
RemoteME:
Experiments in Thin-Client

Mobile Computing

by

Vipul Delwadia

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Computer Science.

Victoria University of Wellington
2009

Abstract

Mobile phones are ubiquitous, however they are vastly underpowered
compared to their desktop counterparts. We propose a technique to play
potentially resource intensive games over a network, and provide a pro-
totype system called RemoteME which implements this technique. We
also explore the responsiveness requirement for systems of this nature, es-
tablish benchmarks for responsiveness via user studies. We evaluate our
implementation by measuring its responsiveness and comparing it to this
benchmark.

Acknowledgments

I would like to thank my parents and sister for their support throughout
this Masters.

Many thanks to Stuart Marshall and Ian Welch for your excellent su-
pervision. I would be nowhere without your guidance and wisdom, your
help is much appreciated.

Thanks to my friends in Memphis, including the students from Hon-
ours 2008 and 2009. Thanks to Stephen and Paley for their help and sup-
port, always willing to provide assistance or insight.

Thanks to everyone in ELVIS for making me feel guilty, but more im-
portantly thanks for giving me useful advice and feedback from time to
time.

Thanks to the fourteen participants of the user experiment, your in-
volvement was crucial.

Finally, thanks to my friends down town constantly reminding me how
I should give up University and join “The Real World”. I’m glad I ignored
their advice.

i

Contents

1 Introduction 1
1.1 Hypothesis & Contributions 2
1.2 Applications . 2
1.3 Structure . 3

2 Background 4
2.1 Preservation . 4
2.2 Studies . 7
2.3 Client/Server Architectures 9

2.3.1 Thin-client Computing 9
2.3.2 Remote Desktop Solutions 13
2.3.3 Streaming Solutions 14

2.4 Mobile Java . 17

3 Methodology 18
3.1 Overview . 18

3.1.1 Initial Development 18
3.1.2 Benchmark Creation 19
3.1.3 System Evaluation . 19

3.2 RemoteME Development Method 20
3.3 Experiment Artifacts . 21
3.4 Pilot Study . 24

3.4.1 Experiment . 24

ii

CONTENTS iii

3.4.2 Procedure . 27
3.4.3 Experimental Issues 29
3.4.4 Results . 30
3.4.5 Summary . 31

4 User Study 36
4.1 Experiment . 36

4.1.1 Hypotheses . 37
4.1.2 Design . 39
4.1.3 Artifacts . 40

4.2 Procedure . 46
4.3 Experimental Issues . 47
4.4 Results . 48

4.4.1 Asteroid Zone . 48
4.4.2 Bomber 2 . 49

4.5 Discussion . 51
4.6 Conclusion . 53

5 RemoteME 57
5.1 Architecture . 57

5.1.1 Client . 57
5.1.2 Server . 59
5.1.3 System . 59
5.1.4 RemoteME Application 62
5.1.5 RemoteME graphics 62
5.1.6 RemoteME sound . 66

5.2 RemoteME Logging System 67
5.3 Implementation Issues . 68

5.3.1 Server Runtime . 68
5.3.2 AspectJ Limitations . 69

CONTENTS iv

6 Performance Evaluation 71
6.1 Measurement Study . 71

6.1.1 Experiment . 71
6.1.2 Procedure . 73
6.1.3 Experimental Issues 74
6.1.4 Technical Issues . 75
6.1.5 Results . 76
6.1.6 Conclusion . 80

6.2 RemoteME Device Statistics 84
6.2.1 CPU . 84
6.2.2 Memory . 84
6.2.3 Power and Battery . 86
6.2.4 Network traffic . 86
6.2.5 Conclusion . 86

7 Conclusions 89
7.1 Contributions . 90
7.2 Future Work . 91

A HEC Documents 92
A.1 HEC Application Form . 92
A.2 Information Sheet . 101
A.3 Consent Form . 102

Chapter 1

Introduction

People want to perform more complex tasks on their mobiles, and we are
interested in collaborating with desktops and servers to bridge the gap.
Mobile phones are now commonplace, and increasingly are being used
for tasks other than human-to-human communication, and support tasks
previously associated with more powerful desktop computers or servers.
However, mobile devices in general are still underpowered compared to
their desktop counterparts, so there are some tasks still out of reach.

One solution is to virtualise the entire interface, using technologies
such as Virtual Network Computing (VNC) [42] and Remote Desktop Pro-
tocol (RDP) [25]. These solutions turn the client – the mobile device – into
a simple display and input device by forwarding user interactions. How-
ever, this simple approach doesn’t handle situations where one wishes to
partition the functionality between client and server.

As an alternative, our technique for client/server computing is to use a
specialised client designed to support a particular domain of applications.
In this technique the client application can execute code as part of the re-
motely running program. The whole system is application specific, and
allows for finer access controls. In this system the client can provide func-
tionality such as locally storing files, and caching application resources
across sessions. Server migration is also an advantage, allowing clients to

1

CHAPTER 1. INTRODUCTION 2

save state locally and resume it on any server.

1.1 Hypothesis & Contributions

We hypothesize that it is possible to build a system using our technique,
with acceptable responsiveness for a domain such as gaming, that divides
responsibility between mobile clients and a server.

This project has three main contributions:

• A study into acceptable responsiveness, by identifying the time con-
straints which a system needs to meet to support the required do-
main of gaming.

• The description and exploration of our technique, and determining
whether or not it is feasible given the timing requirements.

• The proof-of-concept system RemoteME, a prototype created which
utilises our technique. This system has acceptable responsiveness for
games with simpler graphics, but does not perform well enough for
games with completed graphics.

1.2 Applications

The first scenario is preserving digital content, specifically video games.
Various organisations around the world, including the National Library
of New Zealand, are interested in preserving games so that they can be
played at a later time. Our technique can be used to provide access to
the preserved digital content, for example in a museum setting, where an
exhibit (the server) can run the games that the patrons (clients) wish to
play.

The second scenario is customers test driving many applications – such
as games – without requiring multiple installations. A consequence is that

CHAPTER 1. INTRODUCTION 3

the locus of control over the intellectual property is kept with the own-
ers, making them more amenable to allow this kind of system where they
wouldn’t allow traditional systems. This can even be extended to allow
games which require significantly more computationally expensive AI to
be played on the underpowered mobile device.

1.3 Structure

The structure of the document is:
Chapter 2 discusses digital content preservation in more detail, and

outlines related work in the remote control and responsiveness areas.
Chapter 3 describes our methodology as we address the questions raised

by our hypothesis. It also details the pilot study performed to determine
the effect of delay upon users.

Chapter 4 details the user study to determine if network delay has a
negative effect on game play and to determine a network delay bench-
mark.

Chapter 5 provides system detail about our prototype remote control
system called RemoteME.

Chapter 6 evaluates the performance of RemoteME against the bench-
mark from the user study, as well as comparing the performance of the
RemoteME client against the native application.

Chapter 7 summarises the project. We also list our contributions, and
suggest areas for future work.

Chapter 2

Background

This chapter covers the background of our research. First we look at the
preservation of digital heritage, and previous work in this area, and then
propose our remote control technique as a solution. We then cover work
which looked at establishing and testing responsiveness, which is key in
setting a benchmark to evaluate our technique. Finally we explore existing
remote control solutions, and how they relate to our technique.

2.1 Preservation

Following on from our scenario about preserving digital content, this sec-
tion explores work already conducted in this field.

UNESCO [43] describes the preservation of digital heritage as “an ur-
gent issue of worldwide concern”. Increasingly, cultural institutions are
recognising that the preservation of and access to digital culture falls within
their mandate. Internationally, a number of National Libraries are in-
volved in projects to develop preservation solutions, such as Europe’s
PLANETS project [31] and the Library of Congress’ “Preserving Virtual
Worlds” [19].

The context for our research is interest in preserving access to New
Zealand’s early video games. The motivation for considering NZ games

4

CHAPTER 2. BACKGROUND 5

was that from the mid-1970s the NZ software industry was prolific – partly
in response to import restrictions accompanied by incentives for the local
electronics industry. Locally produced video games were popular enter-
tainment in the 1980s and provided an introduction to the digital age for
New Zealanders. Many games contain distinctive NZ content [39]. While
early games have been kept by local enthusiasts, their future is uncertain,
as they are now unplayable due to technical obsolescence and hardware
and software deterioration.

The two main technical approaches to preserving software are emula-
tion and porting. With an emulation approach, the original hardware and
software architecture of the original machine is emulated and the archived
software runs directly on top. With a porting approach, the original soft-
ware is either manually or automatically rewritten for a new hardware
and software architecture. Emulation is widely seen as easier to achieve
and less costly than porting [32]. Emulation has been a popular approach
for hobbyists who want to maintain access to their favourite games as well
as institutions. For example, the Netherlands National Library sponsored
the development of IBM’s Universal Virtual Computer [20] in order to try
and preserve access to historic digital images and documents.

For historic games, one of the major barriers to archiving early video
games is copyright [8]. Under the fair dealing provisions of the copyright
act, researchers may not make more than one copy of a video game. A
copy includes converting the program into a different computer language
or code, otherwise than incidentally in the course of running the program.
This is a major barrier to using migration to port the code for a video game
to a new architecture. It is unclear if emulation is also an issue as the ar-
gument can be made that the existence of a version in memory at runtime
is simply incidental.

Under an exemption under the National Library Act, the National Li-
brary is permitted to use such processes but only for video games that
have been legally deposited, and there has only been a requirement to do

CHAPTER 2. BACKGROUND 6

this since October 2006. Anything prior to this does not fall under this ex-
emption so games developed before that date must be archived under the
same constraints faced by researchers.

Providing access to these preserved games is a problem even if emula-
tion is allowable under the law in New Zealand. Games are archived to
allow future generations to access them and play them for both study and
for pleasure. We would like to see people able to access preserved games
in the context of the National Library or museums such as Te Papa.

There are three problems to be solved. First, how can we work around
potentially only being able to have one copy of a game. Second, even when
working with deposited games that potentially can be made available in
more than one copy at a time, how do we prevent easy copying of these
games and violation of copyright? Third, how do we make the process of
accessing games lightweight so that specialised hardware is not required.

One solution to these problems is to use a thin-client approach to pro-
vide access on mobile devices to games running on servers. The games are
instrumented to export graphics-related updates to the mobile device and
the mobile device sends input to the server.

Portable devices such as netbooks and mobile phones are getting closer
and closer to becoming our primary (and occasionally only) computing
device. Despite the increasing device capability and network capacity, it
is still challenging to provide certain classes of applications that require
significant memory or computation. One such example application do-
main is that of games. Mobile devices are still underpowered compared
to standard desktops widely available in the consumer market (Table 2.1).
A remote gaming service could allow users to connect with their mobile
devices using a small client application, say in a museum setting. Multiple
users could gain access, one at a time, to a single copy of the game running
on the server.

Our architecture addresses the three problems outlined above. First,
the number of copies in use at any one time are controlled by controlling

CHAPTER 2. BACKGROUND 7

Nokia N95 Dell Optiplex 755

Processor Dual 332 MHz (ARM11) 3.00 GHz (Intel x86)
Memory 160 MiB 2 GiB
Screen Size 2.6 in 17 in
Screen Resolution 240x320 1280x1024

Table 2.1: Comparison of a typical mobile device and computer,
specifically the devices used in the later experiments.

execution at the server. Second, because users do not have direct access to
the game, it is not downloaded to their device, so the copying of copyright
material may be prevented. Third, the mobile devices don’t need to be as
powerful, because the server does the heavyweight computation, and the
mobile device is only required to do graphics output and input capture.

2.2 Studies

In the previous section we looked at our technique for remote control,
however without a measure of sufficient responsiveness the success of this
technique is unknown. In this section we look at a number of studies to-
wards setting a benchmark for responsiveness, starting with Miller’s work
on response times between users and computers [23].

Miller proposed a number of different minimum response times cor-
responding to various activities, based on his opinion as a behavourial
scientist. Among the activities presented, the lowest (and most relevant)
response time proposed is 0.1 seconds, i.e. 100 ms, for the response to con-
trol activation such as the click of a typewriter key.

While Miller’s work is important in establishing a guideline very early
in the computing industry, studies more recently have looked at the effects
of latency on user performance. In these studies, the latency is the time
difference between the server and client’s version of the current status of
the objects in the game. The architecture these studies explore is described

CHAPTER 2. BACKGROUND 8

in Section 2.3, specifically Figure 2.2.
One study [34] looked at the effect in the real-time strategy game War-

Craft III [5]. In this case they found that for long and semi-automatic tasks,
such as constructing structures, there was no correlation between latency
and performance. For more involved tasks, mainly combat, there is also
no correlation for both unit scores and proportions of games won by a
client affected by latencies ranging from 0–1600 ms. While these results
are promising, it is difficult to be conclusive about the results as their study
had a limited number of test subjects (2–4).

Another study [4] looked at the effect of both packet loss and latency
on a first person shooter game, Unreal Tournament 2003 [10]. This study
found that generally packet loss or latency has no noticeable impact on a
player’s performance. However, the one area where it is noticeable is in
precision shooting, where the correlation between induced latency and hit
fraction is very high, and the mean hit accuracy suddenly drops approxi-
mately 35%. While this study had a significant amount of data (over 200
experiments), this specific test only comprised of two test subjects doing a
ten minute experiment three times each.

Unfortunately, neither of these studies established any guidelines for
what might be acceptable latency for users. Moreover, both of these stud-
ies relate to multiplayer games where a central server only coordinates
game play between game programs running on players’ desktops. It is
uncertain whether the results can be extended to our situation where the
client does minimal processing and the game executes on a central server.

CHAPTER 2. BACKGROUND 9

2.3 Client/Server Architectures

There are two common network-based architectures, thin client and tradi-
tional client/server, which we will discuss in this section. These architec-
tures form the basis of our experiments described in the next chapter.

A thin client architecture [44] resembles Figure 2.1. The client is “thin”
in the sense that it is simply providing input and output, and the server
is responsible for all the application processing. Here the latency is the
amount of time a single message takes to transmit from a client application
to a server application (or vice versa). In the example, the latency is tL =

t1 − t0.
The delay is the amount of time from a request for an action to that

action being initiated. The example has the request being made at time t0

and the action initiated at t1, so the delay is tD = t1 − t0. In a thin client
system the delay is quite likely to be the same as the latency, due to the
architecture.

Response time is the amount of time from a request for an action to that
action being performed. As in the example, if a request is made at t0 on the
client, and that action is performed at t2 on the client, then the response
time is said to be tR = t2 − t0.

Figure 2.2 shows how these concepts relate in a traditional client/server
architecture, where some of the application specific processing is shifted
to the client. The client is now more than just input/output, and can in
fact be a standalone application. Most multiplayer games are examples of
a traditional client-server architecture.

2.3.1 Thin-client Computing

A potential solution is to remotely provide applications on a central server
via thin client computing, not only for typical mobile games on a mobile
device but also for playing fully-fledged, resource intensive games which
cannot be played on a mobile device currently.

CHAPTER 2. BACKGROUND 10

t1

time client server

t3

delay = t3 - t1

single request:
"move right"

"move right"

t4
response tim

e = t4 - t0

latency = t3 - t1

server
networking

single request:
"move down"

"move down"

t6

t5

t2

t0 righthardw
are delay

= t1 - t0

down

Figure 2.1: An example of request handling in a thin client architecture. The hard-
ware button corresponding to right is pressed on the client at t0. The client soft-
ware receives this request from the hardware at t1, and forwards it to the server
who receives it at t3. This gives the hardware delay as t1 − t0, and delay and
latency are equal in this case at t3− t1. The multithreaded server finishes its com-
putation and sends the frame to the client, who receives it at t4, while computing
the next request. The response time is thus t4−t0. Note that the client can forward
more key presses while the first is being processed, for example down is received
and forwarded by the client software at t2.

CHAPTER 2. BACKGROUND 11

t0

time client server

t1

single request:
"move right"

"move right"

t3

response tim
e = t3 - t0

latency = t2 - t0
delay = t1 - t0

"move right"

t2

Figure 2.2: This example is of request handling in a traditional client/server archi-
tecture. On the client the “move right” request is at time t0. This request is both
processed locally and forwarded on to the server. At time t1 the client processes
the request, giving the delay as t1−t0. The latency is t2−t0, as the request reaches
the server at time t2. Once the client has performed the “move right” action, at
time t3, the response time is t3 − t0.

CHAPTER 2. BACKGROUND 12

Thin client computing has been reborn as cloud computing. Applica-
tions such as office suites, photo editors and presentation tools are mov-
ing from running locally to running in the cloud with access via web
browsers. This offers several advantages over running applications lo-
cally [2, 7, 14, 22] including reduced costs and increased reliability, scala-
bility, security, and perhaps most importantly, mobility.

Additionally, it may also offer a compromise solution to the problem
of protecting copyrighted digital artifacts (such as the executable binaries
of historical and present-day applications) while still affording access to
users. Storing game code on the server reduces barriers, allowing for a
compromise between the two extremes and giving a more attractive solu-
tion to copyright holders. Copyright holders who are not willing to give
up all their rights can use this solution, and can still give the ability to play
the games.

