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Abstract 

 

Customary harvest of wildlife can be an important mechanism through which 

indigenous people maintain a connection with their environment. Observations built 

up during harvesting events are also a useful way of monitoring change over time. 

However, not all traditional societies have lived harmoniously with their environment. 

Wildlife populations can become depleted quickly if not managed sustainably. Using 

traditional knowledge interviews, empirical data from two island populations and 

population modelling, I examined the viability of two island sooty shearwater 

populations in the Marlborough Sounds and their resilience to resumed, low-level 

harvest. The biology of the sooty shearwater populations was found to closely 

resemble that of populations found at higher latitudes. Historic harvest by 

Marlborough Māori probably had an important influence on the size of present day 

Marlborough populations. Viability models demonstrated that these populations were 

experiencing very low or negative intrinsic rates of increase. Population sizes have likely 

been affected by previous harvest and are not at carrying capacity. The populations are 

therefore vulnerable to demographic stochasticity, environmental variability and 

extrinsic factors such as fisheries bycatch. The low and negative growth rates for 

populations at small sizes not at carrying capacity are of concern where harvesting is 

proposed. This study provides a basis for ongoing research into the population 

trajectories of each island population. Harvesting is possible in one population provided 

an appropriate monitoring regime is established prior to harvest being undertaken, to 

ensure the long-term viability of Marlborough Sounds’ sooty shearwater populations. 
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CHAPTER ONE 

Sustainable harvest, traditional knowledge and 

population modelling: the value of a diverse 

approach for wildlife management 

 

1.1 Introduction 

The spread of humans across the globe came with devastating consequences to Earth’s 

animals. For example, approximately 20% of the world’s bird species were lost with the 

spread of humans across the Pacific (Steadman 1995). Collapsing populations of large 

vertebrates (Martin & Steadman 1999) would have put great pressure on human 

populations to modify their behaviour. Traditional systems of management enforced 

through the use of taboo emerged as a form of resource management (Colding & Folke 

2001). Throughout Oceania, fishing rights were controlled by people of authority who 

regulated the level of exploitation within their reef or lagoon area. This approach 

helped conserve fish stocks and maintain an ongoing resource for the people (Johannes 

1978). However, despite best attempts, our efforts at managing resources are far from 

totally successful. Today unsustainable harvest contributes to nearly one-third of all 

bird and mammal species that are threatened with extinction (Rosser & Mainka 2002). 

A priority of conservation therefore must be to develop frameworks for determining 

the sustainability of harvest. 

The harvest of wildlife remains a contentious issue. Ludwig et al. (1993) note that 

achieving a consensus regarding the sustainability of a harvest is difficult and is often 

debated even after the collapse of the resource. The authors further suggest that it is 

impossible to know the sustainable harvest limit of any renewable resource without 

first exceeding that limit. The almost complete elimination of the Atlantic cod (Gadus 

morhua) through overharvest (Hutchings & Myers 1994) is a sobering reminder of this. 
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Nonetheless, large scale wildlife harvests can be sustainable. Short-tailed shearwaters 

(Puffinus tenuirostris) off Tasmania have been harvested for decades with few detected 

impacts (Skira & Wapstra 1980; Skira et al. 1986). 

1.2 Sustainable wildlife harvest 

Sustainable wildlife harvest is based on the premise that each year there is a ‘doomed 

surplus’ of juveniles that would not survive and recruit into the population (Bartmann 

et al. 1992). While the harvest of such a surplus would have little to no impact on the 

population, determining the magnitude of the reproductive surplus is a major challenge 

(Hilborn et al. 1995). In the case of the terecay (a river turtle; Podocnemis unifilis), 

overharvest of eggs and adult females by villagers along the Aguarico River, Ecuador 

caused dramatic declines in local populations. Researchers found that terecay nests 

below the river’s flood line were at a higher risk of natural destruction. Harvesting from 

this ‘doomed surplus’ of eggs was found to adequately meet the consumption needs of 

the villagers and provided encouraging prospects for the persistence of the species 

(Caputo et al. 2005).  

Harvesting wildlife becomes more problematic the smaller a population becomes. Once 

a population is small and isolated it is much more vulnerable to random events such as 

demographic, environmental and genetic stochasticity and the occurrence of 

catastrophes (Shaffer 1981). A threshold harvesting strategy, where a population is 

harvested to a certain level, below which no further harvest is allowed (Lande et al. 

1995; Lande et al. 1997) may be useful for determining harvest strategies for small 

populations. However, the appropriate threshold may not be applicable to all species 

(for example see Tufto et al. 1999). Small populations may therefore need an adaptive 

management approach to ensure harvest is sustainable long-term as has been 

demonstrated in the adaptive harvest of North Island robins (Petroica longipes) for 

translocation (Dimond & Armstrong 2007). 
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1.2.1 Harvest strategies and traditional knowledge 

Development of sustainable harvest practices is critical to the persistence of the 

resource. Harvest methodologies of indigenous communities are guided by their 

traditional knowledge which is based on their observations, experiences and adaptive 

techniques passed on through generations (Berkes 2008). These methods do not 

necessarily limit the quantity harvested; instead they guide the harvesters through 

mechanisms of a cultural or spiritual nature (Berkes et al. 2000; Colding & Folke 2001; 

Kitson 2002). For example, the Denésołiné of the Canadian arctic have extensive 

traditional knowledge of caribou (Rangifer tarandus) which they have used for 

generations to successfully manage their annual caribou harvest (Parlee et al. 2005). 

Yet despite successes, traditional knowledge does not always manage harvest 

sustainably, for example, some traditional fishing methods in Tonga involve the 

destruction of parts of the coral reef to access the fish (Johannes 2003). 

1.2.2 Traditional knowledge and science 

In contrast to traditional ecological knowledge, a modern scientific approach uses 

quantitative data generally gathered during intensive short term field surveys. Future 

predictions can then be made by using a population modelling approach. The accuracy 

of modelling reflects the quality of the input data (Brook et al. 2000). This is concerning 

because in many cases, there are simply no data available, and their procurement may 

take a lot longer than the time it takes for the species or ecosystem to become 

overexploited (Johannes 1998). It is here where traditional ecological knowledge can 

play an important role in conservation. Although often criticised for its lack of 

quantitative authority, indigenous communities can provide wealth of important 

biological information built over time that pre-dates any scientific assessment 

(Johannes 2003; Moller et al. 2004). This, combined with local ecological knowledge 

(information developed in one person’s lifetime from their own interactions with the 

environment) can serve to assist the conservation of species and/or environments. For 

example, the local ecological knowledge of Canadian Inuits alerted conservation 
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scientists to an alarming population decline in the common eider (Somateria mollissima 

sedentaria; Gilchrist et al. 2005), which would have otherwise gone unnoticed by 

western scientists. 

It is also important to note that scientific information can complement traditional 

knowledge. A good example is the declines in harvest rates of sooty shearwaters 

(Puffinus griseus) by Rakiura Māori of southern New Zealand. The decline in numbers 

could not have been explained by their traditional knowledge alone because their 

contact with the birds is only during the breeding season (Lyver et al. 1999; Moller et al. 

2004). It was only through a collaboration with scientists that it was found that these 

trans-equatorial migrants are exposed to numerous threats outside their period of 

contact with Rakiura Māori and that this was leading to the decline (Moller et al. 2004).  

1.3 The study species 

The sooty shearwater is an excellent model species for studying harvest sustainability. 

It is one of New Zealand’s most abundant seabirds (Warham & Wilson 1982) with a 

recent study estimating the total population to be 21 million individuals (Newman et al. 

2009b). It is also one of the last species still traditionally harvested by Māori (a practice 

known as muttonbirding; Kirikiri & Nugent 1995; Taiepa et al. 1997). Despite its large 

numbers, the sooty shearwater has declined in recent decades (Scofield & Christie 

2002; Moller et al. 2009a). Population declines have been reflected in the annual 

muttonbird harvest (Lyver et al. 1999), in observed densities in the North Pacific (Veit 

et al. 1996; 1997), and in a marked reduction in burrow density on some islands (Scott 

et al. 2008). Small sooty shearwater populations have disappeared from predator-free 

islands in the Hauraki Gulf in the last century (Scott et al. 2008), implying a tenuous 

persistence in locations distant from the centre of the species’ breeding range off 

southern New Zealand. Further, their typically low maximum annual growth rates 

(Jones 2002; Hunter & Caswell 2005) limit their ability to sustain high levels of 

additional mortality and recover quickly from depletion (Dillingham & Fletcher 2008). 
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1.4 Thesis overview 

The aim of this thesis is to investigate the traditional harvest and conservation of sooty 

shearwaters in the Marlborough Sounds, New Zealand. The main concepts explored are 

the combination of traditional knowledge, biological research and population 

modelling to determine a sustainable harvest level. A desire to resume traditional 

harvest on Motungārara and Tītī Islands has been expressed by members of Te Atiawa 

Manawhenua ki te Tau Ihu (Te Atiawa) and Ngāti Kuia respectively. The results of this 

thesis will therefore provide information to both the current managers of the islands, 

the Department of Conservation, and each Māori tribal group which will improve their 

current understanding of the state of each population and each population’s resilience 

to a return to customary harvest. The primary questions that underpin this thesis are: 

1) Can Māori traditional knowledge provide information for use in population 

viability analysis? 

2) Do the sooty shearwater populations of the Marlborough Sounds display any 

biological differences from populations closer to the centre of the species’ 

breeding range? 

3) Are the populations in the Marlborough Sounds resilient to the resumption of 

low-level harvest? 

In order to answer the questions presented above, it was necessary to conduct both 

biological and sociological research. Chapter Two of this thesis presents the results of 

traditional knowledge interviews conducted with members of Te Atiawa and Ngāti Kuia. 

Their respective ancestors have harvested sooty shearwaters for many generations on 

Motungārara and Tītī Islands. An analysis of their interviews is presented.  

Following this, Chapter Three presents data from the 2008/09 breeding season that 

investigated the biological parameters of the sooty shearwater populations on Long 

and Tītī Islands. Aspects of their biology are presented in comparison with similar 

biological studies that were conducted on populations at higher latitudes, closer to the 

centre of the species’ breeding range. Due to the lack of feasibility to camp long-term 
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on Motungārara, data from Long Island was used for modelling the Motungārara 

population.  

The viability of the Motungārara and Tītī Island sooty shearwater populations and their 

resilience to customary harvest were investigated using the population viability analysis 

(PVA) programme VORTEX version 9.96. Results from Chapters Two and Three are 

incorporated into the PVA. The modelling results are presented in Chapter Four.  

This thesis is written as a series of independent manuscripts. As a result, there is some 

repetition in the introductions to each chapter. Chapters Two to Four include aims, 

methods, results and discussions framed within the specific focus of each of the 

underpinning questions of this thesis and their relevance discussed in a broader 

context. Many Māori words are utilised, their translation is given at their first 

appearance in each chapter. 

Finally, Chapter Five provides a synthesis of the results and presents a framework for 

wildlife harvest decision making to help guide conservation managers and iwi (Māori 

tribes) when evaluating requests to harvest wildlife. A general discussion of the core 

findings of my research and their implications for the resumption of traditional harvest 

are presented within the context of the framework. The significance of harvest on the 

future management of the sooty shearwater populations of the Marlborough Sounds is 

discussed. 
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CHAPTER TWO 

Muttonbirds and mātauranga: traditional harvest 

and conservation of sooty shearwaters (Puffinus 

griseus) in the Marlborough Sounds 

 

2.1 Introduction 

The interaction of indigenous communities with their environment establishes a 

cumulative body of knowledge that is passed on through generations (Berkes 2008). 

This knowledge, often referred to as traditional ecological knowledge, takes a holistic 

approach to the explanation of ecological processes (Turner et al. 2000). Traditional 

knowledge has made some important contributions to conservation. For example, local 

ecological knowledge of Canadian Inuit informed conservation scientists of important 

common eider (Somateria mollissima sedentaria) wintering habitat subsequently 

recommended for protection (Gilchrist et al. 2005). In addition, diagnostic features 

used to separate two morphologically similar species of rock wallaby (Petrogale spp.) 

by Bininj of western Arnhem Land, Australia may help scientists with ecological 

research and conservation efforts in the future (Telfer & Garde 2006) and traditional 

knowledge of New Zealand Māori presented previously unknown historic distributions 

of tuatara (Sphenodon punctatus; Ramstad et al. 2007). 

The reliance of New Zealand’s Māori people on native plant and wildlife harvest for 

survival meant they had to develop a close relationship with their environment. Prior to 

European arrival in New Zealand, Māori harvested a diverse range of flora and fauna, 

governed by extensive spiritual and cultural protocols developed over generations 

(Kirikiri & Nugent 1995; Roberts et al. 1995). Harvest regimes were (and are still) based 

on Māori traditional knowledge, hereon referred to as mātauranga Māori. Like 

knowledge systems of other indigenous peoples around the world, mātauranga Māori 
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is a fluid body of knowledge built over generations. However, it has been 

acknowledged that assimilation into European culture has led to a breakdown in its 

transmission (Tau 2001). There is therefore a concern that Māori are not capable of 

sustainably managing wildlife using their traditional techniques (Moller 1996). As a 

consequence, Māori largely remain on the periphery of conservation management 

despite recognition in legislation and attempts to involve them at the community level 

(Craig et al. 2000; Lyver 2005).  

Sooty shearwaters (tītī, muttonbirds, Puffinus griseus) are an abundant, medium sized 

seabird that were once a seasonal source of food for iwi (Māori tribes) around New 

Zealand (Anderson 1997). The breeding stronghold of this trans-equatorial migrant is 

on islands off southern New Zealand; only two percent of the national population 

breeds outside of that area (Newman et al. 2009b). Despite a recent estimate of over 

21 million birds (Newman et al. 2009b), the species was reclassified as Near Threatened 

by the IUCN in 2004 due to recent population declines (Birdlife International 2008).  

The traditional harvest of sooty shearwaters (a practice known as muttonbirding) 

occurred historically throughout the Marlborough Sounds although its origins remain 

unclear. Muttonbirding was prohibited in the 1960s by the Department of Lands and 

Survey and it is now almost 50 years since the last harvest. Local iwi have raised 

concerns over the loss of their muttonbirding knowledge with the passing of kaumātua 

(respected elders) and a desire to resume low level harvest for the purpose of wānanga 

(learning forums) has been expressed. However, little is known about the viability of 

these sooty shearwater populations or the level of harvest they can support.  

Much is now known about the biology of the sooty shearwater from studies in the 

centre of its breeding range off southern New Zealand. In this study, I conducted 

interviews with local kaumātua to try and establish knowledge that is specific to the 

sooty shearwater in the Marlborough Sounds area. The interviews were also 

established as an archive for each iwi involved. The primary objectives were to (a) 

determine biological and population characteristics that might be useful for modelling 

abundance and population growth (see Chapter Three); (b) determine the nature and 
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scale of historic muttonbird harvesting on Motungārara and Tītī Islands, and specific 

harvest parameters that could be used in a population viability analysis (see Chapter 

Four); (c) describe any traditional conservation management strategies of the species; 

and (d) determine the knowledge transmission mechanisms and the importance of 

harvest in maintaining mātauranga Māori. 

2.2 Methods 

2.2.1 Historic context 

Ngāti Kuia is an iwi that has been in the Marlborough Sounds area, primarily in Pelorus 

Sound/Te Hoiere, since the migration from Hawaiki (the Māori ancestral homeland) in 

the thirteenth century (Mitchell & Mitchell 2004). Ngāti Kuia historically harvested 

seabirds on Tītī Island in outer Pelorus Sound (Fig. 2.1). Te Atiawa Manawhenua ki te 

Tau Ihu (hereon Te Atiawa) is an iwi that moved from the North Island to Arapawa 

Island and Queen Charlotte Sound/Te Tōtaranui around 1829 (Mitchell & Mitchell 

2004). It is likely that the ancestors of those that settled on Arapawa Island began 

harvesting seabirds on Motungārara Island in Queen Charlotte Sound (Fig. 2.1) soon 

after arrival in the area. During the 1800s the Crown acquired many seabird islands in 

the region and consequently considered the former owners to have absolved their 

rights to harvest. It was only at the ‘indulgence of the Crown’ that the removal of birds 

was permitted until the 1950s (MacLachlan 1968). Issues around harvest management 

arose in the early twentieth century and Trustees were established in 1933 to manage 

the harvest on Tītī Island (Webb 1959) and in 1949 for Motungārara Island (Greig 1949). 

Despite opposition from the iwi, harvest was stopped on both islands in the 1960s due 

to government concerns over sustainability. 

2.2.2 Interview process 

A request to undertake this research was made by members of Ngā Takiwā o Te Atiawa 

whānau (Ngā Takiwā), a group of families from within Te Atiawa. The research was 

sanctioned by the Trustees of Motungārara Island. The Trustees of Motungārara Island 



 
 

10 
 

and members of Ngā Takiwā identified individuals within their whānau (families) that 

were the most knowledgeable on sooty shearwater harvesting and Motungārara Island 

(Fig. 2.1). Traditional knowledge of five individuals was recorded through semi-directed 

interviews: three kaumātua who harvested as young people, one kuia (female elder) 

who processed the birds following harvest and one pakeke (knowledgeable adult) who 

worked for Te Rūnanganui o Te Atiawa, a tribal authority, at a time when muttonbird 

harvest was debated. All interviewees were of Te Atiawa descent, with ages ranging 

from 50 to 85 years. The low number of those interviewed reflects the few people still 

alive who have knowledge and familiarity with the sooty shearwater harvest. 

