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Abstract 

The adoptive transfer of activated dendritic cells (DC) loaded with tumour antigen or 

tumour specific T cells improves weak anti-tumour responses, however, without treatments 

to relieve suppression, these therapies will continue to fall short of their full potential. The 

aim of this thesis was to understand the role of hypoxia-induced increases in adenosine and 

of CD4+ CD25+ Foxp3+ regulatory T cells (Treg) in the suppression of anti-tumour 

immune responses and to design strategies to abrogate these mechanisms. These aims were 

investigated using the B16.OVA murine melanoma model because the OVA specific CD4+ 

(OTII) and CD8+ (OTI) T cell transgenic mice allowed detailed investigation of Ag 

specific T cell responses. 

 

Recent studies have shown that the inhibition of adenosine signalling in activated CD8+ T 

cells can improve the anti-tumour activity of these cells. To investigate these findings 

using the B16.OVA model, tumour-bearing mice were given activated OTI T cells and the 

adenosine receptor inhibitor caffeine. Caffeine treatment did not improve the anti-tumour 

response, possibly because this response was suppressed due to the increased frequency of 

myeloid derived suppressor cells observed in mice that received T cells. 

 

To determine whether the defective function of tumour infiltrating DC (TIDC) in tumours 

is due to suppression by Treg, mice were treated with the anti-CD25 monoclonal antibody 

PC61 to deplete Treg and challenged with tumours. PC61 treatment caused a delay in 

tumour growth but did not affect DC frequency, or expression of the DC activation 

markers CD40, CD86 and MHC II in tumours or lymph nodes. DC function was tested 

using in vitro and in vivo T cell proliferation assays and was found to be unaffected by 

PC61 treatment. Studies in RAG1-/- mice, which lack Treg, also showed no improvement 
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in DC activation status or function. These results show that Treg do not suppress TIDC in 

the B16.OVA model. 

 

It is well known, however, that Treg suppress T cell responses and it has been suggested 

that Treg may mediate some of this suppression by using the perforin-granzyme pathway 

to cause T cell death. To investigate this possibility, naïve, perforin sufficient OTI T cells 

were transferred into normal and perforin knockout (PKO) mice, with or without PC61 

treatment. To stimulate an OTI T cell response, mice also received OVA-loaded DC. 

Depletion of both normal and PKO Treg resulted in decreased death and increased 

proliferation of the transferred cells, increased expression of IFN-γ and TNF-α, and 

improved in vivo target cell killing by the transferred cells. These findings indicate that 

perforin expression by Treg is not required to suppress T cell responses or cause T cell 

death. 

 

In conclusion, the results of this thesis were consistent with the observation that there are 

multiple suppressive mechanisms in tumours and that there is substantial redundancy of 

these mechanisms. Depletion of Treg was found to improve the anti-tumour response, 

however, suppression of the DC was still evident, demonstrating that the neutralisation of a 

single suppressive mechanism may not be sufficient to treat aggressive, late stage cancers 

such as melanoma. 
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1.1 General Introduction 
 

It is recognised that the immune system functions as one of the body’s defences against 

pathogens, parasites and cancers. Over the last few decades, much has been learned about 

the individual components of the immune system and how they interact.  This knowledge 

has been successfully applied to the treatment of various cancers in murine models where 

the tumour antigens (Ag) are well characterised and T cell receptor (TCR) transgenic mice 

that produce high numbers of tumour specific T cells are available. In contrast, human 

cancers vary amongst individuals and generating Ag specific T cells is difficult and costly. 

It is possible to generate tumour specific T cell responses in humans, both spontaneously 

and in response to immunotherapy but despite this, cancer immunotherapy has had limited 

success. The discovery of a number of immunosuppressive mechanisms invoked by the 

tumour has helped to explain why this occurs.  The challenge ahead lies in understanding 

these mechanisms and thereafter finding ways to overcome them. 

  

1.2 The adaptive immune response 

1.2.1 Dendritic cells 
 

Dendritic cells (DC) are a specialised form of professional antigen presenting cells (APC), 

which are part of both the innate and adaptive immune responses. DC are classed as 

professional APC because in contrast to non-professional APC such as various epithelial 

and mesenchymal cells, they constitutively express low levels of the class II Major 

Histocompatibility Complex (MHC II) and accessory molecules (1). B cells and 

macrophages are also professional APC, however, most DC subsets are superior to these 

cells in their ability to stimulate naïve T cell responses (2, 3).  
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1.2.2 DC subtypes 
 

Murine DC can be divided into a number of subpopulations based on their tissue 

distribution, phenotype and function (4, 5).  The subpopulations have been defined using 

markers such as CD11c, MHC II, CD11b, CD4, CD8, DEC205 and F4/80. Further 

characterisation is possible using the activation markers CD40, CD80 and CD86. There is 

no definitive marker for DC and it is technically difficult to use such a large range of 

markers to define the DC subpopulation, therefore, the DC subpopulations have been 

summarised below using expression of CD11c, CD4, CD8, DEC205 and CD11b, which 

are the markers most commonly used in publications on DC.  

 

Langerhans cells (CD11c+, CD4-, CD8low, DEC205high, CD11b+) are a subtype of DC 

found mainly as immature cells in the skin, or as mature cells in the skin draining lymph 

nodes (4, 6-8). Langerhans cells acquire Ag in the periphery and traffic from the skin, to 

skin draining lymph nodes (6) where it was originally thought these cells were able to 

upregulate CD8+ expression (4, 9, 10) and present Ag to CD8+ T cells. More recent studies 

have shown that the Ag is passed from the Langerhans cells to the resident CD8+ DC 

subpopulation (11-13) for presentation to CD8+ T cells. Aside from Langerhans cells, skin-

draining lymph nodes also contain significant populations of resident and skin emigrant 

CD11c+, CD4-, CD8-, DEC205+/-, CD11b+ DC and a CD11c+, CD4-, CD8high, DEC205high, 

CD11b- DC subpopulation (4, 6-8). The CD8- DC subpopulation has been shown to present 

Ag to CD4+ T cells, whereas the CD8+ DC subpopulation has been shown to be superior at 

cross-presenting Ag to CD8+ T cells in comparison to other DC subpopulations (14, 15). 

Mesenteric lymph nodes contain DC subpopulations similar to the skin-draining lymph 

nodes, however, they do not contain a population of Langerhans cells. In contrast to the 

skin and lymph nodes, splenic DC mostly consist of a CD11c+, CD4+, CD8-, DEC205-, 
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CD11b+ subpopulation with some CD11c+, CD4-, CD8-, DEC205-, CD11b+ DC and 

CD11c+, CD4-, CD8high, DEC205high, CD11b- DC (4, 6-8) with cross presenting 

capabilities. 

 

Tissue derived DC primarily exist in an immature state characterised by low expression of 

markers such as CD40, CD80, CD86 and MHC II (1). These immature DC are highly 

efficient at sampling the environment and also express the chemokine receptors CCR1, 

CCR2, CCR5 and CXCR1 that allow them to home to sources of inflammation (16). 

 

1.2.3 DC, maturation and tolerance 
 

 

In the absence of an inflammatory stimulus (the steady state), immature DC can 

spontaneously upregulate the maturation markers MHC II and CD40 and the co-

stimulatory molecules CD80 and CD86 to become phenotypically mature (17, 18). These 

DC migrate to the lymph nodes where they present Ag to naïve CD4+ and CD8+ T cells, 

but because these DC have not been exposed to an inflammatory stimulus, they are unable 

to release immuno-stimulatory cytokines such as interleukin (IL)-12 and are known as 

quiescent or tolerising DC (19) (Figure 1.1). T cells activated by tolerising DC are able to 

proliferate, however, these T cells fail to produce cytokines and acquire cytotoxic function 

(20, 21). This phenomenon is called T cell anergy because of the cells' inability to mount 

an appropriate response against the source of Ag and most of these anergic T cells will die 

(21, 22) (Figure 1.1).  In this way, peripheral tolerance towards the source of Ag (usually 

self tissue) is maintained.   
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1.2.4 DC activation  
 

 

In response to "danger signals" or CD40L (23, 24), immature DC acquire an activated, 

mature phenotype by up regulating the maturation markers MHC II and CD40 and the co-

stimulatory molecules CD80 and CD86 (23). These danger signals include inflammatory 

stimuli such as microbial or viral pathogens (25), which signal through Toll-like receptors 

(TLR) (26, 27) and other microbial patterns, which are recognised by pattern recognition 

receptors. The tumour microenvironment provides danger signals in the form of the 

inflammatory cytokines IL-1 and tumour necrosis factor-α (TNF-α) (28, 29) and by 

producing damage associated molecular pattern molecules (DAMPs). Examples of 

DAMPs that occur in tumours include extracellular DNA fragments, which can be 

produced when cells undergo necrosis (30), and heat shock proteins, which are a cell 

survival factor (31) and are often over-expressed in tumours (32). During maturation or 

activation, the chemokine receptors CCR7, CCR4 and CXCR4 are also upregulated (16), 

and expression of CCR7 allows the DC to migrate to the lymph node. In contrast to mature 

DC, activated DC are able to release IL-12 (23, 24), which promotes the production of the 

cytokines Interferon-γ (IFN-γ), tumour necrosis factor-α and IL-2 from T cells. Production 

of these cytokines is known as a TH1 (CD4+ T helper type 1) or TC1 (cytotoxic CD8+ T cell 

secreting TH1-like cytokines) response (33, 34). Activated DC are also known to produce a 

large range of cytokines including IL-18 (35), IL-23, IL-27 (36) and IL-6 as well as IFN-α, 

IFN-β (37) TNF-α (38) and IL-10 (39) and can stimulate TH2, TH17 and regulatory T cell 

(Treg) responses depending on the stimulus and quality of signalling (40).  
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Figure 1.1: T cell responses differ depending on the context in which DC come into 
contact with Ag. 
In the absence of inflammatory stimuli, peripheral DC spontaneously partially mature and migrate to the 

lymph nodes at a low rate. These quiescent DC present self-Ag to CD4+ and CD8+ T cells and promote 

tolerance by stimulating the formation of Treg and the anergy or deletion of self-reactive T cells. Microbial 

infection, inflammation and tissue damage are so called "danger signals" that mature and activate DC and 

increase the rate of migration to the lymph node. These highly activated DC are able to produce a number of 

cytokines to produce strong type 1 or type 2 CD4 and CD8 T cell responses depending on the type of signals 

the DC have received (41, 42).  

1.2.5 Classical Antigen presentation 
 

DC process Ag via two distinct pathways and present MHC I-bound Ag to CD8+ T cells 

and MHC II-bound Ag to CD4+ cells. These pathways are discussed in detail below. 
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1.2.5.1 MHC I presentation 
 

In jawed vertebrates, MHC I molecules are expressed to varying degrees on the surface of 

all nucleated cells. Intracellularly synthesized Ag such as those of viral (43, 44) or self-

origin are processed into peptides by the proteasome and transported into the Endoplasmic 

Reticulum (ER) via the heterodimeric Transporters of Antigen-Processing (TAP)-1 and 2 

molecules (45) (Figure 1.2). The class I MHC molecules (MHC I) are assembled (45) and 

loaded with peptide Ag in the ER (46), exported to the plasma membrane via the Golgi 

body and presented to CD8+ T cells (43, 44) (Figure 1.2). 

 

1.2.5.2 MHC II presentation 
 

MHC II molecules are expressed only on APC such as DC, B cells and macrophages. 

MHC II molecules are also assembled in the ER (47, 48) and are associated with an 

invariant chain (li) to prevent the MHC II molecule from binding to endogenous proteins. 

The MHC II-li complexes are transported via the Golgi body to the MHC II loading 

compartment (MIIC, also known as the MHC II vesicles (CIIV)) where the invariant chain 

is degraded leaving a class II-associated invariant-chain peptide (CLIP) (Figure 1.2). 

Extracellular Ag are taken up via receptor-mediated endocytosis into lysosomes and late 

endosomes (49) where the Ag is processed into peptides. The peptides are then transferred 

to the MIIC/CIIV compartment where they displace the CLIP on the MHC II molecule 

(25). Peptide-MHC II complexes are then exported to the plasma membrane and presented 

to CD4+ T cells (50) (Figure 1.2). 
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1.2.6 Cross presentation 
 

It was first suggested in the late 1980's that an exogenous pathway for processing peptide 

to be presented by MHC I molecules must exist in order to control pathogens that do not 

infect DC or which compromise the function of the DC they infect (51). This was 

demonstrated by showing that self Ag (22) and tumour Ag (52) can be presented to CD8+ 

cells by bone marrow derived antigen presenting cells. This process has come to be known 

as cross presentation, resulting in the cross priming of CD8+ T cells and is known to 

require large amounts of Ag (53) in comparison to the Ag requirements of classical 

presentation. There are a number of proposed mechanisms to explain how cross 

presentation occurs. The original model of cross presentation, referred to as the vacuolar 

route, showed that phagocytosed Ag was processed into peptide-Ag within the phagosome 

and loaded onto MHC I molecules that had been recycled from the plasma membrane 

during phagocytosis (54).  The most well known model, called the cytosolic route, 

postulated that phagocytosed Ag was diverted from the phagosome to the cytosol where it 

was treated similar to intracellularly synthesised Ag and could enter the class I Ag 

processing, loading and presentation pathway (55-57) (Figure 1.2). A later model, known 

as the phagosome-ER fusion route, describes a mechanism where the ER membrane is able 

to fuse to the membrane of the phagocytic cup during phagocytosis, thereby introducing 

ER proteins such as MHC I and TAP molecules and the TAP-associated glycoprotein 

tapasin into the phagosome. Ag is diverted into the cytosol, processed by the proteasome 

and then diverted back into the phagosome where it is loaded onto the MHC I molecule 

(58-60). 
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Figure 1.2: Ag presentation pathways. 
MHC II molecules associated with the invariant chain (MHC II-li) and MHC I molecules are assembled in 

the Endoplasmic Reticulum (ER). MHC II-li molecules are exported to the MIIC (MHC II loading 

compartment)/CIIV (MHC II vesicle) compartment via the Golgi body. B) Extracellular Ag are taken up into 

endosomes and processed into peptides. Peptides can then either be transferred to the MHC II loading 

compartment (MIIC, also known as MHC II vesicles (CIIV)) or diverted to the cytosol. C) The invariant 

chain (li) of the MHC II-li complex is degraded to a class II-associated invariant-chain peptide (CLIP), which 

is then exchanged for peptide. D) The peptide-MHC II complex is then exported to the plasma membrane 

where it is recognised by the T cell receptor (TCR) and presented to CD4+ T cells. E) Pathogens that infect 

the DC are processed into peptides by the proteasome. These Ag peptides then enter the ER via the 

Transporters of Antigen-Processing (TAP) molecules where they are loaded onto MHC I molecules and 

exported to the plasma membrane via the Golgi body to be presented to CD8+ T cells. Cross presentation 

occurs when Ag is diverted from the endosome into the cytosol where it can enter the class I presentation 

pathway beginning with being processed into peptides by the proteasome.  

 



Chapter 1: General Introduction 

 

10 

DC take up Ag by phagocytosis (61), macropinocytosis and receptor-mediated endocytosis 

(50, 62, 63) and the method by which the Ag is endocytosed has been proposed to be an 

important factor in determining whether an Ag can be cross presented (50). Burgdorf et al 

showed that pinocytosed Ag was presented to CD4+ T cells whereas Ag endocytosed by 

the Mannose-6-Phosphate receptor (MPR) in DC or by Scavenger receptors in 

macrophages was cross-presented to CD8+ T cells. Molecules taken up by MPR mediated 

endocytosis were directed into early endosomes rather than lysosomes and could therefore 

be loaded onto MHC I molecules rather than the expected MHC II molecules (50). 

 

1.2.7 CD8+ T cell activation and differentiation 
 

T cells recognise peptide/MHC complexes on the surface of DC via their TCR. CD8+ T 

cells require 3 signals, namely Ag, co-stimulation in the form of CD80 and CD86 and the 

presence of IL-12 to become fully activated effector T cells (cytotoxic T lymphocytes, 

CTL) with effector function or memory T cells (64, 65). Upon activation, the effector 

CTLs show increased expression of activation markers such as CD69 (66), CD25 (67) and 

CD44 (68) and down regulation of the lymph node homing molecule CD62L (69). In 

addition, effector CTL downregulate expression of the homeostatic cytokine receptor 

subunit IL-7Rα (CD127) (70), meaning they cannot receive long-term survival signals and 

will, therefore, only persist as long as Ag is available. Terminally differentiated, exhausted 

effector T cells are also known to express high levels of the Killer Cell Lectin like 

Receptor G1 molecule (KLRG1) (71). The co-stimulatory molecules Glucocorticoid-

Induced TNF receptor (GITR) and OX40 and the negative regulator of T cell function 

Cytotoxic T lymphocyte-associated Antigen 4 (CTLA-4), are also upregulated on CTL 

(72). CTL undergo extensive proliferation, secrete effector cytokines such as TNF-α, IFN−

γ (23), IL-2, IL-4 and IL-10 (73), depending on the stimulus, and exhibit cytotoxic 
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function resulting in lysis and death of target cells (74). Expansion of the activated CD8+ T 

cell population is followed by a contraction phase, after which, a subset of Ag experienced 

T cells remains as the memory CD8+ T cell population. These cells are able to persist for 

the lifespan of the host and are able to expand and/or acquire effector function much 

quicker than naïve CD8+ T cells when exposed to the same Ag (75). Memory CD8+ T cells 

are characteristically CD44+ (68) and a subpopulation is CD62L+ (76), however, in contrast 

to effector T cells, the memory T cell population is IL-7Rα+ and IL-2/IL-15Rβ (CD122)+ 

(70), meaning they are capable of receiving long term survival signals.  

 

1.2.8 CD8+ T cell effector function 
 

The main role of CTL is to identify and kill infected or malignant cells. CTL express the 

effector cytokines TNF-α and IFN-γ as well as the death-receptor ligands FASL and TNF-

related apoptosis-inducing ligand (TRAIL) and contain cytotoxic granules, all of which 

contribute to the effector function of the cells (77, 78). 

 

IFN-γ has been shown to be involved in host protection against transplanted, spontaneous 

and primary, chemically induced tumours (79-82) and a number of mechanisms have been 

proposed to explain these findings. The presence of IFN-γ in tumours can trigger the 

production of additional inflammatory cytokines and chemokines, which leads to the 

activation and recruitment of other effector cells such as NK cells, macrophages and 

granulocytes (83). One study has shown that IFN-γ may cause the tumour stroma to 

become vulnerable to attack by the immune system (84), thereby weakening the tumour. 

IFN-γ has also been shown to inhibit tumour angiogenesis (85), which is likely to limit the 

growth of tumours or even cause some regression. Both TNF-α and IFN-γ are known to 

aid in the lysis of target cells (86-88). CD8+ T cells increase levels both of plasma 
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membrane-bound and secreted TNF-α after activation through their TCR. The secreted 

form of TNF-α was found to have no role in lysis of the target cell, even in the absence of 

the perforin-granzyme pathway, however, the membrane-bound form has been shown to 

induce a slow (18 hour) lysis reaction (86). These examples demonstrate the importance of 

the production of TNF-α and IFN-γ to the function of CTL and the anti-tumour response. 

 

There are two main contact-dependent cytolytic pathways used by T cells to cause target 

cell lysis and death. The FAS-FASL pathway involves the binding of the death receptor 

FAS (CD95) on the target cell to the FASL on the T cell resulting in caspase activation and 

cell death by apoptosis. Previous studies have shown that the FAS-FASL pathway can be 

further improved by, and may be dependent on the presence of IFN-γ (87, 89). This 

pathway is largely thought to function in maintenance of lymphocyte homeostasis (90).  