Recently there has been interest in developing thin clients that can be
used to access a range of games hosted on a server. For example, On-
Live [28] or Games@Large [16] are thin clients used to access a range of
games and aim to lessen the hardware requirements for running a game
by offloading activities such as 3D graphics rendering to a server that is
accessed over broadband.

While these services provide the capability for remote computing, the
performance requirements for accessing remote applications via local user
interfaces are not fully understood. Hosting games on a server and dis-
playing them locally inevitably introduces network delay that will affect
users’ response times. This network delay is the time between user ac-
tions and the system’s response, e.g. the time between pressing a button
and the result of pressing a button which causes something to happen on
the screen. Too much network delay and applications such as games may
be unplayable, making all the other benefits of a thin client approach moot.

CHAPTER 2. BACKGROUND 13

2.3.2 Remote Desktop Solutions

Remote desktop software allows a user of a less powerful machine to ac-
cess their desktop that runs on a more powerful machine across a network.
There are a large number of remote desktop software applications avail-
able for a range of platforms including Windows, Linux/Unix, Mac OS X,
embedded devices and mobile devices. However, most use variations of
one of the following protocols for communication: Remote Desktop Pro-
tocol (RDP), Remote Frame Buffer (RFB) and X11.

RDP [25] is the technology underlying Microsoft’s remote desktop soft-
ware for the Windows Server and Client operating systems. Once a con-
nection is made between an RDP client and server, the server sends com-
mands to render windows to the client, which are low-level graphics com-
mands. User input via keyboard/mouse is sent back to the server from the
client accordingly. The client updates the screen when the server requests
an update. The client can cache Glyphs and bitmaps by size on memory
(small) or disk (large) [46]. Note that this is much the same for Citrix’s
ICA, upon which RDP is built [40].

RFB is the protocol that is used by VNC (Virtual Network Computing).
The RFB protocol operates in a client/server manner, but the server sends
the display to the client as rectangular snapshots of the remote desktop (or
frame buffer). The snapshots are simply bitmaps representing rectangular
sections of the remote desktop. Instead of sending just the raw bitmaps,
the rectangles can be encoded in a number of ways. The server pushes up-
dates to the client, and the client can cache only when using Copyrect [40].

X [33] is a client-server system, where the server is the application ren-
dering the window, and the client is the application requesting to be ren-
dered. When a window is to be rendered, the X client application sends
the X server a request to create a window with an id. Further, when the
client wishes to fill that window with content, it refers to it by id. The con-
tent is sent as high-level graphics, and the server pushes updates to the
client. Client caching is unlikely as it is application/toolkit specific [40].

CHAPTER 2. BACKGROUND 14

There have been at least two attempts at trying to reduce the amount
of traffic required to use X across a network, namely NX and LBX. No-
Machine’s NX technology [27] utilises a number of different strategies for
reducing the bandwidth of networked X sessions. One aspect is to com-
press the data sent with zlib [12]. In addition to compression, NX selec-
tively caches data received to effectively reduce the need to re-send data
which is static in the short-term. NX is considered a worthy alternative to
standard network based X.

Low Bandwidth X (LBX) [45] is a proxy server (libxproxy) which
caches often used data, such as window properties and font metrics. It also
allows for compression of images and general stream data. libxproxy
sat between the X clients and server, and didn’t require changes to existing
programs. Unfortunately, LBX provide small performance enhancements
over slow networks, and more recent versions of X system have been op-
timized such that LBX’s benefits were superseeded [30].

2.3.3 Streaming Solutions

Aside from the main remote desktop protocols discussed above, researchers
are exploring the use of streaming solutions to remotely control a system.

Streaming Video

An example application is the model helicopters trial by the Merseyside
Police in Britain. An operator controls the helicopter and receives feed-
back on the helicopter’s surroundings via CCTV cameras mounted on the
helicopter itself [3].

Zhuang and Wang [48] have developed an “IP-based real time video
monitoring system with controllable platform”. Their approach was to
have a camera and microphone connected to an embedded system that
compresses the incoming data and sends it to a server. When a client
comes along, they request the stream from the server. Upon receiving the

CHAPTER 2. BACKGROUND 15

compressed data, the client decompresses and displays the data as graph-
ics. Cell phones, along with standard desktop machines, are supported as
clients.

Games@Large

Games@Large [16] is a technology to provide interactive media streaming
over a network. This technology, as indicated by the name, is intended to
be applied to games. The Games@Large framework consists of a server,
which is executing the game, and a client which displays the game. The
data for the display is streamed via two different techniques.

The primary technique is to intercept calls to the host system’s under-
lying 3D graphics architecture, either DirectX [26] or OpenGL [17], and
forward these calls onto the client. The client is responsible for the render-
ing, and therefore is required to have a dedicated graphics processor.

The secondary technique, used when the client doesn’t have a 3D ren-
derer and dedicated graphics processor, is to render the calls on the server.
The output of the rendering is then encoded and transmitted as a video
stream.

The Games@Large experiments were conducted with two participants
playing two games, Red Faction (a first person shooter game) and Sprill (a
puzzle game). The server (game host) was connected to the clients (note-
book computers) via 802.11g wireless. They measured the FPS1 on the
clients for both games, and the first-person shooter game had a mean FPS
of 18.26 with standard deviation of 12.12. In comparison, the same game
played natively on the server had a mean FPS of 59.23 and standard de-
viation 5.16. Further, they recorded the user observations/perceptions as
they played the games. The participants gave the gaming experience be-
tween 4 and 5 (out of 5) in the Mean Opinion Score [15] scale, and that
“there were some differences with the original game play but participants
were not frustrated and could enjoy the game play”.

1Frames per second, a measure of the render rate

CHAPTER 2. BACKGROUND 16

Other Streaming Solutions

In addition to Games@Large above, there are a number of other services
which specifically provide streaming gaming. OnLive is a streaming gam-
ing service, where OnLive host the games, and they are played by the
users on their TVs using set-top boxes, or computers via a web browser
plugin [28]. The service aims to deliver 720p 60fps quality video over a
5 Mbps connection, or standard definition over a 1.5 Mbps connection. At
this stage the service is only available to limited test participants, so the
performance of this service is unknown.

A similar service from Gaikai, Streaming Worlds, provides streaming
gaming in much the same manner, where the games are hosted on their
servers, and played using a plugin in the client’s web browser on a desk-
top computer [11]. Again, the service is not yet available to the general
public so performance is unknown.

AMD in conjunction with OTOY have demonstrated a streaming solu-
tion similar to the previous two services, however their solution can serve
many client types, such as smart phones and PDAs [1, 29]. Again, details
are very limited so system requirements and performance are not known.

Finally, Spawn Labs have a set-top box which connects to existing con-
sole gaming systems and let the users connect over a network or the Inter-
net to the console and play the games on their computer [35]. The client
is the user’s computer, and the server is the user’s console gaming sys-
tem which is located elsewhere. This system promises 720p video on a 2–
5 Mbps connection, and standard definition video on a 500 kbps–1 Mbps
connection. While performance is not known, their product is available
for purchase at the time of writing this thesis.

CHAPTER 2. BACKGROUND 17

2.4 Mobile Java

Our application area is mobile devices, and we have selected J2ME (Java
Micro Edition) as the application platform. J2ME has widespread adop-
tion among the mobile phone market, deployed on billions of devices [36].

J2ME is defined by two specifications, JSR118 – MIDP (Mobile Infor-
mation Device Profile) and JSR139 – CLDC (Connected Limited Device
Configuration). These two specifications provide an API which is similar
to the standard Java API, and allows developers to create applications for
devices which support J2ME. There are multiple versions of each speci-
fication, however we are interested in MIDP 2.1 and CLDC 1.1, and will
assume these versions throughout this thesis. More detail on the API is
contained in Chapter 5.

One of the issues with a traditional control system such as VNC and
RDP is mapping from physical buttons to their on screen counterparts.
J2ME abstracts this mapping, allowing applications to deal with commands
rather than the physical buttons. Further, traditional control systems don’t
handle different screen sizes particularly well, whereas J2ME allows the
application to easily adapt to the screen size and resolution. We can use
these aspects of J2ME in our system to overcome the limitations of tradi-
tional control systems.

Chapter 3

Methodology

In this chapter we discuss our approach to tackling the three questions
raised by our hypotheses. Section 3.2 provides the development method-
ology for this project.

Three experiments were carried out to determine if the prototype pro-
vided sufficiently responsive game play. Section 3.4 describes the pilot
study conducted to determine the effect of delay upon the user experi-
ence. Section 3.1.2 describes the further study where users played games
with artificial delays imposed. Section 3.1.3 describes an experiment to
evaluate the performance of the RemoteME system when deployed on a
local area network.

3.1 Overview

This project was conducted in three phases, described in the following
sections.

3.1.1 Initial Development

The first phase of this project was to develop a prototype called RemoteME
to demonstrate the feasibility of our thin client approach for playing 2D

18

CHAPTER 3. METHODOLOGY 19

games. We could not use any of the systems that were described in the
background section such as OnLive because freely available implementa-
tions do not yet exist. At the end of this phase we had a working prototype
to use to determine whether we could achieve acceptable response times.

3.1.2 Benchmark Creation

The second phase involved identifying the minimum delay for a usable
remote gaming system as defined in Chapter 2. This involved two studies.
The first was a pilot study with a small number of users playing a single
game Asteroid Zone (Section 3.3) to enable us to iron out experimental
issues. The details of this study can be found in Section 3.4.

The second study is larger, involving 14 users to determine statistically
significant results. The results of the pilot study were inconclusive, thus
a full user study was conducted, documented in Chapter 4. This study
improves on the pilot study by testing volunteer participants, rather than
ourselves, to alleviate the experimental issues. In addition, each partici-
pant plays a considerable number of games, and given the number of par-
ticipants, this gives a much larger data set to perform analysis on, meaning
that any correlations found have a greater statistical significance.

Further, a second game (in addition to Asteroid Zone) is tested, and
issues with the Asteroid Zone, such as the death/re-spawn problem, are
fixed in the user study.

Finally, the experiment is conducted entirely on the device, meaning
that there are no network factors to consider. This also gives the ability to
set the delay more precisely so that it is not subject to network issues such
as jitter.

3.1.3 System Evaluation

The third phase consisted of further development and finally evaluation of
the RemoteME prototype system. Performance of RemoteME for multiple

CHAPTER 3. METHODOLOGY 20

games was improved, and then evaluated against the benchmark range
determined in the second phase, 75–150 ms. The system performed at the
lower end of the range, achieving an average response time of approxi-
mately 77 ms for Asteroid Zone. Further optimisation has a high likeli-
hood of improving this figure to below the lower threshold of 75 ms.

In addition to the main experiment with Asteroid Zone and RemoteME
over WiFi, experiments with Bomber 2 were also conducted, as well as ex-
periments over the 3G mobile Internet infrastructure. These experiments
were disappointing giving no concrete results.

Finally, although our focus is on meeting the responsiveness require-
ment established by the experiments, RemoteME’s performance in terms
of device resources is still interesting, and is also explored in the evalua-
tion.

Full details of the evaluation are in Chapter 6.

3.2 RemoteME Development Method

This project was conducted following a rapid development methodology.
The major reason for this was the uncertainty associated with the require-
ments of the remote control system. Short iterative developments allowed
us to adjust to the discovery of new requirements through experimenta-
tion. Using ourselves as unofficial “users”, iterations were tested for speed
and the user response fed back into the development.

CHAPTER 3. METHODOLOGY 21

3.3 Experiment Artifacts

Throughout the three experiments conducted during this project, there are
a number of common artifacts used.

Asteroid Zone Asteroid Zone [9] is a simple shoot’em up space game.
It consists of simplistic graphics, and a game play that requires the test
subject to maneuver a space ship through an asteroid field (i.e. a set of
moving asteroids), shooting the asteroids to score points. After a set of
asteroids is destroyed, the player moves on to the next level – consisting
of more numerous asteroids. If an asteroid hits the player’s ship, then the
ship is destroyed and re-spawns in the middle of the screen. The player
starts with four lives, and is awarded another life every 500 points. Points
are given for destroying asteroids, the smaller the asteroid the more points
given.

Figure 3.1 shows a sample screen shot of the game. The game draws
the ship and asteroids using simple polygons rather than special images.

Asteroid Zone was chosen specifically for its simplicity. The advantage
of choosing such a game is that the nature of the game play requires the
system to quickly respond to the player’s actions, while at the same time
the computation is sufficiently lightweight – and the information trans-
mitted over the network sufficiently small – that the delay is a significant
component of the overall response time.

The game has a simple set of controls, and players use the directional
control to either spin left or right, or accelerate. A central button allows
players to fire bullets. All objects wrap around the screen, when an object
reaches an edge it appears on the opposite edge of the screen, with the
same momentum and trajectory.

Mobile Phone The Nokia N95 was released in 2007 and represents a rea-
sonably common yet sophisticated mobile phone currently on the market.

CHAPTER 3. METHODOLOGY 22

Figure 3.1: A screen shot of the Asteroid Zone game used during the pilot study.
Despite the simplistic graphics and narrative, Asteroid Zone is a real-time game
in the sense that noticeable lags between user input and the in-game response can
detract from the game’s playability.

CHAPTER 3. METHODOLOGY 23

Figure 3.2: The Nokia N95 mobile phone, with sliding keypad ex-
posed. The Nokia N95 has a 12-key keypad, with additional soft keys
and a four-way directional control surrounding a central button. This
image was retrieved from the Wikimedia Commons and is licensed
under the GNU Free Documentation License by the image’s author:
Asim18.

The phone has 64 MB of RAM and a 320x240 pixel display. The Nokia
N95 has a 12-key keypad that can be hidden within the device and slid
out as required. The phone also has additional soft keys and a four-way
directional control surrounding a central button. Test subjects used the
directional control and the central button to move and fire respectively.

Wireless Router Our experiments used a dedicated wireless router to
avoid congestion and interference. The experiments were run in the same
office as the wireless router, so distance was no more than a few metres
and this was not varied during the experiment.

CHAPTER 3. METHODOLOGY 24

3.4 Pilot Study

We conducted a pilot study as a quick means of evaluating feasibility and
discovering issues which may arise in subsequent experiments. This pilot
study investigated the performance requirement for remote mobile gam-
ing. The study used RemoteME, a prototype remote control system devel-
oped as part of the project, as the remote mobile platform (see Chapter 5
for details). The study experimented with introducing timing delays into
RemoteME to observe the effect on the player experience. The pilot study’s
purpose was to identify how long the system could take in responding to
a player’s actions before the player’s success (as measured by score) either
was affected by the delay, or was perceived by the user as being affected
by the delay.

3.4.1 Experiment

The experiment assessed how users are affected by various levels of delay
which may be introduced by a remote control system. For this experiment
a single 2D action game was chosen, because applications such as high
action games will magnify the effect (if any) of user interface latency. The
effect of delay on the user’s performance was measured by both the user’s
score and perceived effect.

The experiment was carried out over the RemoteME system, where the
network delays were added between the server and the WiFi router.

As a preliminary step, the delay variance of individual user action /
system response pairs inherent in RemoteME, due to the wireless com-
munication and packing/unpacking of commands, was measured. Over
1000 user action / system response pairs were monitored across 5 games.
The resulting mean baseline RemoteME delay was 82 ms, with a standard
deviation of 31 ms.

We analysed the fourteen participant’s resulting data to see if there
were correlations between the delays; decreases in the players’ scores; and

CHAPTER 3. METHODOLOGY 25

the players’ perceptions of whether the delay was noticeable and affected
their game play.

Hypothesis

The hypothesis is that there is a correlation between the test subjects’ scores
and the delays, and between the responses to the following questions
asked and the delay:

1. There was a consistent delay between my actions and the system’s
response.

2. The delay between my actions and the system’s response negatively
affected the playing experience.

The responses to these questions were measured using the Likert scale,
where the response is between 1 (strongly disagree) and 5 (strongly agree).

Design

The experiment consisted of two participants playing two sets of the same
game twelve games, each set separated by at least an hour of another ac-
tivity.

For the pilot study, my two supervisors (Stuart Marshall and Ian Welch)
were used as test subjects. Each subject played games of Asteroid Zone
via RemoteME. A time delay of between 0 and 500 ms (in 50 ms incre-
ments) was randomly selected and added to the communication overhead
between the RemoteME client and server via modifications to the network.

CHAPTER 3. METHODOLOGY 26

Figure 3.3: RemoteME architecture for the experiment. The server (a
Dell Optiplex 755) running the application is connected on the wired
network directly to a wireless access point, which the client (Nokia
N95) is connected to via an unencrypted 802.11g WiFi connection.

The architecture of the system is given in Figure 3.3. The network delay
is inserted using an application which can configure Traffic Control in the
Linux kernel, tc [6]. The command to add the delay is:

tc qdisc replace dev eth0 root netem delay <x>ms

where <x> is the delay (in milliseconds) to be set. This command is exe-
cuted on the server, and so the delay is imposed on the wired section of
the network.

The player was not informed which time delay (if any) was used dur-
ing any particular game. Instead, the players played the game to com-
pletion, at which point they were asked whether they thought any delay
had a significant impact on their game play. The players’ scores were also
recorded.

Artifacts

The artifacts used for this experiment are described in Section 3.3, namely
the game Asteroid Zone, the Nokia N95 mobile phone and the wireless
router.