Interview questions were developed by conservation ecologists and Ngā Takiwā 

representatives to ensure the collected information was relevant to both the scientific 

and Māori communities involved. Questions were asked about sooty shearwater 

harvesting, customs associated with harvest, sooty shearwater ecology and distribution, 

and Motungārara Island. All interviews were conducted by two interviewers with a 

member of Ngā Takiwā (G. Paine) present. In one instance, an interview was conducted 

with an additional kaumātua present; all other interviews were undertaken with 

interviewees individually.  

As a result of this work, I was invited to record the mātauranga Māori of Ngāti Kuia 

during a wānanga mahinga kai (food gathering learning forum) held at Tītīrangi, 

Pelorus Sound in April 2009 (Gaze & Smith 2009). Three kaumātua present at the 

wānanga were interviewed about their knowledge of harvesting on Tītī Island using the 

questions developed for the interviews about harvesting on Motungārara. Two of the 

kaumātua had direct harvesting experience, the other had knowledge passed on from 

his father.  

Interviews were conducted between February and April 2009, each lasting between 45 

and 120 minutes. Interviewees signed consent forms to protect their intellectual 

property rights. All interviews were recorded digitally with a Panasonic HVX200 video 

camera. Interviews were transcribed using the programme WavPedal version 5.05. 

Transcribed interviews were returned to interviewees for correction and identification 
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of parts to remain confidential. Final transcripts and video records were returned to 

each interviewee. A compilation of the interviews regarding Motungārara Island was 

given to the Ngā Takiwā Trust to archive and a video recording of the wānanga and 

associated interviews were presented to Ngāti Kuia.  

 

 

Figure 2.1: Location of islands involved in this study in the Marlborough Sounds. Tītī and 

Motungārara are currently owned and managed by the Department of Conservation. Tītī Island 

is a Nature Reserve. Motungārara is unoccupied Crown land. The different scales reflect the 

scale difference between the mainland and the islands. 

2.3 Results 

For ease of reference, all people interviewed regarding Motungārara are referred to 

collectively as Ngā Takiwā. Information specific to each tribal group is presented 

separately. Where not specified, the results given are common to both. 
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2.3.1 Sooty shearwater biology and ecology 

Only the Motungārara harvesters were asked questions about sooty shearwater 

ecology. All of the kaumātua identified that the birds preferred to nest in areas where 

the soil is friable for digging, and two kaumātua thought most burrows were found on 

top of Motungārara. One harvester suggested burrows were only found above the flax 

line that skirts the island. He described this as being the boundary, below which only 

little blue penguins (Eudyptula minor) were present. All kaumātua identified the birds 

as only producing one chick each season. Harvesters were unsure of the age of the 

birds when they first returned to breed or if adult birds stayed in the same pair over 

multiple seasons. However, two kaumātua suggested the same birds returned to the 

island each year to breed, one further suggested that chicks born on Motungārara 

come back to breed on Motungārara. One harvester knew the birds went to sea when 

they left the island; the others were not sure where the birds went.  

Although none of the kaumātua of Motungārara could remember the number of birds 

once present on the island, one kaumātua suggested close to 800 pairs bred on the 

island during his time out harvesting. On Tītī Island, none of the kaumātua could say 

how many birds were present in the past; two however, referred to the nearby tribal 

area known as Tītīrangi (tītī = muttonbird; rangi = sky) which they explained meant 

large flocks of birds would have once filled the skies. Two kaumātua also suggested that 

the habitat of these birds would have also included the mainland, not just the offshore 

islands they are restricted to now, which would have contributed to the greater 

abundance of birds.  

2.3.2 Muttonbirding on Motungārara and Tītī Islands 

On both islands, interviewees reported harvest occurring on a single day in either late 

March or early April, but sometimes as late as the last week of April. On Motungārara, 

all of the harvesters described landing on the island in the early morning while it was 

still dark. Early morning was considered the best time to harvest because chicks were 

close to the entrance of their burrows after being fed by their parent. For all harvesters 
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interviewed, the primary method of extraction involved placing an arm and shoulder 

down the full length of the burrow. In some cases a stick was used to determine the 

burrow occupant. All Motungārara harvesters used the type of peck on the stick to 

identify the species, whereas Ngāti Kuia kaumātua used the sound or call of the bird 

inside. A stick was also used to coax the bird out. Two harvesters (one from each tribal 

group) described fraying the end of a stick, likely from flax (Phormium cookianum), and 

twisting it on the bird down the burrow. Shearwater chick presence was confirmed 

when the stick was extracted and down was attached to the end. Huge emphasis was 

placed on not digging out birds or damaging the burrows while on the island. It was 

believed that when the burrows were damaged the parents would not return to those 

burrows the following year. In addition, the repercussions from tribal elders for digging 

out a chick were apparently so severe it was avoided by all young harvesters.  

All harvesters identified chicks as being the sole target while out on the islands. The 

majority of those asked (80%) named the birds taken as either tītī or muttonbirds. Half 

of them also identified the birds as the sooty shearwater. No other target species was 

identified. Penguins were the only other species acknowledged to be present on the 

islands. Once chicks were extracted, Motungārara harvesters described crushing the 

skull with a thumb or biting them on the back of the head. In contrast, Tītī harvesters 

broke the necks. Two harvesters (one from each tribal group) described placing 

pressure on the birds’ abdomen which forced out the stomach contents. On 

Motungārara, the harvested birds were sometimes collected by arranging them into 

bunches of four, and tying their necks together with flax to be taken back to the boat. 

One of the harvesters described carrying up to 20 birds at a time in this manner. 

Chicks were processed either on the boat as the harvesters returned home, or back on 

the mainland. Methods for processing included dipping the chicks into boiling water to 

aid plucking or plucking off most of the down and singeing the rest off either in the fire 

(a process called hunuhunu) or with a blowlamp. Men harvested and prepared the 

birds while cooking was primarily undertaken by females. Women did land on Tītī 

during a harvest but they generally fished or gathered kaimoana (seafood) and did not 
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participate in the harvest itself. The birds were typically eaten fresh but, in some years, 

were also preserved in their own fat to help families through the winter months. 

The years in which harvest was undertaken and the harvest date itself, were timed to 

coincide with abundant numbers of chicks in optimal condition. A harvester from both 

Te Atiawa and Ngāti Kuia said they never saw skinny chicks. Two Ngāti Kuia kaumātua 

commented that the timing was also good for other harvested species such as crayfish 

(Jasus edwardsii), groper (Polyprion oxygeneios), kererū (Hemiphaga novaeseelandiae) 

and weka (Gallirallus australis). Criteria for determining peak condition were lack of 

adult feathers and high fat content. Small or undersized birds were returned to their 

burrows, however it was not specified whether fully feathered chicks were also 

returned. One harvester on Motungārara described pulling a bird from a burrow and if 

it was not bigger or of equal size to the one before, it was put back. This was reiterated 

by the kuia from Ngā Takiwā who described the birds as all being large and uniform in 

size, comparable to the size of a bantam chicken. Harvesters from both tribal groups 

also commented that the advantage of harvesting downy chicks meant plucking was 

easier.  

On Motungārara, only one harvest was undertaken in a year and the harvest was 

always shared between families, even with those that had not participated in the 

harvest that year. Between 30-80 birds were taken and shared between three to four 

families. Tītī Island has a much larger sooty shearwater population than Motungārara. 

Family groups harvested on different days to minimise disturbance. One kaumātua 

suggested an average of twelve birds were harvested per family. The averages 

suggested equated to approximately 140-240 birds shared with up to twelve families. 

Another harvester suggested as many as 500 birds could have been poached in any one 

season following the closure of the island. 

2.3.3 Tikanga and conservation management strategies 

One kaumātua described the harvest as a “responsibility” (N. Watson). Eighty four 

percent of the kaumātua interviewed regarded harvest and respect for the 
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environment while out harvesting as the key method for managing the sooty 

shearwater populations and their island habitat. Harvest was guided by a number of 

protection strategies (Table 2.1). As one kaumātua put it: “…*the harvesters+ used to 

look after the *island+ so next season the next whānau might be able to get there and 

there would be no damage and management would be right. Take the right ones and 

don’t destroy the holes, that was the main thing” (G. Aldridge).  

Table 2.1: Harvest and protection strategies used by Ngā Takiwā and Ngāti Kuia to manage 

the island shearwater populations. 

Concept Strategy 

Regulation of 

numbers harvested 

Number of chicks harvested adjusted seasonally depending on the 

number of chicks available. 

Only chicks harvested, never adults, to ensure the long-term 

persistence of the population. 

Regulation through only harvesting every second chick. 

Harvested chicks of uniform size, equal to or bigger than the chick 

harvested earlier. 

All small or undersized chicks returned to their burrow. 

Harvest conducted over one day although Ngāti Kuia spread 

harvest out over a number of days, one day per whānau or group 

of whānau. 

Protection of habitat  Movement within colonies adjusted to minimise damage, all 

damaged burrows restored as best possible. 

No digging of burrows to access chicks.  

No damage or modification to the bird’s habitat undertaken, Ngāti 

Kuia did allow minimal clearing of undergrowth to enable easier 

access to burrows by returning adult birds. 

Control of access Rights to harvest were restricted to those whānau with ancestral 

ties to the islands. 

There was never any settlement or long-term occupation of the 

islands. Occasionally some slept overnight but left soon 

thereafter. 
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The number of birds harvested fluctuated annually. One Motungārara harvester 

commented that the number of chicks available could fluctuate dramatically between 

years. He remembered occasionally harvesting barely enough for a meal but the 

following trip there being an abundance of chicks. Sixty percent of the harvesters 

stated that the size of the take reflected the number of birds available. Poor seasons 

were attributed to the parent birds either fishing too far out at sea to feed the chicks 

regularly or to parents having abandoned the chicks too early. According to all three 

Motungārara harvesters, harvester experience was required to make a good judgement 

as to the number of sooty shearwaters to take. The Trustees charged with managing 

the harvests determined years in which the harvest would take place. According to the 

Ngā Takiwā kuia, two short trips were made to Motungārara in December and again in 

February to check on the state of the population, the result determined whether 

harvest would take place that year. A similar process also occurred on Tītī Island. 

Concern was expressed that iwi have little involvement with the management of the 

islands and the birds. The apparent decline or reduction in bird numbers was cited as a 

reason why harvest was stopped, yet one kaumātua from each tribal group suggested 

that populations were declining because iwi were not out harvesting. Harvesting was 

ceased by the Department of Lands and Survey in 1960 on Tītī (Gaze 2000) and 1963 on 

Motungārara (Douglas 1963); an interviewee from each tribal group identified 

poaching as an issue at the time and since harvest cessation. Another kaumātua 

expressed the classic dichotomy between the Western conservationists who oversaw 

the island and the local Māori who still wanted to manage it their way: “The reason 

why we stopped [harvesting]…government took over, conservationists came in but we 

were already [conserving the population], by harvesting every second bird, so the 

birdlife kept going” (J. Aldridge).  

Almost all of the interviewees (88%) expressed a desire to see low level harvest allowed 

on the islands. The majority (75%) wanted to see harvest resume for teaching and 

knowledge recording purposes only, to pass on the knowledge and tradition to the 
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younger generation. One Motungārara harvester stated: “I would like to take my 

mokopuna [grandchildren] there; I would like them to be able to take [muttonbirds] 

but they need to learn the right way, what and how to do it, to understand that it’s not 

only an important food resource, that if it’s not cared for in the manner…of good 

[kaitiakitanga+ (guardianship)…*the birds+ could be lost” (N. Watson).  

2.3.4 Knowledge transmission and the importance of harvest 

The right to harvest on Motungārara and Tītī Islands was determined through 

whakapapa (bloodline, hereditary right) to Te Atiawa families of Arapawa Island and 

Ngāti Kuia respectively. Thirty three percent of kaumātua interviewed from each iwi 

suggested harvesting began on the islands close to the time the respective tribal groups 

established in the Marlborough Sounds area. The remaining two thirds knew harvesting 

began many generations before but could not be certain of exactly when.  

The majority of harvesters (80%) first went out as young boys (mean age 10; range 7 – 

14). All of them learnt the skills of harvest from older relatives, primarily fathers, uncles 

and grandfathers, while out on the island. All interviewees identified tītī or muttonbirds 

as a culturally significant supplementary food gathered primarily for family 

consumption and for hui (gatherings). The process of harvesting, preparing and eating 

the birds could take several days and was important for maintaining strong familial 

relationships. This was identified by one harvester as an important time for the telling 

of stories and the sharing of knowledge. During the wānanga at Tītīrangi one kaumātua 

explained: “It’s important to include…your rangatahi (young people) and your 

[mokopuna] in these journeys because that is the way of our people, to inculcate 

knowledge from the past to take forward into the future. Only by first hand experience 

can one do that” (W. Mason). In addition, the ability to serve up special food collected 

from within their tribal area was identified as a source of pride. Two harvesters also 

commented that they preferred the fresh birds to the salted ones obtained from 

Rakiura Māori off the southern islands of New Zealand. 
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When asked about their knowledge of prayers and proverbs associated with their 

respective island and its harvest, one kaumātua from each iwi commented that very 

little or no Māori language was used during their youth. One kaumātua from Ngā 

Takiwā remembered an uncle reciting a karakia (prayer) before undertaking a 

harvesting trip. Another from Ngāti Kuia suggested they were used but were more 

generic rather than specific to the birds or the harvest itself. Only one kaumātua from 

Ngāti Kuia could recite whakataukī (proverbs) associated with tītī – one in Māori, one in 

English. The one in English was: “Where were you when the tītī cried? We were there” 

(R. Smith). This was explained to be particularly important to the situation on Tītī Island 

at the present time because, as he stated “we are here to recognise that there is 

something wrong [with the current state of the sooty shearwater population] and 

hopefully [we can] be a part of some system that will possibly re-enhance or protect 

what's there, the best way we can” (R. Smith). No one else knew of any whakataukī 

associated with their respective island or the harvest. 

2.4 Discussion 

2.4.1 Sooty shearwater biology and ecology 

Although the mātauranga Māori of sooty shearwater biology and ecology was not 

extensive, the knowledge that was presented did match the scientific knowledge of the 

species. The harvesters’ level of knowledge was likely a direct reflection of the amount 

of contact they had with the birds. This species spends the majority of its life at sea and 

only comes to land to breed (Warham 1990; Shaffer et al. 2006). The only contact the 

kaumātua had with the birds was during the traditional harvest which took place over a 

day or morning once a year; therefore any specific knowledge would reflect this. 

Nonetheless, annual changes in abundance and population declines were likely noticed 

and passed on which is important for long-term monitoring. In contrast, Māori had an 

intricate knowledge of the diet and biology of kiore (Rattus exulans), an important food 

source with which they had greater contact (Haami 1994). This sentiment is mirrored in 

Arctic Inuit communities where the quality of their knowledge of four migratory bird 
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species directly reflected the amount of exposure they had to each species (Gilchrist et 

al. 2005).  

Some of the mātauranga Māori may have contained errors but this is not unusual in 

any discipline. For example, it is unlikely that Motungārara could have ever supported 

the 800 pairs of sooty shearwaters suggested by one kaumātua. Motungārara does 

have the potentially confounding presence of karaka (Corynocarpus laevigatus), under 

which seabird burrows do not occur (Bell 1955a; pers obs.) and which may be slowly 

encroaching on seabird burrowing habitat on the island. Therefore, the population 

could have been larger historically but probably not as large as 800 pairs. The 

suggestion of such a large population occurring on Motungārara may reflect the lack of 

exposure required to reinforce mātauranga Māori (Nabhan 2000). Or it perhaps reflects 

knowledge that incorporates historical populations, not solely found on Motungārara, 

but that may have once occurred in different locations throughout the Marlborough 

Sounds. The reference to Tītīrangi and its interpretation by Ngāti Kuia kaumātua gives 

evidence of this. Regardless, historic population size estimates of Motungārara and Tītī 

Islands are limited and estimation of their size is difficult. 

2.4.2 Muttonbirding on Motungārara and Tītī Islands 

The muttonbirding process did not differ greatly between Ngā Takiwā and Ngāti Kuia 

harvesters. Their methods were very similar to those used to harvest oi (grey-faced 

petrel, Pterodroma macroptera gouldi) by Hauraki Māori on islands off the Coromandel 

(Lyver et al. 2008a). The short duration of the harvesting trips and restricted access to 

the islands outside of the harvesting period was also observed by Hauraki Māori (Lyver 

et al. 2008a) and Mikura Islanders off Japan who relied on the harvest of streaked 

shearwaters (Calonectris leucomelas) for survival (Oka 1994). Prohibited access to the 

Rakiura Tītī Islands is observed by Rakiura Māori (Kitson & Moller 2008) but the length 

of their harvest contrasts significantly with the harvesting period observed in the 

Marlborough Sounds. The sooty shearwater ‘birding season’ on the Rakiura Tītī Islands 

is open from 1 April until 31 May and harvesters will commonly stay for several weeks 
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(Wilson 1979). However, apart from occasional nights spent on the islands, long-term 

occupation has never been possible on Motungārara or Tītī due to their size and 

topography. Motungārara and Tītī Island harvesters therefore developed their own 

mātauranga Māori of muttonbirding specific to the conditions of their environment. 

Harvests were not undertaken annually but generally coincided with chick abundance, 

good chick condition and good years in other food sources. The periodicity of harvest 

may demonstrate an adaptation to the variability of the resource. The Denésołiné of 

northern Canada have learnt to adapt to the variability in the annual movements and 

abundance of caribou (Rangifer tarandus) during their migration. Denésołiné hunters 

and their families will travel tens to hundreds of kilometres to track the herds and 

harvest enough to sustain them through the winter (Parlee et al. 2005). For 

Motungārara and Tītī Island harvesters, the seabird resource was perhaps not as vital 

to their survival as the caribou is to the Denésołiné so they could therefore afford to 

alternate years of harvest. Therefore, this strategy of alternation may in fact 

demonstrate optimal foraging, whereby foraging success is maximised in relation to the 

effort exerted to acquire the resource (Perry & Pianka 1997). That is, birds were only 

taken in years that provided the most birds for the amount of effort expended. 

