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Abstract

Shear banding, where a fluid spatially partitions into strain rate or shear bands in steady-
state simple shear flow conditions, was first observed in wormlike micelles solutions and
has since been observed in many other complex fluids. These solutions have been used
extensively to explore the relationship between shear (or stress) banding and microstruc-
ture in complex fluids. This relationship is difficult to study because of its dynamic nature
and there is still no clear consensus as to how banding relates to microstructural changes
in wormlike micelles solutions. In this thesis, the rheology of a number of wormlike mi-
celles solutions is examined using both conventional and novel techniques with the view
to developing a better understanding of this relationship.

The rheology of three wormlike micelles solutions composed of a surfactant cetylpyri-
dinium chloride (CPCl) and counterion sodium salicylate in water with or without the
salt sodium chloride were examined using mechanical rheometry and the rheo-optical
techniques: homodyne photo-correlation spectroscopy (PCS), diffusing wave spectroscopy
(DWS) and ellipsometry. Rheo-mechanical measurements were largely consistent with
the predictions of the reptation-reaction model. While significant stress fluctuations were
noted in one particular flow geometry, they were generally not observed in most rheo-
mechanical measurements presented here, indicating that these fluctuations are not uni-
versal and that they are geometry dependent. Shear induced turbidity was directly ob-
served in the cone-plate and parallel-plate geometries with turbid rings forming in samples
that showed a stress plateau. The Poisson-renewal model, which extends the reptation-
reaction model to include the influence of high frequency modes on the linear rheology,
was tested experimentally using mechanical rheometry, DWS microrheology and literature
data. In most cases the data fitted the model behaviour quite well, giving a physically rea-
sonable estimate of the average length of the micelles. DWS’s spatial sensitivity to shear
induced relative motion was then used to probe the flow behaviour of selected worm-
like micelles solutions in the cylindrical-Couette, cone-plate and parallel-plate geometries.
In the cylindrical-Couette, the ‘flow-DWS’ measurements were largely consistent with
rheo-mechanical measurements and indicated that some wormlike micelles solutions were
partitioning into apparently stable high and low strain rate bands in the vicinity of the
stress plateau. While measurements in the cone-plate and parallel-plate geometries also
suggested shear banding in samples that showed a stress plateau, the interpretation was
less clear-cut. Homodyne PCS was combined with ellipsometry to examine the spatial
relationship between strain rate and birefringence banding in selected wormlike micelles

i



ii

solutions in a cylindrical-Couette geometry. In contrast to the observations of previous
workers, it was found here that the birefringence and strain rate bands did coincide. Fur-
thermore, the high strain rate band was observed to be more turbid than the lower strain
rate band suggesting a connection between strain rate, optical anisotropy and turbidity.
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Chapter 1

Thesis overview

In appropriate conditions soap-like surfactant molecules in solution can assemble into long
microscopic wormlike structures called wormlike micelles. The resulting wormlike micelles
solution exhibits both solid-like and liquid-like characteristics and is known as a complex
fluid. These solutions are sometimes observed to flow in a peculiar way that suggests that
the viscosity of the fluid varies discontinuously. This discontinuous banding has generated
considerable interest because of its general implications for the flow behaviour of complex
fluids.

Wormlike micelles solutions have been actively studied for over 20 years with well
over 1000 papers published on the subject between 1990 and 2009. 17 of these papers
describe research conducted in the Author’s own laboratory using rheo-nuclear magnetic
resonance (rheo-NMR) methods. The work described in this thesis, however, focuses
almost exclusively on using rheo-optical methods in conjunction with conventional rheo-
mechanical techniques to understand the physical properties of wormlike micelles solutions
and is intended to complement the group’s previous rheo-NMR work.

This thesis is divided into ten chapters. Chapters 2-4 review rheology (Chapter 2),
the rheology of wormlike micelles (Chapter 3) and rheo-optics (Chapter 4). Chapters 5-9
describe original rheo-mechanical and rheo-optic work using visualisation (Chapter 5), dif-
fusing wave spectroscopy (Chapters 6-7), ellipsometry (Chapter 8) and photo-correlation
spectroscopy (Chapters 8-9). The thesis concludes with Chapter 10.

Rheology is the study of flow and deformation. In Chapter 2 the subject of rheology
is formally introduced. Rheology is conventionally studied using a mechanical spectroscopy
called rheometry in either a small deformation linear regime or a large deformation non-
linear or flow regime. The rheology of complex fluids depends on the interaction of the
constitutive units, which are often small enough to be influenced by thermal or Brown-
ian forces. Because understanding this influence can be important to understanding the
bulk rheology, the Brownian motion of microscopic particles and its relationship to the
mean square displacement (MSD) is considered here in several environments. The chapter
concludes with a discussion of the model rheology of polymer systems, including a descrip-
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tion of the reptation model, which asserts that the rheology of some polymer systems is
determined in part by snake-like curvilinear thermal diffusion of the polymer strands.

Wormlike micelles are a polymer-like self-assembly of surfactant molecules that can
form in solution in the appropriate conditions. Unlike polymers where the length is fixed
at polymerisation, wormlike micelles are formed dynamically through a continuous pro-
cess of breakage and recombination. Wormlike micelles solutions possess several unusual
rheological properties and have been actively studied for many years. In Chapter 3 the
rheology of wormlike micelles solutions is reviewed. The reptation-reaction model, which
adapts the reptation model to include the effects of breakage and recombination and is
a widely accepted description of the low frequency linear rheology, is introduced and ex-
perimental evidence for the later Poisson-renewal model, which extends the description
of the reptation-reaction model to include high frequency modes, is considered and ques-
tioned. Implications of the reptation-reaction model for the non-linear rheology including
the important prediction that in appropriate conditions a wormlike micelles solution would
spatially partition into strain rate bands or ‘shear bands’ in constant strain rate or ‘sim-
ple shear flow’ conditions is discussed. Indirect evidence from flow-birefringence studies
and direct evidence from velocimetry studies is presented verifying that wormlike micelles
solutions do in fact shear band. Other phenomenology associated with the shear flow
of wormlike micelles solutions including possible coupling between flow and concentra-
tion and the presence of stress fluctuation and flow instabilities, or rheo-chaos, are also
discussed along with the predictions of several continuum models.

A mechanical rheometer reports spatially averaged quantities. This spatial aver-
aging can obscure the true flow behaviour of complex fluids that undergo some kind of
spatial partitioning like that seen in wormlike micelles solutions. Furthermore, a mechan-
ical rheometer is subject to mechanical limitations that restrict its operating range. To
address these issues the rheology of a complex fluid can be studied using other experimen-
tal techniques. This thesis focuses on rheo-optical methods. In Chapter 4 rheo-optics
is reviewed with an emphasis on those optical techniques used to study wormlike mi-
celles solutions here. Plane wave and Green function solutions to Maxwell equations are
introduced and are used to understand how the physical properties of transmitted or scat-
tered light can be related to the optical properties of the medium. The optical technique
ellipsometry, which is often called flow birefringence in the context of rheology, and the
dynamic light scattering techniques: homodyne photo-correlation spectroscopy (PCS) and
diffusing wave spectroscopy (DWS) are introduced. The chapter concludes with a discus-
sion of selected rheo-optical properties of model polymer systems, which will subsequently
be used to understand some of the rheo-optical properties of wormlike micelles solutions.

The experimental component of the thesis begins with a study of the rheology of
three wormlike micelles solution systems (RHB, RHA and RHC) based on the surfactant
cetylpyridinium chloride in water using mechanical rheometry in Chapter 5. Both the
linear and nonlinear rheometry of these systems show reasonable agreement to the predic-
tions of the reptation-reaction model. While significant stress fluctuations were noted in
one particular flow geometry, they were generally not observed in most rheo-mechanical
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measurements presented here, indicating that these fluctuations are not universal and that
they are geometry dependent. In addition to studying the samples using rheo-mechanical
methods, several samples are studied using the simplest rheo-optic technique: direct vi-
sualisation. Here, pronounced turbidity is seen in the RHB samples with turbid rings
forming in samples expected to shear band in several flow geometries.

The reptation-reaction model examined in Chapter 4 describes the low frequency
linear rheology of wormlike micelles solutions. The Poisson-renewal model extends the
reptation-reaction model to include the effect of high frequency modes. This model can
potentially be used to estimate the average length of the wormlike micelles in solution - a
quantity that is difficult to determine using more conventional techniques. The Poisson-
renewal model has been difficult to validate experimentally because of the upper frequency
limit imposed by inertia in conventional mechanical rheometry. In recent years, a new tech-
nique called microrheology where the linear rheology is inferred from the Brownian motion
of embedded microscopic probe particles has been developed. The frequency response of
the technique exceeds that of mechanical rheometry by 3-4 decades making it a potentially
useful method for testing the Poisson-renewal model. In Chapter 6 DWS microrheology
is used to measure the linear rheology of selected RHB samples over an extended frequency
range. These measurements along with rheo-mechanical measurements and literature data
are compared to the predictions of the Poisson-renewal model by fitting the data. Qualita-
tively, the fit does match much of the experimental data (with some exceptions) and gives
physically reasonable values of the average micelles length (with some reservations). In
principle, any technique that can be used to determine the MSD of embedded microscopic
probe particles undergoing Brownian motion can be used for microrheology; the potential
of diffusion NMR as a microrheological technique is also considered in this chapter.

While DWS has been successfully applied to the study of the linear rheology of
complex fluids, the technique’s capacity to characterise the nonlinear rheology or flow
behaviour of complex fluids is largely unexplored. This is addressed in Chapter 7 where
‘flow-DWS’ is used to study the unusual flow behaviour predicted in Chapter 3 to occur in
some wormlike micelles solutions. Here, DWS’s spatial sensitivity to shear induced relative
motion is used to infer the flow behaviour in the three standard rotational flow geometries
used in conventional mechanical rheometry: cylindrical-Couette, cone-plate and parallel-
plate geometries. In the cylindrical-Couette geometry, the flow-DWS measurements are
largely consistent with predictions based on rheo-mechanical measurements and indicate
that some RHB wormlike micelles solutions are partitioning into quite stable strain rate
bands. Flow-DWS measurements in the cone-plate and parallel-plate geometries were more
difficult to interpret, suggesting that the flow in these geometries is more complicated than
that observed in the cylindrical-Couette geometry.

Shear banding in wormlike micelles was first demonstrated indirectly using flow
birefringence, a rheo-optic technique that probes optical anisotropy. Here, birefringence
bands were observed in some sheared wormlike micelles solutions suggesting that parti-
tioning into strain rate bands was occurring. Partitioning into strain rate bands has been
since observed directly using velocimetry techniques. Rheo-NMR is unusual amongst the
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techniques commonly coupled to rheology in that it is capable of simultaneously resolv-
ing both anisotropy and velocity. Measurements of a sheared wormlike micelles solution
using rheo-NMR led workers in the Author’s own lab to question the assumption that
birefringence and strain rate bands necessarily coincided. This cast some doubt on the in-
terpretation of the flow birefringence measurements. To investigate this relationship more
directly, an approach combining homodyne PCS and ellipsometry to measure the strain
rate and optical anisotropy simultaneously is used to examine a series of RHB wormlike
micelles solutions in a cylindrical-Couette geometry in Chapter 8. Shear banding is ob-
served in some samples and these shear bands are observed to coincide with birefringence
bands. Furthermore, it is noted that the high strain rate band was significantly more
turbid than the low strain rate band suggesting a connection between shear rate, optical
anisotropy and turbidity.

In Chapter 8 a rather curious observation is made: the dynamic laser speckle pattern
produced by scattering centres embedded in a flowing fluid appears to circulate slowly
about the unscattered transmitted beam. In Chapter 9 this phenomenon is studied
quantitatively with a view to developing a homodyne PCS/ellipsometry based experi-
mental technique capable of resolving both flow and anisotropy independently at small
angles using a camera based detection system. To understand the circulation described
above, the dynamic speckle pattern is simulated by considering the field radiated from
a random ensemble of scattering centres moving through a laser, and its statistical be-
haviour is summarised using space-time correlation. These simulated space-time statistics
are quantitatively comparable to the space-time statistics measured in two simple flow
configurations in a number of optical set-ups. Unfortunately, due to issues with a home-
made cylindrical-Couette geometry, it was not possible to test the proposed homodyne
PCS/ellipsometry technique experimentally.

The thesis concludes in Chapter 10 with a summary and introduces a speculative
model that relates the turbidity observed in the high strain rate band to the formation of
metastable structures that temporarily sequester surfactant from solution, reducing the
local concentration of surfactant, length or degree of entanglement of the wormlike micelles
and viscosity.



Chapter 2

Rheology

2.1 Introduction

Soft condensed matter (European) or complex fluids (US) are a broad class of materials
that possess mechanical properties that fall between those of classical solids and liquids
[1]. A general feature of these complex fluid systems is the presence of structures on
nanoscopic to microscopic length scales. It is the interaction and reorganisation of these
structures that give rise to these fluids’ ‘complex’ mechanical properties. Because the
energies of interaction are typically of the order kBT these materials appear ‘soft’ at room
temperatures.

The study of the relationship between the deformation and flow and the microstruc-
ture of complex fluids is called rheology. In this chapter the subject of rheology is formally
introduced. This introduction is followed by a discussion of the influence of thermal agi-
tation on small particles. Finally, because of their historical significance and similarity to
the system studied here, the rheology of polymer-like systems is discussed.

Figure 2.1: The macroscopic and microscopic appearance of a wormlike micelles solution
- the complex fluid studied here. Micrograph from [2].

5



6 CHAPTER 2. RHEOLOGY

2.2 Rheology

2.2.1 Flow, stress and the constitutive relation

The flow behavior of a fluid can be determined by solving the force balance equation
(f = ma) which gives the time rate of change of momentum ρv in terms of the momentum
flux [3]

d

dt

∫
ρvdV =

∫
S
ρv [n̂ · v] dS︸ ︷︷ ︸
convection

+
∫
V
ρgdV︸ ︷︷ ︸

external forces

+
∫
S

[
n̂ · T

]
dS︸ ︷︷ ︸

internal forces

. (2.1)

The first flux term on the RHS is associated with the convection of momentum through
a closed surface S, with surface normal n̂. The second term describes the contribution
of external forces over a volume V ; here it is assumed that only gravity g affects the
momentum flux. The final term is associated with internal molecular forces. The total
stress tensor T describes the force per unit area on the surface area of a differential volume
element due to the relative motion of surrounding molecules. This tensor is generally
symmetric and can be decomposed into a component associated with a thermodynamic
pressure p and a component that will be associated with flow [3]

T = σ + pI. (2.2)

Using Gauss’s law Eqn. 2.1 can be expressed in differential form

∂ [ρv]
∂t

= −∇ · [ρvv]−∇ · T + ρg. (2.3)

In order to solve differential Eqn. 2.3 a constitutive relation between stress and velocity
must be assumed. With this relation and boundary conditions the fluid’s flow behaviour
can (in principle) be determined. This constitutive relation between stress and flow is
studied in rheometry. Eqn. 2.3 is not straightforward to solve for an arbitrary experimental
geometry; in rheometry only very simple flow geometries are used.

2.2.2 Simple shear flow

In the simple shear or planar-Couette flow geometry, the material of interest is trapped
between two infinite parallel surfaces separated by a gap d that undergo relative transla-
tion. For the planar-Couette geometry illustrated in Fig. 2.2 the stress tensor takes the
form

σ =

 σ11 σ 0
σ σ22 0
0 0 σ33

 , (2.4)
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Figure 2.2: Simple shear or planar-Couette flow geometry.

with σ12 = σ21 = σ because of symmetry. This relation can be deduced from the force
balance equation [4]. σ is called the shear stress and σ11, σ22 and σ33 the normal stresses.
Normal stresses are not accessible experimentally; however, the normal stress differences:

N1 = σ11 − σ22, (2.5)
N2 = σ22 − σ33, (2.6)

may be.

The response of material to a stress depends on the constitutive relation. The
constitutive relation for a Hookean solid (a solid that obeys Hooke’s law) is

σ = GC−1, (2.7)

where G is the elastic modulus of the solid material and C−1 is called the finger tensor

defined as C−1 = (F−1)TF−1 where F−1 = ∂r′

∂r is the deformation gradient tensor. For

the simple shear flow the ‘deformation’ accumulated between times t and t′ is [5]

F−1(t, t′) =
∂r′

∂r
=


∂r′1
∂r1

∂r′2
∂r1

∂r′3
∂r1

∂r′1
∂r2

∂r′2
∂r2

∂r′3
∂r2

∂r′1
∂r3

∂r′2
∂r3

∂r′3
∂r1

 =

 1 0 0
γ 1 0
0 0 1

 . (2.8)

γ = ∆x/d is called the strain. Eqn. 2.7 implies that

σ = Gγ, (2.9)

which is Hooke’s Law.

The constitutive relation for a Newtonian fluid satisfies the relation

σ = 2ηD, (2.10)
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where η is the viscosity of the fluid. D is called the rate of deformation tensor and is

defined as 2D ≡ (∇v)T + ∇v where ∇v = ∂v
∂r is the gradient velocity tensor. For the

simple shear flow [5]

∇v =
∂v
∂r

=


∂v1
∂r1

∂v2
∂r1

∂v3
∂r1

∂v1
∂r2

∂v2
∂r2

∂v3
∂r2

∂v1
∂r3

∂v2
∂r3

∂v3
∂r1

 =

 0 0 0
γ̇ 0 0
0 0 0

 . (2.11)

γ̇ = ∂vx/∂y = ∂γ/∂t is called the strain rate. Eqn. 2.10 implies that

σ = ηγ̇, (2.12)

which is Newton’s law for fluids. If a fluid is Newtonian Eqn. 2.3 can be reformulated as
the Navier-Stokes equation [6]

ρ

[
∂v
∂t

+ v · ∇v
]

= −∇p+ η∇2v + ρg, (2.13)

(ρ constant - incompressible fluid) which is commonly solved in fluid mechanics problems.

Both Newtonian fluids and Hookean solids are free of hysteresis or ‘memory’. Hys-
teresis effects are common and significantly complicate the description of the constitutive
relation. Following Larson [5], consider first a material with a constitutive relation that
satisfies the differential equation

σ + τ
∂σ

∂t
= Gτγ̇ (2.14)

or equivalently in integral form

σ(t) =
∫ t

−∞
G exp

[
(t′ − t)/τ

]
γ̇(t′)dt′ (2.15)

=
∫ t

−∞

G

τ
exp

[
(t′ − t)/τ

]
γ(t, t′)dt′, (2.16)

where τ is a characteristic relaxation time and γ(t, t′) is the strain accumulated between
the times t and t′. This material is called a Maxwell fluid. As is indicated by Eqn. 2.16
the current stress depends on the strain history of the material [7]. Equations of the form
2.14-2.16 occur in mechanical (and electrical) circuits. A mechanical circuit analogue for
a Maxwell fluid is shown in Fig. 2.3 i. It is composed of a spring (of spring constant G)
coupled in series to a dashpot (of viscosity η) subject to a driving force f (an analogue
of σ) which produces a displacement x (an analogue of γ). For times t − t′ << τ the
behaviour of the fluid is dominated by the shear modulus (the spring in the analogue) and
σ = Gγ whereas at t − t′ >> τ the behaviour is dominated by the viscous contribution
(dashpot) and σ = Gτγ̇ = ηγ̇. Such a fluid is said to be viscoelastic - the mechanical
behaviour interpolates between that of viscous (Newtonian) fluids and elastic (Hookean)
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Figure 2.3: Spring-dashpot mechanical circuit analogues used in rheology. i) A single
Maxwell element, ii) a system of Maxwell elements and iii) an alternative arrangement
called a Kelvin element.

solids. As is suggested by Fig. 2.3 ii additional Maxwell elements can be added to the
circuit leading to a shear stress

σ(t) =
∫ t

−∞

∑
i

Gi exp
[
(t′ − t)/τi

]
γ̇(t′)dt′. (2.17)

For a continuous distribution of Maxwell elements such that
∑

iGi exp [−t/τi]→
∫
G0(τ) exp [−t/τ ] dτ

the stress is

σ(t) =
∫ t

−∞
G(t′ − t)γ̇(t′)dt′ (2.18)

=
∫ t

−∞
m(t′ − t)γ(t′, t)dt′. (2.19)

G(t′− t) =
∫
G0(τ) exp [(t′ − t)/τ ] dτ is called the stress relaxation modulus and m(t′− t)

is called a memory function and is related to the stress relaxation modulus by [7]

m(t− t′) =
∂G(t′ − t)

∂t′
. (2.20)

More generally the stress - accumulated strain relation can be expressed as a tensor (with
σ → σ(t) and γ(t′, t)→ C(t′, t)) [5]

σ(t) =
∫ t

−∞
m(t′ − t)C−1(t′, t)dt. (2.21)

Eqn. 2.21 says that the stress ‘now’ depends on the deformation history of the sample and
the sample’s ‘memory’ of this deformation history. Other configurations of springs and
dashpots are sometimes used to describe viscoelastic properties of complex fluids. In Fig.
2.3 iii a spring and dashpot are coupled in parallel - this configuration is called a Kelvin
element.
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2.2.3 Linear rheology

Linear rheology is restricted to the study of complex fluids in the small strain limit where
the output stress is proportional to the input strain. In this linear regime the stress
relaxation function (Eqn. 2.18) can be measured in the time domain by applying a step
strain at t′ = 0 of amplitude γ = γ0 so that γ̇(t′) = γ0δ(0) and considering the ratio of
stress to deformation

G(t) =
σ(t)
γ0

. (2.22)

More commonly the complex shear modulus G∗(ω) is measured in the frequency domain
by applying a sinusoidal strain γ = γ0 sinωt and measuring the complex amplitude of
the resulting oscillating stress. This ratio of stress to strain can be resolved into a real
component in phase with the input deformation called the storage modulus (G′) and an
imaginary component out of phase with input called the loss modulus (G′′) where

G∗(ω) =
σ′(ω) + iσ′′(ω)

γ0
= G′(ω) + iG′′(ω). (2.23)

The complex shear modulus is related to the stress relaxation modulus by the integral
transform

G∗(ω) = iω

∫ ∞
0

G(t) exp [iωt] dt. (2.24)

Alternatively the linear rheology can be described in terms of the complex shear viscosity
η∗(ω)

G∗(ω) = iωη∗(iω). (2.25)

The complex shear viscosity represents the mechanical impedance of a complex fluid [7].

2.2.4 Nonlinear rheology

Nonlinear rheology is the study of the constitutive relation in the large strain limit where
the output stress is no longer proportional to the input strain. It is most commonly studied
by applying a constant strain rate to the material and measuring the steady-state stress
after all transient behaviour has died away. Typically, soft materials show a strain rate
dependent viscosity

σ = η(γ̇)γ̇. (2.26)

Often power law dependence of the form η(γ̇) ∝ γ̇p is observed. Materials can be classified
based on the exponent p. The material is said to be Newtonian if p = 0, shear thinning
if p < 0, and shear thickening if p > 0 [7]. The relationship between viscosity and strain
rate and stress and strain rate for the three types of fluids is illustrated in 2.4. The stress
versus strain rate representation is called a flow curve.
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Figure 2.4: Two representations of the nonlinear steady-state flow behaviour of shear
thinning, Newtonian and shear thickening fluids. Note the log-log axes.

2.2.5 Mechanical rheometry

A mechanical rheometer is a tool used to probe the constitutive relation. In a rheometer,
a shear stress or strain is directly applied to the sample and the resulting strain or stress
is measured. Unfortunately, simple shear (or planar-Couette) flow cannot be realised
experimentally. In practice, several geometries which approximate simple shear flow are
used. They are cylindrical-Couette, cone-plate and parallel-plate geometries.

In the cylindrical-Couette geometry, the fluid is trapped between two coaxial cylin-
ders of radii ri and ro. Either the inner or outer cylinder rotates. Ignoring end effects, the
shear stress (in cylindrical coordinates) in this geometry is given by

σφ,r(r) = σ0

[ri
r

]2
, (2.27)

where σ0 is the shear stress at the inner wall. In contrast to the planar-Couette geometry
where the shear stress is constant within the fluid, in the cylindrical-Couette geometry the
shear stress decreases from the inner wall. In order to minimise the stress variation across
the gap, the gap between the two cylinders is deliberately made small. In terms of the
angular velocity (ω) of rotating cylinder and torque (T ) required to sustain this rotation,
the measured or ‘apparent’ stress and strain rates are [3]:

σ =
T

2πlr2
i

, (2.28)

γ̇ =
riω

ro − ri
. (2.29)

In the cone-plate geometry, the fluid is trapped between the tip of a cone in contact
with a flat plate at a right angle to the cone’s axis of symmetry. The cone or plate rotates
about this axis. Ignoring edge effects, the shear stress is given (in polar coordinates) by

σφ,θ(θ) = σ0cosec2 [π/2− θ] , (2.30)
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Figure 2.5: Standard flow geometries used in rheometry. i) Cylindrical-Couette, ii) cone-
plate and iii) parallel-plate geometries.

where σ0 is the wall stress at the plate. As with the cylindrical-Couette geometry, the
stress is not uniform within the gap; however, for the cone angles typically used (1-4 deg)
it is significantly more uniform than that observed in the cylindrical-Couette geometry. It
is mechanical rheometry’s closest approximation to planar-Couette flow. In terms of the
angular velocity, torque and thrust f on the cone, the measured stress, strain rate and
first normal stress difference is [3]:

σ =
3T

2πr3
0

, (2.31)

γ̇ = ω/θ0, (2.32)

N1 =
2f
πr2

0

, (2.33)

where small values of the cone angle θ0 have been assumed.

In the parallel-plate geometry, the fluid is trapped between a disc and a parallel-
plate with a disc-plate separation d. The disc rotates. In this geometry, the shear stress is
uniform along an axis parallel to the axis of rotation; however it will vary radially. Because
the flow is locally planar-Couette (from the force balance equations [4]) the local strain
rate (assuming that the complex fluid is well behaved) varies radially

γ̇(r) = ωr/d. (2.34)

The measured torque is an integral over the radially varying wall stress

T = 2π
∫ r0

0
σ0(r)r2dr. (2.35)

This integral over unknown σ0(r) complicates the relationship between stress and torque.
Because of this complication, this geometry is not commonly used for nonlinear rheology.
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In instances where the geometry is used here, the stress and strain rate is reported as [3]:

σ =
2T
πr3

0

, (2.36)

γ̇ =
ωr0

d
. (2.37)

2.3 Brownian motion and diffusion

The interaction and rearrangement of the microscopic structural units of a complex fluid
are often influenced by random thermal or Brownian forces which induce Brownian motion
and diffusion. The relationship between these forces and the resulting motion can be
understood statistically through the fluctuation-dissipation theorem [8]. Continuing with
the mechanical analogy developed in the last section, the impedance of a mechanical circuit
is defined as [9]

Z(ω) ≡ F (ω)/V (ω), (2.38)

where F (ω) is a force and V (ω) is the resulting velocity. The fluctuation-dissipation
theorem relates the power spectral density of a thermal driving force to the impedance of
the mechanical circuit [10]

F (ω)F ∗(ω) = 4kBT<e [Z(ω)] . (2.39)

The dynamic behavior of an element in a mechanical circuit due to random thermal forces
can be determined by combining Eqn. 2.38 and 2.39 and its statistics summarised by a
mean square displacement (MSD). The MSD is defined by the velocity autocorrelation
function [11]

〈∆r2(t)〉 ≡ 2
∫ t

0
(t− τ) 〈v(0)v(τ)〉dτ. (2.40)

Noting that velocity autocorrelation and velocity power spectrum are Fourier Transform
pairs, 〈v(0)v∗(τ)〉 =

∫∞
−∞ V (ω)V ∗(ω)eiωτdω, the MSD is

〈∆r2(t)〉 = 2
∫ t

0
(t− τ)

1
2π

[∫ ∞
−∞

V (ω)V ∗(ω)eiωτdω
]
dτ (2.41)

=
1
π

∫ t

0
(t− τ)

[∫ ∞
−∞

4kBT<e [Z(ω)]
Z(ω)Z∗(ω)

eiωτdω

]
dτ. (2.42)

Eqn. 2.42 relates average motion to thermal agitation. To illustrate, consider a
Kelvin element (Fig. 2.3 iii) coupled with a mass m in series driven by a force f(t). The
equation of motion of the mass is

mẍ(t) + ζẋ(t) + kx(t) = f(t) (2.43)
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(ζ = η in this mechanical analogue). This impedance of the circuit can be determined
by assuming that the forcing term is sinusoidal f(t) = F (ω)eiωt and that the resulting
velocity is also sinusoidal v(t) = V (ω)eiωt. This gives an impedance Z(ω) = k

iω + ζ + imω
and an MSD

〈∆r2(t)〉 =
1
π

∫ t

0
(t− τ)

[∫ +∞

−∞

4kBTηω2

(k −mω2)2 + η2ω2
eiωτdω

]
dτ. (2.44)

Einstein asserted that Brownian motion of the small neutrally buoyant sphere of mass m
under influence of random thermal forces f(t) and viscous drag ζẋ was described by Eqn.
2.43 with k = 0. When k = 0, m 6= 0 and η 6= 0 Eqn. 2.44 simplifies to

〈∆r2(t)〉 = 4kBT
[
t

η
− m

η2
[1− exp(−tζ/m)]

]
= 2

[
2Dt− 2D

m

ζ

(
1− exp

[
−tζ
m

])]
,

(2.45)

where

D =
kBT

ζ
. (2.46)

D is called the diffusion constant. Assuming that the viscous drag force on the sphere
follows Stokes law ζ = 6πηa [11], where η is the viscosity of the Newtonian host and a is
the sphere radius, the diffusion constant is

D =
kBT

6πηa
. (2.47)

This is the Stokes-Einstein relation [11]. Eqn. 2.45 describes the MSD in one dimension;
in three dimensions the MSD is a factor of three larger. At short times the MSD is a
quadratic function of time. This is called the ballistic regime. For t � ζ/m the second
term is negligible and the three-dimensional MSD is

〈∆r2(t)〉 ≈ 6Dt. (2.48)

If the ballistic regime can be neglected, the probable space-time behaviour of the
isolated Brownian particle can be determined from the diffusion equation

∂G(r, t)
∂t

= D∇2G(r, t). (2.49)

G(r, t) is a propagator which gives probability that the particle, initially at the origin at
t =0, will be at r at time t. For free diffusion G(r, t) is a Gaussian function which spreads
in time and space [11]

G(r, t) = (4πDt)−3/2 exp
[
− r2

4Dt

]
. (2.50)
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Figure 2.6: Simulated Brownian motion of a mass m coupled to a Kelvin element of
spring constant k and dashpot viscosity η. i-iii) Simulated one-dimensional displacement
and iv-vi) MSD.
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The physical meaning of the mean square displacement can be understood through
simulation. The one-dimensional displacement of a test particle of mass m coupled in
series to a Kelvin element can be calculated for input impulse f(t) = f0δ(t) representing
Brownian forces using Laplace transform techniques. The amplitude and timing of the
impulses are randomly chosen such that noise power is F0(ω)F ∗0 (ω) = 4kBT<e[Z(ω)] = 4ζ
J/s (kBT=1 J). The simulated displacement of the test particle for various combinations
of m (in kg), η (in Pa.s) and k (in Pa) is shown in Fig. 2.4 i-iii. The simulated MSD for
an ensemble is shown below in Fig. 2.4 iv-vi. Analytic solutions are based on Eqn. 2.44.
As expected for k = 0 the MSD initially grows quadratically and then linearly at longer
times. For k 6= 0 the MSD is observed to plateau. The spring element in the Kelvin circuit
effectively tethers the test particle to its initial location preventing it from wandering off.
If the particle is not massless, the resulting MSD shows a damped oscillation about a
plateau value.

If 〈∆r2(t)〉 ∝ t as in Fig. 2.6 iv the diffusion is said to be ‘free’. If however
〈∆r2(t)〉 ∝ tp, where p < 1 as in Fig. 2.6 v-vi, the diffusion is said to be ‘restricted’
and sub-diffusive. Restricted diffusion can develop for purely geometric reasons. This is
illustrated in Fig. 2.7. In the first example, the motion of a freely diffusing test particle in
the interstitial void between a two-dimensional lattice of discs is considered. The radii of
the discs is varied slightly. When the discs touch (2R = d) the test particle is contained
within a single void. When a gap between the discs is present (2R < d) the test particle can
escape into other voids. In all cases, at short times the 〈∆r2(t)〉 ∝ t - diffusion is free. At
longer times differences develop. In the case where the discs touch, diffusion is completely
restricted 〈∆r2(t)〉 ∝ t0. At intermediate times where 2R < d sub-diffusive behaviour is
observed. At long times, free diffusion 〈∆r2(t)〉 ∝ t is apparent with an effective diffusion
constant D that depends on R. In the second example, the free diffusion of a test particle
that is trapped with a three-dimensional sphere is considered. The motion of the test
particle is illustrated in Fig. 2.7 ii. The MSD of the test particle is shown in two cases in
Fig. 2.7 iv. In the first case the cavity is fixed. Here, the diffusion is completely restricted
at long times. In the second case, the cavity is assumed to diffuse freely with a much
lower diffusion constant. In this case, the MSD of the test particle is essentially that of
the cavity at long times. As a prelude to the next section a third example is shown in Fig.
2.7 iii. Here a hot snake thrashes in a long confining tube. Fig. 2.7 vi shows the schematic
MSD of some point on the snake. At short times, the snake thrashing is unimpeded by the
wall of the tube. Here the diffusion is free. At intermediate times, the wall restricts the
thrashing motion. If a component of the thrashing motion is along the tube, the snake will
gradually slither (or reptate) up and down the confining tube with a diffusion constant
much lower than observed at short times. Clearly, a longer snake is going to have a harder
time moving up and down the tube and its diffusion constant at long times will be lower.
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Figure 2.7: Simulated ‘Brownian’ motion of freely diffusing test particles in restricted
geometries. i and iii) Simulated two-dimensional displacement and MSD of test particles
diffusing in the interstitial voids between a lattice of discs. ii and iv) Simulated three-
dimensional displacement and MSD of test particles diffusing in a spherical cavity. iii)
A hot snake tries to escape from a confining tube. vi) A schematic representation of the
MSD of some point on the hot snake.
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2.4 The rheology of polymer-like chains

2.4.1 Structure

Polymers are a linked series of repeating units called monomers. In a linear polymer, the
monomeric units are linked in a chain. The conformation of the polymer chain in solution
depends on both the polymer and the quality of the solvent (when present). For an ideal
polymer composed of N monomers of length l the chain conformation is described by a
random walk of step size l, step number N and length L = Nl. When bond angles between
the monomers are restricted or if the solvent is not ideal (causing the polymer chain to swell
or contract) the chain conformation is not that of a random walk. It can, however, still
be described by an equivalent ideal polymer composed of NK(< N) monomers of length
lK(> l) of total length L = NK lK for which the conformation is that of a random walk.
lK is called the Kuhn length which is half the persistence length lp - the characteristic
length scale over which the chain can be considered rigid [8].

The (effective) random walk of an individual polymer chain through some medium
can be characterised by an end-to-end displacement vector R; an ensemble can be char-
acterised by the distribution function ψ(R). In equilibrium conditions ψ(R) is [8]

ψ(R) =
[

3
2πNl2

]3/2

exp
[
−3R ·R

2Nl2

]
=
[
β√
π

]3

exp
[
−β2R2

]
. (2.51)

where β =
√

3/(2Nl2). ψ(R) is the probability of a particular end-to-end vector occurring
(see Fig. 2.8). Increasing R reduces the range of conformations that the random walk can
assume and reduces the polymer’s total entropy S. Consequently, work W is required to
stretch a polymer chain. From thermodynamic considerations W = TS = kBTβR

2 and
the force required f = ∂W/∂R = 2kBTβR indicating that an extended polymer acts like
a Hookean spring for small deformations/forces [8].

At low concentrations, the polymer strands are isolated and rheology of the ‘dilute’
polymer solution is close to that of the solvent. At higher concentrations, the strands begin
to overlap and become entangled. Because this ‘overlap concentration’ is typically low the
solutions are referred to as ‘semi-dilute’. The rheology of a semi-dilute polymer solution is
significantly different to that of the solvent. When no solvent is present a polymer forms
a ‘melt’.

2.4.2 Rubbery- and temporary-network models

The rubbery-network model treats an entangled polymer solution as a network of springs.
The relationship between stress and deformation for an ensemble of such springs can be
determined by considering the force f on a surface embedded cube [5][12]. Assume that
the number density of springs is ν and the volume of the cube is 1/ν so that the cube
on average contains a single spring (see Fig. 2.9 i). The probability that the spring will
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Figure 2.8: i) A random walk of 100 steps representing the conformation of a linear
polymer. This conformation is characterised by an end-to-end displacement vector R
(blue). The vector R can be ii) simulated for many such conformations and the iii) radial
distribution of the end-to-end vector lengths 4πR2ψ(R) calculated.

intersect the surface with normal n is R · nν1/3. The average force on the surface of the
cube is

f =
∫

R · nψ(R)RdR3 = 2νkBTβn · 〈RR〉, (2.52)

where ψ(R) describes the (possibly non-equilibrium) distribution of R . Eqn. 2.52 has
the form f = n · σ implying that [5]

σ = 2νkBTβ2〈RR〉. (2.53)

The tensor 〈RR〉 describes the average arrangement of the end-to-end vectors in the
network. For a simple shear deformation of the form Rx → Rx + γRy

〈RR〉 = 〈(Rx + γRy)2〉 〈Ry(Rx + γRy)〉 〈Rz(Rx + γRy)〉
〈(Rx + γRy)Ry〉 〈RyRy〉 〈RzRy〉
〈(Rx + γRy)Rz〉 〈RyRz〉 〈RzRz〉

 =
R2

3

 1 + γ2 γ 0
γ 1 0
0 0 1

 .
(2.54)

Note that it has been assumed that 〈RiRj〉 = δij〈R2
i 〉 = 〈R2〉/3 (the average product of

two uncorrelated Gaussian variables is zero). Eqn. 2.52 and 2.54 imply that [5]

σ = νkBTC
−1 = GeC

−1 (2.55)

indicating that the Rubbery Network model describes a Hookean solid. Polymer solutions
and melts are generally not ‘solid’. Viscous behaviour is injected into the Rubbery Network
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Figure 2.9: i) Geometric construction used to understand the stress-strain relationship in a
rubbery-network. ii) Distribution of the end-to-end vectors R before and after deformation
of the rubbery-network.

in the Temporary Network model. Here it is assumed that each spring in the network
will break and recombine in the interval t − t′ with a probability P (t − t′) given by
dP/dt = −P/τ . This leads to memory function of the form [5]

m(t′ − t) =
Ge
τ

exp
[
(t′ − t)/τ

]
. (2.56)

By comparison with Eqn. 2.20 it is seen that the temporary-network model describes a
Maxwell fluid. The nonlinear rheology predicted by the temporary-network model can be
calculated by substituting this memory function into Eqn. 2.21 [5]

σ(t) =
∫
Ge
τ

exp
[
(t′ − t)/τ

]
C−1(t, t′)dt′. (2.57)

2.4.3 Reptation model

In complex fluids, the energy stored as the result of a deformation is dissipated or ‘relaxed’
by diffusion. In the reptation model, an entangled polymer strand is thought of as being
trapped within a tube or ‘primitive path’ formed by the topological constraints produced
by surrounding polymers. This primitive path is illustrated schematically in Fig. 2.10.
Entropy is recovered by curvilinear diffusion of the strand along the tube. From the
statistics of a random walk, for a polymer melt composed of linear polymers of length
L = lN , the tube diameter and distance between entanglements is le = l

√
Ne and average

tube length is Le = L/
√
Ne where Ne is the number of monomers between ‘entanglement’

points. These entanglements impede the diffusion of the chain. By considering the time
required for a strand to diffuse out of the tube, Doi and Edwards calculated the stress



2.4. THE RHEOLOGY OF POLYMER-LIKE CHAINS 21

Figure 2.10: The topological constraints on an i) entangled polymer strand can be repre-
sented by a ii) confining tube which is itself a random walk or iii) primitive path through
the fluid (adapted from [5]).

relaxation should follow [8]:

G(t) = Ge
8
π2

∞∑
p,odd

1
p2

exp
[
p2t/τrep

]
, (2.58)

G∗(ω) = Ge
8
π2

−∞∑
p,odd

[
ω2τ2

rep

p2(p4 + ω2τ2
rep)

+ i
ωτrep

p4 + ω2τ2
rep

]
. (2.59)

In a melt the strands are space filling. The number density ν is independent of the
length of the polymer chain. τrep = L2/Drep is the characteristic time required for the
strand to ‘reptate’ or diffuse out of the original confining tube. The diffusion constant
Drep is inversely proportional to the number of monomers in the chain. This leads to
the important prediction that τrep ∝ l2eN

3/Ne. Eqn. 2.58 (illustrated in Fig. 2.11) is
dominated by the lowest mode Maxwell element. Earlier it was seen that for a Maxwell
fluid η = Gτ . In the approximation that the contribution of higher order Maxwell modes
can be neglected, which is only appropriate at low or ‘zero’ strain rate, the ‘zero’ shear
viscosity, η0 = Geτrep ∝ N3. This is close to the experimental value of η0 = N3.4 (perhaps
the most famous result in all of soft matter physics). In a semi-dilute polymer solution,
relaxation also occurs through reptation. Here the basic predictions for a polymer melt
can be modified to include concentration effects. In a semi-dilute polymer solution of
volume fraction φV = Vpoly/(Vpoly + Vsolv), Ge ∝ φ 2.3

V , τrep ∝ N3kBTφ
1.6−2.4
V and η0 =

Geτrep ∝ N3φ3.9−4.7
V [8].

The associated memory function of the entangled polymer-like chain is [5]

m(t− t′) = Ge
8
π2

∑
i,odd

1
τrep

exp
[
p2(t− t′)/τrep

]
. (2.60)

Doi and Edwards determined that the stress tensor for a reptating polymer has the form
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Figure 2.11: i) Complex shear modulus of an entangled polymer melt or solution (from
Eqn. 2.59) with a comparison to that of a Maxwell fluid. ii) Distribution of the primitive
path bond vectors u (including retraction) before and after deformation.

[5]

σ(t) = Ge
8
π2

∫ t

−∞

∑
i,odd

1
τrep

exp
[
(p2(t− t′)/τrep

]
Q(t, t′)dt′. (2.61)

Q(t, t′) is called the universal strain tensor which is finger tensor C−1(t, t′) = 〈RR〉 mod-

ified to include tube retraction effects. Retraction prevents the bond vectors u of the
primitive path from changing length during deformation so that u = u′ · F−1/

∣∣∣u′ · F−1
∣∣∣

and [5]

Q = 〈uu〉 =

〈
u′ · F−1u′ · F−1∣∣∣u′ · F−1

∣∣∣2
〉
. (2.62)

The effect of a deformation on the bond vectors of a primitive path is shown in Fig.
2.11 ii. Deformation rotates the vectors without extension. For a given deformation
F−1(t, t′), the universal strain tensor Q(t, t′) can be evaluated. The behaviour of Q12(t, t′)

for deformations F−1

12
(t, t′) = H(t′)γ̇t′ (where H(t′) is the Heaviside step function) is

evaluated using simulation and analytically using the Currie approximation [5] in Fig.
2.12 i. By multiplying by the memory function and integrating, the stress as a function of
time, can be determined. The equilibrium stress and the viscosity η = σ/γ̇ is evaluated for
a number of strain rates in Fig. 2.12 ii. Notably, it is seen that the viscosity decreases with
increasing strain rate indicating that a polymer melt or semi-dilute polymer solution is
shear thinning. It is also seen that the stress is not monotonic with increasing strain-rate.
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Figure 2.12: i) A comparison of the Q12 component of the universal strain tensor for a
strain that increases linearly with time t′ evaluated using both simulation and the Currie
potential approximation. ii) With Q12 determined, the steady-state viscosity and stress
with stain rate for a monodisperse polymer melt or semi-dilute polymer solution can be
calculated.

2.4.4 Other relaxation modes

Reptation is the dominant relaxation mode at low frequency. At higher frequencies other
relaxation modes become important. In the Rouse model a polymer chain is treated as
N Kuhn segments coupled together by Hookean springs. Like the string of a guitar, the
motion of the system can be decomposed into N normal modes, with each normal mode
representing the motion of the strand on length scale L,L/(N/2), L/(N/3)...L/p...L/N .
When perturbed, each mode stores energy of the order of 3kBT/2 and the total energy
stored by the chain is of the order NkBT . As with reptation, the stored energy in each
mode is dissipated by Brownian motion. Each mode satisfies an equation of motion kpx+
ζpẋ = f(t) where kp is the restoring force and is dependent on the order of the mode with
kp ∝ p2 and ζp represents the viscous drag with ζp = 2Nζ. The average time dependence
of the relaxation process can be determined from the position autocorrelation 〈xp(0)xp(t)〉.
The correlation 〈xp(0)xp(t)〉 is calculated from the simulated x(t) variation for thermal
excitation of the Kelvin element shown in Fig. 2.6 (with m = 0) and compared to a
function of the form y = exp [−tk/η]. Clearly this relaxation is monoexponential. The
relaxation over the entire chain is the sum of relaxations of all the modes. This normalised
sum is shown in Fig. 2.13 i for N = 1000. The stress relaxation G(t) is proportional to
this sum [8]:

G(t) = G0

N∑
p=1

exp
[
−kp
ζp
t

]
= G0

N∑
p=1

exp
[
− t

τp

]
, (2.63)

G∗(ω) = G0

N∑
p=1

[
ω2τ2

p

1 + ω2τ2
p

+ i
ωτp

1 + ω2τ2
p

]
, (2.64)
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where τp = (l2N2ζ)/(6π2kBTp
2) and G0 = (kBTφ)/(Nl2). Eqn. 2.63 is the Rouse

mode relaxation of a semi-dilute solution polymer chain at a volume V fraction of φ =
Vpoly/Vpoly+solv. The associated complex shear modulus G∗(ω) is shown in Fig. 2.13 ii.
The lowest mode τR = τp=1 is called the Rouse characteristic time and is related to the
τrep by [8]

τrep = 6τ0
N3

Ne
= 6τe

(
N

Ne

)3

= 6τR
N

Ne
. (2.65)

τ0 is the characteristic time for a monomer to diffuse a Kuhn length lK . τe is the char-
acteristic time for a monomer to diffuse the distance between entanglement points on the
tube. τR is the characteristic time required for a monomer to freely diffuse a distance
equal to the size of the polymer. τrep is greater than τR by a factor N/Ne - a longer snake
(bigger N) has a harder time get getting out of the confining tube.

In the original reptation model, the length of the confining tube was assumed to be
fixed. However the length of the tube will vary as the polymer strands forming the tube
themselves reptate. These tube-length fluctuations introduce another mode of relaxation.
Tube length fluctuations or breathing modes most significantly affect reptation at short
times [8]

G(t) = Ge

[
1− Ne

N

(
t

τe

)1/4
]
, t < τR. (2.66)

The effect of these breathing modes is illustrated in Fig. 2.13 iii. The effect of breathing
modes on the complex shear modulus is determined in Fig. 2.13 iv by numerical inte-
gration. Breathing modes reduce the apparent Ge slightly and introduce a G′′ ∝ ω−1/4

dependence at high frequency. These tube length fluctuations account for the experimen-
tal observation that η0 ∝ N3.4 and not η0 ∝ N3 as predicted by the original Doi-Edwards
reptation model [8].

The total relaxation is the sum of all relaxation modes. At low frequency, the
behaviour is dominated by reptation. At high frequency, Rouse mode relaxation is most
important. The effect of high frequency modes on the nonlinear rheology is generally
neglected.
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Figure 2.13: The effect of high frequency relaxation modes on the linear rheology of poly-
mer solutions/melts. i-ii) Rouse modes, iii-iv) tube length fluctuations (TLF or breathing
modes) during reptation and v-vi) both Rouse and tube length fluctuations during repta-
tion.
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Chapter 3

Rheology of wormlike micelles
solutions

3.1 Introduction

Wormlike micelles are a polymer-like self-assembly of surfactant molecules that can form
in solution in the appropriate conditions. Unlike linear polymers where length is fixed at
polymerisation, wormlike micelles are formed dynamically through a continuous process
of breakage and recombination. Wormlike micelles solutions possess several unusual rhe-
ological properties and have been the subject of active study for over 20 years. In this
chapter the general properties of surfactants in solution are reviewed. A widely accepted
description of the low frequency linear rheology of wormlike micelles called the ‘reptation-
reaction’ model is introduced. The ‘Poisson-renewal’ model is advanced to include high
frequency modes and experimental evidence for this model is considered. The nonlinear
rheology predicted on the basis of the reptation-reaction model is described. Evidence
for a particular prediction that some wormlike micelles solutions may ‘shear-band’ is re-
viewed. The role of coupling between flow and concentration, and flow instabilities and
stress fluctuation are discussed in the context of JS, dJS and dJSφ continuum models,
along with experimental evidence.