A RemoteME client was installed on the phone, and connected to a
RemoteME server on a separate server machine via a single wireless access
point.

CHAPTER 3. METHODOLOGY 27

In addition my two supervisors acted as test subjects for this pilot
study. I was responsible for running the experiment (referred to here-
after as the experimental controller) and recording the scores, delays and
perceptions of the two test subjects. This means that HEC approval was
not required to conduct this experiment1.

3.4.2 Procedure

While the main focus of the experiment was on how the controlled delay
affected the two test subjects, it first needed to be identified if there was
a significant network delay already present in RemoteME. This network
delay is the amount of time the RemoteME client/server spends commu-
nicating over a wireless network and requiring some computation on each
end to handle the traffic and instructions. Neither of these actions would
be required if the game was running entirely locally on the mobile phone.

The experimental controller monitored RemoteME’s performance via
RemoteME’s logging utility. This simple utility allows for measurements
of the time difference between a single user action and the system’s re-
sponse, called the response time previously (Section 2.3). This response time
was measured across all such interactions in five sample executions of As-
teroid Zone. The experimental controller played these five games, and
gathered these time differences without any controlled delay built into the
wireless router.

This preliminary experiment differs from that with the test subjects
since the test subjects experienced a constant delay added to all individual
user actions in an entire game, whereas this experiment is identifying the
variance in user action response times in a single game.

Once the RemoteME overhead was established we began the user ex-
periment. Each test subject played two sets of twelve consecutive games of

1Human Ethics Committee (HEC) approval (http://www.victoria.ac.nz/
postgradlife/pages/pages_current_pg/ethics.html) is required when in-
volving other participants.

http://www.victoria.ac.nz/postgradlife/pages/pages_current_pg/ethics.html
http://www.victoria.ac.nz/postgradlife/pages/pages_current_pg/ethics.html

CHAPTER 3. METHODOLOGY 28

Asteroid Zone. Each set of twelve games was separated by at least an hour
of another non-game-playing activity so that the test subjects didn’t signif-
icantly improve their temporary playing ability between the first and last
games. As well as this, before each of the two sets of twelve games, each
test subject played three practice games natively on the mobile phone2.
This was to ensure that the test subject’s first few games in the set didn’t
suffer from the break in play by ensuring that the test subject had refamil-
iarised themselves with the game controls.

The sequence of actions during a single game are:

1. The experimental controller ran the wireless utility application to ob-
tain and configure a random delay into the wireless router. The ex-
perimental controller recorded this delay without informing the test
subject of the value. Since the random delay was selected from all
possible values of the delay, it was possible for the test subject to en-
counter the same delay multiple times during a set of games, and to
not encounter some delay values at all.

2. The test subject connected to the game server via the RemoteME
client and proceeded to play a full game. Each game started out
with four lives, although occasionally the test subject may play well
enough to win an extra life.

3. At the completion of the game, the experimental controller decided
whether to officially record the results of the game. We discovered
this step was required after a practice game demonstrated a “flaw” in
Asteroid Zone’s play. When a ship dies, it re-spawns in the middle
of the screen. However, if there is an asteroid in the middle of the
screen, the ship automatically dies and re-spawns again. If the as-
teroid hasn’t moved sufficiently far away, this triggers yet another
death and the re-spawning cycle continues. We decided that if a

2This means that the game was not run via a RemoteME client/server; all computa-
tion was done entirely on the mobile phone without any network activity.

CHAPTER 3. METHODOLOGY 29

game involved more than one death via this auto-re-spawning death
cycle, then we would discount the game since the score and percep-
tions would be significantly affected by an arbitrary event outside of
the test subject’s control.

4. If the experimental controller has decided to officially record the re-
sults of the game, then they record the final score next to the delay
value, and ask the test subject to rate the following statements based
on a five-point Likert scale (with the responses being: strongly dis-
agree; disagree; neutral; agree; and strongly agree):

• There was a consistent delay between my actions and the sys-
tem’s response.

• The delay between my actions and the system’s response nega-
tively affected the playing experience.

5. If there were more games to play in this set, then the test subject and
experimental controller went back to step one.

3.4.3 Experimental Issues

There are a number of issues with this experimental design that are im-
proved in subsequent experiments.

Firstly, the choice of using my supervisors as test subjects may bias
their answers to the Likert scale questions. We attempted to control any
bias by two actions:

1. Ensuring that the test subject did not know of the specific delay val-
ues that they had encountered until after both sets of games were
complete.

2. Ensuring that delay value for each encounter was selected randomly.

3. Ensuring that the author primarily responsible for RemoteME’s cod-
ing was not a test subject.

CHAPTER 3. METHODOLOGY 30

Secondly, any such future experiment should significantly increase the
number of games and sets so that each delay value has a sufficiently large
population size to permit inter-population analysis. Currently, there aren’t
enough games for each delay value to allow for such in-depth analysis.

Finally, there could be potential issues with using a single mobile phone
and a single computer, such as poor performance with either the phone or
computer, or even that specific combination of computer and phone lead-
ing to adverse performance.

3.4.4 Results

This section presents the results of the pilot study. Correlations were cal-
culated for the one independent variable (inserted delay) and three depen-
dent variables (scores and player perceptions).

Combining the two games Asteroid Zone and Bomber 2 for the two test
subjects together gives a Pearson correlation r = −0.521 between the con-
trolled delay and the game score. This is shown in Figure 3.4. Splitting the
games between the two test subjects gives r values of −0.630 and −0.411

respectively. While this indicates there is some negative correlation be-
tween controlled, inserted delay (hereafter referred to solely as delay) and
the game score, this correlation is not as prominent as we had expected.

Similarly, combining the two test subjects’ games for the purpose of
calculating the Pearson correlation between the two Likert scale questions
and the controlled delay gives a correlation r = 0.686 between Q1 and
delay, and a correlation r = 0.702 between Q2 and delay (shown in Figure
3.5). Once again, splitting the games between the two test subjects gives
correlations of r = 0.674 and r = 0.689 for Q1/delay, and correlations of
r = 0.716 and r = 0.700 for Q2/delay.

This suggests there is some mild correlation between actual delay and
the players’ scores, and between actual delay and the players’ perceptions
of the effect of any perceived delay. However, the correlation was not as

CHAPTER 3. METHODOLOGY 31

strong as expected going into this pilot study. Future experiments can
address this focusing on larger sample populations, investigate different
levels of delay, different mechanisms for gauging the test subjects’ impres-
sions, or using confidence intervals to quantify the significance of the re-
sults.

Lastly, the mean delays and scores for various subsets of answers to
the Likert scale questions were looked at. This data can be seen in ta-
bles 3.1 and 3.2. These tables divide up responses into “affirmative” and
“not affirmative” categories, with the neutral answers falling into the latter
category. Perhaps not surprisingly, games where test subjects’ responded
that they didn’t affirm that the delay was noticeable or had an affect, had
a higher mean score. Likewise the mean delay was less as well. However,
it is not wise to read too much into these mean values due to the experi-
mental limitations discussed earlier.

3.4.5 Summary

The purpose of this pilot study was to explore how delay affects the player’s
performance and perceptions, and to set a target which can be expanded
upon in future. These early experiments suggest that there is not much
room for permitting delays in the system (for computation and transporta-
tion), as small controlled delays deliberately inserted into the system did
show some correlation with decreased player performance and percep-
tion.

CHAPTER 3. METHODOLOGY 32

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

Score

D
e
la

y
 (

m
s
)

Fi
gu

re
3.

4:
A

sc
at

te
r

ch
ar

to
ft

he
co

m
bi

ne
d

te
st

su
bj

ec
ts

’s
co

re
s

an
d

de
la

ys
,s

ho
w

in
g

m
ild

co
rr

el
at

io
n.

CHAPTER 3. METHODOLOGY 33

0

1

2

3

4

5

0

5
0

1

0
0

1

5
0

2

0
0

2

5
0

3

0
0

3

5
0

4

0
0

4

5
0

5

0
0

5

5
0

6

0
0

Delay (ms)

Q
2

Fi
gu

re
3.

5:
T

hi
s

is
a

sc
at

te
r

ch
ar

to
ft

he
co

m
bi

ne
d

te
st

su
bj

ec
ts

’Q
2

re
sp

on
se

s
an

d
de

la
ys

.Q
2

w
as

:“
Th

e
de

la
y

be
tw

ee
n

m
y

ac
ti

on
s

an
d

th
e

sy
st

em
’s

re
sp

on
se

ne
ga

ti
ve

ly
af

fe
ct

ed
th

e
pl

ay
in

g
ex

pe
ri

en
ce

”.
O

n
th

is
sc

al
e:

0
is

st
ro

ng
ly

di
sa

gr
ee

;
1

is
di

sa
gr

ee
;2

is
ne

ut
ra

l;
3

is
ag

re
e;

an
d

4
is

st
ro

ng
ly

ag
re

e.

CHAPTER 3. METHODOLOGY 34

Q1 Q2 Delay (ms) Score

0 0 100 124
0 0 100 225
1 0 150 567
1 0 50 338
1 1 50 183
1 1 100 269
1 1 100 181
1 1 0 220
1 1 50 237
1 1 50 254
1 1 250 15
1 2 250 70
2 1 200 215
2 1 250 190
2 2 150 100
2 2 0 158
2 2 50 51

2 300 108
2 100 114

111.8 121.1
199.8 190.5

Table 3.1: These are the delays for the games where a test subject answered with
an “strongly disagree” (0) or “disagree” (1) or “neutral” (2) to one of the Likert
scale questions. Sometimes a test subject may have given different responses to
both questions for the same game, so a game may only be represented in one of
these columns. The second to last value in each column is the mean delay for that
question given this subset of answers. The last value in each column is the mean
score for that question given this subset of answers.

CHAPTER 3. METHODOLOGY 35

Q1 Q2 Delay (ms) Score

3 100 114
3 300 108
3 3 450 153
3 3 500 103
3 3 250 121
3 3 200 65
3 3 300 111
3 3 200 154
3 3 150 129
3 3 250 48
3 3 150 47
3 4 100 164
3 4 450 6
3 4 450 20
4 3 100 90
4 3 400 61
4 3 300 134
4 3 450 85
4 3 250 125
4 3 300 106
4 4 450 33
4 4 400 15
4 4 500 15
4 4 350 33
4 4 400 183
4 4 350 12
4 4 250 68
4 4 450 6
4 4 450 111

319.0 327.8
83.4 81.4

Table 3.2: These are the delays for the games where a test subject answered with
an “agree” (3) or “strongly agree” (4) to one of the Likert scale questions. Some-
times a test subject may have given different responses to both questions for the
same game, so a game may only be represented in one of these columns. The
second to last value in each column is the mean delay for that question given this
subset of answers. The last value in each column is the mean score for that question
given this subset of answers.

Chapter 4

User Study

It is important to establish what delays are acceptable to users as this forms
a non-functional requirement for any implementation. Subsequent to our
pilot study, we carried out a more extensive study with usability exper-
iments to determine whether network delay has a negative effect upon
game play, and to determine a network delay benchmark for the particu-
lar types of games that were used for the experiments. The experiments
into the effects of network delay were carried out by inserting delays into
the response time of two different games running on a mobile device.
The player scores were measured, along with level reached (for Asteroid
Zone [9] only, as the other game, Bomber 2 [47], only has three levels), their
reports on how noticeable the delay was, and their thoughts on whether
they were satisfied or not with the game play experience.

4.1 Experiment

This section discusses the experiment setup into how test subjects using
software systems are affected by the inclusion of delays into the user-
action/system-response cycle.

2D action games were chosen for the experiment because such games
require constant input and frequently update the display, and will mag-

36

CHAPTER 4. USER STUDY 37

nify the effects of network delay. Further, games by nature are compet-
itive, so any delay has a negative effect on the player’s “performance”.
Performance can be approximated by recording player score and (in the
case of one of the two games) the level reached.

The network delay was simulated by artificially adding delays between
the user’s actions and the system’s response (Figure 4.1), such that the
player can press buttons consecutively without having to wait for the re-
sponse. We measured the effect it has on the participants by asking them
to rate the delay, as well as recording their score in the game. The inserted
delay is hereinafter referred to as simply delay. The delay is set to one of
three values, 75, 150 or 300 ms, and each value is repeated three times, for
a total of nine games. Each game has a randomised order of the delays
to control for learning effects. The games were implemented for a mobile
phone (Nokia N95).

The use of volunteer participants rather than ourselves as per the pre-
vious study requires HEC approval1. HEC approval was sought and suc-
cessfully obtained; the application and participant forms can be found in
Appendix A.

4.1.1 Hypotheses

The main purpose of the experiment was to accept or reject the following
hypotheses:

H0 There is no correlation between a player’s performance in terms of
score or level reached and delay.

H1 There is no correlation between a player’s perception of delay or player
experience.

1Human Ethics Committee (HEC) approval (http://www.victoria.ac.nz/
postgradlife/pages/pages_current_pg/ethics.html) is required for this ex-
periment.

http://www.victoria.ac.nz/postgradlife/pages/pages_current_pg/ethics.html
http://www.victoria.ac.nz/postgradlife/pages/pages_current_pg/ethics.html

CHAPTER 4. USER STUDY 38

t0

time client

t2

single request:
"move right"

t4

response tim
e = t2 - t0

delay = t2 - t1
"move right"

right pressed

t1

hardw
are delay

= t1 - t0
render tim

e = t2 - t1

t3

com
putation tim

e = t3 - t1

Figure 4.1: An example of inserting delay into the system. The right button is
pressed at t0, which then triggers the event handler in the game at t1. The request
to “move right” is generated on the client at t2. The client begins processing this
action at time t2, thus the delay is t2 − t1. If this is the first session, then no delay
is added and the request is sent through immediately. In the second session, this
delay is set to one of 75, 150 or 300 ms. At time t4 the rendering of the display is
complete, and so the render time is t4 − t2. The computation required to move
the character right is given by t3 − t1. The response time is the sum of hardware
delay, delay and render times, alternatively given by t4 − t0.

CHAPTER 4. USER STUDY 39

Note that as Bomber has only three possible levels whereas Asteroid
has five, H0 was restricted for Bomber to measuring score rather than level.

In addition, to attempt to identify an acceptable range of delays, the
following hypotheses are defined:

H2 There is no difference in average performance in terms of score be-
tween no delay and 75 ms delay.

H3 There is no difference in average performance in terms of score be-
tween no delay and 150 ms delay.

H4 There is no difference in average performance in terms of score be-
tween no delay and 300 ms delay.

4.1.2 Design

This experiment has a within-subjects design to attempt to control for dif-
ferences in skill between players. The experiment consisted of fourteen
participants playing two games a set number of times in two sessions. The
two sessions were separated by at least ten days. Each participant played
games of Asteroid Zone and Bomber 2 natively on the phone.

In the first session each participant plays each game eight times. The
games themselves are unmodified, and are running natively on the mo-
bile phone. The players were accurately told that there was no delay in
the games. The purpose was to allow users to become familiar with each
game. In the second session, the participants play each game (with intro-
duced delay) nine times. After each play through of each game, the partic-
ipants were asked whether they noticed a delay and if it had a significant
impact on their game play.

Across the sessions the participants’ scores were recorded, along with
other game play data such as accuracy. This data was used to perform
some analysis to see if there were correlations between the delays; de-

CHAPTER 4. USER STUDY 40

creases in the players’ scores (and accuracies); and the players’ perceptions
of the noticeability of the delay and its impact on their playing experience.

4.1.3 Artifacts

Both the system artifacts in the experiment were shoot’em up games. This
was deliberately chosen as these games require quick responses. Both
games were relatively simplistic examples of their domain, and this was
also a deliberate decision as the Incorporated delays would form a sig-
nificant portion of the overall computation time. Both games were also
freely available under open source licenses, making modifications for the
purposes of our experiment easy.

Asteroid Zone

The first application is Asteroid Zone, a simple shoot’em up space game.
This is the same game as from the pilot study (Section 3.3), however there
are things to note in addition to the basic game from the previous chapter.
First is that when the player’s ship spawns, it is give an invulnerability
shield for a few seconds. This is to specifically combat the issue encoun-
tered in the previous study, where the ship can continuously spawn and
die because an asteroid is in the position where the player’s ship spawns.

In addition to the directional control and central button to control the
ship, players may use the following keys: 4 and 6 to rotate left and right,
2 to accelerate and 5 to shoot.

Figure 4.2 shows a sample screenshot of the game with the invulnera-
bility shield.

Bomber 2

The second application is Bomber 2, a side-scrolling action game. The
graphics are more advanced than Asteroid Zone, with a scrolling back-
ground, animations for explosions and decoration like trees and clouds.

CHAPTER 4. USER STUDY 41

Figure 4.2: A screenshot of the Asteroid Zone game used during the user study.
Here the player’s ship has just spawned, and so there is a invulnerability shield
(coloured green) around the ship. Even though the ship is touching an asteroid,
both survive.

CHAPTER 4. USER STUDY 42

The objective is to destroy the targets (marked with yellow triangles) by
shooting or bombing them with your fighter plane. When no targets re-
main the level is complete and the player moves on to the next level, with
a different layout and arrangement of enemies and targets. If the player’s
ship is killed by enemies or collision, the player returns to the start of the
map with a fresh set of bombs. The player has five lives per level, and six
bombs per life. Lives are reset once a level is complete.