Historic harvest estimates provided important parameters with which to conduct 

population viability analysis (see Chapter Four) and better understand the human 

influence on the Motungārara and Tītī Island sooty shearwater populations. Similarly, 

Berman and Kofinas (2004) found the integration of knowledge from two disparate 

sources assisted in the assessment of the effects of climate change on the subsistence 

harvest of caribou of a small Arctic community. One of the authors’ conclusions was 

that the co-production of both indigenous and scientific knowledge can provide 

insights into common problems. This is also true of this study where the integration of 

Ngā Takiwā and Ngāti Kuia mātauranga Māori into a population viability analysis 

provided important information for the island managers as well as the iwi. 
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2.4.3 Conservation management strategies 

Mātauranga Māori revealed a number of conservation management strategies 

particular to the Marlborough Sounds. Harvesting according to methods passed on 

from the older generations was thought to be critical to the long-term management of 

the sooty shearwaters and their habitat. A key aspect of this was the protection of the 

burrows. Protection of the burrows has been acknowledged as important in other 

seabird harvests by Māori (Kitson & Moller 2008; Lyver et al. 2008a; Moller et al. 

2009b), but the ‘no digging’ rule of the Motungārara and Tītī Island harvesters 

contrasts with other studies. For example, to access grey-faced petrel chicks 

(Pterodroma macroptera gouldi), some Hauraki Māori would create a hole an arm’s 

length from the entrance of the burrow if the chick was out of reach. They would then 

reinsert their arm and extract the chick before using the soil from the hole to create a 

back wall for the front section of the burrow, effectively creating two burrows (Lyver et 

al. 2008a). Similarly, Rakiura Māori will dig through the burrow roof when a chick is 

inaccessible, but the soil is then used to plug the hole rather than building a wall 

(Kitson & Moller 2008). A study of the flesh-footed shearwater (Puffinus carneipes) 

found that longer burrows had a higher rate of fledgling success (McClellan 1996). A 

similar pattern was also possible on Long and Tītī Islands (Chapter Three). If shorter 

burrows produce fewer chicks, then the restriction by Ngā Takiwā and Ngāti Kuia 

harvesters to only take chicks from burrows within reach or within coaxing distance 

may reduce the impact of harvest on the population.  

The annual adjustment of the quantity of chicks harvested may also influence the 

harvest’s long-term sustainability. Harvesting a proportion of the population has a 

much lower impact than removing a fixed number of individuals (McCarthy 1996; Brook 

& Whitehead 2005). This may have already been facilitated through the alternating of 

years in which harvest was conducted. However, knowing the number of sooty 

shearwaters that could be taken came with experience. This could prove problematic 

should harvest resume in the future because those with harvest experience are now all 

over 60 and were all young boys at the time of harvest cessation. It is unlikely that they 
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ever developed the skills required to decide harvest quantities. Combining insights 

from both indigenous knowledge and western science may develop better resource 

management practices than the sole use of one practice over the other (Johannes 

2003). Ngā Takiwā and Ngāti Kuia may need to utilise methods derived from alternative 

sources such as the results of this thesis, in conjunction with their own techniques, to 

ensure harvest is conducted at sustainable levels. 

Harvesters on both Motungārara and Tītī targeted large chicks. Several kaumātua 

stated they never saw underweight chicks but in the unusual event that one was 

removed from its burrow, it was returned. Harvest occurred when chicks were about 

two months old which coincides quite closely with their peak weight during 

development (Richdale 1963). Chicks that are underweight at fledging are unlikely to 

survive and contribute to the breeding population (Sagar & Horning 1998). It has been 

suggested that returning the small or undersized chicks to their burrows during the 

early April nanao (when chicks are extracted during the day) potentially reduces 

Rakiura Māori harvest impacts as those chicks could still gain the weight required to 

fledge and later recruit into the breeding population (Kitson & Moller 2008). A study 

that investigated the effects of selective harvest on sooty shearwater population 

growth rates found that growth rate was influenced by harvest intensity. Selection was 

found to have little impact on growth rates at low harvest intensities (Hunter & Caswell 

2005, but see Chapter Four). However, when populations are small, selectivity may 

make a critical difference to the harvest sustainability because the chicks that are not 

selected would be disproportionately light. This would reduce the fledging rate of the 

population and is an important area for further research into harvest sustainability in 

the Marlborough Sounds.  

Whakapapa was possibly once an important way for local whānau to control access to, 

and the harvest process on, Motungārara and Tītī Islands. This is a measure that 

resembles the traditional reef and lagoon tenure practices of Pacific Islanders 

(Johannes 1978). However, rather than allowing traditional management of the harvest, 

the New Zealand government regulated the harvest through the implementation of 



 
 

23 
 

Trustees who were answerable to the Department of Internal Affairs. Poaching was 

identified as a problem, particularly on Motungārara, both at the time of harvest 

cessation and later. In some cases, return of a resource to tribal management has 

proven successful in preventing unlawful harvest. For example, the return of 

management and control of kiekie harvest (Freycinetia baueriana) to Ngāti Rakaipaaka 

by the Department of Conservation prevented potential overharvest of the resource by 

another iwi (Coombes 2007). In another example, Canadian government managers 

honoured their co-management agreement and did not intervene in the management 

of caribou (Rangifer tarandus) by Chisasibi Cree elders following an overharvest 

undertaken by young Chisasibi hunters. The Chisasibi elders reprimanded the young 

hunters through re-instilling an historic lesson through oral tradition. The result had 

profound effects on the young hunters and the following harvest was undertaken with 

restraint and respect (Berkes & Turner 2006; Berkes 2008). Effective resource 

management may only succeed when supported and enforced by the those with access 

to the resource (Johannes 1978; Kitson & Moller 2008) or when the management 

comes from their own cultural perspective (Berkes & Turner 2006; Moller et al. 2009b). 

Therefore, if poaching is to cease, then the authority may need to come from the 

kaumātua or kaitiaki (guardians) of Tītī and Motungārara Islands. 

2.4.4 Knowledge transmission and the importance of harvest 

The mātauranga Māori presented here is consistent with knowledge current around 

the time of harvest cessation. This demonstrates that the transmission mechanisms 

through which the knowledge was learnt must have been effective and that the 

mātauranga Māori of those interviewed has not diminished despite a long absence 

from the harvested resource. Interviews with a Trustee of Motungārara and a Ngāti 

Kuia woman were presented in a report on muttonbirding conducted by a Senior Field 

Officer of the Wildlife Division in 1955 (Bell 1955b). The Trustee indicated that only one 

species was harvested on Motungārara and no other shearwater species nested on the 

island. The Ngāti Kuia woman stated that the Tītī Island Trustees were very strict about 
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the harvest practices: no trees were to be cut and fires were only to be lit below the 

high tide mark. She also emphasised that the total harvest was divided equally among 

the harvesters. Interestingly, the use of fires was not specifically mentioned in the 2009 

interviews, it may be that this was not seen to be relevant during the course of the 

interviews or it may be an indicator that the long absence from the islands is starting to 

have an effect. Nabhan (2000) suggested that the extirpation of (and therefore lack of 

contact with) green sea turtle (Chelonia mydas) populations adjacent to villages of 

Comcáac Indians may contribute to a demise in the Comcáac knowledge of the species. 

Luckily for Ngāti Kuia and Ngā Takiwā, the sooty shearwater populations persist but 

there may be an urgency to pass on the mātauranga Māori that remains so it does not 

diminish further. 

The importance of allowing harvest for knowledge building was expressed by all 

interviewees. Half of the kaumātua interviewed also stated that sooty shearwater 

population monitoring was needed. All Ngāti Kuia kaumātua expressed concern at the 

state of the shearwater population following the paucity of available birds during the 

2009 wānanga. The two kaumātua with direct harvesting experience noted significant 

declines since their last experiences on the island in the 1950s and 1970s. The 

knowledge-building process can be at risk when those with knowledge are few and the 

process through which knowledge is acquired and passed on breaks down (Davidson-

Hunt & Berkes 2003; Berkes 2009). Shearwater monitoring on Tītī Island suggests the 

population has not increased since the eradication of Norway rats in the 1970s (Gaze 

2000). Ngāti Kuia kaumātua desire to be involved in monitoring (Gaze & Smith 2009). 

This, accompanied with semi-regular harvesting wānanga, would undoubtedly increase 

the knowledge base of the iwi and keep them interacting with the birds and the islands. 

Ngā Takiwā would similarly benefit from such interactions through the exchange of 

harvest experience with active conservation and population monitoring to maintain 

their interactions with Motungārara and the sooty shearwater population that remains. 

The lack of knowledge of proverbs associated with the birds and the harvest may 

represent a loss of knowledge over time. Much ecological knowledge can be found in 



 
 

25 
 

proverbs and they can be an important way of passing knowledge on (Wehi 2009). 

Existing proverbs encapsulate information such as the sooty shearwater’s ability to 

sustain long periods of flight, its laying of only one egg, the timing of its arrival to its 

colony and feeding patterns (Mead & Grove 2001). For example, “he manawa tītī” 

translates as “a muttonbird’s heart” which, according to Mead and Grove (2001) is a 

metaphor for a person with high levels of endurance as the sooty shearwater was 

believed to have an exceptional continuous flying ability. It is unknown, but interesting 

to consider, how Māori would have come to know this, and it does corroborate with a 

study that tracked the sooty shearwater migration using satellite transmitters (Shaffer 

et al. 2006). Oral traditions, including stories, can provide insight into ecological 

relationships and may provide insights into rare or extinct species, for example, the 

hakawai of Māori mythology (Miskelly 1987). The lack of proverbs presented by Ngā 

Takiwā and Ngāti Kuia may reflect the limited contact associated with the harvest or it 

may be that proverbs were not particularly used by each tribal group. It is also possible 

that Māori assimilation into European culture has led to a breakdown in their retention 

and transmission (Tau 2001).  

2.4.5 Conservation crisis or opportunity? 

Only seventeen chicks fledged off Motungārara in 2009 (Chapter Four). Given the 

carrying capacity of the island of approximately 550 birds, the sooty shearwater 

population is arguably experiencing a crisis. Traditional knowledge regarding the 

exploitation of resources and the development of a conservation ethic often develops 

following a resource crisis (Berkes & Turner 2006). Human impact on new, unexplored 

territories can be devastating, but over time, as experience and understanding 

develops, a level of ‘symbiosis’ can occur (Berkes & Turner 2006). For example, the 

Aranda of central Australia forbid the hunting of red kangaroos (Macropus rufus), a 

culturally important animal, near sacred sites which are also important feeding grounds 

for the species (Newsome 1980). This helps ensure the persistence of the species and 

therefore an ongoing food source for the Aranda people. But as Berkes and Turner 
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(2006) point out: not all societies experience this level of adjustment, adaptation can 

take a long time, and symbiosis is not permanent.  

On Motungārara, it is likely that the population is now too small for any harvest to 

resume (Chapter Four). But, separation from the island and its muttonbirds may have 

prevented Ngā Takiwā from realising the condition of the population. Ngā Takiwā is 

currently in a predicament where realisation of the harvest impacts and/or population 

decline comes with access to the resource, yet access to the resource was denied and 

the population is in decline. This potentially denies Ngā Takiwā the ability to 

comprehend the implications of harvest, or the actions of the poachers, thereby 

limiting their ability to manage the situation and learn and adapt as appropriate. The 

state of the population may be the result of multiple factors not just associated with 

harvest, for example, fisheries bycatch and climate oscillations, the effects of which 

may be exaggerated in small populations (Shaffer 1981; Caughley 1994). Similar 

pressures are also facing the Tītī Island population. Nevertheless, long-term monitoring 

involving all stakeholders and active discouragement of poaching may provide an 

opportunity for each tribal group to have a low-level harvest for wānanga in the future. 

2.4.6 Conclusion 

The respective relationships between Ngā Takiwā and Ngāti Kuia and Motungārara and 

Tītī Islands persist, despite a long absence of contact with the birds and the islands. 

Mātauranga Māori of sooty shearwaters also persists as does the iwis’ desire to 

maintain their connection with each island. 

 The key issue now, is the preservation of the knowledge that remains regarding the 

relationships between the iwi, the birds and the islands, in particular the harvest of 

muttonbirds. While the issue of poaching remains, it is in both tribal groups’ interest to 

work with the current island manager, the Department of Conservation, to come to an 

arrangement as to how the islands can be better managed and how the iwis’ 

relationship with the Department can move forward. Iwi involvement in island and 

species management and the allowance of low level harvest (for example for wānanga) 
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will maintain and further build on the iwis’ relationship with the islands and the birds 

that breed on them. 
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CHAPTER THREE 

Biological parameters of the sooty shearwater 

(Puffinus griseus) on Long and Tītī Islands, 

Marlborough Sounds 

 

3.1 Introduction 

The sooty shearwater (tītī, muttonbird, Puffinus griseus) is one of New Zealand’s most 

abundant seabirds (Warham & Wilson 1982). A recent study estimated the total 

population to number over 21 million birds (Newman et al. 2009b). It is also one of the 

last species still traditionally harvested by Māori (a practice known as muttonbirding; 

Kirikiri & Nugent 1995; Taiepa et al. 1997). The breeding stronghold of this burrow-

nesting, medium sized, trans-equatorial migrant is on islands off southern New Zealand. 

Small breeding populations (2% of the New Zealand total; Newman et al. 2009b) also 

occur on offshore islands throughout New Zealand (Warham et al. 1982). In addition, 

small populations are found off south eastern Australia (Lane & White 1983) and Chile 

(Marin 1984; Reyes-Arriagada et al. 2007).  

Sooty shearwater populations have declined in recent decades (Scofield & Christie 

2002; Moller et al. 2009a). Population declines have been reflected in the annual 

muttonbird harvest (Lyver et al. 1999), in observed densities in the North Pacific (Veit 

et al. 1996; 1997), and in a marked reduction in burrow density on some islands (Scott 

et al. 2008). Major threats to seabird populations include high seas fisheries (Baker et 

al. 2002), introduced predators (Wanless et al. 2007; Jones et al. 2008), food-web 

perturbations (for example, Büßer et al. 2004) and increased frequencies of climate 

anomalies (Jenouvrier et al. 2009). Small sooty shearwater populations have 

disappeared from predator-free islands in the Hauraki Gulf in the last century (Scott et 

al. 2008). It is possible that the wider threats facing seabird populations could be 
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threatening the persistence of smaller populations on the extremities of this species’ 

breeding range.  

The Marlborough Sounds have a number of seabird islands with breeding sooty 

shearwater populations. Sooty shearwaters were once an important seasonal source of 

food for iwi (Māori tribes) of the area. Harvest was outlawed with the 1953 Wildlife Act 

and ceased in the Marlborough Sounds area in the 1960s (Douglas 1963; Gaze 2000). 

Interest has been expressed by the iwi in resuming low level harvest to retain 

traditional knowledge. Tītī Island has one of the largest sooty shearwater populations 

in the Marlborough Sounds, but there is no evidence that the sooty shearwater 

population is increasing following the cessation of harvest and the eradication of 

Norway rats (Rattus norvegicus) in the 1970s (Gaze 2000). The Long Island sooty 

shearwaters have never been studied. Biological information about these shearwater 

populations is needed to assist conservation managers in determining whether the 

populations can sustain harvest resumption.  

In this study I sought to (a) determine the specific timing of the sooty shearwater 

breeding cycle in the Marlborough Sounds to compare with other sooty shearwater 

and closely related Puffinus populations; (b) obtain baseline biological parameters on 

which to model population trajectories (see Chapter Four); and (c) estimate population 

size on which to base future monitoring. The overall aim was to better understand the 

size and condition of these Marlborough sooty shearwater populations.  

3.2 Methods 

3.2.1 Study site   

I collected biological data during the 2008/09 breeding season on Long and Tītī Islands 

in the Marlborough Sounds (Fig. 3.1). Long Island (41°07’S; 174°17’E) is a 142 ha Scenic 

Reserve near the entrance of Queen Charlotte Sound. The island was once farmed and 

all livestock and non-native predatory animals have been removed. The vegetation of 

the northern tip, where the sole sooty shearwater population is located, is comprised 
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primarily of taupata (Coprosma repens), mountain flax (Phormium cookianum), and 

ngaio (Myoporum laetum). Undergrowth is sparse. Tītī Island (40°57'S; 174°8'E) is a 

32ha Nature Reserve in outer Pelorus Sound. The island is pest free following the 

eradication of Norway rats (Rattus norvegicus) in the 1970s (Gaze 2000). Seabirds nest 

in gullies on the southern side. The canopy is dominated by taupata, ngaio, kohūhū 

(Pittosporum tenuifolium) and wharangi (Melicope ternata). The undergrowth consists 

primarily of shining spleenwort (Asplenium oblongifolium) and ongaonga (Urtica ferox).  

 

Figure 3.1: Map of study areas in the Marlborough Sounds, New Zealand. Seabird burrows 

occur on the southern side of Tītī and the northern tip of Long Island. Each scale represents the 

different scales of the mainland and the islands. 

3.2.2 Study burrows 

Sooty shearwaters occur in small numbers at the northern tip of Long Island which 

made it possible to collect data from all active burrows. To test my confidence at 

having found most of the active burrows, I constructed an observation-nest curve 

modified from Odum and Kuenzler (1955). The curve (R2 = 0.862) demonstrated that 

the last 20% of the sampling effort revealed only one more active burrow. Therefore, a 
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large amount of additional sampling would have been unlikely to significantly increase 

the active burrow tally. On Tītī Island, data were collected from ten permanent 10x10m 

quadrats established by the NZ Wildlife Service in 1987 for long term monitoring (Gaze 

2000).  