3.2 Surfactants in solution

Surfactants are amphiphilic molecules composed of a more soluble lyophilic (solvent lov-
ing) component and less soluble lyophobic (solvent hating) part(s). Contact between the
lyophobic components of the surfactant and the solvent is energetically unfavourable. As
a consequence, surfactants (a contraction of ‘surface acting agents’) tend to adsorp at
interfaces to minimise contact between these components.

The lyophobic part of a surfactant molecule or unimer is often a non-polar hydrocar-

27
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name structure

sodium stearate (major component of soap)

cetylpyridinium chloride (CPCl)

cetyltrimethylammonium bromide (CTAB)

cetyltrimethylammonium tosylate (CTAT)

Table 3.1: Chemical structure of selected surfactant molecules.

bon chain, typically 8-18 carbon atoms long, and commonly referred to as the surfactant’s
‘tail’. Conversely the polar lyophilic part is called the head. Surfactants are classified by
the charge on the head group. In anionic surfactants, the head carries a negative charge in
solution. This kind of surfactant is an active ingredient in many detergents. By contrast,
in a cationic surfactant the head carries a positive charge. While less common, they are
of considerable interest because of their capacity to modify the chemistry of negatively
charged surfaces and are often used in the preparation of wormlike micelles. Cationic
surfactants are the primary focus of the experimental work presented here. In a non-
ionic surfactant, the head group carries no charge whereas in a zwitterionic surfactant the
head group carries both positive and negative charges. The chemical structure of selected
surfactant molecules is illustrated in Table 3.1.

At lower concentrations, surfactants exist as isolated unimers in solution. At higher
concentrations, unimer saturation is achieved and the excess surfactant is reversibly self
adsorbed to minimise contact between the lyophobic and lyophilic parts. The structures
formed by the self-adsorption/self-assembly of surfactant molecules are called micelles
and the concentration at which this occurs is called the critical micelle concentration.
A schematic phase-diagram illustrating both the dependence on concentration and tem-
perature is shown in Fig. 3.1 i. The lowest temperature and concentration at which
micellisation occurs is called the Krafft point.

The structure of the micelles formed depends on the relative sizes of the head and
tail and is characterised by the critical packing parameter v/(la) where v is the surfactant
volume, l is the length of the tail and a is the effective cross-sectional area of the head.
Depending on the value of the critical packing parameter the micelles may be locally
spherical, cylindrical or planar. The effective cross-sectional area of the head depends
on electrostatic interaction between the heads. Electrostatic repulsion present in ionic
surfactant solutions can be screened by the addition of salts which reduce the effective
head size and increase the packing parameter. Charged counterion or short chain co-
surfactants which incorporate directly into the body of the micelles can act as molecular
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Figure 3.1: i) A schematic phase diagram showing the state of the surfactants in solution
and ii) dependency of the micelle mesostructure on the critical packing parameter (adapted
from [4]).

‘spacers’ between the unimers and may also be used to modify the packing parameter [4].

Cylindrical micelles have attracted considerable interest in the last 20 years. These
semi-flexible ‘wormlike’ micelles have a radius equal to the fully extended length of the
surfactant chain and may be microns long. At lower or ‘dilute’ concentration the worm-
like micelles are unentangled. At intermediate or ‘semi-dilute’ concentrations the micelles
overlap and become entangled. At higher concentrations (φ=30-40%) the cylindrical mi-
celles begin to form an ordered liquid crystalline-like nematic phase. This progression is
shown schematically in Fig. 3.1 i.

Structurally, wormlike micelles are similar to linear polymers. Unlike linear poly-
mers where polymer length is set at polymerisation, wormlike micelles are formed dynami-
cally through a continuous process of ‘breakage and recombination’ or ‘reversible scission’.
Because of this dynamic behaviour, wormlike micelles are sometimes known as ‘living
polymers’.

3.3 Linear rheology of wormlike micelles

3.3.1 Reptation-reaction model

Early rheological work in the 1980’s often focused on the unusual viscoelastic response of
the semi-dilute wormlike micelles solutions. In the appropriate conditions, some solutions
show a nearly Maxwell-like linear response as is illustrated in Fig. 3.2. This behavior is
not seen in polymer solutions/melts suggesting that it may be associated with reversible
scission.

In 1987 [14] Cates investigated the effect of reversible scission on the linear rheology
of entangled semi-dilute linear polymer-like solutions by simulation. In his simulation, it
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Figure 3.2: Maxwell-like response shown by a wormlike micelles solution (from [13]) in the
i) frequency and ii) time domains.

was assumed that the primitive path/confining tube is composed of left and right segments
of lengths LL and LR with a length of segment drawn randomly from an exponential
distribution with mean 1 (LL = − lnφ and LR = − lnφ where φ is drawn (separately for
LL and LR) from a uniform distribution on the interval [0, 1]), of total length L = LR+LL
and average length L̄ = 1. As implied by the statement L̄ = 1, all lengths have been
normalised with respect to the average length of the primitive path/confining tube so that
the quantities LL, LR, L, L̄ and ∆ (below) are dimensionless. These segments evolve
according to a characteristic reptation time τrep = L̄3/D0 where D0 is a constant and a
characteristic reaction time τb. In an interval δt the left and right segments:

1. can break at arbitrary point, that is, LL → LL×φ or LR → LR×φ, with probability
P = LLδt/τb or P = LRδt/τb,

2. can recombine with another segment with a length drawn from an exponential dis-
tribution with mean one, that is, LL → LL− lnφ or LR → LR− lnφ with probability
P = δt/τb or P = δt/τb,

3. will diffuse either left or right a distance ∆ =
√

2δt/τrepL, that is, LL → LL + ∆
and LR → LR −∆ or LL → LL −∆ and LR → LR + ∆.

The steps above are iterated i times until either LL < 0 or LR < 0 at which time the
segment escapes through one end and the tube relaxes to give a relaxation time ti. The
typical evolution of the simulated path is shown in Fig. 3.3 i. This is repeated many
time to give a distribution of relaxation times; this distribution of relaxation times is
proportional to the memory function. From this memory function the stress relaxation
can be calculated by integration.

In the ‘slow break’ limit τb >> τrep the simulation indicated that

G(t) ≈ Ge exp
[
−(t/τrep)−0.25

]
. (3.1)
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Figure 3.3: i) Simulated evolution of the primitive path with time, subject to breakage
(open circles) and recombination (closed circles) and diffusion according to the reptation-
reaction model. ii) This can be compared to the (Author’s conception of the) evolution of
the primitive path subject to reinitialisation (closed circle) and diffusion according to the
Poisson-renewal model. Rouse and breathing relaxation modes are not indicated.

This is the stress relaxation predicted by Doi and Edwards’ reptation model for a semi-
dilute exponentially polydisperse linear polymer solution demonstrating that Cates’ simple
simulation captures the essential physics of the reptation model. In the ‘fast break’ limit
τrep >> τb

G(t) = Ge exp [−(t/τr)] , (3.2)

where τr ≈
√
τbτrep. τr is called the terminal relaxation time. Remarkably, Eqn. 3.2

predicts that stress relaxation is monoexponential in this fast break limit and that the
linear rheology is that of a Maxwell fluid as is observed experimentally in some solutions.
The linear rheology predicted by the reptation-reaction model is shown in Fig. 3.4 in
a number of cases. Fig. 3.4 ii shows a parametric representation of the data called a
Cole-Cole plot. This representation emphasises the high frequency behaviour. This basic
model was subsequently adapted [17][18] to include several other processes including end-
interchange and bond-interchange reactions. The effects of these new processes on the
linear rheology are qualitatively similar to those seen by reversible scission as described
above.

3.3.2 Poisson-renewal model

The reptation-reaction model excludes the effects of high frequency Rouse and breath-
ing modes on the stress relaxation. These modes were found to be difficult to include
in the simulation described in the previous section. In 1992, Granek and Cates subse-
quently described an analytic approach based on Poisson statistics that they called the
Poisson-renewal model which described both low frequency linear rheology predicted by
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Figure 3.4: i) Comparison of the Author’s own implementation of Cates’ reptation-reaction
simulation with an analytic calculation according to the Poisson-renewal model [15]. ii)
Cole-Cole representation of the complex shear modulus calculated using the Author’s
simulation and the Poisson-renewal model with a comparison to literature data [16].

the reptation-reaction model and could include the effect of higher frequency modes on
stress relaxation [15]. The evolution of the primitive path according to the model is illus-
trated schematically in Fig. 3.3 ii. As with the reptation-reaction model, the primitive
path diffuses with a diffusion constant inversely proportional to the length of the path.
When the path escapes, the tube relaxes. In the reptation-reaction model, breakage and
recombination significantly modifies the length of the path. This breakage and recombina-
tion is implemented in the Poisson-renewal model by randomly reassigning - or renewing
- the length of the tube with a frequency that obeys Poisson statistics. On the interval
between renewal events, stress relaxation occurs through reptation, Rouse and breathing
modes. In the reptation-reaction model, there is some correlation between the length of
the path before and after breakage and recombination. This correlation can be included
in the Poisson- renewal model.

A full mathematical description of the model is given in [15]. It is noted that this
description contains typographic errors (confirmed by Cates) - these have been corrected.
The typical behaviour predicted by the Poisson-renewal model along with a comparison
to a model literature data [15] is shown in Fig. 3.5. Note the turn-up at high frequencies
shown in Fig. 3.5 i - this turn-up is not predicted by the reptation-reaction model.

The Poisson-renewal model predicts that

G′′min
G′ext

≥ le
l̄
, (3.3)

where l̄ is the average length of the micelles in the exponentially polydisperse solution.
G′′min is the local minimum in G′′ and G′ext is the extrapolated value of G′ at G′′ = 0 prior
to the turn-up in G′′ on a Cole-Cole plot. This value is approximately equal to Ge. Eqn.
3.3 puts a lower limit on the ratio le/l̄. The correlation length ξ or ‘mesh’ size of the linear
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Figure 3.5: Typical linear rheology predicted by the Poisson-renewal model as i) a function
of frequency and ii) a Cole-Cole plot showing a turn-up at high frequencies. A comparison
of the Author’s calculation to literature data [15] is included.

polymer network is

ξ '
[
kBT

Ge

]1/3

. (3.4)

The persistence length lp is the characteristic length over which a polymer chain can be
thought to be ‘rigid’ and is related to the entanglement length by

le ' ξ5/3/l2/3p . (3.5)

If the ratio, le/l̄ and Gext can be measured and lp can be estimated, the average length
of the micelles l̄ can be determined. This value is difficult to determine otherwise. The
techniques conventionally used to size polymers (such as those discussed in chapter 3) rely
on the solutions being dilute.

The validity of the Poisson-renewal model is somewhat difficult to test. The me-
chanical inertia of a conventional rheometer begins to affect measurements of the complex
shear modulus around 20 Hz. Because most wormlike micelles solutions show character-
istic Maxwell times in the range 0.1 < τr < 1 s very little of the turn-up predicted by the
Poisson-renewal model can be observed. An attempt to test the validity of the Poisson-
renewal model is shown in Fig. 3.6 (from [19]). When presented as a parametric Cole-Cole
plot, the measured data appears to match the behaviour predicted by the Poisson-renewal
model quite well. However, when the data are replotted with frequency, a clear deviation
from the behaviour predicted by the Poisson-renewal model is observed at higher frequen-
cies. Inertia of the instrument may be affecting measurements at high frequency or the
model may not accurately describe the measured high frequency behaviour.
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Figure 3.6: Measured G∗(ω) for two wormlike micelles solutions with a comparison to a
‘best-fit’ calculated according to the Poisson-renewal model [19] depicted as i) a Cole-Cole
plot and ii) as a function of frequency more clearly showing a mismatch at high frequencies.

3.4 Nonlinear rheology of wormlike micelles

3.4.1 Shear banding

Shear thinning is a common feature of the nonlinear rheology of entangled polymer so-
lutions/melts and is closely associated with reptation. Shear thinning is often exhibited
by wormlike micelles solutions. In some instances, the thinning is so extreme that the
equilibrium stress is actually constant with increasing strain rate appearing as a ‘stress
plateau’ in the flow curve. This behaviour is illustrated in Fig. 3.7 i. This extreme
shear thinning is generally not seen in entangled polymer solutions/melts suggesting that
reversible scission may be influencing the nonlinear flow behaviour of wormlike micelles.

By adapting the constitutive model for entangled polymer solutions to include the
effects of reversible scission, Cates postulated that the constitutive relationship was given
by

σ(t) =
15
4
Ge

[∫ ∞
0
B exp

[
t− t′

]
DQ(t− t′)− 1

3
I

]
(3.6)

in 1990 [20]. B and D are functions of the ‘birth’ and ‘death’ rates of the wormlike micelles,
Q is the universal strain tensor and I is the identity. This equation was first solved for

steady-state flow conditions by Spenley, Cates and McLeish [21] in 1993. The authors
predicted that the constitutive relation between shear stress and strain rate would be non-
monotonic in the fast break limit. The non-monotonic behaviour predicted by Eqn. 3.6 is
illustrated in Fig. 3.7 ii in blue. Eqn. 3.6 predicts that the viscosity of the fluid will drop
below that of the solvent at high strain rates. Because this is physically unreasonable, a
solvent viscosity term ηs is included to provide a lower limit to the fluid’s viscosity. This
produces a turn-up in the stress (σ = ηsγ̇) at higher strain rates shown in green.
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Figure 3.7: i) Reduced experimental flow curve showing a stress plateau disagrees with
the ii) non-monotonic flow curve predicted by Eqn. 3.6. The negatively sloping branch of
the theoretical flow curve is mechanically unstable. The disagreement between experiment
and theory can be reconciled if the fluid spatially partitions into iii) strain rate or shear
bands of common stress located on the stable positively sloping lower and upper branchs
of the flow curve in simple shear flow conditions. ( i and ii from [21]).

The mechanical stability of a constitutive relation can be examined using linear
stability analysis. In simple shear flow conditions, the one-dimensional Navier-Stokes
equation states that ρ∂vx

∂t = ∂σ
∂y . Taylor-series expanding the constitutive relation gives σ =

σ0 + ∂σ
∂γ̇∆γ̇. Differentiating with respect to y and combining gives the diffusion equation

∂∆γ̇
∂t = D ∂2∆γ̇

∂y2
. If the effective diffusion constant D = 1

ρ
∂σ
∂γ̇ is negative, corresponding

to a decreasing stress with increasing strain rate, the simple shear flow is unstable to
perturbations in strain rate [22].

A non-monotonic constitutive relation is predicted for monodisperse entangled poly-
mer melts/solutions according to the Reptation model. McLeish and Ball considered the
effect of this constitutive instability, ∂σ

∂γ̇ < 0, on the flow behaviour of monodisperse en-
tangled polymer melts/solution in cylindrical capillary flow in 1986 [23]. In capillary flow,
shear stress varies radially according to σrz = σRr/R where σR is the wall stress. They
argued that when the stress in the capillary exceeded a critical value, that the strain rate
in the fluid would show a discontinuity as the strain rate jumped from the mechanically
stable low branch to the mechanically stable high branch, ∂σ∂γ̇ > 0, associated with solvent
viscosity, over the unstable region of the flow curve. It was suggested that this discontinu-
ity might account for a spurt effect in which the flow rate increases discontinuously above
a critical stress. Following [23] Spenley, Cates and McLeish [21] noted that the declining
branch ∂σ

∂γ̇ < 0 on the non-monotonic flow curve predicted by Eqn. 3.6 was mechanically
unstable and therefore unable to sustain simple shear flow in simple shear flow conditions
and predicted that the fluid would subdivide into strain rate bands located at a common
stress on the mechanically stable ∂σ

∂γ̇ > 0 lower and higher branches. This is illustrated
schematically in Fig. 3.7 ii. Here a strain rate γ̇ is applied to the fluid above critical strain
rate γ̇c. Because of the mechanical instability, the fluid partitions into two or more bands
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with local strain rate γ̇LO and γ̇HI at a critical stress σc. It was asserted that the critical
strain rate and critical stress occurred at the local maximum of the non-monotonic flow
curve which according to Eqn. 3.6 occurred at a reduced critical strain rate of γ̇c = 2.6/τr
and at a corresponding critical shear stress of σc = 0.67Ge. An experimental flow curve
is compared to the predicted flow curve in Fig. 3.7 i. The two show good agreement. It
was further predicted that the partitioning should follow the lever rule:

γ̇ = φγ̇LO + [1− φ] γ̇HI , (3.7)

where φ is the volume fraction of low strain rate band. Shear banded flow is illustrated
in Fig. 3.7 iii which shows a fluid dividing into two strain rate bands in simple shear flow
conditions.

Shortly after this prediction was made, banded structure was observed experimen-
tally in the vicinity of the stress plateau using flow birefringence in [24]. When viewed down
the vorticity axis (∇ × v) of a cylindrical Couette geometry between crossed polarisers,
bands were clearly visible. Because the optical properties of an entangled polymer-like
solution depend on anisotropy which itself depends on strain rate, these ‘birefringence’
bands were interpreted as strain rate bands. Fig. 3.8 ii clearly illustrates birefringence
banding observed in a later paper [25]. Note that only two bands are visible and the
brighter band, which is assumed to be the high strain rate band, expands out from the
inner wall with increasing strain rate. This is to be expected. In the cylindrical-Couette
geometry, the shear stress is not constant as is assumed in simple shear flow. Instead it
varies radially according to Eqn. 2.27. For γ̇LO < γ̇ < γ̇HI the shear stress in the gap will
straddle the critical stress. The high strain rate band is therefore expected to form in the
high stress region of the geometry near the inner wall with a width given by the lever rule
(Eqn. 3.7).

Birefringence measurements provide only indirect evidence. It is assumed that a
correlation between optical anisotropy and strain rate exists. The first direct evidence
of shear banding came from NMR velocimetry [26]. Shear banding in wormlike micelles
has since been observed directly using heterodyne photo correlation spectroscopy (PCS)
[27], particle imaging velocimetry (PIV) [28][29] [30] and NMR [31] [32][33] [34][35][36].
Fig. 3.8 ii shows measurements of the fluid velocity in the flow direction across the gap
of Couette geometry using heterodyne PCS. Again the high strain rate band is observed
to expand outwards from the inner wall as the apparent strain rate γ̇ increases. Indirect
evidence, where shear banding is inferred from structural anisotropy has been obtained
using small angle neutron scattering (SANS) [37][25] [38][39], small angle light scattering
(SALS) and NMR, and flow birefringence [40][41] [42][43] [44].

The prediction and subsequent verification of shear banding in wormlike micelles has
led to a search for shear banding in other complex fluids. Shear banding has been observed
in colloidal-like suspensions [47], lamellar phase surfactant solutions [48] and nematic liquid
crystals. Although some controversial evidence of shear banding in polymer-like entangled
DNA solutions exists [49][50][50] [51] the consensus appears to be that shear banding has
not been definitively observed in entangled polymer solutions or melt under steady-state
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Figure 3.8: Flow curve (left) with optical measurements (right) of selected wormlike mi-
celles solutions. i-ii) Flow birefringence and iii-iv) heterodyne PCS observations of shear
banding in wormlike micelles solutions (from [25] and [27]). v-vi) Shear induced turbidity
in a shear thinning and vii-viii) a shear thickening wormlike micelles solution (from [45]
and [46]).
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flow conditions. This is somewhat surprising given that entangled monodisperse linear
polymers solutions/melts are also expected to possess a non-monotonic flow curve. This
is potentially a problem for a shear banding model based only on mechanical instability.
This issue was addressed by Cates in 2006 where it was postulated that a processes called
convected constraint release prevents shear banding in monodisperse polymer solutions.

The flow curve shown in Fig. 3.7 is unstable and multi-valued over a range of stresses.
In principle, the critical stress could occur at any stress in this range. Experimentally, it
is found to occur at a well defined critical stress. Critical stress selection was investigated
theoretically in 2000 [52] using a modified version of the Johnson-Segalman model. The
Johnson-Segalman (JS) model can be used to describe the constitutive relation when the
polymer strands slip with respect to the solvent. Here the constitutive relation for the
polymer is

σ
p

+ τσ�
p

= 2µD. (3.8)

σ� is a time derivative (Gordon-Schowalter convected derivative) which includes depen-

dency on a slip parameter a [5]. Although Eqn. 3.8 has the form of constitutive relation
Eqn. 2.14 it is significantly more difficult to solve because of the complexity of the time
derivative. Eqn. 3.8 includes only the contribution of the polymer stress to the total
stress; the total stress contains a contribution from the solvent

σ = σ
p

+ σ
s
. (3.9)

Eqn. 3.8 and 3.9 predict that the shear stress is non-monotonic in strain rate:

σ =
Gγ̇τ

1 + (1− a2)γ̇2τ2
+ ηsγ̇ (3.10)

and represents the simplest tensorial model that gives a flow curve with a negative slope.
In [52] Eqn. 3.8 was modified to include a diffusion term

σ
p

+ τσ�
p

+D∇2σ
p

= 2µD. (3.11)

This has been called the diffusive Johnson-Segalman or dJS model. The diffusion term
reflects stress relaxation by diffusion of differently strained strands. By solving Eqn.
3.11 numerically, it was demonstrated in [53] that the inclusion of the diffusion term
produced unique and repeatable critical stress. It was subsequently demonstrated that
this additional diffusion term could also stabilise the shear bands and broaden the interface
between the bands.

3.4.2 Coupling between flow and concentration

Changes in the turbidity of complex fluids generally reflect changes in the microstruc-
ture. This property is routinely used by physical chemists to map out phase transitions
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surfactant salt/counterion reference
[CPCl]=0.04 M [NaSal]=0.04 M [46] [57] [58] [59]
[CPCl]=0.3 M [NaNO3]=0.405 M [45]
[CTAB]=0.003-0.25 wt.% [NaSal]/[CTAB]=1 [60]
[TTAA]=0.0075 M [NaSal]=0.0075 M [61]
[CTAB]=0.08 M [NaSal]=0.08 M [62]
[CPCl]=0.3 M [NaNO3]=1.79 M [63]
[CPCl]=0.03 M [NaSal]=0.23 M [64]
[CTAB]=0.05 M [NaSal]=0.05-0.2 M [65]
[EHAC]=0.04 M [NaSal] or [NaCl] [66]

Table 3.2: Wormlike micelles solutions reported to exhibit shear induced turbidity
(EHAC=erucyl bis(hydroxyethyl)methyl ammonium chloride, TTAA=tallowalkyl ammo-
nium acetate).

in the phase diagram. Some entangled polymer solutions show shear induced turbidity.
Historically, this increase in turbidity was interpreted as signaling a shear induced or
‘non-equilibrium’ phase transition. In 1989, Helfand and Fredrickson proposed instead
that this shear induced turbidity might be associated with ‘critical concentration fluctu-
ations’ [54]. According to the Helfand and Fredrickson model, flow increases a stretched
polymer chain’s tendency to diffuse from a less entangled region (less restricted, lower
viscosity) to a more entangled (more restricted, higher viscosity) region enhancing local
concentration fluctuations naturally present in polymer solutions. These concentration
fluctuations do not spontaneously grow in size with time as would occur during equilib-
rium phase separation [55]. Experimental evidence for critical concentration fluctuations
in polymer solutions is discussed in [55][56].

Shear induced turbidity has been observed in many wormlike micelles solutions. An
indicative list is given in Table 3.2. Fig. 3.8 v-viii shows direct observations of shear
induced turbidity in two wormlike micelles solutions in the cylindrical-Couette geometry.
In Fig. 3.8 vi a turbid (lighter) band is observed to form near the inner wall (from [45]).
This behaviour is reminiscent of the shear banding seen in Fig. 3.8 ii and suggests that
a correlation between strain rate and turbidity may exist. In Fig. 3.8 viii turbid bands
are stacked along the vorticity axis (from [46]). In both Fig. 3.8 vi and 3.8 viiii turbidity
varies in space and time.

The relationship between flow-concentration coupling and shear-induced phase sep-
aration in complex fluids was considered in 1995 [22]. Using linear stability analysis, the
authors predicted that concentration fluctuations like those predicted by HF critical con-
centration fluctuations could act as a feedback mechanism enhancing the tendency of a
mechanically unstable fluid to form bands. These bands were expected to show concen-
tration differences. Stress banding was also predicted for the first time in this paper. In
shear (or gradient) banding, the viscosity bifurcates along the gradient velocity direction.
In stress (or vorticity) banding, the viscosity bifurcates along the vorticity direction as
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Figure 3.9: i) Gradient (or shear) banding and ii) vorticity (or stress) banding is predicted
to occur when concentration is coupled to flow. iii) Universal flow curves for a two phase
shear induced transition that results in either gradient banding (GB) or vorticity banding
(VB) and shear thinning (SN) or shear thickening (ST) [67].

illustrated in Fig. 3.9 i and ii.

Shear-induced phase transitions in complex fluids were examined in [67]. Here, the
universal rheological signatures of a complex fluid that could be “sheared into” a new
flow stabilised, non-equilibrium phase that 1) could coexist with the original phase under
either constant strain rate (vorticity banding - VB) or constant stress conditions (gradient
banding - GB ) and 2) had either a higher (resulting in shear thickening - SK) or lower
viscosity (resulting in shear thinning - SN) was developed. The rheological signatures of
these fluids is shown in Fig. 3.9 iii. Gradient or vorticity bands coexist in the horizontal
or vertical sections of the flow curve. As in [22] it was assumed that this partitioning into
bands was associated with a partitioning of concentration. This work was subsequently
extended in [68] where it was argued that even a non-conserved parameter such as ordering
(as opposed to a conserved parameter such as concentration) could precipitate a banding
transition.

In a series of papers in 2003 [69] [70] [71] Fielding and Olmsted extended the dJS
model to include coupling to flow enhanced HF concentration fluctuations. They called
this extended model dJSφ. From their numerical study it was determined that coupling to
concentration would broaden the stress plateau by reducing both critical stress and strain
rate. The strain rate bands formed were expected to show concentration differences with
the high strain rate band showing a lower concentration. This difference in concentration
between the bands was expected to produce a slight upwards slope to the plateau.

3.4.3 Stress fluctuations and flow instabilities

The response of a wormlike micelles solution under constant stress or strain rate condi-
tions shows temporal features not seen in entangled polymer solutions/melts including 1)
sigmoidal dynamics, 2) rheo-chaos and 3) slip-induced flow instability.

The application of strain rate to a semi-dilute wormlike micelles solution may result
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Figure 3.10: i) Flow curve with ii) transient stress showing a ‘sigmoidal’ stress relaxation
after a strain rate step exceeds the critical strain rate. iii) This sigmoidal stress relaxation
is correlated with changes in the birefringence (∆n) [63].

in a damped stress oscillation which periodically exceeds the steady-state value. This
behaviour is called a stress overshoot and is observed in entangled polymer/melts and is
predicted by Eqn. 2.61. A stress overshoot is shown in Fig. 3.10 ii (inset). For strain
rates that exceed the critical stress a slow relaxation of the form [72]

σ(t) = σc + ∆σ exp
[
−(t/τs)2

]
(3.12)

is observed in addition to the stress overshoot. The characteristic time τs of this ‘sigmoidal’
relaxation is inversely related to the difference between the critical strain rate γ̇c and the
apparent strain rate γ̇ and is correlated with changes in the optical birefringence of the
material (Fig. 3.10 iii) [63]. In [72] the authors argued that the sigmoidal decay was
not readily explained by mechanical instabilities indicating that a non-equilibrium phase
transition was occurring. It was subsequently demonstrated that the dJS model was
capable of reproducing this behavior [52][73].

In some semi-dilute wormlike micelles solutions stress may fluctuate chaotically un-
der constant strain rate conditions. This phenomenon has been called rheo-chaos. Chaos
is characterised by the extreme sensitivity of a dynamic system to the initial conditions - a
perturbation to the initial conditions will result in a response that deviates exponentially
from the response of the unperturbed initial case. Chaos can be established by calculating
the Lyapanov coefficient of a time-varying signal using time-series analysis. A positive co-
efficient indicates exponential growth and chaos. Chaos was first identified in steady-state
shear stress in [74]. Fig. 3.11 ii illustrates chaotic stress fluctuations for the same system
from a later paper [75]. These fluctuations are correlated with both the optical intensity
of light transmitted down the vorticity axis and the birefringence. This phenomenon was
investigated by Fielding and Olmsted in 2003 [76]. Here, Fielding and Olmsted consid-
ered the one-dimensional flow of a fluid with a mechanically unstable constitutive relation
(which resembled that given by the dJS model) that was coupled to an external parameter
with its own dynamics that itself was dependent on strain rate. This external parameter
could represent the length of the micelles for example. The resulting coupled PDE were
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Figure 3.11: i) Flow-curve with ii) transient stress (top), transmissivity (middle) and bire-
fringence (bottom) demonstrating rheo-chaos and the correlation between stress, trans-
missivity and birefringence in a wormlike micelles solution [75].

solved numerically. Strong coupling was found to destabilise the high strain rate branch of
the constitutive relation producing chaotic stress fluctuations in constant strain rate con-
ditions above the critical stress. These stress fluctuations were correlated with fluctuations
in the location of the high strain rate band(s) in the gap.

The stability of the strain rate bands calculated according to the dJS model was
reexamined by Fielding in 2005 [77]. Using linear analysis, it was determined that well
developed one-dimensional strain rate bands were potentially unstable to perturbation
in the flow (v) or vorticity (∇ × v) direction. This suggested that the dimensionality
of the solution of the dJS model might influence its stability. Fielding investigated two-
dimensional solutions in the ∇v− v plane in 2006 [78] and in the ∇v−∇ × v plane
in 2007 [79]. In [78] perturbations were found to produce undulations at the interface
between the bands. In some cases these undulations were found to ripple - this rippling
was correlated with oscillation in stress. If multiple bands were present, the stress could
fluctuate chaotically. These results indicated that coupling, described above, was not
required to produce fluctuations in stress. In [79] Fielding showed that perturbations
could develop into slow velocity rolls stacked along the vorticity direction. These rolls
were accompanied by undulations in stress along the vorticity axis.

Wall slip, where the fluid fails to adhere to the working surfaces of the rheometry
geometry, has been correlated with flow instabilities in some wormlike micelles solutions.
This is illustrated in Fig. 3.12 (from [80]). Velocity in the flow direction is shown using
greyscale in Fig. 3.12 ii at a constant apparent strain rate γ̇. Clearly the velocity is
oscillating in time. The velocity of the fluid at both the inner and outer wall is shown in
Fig. 3.12 iii. Although the velocity of the moving inner wall of the cylindrical-Couette
is fixed, the velocity of the fluid at the inner wall shows significant oscillations with time
indicating that slip is occurring. Slip/flow instabilities are correlated with changes in the
birefringence but are not correlated with measured stress as is shown in Fig. 3.12 iii.
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Figure 3.12: i) Flow curve with ii) time resolved velocimetry across the gap of a
cylindrical-Couette geometry (lighter grey regions correspond to higher velocities) un-
der constant strain rate conditions demonstrating a correlation between slip at the inner
wall, iii)(middle) flow instabilities and iii)(bottom) and birefringence [80].
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Chapter 4

Rheo-optics

4.1 Introduction

A mechanical rheometer reports spatially averaged or apparent stresses and strain rates.
This spatial averaging can obscure the true flow behaviour of complex fluids that undergo
some kind of spatial partitioning like that seen in wormlike micelles solutions. Further-
more, a mechanical rheometer is subject to mechanical limitations that restrict its oper-
ating range. To address these issues, the rheology of a complex fluid can be studied using
other methods. The study of the rheology of complex fluids using light is called rheo-
optics. Although almost any optical technique can be used to study complex fluids, the
most common optical techniques used are based around ellipsometry and static/dynamic
light scattering. Ellipsometry and dynamic light scattering are the principle optical tech-
niques used in this thesis to study wormlike micelles solutions.

Fundamentally, the optical properties of any material depend on the atomic polaris-
ability α of the constitutive atoms. Electromagnetic radiation accelerates an atom’s elec-
trons which reradiate the incident light. The tensor α describes the relationship between
incident and outgoing electromagnetic radiation. If the atomic polarisability is spatially
uniform then the medium can be treated as homogeneous - ellipsometry can be useful if
the medium is homogeneous. If the atomic polarisability is not uniform as is often the
case with complex fluids, the medium is optically inhomogeneous - light scattering may
be more useful.

In this chapter, the plane wave and Green function solutions to the Maxwell equa-
tions are introduced. Plane wave solutions are used to understand the propagation of
light in optically homogeneous media. The Green function solutions are used to under-
stand propagation or scattering in optically inhomogeneous media. The statistics of this
scattered light are considered in two cases: the single scattering regime and the highly mul-
tiple scattering diffusion approximation. Finally, several rheo-optical properties of polymer
solutions are reviewed. These properties will be useful for understanding observations in

45
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later chapters.

4.2 Solving Maxwell equations

4.2.1 Maxwell equations

Light is electromagnetic radiation. The spatiotemporal relationship between the electric
E and magnetic field B in linear media with permeability µ and permittivity ε is described
by Maxwell equations. In the absence of free current, charge and optical rotation, Maxwell
equations are [81][82][12]:

∇ ·E = 0, (4.1)
∇ ·B = 0, (4.2)

∇×E = −∂B
∂t

, (4.3)

∇×B = µε
∂E
∂t
. (4.4)

The behaviour of light inside a linear dielectric can be determined by solving Eqn. 4.1-4.4
for E with the appropriate boundary conditions.

4.2.2 Plane wave solution

Eqn. 4.3-4.4 can be combined to decouple magnetic and electric fields

εµ
∂2E
∂t2

+∇×∇×E = 0. (4.5)

Because ∇ ·E = 0

εµ
∂2E
∂t2
−∇2E = 0. (4.6)

Eqn. 4.6 is the wave equation and admits plane wave solutions of the form

E(r, t) = exp [i (k · r− ωt+ δ)] , (4.7)

which propagate with a velocity v = 1/
√
µε. This velocity is slower than free space velocity

of propagation c by a factor n called the refractive index

n =
c

v
=
√
µ0ε0

µε
. (4.8)

For magnetically inert media µ = µ0 and n2 = ε/ε0 = ε where ε is the dielectric constant.
In terms of n, |k| = k = 2πn/λ where λ is the free space wavelength. The dielectric
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constant of the medium can be related to the average atomic polarisability ᾱ of the medium
by the Lorentz-Lorenz relation [81]

ε− 1
ε+ 2

=
n2 − 1
n2 + 2

= Nᾱ, (4.9)

where N is the number density. In general ε, ε, n and α are second rank tensors. The
plane wave solution details depend on the form of the dielectric constant tensor.

4.2.3 Green function solution

A Green function G(R, r) is a solution to an inhomogeneous differential equation of the
form LG(R, r) = δ(R − r) where L is a linear differential operator. If G(R, r) can be
determined then this solution can be used to construct a solution to the more general
equation Lφ(R) = f(R) by integration φ(R) =

∫
f(r)G(R, r)dr [83]. In inhomogeneous

media ε is a function of position. Assuming E(t) ∝ exp [iωt] and noting that (µ0εω)2 =
k2m2 where m is the ratio of the refractive index of the scattering center np to the host
medium m = np/n Eqn. 4.5 can be rewritten [12]

∇×∇×E(R)− k2E(R) = k2
[
m2(R)− I

]
·E(R). (4.10)

The required Green function solution solves [12]

∇×∇×G(R, r)− k2G(R, r) = Iδ(R− r). (4.11)

Note that because the Green function is a tensor the point source is a quadrupole. If |R| �
|r| corresponding to the distant detection at R of a small source at r (Born approximation)
then the Green function is approximately [12]

G(R, r) =
[
I − R̂R̂

] exp [ikR]
4πR

exp [−ikf · r] , (4.12)

where kf = kR̂. The field in this approximation is then [12]

E(R, t) = Eu(r, t) + Es(r, t) (4.13)

= Eu(r, t) +
exp [ikR]

4πR
k2
f

∫
exp [−ikf · r]

[
I − R̂R̂

]
·
[
m2(r)− I

]
·E0(r, t)dr.

(4.14)

Eu(r, t) is the unscattered component, Es(r, t) is the scattered field and E0(r, t) is the
incident field [11]. Note that Eqn. 4.14 implies that light is scattered by variations in the
refractive index tensor m2(r)− I 6= 0. As before, the solution details depend on the form

of the (relative) refractive index/dielectric field tensor.
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4.3 Propagation in homogeneous media

4.3.1 Propagation in isotropic materials

In homogeneous optically isotropic media, the permittivity ε is a scalar quantity. The
plane wave solution in this medium can be determined by substituting Eqn. 4.7 into Eqn.
4.6 to give

k× k×E = ω2µ0εE. (4.15)

This equation admits two linearly independent solutions of the form:

E1(r, t) = E0n exp [i (k · r− ωt− δn)] n̂, (4.16)
E2(r, t) = E0m exp [i (k · r− ωt− δm)] m̂, (4.17)

where n̂ and m̂ are conventional unit vectors such that k · n̂ = 0, k ·m̂ = 0 and n̂×m̂ = 0.
n̂ and m̂ fix the direction of the field. By superposition the general solution is

E(r, t) = E1(r, t) + E2(r, t). (4.18)

Because the direction of the field is fixed, each solution is said to be linearly polarised.
The superposition of the two fields may also be linearly polarised (if δn = δm) or circularly
polarised, where the field direction circulates about the direction of propagation (when
E0n = E0m and δn = iδm) but will generally be elliptically polarised, where the locus of
the field follows an ellipse about the direction of propagation (when E0n 6= E0m 6= 0 and
δn 6= δm).

4.3.2 Propagation in anisotropic material

In homogeneous optically anisotropic media, the permittivity ε is a tensor quantity. Fol-

lowing Klein and Furtak [84], the plane wave solution in this medium can be determined
by substituting Eqn. 4.7 into Eqn. 4.6

k× k×E = ω2µ0ε ·E, (4.19)

which implies that −k2
y − k2

z kxky kxkz
kykx −k2

x − k2
z kykz

kzkx kzky −k2
x − k2

y

+ µ0ω
2

 εxx εxy εxz
εyx εyy εyz
εxz εyz εzz

 ·E = 0. (4.20)

ε is Hermitian and can be diagonalised by the rotation transform. In this rotated coordi-
nate system, the permittivity tensor can have one of three forms:

ε
isotropic

=

 εx 0 0
0 εx 0
0 0 εx

 , ε
uniaxial

=

 εx 0 0
0 εy 0
0 0 εy

 , ε
biaxial

=

 εx 0 0
0 εy 0
0 0 εz

 .
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The orthogonal unit vectors in this rotated coordinate system correspond to the principle
directions of the permittivity/dielectric/refractive index tensor.

Note that the dielectric constant or refractive index may be complex n→ n′ + in′′.
The imaginary part results in attenuation. Uniaxial or biaxial materials are said to be
birefringent if the real part of the principle refractive indices differs or dichroic if the
imaginary parts of the refractive indices show differences.

Assuming that the anisotropic medium is oriented so that its principle direction is
aligned with the lab frame, that the direction of propagation is κ = kx

k î + ky

k ĵ + kz
k k̂ =

κxî + κy ĵ + κzk̂ and that the principle refractive indices are n2
x = εx/ε0, n2

y = εy/ε0,
n2
z = εz/ε0, Eqn. 4.20 can be rewrittenn2

 κ2
x − 1 κxκy κxκz
κyκx κ2

y − 1 κyκz
κzkx κzκy κ2

z − 1

+

 n2
x 0 0

0 n2
y 0

0 0 n2
z

 ·E = 0. (4.21)

This equation has the non-trivial solution

1
n2

=
κx

n2 − n2
x

+
κy

n2 − n2
y

+
κz

n2 − n2
z

. (4.22)

For example, if the direction of propagation is κ = κxî + κzk̂ = sin θî + cos θk̂, through a
biaxial material oriented with principle axis aligned with the lab frame:[

n2κ2
z − n2

x

]
Ex −

[
n2κxκz

]
Ez = 0, (4.23)[

n2 − n2
y

]
Ey = 0, (4.24)[

n2κxκz
]
Ex +

[
n2κ2

x − n2
z

]
Ez = 0. (4.25)

The two independent plane wave solutions to Eqn. 4.23-4.25 are:

E1(r, t) = E0y exp
[
i

(
2πny
λ

κ · r− ωt− δy
)]

ĵ, (Ex = 0, Ez = 0, Ey 6= 0),

(4.26)

E2(r, t) = E0 exp
[
i

(
2πna
λ

κ · r− ωt− δ
)]

î + E0 exp
[
i

(
2πnb
λ

κ · r− ωt− δ
)]

k̂,

(4.27)

(Ex 6= 0, Ez 6= 0, Ey = 0),

where n2
a = n4

xκ
2
x

κ2
xn

2
x+κ2

xn
2
z

and n2
b = n2

zn
2
xκxκz

κ2
xn

2
x+κ2

xn
2
z
. Clearly if θ = 0, κ = κzk̂ and

E(r, t) = E2(r, t) + E1(r, t) (4.28)

= E0x exp
[
i

(
2πnx
λ

z − ωt− δx
)]

î + E0y exp
[
i

(
2πny
λ

z − ωt− δy
)]

ĵ (4.29)

Transmission through an anisotropic medium will generally change the polarisation state
of the incident light. Measurement of the change in polarisation state that occurs on
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Figure 4.1: Transmission through an anisotropic medium may modify the incident light’s
polarisation state. The curves in the figure represent the amplitude of the field at an
instant. Here, linearly polarised light (blue) is converted into elliptically polarised light
(red) on transmission. In ellipsometry, this change in polarisation state is measured.

transmission (or on reflection or due to scattering) is called ellipsometry. When ellip-
sometry is used to measure the optical anisotropy of complex fluids it is often called
‘flow-birefringence’.

4.3.3 Matrix formulations

A linear superposition of the solution to Maxwell equations are also solutions

E(r, t) = C̃1E1(r, t) + C̃2E2(r, t). (4.30)

The complex amplitude C̃1 and C̃2 of an actual solution will depend on the ‘basis’ solutions
or polarisations chosen. It is often convenient to work with basis polarisations:

Ex = exp [i (kz − ωt)] î, (4.31)

Ey = exp [i (kz − ωt)] ĵ, (4.32)

so that E(r, t) = ÃxEx + ÃyEy. With this basis solution, the solution space can be
represented as a column vector called a Jones vector [85]

J =
[
Ãx
Ãy

]
=
[
Ax exp(iδx)
Ay exp(iδy)

]
. (4.33)

Note directions î and ĵ are defined with respect to the incident ki and outgoing kf wave
vector and some reference plane (typically the plane containing ki and kf ). If the light is



4.3. PROPAGATION IN HOMOGENEOUS MEDIA 51

completely polarised, the polarisation state can be described in terms of the ratio of the
two polarisation states

r̃ =
Ãx

Ãy
=
Ax
Ay

exp [i(δx − δy)] = ρ exp (iδ) = tan Ψ exp (iδ) , (4.34)

where ρ = tan Ψ is a commonly used convention.

Reflection and transmission may modify both the phase and amplitude of the field.
In linear media, the modified field is a linear superposition of the incident field:[

A′x exp(iδ′x)
A′y exp(iδ′y)

]
=
[
T11 T21

T12 T22

] [
Ax exp(iδx)
Ay exp(iδy)

]
, (4.35)

J′ = TJJ. (4.36)

The linear transformation TJ is called a Jones matrix. For example, by inspection of Eqn.
4.29, the Jones Matrix corresponding to the transmission through the biaxial material of
thickness d along a principle direction with Ex and Ey aligned with the remaining principle
axes is

TJ =
[

exp [i2π(n′x + in′′x)d/λ] 0
0 exp

[
i2π(n′y + in′′y)d/λ

] ] . (4.37)

The effect of a rotation of the biaxial material about the principle direction k̂ can be
effected by applying a rotation transformation T′J(φ) = T (φ)TJT(φ)−1.

The Jones calculus is a field representation and is used to describe the polarisation
state of light. The Stokes vector/Mueller matrix calculus is an intensity representation of
the polarisation state of light. The Stokes vector I is a 1×4 column vector and the Mueller
matrices TM are 4×4 matrices which transform the polarisation state represented by the
Stokes vector by matrix multiplication. The Stokes vector and Mueller matrix have the
form [85]

I =


〈Ã∗xÃx + Ã∗yÃy〉
〈Ã∗xÃx − Ã∗yÃy〉
〈2Re[Ã∗xÃy]〉
〈2Im[Ã∗xÃy]〉

 ,TM =


m1+m2+m3+m4

2
m1−m2−m3+m4

2 s13 + s42 −d13 − d42
m1−m2+m3−m4

2
m1+m2−m3−m4

2 s13 + s42 d42 − d13

s14 + s32 s14 − s32 s12 + s34 d34 − d12

d14 + d32 d14 − d32 d12 − d34 s12 − s34

 .
(4.38)

The matrix element of the Mueller matrix can be derived from the Jones matrix if the
element does not depolarise the light: mi = jij

∗
i , sik = Re (jij∗k), dik = Im (j∗i jk) and

j1, j2, j3, j4 = T11, T22, T12, T21. The component I1 is the observed intensity. The other
components of the Stokes vector can be mapped into the observable I1 by multiplication
with an appropriate Mueller matrix, which physically corresponds to the introduction of
an appropriately orientated polarising optic. If the light is completely polarised I2

1 =
I2

2 +I2
3 +I2

4 . If the light is only partially polarised I2
1 > I2

2 +I2
3 +I2

4 . The major advantage
of the intensity calculus is that it can be used to describe partial polarisation whereas the
field calculus cannot.
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4.4 Propagation in inhomogeneous media

4.4.1 Single scattering regime

In the Rayleigh approximation, it is assumed that the incident field induces a dipole so
that [12] [

m2(r)− I
]
·E0(r, t) = p(t)δ(r− r0(t)) (4.39)

in vacuo. The scattered field in the Born approximation is

Es(t) = E0k
2 exp [ikR]

4πR

[
I − R̂R̂

]
· p(t) exp [−ikf · r0(t)] (4.40)

=
exp [ikR]

4πR
kf × (kf × p(t)) exp [−ikf · r0(t)] . (4.41)

The dipole induced by a plane wave linearly polarised in the ni direction is

p(t) = α ·Ei = α · E0 [i(ki · r0(t)− ωt)] ni, (4.42)

where ki = kni leads to a scattered field

Es(t) = E0
exp [i(kR− ωt)]

4πR
kf ×

(
kf × α · ni

)
exp [−iq · r0(t)] . (4.43)

Here q = kf − ki is called the scattering vector. With an analyser present which selects
only a component linearly polarised in the nf direction the radiated field is

E(t) = nf ·Es(, t) = E0
exp [i(kR− ωt)]

4πR
k2
fαif (t) exp [−iq · r0(t)] , (4.44)

where αif = nf · α · ni. For an ensemble of N dipoles with isotropic polarisability [11]

E(t) = E0
exp [i(kR− ωt)]

4πR
k2
f

N∑
n=1

αnif exp [−iq · rn(t)] (4.45)

= E0
exp [i(kR− ωt)]

4πR
k2
f

∫
ρ(r, t) exp [−iq · r] , (4.46)

where ρ(r, t) =
∑
αnifδ(r−rn(t)). If the dipoles are identical, the field E(t) is proportional

to the spatial Fourier transform of the dipole density.

In static light scattering, a time averaged intensity 〈I〉 = 〈E(t)E∗(t)〉 is measured

〈E(t)E∗(t)〉 =
E2

0k
4

16πR2
〈
∑
m,n

exp [−iq · (rn(t)− rm(t))]〉 (4.47)

=
E2

0k
4

16πR2

∫
〈ρ(0)ρ(r)〉 exp [−iq · r] dr (4.48)

=
E2

0k
4

16π2R2
S(q). (4.49)
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Here it is assumed that k2
f = k2. If the dipoles are identical 〈ρ(0)ρ(r)〉 is the dipole-dipole

density autocorrelation function. S(q) is called the static structure factor [86].

In dynamic light scattering, the time dependence of the field correlation 〈E∗(0)E(t)〉
is measured through an intensity autocorrelation g2(t) [11]

g2(t) =
〈I(0)I(t)〉
〈I〉2

=
〈E(0)E∗(0)E(t)E∗(t)〉

〈EE∗〉2
(4.50)

=
〈EE∗〉2

〈EE∗〉2
+
〈E(0)E∗(t)〉2

〈EE∗〉2
(4.51)

= 1 + |g1(t)|2. (4.52)

g1(t) is called the normalised field correlation function. The partitioning in Eqn. 4.50 is
only appropriate if the number of scattering centres is significant and their positions are
statistically independent - these conditions are “probably satisfied by the vast majority of
applications” [11]. From Eqn. 4.45 it is seen that

g1(t) = exp [iωt]
〈
∑

m,n exp [−iq · (rn(0)− rm(t))]〉
〈
∑

m,n exp [−iq · (rn(t)− rm(t))]〉
(4.53)

= exp [iωt]
F (q, t)
S(q)

. (4.54)

The fraction in Eqn. 4.53 is called the Siegert relation [87]. F (q, t) is called the interme-
diate scattering function. The time Fourier transform of F (q, t) is

1
2π

∫
F (q, t) exp [iωt] dt =

1
2π

∫
〈
∑
m,n

exp [−i (q · (rn(0)− rm(t))− ωt)]〉dt (4.55)

=
1

2π

∫ ∫
〈ρ(0, 0)ρ(r, t)〉 exp [−i(q · r− ωt)] drdt (4.56)

= S(q, ω). (4.57)

If the dipoles are identical 〈ρ(0, 0)ρ(r, t)〉 is the space-time dipole-dipole density correla-
tion function. S(q, ω) is called the dynamic structure factor [86]. The static and dynamic
structure factors relate spatiotemporal fluctuations in the field to spatiotemporal fluctua-
tions in the density. Loosely, the static structure factor probes structure on length scales
q−1 whereas the dynamic structure factor reports on temporal fluctuations at length scales
q−1.