 

The granule exocytosis pathway is required for the control of most viruses and cancers 

(91-93) and is used by CTL, natural killer (NK) and NKT cells to lyse target cells 

recognised by their specific receptors. Recognition of MHC-peptide complexes on target 

cells by the TCR on the CTL or NKT cell causes the CTL or NKT cell to release cytotoxic 

granules. These granules contain perforin, granzymes and various lysosomal proteins such 

as cathepsins B and D, β-hexosaminidase and the lysosome-associated membrane proteins 

Lamp-1 (CD107a), Lamp-2 (CD107b) and Lamp-3 (CD63) (94). The lytic activity of 

cytotoxic granules is associated with perforin and the granzyme family (95, 96). 

 

Perforin is so named for its pore forming abilities and is believed to have a pivotal role in 

the lysis of target cells by CTL because in the absence of perforin, lysis of target cells is 

severely impaired (95, 96). Perforin is also believed to have a critical role in the regulation 

of CD8+ T cell responses. Evidence for this theory came from the observation that perforin 
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deficient mice show increased or prolonged CD8+ T cell expansion after immunization 

with Staphylococcal Enterotoxin B or viral infections such as Lymphocytic 

Choriomeningitis virus and Cytomegalovirus (97, 98).  

 

The granzymes are a family of serine proteases that include granzymes A, B, K and M in 

mice and humans (99). Humans also have a granzyme H, which corresponds to granzyme 

C in mice and in addition, mice also have granzymes D, E, F, G, L and N, although little is 

known about the role of these molecules (99). Granzyme B is thought to be the most 

efficient proapoptotic granzyme (100). 

 

The cytotoxic granule contents are taken up by the target cell, in a mechanism that has 

been the subject of much debate (Figure 1.3). Originally it was thought that the role of 

perforin was to create a pore in the plasma membrane (101-103), which allowed the 

cytotoxic granules to enter the cell and trigger apoptosis. It has since been determined that 

the pores formed by perforin are unlikely to be large enough to allow the entry of the 

contents of cytotoxic granules into target cells (95). Instead, the contents of cytotoxic 

granules have been shown to be able to enter cells in the absence of perforin through 

receptor-mediated endocytosis (96, 104). An MPR and clathrin/dynamin independent 

mechanism of granule entry has also been demonstrated (99) (Figure 1.3). 

 

The exact role of perforin is still unclear, however the current understanding is that 

perforin facilitates the exit of granzyme B (GzmB) from the endocytosed vesicles, into the 

cytoplasm of the target cell (95, 96). Once in the cytoplasm, GzmB mimics caspases by 

cleaving and activating caspase substrates (105) such as Bid, which is a propaptotic 

member of the Bcl-2 family (Figure 1.3). Truncated Bid (tBid) signals through Bax 

molecules on the mitochondrial surface (106-108) resulting in the release of Cytochrome c 
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(Cyt c) from the mitochondrion. Cyt c participates in the cleavage of pro-caspase 9 to its 

active caspase 9 form, which in turn, cleaves pro-caspase 3 to its active caspase 3 form. 

Caspase 3 is translocated to the nucleus where it causes DNA fragmentation and cell death 

(109, 110). GzmB is also able to directly activate the pro-caspases 3 and 8 (111, 112). 

Caspase 8, similar to GzmB, is able to induce cell apoptosis by the activation of Bid (111) 

(Figure 1.3). 
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Figure 1.3: Schematic diagram of the perforin-granzyme pathway of target cell 
apoptosis. 
Cytotoxic granules are released into the extracellular space between the CTL and the target cell. The granule 

contents are then endocytosed by receptor dependent and independent mechanisms, a process that forms 

vesicles within the target cell. Perforin disrupts the membrane potential of the vesicle, allowing granzyme B 

(GzmB) and other molecules to enter the cytoplasm where GzmB cleaves the pro-caspase 8 to its active 

caspase 8 form. Caspase 8 can then activate Bid by cleavage to form truncated tBid molecules, which interact 

with Bax molecules in the mitochondrial membrane causing the loss of membrane integrity and the release of 

cytochrome c (Cyt c). Cytoplasmic Cyt c cleaves pro-caspase 9 to its active caspase 9 form, which in turn 

cleaves pro-caspase 3 to its active caspase 3 form. Caspase 3 is then translocated to the nucleus where it 

causes DNA fragmentation, which results in apoptosis of the cell. Receptor mediated endocytosis largely 

occurs via the mannose-6-phosphate receptor (MPR). 
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1.3 Tumour Immunology 
 

While it has been observed for at least a hundred years that tumours could spontaneously 

regress, presumably because of an immune response, it wasn't until the late 1800s that an 

immune-based method of cancer therapy was actually established (113).  Dr. William 

Coley found that treating resected or non-operable cancer patients with a mixture of killed 

bacteria caused the tumour to regress in some patients.  In many cases the cancer never 

returned.  Coley's toxins, as the treatment became known, was used to treat various cancers 

in the United States up until 1963 when it became classed as a "new drug" by the Food and 

Drug Administration (FDA) because it had not undergone adequate safety testing.  Since 

then a number of small clinical trials have been conducted to try and prove the efficacy of 

the treatment with mixed results. 

 

1.3.1 Cancer immune surveillance and immunoediting 
 

Understanding how the immune system interacts with malignant cells is important for the 

successful development of anti-cancer immunotherapies in the future. It was first 

suggested by Paul Ehrlich in 1909 that one of the roles of the immune system was to 

protect the host against cancer in a process called cancer immune surveillance (114). This 

theory was modified by Burnet in the late 1950's, who proposed that the immune system 

could survey the host for precancerous or cancerous cells and eliminate them (115, 116). 

This process was termed cancer immunoediting and was further defined by Dunn et al 

(117) as consisting of three stages: elimination, equilibrium and escape.  
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1.3.2 Cancer elimination 
 

The first phase of the cancer immunoediting model involves the elimination of nascent 

tumour cells by the innate and adaptive immune systems. Evidence to support this theory 

came in the 1990's when a number of studies in which mice were deficient for IFN-γ (79-

82) or perforin function (81, 82, 93, 118, 119) or completely devoid of functional T and B 

cells (Recombination Activation Gene 2, RAG2-/- mice) (120), showed that 

immunodeficient mice were more susceptible to spontaneous tumour development. 

Observational studies of transplant recipients (121-123) and AIDS (124) sufferers have 

also shown an increased incidence of cancer in immunosuppressed individuals, providing 

evidence that immunoediting also occurs in humans.  

 

Recognition and destruction of cancerous cells by the immune system implies that tumours 

must express proteins that allow these cells to be distinguished from normal cells. A 

number of such Ag have so far been identified, further supporting the immunoediting 

argument. For example, a range of tumours, including melanomas, are known to express 

Ag such as the melanoma antigen (MAGE) family of melanoma differentiation proteins 

(125) and the NY-ESO-1 family (126).  Melanomas in particular have been shown to 

express proteins such as gp100/Pmel-17 (127) and Melan-a/MART-1 (128). These Ag are 

known as tumour associated Ag (TAA) because they are expressed by subsets of normal 

cells as well. For example, the NY-ESO-1 and MAGE family of Ag are cancer/testis Ag, 

which means they are expressed in immune privileged sites and are ectopically expressed 

in a range of tumours. In comparison, gp100 is a melanocyte differentiation Ag, which is 

expressed in both melanocytes and melanomas. Several novel tumour Ag have also been 

identified and are referred to as tumour specific Ag (TSA) or mutated Ag because they are 

only expressed on tumour cells. Examples of TSA include a mutated form of MART-2 
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(129) and the BCR-ABL fusion protein, which is found in a range of leukaemias (130). 

CD4+ and/or CD8+ T cell responses can be generated against these Ag, demonstrating their 

usefulness in the targeting of tumours using immunotherapy (125-129). The identification 

of TAA and TSA presents new possibilities for the development of effective therapeutic 

cancer vaccines.  

 

1.3.3 Cancer equilibrium 
 

 

The term cancer equilibrium refers to the period of time when cancer is present and the 

immune system is able to prevent the expansion of these cells but not eliminate them. 

Evidence for the existence of an equilibrium phase was originally inferred from studies 

involving organ transplant. The transplant of organs from donors who had previously 

undergone treatment for cancer and were thought to be cancer-free into recipients resulted 

in the development of tumours in the recipient that were of donor origin (131, 132). These 

findings suggest that although the donor no longer had a detectable tumour, cancerous cells 

still remained in the body, unable to re-establish a solid tumour but also unable to be 

cleared completely by the immune system. It was thought that these transferred cells were 

able to proliferate and become established tumours because the hosts were taking 

immunosuppressive medication to prevent organ rejection and also because the host 

immune system had not encountered these cancerous cells before and no Ag experienced 

cells existed. Direct experimental evidence of the equilibrium phase was provided by 

Koebel et al who showed that mice that originally failed to develop tumours after 

treatment with a low dose of a chemical carcinogen, could develop tumours after treatment 

with mAb designed to compromise the immune system (133). 
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It has been proposed that the equilibrium phase occurs because of a phenomenon called 

immune sculpting. Malignant cells are constantly mutating and it is thought that the 

immune system sculpts the development of the tumour by eliminating the cells that are 

most immunogenic, leaving behind malignant cells of low immunogenicity. This theory 

was demonstrated using 3-methylcholanthrene (MCA) induced sarcomas obtained from 

either wild type (wt) or RAG2-/- mice (120). When tumours from either wt or RAG2-/- 

mice were transplanted into RAG2-/- mice, they grew with similar kinetics, indicating that 

tumours grown in the presence or absence of an intact immune system exhibit no inherent 

growth differences (120). All tumours transplanted from wt mice into wt mice became 

established, in contrast 40% of tumours transplanted from RAG2-/- mice into wt mice 

were rejected (120). The results of this study (120), and other similar studies (82, 118, 134, 

135), indicate that tumours formed in the absence of a competent immune system are more 

immunogenic than those formed in immunodeficient hosts. Through the process of 

immune "sculpting", tumours are able to reach the equilibrium stage of cancer 

immunoediting. 

 

1.3.4 Cancer escape 
 

 

Given that more than 7 million people die every year from various forms of cancer, it is 

obvious that tumours are often able to evade the immune system and continue to grow. 

This is the final stage of immunoediting, known as the escape phase and involves the use 

of multiple mechanisms by malignant cells to evade the immune response and become an 

established tumour. Strategies used by tumours to evade the immune response include the 

activation of immunosuppressive mechanisms (as discussed below in 1.4), the induction of 

T cell tolerance and mutations that render cancerous cells less sensitive to immune effector 

molecules (136, 137). 
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1.3.5 Treatment of cancer using immunotherapy 
 

A number of prophylactic anti-cancer immunotherapeutic vaccines have shown that it is 

possible to prevent or delay tumour growth in mice (138-141) and this information has 

been a valuable tool for researchers. The relevant setting for cancer treatment in humans, 

however, is the therapeutic treatment of tumours. A number of different vaccination 

strategies have been used to successfully treat various murine cancers by immunotherapy. 

These strategies include the adoptive transfer of DC or T cells or treatment of subjects with 

various factors designed to either directly improve the activity of DC and T cells, or to 

block immune suppressive factors present in tumour bearing individuals.   

 

The adoptive transfer of activated, Ag loaded DC to mice has been shown to result in an 

increase in activated T cells and can cause the regression of tumours. For example, 

Mayordomo et al showed that mice treated with DC that had been loaded with defined 

TAA developed an Ag specific CD8+ T cell response. Furthermore, the Authors showed 

that the treatment of mice given otherwise lethal doses of C3 sarcoma or 3LL lung 

carcinoma with these DC resulted in tumour regression and survival in up to 80% of mice 

(142). In addition, Zitvogel et al showed that the adoptive transfer of DC loaded with 

undefined acid-eluted peptides from autologous tumour to mice bearing established C3 (H-

2b) tumours resulted in the complete eradication of tumours and 100% survival of the mice 

in comparison to the controls, none of which survived (143). In another study, Fields et al 

showed that the treatment of MCA-207 sarcoma or MT-901 breast carcinoma bearing mice 

with DC that had been loaded with whole MCA-207 or MT-901 tumour lysates, 

respectively, resulted in a ~90% reduction in the number of established pulmonary 

metastases in comparison to the controls (144). Regression of the metastases was found to 

be primarily the result of a CD8+ T cell response with some CD4+ T cell help (144). In 
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contrast to the above studies, which involve the adoptive transfer of in vitro activated DC 

into tumour bearing mice, Merad et al showed that it is possible to achieve an effective 

anti-tumour response by activated DC in vivo (145). Merad et al found that the treatment 

of mice with the DC growth factor Fms-like tyrosine kinase 3 Ligand (Flt3L) caused an 

increase in the number of lymph node DC. Treatment of these mice with the TLR ligand 

CpG resulted in a further increase in the number of DC and upregulation of MHC II and 

CD86, indicating that the DC were activated. CpG treatment was also found to increase the 

survival of Flt3L expanded DC and to improve the size and quality of the CD8+ T cell 

response. Finally, the Authors showed that adding the defined tumour Ag OVA to the 

Flt3L and CpG treatment of tumour bearing mice resulted in the regression of established 

B16.OVA tumours and a 60% survival rate in treated mice in comparison to the controls 

none of which, survived (145). DC vaccines hold much hope for the future of cancer 

immunotherapy because they prime an appropriate T cell response in vivo and the quality 

of this T cell response may differ from those stimulated in vitro. Furthermore, these DC 

are able to prime T cells of more than one specificity, can prime both a CD4+ and a CD8+ 

T cell response (144) and can protect mice against subsequent tumour challenges (146) 

indicating that a memory cell population has been formed.  

 

The treatment of tumour bearing mice with adoptively transferred T cells has shown 

promise in the field of cancer immunotherapy. Peng et al showed that mice bearing 

otherwise lethal doses of EL-4 and MCA tumours showed 100% survival after the 

adoptive transfer of 2 x107 CD8+ T cells that had been isolated from the draining lymph 

node of tumour bearing mice and then activated in vitro (147). Similar results were 

obtained after the transfer of OVA specific OTI T cells that had been activated using anti-

CD3 and anti-CD28 mAb to mice bearing the acute myeloid leukaemia C1498 that had 

been modified to express the model antigen OVA (148). Interestingly, even the transfer of 
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107 naïve CD8+ OTI T cells can clear established E.G7-OVA but not EL4 thymomas 

(149). CD4 T cells have also been shown to have a role in the elimination of tumour cells. 

Mumberg et al showed that the adoptive transfer of CD4+ T cells into 6132A-PRO tumour 

bearing SCID mice, which themselves have no T cells, was sufficient to eliminate the 

tumours (150). The Authors showed using a neutralizing mAb specific for IFN-γ that 

production of IFN-γ by the transferred CD4+ T cells was responsible for tumour cell death 

(150). The adoptive transfer of T cells is attractive as a cancer immunotherapy because 

patients can be treated with a large number of highly activated tumour-specific T cells, 

which have been activated in the absence of the suppressive factors present in vivo. 

 

Other immunotherapies use mAb to target the tumours or modulate immune responses.  

Treatment of individuals with mAb designed to block receptors required for survival can 

slow tumour growth or cause tumour regression. For example Herceptin is a mAb that 

targets the HER2 receptor expressed on malignant human mammary tissue and 

significantly inhibits tumour growth (151). In contrast, tumours can also be directly 

targeted for destruction by the immune system using mAb such as anti-CD20, which 

targets B cell lymphomas in humans (152) and mice (153). In this case, the effector 

mechanism involved is thought to be Antibody-Dependent Cell-Mediated Cytotoxicity 

(ADCC), which involves the lysing of Ab bound targets by NK cells. 

 

The anti-tumour immune response can be improved by the in vivo administration of mAb 

designed to inhibit or deplete immunosuppressive cells such as Treg. For example, the 

anti-CD25 mAb PC61 has been shown to deplete Treg, resulting in an improved T cell 

response and tumour regression in mice bearing 6 out of 8 different leukaemias, myelomas 

or sarcomas (154). The anti-tumour immune response can also be improved by treating 

tumour-bearing mice with a mAb that directly improves cell function. Llopiz et al found 
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that treating mice bearing an otherwise lethal dose of E.G7-OVA with an agonistic anti-

CD40 mAb, the TLR Ligand adjuvant poly I:C, and tumour Ag resulted in an 

improvement in the Ag presenting function of DC and complete tumour regression in 

100% of mice (155). Some mAb treatments are believed to have a dual role in improving 

the anti-tumour response by directly inhibiting the function of suppressor cells and directly 

improving the effector function of T cells. Intratumoral injection of the mAb OX86, which 

targets OX40 expressed on both Treg and activated T cells has been shown to block the 

suppressive function of Treg while also directly stimulating CD8+ T cells resulting in the 

rejection of 80% of otherwise lethal CT26 tumours in mice (156). Similar results were 

seen when B16-BL6 melanoma bearing mice were treated with CTLA-4 (also known as 

CD152) specific antibodies to inactivate Treg and directly stimulate the effector function 

of activated CD8+ T cells. These mice were also treated with the leukocyte growth factor 

Granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumour regression was 

found to be dependent on CD8+ T cells (157).  

 

In contrast to the murine models discussed above, cancer immunotherapy appears to be 

successful only in a minority of humans. Expanded CD8+ and CD4+ T cell populations 

specific for tumour associated Ags have been found in individuals treated with DC 

vaccines (158-163), however, these responses rarely result in a clinical objective response 

(160-164). A study of 86 clinical trials for the treatment of various tumours including 

melanoma, prostate cancer and colorectal cancer found that only 3.3% of the 1306 patients 

showed an objective clinical response (165). In fact, despite the huge amount of resources 

dedicated to developing modern cancer immunotherapies, a retrospective study found that 

patients receiving these therapies fared no better than those that had received Coley's 

toxins (166). One of the proposed reasons for the lack of objective clinical responses to 

cancer immunotherapies in humans is the immunosuppressive mechanisms used by 
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tumours to evade the immune response. This demonstrates the importance of further 

understanding these mechanisms to the development of successful cancer 

immunotherapies. 

 

1.4 The suppressive tumour environment 

 

It is believed that the T cell dependent elimination of tumours requires the activation of 

tumour specific CD8+ T cells in the lymph node followed by trafficking of these CTL into 

and throughout the tumour. The CTL must then be able to survive and maintain effector 

function long enough to eradicate the tumour. As discussed below, evidence exists that 

tumours are able to suppress each of these stages. 

 

Tumours over-express growth factors such as the vascular endothelial growth factor 

(VEGF) family of molecules, which leads to abnormal vasculature within the tumour (167, 

168) and hypoxia (169). Poor vasculature also means that cells and anti-cancer treatments 

are likely to have reduced access to the tumour tissue. Despite this, tumour specific CD8+ 

T cells have been found in the tumour tissue with (170) and without (171, 172) adoptive T 

cell transfer. Studies have shown, however, that both CD4 (173, 174) and CD8 (173, 175, 

176) T cell responses are impaired in tumour bearing mice. Tumour infiltrating T cells are 

thought to have sub-optimal effector function due to the expression of inhibitory ligands 

such as the non-classical HLA-E (177) and HLA-G (178) MHC molecules in human 

primary tumours and to a lesser extent in metastases. These molecules signal through 

inhibitory receptors on the surface of activated T cells and suppress the cytotoxic function 

of these cells (177).  
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Indoleamine 2,3-dioxygenase (IDO) is an intracellular enzyme that catalyses the rate 

limiting step of the tryptophan degradation pathway. Over-expression of IDO has been 

observed in a number of murine and human tumours and is thought to inhibit T cell 

activation, proliferation and survival by starving cells of tryptophan (179). Soluble 

inhibitory factors such as TGF-β and IL-10 are produced by many cell types, including 

malignant cells (180-182). Adenosine is produced during normal cellular responses, 

however, the extracellular levels of adenosine are elevated in tumours in response to 

hypoxia (183). As discussed in detail below in 1.4.4, adenosine has a number of anti-

inflammatory properties (184-187). 

 

Evidence exists to support the theory that the tumour environment decreases the survival 

of tumour specific CTL. Dong et al showed that a range of human tumours and the murine 

P815 tumour promoted apoptosis of activated tumour specific T cells in vitro (188). 