3.2.3 Data collection 

Biological data were obtained using two burrowscopes (Dyer & Hill 1991). They were 

comprised of a video camera lit up either with infrared LEDs or white LEDs to illuminate 

the burrow. These were connected to the end of a hose that could be pushed down the 

burrow while projecting visual images to a screen. Burrowscopes are an effective 

method for determining burrow occupancy compared with other field methods 

(Hamilton 1998). However, several studies have revealed that their use can 

underestimate occupancy levels (Hamilton 1998; Hamilton 2000; Cuthbert & Davis 

2002; McKechnie et al. 2007). A correction factor can be used to improve the accuracy 

of data collected with a burrowscope (McKechnie et al. 2007) but I deemed this 

unnecessary given the repeated checking of each burrow, the low burrow densities and 

simple burrow structures (see results) on Long and Tītī. These, in conjunction with the 

results of the observation-nest curve give me confidence to suggest that my 

assessment of burrow occupancy had a high level of accuracy. 

Field work occurred on both Long and Tītī from October 2008 to May 2009. This 

enabled me to study the birds from when they had returned from their migration to 

the North Pacific until the last fledgling had left the island. I only gathered data on Tītī 

Island during the incubation and fledgling periods. A systematic search for study 

burrows was undertaken on Long Island in October and November and all active or 

potentially active burrows were uniquely marked using sheep ear tags (n=94). 

Occasionally, previously undetected active burrows were discovered on later trips and 

subsequently monitored. 

Laying dates were recorded from late November to early January. I also measured the 

length of each active sooty shearwater burrow using the hose of the burrowscope 
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taped at 10cm intervals. Burrows were measured from the entrance to the nesting 

chamber to the nearest 5cm. Hatching dates were recorded in mid-January. The 

hatching date was recorded as the day a chick was present when an egg was clearly 

sighted the day before. 

Ten inspection holes were dug on Long Island over several days in the middle of March 

2009 to access the chicks for weighing. The holes were dug through the topsoil, close to 

the nesting chambers of a sample of burrows. Holes were covered with a 30x30cm 

piece of plywood and/or a large rock or to ensure no drafts or seepage from rain could 

enter.  

Chicks were weighed at the same time daily (± 9 minutes) and their fledging dates 

recorded from mid April to early May. I defined fledging as the day the chick, following 

its three month development period, was no longer present in its burrow. The chicks 

were accessed either via an inspection hatch or by reaching directly down the burrow 

entrance (n=7). They were placed in cloth bags and weighed with 1kg or 1.5kg pesola 

scales (10g and 20g increments respectively). The bags were weighed after each chick 

was returned to its burrow to account for additional weight from moisture 

accumulation or excretion; the bag weight was then subtracted from the total.  

Burrow densities were collected on Long Island using a 30m tape measure. There is a 

large fluttering shearwater (P. gavia) population present on the island but they are 

mostly found on slopes further down from the taupata. I measured two randomly 

selected areas within areas where taupata grew (108 and 188m²) and counted all the 

burrows within. Densities on Tītī were obtained from the ten 10x10m quadrats.  

I plucked a minimum of six feathers from a sample of chicks I could access through the 

inspection hatches or by putting my arm down the burrows on Long (n=18) and from 

putting my arm down burrows on Tītī (n=15). Feathers were placed in individual plastic 

bags (Grant 2001) and frozen. 
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3.2.4 Data analyses 

3.2.4.1 Burrow length, density, egg laying, hatching and fledging 

Burrow densities and occupancy rates were calculated from measured areas. To 

determine laying and hatching dates of chicks I had missed, I calculated the incubation 

and the development periods from more detailed data of other nests and used them to 

calculate retrospectively from the hatching and fledging dates I did have. Eggs that did 

not hatch and whose lay date had not been determined were excluded from further 

analyses. 

3.2.4.2 Breeding success 

I considered breeding success to be the rearing of a chick from an egg to it leaving the 

island as a fledgling. Burrows with only one record of sooty shearwater adults present 

early in the breeding season and no confirmed sighting of an egg were removed from 

analysis as they were unlikely to have been breeding adults (Serventy 1967) or could 

have been burrow prospecting (Bradley et al. 1999).  

Breeding success was measured using the ‘Mayfield-40%’ method (Miller & Johnson 

1978; Johnson 1979) thereby enabling the use of all data. Each day a nest was in 

existence was considered 1 nest-day of exposure. Total exposure was calculated by 

adding together the exposure of nests that hatched and the exposure of nests that 

were destroyed. The daily survival rate (DSR) could be used to determine the 

probability of survival of any given period of time and was calculated using:  

 

Where ND is the number of nests destroyed divided by the combined total exposure of 

surviving (ES) and destroyed nests (ED). I used two periods of survival, the incubation 

period: from the day of laying to the day of hatching, and the development period: 

from the date of hatching to the date of fledging. Combining survival for both periods 

gave total probability of breeding success.  
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Due to only gathering data on Tītī Island during the incubation and fledgling periods, I 

combined the incubation and development time periods. I used the data from Long 

Island and calculated a single breeding success coefficient. 

Standard errors (SE) and 95% confidence intervals were calculated using the method 

developed by Johnson (1979), using the equation: 

 

Where E is exposure and D is the number of deaths for that exposure period.  

3.2.4.3 Post-fledging survival 

Determining post-fledging and juvenile survival rates in seabirds can be problematic. 

Mass at fledging can affect post-fledging survival and subsequent recruitment (Gaston 

1997; Sagar & Horning 1998). I therefore weighed a sample of chicks (n=15) to estimate 

baseline post-fledging survival.  

If a chick was heavier than the day before, I interpreted this to mean it had been fed. 

Some chicks from the sample were unable to be weighed at fledging (n=5). To estimate 

their weight on the day they fledged, the collective weight data of the rest of the 

sample was used. I first attempted non-linear regression analysis but the relationship 

was poor (R² = 0.302). I therefore took an alternative approach and divided chick 

weights into groups of 100g and determined the average daily weight lost while each 

chick was in each weight group. The average weight lost was then subtracted from the 

weight of each chick whose weight at fledging was unknown. The amount subtracted 

varied according to the last weight of the chick and the number of days between its last 

weighing and the day it fledged. 

The final weights (actual and estimated) of surviving chicks were then used to calculate 

a baseline post-fledging survival rate for the Long Island population. The proposed 

minimum weights of Richdale (1963) were used for an ‘optimistic’ survival rate (OS) 

and Sagar and Horning (1998) for ‘pessimistic’ survival (PS) using:  
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Where x is the number of chicks weighing over the required weight and n is the total 

number sampled. 

3.2.4.4 Population estimates 

I considered the number of eggs laid to be a direct measure of breeding pairs present in 

the population this season. I multiplied the number of eggs by 4.84 (Newman et al. 

2009b) to account for the juveniles, pre-breeders and non-breeding adults absent from 

the breeding population in any given season (Brooke 2004). 

On Tītī Island I estimated the number of breeding pairs using occupancy rates from the 

10x10m quadrats multiplied by the total number of potential shearwater burrows 

estimated by Baker et al. (2009). The resulting number was subsequently placed into 

the population equation used for Long Island to get the population estimate for Tītī 

Island. 

3.2.4.5 Sex ratio 

It has been suggested that wandering albatrosses (Diomedea exulans) adjust the sex of 

their offspring to maximise their survival post-fledging (Blanchard et al. 2007). In order 

to determine the importance of sex ratio on Long and Tītī Islands, I had the feather 

samples genetically sexed. There is one genetic test universal to all birds except ratites 

that can be used to identify sex (Ellegren 1996; Griffiths et al. 1998). Polymerase chain 

reaction primers are used to isolate and amplify the W linked chromo-helicase-DNA-

binding gene. When compared with the DNA amplified from the Z chromosome, the 

sex is easily identifiable (Griffiths et al. 1998). The sexes of my samples were 

determined at the Equine Parentage and Animal Genetic Services Centre (Massey 

University, Palmerston North). 
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3.3 Results 

3.3.1 Burrow length and density, egg laying, hatching and fledging 

The average length of the sooty shearwater burrows on Long Island was 83.6cm ± 

4.3cm (SE) (range 35-170, n=51). A few burrows had small chambers diverting off the 

main burrow, presumably where the bird had attempted to dig but had stopped for 

unknown reasons. All burrows containing sooty shearwaters had a single nesting 

chamber. Nearly all burrows (98.5%) had a single entrance and 1.5% had two entrances. 

The average burrow length on Tītī Island was 80.6cm ± 5cm (range 40-180, n=34). 

Seven percent of burrows sampled had two nesting chambers extending from the same 

entrance and 3% had two entrances. There was a trend for longer burrows to have a 

higher probability of fledging success and the pattern was nearly statistically significant 

(ANOVA 95% p=0.054, n=85). 

Burrow densities within the sooty shearwater breeding areas were 0.138 burrows per 

m² on Long Island and sooty shearwater densities were 0.061 burrows per m². On Tītī, 

total burrow densities were 0.139 per m². Burrows occupied by sooty shearwaters 

were 0.064 per m². 

On Long Island, the incubation period was 54.3 days ± 1 day (SE) (range 53-56, n=4) and 

the development period was 104.5 ± 2 days (range 98-109, n=17). Eighty nine percent 

of the egg laying dates were estimated from hatching using the incubation period to 

calculate retrospectively. Nonetheless, the pattern during the incubation period 

suggests egg laying occurred over a 16 day period between 20 November – 5 December 

(n=37). Eighty one percent of chicks hatched between 17-23 January (mean 20 January 

± 3.5 days, range 13 – 28 January, n=37; Fig. 3.2). The mean fledging date was 4 May ± 

4.3 days (range 26 April – 12 May, n= 28; Fig. 3.3).  

3.3.2 Breeding success 

On Long Island the probability of an egg surviving through to hatching was slightly 

lower than that of a chick surviving through to fledging (hatching success 0.661 95% CI 
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0.658-0.664; fledging success 0.678 95% CI 0.676-0.679). Breeding success on Long 

Island (0.448 ± 0.001 SE) was 16.4% greater than on Tītī at 0.385 ± 0.002 SE. 

 

 

Figure 3.2: Eighty one percent of sooty shearwater chicks hatched on Long Island between 17-
23 January. The mean hatching date was 20 January ± 3.5 days. Black bars represent observed 
hatching, light bars represent estimates. Bars combined represent totals for the island. 

 

Figure 3.3: Fledging dates of sooty shearwater chicks on Long Island. The mean fledging date 
was 4 May ± 4.3 days. 
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Causes of egg and chick failure were difficult to determine. Sometimes the egg and 

incubating adult would vanish within 24 hours of the last sighting, but other times little 

blue penguins would move in apparently evicting the incubating sooty shearwater adult. 

Despite attempting to keep my disturbance to a minimum, my presence caused at least 

one egg failure through disturbing an incubating adult although it is impossible to 

quantify my total impact this season. Of the chicks that hatched but failed to survive, 

approximately 60% were provisioned for a minimum of three weeks before dying. 

Those that died early in the season were close to or just inside the burrow entrance, a 

possible sign their parents had stopped feeding them and they had exited the nesting 

chamber in search of food. It was impossible to determine whether chicks were 

abandoned or if one or both parents died while out foraging. Almost 25% of the chicks 

that did not survive are known to have died of starvation – the last one surviving until 

its 90th day. At least one fledgling was killed by a raptor (likely an Australasian harrier: 

Circus approximans), the fledgling’s body was picked clean and a harrier coloured 

feather was found beside the remains. 

3.3.3 Post-fledging survival 

The chicks were fed with decreasing regularity in the weeks leading up to fledging. As a 

chick became lighter, its daily weight loss decreased with the length of time since its 

last feed. Over 61% of the chicks sampled were last fed approximately 91 days after 

hatching. The last chick to be fed was fed on 3 May, which was 96 days after hatching. 

The chick fledged 7 days later. 

Weight at fledging of all chicks (actual and estimated, n=16) ranged from 399 to 995g 

with a mean weight of 737.2g ± 40.8 (SE). The mean fledging weight was 90% of the 

average adult weight of 819.1g ± 76 (Warham et al. 1982).  

Chicks that fell below the optimistic threshold weight for survival, also fell below the 

pessimistic level (n=2; Fig. 3.4). Therefore given weight at fledging, it is expected that 

87.2% of the chicks that fledged off Long Island in the 2008/09 season could survive to 

return and breed as adults. 
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Figure 3.4: Tally of sooty shearwater chick weights at fledging. The two chicks to the left of the 
black line are not expected to return due to their weight being below the optimistic and 
pessimistic threshold weights for survival. 

3.3.4 Population estimates 

A total of 60 eggs were estimated to have been laid on Long Island over the 2008/09 

season. A population of 60 breeding pairs, multiplied by the population estimator of 

4.84 (Newman et al. 2009b), gives an estimated population size of 291 birds. Of the 

2,814 total potential shearwater burrows estimated to be present on Tītī Island (Baker 

et al. 2009), the total number of potentially occupied burrows (in other words, 

breeding pairs) came to 1,296 giving an estimated total population size of 

approximately 6,273 birds. 

3.3.5 Sex ratio 

Feather samples were taken from 18 Long Island chicks (62% of the chicks that fledged). 

Eleven were male; seven were female giving a 1.6:1 male bias. Only 15 feather samples 

were taken from Tītī Island, representing 1.2% of the estimated 1,300 occupied sooty 

shearwater burrows this season. The sex ratio was four males to eleven females giving 

a 1:2.8 ratio skewed towards females. 
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3.4 Discussion  

3.4.1 Breeding phenology 

Sooty shearwaters, along with other migratory petrels, have highly synchronous annual 

cycles possibly associated with their yearly trans-equatorial migration (Warham et al. 

1982). Not surprisingly, I found the breeding chronology to be similar to other sooty 

shearwater populations occurring at much higher latitudes in New Zealand (Table 3.1). 

A similar synchrony occurs in other migratory Puffinus species. For example up to 90% 

of short-tailed shearwater eggs are laid ± 3 days of the mean laying date with all eggs 

laid over a 16 day period in November (Meathrel et al. 1993). A similar phenology is 

also apparent in the great shearwater (Puffinus gravis; Cuthbert 2005) and flesh-footed 

shearwater (McClellan 1996; Powell et al. 2007).  

Burrow geometry is likely to be influenced by soil depth, structure and vegetation type 

although these factors are not always significant (Powell et al. 2007). Burrow length on 

Long and Tītī Islands is comparable with the 90cm ± 4cm average of the wedge-tailed 

shearwater (Puffinus pacificus) on Heron and Erskine Islands (Dyer & Hill 1992) and 

have similar construction but slightly shorter burrow lengths than the flesh-footed 

shearwater in Australia (Priddel et al. 2006; Powell et al. 2007).  

Burrows on Long and Tītī Islands did not have the high levels of bifurcation and 

complexity found in burrows on islands off southern New Zealand where high numbers 

of sooty shearwaters breed (Hamilton 2000). A study on densely burrowed Northeast 

Island, in the Snares group revealed burrow systems with multiple entrances and 

burrow connections, the most complex connected 21 entrances and contained 23 nests 

(Hamilton 2000). In addition, only 5% of burrow entrances sampled in that study led to 

a single burrow that was not connected to another (Hamilton 2000). The lack of 

complexity on Long and Tītī compared with Northeast Island is possibly due to the 

much smaller populations and therefore reduced competition for space.  Mean burrow 

densities occupied by sooty shearwaters on Long and Tītī were 0.061 and 0.064 

burrows per m² respectively. These are much lower than the range of between 0.57 
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and 1.23 entrances per m² on Northeast Island (Scott et al. 2008) or the density of 0.33 

per m² on Pohowaitai, an island off the Rakiura coast of similar size to Tītī and 

harvested for sooty shearwaters (Charleton et al. 2009). In contrast, Whenua Hou has a 

density of 0.09 burrows per m², hypothesised to be low due to contrasting vegetation 

when compared with other seabird islands in the area (Charleton et al. 2009). Baker et 

al. (2009) conducted a flesh-footed shearwater (P. carneipes) study on Tītī in January 

2009. They estimated total burrow densities on Tītī to be 0.08 per m². A likely reason 

for their lower estimate is because they used 2m wide strip transects that sampled a 

larger area than the 10x10m quadrats I used. Using their data in addition to my own 

may give a clearer overall picture for the breeding seabird populations on Tītī. In 

addition, the soil on Long may not have been suitable for complex burrow systems. 

Table 3.1: Comparison of Long Island sooty shearwater breeding dates and biological 
parameters with those of three different island populations that lie south of the South Island. 
Mean presented in brackets where available. 

 Long Island 
(41°S; 174°E) 
(this study) 

Snares Islands 
(48°S; 166°E) 
(Warham et al. 
1982) 

Whero Island 
(46°S; 168°E) 
(Richdale 1954, 
1963) 

Macquarie Island 
(55°S; 159°E) 
(Brothers 1984) 

Egg laying 20 Nov – 5 Dec 
(27 Nov) 

66% between 20-
25 Nov (22 Nov) 

- Peak between 18-
20 Nov* 

Egg hatching 17-23 Jan          
(20 Jan) 

66% between 11-
16 Jan 

16 Jan – 4 Feb  
(24 Jan) 

10-26 Jan 

Chick fledging 26 Apr – 12 May 
(4 May) 

10-30 Apr          
(21 Apr)** 

19 Apr – 12 May 
(2 May) 

18 Apr – 9 May 

Incubation 
period 

53-56 days   
(54.3 days) 

53 days 56 days*** - 

Chick rearing 
period 

98-108 days 
(104.5 days) 

-  86-106 days     
(97 days) 

82-119 days   
(100.5 days)**** 

* Estimated using data from Warham et al. (1982). 
** Estimate. Authors conceded dates more likely to resemble Richdale (1963). 
*** Estimate. 
****Chick rearing period not calculated. I used the author’s data to estimate rearing period. 
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Large open areas under the taupata were clear of burrows and in many cases rolls of 

rusting chicken wire lay nearby which implies that the area is recovering from relatively 

recent human interference.  