If the dipoles are identical, isotropic and the positions are uncorrelated, the cross
terms in Eqn. 4.53 (n 6= m) average to zero leaving

|g1(t)| = 〈exp [−iq · (rn(0)− rn(t))]〉. (4.58)

If a phase factor ∆φ(t) is a Gaussian random variable with a zero mean then by definition

〈exp [−i∆φ(t)]〉 = exp
[
−〈∆φ2(t)〉/2

]
. (4.59)
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Figure 4.2: Simulated scattered intensity with time and angle in the i) VV and ii) HH
optical configurations. iii-iv) Numerically calculated intensity correlations 〈I(0)I(t)〉 with
angle for the simulated HH data. v) Numerically calculated normalised intensity correla-
tions 〈I(0)I(t)〉/〈I〉2 with angle for the simulated HH data. vi) Angle dependence of 〈I〉
and 〈I(0)I(∞)〉.

For free diffusion ∆rn(t) = rn(0)− rn(t) is a Gaussian random variable and

|g1(t)| = 〈exp [−iq ·∆rn(t)]〉 = exp
[
−q2〈∆r2(t)〉/6

]
(4.60)

implying that for free diffusion [11]

〈I(0)I(t)〉
〈I〉2

=
[
1 + exp[−2q2Dt

]
. (4.61)

The factor of 1/3 comes from averaging q ·∆r over a sphere. As indicated by Eqn. 4.60
dynamic light scattering can be used to determine the MSD of the diffusing dipoles (if
they are identical, isotropic and their positions are uncorrelated).

The basic principles of static and dynamic light scattering are illustrated using
simulation in Fig. 4.2. Here, light scattered from an ensemble of 100 dipoles with isotropic
polarisability within a 1 mm3 scattering volume and undergoing free diffusion is simulated
as a function of both time and scattering angle θ. It was assumed that ki = kk̂ and that
kf = k(sin θî + cos θk̂) - the plane containing ki and kf is called the scattering plane.
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The polariser and analyser were aligned so that either ni = [0, 1, 0]T and nf = [0, 1, 0]T or
ni = [1, 0, 0]T and nf = [sin θ, 0, cos θ]T . In the first configuration, both the polariser and
analyser are perpendicular to the scattering plane. Because the scattering plane is often
horizontal, this is referred to as the vertical-vertical or VV configuration. The second
configuration is referred to as the horizontal-horizontal or HH configuration. Physical
values of k = 1.3 × 107 m−1, α = 1 and R = 0.1 m were assumed. As seen in Fig.
4.2 i-ii in both the VV and HH configurations, the fluctuations in intensity increase with
scattering angle. This is expected as a consequence of the q dependence in the exponent of
Eqn. 4.60. A decrease average intensity is observed around θ=90 deg in HH average. This
too is expected for dipole radiation - longitudinal electromagnetic waves are prohibited in
free space. To quantify these observations a time dependent intensity correlation 〈I(0)I(t)〉
is calculated numerically using circular correlation and is illustrated in Fig. 4.2 iii for the
HH data. This calculation is normally done in hardware experimentally. Fig. 4.2 iv shows
vertical line profiles through Fig. 4.2 iii at θ=5 deg increments. The correlation is observed
to decay exponentially to a baseline value. The correlation is normalised with respect to
the long time behaviour of the correlation 〈I(0)I(∞)〉 = 〈I〉2. Here, it is seen that the
resulting correlation has the form predicted by Eqn. 4.61. The average intensity 〈I〉
calculated from Fig. 4.2 ii and 〈I(0)I(∞)〉 is compared in Fig. 4.2 vi. 〈I〉 and 〈I(0)I(∞)〉
have been normalised to equal 1 at θ =0 deg. Not surprisingly 〈I(0)I(∞)〉 ∝ cos4 θ and
〈I〉 ∝ cos2 θ as is expected for dipole radiation.

In the more general case, the scattered field will depend on the internal fields gen-
erated inside the scattering centres and refraction at the surface. In the Rayleigh-Gans
approximation, valid when |m− 1| << 1 and 2πa|m− 1| << λ [88], where a is a charac-
teristic length of the scattering centre, these effects are neglected. In this approximation,
the field scattered by isotropic fluctuations in refractive index m2(r)− I = ∆ε(r, t) is [11]

Es(t) = E0
exp [i(kR− ωt)]

4πR
k2
f

∫
exp [−iq · r] ∆εi,f (r, t)dr. (4.62)

If the fluctuations are isotropic, the static structure factor and dynamic structure factor
can be calculated from Eqn. 4.48 and 4.56 with ρ(r, t)→ ∆εif (r, t). The scattered inten-
sity at small angles in the Rayleigh-Gans approximation is illustrated for three cases in
Fig. 4.3. Fig. 4.3 i shows the time averaged scattered intensity distribution for a solid
sphere r = 0.5 µm, calculated numerically by summing up the contribution of scattering
elements/dipoles arranged on a grid within a sphere and analytically (coloured contours,
from [88]). Intensity is evaluated at R = 0.1 m and k = 1.3 × 107 m−1. The intensity is
sharply peaked in the forward direction. Fig. 4.3 ii shows the averaged scattered intensity
distribution for a random ensemble of solid ellipsoids rx× ry × rz = 1× 0.5× 0.5 µm with
the long axis orientated along the î direction. Not surprisingly, because of the Fourier
relationship between the polarisability and scattered intensity, the scattered intensity be-
comes elongated along the ĵ axis. The butterfly pattern shown in Fig. 4.3 iii is sometimes
observed in sheared polymer solutions and has been associated with ‘critical concentration
fluctuations’ [12]. The inset in Fig. 4.3 iii shows the inverse Fourier transform of the scat-
tered intensity which is proportional to 〈ρ(0)ρ(r)〉. The spatial variation in the dielectric
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Figure 4.3: Small angle light scattered from a i) solid sphere, ii) solid ellipsoid and from
iii) ‘critical concentration fluctuations’. Near field dipole-dipole interaction in an infinite
rod with iv) weak and v) strong interaction.

constant shows both positive and negative lobes suggesting regions of higher and lower
polymer concentration. The study of the scattering patterns at small angles is called small
angle light scattering (SALS).

The Rayleigh-Gans approximation is only valid when the interaction fields between
scattering elements can be neglected. As noted above, this is only reasonable if |m −
1| << 1 and 2πa|m − 1| << λ. Copic’s model, which was developed to describe near
field interactions in a polymer chain but is introduced here because it would appear (to
the Author, at least) to be quite general, includes these near field interactions between
dipoles/scattering elements extending the range of validity of the Rayleigh and Rayleigh-
Gans models [12]. Here, the field between the dipole is mediated by an interaction tensor
T
ij

T
ij

=
1
n

1
r3
ij

[
3
rijrij
r3
ij

− I

]
, (4.63)

where ri is the location of the ith dipole, rij = ri − rj , and n is the refractive index of
the medium which controls the strength of the interaction. The dipole moment of the ith
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dipole is given by

pi = α
i
·E +

∑
j

T
ij
· pi, (4.64)

which is a generalisation of Eqn. 4.42 to include near field interactions. The system of
linear equations described by 4.64 can be solved for pi. The dipole moment induced by
light polarised in the î direction in an infinite rod aligned in the ĵ direction with weak and
strong interactions is shown in Fig. 4.3 iv and 4.3 v. In Fig. 4.3 iv dipole moments are
aligned with the field and are spatially uniform as would be expected in the Rayleigh-Gans
approximation. In Fig. 4.3 v the dipole moment is strongest in the centre of the rod and is
no longer directed along the incident field. The field, due to such a distribution of dipoles,
could be calculated by summing the fields radiated by the scattering elements as was done
above.

Mie solved Maxwell equations for isotropic spheres of arbitrary size and refractive
index exactly. The solution is expressed in terms of the complex scattering amplitudes
S1(θ,m) and S2(θ,m), where θ is the angle between the incident and the outgoing wave
vectors. For a polarised incident field E = ÃxEx + ÃyEy the field scattered from an
isolated sphere at a distant observation point R cos θk̂ +R sin θî is [88]

Es(t) = E0
exp [ikR]
ikR

[
ÃxS2(θ,m)Ex + ÃyS1(θ,m)Ey

]
. (4.65)

4.4.2 Multiple scattering in the diffusion approximation

In the previous section, it was assumed that light only interacted with the scattering
centres once before detection. Dynamic light scattering in this regime is called photo-
correlation spectroscopy (PCS) or quasi-elastic light scattering (it is also known as ‘dy-
namic light scattering’). This assumption is only appropriate when the density of scatter-
ing centres is low. At higher densities, light may interact with scattering centres multiple
times before detection. If multiple scattering is significant, the propagation of light can be
treated as a diffusive process. In this diffusion approximation, the path of light through
the highly multiple scattering medium can be represented by a random walk. Diffusing
wave spectroscopy (DWS) is a dynamic light scattering technique which is based on this
diffusion approximation.

Two length scales are important in highly multiple scattering media: the mean free
path l and the transport mean free path l∗. l is the average distance between scattering
events and is given by [87]

l =
1
ρσs

. (4.66)

ρ is the number density of the scattering centres. σs =
∫
R(θ, φ) sin θdθdφ is the total

scattering cross-section. R(θ, φ) is called the form factor. For isotropic spheres R(θ, φ) =
|S1(θ)|2 cos2 φ + |S2(θ)|2 sin2 φ [88] (scattering amplitudes S1(θ) and S2(θ) are calculated
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according to Mie theory). l∗ is the average distance light travels before its direction is
randomised. l∗ is related to l by

l∗ =
l

〈1− cos θ〉
, (4.67)

where the average in the denominator is weighted by the form factor of the scattering
centres. The relation between l and l∗ is illustrated using simulation in Fig. 4.4. Here,
light propagating in the k̂ direction and polarised in the ĵ direction is scattering by a sphere
at the origin in a direction sin θ cos φ̂i + sin θ sinφĵ + cos θk̂ with a probability determined
by the form factor. The typical distribution of directions is shown in Fig. 4.4 i-iv for
spheres of different radius a. Note that scattering is preferentially in the forward direction
for the larger spheres. The weighted average 〈1 − cos θ〉 is calculated directly from the
simulation. The ratio l/l∗ is shown in Fig. 4.4 v. As scattering anisotropy increases with
a the ratio l∗/l increases - light must undergo more scattering events before its direction
is randomised. cl was calculated analytically and used to calculate cl∗ for fixed volume
fraction scattering centre suspension. The constant of proportionality c is related to the
actual concentration of scattering centres present. This was not determined directly but
can be inferred by comparing the Author’s l to the l extracted data [87]. With this scaling
factor determined (once) l∗ can be determined. The simulated and analytic l∗ are in close
agreement. On a length scale l the direction of propagation is influenced by previous
scattering events and the direction of propagation is not random. However, on a longer
length scale l∗, which includes multiple scattering events, the direction of propagation is
random and the path of light is that of a random walk.

Following Weitz and Pine [87], a typical light path through a highly scattering
medium is illustrated in Fig. 4.5. The total path length s between source and detector is

s =
n∑
i=0

|ri+1 + ri| =
ki
|k|
· [ri+1 + ri] = Nl. (4.68)

In DWS it is assumed that the time dependent multiple scattered field is of the form

E(t) =
∑
p

Ep exp [iφp(t)] . (4.69)

Ep represents the field amplitude associated with some path p and time dependent phase
shift φp(t) is introduced as the paths distort with time due to the motion of the scattering
centres. The total field is a sum over all paths detected. By analogy to the single scattering
case, the field correlation function when multiple scattering is present is given by

g1(t) =
〈E(0)E(t)〉
〈|E|2〉

=
1
〈I〉
∑
p

Ep exp [iφp(0)]
∑
p

E∗p′ exp
[
−iφp′(t)

]
(4.70)

≈
∑
p

〈Ip〉
〈I〉
〈exp [i∆φp(t)]〉. (4.71)
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Figure 4.4: i-iv) Simulated distribution of scattering angles for scattering centres of radii
a=50-500 nm. v-vi) Comparison between simulated and analytically calculated l and l∗

values for a 1% suspension of m = 1.2 spheres. Analytic data were extracted from [87].

Figure 4.5: Multiply scattered light path through some turbid medium. The wave vectors
k have the same magnitude and position vector r describe the instantaneous position of
the scattering centres (adapted from [87]).
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It has been assumed that the fields from different light paths are uncorrelated. The
absolute phase of the light scattering down the path like that indicated in Fig. 4.5 depends
on the path length. If the length of the path changes the absolute phase will also change.
g1(t) is expected to be sensitive to this change in phase. Using geometric arguments it
can be shown that

∆φp(t) = φp(t)− φp(0) =
n∑
i=0

ki(t) · [ri+1(t)− ri(t)]−
n∑
i=0

ki(0) · [ri+1(0)− ri(0)] (4.72)

≈
n∑
i=1

qi(t) ·∆ri(t). (4.73)

If ∆φp(t) is a Gaussian random variable with a zero mean then by definition 〈exp [i∆φp(t)]〉 =
exp

[
〈∆φ2

p(t)〉/2
]

and the average phase shift is then

〈∆φ2
p(t)〉 =

N∑
i=1

qN (t) ·∆ri(t)
N∑
j=1

qj(t) ·∆rj(t) (4.74)

≈ 1
3
N〈q2〉〈∆r2(t)〉. (4.75)

The quantity 〈q2〉 = 〈q · q〉 depends on the form factor of the scattering centres. As
illustrated in Fig. 4.4 〈q2〉/(2k2) = l/l∗. Recalling that N = s/l [87]

〈∆φ2
p(t)〉 =

1
3
s

l
2k2 l

l∗
=

2
3
nk2〈∆r2(t)〉, (4.76)

where n = s/l∗. n(< N) is the number of steps of stepsize l∗ in the path. Note that l, l∗, N
and n are analogues of quantities l, lK , N and NK used to describe the conformation of a
linear polymer. This equation relates the temporal phase statistics to the time dependent
distortion of a random walk associated with the relative motion of the scattering centres.

The ratio 〈Ip〉/〈I〉 can be viewed as a probability that light will scatter down a par-
ticular path from source to detection point. In the diffusion approximation, it is assumed
that this path can be replaced by an equivalent random walk. The probability that light
will diffuse from a source point to the detection point depends only on the number of steps
n in the path. This probability can be determined by simulation or analytically by solving
a diffusion equation of the form [87]

∂G

∂n
− 1

3
l∗∇2G = δ(r− r0)δn, (4.77)

with initial conditions G = 1 at n = 0 and r = r0 and with absorbing boundary conditions.
G is a Green function solution to the diffusion equation. G = Gn(ri, ro, l∗) describes the
probability that light will diffuse from a source point ri to a detection point ro in n steps.
Note that the source point for diffusion is usually taken to be |ri| = l∗ inside the scattering
medium reflecting the fact that light must propagate a distance l∗ before diffusion begins
to occur and the detection point is taken at a distance |ro| = γ0l

∗ inside the scattering
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medium, where γ0 is a factor of order unity that is related to diffusion of light near an
interface. Simulation based on one-dimensional particle diffusion is used to build up a
Gn(xi, xo, l∗) in Fig. 4.5 and illustrates the essential physics. A particle is introduced
at xi = 0.1 n = 0 into a one-dimensional slab of width L = 1. The particle diffuses a
random distance drawn from a Gaussian distribution of width l∗ = 0.1 and mean zero in
each n-step adding 1 to each point on the two-dimensional x × n grid where the particle
settles. Eventually the particle is absorbed at the boundaries. This is repeated and the
grids are co-added 100, 104 and 106 times in Fig. 4.5 ii-iv and converge to the analytic
path distribution in Fig. 4.5 v, vii-viii. The probability Gn(xo, xi, l∗) that the particle
will diffuse from xi to xo in n steps is given by a vertical line at x = xo through the path
distribution. The analytic solution for the one-dimensional slab was calculated according
to [89]

Gn(xi, xo, l∗) =
2
L

∞∑
m=1

sin
[mπxi

L

]
sin
[mπxo

L

]
exp

[
−m2 n

n0

]
, (4.78)

where n0 = 3L2/π2l∗2 which is a solution to Eqn. 4.77. In this diffusion approximation,
the field correlation function can be rewritten

g1(t) =
∞∑
n=1

Gn(ri, ro, l∗) exp
[

1
3
k2n〈∆r2(t)〉

]
. (4.79)

Two geometries are commonly used in DWS: 1) backscattering and 2) transmission.
In the backscattering geometry, light is collected from the incident face of the slab and it is
assumed that xo = γ0l

∗. In the transmission geometry, light is collected from the opposing
face of the slab - here it is assumed that xo = L − γ0l

∗ [90][89]. In the backscattering
geometry, the correlation is dominated by short paths that preferentially ‘samples’ the
diffuse medium near the incident face. In the transmission geometry, light must diffuse
entirely through the slab before it is detected - more uniformly sampling the medium.

4.4.3 Matrix formulations

The Jones and Mueller/Stoke calculi can be used to represent changes of polarisation that
can occur during scattering. The general form of the scattering matrix for an isolated
scattering centre is [88][12]

TJ =
exp [ikR]
ikR

[
S2(θ, φ) S3(θ, φ)
S4(θ, φ) S1(θ, φ)

]
. (4.80)

This scattering matrix can be calculated from the spatial polarisability/dielectric constant
variation. If the particle is rotationally symmetric, the off axis components S3(θ, φ) =
S4(θ, φ) = 0 . If the scattering centre is not rotationally symmetric, the off axis components
are non zero [88]. Because of this orientation dependence, these terms may differ from
centre to centre in an ensemble. There is no Jones matrix representation for such an
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Figure 4.6: i-iv) Simulation showing that the diffusion of test particles on a grid, with
appropriate boundary conditions, converges to the propagator Gn(ri, ro, l∗) calculated an-
alytically in v). vi) Analytic propagator with a different choice of parameters for compari-
son. vii-viii) Direct comparison between the simulated and analytic propagator calculated
according to Eqn. 4.78.
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Figure 4.7: Simulated intensity correlation for each of the four components of the Stokes
vector for i) isotropic Rayleigh scattering centres undergoing diffusion, ii) anisotropic
Rayleigh scattering centres undergoing slow translational diffusion and iii) anisotropic
Rayleigh scattering centres undergoing slow translational diffusion and fast rotational dif-
fusion.

ensemble. The Mueller calculus must be used. The effects of orientation are examined
in Fig. 4.7 using simulation. Here, the field from 100 scattering centres in a 1 mm 3

scattering volume is summed at a distant observation point and the correlation 〈In(0)In(t)〉
is calculated for each element (n) of the Stokes vector for the scattering centres undergoing
translational (and in the Fig. 4.7 iii rotational) diffusion in the Rayleigh approximation.
The scattering matrix was calculated from the polarisability using methods outlined in
[88]. It was assumed that incident light was propagating in k̂ direction with a polarisation
E = E0î + E0ĵ and was detected in the î− k̂ plane at a scattering angle of θ = π/4. The
correlations show time dependence - this is not surprising as this is the time dependence
that is measured in PCS. The long time behaviour of the correlation is 〈In〉2. In Fig. 4.7
i the scattering centres are isotropic and 〈I1〉2 = 〈I2〉2 + 〈I3〉2 + 〈I4〉2 - the scattered light
is completely polarised. In Fig. 4.7 ii the scattering centres are isotropic and randomly
orientated. Here 〈I1〉2 > 〈I2〉2 + 〈I3〉2 + 〈I4〉2. The scattered light is partially polarised -
randomly orientated anisotropic scattering centres depolarise the initially polarised light.
Finally, in Fig. 4.7 iii the scattering centres are allowed to undergo ‘fast’ rotation diffusion
in addition to the ‘slow’ translational diffusion. This modifies the time dependence of the
correlation.

4.4.4 Scattering birefringence and dichroism

For spherical isotropic particles at a scattering angle θ = 0, S1(0) = S2(0) = S(0).
Expanding the Mie theory S(0) in terms of dimensionless parameter ka gives [88]

S(0) = i
2
3

(ka)3α− 2
3

(ka)6α2 + iO(ka)5 +O(ka)7. (4.81)



64 CHAPTER 4. RHEO-OPTICS

The real part of the resulting scattering matrix produces an absolute phase shift in the
incident light while the imaginary part, which is only significant when ka is large, produces
attenuation. Because a differential phase shift or differential attenuation is required for
birefringence or dichroism, these spherical isotropic particles are neither. Fuller [12] notes
that Eqn. 4.81 can be reexpressed

Sij(0) = i
2
3

(ka)3αij −
2
3

(ka)6αikαij . (4.82)

Consequently, anisotropies in the polarisability tensor of the scattering centres can lead
to birefringence and dichroism.

4.5 Selected rheo-optical properties of polymer like systems

Following Fuller [12] in the model of Kuhn-Grun, each of the Kuhn monomers in the
polymer strand are assumed to be rod-like non-interacting (in the near field sense) dipoles
with uniaxial polarisability

α = α2I + (α1 − α2) uu, (4.83)

where u is a director which describes the orientation of the dipole. The average polaris-
ability of a macromolecule of NK Kuhn segments of length lK is

α = NKα2I +NK (α1 − α2) 〈uu〉. (4.84)

Using the Lorentz-Lorenz equation (Eqn. 4.9) the refractive index of an ensemble of these
macromolecules is

n =
4πν
18

(n2 + 2)2

n

[
α2I + (α1 − α2)〈uu〉

]
, (4.85)

where ν is the number density of monomers and n is the average refractive index . At
equilibrium there is no preferred direction for the director u and 〈uu〉 = I. Under defor-
mation or flow conditions this is no longer the case. The Kuhn-Grun distribution function
P (u,R) gives the probability of an orientation u for an end-to-end vector R. This relation
links the tensor 〈uu〉 to the tensor 〈RR〉 and is of the form 〈uu〉 = A+B〈R2〉+C〈RR〉
and leads to a refractive index

n =
2πν
15

(n2 + 2)2

n
[α1 − α2]

1
NK l2K

〈RR〉+ isotropic terms. (4.86)

According to the Rubbery Network model σ = 3νkBT/(NK l
2
K)〈RR〉. This can be com-

bined with Eqn. 4.86 to give

n =
2π

45kBT
(n2 + 2)2

n
[α1 + α2]× σ + isotropic terms (4.87)

= Cσ + isotropic terms. (4.88)
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Eqn. 4.88 relates the refractive index to stress. This relation is called the stress-optic
rule and has been demonstrated to show wide validity for polymer melts and concentrated
polymer solutions. The constant of proportionality is called the stress-optic coefficient
and is typically of the order of C ≈ 10−9 − 10−7 Pa−1.

The stress-optic rule implies that the refractive index tensor n, for simple shear

flow v = v0yî, is of the form Eqn. 4.89 (LHS). Flow induces a biaxial anisotropy in the
refractive index tensor. The refractive index tensor n (and σ, 〈RR〉 and 〈uu〉) can be
diagonalised by the rotation transformation n11 n21 0

n21 n22 0
0 0 n33

 =

 cosχ sinχ 0
− sinχ cosχ 0

0 0 1

 n′11 0 0
0 n′22 0
0 0 n′33

 cosχ − sinχ 0
sinχ cosχ 0

0 0 1

 .
(4.89)

That is, the primed ‘principle’ reference frame in which the refractive index tensor is
diagonal, is rotated with respect to the unprimed lab frame by an angle χ about the
vorticity axis ∇× v in simple shear flow conditions. This implies that the shear stress σ
and first N1 and second N2 normal force differences can be expressed:

σ =
1

2C
(
n′22 − n′11

)
sin 2χ, (4.90)

N1 =
1
C

(
n′22 − n′11

)
cos 2χ, (4.91)

N2 =
1
C

[(
n′33 − n′11

)
−
(
n′22 − n′11

)
cos2 χ

]
. (4.92)

As noted earlier, an optical anisotropy can be measured using ellipsometry - these optical
measurements can be used to infer the mechanical stress if the stress-optic law is valid
and the stress-optic coefficient is known. The effect of this optical anisotropy on the
polarisation state depends on the direction of propagation through the medium. The
vorticity axis is always a principle direction of the refractive index tensor in simple shear
flow conditions. The polarisation state of light directed down this axis is only influenced by
n′11 and n′22. The Jones matrix describing the effect of this anisotropy on the polarisation
state of light can be determined by applying a rotation transformation to matrix

TJ =
[

cosχ sinχ
− sinχ cosχ

] [
1 0
0 exp [iδ]

] [
cosχ − sinχ
sinχ cosχ

]
, (4.93)

where

δ = δy′ − δx′ =
2π(n′22 − n′11)d

λ
=

2π∆nd
λ

. (4.94)

The parameters δ and χ can be measured using ellipsometry. If the stress optic rule is
valid and the stress optic coefficient C is known, an optical measurement of χ and δ can
be used to infer σ and N1. In order to measure N2 optically, an additional measurement
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of (n′33 − n′11) is required. Optical determination of (n′33 − n′11) is less straightforward as
a component of the direction of propagation must be collinear with the n′11 axis which is
not fixed with respect to the lab frame.

Again following Fuller [12], according to the Kuhn-Grun model birefringence ∆n =
n′22 − n′11 is

∆n =
3
5

[α1 − α2]
R2

NK l2K
. (4.95)

Copic’s model, which includes near field interactions between the monomers which are ex-
cluded in the Kuhn-Grun model, adds a correction that depends on the difference between
the refractive index of the polymer and solvent ns

∆n =
3
5

[α1 − α2]
[

R√
NK lK

]2

︸ ︷︷ ︸
intrinsic

+
[

9M
4πρNA

]
1

(
√
NK lK)3

[
ns

n− ns
n2 − 2n2

s

] [
R√
NK lK

]
︸ ︷︷ ︸

form

+...,

(4.96)

where M and ρ are the polymer molecular weight and density and NA is Avogadro’s
number. The intrinsic term is that given by the Kuhn-Grun model and may be positive or
negative depending on the sign of the stress-optic constant. The form contribution to ∆n
is always positive. The presence of form birefringence can complicate the interpretation
of the measured δ.

The static structure factor can be calculated by considering the chain to be a col-
lection of connected dipoles of isotropic polarisability. In general, the structure factor has
the form [91]

S(q) ' S(0)
1 + q2ξ2

, qξ <1, (4.97)

where ξ is a characteristic correlation length. In dilute solutions ξ = RG/
√

3 where RG
is the radius of gyration of the polymer strand. For an ideal polymer R2

G = Nl/6 [8].
Measurements of S(q) can be used to determine the size of the polymer. In semi-dilute
solutions the polymer chains overlap. Excluded volume interactions prevent complete
interpenetration. In this case ξ is a measurement of the degree of overlap. The structure
factor for dilute polymer solutions for all q is [91]

S(q) =
1

q4R4
G

[
exp[−q2Rg]− 1 + q2Rg

]
(4.98)

and is shown for various N(∝
√
RG) in Fig. 4.8. This result is simulated using two meth-

ods. In the first case, the field produced at a distant detection point by an ensemble of
dipoles connected by a random walk is summed to calculate an intensity (red curves). In
the second case, the dipole-dipole correlation function 〈ρ(0)ρ(r)〉 is simulated for an ensem-
ble of random walks and the Fourier transform calculated from the simulated 〈ρ(0)ρ(r)〉



4.5. RHEO-OPTICAL PROPERTIES OF POLYMER LIKE SYSTEMS 67

Figure 4.8: i) Simulated structure factor for an ensemble of isotropic dipoles, connected
by a random walk, of length N was calculated by summing the radiated field (red) or by
considering the Fourier transform of the dipole-dipole correlation function (blue) and is
compared to the analytic structure factor given by Eqn. 4.98. Two-dimensional represen-
tation of the scattered intensity (structure factor) a dilute polymer solution was calculated
from the Fourier transform of the dipole-dipole density correlation function (shown inset)
for ii) isotropic and iii) anisotropic distribution of dipoles in a random walk.

(green curves). A two-dimensional representation of S(q) calculated from 〈ρ(0)ρ(r)〉 for
chains of length NK = 1000 is shown in Fig. 4.8 ii and Fig. 4.8 iii. In Fig. 4.8 iii the
chains have been sheared slightly in the qy direction. This introduces an anisotropy into
the 〈ρ(0)ρ(r)〉 and S(q). This anisotropy can be measured using SALS.

In dilute solutions, the polymer strands undergo thermal diffusion with an effective
diffusion constant D = kBT/(6πηsRh) where Rh is the hydrodynamic radius of the poly-
mer and ηs is the solvent viscosity [91]. This diffusion constant can be measured using
DLS using the relation |g1(t)| = exp

[
−q2Dt

]
and Rh estimated from D. In semi-dilute

solutions, the chains are constrained to diffuse within a tube produced by the surrounding
chains. The confined snake model introduced in Chapter 1 suggests that the motion of the
confined chain might loosely be characterised by two diffusion constants associated with
the fast ‘thrashing’ mode and slow reptation modes. This would lead to a field correlation
of the form

|g1(t)| = A exp [−t/τf ]︸ ︷︷ ︸
fast mode

+B exp [−t/τs]︸ ︷︷ ︸
slow mode

. (4.99)

This model is too simplistic in that it treats the motion of the monomer dipole as being
independent and excludes viscoelastic effects. To calculate g1(t) the dipole-dipole time-
space correlation must be calculated [92]

|g1(t)| = 〈ρ(0, 0)ρ(r, t)〉
〈|ρ(r, t)|2〉

= A exp
[
q2Dct

]︸ ︷︷ ︸
fast mode

+
∑

Bi exp [−t/τi]︸ ︷︷ ︸
slow mode

. (4.100)



68 CHAPTER 4. RHEO-OPTICS

Figure 4.9: Angle dependence of |g1(t)|2 for an entangled polymer solution characterised
by a single relaxation mode.

The slow mode depends on the longitudinal relaxation modulus M(t) =
∑

iMi exp [−t/τi]
of the solution. In shear rheology, the relation between shear stress and shear strain (or
strain rate) is studied. In extensional rheology, the relationship between stress and exten-
sional strain is studied (extensional rheometry is difficult to implement experimentally).
In the linear regime, a shear stress relaxation modulus G(t) or extensional stress relaxation
modulus K(t) can be measured. The longitudinal modulus is related to both the shear
and extensional modulus by M(t) = K(t) + 4/3G(t) [92]. The fast mode depends on Dc

which is called the cooperative diffusion constant. The prefactors A = a+ bt and Bi (time
independent) are functions of q,Dc Mi, τi, osmotic pressure and intermolecular potential.
If M(t) is characterised by a single relaxation mode, the ratio of the prefactor A/B is
a constant. Like the correlation predicted by the confined snake model, the correlation
described by Eqn. 4.100 is bimodal. The characteristic time of the fast mode shows q
dependence whereas the characteristic time of the slow mode does not. Correlations pre-
dicted according to this model with scattering angle, for A = B = 0.5 is shown in Fig.
4.9. The effects of shear flow on these characteristic times are investigated in Chapter 8.



Chapter 5

Examining the flow behaviour of
wormlike micelles using rheometry
and visualisation

5.1 Introduction

In this first experimental chapter, three wormlike micelles solution systems are intro-
duced and their rheology is examined using both conventional mechanical rheometry and
direct visualisation. These observations are compared to predictions and observations
discussed in Chapter 3. Some of these solutions will be re-examined in later chapters
using other methods. In this chapter, the linear and nonlinear rheometry of the three
systems is contrasted and compared to the predictions of the reptation-reaction model.
The transient nonlinear rheometry of selected samples are examined for evidence of stress
fluctuations/rheo-chaos and a possible dependence on surfactant supplier and flow ge-
ometry is considered. This rheometry work is followed with direct observations of the
equilibrium low temperature behaviour and shear induced turbidity in three experimental
flow geometries.

5.2 Experimental

The rheology of three wormlike micelles systems is examined in this chapter in detail.
These systems were selected for their stability at room temperature (T =22 ◦C). All three
are composed of the cationic surfactant cetylpyridinium chloride (CPCl) and counterion
sodium salicylate (NaSal) in water with or without the salt sodium chloride (NaCl). The
CPCl and NaSal in water system has been studied extensively by Rehage and Hoffman
[93]. The primary system used in this thesis, RHB, is composed of [CPCl]/[NaSal]=2 at
variable weight fraction φ = φCPCl+NaSal in a stock [NaCl]=0.5 M brine solution. This

69
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system conditions variable(s) chapter references
RHB [CPCl]/[NaSal]=2 φCPCl+NaSal 5,6,7,8 [94][95][96][97][98][27]

in aqueous [NaCl]=0.5 M [wt.%] [99][38] [29][100][101]
[102][99][103][98][34]

RHA [CPCl]=0.1 M + [NaSal] [NaSal], 5,6 [28][104][26][105][106]
in water temperature [93][13][33][32][107]

RHC [CPCl]=0.1 M+[NaSal]=0.05 M [NaCl] 5,6
in aqueous [NaCl]

Table 5.1: Composition of the three wormlike micelles systems studied. The cetylpyri-
dinium chloride monohydrate used was provided by Sigma-Aldrich.

system is well studied. Often this system is described in terms of the surfactant weight
fraction φCPCl. This weight fraction is related to the ‘dry solid’ weight fraction φCPCl+NaSal

used here by φCPCl = 0.78×φCPCl+NaSal. The second system examined, RHA, is composed
of [CPCl]=0.1 M + [NaSal]=0.030-0.631 M in water. The final system, RHC, is composed
of [CPCl]=0.1 M+[NaSal]=0.05 M in a salt solution of variable concentration. This system
interpolates between the RHB and RHA systems and does not appear to have been studied
before. The composition of the samples is summarised in table 5.1.

All rheometry measurements described here were carried out on either a stress con-
trolled Thermal Analysis (TA) AR2000 rheometer (operated in strain controlled mode
using feedback) using a 2 deg 40 mm diameter acrylic cone and steel plate or strain con-
trolled Rheometric ARES rheometer using a 2.3 deg 50 mm diameter polysulphide cone
and steel plate at T = 22◦C unless noted otherwise. Ideally, to avoid possible feedback
issues, the strain controlled rheometer would have been used for all work here - unfortu-
nately, the instrument was broken most of the time. All samples were stored at T = 22◦C
and were measured within 3-14 days of preparation.

5.3 Measurements and analysis

5.3.1 Linear rheology

The strain amplitude dependence of G′(ω) and G′′(ω) was established for selected samples.
Typical results are shown in Fig. 5.1. Above a strain amplitude of γ0 ≈ 1 the output
stress is no longer independent of the input strain. This regime must be avoided in linear
rheology. On the basis of these measurements, a strain amplitude of γ0 = 0.02 = 2% was
conservatively chosen for all measurements described here.

The measured frequency response of the RHB, RHA and RHC samples is shown in
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Figure 5.1: Strain amplitude dependence of φ = 4 and 10 wt.% RHB samples.

Fig. 5.2 i, iii and v. The data were fitted to the frequency response of a Maxwell fluid

G′(ω) = GM
ω2τ2

M

1 + ω2τ2
M

, (5.1)

G′′(ω) = GM
ωτM

1 + ω2τ2
M

, (5.2)

up to the G′(ω) = G′′(ω) crossover to determine the characteristic Maxwell time τM and
amplitude GM . Fitted parameters are shown in Fig. 5.2 ii, iv and vi. τM and GM are
correlated with the weight fraction or salt concentration in the RHB and RHC samples.
This correlation is not observed in the RHA sample. In this sample, GM is approximately
constant at intermediate NaSal concentrations whereas τM shows two peaks - one centred
on [NaSal]=0.065 M and a second centred on [NaSal]=0.3 M.

The experimental G∗(ω) data were divided by GM . These normalised data are
shown in Fig. 5.2 on a parametric Cole-Cole plot along with the behavior of a Maxwell
fluid calculated according to Eqn. 5.1 and 5.2 (in blue) with GM = 1. For clarity, the high
frequency turn-up, associated with the increase in G′′(ω) beyond its local minimum, has
been excluded from this plot. For a Maxwell fluid, the trajectory of the G′′(t)/GM and
G′(t)/GM on a Cole-Cole plot is described by a semicircle of parametric form G′(t)/GM =
(cos t + 1)/2 and G′′(t)/GM = (sin t)/2 with 0 < t < π. The RHB sample becomes
increasingly Maxwell-like with increasing concentration. Above φ=5 wt.% the normalised
data are indistinguishable within experimental error. The data do not, however, converge
to the semicircle predicted for a Maxwell fluid. The red data in Fig. 5.3 i were measured
with the 2 deg 40 mm acrylic cone-plate geometry on the AR2000 rheometer. Additional
measurements of the φ = 10 wt.% RHB sample were made with a 1 deg 40 mm acrylic cone-
plate on the AR2000 rheometer (Fig. 5.3 i 10B) and a 2.3 deg 50 mm polysulphide cone-
plate on the ARES rheometer (Fig. 5.3 i 10C). These measurements are quite comparable
to the measurements made with the 2 deg 40 mm cone-plate (Fig. 5.3 i 10A) and would
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Figure 5.2: i,iii and v) Measured G∗(ω) for selected RHB, RHA and RHC samples with
arrows indicating increasing i) φ and v) [NaCl]. ii,iv and vi) Fitted parameters GM and
τM . The ratio GMτM/η0 ≈ 1 was calculated from measurements of the zero shear viscosity
in section 5.3.2. 1ARES 2.3deg 50 mm cone-plate. 2AR2000 2 deg 40 mm cone-plate.
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suggest that the deviation from a semicircle is not an artefact of the instrumentation
or associated with sample inertia. Maxwell-like behaviour is observed in some of the
RHA samples; in particular, in those samples that exhibit a large τM . However, a similar
deviation from a semicircle is observed. The RHC sample shows a systematic change in the
high frequency behavior with concentration. The normalised RHC data are superimposed
on the behavior predicted by the reptation-reaction model for log-spaced value of ratio
τb/τrep. These analytic data were calculated according to the Poisson-renewal model for
Ge = 1, fitted up to the G′(ω) = G′′(ω) crossover and divided by the fitted GM to
replicate the normalisation of the experimental data. Note that the normalised analytic
data converge to a semicircle predicted by the Eqn. 5.1 and 5.2 when τb � τrep. The
experimental data loosely map onto the behaviour predicted by the reptation-reaction
model. As before, the experimental data do not converge to a semicircle.

If a fluid is Maxwell-like Ge = GM and τr = τM . The terminal relaxation time τr is
defined by

τr = η0/Ge =
1
Ge

∫ ∞
0

G(t)dt. (5.3)

In the limit τb � τrep Maxwell-like behavior is predicted for wormlike micelles solutions
and it is expected that τr ' ταb τ

β
rep where α and β depend on the details of the reaction

scheme. For example, if only breakage and recombination occurs α = β = 1/2. In this
limit, τb and τrep cannot be determined separately using the reptation-reaction model. If
the fluid is not Maxwell-like Ge 6= GM and τr 6= τM . In this case, it may be possible
to determine Ge/GM and the ratio τb/τrep by comparing the measured data to analytic
predictions shown in Fig. 5.3 iii and using a measurement of the zero shear viscosity
to determine τr. The relationship between τb/τrep and τb/τr is shown in Fig. 5.3 v.
These data are taken directly from [108]. Using this relation and comparison above Ge,
τr, τb and τrep can be determined separately. This analysis relies on the sample being
not Maxwell-like and that the high frequency behaviour is not significantly perturbed by
Rouse/breathing modes. These relaxation modes produce a turn-up at high frequencies
and can obscure the behavior predicted according to the reptation-reaction model.

The deviation from the semicircle predicted for a Maxwell fluid makes the analy-
sis above difficult. In all three cases, the data appear to converge to an ellipse of the
parametric form G′′(t)/GM = (sin t)/2 and G′(t)/GM = f(cos t + 1)/2 where the scaling
factor is f ≈ 1.05. To facilitate analysis, the experimental G′(t)/GM data were rescaled
by a factor f . The RHB and RHA measurements are still difficult to analyse using the
reptation-reaction model because the Rouse/breathing mode turn-up occurs at relatively
low frequencies. The RHC sample is amenable to the analysis described above. Fig. 5.3
iv shows the rescaled RHC data. The ratios τb/τrep and Ge/GM were estimated by com-
paring the normalised measurements to the normalised analytic data shown in this figure.
Estimated τb/τrep and Ge/GM are shown in Fig. 5.3 vi. Measurements of η0 (described
in the next section) and Ge were used to determine τr. τb and τrep were determined sep-
arately using the relation described in Fig. 5.3 iv. Notably, the variation of the Ge is
smaller than that observed in GM - the elastic modulus is approximately constant with
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Figure 5.3: Cole-Cole plot comparing the normalised linear response of i) RHB, ii) RHA
and iii) RHC samples. Convergence to a semicircle is not observed. Blue curves in iii
show the behaviour predicted by the reptation-reaction model. Data in iii are rescaled in
iv). The relationship between the ratio of the characteristic times τb/τr and τb/τrep (from
[108]) is used along with a graphical fit to τb/τrep from iv) to determine τrep, τr and τb for
the RHC samples.
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changes in NaCl concentration. The ratio τb/τrep ∝ [NaCl]−3 is due to τb decreasing with
τb ∝ [NaCl]−0.5 and τrep increasing with τrep ∝ [NaCl]−2.5

5.3.2 Nonlinear rheology

Measurements of the steady-state flow curves showing a time averaged ‘steady-state’ stress
as the strain rate was stepped for the RHB, RHA and RHC wormlike micelles solutions
are shown in Fig. 5.4 i, iii, v. The strain rate steps were log-spaced. The dwell time at
each strain rate step for each sample was at least 2 minutes or if longer, 30 × τM . The
time average steady-state stress was calculated over the last 30 s at each strain rate step.

All samples show Newtonian behaviour with σ ∝ γ̇ at low strain rates. At interme-
diate strain rates, shear thinning with σ ∝ γ̇p, 0 ≤ p < 1 is observed. A stress plateau
σ = constant is observed for a number of the samples. At high strain rates, a turn-up in
stress is sometimes observed.

The zero shear viscosity η0 was determined from measurements at low strain rates. If
the frequency spectrum is dominated by a single relaxation mode, it is expected that η0 ≈
τrGe ≈ τMGM . As a check on the fitted τM and GM and measured η0, the ratio GMτM/η0

is calculated for the data. To a good approximation it is found that GMτM/η0 ' 1 for all
samples as is seen in Fig. 5.2 ii, iv and vi.

The critical stress and critical strain rate was estimated from the flow curve of
samples that showed evidence of a stress plateau. This is shown in Fig. 5.4 ii, iv and
vi. In [21] it was argued that the onset of the stress plateau could be expected to occur
at a critical strain rate γ̇c = 2.6/τr and at critical stress σc = 0.67Ge in a Maxwell-like
wormlike micelles solution. γ̇c, τc, σc/GM and τM γ̇c are shown in Fig. 5.4 ii, iv and vi in
instances that a stress plateau is observed and are tabulated in Table 5.2. A stress plateau
was only correlated with Maxwell-like behaviour in the RHB and RHA samples. For these
samples it is found that that σc/GM = 0.69± 0.11 and τM γ̇c = 1.7± 0.6.

Fig. 5.5 shows the normal stress N1 measured concurrently with the shear stress
for the RHB data in Fig. 5.4 i. At low strain rates N1 ∝ γ̇2 this dependence is predicted
by some simple constitutive models for entangled polymer solutions and melts [5]. The
normal stress continues to increase above critical stress showing approximately N1 ∝ γ̇
dependence. Perhaps not surprisingly, the dependence of the ratio N1/γ̇ on γ̇ is very
similar to the dependence of σ on γ̇.

Fig. 5.6 i and 5.6 ii show the time dependence or transient behaviour of the shear
and normal stress as strain rate is stepped for an RHB and RHA sample. The flow curve
is loosely divided into 6 regions. In region A, the stress is proportional to strain rate -
here, the behaviour is Newtonian. In region B, shear thinning begins to occur. A stress
overshoot is observed at the beginning of each step. This overshoot is observed in semi-
dilute polymer solutions and is predicted by Eqn. 2.61. Region C marks the onset of the
stress plateau. After an initial stress overshoot, the stress slowly drops to its equilibrium
plateau value with a characteristic time that may greatly exceed τM . This sigmoidal
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Figure 5.4: i,iii and v) Pseudo steady-state flow curves of the RHB, RHA and RHB
samples. Arrows indicating increasing i) φ and v) [NaCl]. ii, iv and vi) Fitted parameters.
1ARES 2.3deg 50 mm cone-plate. 2ARES 2 deg 40 mm cone-plate. 3Extracted from [93].
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system conditions GM [Pa] τM [s−1] σc [Pa] γ̇c [s−1] σc/GM τM γ̇c
RHB 6.31 wt.% 79.6 0.786 56 3.16 0.7 2.5

7.94 wt.% 107 0.847 73 2.51 0.68 2.1
10 wt.% 158 0.856 104 1.58 0.66 1.4
7 wt.% 88.7 0.792 71 2.51 0.8 2.0
9 wt.% 138 0.837 101 2.00 0.73 1.7
10 wt.% 172 0.838 121 1.58 0.7 1.3
12 wt.% 213 0.89 141 1.58 0.66 1.4

RHA 60 mM 29.1 2.71 13.7 0.208 0.47 0.56
63.1 mM 34.7 4.25 22 0.323 0.63 1.4
70 mM 35.4 5.44 30.3 0.405 0.86 2.2

RHC 44.6 mM 18.6(33) 0.578(0.33) 18.8 3.16 1.0 (0.57) 1.8 (1.0)
50.1 mM 18.4 (31) 0.605 (0.35) 14.6 3.16 0.79 (0.47) 1.9 (1.1)
56.2 mM 20.7 (31) 0.624 (0.41) 15.2 2.51 0.73 (0.49) 1.6 (1.0)
70.8 mM 24.1 (32) 0.653 (0.48) 16.6 2.51 0.69 (0.51) 1.6 (1.2)
79.4 mM 25.3 (33) 0.662 (0.50) 18.3 2.51 0.72 (0.55) 1.7 (1.3)
126 mM 29.9 (36) 0.689 (0.52) 24.1 3.16 0.81 (0.68) 2.2 (1.6)

P105 25◦C 4 400 2 0.004 0.5 1.6

Table 5.2: Critical parameters for samples showing a stress plateau.The critical stress was
calculated from the average steady state stress on the plateau. The critical strain rate was
assigned to the first strain rate at which a sigmoidal relaxation in stress was evident. For a
given sample, the uncertainty in the critical stress and critical strain rate is conservatively
estimated to be 2% and 25% respectively. Bracketed values are for GM = Ge and τM = τr.
The P105 system is discussed in Chapter 6.

Figure 5.5: i) Normal stress difference N1 and ii) the ratio N1/γ̇ for the RHB samples.
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relaxation observed was described in Chapter 3. Region D is the stress plateau. At the
beginning of each strain rate step in this region, the stress overshoot is followed by a
damped oscillation. A fit to the damped oscillation

σ = σ0 +A sin[(t− t0)/τo + φ0] exp[−[(t− t0)/τd]p], (5.4)

with p = 0.5 is shown (in blue) on the right of Fig. 5.6 in several cases. Note that
the damping is not monoexponential. The characteristic oscillation time τo is clearly
different between the samples and decreases with increasing strain rate. This damped
oscillation appears to be superimposed on low frequency fluctuations. The amplitude
of these fluctuations also increases with strain rate. A slight upturn in the flow curve
is observed in region E. This could mark the onset of the high strain rate branch of
the flow curve. The sample is partially expelled in region F. This partial expulsion is
characterised by a drop in both the shear and normal stress. Some care must be taken with
the interpretation of the data in this region as significant low frequency fluctuations are
often present which might be mistaken for rheo-chaotic behaviour in the sample. Pseudo-
periodic fluctuations in stress in this region often appear to be correlated with the expelled
sample being dragged by the edge of the geometry. Notably absent in these data on the
plateau are significant stress fluctuations that might indicate the presence of rheo-chaos.