Figure 4.3 shows a sample screenshot of the game. This game draws
the various objects using images loaded into memory, and the objects are
drawn using the API directly onto the screen.

Controls for Bomber 2 are limited to 4 actions: 2 to rotate clockwise, 8
to rotate anti-clockwise, 5 to launch a bomb and either 1 or 3 to fire bullets.

Game Modifications

In order to reliably set the delay between the user actions and the sys-
tem’s response, modifications were made to both games to provide this
functionality. The strategy is to suppress every user action for the desired
period of time, and then trigger the action once that period has elapsed. In
this study the period of time – the delay – was set to be one of three values:
75, 150 or 300 ms.

For both games the implementation is the same; a secondary thread
keeps a queue of the user actions along with the new time they should
be fired at, and approximately every 20 milliseconds the thread triggers
actions in the queue that are due. Whenever a user presses a key it is
added to the queue along with the time that it is due to be triggered. This
is illustrated in Figure 4.4

In addition to providing delay functionality, logging capabilities were
added to each game. For both games all user input is logged, i.e. move-
ment and combat. Furthermore, Asteroid Zone now tracks when an aster-
oid is hit and logs this, as well as when the player dies. Once the game is
quit, the log is saved to a memory card installed in the phone, which in-

CHAPTER 4. USER STUDY 43

Figure 4.3: An action shot of the other game used in the user study, Bomber
2. This game features modern graphics and complicated real-time game play,
including enemies shooting back. These elements will be made more difficult
when the user’s input is delayed.

CHAPTER 4. USER STUDY 44

Queue of keypresses

... ...
key: fire
time: t9

due: t9 + Δ

key: left
time: t4

due: t4 + Δ

Queue of keypresses

key: left
time: t4

due: t4 + Δ
... ...

key: right
time: t0

due: t0 + Δ

game.handle_
key("left")

keypress:
"left"

t4

t4 + Δ

1

2

3

4

time passes

Figure 4.4: An example of how the delay is imposed. The key “left” is
pressed at time t4 (1) and is added to the end of the queue (2). Once
the current time has passed the due time, t4 + ∆, (3), the key is sent to
the game as a key press (4).

CHAPTER 4. USER STUDY 45

cludes the actions, as well as the final score, the number of shots fired and
landed, and value that the delay was set to. Bomber 2 tracks when each
type of ammunition is fired and when it hits. Further, the type of object hit
is recorded, both in terms of target/non-target and house/tank/etc.

These game modifications were possible to be made because both games
were open source with freely available code – one of the reasons for choos-
ing these games over other J2ME games (Section 2.4).

Mobile Phone

All the participants used the same Nokia N95 mobile phone during the
experiment described in Section 3.3. While the phone has a directional
pad, participants used the keypad with the appropriate number keys as
described previously because the directional pad is close to special phone
buttons which are very easy to press, resulting in a failed run as the game
exits upon pressing one of those.

Test Subjects

The test subjects were varied in age, and were mostly staff and students
of the School of Engineering and Computer Science at Victoria University.
There were 11 males and 3 females for a total of fourteen participants.
It was not asked if any of the subjects had used that particular mobile
phone before, or if they had played either of the games before, or even
their general experience with games, because this does not affect the re-
sults as we are comparing the participants with themselves. Overall all
the participants were familiar with computers, and all have a computer
science background.

CHAPTER 4. USER STUDY 46

4.2 Procedure

Each participant played each game eight times in the first session and nine
in the second session. Each session was separated by a period of at least
ten days, so that the participants didn’t improve their playing ability sig-
nificantly between the sessions. The participants were allowed to play a
couple of practice games before each session and for each game, these were
not delayed at all. This was to allow the participants to (re-)acquaint them-
selves with the controls and gameplay, and to prevent their first games
from suffering. Each game was played following this sequence of actions:

1. The experiment controller looked up the delay value to be set for
this play through, and set the game’s delay to that value. If it was
the first session, then the delay was set to 0 ms. The delay values
are pre-generated, and each delay level is repeated three times. The
order of delays is randomized for each participant.

2. The controller then completes the initialization for the game, and
then passes the phone to the participant. The participant then be-
gins the game by pressing the designated button.

3. Once the play through is complete (either by the participant exhaust-
ing all their lives or finishing the final level to be played), the partic-
ipant passes the phone back to the controller.

4. If it was the second session (with delay), the controller asked the
participant to rate the following statements from 1 – 5, where 1 is
strongly disagree and 5 is strongly agree:

• There was a noticeable delay between my actions and the sys-
tem’s response.

• The delay between my actions and the system’s response nega-
tively affected the playing experience.

CHAPTER 4. USER STUDY 47

5. If there were remaining games to play, the participant and controller
return to step one.

4.3 Experimental Issues

There were several design issues discovered during the experiment.
The first issue is that the participants were much better at the game

than anticipated, and so the total playtime was limited to the natural “end”
of the play through. Specifically, for Asteroid Zone, rather than waiting
for the player to exhaust all their lives, the game was stopped after the
end of level 5, the “last” level in the game. For Bomber 2, the game was
stopped after the end of level 3 (the “last” level is level 4). Even with these
adjustments, the sessions lasted for an unreasonably long time (over four
hours), and so the number of plays of each game was reduced from 16 to
8, for both Bomber 2 and Asteroid Zone, bringing the majority of sessions
down to under two hours.

The second issue is an extra command in Asteroid Zone, teleport, that
places the player’s ship in a new, random position on the screen. While
this seems like a useful command, it results in unpredictable game play.
There is no limit on the number of times you can use teleport, nor is there a
minimum time between uses. Furthermore, it makes no guarantees on the
placement of the ship and the player may end up next to or in an asteroid.
For these reasons the user wasn’t told about teleport unless they asked,
at which point we advised the user not to use the command. Overall,
teleport was pressed 18 times out of a total of over 230,000 commands,
thus the data with teleport was left in.

The third issue was somewhat beyond our control. The manner in
which Bomber 2 is typically played results in periods where the player
doesn’t need to press any buttons. The mobile phone is configured to dim
the display after a period of inactivity, and so the display dims while the
game is still being played. When this occurred during the user’s play, they

CHAPTER 4. USER STUDY 48

Delay (ms) Mean Score SD df t-Test (p) Mean Runtime (s)

0 484 229 124 n/a 284
75 549 253 40 0.128 198

150 475 227 41 0.825 197
300 347 219 41 0.001 162

Table 4.1: Various statistics for Asteroid Zone at each delay level. The t-Tests
for each delay are against no delay, and are two-sampled, equal variance, and
two-tailed.

were advised to press an unbound key to wake the display without affect-
ing the game.

Finally, due to an issue with one of the participant’s play data, discov-
ered after the conclusion of the experiment, Asteroid Zone has marginally
fewer data points than Bomber 2.

4.4 Results

Here we present the results of the user study. The main calculations are
correlations for one independent variable and three dependent variables
for each game. The independent variable is the delay between the user’s
actions and the system’s response, and the dependent variables are the
user’s answers to the two questions asked, as well as their score.

4.4.1 Asteroid Zone

Taking all the participants’ data together, the Pearson correlation for the
delay vs score is r = −0.201 (see Figure 4.6). This is a slightly negative cor-
relation, but it is not as strong as we expected. However, it is statistically
significant at a 95% level. Taking delay vs level the correlation coefficient
is −0.217, and is graphed in Figure 4.7.

Looking at the scores for each delay value gives mean scores and stu-
dent’s t-Test values as given in Table 4.1. The null hypothesis is accepted

CHAPTER 4. USER STUDY 49

Delay User Response
(ms) 1 2 3 4 5

75 25 13 1 2 0
150 16 17 5 2 1
300 6 8 14 8 5

(a) Question 1

Delay User Response
(ms) 1 2 3 4 5

75 30 7 3 0 1
150 22 13 4 1 1
300 7 14 14 6 0

(b) Question 2

Table 4.2: Frequencies of user response values at each delay for Asteroid Zone for
the two questions – “There was a noticeable delay between my actions and the
system’s response” (4.2a) and “The delay between my actions and the system’s
response negatively affected the playing experience” (4.2b).

for the first two t-Tests, 75 ms vs 0 ms (H2) and 150 ms vs 0 ms (H3), be-
cause the t-Test value is above 0.05, but the null hypothesis for 300 ms vs
0 ms (H4) is rejected. This indicates that while delays of 75 ms and 150 ms
may be acceptable, a 300 ms delay for Asteroid Zone gives a lower mean
than no delay, and so it negatively impacts the player’s experience.

4.4.2 Bomber 2

Bomber 2 has weak results. Again, taking all the participants’ data, the
correlation coefficient for the delay vs score is r = 0.017. A coefficient this
low suggests that there is no correlation at all, and it is not statistically
significant. The mean scores and t-Tests for each delay level (vs no delay)
are given in Table 4.3.

When all delays are considered the null hypothesis H0 for Bomber is
accepted. However, when the other hypotheses are explored, the null hy-
pothesis H2 is rejected for the lowest delay value, 75 ms, but accepted for
the two higher values (H3 and H4). This is a highly unusual result, some-
how suggesting that delaying the input by 75 ms may give a better score
than not at all! It could be that players are overcompensating at the higher
levels or that delaying the user input slightly makes the game easier to
play.

CHAPTER 4. USER STUDY 50

Delay (ms) Mean Score SD df t-Test (p) Mean Runtime (s)

0 313 92 108 n/a 436
75 346 89 41 0.047 376

150 325 99 41 0.487 366
300 317 83 41 0.789 434

Table 4.3: Various statistics for Bomber 2 at each delay level. The t-Tests for each
delay are against no delay, and are two-sampled, equal variance, and two-tailed.

Delay User Response
(ms) 1 2 3 4 5

75 31 10 1 0 0
150 25 12 5 0 0
300 14 13 12 2 1

(a) Question 1

Delay User Response
(ms) 1 2 3 4 5

75 38 2 2 0 0
150 34 6 1 1 0
300 22 13 5 2 0

(b) Question 2

Table 4.4: Frequencies of user response values at each delay for Bomber 2 for
the two questions – “There was a noticeable delay between my actions and the
system’s response” (4.4a) and “The delay between my actions and the system’s
response negatively affected the playing experience” (4.4b).

As for the questions asked of the users, the frequencies are shown in
Tables 4.4a and 4.4b. Again, calculating Spearman’s rank correlation co-
efficient results in 0.480 and 0.518 for the first and second questions re-
spectively. While these are significant values, they are not as large as for
Asteroid Zone. Further, the frequency tables show that while the users
on the whole gave higher ranks to the larger delays for the first question
(“there was a noticeable delay . . . ”), they did not give as high values for
the second question (“the delay . . . negatively impacted my playing expe-
rience”) for the higher delays. Perhaps the gameplay for Bomber 2 is such
that the users can compensate for delay, to the point where it doesn’t affect
their gameplay or affects it very little compared to Asteroid Zone.

CHAPTER 4. USER STUDY 51

4.5 Discussion

The aim of this user study was to determine the point at which the delay
became unacceptable. From the results, we can say that for Asteroid Zone,
while 75 ms and 150 ms may be acceptable delays, at 300 ms the user’s
experience is negatively affected. The specific point is not known, but it is
assumed to be between 150 ms and 300 ms delay. One user, while playing
at 150 ms, said that “any delay under this is good”, and while playing at
300 ms, “if it’s this delay I’d stop playing”. Another user commented that
“delay is a lot harder when you’re moving around”.

For Bomber 2, we can’t make any judgments on which delays are un-
acceptable. The results were inconclusive, suggesting that some delay
(75 ms) is better than no delay! It may be the case that more data is re-
quired for Bomber 2 at the higher end, with delays greater than 300 ms.
On the other hand Bomber 2’s game play may be such that large amounts
of delay are easier to compensate for, but they still affect the player’s expe-
rience negatively. One user commented that “this is more noticeable than
asteroids”, however another said that the delay on Bomber 2 was “way
easier to compensate” and that “any delay is acceptable”.

One trend apparent in both Asteroid Zone and Bomber 2 is the increase
in average score between 0 and 75 ms delay. Further, the scores for Bomber
2 are higher with delay than without, and Asteroid Zone’s scores are also
surprising. Figure 4.5 shows the average scores relative to the scores at
0 ms delay, to account for the differences in score between Asteroid Zone
and Bomber 2.

We initially thought that this was due to the users learning the games,
and thus performing better in the second (delayed) session than in the
first, however we counter this by separating the sessions by at least ten
days. Further, correlation calculations for score vs run gave mixed re-
sults, and the average scores excluding the first two runs don’t vary sig-
nificantly from the all-inclusive average scores, leading us to believe that

CHAPTER 4. USER STUDY 52

0

0.2

0.4

0.6

0.8

1

1.2

0 75 150 300

Sc
o
re
 (
re
la
ti
ve
 t
o
 0
 m

s)

Delay (ms)

Asteroid Zone

Bomber 2

Figure 4.5: Average scores for the two games, relative to the average
scores for 0 ms delay.

game learning is not like to be the cause of this anomaly.
There were other interesting results from the data which we didn’t run

any advanced analysis on, such as the average playing time for each delay
level. For Asteroid Zone, the average run time is 284 seconds with no
delay, and this consistently decreases as delay increases until 161 seconds
at a 300 ms delay. For Bomber 2 the numbers are quite different, starting
at 436 seconds at no delay, and then 376, 365 and 434 seconds for 75 ms,
150 ms and 300 ms delays respectively.

We also performed analysis on sequences of actions just for Asteroid
Zone, based on a user’s comment that we should “look for overturning,
where I go past the point and then turn back”.

Consider a sequence of actions: right right right. With no delay, the
probability of the next action being right is 0.672, and left is 0.035. At 300 ms
delay, the probability that the next action is right is 0.762, a slight increase,
however the probability that the next action is left doubles to 0.070. Going

CHAPTER 4. USER STUDY 53

the other way, where the sequence of actions is left left left and the next
action is left or right, the probabilities barely change between no delay and
300 ms delay. These numbers suggest that while users may adjust their
game play when delay is increased, it is not consistent between sequences.

4.6 Conclusion

The interest here is in identifying how delays built into the user action / sys-
tem response cycle affect user performance and perception. In this chapter
the results of an experiment conducted with 14 participants and 2 mobile
computer games were presented. Based on the results, we can not con-
clusively give a single delay value as the minimum requirement; rather
we propose that a range of values, 75 ms to 150 ms as the requirement a
remote thin-client system will need to meet to be acceptable for 2D sin-
gle player shooter and side scroller games. This result has implications for
thin-client systems as it provides a measure against which to assess timing
performance for a system’s various sub-components.

There are several ways to advance this work. One limitation of the
study is that all participants had some background in computer science. It
would be interesting to see whether the results also hold for other demo-
graphics. There are also application domains other than games to explore
(and also other types of games, such as those requiring extensive use of
3D graphics libraries), and a more refined experiment would also include
a finer-grained range of delay levels between 75 ms and 150 ms.

CHAPTER 4. USER STUDY 54

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

0
75

15
0

22
5

30
0

Score

D
e
la
y

Fi
gu

re
4.

6:
A

sc
at

te
r

ch
ar

to
ft

he
sc

or
e

vs
de

la
y

fo
r

al
lp

ar
ti

ci
pa

nt
s;

A
st

er
oi

d
Z

on
e.

CHAPTER 4. USER STUDY 55

2.
17

%

11
.5
9%

21
.0
1%

14
.4
9%

15
.2
2%

35
.5
1%

12
.2
0%

2.
44

%

9.
76
%

12
.2
0%

17
.0
7%

46
.3
4%

2.
38

%

11
.9
0%

21
.4
3%

21
.4
3%

16
.6
7%

26
.1
9%

11
.9
0%

16
.6
7%

30
.9
5%

21
.4
3%

4.
76

%

14
.2
9%

0
75

15
0

30
0

012345

-­‐1123456

-­‐7
5

75
15
0

22
5

30
0

37
5

Level

D
el
ay
 (m

s)

Fi
gu

re
4.

7:
A

bu
bb

le
ch

ar
t

fo
r

A
st

er
oi

d
Z

on
e,

sh
ow

in
g

th
e

le
ve

l
vs

de
la

y
fo

r
al

lp
ar

ti
ci

pa
nt

s,
w

he
re

th
e

si
ze

of
th

e
bu

bb
le

re
pr

es
en

ts
th

e
pr

op
or

ti
on

of
da

ta
at

th
at

le
ve

l.

CHAPTER 4. USER STUDY 56

0
75

15
0

30
0

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

75

15
0

22
5

30
0

Score

D
e
la
y
(m

s)

Fi
gu

re
4.

8:
A

sc
at

te
r

ch
ar

to
ft

he
sc

or
es

vs
de

la
ys

fo
r

al
lp

ar
ti

ci
pa

nt
s;

Bo
m

be
r

2.