3.4.2 Breeding success and post-fledging survival 

Although I only have data from one breeding season from two islands, overall breeding 

success for both Long and Tītī falls within the annual variations observed on the Snares 

between 1997-99 (mean 0.35, range 0.07-0.67) and Whenua Hou between 1997-99 

and 2003-05 (mean 0.76, range 0.37-0.90; Newman et al. 2009a). My estimates also 

align closely with mean breeding success of 48 ± 2% during the 1993/94 to 1997/98 

breeding seasons observed on Tuhawaiki Island, a predator-free offshore islet (Jones et 

al. 2003). Contrasting levels of breeding success may be attributed to different foraging 

areas and environmental conditions in spatially disparate populations (Newman et al. 

2009a). A 16% difference between breeding success on Tītī and Long is not as great as 

the 83% difference observed between the Snares and a much more distant Whenua 

Hou during the 1998 breeding season (Newman et al. 2009a) but highlights that even 

populations that are geographically close with similar population densities can 

experience different ecological effects that impact on their breeding success.  

It is unknown how the breeding success I recorded on Long and Tītī fits in to the 

general pattern for each island. The rates are similar to the average found on the 

Snares but are at the lower end of the range for Whenua Hou. Given the similarity in 

burrow densities between Long, Tītī and Whenua Hou, it is possible that breeding 

success of these three islands may be more similar to each other than to the Snares 

where densities are high (Scott et al. 2008; Charleton et al. 2009). Therefore the 

estimates from 2008/09 may be an underestimate of the average. However, marine 

food-web interactions are complex and it is very difficult to extrapolate trends from 

single factors when a number of factors may be acting on the population. For example, 

sooty shearwater population dynamics may be influenced by the availability and 

abundance of krill (Cruz et al. 2001), but it is unknown whether there is a direct link 
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between food web changes and poor breeding seasons (Kitson et al. 2000). The sooty 

shearwater has a variable interannual diet (Kitson et al. 2000) and will forage over 

2000km from its breeding area (Shaffer et al. 2009). The birds’ ability to travel vast 

distances and forage for long periods (Weimerskirch 1998) may counteract any spatial 

inconsistencies in food availability in any given year (Shaffer et al. 2009) but more data 

are needed to determine if this pattern holds true for the Marlborough Sounds. Of six 

birds tracked with archival tags from Mana Island, near the Marlborough Sounds, only 

one bird travelled to more productive oceanic waters to the southeast of the island, the 

rest remained in less productive coastal waters (Shaffer et al. 2009). Chicks being fed 

low quality food led to chick deaths and reduced breeding success in Cape gannets 

(Morus capensis; Grémillet et al. 2008) and common guillemots (Uria aalge; Wanless et 

al. 2005) and low food availability has been attributed to annual fluctuations in 

breeding success in Wilson’s storm petrels (Oceanites oceanicus; Büßer et al. 2004). 

The implication is that if adult birds from the Marlborough Sounds are not accessing 

the oceanic waters off southern New Zealand, this could negatively impact chick 

survival. Further studies are needed to determine how the populations’ distance from 

the centre of the species’ breeding range impacts breeding success rates and chick 

condition relative to populations at higher latitudes. 

In addition, a large proportion of the chicks that did not survive on Long and Tītī 

probably died of starvation. It is highly likely that chicks that starved were abandoned 

too early and probably had at least one parent die at sea (G. Taylor pers comm.). 

Factors such as storm events or pathogens could have contributed to the deaths of the 

adults or it could implicate the impact of fisheries (i.e. adults caught in fishing gear) on 

the breeding success of these small island populations. Some methods have been 

developed to deter sooty shearwaters from scavenging from fishing trawlers 

(Robertson et al. 2006) but the effects of these mitigation methods, along with fisheries 

generally, are difficult to quantify for this species (Uhlmann et al. 2005). 

Post-fledging survival is often over-looked in avian studies. Reproduction is often 

considered successful once the chick has fledged (Keedwell 2003). A common method 



 
 

44 
 

of estimating post-fledging survival is to use the weight at fledging. This is an indicator 

of chick condition and has a direct impact on an individual’s chance of survival and 

subsequent recruitment into the breeding population (Sagar & Horning 1998; Mougin 

et al. 2000). Adult sooty shearwaters depart on their migration regardless of the 

condition of their chick (Richdale 1963). Sagar & Horning (1998) suggest the proportion 

of fledglings surviving increases with mass exceeding 564g, yet some may survive with 

lower fledging weights (Richdale 1963). The small sample size from Long Island could 

not be analysed sufficiently to allow it to be compared with the methods of Sagar & 

Horning (1998). Analysis of the chick weight data was also impeded by gaps between 

weighings and the large number of chicks that were not fed during the sampling period, 

probably due to their parents having already left on their migration. In addition, none 

of the chicks were banded making future recapture analysis impossible. Nonetheless, a 

relatively small percentage of chicks (12.5%) were seriously underweight.  

3.4.3 Sex ratio 

It is hard to determine the importance of the sex ratio bias discovered in the results 

with a small sample size and only one season’s data. In the wandering albatross the sex 

ratio at hatching is influenced by the age and reproductive quality of the parents 

(Weimerskirch et al. 2005). In common terns (Sterna hirundo) at Banter See, offspring 

are female biased but this is reversed at recruitment (Becker et al. 2008). The skewed 

sex ratios observed on Long and Tītī were probably a result of the small sample size. 

The sex ratio for Tītī had a larger bias than Long but the sample was a much smaller 

representation of the population. Not enough is known about whether sex biased 

mortality occurs at each life stage in the sooty shearwater. Regardless, these limited 

data do not suggest an extremely skewed sex ratio among chicks on either Tītī or Long 

Island. 

3.4.4 Population estimate 

Estimating population sizes of burrowing seabirds is inherently difficult. Complications 

include sampling methodology (Hamilton 2000; McKechnie et al. 2007), presence of 
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juvenile, pre-breeding and transient birds (Newman et al. 2009b) and the often steep, 

fragile and sometimes inaccessible island habitats the birds occupy. In addition, 

breeding populations fluctuate in size from year to year, likely reflecting the influence 

of environmental variability and the trade-off between reproduction and survival 

(Stearns 1976; Jenouvrier et al. 2003). Richdale (1963) estimated that only one third of 

the sooty shearwater population of Whero Island actually bred on Whero Island in any 

given season. The rest were what he termed ‘unemployed’ (Richdale 1963). Brooke 

(2004) suggested a minimum of three birds existed for every seabird breeding pair but 

that this should be increased to five for particularly long-lived species. Newman et al. 

(2009b) tested this suggestion and concurred with a model multiplier of 4.84 for sooty 

shearwaters. I used the model multiplier to estimate both island population sizes but I 

also consider the number of breeding pairs to be an important indicator of population 

trends because it is easier to quantify and has direct implications for population growth 

rates and estimates (Wanless et al. 2009). 

The Long and Tītī population estimates could be underestimates. Fluctuations in sooty 

shearwater harvest rates and annual burrow occupancy rates correlate significantly 

with Southern Oscillation anomalies when lagged by one year (Lyver et al. 1999). The 

extent of harvest rate fluctuations can accurately predict the onset of an El Niño or La 

Niña event and its intensity (Lyver et al. 1999). The 2009 sooty shearwater harvest was 

one of the worst in living memory (Newman 2009) and an El Niño event began in 

October 2009 (Australian Bureau of Meteorology, Canberra, Australia). It is feasible 

that the sooty shearwater populations of the Marlborough Sounds were affected 

during the period of this study and the population estimates likely reflect that. More 

importantly, extreme climate anomalies are predicted to increase in frequency in the 

future which may have serious implications for small populations such as that of Long 

Island which face additional external pressures such as fisheries bycatch, potentially 

affecting the population growth rates. These impacts will be investigated and discussed 

in Chapter Four. 
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It is difficult to infer any possible population trends on Tītī by comparing estimates 

from earlier studies because they used different methodologies. Similar issues have 

been documented in attempts to determine wedge-tailed shearwater population 

trends using historic data (Dyer et al. 1995). A population estimate conducted in 

December 1969 intensively sampled three of an estimated seven breeding areas, 

determining occupants solely by smell (Bell 1969). The report concluded that Tītī had a 

maximum possible total of 1500 burrows of which 600-650 were active petrel burrows 

made up of 81.3% sooty shearwaters and 18.8% flesh-footed shearwaters (Bell 1969). 

This would put the 1969 population at between 488 and 529 breeding pairs, less than 

half my estimate of 1,296. Gaze (2000) found no detectable increase in the number of 

active burrows on Tītī between 1987 and 1998 which adds further doubt to a 

population increase from approximately 500 pairs in 1969 to approximately 1,300 in 

2009. Similar to Bell (1969), Gaze’s study also primarily relied on smell to identify 

burrow occupants. Some studies have found error associated with the sole use of field 

signs to determine burrow occupancy (Hamilton 1998; Cuthbert & Davis 2002). 

However, in some cases there has been no significant difference between the average 

occupancy status detected by the use of field signs compared with burrowscopes, but 

those found to be occupied by field signs were not necessarily those confirmed by the 

burrowscope (Cuthbert & Davis 2002; Geary 2009). While the occupancy rates I 

estimated were similar to those of Bell (1969), I was constrained by the use of the ten 

10x10m quadrats which only covered an estimated 2.4% of the total colony area (Baker 

et al. 2009) and may not be a true representation of burrow densities and occupancy 

rates for the island. In addition, my total population estimate for both islands is likely to 

be larger than earlier estimates due to the fact that I have included the existence of 

birds not present or not breeding on the islands this season.  

3.4.5 Conclusion 

The breeding biology of the Long and Tītī Islands’ sooty shearwater populations is 

similar to populations from the species’ breeding stronghold off southern New Zealand. 
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However, it is likely that the impacts of climate anomalies, fisheries and their location 

on the fringe of the species’ breeding range are exacerbated given the small size of 

these populations.  

The sooty shearwater populations of the Marlborough Sounds are good populations on 

which to conduct research. They are small, relatively accessible, and a number occur 

within a small spatial scale which may assist determining parameters such as 

immigration rates. Although baseline biological data are provided here, longer term 

studies using standardised methods are needed to determine demographic parameters 

particular to the Marlborough Sounds to help assess the populations’ status, the 

interactions occurring among them and guide future management decisions. 

  



 
 

48 
 

CHAPTER FOUR 

The viability of two small sooty shearwater 

(Puffinus griseus) populations and their resilience 

to customary harvest 

 

4.1 Introduction 

Extinction may be a real threat to small populations with low growth rates that are 

subject to highly variable environments (Lande et al. 1995). The four primary 

contributors to the extinction of small populations include demographic, 

environmental and genetic stochasticity and catastrophes (Shaffer 1981). Populations 

may be naturally small due to their environmental distribution or could be small as a 

result of human influence from hunting, habitat destruction and introduced predators. 

For example, the Lord Howe Island woodhen (Gallirallus sylvestris) population was 

restricted by the small size of its island home. The introduction of pigs to the island 

accompanied with human hunting therefore had devastating consequences on a small, 

spatially limited population (Miller & Mullette 1985). Populations can eventually 

become so small their vulnerability to deterministic and stochastic factors may drive 

them towards extinction unless humans intervene. For example, the world’s kakapo 

(Strigops habroptilis) population numbered approximately 50 birds in the 1970s. High 

levels of inbreeding have been attributed to the low productivity now observed in the 

species and the necessity for intensive management by conservation staff (Elliott et al. 

2006; Jamieson et al. 2006). 

Small or declining populations are a priority for conservation managers. A key issue is 

understanding the causes of long-term population decline but causes of decline (both 

natural and human induced) are numerous and vary considerably between taxa. For 

example, predation of juvenile tuatara (Sphenodon punctatus) by introduced kiore 
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(Rattus exulans) has prevented recruitment on Taranga Island, New Zealand. If kiore 

are not removed, the remnant population of 44 adults is predicted to collapse (Towns 

et al. 2007). But unlike tuatara, multiple pressures including fisheries and introduced 

predators are having serious impacts on the world’s population of the Balearic 

shearwater (Puffinus mauretanicus). If current pressures continue unabated, the mean 

time to extinction of the species is estimated to be 40.4 years (Oro et al. 2004). 

Specific life-history characteristics can contribute to the vulnerability and rate of 

decline of a species or population (Sæther et al. 2005a). Seabirds, in particular 

Procellariiformes, have these distinctive life-history characteristics. For example, they 

have low fecundity, long generation times and are sensitive to perturbations in adult 

survival rates (Warham 1990, 1996; Hunter et al. 2000a). In addition, the typically low 

maximum annual population growth rates in seabirds limit their ability to sustain high 

levels of additional mortality and recover quickly from depletion (Dillingham & Fletcher 

2008).  

Seabirds have been exploited for their eggs, meat, feathers and guano for centuries, 

yet the impact of harvest has rarely been documented (Feare 1984). While some 

communities no longer rely on subsistence seabird harvest (Baldwin 1974; Oka 1994; 

Baldwin 2009), other communities continue the practice to maintain a cultural tradition 

(Beatty 1992; Lyver et al. 2008a). When not managed properly, the overharvest of eggs, 

chicks or adult birds has led to population declines or extirpations (Feare 1976, 1978; 

Haynes 1987). Nonetheless, there are a number of examples where harvesting has 

continued for long periods of time, presumably at sustainable levels (Beatty 1992; Oka 

1994).  

Indigenous Māori communities have harvested wildlife from the time of their first 

settlement in New Zealand (Kirikiri & Nugent 1995). While harvesting is no longer relied 

on for survival, it is of cultural importance. Mana (prestige or standing in the eyes of 

others) is gained by being able to provide traditional foods to guests and is taken as a 

sign that the community is managing their resource well (Kirikiri & Nugent 1995; Lyver 

et al. 2008a; Lyver et al. 2009). Sooty shearwaters (Puffinus griseus) are one of only two 
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seabird species still traditionally harvested by Māori in New Zealand (Kirikiri & Nugent 

1995). This species occurs in high numbers and is harvested off southern New Zealand. 

Sooty shearwaters were once an important seasonal source of food for iwi (Māori 

tribes) in the Marlborough Sounds as well, but have not been legally harvested in the 

Marlborough Sounds since the 1960s (see Chapter Two). Desire to resume harvest for 

wānanga (learning forums) has been expressed by members of two different tribal 

groups from the area: Te Atiawa Manawhenua ki te Tau Ihu (Te Atiawa) and Ngāti Kuia. 

Before such harvest is considered, it is important to establish the viability of the 

populations and their ability to sustain harvest. 

Population viability analysis (PVA) is an important conservation tool that estimates the 

importance of particular life-history parameters and stochastic events on the 

persistence of populations (Shaffer 1981; Boyce 1992). Population viability analysis can 

explore the consequences of a range of scenarios to provide advice to conservation 

managers (Reed et al. 1998). Previous studies have used PVA to test the consequences 

of the removal of animals for translocation (Brook et al. 2002b), increasing frequency of 

climate anomalies (Vargas et al. 2007) and the implications of maintaining single 

populations compared with metapopulations in species conservation (Reed et al. 1998). 

In this study, I used PVA to evaluate the population growth rates and likelihood of 

extinction of sooty shearwater populations on Motungārara and Tītī Islands in the 

Marlborough Sounds, New Zealand to determine their resilience to the resumption of a 

low-level of customary harvest. Specifically, I addressed the following questions (a) are 

the populations currently increasing in size; (b) would historic exploitation levels have 

been sustainable, and; (c) can the populations sustain low levels of future harvest. 

4.2 Methods 

4.2.1 Study site 

Motungārara (41°06’S; 174°19’E) is a small (<2ha) island located in Onehunga Bay off 

Arapawa Island, Queen Charlotte Sound. The seabird burrowing habitat is dominated 
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by taupata (Coprosma repens), poroporo (Solanum laciniatum) and ngaio (Myoporum 

laetum), with a dense undergrowth of ongaonga (Urtica ferox) and shining spleenwort 

(Asplenium oblongifolium). The main ridge of the island is shaded by thick groves of 

karaka (Corynocarpus laevigatus). See Chapter Three for a description of Tītī and my 

field methods. Also see Chapter Two for a map of study location. 

4.2.2 Data collection and analysis 

I collected sooty shearwater biological data from both the field and the published 

literature (Table 4.1). Data collection on the Motungārara sooty shearwater population 

was not feasible due to the size, terrain and exposure of the island to the prevailing 

northerly wind. Therefore, data from a sooty shearwater population on nearby Long 

Island (Chapter Three) were used as a substitute. Where sooty shearwater data were 

unavailable, I used parameters from the closely related short-tailed shearwater 

(Puffinus tenuirostris). Explanations and justifications for this are provided in the next 

section. I analysed the data using VORTEX version 9.96 which enabled incorporation of 

stochastic processes such as breeding success, and varying levels of harvest on each 

population (Lacy 1993). VORTEX has been thoroughly scrutinised in the literature and 

population predictions have been shown to be accurate when adequate data are 

available (Brook et al. 1997; 1999; 2000). I considered each island a population even 

though each island was subdivided into many colonial areas. I conducted 1000 

iterations of each simulation to determine the likelihood of the population becoming 

extinct over a 100 year period. Extinction was defined as only one sex remaining.  