The behavior observed in the RHB and RHA samples is contrasted with that of
two samples that are known to exhibit significant stress fluctuations. The response of an
aqueous [CTAB]=0.05 M and [NaSal]=0.07 M wormlike micelles sample shown in Fig. 5.6
iii shows many similarities to the data shown in Fig. 5.6 i and ii. Towards the end of the
plateau the characteristic damping time τd approaches the dwell time. In region E the
stress begins to show oscillation of an apparently random amplitude. The normal stress
does not decrease and it was confirmed by direct observation that the sample was not
expelled - it appears to ‘vibrate’ in the gap. Large stress fluctuations are also observed
in an aqueous [CPCl]=0.04 M and [NaSal]=0.04 M sample shown in Fig. 5.6 iv. This
sample does not exhibit a clear stress plateau and unlike the sample shown in Fig. 5.6 iv
oscillations are not evident. It was notable that gently rolling a volumetric flask containing
the aqueous [CTAB]=0.05 M and [NaSal]=0.07 and the aqueous [CTAB]=0.05 M and
[NaSal]=0.07 M between the hands induces significant turbidity in the solution. This was
not observed in the RHB, RHA and RHC samples.

The measurements shown in Fig. 5.6 were made on a stress controlled rheometer
operated in strain controlled mode. Strain (rate) control on a stress controlled rheometer
is implemented via a feedback circuit - here the stress is dynamically adjusted to maintain
a constant strain rate. Potentially, the oscillations in stress observed in Fig. 5.6 are an
artefact of the feedback process between stress and strain rate. If this were the case, an
oscillation in strain rate would be expected. The green curve in Fig. 5.6 iii shows the ratio
γ̇(t)/γ̇×20. γ̇(t) is the ‘instantaneous’ strain rate reported by the instrument at each time
step and γ̇ average or apparent strain at each strain rate step. Very small fluctuations
are observed in this ratio. These fluctuations are approximately 300 times smaller than
the ratio of the instantaneous stress to average stress around t = 5400 s. Furthermore,
there is no obvious correlation between these small fluctuations and large fluctuations in
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Figure 5.6: Time resolved stress during a stepped strain rate test for four wormlike micelles
solutions (left). Expanded view showing the short time variation at selected points (right).
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stress. These observations seem to suggest that the feedback circuit is not significantly
influencing the measured stress.

The measurements shown in Fig. 5.6 were made with a 2 minute dwell time at each
strain rate step. In Fig. 5.7 i the dwell time is extended to 10 minutes to better resolve the
low frequency fluctuations. Fig. 5.7 i shows time resolved log-spaced stepped strain rate
measurements for a series of RHB samples of different concentrations. These data show
more clearly the sigmoidal relaxation in stress at the onset of the stress plateau. This
sigmoidal relaxation appears in all samples that exhibited a stress plateau. To quantify
the low frequency fluctuations, the ratio of the standard deviation of the stress to average
stress σSD/σavg was calculated for the last 5 minutes of data acquired at each strain rate
step. This ratio is shown in Fig. 5.7 ii. The ratio increases at the onset of thinning in
all samples and increases with weight fraction φ. Fig. 5.7 iii shows an expanded view
of the stress plateau around a step in strain rate. The oscillations in stress are clearly
more pronounced in the higher concentration samples. These data were fitted to Eqn. 5.4.
Fitted τo is shown in Fig. 5.7 iv. In contrast to τM which increases with concentration τo
decreases with increasing concentration. The green curve in Fig. 5.7 iii (and v) shows the
offset stress for a φ = 2 wt.% RHB sample multiplied by 20. The cyclic variation in the
stress is coherent with rotation of the experimental geometry. Notably, the period of this
oscillation is significantly larger than that of the damped oscillation. If rheo-chaos was
present, it would be expected that the stress would exhibit pseudo-periodic fluctuations
on the plateau. Pseudo-periodicity is hinted at in Fig. 5.7 vi. A double peaked structure
is observed three times (at A, B and C) in the stress measurements of the φ =10 wt.%
RHB sample. Clearly this might have occurred by chance and there is no evidence of this
pseudo-periodicity in the higher concentration samples, suggesting that rheo-chaos is not
occurring in these samples.

Differences have been observed in the rheology of ostensibly identical samples pre-
pared with CPCl from different suppliers suggesting a sensitivity to preparation and purifi-
cation methods used in the production of CPCl [33]. Sensitivity to CPCl is investigated
in Fig. 5.8. Here φ = 8.3 wt.% RHB samples were prepared using CPCl purchased
from Sigma, Arcos, Fluka and Amresco. Monohydrate and anhydrous CPCl are available
commercially. All samples tested here were prepared with monohydrate CPCl. Samples
Sigma1 and Sigma2 are two separate CPCl samples from Sigma. Sigma1 was used in the
preparation of most samples used in this thesis. Sigma2a and Sigma2b were prepared
with the same CPCl - the second sample was included to check on repeatability. Time
resolved flow curves are shown in Fig. 5.8 i. The data has been offset by constant amount
for clarity. The temporal fluctuations in stress are very comparable between the samples.
The zero shear viscosity and critical stress for the six samples is evaluated in Fig. 5.8 ii.
The critical stress for the six samples is very comparable. The zero shear viscosity is less
so.

Finally, the effect of experimental flow geometry on the measured stress is inves-
tigated in Fig. 5.9 and compared to measurements made with the reference 2 deg 40
mm acrylic cone - steel plate geometry. Multiple samples from different suppliers were
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Figure 5.7: i) Time resolved stress during a stepped strain rate test with a 10 minute dwell
time at each strain rate step for selected RHB samples. ii) Ratio of the standard deviation
to average stress over the last 5 minutes at each strain rate step. iii) Time resolved
stress following a step in strain rate showing a damped oscillation associated with a stress
overshoot. iv) Characteristic oscillation time τo of the stress overshoot with concentration.
Time resolved stress between v) t =9600-11500 s and between vi) t =10800-11400 s for
selected samples. Green curves show a cyclic variation in the stress which is coherent with
the rotation of the geometry.
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Figure 5.8: i) Time resolved stress during a stepped strain rate test comparing φ=8.3
wt.% RHB samples prepared with CPCl from different suppliers. Samples Sigma2a and
Sigma2b are prepared from the same batch of CPCl. ii) A comparison of the critical shear
stress and the zero shear viscosity measured for the six samples.

measured to check repeatability. In Fig. 5.9 i the φ=8.3 wt.% RHB samples were mea-
sured using a 1 deg 40 mm acrylic cone. The stress variation in this geometry is closer
to that of the idealised planar-Couette geometry. Quite remarkably, at around the strain
rate that the sample is expelled/fractured in the reference geometry, the samples exhibit
pronounced stress fluctuations which are reminiscent of those seen in Fig. 5.6 iii. Measure-
ments using a 2 deg 60 mm diameter steel cone are quite similar to those made with the
reference geometry. Notably, the sample is expelled/fractured at a slightly lower strain
rate and a slight step in stress observed with the reference geometry on the plateau is
exaggerated. This can be contrasted with the behaviour observed with a 4 deg 60 mm
steel cone. Here, the plateau is poorly resolved and the slight step in stress observed on
the plateau in the reference geometry is more pronounced. Together these measurements
clearly demonstrate that cone-angle and to a lesser extent cone size is influencing flow
behaviour. Measurements made with the 40 mm steel parallel-plate geometry are shown
in Fig. 5.9 iv. Interpretation of these data is less straightforward because of the inhomo-
geneous strain rate expected in this geometry. It is notable that the strain rate at which
the sample is expelled/fractured decreases with increasing gap size.

5.3.3 Direct observation

Many of the solutions examined here show a dramatic change in turbidity as temperature
is lowered. This increase in turbidity can be seen in Fig. 5.10 i which shows photographs of
a sample at temperatures of T=22 and 16 ◦C. The sample is on a Peltier element which is
painted half black to enhance contrast. This turbidity rapidly disappears on reheating to
T=22◦C. A change in turbidity is often associated with a phase change in complex fluids.
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Figure 5.9: Time resolved stress during a stepped strain rate test comparing φ=8.3 wt.%
RHB samples in different factory i) 1 deg 40 mm acrylic cone - steel plate, ii) 2 deg 60
mm steel cone - steel plate, iii) 4 deg 60 steel cone - steel plate and iv) 40 mm steel plate
- steel plate flow geometries. The blue curve shows measurements made with a 2 deg 40
mm acrylic cone - steel plate ‘reference’ geometry.



84 CHAPTER 5. RHEOMETRY AND VISUALISATION

Figure 5.10: i) Photographs of a φ =8.3 wt.% RHB sample on a partly blackened Peltier
plate at T =22 and 16 ◦C. ii) Transmission light microscope images of a refrigerated φ =11
wt.%. RHB sample on heating to room temperature.

The light microscope study shown in Fig. 5.10 ii indicates that a crystalline precipitate
forms on cooling - a phase change is indeed occurring.

Not surprisingly, this phase change is correlated with significant changes in the
mechanical properties of the solution. This is demonstrated in Fig. 5.11 i-ii where both
the linear response and visual appearance of the φ =8.3 wt.% sample is observed as
temperature is stepped between T =22 and 18, 22 and 16 or 22 and 14 ◦C over 400 s.
G∗(ω) was monitored at a frequency of f=1 Hz and the sample was photographed at 1 s
intervals. Fig. 5.11 ii shows the image intensity over the line indicated in 5.10 (left) with
time. Clouding correlates with changes in G∗(ω). Note that the sample rapidly recovers
its initial rheology on reheating to T = 22 ◦C. Changes in the mechanical properties of
the fluid were used to determine the temperature at which crystallisation occurs in the
RHB, RHA and RHC samples. This phase transition is shown in Fig. 5.11 iii-v and
was determined from measurements of G′(ω) and G′′(ω) at 1 Hz as the temperature was
ramped down at dT/dt = −1 ◦ C/minute from T =25 ◦C. The transition temperature
appears to be fairly well correlated with τM . This correlation is not perfect however - the
second peak present in τM at high NaSal concentration is not reflected in the measurements
of the transition temperature.

The visual behaviour of φ = 5.0 and 8.3 wt.% RHB solutions under shear flow
conditions were examined in homemade optical cone-plate, parallel-plate and cylindrical-
Couette flow geometries. The rheo-optical geometries used in this thesis were not di-
rectly temperature controlled. Instead, the sample temperature was regulated by an air-
conditioner/inverter located in the laboratory. This air-conditioner was able to maintain
the room temperature at 22◦C to within 0.5◦C.

In the cone-plate and parallel-plate geometries, the sample was mounted on a static
transparent glass plate and illuminated from below. Shear was applied to the sample using
either a transparent 4 deg 60 mm acrylic cone or a homemade 60 mm glass disc with a 1.5
mm gap. The strain rate was stepped linearly in γ̇ = 0.5 s−1 steps with a dwell time of 120
s at each step. The shear stress was recorded continuously. The sample was photographed
at 5 s intervals from above at a scattering angle of θ ≈ 30 deg with a fixed exposure time
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Figure 5.11: A comparison between i) mechanical and ii) visual behaviour of a 8.3 wt.%
RHB sample with temperature. Phase transition temperatures of selected iii) RHB, iv)
RHA and v) RHC samples.
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of approximately 1 s.

The measured stress with photographs at indicated strain rates are shown in Fig.
5.12 and 5.13. As the strain rate is increased, both samples exhibit shear induced turbidity.
For a ‘well behaved’, fluid the local strain rate is expected to be approximately constant
in the cone-plate geometry and to vary radially in the parallel-plate geometry. If turbidity
was correlated with strain rate, it would be expected that scattering would vary radially
in both the cone-plate and parallel-plates geometries. Radial dependence in the cone-
plate geometry could be expected because of the radial variation in the gap size. Radial
dependence in the scattered intensity is observed in the φ = 5.0 wt.% RHB wormlike
micelles solution at low strain rate in both cone-plate and parallel-plates geometries. The
turbidity appears to saturate at higher strain rates. Similar behaviour is observed for
the higher concentration φ = 8.3 wt.% RHB sample at lower strain rates. Above γ̇ > 2
s−1 turbid rings or spirals are observed in the sample. These rings/spirals slowly migrate
radially through the fluid. This shear induced turbidity almost immediately disappears on
the cessation of shear. Fig. 5.12 v-vi and 5.13 v-vi show the image intensity with time over
the radial line indicated in the middle photographs. Fig. 5.12 v-vi clearly demonstrates
that turbidity varies smoothly with strain rate in the φ = 5.0 wt.% RHB sample in both
the cone-plate and parallel-plate geometries. This can be contrasted with the behaviour
of the φ = 8.3 wt.% RHB sample in both the cone-plate and parallel-plate geometries.
Significant time-space variations in the turbidity are observed beyond γ̇ = 2 s−1.
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Figure 5.12: Mechanical and visual behavior of a φ =5.0 wt.% RHB sample in optical
cone-plate (CP) and optical parallel-plate (PP) geometries during a stepped strain rate
test. i-ii) Measured stress with stepped strain rate. iii-iv) Photographs of the sample at
points indicated on the flow curve. v-vi) Average image intensity across the line shown
with time/strain rate.
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Figure 5.13: Mechanical and visual behavior of a φ = 8.3 wt.% RHB sample in optical
cone-plate (CP) and optical parallel-plate (PP) geometries during a stepped strain rate
test. i-ii) Measured stress with stepped strain rate. iii-iv) Photographs of the sample at
points indicated on the flow curve. v-vi) Average image intensity across the line shown
with time/strain rate.
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Figure 5.14: i-ii) Visual behavior of a sheared φ =8.3 wt.% RHB sample in an optical
cylindrical-Couette geometry during a stepped shear rate test. iii) Image intensity over
the vertical line shown on the left with time showing the formation of turbid rings along
the vorticity axis when the strain rate is stepped from γ̇ = 0 to the strain rate indicated.
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In the optical cylindrical-Couette geometry, the sample was trapped between the
surfaces of a ro=25 mm Perspex cup and a blackened aluminium ri=24 mm bob. The
sample was illuminated through the side wall of the cup and photographed at 5 s intervals
as the strain rate was stepped as above. Typical results are shown in Fig. 5.14 i for an
8.3 wt.% sample. No evidence of shear induced turbidity is seen here. Fig. 5.14 i and ii
are included to demonstrate that careful illumination is required to observe this induced
turbidity. In Fig. 5.14 iii an expanded laser beam was directed up the vorticity axis
and the sample was filmed through the side wall of the cylindrical-Couette using a high-
definition camera. The strain rate was stepped between γ̇=0-1-0-2-0-3-0-4-0-5 s−1 with a
dwell time of 1 minute at each strain rate step. Directly after the step to γ̇=2, 3, 4 and 5
s−1 a series of turbid rings formed along the vorticity axis. These rings rapidly propagated
up the vorticity axis before dissipating. The time evolution of the rings is shown in Fig.
5.14 iii (right). These rings may be connected with the transient oscillation seen in stress
following a step in strain rate discussed in the last section. As seen in Fig. 3.8 vi [45]
a turbid band of variable width was seen to form at the inner wall in a CTAB/NaNO3

wormlike micelles solution sheared in a cylindrical-Couette geometry. In contrast to the
rings observed here, this variable width turbid band [45] did not appear to dissipate with
continued shearing.

5.4 Discussion

The slight deviation from the behaviour predicted by the reptation-reaction model in the
fast break limit appears to be quite common although not widely acknowledged in the
literature. This deviation is easy to overlook if the entire ellipse is fitted to a semicircle,
suggesting that the reptation-reaction model needs slight modification.

τb and τrep were not determined separately for the RHB and RHA using the reptation-
reaction model. In both the RHB and RHA samples the Rouse/breathing modes obscure
the high frequency behaviour predicted by the reptation-reaction model. The effect of
these modes on the rheology of the RHB and RHA samples will be examined in the next
chapter.

This experimental σc/GM is very comparable to the value σc/Ge = 0.67 expected
according to the reptation-reaction model. The experimental γ̇cτM are consistently lower
than the predicted values. γ̇c is difficult to estimate from the data - this difference may be
due to a systematic underestimation of γ̇c. On the basis of the RHB and RHA measure-
ments, it might be concluded that a stress plateau is inevitable if the sample is sufficiently
Maxwell-like. The RHC measurements demonstrate that this is not the case. A stress
plateau is observed at intermediate concentrations. At higher concentrations, the system
is more Maxwell-like but does not show a stress plateau.

The fluctuations in shear stress observed in the RHB, RHA samples in Fig. 5.6
samples show qualitative differences to the fluctuations seen in the aqueous [CTAB]=0.05
M and [NaSal]=0.07 suggesting qualitative differences in the underlying mechanical prop-
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erties of these fluids. The fluctuations seen in Fig. 5.6 iii are similar to those seen in Fig.
5.9 i indicating a sensitivity to experimental flow geometry and that some care must be
taken with inferring underlying mechanical behaviour from the measured flow curve. That
the samples measured in the parallel-plate geometry fractured at a lower strain rate with
larger gap sizes suggests that edge effects play a role in determining flow stability of the
fluid.

Turbid rings were observed in an aqueous [CPCl]=[NaSal]=40 mMol solution in both
the cone-plate and parallel-plate geometries in [109]. As demonstrated by Fig. 5.6 iv this
system is unlike the RHB, RHA and RHC systems in that it does not show a clear stress
plateau and shear thickens. It has been demonstrated here that turbid rings also form in
systems that exhibit a stress plateau.

The correlation between shear thinning and turbidity here suggests that the two are
in some way connected. Turbid rings were observed in the φ =8.3 wt.% RHB sample in
both the cone-plate and parallel-plate geometries. Rings were not observed in the φ =5.0
wt.% sample. From measurements made in the reference geometry the φ =8.3 wt.%
showed a stress plateau whereas the φ =5.0 wt.% did not. Turbid rings were observed
to stack along the vorticity axis of the cylindrical-Couette geometry with the region of
highest turbidity nearest the moving inner wall. The vorticity axis is directed radially in
both the cone-plate and parallel-plate geometry - this space-time variation is reminiscent
of the behavior illustrated in Fig. 5.13 v-vi.
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Chapter 6

An experimental test of the
Poisson-renewal model

6.1 Introduction

The validity of the reptation-reaction model, which describes the low frequency linear
rheology of wormlike micelles solutions, was examined using mechanical rheometry in
Chapter 5. The reptation-reaction model describes the low frequency linear rheology of
wormlike micelles solutions. The Poisson-renewal model extends the reptation-reaction
model to include the influence of high frequency relaxation modes on the linear rheology.
Historically, this model has been difficult to test because of the mechanical limitations of
conventional rheometry. In recent years, a new technique called microrheology has been
developed in which bulk rheological properties are inferred from the motion of microscopic
probe particles embedded in the fluid. The upper frequency limit of this technique typically
exceeds that of conventional rheometry by 3-4 decades making it a potentially useful
method for testing the Poisson-renewal model.

In this chapter microrheology is introduced. Dynamic light scattering based mi-
crorheology along with conventional mechanical rheometry is used to examine the linear
rheology of selected wormlike micelles solutions. These measurements are compared to the
behaviour predicted by the Poisson-renewal model. Finally, the feasibility of a diffusion
NMR based microrheology technique is considered.

6.2 Microrheology

According to the Fluctuation-Dissipation theorem, the mean square displacement 〈∆r2(t)〉
can be expressed in terms of the inverse Fourier transform of the mechanical impedance
Z(ω). Alternatively, the impedance can be expressed in terms of the Fourier transform
(F) of the mean square displacement (MSD). As noted earlier η∗(ω) is the mechanical

93
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impedance of a complex fluid implying that

η∗(ω) =
[

kBT

πaω2F [〈∆r2(t)〉]

]
, (6.1)

or

G∗(ω) =
[

kBT

iπaωF [〈∆r2(t)〉]

]
. (6.2)

Eqn. 6.1 or 6.2 are known as the Generalised Stokes-Einstein relation [110].

In order to determine G∗(ω) the Fourier transform of 〈∆r2(t)〉 must be calculated.
Dasgupta and co-workers outlined a method for inverting the MSD to determine G∗(ω) in
reference [110]. The method assumes that the MSD exhibits power law behaviour locally.
With this assumption G∗(ω) can be written

G∗(ω) = G(ω) exp [iπα(ω)/2] , (6.3)

where

G(ω) =
kBT

〈∆r2(1/ω)〉Γ [1− α(ω)]
, (6.4)

and

α(ω) =
∂ ln〈∆r2(τ)〉

∂ ln τ
. (6.5)

In Eqn. 6.4, 〈∆r2(1/ω)〉 is the magnitude of 〈∆r2(τ)〉 evaluated at τ = 1/ω

Eqn. 6.2 relates the bulk rheological parameter G∗(ω) of a host medium to the MSD
of an immersed probe. A measurement of the MSD of the probe can therefore be used to
determine G∗(ω). In Eqn. 6.2 it is implicitly assumed that the host medium is continuous.
However, complex fluids exhibit heterogeneity or granularity on small length scales. Eqn.
6.2 is only valid when the dimensions of the probe are much larger than the granularity
of the host medium.

Because Brownian motion is most readily observed in microscopic particles, micro-
scope probes are commonly used. Determination of the bulk rheological parameters from
the Brownian motion of microscopic probes is called microrheology (some authors make a
distinction between ‘passive’ microrheology where the probes are perturbed by Brownian
forces as above and ‘active’ microrheology where a known force is actively applied to the
microscopic probe and the resulting motion measured). As with conventional mechani-
cal rheometry, sensitivity to G∗(ω) is limited at high frequency by inertia. Because the
probes used in microrheology are microscopic, inertia effects only become significant at
very high frequencies. As noted in Chapter 4, both photo-correlation spectroscopy (PCS)
and diffusing wave spectroscopy (DWS) are dependent on a probe particle’s MSD and can
potentially be used for microrheology. In general, only DWS is used for reasons that will
become evident.
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6.3 Measurements and analysis

6.3.1 Microrheology

RHB wormlike micelles solutions at weight fractions of φCPCl+NaSal= 2.51, 3.16, 3.98 and
5.01 wt.% doped with approximately 1.0 wt.% 1.0 µm diameter latex sphere (Polyscience)
were examined using DWS microrheology. The latex spheres were provided as an aque-
ous suspension which itself contains a surfactant to prevent aggregation. The spheres
were ‘washed’ before use to remove these dissolved additives by repeatedly centrifuging,
decanting and diluting the commercial suspension. RHB solutions at weight fractions of
φCPCl+NaSal=1.25, 1.58, 2.00 and 2.51 wt.% doped with approximately 2× 10−5 wt.% 1.0
µm latex sphere were examined using PCS microrheology.

The optical set-up for the DWS microrheology experiment is shown schematically
in Fig. 6.1 i. Light from a polarised 15 mW, λ = 633 nm, HeNe laser (Melles Griot) was
expanded using a beam expander (Edmund Optics) directed through a variable neutral
density filter (Edmund Optics, not shown in illustration) and through a hole in a black
acrylic stop into a 2 mm path length cuvette (Stana) containing the doped sample. Diffuse
light transmitted through the cuvette and scattered through a 1 mm hole in the acrylic
stop was filtered by a polariser, collected by a GRIN objective and directed by a fibre
optic to a photon counting photomultiplier (PMT) (correlator.com). The hole in the
acrylic stop was sighted on the centre of the back surface of the cuvette to ensure that
only light from this central region was collected. If scattering is insufficient, the diffusion
approximation breaks down. Light scattered through these ‘sub-diffusive’ paths will have a
residual polarisation of that of the incident beam whereas diffuse light is unpolarised. The
polariser, which is crossed with the incident beam, is used to exclude these sub-diffusive
paths. The output of the PMT was autocorrelated at a Flex02OEM-12C programmable
hardware correlator (correlator.com). The correlator was provided as a PCB and was
supplied with c source code and a .dll library - some work was required to render it
operational (rather mysteriously it only worked with some host PCs). The correlator
timing was verified using a precision optical chopper. The correlation resulting from
modulating the intensity with a chopper is shown in Fig. 6.2. The correlation shows a
triangular waveform at intermediate delay times with a period of the chopping period -
aliasing is present at longer times.

The optical set-up for the PCS microrheology experiment is shown in Fig. 6.1 ii.
This experiment was set up on a Malvern 4700 Autosizer. Light from a polarised 500
mW, λ = 532 nm, Nd:Yag laser (JDS uniphase) was focused and directed into a 7 mm
diameter cylindrical cuvette containing the sample mounted in a water bath. The water
bath was used to minimise both scattering and focusing by the exterior surface of the
cuvette and for temperature control. Scattered light was spatially filtered by a beam stop
used to localise the scattering volume, and collected at an avalanche photo diode (APD)
supplied with the Autosizer. Correlation was performed on the Flex02OEM-12C. The
spatial filter/APD were goniometer mounted. A scattering angle of θ = 20 deg was chosen
to minimise the contribution of scattering from the wormlike micelles to the correlation
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Figure 6.1: Experimental set-up for the i) DWS and ii) PCS microrheology measurements.

Figure 6.2: Confirming timing of the correlator with a precision optical chopper.
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while keeping the total measurement time practical.

In both PCS and DWS the measured intensity correlation is generally of the form

〈I(0)I(t)〉
〈I〉2

= 1 + β|g1(t)|2. (6.6)

β is a coherence factor that depends on characteristic speckle size, collection area and
depolarisation effects (Fig. 4.7 demonstrates that depolarisation affects β). If the collec-
tion area is smaller than the characteristic speckle size and depolarisation effects can be
neglected β ≈ 1. β can be determined experimentally by extrapolating the correlation
back to a delay time t = 0. In all cases here β ≈ 1. The measured DWS and PCS corre-
lation |g1(t)|2 are shown in Fig. 6.3 i-ii. The peak emerging at delay time t ≈< 1× 10−6

is a PMT artefact called after-pulsing. This feature can make the determination of the
coherence factor difficult if the characteristic times of the correlation are small. This was
not a problem here however. It can be eliminated by cross-correlating the output of two
matched PMTs as will be demonstrated in chapters 7 and 8.

The measured |g1(t)|2 correlation in the DWS experiment (Fig. 6.3 i) was numeri-
cally inverted assuming values of l∗ = 0.25 mm (Fig. 4.4 ii) and γ0 = 1.7 [111] using Eqn.
4.79 to give the probe’s MSD (Fig. 6.3 iii). From the data, it is seen that 〈∆r2(t)〉 ∝ t
between t ≈ 10−6 − 10−5 s and t ≈ 3 − 30 s indicating free diffusion of the probes. On
intermediate time scales 〈∆r2(t)〉 ∝ tp with p < 1, the probe diffusion is sub-diffusive. The
measured MSD was smoothed using an interpolating spline and G∗(ω) calculated using
Eqn. 6.3, 6.4 and 6.5. The mechanical and optical rheological spectra are compared in
Fig. 6.3. The optical spectrum shows many similarities to the mechanical spectrum and
qualitatively shows the behaviour predicted by the Poisson-renewal model. However, there
is a clear difference in the amplitude G∗(ω) between the optical and mechanical measure-
ments. The amplitude of G∗(ω) is sensitive to the choice of l∗. Even in cases where l∗ has
been measured independently using static light scattering, the optically determined G∗(ω)
has been found to differ from mechanical measurements by factors of up to 1.5 in wormlike
micelles solutions [112], suggesting that the mismatch in amplitude observed may not be
unexpected.

The measured |g1(t)|2 correlation in the PCS experiment (Fig. 6.3 ii) was numeri-
cally inverted assuming values of q = (4π×1.33)/(532×10−9)× sin [20π/360] = 5.46×106

m−1 using Eqn. 4.60 to determine the MSD (Fig. 6.3 iv) and the MSD inverted using
Eqn. 6.3, 6.4 and 6.5 (shown in Fig. 6.3 iii). As was indicated by the MSD inferred
from the DWS measurements at both short and long times, the probe particles undergo
free diffusion. At intermediate times, the probe’s diffusion is restricted. In this case, the
mismatch between the optical and mechanical G∗(ω) measurements is more dramatic.

The characteristic time of g1(t) for free diffusion in PCS is τPCS = [q2D]−1, whereas
in a DWS measurement it is τDWS ≈ [2k2D/np]−1 where np is the most probable number
of steps in the light path which occurs at the maximum of Gn(ri, ro, l∗). In a transmission
DWS measurement np is typically around np ≈ 10. For smaller angles sin2 θ ≈ 0.01− 0.1
leading to a ratio of characteristic times τPCS/τDWS ∼ 100 − 1000. As a consequence,
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Figure 6.3: DWS and PCS microrheological measurements of the RHB samples at the
weight fraction indicated. i-ii) Normalised DWS and PCS correlations were used to deter-
mine iii-iv) the MSD of the probes and v-vi) G∗(ω) of the host medium.
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PCS measurements take far longer and are much more likely to be contaminated by the
diffusion of impurities (dust) through the beam in the water bath. The undoped wormlike
micelles solutions examined showed weak isotropic scattering whereas the larger probes
preferentially scatter light in the forward direction. The time dependence of these two scat-
tering processes will almost certainly be different - scattering from the micelles effectively
contaminates the measurements of G∗(ω). To minimise this contamination, measurements
can be made at smaller angles where scattering from the probes dominates. However, this
increases the characteristic time τPCS and sensitivity of the measurement to dust. The
concentration of probes can be increased but this may lead to multiple scattering. The
intensity of the light scattered in PCS is generally much smaller than that observed in
DWS. To compensate, a more powerful laser can be used. However, this can lead to beam
heating of the sample (the 500 mW laser used for the PCS measurements was sufficiently
powerful to make black tape smoke at the beam waist). The difference between the optical
and mechanical spectra may be due to contamination by dust, contamination by scattering
from the micelles, or beam heating.

6.3.2 Mechanical rheometry

As noted earlier, inertia influences the measured rheology at high frequencies, potentially
obscuring the effect of high frequency modes. In the last section the low inertia technique,
microrheology was used to reveal these modes. In this section the influence of these modes
on the linear rheology is revealed using conventional rheometry with samples carefully
selected for their slow dynamics. Here, wormlike micelles solutions composed of: 1) 42.5
g/L of phenylethanol (Alfa Aesar) in an aqueous 5 wt.% P105 pluronic (BASF) solution
and 2) an RHA wormlike micelles solution with [CPCl]=0.100 M and [NaSal]=0.065 M
(Sigma-Aldrich) in water were examined as a function of temperature using conventional
mechanical rheometry.

P105 pluronic is a three unit block copolymer PEO-PPO-PEO composed of polyethy-
lene oxide and polypropylene oxide. Because of differences in the hydrobicity of the PEO
and PPO structural units, it behaves like a ‘gemini’ surfactant with a hydrophobic PPO
head and two hydrophillic PEO tails. In this solution, it forms inverted (or hairy) worm-
like micelles with the PPO head at the core and PEO tails directed out into solution (see
[113] and references therein).

Measurements of the linear rheology with temperature are shown in Fig. 6.4. The
measurements of the P105 sample were challenging because of the system’s extremely
slow dynamics. Because of the long time (1-2 days) required to resolve the low frequency
behaviour, special care was taken to avoid evaporation.

The P105 wormlike micelles solution showed an increase in turbidity on heating - an
increase in turbidity on heating was not observed in the other wormlike micelles solutions
studied here. This is illustrated in Fig. 6.4 v which shows a series of photographs of
the sample in a glass cuvette equilibrated at the temperature indicated for an hour. At
around T = 27 ◦C the turbidity of the sample begins to sharply increase - this increase
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Figure 6.4: Mechanical measurements of the linear rheology of a i-ii) RHA and iii-iv)
P105 wormlike micelles solution with temperature. Arrows indicate increasing tempera-
ture. v) Direct observation of the P105 wormlike micelles solution sample with increasing
temperature. vi) Optical micrographs of the P105 sample on heating.
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in turbidity may signal that a phase transition is occurring. Fig. 6.4 vi shows optical
transmission micrographs of the same sample between coverslips with gentle heating from
ambient with a hairdryer. A dramatic change in texture is observed on heating, again
suggesting a phase transition. Turbidity was not observed when the sample was cooled
down to temperatures of T = 4 ◦C.

6.3.3 Analysis

The Poisson-renewal model depends on five parameters: 1) G0, the initial shear modulus
which scales the amplitude of the complex shear modulus (G∗(ω) ∝ G0); 2) the ratio le/l̄,
where le is the entanglement length and l̄ is the average length of the wormlike micelles;
3) the ratio τD0/τb, where τD0 is a scaled reptation time (τD0 = τrep/π

2) and τb is the
characteristic breakage and recombination time; 4) α, which relates the amplitude of the
initial shear modulus G0 to the elastic shear modulus Ge = G0(1 − α × le/l̄) - in [15] a
constant value of α = 1 was assumed and 5) ω/τD0 which is scaled angular frequency.
Typical behaviour predicted by the Poisson-renewal model is shown in Fig. 6.5 ii-iii. The
parameters chosen for the curves are listed in Table 6.1.

G0 and τD0 are scaling factors which scale the amplitude and frequency offsetting
logG∗(ω) vertically or horizontally. The dependence on the remaining parameters le/l̄,
τD0/τb and α is illustrated in Fig. 6.5 iii-iv as a function of ω/τD0. As the ratio τD0/τb
increases, the local maximum in G′ (at [ωLO, GLO] - see Fig. 6.5 i) is shifted to higher
frequencies producing a more Maxwell-like response. As the ratio le/l̄ is reduced, the high
frequency intercept (at [ωHI , GLO]) along with the local minimum in G′′ (at [ωmin, G′′min])
is shifted to higher frequencies while the depth of the G′′ minimum increases (G′′min de-
creases). Increasing α reduces the depth of the G′′ minimum (G′′min increases) having little
effect on the high frequency intercept ([ωHI , GLO]).

Granek and Cates [15] noted that the Poisson-renewal model predicted that

G′′min
G′ext

≥ le
l̄
, (6.7)

where G′ext is an estimate of Ge obtained by extrapolation of a tangent to the parametric
G′(ω) versus G′′(ω) Cole-Cole plot to a point G′′(ω) = 0. The quantity 2GLO ≈ Ge
(roughly) and requires no extrapolation. The dependence of the ratio G′′min/(2GLO) on
both le/l̄ and τD0/τb is illustrated in Fig. 6.6 i for α = 1. For smaller values of τD0/τb
the ratio G′′min/(2GLO) is indeed close to the ratio le/l̄. For larger values of τD0/τb the
ratio is larger than le/l̄. It is noted here that the ratio ωmin/ωLO also depends on le/l̄
and τD0/τb - this dependence is illustrated in Fig. 6.6 ii. Fig. 6.6 i and 6.6 ii can be
combined to give the graphical solution shown in Fig. 6.6 iv. This graphical solution can
be used to determine le/l̄ and τD0/τb from measurements of G′′min/(2GLO) and ωmin/ωLO
(for α = 1). The dependence of the ratio κ = τLO/τD0, where τLO = 1/ωLO on le/l̄ and
τD0/τb, is illustrated in Fig. 6.6 iii. Clearly, κ shows a strong dependence on τD0/τb but
only weak dependence on le/l̄. These data can be used to construct the second graphical
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Figure 6.5: Dependence of the Poisson-renewal model on adjustable parameters. i) Model
G∗(ω) data with points of interest. ii-iii) Model G∗(ω) for parameters listed in table 6.1.
Dependence of G∗(ω) on the parameters τD0/τb, le/l̄ and for iv-vi) α = 1 or for vi-ix)
α = 2.
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Figure 6.6: i) Dependence on le/l̄ and τD0/τb of i) G′′min/(2GLO), ii) ωLO/ωmin and iii)
κ = τLO/τD0. i-ii can be used to construct the graphical solution iv) which can be used
to determine τD0/τb and le/l̄ from measurements of ωLO/ωmin and G′′min/(2GLO). iii can
be used to construct the graphical solution v) which can be used to determine the ratio
κ = τLO/τD0 from τD0/τb and le/l̄.

solution shown in Fig. 6.6 v. Using values of le/l̄ and τD0/τb from the first graphical
solution, κ and τD0 = κτLO can be determined. G0 can be determined using the relation
G0 = Gext/(1 − le/l̄). The graphical solution is demonstrated using data shown in Fig.
6.5 ii-iii. Ge is compared to Gext and 2GLO in table 6.2. As illustrated in this table, Gext
is generally a much better estimate of Ge than 2GLO and should be used to estimate Ge
and G0 = Ge/(1− le/l̄).

The preceding analysis presupposes that the Poisson-renewal model is an accurate
description of the linear rheology of wormlike micelles solutions. To demonstrate that the
model is accurate, it must be demonstrated that the model can reproduce experimental
data (within experimental error). To verify that the model is an accurate description of
the rheology of wormlike micelles, experimental data were fitted to the Poisson-renewal
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No. G0 τD0 le/l̄ τD0/τb τLO ωLO/ωmin G′′min/(2GLO) log κ
1 100 10 0.067 3 7 0.021 0.078 -0.16
2 1 1 0.10 1 1.3 0.026 0.10 0.14
3 0.01 100 0.02 250 4.0 0.014 0.039 -1.4
4 100 10 0.01 50 1.3 0.0017 0.018 -0.88
5 1 0.1 0.05 0.0025 2.6 0.00035 0.059 1.4
6 0.01 1 0.01 0.01 0.17 0.000015 0.018 1.2

Table 6.1: Parameters used in the calculation of the model data presented in Fig. 6.5 i-ii).
τLO, ωLO/ωmin and G′′min/(2GLO) were estimated from the data shown in Fig. 6.5. These
estimates are plotted in the graphical solution shown in Fig. 6.6 iv-v) and are identified
by the numbers 1-6. Note that the locations of the estimates in the graphical solutions
are consistent with assumed le/l̄, τD0/τb and τD0 values.

No. G0 Ge Gext 2GLO
1 100 93 90 79
2 1 0.90 0.90 0.72
3 0.01 0.0095 0.0095 0.0094
4 100 99 97 92
5 1 0.95 1.0 0.34
6 0.01 0.0099 0.01 0.0040

Table 6.2: Model Ge values for the data presented in Fig. 6.5 i-ii) with a comparison to
an estimate based on extrapolated Gext and 2GLO.
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model. That is, the function

χ2 =
N∑
i=1

[
logG′i,exp − logG′i,mod

]2

σ′2i
+

[
logG′′i,exp − logG′′i,mod

]2

σ′′2i
, (6.8)

where G′i,exp and G′′i,exp are the experimental data and G′i,mod(G0, τD0, le/l̄, τD0/τb, α) and
G′′i,mod(G0, τD0, le/l̄, τD0/τb, α) are model data points, was optimised to minimise χ2. σ′2i
and σ′′2i are weighting factors describing the experimental variance in the (log scaled) data
due to random and systematic errors. These variances were not measured. For higher
viscosity samples, the ‘scatter’ in the logG∗(ω) measurements appeared to be roughly
uniform - it was assumed here that the variance in the log scaled data was constant for
all measurements, that is, σ′2i = σ′′2i =constant. If these weighting factors are known,
the minimum χ2 value can be interpreted quantitatively. Because these variances were
not known, a quantitative interpretation is not possible and the fit will be interpreted
qualitatively here.

Because the calculation of G∗(ω) is computationally intensive, a method based on
both grid searching and conventional fitting was employed to minimise the total number of
G∗(ω) evaluations. Here G∗grid was evaluated on a four dimensional, le/l̄× τD0/τb×α×ω,
40 × 90 × 12 × 51 grid for le/l̄ = 0.01 − 0.891, τD0/τb = 10−3 − 106, α = 0.25 − 3.00,
f = 10−4 − 106 Hz, (le/l̄, τD0/τB and f were log spaced, α was linearly spaced in 0.25
increments) for G0 = 1 and τD0 = 1. G∗grid took about a month to evaluate on a 2 GHz
PC. The experimental data were fitted using a conventional least squares fitting technique
(Levenberg-Marquart) at each of 40 × 90 × 12 le/l̄ × τD0/τb × α values to determine
40× 90× 12 best fitting G0 and τD0 values along with 40× 90× 12 χ2 values. The overall
best fitting combination G0, τD0, le/l̄, τD0/τb and α corresponds to the lowest χ2 value.
The fit procedure is illustrated in Fig. 6.7. Here G∗grid, calculated for particular le/l̄, τD0/τb
and α, is scaled by test values of G0 and τD0 to give G∗mod. G0 and τD0 are optimised to
minimise the difference between the model and experimental data G∗exp (Fig. 6.7 i). The
minimum χ2 value associated with the best fitting G0 and τD0 at each le/l̄, τD0/τb and α
is used to construct three dimensional χ2 surface in le/l̄, τD0/τb and α. A slice through
this surface is shown for α = 1 in Fig. 6.7 ii. Note that the surface has a well defined
minimum. For (le/l̄)3 > 0.1 × τD0/τb the apparent elastic modulus increases above one.
This behaviour is evident in Fig. 6.5 iv-ix for the curves marked with a star ?. Values of
(le/l̄) and τD0/τb such that (le/l̄)3 > 0.1×τD0/τb were excluded from the fit. The excluded
region is shown in white in Fig. 6.7 ii.

Seven sets of experimental data were fitted to the Poisson-renewal model. The data,
over the frequency domain fitted, along with the best fit are shown in Fig. 6.8. The ‘RHB-
DWS’, ‘P105-mechanical’ and ‘RHA-mechanical’ measurements were described earlier in
this chapter. The ‘RHB-mechanical’ ‘RHC-mechanical’ measurements were described in
Chapter 5. The ‘RHA-literature’ data are for a [CPCl]=100 mM and [NaSal]=60 mM
RHA system measured at T = 20− 40 ◦C using conventional mechanical rheology, DWS
microrheology and a recently developed high frequency mechanical rheological technique.
These data were extracted from [106].
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Figure 6.7: i) Fitting the experimental data for particular le/l̄,τD0/τb values. ii) logχ2

surface as a function of le/l̄ and τD0/τb for α = 1 (darker greys correspond to smaller χ2

values).

The agreement between both the ‘RHB-DWS’ measurements (Fig. 6.8 i) and the
‘P105-mechanical’ measurements (Fig. 6.8 iii) and fitted curves is ‘poor’. Possible ex-
planations for these differences are discussed later. The agreement between the ‘RHA-
literature’ (Fig. 6.8 ii), ‘RHA-mechanical’ (Fig. 6.8 iv) and ‘RHB-mechanical’ (Fig. 6.8
v and vi) and fitted curves is better. Fig. 6.8 viii-ix compares le/l̄, τD0/τb, τD0 and G0

determined using the graphical solution with values determined from the fit with α = 1
for the ‘RHA-mechanical’ and ‘RHB-mechanical’ measurements. The graphical solution
values and fitted values show reasonable agreement indicating that the two methods are
self-consistent.

Fitted parameters are shown in Fig. 6.9 assuming a constant value of α = 1 in Fig.
6.9 i-vi and allowing the α value to vary in Fig. 6.9 vii-xii. To probe the sensitivity of
the fit to the fitted parameters and to get an estimate of the errors, 2% Gaussian noise
was injected into the measured data and this synthetic data set was fitted using the same
fitting algorithm six times to give six separate estimates of the fitted parameters (this
approach to error estimation is discussed in [114]). Error bars in Fig. 6.9 indicate the
standard deviation of each fit parameter over the six fits. Not surprisingly, the inclusion
of α as a fitted parameter generally increases the error in the remaining fitted parameters,
eliminating the systematic variation seen Fig. 6.9 ii and vi. The ratio τD0/τb was calculated
from the τb/τrep values shown in Fig. 5.3 vi and are included in Fig. 6.9 vi (indicated by
square symbols) to demonstrate consistency.

The fitted parameters le/l̄, α and Ge = G0(1 − αle/l̄) were used to estimate the
average length l̄ of the wormlike micelles using Eqn. 3.4 and 3.5. The average length was
estimated assuming persistence lengths lp of either 10, 15 or 20 nm (Granek and Cates
assume that lp = 15 nm in [15]) and all three estimates are shown for α = 1 and for α
unconstrained. Because l̄ ' (l̄/le)× (ξ5/3/l

2/3
p ) increasing lp for a given fitted l̄/le reduces

the estimate of the average length l̄. Estimates of the average micelle length are shown
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Figure 6.8: i-vii) Experimental data (red) with a five parameter fit (blue) to the Poisson-
renewal model. viii-ix) A comparison between parameters determined using the graphical
solution (closed circles) and fitted parameters (open circles) for α = 1 for two systems.
1ARES 2.3deg 50 mm cone-plate. 2AR2000 2 deg 40 mm cone-plate.
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Figure 6.9: Fitted parameters for a i-vi) four (α = 1) and vii-xii) five (α unconstrained)
parameter fit to the Poisson-renewal model.
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Figure 6.10: Estimate of the average length l̄ of the wormlike micelles studied for assumed
persistence length lp = 10, 15 and 20 nm.

in Fig. 6.10. The average length of CPCl wormlike micelles are in the range 0.2 to 4
µm. This is consistent with l̄ ' 0.61− 3.1 µm values given for selected CTAC|NaSal|NaCl
wormlike micelles in [15]. In [15], Granek and Cates noted that “...an anomalous trend of
decreasing micelle size with surfactant concentration under conditions of high added salt”
in CTAC|NaSal|NaCl system studied. As illustrated by Fig. 6.10 v the average length
of the RHB wormlike micelles appears to be roughly constant with increasing surfactant
concentration. As shown in Fig. 6.9, the ratio le/l̄ decreases with increasing concentration
indicating increased entanglement. This might suggest that increasing the surfactant
concentration simply increases the concentration of wormlike micelles in solution. If this
were the case, it would be expected that Ge ≈ GM ∝ φ 2.3

V and η0 ∝ φ3.9−4.7
V as discussed

in chapter 2. This dependence was not observed in chapter 4 however.

6.4 Diffusion NMR microrheology

Diffusion NMR is a nuclear magnetic resonance technique which is sensitive to the relative
displacement of probe nucleii. It is often used to measure the translational diffusion of hy-
drogen nucleii in liquids. Because diffusion can be influenced by restrictions, structure can
be inferred from these measurements. If the probe molecules were trapped or contained
within a much larger structure, for example in the interior of a core-shell particle, it may
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Figure 6.11: Author’s SEM micrographs showing commercially available (Polyscience
Inc.) core-shell particles at three magnifications. Note that these core-shell particles
are monodisperse and have an inner radius ri ≈ 400 nm and an outer radius ro ≈ 500 nm.
The core-shell particles are described as semi-porous.

be possible to infer the diffusion of this larger structure from measurements of the diffu-
sion of the trapped probe molecules. If spherical core-shell particles (like the commercially
available core-shell particles shown in Fig. 6.11) are used with an outer diameter much
greater than the mesh size, the bulk linear rheology could be inferred from the measured
MSD using the technique outlined in previous sections. Because NMR is not an optical
technique, the intrinsic turbidity of the host medium is unimportant. As discussed below,
diffusion NMR is only sensitive to the Brownian motion along the axis on which the mag-
netic gradient is applied. Consequently, the technique could potentially be used to probe
anisotropy in the linear rheology. The feasibility of a diffusion NMR based microrheology
is considered in this section.

In the narrow pulse approximation, the normalised attenuation of the diffusion NMR
echo signal E is given by [115]

E(q,∆) = 〈exp [i2πq · r(∆)]〉. (6.9)

r is the displacement of a probe nucleus (often the nucleus of the hydrogen atom) in time
∆ and depends on the specifics of the diffusion process. q = 1

2πγδg is a ‘scattering vector’
and is dependent on a magnetic gradient pulse direction and strength g (∼10 T/m),
the magnetic gradient pulse time δ (∼ ms) and the gyromagnetic ratio of the nucleus
(∼= 2.675 × 10−8 rad s−1 T−1 for hydrogen nucleus). In the narrow pulse approximation,
it is assumed that δ << ∆. On the NMR diffusion probe, the direction of the magnetic
gradient is fixed and only one component of the motion can be observed

E(q,∆) = 〈exp [i2πqz(∆)]〉. (6.10)

If z(∆) is a Gaussian variable with zero mean by the central limit theorem

E(q,∆) = exp
[
−2π2q2〈z2(∆)〉

]
, (6.11)
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where 〈z2(∆)〉 is the z component of the mean square displacement. Eqn. 6.11 describes
a Gaussian function. The z component of the MSD 〈z2(t)〉 = 〈z2(∆)〉 can be determined
from E(q,∆) by differentiation dE

dq2

∣∣∣
q=0

= −2π2〈z2(∆)〉 or by fitting the data.