Apoptosis of the T cells was linked to the ectopic expression of B7-H1 molecules by the 

tumours and was found to be the result of signalling via the programmed death receptor-1 

(PD-1) and other receptors, which are expressed on activated T cells (188).  Similar results 

have been observed in other studies (189, 190). 

 

Tumours are known to have elevated levels of a number of cell types with 

immunosuppressive function including Treg (191), MDSC (192, 193) and tumour 

associated macrophages (194), all of which are associated with a poor disease outcome.  

The role of hypoxia induced increases in intratumoral adenosine levels, and the presence of 

Treg in tumours is discussed in more detail below. 
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1.4.1 Hypoxia 
 

Clinicians and physiologists define tissue hypoxia as a state of compromised biological 

function in response to oxygen availability or partial pressures that have fallen below a 

critical threshold. This threshold is poorly defined since different biological functions have 

differing requirements for oxygen however it is clear that hypoxia plays a very big part in 

tumour biology and treatment. Despite the fact that tumours have their own blood supply, 

most tumours are also hypoxic because the vasculature is abnormal (167, 169, 195).  

Hypoxia has been linked with driving proteomic and genomic changes in tumour cells for 

example through the hypoxia inducible factor family of transcription factors (HIF) 

resulting in increased survival and malignancy (196). Tumour hypoxia has been shown to 

reduce the efficacy of radiotherapy and some cytotoxic drugs either because of the 

requirement for oxygen by these therapies or because of the limited access of these drugs 

to hypoxic regions of tumour tissue (196). Tumour hypoxia further results in increased 

levels of adenosine, which has anti-inflammatory properties (197).  

 

1.4.2 Hypoxia induced increases in adenosine levels 
 

Intracellular adenosine triphosphate (ATP) is sequentially dephosphorylated by nucleoside 

triphosphate diphosphohydrolases to adenosine diphosphate (ADP) and adenosine 

monophosphate (AMP), which is then dephosphorylated to adenosine by 5' nucleotidases 

(Figure 1.4). Under normoxic (adequate oxygen supply) conditions, most of the adenosine 

is rephosphorylated to form AMP again by adenosine kinase (AK). The remaining 

adenosine is then either broken down by adenosine deaminase (ADA) to form inosine, or 

released from the cell via bi-directional nucleoside transporters (198-200) (Figure 1.4). 

Tumours contain immunosuppressive levels of adenosine (183) because hypoxia causes a 
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decrease in AK activity such that it can no longer process the adenosine fast enough 

causing an intracellular build up of adenosine (200), which is then released into the tumour 

microenvironment (Figure 1.4). 

  

 

 

Figure 1.4: Adenosine metabolism and the effect of hypoxia. 
ATP is sequentially dephosphorylated to AMP by a variety of hydrolases, and AMP is then converted to 

adenosine (ADO) by 5' nucleotidases. Under normoxic conditions, most ADO is rephosphorylated to AMP 

by adenosine kinase (AK).  The remaining ADO is broken down into inosine by adenosine deaminase (ADA) 

or released from the cell via bi-directional nucleoside transporters. Under hypoxic conditions, AK activity is 

inhibited causing a build up of ADO, which cannot be completely compensated for by ADA activity leading 

to increased intracellular and extracellular levels of ADO. A similar pathway also occurs on the cell surface 

where ATP is sequentially dephosphorylated to AMP by the hydrolase CD39 and then converted to ADO by 

the 5' nucleotidase CD73. 
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1.4.3 The adenosine receptors 
 

Adenosine mediates its effects through a family of four (A1, A2a, A2b and A3) G protein 

coupled seven transmembrane domain adenosine receptors. These receptors have non-

redundant functions based on their differing cellular and tissue distribution as well as the 

type of G protein coupled to the cytoplasmic tail of the receptor. The G protein is made up 

of three subunits (α, β and γ) and following ligation of the adenosine molecule to the 

receptor, the α subunit dissociates from the receptor and causes changes in cAMP levels 

through its effects on Adenylyl cyclase, the enzyme which converts ATP to cAMP. If the 

α subunit is stimulatory (αs), cAMP levels will increase, and in contrast, if the α subunit is 

inhibitory (αi) cAMP levels will decrease (Figure 1.5).  

 

The A1 and A3 receptors are negative regulators of cAMP levels and are mostly found in 

the brain and testis respectively. A1 receptors help control conditions such as bradycardia 

(abnormally low heart rate) and ischemic preconditioning (resistance to subsequent 

damage caused by oxygen deprivation). A3 receptor signalling is thought to enhance 

mediator release from mast cells. The A2b receptor is a positive regulator of cAMP levels, 

and is mainly found in the caecum, colon and bladder. This receptor has a role in 

relaxation of smooth muscle in vasculature and inhibition of monocyte and macrophage 

function. The A2a receptor is also a positive regulator of cAMP levels and is found in high 

levels in the spleen, thymus and on leukocytes and blood platelets (201). Triggering of the 

A2a receptors on blood platelets can lead to vasodilation via the release of ADP and ATP 

that stimulate the release of endothelium-derived NO (EDNO) (201).  
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Figure 1.5: The tissue distribution and signalling pathways of the adenosine receptor 
family. 
The cytoplasmic tail of each of the 7 transmembrane domain adenosine receptor family is coupled to a Gs 

protein consisting of an α, β and γ subunit. The α Gs subunit coupled to the A1 and A3 receptors is 

inhibitory (αi) and results in decreased cAMP levels whereas the α Gs subunit coupled to the A2a and A2b 

receptors is stimulatory (αs) and results in increases in cAMP levels. Changes in cAMP levels affect Protein 

Kinase A (PKA) and leads to changes in the cAMP Response Element Binding (CREB) family of 

transcription factors and results in altered gene expression. 

 

1.4.4 Anti-inflammatory properties of adenosine 
 

At high levels, adenosine has anti-inflammatory properties, which are mostly mediated via 

the A2a receptor due to its high expression on leukocytes. The use of A2a receptor knock 

out mice and selective A2a agonists and antagonists have shown that adenosine inhibits 
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TCR induced activation of thymocytes (184) and T cells (185, 186). T cells exhibited 

decreased proliferation, cytokine production and cytotoxic function in response to A2a 

receptor signalling (185-187). These direct effects of adenosine signalling on T cells are 

further exacerbated by the effect of adenosine signalling in DC. DC matured in the 

presence of adenosine show decreased CD86 and MHC II in mouse models (202) but 

increased levels in human cells (203) via A2b and A2a receptors respectively. However in 

both models, the overall effect of adenosine signalling was reduced TNF-α and IL-12 

production, and increased IL-10 production (202-205). In mice these DC were associated 

with an increase in tumour growth (204). Natural Killer T cells show impaired release of 

cytotoxic granules (206), platelet activation is inhibited (207, 208) and TNF-α and IL-12 

production by monocytes (209) and macrophages (210, 211) is also decreased in response 

to A2a signalling. Studies have further shown adenosine inhibits the oxidative burst in 

neutrophils via A2a (212, 213) and A3 (214) signalling.  

 

Studies using selective A2a receptor agonists and antagonists on human tumour specific 

CD4+ and CD8+ T cells have shown that these cells have decreased cytokine production 

(215). The results of these studies demonstrate that the presence of adenosine is likely to 

contribute significantly to the immunosuppressive environment of solid tumours and 

emphasise that methods of abrogating adenosine signalling in vivo are a viable goal for 

cancer immunotherapy.   

 

1.4.5 Treg 
 

The existence of a regulatory T cell subset that prevents autoimmunity by suppressing self-

reactive T cell responses was first proposed in the 1970s.  Through a lack of supporting 
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evidence, this theory was largely disregarded until in 1995 Sakaguchi et al showed that 

CD4+ CD25+ T cells could prevent autoimmunity and graft rejection (216).  

1.4.6 Treg phenotype 
 

The term "regulatory T cells" refers to a range of cells of which CD4+ CD25+ Foxp3+ Treg 

are only one example (Table 1.1). Some of these populations are summarised in table 1.1. 

 

Commonly  

Known as: 

Phenotype Cytokines produced References   

Th3 CD4+ TGF-βhigh, IL-10low, 

IL-4low 

(217) 

Tr1 CD4+ CD25+/- IL-10high, IL-4low (218) 

Treg CD4+ CD25+ Foxp3+ TGF-β, IL-10, IL-35 (219) 

Ts CD8+ CD28- IL-10 (220) 

 
Table 1.1: Regulatory T cell populations. 
 

Originally Treg were classified as CD4+ CD25+ T cells (216) however naïve CD4+ T cells 

will also express CD25 upon activation. The markers CTLA-4 (221-223), GITR (72, 222-

224) and OX40 (CD134) (225) are also constitutively expressed on Treg, however, as with 

CD25, naïve T cells will also up-regulate these markers after activation. CD39 and CD73 

can be individually expressed on many cell types, but they are only co-expressed to a high 

degree on Treg (226, 227). These markers are all thought to contribute to Treg function as 

outlined below. Activated Treg are further characterised as CD103+ (222-224), CD69high, 

CD62Lhigh (223) and CD127low (228). Expression of the above markers varies from ~15 to 

~90 % of the Treg population depending on their activation status and animal model and 
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expression of these markers also overlaps with other cell subsets. Obviously it is not 

practical to use all of these markers simultaneously to define the Treg population 

highlighting the need for a definitive Treg marker.  

 

The discovery of the forkhead box (Fox) transcription factor Foxp3, which is expressed 

exclusively by Treg in mice (219), allowed Treg to be distinguished from newly activated 

CD4+ effector T cells. In humans however it has been proposed that Foxp3 is also 

transiently expressed on newly activated CD4+ T cells (229). The genome wide analysis of 

murine CD4+ CD25+ Foxp3+ Treg identified ~700 genes and an intergenically encoded 

microRNA that had Foxp3 binding regions (230). Foxp3 was found to act as a 

transcriptional activator for some genes and as a transcriptional repressor for other genes. 

The target genes of Foxp3 in thymic and peripheral Treg were mostly plasma membrane 

proteins as well as cell signalling proteins. How the genes controlled by CD4+ CD25+ 

Foxp3+ Treg interact together and contribute to the suppressive function of Treg is 

complicated and poorly understood.  

 

1.4.7 The link between CD25 and Treg  
 

The IL-2R is a heterodimer consisting of an α chain (CD25), a β chain (CD122) and a γ 

chain (70). CD25 itself has a low affinity for IL-2, however, when complexed with the β  

and γ chains, it becomes a high affinity receptor for the T cell survival cytokine IL-2 (231). 

Studies using IL-2-/- or IL-2Rα-/- mice have shown that while IL-2 is not required for 

initial CD8+ T cell activation and proliferation, it is critical for optimal expansion and 

long-term proliferation of these cells (67). However the observation that these same mice 

develop a lymphoproliferative autoimmune syndrome (232, 233) proves that the cytokine 

also has a role in limiting T cell responses. Originally it was thought that this was because 
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the de novo expression of Foxp3 in the thymus was regulated by TCR engagement and IL-

2 and TGF-β signalling (234) and in the periphery it was also thought to require CD28 

signalling (235). Surprisingly, IL-2-/- and IL-2Rα-/- mice are still capable of producing 

normal levels of functional Foxp3+ Treg, suggesting some redundancy in the role of IL-2 

in Treg induction (223). TGF−β deficient mice were also found to produce normal levels 

of functional Foxp3+ Treg but only in the presence of IL-2 signalling (234). These findings 

suggest that the critical role of IL-2, and therefore CD25, in limiting CD8+ T cell responses 

is to maintain the Treg population rather than to induce Foxp3 expression or to facilitate 

the suppressive function of Treg (236).  

 

1.4.8 Generation of Treg 
 

Natural Treg are produced in the thymus (237) in a TGF-β and IL-2 dependent manner 

(234). Murine Foxp3- CD4+ T cells can be induced to express Foxp3 in vitro using TGF−β 

(224, 238, 239), or can convert to the Foxp3+ phenotype in vivo in the periphery (240). 

These cells subsequently acquire the suppressive function of Treg and are referred to as 

adaptive Treg.  In most of these cells, however, Foxp3 expression and subsequently 

suppressive function is lost when cells are restimulated with antigen in the absence of 

exogenous TGF-β (241). This indicates an inherent instability of these adaptive Treg since 

suppressive function is dependent on continuous expression of Foxp3 (241).  

 

1.4.9 Distinguishing a true CD4+ CD25+ Foxp3+ Treg population with 

suppressive function in humans 

The correlation between Treg and Foxp3 remains controversial in humans. Studies using in 

vitro expansion of CD4+ CD25- Foxp3- cells have shown Foxp3 expression correlates 
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precisely with suppressive function (242). Other studies, in contrast, including one by 

Wang et al used retroviral vectors to over-express Foxp3 in CD4+ CD25- Foxp3- T cells 

and found that Foxp3 expression does not result in a suppressive phenotype in all cases 

(229, 243, 244), however, this is likely because the cells were not expressing enough 

Foxp3 (245). In addition, the study by Wang et al involved the in vitro expansion and 

activation of CD4+ CD25- T cell populations using anti-CD3, anti-CD28 and IL-2 (229), 

conditions that have been shown to cause significant proliferation of human CD4+ CD25+ 

Foxp3+ Treg (246). This makes it difficult to draw firm conclusions from the study by 

Wang et al. It is possible that the expression of Foxp3 on newly activated CD4+ T cells 

appeared transient because a contaminating Foxp3 regulatory T cell population had 

preferentially expanded, or because a large proportion of the Foxp3 expressing cells later 

died off leaving mostly Foxp3- cells (229). Furthermore, only high expression levels of 

Foxp3 were found to result in suppressive function. (244) The level of Foxp3 which is 

transiently expressed by newly activated CD4+ T cells appears to be equivalent to that 

expressed by unactivated Treg and this is 4 fold lower than the level of Foxp3 expression 

seen in activated Treg with full suppressive function (245). This indicates that activated 

Treg can still be distinguished from newly activated CD4+ T cells in humans using Foxp3 

expression as a marker. 

 

1.4.10 Treg function 
 

In the steady state, Treg act as a protective mechanism against over active immune 

responses to self-Ag caused by self-reactive T cells that have escaped negative selection in 

the thymus.  This was demonstrated by using both scurfy mice (219) and mice 

thymectomised at postnatal day 3 (d3tx) (237). Scurfy mice carry a defect in the Foxp3 

gene, which produces a non-functional Foxp3 protein and these mice fail to properly 
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control CD4+CD8- T cell responses (219). D3tx mice spontaneously develop 

autoimmunity, which can be rescued by the transfer of Treg (237, 247). It was originally 

proposed that this occurred because d3tx mice were able to develop CD4+ and CD8+ T 

cells but not CD4+ CD25+ Treg, which were thought to develop after post-natal day 3. 

Recent studies, however, have shown that d3tx mice actually have higher numbers of 

CD4+ Foxp3+ Treg than normal mice (247, 248). Treg from d3tx mice were shown to be 

capable of suppressing the inflammatory conditions autoimmune ovarian disease and 

dacryoadenitis when transferred into d3tx hosts, demonstrating that these Treg are capable 

of in vivo suppression and able to control autoimmunity (247). The authors suggest that in 

mice that have not received adoptively transferred Treg, the fully functional Treg in d3tx 

mice are unable to control autoimmunity because these mice also exhibit enhanced effector 

T cell (Teff) function (247). It is presumed that Treg from d3tx mice are able to control 

autoimmunity when transferred into d3tx hosts because the balance of Treg and Teff cells 

in these mice has been tipped in favour of the Treg.  

 

Using diphtheria toxin to deplete Treg from adult Foxp3-DTR mice which have the 

diphtheria toxin receptor inserted downstream of the Foxp3 promoter, has further 

demonstrated the role of Treg in protection against autoimmunity (249). In humans, 

mutations in the Foxp3 gene result in absent or dysfunctional Treg and this is known to 

cause a syndrome of systemic autoimmunity known as immune dysregulation, 

polyendocronopathy, enteropathy and X-linked inheritance (IPEX) (250). IPEX syndrome 

is a rare recessive disorder that only affects male infants and is characterised by 

autoimmune enteropathy, diabetes, thyroiditis, food allergies and severe skin disease. Most 

sufferers of IPEX syndrome have a significantly shortened life expectancy (251). Treg are 

also thought to help control hyper-inflammation caused by infectious agents such as 

Helicobacter hepaticus (252), Pneumocystis carinii (253), and ocular Herpes Simplex 
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virus (HSV-1) (254), which would otherwise cause severe tissue damage, and can help 

prevent graft rejection (255, 256). 

 

It has also become apparent that the presence of Treg in certain conditions such as parasite, 

bacterial, fungal and viral infections (257) and cancers (154, 258, 259) is negatively 

correlated with disease outcome. In most cases, the frequency of Treg increases in 

response to these diseases suggesting they prevent efficient immune responses to these 

pathogens and allow them to persist in the individual.   

 

1.4.11 Suppressive capabilities of Treg 
 

It is generally accepted that in vitro Treg require activation via TCR stimulation to acquire 

their suppressive function (260-263). Once activated, however, Treg can suppress 

bystander cells in an antigen non-specific manner (262, 263).  One study has even 

suggested that the suppression of fresh T cells by activated Treg does not require 

restimulation of the Treg via the TCR and is not MHC restricted implying the Treg may 

not need to be in contact with the APC during suppression of the target cell (263).  

 

Conflicting reports have emerged over whether Treg mediated suppression is cell-cell 

contact dependent (260, 264, 265) or independent (266).  This confusion may partially 

arise over the failure of some studies to distinguish between natural and adaptive Treg, or 

differences between in vitro versus in vivo function. This issue has further been 

complicated by work showing that transwell cultures, the method typically used to 

distinguish contact dependent versus independent reactions, may be misleading in this 

instance. This study concluded that the reason transwell cultures fail to show suppression 

is not because the cells require physical contact but because the system separates the cells 
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so much that the suppressive molecules are unable to come into contact with the target cell 

(264). Recent work has shown that natural and adaptive Treg can be distinguished from 

each other by using a PCR to determine the methylation state of the Treg specific 

demethylated region (TSDR) (267). Ex vivo isolated CD4+ CD25+ Foxp3+ Treg were found 

to be completely demethylated and had stable Foxp3 expression. In contrast, TGF-β 

induced Treg showed only a partial demethylation of the TSDR region and both Foxp3 

expression and suppressive activity were lost when these Treg were restimulated in the 

absence of TGF-β. These results show that stable Foxp3 expression requires epigenetic 

modification to produce a stable, suppressive, Treg (267). 

 

Treg exhibit multiple layers of suppression as evidenced by their ability to suppress a 

range of cells, including T cells, macrophages, neutrophils, B cells, NK cells and DC (268-

272).  The suppressive effect of Treg on DC and T cells is discussed in detail below. 

 

1.4.12 Mechanisms of Treg suppression 
 

Strong evidence exists to suggest that Treg can suppress a number of aspects of DC 

function. Treg have been shown to inhibit the expression of the DC activation markers 

CD40, CD80, CD86 and MHC II, both in in vitro models (273, 274) and in an in vivo 

NOD mouse model (272). Two photon intra-vital microscopy experiments using the mouse 

EAE model have shown that Treg can decrease the interaction time between effector cells 

and DC in the lymph node (275). This is likely to result in ineffective priming of CD4+ T 

cells, because these cells require contact with the APC throughout the expansion phase 

(which lasts days), to achieve optimal expansion (276, 277) and differentiation (278). 

Optimal CD8+ T cell responses require a relatively short exposure (2-24 hours) to antigen 

(279, 280) combined with CD4+ T cell help (281, 282). Reducing the interaction time 
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between DC and T cells may represent an indirect method of suppressing the T cell 

response. In vivo studies have also shown that Treg may indirectly suppress the 

homeostatic proliferation of DC in the peripheral lymphoid organs (249, 283, 284) by 

suppressing the production of Flt3L from an as yet unknown source (283).  

 

There are 3 main stages at which Treg are thought to suppress the T cell response: 

suppression of T cell proliferation, suppression of T cell cytotoxicity and elimination of the 

T cells. 

