAPHICS
windows Wp;
#endi f

main(){
trace=read_int();

#i f def GRAPHICS
window W(600,625);
W.init(-0.1,1.1,-0.1);
W.set_show _coordinates(false);
W.set_ node_width(3);
W.set_mode(src_mode);
Wp=&W;

#endi f

Annealer A;
ESTPProblem P;

A.solve(P);
#i f def GRAPHICS

W.acknowledge(* Done! "),
#endi f

1

H.7 link.h

/] Id : link.h,v2.21994/08 /2307 : 56 : 08geof f Exp
#i f ndef MYLINK_H

#def i ne MYLINK_H

// An object used as a list element in the minimum spanning tree list
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// The members are the indicies of the points linked
#i ncl ude "DT. h"

class link{
public:
ints;
int f;
public:
link(){};
link(int i, int j){
s=i;
f=j;
}
link(const link& 1){
s=l.s;
f=11;
}
friend void Print(const link& 1, ostreamé& out=cout);
friend void Read(const link& 1, istreamé& in=cin);
friend int compare(const link& I, const link& m);
LEDA_MEMORY(link)

|7
inline void Print(const link& 1, ostreamé& out=cout){
out < string(" [ ¥8d] ====[ %3d] ", Ls, L.f);

inline void Read(const link& 1, istream& in=cin){};
inline int compare(const link& 1, const link& m){
return 0;

}
LEDA_TYPE_PARAMETER(link)

// A similar object but containing the triangulation items
// of the link points

class DTlink{
public:
DT.items;
DT_item f;
public:
DTlink(){};
DTlink(DT-item i, DT_item j){
s=i;
f=j;
}
DTlink(const DTlinké& 1){
s=l.s;
f=11;
)
friend void Print(const DTlinké& 1, ostreamé& out=cout);
friend void Read(const DTlink& 1, istreamé& in=cin);
friend int compare(const DTlink& 1, const DTlink& m);
LEDA_MEMORY(DTlink)
b
inline void Print(const DTlink& 1, ostreamé& out=cout){};
inline void Read(const DTlink& 1, istreamé& in=cin){};
inline int compare(const DTlink& 1, const DTlink& m){
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return 0;

}
LEDA_TYPE_PARAMETER(DTlink)

#endi f

H.8 Point.h

// Id: Point.h,v2.21994/08/2307 : 55 : 57geof f Eap
#i f ndef MYPOINT_H
#def i ne MYPOINT_H

// An object used as an array element to keep track of the triangulation
// item of a point

#i ncl ude <LEDA/ poi nt . h>
#i ncl ude "DT. h"

class Point{
public:
point pt;
int dg;
DT_item dt;
public:
Point(point p, DT-item d){
pt=p;
dg=0;
dt=d;
1
~Point(){};
Point(const Point& P){
pt=Ppt;
dg=Pdg;
dt=P.dt;
1
friend void Print(const Point& p, ostreamé& out=cout);
friend void Read(Point& p, istreamé& in=cin);
friend int compare(const Pointé& p, const Point& q);
LEDA_MEMORY (Point)
b
inline void Print(const Point& p, ostreamé& out=cout){ }
inline void Read(Point& p, istreamé& in=cin){}
inline int compare(const Point& p, const Point& q){
return 0;
!
LEDA_TYPE_PARAMETER(Point)
typedef Point +pPoint;
inline void Print(pPoint& p, ostreamé& out=cout){ };
inline void Read(pPoint& p, istreamé& in=cin){};
inline int compare(const pPoint& p, const pPoint& q){
return 0;
!
LEDA_TYPE_PARAMETER(pPoint)
#endi f
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