The effects of a core-shell restriction on the diffusion of a probe nucleus with diffusion
constant Dp, and on E(q,∆) are demonstrated using simulation in Fig. 6.12. Note that
the diffusion constant of water Dp = 2× 10−9 m2/s. Fig. 6.12 i shows the E(q,∆) when
diffusion of the probe nucleii is unrestricted for time ∆ = 1× 10−6 to 10 s for log space q.
The corresponding 〈z2(∆)〉 shown in 6.12 iii can be evaluated by fitting the E(q,∆) to a
Gaussian function or directly from the simulated positions of the probe nucleus - 〈z2(∆)〉 =
2Dpt as expected. The effects of a core-shell restriction are illustrated in Fig. 6.12 ii. Here
the probe nucleus with Dp = 2 × 10−9 m2/s is trapped in a cavity of radius ri = 400
nm. The cavity itself is assumed to diffuse with a diffusion constant Ds = 4.4 × 10−13

m2/s. This is the diffusion constant of a sphere of radius ro = 500 nm in water calculated
according to the Stokes-Einstein relation (T=300 K, η=0.001 Pa.s) - the water outside
the cavity is ignored in this particular simulation. The 〈z2(∆)〉 corresponding to E(q,∆)
is illustrated in Fig. 6.12 iv. For times ∆ < 10−5 s 〈z2(∆)〉 = 2Dp∆. Here diffusion
of the probe is largely unaffected by the restriction. For 10−4 < ∆ < 10−2 s 〈z2(∆)〉
plateaus at a value 〈z2(∆)〉 = 0.39r2

i . This dependency of the plateau MSD on radius
is quite comparable to 〈z2(∆)〉 = 2

5r
2
i calculated analytically in [115]. For ∆ > 10−2 s

〈z2(∆)〉 begins to increase according to 〈z2(∆)〉 = 2Ds∆+0.39r2
i . If the dimensions of the

cavity are known, the mean square displacement of the sphere in the host medium can be
deduced by subtracting the contribution of the restricted diffusion of the probe nucleii from
the total measured 〈z2(∆)〉. The core-shell particles shown in Fig. 6.11 are described as
being semi-porous. It could be expected that the concentration of a small probe molecule
would come to equilibrium with the concentration outside the cavity (it is assumed here
that this exchange process is very slow and can neglected during an NMR measurement).
Consequently, probes outside the cavities will also contribute to the measured E(q,∆).
Assuming that the spheres themselves do not influence the free diffusion of the probes,
E(q,∆) is the sum of the contribution of the probes outside the cavity EF and inside the
cavity ER weighted by the volume fraction: E(q,∆) = (1−φ)EF (q,∆)+φER(q,∆) where
φ is the volume fraction trapped in the interior of the core-shell particle. The resulting
E(q,∆) is the sum of two Gaussian functions as shown in Fig. 6.12 iii. If the characteristic
times of the two Gaussian functions are sufficiently different 〈z2(∆)〉 of the cavity can be
determined. Alternatively, an impermeable oil-filled core-shell particle could be used. The
gyromagnetic ratio depends on the local nuclear environment - the diffusion of a nucleus
in a different local environment can be distinguished on the basis of chemical shift.

The window over which diffusion can be measured in an NMR experiment is shown
in black in Fig. 6.12 vii-ix. The lower limit on the MSD is set by the mechanical stability
of the system - 〈z2(t)〉 = 1 × 10−16 m2 is assumed. The minimum ∆min is effectively set
by the maximum gradient that can be applied - a value of ∆min = 1 ms is assumed here.
The maximum useful ∆max is dependent on the NMR T1 relaxation of the sample which
influences signal strength. T1 for water is T1 ≈ 1 s setting ∆max ≈ 1 s. The Poisson-renewal
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model was used to calculate G∗(ω) for τD0 = 100 s, τD0/τb = 0.1 le/l̄ = 0.01,α = 1 and
G0 = 1, 0.316 or 0.1 Pa (the corresponding viscosity of these samples is η0 = G0τM ≈ 5, 1.2
and 0.5 Pa.s). The calculated G∗(ω) was inverted using Eqn. 6.2 for ro = 500 nm sphere
to give 〈z2(t)〉 = 〈∆r2(t)〉/3. The restricted diffusion of water in an ri = 400 nm cavity is
shown in red - it is assumed that this water can be distinguished from water external to
the cavity. Based on the simulations, it is expected that the total 〈z2(t)〉 of the water is
the sum of the restricted diffusion of the water inside the cavity and the diffusion of the
cavity itself. This sum is shown in green. Clearly 〈z2(t)〉 within the experimental window
is dominated by the restricted diffusion of the probe nucleus. Accurately determining
〈z2(t)〉 for the cavity will be difficult. In Fig. 6.12 viii a second smaller core-shell particle
with ri = 175 nm and ro = 275 nm is considered (also available from Polyscience Inc.).
This both increases the restriction of the probe and increases diffusion of the cavity. In
this instance it seems possible that the diffusion of the cavity could be determined from
a measurement of the total 〈z2(t)〉 of the restricted water in the diffusing cavity. If the
〈z2(t)〉 of the cavity is known, Eqn. 6.2 can be used to determine G∗(ω). Unfortunately,
for G0 = 0.1 Pa and G0 = 0.316 Pa, the mesh size or granularity of the entangled network
is ξ = 350 nm and 240 nm and is comparable to the outer diameter of the sphere.

Sensitivity to the diffusion of the cavity can (in principle) be improved by sig-
nificantly reducing the diffusion constant Dp of the probe. This is illustrated in Fig.
6.12 ix. where a hypothetical oil-filled core-shell particle with a probe diffusion constant
Dp = 2×10−13 m2/s is considered. Alternatively, a hypothetical core-shell particle honey-
combed with restriction might be useful.

6.5 Discussion

As noted in the previous section, the fit to the ‘DWS-RHB’ data was poor. This may be
partly an artefact of the DWS microrheology technique used. Fig. 6.13 illustrates the issue.
There is a mismatch between the mechanical and optical measurements at low frequency.
As shown in Fig. 6.13 ii extracted from [112], this mismatch has been seen elsewhere. The
high frequency mechanical rheometry and DWS microrheology measurements discussed in
[106] are quite comparable at higher frequencies suggesting that the mismatch may only
be a problem at lower frequencies. It is unclear why this mismatch is present. It may be
associated with scattering from the micelles.

While the agreement between the mechanical and fitted curves is ‘good’ for both the
RHB and RHC samples, the fitted parameters do not vary smoothly with concentration
when α is unconstrained. It seems physically reasonable to expect that these parameters
should vary smoothly suggesting that fit is unable to distinguish between these parame-
ters over the particular frequency domain used. This is consistent with the larger error
observed.

The fit to the ‘RHA-literature’ and ‘RHA-mechanical’ is ‘fair’ to ‘good’ - the fitted
parameters do vary smoothly and the errors are smaller. These observations tend to vali-
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Figure 6.12: Simulated echo attenuation for i) water undergoing free diffusion, ii) water
undergoing restricted diffusion in the interior of a core-shell particle and iii) water un-
dergoing both free diffusion outside the core-shell particle and restricted diffusion in the
interior of the core-shell particle, with 10% V/V of the water trapped in the interior of the
core-shell particle. iv-vi) MSD derived from the simulated echo attenuation described in
i-iii. Calculated MSD of vii) larger and viii) smaller core-shell particles in three wormlike
micelles solution matrices with a comparison to the simulated MSD of water trapped in
the interior of the (diffusing) core-shell particle, illustrating a possible sensitivity problem
with the technique. ix) Simulated MSD of oil trapped in the interior of the (diffusing)
core-shell particle.
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Figure 6.13: Comparison between the mechanical and DWS measurements of the linear
rheology of a wormlike micelles solution i) in this chapter and ii) from [106], illustrating a
mismatch at low frequencies.

date the Poisson-renewal model. To verify that the Poisson-renewal model is an accurate
description of the underlying physical behaviour of wormlike micelles in solution, at least
some of the fitted parameters need to be verified as physical using some other method. An
estimate of the average length was provided here. While this estimate appears consistent
with values given by Granek and Cates in [15], the Granek and Cates estimate was also
based on the Poisson-renewal model. As illustrated in Fig. 2.1 micelles can be imaged
using SEM (this typically involves ‘freeze-fracture’ therefore some care may be required as
cooling could be expected to influence the micelles length) and the quantities le, l̄ and lp
could be determined directly from the micrographs and compared to the values estimated
from rheology.

The NMR microrheology technique described here suffers from low sensitivity and
a narrow bandwidth and would appear to be difficult to implement with commercially
available probes, making the technique of academic interest only.



Chapter 7

Studying the flow behaviour of
wormlike micelles using diffusing
wave spectroscopy

7.1 Introduction

Diffusing wave spectroscopy is sensitive to the relative motion of the scattering centres. As
was demonstrated in Chapter 6, the technique’s sensitivity to diffusion can be exploited to
study the linear rheology of complex fluids. The technique’s sensitivity to shear induced
relative motion has largely been ignored in rheology. In this chapter, DWS’s sensitivity
to strain rate is used to investigate the unusual flow behaviour predicted, in Chapter 3,
to occur in some wormlike micelles solutions. Here the flow behaviour of four wormlike
micelles solutions is studied in the cylindrical-Couette, cone-plate and parallel-plate ge-
ometries using DWS. Because of the apparent novelty of the technique discussed here,
several other fluids are also studied including a Newtonian fluid (milk), a weakly shear
thinning fluid (PEO in water) and a fluid that shows a yield stress (yoghurt) in selected
flow geometries.

7.2 DWS and flow

In the diffusion approximation, the path of light through a highly multiple scattering
medium is treated as a random walk. The scattered field is characterised by a field
correlation function which decorrelates with time because of the relative motion of the
scattering centres. Fig. 7.1 i illustrates the effects of shear on a typical diffuse path. The
red line shows the initial path and the blue line shows the path after the application of
shear. This path can be decomposed into a set of path vectors (or bond vectors in the
language of polymer physics) ∆r = rn − rn−1, shown in red in Fig. 7.1 ii. The effect of

115
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Figure 7.1: i) Shear induced distortion of the light path ii) redistributes the path vectors
resulting in iii) a quadratic increase in path lengths with time.

uniform shear on this set of path vectors is shown in blue. In the diffusion approximation,
it is expected that the average change in phase of the associated field correlation function
depends on the MSD of the scattering centres 〈∆φ2

n(t)〉 = 2k2〈∆2r(t)〉. In Fig. 7.1 iii the
MSD of the path vectors as functions of both γ̇t and l∗ is shown. Clearly, the MSD shows
quadratic dependence on both parameters, indicating that 〈∆r2(t)〉 ∝ nγ̇2l∗2t2 which
implies that the dephasing of the field correlation function for uniform shear flow is of the
form 〈φ2

n(t)〉 ∝ nk2γ̇2l∗2t2. Uniform shear flow was examined by Xu et and co-workers in
[116]. Here (it is implied that) the dephasing is given by 〈φ2

n(t)〉 = 2
15nk

2γ̇2l∗2t2 where
the prefactor is associated with averaging the sin2 θ cos2 φ over a unit sphere. This leads
to field correlation function for uniform shear flow (neglecting diffusion) [116]

g1(t) =
∞∑
n=1

Gn(xi, xo, l∗) exp
[
− 1

15
nk2l∗2γ̇2t2

]
. (7.1)

For spatially uniform shear flow, the distortion of the path vectors introduced by
relative motion is independent of the light path. When relative motion is not spatially
homogeneous, the distortion of the path vectors acquires a dependence on the light path
through the medium. In particular, the dephasing of the field correlation function will
acquire a dependence on the probability that light paths transit particular heterogeneities.
In a series of papers, Bicout and co-workers [90][89][111] considered the effects of a one-
dimensional heterogeneity in the strain rate profile γ̇(x) = ∂vy(x)/∂x in an infinite planar
slab of thickness L with surface normal î and showed that dephasing expected was given
by

〈∆φ2
n(t)〉 =

2
15
nk2l∗2t2

∫
γ̇2(x)ρn(xo, xi, x, l∗)dx, (7.2)

where ρn(xo, xi, x, l∗) is a propagator that describes the probability that light diffusing
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from xi to xo will pass through some intermediate point x. Explicitly [89]

ρn(xi, x, xo, l∗) =
2
L

∑∞
m=1 sin

[
mπxi
L

]
sin
[
mπxo
L

]
sin2

[
mπx
L

]
exp

[
−m2 n

n0

]
∑∞

p=1 sin
[pπxi

L

]
sin
[pπxo

L

]
exp

[
−p2 n

n0

]
+

2
L

∑∞
m=1

∑∞
s=16=msin

[
mπxi
L

]
sin
[
sπxo
L

]
sin
[
mπx
L

]
sin
[
sπx
L

]exp[−m2n/n0]−exp[−s2n/n0]
s2−m2∑∞

p=1 sin
[pπxi

L

]
sin
[pπxo

L

]
exp

[
−p2 n

n0

] ,

(7.3)

which leads to a field correlation for one-dimensional non-uniform shear flow (neglecting
diffusion)

g1(t) =
∞∑
n=1

Gn(xi, xo, l∗) exp
[
− 1

15
nk2l∗2

∫
γ̇2(x)ρn(xo, xi, x)dxt2

]
. (7.4)

This reduces to Eqn. 7.1 when strain rate is uniform.

The behaviour of the propagator ρn(xi, x, xo, l∗) is examined using simulation in Fig.
7.2. Here, test particles representing the light path in a turbid medium diffuse on a grid
from an incident point at xi to a detection point at xo. In contrast to the earlier simulation,
only diffusion steps that settle at xo are co-added. The simulated behaviours shown in
Fig. 7.2 i and iii are very comparable to the analytic results calculated according to Eqn.
7.3 shown in Fig. 7.2 v and vi. Once the propagators Gn and ρn have been determined,
g1(t) can be calculated for an arbitrary strain rate profile by numerical integration.

In both the cylindrical-Couette and the cone-plate geometries, the shear stress varies
in a known way across the gap. If the flow curve describing the constitutive relation
between stress and strain rate in steady-state flow conditions is known, the local shear
γ̇(r) rate can be determined across the gap from the known local shear stress variation. The
empirical Cross model [7] is commonly used to describe the constitutive relation between
shear stress and strain rate in shear thinning polymer solutions. This model gives the
stress as [7]

σ = γ̇

[
η0 − η∞
1 + (cγ̇)n

+ η∞

]
. (7.5)

Here η0 and η∞ are asymptotic viscosities at low and high strain rate, n is a dimensionless
constant and c is a constant with dimensions of time. For certain combinations of these
parameters, the Cross model predicts non-monotonic behaviour. It is commonly assumed
that the ‘underlying’ constitutive relation in shear banding wormlike micelles solutions is
non-monotonic but that this constitutive behavior is mechanically unstable. For apparent
strain rates in this unstable region of the flow curve, the stress plateaus and the fluid
partitions into shear bands [73]. Motivated by this observation, it is assumed here that
this non-monotonic behaviour is not physical in steady-state flow conditions and the Cross
model is modified by tying the upper and lower branches of the flow curve together at a
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Figure 7.2: i and iii) Simulated and ii and iv) analytic propagators ρn(xi, x, xo, l∗) with
v-vi) direct comparison.
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constant stress. The constant stress is chosen to be an average of the local minimum and
maximum of the non-monotonic flow curve.

To investigate the effect of spatial heterogeneities in strain rate on the DWS correla-
tion, the local strain rate variation predicted by the modified Cross model was calculated
for a cylindrical-Couette geometry. This strain rate variation is used to calculate the
correlation according to Eqn. 7.4. In the calculations, it was assumed that the cylindrical-
Couette has dimensions ri = 24 mm and ro = 25 mm for a gap L = 1 mm. The local
curvature of the geometry is small and is treated as an infinite slab in the optical calcu-
lations. Physical values of k = 2π/(633× 10−9/1.33) m−1, l∗=0.2 mm and γ0 = 1.7 were
used. γ0 was measured experimentally as γ0 ≈ 1.7 for a glass-water interface in [111].
|g1(t)|2 is calculated for log-spaced increments in apparent strain rate γ̇ defined

γ̇ =
ri

ro − ri

∫ ro

ri

γ̇(r)
r
dr ≈ v

d
, (7.6)

where v is the linear velocity of the inner wall and d = L is the gap size for three flow curves
(F1,F2,F3) and for three optical configurations: backscattering from the outer wall of the
cylindrical-Couette (C1-C3), backscattering from the inner wall of the Couette (C4-C6)
and transmission through the outer wall of the Couette (C7-C9). These calculations are
shown in Fig. 7.3 C1-C9. As γ̇ is increased, the correlation advances leftwards on the log-
linear plot. The local strain rate variation produced by the ‘weakly’ shear thinning fluid
(F1) does not significantly perturb the correlation (C1,C4,C7). For the ‘strongly’ shear
thinning fluid (F2) the effect on the correlation is more significant (C2,C5,C8). Flow curve
(F3) contains a stress plateau. When shear stress in the gap straddles the stress plateau,
the fluid partitions into bands of low strain rate (γ̇LO) near the outer wall and high strain
rate (γ̇HI) near the inner wall according to the lever rule γ̇ = xγ̇LO+(1−x)γ̇HI . The local
strain rate variation produced during shear banding significantly changes the correlation
(C3,C6,C9). This effect should be observable.

7.3 Experimental

7.3.1 Set-up

Optical measurements were made in cylindrical-Couette, cone-plate and parallel-plate flow
geometries. Fig. 7.4 i shows the optical set-up for measurements made using cylindrical-
Couette geometry. Light from a polarised 15 mW HeNe laser (L, Melles-Griot) is directed
through a beam expander (BE) and though a variable neutral density filter (F) into a home-
made optical Couette geometry (CC, ri=24 mm, ro=25 mm, length=60 mm) mounted on
an TA AR2000 stress controlled rheometer (R, TA Instruments) used in strain controlled
mode. The surface of the cylindrical-Couette bob was blackened to prevent back reflec-
tions. After filtering by a polariser (P) which was crossed with the laser, the backscattered
light was collected by a GRIN objective and directed through a fibre optic beam splitter
(BS, FONT) to 2 photomultipliers (PM, correlator.com PMT-120-OP). The signal from
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Figure 7.3: Flow curve according to the modified Cross model in three cases (F1, F2,
F3). Associated strain rate variation for the flow curves above for a cylindrical-Couette
geometry described in text (S1, S2, S3). Corresponding DWS correlations for the optical
configuration shown inset and optical conditions discussed in text (C1-C9).
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Figure 7.4: Experimental set-up for the i) cylindrical-Couette geometry and an alternative
configuration used for the ii) cone-plate and parallel-plate geometries.

the photomultipliers was cross-correlated at a hardware correlator (HC, correlator.com
Flex-02-12) and data were transmitted to the host computer (PC) for analysis. The
dimensions of the cylindrical-Couette geometry were chosen to match the dimension of
geometry used in [27].

Fig. 7.4 ii shows the optical set-up for measurements made using cone-plate and
parallel-plate geometries in the backscattering configuration. Here a transparent, stage
mounted (S) pane of glass forms the bottom plate of the cone-plate or parallel-plate ge-
ometry (C/P). Light is reflected by a front reflecting gold mirror (M) through this pane
into the sample. The plane of polarisation of the laser is aligned with the plane of inci-
dence of the mirror to ensure that the reflected light is linearly polarised. Backscattered
light is collected after filtering with a polariser crossed with the laser from below the
plate. By repositioning the laser, mirror and collection optics, backscattering measure-
ments from the top surface of the sample and transmission measurements were possible.
For the cone-plate measurements, a blackened, factory, 60 mm diameter θ=4 deg cone or
a transparent, homemade 60 mm diameter θ=4 deg factory cone was used. Backscattered
(or transmitted) light was collected from the bottom (or top) surface at a distance of 18
mm from the axis of rotation. In the parallel-plate measurements, a blackened, factory, 40
mm diameter disc was used with a plate-plate separation of d=1.5 mm. Both collection
optics and mirror were mounted on a translation stage - this allowed measurement of the
backscattered light as a function of radial position. All optical measurements were made
at T =22 ◦C in a temperature regulated room.
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Figure 7.5: i) Nonlinear rheometry of the doped and undoped RHB samples and ii) PEO,
milk and yoghurt samples.

7.3.2 Samples

RHB wormlike micelles solutions with concentration φCPCl+NaSal =5, 6, 7 and 8 wt.%
were examined using this ‘flow-DWS’ technique. A stress plateau was not observed in the
flow curve of the φ = 5 and 6 wt% samples in Chapter 5 - these samples were expected
to shear thin. A stress plateau was observed in the φ = 7 and 8 wt% samples - these
samples were expected to shear band. To produce multiple scattering in these transparent
solutions, the samples were doped to approximately 1 wt.% with washed monodisperse 1
µm diameter latex spheres (Polyscience Inc.). Fig. 7.4 i compares the steady-state flow
curve of undoped wormlike micelles solutions with solutions doped with latex spheres.
Both measurements were made with a 1 deg 40 mm cone-plate. In the undoped case
the φ = 5 and 6 wt.% samples showed shear thinning. A stress plateau was observed in
φ = 7 and 8 wt.% samples. The rheology of the doped samples showed differences. Most
obviously, the thinning/plateau region of the samples was extended. The doped φ = 6
wt.% sample appeared to show some evidence of a stress plateau. At a concentration of
approximately 1 wt.% latex spheres, it would not be expected that hard sphere interactions
would significantly affect the rheology. This difference is therefore attributed to a reduction
in concentration of surfactant (and change in the relative concentration of surfactant to
counter-ion) in solution due to adsorption of surfactant onto the surface of the latex
spheres.

A semi-dilute polymer solution composed of 6 wt.% 600k polyethylene oxide (PEO)
in water, a homogenised milk sample (Pams, 3.3% total fat) and a stirred yoghurt sample
(Biofarm, 4.3% total fat) were also examined using flow-DWS. The PEO solution was
doped to approximately 1 wt.% with washed monodisperse 1 µm diameter latex spheres
(Polyscience). The milk and yoghurt were not doped - here the intrinsic turbidity of the
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medium was exploited. As illustrated in Fig. 7.5 ii the PEO solution shows weak shear
thinning and milk is a low viscosity Newtonian fluid. The yoghurt sample shows a stress
plateau at low strain rates. Controlled stress measurements indicated that this plateau
extended back to γ̇ = 0. This indicates that there is a minimum stress or yield stress that
must be applied before the fluid will flow and that the yoghurt is a yield stress fluid.

7.4 Measurements and analysis

7.4.1 Cylindrical-Couette geometry

Backscattering flow-DWS was used to examine the four RHB wormlike micelles samples
in the cylindrical-Couette flow geometry. The strain rate was stepped in intervals of 20
steps per decade until fracture occurred, with a dwell time of 60 s at each strain rate.
Correlations were recorded every 5 s. A single correlation measured in the last 10 s at
each strain rate is reported in Fig. 7.6. Temporal stability of the correlation is illustrated
in two cases in Fig. 7.6 v-vi. This figure shows the individual correlation acquired over
the 5× 12 = 60 s interval at each strain rate. The first and last correlation in the interval,
which may overlap the step in apparent strain rate, has been excluded. No systematic
fluctuation of the correlation was observed suggesting that stable shear flow is established
in the fluid in less than 5 s.

The correlations observed here show the behaviour predicted in Fig. 7.3 C2 and
C3. To begin quantifying the observations, the data shown in Fig. 7.7 were fitted to the
uniform shear flow model described by Eqn. 7.1. The fitted strain rate γ̇fit is shown
in Fig. 7.7. It was assumed that L = 1 mm, l∗ = 0.18 mm (this l∗ was chosen as a
best fit for all data presented here prepared using a stock 1 wt.% suspension of 1 µm
spheres) and γ0 = 1.7. At low strain rates, the fluid is Newtonian and the fitted strain
rate is proportional to the strain rate. Experimentally, it is found that γ̇fit = 0.95γ̇. A
slightly smaller value is expected. The instrument applies a strain rate γ̇ = v/d where
v is the linear velocity of the moving inner wall. For a Newtonian fluid, the local strain
rate is lower nearest the outer wall because of the slight decrease in stress across the gap.
Backscattering measurements preferentially sample motion nearest the incident surface,
which is the outer wall in this case. It is observed that the fitted strain rate at higher strain
rate is again proportional to the strain rate with a similar constant of proportionality to
that observed at low strain rates. Shear induced turbidity was observed in Chapter 4. It
could be expected that this turbidity would reduce the l∗ value. This would reduce the
apparent (fitted) strain rate γ̇fit if not corrected for. A 6 % reduction in the constant of
proportionality is observed - this change in l∗ is small and will be neglected here.

In Fig. 7.3 the correlations are calculated from the flow curve - it seems possible
that the flow curve (up to a constant of proportionality) could be determined from the
correlation by fitting the data. Fig. 7.7 ii shows a fit to the parameters η∞, c and n of the
modified Cross model. The final parameter η0 was determined separately from mechanical
measurements. As seen in Fig. 7.7 i-iv the fitted correlation fairly successfully reproduces
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Figure 7.6: i-iv) Backscattering flow-DWS measurements of φ =5, 6, 7, 8 wt.% RHB
wormlike micelles during a stepped strain rate test. Correlations measured at γ̇ = 10−0.2,
100, 100.2, 100.4... s−1 are shown with a blue line. v-vi) Temporal stability of the flow-DWS
correlations of selected samples.
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the measurements. In Fig. 7.7 v the optically determined flow curve is compared to the
mechanical one. The optical and mechanical flow curves match very well for the φ = 6, 7
and 8 wt.% samples. The optical flow curve for the φ =5 wt.% sample is less comparable.

The data in Fig. 7.6 was reanalysed using a different approach. Instead of trying
to relate the measured correlations to the rheological behaviour, an attempt was made to
extract the strain rate profile by fitting each correlation separately. It was assumed that
the velocity profile at each strain rate could be described by second order rational Bézier
spline [117] defined as[

V (t)
X(t)

]
=

1∑n
i=0WiBn,i(t)

n∑
i=0

WiBn,i(t)Pi, (7.7)

where n = 2,

P0 =
[

0
0

]
, P1 =

[
V1

X1

]
, P2 =

[
1
1

]
, (7.8)

and Bn,i are the Bernstein polynomials defined

Bn,i(t) =
n!

i!(n− i)!
ti(1− t)n−i. (7.9)

V = v/(vo − vi) is the reduced velocity and X = x/(xo − xi) is the reduced position in
the gap. With the weighting parameters W0 = 1 and W2 = 1 fixed and the parameters vo
and vi known (which is only true if no-slip boundary conditions are assumed), Eqn. 7.7 is
a function of the parameters W1, V1 and X1. Fig. 7.8 i shows V (t) versus X(t) for three
combinations of X1, V1 and for various W1 to give a reduced velocity profile. These data
are interpolated and differentiated to give the associated reduced strain rate profile shown
in Fig. 7.9 ii. The individual correlations were fitted to determine the strain rate profile
in the gap according to the three parameter Bézier spline model. Typical fits are shown
in Fig. 7.9 iii-iv. The agreement is far better than that observed in Fig. 7.7. This is not
at all surprising as here there are three free parameters per correlation.

The strain rate profiles calculated from the modified Cross model and Bézier spline
fit are compared in Fig. 7.9. The strain rate predicted by the Bézier spline representation
is reasonably comparable justifying the approach.

The strain rate dependence of the correlation function depends only on the size,
concentration, and polydispersity of the scattering centres through the mean free transport
path l∗. This is demonstrated in Fig. 7.10. Fig. 7.10 i shows flow-DWS measurements for
an 8 wt% wormlike micelles solution doped to 2.5 wt% with a polydisperse SiO2 powder
(Sigma, particle size 0.5-10 µm, 80% between 1-5 µm) measured in the cylindrical-Couette
geometry using the protocol discussed earlier. The correlations show similar behaviour to
that observed for the suspension of monodisperse latex spheres. Fig. 7.10 ii shows flow-
DWS measurements for a homogenised milk sample in the same geometry. Milk is a
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Figure 7.7: i-iv) Fit to the modified Cross model. iv) Fitted strain rate from a fit to the
data shown in Fig. 7.6 to the uniform shear flow model given by Eqn. 7.1. vi) Flow
curves determined optically using a fit to a three parameter modified Cross model with
comparison to the mechanically determined flow curve.
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Figure 7.8: i) Three parameter rational Bézier spline representations of the reduced veloc-
ity profile in the gap for three combinations of X1 and V1 (corresponding to families A,B
and C) for various W1. ii) The associated strain rate profile calculated by interpolating
and differentiating the data in i. ii-iv) Fit to data shown in Fig. 7.6 to the Bézier spline
model (experimental data in blue, fitted data in red).



128 CHAPTER 7. FLOW-DWS

Figure 7.9: A comparison between the strain rate profiles over a range of apparent strain
rates for wormlike micelles solutions at different concentrations. The profiles on the left
hand side were derived from the fitted optical flow curves, while those on the right hand side
were inferred from the Bézier spline fit. Note that the flow curve calculation incorporates
the entire set of data from the full range of apparent strain rates at each concentration,
and this, of necessity, produces a self consistent and smoothly varying set of profiles. By
contrast, the Bézier spline method allows for an independent strain rate profile fit to each
individual apparent strain rate.
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Figure 7.10: Flow-DWS measurement of a i) 2.5 wt.% suspension of a polydisperse silica
powder in an 8 wt.% RHB wormlike micelles solution and ii) milk during a stepped strain
rate test demonstrating that monodispersity is not required for flow-DWS.

polydisperse dispersion of fat droplets and casein micelles in water - probe particles are
not required in this instance as the fat droplets present in the milk produce the necessary
turbidity. Here the data are fitted to

g1(t) =
∞∑
n=1

Gn(xi, xo, l∗) exp
[
− 1

15
nk2l∗2γ̇2t2

]
exp

[
−2k2D∗t

]
, (7.10)

where D∗ is an effective diffusion constant. At low strain rates the diffusion of the droplets
dominates. At higher strain rates the correlations recovers the familiar strain rate depen-
dence.

7.4.2 Cone-plate geometry

Backscattering flow-DWS was used to examine the doped 6 wt.% 600k PEO solution in
the cone-plate geometry. The optical configuration is shown schematically in Fig. 7.11
i (inset). The direction of illumination is illustrated with the arrow and d indicates the
position of the collection optics. The stress was stepped in intervals of 20 steps per decade
until fracture occurred, with a dwell time of 60 s at each strain rate. Fig. 7.11 i shows data
with a fit to the uniform shear flow (Eqn. 7.1) model assuming L = 18×tan(4π/180) ≈ 1.25
mm, l∗ = 0.18 mm and γ0 = 1.7 to determine γ̇fit. In the cone-plate geometry, the stress
varies through the gap by a factor σφ,θ(90×π/180)/σφ,θ([90−4]×π/180) ≈ 1.005. Because
the stress variation through the gap is far smaller than in the cylindrical-Couette geometry
and because the sample shows weak shear thinning, it is expected that the strain rate in
the gap will be nearly constant and that γ̇fit is to a good approximation equal to γ̇. The
mechanically applied stress with respect to both the optically and mechanically measured
strain rates are plotted with respect to the measured mechanical stress in Fig. 7.11 ii.
These two measurements show good agreement.
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The flow curve of the yoghurt sample indicated that it is a yield stress fluid. Like
some of the wormlike micelles solutions examined, a yield stress fluid has a stress plateau.
However, unlike the wormlike micelles it has no lower Newtonian branch - the plateau
continues back to zero strain rate. By the lever rule, it could be expected that the yield
stress fluid would divide into bands of strain rate γ̇LO and γ̇HI with γ̇LO = 0 and with
the high shear band forming the high stress region of the flow geometry and expanding
out as the apparent strain rate is increased. Fig. 7.11 shows both backscattering and
transmission flow-DWS measurements. The transmission measurements through the top
and bottom surfaces are very similar whereas the backscattering correlations show marked
differences. As already noted, in the backscattering geometry short paths are favoured.
Consequently, motion nearest the incident surface is sampled. The difference between the
sequence of correlations shown in Fig. 7.11 i and iii suggests the relative motion is different
near the two surfaces of the geometry. Motion is dominated by diffusion near the plate,
suggesting that the local strain rate at this surface is small or zero, and by shear near
the cone. This immediately suggests shear banding of the form expected for a yield stress
fluid. These data are discussed along with NMR velocimetry in [118].

Fig. 7.12 i-iv shows flow-DWS measurements of the doped 5, 6, 7 and 8 wt.%
RHB wormlike micelles in the backscattering configuration and 7.12 v-vi and doped 7
and 8 wt.% samples in the transmission geometry. The strain rate was stepped in log-
spaced intervals. Note that the correlations measured for the 5 wt.% sample do not show
the inflection seen in Fig. 7.6 i. This is to be expected and is a consequence of the
difference in the shear stress variation across the gap in the two geometries. The sequence
of correlations observed in Fig. 7.12 i-iv resembles the backscattering correlations observed
in the cylindrical-Couette geometry. The transmission correlations in Fig. 7.12 v-vi are
similar to the model correlations calculated in Fig. 7.3 C3 and C9 for a shear banding
fluid. These observations suggest that as in the cylindrical-Couette geometry, the high
strain rate band expands from the moving surface of the geometry with partitioning given
by the lever rule.

Following the procedure outlined in the last section, the four backscattering correla-
tions were fitted to the modified Cross model. The fitted correlations did not satisfactorily
match the measured correlations (fit not shown). To understand why the fit was unsatis-
factory, the data were fitted to the uniform shear flow model and are compared to a fit to
model correlations, shown in Fig. 7.13. The model correlations were calculated assuming
that the fluid shear bands according to the lever rule, γ̇ = xγ̇LO + (1 − x)γ̇HI , with a
high strain rate band expanding from the moving wall of the geometry for model values
γ̇LO = 2 s−1, γ̇HI = 20 s−1, l∗ = 0.18 mm, L = 1.25 mm and γ0 = 1.7 in the two optical
configuration presented in Fig. 7.12. Fig. 7.13 i shows the fitted strain rate γ̇fit to the
model backscattering and transmission correlations. The 400-500 measured correlations
for the 5 and 8 wt.% were fitted to the uniform shear flow model (again assuming l∗ = 0.18
mm L = 1.25 mm and γ0 = 1.7) to determine γ̇fit. As seen in Fig. 7.13 iii, for the 5
wt.% sample γ̇fit = 1.15γ̇ at lower strain rates increasing to γ̇fit = 1.30γ̇ at higher strain
rates. This is the opposite of the effect expected if shear induced turbidity was reducing l∗.
The constant of proportionality between γ̇fit and γ̇ at low strain rates was found to vary
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Figure 7.11: i) Backscattering flow-DWS measurements of the 600k 6 wt.% PEO sample
in the cone-plate geometry during a stepped stress test. ii) Optical and mechanical flow
curves. iii-vi) Backscattering and transmission flow-DWS measurements of the yoghurt
sample during a stepped strain rate test.
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Figure 7.12: i-iv) Backscattering flow-DWS measurements of the 5-8 wt.% RHB samples
and v-vi) transmission measurements of the 7-8 wt.% RHB samples in the cone-plate
geometry during a stepped strain rate test. Correlations measured at γ̇ = 10−0.2, 100,
100.2, 100.4... s−1 are shown with a blue line.



7.4. MEASUREMENTS AND ANALYSIS 133

between measurements by about 20% for the cone-plate geometry. This may be due to
slight changes in the alignment of the optics between measurements. The propagator Gn
and ρn described by Eqn. 4.78 and Eqn. 7.3 assumes uniform illumination. The intensity
distribution of an expanded Gaussian laser beam is Gaussian. The illumination is only
(approximately) uniform at the centre of the beam spot. If, because of an alignment error,
light was not collected from the centre of the beam spot, illumination is no longer (approx-
imately) uniform. This would modify Gn and ρn affecting the measured correlation.As
seen in Fig. 7.13 iv, the fit to the backscattering and transmission correlations suggest
that uniform shear flow is present in 8 wt.% sample up to γ̇ ≈ 4 s−1. Between 4 − 5 s−1

γ̇fit is observed to drop by 25% (A in Fig. 7.13 iv). A similar trend was seen in the 6 and
7 wt.% samples. From the model fit, it is predicted that γ̇fit is a monotonically increasing
function of γ̇ - the disagreement at A indicates a problem with the model in this instance.
One speculative possibility is that a narrow, high strain rate slip band is developing at
one or both of the walls. The sensitivity of DWS to relative motion decreases significantly
within a distance of l∗ of the walls of the geometry. Gn and ρn increase quadratically from
zero at the walls. If the slip band was sufficiently narrow it could not be directly observed
using flow-DWS. However, the presence of slip could be inferred because it would reduce
the apparent strain rate in the rest of the gap. The reduction in γ̇fit at A could indicate
the development of a slip band. Region B in Fig. 7.13 iv is similar to that shown in region
B in Fig. 7.13 i suggesting that following the development of the slip band, a macroscopic
high strain rate band develops at the moving wall of the geometry and expands into the
gap with increasing γ̇ according to the lever rule. Fig. 7.13 ii shows the steady-state flow
curve measured concurrently with flow-DWS measurements with either a blackened steel
(backscattering) or acrylic (transmission) cone. The behaviour is similar to that observed
in Chapter 4. An increase in σ is observed at γ̇ = 7.94 s−1. An increase in γ̇fit is seen
in the backscattering flow-DWS measurements around γ̇ = 12 s−1. It is notable that this
increase does not directly correlate with the onset of increasing stress.

NMR velocimetry was used previously to examine the flow behaviour of a shear
banding wormlike micelles solution in a θ0 =4 deg cone-plate geometry [31]. This geometry
was sealed at the perimeter and measurements were time averaged over several hours.
The NMR velocimetry measurements indicated that a high strain rate band formed in
the centre of the gap. In a subsequent theoretical study of shear banding in viscoelastic
fluids in the cone-plate geometry, Kumar and Larson [119] suggested that the banding
observed in [31] may be associated with secondary flow. In Fig. 7.13 v-vi a series of
correlations is calculated in the case where a high strain rate band forms mid-gap and
expands symmetrically with increasing strain rate with partitioning given by the lever
rule. It was assumed that apparent strain rate was stepped in log-spaced intervals and that
the optical configuration matched those used experimentally. The measured correlation
sequence appears to be inconsistent with the correlation sequence predicted by this model.
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Figure 7.13: i) Fit to the uniform shear flow model of flow-DWS correlations calculated for
a model shear banding fluid in both the transmission and backscattering configurations.
ii) Flow curve of the φ = 5 and 8 wt.% RHB samples measured during the cone-plate
flow-DWS experiment. Fit to the uniform shear flow model of flow-DWS correlations
measured in the cone-plate geometry in the iii) backscattering and iv) backscattering and
transmission configurations. v-vi) Model flow-DWS correlations in the case where the high
strain rate band expands from the centre of the gap.
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7.4.3 Parallel-plate geometry

Backscattering flow-DWS was used to examine the doped 6 wt.% 600k PEO and 5 wt.%
RHB wormlike micelles solution in a 40 mm parallel-plate geometry with a gapsize d = 1.5
mm. Fig. 7.14 i shows measured correlations as a function of both radial position, at 0.5
or 1 mm increments, and angular velocity of the top plate for the 5 wt.% RHB sample.
The correlations at each angular velocity step have been offset for clarity.

As before, data were fitted to the uniform shear flow model with L = 1.5 mm,
γ0 = 1.7 and l∗=0.18 mm. The fitted strain rate is proportional to the angular velocity
and the radius, several mm out from the centre of the geometry, as is shown in Fig. 7.14
ii. This is demonstrated more clearly in Fig. 7.14 iii. In the parallel-plate geometry
γ̇(r) = v/d = rω/d. It might therefore be expected that the characteristic time of the
correlation for r≈0 would be diffusion limited and unaffected by the applied shear - this
was not observed. The diffuse ‘scattering volume’ probed in DWS depends on optical
configuration. The backscattering correlation is dominated by n = 1 term in Eqn. 4.78
indicating that the radius of the scattering volume is around l∗. Light collected at the
centre rotation at r = 0 contains a contribution from near the centre r 6= 0 where the
strain rate is not zero. This radial variation in strain rate could be expected to reduce
the characteristic time of the correlation. Outside the central region of the geometry, the
fitted strain rate is quite comparable to the apparent strain rate γ̇(r) = rω/d indicating
that the shear flow is uniform.

Fig. 7.15 i shows measured correlations as a function of both radial position, mea-
sured at 0.5 or 1 mm increments, and angular velocity of the top plate for the 8 wt.%
RHB sample. As before, the correlations at each angular velocity step have been offset
for clarity. The flow protocol, along with the measured stress, is illustrated in Fig. 7.15
iii. Note that the dwell time at each perimeter strain rate γ̇0 was either 1200 or 2400 s.
The total acquisition time at each of the 20 radial positions measured was either 60 or 120
s. The correlations presented in Fig. 7.15 i are time averaged over the last 50 s or 110 s
at each radial position - 10 s was allowed to manually translate the mirror and collection
optics. The correlations shown in Fig. 7.15 i are mapped to the surface shown in Fig. 7.15
ii. The black line represents the time required for the correlation to decay |g1(t)|2 = 0.5
assuming uniform shear flow. These correlations were also fitted to the uniform shear flow
model; fitted γ̇fit is shown in Fig. 7.15 v. At γ̇0 = 3 s−1 the fitted strain rate is directly
proportional to applied stain rate. At γ̇0 =6 s−1 at a position that corresponds to a local
stain rate γ̇(r) = v/d = 2.4 s−1 (point A in Fig. 7.15 ii) the correlations show essentially
no change with radial position. Similar behaviour is seen at the onset of shear banding in
the cylindrical-Couette geometry, suggesting that a high strain rate band may be forming
at the moving plate. If a high strain rate band was expanding from the upper surface,
it would be expected that the correlation near the perimeter would show reduced γ̇fit
because of the intrinsic radial strain rate variation present in this geometry as the high
strain rate band comes into the ‘field of view’ of the diffuse scattering volume. This is
not observed in the measurements at γ̇0 = 9 and 12 s−1. Loosely, correlations measured
at γ̇0 = 6, 9 and 12 s−1 can be divided into three radial bands. In the central band/disc



136 CHAPTER 7. FLOW-DWS

Figure 7.14: i) Backscattering flow-DWS measurements from the 5 wt.% RHB sample with
radial position and angular velocity in the parallel-plate geometry. ii) Fit to the uniform
shear flow model and iii) a comparison with the expected local strain rate. Red/blue
markers in ii-iii are for the 5 wt.% RHB/600k PEO samples.
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the shear flow is ‘apparently’ uniform. This band/disc expands radially with increasing
γ̇0. Beyond the edge of this disc is a transition band. Correlations in the transition band
show the greatest deviation from correlations expected for uniform shear flow and are rem-
iniscent of the correlations observed at higher strain rates in the shear banding wormlike
micelles in the cylindrical-Couette geometry. Near the edge of the geometry is a perimeter
band which has a roughly constant fitted strain rate γ̇fit = 2− 2.5 s−1.

Directly after the experiment above, the sample was remeasured at γ̇0 = 9 s−1.
Fig. 7.15 iii shows the correlations measured at 10 s intervals. These correlations are
quite similar to the correlations observed at γ̇0 = 9 s−1 in Fig. 7.15 ii. The central (C),
transition (T) and perimeter band (P) are indicated. The absolute variation of the fitted
strain rate is largest in the transition band. These observations are difficult to reconcile
with a simple application of the lever rule.

7.5 Discussion

Backscattering flow-DWS measurements made in the cylindrical-Couette geometry of the
wormlike micelles solutions were largely consistent with the behaviour predicted on the
basis of the lever rule. The optical flow curve matches the mechanical flow curve well for
the three shear banding wormlike micelles solutions examined here. As demonstrated ex-
perimentally, shear banding produces a dramatic effect on the DWS correlation functions.
It is therefore not surprising that it was possible to readily extract rheological informa-
tion from these measurements. The comparison between the optical and mechanical flow
curves of the shear thinning sample is less satisfactory. Here the correlation deviates less
from that expected for uniform shear flow. Systematic errors may be influencing the fit.
The Bézier spline fit to the correlations is quite comparable to that produced by the Cross
model fit, justifying this novel approach to analysing the data. As illustrated by Fig. 7.6
v-vi the DWS correlation can be acquired rapidly. This temporal resolution may be useful
in cases where the flow behaviour shows time dependence as has been observed in a related
shear banding wormlike micelles system [36].

The backscattering and transmission flow-DWS measurements made in the cone-
plate geometry suggest that a high strain rate band expands from the surface of the moving
cone and that this shear banding may be accompanied by slip. This interpretation is not
entirely unambiguous. The cone-plate measurements of the shear thinning PEO sample
clearly indicate that it is possible to extract strain rate in stress controlled conditions.
This approach might be useful in situations where it is not possible or practical to control
strain rate; for example, in a pressure driven capillary rheometer. The backscattering
flow-DWS measurements strongly suggested that the yoghurt sample is shear banding.
NMR velocimetry, discussed in [118], demonstrates that this yoghurt does indeed shear
band.

The backscattering flow-DWS measurements made in the parallel-plate geometry are
difficult to interpret in the sample that shows a stress plateau. Qualitatively, the sample
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Figure 7.15: i) Backscattering flow-DWS measurements from the φ = 8 wt.% RHB sample
with radial position and angular velocity in the parallel-plate geometry. ii) Data in i
mapped to a surface. The black line indicates the delay required for the |g1(t)|2 = 0.5 if
γ̇ = v/d. From point A the correlations show essentially no change with increasing radius
at γ̇0=6 s−1. iii) Measured stress during the flow-DWS experiment illustrating the protocol
used. iv) Repeated measurement at γ̇0=9 s−1 with a higher time resolution. Qualitatively,
the measured correlations partition into a centre (C), transition (T) or perimeter (P) band.
v) Fitted strain rate from a fit to the uniform shear flow model.
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appears to divide into three radial bands: a central band (C) where the local strain rate is
directly proportional to the apparent strain rate, a transition band (T) where correlations
resemble those seen for shear banding wormlike micelles and a perimeter band (P) with
a constant strain rate (see Fig. 7.15 v). This behaviour is difficult to reconcile with a
simple application of the lever rule. Clearly, additional measurements in other optical
configurations would have been helpful here.

The flow-DWS measurements here indicated that the l∗ value for the solutions stud-
ied was l∗ ≈ 0.18 mm. This value is approximately 30% smaller than the theoretical
value of l∗ = 0.25 mm given in [87] for a 1% suspension of polystyrene sphere in water at
ka = 2π/(633/1.33) × 500 × 10−9 ≈ 6. This may reflect an error in the estimate of the
concentration of spheres present in solution after washing.

If the probes are monodisperse then it is possible, in principle, to study the re-
lationship between diffusion and strain rate of the suspended particles in these fluids.
Unfortunately, the laser used here was quite noisy, producing artefacts in the correlations
at longer delay times which prevented the study of this relationship in wormlike micelles
in the backscattering geometry.

It was straightforward to simulate the propagators Gn and ρn using a simple particle
diffusion model. While not immediately useful here, simulation could be used to model
these propagators in more complex geometries, such those found in industrial applications,
which are not easily amenable to analytic analysis. One interesting example which does
not appear to have been described in the literature is a focused beam geometry in the
backscattering configuration with a variable separation between the source and detection
points. Increasing the separation between the source and detection points (by translating
the collection optics, for example) will shift the path length distributions to longer paths
that probe deeper into the material.

The analysis developed by Bicout and co-workers could be applied to any kind
of relative motion. Dimensional analysis suggests that dephasing for a one-dimensional
gradient in diffusion is of the form

〈∆φ2
n(t)〉 = 2k2n

∫
D(x)tρn(xo, xi, x, l∗)dx. (7.11)

A gradient in the diffusion constant might result from a difference in viscosity (due to a
temperature gradient, for example) across a turbid medium.
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Chapter 8

Investigating the correlation
between strain rate and optical
anisotropy in wormlike micelles
solutions

8.1 Introduction

In Chapter 7 evidence for shear banding in wormlike micelles was presented using DWS.
While the temporal resolution of this rheo-optic technique is ‘good’, its spatial resolution
is ‘poor’. Spatial resolution is traded for temporal resolution in this chapter where a
related rheo-optical technique, homodyne PCS, is used in conjunction with ellipsometry
to examine more closely the spatial partitioning that occurs under shear in wormlike
micelles solutions.

As noted in Chapter 3, the flow behaviour of wormlike micelles solutions is gen-
erally studied using one of two approaches. In the first approach, the fluid’s velocity
is measured as a function of position. Shear rate can be determined from the velocity
profile by differentiation. Velocity has been studied extensively in the Authors own lab
using nuclear magnetic resonance (NMR) [26] [31] [32] [33] [34] [35] [95] [36]. Heterodyne
photo-correlation spectroscopy (PCS) [27], ultrasonic velocimetry [120] and particle imag-
ing velocimetry (PIV) [121] have also been used to study the velocity of sheared wormlike
micelles solutions on the stress plateau. Generally speaking, these velocimetry measure-
ments do confirm that shear banding occurs when γ̇ > γ̇c. In the second approach, the
orientational ordering of the fluid is determined. Elongated particles experience a viscous
torque that tends to rotate them about the vorticity axis. This is countered by an elastic
torque which arrests rotation leaving the particles with a net alignment. In this approach,
the strain rate is inferred from the degree of alignment. Orientational ordering has been
examined using flow birefringence [122, 24] [123] [25] [40] [124] [125] [126] [127] [63] [42]

141



142 CHAPTER 8. BIREFRINGENCE AND SHEAR BANDING

[128] [129] [43] [44] [66] [104] [64], small angle light scattering (SALS) [123] [130] [42] [131]
[62] [75], small angle neutron scattering (SANS) [38] [132] [133] [25] [134] [66] and NMR
[35] [103] [36]. Flow birefringence and NMR have been used to spatially resolve ordering
across a sheared solution. Optical measurements clearly demonstrate a partitioning into
bands of differing optical anisotropy; these bands have been widely interpreted as shear
bands. At higher concentrations, a solution of wormlike micelles will spontaneously form
an orientated nematic phase. This has led some authors to speculate that shear banding is
caused by a shear induced non-equilibrium phase transition from a high viscosity isotropic
state to a low viscosity highly ordered nematic state; an effect seen in some lyotropic liquid
crystals. SANS spectra have been decomposed into isotropic and nematic components and
are cited as evidence for isotropic to nematic (I-N) phase transition in a number of cases.
SALS spectra indicate increasing order with strain rate.