 

Studies have shown that Treg can produce a number of immunosuppressive molecules 

such as adenosine (226, 285), TGF-β (265), IL-10 (238, 286) and IL-35 (266) all of which 

can inhibit T cell proliferation. It has been suggested that Treg produce pericellular 

adenosine due to the co-expression of CD39 and CD73 on the surface of Treg (Figure 1.4), 

however, it is difficult to speculate on the importance of this mechanism because 

extracellular adenosine levels increase in tumours in response to hypoxia as discussed 

above.  

 

Treg are also thought to mediate suppression of T cell proliferation through their control of 

known T cell growth factors such as IL-2.  Originally it was thought that Treg inhibited the 

production of IL-2 by Teff (260). An alternative mechanism known as the "IL-2 sink" 

model was proposed where Treg were thought to inhibit the overall expansion of the Teff 

population by consuming vast quantities of cytokines such as IL-2 (287), which caused the 

Teff cells to apoptose due to cytokine deprivation (288). The relevance of the IL-2 sink 

theory is questionable in vivo because there are far less Treg than T cells present in the 

body and the chance of Treg encountering and utilizing the majority of the IL-2 molecules 

is therefore unlikely. A further study by Oberle et al using human Treg showed that Treg 
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rapidly prevent the transcription of IL-2 by activated CD4+ T cells (289) and confirmed 

that the most likely explanation of how Treg control IL-2 levels is by inhibiting the 

production of IL-2 by activated T cells. 

 

CTLA-4 is a CD28 homologue expressed constitutively on Treg (222) and is upregulated 

on various other cell types including T cells after activation (290). CTLA-4-/- mice die 

prematurely from lymphoproliferative disease (291) indicating that CTLA-4 negatively 

regulates T cell responses. There is both a direct and indirect explanation for this 

observation.  Engagement of the CTLA-4 molecule on the Treg with the B7 family of 

receptors (CD80 and CD86 respectively) on T cells blocks CD28 mediated co-stimulation 

and suppresses T cell expansion (292) and possibly cytotoxic function (293). CTLA-4 

expressing Treg can also engage the B7 family of receptors on DC causing down 

regulation of CD80 and 86 resulting in a decreased ability of these DC to stimulate T cell 

responses (222). Furthermore, CTLA-4 expressed on activated T cells inhibits the effector 

function of these T cells (294). Therefore anti-CTLA-4 mAb therapy boosts immune 

responses by increasing the activity of effector T cells directly and by decreasing the level 

of Treg mediated suppression on both the effector T cells and the DC (222, 292-294). 

Aside from its role in Treg function, CTLA-4 may also play a role, along with TGF−β, in 

Treg development (295). 

 

GITR belongs to the tumour necrosis factor receptor (TNFR) family and like CTLA-4 is 

constitutively expressed on Treg (72) and various activated cell types including T cells 

(296, 297). Although GITR-/- mice can still generate a reduced number of functional Treg 

(298, 299), studies using mAb to block GITR signalling on Treg have shown greatly 

impaired suppressive function of these cells indicating they also have a role in Treg 

mediated suppression of T cell proliferation (72, 300). 
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OX40 is also a member of the TNFR family expressed constitutively on Treg and 

upregulated on activated T cells (300). Treg have been shown to have greatly impaired 

suppressive function in the presence of anti-OX40 mAb suggesting that OX40 has a role in 

Treg function similar to that observed for GITR (156, 300). In contrast to GITR-/- mice, 

OX40-/- mice are able to generate normal numbers of peripheral Treg. Fewer OX40-/- 

CD4+ Foxp3- cells can be converted in vitro to CD4+ Foxp3+ Treg, however, which 

suggests that OX40 exerts some control over the expression of the Foxp3 gene (301, 302).  

 

Treg have been shown to suppress T cell cytotoxicity by inhibiting the release of IFN-

γ (262, 289) and cytotoxic granules (175, 303). The exact mechanism of this suppression is 

unclear but it is thought to be TGF-β dependent (176, 304). 

 

As previously discussed, Treg may cause target cell death indirectly by cytokine 

deprivation induced apoptosis (288).  It has also been proposed that Treg may directly kill 

target cells using GzmB (305, 306) and perforin (305-307). In vitro studies have shown 

that in addition to the reduced proliferation of CD4+ T cells seen in the presence of Treg, 

the rate of CD4+ T cell but not Treg apoptosis was increased in both murine (306) and 

human models (307, 308). In addition, Cao et al showed that wild type but not perforin 

deficient Treg promoted tumour growth and correlated with an increase in the rate of 

apoptosis in the CD8+ T cell and NK cell compartments of the tumour (305). 

 

It is obvious that Treg suppress immune responses in a vast and eclectic manner, and 

multiple mechanisms are likely used at any one time.  Therefore finding ways that either 

completely inactivate or deplete these cells exclusively is likely to be a key step towards 

successfully treating many diseases including cancer. 
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1.4.13 Abrogating Treg function in vivo 
 

Finding a treatment that selectively and effectively eliminates or inactivates Treg has been 

complicated by the fact that the most definitive marker of Treg is Foxp3, which is a 

transcription factor and therefore only found intracellularly.  

 

In mice, anti-CD25 mAb treatment is routinely used to abrogate Treg mediated 

suppression in vivo, however, the exact mechanism of this treatment has been the subject 

of some debate. The anti-CD25 mAb 7D4 has been shown to functionally inactivate >90% 

of the CD4+ CD25+ Foxp3+ population without depleting the cells (309). In contrast, the 

anti-CD25 mAb PC61 has been shown to deplete 45-75% of the CD4+ CD25+ Foxp3+ 

population in the spleen (138) and 30-65% in the lymph node (156, 310, 311) and 

inactivate the remaining CD4+ CD25+ Foxp3+ Treg (311). The degree to which the Treg 

are depleted or inactivated using PC61 is likely dependent on the amount of mAb 

administered or encountered by the individual T cells. In mice, cyclophosphamide and 

denileukin diftitox (recombinant human IL-2 protein fused to fragments of the diphtheria 

toxin and also known as ONTAK) have also been used with some success however only 

PC61 appears to be able to reduce Treg numbers without affecting CD8+ T cell numbers 

(138). PC61 treatment has been shown to improve anti-tumour effector (154, 259) and 

memory (312) responses, especially when used in conjunction with other treatments 

involving the use of anti-CD40 mAb (313) and immunisation with tumour Ag (314) for 

example. The effect of PC61 on Treg typically lasts only a matter of weeks (138) and 

repeat treatment is not advisable because activated T cells may also be affected which 

would cancel out any anticipated benefit of further depleting Treg. PC61 has therefore 

been a useful tool in demonstrating that depleting Treg is a viable treatment for boosting 
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immune responses. It is evident, however, that more selective and effective treatments are 

still required.   

 

Recent studies have also used mAb specific for the folate receptor 4 (FR4) to deplete Treg 

in vivo. Doses as low as 1 µg of anti-FR4 mAb have been shown to reduce the frequency 

of CD4+ CD25+ Treg in the blood by up to 80%, however, the CD4+ CD25- T cell 

population was also depleted by 30% (315).  

 

CTLA-4, GITR and OX40 have all been shown to have some control over Treg function as 

discussed above. A number of studies have investigated the use of antibodies against these 

molecules to deplete Treg and boost immune responses. Tumour regression was observed 

in mice treated with anti-CTLA-4 mAb (316). Treatment of tumour bearing mice with anti-

GITR mAb also resulted in the regression of tumours in an IFN−γ dependent manner. Co-

treatment with anti-CTLA-4 further increased the anti-tumour response and caused the 

regression of larger tumours. Administration of anti-OX40 mAb has also been shown to 

cause tumour regression (317). The adoptive transfer of wild type or OX40-/- Treg into 

tumour bearing mice has shown that part of the increased immune response is due to 

inhibition of the Treg. This led to increased numbers of DC migrating to the lymph node to 

stimulate a T cell response which was further boosted by the direct stimulatory action of 

OX40 on the T cells (156). PC61 treatment, however, actually decreased the efficacy of 

anti-GITR and anti-OX40 mAb therapies (156, 318). Anti-GITR and anti-CTLA-4 mAb 

also have a stimulatory effect on T cells (299) making it difficult at this stage to determine 

how much of the increased immune response observed after treatment with these mAb was 

due to Treg suppression versus T cell stimulation.  
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While the use of mAb to block CTLA-4, GITR and OX40 have shown great promise as 

anti tumour therapies, these markers are expressed only on a subset of Treg indicating 

there is still room for improvement. It is difficult to study the role of CTLA-4, GITR and 

OX40 therapy in suppressing Treg function because of the role these molecules also have 

in stimulating T cell function. Therefore, in order to study the effects of Treg, PC61 

treatment remains the simplest model.  
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1.5 Hypothesis and Aims 
 

The success of cancer immunotherapies designed to improve the function of DC and/or T 

cells in vivo has so far been limited, largely because of the immunosuppressive methods 

employed by the tumour to evade the immune response. Studies combining immune 

boosting therapies with methods to abrogate the immunosuppressive environment have 

shown some success, however, objective clinical responses to these cancer 

immunotherapies still only occur in a minority of patients. Understanding which 

immunosuppressive mechanisms tumours use and how they mediate immunosuppression 

is likely to lead to the design of combination treatments with improved efficacy. 

 

The hypothesis of this thesis was that in the B16.OVA murine melanoma model, tumour 

specific CD8+ T cell function is suppressed by intratumoral adenosine. It was further 

hypothesised that Treg also inhibit DC and T cell function using a perforin-dependent 

mechanism. 

 

To test these hypotheses, the following aims were investigated: 

 

1) To determine if the anti-tumour activity of transferred tumour specific CD8+ T cells 

could be improved by inhibiting adenosine signalling. 

 

2) To investigate whether the DC presenting tumour Ag show an improved capacity to 

stimulate an anti-tumour T cell response in Treg deficient mice. 

 

 

3) To evaluate whether Treg mediated suppression of CD8+ T cell activation is perforin-

dependent. 



2.  
CHAPTER TWO 

 

MATERIALS AND METHODS 
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2.1 Materials 
 

2.1.1 Labware 

 
Product Supplier/Distributor 

ABI Prism® optical tubes (8 tubes/strip) & optical 

caps (8 caps/strip) 

Applied Biosystems,  

Foster City, CA, USA 

Acrodisc® 32 mm syringe filters with a 0.2µm 

Supor® membrane 

PALL LifeSciences, 

Cornwall,U.K 

Axygen Micro Tubes 0.6 & 1.7ml Axygen Scientific Inc., Union 

city, CA, USA 

Cuvettes: 

Disposable electroporation chambers 

 

Gap electroporation cuvettes 

 

Life Technologies, 

Gaithersburg, Maryland, USA. 

BioRad, Hercules, California, 

USA 

BD 1 mL Tuberculin syringes & BD 10 mL syringes 

BD PrecisionGlideTM Needles: 18, 20, 25 & 27.5 

gauge 

BD Ultra-FineTM needle Insulin syringes (29 gauge): 

0.3, 0.5 & 1 mL 

Falcon® Polystyrene sterile conical tubes: Blue Max 

50mL & Blue Max Jr 15 mL 

Falcon® Polystyrene sterile multiwell tissue culture 

plates: 6 well & MicrotestTM U-bottom 96 well 

BD BioSciences, Bedford, 

MA, USA 
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plates 

Falcon® Polystyrene sterile tissue culture flasks: 

200mL & 600mL 

Falcon® Polystyrene sterile serological pipettes 

Nylon cell strainers (40 & 70 µm) 

 

No. 1 22x22 cover slips Biolab Ltd., Auckland, NZ 

Nylon Gauze (70mm) NZ Filter Specialists Ltd., 

Auckland, NZ 

Superfrost® Plus microscope slides Biolab Ltd., Auckland, NZ 

TitreTubes® Micro Tubes BioRad, Hercules, CA, USA 

 

 

2.1.2 Reagents and Buffers 
 

2 Mercaptoethanol (2 ME) 

2 ME was purchased as a 55 mM solution in PBS from Sigma (St. Louis, Missouri, USA) 

and stored at 4oC. 

 

α-Galactosylceramide (α-Gal) 

α-Gal was kindly provided by Gavin Painter (IRL, Lower Hutt, NZ) and was 

manufactured as described in Lee et al (319). The lyophilised powder was reconstituted to 

a stock concentration of 10 mg/mL using a 10:10:3 ratio of methanol, chloroform and 

injection grade dH2O respectively and stored at 4oC until used. The stock concentration 

was diluted using PBS containing 5% Tween (original concentration of 70%) to a working 

solution of 200 µg/mL and stored at 4oC until used. 
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Acetone 

Acetone was purchased from Merck (Darmstadt, Germany) and stored at room temperature 

until used. 

 

Ambion DNAfree kit 

The DNAfree kit was purchased from Ambion Inc, (Austin, Texas USA) and stored at -

20oC. The kit contains 10x DNAse buffer, 2 U/µL DNAse and 10x DNAse Inactivation 

reagent. 

 

Ammonium Chloride Tris (ACT) Lysis Buffer 

0.16 M NH4Cl, pH 7.4  (Sigma, St. Louis, Missouri, USA) and 0.17 M Tris-HCl pH 7.65 

(Merck, Darmstadt, Germany respectively) were mixed in a 9 to 1 ratio to give final 

concentrations of 0.144 M NH4Cl and 0.017 M HCl. Buffer was stored at 4oC until used. 

 

Alsever's Solution 

20.5 mg/mL Dextrose, 4.2 mg/mL NaCl and 8 mg/mL sodium citrate,2H2O (all from BDH 

Laboratory Supplies, Poole, England), were dissolved in distilled H2O (MilliQ) and the pH 

was adjusted to 6.1 with 1 M citric acid (BDH Laboratory Supplies, Poole, England). 

Alsever's solution was stored at room temperature until used. 

 

5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester (CFSE)  

CFSE was purchased in powder form from Molecular Probes (Eugene, Oregon, USA), 

resuspended as a 10 mM solution in DMSO (Sigma, St. Louis, Missouri, USA) and stored 

in 10 µL single use aliquots at -20oC. 
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CellTracker Orange (5-(and-6)-(((4-chloromethyl)benzoyl)amino)tetramethylrhodamine) 

(CTO) 

CTO was purchased in powder form from Molecular Probes (Eugene, Oregon, USA), 

resuspended as a 10 mM solution in DMSO (Sigma, St. Louis, Missouri, USA) and stored 

in 10 µL aliquots at -20oC. Aliquots were freeze-thawed not more than 3 times.  

 

Chloroform 

Chloroform was purchased from Merck (Darmstadt, Germany) and stored at room 

temperature until used. 

 

DNase I 

DNase I was purchased as a lyophilised powder from Roche, (Mannheim, Germany), 

dissolved in IMDM to a concentration of 10 mg/mL and stored at -20oC. 

 

Ethanol (EtOH) 

Molecular grade 100% EtOH was purchased from Carlo Erba Reagents (Milan, Italy) and 

stored at room temperature until used. 

 

Ethylenediaminetetraacetic Acid (EDTA) 

EDTA (Sigma, St. Louis, Missouri, USA) was purchased in powder form and dissolved in 

dH2O to give a stock concentration of 0.5 M and stored at room temperature until used. 

 

Flow Cytometry Analysis (FCA) Buffer 

0.5 M EDTA, 5% NaN3 (Sigma, St. Louis, Missouri, USA) and FBS (GIBCO, Invitrogen, 

Auckland, NZ), were added to PBS along with FBS to give final concentrations of 10 mM 

EDTA, 0.01% NaN3 and 2% FBS. Buffer was stored at 4oC until used. 
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Fluorescence Activated Cell Sorting (FACS) Buffer 

0.5 M EDTA (Sigma) and FBS (GIBCO) were added to RPMI medium 1640 containing L-

glutamine but not phenol red (GIBCO, Invitrogen, Auckland, NZ), to give final 

concentrations of 10 mM and 2 % respectively. Buffer was stored at 4oC for up to 1 week. 

 

Foetal Bovine Serum (FBS) 

FBS was purchased from GIBCO (Invitrogen, Auckland, NZ) and stored in 25 mL aliquots 

at -20oC. After thawing, aliquots were stored at 4oC for a maximum of 2 weeks. The 

endotoxin levels of the FBS was determined before purchase and found to be 27 EU/mL. 

FBS was also screened for Mycoplasma and virus before purchase. 

 

Geneticin® (G418) 

The selective antibiotic Geneticin® (G418, GIBCO, Invitrogen, Auckland, NZ) was made 

into aliquots and stored at -20 °C. In use aliquots were stored at 4oC. 

 

Intracellular cytokine detection kits 

The BD Cytofix/Cytoperm kit containing 1x Cytofix/Cytoperm buffer and 10x Perm/Wash 

buffer was purchased from BD Pharmingen (San Diego, Calilfornia, USA) and stored at 

4oC until used. The Foxp3 flow kit containing 4x Fix/Perm buffer and 10x Perm buffer 

was purchased from eBioscience (Bedford, Maryland, USA) and stored at 4oC until used. 

 

Iscove's Modified Dulbecco's Medium (IMDM) 

IMDM supplemented with GlutaMAXTM, 25 mM HEPES buffer and 3.024 mg/L NaHCO3 

was purchased from GIBCO (Invitrogen, Auckland, NZ) and stored at 4oC until used. 
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Complete Iscove's Modified Dulbecco's Medium (cIMDM) 

IMDM was supplemented with 100 U/mL Penicillin-Streptomycin (GIBCO, Invitrogen, 

Auckland, NZ), 55 µM 2 ME and 5% FBS. Media was stored at 4oC for a maximum of 2 

weeks. 

 

Isopropanol 

Analytical grade Isopropanol was purchased from Scharlau Chemie, (Barcelona, Spain) 

and stored at room temperature until used. 

 

Liberase CI 

Liberase CI was purchased as a lyophilised powder from Roche (Mannheim, Germany), 

dissolved in injection grade dH2O to a concentration of 16.7 mg/mL and stored in single 

use aliquots of 125 µL at -20oC.  

 

Lipopolysaccharides (LPS) 

LPS from Escherichia coli, serotype 0111:B4, was purchased as a lyophilised powder from 

Sigma (St. Louis, MO, USA), dissolved in IMDM to a stock concentration of 1 mg/mL 

and stored at 4oC. The stock concentration was further diluted 100x in IMDM to a working 

solution of 10 µg/mL, which was used immediately. 

 

Magnetic Separation (MACS) Beads 

Anti-CD8α, anti-CD4, anti-CD11c and anti-biotyn MACS Microbeads were purchased 

from Miltenyi Biotec (Germany) and stored at 4oC until used. 
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Methanol 

Analytical grade methanol was purchased from Scharlau Chemie (Barcelona, Spain) and 

stored at room temperature until used. 

 

Polymerase Chain Reaction (PCR) reagents 

10 mM dNTP mix (containing 10 mM ATP, GTP, CTP and TTP), 0.2 U/µL Platinum® 

Taq DNA polymerase, 10x PCR buffer (-MgCl2) and 50 mM MgCl2 were purchased from 

(Invitrogen, Auckland, NZ) and stored at -20oC.  

 

Primer sequences 

Primers were obtained from Sigma GenoSys (Sigma Aldrich, Auckland, NZ) 

 

Gene 

target 

Name of 

primer set 

Annealing 

Temperature 

Expected  

size of 

product 

(bp) 

Sequence of primers 

5'-3' 

Forward primer listed first 

For1/Rev1 56oC 374 CTCACGCAGAGTTCCATCCT 

TCCATCTGCTTCAGCTGTCT 

A2a 

adenosine  

receptor For2/Rev2 61oC 316 CGTTGTCAACCCCTTCATCT 

CTGGTGCTCCTGGGTAAGAA 

18S 

rRNA 

 56 or 61oC 150 GTAACCCGTTGAACCCCATT 

CCATCCAATCGGTAGTAGCG 

GAPDH  61oC 222 AACTTTGGCATTGTGGAAGG 

ACACATTGGGGGTAGGAACA 
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Penicillin-Streptomycin 

Penicillin-Streptomycin was purchased in liquid form from GIBCO (Invitrogen, Auckland, 

NZ) and stored as single use aliquots at -20oC until used. 