Chapter 5

RemoteME

RemoteME is our client/server system upon which applications are con-
trolled remotely. RemoteME lets users control applications which are ex-
ecuting on the server using the client. Applications which are supported
by MIDP 2.1 and CLDC 1.1 are supported by RemoteME. Section 5.1 de-
scribes the low level workings of the system, and Section 5.2 details the
performance logging system in RemoteME. Finally Section 5.3 highlights
some of the implementation issues encountered during development.

5.1 Architecture

We now describe the different components of the RemoteME architecture.
The architecture diagram is shown in Figure 5.1.

5.1.1 Client

The RemoteME client application executes within a virtual machine run-
ning on the mobile device.

The RemoteME Client is fully self contained, and does not rely upon
any APIs other than the ones provided by CLDC 1.1 and MIDP 2.1 (see

57

CHAPTER 5. REMOTEME 58
R

em
ot

e
Ap

pl
ic

at
io

n

R
em

ot
eM

E
G

ra
ph

ic
s

R
em

ot
eM

E
So

un
d

R
em

ot
eM

E
In

pu
t

R
em

ot
eM

E
N

et
w

or
ki

ng

Su
n

W
ire

le
ss

 E
m

ul
at

or

Ja
va

 V
irt

ua
l M

ac
hi

ne

O
pe

ra
tin

g
Sy

st
em

R
em

ot
eM

E
G

ra
ph

ic
s

R
em

ot
eM

E
So

un
d

R
em

ot
eM

E
In

pu
t

R
em

ot
eM

E
N

et
w

or
ki

ng

Ja
va

 V
irt

ua
l M

ac
hi

ne

O
pe

ra
tin

g
Sy

st
em

N
et

w
or

k

Fi
gu

re
5.

1:
Th

e
R

em
ot

eM
E

st
ac

k.
O

n
th

e
le

ft
is

th
e

se
rv

er
,w

he
re

th
e

re
m

ot
e

ap
pl

ic
at

io
n

is
ex

ec
ut

in
g

on
to

p
of

th
e

se
rv

er
co

m
po

ne
nt

of
R

em
ot

eM
E.

T
he

cl
ie

nt
is

on
th

e
ri

gh
t,

an
d

is
ty

pi
ca

lly
ex

ec
ut

in
g

on
a

m
ob

ile
de

vi
ce

.

CHAPTER 5. REMOTEME 59

Section 2.4). Further, the client software does not require any 3rd party
libraries and has very minimal code.

5.1.2 Server

The RemoteME server application runs in a Java virtual machine running
as a server. In the implementation the software stack consists of a wire-
less emulator and the modified application being exported to the client.
The emulator is the Sun Wireless Toolkit [37], as distributed by Sun Mi-
crosystems [38] without any modifications. The application that is to be
run remotely is modified by weaving the code with the RemoteME As-
pectJ aspects. The code which is woven in handles the graphics, sound,
network and user input to and from the RemoteME client.

5.1.3 System

RemoteME is a traditional client/server system, with the stack shown in
Figure 5.1. The RemoteME system is server-heavy, in that only the server
executes the application code, and the client displays the application and
forwards input to the server. The RemoteME client is purely event driven,
and events are either received from the RemoteME server or from the mo-
bile device itself. Events from the server can be one of two types: object
creation and method invocation.

Object Creation

To reduce complexity on the client, a simple object model is used. For ev-
ery instance of an API class created on the server, a corresponding instance
is created on the client. For example, if a Sprite object is instantiated on
the server, the constructor’s parameters are sent and a corresponding in-
stance is created on the client. To keep track of objects, a Map is kept on
both the client and server (see Figure 5.2). When objects are instantiated

CHAPTER 5. REMOTEME 60

objectId =
13

image1.hashCode()
= 0x89ae9e

Image Map

key value

image1

Image Map

key value

objectId
= 13

server client

Figure 5.2: Example object map for images. On the server image1
indexes to the integer 13 in the object map. This value is then used to
index the object map on the client, hence image1 is stored.

on the server, they are added to the map, indexed by the value given by
the hashCode() method on the object, and the value is an incrementing
integer, called the objectId. That objectId is sent along with the constructor
call to the client. Upon receiving the request to construct the object on the
client, the object is added to the map, indexed by the sent objectId and the
value is the newly created object.

Method Invocation

Method invocation is the other type of event sent by the server. In this case,
there are two additional pieces of information sent along with the method
parameters. One piece of data sent is the object’s id that is the target of
the method invocation. The objectId indexes into the map of objects, and is
used retrieve the correct instance to invoke the method on.

The other piece of information is the method that is being invoked.
Methods are identified by a unique id, which is an integer sent by the
server. However since the set of methods and classes do not change in

CHAPTER 5. REMOTEME 61

object
lookup

invoke
method

object
lookup

client.invoke(13,
methodmapping.pkg.
Image_method2_x_y,

x, y)

invoke
method

13 -> image1

image1.method2(x,y)

<< api call >>

image1.method2(x,y)

server client

image1 -> 13

<< intercept api call >>

Figure 5.3: RemoteME method invocation. method2 is called on
image1 on the server with parameters x and y. RemoteME inter-
cepts the method call, looks up image2’s ID in the map, and then
tells the client to call the method named method2 on the Image ob-
ject referenced by 13 with the parameters x and y.

the J2ME API, they are numbered statically at compile time, and so the
lookup on the client is very fast. A consequence of this is that the ids will
need to be recreated if the API changes. A single class holds all the method
ids, numbered in order according to the minimal amount of information
that is required to distinguish each method. This is the concatenation of
package name, class name, method name, and parameter types.

Furthermore, since only a few of the supported classes can be instan-
tiated, there is a Map for each class to speed up the lookup process. Thus
the method invocation procedure is given in Figure 5.3.

Finally, as with the object creation, method invocation only applies to
API classes. For the case of subclasses, only the final dispatch to an API
method will be forwarded onto the client, all other method calls will be
executed only on the server.

CHAPTER 5. REMOTEME 62

5.1.4 RemoteME Application

The remote application is the application that is exported from the server
to the client. The source code of the application is not required to be
modified manually. Instead, the application’s compiled code, along with
various generated and constant classes, is woven with RemoteME’s As-
pectJ [18] aspects. This woven code is then packaged as a RemoteME
Application, ready to be run on the standard, unmodified Sun Wireless
Emulator.

The RemoteME aspects provide a very specific set of cross-cutting con-
cerns. These concerns pointcut any method call to the API present in J2ME,
where the method has side effects1. Essentially, any method which modi-
fies J2ME API instances will be pointcut.

On exception to this strategy is pointcutting specific constructors, such
as the constructors for the Sprite class. Here AspectJ cannot pointcut
the constructor because the code would need to be woven into the API,
which is not feasible. In these cases, a helper utility generates a proxy class,
which wraps all the original class’ methods including the constructor. The
utility also replaces all references to the original class with the proxy class,
in essence replacing the original class with the proxy class in the remote
application.

5.1.5 RemoteME graphics

Graphics is one of the three components of the stack which sit between
the remote application and RemoteME’s networking. The graphics com-
ponent, comprised primarily of the graphics aspect, pointcuts the graph-
ics API, including the some of the java.microedition.lcdui package
and all of the java.microedition.lcdui.game package.

1That is, any method which changes state. Methods which do not alter state, such as
getter methods, have no side effects. Each method is inspected manually to determine if
it has side effects.

CHAPTER 5. REMOTEME 63

GameCanvas

javaxmicroedition

lcdui

game

Layer
Sprite

TiledLayer

Canvas

Font

Graphics

Image

media
Manager

Player

Figure 5.4: Package diagram showing J2ME API classes which are
implemented in RemoteME.

From the java.microedition.lcdui package, RemoteME supports
the Canvas, Font, Graphics and Image classes.

Canvas

The Canvas class handles low-level events and issues graphics calls for
drawing to the display. In RemoteME, there is a single Canvas which is
kept consistent across the client and server. When a new Canvas object is
created it replaces the current one, and from that point on all operations
on the canvas occur on the new canvas.

Font

The Font class represents fonts and font metrics. Since Fonts cannot
be instantiated, and they can be represented by three integers (face, style
and size), RemoteME simulates font support by substituting the Font ob-

CHAPTER 5. REMOTEME 64

ject with those three integers across the network when Font is used as a
method parameter.

Graphics

The Graphics class provides 2D rendering capability for drawing primi-
tives such as lines and rectangles, as well as images. RemoteME supports
the class fully, providing the same rendering capability.

Rendering of primitives such as lines and rectangles is rather straight-
forward, requiring no more than method invocations with the parameters
as is. Image handling is more complex, and is described next.

Image

Image objects are handled using the map strategy described earlier. Image
objects are stored in the map upon creation, and then retrieved from the
map when they are used as parameters or when methods are invoked
upon them. Images can occupy large amounts of memory, so this object
store doubles as an efficient cache of images.

java.microedition.lcdui

In addition to the classes described above, there are numerous classes
which are not supported by RemoteME. The primary reason for this is
that RemoteME is a prototype, proof-of-concept system rather than a fully
fledged implementation. Adding support for the missing classes is straight
forward, however, requiring only three additions: (1) an aspect which
pointcuts all the required methods in the class is added to the RemoteME
server; (2) a data model (object map), if necessary, is added to the client
and server in the same manner as Layer, Sprite, or Image; and (3) the
appropriate command handlers are added to the client to support the new
class.

CHAPTER 5. REMOTEME 65

Support for the user interface classes, such as Alert, Form, or List
will require that the implementation for the Display class be completed,
however the procedure is much the same as described above. The im-
plementations for these classes was omitted because the vast majority of
games for J2ME use the Graphics API rather than Forms.

java.microedition.lcdui.game

In this package the classes which are fully supported in RemoteME are
GameCanvas, Layer, Sprite and TiledLayer.

GameCanvas

GameCanvas extends Canvas, and is used when greater control is needed
over input handling and painting. The implementation of Canvas in
RemoteME allows GameCanvas to be treated as a Canvas without any
issues. Typically when applications use GameCanvas they don’t have a
paint() method and simply call the flushGraphics() method, how-
ever since canvases are implemented using GameCanvas on the client,
both approaches to painting are supported.

The other difference of note is the key press handling mechanism, where
typically applications poll for key presses rather than having callback events.
Again, the implementation on the RemoteME client supports both the
event-based and polling methods fully.

Layer

Layer is an abstract class representing a visual element in the applica-
tion. RemoteME handles layers using the object map technique described
earlier, and since Layer is the common supertype of both Sprite and
TiledLayer, those classes are also in the object map.

CHAPTER 5. REMOTEME 66

Sprite

A Sprite is a Layer with the ability to be animated, among other fea-
tures. Since Sprite extends Layer, RemoteME simply treats it like any
other non-API class, and object creation/reference is handled by the Layer
handling mechanism.

TiledLayer

A TiledLayer is a grid of tile images, typically used to create large scrolling
backgrounds. TiledLayers are handled in exactly the same way as Sprite
objects.

5.1.6 RemoteME sound

Sound is another component of the RemoteME layer of the stack, and
while it is not as important as graphics for the prototype, nor is the imple-
mentation in RemoteME as fully fledged, there is basic support for playing
sounds in RemoteME.

The relevant package for sound is javax.microedition.media, and
from this package the sound support is in the Manager and Player classes.

Manager

The Manager class provides the means to create a Player object. This
class is pointcut only on the method which instantiates a Player. Players
are created from an InputStream which is a stream of bytes representing
the sound.

Player

The Player class provides playback of sounds. Players can be constructed
from a number of sources including capture devices and http streams.

CHAPTER 5. REMOTEME 67

Player objects are handled using the map technique as per the graph-
ics classes.

“Sound”

There is no sound class in the J2ME API, so a pseudo sound class was
created in RemoteME on both the client and server, to facilitate efficient
caching of the bytes that represent sound, much like what occurs with
Image objects on the graphics side.

5.2 RemoteME Logging System

An important part of this thesis is evaluating whether our implementa-
tion’s performance falls within the boundaries of a reasonable response
time. Therefore the RemoteME client application includes an option to
record the performance of the system, specifically the response time as
mentioned in Section 2.3. To minimise any affect the logging system may
have on the network traffic, the logged data is kept on the client in mem-
ory until it is requested to be sent to the logging server (not necessarily the
RemoteME server).

The data is recorded in the following manner:

1. When a key is pressed on the client, the time in milliseconds as
provided by the Java API is recorded, and sent to the server along
with the key as the unique ID for that key press. The timestamp is
recorded at the earliest possible opportunity.

2. When the server receives a key command, it stores this unique ID as
it’s latest ID.

3. The server signals the end of each screen’s drawing commands with
a call to the paint method. If there is a recorded key press ID, then
this is sent with the paint command.

CHAPTER 5. REMOTEME 68

4. Finally, when the client receives a paint command with an attached
ID, it checks that the ID matches the ID it was expecting – the last ID
sent – and records the current time in milliseconds if they match. The
latter time is subtracted from the former to determine the elapsed
time between a key press and the related graphics update. The times-
tamp is recorded at the latest possible opportunity – the next opera-
tion is the drawing of the buffered image to the screen.

5. The elapsed time is stored in a standard Java data structure. This
data structure is enumerated and sent to the logging server upon
request.

5.3 Implementation Issues

During the implementation of RemoteME we discovered two issues relat-
ing to: the server runtime; and limitations of AspectJ.

5.3.1 Server Runtime

A key implementation issued was the choice of server runtime. We fo-
cused on J2ME 2.4 to constrain the scope of the project, reasoning that de-
veloping a protocol with J2ME at both sides would simplify development.
In addition, our functional requirements include that the server part of the
system be a computer (rather than a mobile phone), and that the applica-
tions we execute on the system are J2ME applications. This leaves us with
three server runtime options to choose from: extending a third-party J2ME
emulator; creating a runtime from scratch; or the Sun Wireless Toolkit with
cross-cutting aspects.

There are a few different projects attempting to emulate J2ME, how-
ever only two have source code available and thus are suitable for use:
MicroEmulator [21] and ME4SE [13]. MicroEmulator is a fully-fledged,
cross-platform J2ME emulator, and the idea is to integrate the RemoteME

CHAPTER 5. REMOTEME 69

server components directly into the emulator at the appropriate places.
This would allow for easier development, as the system can then be de-
bugged with the standard Java debugging tools (such as the Eclipse de-
bugger), as well as greater performance.

However, the implementation has numerous bugs, including an issue
with the threading system rendering Asteroid Zone unplayable. While
these bugs could have been fixed during the development of RemoteME,
this is not the focus of this project. In addition, the ME4SE project is still
quite young, and so the implementation is incomplete, meaning that it too
is unsuitable for use as the runtime server.

The second option, create runtime from scratch, has some advantages.
The runtime can be built piecemeal just like the rest of RemoteME, imple-
menting features as necessary to keep the system light and fast. Further,
the two options discussed thus far are not constrained by the limitations
of AspectJ.

This option has the same issue as the previous one in that the project is
not focused on developing a J2ME emulator. While it is not necessary to
develop a complete implementation of the specification, task is not trivial
evidenced by a mature project such as MicroEmulator having showstop-
ping bugs.

The option which we chose is the AspectJ technique. Building on top
of the official emulator allows us to assume that games we expect to ex-
ecute on RemoteME are highly likely to run correctly. Further, while the
system is more difficult to debug, building on top of a fully-featured J2ME
environment allows for a much simpler server component.

5.3.2 AspectJ Limitations

AspectJ [18] is a mature project with but only has limited support for
the J2ME runtime [41]. For example, key features of AspectJ such as the

CHAPTER 5. REMOTEME 70

thisJoinPoint field are unavailable for J2ME2. This required that sup-
port for API methods needed to be added individually, leading to code
duplication on the server. Further, if new methods are added to the API,
support for them needs to be added to RemoteME manually.

As mentioned earlier (Section 5.1.4), there is also a limitation in point-
cutting constructors, meaning that they cannot be pointcut individually
for API classes. This is an issue for a number of the J2ME classes, how-
ever it only arose for one class for RemoteME – Sprite. A workaround
was created involving class rewriting, which is sufficient for a prototype,
however this is not a great solution for a fully fledged system.

2http://www.eclipse.org/aspectj/doc/released/progguide/
language-thisJoinPoint.html

http://www.eclipse.org/aspectj/doc/released/progguide/language-thisJoinPoint.html
http://www.eclipse.org/aspectj/doc/released/progguide/language-thisJoinPoint.html

Chapter 6

Performance Evaluation

In this section we evaluate the responsiveness of RemoteME based upon
the findings in Chapter 4. Section 6.1 presents the study into the respon-
siveness of RemoteME when executing Asteroid Zone over a wireless net-
work. Section 6.2 explores how RemoteME compares against a native ver-
sion of Asteroid Zone in terms of CPU, memory, battery life and power
consumption.

6.1 Measurement Study

This study carried out an experiment to determine whether the respon-
siveness of RemoteME falls within the range of acceptable response times.
This range corresponds to the delay range determined in the previous
chapter to be 75-150 ms for a 2D action game such as Asteroid Zone (Sec-
tion 3.3). We conducted the experiments over a WiFi network, and also
made attempts on 2.5 and 3G mobile networks.

6.1.1 Experiment

This experiment evaluated the performance of RemoteME as a remote con-
trol system for 2D action games. We evaluated the system’s performance

71

CHAPTER 6. PERFORMANCE EVALUATION 72

by measuring the response times over 30 executions of the game Aster-
oid Zone (see Section 4.1.3). We attempted to evaluate Bomber 2 also, but
these attempts failed (see Sections 6.1.3 and 6.1.4).