NMR is unique among the techniques described above in that it can be used to
measure velocity and ordering simultaneously. In [35] and [135] Fisher and Callaghan used
this dual capability to examine ordering and velocity in a concentrated cetylammonium
bromide (CTAB) in a D2O wormlike micelles solution (φCTAB = 21%) at temperatures
near the equilibrium isotropic to nematic (I-N) phase transition for this system. This
system had been studied before using both SANS and flow birefringence. Because of
the proximity to the equilibrium I-N transition, this system was expected to be a good
candidate for a non-equilibrium phase transition. However, partitioning into birefringence
bands observed in [35] seemed inconsistent with that predicted according to the lever rule.
Significantly, the NMR study demonstrated that for this system at least, the correlation
between strain rate and ordering was poor.

More recently, Lerouge, Decruppe and Olmsted [44] revisited the equi-molar semi-
dilute CTAB and KBr ([CTAB]=[KBr]=0.3 M) in water wormlike micelles system initially
studied by Decruppe and co-workers [40] using flow birefringence. The more recent work
indicated that the relationship between strain rate and optical anisotropy was more com-
plicated than initially thought.

In this chapter, the relationship between optical anisotropy and strain rate is in-
vestigated in sheared wormlike micelles solutions using both homodyne photo-correlation
spectroscopy and ellipsometry. As will be demonstrated, the method allows the determi-
nation of both the local strain rate and optical anisotropy simultaneously with a spatial
resolution of about 100 µm.

8.2 Experimental

8.2.1 Set-up

Optical measurements were made using a homemade rheo-optical cylindrical-Couette flow
cell. The cell used is illustrated in Fig. 8.1 i. The dimensions of the cell were based on
those described in [43]. The radius of the outer wall of the rotating bob was ri = 22 mm
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Figure 8.1: i) Top, side and oblique view of the homemade rheo-optic cylindrical-Couette
cell with a detailed view of gap. The dark arrow indicates the direction of the collection
optics for the homodyne PCS measurements. ii) Photograph of the experimental set-up.

and the inner wall of the stationary cup was ro = 23.5 mm for a gap d = 1.5 mm. The
height h of the bob was h = 10 mm. The bob was made of aluminium and anodised
black to prevent reflections. The side walls, base and cap of the geometry were made of
transparent Perspex. Light was introduced into the gap through the base from beneath.
The transmitted component was collected from above, through the cap and a scattered
component collected through the side wall in the î − ĵ (v − ∇v) plane at an angle φ
with respect to the flow direction of the sheared fluid. A segment of the cylinder was cut
away and the normal of the plane surface was directed at the collection optics in order to
reduce the effect of refraction at the Perspex/air interface on the scattering volume. This
plane surface was masked with tape to ensure that only light scattered from a mid-height
position in the gap was collected.

A schematic of the optical set-up is shown in Fig. 8.2. Light from a 15 mW,
λ = 633 nm, HeNe laser (Melles Griot) is expanded and directed through a f = 300 mm
plano-convex condenser, a sheet polaroid polariser mounted in a manual goniometer, and
onto a tilt-stage (Edmund Optics) mounted protected gold right angle mirror (Edmund
Optics) which reflects light into the homemade optical cylindrical-Couette flow cell. The
transmitted component is reflected from a second, identical, tilt-stage mounted mirror
through a 0.5 mm pinhole, a photoelastic modulator (Beaglehole Instruments Ltd., BIL)
a second identical sheet polaroid analyser mounted in a manual goniometer, a variable
neutral density filter (Edmund Optics) and into a silicon detector (BIL). The amplitude
of the AC components of the Si signal, coherent with photoelastic modulation, are mea-
sured on a dual lock-in amplifier (BIL) and acquired along with a DC component at the
measurement controller (BIL). These AC and DC components are combined at the host
PC to give a measurement of the fluid’s ellipsometry. Scattered light is collected using a
gradient index (GRIN) objective carefully aligned on the beam. The scattered light is di-
rected out through a single mode fibre optic beam splitter (FONT) to two photon counting
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Figure 8.2: Schematic of the experimental homodyne-PCS/ellipsometry set-up.

photomultipliers (correlator.com). The photomultipliers’ output is cross-correlated on a
Flex02OEM-12C hardware correlator (correlator.com). Once acquired, the raw correlation
is communicated to the host PC. The mirrors and GRIN assembly are mounted off posts
mounted on a computer controlled motorised translation stage. By translating the stage,
the beam can be scanned through the gap; because the GRIN objective is also mounted
on the translation stage, focusing optics/beam separation are maintained.

Additional optical measurements were made using a Beaglehole Instruments ‘Pi-
cometer’ - a spectroscopic variable angle birefringence modulation ellipsometer and a
Malvern ‘4700 Autosizer’ - a variable angle photo-correlation spectrometer equipped with
a 500 mW, λ = 532 nm, Nd:YAG diode laser. All rheo-optical measurements were made
at 22.1± 0.3◦C in a temperature stabilised room. Mechanical measurements were made
on a TA AR2000 stress controlled rheometer operated in strain rate controlled mode.

8.2.2 Samples

RHB wormlike micelles solutions at weight fractions of φCPCl+NaSal = 3, 4, 5, 6, 7, 8, 9 and
10 wt.% were examined. The rheology of the samples used were checked using an acrylic
40 mm diameter 1 deg cone and plate at 22 ◦C. The φ = 7 wt.% sample was examined
in detail over intervals of 600 s at various strain rates. Measurements of the stress are
shown in Fig. 8.3 ii. At strain rates between γ̇ = 1.00 and 35.5 s−1 small fluctuations in
the stress were observed - these are coherent with the rotation of the cone. At γ̇ = 39.8
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Figure 8.3: i) Linear and ii) nonlinear rheology of the RHB wormlike micelles solution
studied. iii) Time resolved stress measurements during a stepped strain rate test for the
φ=7 wt.% RHB sample.

s−1, incoherent fluctuations develop, possibly signaling the development of rheo-chaos in
the sample.

8.2.3 Homodyne photo-correlation spectroscopy

Strain rate was measured using homodyne PCS. In a conventional homodyne PCS ex-
periment, the time variation of intensity is measured via an intensity autocorrelation
〈I(t)I(0)〉/〈I〉2. This measured intensity correlation can be related to the field correlation
g1(t) by

〈I(t)I(0)〉/〈I〉2 = 1 + β|g1(t)|2. (8.1)

In order to understand how strain rate was determined from this correlation, it is instruc-
tive to first consider the effect of diffusion. As discussed in Chapter 4, in the absence of
flow, the PCS field correlation function for a monodisperse suspension (in a Newtonian
dispersant) is expected to follow

|g1(t)| = exp
[
−q2Dt

]
. (8.2)
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For a bidisperse suspension, the field correlation is a weighted sum

|g1(t)| = A exp
[
−q2Df t

]
+ (1−A) exp

[
−q2Dst

]
. (8.3)

Here Df is the diffusion constant of the ‘faster’ component and Ds is the diffusion constant
of the ‘slower’ component. The weighting factor A depends on relative concentration and
scattering cross-sections. Measured correlations for a monodisperse (r = 500 nm) and
bidisperse (rf = 500 nm, rs = 45 nm) latex sphere suspension in a water/glycerol solution
are compared to model calculations in Fig. 8.4 i-ii. Measurements were made on a Malvern
Autosizer and were log-spaced in q2. The viscosity of the dispersant (which determines
the diffusion constants D, Ds and Df through the Stoke-Einstein relation) and weighting
factor A were determined by fitting the data to Eqn. 8.2 and 8.3. The fit shows good
agreement with the data.

Fig. 8.4 iii-iv shows correlations for a semi-dilute 3 wt.% RHB wormlike micelles
solution and a semi-dilute 1 wt.% 5-6 M polyacrylamide (PAC) in water solution. Like
the bidisperse suspension, the relaxation is roughly biexponential as was predicted for
semi-dilute solutions in Chapter 4. For the RHB sample, the fast mode shows q depen-
dence whereas the slow mode does not, and the relative amplitude of the two modes is
approximately constant. This is the behaviour predicted for a viscoelastic fluid dominated
by a single relaxation mode [92]. The behaviour of the PAC solution is more complicated.
Like the RHB sample, the correlation is approximately biexponential. Unlike the RHB
sample, the relative amplitude of the fast and slow mode is not constant and the slow
mode shows q dependence. Linear rheometry indicated that this fluid is not Maxwell-like.
The deviation from single mode behaviour may explain why the relative amplitude and
characteristic time of the slow mode shows q dependence. A number of the RHA and
RHB samples were measured on the Malvern autosizer at a fixed angle of θ = 30 deg. The
correlations shown in Fig. 8.5 i and iii were fitted to a biexponential relaxation of the
form g1(t) = A exp[−t/τf ] + [1− A] exp[−t/τs]. Fitted τs and τf are reported in Fig. 8.5
ii and iv. The characteristic time of the slow mode τs is compared to the Maxwell time of
the sample τM . τs is correlated with τM .

In Chapter 4, only a passing reference was made to the dimensions of the scattering
volume. The scattering volume can influence the measured correlation in PCS. For a
monodisperse suspension in a Newtonian fluid undergoing diffusion and shear flow ([136]
or [12])

|g1(t)| = exp
[
−q2Dt

] ∫
V
I(r) exp

[
−iq ·G · r t

]
dr, (8.4)

where G = ∇v is the velocity gradient tensor. In the configuration outlined in the last

section ki = −kk̂ and kf = k sin φ̂i + k cosφĵ and

G =

 0 γ̇ 0
0 0 0
0 0 0

 (8.5)
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Figure 8.4: Equilibrium correlations measured for a i) monodisperse and ii) bidisperse latex
sphere suspension and a semi-dilute iii) wormlike micelles solution and iv) polyacrylamide
solution as a function scattering angle.
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Figure 8.5: i and iii) Equilibrium correlations measured at a fixed scattering angle for
selected RHA and RHB wormlike micelles solutions with ii and iv) fitted characteristic
relaxation times. v-vi) A comparison between the optically measured characteristic time
taus and the mechanically measured characteristic time τM .
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so that q · G · r = qγ̇y cosφ where q = 2k sin [θ/2]. The polar angle θ is fixed at θ = 90

deg in the rheo-optical configuration here. Assuming a Gaussian scattering volume I(r) =
exp

[
−
(
x2 + y2 + z2

)
/L2

]
|g1(t)| =exp

[
−q2Dt

]
exp

[
−(qLγ̇(r) cosφt)2/4

]
. (8.6)

γ̇(r) is the local strain rate in the scattering volume. Note that if shear flow is absent
Eqn. 8.6 reduces to Eqn. 4.61. Only interference effects between the field reradiated by
the scattering centres are considered in this analysis. The temporal statistics can also be
influenced by so called ‘transit’ effects. The scattered intensity depends on the number of
scattering centres in the scattering volume. This number will fluctuate as the scattering
centres pass through or ‘transit’ the scattering volume introducing a fluctuation into the
scattered intensity with a characteristic time that depends on the type of motion and
dimensions of the scattering volume. With transit effects |g1(t)| is given by:

|g1(t)| = exp
[
−q2Dt

]
exp

[
−(qLγ̇(r) cosφt)2/4

]︸ ︷︷ ︸
interference

exp
[
−(v(r)t/L)2/2

]
exp

[
−(Dt/L2)

]︸ ︷︷ ︸
transit

,

(8.7)

where q = 2k sin [θ/2] = k
√

2 and v(r) is the local velocity (this result was verified through
extensive simulation).

The characteristic time of the last exponent in Eqn. 8.7 is generally very large and
will be ignored here. The velocity dependence can be neglected if τv =

[
v/L
√

2
]−1

is signif-
icantly larger than τγ̇ =

[
1
2qLγ̇l cosφ

]−1 and τD =
[
q2D

]−1. Fig. 8.6 i shows the integrated
intensity profile of the laser beam at the beam waist, measured by translating at knife-
edge (razor) through the beam. From a fit to an error function A

(
1
2 + erf [(x− x0)/L]

)
it is estimated that the radius of the beam is L = 45 µm. Assuming that v = γ̇d and
that d = 1.5 × 10−3 m, that φ = 60 deg and that q = 1.87 × 107 m−1 it is found that
τv/τγ̇ = 8.9. This corresponds to the extreme situation where the fluid is profiled at the
moving wall. In practice, only the central region of the gap from (2/15−13/15)×d can be
accessed. Over this range of positions τv/τγ̇ = 10− 67. If the strain rate of a Newtonian
fluid is estimated without considering the contribution of velocity, the estimated strain
rate will exceed the true strain rate by a factor of only 1.097 to 1.014. Shear thinning
and shear banding are expected to increase the local strain rate near the moving surface
(while decreasing the strain rate at the stationary surface) reducing the (average) error
introduced by neglecting transit times - the contribution of transit times at φ = 60 deg
will be neglected.

At φ = 90 deg the correlation is insensitive to strain rate. In principle it is possible
to velocity profile a fluid in this configuration using transit times. This is demonstrated
in Fig. 8.6 ii. Here a suspension of diameter r = 88 nm latex spheres in glycerol was
examined at φ = 90 deg by rotating the geometry and repositioning the collection optics.
According to Eqn. 8.7 the correlation half time τv,1/2, |g1(τv,1/2)|2 = 0.5 is inversely
proportional to velocity. Measured τ−1

v,1/2 is plotted as a function of position for a series
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Figure 8.6: i) Measured integrated intensity profile with a fit at the beam waist. ii)
Dependence of the reciprocal of the correlation half time on the position in the gap for the
strain rate indicated and at a scattering angle φ = 90 deg. The sample was a monodisperse
suspension of latex spheres in glycerol. These measurements indicate that transit time
dependence can be used to infer velocity.

of log-spaced strain rates. τ−1
v,1/2 varies linearly across the gap and is proportional to the

apparent strain rate as is expected for a Newtonian fluid.

In order to test the set-up a : 1) monodisperse suspension of r = 500 nm latex
spheres in water; 2) bidisperse suspension of r = 500 nm and r = 40 nm latex spheres in
water; 3) 1 wt.% solution of 5-6 M polyacrylamide (Polyscience) in water and 4) φ = 3 and
7 wt.% RHB wormlike micelles solution were examined in the optical cylindrical-Couette
cell under equilibrium conditions (zero shear) and under conditions of flow. Measurements
were made mid-gap and at φ = 60 deg with variable apparent strain rate.

Measurements of the monodisperse and bidisperse suspension are shown in Fig. 8.7
i-ii. For the monodisperse suspension, the measured correlation is similar to the calculated
correlation and scales correctly with strain rate but shows a different time dependence; the
exponent of γ̇t differing from the value of 2 calculated on the assumption of a Gaussian
scattering volume. This behaviour was generally observed for all Newtonian samples
examined - it was assumed that this was due to the scattering volume being non-Gaussian.
It was found experimentally that the correlation was well described by the function

|g1(t)| = exp
[
−q2Dt

]
exp [− (αγ̇(r)t)p] , (8.8)

where D = kBT/6πηr = 4.3×10−13 m2/s, p = 1.5 and α = 130 is a dimensionless constant
of proportionality which might be expected to show qL cosφ dependence. Assuming the
same time dependence as was observed above, it would be expected that the bidisperse
correlation would be described by

|g1(t)| =
(
A exp

[
−q2Df t

]
+[1−A] exp

[
−q2Dst

])
× exp [− (αγ̇(r)t)p] . (8.9)

|g1(t)|2 is calculated for Df = 5.4× 10−12 m2/s, Ds = 4.3× 10−13 m2/s, A = 0.72, p = 1.5
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Figure 8.7: i and ii) Measured correlations with fit for the monodisperse and bidisperse
latex sphere suspensions in water in flow conditions. iii) Measured and calculated corre-
lations for a 1 wt.% polyacrylamide in water. Note that the polyacrylamide data have
been baseline corrected. iv) Measured correlations for a φ=3 wt.% RHB wormlike micelles
solution.
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and α = 130 for the bidisperse suspension shown in Fig. 8.7 ii. The experimental and
model data show reasonable agreement.

Measured correlations for the 1 wt.% solution of 5-6 M polyacrylamide in water are
reported in Fig. 8.7 iii. Note that these measurements have been baseline corrected for the
effects of dust in solution on the correlations. Assuming that the equilibrium relaxation
modes are unaffected by shear and that this system exhibits the same time dependence
observed for the Newtonian fluids above, it would be expected that the correlations could
be described by

|g1(t)| = |g1,0(t)| exp [− (αγ̇(r)t)p] , (8.10)

where |g1,0(t)| is the field correlation function measured in the absence of shear. Corre-
lations calculated according to Eqn. 8.10 and assuming p = 1.5 and that α = 130 are
also shown in Fig. 8.7 iii. Again the experimental and analytic data show reasonable
agreement.

Correlations measured for the φ = 3 and 7 wt.% RHB solutions are shown in Fig.
8.8. At equilibrium, the correlations exhibit behaviour similar to that observed for the
polyacrylamide solution. It might therefore be expected that under shear flow conditions
the correlation would behave according to Eqn. 8.10 (note that the diffusion of the sur-
factant/counterions is implicit in the |g1,0(t)| term). The wormlike micelles solutions were
observed to become more turbid on shearing - this behaviour was not observed in the
polyacrylamide solution. The model described by Eqn. 8.10 does not explicitly account
for these additional scattering centres. If these structures were sufficiently large, their
diffusion could be neglected. Adapting the model described by Eqn. 8.10 to include these
new scattering centres and neglecting their diffusion gives

|g1(t)| = ([1−B] |g1,0(t)|+B)× exp [− (αγ̇(r)t)p] . (8.11)

B(γ̇(r)) describes the contribution of the large shear induced structures to the correlation.
A fit to the data for a subset of measurements for the φ = 3 wt.% and 7 wt.% samples
undergoing shear to determine the parameter B and γ̇(r) is illustrated in Fig. 8.9 i and
ii along with fit residuals in 8.9 iii and iv. In both cases |g1,0(t)| was determined from
an initial measurement in the equilibrium conditions and values of α = 130 and p = 1.5
were assumed. The two parameter per correlation fit accurately captures the behaviour
of the measured correlations. Fitted γ̇(r) for the φ = 3 wt.% sample are shown in Fig.
8.9 i. It is found that γ̇(r) is directly proportional to γ̇ - as will be seen in Fig. 8.15 this
behavior is expected for this ‘weakly’ shear thinning fluid. The polyacrylamide data were
also fitted to Eqn. 8.11 with |g1,0(t)| determined from the initial measurements made in
the equilibrium conditions and with values of α = 130, p = 1.5 and B = 0 (no shear
induced turbidity) assumed. Fitted γ̇(r) is also shown in Fig. 8.9 i. Again it is found that
γ̇(r) is directly proportional to γ̇. In addition to measuring the variation of the intensity
with time, the DC or average scattered intensity at each strain rate was measured. Fig.
8.9 ii shows the normalised average excess scattered intensity [I/I0 − 1] where the data has
been normalised with respect to the average scattered intensity in the no shear condition.
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Figure 8.8: i-ii) Correlations with fit to a φ=3 and 7 wt.% RHB samples during a stepped
strain rate test. iii-iv) Fit residuals measured with apparent strain rate noted in some
instances.

Figure 8.9: i) Fitted local strain rate γ̇(r) for both the polyacrylamide and φ=3 wt.% RHB
wormlike micelles solutions. ii) Fitted scattering parameter B with measured scattered
intensity for the φ=3 wt.% RHB sample.
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Figure 8.10: Measured homodyne and heterodyne PCS intensity correlations in flow
conditions.

The fitted parameter B is strongly correlated with the average excess scattered intensity,
with the [I/I0 − 1] ∝ B2 at higher strain rates.

An attempt was made to measure velocity using heterodyne PCS. In heterodyne PCS
a reference beam is optically mixed on the surface of the detector with the light scattered
by the sample. For the flow configuration outlined above and neglecting diffusion, the field
correlation function is expected to be of the form [11]

|g1(t)| = exp
[
−(t/τγ̇)2

]
exp

[
−(t/τv)2

]
×<e (exp [iq · v(r)t]) . (8.12)

The velocity dependence of the flow modulates the correlation function. To perform
heterodyne PCS, the direction of the bidirectional beam splitter was reversed to give two
input channels and a one output channel. The incident laser beam was split with a glass
slab beam splitter, attenuated with a variable neutral density filter and directed into one
of the input channels - this beam was the reference. Scattered light, collected from the
sample under flow at φ = 60 deg, was directed into the other input channel. The output
was connected to a single PMT. By increasing or decreasing the level of attenuation of the
reference, both homodyne and heterodyne PCS modes were accessible. Fig. 8.10 i and
ii shows typical raw and normalised intensity correlations measured in flow conditions.
Surprisingly, heterodyning significantly decreases β. While some degree of oscillation
is present in the heterodyne PCS correlation, this oscillation is not well described by
Eqn. 8.12 possibly indicating that the heterodyne PCS technique is more subtle than is
suggested in the literature.

The small angle θ ≈ 0 speckle pattern under flow conditions was observed directly by
projecting the pattern onto a distant screen. For the Newtonian suspensions, the speckle
pattern appeared to circulate. The observed direction of circulation and apparent velocity
of the speckles in three flow conditions is shown in Fig. 8.11. Here the beam is directed
along the k̂ axis and flow is in −î direction. The disc centred at x = y = 0 indicates
the position of the unscattered beam. By disconnecting the bob from the rheometer and
rotating the bob and cup together, the behaviour of the speckle pattern in the absence of
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Figure 8.11: Apparent velocity of the laser speckle at small angles in three flow conditions.
Note that these figures are based on direct observation and are somewhat idealised.

shear could be observed. The speckles were observed to circulate anticlockwise for +y and
clockwise for −y. The velocity of the speckles appeared to be fairly uniform. The bob was
reconnected and the speckles pattern observed with the beam positioned at the outer wall
of the gap. At the outer wall, the velocity of the fluid is close to zero - here the observed
behaviour could be expected to be dominated by shear flow effects. The speckle pattern is
observed to circulate anti-clockwise. The apparent velocity of the speckles increased with
increasing |x|. Finally, the beam was shifted into a mid-gap position. The observed speckle
pattern seen in Fig. 8.11 iii appeared to be a superposition of speckle motion seen in Fig.
8.11 i and 8.11 ii. Eqn. 8.4 describes the behaviour of the time correlation when transit
effects can be neglected. At small angles, transit times cannot be neglected as q is small.
Furthermore, Eqn. 8.4 says nothing about the apparent space-time correlation observed
in the speckle pattern. This statistics of the space-time correlation will be examined in
detail in Chapter 9.

8.2.4 Ellipsometry

Shear induced optical anisotropy was measured using transmission ellipsometry. The
vorticity axis is a principal direction in the cylindrical-Couette geometry. The polarisation
state of light directed down this axis is only influenced by anisotropy in the two mutually
perpendicular refractive indices. From measurements of the change in polarisation state,
it is possible to infer ∆n = n11 − n22 - the difference between the refractive indices, and
the angle χ - the orientation of these perpendicular axis with respect to the lab frame,
and through the stress-optic law σ = σ12 and N1.

Measurements of optical anisotropy were made here using birefringence modulation
ellipsometry [137]. A non-standard polariser-sample-modulator-analyser configuration was
used in order to avoid modulating the polarisation state at the scattering volume. Follow-
ing the conventions of reflection ellipsometry, a plane of incidence which contains both the
incident and reflected beams, is defined. An s-direction is defined as perpendicular to this
plane. Both the polariser and modulator were fixed in the s-direction. The analyser was
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rotated about the beam through an angle of A = 45 deg with respect to the s-direction.
Using the Mueller matrix/Stokes vector polarisation algebra (discussed in Chapter 3), rep-
resenting the sample as an anisotropic linear retarder with orientation χ and retardation δ
and neglecting the effects of reflecting surfaces and window birefringence, the time varying
intensity at the detector for this configuration is

I(t) =
1
4

[I0 + cos δ(t) cos 2χ sin 2χ (cos δ − 1) sin δ(t) sin(2χ) sin(δ)] , (8.13)

where δ(t) = A sin(ωt) is the time dependent phase modulation introduced by the bire-
fringence modulator. The retardation δ is related to the difference in refractive indices
by

δ =
2π∆nh
λ

, (8.14)

where h is the optical path length and λ is the wavelength of the incident light.

The resulting signal contains DC and AC components. The amplitude of components
at the modulation frequency (≈50kHz) AC1 and twice this frequency AC2 are measured on
a 2 channel lock-in amplifier. The DC component is measured separately and the AC/DC
ratio determined:

AC1

DC
=

G1J1(A) sin(2χ) sin(δ) cos(φω)
1 + J0(A) cos 2χ sin 2χ (cos δ−1)

, (8.15)

AC2

DC
=
G2J2(A) cos 2χ sin 2χ (cos δ−1) cos(φ2ω)

1 + J0(A) cos 2χ sin 2χ (cos δ−1)
. (8.16)

Here G1 and G2 are relative gain factors related to the gain of the AC and DC amplifier
circuits and φω and φ2ω are lock-in phases. The dependence on χ and δ in the DC term
can be eliminated by choosing the modulation amplitude A such that J0(A) = 0. Dividing
the ratios by experimentally determined calibration factors G1J1(A0) and G2J2(A0) gives
the parameters of interest x and y:

1
G1J1(A0)

AC1

DC
= x = − sin 2χ cos 2χ (cos δ−1) , (8.17)

1
G2J2(A0)

AC2

DC
= y = − sin 2χ sin δ, (8.18)

where it has been assumed that cos(φω) = cos(φ2ω) = −1. Following observations made
by Fuller in a closely related system, [CPCl]= 0.1 M and [NaSal]= 0.06 M in water (see
[13] or [104]), it was assumed that χ was initially positive and that δ initially decreased
from δ = 0 deg (implying that the stress-optical coefficient is negative) with increasing
strain rate for the RHB system examined here and the lock-in phases were set accordingly.
Physical reasons for a negative stress-optical coefficient in wormlike micelles solutions are
addressed in [138]. This assumption was not explicitly tested. If necessary, x and y can be
inverted to give χ and δ. This involves solving a quadratic equation which has two pairs
of roots. Only one pair of roots is physical.
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Figure 8.12: Measured birefringence [44] for a sheared [CTAB]=[KBr]=0.3 M aqueous
wormlike micelles solution and ii) x and y calculated from the data in i.

The polarising optics configuration used here is most similar to that used in con-
ventional reflection ellipsometry. Because the dependence of the measured parameters
x and y on χ and δ is likely to be unfamiliar, the behaviour of these parameters is
demonstrated for typical literature data. Lerouge and co-workers [44] examined shear
induced optical anisotropy in a wormlike micelles solution composed from CTAB and KBr
[CTAB]=[KBr]=0.3 M in water. From their data δ is calculated for λ = 633 nm and
h = 0.05 m. As illustrated in Fig. 8.12 i both χ and δ decrease linearly at low strain rate.
χ decreases from χ = π/4 whereas δ decreases from δ = 0. At higher strain rates, both χ
and δ are observed to plateau; this was correlated with the appearance of a stress plateau
in the steady-state flow curve. Calculated x and y for Lerouge’s data are shown in Fig.
8.12 ii. Based on these data it is expected x ∝ γ̇3 and y ∝ γ̇ for small γ̇.

The effect of the protected front reflecting gold mirrors on polarisation state was
examined on a conventional birefringence modulation ellipsometer. The effect of a re-
flection from an isotropic non-depolarising surface on the polarisation state at a given
angle of incidence and wavelength is completely described by the complex reflection ratio
r = rp/rs = ρm exp [iδm]. This quantity describes the change in relative amplitude and
phase of the incident s-polarised and p-polarised light. This quantity was measured for
one of the two mirrors used as a function of angle of incidence at λ = 633 nm. In the
rheometer the mirrors reflect light at an angle of incidence of θ = 45 deg. As illustrated
in Fig. 8.13 ρm=0.974 and δm = 10.4◦ deg at this angle. With the polariser on the
rheo-optics apparatus set at P=0 deg (s-direction), the first mirror can be neglected. In
the approximation that ρm = 1 it can be shown using the Mueller matrix/Stokes vector
algebra that the uncorrected measured quantities x′ and y′ are related to correct x and y
values by a rotation through δm

x = x′ cos δm + y′ sin δm, (8.19)
y = y′ cos δm − x′ sin δm. (8.20)
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Figure 8.13: Variable angle ellipsometry measurements of a protected gold mirror at λ =
633 nm. These measurements were used to correct for the effect of one of the mirrors on
the polarisation state.

Static window birefringence in the ‘base’ and the ‘cap’ of the optical cylindrical-
Couette was relieved by annealing the perspex windows at T = 70 ◦C for 150 hours. The
birefringence in both the base and cap of the geometry was examined separately in trans-
mission on the conventional birefringence modulation ellipsometer. Measurements were
made in a standard polariser-modulator-sample-analyser configuration with the polariser
orientated at P=45 deg and the modulator at M=0 deg as a function of the orientation
of the analyser A. The windows (sample) were carefully orientated in the beam to match
the orientation used in the rheo-optics configuration and measurements were made at the
location of the gap midpoint. In the approximation that the windows can be treated as
linear retarders with an orientation χw and phase shift δw, the y value is calculated to be

y = sin δw sin [2A− 2χw] . (8.21)

Measured y for both the cap and base along with estimated χw and δw for the two windows
is given in Fig. 8.14 i. If χw was orientated at nπ/2 it can be shown that the correction to
x and y takes the form of the correction applied for the protected gold mirror - this is not
the case for the two windows here. Correcting the data for the effect of birefringence at an
arbitrary orientation angle χw is not straightforward. Fortunately, as the measurements
indicate, the phase shift is small. The anisotropy in the windows was observed to produce
a non-zero signal in the rheo-optic configuration in the no shear condition. Measured
values were in the range x = 0.0040 − 0.0080 and y = 0.010 − 0.025. Because the phase
shift was known to be small and because x and y showed small amounts of variation, it
was decided to treat these non-zero x and y values simply as an offset.

Dynamic window birefringence associated with stress induced anisotropy in the win-
dows was investigated for a Newtonian fluid (water) over the range of torques applied in
the rheo-optical measurements of the wormlike micelles at two polariser orientations. As
illustrated in Fig. 8.14 ii the maximum average changes in x and y over the torque range
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Figure 8.14: i) Measured ‘static’ or residual birefringence in the upper and lower window of
the cylindrical-Couette flow-cell and ii) total stress induced birefringence in both windows
over the range of torques applied during later experiments to the flow-cell.

examined was ∆x ≈ 0.01 and ∆y ≈ 0.01. The effect of dynamic window birefringence on
the ellipsometry measurements is expected to be small and was neglected.

8.3 Measurements and analysis

8.3.1 Homodyne PCS

Samples were carefully loaded into the cylindrical-Couette and allowed to equilibrate for
between 30-60 minutes. Following this, an equilibrium correlation (|g1,0(t)|) was acquired
over 20 minutes at mid gap. Shear was applied and the beam was stepped through the
gap from the outer wall. The samples were measured at 12 positions in the gap from
approximately ri + 13d/15 to ri + 2d/15 in 100 µm increments at each strain rate. The
apparent strain rates were log-spaced at 5/decade, then 10/decade then 20/decade over
3 + orders of magnitude, with choice of range based on the steady-state flow properties.
Total acquisition time at each position at each strain rate was 60 s. The passage of small
bubbles through the beam was observed to disrupt the correlations in a characteristic way.
To counter the effect of bubbles 12×5 s correlations were acquired in each 60 s acquisition
interval; correlations affected by the passage of bubbles were automatically discarded and
the remaining correlations averaged in the appropriate way (see [139]). Total measurement
time for each sample was approximately 8 hours. Samples were observed to fracture (larger
bubbles were observed in the sample) at a strain rate about half of that observed in the
cone-plate geometry. The measured correlation was fitted to Eqn. 8.11 to determine both
the local strain rate γ̇(r) and B. Fig. 8.15 i-vi shows the fitted local strain rate for the φ =
3 wt.% to 8 wt.% samples for each of the 12 locations examined within the gap, along with
model curves displaced on the vertical log scale to make each set clearly visible. Model
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Figure 8.15: i-vi) Point-wise measurements and model values of the local strain rate γ̇(r)
across the gap for the φ=3-8 wt.% RHB wormlike micelles solutions. The model values for
the φ= 3-6 wt.% samples were calculated from the flow curves shown in Fig. 8.3 whereas
φ=7-8 wt.% were calculated using the lever rule. Each line corresponds to one of the 12
radial measurement positions with the lightest grey nearest the outer wall.
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data were calculated from steady-state flow behaviour or from the lever rule as follows.
The stress in the cone-plate geometry has the angular variation

σφ,θ = σ0cosec2 [π/2− θ] . (8.22)

where σφ,θ(θ) is the local stress and σ0 is the stress at the surface of the cone. For the
θ0 = 1 deg cone used for the mechanical rheometry measurement seen in Fig. 8.3 the
angular stress variation across the gap is about 0.030 % implying that σ(θ) ≈ σ0. The
radial variation of shear stress in the cylindrical-Couette geometry is given by

σφ,r(r) = σ0

[
r

ri

]−2

. (8.23)

For the rheo-optic geometry used here, the stress decreases by about 14 % from the inner
wall. Using the steady-state cone-plate flow curve measurements, the local strain rate in
the gap of the cylindrical-Couette can be determined for an apparent strain rate given by
the integral

γ̇ =
ri

ro − ri

∫ ro

ri

γ̇(r)
r
dr. (8.24)

The model curves in Fig. 8.15 i-iv show the calculated local strain rate with apparent strain
rate across the central region of the gap. The fitted local strain rate matches the calculated
local strain rate reasonably well suggesting that γ̇(r) has been successfully extracted from
the measured correlation. A stress plateau was observed in the steady-state flow curve for
the φ = 7 wt.% and 8 wt.% wormlike micelles solutions - these samples are expected to
shear band. For these samples, the local strain rate is calculated according to the lever
rule, γ̇ = xγ̇HI + (1 − x)γ̇LO, assuming that the fluid partitions into two homogeneous
strain rate bands and assuming that the high strain rate band (of width x) forms at the
moving wall. γ̇LO was chosen from the onset of shear banding as shown by the optical
data and γ̇HI was chosen to give the best match between the optical and calculated data.
Values of γ̇LO = 2.5 s−1 and γ̇HI = 25 s−1 and γ̇LO = 2.8 s−1 and γ̇HI = 28 s−1 were
assumed for φ = 7 wt.% and 8 wt.% samples respectively. The calculated local strain rate
is shown in Fig. 8.15 v and vi. The calculated and measured data are not very comparable,
suggesting that the lever rule model described above is too simplistic. Measurements of
the average scattered intensity associated with the data in Fig. 8.15 are shown in Fig.
8.16. A general increase in the scattered intensity with strain rate is observed. A slight
decrease is observed near the outer wall in the φ = 8 wt.% sample. This decrease was also
observed in the φ = 9 wt.% and 10 wt.% samples. This decrease in scattered intensity
made it difficult to determine the strain rate accurately in the low strain rate band for
these two samples in the minute allocated for data acquisition at each point in the gap.

The behaviour of the φ = 7 wt.% sample over the apparent strain rates at which
banding was expected was examined in more detail. Measurements were made at 12
positions in the gap at linearly spaced apparent strain rate increments. Fitted γ̇(r) is
shown in Fig. 8.17 i along with the scattered intensity in Fig. 8.17 ii. In Fig. 8.18 i
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Figure 8.16: Point-wise measurements of the scattered intensity across the gap of the
cylindrical-Couette for the φ = 3 − 8 wt.% RHB wormlike micelles solutions. Each line
corresponds to one of 12 radial measurement positions with the lightest grey nearest the
outer wall. Note that the decrease in the scattered intensity observed in vi was more
pronounced in the φ = 9− 10 wt.% samples (data not shown).
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Figure 8.17: Point-wise measurements of the i) local strain rate γ̇(r) and ii) scattered
intensity across the gap of the cylindrical-Couette for a φ = 7 wt.% RHB wormlike micelles
solution.

Figure 8.18: i) Point-wise measurements of the local strain rate across the gap of the
cylindrical-Couette for the φ = 7 wt.% RHB wormlike micelles solution. Each line corre-
sponds to measurements made at a particular apparent strain rate (strain rate indicated in
some cases). A clear indication of shear banding is apparent. ii) Differentiated ultrasonic
velocimetry flow measurements of a [CTAB]=0.05 M and [NaSal]= 0.1 M in water worm-
like micelles solution showing the local strain rate across the gap in a cylindrical-Couette
geometry from [120].
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the data given in Fig. 8.17 i are replotted to show the local strain rate variation as a
function of gap position. A higher strain rate band appears to grow out of a fairly stable
low strain rate band and continues to grow without saturation with increasing γ̇. A simple
application of the lever rule predicts a fixed value for γ̇LO and γ̇HI respectively. While the
data are consistent with shear banding, a constant value of γ̇HI is not found. A similar
lack of constancy for γ̇HI is found elsewhere in the literature. Fig. 8.18 ii shows the local
strain rate for a wormlike micelles solution of [CTAB]=0.05 M and [NaSal]=0.1 M in water
between γ̇ = 1 s−1 and γ̇ = 6 s−1 measured by Decruppe and co-workers using ultrasonic
velocimetry [120]. The rheology of this system was examined in Chapter 4. This system
shows pronounced fluctuations for γ̇ > 6 s−1. The gradual emergence of a higher shear
band out of the low strain rate band is observed, as was observed in the data here.

Because of the correlation between scattered intensity and local strain rate it is
necessary to consider the possible influence of multiple scattering on the results presented
here. The quantity

ωo − ωi = ∆ω =
∫ r=ro

r=ri

γ̇(r)
r
dr (8.25)

is independent of the rheology of the sample. Optical measurements were made over
r = ri + 2d/15 to r = ri + 13d/15 - the integral above cannot be calculated for the data
presented here. It is possible to calculate ∆ω for a Newtonian fluid over a reduced range
- it seems reasonable that this integral should be fairly comparable to the integral of the
experimental data over the same range if wall slip can be neglected. The experimental
and calculated integral from the data presented later in Fig. 8.15 v and 8.17 i is shown
in 8.19. The average measured integral exceeds the expected value by about 7% over
the entire strain rate range suggesting a slight calibration error. The temporal coherence
of multiple scattered light depends on the relative motion of multiple scattering centres.
As a consequence, it is expected that multiple scattered light will dephase more rapidly
than single scattered light (this property is exploited in DWS based techniques). It was
demonstrated that the local strain rate can be measured at apparent strain rates where
the scattering from the shear induced structures is minimal. If multiple scattering was
affecting the result, it would be expected that the ratio of measured ∆ω to calculated ∆ω
would increase with apparent strain rate as an increasing fraction of the integral includes
light scattered from a region of higher turbidity. This was not observed. This suggests
that multiple scattering is not significantly influencing the fitted local strain rate.

8.3.2 Ellipsometry

Ellipsometry data were acquired concurrently with the PCS measurements. Data were
acquired at 1 s intervals. An average value over the 1 minute acquisition interval is reported
here. The passage of small bubbles deflected the beam off the pinhole significantly reducing
the measured AC and DC values. Data below a threshold DC value was excluded from
the average. An oscillation in the AC and DC signals, coherent with the rotation of the
bob was observed. It was assumed that this was associated with alignment errors of the



8.3. MEASUREMENTS AND ANALYSIS 165

Figure 8.19: Measured and calculated ∆ω for the φ =7 wt.% RHB sample. The measure-
ment is comparable to the theoretical value suggesting that multiple scattering in the PCS
measurements can be neglected.

homemade bob. Significant incoherent fluctuations were not observed - this is consistent
with the mechanical rheometry measurements described earlier.

Fig. 8.20 i-vi shows x and y data corrected for the reflection from the second mirror
(rotation through δm) and for ‘stray’ birefringence introduced by the cap and base of the
geometry (offset subtracted) as a function of apparent strain rate. These measurements
show similar behaviour to that calculated for the Lerouge data discussed earlier. The
measurements are observed to fan out with position. As stress is not uniform within the
gap, some variation in anisotropy with position was expected.

The ellipsometry data shown in Fig. 8.20 were inverted to determine χ and δ and an
‘optical’ stress σop was calculated using Eqn. 8.26 adjusted for the expected mechanical
stress variation with position in the gap

σop =
1

2C
× δλ

2πh
sin [2χ]×

[
r

ri

]−2

. (8.26)

The stress-optical coefficient was determined from the relation σop = Cσ from low shear
optical and mechanical measurements. From the optical stress data it is seen that stress-
optic law breaks down as the optical stress approaches the shear thinning region of the
data. In all cases a significant drop in the optical stress is observed at a strain rate γ̇ which
depends on the position within the gap. Note that by definition x2 + y2 ≤ 1. Uncorrected
systematic errors cause x2 + y2 > 1, and x and y cannot be inverted - this is the source of
the gaps in the data. Measured C is listed in Fig. 8.21. The stress-optic coefficient does
not appear to show any systematic variation with concentration. The average C value
observed here was C = −1.74× 10−7 Pa−1. Note again that it was assumed that the sign
of C was negative. Literature values are given in Table 8.1.

As discussed earlier, the φ= 7 wt.% sample was measured at 12 positions in the gap
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Figure 8.20: Point-wise measurements of x and y across the gap of the cylindrical-Couette
for the φ=3-8 wt.% RHB wormlike micelles solutions. Each line corresponds to one of 12
radial measurement positions with the lightest grey nearest the outer wall.
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Figure 8.21: Measured optical shear stress σop assuming negative roots δ− and χ− (solid
lines) with measured mechanical stress (open circles) for the φ=3-8 wt.% RHB wormlike
micelles solutions. Each line corresponds to one of 12 radial measurement positions with
the lightest grey nearest the outer wall.
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system condition C [Pa−1]
CTAB|KBr|water 0.3|0.3 M −3.1× 10−8 [138]
CTAB|KBr|water 0.3|0.3 M +3.7× 10−8 [40]
CTAB|NaSal|water 0.03|0.23 M −3.49× 10−7[123]
CTAB|NaSal|water 0.03|0.23 M +5.74× 10−7[124]
CTAB|NaSal|water 0.03|0.23 M −2.77× 10−7[140]
CPCl|NaSal|water 0.1|0.06 M −2.3× 10−7 [13]
CPCl|NaSal|NaCl|water [CPyCl]/[NaSal]=2|[NaCl]=0.5 M −1.74× 10−7 [here, -ve assumed]

Table 8.1: Stress-optic coefficient reported for wormlike micelles solutions in the literature.
The difference in signs appears to be associated with different formulations of the stress-
optic rule. C is negative if it is assumed that 2Cσxy = ∆n sin 2χ and positive it if is
assumed that 2Cσyx = ∆n sin 2χ.

at linearly spaced strain rate increments using ellipsometry. The x and y measurements
were inverted and both the negative and positive roots are shown in Fig. 8.22. In terms
of x and y the roots are:

δ± = tan−1

[
−2ya±

1 + y2a2
±
,
y2a2
± − 1

1 + y2a2
±

]
, (8.27)

χ± = −1
2

sin−1

[
y

sin δ±

]
, (8.28)

where

a± =

√
−y

2 − 2± 2
√

1− x2 − y2

y4 + 4x2
. (8.29)

It is noted that δ− undergoes a sharp decrease at a strain rate correlated with position
whereas the δ+ values are clustered around δ = −π. χ− is observed to decrease with
increasing strain rate whereas χ+ is seen to increase. To better understand the relationship
between these roots, x and y were calculated for a grid of δ and χ values over intervals
0 < δ < 2π and 0 < χ < π/8. This grid was inverted to give δ± and χ±. The inverted grid
of roots is shown in Fig. 8.23 i. Note that the inverted data are mapped into an interval
−π < δ < π - when the input δ exceeds π it is mapped to −π < δ <= π. |δ| is observed to
exceed π in our experimental data - continuity arguments were applied to determine the
correct δ in these cases. While the negative roots map to the correct value of δ and χ the
positive roots are clustered around δ = ±π. δ depends on h and λ - the Author can think
of no physical reason why δ would cluster around π. The negative root is only physical
when

[4χ− π]2 + [δ − sign(δ)π]2 > [π/2]2 . (8.30)

The boundary between positive and negative roots is illustrated in Fig. 8.23 i. This
condition is quite restrictive. This suggests that the negative root is physical for the data
presented here.
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Figure 8.22: Point-wise measurements of χ and δ, determined by inverting x and y, across
the gap of the cylindrical-Couette for the φ = 7 wt.% RHB wormlike micelles solution.
Each line corresponds to one of 12 radial measurement positions with the lightest grey
nearest the outer wall. i-ii) Correspond to negative roots of x and y and iii-iv) to positive
roots of x and y.

Figure 8.23: i) An examination of the relationship between the positive and negative roots
of x and y. ii) Width of the birefringent band with a comparison to the width measured
in [40] in another wormlike micelles solution.
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Figure 8.24: i) Mechanical measurements in the cone-plate geometry and ii) optical mea-
surements in the cylindrical-Couette geometry of the φ=4 wt.% RHB wormlike micelles
solution subjected to a sudden deformation. These measurements demonstrate that the
optical configuration discussed here could be used to measure stress relaxation.

The width of the ‘high’ strain rate band with γ̇ is calculated from the midpoint δ
value at the transition from low birefringence to high birefringence shown in Fig. 8.23 ii.
These data are compared to those given in [40]. In both cases, the width of the high shear
band does not increase linearly with apparent strain rate as predicted by the lever rule.

For χ ≈ 45 deg and δ ≈ 0 deg, y ∝ G(t). This is illustrated in Fig. 8.24 where
the stress measured after the application of deformation of 1, 2, 4, 8, 16 and 32 mrad
using a cone/plate geometry is compared to the y value measured in the rheo-optical
configuration. Because of birefringence modulation ellipsometry temporal resolution, the
technique could be used to examine the high frequency (short time) rheological behaviour.
Because the rheometer required a minimum of 20 ms to apply to a deformation, this was
not pursued.

8.4 Discussion

The data shown in Fig. 8.17 i, 8.22 ii and 8.17 ii are mapped to the surfaces shown in Fig.
8.25 i, ii and iii. Fig. 8.25 ii shows a large increase in δ value which is correlated with strain
rate suggesting that for this system at least, strain rate bands are ‘birefringence’ bands.
However, strain rate is also correlated with turbidity. Scattering structures may modify
the change in polarisation state through form birefringence and dichroism. Non-zero
dichroism has been observed before in non-absorbing wormlike micelles systems indicating
that scattering can influence the measured polarisation state. In [104] Fuller and co-
workers investigated the optical anisotropy in a wormlike micelles solution composed from
CPCl and NaSal ([CPCl]=0.1 M, [NaSal]=0.06 M) in water as a function of position
in an optical configuration similar to that used here. An increase in ∆n was observed
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Figure 8.25: Correlation between i) strain rate, ii) birefringence and iii) scattered intensity
in the φ = 7 wt.% RHB wormlike micelles solution.

near the moving wall on the stress plateau. As discussed in Chapter 3 (and by Fuller
and co-workers in [104]) the contribution of ‘extrinsic’ form birefringence to δ is always
positive whereas the contribution of the ‘intrinsic’ stress induced birefringence may be
positive or negative depending on the system. A significant increase in δ was observed
here which was correlated with turbidity, suggesting that scattering processes are affecting
the change in polarisation state here. It is noted that other workers have observed an
apparent decrease in ∆n (see for example [44]). Using the formalism discussed [12] it
appears possible to include the effects of (possibly non-coaxial) intrinsic and extrinsic
birefringence and dichroism on the change in polarisation state. In this case, x and y will
show an additional dependence on the orientation angle, birefringence and dichroism of
the extrinsic contribution. It may be possible to distinguish the intrinsic and extrinsic
contributions by varying the orientation angle of the polariser. This was not pursued here
as the measurements would have required an additional correction for the first mirror which
can only be neglected if the polariser is orientated in the s or p direction. Failing this,
spectroscopic ellipsometry could be used. As the dependence on an extrinsic contribution
was not included in the formulation of x and y it is not possible to conclude from our optical
measurements that the high strain rate band is necessarily highly ordered or nematic -
only that it exhibits a different optical anisotropy.