 

Phosphate Buffered Saline (PBS) 

CaCl2 and MgCl2 free PBS was purchased from GIBCO (Invitrogen, Auckland, NZ) and 

stored at 4oC after opening. 

 

Reverse Transcription Reagents 

50 µM Random Hexamer primer, 10 mM dNTP mix, 100 mM DTT, 40 U/µLRNAse 

OUT, 200 U/µL Superscript III RT and 2 U/µL RNase H were purchased from Invitrogen 

(Auckland, NZ) and stored at -20oC until used. 

 

Small Interfering RNA (siRNA) sequences 

The A2a adenosine receptor siRNA sequence was obtained from Chen et al (320) and was 

purchased from Sigma-Proligo (Sigma Aldrich, Auckland, NZ). 

Sense strand: 5'-AAGUGGCACUUGGCUAUUUCU 

Anti-sense strand: 5'-AAAUAGCCAAGUGCCACUUCU 

 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) siRNA was purchased as part of a 

positive control kit from Ambion Inc (Austin, TX USA). 

 

Sodium Azide (NaN3) 

NaN3 (Sigma, St. Louis, Missouri, USA) was purchased in powder form and dissolved in 

dH2O to give a stock concentration of 5%. The solution was stored at room temperature 

until used. 
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Sodium Chloride (NaCl) 

NaCl was purchased in powder form from Sigma (St. Louis, MO, USA), dissolved in 

dH2O to a final concentration of 1.8% and stored at room temperature. 

 

Tris-acetate-EDTA (TAE) buffer 

TAE buffer containing 2 M Tris Acetate and 50 mM EDTA was purchased as a 50x 

concentrated stock from GIBCO (Invitrogen, Auckland, NZ) and diluted to a 1x working 

solution using dH2O. 

 

Tris Buffered Saline (TBS) 

TBS buffer was made by adding 2.5 mL 20% Triton X and 25 mL FBS to 500 mL PBS to 

give a final concentration of 0.1% Triton X and 5% FBS. The buffer was stored at 4oC 

until used. 

 

Tritiated Thymidine 

6-Methyl-3H thymidine (5 mCi), with a specific activity of 5 Ci/mmol, was purchased 

from Amersham Biosciences (Little Chalfont, UK). The stock was diluted in IMDM to a 

working solution of 20 µCi/mL and stored at 4oC. 

 

Triton® X405 (Triton X) 

Triton X was purchased as a 70% solution from Sigma (St. Louis, Missouri, USA) and 

stored at room temperature until used. A 20% working solution was made by adding 10 

mL Triton X to 15 mL PBS and was stored at room temperature until used. 
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Trypsin/EDTA 

Trypsin/EDTA solution containing 0.25% Trypsin and 1 mM EDTA in Hanks' Balanced 

Salt Solution, was purchased from GIBCO (Invitrogen, Auckland, NZ), and aliquots were 

stored at -20oC. In use aliquots were stored at 4oC. 

 

Tween® 20 (Tween) 

Tween was purchased from Sigma (St. Louis, Missouri, USA) and stored at room 

temperature until used. 

 

Vectashield 

Vectashield was purchased from Vector Laboratories, Inc (Burlingam, California, USA) 

and stored at 4oC until used. 

 

Wuerzburger Buffer 

0.5 M EDTA, 10 mg/mL DNAse I and FBS was added to sterile PBS to give a final 

concentration of 5 mM EDTA, 20 µg/mL DNase and 1 % FBS. Buffer was stored at 4oC 

until used. 

 

2.1.3 Cytokines 
 

Granulocyte-macrophage colony stimulating factor (GM-CSF) 

Recombinant murine GM-CSF was produced using stationary phase cultures of the murine 

X63 cell line, modified to secrete the full-length murine GM-CSF protein. The modified 

murine X63 cell line was kindly provided by Dr Antonius Rolink (Basel Institute for 

Immunology, Basel, Switzerland). 
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IL-4 

Recombinant murine IL-4 was produced using stationary phase cultures of a Chinese 

Hamster Ovary cell line (CHO), modified to secrete the full length murine IL-4 protein 

(321). The IL-4 producing CHO cell line was kindly provided by Dr Antonius Rolink 

(Basel Institute for Immunology, Basel, Switzerland). 

 

IL-2 

Recombinant human IL-2 was produced using stationary phase cultures of the IL2L6 cell 

line, generated by modifying the murine J558 parental line to secrete the full-length human 

IL-2 protein (322). 

 

Cytokines were collected by growing adherent cells in cIMDM, harvesting the culture 

supernatants and filtering through a 0.2 µm serum filter. The cytokines were titrated using 

BMDC cultures (GM-CSF and IL-4) or IL-2 dependent T cell clones (IL-2) to determine 

the optimal amount to be used and were stored as aliquots at -80oC. In use aliquots were 

stored at 4oC for up to 2 weeks. 

 

2.1.4 Antibodies and fluorophores 
 

4´,6-diamidino-2-phenylindole, dihydrochloride (DAPI)  

DAPI was purchased as a lyophilised powder from Invitrogen (Auckland, NZ) and 

dissolved in dH2O to a stock concentration of 5 mg/mL. The solution was then further 

diluted to a working solution of 200 mg/mL in FCA buffer and stored in aliquots at 4oC 

until used. 
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Streptavidin (SA) Alexa Fluor 555 

SA-Alexa Fluor 555 was purchased from Invitrogen (Auckland, NZ) and stored in aliquots 

at -20oC. In use aliquots were stored at 4oC. 

 

The following antibodies were purified from B cell hybridoma cell lines using protein G-

Sepharose (Pharmacia Biotech, Uppsala, Sweden): 

 

Specificity Clone 

FcγRII/III (CD32/CD16) 2.4G2 

CD3 2C11 

CD4 GK1.5  

CD8α 2.43 

CD11c N418 

CD25/IL-2Ra PC61 

CD86/B7-2 GL1 

F4/80 BM8 

MHC II (I-A)b 3JP 

 

The following antibodies were purchased from eBioscience (San Diego, CA, USA): 

 

Specificity  Clone  Isotype  

Foxp3 FJK-16s Rag IgG2aκ 

KLRG-1 2F1 Golden Hamster IgG 

TNF-α MP6-XT22 EBRG1 
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The following antibodies and fluorophores were purchased from BD Pharmingen (San 

Diego, CA, USA): 

 

Specificity Clone Isotype 

CD8α 53-6.7 & Ly-2     

CD11b M1/70  

CD11c HL3  

CD25/IL-2Rα 7D4 & 

PC61  

Rat IgG1λ 

Rat IgMκ 

CD40 3/23  

CD45 30-F11  

CD45.1 A20  

CD122/IL-15Rβ TM-β1 G155-178 

IFN-γ XMG1.2  

Vα2 B20.1  

Vβ5.1,5.2 MR9-4  

Propidium Iodide (PI)   

SA – FITC, PE, PerCP, APC   

 

 

2.1.5 Proteins and peptides 
 

Ovalbumin protein from chicken egg white (OVA) was purchased from Sigma-Aldrich NZ 

Ltd, Auckland, NZ. The ovalbumin peptides SIINFEKL (OVA257-264) and 

ISQAVHAAHAEINEAGR (OVA323-339) were purchased from Mimotopes Pty Ltd 

(Clayton, VA, Australia). 
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2.1.6 Tumour cell lines 
 

The B16.OVA melanoma tumour cell line was generated by Drs. Edith Lord and John G. 

Frelinger, University of Rochester, Rochester, NY (323) and kindly provided by Drs. 

Roslyn Kemp and Dick Dutton, Trudeau Institute, NY, USA. The B16.F1 melanoma 

tumour cell line was purchased from American Type Culture Collection (ATCC, 

Manassas, VA, USA) and used as a control because the growth kinetics was similar to 

B16.OVA. 

 

2.1.7 Mice 
 

2.1.7.1 Maintenance and ethical approvals 
 

All mice were bred and maintained in the Biomedical Research Unit of the Malaghan 

Institute of Medical Research. The experimental procedures performed on these mice were 

approved by the Victoria University Animal Ethics Committee and carried out in 

accordance with the guidelines of Victoria University of Wellington.  

 

2.1.7.2 Mouse strains 
 

C57BL/6 (C57) breeding pairs were obtained from the Jackson Laboratories (Bar Harbour, 

ME, USA). 

 

B6.SJL-PtprcaPep3b/BoyJArc (B6 congenic) mice were created by backcrossing the inbred 

strain SJL, expressing the Ptprca gene (CD45.1), onto the C57BL/6 (CD45.2) background 

(324). C57BL/6 and B6 congenic cells can therefore be differentiated on the basis of 
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CD45.1 and CD45.2 expression respectively. Breeding pairs were obtained from the 

Animal Resources Centre (Canning Vale, WA, Australia). 

Foxp3GFP mice (325) were created by the in-frame insertion of the eGFP gene into the 

first coding exon of the Foxp3 gene located on the X chromosome. These mice produce a 

fully functional Foxp3 protein fused to the eGFP protein. Breeding pairs were obtained 

from Prof. Alexander Y Rudensky, University of Washington (Seattle, Washington, USA). 

 

OTI and OTII mice (326, 327) express transgenic TCR specific for Kb+ OVA257-264 and I-

Ab + OVA323-339, respectively, and were obtained from Dr. Sarah Hook, School of 

Pharmacy, Dunedin, NZ, with the permission of Prof. Frank Carbone, Melbourne 

University, Australia. 

 

OTI congenic mice were created in-house, by crossing OTI mice (CD45.2+) with B6 

congenic mice (CD45.1+). 

 

Perforin deficient (PKO) breeding pairs (92) were obtained from Jackson Laboratories 

(Bar Harbour, ME, USA).  

 

V(D)J Recombination Activation Gene RAG-1 deficient mice (RAG1-/-) are defective in 

their ability to recombine the T cell receptor (TCR) and B cell receptor (BCR) and as a 

consequence have no mature T or B cells (328). RAG1-/- breeding pairs were purchased 

from the Waler and Eliza Hall Institute (Melbourne, Australia). 

 

Mouse strains were maintained by mating between brothers and sisters. For all 

experiments mice were sex matched and 6-8 weeks old when the experiments commenced. 
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2.2 Methods 
 

2.2.1 General cell culture 
 

All cells were cultured in cIMDM at 37oC with 5 % CO2 and 95 % humidity.   

Tumour cell cultures also contained 0.5 mg/mL G418 (GIBCO, Auckland, NZ). Adherent 

cells were incubated for 1 minute at 37oC in 3 mL Trypsin/EDTA to detach them from the 

flask. Proteolysis was stopped by the addition of an equal volume of FBS and cells were 

washed twice in IMDM before injecting into mice.   

 

2.2.2 Dendritic cells (DC) 
 

2.2.2.1 Generation of Bone marrow derived DC 
 

C57BL/6 mice were euthanised and the hind legs were detached at the hip and collected 

into IMDM. All soft tissue was removed and the knee joints and ends of the femur and 

tibia were cut off to allow access to the bone marrow (BM). Bone marrow was then 

flushed from the bones by inserting a 25-gauge needle attached to a 10 mL syringe into 

one end of the bone and then pushing the IMDM through the bone and into a 50 mL 

Falcon tube. Cell clumps were disrupted by vigorous repeat pipetting followed by passing 

the suspension through a 70 µm nylon filter. Live cells were identified by trypan blue 

(GIBCO, Invitrogen, Auckland, NZ) exclusion and counted using a haemocytometer. Cells 

were pelleted by centrifugation at 320 xg for 4 minutes and resuspended at 4 x 105 

cells/mL. Cells were plated out into 6 well plates at 2 x 106 cells/well containing 10 ng/mL 

GM-CSF and 20 ng/mL IL-4 (329). Cells were incubated at 37oC and supplemented with 
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nutrients on days 2, 4 and 6 by replacing 2 mL from each well with 2 mL of cIMDM 

containing 10 ng/mL GM-CSF and 20 ng/mL IL-4. 

 

2.2.2.2 Activation of DC 
 

During the final ~16 hours of the 7 day DC culture, DC were activated by the addition of 

50 µL of 10 µg/mL LPS to the cultures to give a final concentration of 100 ng/mL LPS. 

Adherent cells were harvested on day 7 by gently rinsing the plates with the supernatant 2-

3 times before collecting the supernatant a final time. 

 

2.2.2.3 Loading of DC with α-Gal 
 

During the final ~24 hours of the 7 day DC culture, α-Gal was added to the culture at a 

final concentration of 100 ng/mL. Adherent cells were harvested on day 7 by gently 

rinsing the plates with the supernatant 2-3 times before collecting the supernatant a final 

time. 

 

2.2.2.4 Loading of DC with OVA protein 
 

OVA protein was added to DC cultures at a final concentration of 1 mg/mL, 24 hours 

before harvesting and 8 hours before LPS treatment. Cells were washed twice in sterile 

PBS and resuspended in sterile PBS at the appropriate concentration for i.v. injection of 

200 µL/mouse. 
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2.2.3 In vitro T cell activation 
 

LPS-treated DC were plated out into 6 well plates at 4 x 105 cells/well in a 2.5 mL volume 

of cIMDM. SIINFEKL was added to the DC culture to give a final concentration of 2 µM. 

Four hours after the addition of SIINFEKL, lymph nodes from euthanised, OTI mice were 

collected into IMDM and processed into single cell suspensions by using the plunger from 

a 1 mL syringe to press the cells through a 70 µm nylon filter. Live cells were counted and 

added to each well such that each well contained 4 x 105 DC and 2 x 106 lymph node cells 

(1:5 ratio) per well in a 5 mL volume. Plates were incubated for 4 days at 37oC after which 

the T cells were harvested by repeat pipetting. To expand the T cell population, cells were 

washed twice in IMDM and cultured in tissue culture flasks containing 100 U/mL IL-2 at 5 

x 105 cells/mL and media was changed every 2 days.  

 

2.2.4 Electroporation of siRNA into activated T cells and analysis of 
the effectiveness of RNA silencing  

 

2.2.4.1 Electroporation of siRNA into activated T cells 
 

In vitro activated T cells were harvested from culture and centrifuged at 320 g. Cells were 

washed and resuspended in IMDM at concentrations from 18.75-37.5 x 106 cells/mL, and 

400 µL of the cell suspension was transferred into each cuvette. A2a adenosine receptor or 

GAPDH siRNA was added to the cuvettes at a range of concentrations from 0.625-1500 

µM and mixed by repeat pipetting. The cuvettes were chilled on ice for 5 minutes and 

electroporated using a range of conditions as detailed in the results section. Immediately 

after electroporation, the cuvettes were incubated on ice for 10 minutes. Cells were placed 

in cIMDM containing 100 U/mL IL-2 and cultured for 2 days before assessing the cell 

yield by exclusion of the cell viability dye trypan blue. The success of the RNA silencing 



Chapter 2: Materials and Methods 

 

64 

was also assessed using a CD8+ T cell proliferation assay, established in Figure 3.2 or by 

reverse transcription-PCR as described below. 

 

Samples were contained in disposable electroporation chambers chamber (Life 

Technologies, Gaithersburg, Maryland, USA) and electroporated using a Cell-PoratorTM 

(Life Technologies). For later experiments, as indicated in the results section, samples 

were instead contained in gap electroporation cuvettes (BioRad, Hercules, CA, USA) and 

were electroporated with the Gene Pulser (BioRad). 

 

2.2.4.2 Isolation of total RNA from cells 
 

Naïve, activated or activated and siRNA treated OTI T cells (105 – 106) were collected into 

1.7 mL microtubes, centrifuged for 2 minutes at 320 g and resuspended in 1 mL TRIzol® 

(Invitrogen) per 5 x 106 cells. Cells were incubated at room temperature for 5 minutes to 

allow dissociation of nucleoproteins after which 200 µL chloroform (Merck) was added 

for every 1 mL of TRIzol® used. Tubes were shaken vigorously for 15 seconds, incubated 

at room temperature for 3 minutes and centrifuged at 13700 g for 15 minutes at 4oC. The 

colourless aqueous phase was transferred to a new tube containing 500 µL isopropanol 

(Scharlau Chemie), mixed and incubated at room temperature for 10 minutes to precipitate 

the RNA. Samples were centrifuged for 10 minutes at 4oC and the supernatant was 

discarded. The pellet was washed in 1 mL 75 % EtOH (Carlo Erba Reagents) by vortexing 

to resuspend the pellet followed by centrifugation for 5 minutes at 5350 g and 4oC. The 

EtOH was carefully removed and the pellet was air dried and resuspended in 20 µL RNase 

free dH2O. The RNA was then DNase treated using the Ambion DNAfree kit (Ambion Inc, 

Austin, Texas, USA) to remove any contaminating DNA. The 20 µL RNA solution was 

mixed gently with 2 µL 10x DNase buffer and 1 µL (2 U) DNase I and incubated at 37oC 
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for 25 minutes. The reaction was stopped by the addition of 2.3 µL 10x DNase Inactivation 

reagent. The reaction was incubated for 2 minutes at room temperature, centrifuged for 1 

minute at 9520 g and the supernatant containing the DNase-free RNA was removed to a 

fresh 0.6 mL microtube. 

 

2.2.4.3 Reverse transcription of RNA into cDNA 
 

Primer annealing: Total RNA (up to 5 µg RNA in 8 µL) was mixed with 1 µL 50 µM 

random hexamer primer and 1 µL 10 mM dexoynucleotide triphosphates (dNTP) mix. The 

10 µL annealing mix containing a final concentration of 5 µM primer and 1 mM dNTP 

was incubated for 5 minutes at 65oC and left on ice for 1 minute. 

cDNA synthesis: A cDNA synthesis cocktail was prepared from 4 µL Reaction buffer, 1 

µL 100 mM DTT, 1 µL RNAse OUT and 1 µL Superscript III RT and was made up to a 

total volume of 10 µL with RNAse/DNAse free dH2O. The final solution contained 2x 

Reaction buffer, 10 mM DTT, 40 U RNAse OUT and 200 U Superscript III RT. The 

cDNA synthesis cocktail and the annealing mix were mixed gently and spun briefly to 

collect the reagents. The sample was then incubated for 50 minutes at 50oC and the 

reaction was stopped by incubating a further 5 minutes at 85oC. The sample was chilled on 

ice. To remove residual RNA the sample was mixed with 0.5 µL (1U) RNase H and 

incubated for 20 minutes at 37oC. The reaction was stopped by incubation at 65oC for 20 

minutes. Samples were stored at -20oC for up to 2 months. All reagents used were 

purchased from Invitrogen (Auckland, New Zealand).  
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2.2.4.4 PCR amplification of cDNA 

 

A 25 µL PCR mix was prepared using 0.5 µL 10 mM dNTP mix, 1 µL 10 µM forward 

primer, 1 µL 10 µM reverse primer, 0.2 µL 0.2 U/ µL Platinum® Taq DNA polymerase, 

2.5 µL 10x PCR buffer (-Mg) and 0.75 µL 50 mM MgCl2. cDNA (up to 2 ng in a 

maximum volume of 19.05 µL) and dH2O were added to the PCR mix containing final 

concentrations of 0.2 mM dNTP mix, 0.4 µM forward primer, 0.4 µM reverse primers, 

0.04 U Platinum® Taq DNA polymerase, 1x PCR buffer (-Mg) and 1.5 mM MgCl2. cDNA 

sequences were PCR amplified using the iCycler PCR system (BioRad, Hercules, CA, 

USA). The thermal cycling conditions used were as follows: DNA templates were initially 

denatured for 2 minutes at 94oC followed by 32 cycles of denaturing for 30 seconds at 

94oC, annealing the primers to the template for 30 seconds at 61oC and a 30 second 

extension step at 72oC. After the final cycle, reactions were incubated a further 5 minutes 

at 72oC and then stored at 4 oC. 