Response time is measured in this study, but in the previous study
(Chapter 4), the benchmark was set using delay, and this includes the ren-
der time on the mobile phone. Therefore, the render time of the game
needs to be determined so that we can accurately evaluate RemoteME. We
played Asteroid Zone locally on the mobile phone and recorded the time
taken to render each frame. Several thousand times were recorded and the
render time was either 0 or 1 ms for 98% of the measured times. This time
is much smaller than the range determined in the previous study, and thus
can be ignored, giving an acceptable upper bound of 150 ms.

The game Asteroid Zone was played over the RemoteME system 30
times while every action’s response time was measured using RemoteME’s
logging utility. Analysis of the measured response times was performed
to determine if RemoteME’s performance is acceptable as determined by
the user study in Chapter 4.

Hypothesis

The hypothesis is that RemoteME can provide response within the 75 ms
to 150 ms range. The null hypothesis (H0) is:

The mean response times for RemoteME will be greater than
the benchmark 150 ms response time (with a 90% confidence
interval).

Design

The experiment had a single player play 30 games of Asteroid Zone on the
RemoteME system over a wireless network. The games were played in
two groups of 15 games each, with a two hour break between the groups.
The client was a mobile phone, and the server a desktop machine.

CHAPTER 6. PERFORMANCE EVALUATION 73

Artifacts

Asteroid Zone The game used, Asteroid Zone, is the same game from
Section 4.1.3.

Mobile Phone The mobile phone used is the same as the previous study
(Section 3.3), a Nokia N95. The player used the numerical keys to control
the ship during the experiment.

Wireless Router The wireless router used is the same as the pilot study
(Section 3.3), and the mobile phone was the only client for the router.

6.1.2 Procedure

The 30 games of Asteroid Zone were played by myself, thus HEC approval
was not required. Each game was played following this sequence:

1. A new instance of the RemoteME server is started, as well as the
logging server.

2. The player connected to the server using the RemoteME client on
the phone, and played a full game, exhausting all lives or complet-
ing the “final” level (level five). This endpoint is consistent with the
previous study, detailed in Section 4.3.

3. Once the player has finished that game, they activated the logging
function of RemoteME, sending the complete log of response times
to the logging server.

4. If there were more games to play, then the player went back to step
one.

CHAPTER 6. PERFORMANCE EVALUATION 74

6.1.3 Experimental Issues

The major issue with this experiment is the selection of game. While
we will see that RemoteME performed very well with Asteroid Zone in
the next section, generalising these results to other game types is unpre-
dictable. We can however say with high likelihood that similar games
which are shape based (such as Asteroid Zone) rather than image based
(such as Bomber 2) will have similar performance. The related issue is that
we only have performance results for a single game. A combination of fac-
tors including the mobile phone prevented us from collecting results for
Bomber 2, more details can be found in the next section (Section 6.1.4).

Brief testing showed that there was little variation in RemoteME per-
formance between machines selected for the RemoteME server, the only
consequence being increased hardware resource consumption on lower
end hardware.

Similarly, while the selection of wireless router may be a factor,
RemoteME performance was not affected when switching to another wire-
less router. In addition, congestion in the system is accounted for by exe-
cuting multiple plays over a significant period of time, and given the sim-
plicity of the network infrastructure, and that only one client is connected
to the wireless router, the results in Figure 6.1 are as expected.

Another limitation of the experiment is that we were restricted to a
single mobile phone. Based on the findings in the Bomber 2 experiment
later in the chapter, as well as the above discussion, the mobile phone
plays a key part in the overall performance of RemoteME, and that we
need to test the system with other phones.

Finally, it is worth noting that the response times gathered for RemoteME
can be reduced by changing the server component. Currently the server
reproduces the display of the client, increasing the workload on the server.
Removing this facet of the server may lead to improved response times, as
well as reduced resource consumption on the server. We believe that this
change will make a slight improvement but need to test this to confirm.

CHAPTER 6. PERFORMANCE EVALUATION 75

!

"!

#!!

#"!

$!!

$"!
!"

#$
%&

#"
'(
)*

"'
+*

#,

()*"

Figure 6.1: All response times for Asteroid Zone on RemoteME over
WiFi.

6.1.4 Technical Issues

Multiple attempts were made to execute Bomber 2, the game from the user
study (Section 4.1.3), on RemoteME. However the responsiveness of the
game was very poor, with response times exceeding 1000 ms, and the log-
ging system recording too few data points to perform statistical analysis.
The most likely explanation for this is the mobile phone, specifically the
capabilities of it. From the screenshot of Bomber 2 (Figure 4.3) we can see
that it is visually complex, so much so that there are a significant number
of updates sent to the client for each frame that is rendered. As a compar-
ison, over 200 packets are sent for a typical frame of Bomber 2, whereas
fewer than 30 packets are sent for Asteroid Zone.

In order to determine whether the bottleneck is the network or graphics
on the client, the RemoteME client was configured to receive all updates
but not perform any graphics operations. In this mode the response times

CHAPTER 6. PERFORMANCE EVALUATION 76

were considerably lower, at approximately 500-600 ms. This indicates that
both the client’s networking and graphics systems are being taxed, and we
suspect that the phone cannot keep up with the number of packets being
received, and that once it has passed on those packets to the RemoteME
client, the client cannot render the frame before the next frame has arrived.

Finally, to test the potential of RemoteME over the Internet, we at-
tempted to play Asteroid Zone on RemoteME using Vodafone’s 3G mobile
network as the communications medium. Unfortunately, an issue with the
phone caused the 3G connection to drop immediately after the game was
started, so no data could be collected. Further attempts to play over Tele-
com 2.5G were more successful, however it was not responsive enough to
record data.

6.1.5 Results

In total 30 executions of Asteroid Zone over RemoteME were conducted,
giving over 20,000 data points. The mean response time is 77.3 ms, with a
standard deviation of 31.8 ms. The entire data set is shown in Figure 6.1,
note that the response times and time do not seem to be related, suggesting
no temporal correlation (by visual inspection).

At a 90% confidence level the interval for Asteroid Zone on RemoteME
is 76.9 to 77.7 ms. This is within the 75-150 ms range for acceptable respon-
siveness. Further, RemoteME’s response time logging may record times
greater than they actually are (Section 5.2), meaning that the confidence
interval may be lower than the lower bound of the acceptable range.

Figure 6.2 gives the distribution of response times between 0 and 200 ms,
grouped by execution. This chart shows that every execution has two dis-
tinct peaks in the distribution. Taking the data in aggregate gives the dis-
tribution graph in Figure 6.3. To determine the cause of the twin peaks,
some investigation is required.

CHAPTER 6. PERFORMANCE EVALUATION 77

01020304050607080

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
120
124
128
132
136
140
144
148
152
156
160
164
168
172
176
180
184
188
192
196
200

Frequency

R
e
sp
o
n
se
 T
im

e
 (
m
s)

Fi
gu

re
6.

2:
R

es
po

ns
e

ti
m

es
fo

r
A

st
er

oi
d

Z
on

e
on

R
em

ot
eM

E
ov

er
W

iF
i.

Ea
ch

co
lo

ur
ed

lin
e

co
rr

es
po

nd
s

to
a

si
ng

le
ex

ec
ut

io
n.

Th
e

re
sp

on
se

ti
m

es
ar

e
co

lle
ct

ed
in

to
bu

ck
et

s
of

si
ze

4,
an

d
th

e
fr

eq
ue

nc
y

is
th

e
nu

m
be

r
of

re
sp

on
se

ti
m

es
in

th
at

bu
ck

et
.R

es
po

ns
e

ti
m

es
ov

er
20

0
m

s
ar

e
in

si
gn

ifi
ca

nt
an

d
th

us
ig

no
re

d.

CHAPTER 6. PERFORMANCE EVALUATION 78

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108
112
116
120
124
128
132
136
140
144
148
152
156
160
164
168
172
176
180
184
188
196
200

Frequency

R
e
sp
o
n
se
 T
im

e
 (
m
s)

Fi
gu

re
6.

3:
D

is
tr

ib
ut

io
n

of
re

sp
on

se
ti

m
es

fo
r

A
st

er
oi

d
Z

on
e

on
R

em
ot

eM
E

ov
er

W
iF

i.
Th

e
re

sp
on

se
ti

m
es

ar
e

co
l-

le
ct

ed
in

to
bu

ck
et

s
of

si
ze

4,
an

d
th

e
fr

eq
ue

nc
y

is
th

e
nu

m
be

r
of

re
sp

on
se

ti
m

es
in

th
at

bu
ck

et
.

R
es

po
ns

e
ti

m
es

ov
er

20
0

m
s

ar
e

in
si

gn
ifi

ca
nt

an
d

th
us

ig
no

re
d.

CHAPTER 6. PERFORMANCE EVALUATION 79

Looking at the source code for Asteroid Zone, the main program loop
of the game consists of four primary operations:

1: loop
2: MoveOtherObjects()
3: ProcessKeys()
4: MovePlayerShip()
5: PaintScreen()
6: Sleep(max(50 - looptime, 20))
7: end loop

Line 6 is the game pausing to regulate the frame rate. The pause lasts
between 20 and 50 ms, depending on how long that iteration of the main
loop took to execute. The time at the start of each loop iteration was
recorded for one execution of Asteroid Zone on RemoteME, which we can
take to be the same as the elapsed time for an iteration, and from the dis-
tribution in Figure 6.4 we can assume that it is 50 ms.

Based on this finding, the two peaks can be best explained by key
presses being received on the server after it has already processed keys in
that iteration, i.e. the key press is received after line 3 has executed. Thus,
setting aside variations in network transfer speeds, there are two scenar-
ios: if the key press arrives on the server before it has processed keys (line
3), then the response time will be 40–48 ms, i.e. the first peak from Fig-
ure 6.3; otherwise if the key press arrives after the server has processed
keys, then the server will process it after waiting for up to 50 ms, giving
the second peak of 76–92 ms.

Another key piece of data is the proportion of response time spent
between processing keys (line 3) and sending the paint command to the
client, which happens at the end of PaintScreen (line 6). This is shown
in Figure 6.5, with a mean of 4.38 ms and standard deviation 2.02 ms.

Finally, the remainder of the response time is allocated to network
transfer. The time to send a single packet from a mobile client to a desktop
server and back was also recorded to a file on the mobile phone. Here the

CHAPTER 6. PERFORMANCE EVALUATION 80

client had two threads running, one sending the unique timestamp to the
server, and the other receiving those timestamps. The time between that
timestamp and the time at which the client received it is the round trip
time, and one execution of this setup recorded over 400,000 values, shown
in Figure 6.6.

The mean round-trip time is 11.79 ms (rounded to 12 ms), and the stan-
dard deviation 17.32 ms. If we assume that going in a single direction takes
approximately half the time, then we get 6 ms for the time taken to send
key presses in RemoteME.

Based on these results, we can divide the response time tresponse =

tsend + tserver + treceive, with the send time 6 ms, server time 4 ms or 54 ms,
and receive time the remainder.

6.1.6 Conclusion

This study evaluated the responsiveness of RemoteME on a WiFi network
with a 2D action game, Asteroid Zone. We determined that the accept-
able range of response times is 75-150 ms, and the results showed that
RemoteME is within that range at 90% confidence. Further we analysed
how the response times are divided among the different stages of the sys-
tem, and attributed the bulk of the response time to the transferring of the
graphics updates. We suggested that performance can be improved by
reconfiguring RemoteME so that the server does not duplicate the appli-
cation display. Moreover, the failed results for Bomber 2 suggest that per-
formance may be hindered by the mobile phone used for the experiment,
and that a more capable mobile phone may lead to greater responsiveness.

CHAPTER 6. PERFORMANCE EVALUATION 81
63
90

12
36

13
2

1
1

3
1

1
1

1
1

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

50
51

52
54

56
59

60
64

71
74

84
90

Frequency

M
ai
n
 lo
o
p
 r
u
n
 t
im

e
 (
m
s)

Fi
gu

re
6.

4:
M

ai
n

lo
op

ex
ec

ut
io

n
ti

m
e

fo
r

R
em

ot
eM

E
ru

nn
in

g
A

st
er

oi
d

Z
on

e.
Th

e
fr

eq
ue

nc
y

is
th

e
nu

m
be

r
of

oc
cu

r-
re

nc
es

of
th

at
re

sp
on

se
ti

m
e

in
th

e
da

ta
–

om
it

te
d

ti
m

es
ha

ve
0

fr
eq

ue
nc

y.

CHAPTER 6. PERFORMANCE EVALUATION 82

89

13
2

16
9

81

55

84

8

1
1

1
1

2

02040608010
0

12
0

14
0

16
0

18
0

2
3

4
5

6
7

8
9

12
13

15
23

Frequency

Se
rv
e
r
P
ro
ce
ss
in
g
Ti
m
e
 (
m
s)

Fi
gu

re
6.

5:
Se

rv
er

pr
oc

es
si

ng
ti

m
e

fo
rR

em
ot

eM
E

ru
nn

in
g

A
st

er
oi

d
Z

on
e.

Th
e

fr
eq

ue
nc

y
is

th
e

nu
m

be
ro

fo
cc

ur
re

nc
es

of
th

at
ti

m
e

in
th

e
da

ta
–

om
it

te
d

ti
m

es
ha

ve
0

fr
eq

ue
nc

y.

CHAPTER 6. PERFORMANCE EVALUATION 83

0

20
00
0

40
00
0

60
00
0

80
00
0

10
00
00

12
00
00

14
00
00

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50

Frequency

R
o
u
n
d
 T
ri
p
 T
im

e
 (
m
s)

Fi
gu

re
6.

6:
R

ou
nd

-t
ri

p
ti

m
es

fo
r

a
si

m
pl

e
cl

ie
nt

/s
er

ve
r.

Th
e

fr
eq

ue
nc

y
is

th
e

nu
m

be
r

of
oc

cu
rr

en
ce

s
of

th
at

re
sp

on
se

ti
m

e
in

th
e

da
ta

,a
nd

ti
m

es
ov

er
50

m
s

ar
e

in
si

gn
ifi

ca
nt

an
d

th
us

ig
no

re
d.

CHAPTER 6. PERFORMANCE EVALUATION 84

6.2 RemoteME Device Statistics

As discussed in the last section the typical response time for Asteroid Zone
on RemoteME over WiFi is 77 ms. In addition to this performance statis-
tic, there are various other statistics which were gathered for a single run
of Asteroid Zone on RemoteME over WiFi, and for just Asteroid Zone na-
tively on the phone. All the following were gathered in the same run,
on the same Nokia N95 mobile phone as discussed previously. The data
was gathered using a third-party program for the N95’s operating system,
Nokia Energy Profiler [24].

6.2.1 CPU

Figure 6.7a shows the CPU usage for RemoteME. The connection to the
server is made at time 19 (indicated by the vertical line). While the CPU
usage varies quite strongly, it is centered around the 65% mark; indeed,
the mean is 59%. By comparison, the native run of Asteroid Zone is in
Figure 6.7b, and has a much lower CPU usage overall, averaging 31%.
Further, the native CPU usage is somewhat proportional to the number of
objects on the screen, with clear CPU spikes at the start of a new level.

6.2.2 Memory

The memory usage for RemoteME is quite stable, as shown by Figure 6.7c.
Once the connection is made at time 19, the amount of memory used on
the phone is unchanged until the application exits. Likewise, the native
Asteroid Zone memory usage is also stable (Figure 6.7d). Overall, the
maximum memory usage for RemoteME and native is 1,699,840 bytes and
1,998,848 bytes respectively.

CHAPTER 6. PERFORMANCE EVALUATION 85

0
20

40
60

80
10

0
12

0
14

0
16

0

Ti
m

e
(s

ec
on

ds
)

02040608010
0

CPU (%)

(a
)C

PU
us

ag
e

(R
em

ot
eM

E)

0
50

10
0

15
0

20
0

25
0

Ti
m

e
(s

ec
on

ds
)

02040608010
0

CPU (%)

(b
)C

PU
us

ag
e

(n
at

iv
e)

0
20

40
60

80
10

0
12

0
14

0
16

0

Ti
m

e
(s

ec
on

ds
)

32
00

00
00

32
25

00
00

32
50

00
00

32
75

00
00

33
00

00
00

33
25

00
00

33
50

00
00

33
75

00
00

34
00

00
00

Memory Used (bytes)

(c
)M

em
or

y
us

ag
e

(R
em

ot
eM

E)

0
50

10
0

15
0

20
0

25
0

Ti
m

e
(s

ec
on

ds
)

31
00

00
00

31
25

00
00

31
50

00
00

31
75

00
00

32
00

00
00

32
25

00
00

32
50

00
00

32
75

00
00

33
00

00
00

Memory Used (bytes)

(d
)M

em
or

y
us

ag
e

(n
at

iv
e)

Fi
gu

re
6.

7:
C

PU
an

d
M

em
or

y
us

ag
e

of
A

st
er

oi
d

Z
on

e
on

R
em

ot
eM

E
an

d
na

ti
ve

ly
.