4.2.3 Biological parameters for VORTEX 

The following sections provide an explanation of the biological parameters used to 

model populations of sooty shearwaters on Motungārara and Tītī Islands in VORTEX. 

4.2.3.1 Inbreeding depression 

It is unknown if the Tītī and Motungārara populations (or sooty shearwaters in general) 

are affected by inbreeding. Wandering and Amsterdam albatrosses (Diomedea exulans 
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and D. amsterdamensis) have naturally low genetic diversity, with no apparent 

detriment to their survival (Milot et al. 2007). I did not include inbreeding depression in 

the VORTEX simulations. 

Table 4.1: Initial sooty shearwater parameters incorporated into models for Tītī; and 

Motungārara Island respectively. All data are referenced except where the value originated in 

this chapter. Unless otherwise stated, all standard deviations were set to zero. 

Parameter Value Reference 

Inbreeding depression N/A  

Environmental concordance Yes  

Catastrophes 0  

Breeding system Long-term monogamy  

Age of first reproduction 8 (Newman et al. 2008; 2009b) 

Max. age of reproduction 40  

Broods and progeny per brood 1,1 (both islands) (Warham 1990) 

Sex ratio at birth – in % males 50  

Density-dependent reproduction No  

Dispersal No  

% Adult females breeding  74 (Bradley et al. 2000) 

Distribution of broods per year 0, 100 (both islands)  

Distribution of offspring 
0.531, SD 0.2;  

0.478, SD 0.2 
 

% Mortality from age 0-1  42, SD 10 (Newman et al. 2009b) 

% Mortality from age 1-2  14.7, SD 10 (Scofield et al. 2001) 

% Annual mortality from age 2+  4.8 (Clucas et al. 2008) 

% Males in breeding pool 100  

Initial population size 2,590; 88 See methods & Chapter Three 

Carrying capacity  9,564; 550  

Harvest 

1. None 
2. Historic 
3. Future 
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4.2.3.2 Environmental concordance of reproduction and survival 

VORTEX is able to incorporate variation in environmental conditions to influence 

reproduction and survival either independently or simultaneously on the species 

modelled. Oceanic and climatic anomalies have been found to have little relationship 

with reproductive output of the short-tailed shearwater (Bradley et al. 2000) or the 

survival of black petrels (Procellaria parkinsoni; Imber et al. 2003). However, 

environmental variation has been shown to have important impacts on reproduction in 

some seabirds (Weimerskirch et al. 2001) and influence survival rates in others 

(Barbraud & Weimerskirch 2003; Jenouvrier et al. 2003). Fluctuations in chick 

production have been found to correlate with oceanic anomalies in a southern 

population of sooty shearwaters (Lyver et al. 1999). I therefore considered a good year 

for reproduction to be a good year for survival in VORTEX. 

4.2.3.3 Catastrophes 

Events such as food web perturbations, extreme weather events and predator invasion 

could have catastrophic effects on small, insular sooty shearwater populations in the 

Marlborough Sounds. The effects of such events are difficult to quantify and given the 

duration of this study, no effects were able to be measured. Similarly, no published 

estimates were found from which to infer the impact of a catastrophic event. I 

therefore excluded catastrophes from simulations. 

4.2.3.4 Breeding system 

Monogamy is the prevalent pair-bond in seabirds (Lack 1968). In sooty shearwaters on 

Whero Island, Richdale (1963) found pair-bonds lasted variable lengths of time. Of 83 

pair-bonds recorded, 61% ended through loss of one of the pair and 16% through 

divorce. He recorded one pair with a bond lasting at least 11 years. Extra-pair 

fertilisations have been found to occur in the short-tailed shearwater (Austin & Parkin 

1996) but not in other species, for example Leach’s storm-petrel (Oceanodroma 

leucorhoa; Mauck et al. 1995). In the absence of genetic analysis to provide evidence 
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for an alternative breeding system in the sooty shearwater, I used long-term 

monogamy in VORTEX models. 

4.2.3.5 Age of first reproduction 

Age at which the first offspring are born is not known for the sooty shearwater. 

Richdale (1963) suggested breeding began at an average age of six years but suspected 

this age varied between individuals. In the closely related short-tailed shearwater the 

majority of young adults first breed between six and eight years of age (Bradley et al. 

1989). Using data from the short-tailed shearwater, Newman et al. (2008; 2009b) 

constructed an age-structured population model to estimate age at first breeding in the 

sooty shearwater. Their mean age estimate was 7.9 years of age for both sexes. I 

rounded this to eight years for use in VORTEX models. 

4.2.3.6 Maximum age of reproduction 

The maximum age of reproduction is not known for the sooty shearwater. Sooty 

shearwaters could live for at least 40 years (G. Taylor pers comm.). The oldest age 

record of a short-tailed shearwater was a bird banded in 1960 and recovered dead 48.3 

years later (ABBBS Database, Department of the Environment, Water, Heritage and the 

Arts, Australia). One study estimated sooty shearwater life expectancy by extrapolating 

an estimated adult survival rate from a hypothetical population until only 5% of the 

population remained. The result was a lifespan of 32 years (Hamilton & Moller 1995). 

Conducting the same extrapolation with more recent data (the adult survival rate 

estimate of Clucas et al. (2008)) gives a life expectancy of 60 years. As VORTEX assumes 

life expectancy to equate to the maximum reproductive age, I used 40 years because it 

is a conservative compromise. 

4.2.3.7 Broods and progeny per brood 

Sooty shearwaters have one brood per year and lay one egg which is not replaced if it 

fails (Warham 1990). 
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4.2.3.8 Sex ratio 

There is no information available on the influence or importance of sex ratio in the 

sooty shearwater (see Chapter Three). I therefore assumed a 50:50 sex ratio.  

4.2.3.9 Density-dependence 

Density-dependence is suspected to occur in some sooty shearwater populations 

where rates of population decline have been faster in areas of relatively high initial 

burrow entrance density (Moller et al. 2009a). The low rates of burrow occupancy 

suggest that density-dependence may not currently affect breeding on Tītī and 

Motungārara (Chapter Three) but it could occur when the populations increase in 

density. I did not include density-dependence in any simulations to simplify analysis of 

model outputs. The occurrence of density-dependence is something that should be 

investigated in the future. 

4.2.3.10 Dispersal 

High levels of philopatry are not always the rule in seabirds (Coulson & Coulson 2008). 

For example, natal recruits of short-tailed shearwaters on Fisher Island composed 

approximately 40% of the breeding population. It was estimated that around half the 

surviving young adults emigrated and an equivalent number of unbanded birds 

recruited into the Fisher Island breeding population (Serventy & Curry 1984). In the 

sooty shearwater, dispersal of pre-breeding birds from their natal colony to other 

populations in New Zealand is likely to occur at high levels (G. Taylor pers comm.) 

though this level of mixing is currently unknown (Newman et al. 2009b). I chose to 

treat each island as a stand alone population for use as a baseline in lieu of any specific 

migratory information for these populations and to keep it simple for comparing the 

outputs from the model. 

4.2.3.11 Percentage of adult females breeding 

Adults of breeding age have been known to skip years between breeding in other 

Procellariiformes, for example the short-tailed shearwater (Wooller et al. 1990; Bradley 
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et al. 2000), Cory’s shearwater (Calonectris diomedea; Mougin et al. 1997), the 

southern fulmar (Fulmarus glacialoides; Jenouvrier et al. 2003), and possibly the 

northern fulmar (Fulmarus glacialis; Ollason & Dunnet 1983). In lieu of any specific 

information for sooty shearwaters, I assumed intermittent breeding also occurred in 

this species. Therefore, to estimate the percentage of adult female sooty shearwaters 

breeding, I combined the data on absent and non-breeding female short-tailed 

shearwaters from Bradley et al. (2000). 

4.2.3.12 Distribution of broods per year 

The probability of a female having one brood was set to 100 because it was assumed 

that all copulations resulted in an egg and the probability of multiple broods was zero. 

4.2.3.13 Distribution of offspring per brood 

I used breeding success data as the distribution of the number of offspring produced 

from each brood. Breeding success rates calculated in Chapter Three were combined 

with six years of breeding success data recorded on Whenua Hou (Newman et al. 

2009a). Native weka (Gallirallus australis) are known to hunt and kill young shearwater 

chicks (Brothers 1984; Harper 2006) and are present on Motungārara Island. Following 

findings from Harper (2007), I increased the mortality on Motungārara by 9.9% to 

account for weka predation. 

4.2.3.14 Mortality rates 

First year rates of mortality on each island were defined as the time of fledging to age 

one. Mortality rates were averaged from Newman et al. (2009b) resulting in a rate of 

42% which is comparable with 44% in common guillemots (Uria aalge; Harris et al. 

2007) and 48% in Cory’s shearwater (Jenouvrier et al. 2008). This estimate also closely 

matches that calculated from short-tailed shearwater data to model sooty shearwater 

populations (Hunter & Caswell 2005). Uncertainty was set at 10% (Jones 2002). 

The juvenile mortality rate calculated by Newman et al. (2009b) assumed constant 

mortality for the first two years. When first year mortality was also used in the second 
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year, both populations crashed. This clearly does not reflect reality because the 

populations have likely survived on these islands for hundreds of years. Survival rates 

increase with age in many other seabirds. In the common guillemot, second year 

survival increased from 56 to 79.2% (Harris et al. 2007) and from 52% in first year birds 

to 88% in Cory’s shearwater pre-breeders (Jenouvrier et al. 2008). I used non-breeder 

survival of 85.3% calculated by Scofield et al. (2001) for second year survival as it 

aligned closely with survival estimates from other seabird studies, including a sooty 

shearwater model developed by Hunter and Caswell (2005). I used the standard 

deviation from first year survival to incorporate uncertainty in the data. 

It is likely that sooty shearwater survival rates become similar to that of adults from 

when young birds first return to the breeding grounds (Richdale 1963). Sooty 

shearwaters return to their natal colonies from the age of two as pre-breeders or 

transients (Clucas et al. 2008). I applied inverse adult survival rates developed by Clucas 

et al. (2008) to all birds aged two and above for mortality rates in VORTEX models.  

4.2.3.15 Mate monopolisation 

The percentage of adult males that makes up the pool of available breeders was 

assumed to be 100%. While it is likely that not all males breed in a given year, this 

number is expected to be limited by the percentage of adult females breeding.  

4.2.3.16 Initial population size 

I defined the population size as the number of breeding adults in each population. I 

assumed that the number of eggs laid on each island represented the total number of 

breeding pairs and therefore doubled the number of eggs to account for breeding 

adults. I undertook three trips to Motungārara in January, March and April 2009 to 

obtain a census of breeding burrows. The total came to 44. On Tītī Island I calculated 

the total number of potentially occupied burrows (see Chapter Three) and used this as 

a proxy for breeding pairs. 
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4.2.3.17 Carrying capacity 

Burrowing seabirds are spatially limited by suitable burrowing habitat. I determined the 

potential carrying capacity of Tītī Island using the average burrow density within ten 10 

x 10m quadrats (0.139 burrows per m²). I then determined the number of burrows 

occupied by sooty shearwaters (SSB) as: 

 

Where BD is the burrow density, A is the total area of the colonies (obtained from 

Baker et al. (2009)), and PS is the proportion of burrows in the 10x10m plots occupied 

by sooty shearwaters, including empty burrows to incorporate a maximum potential 

occupancy rate. The resulting number of burrows was taken to represent breeding 

pairs for the island and doubled to estimate the total number of breeding birds and 

therefore carrying capacity of the island.  

The carrying capacity of Motungārara Island was determined by first gaining an 

estimate of burrow density from Long Island. Using a tape measure, I measured two 

areas (108 and 188m²) and counted all the burrows within them (0.138 burrows per 

m²). I then calculated the proportion occupied by sooty shearwaters and added it to 

the number of empty burrows to obtain the maximum potential occupancy rate. The 

total area of suitable habitat on Motungārara was obtained using polygons on Arc GIS 

version 9.3. Based on my familiarity with Tītī and Long Island burrowing habitat, I 

defined suitable habitat as areas with taupata and ngaio dominant in the canopy cover, 

and where soil and slope were suitable for burrowing which I determined during field 

trips to the island. I then used the formula used for calculating carrying capacity on Tītī 

Island. 

4.2.3.18 Harvest 

Traditional harvest of sooty shearwaters on Tītī Island was stopped in 1960 (Gaze 2000) 

and on Motungārara in 1963 (Douglas 1963). Models were initially run without 

harvesting. Then, two further harvesting scenarios were modelled for Motungārara and 

Tītī respectively. Harvest data were obtained from two iwi groups (Chapter Two) and 
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historic archives. I assumed the biological parameters (and their associated uncertainty) 

have not changed over the last 180 years. 

To investigate effects of historic harvesting levels on Motungārara I assumed the 

population was initially at carrying capacity. Harvest began at the time Te Atiawa 

arrived in Queen Charlotte Sound around 1829 (Chapter Two; Mitchell & Mitchell 2004) 

and continued until 1963 when it legally stopped (Douglas 1963). I modelled a harvest 

of 30 birds taken every two years (Chapter Two). As a comparison, I also ran a 

simulation of the harvest continuing until 2009 to account for any poaching that may 

have happened since 1963. 

To investigate effects of historic harvesting levels for Tītī Island the population was 

assumed to be at carrying capacity when the Crown purchased the island in 1856. Due 

to my lack of historic data prior to 1856, I ran harvest simulations beginning in 1856 

taking 200 birds every two years until 1960 (Chapter Two). As for Motungārara, I also 

ran a simulation in which harvesting continued until 2009. Poaching was known to 

occur in the 1970s (Chapter Two), and there is evidence of continued illegal harvest 

into the 1990s (Gaze 2000). An archive (Bell 1955b) mentioned historic harvest levels of 

1000 birds but did not specify exactly how long ago this occurred or its regularity. To 

test the impact of the higher levels of historic harvest, I ran a scenario starting at 

carrying capacity that examined the effect of taking 1000 birds every four years from 

1856. 

In addition, I investigated the effects contemporary harvesting would have upon the 

current populations. Sooty shearwater generation times are not present in the 

published literature but outputs from VORTEX, given the input parameters I used, 

suggest a generation time of approximately 19 years. I therefore investigated 

harvesting effects over 100, 150 and 200 year timeframes to incorporate approximately 

five, eight and ten generation times respectively. The mātauranga Māori (from Chapter 

Two) indicated that harvest would likely occur to preserve culture rather than to 

emulate historic harvest levels. I therefore tested different low-level harvest scenarios. 

For Motungārara I tested the harvest of one to ten birds biennially. I followed a similar 
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pattern for Tītī but increased the harvest size to simulate taking birds in multiples of 

ten, from ten through to one hundred birds biennially. 

4.2.3.19 Sensitivity analysis 

Biological parameters were adjusted by ± 10% to determine their relative importance 

for population persistence. The impact of each parameter on the population growth 

rate is reported. 

4.3 Results 

The results of model simulations and harvesting scenarios are presented. All results are 

presented ± one standard deviation. 

4.3.1 No harvest 

Using the model parameters summarised in Table 4.1, the population growth rate was 

slightly negative for the Motungārara population (r = -0.001 ± 0.05; Fig. 4.1a) but 

positive for the Tītī population (r = 0.01 ± 0.04; Fig. 4.1b). The population size increased 

by 164 ± 15% on Tītī and remained virtually unchanged on Motungārara. Both island 

populations had a zero probability of extinction over 100 years. 

  

Figure 4.1: Population trajectories for Motungārara (a) and Tītī Island (b) without harvest. 

Both populations had 100% probability of survival over 100 years. Population size is 

represented on both y axes. Error bars represent standard deviations. 
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4.3.2 Historic harvest 

Population size matched very closely with the observed number of breeding adults on 

Motungārara Island in 2009 under the assumption that poaching continued after 1963 

with a similar frequency and intensity to historic legal harvest levels (Table 4.1; Fig. 

4.2a). Had harvest ceased in 1963, the trajectory suggests the population could have 

been larger, but still only 29 ± 17% of the population at carrying capacity.  

On Tītī, the population remained near carrying capacity even when it was assumed 

harvest occurred following the island’s closure (Fig. 4.2b). However, the intrinsic 

growth rate (r) declined to -0.012 ± 0.041 in years when harvest occurred. Continued 

harvest until present day would have reduced the population but not to as low a level 

as the current population estimate (Chapter Two). Taking 1000 birds every four years 

saw a rapid population decline. However, the rate of decline slowed when the 

population dropped below the level at which 1000 birds could be removed.  

4.3.3 Potential future harvest 

Given current population parameters, the impact of taking low numbers of chicks from 

Motungārara varied greatly depending on the time frame examined (Fig. 4.3). For 

example, if two birds are taken every two years the population’s survival decreases 

from 93% over 100 years to 49% in 150 years to 16% over 200 years. The difference in 

population survival between the 100 and 150 to 200 year time frames varied between 

two and sixty-six percent depending on the number of chicks harvested. For the 

population to have a greater than 50% chance of persisting over 200 years, no more 

than one chick every other year could be taken. 

On Tītī Island, the population could sustain a much larger harvest, but the implications 

for the relatively short-term (100 years) were underestimated when compared with the 

long-term impacts (150 and 200 years) of harvest. The population growth rates were 

remarkably similar for each 100, 150 and 200 year time frame until the unsustainable 

harvest threshold (of over 60 birds) was breached (Fig. 4.4). However, only when 100 
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birds were taken biennially for 200 years did the probability of extinction increase from 

zero to 0.006 (data not shown). 