 

2.2.4.4 Gel electrophoresis 
 

PCR products were mixed with a loading dye at a 5:1 ratio and loaded into a 1 % agarose 

gel containing a final concentration of 1x SYBR® Safe DNA gel stain. A 1kb+ DNA 

ladder was also loaded onto the gels for a size comparison. Gels were submerged in 1x 

TAE buffer (GIBCOTM) which also contained a final concentration of 1x SYBR® Safe 

DNA gel stain. All reagents except those specified were purchased from Invitrogen, 

(Auckland, New Zealand). 
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2.2.5 Fluorescent labelling of cells and flow cytometry 

 

2.2.5.1 Preparation of leukocyte suspensions 

 

Blood 

Blood was collected either from the tail vein (live mice) or the heart (of mice euthanased 

by CO2 asphyxiation) into 1.7 mL micro tubes containing at least an equal volume of 

Alsever's Solution. The samples were centrifuged at 600 g for 2 minutes and the 

supernatant was removed. Pellets were resuspended in 1 mL ACT buffer and incubated at 

37oC for 10 minutes to lyse the red blood cells. Large blood samples underwent a second 

round of red blood cell lysis where the cells were resuspended and incubated in 0.5 mL 

dH2O at room temperature for 30 seconds followed by the addition of 0.5 mL 1.8% NaCl. 

Cells were washed twice and resuspended in FCA buffer and stored on ice in preparation 

for fluorescent labelling on the same day. 

 

Lymph node and spleen 

Lymph nodes and spleens were disrupted by using the plunger from a 1 mL syringe to 

press the tissue through a 70 µM cell strainer. Splenocytes were incubated in 5 mL ACT 

buffer for 5 minutes at 37oC to lyse red blood cells and washed in IMDM. Cells were 

washed and resuspended in the appropriate buffer and stored on ice in preparation for 

tissue digestion on the same day. 

 

Tissue digestion to release DC  

Lymph nodes and tumours were digested in a total volume of 1 mL and 5 mL of IMDM 

respectively. Tissues were broken into small pieces using tweezers. DNase and Liberase CI 
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were added to the suspensions at a final concentration of 100 µg/mL and 0.4 mg/mL 

respectively. The digestions were incubated at 37oC and mixed regularly throughout the 30 

minute incubation. The reaction was stopped by adding EDTA at a final concentration of 

10 mM and incubating for a further 5 minutes at 37oC. The digests were then pressed 

through a 70 µM cell strainer to achieve a single cell suspension, washed twice and 

resuspended in IMDM and stored on ice in preparation for fluorescent labelling on the 

same day. 

 

2.2.4.5 Detection of surface marker expression 
 

Single cell suspensions were counted, washed once in FCA buffer and transferred to 96 

well plates such that each well contained up to 2 x 106 cells. Plates were centrifuged for 2 

minutes at 320 g and the supernatants were removed by tipping the plate upside down and 

flicking once. Pellets were resuspended by gentle vortexing. Fc receptors were blocked by 

incubating in FCA buffer containing 10 µg/mL 2.4G2 for 10 minutes on ice. Fluorescently 

conjugated antibodies against cell surface markers of interest were added to the 2.4G2 

containing cell suspensions at the appropriate dilutions and incubated a further 10 minutes 

on ice. Cells were washed once with FCA buffer and then incubated with the appropriate 

streptavidin-conjugated fluorochrome for 10 minutes on ice, where required. Cells were 

washed a further two times, resuspended in 150 µL FCA buffer and 150 µL of a 1 to 1000 

dilution of the 200 µg/mL DAPI stock solution was added directly before analysis by flow 

cytometry. The final concentration of the cell viability dye DAPI in the sample was 0.1 

µg/mL. Alternatively, the cells were resuspended in 300 µL FCA buffer and 1 µL 75 

µg/mL PI was added directly before analysis by flow cytometry. The final concentration of 

the cell viability dye PI in the sample was 0.25 µg/mL. 
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2.2.4.6 In vitro restimulation 
 

Prior to intracellular labelling of IFN-γ and TNF-α, splenocytes were resuspended at 106 

cells/mL in cIMDM and 6 mL of each suspension was transferred into a single well of a 6 

well plate. Cells were restimulated by incubating for 5 hours at 37oC with a final 

concentration of 1 µM SIINFEKL peptide. 6 µL 1 mg/ml GolgiStop (Pharmingen, BD 

Biosciences, San Diego, CA, USA) was also added to give a final concentration of 1 µg/ml 

and was present to prevent the export of proteins from the Golgi bodies. Cells were then 

harvested, washed in IMDM, resuspended in FCA buffer and stored on ice in preparation 

for labelling of intracellular markers. 

 

2.2.4.7 Detection of intracellular molecules 
 

TNF-α and IFN-γ production was detected using the Cytofix/Cytoperm kit from BD 

Pharmingen and Foxp3 signal was detected using the Foxp3 flow kit from ebioscience.  

Peptide restimulated cells were fixed and permeabilised by resuspension in 200 µL 

Fix/Perm buffer per well. Cells were incubated for 30 minutes at 4oC, washed twice and 

incubated a further 15 minutes in 80 µL 1x Perm/Wash solution at 4oC. Cells were 

incubated a further 30 minutes at 4oC with 1 µL of the anti-IFNγ or anti-TNFα  specific 

antibodies , or 0.5 µL anti-Foxp3 specific antibody, or the respective isotype matched 

controls. Cells were washed twice and incubated a further 25 minutes with 1x Perm/Wash 

buffer to reduce the level of background staining. Cells were then washed and resuspended 

in 300 µL FCA buffer and stored on ice until acquisition. 
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2.2.4.8 Acquisition and analysis 
 

Data was acquired using a FACSort, a FACScalibur or an LSRII SORP flow cytometer 

(Beckton-Dickinson, San Jose, CA, USA) and analysed using FlowJo software (Tree Star, 

San Carlos, CA, USA). Live cells, or whole-fixed cells, were identified on the basis of 

Forward Scatter (FSC) and Side Scatter (SSC) properties. In some experiments, live cells 

were also identified on the basis of their ability to exclude PI or DAPI. To calibrate the 

acquisition voltages and compensate for spectral overlap between the fluorophores used, 

unstained samples and samples labelled with a single fluorophore for each of the 

fluorophores used in each experiment were included. Where available, appropriately 

matched isotype control antibodies were used to control for background fluorescence 

caused by non-specific antibody binding. In some instances, fluorescence minus one 

controls were also included to help identify shifts in the level of background staining.  

 

2.2.5 Cell purification/Sorting 
 

2.2.5.1 Magnetic Cell Separation (MACS) 
 

OTI lymph node suspensions were enriched for CD8+ T cells by incubating 107 cells in 90 

µL Wuerzburger buffer and 10 µL anti-CD8α MACS Microbeads (Miltenyi Biotec, 

Germany) for 20 minutes at 4oC. Cells were mixed a number of times during incubation. 

Unbound beads were removed by adding a ten-fold excess of Wuerzburger buffer to the 

suspension and centrifuging the cells at 320 g for 4 minutes. Pelleted cells were 

resuspended at 108 cells/mL in Wuerzburger buffer for positive selection on the 

AutoMACS machine (Miltenyi Biotec).  
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OTII lymph node suspensions were first depleted of CD25+ cells by Fc receptor blocking 

followed by cell surface labelling with anti-CD25-PE. Ten million cells were then 

incubated in 90 µL Wuerzburger buffer and 10 µL anti-PE MACS Microbeads (Miltenyi 

Biotec) for 20 minutes at 4oC. Cells were resuspended at 108 cells/mL in Wuerzburger 

buffer and the CD25 negative population was collected using the AutoMACS machine 

(Miltenyi Biotec). Cells were then enriched for CD4+ T cells using the same method as 

CD8+ T cell enrichment except anti-CD4 MACS Microbeads were used (Miltenyi Biotec). 

 

2.2.5.2 Fluorescence Activated Cell Sorting (FACS) 
 

To purify CD4+ Foxp3+ Treg from tumours, tumour cell suspensions from Foxp3GFP mice 

were enriched for CD4+ T cells by Automacs separation using anti-CD4 MACS 

Microbeads (Miltenyi Biotec). Enriched cells were washed twice and resuspended in 

FACS buffer at 1.5 x 107 cells/mL. Cell suspensions were sorted for GFP positive cells 

using a FACSDiVa (Becton Dickinson, San Diego, California, USA). The resulting 

population consisted of  >98 % GFP+, and therefore CD4+ Foxp3+, cells. 

 

To purify CD45+ CD11c+ DC from tumours, tumour cell suspensions were enriched for 

CD45+ cells by Fc receptor blocking, using the mAb 24G2, followed by Automacs 

separation using anti-CD11c MACS Microbeads (Miltenyi Biotec). Enriched cells were 

washed with Wuerzburger buffer, Fc receptor blocked and labelled for 10 minutes on ice 

with anti-CD11c-APC. Cells were washed twice and resuspended in FACS Sort Buffer at 

1.5 x 107 cells/mL. Cell suspensions were sorted for CD45+, CD11c+ cells using a 

FACSDiVa (Becton Dickinson, San Diego, CA, USA). The resulting population consisted 

of  >96 % CD45+, CD11c+ cells. 
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2.2.6 Assays of cell function 
 

2.2.6.1 In vitro proliferation assays 
 

In vitro activated CD8+ T cells (105 cells per well) were incubated in cIMDM containing 

IL-2 (10 or 100U). Adenosine or the stable adenosine analogue 5'-N-

Ethylcarboxamidoadenosine (NECA) was titrated into the T cell cultures.  To maintain 

high levels of adenosine throughout the experiment, the adenosine metabolic inhibitor 

erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA 30µM) was also added to half of the 

cultures containing adenosine. As a measure of proliferation, 1µCi 3H-thymidine 

(Amersham Biosciences, Little Chalfont, UK) was added to wells during the final 6 hours 

of the 2-day culture period. Cells were harvested using an automated cell harvester 

(Tomtec Inc., Orange, CT, USA) on to Wallac Filters (Turku, Finland). Filters were dried 

and sealed in sample bags (Wallac) with 5 mL BetaScint scintillation fluid (Wallac). 3H-

thymidine incorporation was measured using a Betacounter (Wallac). 

 

2.2.6.2 In vitro suppression assay 
 

A population of highly pure (<96%) CD4+ Foxp3+ Treg were isolated from tumour cell 

suspensions by positive magnetic sorting followed by electronic sorting. 

 

Treg were titrated in duplicate into 96 well U bottom plates containing 2.4 x 103 DC and 4 

x 104 CD4+, CD25- effector T cells per well and stimulated with 1µg/ml anti-CD3 for 3 

days. Proliferation was measured similar to the in vitro proliferation assay with the 

exception that the cells were cultured for 3 days. 
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2.2.6.3 Ex vivo proliferation assay 
 

A population of highly pure (<96%) CD45+ CD11c+ TIDC were isolated from tumour cell 

suspensions by positive magnetic sorting followed by electronic sorting. 

 

TIDC were titrated in duplicate into 96 well U bottom plates containing 2 x 105 purified 

OTI or OTII T cells in a total volume of 200µL. As a positive control, specific peptide (1 

µM SIINFEKL or ISQAVHAAHAEINEAGR) was loaded onto 3 x103 DC by incubating 

at 37oC for 1 hour before these DC were also added to the appropriate T cell cultures. 

Balb/c T cells were used as a positive allogeneic control for proliferation. Proliferation was 

measured in a manner identical to that used for the in vitro proliferation assay with the 

exception that the cells were cultured for 3 days. 

 

2.2.6.4 In vivo proliferation assays 
 

In vivo proliferation in response to tumours 

CD45.1+ B6 congenic mice were treated with PC61 or left untreated and inoculated with 

B16.OVA tumours. Approximately 14 days later 1.5 x 106 OT-I and 1.5 x 106 OT-II T 

cells labelled with CFSE were adoptively transferred into the mice by i.v. injection. 

Tumour draining and non-draining lymph nodes were removed 3 days after T cell transfer 

and analysed by flow cytometry for T cell proliferation. As controls, tumour bearing and 

non-tumour bearing mice were given 2 x105 DC +/- 1uM SIINFEKL peptide by s.c 

injection to the forearm one day prior to the T cell transfer. 

 

 

 



Chapter 2: Materials and Methods 

 

74 

In vivo proliferation in response to DC 

C57BL/6 and PKO mice received a single i.p. injection containing 100 µg PC61 or were 

left untreated. Two days after PC61 treatment, all mice received 75 x103 naïve OTI 

congenic lymphocytes. Lymphocytes were prepared by removing the lymph nodes from a 

naïve OTI congenic mouse and using the plunger from a 1 mL syringe to press the lymph 

nodes through a 70 µM cell strainer. The resulting single cell suspension was washed twice 

in PBS and resuspended at 375 x103 cells/mL. One day after the adoptive transfer of T 

cells, mice received 5 x105 OVA loaded, LPS matured DC by i.v. injection. As a control, a 

second group of PC61 untreated mice received 5 x105 untreated DC by i.v. injection. 

Blood samples were taken on days 4, 7 and 15 after the transfer of DC and analysed by 

flow cytometry to determine the extent of the expansion of the transferred T cell 

population in response to treatment.  

 

2.2.6.5 In vivo VITAL assay for cytotoxicity function 
 

The VITAL assay is an established method of assessing the cytotoxic function of cells by 

analysing the rate of elimination of fluorescently-labeled, antigen-loaded target cells in 

comparison to a control population of non-antigen carrying cells (330). 

 

2.2.6.5.1 Peptide loading of splenic targets 

Single cell suspensions containing 2 x107 cells/mL in cIMDM, were prepared from the 

spleens of C57BL/6 mice, and divided into 3 tubes of equal volumes. SIINFEKL peptide 

was added to each of the 3 groups at a final concentration of 0, 10 and 100 nM 

respectively. The cells were incubated for 2 hours at 37oC and mixed regularly by 
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inverting the tubes. Cells were washed once with IMDM and re-pelleted by centrifuging at 

320 g for 4 minutes. 

 

2.2.6.5.2 Labelling of cells with VITAL dyes 
 

Non-antigen loaded cells were resuspended at 5 x 106 cells/mL in pre-warmed cIMDM 

containing CTO dye at a final concentration of 10 µM. Cells were incubated at 37oC for 15 

minutes, washed and resuspended in at least 10 mL pre-warmed cIMDM. After a further 

20-minute incubation at 37oC the cells were washed twice and resuspended at 36-52 x106 

cells/mL in PBS. 

 

Ag loaded cells were resuspended at 5 x 106 cells/mL in cold PBS. Cells that were treated 

with 10 nM SIINFEKL received CFSE at a final concentration of 0.02 µM and cells 

treated with 100 nM SIINFEKL were labelled with 0.2 µM CFSE. Tubes were vortexed 

and incubated for 10 minutes at 37oC. To stop the labelling reaction, 5 volumes of cold 

PBS were added to each tube. Cells were then washed twice and resuspended at 36-52 

x106 cells/mL in PBS.  

 

The 3 groups of cells were pooled together at equal ratios to give a final concentration of 

36-52 x106 cells/mL. Mice each received a 200 µL i.v. injection of the suspension, which 

contained 4-6 x106 of each of the 3 groups of cells. 
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2.2.6.5.3 Analysis of cell killing 
 

Blood was collected 6 hours after the administration of targets, red blood cells were lysed 

and the samples were analysed by flow cytometry. The % killing that occurred in each 

mouse was calculated as follows: 

 

% killing = 100 – 100 x # CFSE+ cells (10 nM or 100 nM SIINFEKL treated) 

                                                                   # CTO+ cells 

 

The % killing was averaged for each treatment group and a significant increase in % 

killing over the negative control was recognised as specific killing.  

 

2.2.6.6 Tumour growth 
 

Tumour cells were inoculated into the left flank by s.c injection and tumour growth was 

monitored regularly over time by measuring the bisecting diameters using Mitutoyo 

callipers. To account for the thickness of the skin, 1 mm was subtracted from each 

diameter measurement. Mice were euthanised when tumour size reached 150-200 mm2. 

 

PC61 treatment 

Mice received either a single i.p. injection of 75-125 µg PC61 3 days before tumour 

inoculation or 2 i.p. injections of 100 µg PC61 given 1 and 4 days before tumour 

inoculation, as described in the appropriate figure legends. 

 

 

 



Chapter 2: Materials and Methods 

 

77 

Adoptive transfer of T cells 

In vitro activated OTI T cells (2 x106 to 107 as indicated in the results section) were 

resuspended in sterile PBS and adoptively transferred into mice by iv injection once 

tumours became palpable (10-14 days after tumour inoculation).  

 

Caffeine treatment 

Once tumours became palpable, mice received in vitro activated T cells. On the same day 

as the T cell transfer, mice also began daily i.p. injections of caffeine (0.4-0.6 mg/dose) for 

4-6 days and drinking water was supplemented with 0.1% caffeine for the remainder of the 

experiment.  

 

2.2.7 Imaging of tumour sections 
 

2.2.7.1 Preparation of tumour sections 
 

Euthanased mice were cardiac perfused with room temperature PBS for 5 minutes 

followed by 4% paraformaldehyde in PBS (0.15 M, Ph 7.4) at 4oC for 15 minutes. 

Tumours were removed and post-fixed in 4% paraformaldehyde for 2-4 hours at 4oC. The 

tumours were then transferred to PBS containing 30% sucrose at 4oC and left overnight. 

Tumours were mounted in Cryo-M-Bed freezing compound (Bright Instrument Company 

Ltd, Huntingdon, UK) and 20 µM sections were cut using an HM 500 OM series cryostat 

microtome (Microm International GmbH, Walldorf, Germany). Sections were mounted 

directly onto microscope slides (Biolab) and stored at -20oC until used. 
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2.2.7.2 Immunohistochemical staining of tumour sections 
 

After frozen sections were post-fixed by incubating in acetone (Merck) for 10 minutes, the 

sections were air-dried and nail polish was used to create a "frame" around the section. 

Sections were re-hydrated in TBS for 20 minutes, after which, the excess TBS was tipped 

off. The primary antibody was added onto the section within the frame and the slide was 

transferred to a moist chamber consisting of a lidded box containing a moist paper towel. 

The chamber was then incubated at 37oC, in the dark, for 30 minutes. Excess antibody was 

tipped off and the section was gently washed 3 times with TBS using a pipette and 

incubated a further 5 minutes in TBS. The secondary antibody was added to the section 

and the slide was treated similarly to the initial antibody binding protocol. Excess TBS was 

first tipped off and then removed by blotting. Except where indicated, all incubations 

where at room temperature. To mount the section for microscopy, the non-fade permount 

Vectashield (Vector Laboratories) was added, the section was covered with a coverslip 

(Biolab) and a thin layer of nail polish was applied around the perimeter of the coverslip to 

form a seal. The sections were imaged directly after IHC staining using an Olympus BX51 

immunofluorescence microscope (Olympus, Auckland, New Zealand) attached to an 

Olympus DP70 camera and using the Olympus analysis LS Research software.   

 

2.2.8 Statistical calculations 
 

Statistical calculations were performed using the Graphpad Prism® Version 4 statistical 

package (Graphpad Software Inc., San Diego, CA, USA). The type of statistical test used 

is described in the appropriate figure legends. 
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3.1 Introduction 
 

The tumour microenvironment is known to be high in immunosuppressive factors such as 

TGF-β, IL10 (180-182) and adenosine (183). While it is possible that tumour infiltrating 

Treg may produce some of this adenosine (226, 285), the main source of adenosine is 

thought to be the malignant cells and is the result of the hypoxic tumour conditions (200). 

As described in detail in the general introduction, hypoxia inhibits the activity of the 

adenosine metabolising enzyme adenosine kinase. This results in a build up of intracellular 

adenosine, which is released from the cell via bi-directional nucleoside transporters, 

leading to increased extracellular levels of adenosine. 

