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Abstract

Anodic aluminium oxide has been identified as a versatile porous tem-

plate material having high pore density, (up to 1010 cm-2), controllable chan-

nel length and monodisperse pore diameter within the range 20-250 nm. A

number of studies have demonstrated the concept of utilizing the porous

structure for directing the growth of various nanostructures. An example

of this is the growth of crystals of the aluminophosphate AlPO4-5 within

the anodic nanochannels. The high aspect ratio of the template pores en-

courages growth of the crystals in the preferred c-axis orientation. We

have produced membranes of this material and investigated the degree of

crystal alignment using X-ray diffraction. The relative degree of preferred

orientation is over 200 for a typical membrane. Field emission SEM micro-

graphs clearly show the aligned crystals within the pores. The inclusion of

luminescent guest molecules within the pores of the zeolite has also been

achieved. This work describes the synthesis, characterization and poten-

tial application of these membranes.
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Chapter 1

Introduction

1.1 Nanomaterials

Nanotechnology is the engineering of functional systems at the molec-

ular scale. Generally, nanotechnology deals with structures of the size

100 nanometres or smaller, and involves developing novel materials or

molecular devices within that size range. Nanotechnology is very di-

verse, ranging from extensions of conventional synthethic techniques and

macro-scale materials, to completely new approaches based upon molec-

ular self-assembly, to developing new materials with dimensions on the

nanoscale. The field of nanotechnology has the potential to create new

materials that are not only faster, cleaner and cheaper to produce than

conventional materials, but also display novel properties not available on

the macro-scale [1].

A number of physical phenomena become pronounced as the size of

the system decreases. These include statistical mechanical effects, as well

as quantum mechanical effects, for example the quantum size effect where
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the electronic properties of solids are altered as particle size decreases into

the nano region [2, p.23]. This effect does not come into play by going

from macro to micro dimensions, however, it becomes dominant when

the nanometer size range is reached. Additionally, a number of physical

(mechanical, electrical, optical, etc.) properties change when compared to

macroscopic systems. One example is the increase in the ratio of surface

area to volume, altering mechanical, thermal and catalytic properties of

materials [2, p.29]. Nanotechnology exploits these phenomena to create

materials with startlingly different properties to their macro scale counter-

parts.

This project seeks to investigate the potential of forming aligned nano-

crystallites with specific properties in order to access functionality not

available at larger scales. The project examines two functionalities de-

rived from the use of zeolitic crystal, both resulting from the presence of

open channels through the zeolite crystal structure. The first is the use

of aligned arrays of the crystals arranged on the macro scale to act as a

size exclusion molecular filter. The second function is to use the channels

as cages in which to trap functional molecules, (in this case a 2nd order

non-linear photonic molecule) in order to provide a macro scale material

containing fully aligned molecules. As most zeolites form crystalline pow-

ders rather than films or membranes, it is necessary to utilise a template

to produce crystallographically aligned arrays of zeolite crystals. In order

to force this alignment a porous anodic alumina membrane is used as the

template, the pores of which orient the zeolite crystals with their c-axis

perpendicular to the membrane surface.
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1.2 Porous Anodic Alumina

In recent years, nanoporous porous anodic alumina (PAA) membranes

have become popular and attractive materials for a diverse range of ap-

plications including molecular separation [3], catalysis [4], drug deliv-

ery [5], biosensing [3], and template synthesis [6] [7]. This profound in-

terest is due to the salient features of this nanostructured material. Firstly,

PAA membranes can be easily fabricated with monodisperse, geometri-

cally regular and self-organised pore diameters within the range 20-250

nm. Furthermore, such membranes have a high surface area (180−250 m2g-1),

high pore density, (up to 1010 cm-2), controllable channel length, and are ro-

bust and biocompatible.

A number of studies have demonstrated the concept of utilizing PAA

as a template for directing the growth of various nanostructures. Vari-

ous composite materials with metals have been reported, including plat-

inum [8] or palladium [9] membranes supported on PAA, composites of

PAA with nanogold [10] and zinc, cobalt or iron nanotubes within PAA [11].

Other nanotube composites include carbon nanotubes grown within PAA [12]

and nanocarbon networks [13]. Composites have also been made with the

ionic conductor AgI within PAA [14]. These materials show an enhance-

ment in conductivity over AgI powders. Composites of PAA with photo-

luminescent materials including liquid crystalline azo dyes [15], photolu-

minescent polymers [16] and Tb3+ [17] show the diverse range of materials

that can be supported on or contained within PAA.

Several different ceramic-based composites have also been reported,

including aluminium titanate/PAA composites [18], zirconia-zircon com-
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posites with PAA [19] and the zeolites MFI [20, 21, 22, 23, 24, 25, 26],

FAU [23, 27] and the aluminophosphate AFI [28, 29], also known as AlPO4-5,

which is discussed in this work. The naming schemes for zeolites and

aluminophosphates from which these three letter codes are derived can

be found in sections 1.3 and 1.4, and further detail on zeolite and alu-

minophosphates membranes is found in sections 1.3.2 and 1.5.4. This list

shows the extreme versatility of PAA as a support for or template to direct

the growth of different composite materials.

Porous anodic alumina is made by anodizing pure aluminium foil in

an acidic electrolyte (typically, dilute solutions of various acids - sulfu-

ric, phosphoric or oxalic for example - are used) [30]. The anode of the

electrochemical cell is composed of aluminium while the cathode is an in-

ert conductor such as carbon or platinum. The aluminium is oxidized to

give a film of alumina, which grows in a hexagonal porous structure (see

Fig 1.1), due to the preferential growth of oxide in nanosized pits on the

surface of the aluminium, which are a result of polishing the aluminium

foil. These pits grow into cells of alumina, each with a central pore [31].

The size of these pores and their interpore distance is dependant on

the electrolyte used [30], and is approx 50 nm for the locally made an-

odic alumina membranes used in this study, which are shown in Fig 1.2.

The residual Aluminium metal is removed and the ends of the pores are

opened by immersion in an acidic solution [32].

Although anodizing highly pure aluminium can produce regular peri-

odic arrays of pores, less regular porous alumina discs with pore diame-

ters of 100 - 200 nm are commercially produced for microfiltration applica-
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Figure 1.1: Idealized structure of Porous Anodic Aluminium Oxide [31].

tions. The synthetic procedure discussed in this work is suitable for both

highly ordered and commercially available PAA membranes, demonstrat-

ing a high degree of flexibility with regards to the purity and pore size of

the substrates that may be used.

1.3 Zeolites

Zeolites are a class of microporous molecular sieve based mostly on porous

aluminosilicates, but also encompass a wider range of materials includ-

ing the aluminophosphates, which are studied in this work. The name

zeolite (from zeo, ”to boil”; lithos, ”a stone” [33]) was bestowed by the
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Figure 1.2: A side view of porous anodic alumina made by the method in
Kirchner et al. at 33000 magnification [32].

Swedish mineralogist Axel Fredrik Cronstedt. In 1756 he discovered a

zeolite now widely used for water softening, upon observation that when

heated rapidly, the stones began to dance about as the water evaporated [34].

Zeolites are three-dimensional, crystalline compounds with an open

porous framework structure composed of alternating AlO4 and SiO4 tetra-

hedra [35]. According to the diameter of the largest pore, porous materi-

als can be classified as microporous (aperture diameter of less than 2 nm),

mesoporous (aperture diameter of 2-50 nm) or macroporous (aperture di-

ameter of greater than 50 nm) [36]. The pore diameters for zeolites are

generally in the microporous region, of the order of 0.5 to 1.5 nm.

The basic zeolite formula is M2/nO.Al2O3.xSiO2.yH2O, with M defining

the compensating cation, valence n indicating the ratio of atoms of Si:Al

and y indicating the ratio of H2O : Al [37]. A number of different cations
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can provide the counter charge. An example of a common zeolite (ZSM-5)

is shown in figure 1.3.

Figure 1.3: The zeolite ZSM-5 showing the pores along which molecular
sieving is achieved [38].

Zeolites are synthesised hydrothermally, from an aqueous solution of

the aluminate, silicate and a template around which the porous framework

is formed. The precise zeolite formed during synthesis is dependent on the

reactants and synthetic conditions used. Zeolites are categorized by their

framework type and as of July 2009, 179 unique zeolite frameworks have

been identified [39].

Zeolite framework types are categorized by a unique 3 letter identifi-
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cation code, which is designated according to the laboratory in which it

was synthesised, and the order in which it was discovered. This can be a

confusing scheme for researchers to follow as it is in no way descriptive of

the structure of the zeolite in question. For example the zeolite ZSM-5 was

so named because it was discovered by the researchers at Zeolite Secony

Mobil, and was the 5th such zeolite to be discovered. It is given the three

letter code MFI, the M refers to Mobil, and the letters FI refers to the first

two letters in the number five.

1.3.1 Applications of Zeolites

Over the past few decades, interest in zeolites has increased due to their

many potential applications in catalysis, molecular sieving, separations

and water purification. Zeolites have many interesting properties. They

are able to act as catalysts for various reactions which take place within

their cavities [40, p.327-328]. Their very regular pore structure allows them

to behave as molecular sieves, to selectively sort molecules based primar-

ily on a size exclusion process, and furthermore, the cations which provide

counter charge in zeolites are labile, and can undergo ion exchange with

other cations [40, p.81].

One of the most important uses of zeolites is in catalysis, for the crack-

ing of heavier petroleum fractions into their lighter and more valuable

constituents. The zeolite holds the long alkyl chain molecules within its

pores, and acidic sites help break them into smaller chains [40, p.388]. Af-

ter introduction of metal ions (e.g. titanium or copper) into the frame-

work, zeolites can also function as oxidation or reduction catalysts [40,
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p.415-416].

Zeolites are extensively used in the separation of gases and liquids,

both by simple size exclusion, based on the pore sizes relative to the ma-

terial to be separated, and by the speed with which molecules of different

polarity diffuse through the pores.

The ability of zeolites to ion exchange leads to application in water pu-

rification, both for domestic and commercial uses. Zeolites are extensively

used in water softening, by removing Ca2+ and Mg2+, which form insolu-

ble deposits and precipitates with soap [41]. An example of this is the use

of zeolite A, as shown in Figure 1.4. The sodium ions in the framework are

replaced by the hard ions Mg2+ and Ca2+. When the zeolite has become

saturated with hard ions it can be regenerated by passing a saturated so-

lution of NaCl through it, exchanging Na+ for Mg2+ and Ca2+.

Figure 1.4: A schematic showing the role of NaA in water softening [42].

An important environmental application of zeolites which exploits their

ability to ion exchange is in the processing of commercial waste water

streams where zeolites can be used to remove heavy metals or radioactive

residues from the waste stream [43].
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1.3.2 Zeolite Membranes

Many of the separative applications of zeolites rely on the use of their non-

linear porosity, where pores pass through only one crystal plane. This can

only be fully utilized if the orientation of the zeolite crystals can be con-

trolled relative to the material to be separated. As most zeolites form crys-

talline powders, a support or template is needed in order to manufacture

zeolite films and membranes. Zeolite films and membranes promise far

superior performance to their conventional polymeric counterparts, due

to their relative thermal and chemical stability, and tunable, nanometer

sized pores.

Membranes composed of a zeolite layer on a support material have

the potential to replace energy-intensive thermally driven separation pro-

cesses with membrane based ones, which can provide a reduction in en-

ergy usage of up to an order of magnitude [44]. Different types of zeo-

lite membrane that have been reported include LTA [45, 46, 47, 48, 49],

FAU [50, 51, 52, 53], MOR [54, 55], FER [56], MEL [57], CHA [58], SAPO-

34 [59, 60, 61, 62], DDR [63], and AFI [64, 65, 29, 48, 21, 28].

Potential applications of zeolites membranes include separative pro-

cesses such as the de-watering of ethanol by LTA membranes [66, 67, 68,

69], for which a pilot plant is in operation. These membranes have a sep-

aration factor (water/ethanol) of 10,000 for 90 wt% ethanol solution. Zeo-

lite membranes have also been use in hydrogen separation, carbon dioxide

separation and separation of xylene isomers [44].

Another novel application of zeolites films and membranes is their use

in reactors to enhance a particular chemical reaction. There are numerous
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examples of their use in membrane reactors by equilibrium displacement

or by selectively removing reaction rate inhibitors [70]. In addition to these

applications zeolite membranes may be used in chemical sensors, as elec-

trodes, as opto-electronic devices or low dielectric constant materials, as

protective or insulating layers, as corrosion-resistant coatings [71] or as

hydrophilic antimicrobial coatings [72]. Sulfonated zeolite BEA may also

be used for proton exchange [73].

Although there has been much research in the field of zeolite mem-

branes over the last decade this technology is very much in its infancy,

and there are only a few pilot plants in operation. Initial successes how-

ever mean that many more are planned. The range of possible applications

has also increased greatly over the past few years with the possibility of

generating new structures via inclusion of guest molecules into the pores

of the zeolite.