 

 

Figure 4.2: Population trajectories of Motungārara (a) and Tītī (b) using historic harvest 

estimates. For both populations, cessation of harvest in the 1960s is represented by 

diamonds and continued harvest shown with squares. On Tītī, the harvest of 1000 birds 

every four years is shown with triangles. On both graphs, open circles represent carrying 

capacity and open stars represent the population size estimated for each island in 2009. 
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Figure 4.3: The projected impact of harvest for Motungārara Island given its current population 

size and dynamics. Diamonds represent the trajectory over 100 years; squares over 150 years 

and triangles over 200 years.  

 

 

Figure 4.4: The projected population growth rates of the Tītī Island population with varying 

levels of harvest over 100 (diamonds); 150 (squares) and 200 (triangles) years. Harvest impact 

was modelled on the current population size and biological parameters estimated for the island. 
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4.3.4 Sensitivity analysis 

The population growth rate on Motungārara was most sensitive to an increase in 

breeding success, first year mortality, age at first breeding and adult mortality 

(presented in order of sensitivity; Table 4.2). For example, increasing breeding success 

by 10% improved r by 0.6% whereas increased adult mortality lowered r by 0.3%. 

On Tītī, the population growth rate was most sensitive to (in order of sensitivity) an 

increase in breeding success, age at first breeding, first year mortality and adult 

mortality (Table 4.2). 

4.4 Discussion 

The results of the population viability analysis suggest that (a) Motungārara has a low 

negative population growth rate and on Tītī this is low but positive; (b) historic levels of 

exploitation were unlikely to have been sustainable on Motungārara even with the 

Table 4.2: Results of sensitivity analysis on the population growth rate modelled in 

VORTEX. Growth rates (r) presented are the result of a 10% change in parameter 

estimates. Stochastic variables were not changed. 

 
Motungārara Island Tītī Island 

Model value  -0.001 0.01 

Parameter  
10% 

increase 
10% 

decrease 
10% 

increase 
10% 

decrease 

Breeding success  0.005 -0.007 0.015 0.004 

Adult mortality  -0.004 0.003 0.007 0.013 

First year mortality  -0.005 0.004 0.006 0.013 

Second year mortality  
-0.002 0 0.009 0.011 

 
 

1 year 
more 

1 year 
less 

1 year 
more 

1 year 
less 

Age at first breeding  -0.005 0.004 0.006 0.014 

Maximum age of reproduction 
 

0 -0.002 0.01 0.009 
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population at carrying capacity and it is likely that historic harvest levels have 

influenced the current condition of the population that persists on Tītī, and; (c) given 

the current population parameters, it is unlikely Motungārara can sustain any level of 

harvest in the near future but low-level harvest could potentially be undertaken on Tītī. 

4.4.1 Population growth rates 

Rates of population increase for Motungārara (-0.1%) and Tītī Island (1%) are very low 

which is not uncommon in many seabird species. However, this scenario did not 

incorporate immigration or emigration or any catastrophic events that may influence 

the populations’ growth and survival. Gaze (2000) found no change in burrow 

occupancy rates on Tītī Island between 1987 and 1998 and suggested the population’s 

distant position from the centre of the species’ breeding range meant recovery 

following rat eradication was slow. Jones (2002) estimated a growth rate of 4.4% for 

mainland sooty shearwater colonies under intensive predator control; the location of 

these colonies closer to the breeding centre may lend support to Gaze’s recovery 

hypothesis (Gaze 2000). However, a periodic stage-structured matrix model for sooty 

shearwaters developed by Hunter and Caswell (2005) produced a growth rate of -1.5% 

in the absence of harvest. Even in optimal conditions, Dillingham and Fletcher (2008) 

suggested albatross and petrel or shearwater populations could not exceed 7% and 10% 

growth per annum respectively. Regardless, the growth rates observed on 

Motungārara and Tītī are similar to those of other seabird species. For example, the 

black-browed albatross on Kerguelen Island has a stochastic growth rate of 0.8% but 

the authors suggested the population was limited by fisheries bycatch (Rolland et al. 

2009). Similarly, the Amsterdam albatross has an estimated annual rate of growth of 4% 

and the wandering albatross is similarly positive following declines attributed to fishing 

in the 1960s and 70s (Weimerskirch et al. 1997). 

4.4.2 Historic harvest impacts 

The size of the current population on Motungārara could be directly related to historic 

levels of exploitation experienced on the island (Fig. 4.2a). Given the threats facing the 
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wider sooty shearwater population, for example the increased intensity of extrinsic 

events such as climate anomalies (Lyver et al. 1999) and fisheries related mortality 

(Uhlmann et al. 2005), it is likely that the localised impact of harvest on Motungārara 

has been exacerbated by such additional external threats. However, the long history of 

Māori occupation of the Marlborough Sounds (Mitchell & Mitchell 2004) suggests 

seabird exploitation on Motungārara likely occurred long before the arrival of Te 

Atiawa to Queen Charlotte Sound. The continued persistence of the Motungārara 

population suggests that although the pressures facing the population have been 

prolonged, the population is resilient to change, although the limits to its resilience are 

as yet unknown. 

The dramatic decline in population size on Tītī Island when taking 1000 birds every four 

years, suggests that the population could not have withstood that level of harvest for 

sustained lengths of time. Once harvesters realised this, it is possible that they then 

adjusted the harvest size accordingly. For example, the harvesting rates provided by 

Ngāti Kuia harvesters (Chapter Two) may reflect the level of resilience of the 

population to harvest, at that time. If thousands of birds had been taken in the past, 

then the population was unlikely to be at carrying capacity in 1856 (as assumed in the 

historic harvest scenario; Fig. 4.2b). It is therefore difficult to quantify the impacts of 

the historic harvest rates proposed by iwi members as the size and condition of the 

population on Tītī at the time are unknown. 

The harvest history of the Marlborough Sounds has probably shaped the sooty 

shearwater populations on Motungārara and Tītī Islands. The additional presence of 

weka on Motungārara and the historic presence of rats on Tītī may have contributed to 

declines in productivity and burrow occupancy (Harper 2007). Motungārara was 

suggested to have the most resilient shearwater population in the Marlborough Sounds 

in the 1950s (Kelly 1960) but the small size of the island and the rate at which birds 

have been lost from the population have clearly outpaced the natural replenishment 

rate. In contrast, the population on Tītī was not considered to be as rigorous due to the 

presence of rats (Kelly 1960). With the rats now removed it is possible that even with 
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occasional illegal harvest, the population is in better condition now than it was at the 

time of harvest cessation. Moreover, a noteworthy implication from Figures 4.2a and b 

is that the populations would increase, albeit slowly, if all illegal harvesting was to stop. 

This gives hope for recovery of the populations, particularly that on Motungārara. 

4.4.3 Possible harvest rates 

Different potential harvest rates had quite different impacts on each population when 

modelled over 100, 150 and 200 years. Generation time may have an important 

influence when trying to understand population patterns (Sæther et al. 2005b). In 

species with long generation times, the risk of extinction may be underestimated if the 

wrong time frame is used (Armbruster et al. 1999). For example, a study of Asian 

elephants (Elephas maximus) revealed a 200 year time lag in population decline that 

had not been picked up in an earlier study that estimated population growth over a 100 

year period (Armbruster et al. 1999). Sooty shearwaters can probably live for at least 

forty years; it is therefore likely that population trends are better detected over periods 

of time that incorporate a suitable number of generations (O'Grady et al. 2008). This 

was exemplified in Figure 4.3 which shows harvest impact over five, eight and ten 

generations (100, 150 and 200 years respectively) on Motungārara. For example, taking 

two birds every two years gave the population a 92.5% probability of survival over 100 

years but this dropped to 16.3% over 200 years. On Tītī the trend was similar but the 

larger size of its population buffered its probability of extinction. While only one 

harvesting scenario led to extinction on Tītī (after removing 100 birds biennially for 200 

years), the size of almost all populations declined dramatically when the threshold rate, 

of over 60 birds biennially, was exceeded. This has important management implications 

for the Tītī population when setting harvest limits. 

A criterion utilised by the IUCN to define a species as ‘vulnerable,’ is that the 

probability of survival must be greater than 90% within the next 100 years (IUCN 2001). 

This criterion provides a useful framework on which to assess the harvest threshold of 

species, as has been shown in a study of the Scandinavian brown bear (Ursus arctos) in 
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Norway (Tufto et al. 1999). With no harvest, both the Tītī and Motungārara Island 

populations have 100% probability of survival over the next 100 years (Figs. 4.1a & b). 

On Motungārara, given the IUCN criterion, two birds could be taken biennially (Fig. 4.3). 

However, when tested over a longer timeframe, the impact of that level of harvest is 

shown to be of significant detriment to the population and no harvest is demonstrated 

to be the best option (Fig. 4.3). In contrast, on Tītī Island, only when 100 birds were 

taken biennially over 200 years did the probability of extinction increase from zero to 

0.6%. However, when the level of harvest increased to over 60 birds, despite the 

probability of survival remaining high for all three timeframes tested, the population 

decreased substantially below the initial population size of 2,590 birds. These results 

have several implications. Firstly, that the IUCN criterion does not appropriately 

represent realistic timeframes for long-lived vertebrates with long generation times. I 

suggest a criterion of a <5% risk of extinction over 100 years is perhaps more 

appropriate. Secondly, should harvest limits be set for Tītī Island, given the exposure of 

the population to threats outside the breeding season, more intensive monitoring (for 

example with the aid of a burrowscope) would be required to determine the long-term 

sensitivity of the population to the additional impact of harvest.  

4.4.4 Alternative harvest impacts 

Harvesting strategies described by the Te Atiawa and Ngāti Kuia harvesters could affect 

the dynamics of these small populations. Selective harvest of larger chicks (Chapter 

Two) may compromise the survival and recruitment probability into the Tītī and 

Motungārara populations (Gaston 1997; Sagar & Horning 1998; Hunter et al. 2000b). 

Admittedly, because the Motungārara population is so small, any harvest at all is likely 

to compromise the population. Nevertheless, the premise that sustainable wildlife 

harvest removes the ‘doomed surplus’ is unlikely to apply to small seabird populations 

because the ‘surplus’ in the case of sooty shearwaters, may actually be those chicks 

with the best chance of survival (Sagar & Horning 1998). In addition, the implications 

for the fitness of a population sustained by the recruitment of what are essentially 
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‘runts’ could have significant effects in the long-term, for example, as a result of 

reduced genetic fitness (Harris et al. 2002). 

The extent to which seabirds can compensate for additional mortality is equivocal. 

Compensatory mechanisms would likely operate through density-dependence (Moller 

2006). Increases in the occurrence of juveniles has been observed with the decline of 

adults through fisheries related mortality in the wandering albatross (Tuck et al. 2001). 

But the authors caution that the compensatory ability of the population should not be 

overstated. Similarly, Gaston (1997) hypothesised that ancient murrelets 

(Synthliboramphus antiquus) adjusted their breeding time to compromise between 

predation of adults and appropriate conditions in which to feed and rear their chicks. 

Given the more global timetable of the sooty shearwater due to its annual migration, 

the ability of the species to adjust its behaviour to compensate for periods of extensive 

predation, i.e. for the March/April harvesting season, is unlikely but would be worthy of 

investigation. 

4.4.5 Population persistence 

Despite all the pressures facing the populations, both the Tītī and Motungārara 

populations continue to persist. Even with all agents of decline removed, these small 

populations would still be vulnerable to the sources of uncertainty that are intrinsic to 

the dynamics of small populations (Shaffer 1981). Sooty shearwaters, like all 

Procellariidae, are colonial breeders (Warham 1990), presumably attracted to the 

colonies through the vocalisations of other individuals as evidenced through the 

establishment of breeding populations of other Procellariidae species using electronic 

acoustic attraction (Miskelly & Taylor 2004; Miskelly et al. 2009). The extent to which a 

population is large enough to attract additional birds is unknown but worth 

investigation. If, for example, the Motungārara population is no longer large enough to 

attract additional adults to the breeding population, this would further exacerbate the 

population’s risk of extinction. An additional consideration associated with reduced 

migration would include the genetic implications of a reduced population size, the 
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effects of which can cause significant problems for population persistence as witnessed 

in the kakapo (Jamieson et al. 2006). 

Assuming vocal attraction is not an issue yet, persistence of the Motungārara and Tītī 

populations may be the result of harvest impact being ameliorated by immigration to 

the islands by birds from unharvested refugia populations (Bragg et al. 2009; Moller et 

al. 2009a). However, the level of connectivity between islands is unknown and 

therefore the extent to which immigration alone could replenish depleted populations 

is uncertain. Immigration rates for different seabird species vary dramatically. For 

example, as described earlier on Fisher Island, it was estimated that around 50% of the 

breeding short-tailed shearwater population was made up of unbanded recruits 

(Serventy & Curry 1984). In the wandering albatross, immigration rates differed 

between sexes with 24.4% of females and 12.5% of males not returning to breed on 

Possession Island in the south-western Indian Ocean (Weimerskirch et al. 1997). In a 

small marbled murrelet (Brachyramphus marmoratus) population, immigration was 

estimated at around 16%, which was believed to be compensating for the low number 

of natal recruits being produced from the population (Peery et al. 2006). Jones (2002) 

found immigration to be an important influence during elasticity analyses he 

performed on his sooty shearwater population model. When set to zero, the growth 

rate became negative. Given the inability of VORTEX to allow immigration from 

external populations, I attempted to mimic immigration through supplementing the 

population with 5% of the adult population annually on Motungārara (note: data not 

presented, this scenario was tested purely as a pilot investigation on which to speculate 

the potential importance of immigration on the population). The result raised the 

population growth rate and identifies a critical area of research needed to determine 

its importance in mitigating harvest intensity.  

To extend the immigration idea further, the extent to which the islands in the 

Marlborough Sounds region are acting as a meta-population is also an important 

unknown variable. The long term study of the short-tailed shearwater revealed that 

birds dispersing from Fisher Island were commonly found in colonies close to and 
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facing Fisher Island (Serventy & Curry 1984). A similar pattern of dispersal has been 

found in the northern fulmar (Burg et al. 2003). This suggests that when dispersal 

occurs, the degree of movement may be quite localised. Sooty shearwater populations 

occur on an additional twelve islands in the Marlborough region but their population 

sizes range from tens to a few hundred breeding pairs (Newman et al. 2009b). If only a 

small proportion of the breeding population is made up of natal recruits, then a large 

meta-population may exist. If this is the case, because of its large size in relation to 

nearby populations, Tītī is probably acting as a sink and a large number of immigrants 

would be required to offset any population decline (Peery et al. 2006). This has 

important implications for those smaller Marlborough Sounds populations because 

additional harvest pressure may exacerbate declines in the populations that contribute 

immigrants to the larger population on Tītī. If this is the case, then monitoring should 

not only occur on Tītī Island but on nearby islands in the Marlborough Sounds where 

sooty shearwater populations occur. In addition, given the size of nearby populations, 

immigrants could be coming from source populations further afield, implicating a 

possible national meta-population but this would need genetic analysis (as has been 

done in the northern fulmar, Burg et al. 2003) for verification. 

The typically low maximum annual growth rates in seabirds limit their ability to sustain 

high levels of additional mortality and recover quickly from depletion (Dillingham & 

Fletcher 2008). Even if population parameters collected from the islands in the 

Marlborough Sounds have been underestimated (see Chapter Three), the clearly 

depleted state of the present Motungārara population suggests that the compounding 

effects of poaching, weka predation and extrinsic variables have exceeded the natural 

replenishment rate of the population. However, a lag effect as a result of their long life 

spans may be occurring. For example, Moller (2006) suggests that trends observed over 

a short period may have been determined by the ecological events that occurred in the 

several decades prior to when the trend was observed. A maximum harvest rate of 0.5% 

of the population has been suggested for threatened or depleted Procellariiform 

seabirds (Dillingham & Fletcher 2008). During the 2008/09 breeding season only 17 
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chicks fledged off Motungārara, demonstrating the low capacity of the population for 

harvest and reinforcing the viability analyses (Fig. 4.2). In contrast, the total population 

on Tītī is in the order of 6,300 birds (Chapter Three), giving a maximum annual harvest 

of around 32 chicks if Dillingham and Fletcher’s harvest rate is to be used. This number 

is within the potentially sustainable harvest rates determined by VORTEX (Fig. 4.4) and 

is potentially feasible as a total harvest size, provided the population size is not subject 

to unforeseen stochastic events that may compromise sustainability. 

4.4.6 Uncertainty and model interpretation 

A sensitivity analysis revealed that both the Motungārara and Tītī populations were 

influenced most by changes in breeding success. This contrasts with a similar study that 

estimated the importance of predator control on mainland sooty shearwater 

populations using VORTEX (Hamilton & Moller 1995). Their research found the sooty 

shearwater populations were most sensitive to a change in age at first breeding. This is 

perhaps not surprising given that the authors estimated life expectancy to be 32 years. 

Given the low fecundity of the species, lower breeding age would considerably increase 

the reproductive output and therefore growth rate of the population. Another sooty 

shearwater study found that changes in adult mortality had a far stronger impact on 

the population growth rate than did chick harvest rates (Hunter & Caswell 2005). The 

sensitivity of Motungārara and Tītī populations to changes in breeding success could be 

interpreted as a sensitivity to harvest because harvest would lower the productivity (i.e. 

the breeding success) of each population. This is an interesting contrast to the findings 

of Hunter and Caswell (2005). The small size of both the Tītī and Motungārara 

populations compared to their more southern counterparts, where single island 

populations can consist of millions of individuals (Newman et al. 2009b), may be 

contributing to this result because of their greater sensitivity to demographic 

stochasticity (Shaffer 1981; Caughley 1994). Significantly, breeding success is one of the 

few seabird biological parameters that could be manipulated with relative ease. For 

example, the removal of weka or use of exclusion plots on Motungārara could increase 
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the population’s productivity (Harper 2007). Or supplementary feeding of chicks, 

pioneered for seabird translocations (Miskelly et al. 2009), may improve their 

probability of return by creating high fledging weights (Sagar & Horning 1998). This 

could be an important opportunity for Te Atiawa at least, to be involved with the 

recovery of the populations. 