 

Adenosine mediates a variety of responses depending on which of the four adenosine 

receptor subtypes (A1, A2a, A2b and A3) it engages. The A2a receptor is the predominant 

subtype found on leukocytes although low levels of the A2b subtype can also be found 

(201). A number of studies using both A2a knockout mice and selective A2a receptor 

agonists and antagonists have shown that adenosine signalling through the A2a receptor 

results in decreased proliferation, cytokine production and cytotoxic function of T cells 

(185-187). Based on these findings, it was proposed that the prevention of adenosine 

signalling in T cells might improve the anti-tumour activity of these cells.  

 

There are a number of ways in which adenosine signalling can be abrogated. RNA 

silencing is a method of preventing gene expression by introducing small interfering RNA 

molecules (siRNA), which match part of the target sequence, into the target cell. These 

double stranded RNA molecules (dsRNA) are then incorporated into the RNA induced 

silencing complex (RISC), which separates the strands of the dsRNA and binds only the 

anti-sense strand (331). This complex binds to the complementary mRNA strand within 
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the cell and causes the target RNA molecule to be degraded by endo- and ecto-nucleases 

contained within the RISC complex (332) (Figure 3.1). 

 

 

 

Figure 3.1: Mechanism of RNA silencing. 
dsRNA molecules measuring 21-23 nucleotide (nt) long and with 2-3 nt overhanging ends are introduced to 

the cell by electroporation. These molecules are incorporated into the RNA induced silencing complex 

(RISC), which includes helicase, RecA and endo- and exonucleases. The dsRNA molecule is unwound and 

separated by the helicase, leaving only the anti-sense strand bound to the RISC molecule. The RISC-anti-

sense RNA strand (RISC-RNA) complex then binds to the complementary mRNA molecule and degrades 

the molecule by using the endonuclease to cleave the molecule in two followed by exonuclease-mediated 

degradation from the exposed ends (333, 334). If the target molecule is not present, the unstable RISC-RNA 

complex dissociates and the anti-sense RNA molecule is degraded (335).  



Chapter 3: Targeting adenosine receptors for cancer immunotherapy 

 
82 

RNA silencing techniques have been used successfully on primary, activated, murine T 

cells to decrease cell surface expression of CD4 and CD8 (336). Therefore, it is possible 

that RNA silencing may be used to decrease the level of A2a receptors on the surface of in 

vitro activated, tumour specific CD8+ (OTI) T cells. OTI T cell transgenic mice were used 

because they yield a high number of OVA Ag specific CD8+ T cells, which are also 

specific for B16.OVA tumour cells. The effect of gene silencing is specific to the cells that 

have been treated. 

 

In addition to its effects on T cells, adenosine is also known to inhibit DC function. Both 

murine and human DC matured in the presence of adenosine produce less TNF-α and IL-

12 and more IL-10 resulting in impaired allostimulatory activity of the DC (202-205). 

Administering an A2a receptor antagonist, in vivo, may improve the function of DC and T 

cells thereby providing a further improvement in the anti-tumour response in comparison 

to using siRNA to silence the A2a receptor in activated tumour specific T cells alone.  

 

Caffeine is a non-selective adenosine receptor antagonist, which means it will block 

adenosine signalling through all 4 receptor subtypes. Since the A2a receptor is the 

predominant subtype found on leukocytes, the effect of caffeine on T cells and DC will be 

primarily by blocking this receptor but with some contribution from the A2b receptor. 

Caffeine is cheap, it is widely available, it can be administered repeatedly and easily and it 

will target more than one cell type. These factors may make caffeine treatment 

advantageous over siRNA treatment, which is costly and technically challenging, despite 

the short half-life of caffeine in vivo (52 minutes in mice as measured in the plasma after 

i.p. administration of 20 mg/kg caffeine) (337). 
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3.2 Aims 
 

The purpose of the experiments described in this chapter was to establish a reliable and 

effective method of preventing adenosine signalling in activated OTI T cells. The 

hypothesis was that the prevention of adenosine signalling in activated OTI T cells would 

improve the anti-tumour immune response by making these cells refractory to extracellular 

adenosine. 

 

The specific aims were: 

• To assess whether A2a receptor silencing of in vitro activated OTI T cells affects 

the anti-tumour activity of these T cells 

• To determine if in vivo caffeine treatment can enhance the anti-tumour activity of 

adoptively transferred, activated OTI T cells 

• To determine the effect of in vivo caffeine treatment on the frequency of tumour 

infiltrating cells 
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3.3 Results 
 

3.3.1 Electroporation of the appropriate siRNA molecules fails to 
silence expression of either the A2a adenosine receptor or the 
control Glyceraldehyde 3-phosphate dehydrogenase genes 

 

A reliable assay was required to determine if the treatment of activated OTI T cells with 

A2a receptor specific siRNA resulted in significant changes in cell function. It was decided 

that an in vitro proliferation assay would be used to determine the functional effect of A2a 

mRNA silencing on activated OTI T cells because cells that have been inhibited by 

adenosine would show a reduced capacity to proliferate and reduced effector function 

(185-187). Therefore, restoring proliferative and cytotoxic capabilities to the activated OTI 

T cells by silencing the A2a receptors is also likely to improve the anti-tumour activity of 

these cells. 

 

Activated OTI T cells were cultured in complete media containing either 10 U or 100 U 

IL-2 to allow the T cells to survive and proliferate. Increasing amounts of adenosine or the 

stable adenosine analogue 5'-N-Ethylcarboxamidoadenosine NECA were also added to the 

cultures. To maintain high levels of adenosine throughout the culture, the adenosine 

deaminase inhibitor EHNA was also added to the cultures containing adenosine. 

Concentrations of NECA and EHNA were chosen based on studies that have shown that 

adenosine suppresses T cell proliferation (185, 338). The effect of high levels of adenosine 

or NECA on T cell proliferation was assessed after 2 days of culture by tritiated thymidine 

incorporation. T cell proliferation was unaffected by adenosine treatment alone because 

adenosine is metabolised quickly. T cell proliferation was found to decrease as the amount 

of NECA or adenosine (in the presence of EHNA) increased (Figure 3.2, blue and red 

lines, respectively). A similar trend was seen when using 10 U or 100 U IL-2 (Figure 3.2 A 
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and B, respectively). Further experiments were performed using 10 U IL-2 because the 

assay was more sensitive. 

 

 

Figure 3.2: In vitro CD8+ T cell proliferation is inhibited by adenosine.  
Activated OTI T cells (105 cells per well) were incubated in cIMDM containing 10 U (A) or 100 U IL-2 (B) 

and increasing amounts of adenosine (black and red lines) or the stable adenosine analogue NECA (blue 

line).  The adenosine metabolic inhibitor EHNA (30 µM) was also added to sustain high levels of adenosine 

in the culture (red line). After ~18 hours of culture, 1 µCi 3H-thymidine was added to each well and the cells 

were cultured a further 6-7 hours. The assay was performed once with triplicate samples for each 

concentration. Graphs show the mean + SD. Values of p represent statistical differences (*=<0.05 and 

***=<0.001) between the adenosine only group and the group indicated by the colour of the asterix and were 

calculated using an unmatched two-way ANOVA test with a Bonferroni post-test. 
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It was important to establish if adenosine signalling could also suppress proliferation of the 

tumour cells themselves in order to fully understand the effect of high adenosine levels in 

the tumour microenvironment. Therefore B16.OVA tumour cells were also cultured in 

vitro in the presence of adenosine or NECA (Figure 3.3). NECA caused a decrease in 

tumour cell proliferation in a dose dependent manner (Figure 3.3) similar to its effects on 

activated T cells (Figure 3.2) 

 

 

Figure 3.3: Adenosine inhibits in vitro proliferation of B16.OVA tumour cells. 
B16.OVA tumour cells (2.5 x104 cells per well) were incubated in cIMDM with increasing amounts of 

adenosine (black line) or the stable adenosine analogue NECA (blue line). 3H-thymidine (1µCi per well) was 

added after ~24 hours of culture and the cells were incubated a further ~12 hours before 3H-thymidine 

incorporation was measured. The assay was performed once with triplicate samples for each concentration. 

Graphs show the mean + SD. Values of p (***=<0.001) were calculated using an unmatched two-way 

ANOVA test with a Bonferroni post-test. 

 

To optimise the electroporation conditions used in future experiments, the cell viability of 

activated CD8+ T cells was assessed in response to electroporation using a range of 

voltages (Figure 3.4A) and after using two different initial numbers of activated T cells 

(Figure 3.4B). Electroporation transiently compromises the membrane integrity of viable 
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cells, which makes them unable to be reliably distinguished from dead or dying cells 

directly afterwards. For this reason, cell viability was also assessed 48 hours after 

electroporation and was found to be similar when samples were electroporated, using 

voltages between 300 and the maximum achievable voltage of 400 V (Figure 3.4A). These 

electroporation conditions were chosen based on the findings of other Authors (336, 339). 

Similar cell viability was also observed when either 7.5 or 12.4 x 106 activated CD8+ T 

cells were electroporated at 400 V. Based on these results and the findings of other 

Authors (336, 339), 15 x106 activated CD8+ T cells and the optimal 400 V electroporation 

conditions were used for further experiments. 

 

 

Figure 3.4: Optimisation of siRNA electroporation conditions. 
Activated CD8+ T cells were electroporated at the indicated voltages in the absence of siRNA and the cell 

yield relative to the pre-electroporation cell number was assessed by trypan blue dye exclusion. A) Activated 

T cells (3.2 x106) were electroporated and cell viability was assessed directly afterwards (0 hours). The 

remaining cells were rested for 48 hours in the presence of IL-2, at which time cell viability was again 

assessed. B) Two different numbers of activated T cells were electroporated at the indicated voltages, cells 

were rested in the presence of IL-2 for 48 hours and rested cells were assessed for viability. 

 

To determine the overall effectiveness of A2a receptor mRNA silencing, the proliferation 

of siRNA treated cells in the presence of adenosine was assessed. To silence the A2a 
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adenosine receptors, 0-5 µM A2a siRNA was electroporated into activated T cells at 400V 

using the Cell-PoratorTM (Figure 3.5). After the siRNA treatment, cells were rested for two 

days to allow time for the A2a receptor gene to be silenced. Rested cells were then assayed 

for function using the in vitro proliferation method established in Figure 3.2. T cells treated 

with siRNA showed decreased proliferation in response to EHNA and adenosine in a dose 

dependent manner similar to that of cells that did not receive the siRNA (Figure 3.5). This 

indicates that the A2a receptor gene had not been silenced sufficiently in these cells to 

show a difference in function. 

 

 

Figure 3.5: The electroporation of siRNA specific for the A2a receptor into activated 

CD8+ T cells fails to restore T cell proliferation in the presence of adenosine. 
Increasing amounts of A2a siRNA were electroporated into 15 x106 SIINFEKL activated T cells. The T cells 

were incubated at 37oC in cIMDM supplemented with 10 U/ml IL-2 for 48 hours to recover from 

electroporation. The sensitivity of electroporated cells to adenosine was then evaluated using the EHNA + 

adenosine proliferation assay established in Figure 3.2. The assay was performed once with triplicate 

samples for each concentration. Graphs show the mean + SD.  

 

There are several reasons why the T cell proliferation assay may have failed to show an 

improvement in T cell function in response to A2a mRNA silencing. First of all, the 

siRNA may not have entered the cell, secondly, the siRNA molecules may not have 
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silenced the mRNA and thirdly, silencing of the A2a receptor gene may not be sufficient to 

restore proliferation of the T cells when cultured in the presence of adenosine. To address 

these issues, a vast excess (1.5 mM) of the control Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) siRNA was electroporated into activated T cells using a Gene 

Pulser (Figure 3.6). Cells were rested in culture for two days before RNA extraction, 

reverse transcription and PCR amplification of the GAPDH cDNA. Serial dilutions of the 

PCR products were run side by side on an electrophoresis gel so that any subtle differences 

in yield could be visualised. No differences in the band intensities were seen at any of the 

dilutions compared indicating that no silencing of the gene had occurred (Figure 3.6). This 

is a control siRNA, which has been shown by Ambion to be capable of successfully 

silencing the GAPDH gene. These results indicate that the most likely reason attempts to 

silence the adenosine receptor were unsuccessful because the electroporation conditions 

were not sufficient to allow entry of the siRNA molecules into the cell.  

 

Figure 3.6: The electroporation of siRNA against GAPDH into activated CD8+ T cells 
fails to silence GAPDH at the mRNA level. 
SIINFEKL activated T cells (7.5 x 106 cells) were electroporated with 1.5 mM GAPDH siRNA at 450 V for 

1.5 milliseconds using the BioRad Gene Pulser. Total RNA was isolated from 106 cells, reverse transcribed 

and PCR amplified using GAPDH primers. Serial dilutions of the PCR products were run on a 1% gel for 60 

minutes at 90 volts. The results shown are from 1 of 3 electroporations with similar results. 
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3.3.2 Caffeine treatment does not improve the anti-tumour response 
of adoptively transferred, activated OTI T cells 

 

Attempts to silence the A2a adenosine receptor on activated T cells using siRNA were 

unsuccessful. Instead, the question of whether the anti-tumour activity of activated OTI T 

cells could be improved by inhibition of the A2a adenosine receptor was investigated using 

the in vivo administration of caffeine. Mice with palpable B16.OVA tumours were given 

activated OTI T cells and caffeine treatment commenced on the same day. Caffeine 

treatment consisted of daily i.p. injections of caffeine, as indicated in the figure legends, 

and supplementation of the drinking water for the remainder of the experiment. Tumour 

size was monitored throughout the experiments. Where required, tumours were excised 6 

days after the adoptive transfer of T cells and analysed by flow cytometry (Figure 3.7). 

 

 

Figure 3.7:  Model used to investigate the effect of A2a receptor blocking using in vivo 
administration of caffeine. 
C57 mice were inoculated with 105 B16.OVA tumour cells by s.c injection to the left flank.  Once tumours 

became palpable, activated OTI T cells were administered by i.v. injection and caffeine treatment was 

initiated. Caffeine was administered as daily i.p. injections of 0.4-0.6 mg (as indicated in each figure legend) 

caffeine for 4-6 days (as indicated in each figure legend) and in the drinking water (0.1 % w/v) for the 

duration of the experiment. For tumour infiltration experiments, tumours were removed and analysed 6 days 

after the adoptive transfer of the activated OTI T cells. 
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To determine if caffeine improved the ability of the adoptively transferred T cells to reject 

tumours, tumour-bearing mice received adoptively transferred, activated OTI T cells with 

or without caffeine treatment (see Figure 3.7 for model) and tumour growth was monitored 

over time. Initial experiments where mice received treatment when tumours were barely 

palpable (4-9 mm2) gave inconsistent and contradictory results (Figure 3.8A and B). 

Delaying treatment until the tumours were larger and the levels of hypoxia were likely to 

be higher failed to show even a subtle improvement of tumour rejection with caffeine 

treatment (Figure 3.8C). 

 

It is possible that no improvement was seen after caffeine treatment because the T cells 

were already achieving the maximum response and no further improvement could 

therefore be elicited. To address this possibility, the number of transferred T cells was 

titrated. The minimum number of T cells required to elicit a noticeable effect on tumour 

growth was determined to be 4 x106 (Figure 3.9A). The number of B16.OVA tumour cells 

was also titrated to determine if a lower number of cells could be inoculated and still 

reliably cause tumour growth in all animals (Figure 3.9B). Tumour growth was seen in 

100% of mice that received 2 x104 B16.OVA cells but 5 x104 B16.OVA cells were used in 

further experiments to avoid problems with experimental variation. A final experiment 

using the optimised number of T and B16.OVA cells and using the highest dose of caffeine 

tested, showed no improvement in the anti-tumour activity of the transferred T cells in 

response to the caffeine treatment (Figure 3.9C). It is possible that despite previous 

experiments to optimise all aspects of the model, the transferred T cell treatment alone was 

still too effective to allow any improvement in the anti-tumour activity of these T cells to 

be determined. 
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Figure 3.8: Caffeine treatment does not improve the ability of activated OTI T cells to 
reject tumours. 
Mice were treated as in Figure 3.7 and tumour size was monitored throughout the duration of the experiment. 

Each panel shows the results of one experiment. A) Treatment was compared when different numbers of T 

cells were transferred followed by 6 days of 0.4 mg caffeine injections. Treatment was initiated when all 

tumours measured 4-9 mm2. Groups consisted of 3 mice. B) Treatment was compared when 107 T cells were 

transferred followed by 4 days of 0.4 mg caffeine injections. Treatment was initiated when all tumours 

measured 4-9 mm2 and tumour growth was monitored over time. Groups consisted of 10 mice. C) Treatment 

was compared when 107 T cells were transferred followed by 4 days of 0.4 mg caffeine injections. Treatment 

was initiated when all tumours measured 16-25mm2 and tumour growth was monitored over time. Groups 

consisted of 5 mice per group. The broken line indicates the day on which mice received the T cell and/or 

caffeine treatment started. Graphs show mean + SD.  
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Figure 3.9: Optimising the number of T cells and tumour cells used fails to reveal an 
effect of caffeine on the ability of activated OTI cells to reject tumours. 
A) Mice were treated as in figure 3.7 and tumour size was monitored throughout the duration of the 

experiment. Mice were inoculated with 105 B16.OVA cells. The number of T cells was titrated down from 

107 to 2 x 106 while mice received 0.6mg caffeine injections for 4 days.  Groups consisted of 5 mice. B) 

B16.OVA tumour cells were titrated down from 8 x 104 to 2 x 104 cells. Mice were monitored for tumour 

growth.  Groups consisted of 4-5 mice. C) Mice were treated as in figure 3.6 and tumour size was monitored 

throughout the duration of the experiment.  Mice received 5 x 104 B16.OVA tumour cells followed by 5 x 

106 T cells and 0.6mg caffeine injections for 4 days.  Groups consisted of 5 mice. The broken line indicates 

the day on which mice received the T cell and/or caffeine treatment. Each panel represents a separate 

experiment. Graphs show mean + SD. 
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3.3.3 The adoptive transfer of activated OTI T cells is associated with 
an increase in a subset of tumour infiltrating CD11b+ cells 

 

It is possible that caffeine treatment failed to improve the anti-tumour activity of the OTI T 

cells because of an effect on the ability of the cells to infiltrate the tumour. To address this 

possibility, tumours were removed from mice 6 days after the adoptive transfer of T cells, 

processed into single cell suspensions and analysed by flow cytometry. Tumours from 

mice that received the adoptively transferred T cells showed a slight trend towards an 

increase in the frequency of infiltrating CD8+ but not CD4+ T cells (Figure 3.10). Caffeine 

treatment did not appear to significantly affect the frequency of infiltrating cells. 

 

Figure 3.10: Flow cytometric analysis of B16.OVA tumours shows adoptively 
transferred, in vitro activated CD8+ T cells are able to infiltrate the tumours. 
Mice were treated as in figure 3.7.  Tumour cell suspensions were examined 6 days after caffeine treatment 

commenced to analyse the infiltration of (A) CD8+ and (B) CD4+ cells, expressed as a percentage of live 

cells.  Experiments consisted of 5 mice per group and data shown is from 1 of 2 experiments which each 

showed similar results. Bars show the mean + SD. Values of p were calculated using a one-way ANOVA test 

with a Tukey's multiple comparisons post-test.   

 

Tumours from mice that received adoptively transferred T cells showed a significant 

increase in the frequency of CD45+ cells expressed as a percentage of live cells (Figure 
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3.11A). However when the CD45+ population was analysed, there appeared to be no 

change in the frequency of infiltrating CD8+ cells while the frequency of CD4+ T cells 

decreased (Figure 3.11B and C). This implies that in response to the transfer of activated 

OTI T cells, there is also an increase in other CD45+, non-T cells. The ability of CD45+ 

cells to infiltrate tumours was again found to be unaffected by caffeine.  