1.4 Aluminophosphates

It has been more than 25 years since the first reported synthesis of alu-

minophosphates by Wilson and Flanigan [74]. Before that time the field

of zeolites was restricted to those containing silica [75]. The work of Wil-

son and Flanigan in reporting on the aluminophosphate molecular sieves

opened the field to a whole new variety of different zeolite based materi-

als.

More than 53 different aluminophosphate structures have now been

synthesised, with 18 analogues of natural or synthetic zeolites [39]. Their

naming scheme, though somewhat less confusing than that of the silica
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based zeolites, still makes no reference to the structure of the material.

Each aluminophosphate has a three letter code, the first letter of which is

A (for aluminophosphate), and the second two letters of which refer to the

order in which it was discovered. For example AlPO4-18 is given the three

letter code AEI, for Aluminophosphate Eighteen.

The aluminophosphates are mostly microporous molecular sieves with

pores with diameters ranging from 4 to 12 depending on the structure [76],

which are used for many of the same applications as the original silica

based zeolites. The subject of the present study is AlPO4-5, a medium

pore size (0.78 nm) aluminophosphate, which is one of the more widely

studied in the field. It is referred to by the three letter code AFI, for Alu-

minophosphate Five.

1.5 AlPO4-5

1.5.1 Structure

AlPO4-5 has a hexagonal open framework structure with a=13.827 Å,

b=13.827 Å, c=8.580 Å and α = 90 ◦, β = 90 ◦, γ = 120 ◦. The structure is

composed of alternating alumina and phosphate tetrahedra with the main

porosity along the [001] plane as seen in Figures 1.5 and 1.6. The pore

size of AlPO4-5 is 7.3 Å. The space group is P6/mcc (mass centred cubic),

and the largest ring size is 12 atoms. Bulk AlPO4-5 has the powder X-ray

diffraction pattern shown in Fig. 1.7, which is taken from the database of

zeolite structures at the International Zeolite Association [39].
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Figure 1.5: AFI viewed along the 001 axis [77].

1.5.2 Synthesis

AlPO4-5 is usually synthesised hydrothermally from a solution of the alu-

minium source and phosphoric acid, with an amine structure directing

agent [78]. A number of different amine structure directing agents can be

used. One of the commonly used organic templating molecules is triethy-

lamine (TEA), which is used in the syntheses discussed in chapters three

and four.

Other commonly used templating molecules include tetrapropylam-

monium hydroxide and tripropylamine.

Various aluminium sources may also be employed, the most common

of which are pseudoboehmite and aluminium isopropoxide, although many

others have been used. The original synthesis proposed by Wilson and
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Figure 1.6: AFI viewed channel normal to the 001 axis [77].

Flanigen over 20 years ago used an aqueous slurry of orthophosphoric

acid and pseudoboehmite, with tetrapropylammonium hydroxide as the

templating agent. This synthesis involved a slow crystallisation at 150 ◦C

over a period of 43 hours [74]. Guth et al. introduced the use of HF as

a mineraliser in 1986 [79], which, combined with the introduction of mi-

crowave heating [80, 81] greatly reduced the crystallisation time needed.

Advantages of microwave heating include speed, increased phase purity,

narrow particle size distribution and the fact that heating is not disturbed

by convection [75]. A typical microwave synthesis involves a crystallisa-

tion time of between 10 and 30 minutes and may be as short as 60 sec-

onds [82, 83].
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Figure 1.7: The powder XRD pattern of the zeolite AFI, taken from the
website of the International Zeolite Association [39].

1.5.3 Applications

The two main applications for which AlPO4-5 has historically been stud-

ied are catalysis and molecular sieving [74]. MAPO4-5 (AlPO4-5 in which

other metal ions have been introduced into the framework) has been demon-

strated to be a recyclable catalyst for various oxidation reactions of alka-

nes, cycloalkanes or phenols [84]. Examples of this include the use of Fe-

AlPO4-5 for the oxidation of cyclohexane [85], Cr-AlPO4-5 for the autoxi-

dation of cyclohexane, tetralin, indane and ethylbenzene [86], Cr-AlPO4-5

synthesised from aluminium dross (a byproduct of aluminium smelting)

for the liquid phase oxidation of tetralin [52], Mn, Zn, Co and Mg sub-

stituted AlPO4-5 for the dehydration and dehydrogenation of cyclohex-

anol [87]and Co-AlPO4-5 for oxidation of cyclohexane [88].

AlPO4-5 has also been shown to be of potential utility for gas separa-
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tions, including the separation from air of O2/N2 [89], the separation of C8

aromatics including benzene and o-xylene [90] and the separation from N2

of CH2Cl2 [91].

1.5.4 AlPO4-5 Membranes

AlPO4-5 membranes promise the same potential benefits as membranes of

other zeolite-based materials. In the past few years, due to their molec-

ular sieving action, potential value as catalytic membranes in membrane

reactors, and value as chemical sensors or low dielectric constant materi-

als [78], a number of papers have been published on the growth of such

membranes [28, 78, 92, 93, 94, 85, 29, 95, 96]. Growth of oriented crystals in

such a membrane can effectively enhance the mass transport and control

the thermal stress applied during chemical separations [97].

Another possible use of such membranes is as a way to induce prefer-

ential orientation of the zeolite allowing controlled host-guest interaction.

This opens up a wide range of potential applications for composites as

molecular wire, quantum electronic and non-linear optical devices [29].

Several different types of substrate have been used to synthesise ori-

ented films or membranes of AlPO4-5, including gold coated quartz crys-

tal microbalances, Ni grids, and anodized alumina. All of these mem-

branes were synthesized using microwave heating as the energy source [98].

Bein et al. [99] prepared ultrathin films of AlPO4-5 using pretreated,

gold-coated quartz crystal microbalances as a substrate. These membranes

were not crystallographically aligned. Caro et al. [92] prepared large AlPO4-

5 single crystals via microwave heating which were then c-axis oriented
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within a nickel grid in an electric field, i.e. with the porosity perpendicu-

lar to the substrate. Voids in the membrane were sealed by deposition of

nickel. Tsapatsis et al. [93, 94] prepared AlPO4-5 membranes on a seeded,

pretreated silicon substrate. These were prepared via two methods. The

first method published by this group yielded a highly oriented but poorly

intergrown film, the gaps in which were subsequently filled by a second

round of in-plane AlPO4-5 growth, and the second a poorly aligned yet

highly intergrown film without the second step. Shih et al. [29] prepared

an aligned AlPO4-5 membrane crystallised on anodised alumina via a mi-

crowave heating method that suspended the anodised alumina at the liq-

uid/air interface. These membranes showed a high degree of alignment;

however in the SEM micrographs shown in the paper, they do not appear

to fully cover the surface of the anodized alumina substrate [29]. This

work has also been extended to the synthesis of SAPO-5 membranes [95].

All of the AlPO4-5 membranes prepared on anodic alumina thus far have

used highly ordered anodic alumina membranes synthesized in a labo-

ratory setting as the substrate. These membranes are expensive and not

readily available on a larger scale.

Qiu et al. [97] have taken the preparation of AlPO4-5 membranes one

step further, preparing a single crystal AlPO4-5 substrate by gluing large

AlPO4-5 crystals onto a glass slide with their c-axes aligned perpendicular

to the surface of the slide, and then growing a highly oriented molecular

sieve film on top of this via epitaxial growth. The AlPO4-5 film prepared

has been doped with the laser dye Rhodamine B for potential application

as a microlaser system.
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1.5.5 AlPO4-5 as a host for other materials

Much of the recent research into AlPO4-5 has utilised the open pore struc-

ture of AlPO4-5 as a template to fabricate host-guest composite materials

for a range of novel applications.

AlPO4-5 crystals are electrically insulating, optically transparent from

ultraviolet to infrared, and thermally stable to 900 ◦C [100]. These proper-

ties, combined with their uniaxial open pore structure, make them an ex-

cellent starting point for the fabrication of host-guest nanostructured com-

posites. A number of different materials have been encapsulated within

the pores of AlPO4-5 to generate novel materials with interesting proper-

ties on the nanoscale.

One example of this is the encapsulation of p-nitroaniline within the

pores of AlPO4-5. It was discovered by Stucky et al. [101, 102] in 1988 that

p-nitroaniline-loaded AlPO4-5 was an efficient second harmonic genera-

tor. Second harmonic generation (SHG, also called frequency doubling) is

a nonlinear optical process, in which photons interacting with a nonlinear

material are effectively ”combined” to form new photons with twice the

energy, and therefore twice the frequency and half the wavelength of the

initial photons.

This discovery led the way for the inclusion of a number of different

types of organic molecule within AlPO4-5, for potential applications in op-

tical data storage or optical frequency doubling [82], laser frequency con-

version, and as microcavity lasers [100]. Dyes introduced into the pores

of AlPO4-5 to date include pyridine 2 [103], coumarin 466, coumarin 7,

and DCM [104]. Laser emission has been demonstrated from these com-
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posites [103]. These composites will be discussed in more depth in the

following section.

Another example of use of AlPO4-5 for the preparation of a novel mate-

rial is single walled carbon nanotubes (CNTs), which can be grown within

the pores of AlPO4-5 via chemical vapour deposition. Confining the growth

of the CNTs within the pores of the zeolite allows control of the nanotube

diameter and growth direction. These nanotubes may be useful in carbon

nanotube based electronics [105, 106].

1.5.6 Microlaser Introduction

A laser (short for light amplification by stimulated emission of radiation)

consists of a gain medium inside a highly reflective optical cavity, as well

as a means to supply energy to the gain medium [107]. The gain medium

is a material with properties that allow it to amplify light by stimulated

emission. Stimulated emission is the process by which an electron, per-

turbed by a photon having the correct energy, may drop to a lower energy

level resulting in the creation of another photon. The perturbing photon

is seemingly unchanged in the process, and a second photon is created

with the same phase, frequency, polarization, and direction of travel as

the original [107].

In its simplest form, a cavity consists of two mirrors arranged such that

light bounces back and forth, each time passing through the gain medium.

Typically one of the two mirrors, the output coupler, is partially transpar-

ent. The output laser beam is emitted through this mirror.

A dye laser is a laser in which an organic dye is used as the gain
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Figure 1.8: Simple laser. Principal components: 1. Gain medium, 2. Pump,
3. High reflector, 4. Output coupler, 5. Laser beam [108].

medium. The gain medium is the source of optical gain within a laser.

Usually the dye is in solution, however the same dyes may be utilised in

AlPO4-5/dye microlasers, in which the optically transparent AlPO4-5 sin-

gle crystals act as the optical cavity, with the hexagonal plate-like faces of

the crystal behaving as the mirrors, and the gain medium provided by or-

ganic dye molecules occluded within defects in the crystal. It is proposed

that these micro sized lasers will have a greatly reduced lasing threshold

due to the nanometre size of the laser [109].

1.5.7 AlPO4-5/dye Microlasers

There are several methods by which an AlPO4-5/laser dye composite may

be synthesized. One method by which these microlaser systems are syn-

thesized is hydrothermal synthesis of the zeolite according to the usual

synthetic procedure, followed by removal of the organic structure direct-
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ing agent and loading of the dye molecule either from solution or from

the vapor phase by insertion (for neutral molecules) or ion exchange (for

cationic molecules) [110]. This type of synthesis can lead to high dye load-

ings, but requires several steps. The more elegant synthetic method in-

volves synthesis of the composite in one step, in which the dye molecule

is introduced into the framework of the zeolite in-situ during synthesis.

This requires that the organic dye be adapted to the (relatively harsh) con-

ditions of hydrothermal synthesis, but does give more flexibility than may

initially be assumed, as it has been shown that a guest molecule may re-

side in an enlarged defect pore that it has created during its occlusion, as

well as directly within the pores of the host [110].

Examples of the first type of synthesis include the vapor phase diffu-

sion of disperse red 1 (2-[4-(4-nitrophenylazo)-phenyl]- ethylamino-ethanol)

molecules into the channels of AlPO4-5 single crystals. The composite

material generated by this synthesis shows second harmonic generation

when irradiated by a laser, meaning that the dye is well aligned within

the pores of the zeolite [100]. Another similar example involves the dif-

fusion of the laser dye Styryl 7 into AlPO4-5. These composites have also

demonstrated laser activity [59].

Examples of the second type of synthesis include the in-situ inclusion

of pyridine 2 and rhodamine BE50 dyes into AlPO4-5. Laser activity was

observed from pyridine 2 loaded single crystals as the dye molecules in

these crystals were highly aligned, although at higher dye loadings crys-

tal growth was disturbed, and a bundle-like morphology was observed.

Crystals with this morphology did not exhibit laser activity [83]. Fluo-
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rescence emission from the rhodamine BE50 doped crystals was partially

polarized, meaning that the guest molecules were only weakly aligned

within the host crystals.

Schuth et al. [111] prepared AlPO4-5 based composites via in situ in-

clusion of the laser dyes coumarin 466, coumarin 7, pyridine 2 and DCM

within AlPO4-5 single crystals. An image of the composites fluorescing

under UV is shown in Fig. 1.9. Laser activity was demonstrated from the

DCM/AlPO4-5 composites when a single crystal was attached to a glass

slide and irradiated with a Nd/YAG laser.