The degree of uncertainty in parameter inputs is important for the reliability of 

population modelling (Brook 2000; Hunter et al. 2000a). Using parameters estimated 

over a long period would be expected to incorporate any environmental stochasticity 

that occurred over the time frame measured. The majority of the input parameters I 

used in VORTEX were from the published literature, of which the shortest study 

incorporated data from a six year period. However, I did not incorporate catastrophic 

events, as there are no data on their effects. Given the size of the island, a catastrophic 

event such as a large rain storm has the potential to flood a large percentage of the 

total burrows in one breeding season on Motungārara. Burrow inundation is not an 

abnormal phenomenon for burrowing seabirds, for example Providence petrels suffer 

high losses as a direct result of burrow flooding on Lord Howe Island (Bester et al. 

2007). The long-term effects of flooding events and/or their regularity in the 

Marlborough Sounds however, are unknown. Catastrophic events at sea could also 

affect adult survival of small populations. For example, the occurrence of a tsunami or 

abnormal oceanic event may reduce their food source and cause the death of adults 

from starvation or exhaustion. Research into the impacts of catastrophic events such as 

the flooding of burrows or marine food shortages on the Marlborough Sounds sooty 

shearwater populations would assist in improving the output of the model parameters.  

Parameter estimation is always going to be difficult with only one season to collect 

data. For example, breeding success can be highly variable in seabirds. A 27 year study 

on the snow petrel (Pagodroma nivea) found average breeding success to be 51.3 ± 

16.3% but this ranged between 21-80% over the study period (Chastel et al. 1993). The 

recent abundance of published literature resulting from the large study of sooty 

shearwaters conducted by Otago University scientists is an enormous resource for this 
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project and similar studies. Nonetheless, some parameters remain difficult to obtain. 

For example, in a highly mobile species like the sooty shearwater the low detectability 

of juvenile and pre-breeding birds makes estimation of their survival difficult. Many 

studies caution the interpretation of PVA when uncertainty and variability in the data 

are high (Brook & Kikkawa 1998; Coulson et al. 2001) but concede its importance as a 

conservation tool given the absence of alternatives (Brook et al. 2002a). While the 

results of this study are by no means certain, they provide a useful starting point from 

which conservation managers and iwi can decide to prioritise further research and 

resources and evaluate requests to harvest. 

4.4.7 Conclusion 

This study has revealed a number of important parameters worthy of monitoring and 

research that should be conducted if low level harvests are to resume. Monitoring of 

population trends on Motungārara is urgently needed to determine whether the 

population is decreasing as suggested in this study. Research into levels of immigration 

and emigration is also important as it may be an important component of harvest 

mitigation. In the future, a model should be developed that can allow for dispersal from 

additional sources and proportional rates of harvest. The larger size of the Tītī Island 

population buffers it from harvest impacts. Regardless, if harvesting on Tītī is to resume, 

harvest rates much lower than past levels need to be implemented if the population is 

to persist long-term. 
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CHAPTER FIVE 

A framework for harvest decision making: thesis 

summary and implications 

 

5.1 Introduction 

This thesis represents the first substantive study of sooty shearwater (Puffinus griseus) 

populations in the Marlborough Sounds or indeed outside the centre of the species’ 

breeding range. The integration and synthesis of mātauranga Māori (Māori traditional 

knowledge), scientific research and population modelling have provided insights into 

the development of a sustainable level of sooty shearwater harvest. The benefits of this 

synthesis mean conservation managers and iwi (Māori tribes) will have a greater 

understanding of the issues surrounding harvest for improved decision making. This 

would not have been possible using each method in isolation. I have provided 

information on the traditional harvest practices undertaken by local Māori and its 

implications for population persistence. I have also gathered location-specific life 

history traits of the species. I then combined the knowledge gained from these two 

studies and conducted a population viability analysis (PVA). This thesis provides new 

information on the cultural importance, biology and resilience of the species in the 

small populations in which it occurs in the Marlborough Sounds. It also provides a 

baseline from which to monitor the populations in the future. 

5.2 Summary of findings 

Although the mātauranga Māori of Ngā Takiwā and Ngāti Kuia in Chapter Two did not 

provide novel biological information for the Marlborough Sounds sooty shearwater 

populations, it did provide important information on the historic condition of the 

islands and their seabird populations, and allowed for specific harvest parameters to be 

tested in a PVA. The harvesters interviewed had novel muttonbirding techniques 



 
 

76 
 

compared to the methods of Hauraki Māori grey-faced petrel harvesters (Lyver et al. 

2008a), and also with sooty shearwater harvesters on the Tītī Islands off 

Rakiura/Stewart Island (Kitson & Moller 2008). Contact with the islands and the birds 

through harvest and involvement in monitoring were identified as important ways for 

the iwi to maintain a connection with the islands’ environment and pass on 

mātauranga Māori to the younger generations. 

The biological study of the Long and Tītī Island sooty shearwater populations in Chapter 

Three presented biological data from two previously unstudied populations. The 

breeding chronology is similar to that of other sooty shearwater populations occurring 

at much higher latitudes in New Zealand. The results provide baseline data on which to 

monitor future population trends and provided important parameters for use in the 

PVA. 

The results from the PVA in Chapter Four indicated that the population on 

Motungārara has a low, negative rate of population increase whereas on Tītī Island, 

which has a population size over 2800% larger than Motungārara, the mean growth 

rate is still low at 1%. From an historical perspective, the modelling suggested that past 

levels of harvest would have significantly depleted the populations. This analysis gives 

useful insights into the effect of harvest at various levels of intensity given the current 

state of the populations. Generally speaking, the Tītī Island population may be able to 

withstand regular low-level harvest (but only tens of birds rather than hundreds) but it 

is unlikely that the population on Motungārara is in any shape to withstand harvest of 

any kind at this time. 

5.3 A framework for wildlife harvest decision making 

Decision making can be informed by science but it is ultimately a social and political 

decision (Ludwig et al. 1993). The view that human behaviour should be allowed to 

continue until evidence of its impact is procured, can polarise the generally  

precautionary approach used by many decision makers (Slooten et al. 2000). Use of a 

structured decision making process is highly beneficial in cases where there are 
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contrasting opinions as to how a situation should proceed. I have used the results of 

my thesis to illustrate how a basic framework can be built to assist the decision making 

of conservation managers and iwi with regard to harvest (Fig. 5.1).  

5.3.1 The importance of communication and consultation 

Essential to the decision making process is the communication of ideas and 

consultation with stakeholder groups. Engagement with local communities is an 

important component of successful conservation projects (Ramstad et al. 2009). For 

example, when the animal harvested is of commercial value, it is important to ensure 

the community is engaged in the project and agrees with its approach in order to 

reduce poaching.  

In the case of my thesis, both iwi and conservation managers have expressed a 

common goal of ensuring the persistence of sooty shearwater populations. The 

involvement of iwi in this research has been used to provide a more holistic picture of 

population viability for conservation and will enhance the uptake of decisions made. 

The approach I have taken can be used for any taonga (treasured) species with which 

Māori (or any other indigenous community) have a direct relationship and/or 

involvement in management. 

5.3.2 Evaluation of population size 

Before a population can be harvested its size needs to be determined. Small 

populations are much more susceptible to environmental and demographic 

stochasticity (Shaffer 1981; Lacy 1993; Caughley 1994) which may be exacerbated by 

additional harvest pressure.  

The populations on the Tītī, Motungārara and Long Island populations are small and at 

increased risk from factors such as fisheries bycatch or anthropogenic climate change in 

addition to any harvest. This in itself has important implications for management. For 

example, while conducting my fieldwork on Long Island, at least one (and possibly 

another two) fledglings were killed by a raptor. Despite these being natural predation   
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Figure 5.1: Decision making framework developed for conservation managers and iwi to 

evaluate requests to harvest wildlife. 
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events, when a total of only 32 chicks fledged off the island in 2009, the loss of three 

birds represents a significant proportion of the chicks available to fledge. In addition, 

an archive from 1960 suggested Motungārara once had the most resilient sooty 

shearwater population in the Marlborough Sounds (Kelly 1960). However, my research 

confirms that in 2009 the population was small, increasing its risk to stochastic 

processes. In this case, research and restoration management is required before the 

population can be re-evaluated for harvest consideration. 

5.3.3 The scale of harvest desired 

The scale of harvest is critical to its long-term sustainability. In addition, the harvest 

must be undertaken within the capacity of the species and/or the size of the 

population. For small or threatened seabird populations, a threshold of 0.5% or less can 

generally be regarded as sustainable (Dillingham & Fletcher 2008). Any form of harvest 

beyond this threshold therefore requires greater analysis. 

A commercial harvest generally aims to harvest the maximum number of animals 

possible. When done well, commercial harvest can be sustainable, for example, 

improved stock management of Pacific salmon (Oncorhynchus spp.) has provided 

record yields for Alaska and British Columbia (Ludwig et al. 1993). The goal of 

commercial harvest should be to maximise yields while maintaining a positive growth 

trajectory and ensuring the risk of extinction is low.  

In contrast, optimal levels of customary harvest are guided by traditional ecological 

knowledge (Johannes 1982; Lyver 2002; Berkes 2008). Scale of harvest can range from 

hundreds of thousands (Moller et al. 2009a; Newman et al. 2009b) to tens (Lyver et al. 

2008a) of animals harvested annually. It is important to determine the desired level of 

harvest and the minimum level of harvest required to provide a cultural benefit. The 

optimal harvest level will be between these two values. Consultation and 

communication is therefore critical at this stage to understand the perspective of those 

desiring customary harvest. In my study, the desired level of resumed harvest would 
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likely match the minimum level required to maintain a cultural benefit, in the order of 

tens of birds rather than hundreds.  

5.3.4 Determining harvest sustainability 

Once a population has been deemed suitable for further investigation into whether its 

harvest is feasible, a number of factors need to be considered. Will the population 

decline once harvested? If harvest resumes, does the population have a greater than 5% 

risk of extinction over 100 years? (See Chapter Four). These questions can be addressed 

using a modelling approach such as population viability analysis. These tools can 

incorporate factors such as the presence of introduced predators or the possibility of a 

catastrophic event.  

While the results of any model should be interpreted cautiously (Brook et al. 2002a), 

given the results of Chapter Four, it is unlikely harvest is able to be resumed on 

Motungārara Island. Harvest is more feasible for Tītī Island, which is likely a result of its 

larger population size. Provided conditions do not deteriorate, the population could 

sustain a maximum biennial harvest of 60 birds although a number half this size would 

perhaps be more appropriate using a precautionary approach (Chapter Four). Though 

my PVA could be improved by incorporating immigration (Jones 2002) and the effect of 

additional mortality from catastrophic events (Lande 1993; Vargas et al. 2007), its 

findings align closely to previous field studies (Gaze 2000).  

It is important to have ongoing assessment of harvesting effects on population 

dynamics. The power of using a modelling approach which is repeatable is that new 

information can be incorporated over time. 

5.3.5 An assessment of the risks 

If a population is deemed resilient to harvest, the benefits and risks of harvest still need 

to be explored. The study species itself may be able to be harvested sustainably but it is 

still important to determine any flow on effects which harvest may create. For example, 

although sooty shearwaters are the primary target of harvest on both Motungārara and 
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Tītī Islands, there is the risk of harvesters taking flesh-footed shearwaters (Puffinus 

carneipes) on Tītī Island. Speculation that Ngāti Kuia harvesters once targeted this 

species (Bell 1955b) raised concerns regarding the impact on the flesh-footed 

shearwater population and contributed to the cessation of harvest (Gaze 2000). The 

flesh-footed shearwater is heavily affected by fishing-related mortality and is declining 

on some islands (Baker & Wise 2005; Priddel et al. 2006). The total New Zealand 

population is not thought to exceed 8-10,000 pairs (Baker et al. 2009). In 2009, the Tītī 

Island flesh-footed shearwater population was estimated to be in the order of several 

hundred birds (Baker et al. 2009). I found these animals scattered throughout the 

island rather than in separate colonial areas at a 1:5 ratio of flesh-footed to sooty 

shearwaters. There is considerable risk that flesh-footed shearwaters could be 

mistakenly harvested which would likely tip the population into decline (similar to the 

harvest scenarios for sooty shearwaters on Motungārara in Chapter Four). Therefore, 

any harvest considerations on Tītī Island must account for the presence of flesh-footed 

shearwaters. 

5.3.6 Can harvest impacts be mitigated? 

Identification of modes through which harvest impacts can be mitigated is an 

important component of the risk analysis process. Mitigation of harvest impacts will 

vary between species and harvesting methodologies. For example, establishment of 

large ‘no take’ reserves may assist in enabling recovery of depleted fish populations 

(Pauly et al. 1998), whereas sustainable forest management better relies on 

appropriate harvesting techniques to reduce biodiversity loss (Lindenmayer et al. 2006).  

It is recommended that conservation managers engage with those conducting the 

harvest to inform them of the flesh-footed shearwater complication if harvest is 

allowed to become more frequent on Tītī Island. Mitigating unnecessary harvest of 

flesh-footed shearwaters would be relatively simple if harvesters were to differentiate 

between species: flesh-footed shearwaters have a pale bill and feet compared with the 

darker features of their sooty counterparts (Marchant & Higgins 1990). 
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The results from Chapter Four suggest that the Motungārara and Tītī Island populations 

are sensitive to changes in breeding success. In some cases, improving seabird breeding 

success has been possible through direct conservation action. For example, the 

eradication of feral cats (Felis catus) off Marion Island increased the breeding success 

of great-winged petrels (Pterodroma macroptera) from 0% to 59.6-64.2% (Cooper et al. 

1995). On Tītī Island, enhancing reproductive output would be difficult, but on 

Motungārara breeding success may be improved through ongoing weka removal. The 

predation pressure on sooty shearwater chicks by weka (Gallirallus australis) has been 

quantified for Taukihepa Island off Stewart Island (Harper 2006; Harper 2007). I too 

saw a large number of dead chicks outside their burrows (a phenomenon I witnessed 

on neither Tītī nor Long Island) and while conducting fieldwork on Motungārara I saw a 

dead chick being eaten by a weka. There is a fine line between sustainable and 

unsustainable exploitation of small sooty shearwater populations. It is clear that 

Motungārara and Tītī Islands are unable to sustain uncontrolled levels of harvest. It is 

therefore critical that illegal harvest is stopped on both Tītī and Motungārara because 

the islands will probably not be able to sustain both traditional and illegal harvest. If 

unsolicited harvest continues, it will deny those desiring to undertake wānanga the 

ability to pass on or learn the mātauranga Māori of the islands and harvest. 

5.3.7 The importance of monitoring 

Determining the effects of harvest and the effectiveness of mitigation measures should 

be undertaken through comprehensive monitoring. The long life spans of seabirds 

mean detection of trends may require extended monitoring periods (Moller 2006). 

However, allowing resumed harvest may not only provide cultural benefits but could in 

fact result in subsequent benefits to conservation managers, such as the monitoring of 

population trends over time or alerting others to previously undetected declines 

(Moller et al. 2004; Gilchrist et al. 2005).  

There is limited information on breeding success of sooty shearwater populations on 

both Tītī and Motungārara Islands. It is important that additional information is 
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gathered through a monitoring programme to increase the accuracy of the population 

viability analysis. Should the results of the analysis change then the decision and scale 

of harvest need to re-examined. 

5.3.8 Directions for ongoing research 

Effects of harvesting on population viability have been estimated, but factors such as 

migration between populations and threats facing the populations have been excluded 

from analyses due to lack of information. Removal of chicks may only be offset by 

immigration from larger, more robust source populations (Peery et al. 2006). 

Determining dispersal rates has proven difficult in other larger sooty shearwater 

populations (Newman et al. 2009b). Conducting a study into the level of population 

mixing between islands may prove logistically easier if centred in the Marlborough 

Sounds where the populations are smaller and sampling may be easier.  

The output from VORTEX suggests that the Motungārara population has low, negative 

growth (Chapter Four). This output would need to be verified with long-term 

monitoring. Monitoring is needed to establish a better estimate of population size, to 

quantify chick production and would also assist in the monitoring of illicit access to the 

island. For example, I found what could have been tools used in harvest while 

conducting fieldwork on Motungārara and evidence of burrow damage likely caused by 

human presence. Annual surveys of the entire island would take, at most, two days to 

complete but in the case of time pressure, then quadrats would suffice. 

5.4 Re-establishing a connection through harvest 

Despite the reality of resumed harvest on Motungārara being unlikely, low-level 

harvest for the purpose of wānanga, at least on Tītī, is potentially viable. Given the life 

history characteristics of the sooty shearwater, the islands may now be experiencing a 

lag time associated with overharvest in the past. Ongoing monitoring on Tītī and the 

initiation of monitoring on Motungārara is recommended. The harvest and 

management of native fauna has immense spiritual and cultural significance to many 
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Māori (Lyver et al. 2008a; 2008b; Moller et al. 2009c). Enabling the increased 

participation of Ngā Takiwā and Ngāti Kuia in the species’ management on each island 

may prevent further poaching because it may be perceived to undermine the authority 

of the managing iwi (Coombes 2007) or the success of legitimate sustainable customary 

harvest (Kirikiri & Nugent 1995). Active co-management of the resource by the iwi 

would be a positive step towards their reconnection to an important cultural species, 

regular monitoring and the potential recovery of the populations as well as the 

prevention of the loss of the mātauranga Māori regarding the islands and the harvest.  
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