What is perhaps more interesting is the correlation between turbidity and strain
rate. Turbidity in sheared wormlike micelles has been observed on numerous occasions
(Table 3.2). This turbidity is often attributed to the formation of shear induced structures.
Shear induced turbidity has also been observed in polymer solutions. In polymer solutions
this turbidity, associated with the formation of orientated aggregates and attributed to
coupling between concentration fluctuations and stress, is often found to correspond to the
onset of shear thinning as was observed here [56][141] [142] (this correspondence between
shear induced turbidity and shear thinning in wormlike micelles does not appear to be
universal, see for example [66]). Concentration coupling to flow was predicted to increase
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the tendency of a complex fluid to shear band and to predict a concentration difference in
the banded regions [22][73].

In [103] Holmes, Lopez-Gonzalez and Callaghan examined the proton NMR spectra
of a shear banding wormlike micelles solution closely related to that studied here com-
posed of [cetylpyridinium chloride]/[sodium salicylate]=2 at φCPCl+NaSal = 10 % w/V with
[NaCl]=0.5 M in D20 at equilibrium and compared it to that measured under shear flow
conditions. The spectral line of protons on the aliphatic tail of the CPCl molecule was
composed of two components: a broad spectral peak indicating the presence of slower or
more constrained molecular motion and a narrower peak indicating faster or more mobile
behaviour. Spatially resolved NMR spectroscopy did not clearly show a concentration dif-
ference between the low shear and high shear bands; it did, however, indicate a fractional
increase in the constrained to mobile population in the higher strain rate band. This result
was attributed to the shear induced alignment of wormlike micelles in the high shear band.
However, this observation is also compatible with the formation of orientated aggregates
- since any mechanism which slows the molecular reorientation or which reduces the sym-
metry of reorientation from spherical to non-isotropic can have the effect of broadening
the proton NMR linewidth.

It is emphasised that it is not doubted that the higher strain rate band is highly
ordered as has been clearly demonstrated by NMR and SANS - only that it was not
possible to conclude with confidence that the anisotropy banding observed for the system
examined here was not due to scattering from shear induced structures. These results may
illustrate that when heterogeneity is present, interpretation may not be straightforward.



Chapter 9

Using simulation to investigate the
statistical properties of dynamic
speckle

9.1 Introduction

In Chapter 8, a rather curious observation was made: the dynamic laser speckle pattern
produced by scattering centres embedded in a flowing fluid appeared to circulate slowly
about the unscattered transmitted beam. This apparent circulation showed a dependence
on the type of flow present. In this chapter, this phenomenon is quantitatively studied
with a view to developing a homodyne PCS/ellipsometry based experimental technique
capable of resolving both flow and order independently at small angles using a camera
based detection system.

The space-time dynamics of laser speckle pattern depend on both the space-time
dynamics of the scattering centres and on the optical configuration. If this relationship
is well understood, the dynamic behaviour of scattering centres can be inferred from
measurements of the statistical properties of the laser speckle. This is the basis of the
optical technique: photo correlation spectroscopy.

Conventionally, in PCS, a time intensity correlation is measured at a single point in
the speckle field. Generally, measurements are made using a high sensitivity low latency
detector (such as a photomultiplier or an avalanche photo diode) and autocorrelation is
performed in hardware using a correlator. If multiple detectors are used, a space-time
cross-correlation can be calculated. These cross-correlations can reveal motion not evi-
dent in the time autocorrelation; for example, the direction of flow can be inferred. CMOS
and CCD sensor arrays are therefore potentially useful for studying the space-time dy-
namics of laser speckle. Historically, these sensor arrays have been avoided in dynamic
light scattering because of their low sensitivity and high latency and because of significant
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storage and post-processing requirements associated with calculating correlations in soft-
ware. Recent improvements in both sensor technology and CPU processing power have
made camera based dynamic light scattering increasingly practical for studying space-time
statistics of the dynamic speckle pattern.

Sensor arrays are already utilised in small angle light scattering (SALS) and can be
used in ellipsometry (imaging ellipsometry) to measure structure and ordering in complex
fluids near and in transmission. Clearly, a technique capable of resolving flow at small
angles would complement these camera based rheo-optical techniques. As illustrated in the
last chapter, the characteristic coherence time of laser speckle depends on flow behaviour.
In particular, it was indicated that the characteristic coherence times associated with
velocity and strain rate were τv =

[
v/(L

√
2
]−1

and τγ̇ = [2kLγ̇ sin(θ/2) cos(φ)/2]−1. For
the physically reasonable choices v = 1 mm/s, γ̇ = 1 s−1, L=50 µm, k = 1.3 × 107 m−1,
θ = 5 deg and φ = 0 deg, τv = 0.07 s and τγ̇ = 0.04 s. Typically, an (inexpensive)
high speed scientific grade camera has a frame rate of the order of hundreds to thousands
of frames per second. It therefore seems quite possible that the characteristic coherence
time could be determined by statistically analysing time resolved images of the dynamic
speckle pattern measured at a sufficiently high frame rate. Furthermore, because τγ̇ shows
a dependence on spatial location in the image (through its dependence on θ and φ) whereas
τv does not, it might be possible to determine τv and τγ̇ separately. Scattering from large
particles is most intense at small angles - this could be expected to help compensate for a
camera’s low sensitivity.

It was the Author’s original intention to demonstrate that flow (both local strain rate
and/or velocity) and optical anisotropy could be measured simultaneously by imaging both
the unscattered and scattered light produced from a sheared wormlike micelles solutions at
small angles. Two significant problems were encountered. Firstly, a home-made miniature
cylindrical-Couette geometry carefully engineered to slip into the Malvern Autosizer and
to operate immersed in a water bath leaked, making measurements unreliable. Secondly,
it became clear that the statistics of the speckle pattern, even for simple fluids, were quite
complicated, motivating the more detailed study of the statistical properties of dynamic
speckle given in this chapter.

While the relationship between the space-time statistics of the dynamic speckle pat-
tern, motion of the scattering centres and scattering volume is understood for a number
of specific configurations, the general relationship has not been described in the litera-
ture. In order to explore this more general relation, an approach based on simulation
was developed. Here the dynamic speckle pattern is simulated directly for the motion
and the optical configuration of interest and space-time intensity correlation is calculated
from the simulated speckle. The validity of the approach is confirmed by comparison to
both analytic and measured statistics. The ‘brute force’ approach demonstrated here is
conceptually simple and appears to be quite general.
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9.2 Statistical properties of dynamic speckle

Commonly, in PCS, an intensity I(X, t) at position X is monitored in time t. These
measurements are used to develop an approximation to the normalised time (if a single
detector is used) or space-time (if multiple detectors are used) intensity correlation function

g2(X1,X2, t1, t2) =
〈I(X1, t1)I(X2, t2)〉
〈I(X1, t1)〉〈I(X2, t2)〉

(9.1)

= 1 +
|〈E(X1, t1)E∗(X2, t2)〉|2

〈E(X1, t1)E∗(X1, t1)〉〈E(X2, t2)E∗(X2, t2)〉
(9.2)

= 1 + |g1(X1,X2, t1, t2)|2 , (9.3)

where E(X, t) is the field associated with intensity I(X, t) and g1(X1,X2, t1, t2) is the
normalised space-time field correlation function. If X2 = X1, Eqn. 9.3 describes the
normalised time intensity autocorrelation function.

From Chapter 4, the field E(X, t) at a distant observation point X = X î +Y ĵ +Zk̂
due to an isotropic scattering centre located at x = x̂i + yĵ + zk̂

E(X, t) ∝ E0(x, t)
exp [ikr(t)]
ikr(t)

. (9.4)

E0(x, t) is the incident field and r(t) =
√

(x(t)−X)2 + (y(t)− Y )2 + (z(t)− Z)2 is the
distance between the source and the detection point. For an ensemble of N such scattering
centres

EN (X, t) ∝
N∑
n=1

E0(xn, t)
exp [ikrn(t)]
ikrn(t)

, (9.5)

where rn(t) =
√

(xn(t)−X)2 + (yn(t)− Y )2 + (zn(t)− Z)2 and the intensity at the de-
tection point

IN (X, t) ∝ EN (X, t)E∗N (X, t). (9.6)

The space-time variation in the position of the scattering centres introduces a space-
time variation into the intensity at the observation point. A space-time correlation can
be calculated numerically by cross-correlating (denoted ?) and averaging the measured
intensities

g2(X1,X2, t1, t2) ≈ IN (X1, t1) ? IN (X2, t2)
IN (X1, t1) In(X2, t2)

. (9.7)

Yoshimura studied a related problem in [143][144]. Here the space-time correla-
tion functions for translation or rotation of a two-dimensional deep random phase screen
through a Gaussian laser beam was considered. The random phase screen randomises the
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Figure 9.1: i) Free space geometry and ii) position vectors at the observation plane.

phase of the incident light. It can be considered deep if the phase is randomised uniformly
over an interval [0, 2π]. Yoshimura’s free-space geometry is illustrated in Fig. 9.1. The
random phase screen is located at a distance l from the beam waist and contains the
position vector x. The observation plane is a distance L from the random phase screen
and contains the position vector X. Incident illumination E0(x, t)

E0(x, t) =
w0

w
exp

[
|x|2

w2
− i
(
ω0t− kl −

π

λρ
|x|2 − φ0

)]
(9.8)

was assumed. Here w0 is the radius of the beam at the waist, w = w0

[
1 +

(
l
a

)2]1/2
is the

radius of the beam at the object plane, ρ = l
[
1 +

(
a
l

)2] is a measure of the curvature of

the wavefront and a = π
λw

2
0.

The space-time (magnitude-squared) field correlation function at the observation
plane due to Gaussian illumination of a random phase screen undergoing uniform trans-
lation at velocity v in the object plane for the free-space geometry was found to be

|g1(R, τ)|2 = exp
[
−|R|

2

R2
s

+
τ2
d

τ2
c

]
exp

[
− 1
τ2
c

(τ − τd)2

]
, (9.9)

where

1
τc

= |v|
[

1
R2
s

(
1 +

L

ρ

)
+

1
w2

]1/2

(9.10)

τd =
τ2
c

R2
s

(
1 +

L

ρ

)
v ·R. (9.11)

Here R = X2 −X1 is a displacement vector, τ = t2 − t1 = ∆t is a delay and Rs = 2l/kw
is the characteristic speckle size. τc is a characteristic coherence time of the speckle and
is proportional to the magnitude of the velocity of the phase screen. τd is a characteristic
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Figure 9.2: Model space-time auto (X1 = X2 or t1 = t2) and cross-correlation (X1 6= X2

or t1 6= t2) for a free space geometry according to Yoshimura’s model.

‘displacement’ time - this quantity is proportional to a projection of the velocity of the
phase screen onto the displacement vector R. This quantity can be positive or negative
and informs on the direction of motion. Equivalently Eqn. 9.9 can be rewritten

|g1(R, τ)|2 = exp
[
−R

2
s − τ2

c |V|2

τ2
cR

2
s

τ2

]
exp

[
− 1
Rs

2 |R−Vτ |2
]
, (9.12)

where V is the speckle velocity at the observation plane

The space-time correlations described by Eqn. 9.9 and 9.12 are shown schematically
in Fig. 9.2 i and ii. Both equations predict that the space-time correlation has the form
of a shifted Gaussian function with a width equal to the characteristic coherence time
(Eqn. 9.9) or speckle size (Eqn. 9.12) and a shift that depends on the speckle velocity at
the observation screen. The time lag τd in Eqn. 9.9 is proportional to v ·R - reversing
the direction of flow will reverse the sign of the lag term. τd is also proportional to

1 + L/ρ = 1 + L
(
l
[
1 +

(
a
l

)2])−1
. Because 1 + L/ρ depends on l and the displacement l

can be positive or negative, the sign of τd also depends on the location of the object plane.
Note that this change in sign occurs at L/ρ = −1 and not at the beam waist (L = 0) as
might be assumed. For example, if w0 = 65 µm, λ = (532/1.33) nm and L = 0.1 m the
zero crossing is offset from the waist by 13 mm.

The statistical behaviour of the speckle pattern predicted by Eqn. 9.6 along with
the method of analysis is compared to that described by Yoshimura in Fig. 9.3. The
field, due to 200 scattering centres randomly distributed on an object plane at z = l = 0
over a 200 × 200 µm area and illuminated by a Gaussian beam with waist w0 = 65µm
at an observation plane Z = l + L = 100 mm, is considered. The scattering centres were
assumed to translate at a velocity v = 5 µm/s î. Fig. 9.3 i shows the simulated intensity
variation at an instant at the observation plane. The time dependence of the speckle
pattern intensity was investigated over the lines shown in Fig. 9.3 i. Fig. 9.3 ii shows
the typical time variation at Y = 2 mm. Time variation is again shown in Fig. 9.3 iii for
the line indicated in 9.3 ii. These simulated intensities are cross-correlated in Fig. 9.3 iv
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to give an unnormalised space-time intensity correlation function. Based on Yoshimura’s
description of a deep random phase screen, it could be expected that the unnormalised
space-time intensity correlation function would have the form

I1(X1, t1) ? I2(X2, t2) = A exp
[
− 1
τ2
c

(∆t− τd)2

]
+ b. (9.13)

The simulated space-time intensity correlations functions were fitted to determine the
dependence of A, τc and τd on ∆X = X2 − X1 for X1 = −500 µm, X1 = −167 µm,
X1 = +266 µm and Y = 1, 2, 5, 10 mm. Fitted parameters are shown in Fig. 9.3 v-vii
along with dependence calculated according to Eqn. 9.9-9.11. Note that the three X1

values give three estimates of A, τc and τd at each Y position. These estimates are not
distinguished in Fig. 9.3 v-vii. The two are in close agreement suggesting that speckle
pattern produced by a random distribution of isotropic scattering centres over a two-
dimensional scattering volume is statistically equivalent to that produced by a random
phase screen. Yoshimura’s analysis is restricted to two-dimensional ‘scattering volumes’.
An approach based on simulation does not suffer from this limitation.

9.3 Experimental

Laser speckle was imaged using a digital camera (Pixelink, B742F). The resolution of this
camera is 1240 × 1024 pixels over a detector area of 8.7 × 6.9 mm. To minimise file size
and to maximise frame readout rate, the region of interest on the detector was limited to
a strip with dimensions 1280 × 250-380 pixels. Intensity was binned on the camera and
recorded with 8 bit depth. The effective pixel pitch with the 2×2 pixel binning used was
13.4 µm. Speckle was imaged with fixed exposure times of the order of a few milliseconds
at frame read out rates of 50 or 200 frames per second. Between 8-12k images were
acquired in each experimental trial.

Two light sources were used: a 500 mW λ = 532 nm Nd:Yag laser (JDS Uniphase)
and a 15 mW λ = 632 nm HeNe laser (Melles-Griot). The waist dimensions of both lasers
were measured using the knife-edge method. With focusing, the waists of the Nd:Yag and
HeNe lasers were w0 = 65 µm and w0 = 45 µm. The beam was attenuated as necessary
with a variable attenuator (Edmund Optics).

The statistical properties of dynamic speckle were measured in two experimental
geometries: 1) translation and 2) simple shear flow. These two geometries were used to
induce velocity fields of the form v = v0î and v = v0zî in the scattering volume.

In the translation geometry, light from the focused Nd:Yag laser was directed through
a 10, 5, 2 or 1 mm path length cuvette containing a 12-14 wt.% aqueous 95K PVA solution
with viscosity η=2-3 Pa.S doped with monodisperse 1025, 535, 356, or 202 nm diameter
latex spheres (Polyscience Inc.) at concentrations in the range 5× 10−6 to 5× 10−5 wt.%.
PVA was used to suppress diffusion and sedimentation of the spheres and the lower con-
centrations of latex spheres were used for longer path lengths to avoid multiple scattering.
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Figure 9.3: Simulated space-time correlation for a random ensemble of scattering centres
on a plane that translates through a Gaussian beam with a comparison to Yoshimura’s
result for the translation of a deep random phase screen through a Gaussian beam (see
text).
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Figure 9.4: Experimental set-up for i) translation and ii) simple shear flow measurements.

The cuvettes were mounted on a motorised translation stage that moved the cuvettes
through the beam at v0=0.5 mm/s. Both the motorised translation stage and camera
were mounted on a labjack which fixed the detector-cuvette separation at L=100 mm (as
measured from the centre of the cuvette). Scattered light was detected at a horizontal 8.7
× 1.5 mm strip of interest located y=7 mm above the beam. The labjack was mounted on
1 mm square graph paper which allowed for accurate repositioning. Measurements were
made with the centre of the cuvettes at z = l =-40, 20, 0, +20, +40 mm with camera-
cuvette-labjack assembly displaced X=-6, 0, +6, +12 mm effectively increasing the width
of the strip of interest from 8.7 mm to approximately 24 mm. Images were acquired at
200 frames per second.

In the simple shear flow geometry, light from the focused HeNe laser was directed
into an aqueous PVA solution doped with monodisperse 1025 nm diameter latex spheres
(Polyscience Inc.) at 5 × 10−5 wt.% trapped between a rheometer (Thermal Analysis
AR2000) mounted 60 mm diameter rotating glass disc and a stationary parallel glass
plate. The disc-plate separation was fixed at 2, 1.5 or 1 mm. The beam’s waist was
located (approximately) at the centre of the gap. The disc was rotated at 3.14 ×10−3

rad/s and light directed though the fluid 17 mm along the k̂ axis 17 mm from the axis of
rotation inducing a velocity v = 0.053zî mm/s in the illuminated region. Scattered light
was detected at approximately L = 80 mm from the waist over a horizontal strip 8.7 × 3
mm of interest located approximately y=10 mm above the beam. Images were acquired
at 50 frames per second.

9.4 Measurements and analysis

9.4.1 Translation

The effect of increasing the width d of the scattering volume on the simulated speckle
pattern is illustrated Fig. 9.5. The speckle pattern is calculated for 200 scattering centres
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Figure 9.5: Simulated speckle patterns with increasing path length d of the scattering
volume.

randomly distributed through an object volume centered on l = 0 over an 200 µm× 200 µm
×d volume and assuming L=100 mm, w0 = 65 µm. As the length of the scattering volume
is increased the speckle shows increasing ‘barrel’ distortion. In Yoshimura’s analysis, the
characteristic size of the speckle Rs is constant - clearly this is no longer the case when
the length of the scattering volume becomes significant. In Fig. 9.6 the simulated speckle
is compared to measured speckle for 1025 nm diameter latex spheres in 2 mm and 10 mm
path length cuvettes located at l = 0. The simulation reproduces the ‘barrel’ distortion
observed in the measurement.

The measured speckle pattern was affected by two artefacts: interference fringes and
motor jitter. Both static and moving fringes were observed as the cuvette was translated
through the beam. These fringes are visible in measurements shown in Fig. 9.6. The
translation stage was driven by a stepping motor. Every 2-5 frames the speckle pattern
was observed to jump coherently by a few pixels.

After acquisition the intensity data were filtered and correlations calculated. The
characteristic coherence time τc was determined by autocorrelating the intensity in time
and fitting to Eqn. 9.13. The characteristic displacement time τdx and τdy were calculated
by cross-correlating the intensity at adjacent pixels in either the î or ĵ directions and fitting
the correlation to Eqn. 9.13.

Filtering was used to reduce the effect of the artefacts discussed above on the re-
sulting correlation. The intensity data were filtered in space by convolution with a 4.8
(binned) pixel width Gaussian function and/or in time with a 7 frame running average
filter prior to correlation. This filtering smears the speckle in both space and time. This
space and time filtering was used in the calculation of τc. Only time filtering was used in
the calculation of τdx and τdy.

The measured characteristic times τc, τdx and τdy are shown in Fig. 9.7. As the
cuvette’s width increases, the statistics show significantly more spatial variation. The
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Figure 9.6: Measured and simulated speckle patterns for d=2 or 10 mm path length
cuvettes.

characteristic time τdx and τdy reflect coherent motion of the speckle pattern. For the
narrower scattering volume the speckles appear to move in one direction - τdx is constant
and τdy is close to zero as is predicted by Yoshimura’s model. For the wider scattering
volumes they appear to ‘circulate’ about the beam. The direction of motion/circulation
is dependent on the location of the cuvette in the beam with τdx being positive in some
cases and negative in others. This change in direction is predicted by Yoshimura’s model
- the quantity 1 + L/ρ in Eqn. 9.11 can be positive or negative. Note that this change in
sign does not occur when the cuvette is centred on z = l = 0.

The speckle pattern was simulated for 50k time steps for a 17×17 pixel area centred
on Y = 7 mm and X=-15, -14, -13...13, 14, 15 mm. The resulting images were post-
processed (filtered) as above and characteristic times calculated by fitting the auto- and
cross-correlations and are shown in Fig. 9.7. Two sets of τc data are shown. The blue data
has identical post-processing to that used in the measured data. The simulated τc is quite
comparable in structure to the measured τc albeit with a slight negative offset. Motor
jitter could be expected to increase the width of the time filtered speckles. As indicated
by Eqn. 9.10 the coherence time is dependent on Rs. To include the broadening influence
of the motor jitter on τc the simulated data were spatially filtered by convolving with a
1.7 (binned) pixel width Gaussian function before spatially and temporally filtering and as
before. Fitted τc with spatial filtering is shown in red. Spatial filtering essentially offsets
the simulated τc value. The post-processing used for simulated τdx and τdy is identical
to that used for the measured data. The measured and simulated statistics are very
comparable.
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Figure 9.7: Measured and simulated characteristic times for the translation geometry (see
text).
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Figure 9.8: Measured characteristic times for suspensions of latex spheres of different sizes.

In the simulation, it was assumed that angle dependence θ of the scattering am-
plitude S(θ) could be neglected. As a check, a subset of the measurements above were
repeated with 535, 356 or 202 nm diameter latex spheres. Characteristic times are shown
in Fig. 9.8. The measured characteristic times for 535, 356 or 202 nm diameter spheres
map onto the 1025 nm diameter measurements indicating that it is not unreasonable to
neglect angle dependence of the scattering amplitudes at small angles.

9.4.2 Simple shear flow

Static images of measurements made in the parallel-plate configuration are shown in Fig.
9.9. Note that L was revised from an approximately measured L=80 mm to L=90 mm on
the basis of this comparison. Motor jitter artefacts were not observed due to the smooth
rotation of the disc by the rheometer; however, interference artefacts were.

As before, τc was evaluated by fitting the intensity autocorrelation to Eqn. 9.13 after
filtering in space by convolving the data with a 5.6 (binned) pixel width Gaussian function,
it was filtered in time with a 3 frame running average. The τdx and τdy displacement times
were evaluated by fitting the cross-correlation between adjacent pixels after filtering in
time with a 3 point running average. Fitted τc, τdx and τdy over the region of interest on
the detector are shown in Fig. 9.10 i-iii. Line profiles averaged between the lines shown in
Fig. 9.10 i-iii are reported in Fig. 9.10 iv-vi. The simulated characteristic times for 20K
time steps are shown below. There are several notable differences between the measured
and simulated characteristic times. The central peak is split in the simulation whereas
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Figure 9.9: A comparison between measured and simulated speckle patterns observed for
a path length of d=1.5 in the simple shear flow geometry.

splitting is not observed in the measurements. A decrease was observed between X=-2 to
+2 mm in the measured τdx which is not seen in the simulation. Outside this X range the
simulation reproduces the measured behaviour quite well.

9.5 Discussion

It has been demonstrated here that the space-time statistics of a dynamic speckle pattern
can readily be simulated. In principle, this information can be used to understand flow
behaviour of the scattering centres through the scattering volume.

The simulation discussed here is time intensive. It takes about 20 s on a 2 GHz PC
to evaluate the intensity variation for 200 scattering centres at 20k time steps for a single
point at the observation plane. The simulation described in the experimental section took
about one month on 6 2 GHz processors.

The frame rate of the camera sets a lower limit on the coherence time that can be
measured. The frame rate is limited by: 1) exposure time - this depends on the intensity
of the scattering; 2) the time required to transfer the image to a camera’s frame buffer
- this depends on the dimensions of the image and 3) the time required to transfer the
image from the frame buffer to the host PC - this depends on the file size of the image
and the communication protocol used. The frame rate here was limited in most cases by
2 and 3. Ideally, the data would be pre-processed in hardware/firmware on the camera
itself.

The scattering centres were considered to be isotropic and polarisation effects were
neglected in the preceding analysis. These effects can readily be included using the matrix
formalism discussed in Chapter 3. For anisotropic scattering centres, it would be expected
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Figure 9.10: Measured and simulated characteristic times for the simple shear flow geom-
etry (see text).
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that

EN (t) =
N∑
n=1

exp[krn(t)
ikrn(t)

[
S2,n(θ, t) S3,n(θ, t)
S4,n(θ, t) S1,n(θ, t)

] [
E0,2(x, t)
E0,1(x, t)

]
. (9.14)

It may also be possible to simulate the dynamic speckle pattern produced in DWS.
The following assumptions seem reasonable:

1. Only light reradiated by ‘scattering centres’ located in the detection plane, a dis-
tance γ̇0l

∗ from the wall and within a region of interest set by the focusing optics
or an aperture directly contribute to the speckle pattern. Light radiated by other
centres is scattered internally and is not detected or escapes without detection. If
this assumption is correct, the characteristic speckle size is strongly dependent on
the dimensions of the region of interest.

2. The absolute phase of the field illuminating a particular scattering centre in the
detection plane depends on the path length s of the path the diffusing light follows
through the scattering medium and the phase of the incident light. This path can
be simulated by computing a random walk that connects an incident source point
to the location of the scattering centre within the detection plane.

3. Motion of the scattering centres distorts the simulated path, modifying the path
length and phase of the field illuminating the scattering centres in the region of
interest and introducing time dependence into the radiated field and speckle pattern.
Translation of the scattering centres through the region of interest may produce a
transit time dependence. Transit time dependence could be tested by translating
a solid diffuse object (a thick piece of teflon tape, for example) through a laser at
z = l and examining statistics of the dynamic speckle pattern.

Together these assumptions suggest that the dynamic speckle pattern could be calculated
from a field of the form

EN (X, t) =
N∑
n=1

E0,n exp [iφn(t)]
exp[ikrn(t)]
ikrn(t)

. (9.15)

Here rn is the distance between the ‘scattering centres’ in the region of interest in the
detection plane of the sample and observation plane. exp[ikrn(t)]/(ikrn(t)) is the field
radiated by these ‘scattering centres’. The phase φ = 2πs(t)/λ, is the time dependent
phase shift introduced by multiple scattering between the source point and the detection
point and could be calculated using simulation. E0,n is the amplitude of the field at the
source point.
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Chapter 10

Concluding remarks

10.1 Summary

The rheological behaviour of three wormlike micelles solution systems: RHB, RHA and
RHC, composed from the surfactant cetylpyridinium chloride, the counterion sodium sali-
cylate, and the salt sodium chloride in water were studied using both conventional mechan-
ical rheology and the rheo-optical techniques: visualisation, diffusing wave spectroscopy
(DWS), ellipsometry and photo-correlation spectroscopy (PCS).

Both the linear and nonlinear rheology of the wormlike micelles solutions were exam-
ined using mechanical rheometry. Shear thinning was observed in the pseudo steady-state
flow curves of all samples with a subset showing a stress plateau. A slight deviation from
the Maxwell-like response predicted by the reptation-reaction model in the fast break limit
was observed. This deviation appears to be common in the literature data. In accordance
with the predictions of the reptation-reaction model, most samples that showed a Maxwell-
like response exhibited a stress plateau with σc/GM = 0.69± 0.11 and τM γ̇c = 1.7± 0.6.
σc/GM is very close to the theoretical value of σc/Ge = 0.67. τM γ̇c is smaller than the
theoretical value of τrγ̇c = 2.6; this may be due to the difficulty in estimating γ̇c. It
was noted that several RHC samples showed a Maxwell-like response without showing a
stress plateau. Significant stress fluctuations, seen elsewhere, were not clearly observed in
transient non-linear rheology of the RHB system indicating that this behaviour is not uni-
versal. While CPCl source was not found to influence the rheology of a test RHB sample
strongly, the experimental geometry was shown to influence the measured rheology with
significant stress fluctuations observed in 1 deg cone-plate geometry.

Shear induced turbidity was directly visualised in an optical cone-plate, parallel-
plate and cylindrical-Couette flow geometry. Turbid rings were observed in both the
cone-plate and parallel-plate geometries in samples that showed a stress plateau. These
rings were observed to migrate slowly through the fluid. Shear induced turbidity was also
observed in samples that lacked a stress plateau; however, the rings were absent. Shear
induced turbidity was less obvious in the cylindrical-Couette geometry possibly because
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of the illumination used. Transient rings stacked along the vorticity direction were noted
at the onset of a step in strain rate exceeding the critical strain rate.

The validity of the Poisson-renewal model, which extends the reptation-reaction
model to include the influence of high frequency Rouse and breathing modes on linear
rheology of wormlike micelles solutions, was examined using both DWS and PCS mi-
crorheology and conventional mechanical rheology. Measurements were fitted to either a
four or a five parameter Poisson-renewal model. In most cases, qualitative agreement was
observed between the measured and fitted data. Fitted parameters were used to estimate
the average length of the wormlike micelles studied.

In a novel application of the technique, DWS’s spatial sensitivity to shear induced
relative motion was used to study the flow behaviour of RHB wormlike micelles solutions
in three experimental flow geometries. Measurements in the cylindrical-Couette geometry
were consistent with the flow behaviour predicted on the basis of a modified Cross model
and indicated that samples that exhibited a stress plateau were shear banding. The
temporal stability of the measured DWS-flow correlation suggested that shear banding
was quite stable. This observation is consistent with mechanical observations. Flow curves
were determined from the DWS-flow correlations by fitting the data. In 3 of 4 cases
the fitted flow curve was comparable to the flow curve measured mechanically. In a
second approach, the strain rate profile was determined by fitting the data to behaviour
predicted by a 3 parameter Bézier parameter model. The resulting strain rate profile
was comparable to that predicted by the optical flow curve justifying this novel approach.
Flow-DWS measurements in the cone-plate geometry were more difficult to interpret. Here
it appeared that the sample might be slipping - although this interpretation is far from
unambiguous. Flow-DWS correlations measured in the parallel-plate geometries were the
most difficult to interpret. Here the flow appeared to show radial variation which was
inconsistent with behaviour predicted according to the lever rule.

The flow behaviour of RHB wormlike micelles solutions was studied in a cylindrical-
Couette geometry using homodyne PCS and ellipsometry in an optical configuration that
permitted simultaneous point-wise measurements of local strain rate, optical anisotropy
and scattered intensity across the geometry gap. Measurements of the strain rate were
complicated by the appearance of shear induced turbidity in solution. The strain rate
variation observed across the geometry gap in the RHB samples lacking a stress plateau
was largely consistent with the flow behaviour expected on the basis of the flow curve.
Shear banding was observed in samples that exhibited a stress plateau; the partitioning
observed, however, was subtler than suggested by the lever rule. It was noted that this
behaviour was consistent with behaviour observed in the literature. The average stress
optic coefficient of the RHB samples was measured as C = (−1.7 ± 0.3) × 10−7 Pa−1.
This is close to the stress optic coefficient C = −2.3 × 10−7 Pa−1 measured in a related
system. Local optical anisotropy was found to correlate with variations in the local strain
rate within the gap. In particular, bands of high and low birefringence correlated with
bands of low and high strain rate in the shear banding samples. Local strain rate and
optical anisotropy were also correlated with local scattered intensity suggesting that shear
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banding and shear induced turbidity are in some way connected.

The space-time statistics of the dynamic speckle pattern produced by the flow in-
duced motion of embedded scattering centres through a laser were simulated with a view
to the development of a camera-based rheo-optical technique capable of resolving flow at
small angles to complement other camera-based small angle techniques. In the simulation,
the speckle pattern was calculated by simply summing the field radiated by a random en-
semble of point scattering centres in a Gaussian beam at a distant detection plane. The
scattering centres were stepped through the beam in a way prescribed by an applied veloc-
ity field and the resulting speckle patterns were autocorrelated in time or cross-correlated
in space and time to give the space-time statistics of the simulated dynamic speckle pat-
tern. These space-time statistics were compared to the space-time statistics measured in
two simple flow configurations in a number of optical set-ups. The simulated and measured
statistics showed good agreement justifying the ‘brute force’ approach used here.

Flow-DWS was also used to probe the flow behaviour of yoghurt. The flow-DWS
correlations suggested that flow behaviour of this yield-stress soft-glassy material in a
cone-plate geometry was unusual. These observations were verified in a cylindrical-Couette
geometry using NMR velocimetry by a collaborator. Simple partitioning into a high and
low strain rate band was not observed. It was postulated that this partitioning, seen in
other soft-glassy materials, was absent because of erosion due to wall slip/stick.

10.2 Is shear banding in wormlike micelles caused by flow-
concentration coupling?

A correlation between turbidity and strain rate was observed in Chapters 5 and 8 suggest-
ing that these two effects may be connected in some way. An increase in turbidity is seen
in some sheared polymer solutions. This increase has been associated with large local vari-
ations in concentration called ‘critical concentration fluctuations’. These fluctuations have
been attributed to the diffusion of the polymer strands from less concentrated, less entan-
gled, less viscous regions into more concentrated, more entangled, more viscous regions.
That is, in the right conditions, the polymer strand may diffuse up its own concentration
gradient. Because the structures formed in surfactant solutions are concentration depen-
dent, shear induced critical concentration fluctuations in polymer-like wormlike micelles
solutions could lead to the formation of a shear induced phase or structure. If this new
phase were to form in regions of higher concentration (liquid crystals or a precipitate can
form in surfactant solutions at high concentration at a fixed temperature as illustrated
in Chapter 5) and if the lifetime of these structures were longer than the lifetime of the
wormlike micelles then there would be a net flow of surfactant into the new phase. This
would reduce the local concentration of surfactant ‘in solution’. That is, the new phase
temporarily sequesters the surfactant from solution. Because the dimensions of the worm-
like micelles depend on concentration and because viscosity depends on the dimensions of
the micelles, such a change would lead to a change in the local viscosity of the solution.
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Figure 10.1: i) Because of the stress gradient across the gap of a cylindrical-Couette
geometry (curvature not shown) the local strain rate decreases from the inner wall. ii) As
the apparent strain rate increases towards the critical strain rate, critical concentration
fluctuations may begin to occur in the region of highest local strain rate. The structures
that form in surfactant solutions are concentration dependent. iii) If a new phase were
to form with a lifetime greater than that of the wormlike micelles, there would be a net
flow of surfactant into these structures, reducing the local concentration of surfactant in
solution. Because the dimensions of the wormlike micelles are dependent on concentration,
shorter wormlike micelles (for example) may form and the local viscosity of the solution
may drop. This would produce a heterogeneous, low viscosity, high strain rate band and
a homogeneous, high viscosity, low strain rate band as was observed.

For example, a reduction in local concentration might lead to shorter micelles and a lower
local viscosity. In such cases, a turbid high strain rate band would form as was observed.
Alternatively, if the reduction in concentration favoured longer micelles, the local viscos-
ity might increase. In the cylindrical-Couette geometry the higher viscosity region would,
presumably, initially form in the region of highest local strain rate at the inner wall. The
formation of this low strain rate band at the inner wall would lead formation of a higher
strain rate band at the outer wall. This situation would appear to be intrinsically unstable.

The appearance of turbidity in the high strain rate band indicates that this band
is no longer spatially homogeneous. This observation is potentially important from an
experimental perspective. Different experimental techniques probe structure on different
length scales. Because structures of two quite different length scales may be present,
some care must be taken with the interpretation of the data. For example, if only the
‘small’ wormlike micelles were observable, a shear banding wormlike micelles solution
would appear to subdivide into well ordered and less well ordered regions suggesting that
shear banding is caused by an isotropic to nematic phase transition. This explanation
does not appear to account for the additional turbidity observed and seems at odds with
the observation that the isotropic to nematic phase transition (in the RHB system) in
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equilibrium conditions occurs at concentrations many times higher than the concentrations
at which shear banding is observed.

10.3 Future work

Soft-glassy materials show a yield stress and an associated stress plateau at low strain rates.
Like some wormlike micelles solutions, soft-glassy materials have been seen to partition
spatially into low and high strain rate bands in the vicinity of the stress plateau [145].
Recently, Gibaud and coworkers [146][147] compared the flow behavior of a soft-glassy
material in both a smooth and rough walled cylindrical-Couette geometry. In the rough
walled geometry, the fluid spatially partitioned into a high and low strain rate band.
In the smooth wall geometry, significant slip/stick was observed at the walls and the
flow behaviour was much more complicated. Several continuum models predict that the
intrinsic mechanical instability of the fluid will produce fluctuations in the flow behaviour.
Typically, these models do not account for the effects of slip/stick at the walls on flow. A
stress plateau was clearly observed in some of the RHB samples yet both fluctuation and
wall slip/stick, which could be expected to depend on the surface roughness and possibly
surface hydrophobicity, were not observed. Wall slip/stick was noted in measurements
shown in Fig. 3.12 along with fluctuation in the flow behavior. This raises an interesting
question: to what extent are fluctuations seen in some wormlike micelles solutions due to
wall slip/stick and to what extent are they due to mechanical instabilities? To distinguish
between effects that are produced by slip/stick and therefore do not need an explanation
in terms of mechanical instability and those that are due to mechanical instabilities, the
flow behaviour of identical samples could be systematically studied in smooth and rough
walled geometries following the protocol discussed in [146].

As noted in Chapter 2, the underlying constitutive relation for some entangled
monodisperse polymer solution/melts is expected to show a region of negative slope. To
date, shear banding has not been definitively observed in entangled polymer solution/melts
in steady-state flow conditions. This appears to represent a problem for a shear banding
model based on a mechanical instability. Is shear banding not observed in polymer solu-
tions because demixing with the formation of a metastable phase is less likely to occur in
these materials? Near a spinodal point an entangled polymer solution will spontaneously
phase separate into polymer rich and solvent rich phases. It may be possible to induce a
spinodal decomposition by shearing a sample near the spinodal point. Does shear banding
occur in such a sample? If so, this might add weight to the idea that some kind of quali-
tative change in the microstructure (like that produced by a phase transition) is required
for shear banding to occur. Again this seems straightforward to test.

The flow behaviour of shear banding wormlike micelles solutions in the parallel-plate
geometry appears to be particularly unusual. It would be useful to reexamine the flow
behaviour using multiple flow-DWS optical configurations. These flow measurements could
be complemented with measurements made using some other well established technique,
such as NMR velocimetry, in order to better understand the application and limitation



194 CHAPTER 10. CONCLUDING REMARKS

of the flow-DWS and to explore the flow behaviour of shear banding wormlike micelles in
this parallel-plate geometry.



References

[1] P.-G. de Gennes. Nobel prize acceptance speech, 1991.

[2] R. Zana and E. W. Kaler. Giant micelles: properties and applications. CRC Press,
United States of America, 1 edition, 2007.

[3] F. A. Morrison. Understanding rheology. Oxford University Press, New York, 1
edition, 2001.

[4] R. G. Larson. The structure and rheology of complex fluids. Oxford University
Press, Oxford, U.K., 1999.

[5] R. G. Larson. The Constitutive Equation for Polymer Melts and Solutions. But-
terworths Series in Chemical Engineering. Butterworths, United States of America,
1st edition, 1988.

[6] A. R. Paterson. Dynamics under the influence of stochastic forces. Cambridge
Unversity Press, United Kingdom, 1983.

[7] H. A. Barnes, J. F. Hutton, and K. Walters. An introduction to rheology. Elsevier
Science, Oxford, U.K., 1989.

[8] M. R. Rubinstein and R. H. Colby. Polymer Physics. Oxford University Press,
United States of America, 2003.

[9] H. J. Pain. The physics of vibrations and waves. John Wiley and Sons, Ltd., United
States of America, 4 edition, 1992.

[10] P. R. Saulson. Thermal noise in mechanical circuits. Physical Review D, 42:2437–
2445, 1990.

[11] B. J. Berne and R. Pecora. Dynamic Light Scattering - with applications to
Chemistry, Biology and Physics. Dover Publications Inc., 2nd edition, 2000.

[12] G. G. Fuller. Optical Rheometry of Complex Fluids. Oxford University Press, New
York, 1995.

[13] H. Rehage and H. Hoffmann. Viscoelastic surfactant solutions model systems for
rheological research. Molecular Physics, 74:933–973, 1991.

195



196 REFERENCES

[14] M. E. Cates. Reptation of living polymer - dynamics of entangles polymers in the
presence of reversible chain-scission reactions. Macromolecules, 20:2289–2296, 1987.

[15] R. Granek and M. E. Cates. Stress relaxation in living polymers - results from a
poisson renewal model. Journal of Chemical Physics, 96:4758–4767, 1992.

[16] M. S. Turner and M. E. Cates. Linear viscoelasticity of living polymers - a quanti-
tative probe of chemical relaxation times. Langmuir, 7:1590–1594, 1991.

[17] M. S. Turner and M. E. Cates. Linear viscoelasticity of wormlike micelles :A com-
parison of micellar reaction kinetics. Journal de Physique II, 2:503–519, 1992.

[18] M. S. Turner, C. Marques, and M. E. Cates. Dynamics of wormlike micelles - the
bond interchange reaction scheme. Langmuir, 9:695–701, 1993.

[19] A. Khatory, F. Lequeux, F. Kern, and S. J. Candau. Linear and nonlinear vis-
coelasticity of semi-dilute solutions of wormlike micelles at high salt concentration.
Langmuir, 9:1456–1464, 1993.

[20] M. E. Cates. Nonlinear viscoelasticity of wormlike micelles (and other reversibly
breakable polymers). Journal of Physical Chemistry, 94:371–375, 1990.

[21] N. A. Spenley, M. E. Cates, and T. C. B. McLeish. Nonlinear rheology of wormlike
micelles. Physical Review Letters, 71:939–943, 1993.

[22] V. Schmitt, C. Marques, and F. Lequeux. Shear-induced phase separation of complex
fluids: The role of flow-concentration coupling. Physical Review E, 52(4):4009–4015,
1995.

[23] T. C. B. McLeish and R. C. Ball. A molecular approach to the spurt effect in polymer
melt flow. Journal of Polymer Science Part B: Polymer Physics, 24:1735–1745, 1986.

[24] R. Makhoufi, J. P. Decruppe, A. Ait-Ali, and R. Cressely. Rheo-optical study of
worm-like micelles undergoing a shear banding flow. Europhysics Letters, 32:253–
258, 1995.

[25] E. Cappelaere, J. -F. Berret, J. P. Decruppe, R. Cressely, and P. Lindner. Rheol-
ogy, birefringence and small-angle neutron scattering in a charged micellar system
- evidence of a shear-induced phase transition. Physical Review E, 56:1869–1879,
1997.

[26] R. W. Mair and P. T. Callaghan. Observation of shear banding in wormlike micelles
by NMR velocity imaging. Europhysics Letters, 36:719–724, 1996.

[27] J. -B. Salmon, A. Colin, and S. Manneville. Velocity profiles in shear-banding worm-
like micelles. Physical Review Letters, 90:228303(1)–228303(4), 2003.

[28] A. F. Mendez-Sanchez, M. R. Lopez-Gonzalez, V. H. Rolon-Garrido, J. Perez-
Gonzalez, and L. de Vargas. Instabilities of micellar systems under homogeneous
and non-homogeneous flow conditions. Rheologica Acta, 42:56–63, 2003.



REFERENCES 197

[29] Y. T. Hu and A. Lips. Kinetics and mechanism for shear banding in an entangled
micellar solution. Journal of Rheology, 49(5):1001–1027, 2005.

[30] E. Miller and J. P. Rothstein. Transient evolution of shear-banding wormlike micelles
solutions. Journal of Non-Newtonian Fluid Mechanics, 143:22–37, 2007.

[31] M. M. Britton and P. T. Callaghan. NMR visualisation of anomalous flow in cone-
and-plate rheometry. Journal of Rheology, 41:1365–1385, 1997.

[32] M. M. Britton and P. T. Callaghan. Two-phase shear band structures at uniform
stress. Physical Review Letters, 78:4933–4937, 1997.

[33] M. M. Britton and P. T. Callaghan. Shear banding instability in wormlike micellar
solutions. European Physical Journal B, 7:237–249, 1999.

[34] M. M. Britton, R. W. Mair, R. K. Lambert, and P. T. Callaghan. Transition to
shear banding in pipe and couette flow of wormlike micelles solutions. Journal of
Rheology, 43:897–909, 1999.

[35] E. Fischer and P. T. Callaghan. Is a birefringence band a shear band. Europhysics
Letters, 50:803–809, 2000.

[36] M. R. Lopez-Gonzalez, W. M. Holmes, P. T. Callaghan, and P. J. Photinos. Shear
banding fluctuations and nematic order in wormlike micelles. Physical Review
Letters, 93:268302(1)–268302(4), 2004.

[37] J. -F. Berret, D. Roux, G. Porte, and P. Lindner. Shear induced isotropic-to-nematic
phase transition in equilibrium polymers. Europhysics Letters, 25:521–526, 1994.

[38] J. -F. Berret, D. Roux, and G. Porte. Isotropic-to-nematic transition in wormlike
micelles under shear. Journal de Physique II, 4:1261–1279, 1994.

[39] M. W. Liberatore, F. Nettesheim, N. J. Wagner, and L. Porcar. Spacially resolved
small angle neutron scattering in the 1-2 plane: A study of shear induce phase
separating wormlike micelles. Physical Review E, 73(2):504–507, 2006.

[40] J. P. Decruppe, E. Cappelaere, and R. Cressely. Optical and rheological properties
of equimolar CTAB-KBr. Journal de Physique II, 7:257–270, 1997.

[41] J. -F. Berret, R. Gamez-Corrales, S. Lerouge, and J. P. Decruppe. Shear-thickening
transition in surfactant solutions - new experimental features from rheology and flow
birefringence. European Physical Journal E, 2:343–350, 2000.

[42] J. P. Decruppe, S. Lerouge, and J. -F. Berret. Insight in shear banding under
transient flow. Physical Review E, 63:022501, 2001.

[43] J. P. Decruppe and A. Ponton. Flow birefringence, stress optical rule and rheology of
four micellar solutions with the same low shear viscosity. European Physical Journal
E, pages 201–207, 2003.



198 REFERENCES

[44] S. Lerouge, J. P. Decruppe, and P. Olmsted. Birefringence banding in a micellar
solution or the complexity of heterogenous flows. Langmuir, 20:11355–11365, 2004.

[45] S. Lerouge, M. A. Fardin, M. Argentina, G. Gregoire, and O. Cardoso. Interface
dynamics of shear banding flow of giant micelles. Softmatter, 4:1808–1819, 2009.

[46] V. Herle, J. Kohlbrecher, B. Pfister, P. Fischer, and E. J. Windhab. Alternating
vorticity bands in a solution of wormlike micelles solutions. Physical Review Letters,
99(15):8302, 2007.

[47] P. Coussot, J. S. Raynaud, F. Bertrand, P. Moucheront, J. P. Guilbaud, H. T.
Huynh, S. Jarny, and D. Lesueur. Coexistance of liquid and solid phases in flowing
soft glassy materials. Physical Review Letters, 88(21):8301–8304, 2002.

[48] J. -B. Salmon, S. Manneville, and A. Colin. Shear banding a lyotropic lamellar
phase. i. time averaged velocity profiles. Physical Review E, 68(5):1503–1514, 2003.

[49] S. Ravindranath and S.-Q. Wang. Steady state measurement in stress plateau region
of entangled polymer solutions: Controlled-rate and controlled stress modes. Journal
of Rheology, 52(4):957–980, 2008.

[50] P. E. Boukany and S.-Q. Wang. Exploring the transition from wall slip to bulk shear
banding in well entangle DNA solutions. Softmatter, 5:780–789, 2009.

[51] P. E. Boukany, Y. T. Hu, and S.-Q. Wang. Observations of wall slip and shear
banding in an entangle DNA solution. Macromolecules, 41(7):2644–2650, 2009.

[52] C. -Y. D. Lu, P. D. Olmsted, and R. C. Ball. Effects of nonlocal stress on the
determination of shear banding flow. Physical Review Letters, 84(4):642–645, 2000.

[53] P. Olmsted, O. Radulescu, and C. -Y. D. Lu. Johnson-Segalman model with a
diffusion term in cylindrical couette flow. Journal of Rheology, 44:257–275, 2000.

[54] E. Helfand and G. H. Fredrickson. Large fluctuations in polymer solutions under
shear. Physical Review Letters, 62:2468–2471, 1989.

[55] C. -L. Wu, D. J. Pine, and P. K. Dixon. Enhanced concentration fluctuations in
polymer solutions under shear flow. Physical Review Letters, 66(18), 1991.

[56] T. Hashimoto and T. Kume. ”Butterfly” light scattering pattern in shear enhanced
concetration fluctuations in polymer solutions and anomoly at high shear rates.
Journal of the Physical Society of Japan, 61(6):1839–1843, 1992.

[57] P. Fischer, E. K. Wheeler, and G. G. Fuller. Shear-banding structure orientated in
the voriticity direction observed for equimolar micellar solution. Rheologica Acta,
41:35–44, 2002.