Because of the nanometre size of the resonator for these AlPO4-5 based

single crystals the lasing threshold is much lower than that of conventional

millimetre sized lasers [109]. One potential difficulty of these materials,

however, is aligning the microlasers relative to the pump. One potential

way to overcome this is to force alignment of the AlPO4-5 crystals within a

membrane in which the individual zeolite crystals are held in a particular

orientation. It is this aspect of the technology that this work explores.

1.6 Project Aims/Summary

The aim of this project was to demonstrate the ability to produce a com-

posite material incorporating crystallographically aligned crystals of a ze-

olite. In turn, the zeolite should contain molecular sized channels aligned

such that the composite material could contain molecules with non-linear

optical properties highly preferentially aligned within the channels of the

zeolite.

The present study investigates the in-situ growth of the aluminophos-
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phate AlPO4-5 within the nanochannels of a porous anodic alumina host.

This host material may be locally fabricated, highly ordered anodic alu-

mina membranes, or inexpensive commercially available Whatman An-

odisc membrane filters. The high aspect ratio of the template pores com-

pels the aluminophosphate crystals to grow in the preferred c-axis orienta-

tion. This material is then used as a host for the laser dye 4-dicyanomethylene-

2-methyl-6-(p(dimethylamino)styryl)-4H-pyran (DCM).

The work described in this thesis provides a method for reproducibly

forming the highly aligned arrays of AlPO4-5 within porous anodic alu-

mina membranes, which are then doped with the laser dye DCM. DCM is

a highly stable molecule with excellent 2nd order non-linear optical proper-

ties, which was chosen as it has previously been incorporated into AlPO4-

5 single crystals via an in-situ synthesis [104]. In order to be successfully

incorporated into AlPO4-5 a laser dye needs to be stable, uncharged (as

protonated groups can interfere with crystal grain growth), and relatively

long and linear. Although DCM is larger than the channel width of AlPO4-

5, it has been shown to be incorporated into defect sites within the crystal

structure during crystal growth [104].

The approach used in this work involves crystallization of the zeolite

AlPO4-5 within the pores of a porous anodic alumina template via a pore

plugging synthesis. The AlPO4-5 membranes are synthesized hydrother-

mally, using microwave heating as the energy source, and the dye DCM is

incorporated into the membrane during crystallization.

The highly aligned arrays of DCM-doped AlPO4-5 produced as a result

of this work may then be suitable for non-linear optical applications.
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Figure 1.9: AlPO4-5/laser dye composites fluorescing under UV [104].



Chapter 2

Materials And Methods

2.1 Introduction

This chapter outlines the materials and methods used in the fabrication

of AlPO4-5 using PAA as a structure directing agent. Also included are

details of the analytical techniques and instruments used to investigate

the properties of these materials. Each subsection outlines a method or

instrument employed during this research.

2.2 Materials

2.2.1 Reagents

The chemicals used in these syntheses, and their purities as assayed by the

manufacturer, are given in Table 2.1. The laser dye 4-dicyanomethylene-2-

methyl-6-(p(dimethylamino)styryl)-4H-pyran (DCM) and the other laser

dyes used in this work were synthesised by Andrew Kay of Industrial
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Research Ltd. DCM was synthesised via the method in Hammond et al.,

1979 [112]. Alphabond 300 is a material used by the cementing industry

composed of ρ alumina. The manufacturer’s information sheet is included

in appendix D.

Table 2.1: Chemicals used and their respective purities and manufacturers.

Chemical Purity Manufacturer

HF 48% in aqueous solution BDH
Aluminium isopropoxide 98% Acros
Alphabond 300 N/A Almatis GmbH
Triethylamine 99% Unilab
Orthophosphoric acid AR 98% Park Scientific Ltd.

2.2.2 Porous Anodic Alumina

Both commercial porous anodic alumina membranes (Anodisc 13 0.2 µm

membrane discs by Whatman) and porous anodic alumina membranes

synthesized locally were used [32].

Due to the higher stability of the Kirchner PAA, these syntheses were

carried out using only 200 eq. H2O and a 1:1 ratio of Al:P (as the membrane

was not corroded during synthesis in the way that the anodiscs were).

PAA membranes prepared using two different acidic electrolytes were tri-

aled. PAA anodised in sulphuric acid (pore size of ∼ 30 nm) was found

to give poor samples. The pores of these membranes may be too small to

allow the AlPO4-5 crystallites to penetrate during crystallisation, however

PAA membranes prepared using oxalic acid (pore size of ∼ 50 nm) gave

high quality AlPO4-5 membranes, without damage to the PAA substrate.

The PAA membranes prepared using oxalic acid as the electrolyte were
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anodised at a constant 150.0 V potential versus a platinum cathode for at

least 12 hours. They were then pore opened in 5% H3PO4 for at 30 ◦C

for 60 minutes [32]. Table 2.2 A discusses differences between the prop-

erties of the two types of membrane successfully used, while figure 2.1

shows a comparison between the physical appearance.

Table 2.2: Comparison of Whatman Anodisc membrane filters and highly
ordered periodic PAA.

Anodiscs IRL PAA

Electrolyte H3PO4 (COOH)2
Pore Size ∼0.2µm ∼0.05µm (depending

on electrolyte)

Chemical/thermal
resistance

Stable over a pH
range of 5-8, curls
and cracks at∼600 ◦C

Much higher resis-
tance to extreme
pH values, stable to
above 1000 ◦C

Pore Structure Disordered Highly ordered
through pores

Figure 2.1: Commercially prepared Whatman Anodisc membrane (left)
compared with PAA made by Kirchner et al. [32] (right).
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2.2.3 Equipment

Furnaces - 90 ◦C pre-treatment and 180 ◦C crystallisation were performed

in a Contherm digital oven, model number CAT 2150.

Microwave - a Kenwood Galaxy microwave (RM-1390) modified by

the addition of a Shinho Microcomputer based programmable tempera-

ture controller (PC635-A/E) such that the synthesis temperature and time

could be accurately controlled. More details of the modification of the mi-

crowave and its use are included in Appendix A.

2.3 Preparation

Firstly, a method was devised for the synthesis of bulk AlPO4-5 without

the use of HF. This method is outlined in 2.3.1. Two different syntheses

were used, the first a route to highly aligned AlPO4-5 membranes using

a conventional oven as the heating source, and the second a quicker mi-

crowave route. The second route allows the laser dye DCM to be incorpo-

rated into the zeolite during crystallisation. This organic dye decomposes

when subjected to long periods at the elevated temperature and pressure

required for the conventional oven synthesis.

The first synthesis employs aspects of various published routes to AlPO4-

5 adjusted to optimise the required features of the crystallites and synthetic

conditions. The second technique is similar, with variations in the heating

and the addition of HF as a mineraliser as proposed by Qui et al. [79]. The

design of these procedures is discussed in more detail in chapters 3 and 4.
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2.3.1 Conventional Hydrothermal Synthesis of bulk AlPO4-5

A reaction mixture was prepared by combining alphabond 300 (ρ-alumina),

orthophosphoric acid, triethylamine and distilled water in the ratio

Al2O3 : P2O5 : 1.6TEA : 400H2O

via the following method: Alphabond 300 (1.040 g, 0.01 mol) was sus-

pended in H2O (5.45 g, 0.3 mol) in a beaker with vigorous magnetic stir-

ring. Orthophosphoric acid (2.352 g, 0.02 mol) then triethylamine (1.651 g,

0.016 mol) were added dropwise while continuing to stir. The sample was

then stirred vigorously for 30 minutes before being transferred to a Teflon

lined steel autoclave and pre-treated at autogeneous pressure and with-

out stirring at 90 ◦C for 24 hours. The temperature was then increased to

180 ◦C for hydrothermal crystallization for a further 24 hours.

After crystallization the autoclave containing the sample was quenched

under flowing water and the crystals were recovered using a Buchner fun-

nel and flask. The crystals were then washed with distilled water and

dried at 70 ◦C in an oven overnight.

2.3.2 AlPO4-5 within the pores of PAA - Conventional Hy-

drothermal Synthesis

A reaction mixture was prepared by combining alphabond 300 (ρ-alumina),

orthophosphoric acid, triethylamine and distilled water in the ratio

Al2O3 : P2O5 : 1.6TEA : 400H2O
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via the following method: Alphabond 300 (0.459 g, 0.0045 mol) was sus-

pended in H2O (36.0 g, 2 mol) in a beaker with vigorous magnetic stir-

ring. Orthophosphoric acid (1.152 g, 0.01 mol) then triethylamine (0.810 g,

0.008 mol) were added dropwise while continuing to stir. The sample was

then stirred vigorously for 30 minutes before being transferred to a Teflon

lined steel autoclave and pre-treated at autogeneous pressure and with-

out stirring at 90 ◦C for 24 hours. The autoclave containing the pretreated

gel was quenched under flowing water, opened, and an anodic alumina

template was floated at the surface of the liquid on a doughnut-shaped

Teflon ring (see figures 2.2 and 2.3). The sample was then re-sealed in the

autoclave for hydrothermal crystallisation for 24 hours at 180 ◦C.

Figure 2.2: A Whatman Anodisc membrane (left) next to the Teflon ring
(right) used in this synthesis.

After crystallization the sample was quenched again under flowing

water and the composite membrane removed carefully with tweezers. The

membrane was then washed with distilled water under ultrasonic vibra-

tion for 2 minutes three times to remove any loose material on the surface,

and dried at 70 ◦C in an oven overnight.
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Figure 2.3: A Whatman anodisc membrane floating on the surface of water
in a glass beaker, demonstrating how the Teflon ring is used during the
synthesis.

2.3.3 AlPO4-5 Within the Pores of PAA - Attempts to Dope

AlPO4-5 with Laser Dyes during Conventional Oven

Synthesis

The reaction mixture was prepared as in section 2.3.2, however before

pre-treatment at 90 ◦C an ethanolic solution of the laser dye in question

(0.00025 mol of dye dissolved in 0.138 mol/6.36 g ethanol) was added to

the synthesis liquor. The synthesis was then carried out as detailed above.

After washing the membrane in distilled water, it was washed well in

ethanol and then refluxed in ethanol for 4 hours to remove all trace of



40 Materials And Methods

material adsorbed onto the crystal surface [83]. Samples were then dried

at 70 ◦C in an oven overnight. In some of the syntheses the procedure

discussed above was modified slightly in attempts to increase the chance

of successfully incorporating the dyes into the membrane. The dyes used

and changes made to the standard synthesis are detailed in Table 2.3. None

of these syntheses were successful.
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Table 2.3: Laser dyes trialed during conventional oven syntheses, and the
results of these syntheses.

Dye Used Result of Synthesis

Dye decomposed
during synthesis.

Dye decomposed
during synthesis.

The dye (DCM)
had partially de-
composed during
synthesis, and the
crystals formed
were berlinite (a
condensed phase
AlPO4), rather than
AlPO4-5.

A poorly aligned and
poorly crystalline
AlPO4-5 membrane
was produced from
this synthesis, but
the dye was not
incorporated into the
membrane.
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Table 2.3: Continued.

Dye Used Result of Synthesis

Poor surface cov-
ering and poorly
aligned, but crys-
talline (AlPO4-5).
Dye does not appear
to be incorporated.

Dye decomposed the
anodisc was badly
decomposed.

AlPO4-5 with DCM added and using
aluminium isopropoxide in place of Al-
phabond 300 as the aluminium source.

Anodisc dissolved.

Dye almost com-
pletely decomposed
during the synthesis.

Dye completely de-
composed during the
synthesis.
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2.3.4 AlPO4-5 Within the Pores of PAA - Microwave Syn-

thesis

The reaction mixture was prepared as for the first synthesis, and the 90 ◦C

pre-treatment was carried out in the Contherm oven as detailed above.

After the pre-treatment 0.007 mol/0.3 g hydrofluoric acid was added with

stirring and the sample was transferred from the steel autoclave to the

microwave-safe pressure vessel. An anodic alumina template was floated

on the surface as shown in Fig. 2.3. The autoclave was then sealed for

crystallisation at 180 ◦C for 10 minutes via microwave heating. The heat-

ing program involved heating to 180 ◦C over 1 minute 40 seconds (using

full power on the microwave) and holding at temperature for a further

10 minutes (using a program in which the solenoid of the microwave was

controlled by the Shinho temperature controller to maintain a constant

temperature of 180 ◦C).

After crystallization the sample was quenched again under flowing

water and the membrane removed carefully with tweezers. The mem-

brane was then washed with distilled water under ultrasonic vibration for

2 minutes three times to remove any loose material on the surface. Sam-

ples were then dried at 70 ◦C in an oven overnight.

2.3.5 AlPO4-5 Within the Pores of PAA doped with DCM -

Microwave Synthesis

The reaction mixture was prepared as in section 2.3.4, however before pre-

treatment at 90 ◦C an ethanolic solution of DCM (0.00025 mol / 0.08 g of
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DCM dissolved in 0.138 mol/6.36 g ethanol) was added to the synthesis

liquor. The synthesis was then carried out as detailed in 2.3.4. After wash-

ing the membrane in distilled water, it was washed well in ethanol and

then refluxed in ethanol for 4 hours to remove all trace of material ad-

sorbed onto the crystal surface [83]. During this refluxing no dye was

observed to be extracted. Samples were then dried at 70 ◦C in an oven

overnight.