CHAPTER 6. PERFORMANCE EVALUATION 86

6.2.3 Power and Battery

There are two statistics to consider here, RemoteME’s power consumption
and the change in battery level. The first is shown in Figure 6.8a as quite
stable, averaging 1.55 Watts. In comparison, native Asteroid Zone (Fig-
ure 6.8b) has a mean of 0.43 Watts. This is a very large difference between
the two, and can be attributed to RemoteME heavily using the power con-
suming WiFi radio.

The battery level is highly strange, however. In both RemoteME (Fig-
ure 6.8c) and natively (Figure 6.8d) the charge varies rather than just con-
stantly decreasing. Note that in both cases the phone was not plugged
in to power and was running solely off the internal battery; indeed, the
monitoring application requires that this is the case.

6.2.4 Network traffic

The final statistic is the network traffic. Note that this data is RemoteME
only, as the native application does not need make external connections.
The network traffic rate is continuously changing rather than being a con-
stant rate. The mean rate is 28,370 bytes/sec and peaks at 55,879 bytes/sec.

6.2.5 Conclusion

Overall, considering the various performance factors, RemoteME uses
greater resources than running the game Asteroid Zone natively. While
RemoteME’s memory usage seems reasonable, the CPU usage is quite
high. However, the more important factors when on a mobile device are
the power consumption and battery drain, and RemoteME uses consider-
ably more power than the native game. The battery also drains at a greater
rate for RemoteME.

While RemoteME has a larger footprint, this footprint is likely to be

CHAPTER 6. PERFORMANCE EVALUATION 87

0
20

40
60

80
10

0
12

0
14

0
16

0

Ti
m

e
(s

ec
on

ds
)

0

0.
250.

5

0.
751

1.
251.

5

1.
752

Power (W)

(a
)P

ow
er

co
ns

um
pt

io
n

(R
em

ot
eM

E)

0
50

10
0

15
0

20
0

25
0

Ti
m

e
(s

ec
on

ds
)

0.
4

0.
6

0.
81

1.
2

Power (W)

(b
)P

ow
er

co
ns

um
pt

io
n

(n
at

iv
e)

0
20

40
60

80
10

0
12

0
14

0
16

0
Ti

m
e

(s
ec

on
ds

)

4

4.
02

4.
04

4.
06

4.
084.

1

4.
12

Battery (V)

(c
)B

at
te

ry
le

ve
l(

R
em

ot
eM

E)

0
50

10
0

15
0

20
0

Ti
m

e
(s

ec
on

ds
)

3.
8

3.
82

3.
84

3.
86

3.
883.

9

3.
92

Battery (V)

(d
)B

at
te

ry
le

ve
l(

na
ti

ve
)

Fi
gu

re
6.

8:
Po

w
er

co
ns

um
pt

io
n

an
d

ba
tt

er
y

le
ve

lo
fA

st
er

oi
d

Z
on

e
on

R
em

ot
eM

E
an

d
na

ti
ve

ly
.

CHAPTER 6. PERFORMANCE EVALUATION 88

0 20 40 60 80 100 120 140 160
Time (seconds)

0

10000

20000

30000

40000

50000

60000

D
at

a
R

at
e

(b
yt

es
/s

ec
)

Figure 6.9: Network traffic during Asteroid Zone on RemoteME. The green ver-
tical line marks the start of the connection, and in this case the start of the data.
Inbound traffic is the upper plot (in red), and outbound the lower plot (in blue).

stable regardless of the game. The memory usage will vary based on the
number of objects in the game, but the primary factor will be the pattern
of updates. The number of updates will affect the network traffic, which
will affect the WiFi usage. Ultimately the biggest issue will be managing
the power consumption and battery drain because of the use of the WiFi
radio.

Chapter 7

Conclusions

The goal of this thesis is to explore a new technique for mobile computing,
remote control using a specialised client designed to support a particular
domain of applications.

In Chapter 2 we detailed the motivation for the work, including the
preservation of digital heritage, and games in particular. We also looked
at existing solutions for remote control, and explored recent developments
in the remote gaming market.

Chapter 3 discussed the three phases of the project: initial development
of the prototype system called RemoteME; establishing the acceptable re-
sponsiveness requirements for architectures such as our own; and evalua-
tion of the prototype system against the responsiveness requirements. We
also described in detail the pilot study which first attempted to determine
responsiveness requirement.

Chapter 4 discussed in detail the larger user study, which gave statis-
tically significant results. The outcome of this study established that the
acceptable responsiveness for 2D action games lies within the 75 ms to
150 ms range at a 90% confidence level, and that further studies are re-
quired to pinpoint the value within this range.

In Chapter 5 we presented RemoteME, our client/server system sup-
porting thin-client mobile gaming. Here we discussed the implementation

89

CHAPTER 7. CONCLUSIONS 90

of RemoteME, including a per-package completion status. We also high-
lighted key implementation issues encountered during the development
of RemoteME.

Finally, Chapter 6 presented the evaluation of RemoteME against the
responsiveness requirement we established. We showed that RemoteME
is at the lower end of this range for Asteroid Zone, and that this perfor-
mance can be improved upon. We also compared the RemoteME client
footprint with the native game, and hypothesised that this footprint may
more stable across similar games than their native counterparts.

7.1 Contributions

The contributions of this thesis are:

1. Establishing a responsiveness requirement – we have defined what
is meant by acceptable responsiveness, and have determined the re-
quirement on this falls within the 75 ms to 150 ms range of response
times.

2. Development of a remote control technique – we proposed a tech-
nique for a remote control system and proved that it is feasible within
the responsiveness requirement.

3. Prototyping the approach through RemoteME – we have developed
a prototype system which implements our remote control technique,
and evaluated the system against the responsiveness requirement.

CHAPTER 7. CONCLUSIONS 91

7.2 Future Work

We suggest a number of areas for future work:

Improving performance for all games RemoteME can be modified such
that performance for complicated games (such as Bomber 2) may
improve without changing the client device.

Complete the API implementation While RemoteME’s API coverage is
sufficient for our evaluation purposes, we would like to see the whole
J2ME API implemented. For example, completing the non-graphics
UI system would allow for a set of applications outside the gaming
space to execute on RemoteME, as well as completing the support
for games which use J2ME’s forms.

Standalone server runtime Currently the RemoteME server runtime is lim-
ited by the boundaries imposed by both AspectJ and J2ME (Sec-
tion 5.3). A standard Java server runtime would allow for more
freedom, and would improve the responsiveness of the system as
a whole, for example by eliminating the server-side display “echo”
which currently occurs.

Porting the client The RemoteME client requires a J2ME stack, however
we would like to port the client to other platforms such as Apple’s
iPhone and even a native Java version.

Wider range of software/hardware The RemoteME protocol is designed
for J2ME applications, however we would love to see it brought
to other software/hardware platforms, for example Apple’s Cocoa-
Touch or Google Android’s UI system.

Appendix A

HEC Documents

A.1 HEC Application Form

The following document is the application form for HEC approval for the
user study.

92

HUMAN ETHICS COMMITTEE
Application for Approval of Research Projects

Please write legibly or type if possible. Applications must be signed by supervisor (for student projects) and Head of
School

Note: The Human Ethics Committee attempts to have all applications approved within three weeks but a longer period may
be necessary if applications require substantial revision.

1 NATURE OF PROPOSED RESEARCH:

(a) Staff Research Student Research ✔ (tick one)

(b) If Student Research Degree      MSc Course Code      COMP591

(c) Project Title:      Evaluation of Player Performance in Remote Mobile Gaming(c) Project Title:      Evaluation of Player Performance in Remote Mobile Gaming(c) Project Title:      Evaluation of Player Performance in Remote Mobile Gaming

2 INVESTIGATORS:

(a) Principal Investigator

 Name      Vipul Delwadia
 e-mail address      vipul@ecs.vuw.ac.nz

 School/Dept/Group      ECS

(b) Other Researchers
 Name Position
     Stuart Marshall      Lecturer
     Ian Welch      Senior Lecturer

           

(c) Supervisor (in the case of student research projects)(c) Supervisor (in the case of student research projects)

     Stuart Marshall, Ian Welch      

3 DURATION OF RESEARCH

(a) Proposed starting date for data collection      01/06/2009
 (Note: that NO part of the research requiring ethical approval may commence prior to approval being given)
(b) Proposed date of completion of project as a whole      19/08/2009

2

4 PROPOSED SOURCE/S OF FUNDING AND OTHER ETHICAL
 CONSIDERATIONS

(a) Sources of funding for the project
 Please indicate any ethical issues or conflicts of interest that may arise because of sources of funding
 e.g. restrictions on publication of results

Small research grant held by Dr Stuart Marshall in ECS paid from consultancy.

(b) Is any professional code of ethics to be followed Y

 Association of Computing Machinery (ACM)

(c) Is ethical approval required from any other body N
 If yes, name and indicate when/if approval will be given

     

5 DETAILS OF PROJECT

 Briefly Outline:

(a) The objectives of the project

Identify how player performance in remote mobile games is affected by network and display
response times.

b) Method of data collection

Subjects will play multiple runs of games on the provided mobile phone, and then:
(a) we will record their game scores and
(b) the subject will answer a post-experience written questionnaire

The experiment will run in two sessions (where each session is identical except for the amount of
network and display delay). All subjects will participate in both sessions. The sessions will be at least
three weeks apart, and each session will be four hours long for each subject.

3

(c) The benefits and scientific value of the project

This experiment will establish the bounds on reasonable delays in network and display transmission
and computation for remote mobile games. These bounds will be informed by both player satisfaction
and performance, and will create a benchmark against which tools in this area can be measured
against.

(d) Characteristics of the participants

Participants are computer literate members of the current or past University community, and will have
some experience of using mobile phones and having had played computer games.

(e) Method of recruitment

Word of mouth, advertisement

(f) Payments that are to be made/expenses to be reimbursed to participants

We will have a draw for two $50 vouchers that all test subjects will have an equal chance of winning.

(g) Other assistance (e.g. meals, transport) that is to be given to participants

     None

(h) Any special hazards and/or inconvenience (including deception) that participants will encounter

     None

(i) State whether consent is for:

(i) the collection of data Y

(ii) attribution of opinions or information Y

(iii) release of data to others N

(iv) use for a conference report or a publication Y

(v) use for some particular purpose (specify) Y

4

Data will be used to report and support findings for an MSc thesis.

 Attach a copy of any questionnaire or interview schedule to the application

(j) How is informed consent to be obtained (see sections 4.1, 4.5(d) and 4.8(g) of the Human Ethics Policy)

 (i) the research is strictly anonymous, an information sheet is supplied and informed
consent is implied by voluntary participation in filling out a questionnaire for example
(include a copy of the information sheet) N

 (ii) the research is not anonymous but is confidential and informed consent will be obtained
through a signed consent form (include a copy of the consent form and information
sheet) Y

 (iii) the research is neither anonymous or confidential and informed consent will be
obtained through a signed consent form (include a copy of the consent form and
information sheet) N

 (iv) informed consent will be obtained by some other method (please specify and provide
details) N

     

 With the exception of anonymous research as in (i), if it is proposed that written consent will
not be obtained, please explain why

     

(k) If the research will not be conducted on a strictly anonymous basis state how issues of
confidentiality of participants are to be ensured if this is intended. (See section 4..1(e) of the Human
Ethics Policy). (e.g. who will listen to tapes, see questionnaires or have access to data). Please
ensure that you distinguish clearly between anonymity and confidentiality. Indicate which of
these are applicable.

 (i) access to the research data will be restricted to the investigator
 N
 (ii) access to the research data will be restricted to the investigator and their supervisor

(student research) Y
 (iii) all opinions and data will be reported in aggregated form in such a way that individual

persons or organisations are not identifiable Y
 (iv) Other (please specify)

5

     

(l) Procedure for the storage of, access to and disposal of data, both during and at the
conclusion of the research. (see section 4.12 of the Human Ethics Policy). Indicate which are
applicable:

 (i) all written material (questionnaires, interview notes, etc) will be kept in a locked file
and access is restricted to the investigator Y

 (ii) all electronic information will be kept in a password-protected file and access will be
restricted to the investigator Y

 (iii) all questionnaires, interview notes and similar materials will be destroyed:
 (a) at the conclusion of the research N
 or (b)    2 years after the conclusion of the research Y
 (iv) any audio or video recordings will be returned to participants and/or electronically

wiped N/A
 (v) other procedures (please specify):

     

 If data and material are not to be destroyed please indicate why and the procedures
envisaged for ongoing storage and security

     

(m) Feedback procedures (See section 7 of Appendix 1 of the Human Ethics Policy). You should indicate
whether feedback will be provided to participants and in what form. If feedback will not be
given, indicate the reasons why.

Test subjects will be invited to provide their email address, to which an electronic copy of the MSc
thesis will be sent to on the acceptance of the thesis.

(n) Reporting and publication of results. Please indicate which of the following are appropriate.
The proposed form of publications should be indicated on the information sheet and/or
consent form.

6

 (i) publication in academic or professional journals Y
 (ii) dissemination at academic or professional conferences Y
 (iii) deposit of the research paper or thesis in the University Library (student

research) Y
 (iv) other (please specify)

     

7

 Signature of investigators as listed on page 1 (including supervisors) and Head of School.

 NB: All investigators and the Head of School must sign before an application is
submitted for approval

      Date      
      Date      
      Date      

 Head of School:

      Date      

8

APPLICATIONS FOR HUMAN ETHICS APPROVAL

 CHECKLIST

·Have you read the Human Ethics Policy?
·Is ethical approval required for your project?
·Have you established whether informed consent needs to be obtained for your project?
·In the case of student projects, have you consulted your supervisor about any human ethics

implications of your research?
·Has your supervisor read and signed the application?

·Have you included an information sheet for participants which explains the nature and purpose of your
research, the proposed use of the material collected, who will have access to it, whether the data
will be kept confidential to you, how anonymity or confidentiality is to be guaranteed?

·Have you included a written consent form?
·If not, have you explained on the application form why you do not need to get written consent?
·Are you asking participants to give consent to:

 - collect data from them
 - attribute information to them
 - release that information to others
 - use the data for particular purposes

·Have you indicated clearly to participants on the information sheet or consent form how they will be
able to get feedback on the research from you (e.g. they may tick a box on the consent form
indicating that they would like to be sent a summary), and how the data will be stored or disposed of
at the conclusion of the research?

·Have you included a copy of any questionnaire or interview checklist you propose using?

·Has your application been seen by the head of your school or department (or the person given
responsibility to consider applications on behalf of the head (see section 4.5(b) of the Human Ethics
Policy).

PLEASE FORWARD YOUR COMPLETED APPLICATION FORM TO THE
SECRETARY, HUMAN ETHICS COMMITTEE OR, IN THE CASE OF
APPLICATIONS FROM SCHOOLS OR DEPARTMENTS WITH AN APPROVED
ETHICS SUB-COMMITTEE, TO THE CONVENER OF THAT SUB-
COMMITTEE

APPENDIX A. HEC DOCUMENTS 101

A.2 Information Sheet

This sheet was given to all participants of the user study.