[58] P. Fischer. Time dependent flow in equimolar micellar solutions: transient behaviour
of the shear stress and firest normal stress difference in shear induced structures
coupled with flow instabilities. Rheologica Acta, 39:234–240, 2000.



REFERENCES 199

[59] E. K. Wheeler, P. Fischer, and G. G. Fuller. A new class of shear-induced structure
and flow instability in micellar solutions. Physical Review Letters, 1998.

[60] Y. T. Hu, P. Boltenhagen, E. Matthys, and D. J. Pine. Shear thickening in low-
concentration solutions of wormlike micelles. II. slip, fracture, and stability of the
shear-induced phase. Journal of Rheology, 42(5):1209–1227, 1998.

[61] A. J. Liu and D. J. Pine. Shear induced gelation and fracture in micellar solutions.
Physical Review Letters, 77(10):2121–2124, 1996.

[62] V. Herle, P. Fischer, and E. J. Windhab. Stress driven shear bands and the effect
of confinement on their structures - a rheological, flow visualization, and rheo-SALS
study. Langmuir, 21:9051–9057, 2005.

[63] S. Lerouge, J. P. Decruppe, and J. -F. Berret. Correlations between rheological
and optical properties of a micellar solution under shear banding flow. Langmuir,
16:6464–6474, 2000.

[64] M. Ouchi, T. Takahashi, and M. Shirakashi. Shear-induced structure change
and flow-instability in start-up couette flow of aqueous, wormlike micelle solution.
Journal of Rheology, 50:341–352, 2006.

[65] H. Azzouzi, J. P. Decruppe, S. Lerouge, and O. Greffier. Temporal oscillations of the
shear stress and scattered light in a shear-banding-shear-thickening micellar solution.
European Physical Journal E, 17:507–514, 2005.

[66] B. A. Schubert, N. J. Wagner, E. W. Kaler, and S. R. Raghavan. Shear induced
phase separation in solution of wormlike micelles. Langmuir, pages 3564–3573, 2004.

[67] P. D. Olmsted. Two-state shear diagrams for complex fluids in shear flow.
Europhysics Letters, 48:339–345, 1999.

[68] J. L. Goveas and P. Olmsted. A minimal model for vorticity and gradient banding
in complex fluids. European Physical Journal E, 6:78–89, 2001.

[69] S. M. Fielding and P. D. Olmsted. Flow phase diagrams for concentration coupled
shear banding. European Physical Journal E, 11:65–83, 2003.

[70] S. M. Fielding and P. D. Olmsted. Early stages kinetics in a unified model of
shear-induced demixing and mechanical shear banding instabilies. Physical Review
Letters, 90(22):4501–4504, 2003.

[71] S. M. Fielding and P. D. Olmsted. Kinetics of the shear banding instability in startup
flows. Physical Review E, 68(3):6313–6332, 2003.

[72] G. Porte, J. -F. Berret, and J. L. Harden. Inhomogenous flows of complex fluids -
mechanical instability vs non-equilibrium phase transition. Journal de Physique II,
7:459–472, 1997.



200 REFERENCES

[73] M. E. Cates and S. M. Fielding. Rheology of giant micelles. Advances in Physics,
55(7):799–879, 2006.

[74] R. Bandyopadhyay, G. Basappa, and A. K. Sood. Observation of chaotics dynmaics
in dilute sheared aqueous solutions of CTAT. 84(9):2022–2025, 2000.

[75] R. Ganapathy and A. K. Sood. Intermittency route to rheochaos in wormlike micelles
with flow-concentration coupling. Physical Review E, 96:108301, 2006.

[76] S. M. Fielding and P. D. Olmsted. Spacio-temporal oscillations and rheochaos in a
simple model of shear banding. Physical Review Letters, 2003.

[77] S. M. Fielding. Linear instability of planar shear banding flow. Physical Review
Letters, 95(13):4501–4504, 2005.

[78] S. M. Fielding and P. D. Olmsted. Non-linear dynamics of an interface between
shear bands. Physical Review Letters, 96(10):4502–4505, 2006.

[79] S. M. Fielding. Complex dynamics of shear banded flow. Softmatter, 3:1262–1279,
2007.

[80] L. Becu, S. Manneville, and A. Colin. Spaciotemporal dynamics of wormlike micelles
under shear. Physical Review Letters, 93:018301, 2004.

[81] D. J. Griffiths. Introduction to electrodynamics. Benjamin Cummings, United States
of America, 2 edition, 1989.

[82] J. D. Jackson. Classical electrodynamics. Willey, United States of America, 3 edition,
1998.

[83] G. B. Arfken and H. J. Weber. Mathematical methods for physicists. Elsevier
Academic Press, United Kingdom, 2005.

[84] M. V. Klein and T. E. Furtak. Optics. John Wiley and Sons, Ltd., 2 edition, 1986.

[85] R. M. A. Azzam and N. M. Bashara. Ellipsometry and polarised light. North Holland
Publishing Company, Amsterdam, 2 edition, 1977.

[86] D. C. Champeney. Fourier transforms and their physical applications. Academic
Press, United Kingdom, 1 edition, 1973.

[87] D. A. Weitz and D.J. Pine. Diffusing-wave spectroscopy. In Dynamic light scattering,
pages 634–720. Clarendon Press, 1993.

[88] H. C. Van de Hulst. Light Scattering by Small Particles. John Wiley and Sons, Ltd.,
New York, 1957.

[89] D. Bicout and R. Maynard. Diffusing wave spectroscopy in inhomogeneous flows.
Physica A, pages 387–411, 1993.



REFERENCES 201

[90] D. Bicout, E. Akkermans, and R. Maynard. Dynamical correlations for multiple
light scattering in laminar flow. Journal de Physique I, 1:471–491, 1991.

[91] Wyn Brown. Light scattering - Principles and development. Oxford University
Press, United States of America, 1996.

[92] C. H. Wang. Dynamic light scattering and viscoelasticity of a binary polymer solu-
tion. Macromolecules, 25:1524–1529, 1992.

[93] H. Rehage and H. Hoffmann. Rheological properties of viscoelastics surfactant sys-
tems. Journal of Physical Chemistry, 92:4712–4719, 1988.

[94] M. Buchanan, M. Atakhorrami, J. F. Palierne, and C. F. Schmidt. Comparing
macrorheology and one- and two- point microrheology in wormlike micelles solutions.
Macromolecules, 38:8840–8844, 2005.

[95] W. M. Holmes, M. R. Lopez-Gonzalez, and P. T. Callaghan. Fluctuations in shear-
banded flow seen by NMR velocimetry. Europhysics Letters, pages 274–280, 2003.

[96] M. Atakhorrami and C. F. Schmidt. High-bandwidth one-and two-particle microrhe-
ology in solutions of wormlike micelles. Rheologica Acta, 45:449–456, 2006.

[97] M. Buchanan, M. Atakhorrami, J. F. Palierne, and C. F. Schmidt. High-frequency
microrheology of wormlike micelles. Physical Review E, 72:011504, 2005.

[98] J. -F. Berret, G. Porte, and J. P. Decruppe. Inhomogeneous shears flows of wormlike
micelles - a master dynamic phase diagram. Physical Review E, 55:1668–1677, 1997.

[99] M. M. Britton, R. W. Mair, R. K. Lambert, and P. T. Callaghan. Interface insta-
bilities in shear-banding flow. Journal of Rheology, 43(4):897–909, 1999.

[100] J. -F. Berret, J. Appell, and G. Porte. Linear rheology of entangled wormlike mi-
celles. Langmuir, 9:2851–2854, 1993.

[101] N. Z. Handzy and A. Belmonte. Oscillatory motion of rising bubbles in wormlike
micellar fluids with different microstructure. 2003.

[102] M. R. Lopez-Gonzalez. Rheo-NMR of wormlike micelles. PhD thesis, Victoria, 2004.

[103] W. M. Holmes, M. R. Lopez-Gonzalez, and P. T. Callaghan. Shear induced con-
straint to amphiphile chain dynamics in wormlike micelles. Europhysics Letters,
66:132–138, 2004.

[104] J. Y. Lee, G. G. Fuller, N. E. Hudson, and X. -F. Yuan. Investigation of shear-
banding structure in wormlike micellar solution by point-wise flow-induced birefrin-
gence measurements. Journal of Rheology, 49:537–550, 2005.

[105] A. Shukla, R. Fuchs, and H. Rehage. Quasi-anomalous diffusion processes in entan-
gled solutions of wormlike surfactant micelles. Langmuir, pages 3000–3006, 2006.



202 REFERENCES

[106] N. Willenbacher, C. Oelschlaeger, M. Schopferer, P. Fischer, F. Cardinaux, and
F. Scheffold. Broad bandwidth optical and mechanical rheometry of wormlike micelle
solutions. Physical Review Letters, 99(06):8302–8305, 2007.

[107] V. H. Rolon-Garrido, J. Perez-Gonzalez, and L. A. Vega Acosta Montalban. Vane
rheometry of an aqueous solution of worm-like micelles. Revista Mexicana De Fisica,
49:29–39, 2003.

[108] F. Kern, P. Lemarechal, S. J. Candau, and M. E. Cates. Rheological properties of
semidilute and concentrated aqueous solutions of CTAB-KBr. Langmuir, 8:437–440,
1992.

[109] E. K. Wheeler, P. Fischer, and G. G. Fuller. Time-periodic flow induced structures
and instabilities in a viscoelastic surfactant solution. Journal of Non-Newtonian
Fluid Mechanics, 75:193–208, 1998.

[110] B. R. Dasgupta, S.-Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz. Microrhe-
ology of PEO using DWS and PCS. Physical Review E, 65:051505, 2002.

[111] D. Bicout and G. Maret. Multiple light scattering in Taylor-Couette flow. Physica
A, 210:87–112, 1994.

[112] F. Cardinaux, L. Cipelletti, F. Scheffold, and P. Schurtenberger. Microrheology of
giant-micelle solutions. Europhysics Letters, 57:738–744, 2002.

[113] B. S. Douglas, R. H. Colby, L. A. Madsen, and P. T. Callaghan. Rheo-NMR of worm-
like micelles formed from nonionic pluronic surfactants. Macromolecules, 41(3):804–
814, 2008.

[114] W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery. Numerical
Recipes in C++: The Art of Scientific Computing. Press Syndicate of the University
of Cambridge, 2 edition, 2002.

[115] P. T. Callaghan. Principles of nuclear magnetic resonance microscopy. Clarendon
Press, United Kingdom, 1 edition, 1991.

[116] X. -L. Xu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz. Diffusing-wave
spectroscopy in a shear flow. Journal of the Optical Society of America B, 7:15–20,
1990.

[117] R. H. Bartels, J. C. Beatty, and B. A. Barsky. An introduction to splines for use in
computer graphics and geometric modelling. Morgan Kaufmann, United States of
America, 1998.

[118] A. Raudsepp, P. T. Callaghan, and Y. Hemar. Shear localisation in stirred yoghurt.
Rheologica Acta, 49:1435–1443, 2010.



REFERENCES 203

[119] S. Kumar and R. G. Larson. Shear banding and secondary flow in viscoelastic fluids
between a cone and plate. Journal of Non-Newtonian Fluid Mechanics, 95(2):295–
314, 2000.

[120] J. P. Decruppe, O. Greffier, S. Manneville, and S. Lerouge. Local velocity measure-
ments in hetrogeneous and time-dependent flows of a micellar solution. Physical
Review E, 73:061509(1)–061509(4), 2006.

[121] B. M. Marin-Santibanez, J. Perez-Gonzalez, L. de Vargas, F Rodriguez-Gonzalez,
and G Huelsz. Rheometry-PIV of shear-thickening wormlike micelles. Langmuir,
22:4015–4026, 2006.

[122] J. P. Decruppe, R. Cressely, R. Makhoufi, and E. Cappelaere. Flow birefringence
experiments showing a shear-banding structure in a CTAB solution. Colloids and
Polymer Science, 273:346–351, 1995.

[123] E. K. Wheeler, P. Izu, and G. G. Fuller. Structure and rheology of wormlike micelles.
Rheologica Acta, 35:139–149, 1996.

[124] C. Humbert and J. P. Decruppe. Flow birefringence and stress optical law of vis-
coelastic solutions of cationic surfactants and sodium salicylate. European Physical
Journal E, 6:511–518, 1998.

[125] D. -G. Choi, W. -J. Kim, and S. -M. Yang. Shear induced microstructure and rhe-
ology of CPCl-NaSal micellar solutions. Korea-Australia Rheology Journal, 12:143–
149, 2000.

[126] W. -J. Kim and S. -M. Yang. Microstructures and rheological responses of aqueous
CTAB solutions in the presence of benzyl additives. Langmuir, 16:6084–6093, 2000.

[127] W. -J. Kim and S. -M. Yang. Effects of sodium salicylate on the microstructure of
an aqueous micellar solution and its rheological responses. Journal of Colloid and
Interface Science, 232:225–234, 2000.

[128] T. Takahashi, N. Yako, and M. Shirakashi. Relationship between shear-induced
structure and optical anisotropy on CPyCl-NaSal aqueous solution. Journal of the
Society of Rheology, Japan, 1:27–32, 2001.

[129] T. Takahashi, H. Sugata, and M. Shirakashi. Rheo-optic behavior of wormlike mi-
celles under a shear-induced structure formational condition - verification of stress-
optic rule by full component measurement of refractive index tensor. Journal of the
Society of Rheology, Japan, 30:109–113, 2002.

[130] I. A. Kadoma and J. A. van Egmond. Shear-enhanced orientation and concentration
fluctuations in wormlike micelles - effect of salt. Langmuir, 13:4551–4561, 1997.

[131] T. Hashimoto, T. Turukawa, and N. Mori. Flow property and micellar structures
in capillary flows of surfactant solutions. Journal of the Society of Rheology, Japan,
pages 1–8, 2005.



204 REFERENCES

[132] V. Schmitt, F. Lequeux, A. Pousse, and D Roax. Flow behaviour and shear induced
transition near I-N transitions in equilibrium polymers. Langmuir, 10:955–961, 1994.

[133] D. C. Roux, J. -F. Berret, G. Porte, E. Peuvrel-Disdier, and P. Lindner. Shear
induced orientations and textures of nematic wormlike micelles. Macromolecules,
28:1681–1687, 1995.

[134] J. -F. Berret, D. C. Roux, and P. Lindner. Structure and rheology of concentrated
wormlike micelles at the shear induced isotropic-to-nematic transition. European
Physical Journal B, 5:67–77, 1998.

[135] E. Fischer and P. T. Callaghan. Shear banding and the isotropic-to-nematic transi-
tion in wormlike micelles. Physical Review E, 64:011501, 2001.

[136] G. G. Fuller, J. M. Rallison, R. L. Schmidt, and L. G. Leal. The measurement
of velocity gradients in laminar flow by homodyne light-scattering spectroscopy.
Journal of Fluid Mechanics, 100(3):555–575, 1980.

[137] S. N. Schnatterly and S. E. Jasperson. An improved method for high reflectivity
ellipsometry based on a new polarization method. Review of Scientific Instruments,
40:761–767, 1969.

[138] T. Shikata, S. J. Dahman, and D. S. Pearson. Rheo-optical behavior of wormlike
micelles. Langmuir, pages 3470–3476, 1994.

[139] P. N. Pusey and W. van Megen. Dynamic light scattering by non-ergodic media.
Physica A, 157, 1989.

[140] T. Takahashi, M. Shirakashi, K. Miyamoto, and G. G. Fuller. Development of a
double-beam rheo-optical analyzer for full tensor measurement of optical anisotropy
in complex fluid flow. Rheologica Acta, 41:448–455, 2002.

[141] T. Kume, T. Hashimoto, T. Takahashi, and G. G. Fuller. Rheo-optical studies
of shear-induced structures in semidilute polystrene solutions. Macromolecules,
30:7232–7236, 1997.

[142] S. Saito, S. Koizumi, K. Matsuzaka, S. Suehiro, and T. Hashimoto. Light scattering
and small angle neutron scattering studies of structures in a semidilute polymer
solution induce under oscillatory shear flow. Macromolecules, 33:2153–2162, 2000.

[143] T. Yoshimura. Statistical properties of dynamic speckles. Journal of the Optical
Society of America A, 3(7):1032–1054, 1986.

[144] T. Yoshimura, K. Nakagawa, and N. Wakabayashi. Rotational and boiling motion
of speckles in a two-lens imaging system. Journal of the Optical Society of America
A, 3(7):1018–1022, 1986.

[145] P. C. F. Moller, S. Rodts, M. A. J. Michels, and D. Bonn. Shear banding and yeild
stress in soft glassy materials. Physical Review E, 77(4):1507, 2008.



REFERENCES 205

[146] T. Gibaud, C. Barentin, and S. Manneville. Influence of boundary conditions on
yielding in soft glassy materials. Physical Review Letters, 101(2):8302–8305, 2008.

[147] T. Gibaud, C. Barentin, N. Taberlet, and S. Manneville. Shear induce fragmentation
of laponite suspensions. Softmatter, 5(16):3026–3037, 2008.



206 REFERENCES



Publications

Three papers were published during the PhD:

1. A. Raudsepp, P. T. Callaghan and Y. Hemar. A study of nonlinear rheology of com-
plex fluids using diffusing wave spectroscopy, Journal of Rheology, 52(5):1113-1129,
2008.

2. A. Raudsepp and P. T. Callaghan. A rheo-optical study of shear rate and optical
anisotropy in wormlike micelles solutions, Softmatter, 4:784-796, 2008.

3. A. Raudsepp, K.W. Feindel and Y. Hemar. Shear localisation in stirred yoghurt.
Rheologica Acta, 49(4):1435-1443, 2010.

The first paper relates to work presented in Chapter 7. The second paper relates to
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Abstract The shear flow behaviour of stirred yoghurt
in the cone-and-plate and cylindrical Couette geome-
tries was studied using diffusing wave spectroscopy
(DWS) and nuclear magnetic resonance (NMR) ve-
locimetry. Differences between the transmission and
backscattering DWS correlations suggest the formation
of a high shear rate band near the surface of a moving
cone of a cone-and-plate geometry at low shear rates.
At higher shear rates, homogeneous shear flow is indi-
cated. NMR velocimetry unambiguously demonstrated
that a high shear rate band forms at the moving inner
wall of a cylindrical Couette geometry at low shear
rates. At intermediate shear rate, a high shear rate
band is formed at the stationary outer wall and plug-
like flow is observed mid-gap. At higher shear rates,
homogeneous shear flow is observed. Slip is seen at
both walls. The three flow regimes appear to correlate
loosely with transitions in the pseudo-steady-state flow
curve and may reflect a break-up of the protein aggre-
gates observed with confocal microscopy.
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Introduction

Soft glassy materials are a broad class of complex fluids
that include emulsions, foams, gels and colloidal glasses
that possess a yield stress and exhibit both shear rejuve-
nation and aging (Moller et al. 2008). A general feature
of the flow behaviour of these fluids is the formation
of solid-like and fluid-like bands (Moller et al. 2008).
Because shear flow is restricted to the fluid-like region,
this partitioning results in ‘shear localisation’ (Gibaud
et al. 2008). As is demonstrated here, stirred yoghurt
shows shear induced fragmentation and a yield stress
suggesting that shear localisation could be expected in
this fluid.

Commercially, yoghurts are produced by the acidi-
fication of milk by bacterial cultures that ferment lac-
tose to lactic acid (Lucey and Singh 1998). In milk,
the primary proteins exist as smicelles comprised of
four types of casein (β-, αs1-, αs1 and κ-). It has
been proposed that the proteins are held together by
hydrophobic interactions and by calcium phosphate
bridges (Horne 1998). At the surface of the casein mi-
celle, a “hairy” layer made of κ-casein imparts a strong
repulsive steric interaction that prevents casein micelle
aggregation (de Kruif and Zhulina 1996). Lowering the
pH to the isoelectric point of the casein, pH = 4.6,
diminishes the net electrostatic charge and repulsive
steric interactions, resulting in the aggregation of the
casein micelles and the formation of a protein network.

Depending on the flow behaviour of the resulting
protein network, yoghurt is described commercially as
being firm, stirred or drinking (Yoon and McCarthy
2002). Rheologically, stirred yoghurt behaves like a
thixotropic shear thinning fluid with an apparent
yield stress (Basak and Ramaswamy 1994; Benezech
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and Maingonnat 1994). Rheological measurements of
stirred yoghurt are known to be poorly reproducible
due to sample preparation and sample-loading issues
(Suwonsichon and Peleg 1999). Poor reproducibility
has also been attributed to shear history and wall
slip (Yoon and McCarthy 2002). Using magnetic res-
onance imaging, Yoon and McCarthy (2002) showed
that both plug flow and a slip velocity are observed
during the pipe flow of yoghurt. Slip velocity was found
to increase with wall stress; that is, with the pressure
difference across the pipe length. This has been recently
confirmed by Henningsson et al. (2006) using cross-
correlation electrical resistance tomography.

In this paper, the flow behaviour of stirred yoghurt
was studied using diffusing wave spectroscopy (DWS)
and nuclear magnetic resonance (NMR) velocimetry in
the cone-and-plate and cylindrical Couette geometries.
NMR has been used to examine the flow behaviour of
many complex fluids including foodstuffs (Britton and
Callaghan 1997) and shear banding fluids (Callaghan
2008). DWS is a dynamic light scattering technique in
which the propagation of light through a highly multi-
ply scattering medium is treated as a diffusive process
(Weitz and Pine 1992). The technique is commonly
used to characterise the linear rheology of complex
fluids through measurement of the diffusion of embed-
ded probe particles. Here, we utilise the technique’s
sensitivity to shear rate and exploit the intrinsic turbid-
ity of yoghurt to explore the fluid’s flow behaviour in
a conventional geometry commonly used in rotational
rheological measurements.

Experimental

Stirred yoghurt (Biofarm Products Ltd, Palmerston
North, New Zealand) was studied using confo-
cal microscopy, rheometry, flow-DWS and NMR-
velocimetry. The yoghurt was made from whole milk
and used as received.

Confocal scanning laser microscopy (CSLM) was
performed on a Leica microscope (TCS SP5 DM6000B)
in fluorescence mode with a DPSS 561 laser (excitation
wavelength of λ = 561 nm, emission spectrum λ = 565–
659 nm) and an oil-immersion objective (×100). Im-
ages were recorded with 1024 × 1024 pixel resolution.
The protein network was dyed with Fast-green by the
addition of 6 μl of dye, from a 0.2% w/w mother
solution, to 1 ml of yoghurt sample. Yoghurt samples
were observed with CSLM before and after extensively
stirring the sample with a magnetic stirrer.

Rheometry was performed on a controlled stress TA
AR2000 operated in strain controlled mode. Several
measurement geometries were used.

The experimental set-up for the flow DWS experi-
ment is shown in Fig. 1. Light from a polarised laser
(L, 15 mW λ = 632 nm, Melles–Griot) was directed
through a beam expander, a variable neutral density
filter (Edmund optics) and reflected by a gold mirror
into a rheometer (TA AR2000) mounted homemade
optical cone and plate geometry. Both the Perspex cone
(60 mm diameter, 4◦ cone angle) and glass plate were
transparent. Scattered light was collected through a
polariser crossed with the laser, mounted on a GRIN
lens, directed by a fibre optic into a fibre optic beam
splitter (Font) into two photon counting photomulti-
pliers (www.correlator.com). The signal from the two
photomultipliers was cross-correlated at a hardware
correlator (www.correlator.com) and acquired for
analysis at the host PC. By repositioning the mirror,
light could be directed through the cone to the plate
(CP) or through the plate to the cone (PC). By reposi-
tioning both the mirror and collection optics, four DWS
measurement configurations were possible: (1) mirror
and collection optics above (CP backscattering geome-
try), (2) mirror above and collection optics below (CP
transmission geometry), (3) mirror and collection op-
tics below (PC backscattering geometry) and (4) mirror
below and collection optics above (PC transmission
geometry). In all measurements, light was directed into
the sample and scattered light collected from the sam-
ple 18 mm from the axis of rotation of the cone.

NMR velocimetry (Callaghan 1991) measurements
were performed using a 9.4 T vertical wide-bore su-
perconducting magnet equipped with a Bruker Avance
400 NMR spectrometer and a Bruker Micro-2.5 tri-
axial gradient unit. Coupled with GREAT-60 current

Fig. 1 Flow DWS setup and schematic of the optical geometry
used for the DWS experiments. Arrows labelled CP, and PC
indicate the direction of incidence
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amplifiers, the maximum pulsed magnetic field gradi-
ents achievable are 1.5 T m−1. All experiments were
performed with a 1H-tuned (ca. 399.7 MHz) Bruker
SAW coil. NMR velocity measurements were obtained
with a volume-selective one-dimensional imaging se-
quence preceded by a pulsed-gradient stimulated echo
(Fig. 2). The 1H T1 and T2 relaxation times for the
yoghurt were measured to be ∼2.3 s and ∼90 ms,
respectively. Therefore, an excitation pulse of ∼80◦
(50 μs) was employed with a delay of 3.5 s between ex-
periments. Velocity- or q-space was probed by repeat-
ing the experiment for eight values of the q-gradient,
ranging from 0 to 0.3625 T m−1. The duration of the
q-gradient, δ, ranged from 1 to 2 ms, and the observa-
tion period between q-gradients, �, ranged from 10 to
75 ms. Volume selection was performed with two band-
selective 1-ms-shaped RF pulses in the presence of a
magnetic field gradient which defined the physical slice
thickness. During acquisition of the signal, a magnetic
field gradient was applied across the diameter of the
Couette cell to spatially resolve the flow profile across
the gap (25.3 mm field of view). To limit water-fat
chemical shift artefacts, a large acquisition bandwidth
of 500 kHz was employed to acquire 512 complex
points. The nominal voxel size was 2 mm × 50 μm ×
20 mm (flow direction × across gap × depth). A four-
step CYCLOPS phase cycle (Hoult and Richards 1975)
was employed for each q-step, resulting in a total time
of ca. 2 min per velocity image. The q-dimension was
zero-filled to 1024 and Fourier transformed to yield a
propagator for each voxel of the one-dimensional NMR
image. The location of the propagator peak maximum
was taken to represent the average voxel velocity sam-
pled over the duration of the NMR measurement.

Strain-rate-controlled shear deformation was ap-
plied with a Magritek Rheo-NMR accessory with the
drive shaft coupled to the inner cylinder of a custom
made cylindrical Couette cell. The Couette cell was

constructed from glass NMR tubes (Wilmad Glass)
with outer and inner diameters of 25/23 and 20/18 mm
(concentric to 50 μm), resulting in a nominal gap width
of 1.5 mm. A test sample, placed in the gap between
the tubes, is sheared by the rotation of the inner NMR
tube. The apparent shear rate in this geometry is equal
to the linear velocity of the inner wall divided by the
gap width. An unsheared marker fluid is placed in the
centre of the inner tube to elucidate slip.

Measurement and analysis

Confocal microscopy

Confocal micrographs of the yoghurt are shown in
Fig. 3. The milk proteins are stained by the Fast-green
dye and appear white in the images. These micrographs
clearly show that the yoghurt is made of a network
of aggregated or flocculated milk proteins containing
large voids (dark region) filled with milk serum. After
extensive stirring the size of the protein aggregates is
markedly reduced.

Rheometry

The pseudo-steady-state flow curve of the yoghurt was
measured by stepping the apparent shear rate from

either
·
γ = 0.01 or 0.0316 s−1 in 10 steps per decade

increments with a 2-min dwell time at each shear rate.
Measurements were made using a (1) 40 mm 2◦ factory
acrylic cone and steel plate, (2) 60 mm 4◦ factory steel
cone and steel plate or (3) 60 mm 4◦ homemade Per-
spex cone and glass plate. The shear stress was mea-
sured continuously. Measurements are shown in Fig. 4i.
The differences observed between measurements made
with the 2◦ and 4◦ cones suggest a dependence on cone

Fig. 2 NMR velocity imaging
pulse sequence and schematic
of the cylindrical Couette
geometry used for the NMR
experiments
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Fig. 3 Confocal micrographs
of the yoghurt samples i
before and ii after stirring

angle. The measured pseudo-steady-state flow curves
can loosely be divided into three regions. At the low-

est shear rates,
·
γ < 0.4 − 1.2 s−1 (depending on geom-

etry), plateau-like or a decreasing stress is observed
with increasing shear rate in the flow curve. A stress
plateau has been observed in soft glassy materials and
has been correlated to partial fluidisation and shear
banding (Rogers et al. 2008; Moller et al. 2008). The
plateau-like region observed here might be associated
with the localised fragmentation of the protein network
seen in the confocal microscopy. At intermediate shear

rates, stress scales σ ∝ ·
γ

0.45
while at highest shear rates,

·
γ > 8 − 13 s−1, stress scales according to σ ∝ ·

γ
0.30

. The
data are replotted with time in Fig. 4ii and iii and show
that the sample exhibits both thixotropy and rheopexy.
Additional measurements made with the 40 mm 2◦
factory acrylic cone, in which stress was stepped in 10
steps per decade increments from 0.01 Pa, indicated
that no measurable flow was present until the stress
exceeded a yield stress of 1 Pa. This correlates well with

the plateau stress at low shear rate in controlled strain
rate measurements.

Flow DWS

In DWS, a normalised intensity correlation

〈I (0) I (t)〉/〈I〉2 = 1 + β |g1 (t)|2 (1)

is measured. β is a coherence factor that can be deter-
mined from the short time behaviour of the normalised
intensity correlation, and g1(t) is the field correlation
function. The time dependence of the intensity corre-
lation function depends on the relative motion of the
embedded scattering centres. For simple shear flow, the
field correlation function is given by (Bicout and Maret
1994).

g1 (t) =
∞∑

n=1

Gn (yi, yo) exp
[
−2nk2 Dt − 1

15
n

(
kl∗

·
γ t

)2
]
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Here, k is the wavenumber in the medium, D is the
diffusion constant of the embedded scattering centres,
·
γ = dvx

/
dy = constant is the shear rate and l∗ is char-

acteristic length scale that describes the transport mean
free path of light in the medium. l∗ is a measure of the
system’s turbidity and depends on the scattering cen-
tres’ size, refractive index and volume fraction (Weitz
and Pine 1992). Gn(yi,yo) is a propagator describing
the probable distribution of steps n of step size l∗ re-
quired to randomly walk between the points yi and yo.
This random walk represents the path of light diffusing
through the medium. yi is the point in the medium
where light starts to diffuse and yo the point at which
light exits the medium and is subsequently detected.
For uniform illumination of an infinite slab of thickness
L, Gn(yi,yo) has the form:

Gn (yi, yo) = 2
L

∞∑

m=1

sin
[mπyi

L

]
sin

[mπyo

L

]

× exp
[
−m2 n

n0

]
(3)

where n0 = 3L2/πl∗ 2 (Bicout and Maynard 1993). Two
experimental geometries are commonly used in DWS:
(1) backscattering in which light is detected from the
incident side of the slab and (2) transmission where
light is detected from the opposite side. In the backscat-
tering geometry, it is commonly assumed that yi = l∗
and yo = γ0l∗ whereas in the transmission geometry, it

is assumed that yo = L − γ0l∗. γ0 describes the diffusion
of light near an interface. It was measured experimen-
tally as γ0 = 1.7 for a glass/water interface in Bicout and
Maret (1994); here, we assume a value γ0 = 1.7 here.
Depth sensitivity to diffusion or shear induced relative
motion of the embedded scattering centres is set by
the propagator. In the backscattering geometry, short
paths are favoured. As a consequence, backscattering
DWS measurements preferentially probe relative mo-
tion near the surface. In the transmission geometry,
longer paths are favoured as light paths must traverse
the entire slab to be detected, and the measurement is
closer to a spatial average.

Measurements in two backscattering and two trans-
mission geometries are shown in Fig. 5. The apparent

shear rate was stepped from
·
γ = 0.0316 to 100 s−1 in

10 per decade increments with a dwell time of 2 min
at each shear rate step. The red arrow indicates the
direction of incidence and d the position of the collec-
tion optics. The correlations reported are an average
over the last 30 s at each shear rate step. The stress
was measured concurrently; an example of the stress
measured with the Perspex cone is reported in Fig. 5i
and iii.

To analyse the data, it was assumed that uniform

shear flow was achieved for apparent shear rates
·
γ >

10 s−1. With the contribution of diffusion neglected, the
transmission and backscattering correlations measured

above
·
γ > 10 s−1 were simultaneously fitted to Eqs. 2

Fig. 5 Measured flow DWS
correlations in the four
optical configurations
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Fig. 6 Shear rate estimated by fitting the DWS correlations
measured in the four experimental DWS geometries

and 3 to determine a best fitting l∗ = 0.18 mm for
the yoghurt. Using this l∗ value, the correlations mea-

sured in the absence of shear (
·
γ = 0 s−1) were fitted

to determine an average effective diffusion constant
D* = 1.3 × 10−14 m2/s for the scattering centres in
the yoghurt. Measurements at intermediate shear rates

were then fitted to Eqs. 2 and 3 to determine
·
γ = ·

γ fit.
Because l∗ may depend on shear rate and may vary
spatially through the yoghurt sample and because γ0

and absorbance were not determined experimentally,
this method of analysis is essentially semi-quantitative
(for a more quantitative approach, see Raudsepp et al.
2008).

·
γ fit is shown in Fig. 6. At low apparent shear rates,

·
γ < 0.5 s−1, the fitted shear rate

·
γ fit reported at the

stationary plate in the PC backscattering configuration
(Fig. 5iii) is significantly lower than that reported at the
moving cone in CP backscattering configuration (Fig.

5i). An intermediate value is reported by PC and CP
transmission configurations (Fig. 5ii and iv). As noted
above, the backscattering measurements preferentially
probe the local shear rate near the surface, whereas the
transmission measurements report on a spatial average
across the gap—these observations are consistent with
the formation of a solid-like low shear band at the
stationary plate and a fluid-like high shear band at the

moving cone. Around
·
γ = 0.5 s−1,

·
γ fit near the plate

Fig. 7 Velocity profiles
measured using
NMR-velocimetry at i low
(solid lines), ii intermediate
(solid lines) and iii high shear
rates (solid lines). Dashed
lines correspond to other
profiles measured during the
run. iv 3D visualisation of
data shown in (ii) and (iii)
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begins to grow sharply with increasing
·
γ . At interme-

diate shear rates,
·
γ = 0.5 − 5 s−1,

·
γ fit near the plate

continues to grow while a small reduction in
·
γ fit near

the cone is observed. At high shear rates,
·
γ > 5 s−1,

·
γ fit

reported by both the backscattering and transmission
measurements is very similar suggesting that homoge-
neous shear flow is present.

NMR velocimetry

Velocity profiles of the yoghurt sheared in the cylindri-
cal Couette geometry are reported in Fig. 7. In these
measurements, the apparent shear rate was stepped

from a
·
γ = 0.04 to 5.61 (run 1) or

·
γ = 0.33 − 43 s−1

(run 2) in approximately 20 per decade increments with
a dwell time of 6 min at each shear rate. The profiles
reported are an average over this 6-min period. At low

shear rates,
·
γ < 0.8 s−1 (Fig. 7i, solid lines), a localised

high shear rate band forms at the moving inner wall.

At intermediate shear rates,
·
γ = 0.8 − 7 s−1 (Fig. 7ii,

solid lines), a localised high shear band emerges at the
stationary outer wall of the geometry. The local shear
rate is close to zero mid-gap over this shear rate range.

At higher shear rates,
·
γ > 8 s−1 (Fig. 7iii, solid lines),

the mid-gap local shear rate increases as the shear flow
becomes more homogeneous.

In the absence of slip, the expected velocity at the
outer wall is zero. The expected velocity at the inner
wall vm can be inferred by linearly extrapolating the
velocity of the marker fluid to the inner wall of the gap.
The measured velocity at the outer wall vo, inner wall
vi and extrapolated velocity vm are shown in Fig. 8i and
the ratio vo/vm and vi/vm in Fig. 8ii. At lower shear
rates, significant slip is observed at the moving inner
wall. At higher shear rates, vi/vm increases towards
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Fig. 9 Average shear rates calculated from the NMR velocity
profile near the inner and outer walls of the geometry and over
the entire gap

vi/vm = 1 expected in the absence of slip. While slip
appears to be absent at the outer wall at lower shear
rates, it is observed at intermediate and higher shear
rate saturating at a value vo/vm ≈ 0.15.

In order to compare the NMR with the DWS mea-
surements, the velocity profile is differentiated for ap-

parent shear rates in the range
·
γ = 0.33 − 43 s−1 and an

average shear rate,
·
γ calc, is calculated over a 0.25-mm

region nearest the inner wall, a 0.25-mm region nearest
the outer wall and an average over the entire gap. These
averages are shown in Fig. 9. The inner wall and outer
wall averages show similar behaviour to the fitted shear
rate for the backscattering measurements, albeit shifted
by a factor of approximately 2 to 3 to higher apparent
shear rates.

Fig. 8 Slip observed at the
inner and outer walls of
the gap
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Discussion

The flow DWS and NMR velocimetry measurements
are easily reconciled at low and high apparent shear
rates. At low shear rates, an unsheared solid-like band
is observed at the outer wall, and a high shear rate fluid-
like band is seen at the moving wall in the NMR mea-
surements (Fig. 6i). These observations are consistent
with the backscattering flow DWS measurements (Fig.

5i and iii) that indicate local shears rates of
·
γ fit ≈ 0 near

the stationary plate and
·
γ fit >

·
γ near the moving cone

(Fig. 6). At high apparent shear rates, the NMR ve-
locimetry indicate that increasingly homogeneous shear
flow is present (Fig. 7iii). Increasingly homogeneous

shear flow is also indicated by flow DWS as
·
γ fit con-

verges to the apparent shear rate in both the backscat-
tering and transmission geometries (Figs. 5 and 6). At
intermediate shear rates, the NMR velocimetry mea-
surements clearly show that high shear rate bands are
present at both the moving and the stationary walls of
the cylindrical Couette geometry and are connected by
a mid-gap band having shear rate close to zero (Fig. 8ii).
Although the flow DWS indicated that there is indeed
shear flow near both the moving and the stationary
walls of the cone-and-plate geometry in this regime (see

Fig. 6, 0.5 s−1 ≤ ·
γ ≤ 3 s−1), the technique, which reports

a weighted spatial average, is unable to resolve such
complex flow behaviour. The correspondence between
the flow DWS and NMR velocimetry measurements
(Figs. 6 and 9) indicates that flow DWS can provide
at least semi-quantitative information about the flow
behaviour of an unknown complex fluid. In this in-
stance, the flow DWS measurements motivated a more
quantitative study using NMR velocimetry.

Both the flow DWS and NMR velocimetry mea-
surements indicated that the yoghurt exhibits shear
localisation in both the cone-and-plate and cylindrical
Couette geometries. Three regimes were identified in
the flow curve of the yoghurt—these regimes appear to
correlate loosely to changes in the flow behaviour.

Wall slip and plug flow have been observed in yo-
ghurt in the pipe flow geometry by others (Yoon and
McCarthy 2002; Henningsson et al. 2006). Wall slip and
plug-like flow were observed in the cylindrical Couette
geometry here. In the pipe flow geometry, the solid-like
plug, corresponding to a region flowing with a constant
velocity, formed in the low stress region in the middle
of the pipe. Surprisingly, in the cylindrical Couette
geometry used here, the solid-like ‘plug’ formed in a
region of intermediate stress in the middle of the gap.

In a shear banding fluid, viscosity spatially bifurcates
in the gradient flow direction. This partitioning into

regions of high and low viscosity results in bands of
low and high shear rate (Olmsted 2008). Shear band-
ing has been studied extensively in wormlike micelles
solutions. In the cylindrical Couette geometry, the fluid
is commonly observed to partition into a high and low
shear rate band in the vicinity of a stress plateau in
controlled strain rate conditions. Here, the high shear

rate band (of strain rate
·
γ HI) is observed to form at

the higher stress inner wall and expands into the low

shear rate band (of strain rate
·
γ LO) with increasing gap-

average strain rate
·
γ with a fractional width x given by

lever rule
·
γ = x

·
γ HI + (1 − x)

·
γ LO (Salmon et al. 2003).

Experimentally, there is evidence that soft glassy ma-
terials partition into fluid-like and solid-like shear rate

bands (of strain rates
·
γ fluid and

·
γ solid = 0 s−1, respec-

tively) according to the lever rule
·
γ = x

·
γ fluid in both the

cylindrical Couette (Gibaud et al. 2009) and cone-and-
plate (Moller et al. 2008) geometries with the fluid-like
bands forming in the high stress region of the geometry
in the vicinity of the stress plateau in controlled strain
rate conditions. Although a stress plateau was observed
at low shear rates for the yoghurt, partitioning into
solid-like and fluid-like bands according to the lever
rule was not observed here.

Recently, Gibaud et al. (2008) examined the role
of wall slip on flow behaviour of soft glassy materials.
Here, ultrasonic velocimetry was used to profile flow in
a soft glassy Laponite suspension in both a rough wall
and smooth wall cylindrical Couette geometry in con-
stant strain rate conditions. In the rough wall geometry,
slip was absent and material partitioned into solid-like
and fluid-like regions as expected. Flow in the smooth
wall geometry was significantly more complicated. The
solid-like phase was observed to detach from the outer
wall of the geometry and flow as a discontinuous plug in
the centre of the gap. Over time, the plug was observed
to gradually erode. Significant wall slip-stick was ob-
served at both the inner and outer walls of this smooth
walled geometry. Both wall slip and plug flow were
observed in the NMR velocimetry measurements of the
yoghurt at intermediate shear rates here suggesting that
the solid-like region, observed at the outer wall of the
cylindrical Couette at low shear rates, is detaching from
this wall and flowing mid-gap as a plug. Viscous flow
may be recovered at higher shear rates as this plug is
eroded by slip.

In accordance with the observation of a yield stress,
yoghurt does show shear localisation in both the cone-
and-plate and cylindrical Couette geometries. While
the appearance of a stress plateau at low shear rates
suggests that a viscosity bifurcation might be occurring,
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signature partitioning into low and high shear rate
bands according to the lever rule was not observed.
This may be due to slip—highlighting the importance
of slip on shear localisation/banding in soft glassy ma-
terials. From a material perspective, yoghurt can be
considered to be a protein particle gel consisting of
a weakly flocculated casein micelles network (with an
initial volume fraction of casein micelles of approx.
10%) embedded in a continuous phase composed of
milk serum (mainly water containing lactose, globular
proteins and minerals). The slip observed here may
be associated with the formation of a serum-rich film
produced by excluded volume interactions at the sur-
faces of the geometry (Yoon and McCarthy 2002). The
correlation between the formation of a high shear rate
band and the presence of slip tends to suggest that
slip drives the erosion of the protein gel at low shear
rates. While it seems physically reasonable that slip
and slip-induced erosion of the gel should preferentially
occur in the high stress region of the cylindrical Couette
geometry, it remains unclear as to what triggers slip at
the outer wall of the cylindrical Couette geometry at
intermediate shear rates.

Acknowledgements The authors thank Aurélie Cucheval, In-
stitute of Fundamental Sciences, Massey University, New
Zealand for the confocal microscopy measurements. The NMR
velocity measurements were performed in the Rheo-NMR Fa-
cility operated by Prof. Paul Callaghan at Victoria University
of Wellington, New Zealand. Allan Raudsepp thanks the Royal
Society of New Zealand for funding and Kirk Feindel thanks the
Natural Sciences and Engineering Research Council of Canada
for a post-doctoral fellowship.

References

Basak S, Ramaswamy HSA (1994) Simultaneous evaluation of
shear rate and time dependency of stirred yogurt rheology
as influenced by added pectin and strawberry concentrate. J
Food Eng 21:385–393

Benezech T, Maingonnat JFA (1994) Characterization of the
rheological properties of yoghurt. J Food Eng 21:447–472

Bicout D, Maret G (1994) Multiple light scattering in Taylor-
Couette flow. Physica A 210:87–112

Bicout D, Maynard R (1993) Diffusing wave spectroscopy in
inhomogeneous flows. Physica A 199:387–411

Britton MM, Callaghan PT (1997) NMR Microscopy and the
non-linear rheology of food materials. Magn Reson Chem
35:S37–S46

Callaghan PT (1991) Principles of nuclear magnetic resonance
microscopy. Oxford University Press, Oxford

Callaghan PT (2008) Rheo-NMR and shear banding. Rheol Acta
47:243–255

de Kruif CG, Zhulina EB (1996) Kappa-casein as a polyelec-
trolyte brush on the surface of casein micelles. Colloids Surf
A: Physicochem Eng Asp 117:151–159

Gibaud T, Barentin C, Manneville S (2008) Influence of bound-
ary conditions on yielding in a soft glassy materials. Phys Rev
Lett 101:258302

Gibaud T, Barentin C, Taberlet N, Manneville S (2009) Shear
induced fragmentation of laponite suspensions. Soft Matter
5:3026–3037

Henningsson M, Ostergren K, Dejmek P (2006) Plug flow of
yoghurt in piping as determined by cross-correlated dual-
plane electrical resistance tomography. J Food Eng 76:163–
168

Horne DS (1998) Casein interactions: casting light on the black
boxes, the structure in dairy products. Int Dairy J 8:171–
177

Hoult DI, Richards RE (1975) Critical factors in the design of
sensitive high resolution nuclear magnetic resonance spec-
trometers. Proc R Soc Lond A344:311–340

Lucey JA, Singh H (1998) Formation and physical properties of
acid milk gels: a review. Food Res Int 30(7):529–542

Moller PCF, Rodts S, Michels MAJ, Bonn D (2008) Shear band-
ing and yield stress in soft glassy materials. Phys Rev E 77:
041507

Olmsted PD (2008) Perspectives on shear banding in complex
fluids. Rheol Acta 47:283–300

Raudsepp A, Callaghan PT, Hemar Y (2008) A study of the
nonlinear rheology of complex fluids using diffusing wave
spectroscopy. J Rheol 52:1113–1129

Rogers SA, Vlassopoulos D, Callaghan PT (2008) Aging, yielding
and shear banding in soft colloidal glasses. Phys Rev Lett
100:128304

Salmon J-B, Collin A, Manneville S (2003) Velocity profiles in
shear-banding wormlike micelles. Phys Rev Lett 90:228303

Suwonsichon T, Peleg M (1999) Rheological characterization of
almost intact and stirred yogurt by imperfect squeezing flow
viscometry. J Sci Food Agric 79:911–921

Weitz DA, Pine D (1992) Diffusing-wave spectroscopy. In:
Brown W (ed) Dynamic light scattering. Oxford University
Press, Oxford

Yoon WB, McCarthy KL (2002) Rheology of yogurt during
pipe flow as characterized by magnetic resonance imaging. J
Texture Stud 33:431–444


	Abstract
	Acknowledgements
	Contents
	List of figures
	List of tables
	Thesis overview
	Rheology
	Introduction
	Rheology
	Flow, stress and the constitutive relation
	Simple shear flow
	Linear rheology
	Nonlinear rheology
	Mechanical rheometry

	Brownian motion and diffusion
	The rheology of polymer-like chains
	Structure
	Rubbery- and temporary-network models
	Reptation model
	Other relaxation modes


	Rheology of wormlike micelles solutions
	Introduction
	Surfactants in solution
	Linear rheology of wormlike micelles
	Reptation-reaction model
	Poisson-renewal model

	Nonlinear rheology of wormlike micelles
	Shear banding
	Coupling between flow and concentration
	Stress fluctuations and flow instabilities


	Rheo-optics
	Introduction
	Solving Maxwell equations
	Maxwell equations
	Plane wave solution
	Green function solution

	Propagation in homogeneous media
	Propagation in isotropic materials
	Propagation in anisotropic material
	Matrix formulations

	Propagation in inhomogeneous media
	Single scattering regime
	Multiple scattering in the diffusion approximation
	Matrix formulations
	Scattering birefringence and dichroism

	Rheo-optical properties of polymer like systems

	Rheometry and visualisation
	Introduction
	Experimental
	Measurements and analysis
	Linear rheology
	Nonlinear rheology
	Direct observation

	Discussion

	Poisson-renewal model
	Introduction
	Microrheology
	Measurements and analysis
	Microrheology
	Mechanical rheometry
	Analysis

	Diffusion NMR microrheology
	Discussion

	Flow-DWS
	Introduction
	DWS and flow
	Experimental
	Set-up
	Samples

	Measurements and analysis
	Cylindrical-Couette geometry
	Cone-plate geometry
	Parallel-plate geometry

	Discussion

	Birefringence and shear banding
	Introduction
	Experimental
	Set-up
	Samples
	Homodyne photo-correlation spectroscopy
	Ellipsometry

	Measurements and analysis
	Homodyne PCS
	Ellipsometry

	Discussion

	Simulating dynamic speckle
	Introduction
	Statistical properties of dynamic speckle
	Experimental
	Measurements and analysis
	Translation
	Simple shear flow

	Discussion

	Concluding remarks
	Summary
	Flow-concentration coupling?
	Future work