2.4 Template Removal

Template removal was performed by heating samples in a tube furnace

under vacuum for 24 hours. Samples were heated from room temper-

ature to 300 ◦C over a period of 3 hours and then held at temperature

for 24 hours before being furnace cooled. The vacuum pump used was

a Speedivac high vacuum pump. Section 3.5.1 discusses the reasons for

choosing this method.

2.5 Analysis

2.5.1 Scanning Electron Microscopy

Scanning electron microscopy was carried out on a Jeol JSM 6500-F. The

DES unit is a Jeol JED 23003 BU. Samples were coated with carbon (2 coat-

ings, 8 nm) or platinum (3 coatings, 12 nm) before analysis.
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2.5.2 X-Ray Diffraction

Crystallization of the AlPO4-5 was monitored via X-ray diffraction (XRD)

using a Bruker D8 advance diffractometer with an incident beam Goebel

mirror and 0.23 degree parallel plate diffracted beam collimator using Co K

radiation. XRD measurements were performed on the final AlPO4-5/PAA

membrane samples, which were laid in an aluminium XRD holder stan-

dard to this diffractometer. A 2θ scan from 4 ◦ to 80 ◦ at a rate of 0.5 ◦ per

minute was used.

AlPO4-5 was identified by matching with pattern number 00-039-0216

for AlPO4-5 in the database maintained by the International Centre for

Diffraction Data using the software program EVA, a module of Diffrac-

Plus (Bruker AXS).

2.5.3 Fluorescence Spectra

These spectra were recorded on an Ocean Optics Fibre Optics UV/VIS/IR

spectrometer, with the 489 nm Line from an Argon Ion Laser as the exci-

tation source. No preparation was required, as the composite membranes

were placed in the beam lying on a glass slide.
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Chapter 3

Conventional Oven Synthesis of

AlPO4-5 within PAA

3.1 Introduction

This chapter provides a method for reproducibly forming highly aligned

arrays of AlPO4-5 within the nanochannels of an anodic alumina host via

a hydrothermal synthesis. This synthesis was carried out via the method

described in section 2.3.2, and uses a conventional oven as the heating

source. Crystallization of the AlPO4-5 was monitored via X-ray diffrac-

tion. XRD shows a high degree of crystal alignment, with the ratio of

preferential alignment being over 300 for a typical membrane.

SEM shows that the AlPO4-5 is incorporated into the pores of the mem-

brane, with a high degree of pore filling.
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3.2 Synthesis

Various different methods have been reported for the synthesis of AlPO4-5

[82, 113, 114, 115, 116, 117, 104, 74, 75, 100], employing different templates,

aluminium sources and reaction conditions. An important consideration

in this study is the reactivity of the anodic alumina membranes used,

which are not stable to prolonged exposure to extreme pH values. A num-

ber of different synthetic routes were tested for this thesis before a method

was developed involving relatively mild conditions and a pre-treatment to

facilitate crystallisation of AlPO4-5 within the pores of the anodic alumina

membrane. Initially the focus of this research was to synthesise AlPO4-5

membranes using a conventional hydrothermal synthesis, and Whatman

Anodisc membranes as the template, and to then incorporate a non-linear

photonic molecule into the pores of the zeolite via in-situ inclusion.

Firstly, bulk AlPO4-5, was synthesised, using a combination of tech-

niques published by Girnus et al. [82] and Wilson and Flanigen [74], in

order to avoid the use of HF which is typically used in such syntheses as

a mineraliser [79], and which is extremely dangerous as it is both highly

corrosive to human flesh and may cause decalcification of the bones.

The first several attempts were unsuccessful, either forming a clear so-

lution or a thick viscous gel, despite extended crystallisation periods. Sev-

eral steps were taken in order to prevent this viscous gel from forming, as

it appeared to hinder crystallisation. Firstly, the amine template around

which the micelles of AlPO4-5 were formed was changed to triethylamine,

used in a 1.6 ratio. This was in place of the more reactive tetramethylam-

monium hydroxide used by Girnus et al. [82], as tetramethylammonium
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hydroxide was found to cause formation of a highly viscous gel through

which the crystallites could not move freely.

Secondly, the aluminium source used was changed to alphabond 300.

Alphabond is a commercial product used by the cement industry which

contains ρ alumina - a reactive form of amorphous alumina. This product

is less reactive than pseudoboehmite or aluminium isopropoxide, the most

common aluminium sources used for synthesis of AlPO4-5, and therefore

helps prevent formation of a highly viscous gel when used for this synthe-

sis.

As the synthesis liquor was now less reactive, a 90 ◦C pre-treatment

step was incorporated into the synthesis [118, 119, 120, 121, 122] in order

to facilitate crystallisation by production of a precursor to the microporous

aluminophosphates known as metavariscite [122]. This intermediate may

then be easily transformed to AlPO4-5 during the subsequent crystallisa-

tion [118].

These changes produced a successful, reproducible synthesis for bulk

AlPO4-5, which is described in section 2.3.1.

Once this synthetic procedure had been developed, attempts were made

to add a Whatman Anodisc membrane to the synthesis liquor to try to

force AlPO4-5 to crystallise within the membrane. As porous anodic alu-

mina is susceptible to acidic media, these attempts were unsuccessful, as

the anodiscs dissolved, even if added after the 90 ◦C pre-treatment step.

In order to overcome this, the water content for the synthesis was hugely

increased, as in the work of Chao et al. [28] in order to reduce the damage

done to the porous anodic alumina by exposure to the acidic solution. The
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water content was increased from 30 equivalents to 200, and finally 400

equivalents. Although immersion of the PAA membrane in this dilute

synthesis liquor also resulted in dissolution of the membrane, if the PAA

membrane was floated on the surface of the synthesis liquor the mem-

brane largely survived.

This technique was adopted as it may facilitate c-axis crystallisation, by

forcing the crystal nuclei into the pores of the substrate with the c-axis nor-

mal to the plane of the substrate. This is due to upward vapour pressure

at the water/vapour interface, as crystallites are presumed to behave in

solution like logs floating in a river, and pack in order [29]. This procedure

also serves to prevent excessive attack of the PAA membrane by the acidic

synthesis liquor.

In order to suspend the PAA membrane at the vapour/solution in-

terface during crystallisation, the porous anodic alumina substrate was

floated on a Teflon doughnut. The PAA membrane was not added to the

autoclave until after the 90 ◦C pre-treatment step as the pH was lower at

this point (before any heating the pH=1, after pre-treatment the pH=7, af-

ter crystallisation the pH=7), which minimised damage caused to the PAA

membrane by the acidic synthesis liquor. This synthetic procedure pro-

duced a well aligned AlPO4-5 membrane.

Other techniques which were trialed included adjusting the pH of the

solution to ∼ 6 with NaOH or NH4OH before addition of the PAA mem-

brane. Samples made in this manner were found to be completely amor-

phous. A step in which the pretreated solution was introduced into the

pores of the anodisc by vacuum infiltration was trialed, to attempt to force
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the AlPO4-5 to penetrate (and grow) all the way through the pores of the

membrane, rather than just penetrating a short distance. This step was

abandoned as membranes produced in this manner were mostly amor-

phous. Attempts were also made to design a more sophisticated Teflon

float, however using Teflon of more than an 0.3 mm thickness caused the

float to sink during synthesis.

Despite these measures taken to protect the porous anodic alumina

from dissolution, when Whatman Anodiscs membranes were used as the

PAA substrate they were somewhat degraded during crystallisation. To

compensate for this samples were made using a 10% deficit of Al giving

the synthetic ratios

0.9Al2O3 : P2O5 : 1.6TEA : 400H2O

as dissolution of the anodisc during synthesis may cause a higher local

concentration of Aluminium at the membrane surface. This reduction

in aluminium proved to produce highly aligned, highly crystalline mem-

branes.

At this point a number of samples were made to test the reproducibility

of this technique. The final procedure used for conventional oven synthe-

sis of AlPO4-5/PAA membranes is discussed in section 2.3.2.
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3.3 Crystallisation within Anodisc PAA membranes

3.3.1 XRD

X-ray diffraction data were collected on the surface of the membrane sam-

ples. The degree of penetration of the X-rays varies between approxi-

mately 4 µm at 4 degrees 2θ and 90 µm at 80 degrees 2θ, indicating that

the diffraction patterns represent a combination of material on the surface

and material occluded in the pores of the substrate. The XRD trace for a

membrane made using a Whatman Anodisc porous anodic alumina mem-

brane as the template, and the synthetic ratios

Al2O3 : P2O5 : 1.6TEA : 400H2O

is shown in Fig. 3.1. This membrane was made via the method in sec-

tion 2.3.2.

The peak intensities are clearly different from the reference pattern

shown below the scan data, with the measured [002] and [004] reflections

much larger than expected. This is due the preferred orientation of AlPO4-

5 crystals in the sample. In the θ - 2θ scans used, diffraction is only mea-

sured from lattice planes which lie parallel to the sample surface. The

reference pattern assumes a random distribution of crystallites so that all

lattice planes align with the sample surface with equal probability. How-

ever, our pattern shows that the [00l] planes lie parallel to the surface with

a far greater frequency than random orientation would predict. This is

equivalent to saying that most of the AlPO4-5 crystals have their crystallo-

graphic c-axis normal to the sample surface.
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A quantitative measure of the degree of preferred orientation has been

given by Tsai et al. [29], using the ratios of XRD peaks that are similar

intensity in a powder sample to give a measure of the degree of preferred

orientation in an aligned sample. The measures used in this study were:

Dp =
Intensity of [002] peak

Intensity of [100] peak

Dp′ =
Intensity of [002] peak

Intensity of [210] peak

Perfect alignment would give a value of ∞, random alignment would

give a value of 1. For the sample shown in Fig. 3.1, this gives values of

Dp = 105 and Dp’ = 130. Averaging the above values gives a degree of pre-

ferred orientation is for this sample of approximately 118.

The XRD trace in Fig. 3.2 shows a sample made in the same manner,

but with the ratios

0.9Al2O3 : P2O5 : 1.6TEA : 400H2O

Reducing the amount of Al2O3 relative to the phosphate gave good qual-

ity membranes on Whatman anodiscs, possibly due to a higher local con-

centration of aluminium at the membrane surface due to dissolution of

the membrane. Again, this membrane shows a high degree of preferen-

tial orientation, with Dp = 115 and Dp’ = 168, giving an average degree of

preferred orientation of approximately 142.
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Figure 3.1: XRD trace for a membrane made via the method in section 2.3.2
using a Whatman anodisc.

3.3.2 SEM

SEM images of a AlPO4-5 membrane made via the method in section 2.3.2

and with the synthetic ratios

Al2O3 : P2O5 : 1.6TEA : 400H2O

are shown in Figs. 3.3, 3.4, and 3.5. Fig. 3.3 shows a view of a broken

membrane edge, in which the AlPO4-5 coating has broken away from the

surface of the substrate, showing the crystals of AlPO4-5 as they grow out
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Figure 3.2: XRD trace for a membrane made via the method in section 2.3.2
using a higly ordered, periodic PAA membrane.

of the pores of the membrane. This confirms that the porous anodic alu-

mina directs the growth of the zeolite layer. As this is a broken edge there

is not complete pore filling, but images of the top face of the substrate in

Figs. 3.4 and 3.5 confirm that the AlPO4-5 layer is continuous, an impor-

tant trait for molecular sieving applications.

Figs. 3.4 and 3.5 show the surface of this membrane. The hexagonal

plate morphology of the top faces of the crystals can also be observed in

Fig. 3.5, confirming the c-axis alignment of the membrane. These mem-

branes were difficult to view under SEM due to charging, and the proper
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Figure 3.3: A broken edge of an AlPO4-5 membrane at 20000 magnifica-
tion, showing crystal growth as it appears at the surface of the membrane.

coating protocol had not been devised at the time these images were taken,

hence the poor quality if the image in Fig. 3.5. The morphology of mem-

branes made with a 10% deficit of Aluminium was very similar to that of

those made without the deficit.
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Figure 3.4: The surface of an AlPO4-5 membrane at 800 times magnifica-
tion.

3.4 Crystallisation within Highly Periodic PAA

3.4.1 XRD

The XRD trace in Fig. 3.6 shows a sample made via the method in sec-

tion 2.3.2, with the ratios

Al2O3 : P2O5 : 1.6TEA : 200H2O

and using a locally made periodic PAA membrane anodised with oxalic

acid by Kirchner et al. [32] as the template. These membranes had an av-

erage pore size of ∼ 50 nm. The AlPO4-5 membranes made with locally
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Figure 3.5: The surface of an AlPO4-5 membrane at 8000 times magnifica-
tion.

fabricated PAA were similar in quality to those in 3.3.1, but due to the

higher stability of the PAA used the resultant membrane had much higher

mechanical strength, and the PAA was not damaged during the synthe-

sis. As above, the highly increased [002] and [004] peaks can be seen, with

Dp = 303 and Dp’ = 275, giving an average degree of preferred orientation

of approximately 289.