!"#$%&%'"($)*(+,#-"$%,()./00$)+,#)").$123),+)405',(50)6%-05

!"#"$%&'"%7)8%'19):09;"2%"<).&/,,9),+)=(>%(00#%(>)"(2)?,-'1$0#).&%0(&0<)8%&$,#%")
@(%A0#5%$3),+)B099%(>$,(

*) "-) ")C"5$0#5)5$120($) %()?,-'1$0#).&%0(&0)"$)8%&$,#%")@(%A0#5%$3),+)B099%(>$,(<)"(2)-3)
#050"#&/) %5) 0D'0#%-0($%(>) ;%$/) #0-,$0) $0&/(,9,>%05) ,() ") -,E%90) '/,(0F) G5) '"#$) ,+) -3)
#050"#&/<)*)"-)0A"91"$%(>)$/0)0H0&$5),+)209"3%(>)$/0)#05',(50)$,)"()%(2%A%21"9I5)%('1$),()$/0%#)
'0#+,#-"(&0)%()&,-'1$0#)>"-05<)5'0&%J&"993),()-,E%90)'/,(05F) K,$/)$/0%#)>"-0)5&,#0)"(2)
5"$%5+"&$%,()"#0),+)%($0#05$F

6/0)5$123)/"5)(,)#0L1%#0-0($5),()$/0)&/"#"&$0#%5$%&5),+)$/0)'"#$%&%'"($5F)6/0)'"#$%&%'"($5)"#0)
#0L1%#02)$,)'9"3)>"-05),()")'#,A%202)-,E%90)'/,(0)%()$;,)5055%,(5F):1#%(>)0"&/)5055%,()$/03)
;%99) "(5;0#) ") L105$%,(("%#0) "(2) $/0%#) 5&,#05) ;%99) E0) #0&,#202F) 6/0#0) %5) ") E#0"M) ,+)
"''#,D%-"$093) $;,) ;00M5) E0$;00() $/0) 5055%,(5<) "(2) $/0) $,$"9) $%-0) #0L1%#02) ,+) $/0)
'"#$%&%'"($5)5/,192)(,$)0D&002)+,1#)/,1#5F

6/0)#05',(505)&,990&$02);%99)&,($#%E1$0)$,)-3)#050"#&/)"(2);%99)E0)'1$)%($,)");#%$$0()#0',#$)%()
"() ">>#0>"$02) +,#-) $,) '#050#A0) &,(J20($%"9%$3F) 6/0#0) ;%99) E0) (,) '0#5,("993) %20($%J"E90)
-"$0#%"9<)"5)$/0)#05',(505);%99)E0)'#050($02)"5)")>#,1'),#)L1,$02)">"%(5$)")-,(%M0#F)6/0),(93)
'0,'90)$/"$);%99) 500) $/0)#05',(505)"#0)-3509+)"(2)-3)51'0#A%5,#5<) .$1"#$)C"#5/"99) "(2) *"()
B09&/F)6/0)$/05%5);%99)E0)51E-%$$02)+,#)-"#M%(>)$,)$/0).&/,,9),+)=(>%(00#%(>)"(2)?,-'1$0#)
.&%0(&0<)"(2)20',5%$02)%()$/0)@(%A0#5%$3)N%E#"#3F)*$)%5)%($0(202)$/"$),(0),#)-,#0)"#$%&905);%99)
E0)51E-%$$02)+,#)'1E9%&"$%,()%()5&/,9"#93)O,1#("95F

G99)2"$")&,990&$02);%99)E0)5$,#02)50&1#093)%()")9,&M02)J90<)"(2)$;,)30"#5)"+$0#)$/0)&,(&915%,(),+)
$/0)#050"#&/);%99)E0)205$#,302F)!"#$%&%'"($5)&"()#0&0%A0)"()090&$#,(%&)&,'3),+)$/0)$/05%5)1',()
"&&0'$"(&0)E3)'#,A%2%(>)"()0-"%9)"22#055F)!"#$%&%'"($5)&"();%$/2#";)+#,-)$/0)5$123)1($%9)$;,)
;00M5)'#%,#)$,)51E-%55%,(),+)$/0)$/05%5F

6/0#0);%99)E0)")'#%P0)2#";)+,#)$;,)QRS)A,1&/0#5<)"(2)"99)'"#$%&%'"($5)/"A0)"()0L1"9)&/"(&0),+)
;%((%(>F

*+) 3,1) /"A0) "(3) L105$%,(5),#);,192) 9%M0) $,) #0&0%A0) +1#$/0#) %(+,#-"$%,()"E,1$) $/0)'#,O0&$<)
'90"50)&,($"&$)-0)"$)A%'19T0&5FA1;F"&F(P),#)-3)51'0#A%5,#5<).$1"#$)C"#5/"99)"(2)*"()B09&/<)
"$) $/0) .&/,,9) ,+) =(>%(00#%(>) "(2) ?,-'1$0#) .&%0(&0)"$) 8%&$,#%")@(%A0#5%$3<) !)U) K,D) VSS<)
B099%(>$,(F

APPENDIX A. HEC DOCUMENTS 102

A.3 Consent Form

All participants signed the following form before commencing the user
study.

!"#$%&"'()*"!+&,"$-(%.(/+00"*1$%*

#%*,+*$($%(2'&$"#"2'$"%*("*(&+,+'

+4567589:;(:<(265=>?(2>?<:?@5;A>(9;(&>@:8>(B:C96>(15@9;DE
!"#$%&"'&&(")*%&("$(+"#$%&",(+&-./00+"$("&123$($/*0("04"/#*."-&.&$-5#"2-06&5/7"!"#$%&"#$+"$("
0220-/,(*/8"/0"$.9":,&./*0(."$(+"#$%&"/#&;"$(.<&-&+"/0";8".$/*.4$5/*0(7"!",(+&-./$(+"/#$/"!"
;$8"<*/#+-$<";8.&34"=0-"$(8"*(40-;$/*0("!"#$%&"2-0%*+&+>"4-0;"/#*."2-06&5/"=,2"/0"/<0"<&&9."
2-*0-"/0".,';*..*0("04"/#&"/#&.*.>"<*/#0,/"#$%*()"/0")*%&"-&$.0(.7

!",(+&-./$(+"/#$/"$(8"*(40-;$/*0("!"2-0%*+&"<*33"'&"9&2/"50(?+&(/*$3"/0"/#&"-&.&$-5#&-"$(+"
/#&".,2&-%*.0-.@"/#&"2,'3*.#&+"-&.,3/."<*33"(0/",.&";8"($;&@"$(+"/#$/"(0"02*(*0(."<*33"'&"
$//-*',/&+"/0";&"*("$(8"<$8"/#$/"<*33"*+&(/*48";&7

A*)(&+B

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

D$;&"04"2$-/*5*2$(/"=23&$.&"2-*(/"53&$-38>B

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

E;$*3"=*4"80,"<*.#"/0"-&5&*%&"$("&3&5/-0(*5"5028"04"/#&"/#&.*.>B

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Bibliography

[1] ADVANCED MICRO DEVICES. Advanced Micro Devices. http://

www.amd.com/, September 2009.

[2] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R.,
KONWINSKI, A., LEE, G., PATTERSON, D., RABKIN, A., STOICA, I.,
AND ZAHARIA, M. Above the Clouds: A Berkeley View of Cloud
Computing. Tech. rep., UC Berkeley Reliable Adaptive Distributed
Systems Laboratory, 2009.

[3] BBC. Pilotless police drone takes off. http://news.bbc.co.

uk/2/hi/uk_news/england/merseyside/6676809.stm, May
2007.

[4] BEIGBEDER, T., COUGHLAN, R., LUSHER, C., PLUNKETT, J., AGU,
E., AND CLAYPOOL, M. The Effects of Loss and Latency on User
Performance in Unreal Tournament 2003 R©. In NetGames ’04: Proceed-
ings of 3rd ACM SIGCOMM workshop on Network and system support for
games (New York, NY, USA, 2004), ACM, pp. 144–151.

[5] BLIZZARD ENTERTAINMENT. WarCraft III. http://www.

blizzard.com/us/war3/, August 2009.

[6] BROWN, M. A. Components of Linux Traffic Control. http:

//linux-ip.net/articles/Traffic-Control-HOWTO/

components.html, September 2009.

103

http://www.amd.com/
http://www.amd.com/
http://news.bbc.co.uk/2/hi/uk_news/england/merseyside/6676809.stm
http://news.bbc.co.uk/2/hi/uk_news/england/merseyside/6676809.stm
http://www.blizzard.com/us/war3/
http://www.blizzard.com/us/war3/
http://linux-ip.net/articles/Traffic-Control-HOWTO/components.html
http://linux-ip.net/articles/Traffic-Control-HOWTO/components.html
http://linux-ip.net/articles/Traffic-Control-HOWTO/components.html

BIBLIOGRAPHY 104

[7] BUYYA, R., YEO, C. S., VENUGOPAL, S., BROBERG, J., AND

BRANDIC, I. Cloud computing and emerging IT platforms: Vision,
hype, and reality for delivering computing as the 5th utility. Future
Generation Computer Systems 25, 6 (2009), 599 – 616.

[8] CORBETT, S. Digital Heritage: Legal Barriers to Conserving New
Zealand’s Early Video Games. New Zealand Business Law Quarterly
13, 5 (April 2007), 48–71.

[9] DOUE, J.-F. Asteroid Zone. http://jfdoue.free.fr/index.

html, September 2008.

[10] EPIC GAMES, INC. Unreal Tournament 2003. http://

www.unrealtournament2003.com/ut2003/index.html, Au-
gust 2009.

[11] GAIKAI. Gaikai. http://www.gaikai.com, September 2009.

[12] GREG ROELOFS, J.-L. G., AND ADLER, M. zlib. http://www.zlib.
net/, September 2008.

[13] HAUSTEIN, S., KROLL, M., AND PLEUMANN, J. ME4SE. http:

//kobjects.sourceforge.net/me4se/, October 2009.

[14] HAYES, B. Cloud computing. Commun. ACM 51, 7 (2008), 9–11.

[15] INTERNATIONAL TELECOMMUNICATION UNION. P.800 : Methods
for subjective determination of transmission quality. Tech. rep., Inter-
national Telecommunication Union, August 2006.

[16] JURGELIONIS, A., FECHTELER, P., EISERT, P., BELLOTTI, F., DAVID,
H., LAULAJAINEN, J. P., CARMICHAEL, R., POULOPOULOS, V.,
LAIKARI, A., PERÄLÄ, P., GLORIA, A. D., AND BOURAS, C. Platform
for distributed 3d gaming. International Journal of Computer Games
Technology 2009 (2009), 15.

http://jfdoue.free.fr/index.html
http://jfdoue.free.fr/index.html
http://www.unrealtournament2003.com/ut2003/index.html
http://www.unrealtournament2003.com/ut2003/index.html
http://www.gaikai.com
http://www.zlib.net/
http://www.zlib.net/
http://kobjects.sourceforge.net/me4se/
http://kobjects.sourceforge.net/me4se/

BIBLIOGRAPHY 105

[17] KHRONOS GROUP. Opengl. http://www.opengl.org/, July 2009.

[18] KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J.,
AND GRISWOLD, W. G. An Overview of AspectJ. In ECOOP ’01: Pro-
ceedings of the 15th European Conference on Object-Oriented Programming
(London, UK, 2001), Springer-Verlag, pp. 327–353.

[19] LIBRARY OF CONGRESS. ‘Preserving Virtual Worlds’ project. http:
//pvw.illinois.edu/pvw/, January 2009.

[20] LORIE, R. A. Long term preservation of digital information. In JCDL
’01: Proceedings of the 1st ACM/IEEE-CS joint conference on Digital li-
braries (New York, NY, USA, 2001), ACM, pp. 346–352.

[21] MICROEMULATOR TEAM. Microemulator. http://www.

microemu.org/, October 2009.

[22] MILLER, M. Cloud Computing: Web-Based Applications That Change the
Way You Work and Collaborate Online. Que Publishing Company, 2008.

[23] MILLER, R. B. Response time in man-computer conversational trans-
actions. In AFIPS ’68 (Fall, part I): Proceedings of the December 9-11,
1968, fall joint computer conference, part I (New York, NY, USA, 1968),
ACM, pp. 267–277.

[24] MOBILE NETWORK. Nokia Energy Pro-
filer. http://www.symbian-freeware.com/

download-nokia-energy-profiler.html, October 2009.

[25] MSDN. RDP. http://msdn.microsoft.com/en-us/library/
cc240445.aspx, September 2008.

[26] MSDN. DirectX. http://msdn.microsoft.com/en-us/

directx/default.aspx, July 2009.

http://www.opengl.org/
http://pvw.illinois.edu/pvw/
http://pvw.illinois.edu/pvw/
http://www.microemu.org/
http://www.microemu.org/
http://www.symbian-freeware.com/download-nokia-energy-profiler.html
http://www.symbian-freeware.com/download-nokia-energy-profiler.html
http://msdn.microsoft.com/en-us/library/cc240445.aspx
http://msdn.microsoft.com/en-us/library/cc240445.aspx
http://msdn.microsoft.com/en-us/directx/default.aspx
http://msdn.microsoft.com/en-us/directx/default.aspx

BIBLIOGRAPHY 106

[27] NOMACHINE. NX. http://www.nomachine.com/documents/

NX-XProtocolCompression.php, September 2008.

[28] ONLIVE. OnLive: The Future of Video Games. http://www.

onlive.com/, August 2009.

[29] OTOY. Otoy. http://www.otoy.com/, September 2009.

[30] PACKARD, K., AND GETTYS, J. X Window System Network Perfor-
mance. In USENIX 2003: Proceedings for the Annual Technical Con-
ference, FREENIX Track (2003), Cambridge Research Laboratory, HP
Labs, pp. 207–218.

[31] PLANETS. PLANETS (Preservation and Long-term Access through
Networked Services) project. http://www.planets-project.

eu/, January 2009.

[32] ROTHENBERG, J. Ensuring the longevity of digital documents. Scien-
tific American 272, 1 (1995), 42–47.

[33] SCHEIFLER, R. W., AND GETTYS, J. X Window system: the complete
reference to Xlib, X protocol, ICCCM, XLFD. Digital Press, Newton,
MA, USA, 1990.

[34] SHELDON, N., GIRARD, E., BORG, S., CLAYPOOL, M., AND AGU, E.
The effect of latency on user performance in Warcraft III. In NetGames
’03: Proceedings of the 2nd workshop on Network and system support for
games (New York, NY, USA, 2003), ACM, pp. 3–14.

[35] SPAWN LABS, INC. Spawn labs. http://www.spawnlabs.com,
September 2009.

[36] SUN MICROSYSTEMS. Java ME. http://java.sun.com/javame/
index.jsp, October 2009.

http://www.nomachine.com/documents/NX-XProtocolCompression.php
http://www.nomachine.com/documents/NX-XProtocolCompression.php
http://www.onlive.com/
http://www.onlive.com/
http://www.otoy.com/
http://www.planets-project.eu/
http://www.planets-project.eu/
http://www.spawnlabs.com
http://java.sun.com/javame/index.jsp
http://java.sun.com/javame/index.jsp

BIBLIOGRAPHY 107

[37] SUN MICROSYSTEMS. Sun Java Wireless Toolkit for CLDC. http:

//java.sun.com/products/sjwtoolkit/, October 2009.

[38] SUN MICROSYSTEMS. Sun Microsystems. http://www.sun.com/,
October 2009.

[39] SWALWELL, M., AND DAVIDSON, M. ”Malzak”. Accepted for publi-
cation, Forthcoming.

[40] TECHGENIX. Overview of Terminal Services. http:

//www.windowsnetworking.com/articles_tutorials/

Overview-Terminal-Services.html, September 2009.

[41] THE ECLIPSE FOUNDATION. AspectJ Frequently Asked Ques-
tions. http://www.eclipse.org/aspectj/doc/released/

faq.php#q:aspectjandj2me, October 2009.

[42] TIGHTVNC. TightVNC. http://www.tightvnc.com/, Septem-
ber 2008.

[43] UNESCO. Charter on the Preservation of the Digitial Heritage, adopted
at the 32nd session of the General Conference of UNESCO. UNESCO, 17
October 2003.

[44] WEBMEDIABRANDS. What is thin client? http://www.

webopedia.com/TERM/t/thin_client.html, September 2009.

[45] XFREE86 PROJECT, INC. LBX. http://www.xfree86.org/

current/lbxproxy.1.html, September 2008.

[46] YANG, S. J., NIEH, J., SELSKY, M., AND TIWARI, N. The Performance
of Remote Display Mechanisms for Thin-Client Computing. In ATEC
’02: Proceedings of the General Track of the annual conference on USENIX
Annual Technical Conference (Berkeley, CA, USA, 2002), USENIX Asso-
ciation, pp. 131–146.

http://java.sun.com/products/sjwtoolkit/
http://java.sun.com/products/sjwtoolkit/
http://www.sun.com/
http://www.windowsnetworking.com/articles_tutorials/Overview-Terminal-Services.html
http://www.windowsnetworking.com/articles_tutorials/Overview-Terminal-Services.html
http://www.windowsnetworking.com/articles_tutorials/Overview-Terminal-Services.html
http://www.eclipse.org/aspectj/doc/released/faq.php#q:aspectjandj2me
http://www.eclipse.org/aspectj/doc/released/faq.php#q:aspectjandj2me
http://www.tightvnc.com/
http://www.webopedia.com/TERM/t/thin_client.html
http://www.webopedia.com/TERM/t/thin_client.html
http://www.xfree86.org/current/lbxproxy.1.html
http://www.xfree86.org/current/lbxproxy.1.html

BIBLIOGRAPHY 108

[47] YANK, K. Bomber2. http://j2mebomber.sourceforge.net/,
September 2008.

[48] ZHUANG, H., AND WANG, Z. IP-based real time video monitoring
system with controllable platform. Mechatronic and Embedded Systems
and Applications, Proceedings of the 2nd IEEE/ASME International Con-
ference on (Aug. 2006), 1–4.

http://j2mebomber.sourceforge.net/

	Introduction
	Hypothesis & Contributions
	Applications
	Structure

	Background
	Preservation
	Studies
	Client/Server Architectures
	Thin-client Computing
	Remote Desktop Solutions
	Streaming Solutions

	Mobile Java

	Methodology
	Overview
	Initial Development
	Benchmark Creation
	System Evaluation

	RemoteME Development Method
	Experiment Artifacts
	Pilot Study
	Experiment
	Procedure
	Experimental Issues
	Results
	Summary

	User Study
	Experiment
	Hypotheses
	Design
	Artifacts

	Procedure
	Experimental Issues
	Results
	Asteroid Zone
	Bomber 2

	Discussion
	Conclusion

	RemoteME
	Architecture
	Client
	Server
	System
	RemoteME Application
	RemoteME graphics
	RemoteME sound

	RemoteME Logging System
	Implementation Issues
	Server Runtime
	AspectJ Limitations

	Performance Evaluation
	Measurement Study
	Experiment
	Procedure
	Experimental Issues
	Technical Issues
	Results
	Conclusion

	RemoteME Device Statistics
	CPU
	Memory
	Power and Battery
	Network traffic
	Conclusion

	Conclusions
	Contributions
	Future Work

	HEC Documents
	HEC Application Form
	Information Sheet
	Consent Form