The XRD trace in Fig. 3.7 shows another membrane prepared in the

same manner on periodic PAA, in order to show the high degree of re-

producibility of this technique, despite subtle variations in the PAA mem-

branes used as templates for these syntheses. This membrane is even more

highly aligned, with Dp = 1133 and Dp’ = 565, giving an average of 849,
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Figure 3.6: XRD trace for a membrane made via the method in section 2.3.2
using highly ordered, periodic PAA

much higher than that of similar membranes prepared by Tsai et al. [29],

where the degree of preferred alignment was approximately 250.

3.4.2 SEM

SEM images of an AlPO4-5 membrane made via the method in section 2.3.2

on highly ordered PAA are shown in Figs. 3.8, 3.9, 3.10 and 3.11. Figs. 3.8

and 3.9 show cross-sectional views of a broken membrane edge. From

these images the c-axis alignment of the crystals can be clearly seen, along
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Figure 3.7: XRD trace for another membrane made via the method in sec-
tion 2.3.2 using highly ordered, periodic PAA.

with the high degree of pore filling. Figs. 3.10 and 3.11 show the top sur-

face of the same membrane, showing the hexagonal plate morphology of

the top face of the crystals. Some randomly oriented crystals can also be

observed on the surface of the membrane, but the side views of the mem-

brane confirm that the bulk of the AlPO4-5 crystals are c-axis aligned, as

supported by the XRD data.
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Figure 3.8: A broken edge of an AlPO4-5 membrane at 43000 magnifica-
tion, showing AlPO4-5 crystals growing out of the pores of the PAA mem-
brane. The crystals join on the surface to form a continuous layer.

3.5 Template Removal

3.5.1 Introduction

A number of different methods have been used for the removal of tem-

plates from zeolite powders [123, 124, 125, 126, 127, 128, 129, 130], the most

common of which is calcination. This is usually performed in air or oxy-

gen at between 550-700 ◦C. The disadvantages of this technique are the

fact that expensive organic templates cannot be recycled and that the fine

structure of the material may be damaged during calcination. Recycling

of the template is not an issue for this synthesis as such a small amount of
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Figure 3.9: Another view of a broken edge of the AlPO4-5 membrane at
45000 magnification. In this view the crystalline nature of the AlPO4-5
within the membrane pores can be more clearly seen

material is used, but as the porous anodic alumina templates used in this

synthesis cannot withstand such high temperatures without curling [131]

calcination is not an option. Appendix C details papers that use milder

methods of template removal that may be suitable for the samples used

in this study. Due to ease and availability of the technology the method

used in this thesis is vacuum template removal, as discussed by Goworek

et al. [130] This method involves heating the sample under vacuum at low

temperatures (up to 250 ◦C) for several hours in order to force the degra-

dation of the template and evaporation of the fragments.

In this study these limits were increased somewhat in order to com-
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Figure 3.10: The surface of an AlPO4-5 membrane at 300 times magnifica-
tion

pensate for the hindrance to evaporation caused by the confinement of the

zeolite within the anodic alumina membrane, which may increase the dif-

ficulty of removal. To this end the samples were exposed to vacuum using

a Speedivac high vacuum pump in a tube furnace at 300 ◦C for 24 hours as

discussed in 2.4.

3.5.2 XRD

X-ray diffraction data for a membrane made via the method in section 2.3.2

before and after vacuum template removal via the method discussed in

2.4 are shown in Fig. 3.12. These data confirm that the template removal

method used does not destroy the fine structure of the AlPO4-5. The two
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Figure 3.11: The surface of an AlPO4-5 membrane at 3000 times magnifi-
cation, showing the hexagonal plate structure of the top face of the mem-
brane

traces are almost identical, with very similar peak intensities.

The successful removal of the amine template occluded in the pores of

the zeolite was confirmed by testing the gas permeability of the membrane

after vacuum template removal. Before template removal the amine tem-

plate in the zeolite layer completely blocked the membrane pores, hence

no gas was able to pass through the membrane. After template removal

the sample was gas permeable, showing that the amine template had been

removed.

These membranes showed a modest gas seperative ability, but far be-

low that of conventional membrane filters. AlPO4-5 is not however the
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Figure 3.12: A comparison of the XRD traces of an AlPO4-5 membrane
pre-and-post template removal via the method discussed in 3.5.1.

optimum zeolite for a gas seperative membrane, and this work focuses

more on potential utility of these membranes after doping with the laser

dye DCM.

3.5.3 SEM

As SEM is a destructive method for these membranes due to the coat-

ing process, it was not possible to take SEM images of the same mem-

brane both before and after template removal. Fig. 3.13 shows an AlPO4-5



66 Conventional Oven Synthesis of AlPO4-5 within PAA

Figure 3.13: SEM of the top face of an AlPO4-5 composite membrane after
vacuum template removal.

membrane made on Kirchner PAA [32] following template removal via the

method discussed in 2.4. This image shows the same hexagonal plate-like

morphology seen in similar membranes prior to template removal, con-

firming that the structure of the zeolite is intact after the template removal

process.

3.6 Discussion

Although the method discussed in this chapter allows the formation of

highly aligned AlPO4-5 membranes, there are some drawbacks to this

technique. When Whatman Anodisc membrane filters are used as the
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porous anodic alumina template for this synthesis they are degraded to

the point where they lack mechanical stability and are therefore unable

to be used in any application where any degree of mechanical strength is

required. Secondly, the synthesis conditions are too hostile to allow in-

corporation of organic dyes into the membranes during synthesis. This

significantly reduces the potential usefulness of this technique.

In order to overcome these challenges the crystallisation time needed

to be greatly decreased, requiring that the method of heating for synthe-

sis be changed to microwave heating. As a microwave safe pressure vessel

and a microwave in which the temperature, time and heating rate could be

controlled were not available it became necessary to design a microwave

autoclave and modify an existing laboratory microwave in order to carry

out a microwave synthesis. The design of the Teflon lined microwave au-

toclave is discussed in Appendix A, and its usage is discussed in Chap-

ter 4.
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Chapter 4

Microwave Crystallisation of

AlPO4-5 doped with DCM within

Porous Anodic Alumina

4.1 Introduction

Many of the traditional routes to AlPO4-5 involve exposing the PAA mem-

brane to highly acidic conditions for extended periods of time, rendering

it brittle and unworkable, or dissolving it entirely. The synthetic proce-

dure discussed in chapter 3 was designed with this in mind, and although

it was successful, it required a 24 hour crystallisation at 453 K in which the

membrane was suspended in an acidic solution. When using Whatman

Anodiscs as the PAA membrane this synthesis caused the PAA to become

brittle and difficult to handle.

The second aim of this work was to enclose an organic laser dye, DCM,

within the framework of the AlPO4-5, adding another element of diffi-
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culty. This dye is also susceptible to acidic media, particularly at the ele-

vated temperatures at which this synthesis was carried out. The 24 hour

crystallisation used in the first synthesis caused the dye to almost fully

degrade.

One way to speed the crystallisation of AlPO4-5 is to employ microwave

heating as the energy source. Microwave syntheses of AlPO4-5 typically

involved a crystallisation time of between 10 and 30 minutes [82, 83] which

greatly reduces the exposure of the PAA and DCM to the corrosive syn-

thesis liquor. In order to carry out a hydrothermal synthesis in the mi-

crowave however a microwave pressure vessel is necessary. To this end

a Teflon lined microwave autoclave in which the temperature, time, and

heating rate could be controlled was designed (see appendix A for de-

tails). Although using microwave heating greatly reduced the crystalli-

sation time, this synthesis did require the addition of a small amount of

HF as a mineraliser as discussed by Guth et al. [79] to facilitate crystal-

lization. It was also found that using a conventional oven pre-treatment

followed by a microwave crystallisation gave the optimum quality mem-

branes. However, using this second synthetic procedure allowed crys-

tallisation to occur in 10 minutes rather than 24 hours. This meant that

Whatman Anodiscs could be used as the substrate rather than the highly

ordered PAA, and also allowed the possibility of including organic dyes

within the AlPO4-5.
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4.2 Initial Microwave Synthesis

The design of the microwave autoclave and the modifications made to the

microwave with which it was used are discussed in appendix A. In order

to use this autoclave the synthetic procedure needed to be modified to

be suitable for microwave crystallization. The experiments in which this

microwave autoclave was used are discussed below.

Firstly, the 90 ◦C conventional-oven pre-treatment was kept in order to

minimise the crystallisation time needed. Despite this it was discovered

that in order to achieve crystallisation in the microwave it was necessary to

add a small amount of HF (0.007 mol/0.3 g), to the synthesis liquor before

crystallisation, as discussed by Guth et al. [79].

It was found that a 10 minute crystallisation at 180 ◦C gave the highest

quality samples, with maximum material occluded in the pores of the PAA

substrate while minimising the amount of randomly oriented material on

the surface of the membrane. Full details of the synthesis used can be

found in section 2.3.4.

4.2.1 XRD of AlPO4-5 prepared in the Microwave

The XRD trace for a membrane made using a Whatman Anodisc mem-

brane as the template, and the synthetic ratios

Al2O3 : P2O5 : 1.6TEA : 400H2O : 1.4HF

is shown in Fig. 4.1. This membrane was made via the method in section

2.3.4 with a 10 minute crystallisation in the microwave.
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Figure 4.1: XRD trace for a membrane made via the method in section 2.3.4
using a Whatman anodisc.

For this sample Dp = 214 and Dp’ = 51. Averaging the above values

gives a degree of preferred orientation is for this sample of approximately 133.

Although this is lower than that seen for conventional oven synthesis, this

still represents a high degree of alignment. At this point it was decided

to try in-situ encapsulation of the laser dye DCM (4-dicyanomethylene-2-

methyl-6-(p(dimethylamino)styryl)-4H-pyran) within the AlPO4-5/PAA

membrane.
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4.3 Synthesis of DCM@AlPO4-5

4.3.1 Introduction

One aim of this research was to encapsulate a laser dye within the pores

of an AlPO4-5 membrane via an in-situ synthesis. Various laser dyes have

previously been encapsulated within AlPO4-5 including coumarin 7,

coumarin 466, pyridine 2, Styryl 7 and DCM [103, 104, 82, 59, 83]. These

dyes were selected to be uncharged (as protonated groups can interfere

with crystal growth), and relatively long and linear (the unit cell of AlPO4-5

has a=13.8 Å, c=8.6 Å and channel width 7.3 Å). The laser dye DCM is,

however, larger than the channel size, but has been successfully incorpo-

rated into defect sites in the crystal structure of AlPO4-5.

Figure 4.2: The laser dye DCM (4-dicyanomethylene-2- methyl - 6 -
(p(dimethylamino)styryl)-4H-pyran).

DCM was chosen, as it is an highly stable molecule with excellent 2nd

order non-linear optical properties, which has previously been shown to
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be incorporated into AlPO4-5 single crystals via an in-situ synthesis with-

out disturbing the crystal morphology, as some of the other laser dyes pre-

viously used had done [83]. Additionally, laser action had been demon-

strated from single crystal DCM/AlPO4-5 laser composites [104]. The

structure of DCM is shown in Fig. 4.2.

4.3.2 Synthesis

Once the microwave synthesis had been designed attempts were made to

incorporate DCM into the synthesis. The DCM was initially dissolved in

ethanol, as it is relatively insoluble in water, and added to the synthesis

liquor prior to the 90 ◦C pre-treatment step. Varying amounts of DCM

and ethanol were trialed, in order to find the optimum with respect to

amount of DCM incorporated and crystallinity of the final membrane. The

synthetic procedure used is given in section 2.3.5. After the synthesis the

membrane was first washed well with distilled water, and then refluxed

in ethanol for several hours to remove any DCM that was physically ad-

sorbed on the surface of the membrane. During this refluxing no DCM

was observed to be extracted, suggesting that the DCM that remained was

incorporated into the crystal structure of the AlPO4-5 crystals, rather than

simply adsorbed onto the surface of the membrane. Further evidence for

this can been found in section 4.3.6.

4.3.3 XRD

The XRD trace for a sample made via the method in 2.3.5 is shown in

Fig. 4.3. This sample has a slightly lower degree of alignment, which may
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Figure 4.3: An XRD trace for a composite membrane made via the method
in 2.3.5 with the laser dye DCM incorporated into the membrane during
crystallisation.

be due to the effect of the DCM on the crystal structure of the zeolite. For

this sample Dp = 36 and Dp’ = 66. Averaging the above values gives a de-

gree of preferred orientation for this sample of approximately 51. While

this is lower than in previous samples it is still a significant degree of align-

ment, and (as supported by SEM). Most of this decrease can be attributed

to randomly oriented AlPO4-5 that formed on the surface of the membrane

during the microwave crystallization.
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4.3.4 SEM

Figure 4.4: DCM/AlPO4-5 membrane at 2300 magnification.

SEM images of a DCM/AlPO4-5 membrane made via the method in

section 2.3.5 are shown in Figs. 4.4, 4.5, and 4.6. Figs. 4.4 and 4.5 show

cross-sectional views of a broken edge of the membrane. From these im-

ages it can be seen that the AlPO4-5 layer is an highly intergrown, colum-

nar layer of approximately 16 µm thickness, with the c-axis of the crys-

tals aligned perpendicular to the substrate surface. The orientation of the

AlPO4-5 layer appears to decrease with distance from the substrate sur-

face, with the outermost 3 µm of the film appearing to be somewhat ran-

domly ordered relative to the inner 13 µm. As there is no separation be-

tween the zeolite layer and the PAA substrate it is difficult to determine
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Figure 4.5: SEM image of a broken edge of a DCM/AlPO4-5 membrane at
3700 magnification.

the penetration depth of the AlPO4-5 into the PAA. It appears, however,

from the SEM images that the channel structure of the PAA directs the

growth of the AlPO4-5, due to the highly ordered nature of the AlPO4-5

layer at the substrate surface.

Fig. 4.6 shows a view of the surface of the same membrane, showing

the poorly aligned layer at the surface.

4.3.5 Luminescence Measurements

Many studies have discussed the use of AlPO4-5 as a host for optically

active materials, which can be oriented within the nanochannels [102, 82,

100, 103, 104, 59, 83]. These composites, however, are not useful for appli-
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Figure 4.6: A view of the surface of a DCM/AlPO4-5 membrane at 2500
magnification.

cations without a method of aligning the host crystals relative to the inci-

dent laser light, in order to facilitate laser activity from the AlPO4-5 [107].

AlPO4-5/dye composites in which laser activity has been demonstrated

so far have used a single crystal, glued to a substrate to force orientation

with the c-axis of the crystal perpendicular to the Nd/YAG laser used as

the pump [104, 83]. A much easier method, however, is to force the crys-

tals to grow in a preferred orientation. Luminescence measurements on

membranes of this type are shown in the following sections.
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4.3.5.1 Photographs

Fig. 4.7 compares an undoped AlPO4-5 composite membrane (left) with

an AlPO4-5 membrane doped with the laser dye DCM (right) under UV

light. Both samples were prepared using Whatman Anodiscs as the PAA

template. The high degree of fluorescence of the doped membrane can

clearly be seen in this image.

Figure 4.7: An undoped composite membrane (left) next to a composite
membrane doped with DCM fluorescing under UV (right).

4.3.5.2 Spectra

Fig. 4.8 shows the emission spectrum for a membrane prepared using a

Whatman Anodisc via the method described in 2.3.5. This spectrum was

recorded on an Ocean Optics Fibre Optics UV/VIS/IR spectrometer, with

the 489 nm Line from an Argon Ion Laser as the excitation source. This

spectrum correlates to that observed for DCM in solution [132] (see Fig. 4.9

for an image from this reference). While this spectrum does not prove

laser activity, bleaching was not observed, suggesting that the laser dye is

in fact incorporated into the pores of the zeolite (and was thus unable to
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be destroyed by the laser), and previous research [104, 83] suggests that if

this is the case, then the DCM molecules will be highly aligned within the

AlPO4-5, and thus would exhibit laser activity.

Figure 4.8: Emission Spectrum for a DCM/AlPO4-5 composite membrane
at 298 K and λexc = 489 nm.

4.3.6 Procedure for determining incorporation of DCM into

composite AlPO4-5/dye membranes

Once DCM/AlPO4-5 membranes had been successfully prepared, a sam-

ple was made to check whether the DCM was in fact incorporated into the

crystal structure of the AlPO4-5 or whether it was just clinging to the sur-

face of the membrane. First an AlPO4-5 membrane was prepared via the

standard synthesis method described in 2.3.2. Following the normal wash-

ing and drying of the membrane DCM, H2O and ethanol (0.00025 mol
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Figure 4.9: Emission Spectra of DCM in various solvents, temperatures
and wavelengths from Bondarev et al [132]. Spectrum 4 shows DCM in
n-propanol at 298 K and λexc = 450 nm.

DCM, 0.138 mol ethanol, and 2 mol H2O) were combined to mimic the

synthesis conditions in section 2.3.5. The sample was then floated on the

surface of this solution and sealed within the Teflon lined autoclave for

’crystallisation’ at 180 ◦C. The sample was then washed and refluxed in

ethanol as per 2.3.5 until no more dye was observed to be removed.

Unlike the samples in which DCM was incorporated during the crys-

tallisation, this sample showed no observable fluorescence under UV, sup-

porting the idea that in the samples discussed above, DCM is actually in-

corporated into the AlPO4-5, rather than just physically adsorbed onto the

surface of the membrane.
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4.4 Discussion

The syntheses discussed in this chapter produces highly aligned mem-

branes of AlPO4-5 within the pores of an anodic alumina substrate by

combining a conventional hydrothermal pre-treatment with microwave

crystallisation within a teflon lined microwave autoclave. This autoclave

was designed and made expressly for this project, and allows easy control

of the heating rate, time and synthesis temperature.

This synthesis avoids the problems associated with the synthesis dis-

cussed in chapter 3, namely the damage done to the PAA substrate by

the 24 hour crystallisation, as the crystallisation can be achieved in 10 min-

utes, a more than 100 fold reduction in the crystallisation time. As crys-

tallisation is so fast, incorporation into the zeolite composite membrane of

the laser dye DCM (4-dicyanomethylene-2- methyl-6-

(p(dimethylamino)styryl)-4H-pyran) is also made possible.

Testing shows that the fluorescence observed from these membranes

is highly likely to be from DCM incorporated into the zeolite, rather than

material physically adsorbed onto the surface of the membrane, and pre-

vious work by Schuth et al. [104] suggests that such composites should

demonstrate laser activity, thus showing promise for use in non-linear op-

tical applications. Further testing is required to fully test the non-linear

optical activity of these composite membranes.
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Conclusions and Future Work

The aims of this project were to demonstrate the ability to produce a com-

posite material incorporating crystallographically aligned crystals of a ze-

olite. In turn, the zeolite should contain molecular sized channels aligned

such that the composite material could contain dye molecules with non-

linear optical properties highly preferentially aligned within the channels

of the zeolite.

These aims were fully realised, as the syntheses discussed in this the-

sis allowed the formation of highly aligned AlPO4-5 membranes, which

could then be doped with the laser dye DCM to produce DCM@AlPO4-

5 membranes. The first synthesis discussed in chapter 3 used a conven-

tional oven as the heating source and membranes produced in this man-

ner, while highly aligned, have some drawbacks. When Whatman An-

odisc membrane filters are used as the template for this synthesis they are

degraded to the point where they lack mechanical stability and are there-

fore unable to be used in any application where any degree of mechanical

strength is required. Secondly, the synthetic conditions are too hostile to
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allow incorporation of organic dyes into the membranes during synthe-

sis. This made it necessary to design a synthetic procedure that would

allow achievement of the second aim of this work, that of incorporating

molecules with non-linear optical properties (in this case, the organic dye

DCM) into the AlPO4-5 membrane, via an in-situ inclusion.

In order to overcome these challenges the crystallisation time needed

to be greatly reduced, requiring that the method of heating used for crys-

tallisation be changed to microwave heating. As a microwave safe pres-

sure vessel and a microwave in which the temperature, time and heat-

ing rate could be controlled were not available it was necessary to design

a microwave autoclave, and modify an existing laboratory microwave,

in order to carry out a microwave synthesis. Once this microwave au-

toclave had been fabricated and the synthetic conditions required deter-

mined, highly aligned membranes of AlPO4-5 within the pores of an an-

odic alumina substrate were produced by combining a conventional hy-

drothermal pre-treatment with microwave crystallisation within the teflon

lined microwave autoclave. This avoided the problems associated with

the synthesis discussed in chapter 3, namely the damage done to the PAA

substrate by the 24 hour crystallisation, as microwave crystallisation was

achieved in 10 minutes, a more than 100 fold reduction in the crystallisa-

tion time. As crystallisation was so fast, incorporation into the zeolite com-

posite membrane of the laser dye DCM (4-dicyanomethylene-2- methyl-

6-(p(dimethylamino)styryl)-4H-pyran) was also made possible, realizing

the second goal of this research.

Preliminary testing of the composite membranes prepared in this man-
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ner shows that the fluorescence observed from these membranes is highly

likely to be from DCM incorporated into the zeolite, rather than material

physically adsorbed onto the surface of the membrane, and previous work

by Schuth et al. [104] suggests that such composites should demonstrate

laser activity, thus showing promise for use in non-linear optical applica-

tions. Further work is, however, required to fully test the properties of

these membranes.

5.1 Recommendations for Future Work

On the basis of results obtained during the research undertaken for this

thesis, the following recommendations for future research can be made:

• Testing of the laser activity of the AlPO4-5/DCM composite mem-

branes. This requires the ability to focus on a single AlPO4-5 crystal

within the membrane, and ensure its alignment relative to both the

Nd:YAG laser used as the pump, and the detector.

• Preparation of composite membranes containing aluminophosphates

with smaller pore sizes which would be suitable for gas filtration.

An example of a suitable aluminophosphate is AlPO4-18, which has

a pore size of 3.8 Å. Attempts were made (see Table B.9) during this

thesis to crystallise AlPO4-18 within a PAA substrate; however, al-

though it was possible to synthesize bulk AlPO4-18 in a manner

which was not hostile to the PAA membrane used, when the syn-

thesis was applied to a PAA membrane, the product that crystallised

within the membrane was the more stable aluminophosphate AlPO4-
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5.

• Preparation of membranes which utilise other laser dyes, either those

previously incorporated into bulk AlPO4-5 or similar long, linear,

uncharged dyes, in order to produce tunable microlasers.
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Microwave-Safe Pressure Vessel

The microwave-safe pressure vessel discussed in Chapter 4 has several

specific requirements. The container must be sealed and able to with-

stand the expected operating temperatures and pressures and must be suf-

ficiently chemically resistant. Also, due to the powerful microwave field,

any electrically conductive components must have a geometry free of in-

ductive arc gaps.

The design methodology is to use a very strong outer jacket with a me-

chanically weaker but chemically more resistant inner sleeve. The outer

jacket was fabricated from solid, interface free PEEK GF30 (polyetherether-

ketone reinforced with 30% glass fibre) from DOTMAR Engineering Plas-

tics Limited. PEEK was chosen due to its good mechanical characteris-

tics, temperature resistance (PEEK has a continuous operating tempera-

ture of 250 ◦C, significantly higher than the working temperature of 180 ◦C

required for the crystallisation of AlPO4-5) and chemical resistance (al-

though it is not directly exposed to the synthesis liquor it may come into

contact with it, and thus must be able to withstand contact with the chem-
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icals used during the synthesis. The liner of the bomb is PTFE, which has

excellent chemical resistance and a maximum operating temperature of

260 ◦C.

Internal Volume of the Teflon liner is

V =
πD2h

4

= 68.5 cm3

The working temperature is 180 ◦C and at this temperature the ex-

pected pressure within the chamber is

P = 7514 mmHg

= 145.3 psi

= 10.018 106 Nm−2

= 9.884 atmospheres

The thermocouple used was a K-type thermocouple, attached to a Shinho

temperature controller. This was inserted into the bomb via a hole in the

top, which was sealed with ’gasketseal’ silicone gasket sealant. This hole

was counterbored in a conical fashion from the interior surface so that as

the internal pressure of the bomb increased, the silicone sealant was forced

further down the cone, increasing the strength of the seal. The hole was

set slightly off centre, in order to allow the Teflon float to float in the centre

of the bomb.
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The lid of the bomb was designed so that the PEEK exterior was flush

with the lid of the Teflon liner, forming a tight seal. The silicone sealant

formed a slight bulge where the temperature probe entered the liner, seal-

ing the hole.

The bomb was held closed by 6 stainless steel bolts. Although these are

metal, they do not introduce electrical arcing. The distance between bolts

is sufficiently large that any induced potentials or needle point potentials

are much smaller than the break down potential between the bolts. One

other consideration is the possibility of arcing between the threads on any

one of the bolts. However, the voltages induced within the semi-closed

loop of the thread are small and are effectively shorted by the body of the

bolt itself.

Figure A.1: Photograph of the Microwave-safe pressure vessel.
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Appendix B

Summary of all samples made.

Conventional Oven synthesis of AlPO4-5 within Whatman Anodiscs

The initial objective of this research was to prepare membranes com-

posed of AlPO4-5 within the pores of Whatman PAA membranes via a

conventional oven synthesis. Following this the intention was to incor-

porate laser dyes into the zeolite via in-situ inclusion. The initial goal of

preparing AlPO4-5 membranes was achieved, but this synthesis had sev-

eral drawbacks.
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Table B.1: Samples made during the design of a synthesis for AlPO4-5
membranes using a conventional oven as the heating source.

Name Synthetic Details Results

LC1 Bulk AlPO4-5 by a method which uses
a combination of the techniques in
Girnus et. al [82] and Wilson and
Flanigen [74] in order to avoid the
use of HF and use the available amine
templates. Uses tetraethylammonium
hydroxide as the template

No crystals formed,
formed a clear so-
lution even after
extended crystalliza-
tion in the oven at
180 ◦C.

LC2 As for LC1 but using tetramethyam-
monium hydroxide as the template.

Formed a clear
viscous gel, de-
spite extended
crystallisation.

LC3 As for LC1 but using tetra(n-butyl)
ammonium hydroxide as the tem-
plate.

Formed a clear
viscous gel, de-
spite extended
crystallisation.

LC6 Preparation with tetrabutylammo-
nium fluoride (to try to combine
template with source of fluoride to
remove the need for HF)

Formed a
non-porous
aluminophosphate.

LC7 Sample made with alphabond.
Added a 90 ◦C pretreatment step [118]
to facilitate crystallization. Also
changed order of addition of reac-
tants, made a slurry of the aluminium
source and added the phosphoric
acid followed by the amine dropwise
to that. This prevents a thick viscous
gel from forming, which appears to
hinder crystallization.

Bulk AlPO4-5

LC8 Same as LC7, but using using Alu-
minium isopropoxide as the alu-
minium source.

Bulk AlPO4-5

LC9 Same as LC7 but with an anodisc
added.

Anodisc dissolved.

LC10 Same as LC9, but anodisc added after
90 ◦C step and using extra water (200
eq.) to try to prevent dissolution of
the anodisc

Anodisc dissolved.
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Table B.1: Continued

Name Synthetic Details Results

LC11 Same as LC10, but using a dough-
nut shaped piece of teflon to hold the
anodisc at the liquid/vapor interface
- this may facilitate c-axis crystalliza-
tion. Because of upward fluid flow,
the crystallites are presumed to be-
have like logs floating in a river and
pack in order. [29]

AlPO4-5, but poorly
aligned. Tried to
remove the template
by calcination of the
anodisc at 550 ◦C, but
the anodisc black-
ened and curled.

LC14 Same as LC11, but with anodisc
’right’ way up(as taken from the box).
The ’top’ and ’bottom’ of the an-
odiscs look different under SEM, so
this sample was made to see if this
makes any difference to synthesis.

This sample and
LC15 showed no
discernable differ-
ence. According to
XRD the degree of
alignment of these
samples was approx.
60 (taken as the ratio
of the [210]/[002]
peak). SEM showed
that the anodisc
was badly degraded
during synthesis.

LC15 Same as LC11 but with anodisc ’up-
side down’.

See above.

LC17 Repeat of LC11 Same as LC11

LC18 The same as LC17, but with
double the water (400eq.)
. . . . . . . . . . . . . . . . . . Standard Synthesis

AlPO4-5 with a de-
gree of alignment of
∼ 110.

LC19 The same as LC17, but with triple the
water (600eq.)

Completely
amorphous.

LC20 Repeat of LC11, but with a layered
Teflon float designed to prevent the
anodisc from slipping off when the
bomb was moved.

This Teflon float was
heavier than the sim-
ple doughnut shaped
one, and sank dur-
ing synthesis. The
AlPO4-5 membrane
was poorly aligned.
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Table B.1: Continued

Name Synthetic Details Results

LC23 Standard synthesis with the pH ad-
justed to 6 after the 90 ◦C pretreat-
ment with NH4OH in order to make
the synthesis liquor less corrosive to
the anodic alumina.

The product was alu-
minium ammonium
phosphate.

LC25 Standard synthesis with the pH ad-
justed to 6 after the pretreatment with
NaOH

Formed a con-
densed phase
aluminophosphate.

LC55 AlPO4-5 within an anodisc, but with a
vacuum infiltration step before crys-
tallization in order to try to force
the AlPO4-5 to penetrate all the way
through the pores of the PAA mem-
brane.

Mostly amorphous.

LC56 As for LC55, but sample was dried in
the oven at 70 ◦C after vacuum infil-
tration and before crystallization.

Mostly amorphous.

LC62-
LC66

Repeat of LC18 (standard AlPO4-5
prep.) to test reproducibility.

As for LC18

LC75 Standard AlPO4-5 prep. with reduced
crystallization time (8 hours).

Basically amorphous
- needs a longer
crystallization.

LC76 Standard AlPO4-5 prep. with reduced
crystallization time (16 hours).

Better than LC75,
but still inferior to
membranes made
with a 24 hour
crystallization.

LC77 Standard AlPO4-5 prep. with reduced
ratio of Al2O3 (10% deficit), as dis-
solution of the anodisc may cause a
higher local concentration of Al at the
membrane surface.

Highly aligned,
highly crystalline
sample.

LC83 As for LC77 to test reproducibility. As for LC77

LC84 As for LC77 to test reproducibility. As for LC77
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Attempts to synthesise AlPO4-5 microlaser membranes.

Various laser dyes prepared by Andrew Kay of Industrial Research

Limited were trialed using the above synthesis as a starting point. None

of these dyes proved to be suitable, either decomposing during the 180 ◦C

crystallization or simply not being incorporated. These dyes were selected

to fit the following criteria:

• Very stable

• Uncharged (protonated groups can interfere with crystal growth, al-

though some charged dyes have successfully been incorporated into

AlPO4-5)

• Relatively long and linear (the unit cell of AlPO4-5 has a=13.8 Å,

c=8.6 Å and channel width 7.3 Å, but it is not necessary for the dye

to conform to this as it can be encapsulated in defects in the crystal

structure, c.f. DCM).

• Dyes which have been previously been incorporated into bulk AlPO4-

5 are Coumarin 7, Coumarin 466, pyridine 2 and DCM.

Section 2.3.3 gives details of the structures of the laser dyes used.
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Table B.2: Attempts to synthesise AlPO4-5 microlaser membranes using
conventional oven heating.

Name Synthetic Details Results

LC29 Standard AlPO4-5 syntheses but
with laser dyes supplied by An-
drew Kay added.

Dyes decomposed during
crystallization.

LC30 Standard AlPO4-5 syntheses but
with laser dyes supplied by An-
drew Kay added.

Dyes decomposed during
crystallization.

LC31 Standard AlPO4-5 synthesis but
with DCM added.

DCM had partially decom-
posed during the synthe-
sis, and the crystals formed
were berlinite. (A con-
densed phase AlPO4)

LC32 Standard AlPO4-5 synthesis but
with the Katritsky laser dye
added.

The dye had partially de-
composed during the syn-
thesis, and the crystals
formed were berlinite.

LC36 Standard AlPO4-5 prep. but
with the Katritsky laser dye
added. (twice the water of
LC32)

Poor surface covering and
poorly aligned, but crys-
talline (AlPO4-5). Dye
does not appear to be
incorporated.

LC37 Standard AlPO4-5 prep. but
with DCM added. (twice the
water of LC31)

Poor surface covering and
poorly aligned, but crys-
talline (AlPO4-5). Dye
does not appear to be
incorporated.

LC42 As for LC40 (Katritsky dye) but
with twice the dye (0.08 g)

Dye decomposed the
anodisc was badly
decomposed.

LC44 As for LC42, but using only
a minimum of material in the
bomb for crystallization to try to
minimise the damage to the an-
odisc.

Poorly crystalline, very lit-
tle alignment. Dye not
incorporated.

LC47 AlPO4-5 with DCM added and
using aluminium isopropoxide.

Anodisc dissolved.

LC48 AlPO4-5 with a dye synthesized
by Andrew Kay added.

Dye had completely
decomposed.

LC49 AlPO4-5 with a dye synthesized
by Andrew Kay added.

Dye had completely
decomposed.
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Attempts were also made to dope these ALPO4-5 membranes with Eu-

ropium, to form photoluminescent membranes. This was not successful.

These experiments are summarised below.

Table B.3: Attempts to dope AlPO4-5 membranes with europium.

Name Synthetic Details Results

LC29 Standard AlPO4-5 syntheses but
with laser dyes supplied by An-
drew Kay added.

Dyes decomposed during
crystallization.

LC68 AlPO4-5 in an anodisc doped
with 1% europium nitrate

Good membrane, but
sample did not lumi-
nesce under UV and EDS
was unconclusive as to
whether europium was
incorporated.

LC70 AlPO4-5 in an anodisc doped
with 5% europium nitrate

Poorly crystalline and con-
tained impurity phases,
sample did not luminesce
under UV.

LC78 Sample with 10% europium. Very poor sample.

LC80 AlPO4-5 in an anodisc doped
with 5% europium nitrate

Very poor sample.

LC81 Repeat of LC78 Europium did not appear
to be incorporated.

LC86 AlPO4-5 doped with Europium
via the method in Yan et al. [133]
but crystallized in a conven-
tional oven (not microwave).

Not AlPO4-5, other
condensed phase
aluminophosphates.
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Conventional Oven Synthesis of AlPO4-5 within Porous Anodic Alu-

mina prepared by Alexander Kirchner of Industrial Research Limited.

Although the conventional oven syntheses using Whatman Anodiscs

as the alignment template yielded highly aligned AlPO4-5 membranes, the

Anodisc was corroded during the synthesis so that the final product was

very brittle and unlikely to be suitable for any gas filtration application. In

order to overcome this, samples were crystallized using PAA prepared by

Alexander Kirchner of Industrial Research, which was more ordered and

thermally/chemically stable, as the template.

Due to the higher stability of the Kirchner PAA, these syntheses were

carried out using only 200eq. H2O and a 1:1 ratio of Al:P (as the membrane

did not partially dissolve as the anodiscs did).
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Table B.4: AlPO4-5 membranes prepared on highly ordered PAA.

Name Synthetic Details Results

LC29 Standard AlPO4-5 syntheses but
with laser dyes supplied by An-
drew Kay added.

Dyes decomposed during
crystallization.

LC
79

Sample prepared with PAA
made via the method in Kirch-
ner et al. [32] (anodized in
sulfuric acid, pore size of
30nm). PAA membrane was
poor quality.

Poor sample.

LC82 Repeat of LC79 with a slightly
higher quality PAA membrane.
(anodized in sulfuric acid, pore
size of ∼ 30 nm)

Almost x-ray amorphous.
The pores of these mem-
branes may be too small
to allow the AlPO4-5
crystallites formed during
the 90 ◦C pretreatment to
enter.

LC91 Standard prep in PAA mem-
brane anodized in oxalic acid
(pore size 50nm) made by
Kirchner [32].

Good sample.

LC93 Repeat of LC91 Good sample.

LC94 Repeat of LC91 Good sample.

LC95 Repeat of LC91 Good sample.

LC98 Repeat of LC91 Good sample. Template
later removed at 300 ◦C un-
der vacuum overnight. Af-
ter this step XRD showed
that the zeolite had not
been damaged.

LC99 Repeat of LC91 Good sample.

LC100 Repeat of LC91 Good sample.
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Microwave Crystallisation of AlPO4-5 within Porous Anodic Alu-

mina

Although using the Kirchner PAA allowed the crystallisation of me-

chanically sound, highly aligned membranes of AlPO4-5 using a conven-

tional oven as the heating source, the Kirchner PAA had the disadvantage

of being costly and not easily available in larger quantities; therefore it is

preferable that these membranes be made using Whatman anodiscs. Also,

after the experiments with laser dyes it became apparent that in order to

achieve my goal of creating AlPO4-5 microlaser membranes it would be

necessary to crystallize my membranes in a microwave oven, to ensure

that the laser dyes incorporated into the membranes did not decompose

during synthesis.

At this point it was necessary to design a Teflon lined microwave au-

toclave in which the temperature, time, and heating rate could be con-

trolled. The design of this autoclave (and modifications to the microwave

with which it was used) are discussed in appendix A. The experiments in

which this microwave autoclave was used are discussed below. Firstly, my

standard synthetic procedure needed to be modified in order to be suitable

for microwave crystallization.
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Table B.5: AlPO4-5 membranes using a microwave as the heating source.

Name Synthetic Details Results

LC101 Bulk AlPO4-5 microwave prep. With
PEEK autoclave. Similar to the prep
in Yan et al. [133]

Not a great sample,
only moderately
crystalline and con-
tained impurity
phases.

LC102 As for LC101 but with an anodisc
floated on a Teflon float and a 20
minute crystallization

An OK sample.

LC103 As for LC101, but using more recently
purchased HF, 130 eq. H2O and pseu-
doboehmite.

A moderately good
sample.

LC104 As for LC101 but with less water. Similar to LC103

LC105 2 step microwave heating, similar to
the synthesis in Tsai et al. [29]

Lots of amorphous
material on surface
at the liquid inter-
face, almost nothing
on the top surface.

LC109 Sample crystallized in the microwave,
same as the conventional oven crys-
tallization but with the addition of HF
and a pretreatment performed in the
conventional oven. 20 minutes crys-
tallization.

XRD showed good
alignment

LC110 As for LC109 but with 10 min crystal-
lization. . . . . . . Standard Microwave
Synthesis.

Similar results to
LC109 using XRD,
looks more crys-
talline on SEM.
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Once this method had been devised, further attempts were made to

incorporate the laser dye DCM into the membranes. These attempts were

successful.

Table B.6: Microwave samples doped with DCM.

Name Synthetic Details Results

LC114 Microwave sample with 0.05:1
DCM:Al. 10 minute crystallization.

Sample luminesces
under UV. XRD
shows well aligned
AlPO4-5.

LC115 As for LC114, but with more ethanol
to dissolve the DCM.

Very similar in qual-
ity to LC114.

LC116 As for LC115 As for LC114/LC115
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After synthesis of these AlPO4-5 membranes doped with DCM, sam-

ples were made to check whether the DCM was in fact incorporated into

the zeolite, or just physically adsorbed onto the surface of the membrane.

These experiments are summarised below.

Table B.7: Samples prepared to check whether DCM was incorporated into
the membranes in Table B6.

Name Synthetic Details Results

LC117 Standard conventional oven hy-
drothermal AlPO4-5 sample made
with an anodisc.

Prepared to check
whether dye is incor-
porated into LC114
or just clinging to
the surface of the
membrane.

LC119 Experiment with LC117 to see if
DCM will cling to the surface of an
AlPO4-5/PAA membrane. Appro-
priate amounts of DCM, H2O and
ethanol were combined to mimic the
synthesis conditions in LC114. LC117
was sealed in a Teflon lined autoclave
and left at 180 ◦C for 2 hours then
quenched, opened, washed and re-
fluxed in ethanol until no more dye
was observed to be removed.

observable fluores-
cence under UV,
unlike LC114.
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Attempts were also made to incorporate Europium into the microwave

AlPO4-5 membranes. Initial attempts were unsuccessful, and further at-

tempts were not made due to time constraints.

Table B.8: Europium doped microwave samples.

Name Synthetic Details Results

LC111 Europium doped microwave
sample, 20 minute crystalliza-
tion.

X-ray amorphous. SEM
showed amorphous mate-
rial on the surface con-
tained all the europium,
i.e. it was not incorporated
into the AlPO4-5 (and be-
sides which, there wasn’t
much AlPO4-5).

LC113 As for LC111 but 10 minute
crystallization.

As for LC111
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Attempts to Synthesize Zeolite Membranes containing other Alu-

minophosphates

Attempts were made to synthesize several smaller pore zeolite mem-

branes. It was found that these zeolites were much more difficult to syn-

thesize within PAA as

• AlPO4-5 is more stable, so often the syntheses would yield the zeolite

in question for the bulk, but AlPO4-5 would crystallize within the

membrane

• The synthetic conditions required for these syntheses proved to be

very corrosive to the PAA membranes used, as these syntheses typi-

cally use higher Al2O3:P2O5 ratios.
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Table B.9: Attempts to synthesise small pore Alpo4-5.

Name Synthetic Details Results

LC21 Synthesis to try to prepare AlPO4-
18. Used a published synthesis from
Verified Syntheses of Zeolitic Materi-
als [134]

Amorphous.

LC22 Experiment to try to prepare AlPO4-
18. As for LC21 but using pseu-
doboehmite.

A non-porous
aluminophosphate

LC24 AlPO4-18 following the procedure in
Vilaseca et al. [135]

Mostly amorphous, a
very small amount of
AlPO4-18.

LC26 As for LC24, but using Aluminum
sec-Butoxide as the aluminium
source.

Mostly amorphous.

LC27 Repeat of LC26 with an anodisc
added. Crystallized for 24 hours

Anodisc dissolved.

LC28 As for LC27, but crystallized for 48
hours

Anodisc dissolved.

LC43 An Anodisc coated in TiO2 using a
precursor provided by Tim Kemmitt
of IRL. This was intended to protect
the anodisc from the corrosive AlPO4-
18 precursor. Attempts were then
made to crystallize AlPO4-18 within
the anodisc.

Anodisc completely
dissolved

LC45 Anodisc prepared with TiO2 coating
for SEM

It was impossible
to see using SEM
whether there was
a coating present
or not, and if so
whether it com-
pletely coated the
anodisc (including in
the pores).

LC46 As for LC43 but with a thicker coating
of TiO2

Anodisc dissolved.

LC50 Precursor solution for AlPO4-18.
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Table B.9: Continued

Name Synthetic Details Results

LC51 Anodisc crystallized in a minimum
amount of LC50

Anodisc completely
dissolved.

LC52 Anodisc into which LC50 had been
incorporated, placed on a Teflon float
in the vapour above water in a bomb.

Amorphous.

LC57 Attempt to crystallize AlPO4-11 in an
anodisc using a published route.

Anodisc dissolved
and product was not
crystalline.

LC58 Attempt to crystallize AlPO4-18 Bulk powder was
AlPO4-18, anodisc
dissolved.

LC59 Attempt to crystallize AlPO4-52 via a
published route

Actually crystallized
as poorly aligned,
poorly crystalline
AlPO4-5

LC60 Modified attempt to crystallize
AlPO4-52 using pseudoboehmite.

Anodisc dissolved.

LC61 Modified attempt to crystallize
AlPO4-52 using aluminium iso-
propoxide.

Anodisc dissolved.
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Appendix C

Methods used for Template

Removal from Zeolites

Calcination - This is the most common method used. The details below

are given as an example of how this technique may be applied to AlPO4-5.

• Samples are calcined in O2, heating slowly (2 ◦C min-1) to 550 ◦C, held

there for 30 hours and slowly cooled [136].

Photochemical Template removal

• Materials are exposed to ultraviolet radiation between 260-180 nm in

O2 for 20-50 hr with the UV source approx. 2 cm from the sample. UV

is produced by a low or med pressure Hg discharge lamp in a quartz

envelope in a closed chamber under ambient conditions [124].

• ZSM-5 was treated for 30 mins in O2 mixture with 50 g/m3 of ozone

at 200 ◦C. Longer times are needed for samples with higher Al con-

tents [126].
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Microwave Irradiation

• Sample is irradiated at low temperature but heating to 550 ◦C is still

required [127].

Vacuum Removal Method

• MCM-41 was heated @ 200-250 ◦C for several hours under vacuum [130].

Solvent Extraction

• Template was removed from Al-MCM-41 by:

– Solvent extraction with 0.75 M HCl in 1:1 ethanol:heptane for

40 hours

– Solvent extraction with 0.05 M H2SO4/ethanol for 1 hour @ 0 ◦C [125].

Supercritical Fluid Extraction

• Template was removed from Al-MCM-41 via supercritical fluid ex-

traction @ 100 bar @ 100 ◦C for 15 minutes using supercritical CO2

modified with 20% MeOH [125].
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Prokopová, N. Guilhaume, A. Giroir-Fendler, H. Mozzanega, and

J. A. Dalmon, Journal of Membrane Science 281, 228 (2006).

[23] J. P. Verduijn, U.S. Patent Number 5723397 - Molecular sieve layers

and processes for their manufacture, 1998.

[24] M. Kanezashi, J. O’Brien, and Y. S. Lin, Journal of Membrane Science

286, 213 (2006).

[25] W. F. Lai, H. W. Deckman, J. A. McHenry, and J. P. Verduijn, U.S.

Patent Number 5871650 - Supported zeolite membranes with con-

trolled crystal width and preferred orientation grown on a growth

enhancing layer, 1999.

[26] T. M. Nenoff, S. G. Thoma, C. S. Ashley, and S. T. Reed, U.S. Patent

Number 6494326 - Composite Zeolite Membranes, 2002.

[27] X. Zhang, H. Liu, and K. L. Yeung, Journal of Physics and Chemistry

of Solids 66, 1034 (2005).



122 REFERENCES

[28] K. J. Chao, C. N. Wu, H. C. Shih, and T. G. Tsai, U.S. Patent Num-

ber 6060415 - Aligned Molecular Sieve Crystals grown on Anodic

Alumina Membrane, 2000.

[29] T. G. Tsai, K. J. Chao, X. J. Guo, S. L. Sung, C. N. Wu, Y. L. Wang, and

H. C. Shih, Advanced Materials 9, 1154 (1997).

[30] G. E. Thompson, Thin Solid Films 297, 192 (1997).

[31] H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda, Jour-

nal of The Electrochemical Society 148, B152 (2001).

[32] A. Kirchner, K. J. D. MacKenzie, I. W. M. Brown, T. Kemmitt, and

M. E. Bowden, Journal of Membrane Science 287, 264 (2007).

[33] A. F. Cronstedt, K. Vetensk. Acas. Handl. 17, 120 (1756).

[34] D. Trapp, Origins of the Element Names, ,

http://homepage.mac.com/dtrapp/Elements/myth.html, 2007,

Accessed 20 May 2007.

[35] L. D. Rollman and E. W. Valyocisk, in Inorganic Syntheses Volume 22,

edited by S. L. H. Jr., John Wiley and Sons, New York, 1981, p. 61.

[36] R. Xu, W. Pang, J. Yu, Q. Huo, and J. Chen, Chemistry of Zeolites and

Related Porous Materials, John Wiley and Sons, Singapore, 2007.

[37] P. A. Jacobs, in Carboniogenic Activity of Zeolites, Elsevier Scientific,

New York, 1977.

[38] B. Mills, ZSM-5, http://en.wikipedia.org/wiki/Zeolite, 2007, Ac-

cessed 12 August 2007.



REFERENCES 123

[39] C. Baerlocher, W. Meier, and D. Olson, Database of Zeolite

Structures, International Zeolite Association, http://www.iza-

structure.org/databases/, 2008, Accessed 13 October.

[40] J. Weitkamp and L. Puppe, editors, Catalysis and Zeolites, Fundamen-

tals and Applications, Springer-Verlag, Germany, first edition, 1999.

[41] S. Cinar and B. Beler-Baykal, Water Science and Technology 51, 71

(2005).

[42] S. Lower, Water Softening, http://www.chem1.com/CQ/zeolite ion-

exch.png, 2008, Wednesday 30 July 2008.

[43] E. Erdem, N. Karapinar, and R. Donat, Journal of Colloid and Inter-

face Science 280, 309 (2004).

[44] J. Caro and M. Noack, Microporous and Mesoporous Materials

(2008).

[45] K. Okamoto, H. Kita, K. Horii, K. Tanaka, and M. Kondo, Industrial

and Engineering Chemistry Research 40, 163 (2001).

[46] D. Shah, K. Kissick, A. Ghorpade, R. Hannah, and D. Bhattacharyya,

Journal of Membrane Science 179, 185 (2000).

[47] K. Aoki, K. Kusakabe, and S. Morooka, Industrial and Engineering

Chemistry Research 39, 2245 (2000).

[48] C. N. Wu, K. J. Chao, T. G. Tsai, Y. H. Chiou, and H. C. Shih, Ad-

vanced Materials 8, 1008 (1996).



124 REFERENCES

[49] S. Yamazakia and K. Tsutsumi, Microporous and Mesoporous Ma-

terials 37, 67 (2000).

[50] J. H. Magdalena Lassinantti and J. Sterte, Microporous and Meso-

porous Materials 38, 25 (2000).

[51] V. Nikolakis, G. Xomeritakis, A. Abibi, M. Dickson, M. Tsapatsis,

and D. G. Vlachos, Journal of Membrane Science 184, 209 (2001).

[52] P. D. Y. Kim, Research on Chemical Intermediates 30, 147 (2004).

[53] H. Lee and P. K. Dutta, Journal of Physical Chemistry B 106, 11898

(2002).

[54] X. Lin, E. Kikuchi, and M. Matsukata, Chemical Communications ,

957 (2000).

[55] A. Tavolaro, A. Julbe, C. Guizard, A. Basile, L. Cot, and E. Drioli,

Journal of Materials Chemistry 10, 1131 (2000).

[56] T. Matsufuji, S. Nakagawa, N. Nishiyama, M. Matsukata, and

K. Ueyama, Frontiers of Chemical Engineering in China 1, 217

(2007).

[57] V. A. Tuan, S. Li, R. D. Noble, and J. L. Falconer, Chemical Commu-

nications , 583 (2001).

[58] H. Lee and P. K. Dutta, Microporous and Mesoporous Materials 38,

151 (2000).

[59] S. Li, J. L. Falconer, and R. D. Noble, Advanced Materials 18, 2601

(2006).



REFERENCES 125

[60] S. Li, J. G. Martinek, J. L. Falconer, R. D. Noble, and T. Q. Gardner,

Industrial and Engineering Chemistry Research 44, 3220 (2005).

[61] S. Li, J. L. Falconer, and R. D. Noble, Journal of Membrane Science

241, 121 (2004).

[62] J. C. Poshusta, V. A. Tuan, E. A. Pape, R. D. Noble, and J. L. Falconer,

AIChE Annual Meeting, Miami Nov. 1998 46, 779 (2000).

[63] T. Tomita, K. Nakayama, and H. Sakai, Microporous and Meso-

porous Materials 68, 71 (2004).

[64] J. C. Lin and M. Z. Yates, Chemistry of Materials 18, 4137 (2006).

[65] J. C. Lin, M. Z. Yates, A. T. Petkoska, and S. Jacobs, Advanced Mate-

rials 16, 1944 (2004).

[66] J. Caro, M. Noack, and P. Kölsch, Adsorption 11, 215 (2005).
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