 

 

Figure 3.11: The adoptive transfer of in vitro activated CD8+ T cells causes an 
increase in the frequency of CD45+ non-T cells in B16.OVA tumours. 
Mice were treated as in Figure 3.7. Tumour cell suspensions were examined for the frequency of live, CD45+ 

cells (A). The live, CD45+ population was further analysed to determine the frequency of (B) CD4+ and (C) 

CD8+ T cells. Experiments used 5 mice per group, the data shown is from 1 of 2 experiments which each 

showed similar results. Bars show the mean + SD. Values of p were calculated using a one-way ANOVA test 

with a Tukey's multiple comparisons post-test.   
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The tumour infiltrating CD45+ population was further analysed to determine which non-T 

cell populations showed increased infiltration after the adoptive T cell treatment. No 

increase in the frequency of NK or NKT cells was observed after adoptive T cell treatment, 

irrespective of caffeine treatment (Figure 3.12A-B).  

 

 

Figure 3.12: The adoptive transfer of in vitro activated CD8+ T cells does not affect 
the frequency of NK1.1+ cells in tumours. 
Mice were treated as in Figure 3.7. Tumour cell suspensions were examined for the infiltration of (A) NK 

cells and (B) NK T cells expressed as a percentage of live cells. Experiments used 5 mice per group and data 

shown is from 1 of 2 experiments which each showed similar results. Graphs show the mean + SD. No 

statistical differences were found using a one-way ANOVA test. 

 

The CD45+ non-T cell population that was increased in tumours in response to adoptive T 

cell treatment (Figure 3.11) was identified as being CD11b+ (Figure 3.13A). No difference 

was found in the frequency of CD45+, CD11b+, F4/80high cells, which may include 

macrophages, monocytes, eosinophils and some DC (Figure 3.13B). A significant increase 

was observed, instead, in the CD45+, CD11b+ Gr1+ population (Figure 3.13C), which may 

include neutrophils and myeloid derived suppressor cells (MDSC). Caffeine treatment did 

not affect the ability of any cell population tested to infiltrate tumours. These data show 
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that while caffeine treatment does not affect the ability of cells to infiltrate the tumour, the 

transfer of activated OTI T cells allows increased infiltration of other, non-T cells, into the 

tumour.   

 

 

Figure 3.13: The adoptive transfer of in vitro activated CD8+ T cells increases the 
frequency of CD11b+ subpopulations in tumours. 
Mice were treated as in figure 3.7. Tumour cell suspensions were examined for the infiltration of populations 

that were CD45+ and (A) CD11b+ (B) CD11b+ and F4/80high or (C) CD11b+ and Gr1+. All graphs are from 

one experiment containing 5 mice per group. Values of p were calculated using a one-way ANOVA test with 

a Tukey's multiple comparison post-test. Graphs show the mean + SD.  
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3.4 Discussion 
 

The aim of this chapter was to establish whether it was possible to increase the ability of 

activated OTI T cells to reject tumours by inhibiting adenosine signalling.  

 

The proliferation assay established in Figure 3.2 showed that electroporation of A2a 

receptor specific siRNA did not reverse the inhibitory effects of adenosine. Further 

analysis using a PCR assay to evaluate changes at the mRNA level in response to 

electroporation of the predesigned positive control GAPDH siRNA showed no decrease in 

the GAPDH mRNA levels in response to siRNA treatment. Both the A2a siRNA sequence 

and the electroporation conditions were obtained from studies that had performed RNA 

silencing successfully (320, 336). The most likely reason the activated OTI T cells did not 

show improved proliferation after siRNA treatment, therefore, is that the conditions 

achievable by the electroporators used were not sufficient to deliver the siRNA molecules 

into the cells. 

 

Adenosine is known to inhibit T cell proliferation (185), however, Figure 3.3 unexpectedly 

revealed that the proliferation of tumour cells is also inhibited by adenosine. Studies have 

shown that in a range of mouse and human tumours, including B16.F10, the parental strain 

of the B16.OVA tumour cell line used in this thesis, express various adenosine receptors 

(340-343). This is in contrast to murine T cells, which predominantly express the A2a 

receptor with some expression of the A2b receptor. It is therefore possible that the 

suppressive effect of adenosine on tumour cells may be mediated through more than one of 

these adenosine receptors. This presents the possibility that adenosine mediated 

suppression of proliferation may have a slightly different mechanism in tumour cells in 

comparison to T cells.  
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After experiments in this thesis on A2a gene silencing had commenced, work was 

published showing that silencing both the A2a and A2b receptors in anti-tumour T cells 

improved the adoptive immunotherapy of murine CMS4 sarcomas and RMA T 

lymphomas (337). Mice that received in vitro activated, A2a and A2b receptor silenced 

tumour specific T cells showed a reduced tumour burden or increased survival in 

comparison to those that received the non-silenced T cells. This work elegantly 

demonstrated that RNA silencing techniques could be utilised to silence A2 receptors and 

that silencing these receptors on activated T cells improves their anti-tumour activity in 

vivo. It is presumed that most of this effect is due to adenosine signalling via the A2a 

receptors because they are the most abundant adenosine receptor subtype found on T cells. 

In fact, the authors used a variety of tumour models, adenosine receptor knock out mice 

and adenosine receptor inhibitors including caffeine to further support their finding that it 

is predominantly the A2a receptor which prevents the T cells from mounting an efficient 

anti-tumour response. However one study has shown that the number of A2b receptors on 

T cells is increased in response to hypoxia (344). In order to design effective therapeutic 

cancer vaccines, it is vital to understand the relative contributions of the two adenosine 

receptors to T cell inhibition.  

 

It was not possible to assess whether the anti-tumour activity of activated OTI T cells 

could be improved by using the siRNA technology available for this study, so it was 

decided to pursue this investigation further using the adenosine receptor antagonist 

caffeine. Caffeine has been shown to improve CTL mediated tumour rejection, using 

tumour models different to that used in this thesis (337). To expand these findings, the 

ability of caffeine to improve the CTL cell mediated rejection of B16.OVA melanomas 

and the infiltration of various cell types in response to T cell and caffeine treatment was 

investigated. 
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The effects of caffeine on tumour growth were found to be inconsistent in the B16.OVA 

tumour model. Varying the number of T cells transferred, the number of tumour cells 

inoculated and the concentration of caffeine did not result in a clear improvement in the 

anti-tumour effect of transferred T cells. This is in contrast to the LL-LCMV solid tumour 

and CMS4 liver tumour models that have shown an improved anti-tumour response when 

caffeine is administered in conjunction with the transfer of activated anti-tumour T cells 

(337). In fact the CL-8 melanoma tumour model shows an improved anti-tumour response 

after caffeine treatment alone (337). It is possible that the LL-LCMV, CMS4 and CL-8 

tumour models all show an improved anti-tumour response in the presence of caffeine but 

the B16.OVA model used in this thesis does not because the tumour models have varying 

degrees of dysregulated vasculature and hypoxia. Tumours with higher levels of hypoxia 

may be more sensitive to treatments that prevent adenosine signalling in activated T cells.  

 

Tumour tissue becomes hypoxic once it is more than 120-130 µm from a blood vessel 

(345), therefore tumours, which have dysregulated vasculature, usually become hypoxic at 

a very early stage of growth. While the level of intratumoral adenosine may vary between 

tumour models, the level of adenosine is likely to be elevated in all models and cannot 

explain the differences seen in tumour responses to caffeine treatment. Instead, differences 

in tumour responses to caffeine treatment are likely to be the result of differential 

expression of the adenosine receptors between the B16.OVA model and the LL-LCMV, 

CMS4 and CL-8 tumour models. Figures 3.2 and 3.3 showed that the proliferation of 

activated T cells and tumour cells can be inhibited by adenosine. Based on these findings, 

tumours expressing high levels of adenosine receptors, may be expected to show increased 

growth in response to caffeine treatment because the inhibitory effects of adenosine would 

be abrogated. Blocking the adenosine receptors on activated T cells using the in vivo 

administration of caffeine may restore the anti-tumour activity of these T cells however it 
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may also restore the proliferative capabilities of the tumour cells and the two responses 

would negate each other. If this possibility were true, one would also expect to see that the 

caffeine treated group (without the T cell treatment) has larger tumours than the tumour 

only group, however this was not observed.  

 

Caffeine is also a known psychoactive stimulant and diuretic, that has further effects such 

as vasodilation, tachycardia and increased blood pressure (346-348), none of which are 

anticipated to have a negative impact on the anti-tumour response. In fact, vasodilation is 

likely to decrease hypoxia slightly although it is not likely to relieve the hypoxia enough to 

result in decreased adenosine levels. Instead, in the caffeine treated group, increased 

tumour growth may be offset by improved function of existing activated anti-tumour cells 

or decreased angiogenesis limiting the blood supply to the tumour cells. Angiogenesis is 

primarily mediated via the A2b receptors (349, 350), which are suggested to be 

upregulated in response to hypoxia (344). Caffeine can also block the A2b adenosine 

receptors, which may be enough to decrease angiogenesis (337). This illustrates the 

importance of using methods such as the siRNA therapy, which enables the silencing of 

one or more specific genes in target cells. 

 

To try to further understand why, in contrast to other tumour models (337), caffeine 

treatment did not improve the anti-tumour response in mice that also received activated 

OTI T cells, the tumour cell infiltrate was analysed. The frequency of tumour infiltrating 

cells that were CD8+ showed a trend towards being increased in mice that received the 

activated OTI T cells. This difference was not found to be statistically significant but was 

sufficient to result in decreased tumour size. Caffeine was not found to affect the ability of 

these activated OTI T cells to infiltrate the tumours. 
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Interestingly, mice that received activated OTI T cells also showed increased infiltration of 

a CD45+, CD11b+, Gr1+ population of cells. Based on the literature, this population 

probably consists of neutrophils and myeloid derived suppressor cells (MDSC) (351-354). 

There are a number of possible explanations for this observation. The increased infiltration 

of non-T cells could be because the tumours are physically smaller due to the anti-tumour 

activity of the T cells making the tissue more accessible, or simply increasing the ratio of 

infiltrating cells to tumour cells. For either of these explanations to be correct, there would 

need to be an increase of all cell types analysed and not just the CD45+, CD11b+, Gr1+ 

population so this possibility alone is unlikely. Solid tumours elicit an inflammatory 

immune response (355) characterised by the early and persistent infiltration of eosinophils 

(356) and MDSC (192, 193). Factors secreted by T cells such as IFN-γ (357) and GM-CSF 

(357) have been suggested to cause conversion of myeloid cells to MDSC (358-361), 

which then suppress T cell responses (351, 359, 362).  Mice that received the T cell 

treatment would obviously have more circulating and possibly tumour infiltrating T cells 

that may lead to increased conversion of myeloid cells to MDSC. These observations 

would lead suggest that the increase in CD45+, CD11b+, Gr1+ cells found in the groups that 

received the T cell treatment are therefore mostly MDSC.  

 

The increased tumour infiltration of CD45+, CD11b+, Gr1+ cells may explain why caffeine 

treatment did not improve the anti-tumour response. MDSC are known to be capable of 

directly suppressing T cell responses (351, 362) but they have also been shown to induce 

Treg (363) and to mediate at least some of their suppressive function via Treg activity 

(363, 364). Increased T cell function in response to caffeine treatment may then be 

counteracted by the increased activity of MDSC and Treg in response to the T cell 

treatment.  

 



Chapter 3: Targeting adenosine receptors for cancer immunotherapy 

 
103 

3.5 Conclusions 
 

Electroporation of siRNA specific for the A2a receptor or GAPDH genes was found to be 

insufficient to silence these genes. The in vivo administration of caffeine also did not 

improve the anti-tumour response of the transferred activated OTI T cells. The increased 

frequency of CD45+, CD11b+, Gr1+ cells observed in response to T cell treatment, most of 

which are believed to be MDSC, and their link to Treg may explain why no improvement 

in the anti-tumour response was observed in mice that received the caffeine treatment. This 

suggests that caffeine and T cell therapy may also complement Treg therapies to produce 

safe and effective cancer vaccines in the future.     
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4.1 Introduction 
 

Studies using injected tumours have shown that spontaneous anti-tumour responses are 

generally poor, as evidenced by the establishment and continued growth of the tumour 

(365, 366). Studies have shown that tumour infiltrating DC (TIDC) fail to elicit an 

effective immune response in vivo (365, 366) unless the TIDC are first exposed to tumour 

Ag ex vivo (367). This implies that mechanisms acting within the tumour may be 

suppressing the ability of the DC to stimulate an efficient anti-tumour immune response. 

 

Treg and DC are both found in tumours (154, 258, 259, 365-367). Treg are known to 

suppress anti-tumour responses because the presence of Treg is negatively correlated with 

the disease outcome of tumour bearing individuals (154, 258, 259). This is supported by 

numerous studies that have shown that immune responses in tumour bearing individuals 

can be enhanced by the depletion of Treg using PC61 in mice (138, 139, 154, 259) or 

ONTAK in humans (158, 314). The possibility that Treg may mediate some of their 

tumour immunosuppression by interacting with DC was investigated in this chapter. 

 

4.2 Aims 
 

 

The purpose of the experiments described in this chapter was to determine whether it is 

possible for Treg and TIDC to interact in B16.OVA tumours. The murine B16.OVA 

melanoma model was used because previous studies showing TIDC function is inefficient 

also used this model. It was hypothesised that Treg would be able to interact with DC in 

the tumour. 



Chapter 4: Treg in murine melanomas are suppressive and localise in close proximity to DC 

 
106 

4.3 Results 
 

4.3.1 Characterisation of TIDC and Treg populations by flow 
cytometry  

 

Flow cytometry provides the most comprehensive method of phenotyping cell populations 

because of the multiple parameters that can be simultaneously analysed. Large tumours 

were removed from mice ~17 days after inoculation and were processed into single cell 

suspensions. Live tumour cells were identified using FSC and SSC, rather than a viability 

dye, because the flow cytometers used for most of the experiments in this thesis were only 

capable of detecting four fluorochromes at a time.  TIDC were defined as CD45+ and 

CD11chigh. These DC were further divided into CD11b+ and CD11b- subpopulations 

(Figure 4.1). The CD11b+ and CD11b- DC subpopulations were analysed separately in 

further experiments. Tumour infiltrating Treg were defined as CD45+, CD4+ Foxp3high 

cells (Figure 4.1).  
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Figure 4.1: Identification of TIDC and Treg by flow cytometry 
B16.OVA tumours were excised from mice ~17 days after inoculation and analysed by flow cytometry. Live 

cells were selected based on FSC and SSC properties. DC were defined as CD45+, CD11chigh cells that 

contained both a CD11b+ and 11b- subpopulation. In a separate experiment, Treg were defined as CD45+, 

CD4+ and Foxp3+. Numbers shown in graphs represent the percent of the population within the gate. 
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It has been shown that various murine and human tumours and tumour cell lines can 

express the Treg marker Foxp3 (368-370), which has the potential to complicate the 

analysis of Treg within tumours. It was therefore important to determine whether the 

murine B16.OVA melanoma cell line also expressed the Treg markers Foxp3 and CD25 at 

levels that could be detected by flow cytometry. 

 

Reliable tumour specific antibodies that could distinguish tumour cells from endogenous 

cells when analysing tumours grown in vivo were not available.  Instead, in order to 

examine markers expressed by tumour cells, in vitro cultured B16.OVA tumour cells were 

used.  Live cells were selected using forward and side scatter properties, consistent with 

previous experiments. B16.OVA tumour cells were found to express neither Foxp3 nor 

CD25 in vitro, as assessed by comparison to the appropriate isotype controls (Figure 4.2). 

This indicates that the use of Foxp3 and CD25 to identify Treg and their subpopulations is 

appropriate in this tumour model.   

 

 

 

 



Chapter 4: Treg in murine melanomas are suppressive and localise in close proximity to DC 

 
109 

 

Figure 4.2: B16.OVA tumour cells do not express typical Treg markers. 
Live in vitro cultured B16.OVA tumour cells were identified using FSC and SSC properties. Expression of 

the markers Foxp3 and CD25 were compared to the appropriate isotype controls. Numbers shown in graphs 

represent the percent of the population within the gate. 

 

4.3.2 Flow cytometric quantification of DC frequency in tumours and 
lymph nodes 

 

The failure of tumour bearing mice to raise an efficient anti-tumour immune response may 

be due to problems within multiple stages of the response. One of the earliest events during 

an adaptive immune response is the accumulation and migration of DC.   

 

To determine whether DC recruitment to the tumour or lymph nodes was impaired, 

tumours along with the tumour draining and non-draining lymph nodes were removed 

from mice ~17 days after inoculation and processed into single cell suspensions. Flow 

cytometric analysis of B16.OVA tumours showed that the tumour draining and non-
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draining lymph nodes contained similar frequencies of DC (Figure 4.3). Tumours also 

contained DC although at a lower frequency than the lymph nodes (Figure 4.3).  

 

 

Figure 4.3: Flow cytometric analysis of lymph node and tumour tissue reveals the 
presence of CD45+, CD11chigh DC. 
A) B16.OVA tumours and B) draining and non-draining lymph nodes were excised from mice ~17 days after 

tumour inoculation and analysed by flow cytometry.  The frequency of CD11chigh DC in the live population 

of each tissue was compared.  Each dot represents a single mouse. Lymph node data is compiled from 2 

experiments with 5 mice per group and tumour data is compiled from 2 experiments with 4-5 mice per group. 

Data was analysed using a non-parametric, one-way ANOVA test.  

 

4.3.3 Flow cytometric analysis of various sized tumours shows Treg 
accumulate in tumours from an early stage 

 

Most studies show that Treg numbers negatively correlate with the survival outcome of 

tumour bearing individuals (371-373). It was therefore important to investigate the 

frequency of Treg in the B16.OVA tumour model used in this thesis.   

 

Mice were inoculated with B16.OVA 10-17 days before tumours of different sizes were 

removed and analysed by flow cytometry on the same day. This allowed the direct 
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comparison of the cell populations within the different sized tumours. The frequency of 

Treg in small tumours (<25mm2) was found to be twice the frequency of Treg found in 

blood (as shown below in Figure 4.8B). The high frequency of tumour infiltrating Treg 

occurs even at very early stages in tumour development and continues to increase as the 

tumour increases in size (Figure 4.4).  

 

Figure 4.4: A comparison of the frequency of CD4+ Foxp3+ Treg in tumours of 
various sizes shows the frequency of Treg increases as tumours increase in size. 
Different sized tumours were generated by the inoculation of mice with B16.OVA 14-17 days before 

analysis. Tumours were excised and analysed on the same day. Data is from one experiment with 22 mice, 

which were stratified according to tumour size. Each dot represents a single mouse. Data was analysed using 

a non-parametric, one-way ANOVA test.   
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4.3.4 Tumour infiltrating Treg are capable of suppressing T cell 
proliferation in vitro 

 

The ability to suppress the proliferation of T cells is a characteristic of functional Treg. 

Since newly activated CD4+ T cells have also been shown to transiently express Foxp3 in 

humans (229, 242, 245), an in vitro suppression assay was used to determine whether the 

population defined in previous experiments is in fact a Treg population capable of 

suppressive function. 

 

To generate tumours from which Foxp3+ Treg could be isolated based on the expression of 

GFP, B16.OVA tumours were inoculated into Foxp3-GFP mice (325). Tumours were 

excised ~17 days after inoculation and processed into single cell suspensions which were 

enriched for the CD45+ population using positive magnetic sorting. Tumour-infiltrating 

Treg were then sorted by FACS from the CD45 enriched population to a purity of 98% 

based on their expression of CD4 and GFP (as an indicator of Foxp3 expression). CD4+ T 

cells were incubated with increasing numbers of Treg along with DC and anti-CD3 to 

activate the Treg and stimulate CD4+ T cell proliferation in a non-antigen specific manner. 

T cell proliferation decreased with the increasing number of Treg (Figure 4.5), indicating 

that the tumour infiltrating Foxp3+ population represents a functional Treg population.  
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Figure 4.5: Tumour infiltrating Treg are capable of suppressing T cell proliferation 
in vitro. 
B16.OVA tumours were excised from Foxp3-GFP mice ~17days after tumour inoculation and samples were 

enriched for CD4+ cells by positive automacs separation. GFP+ cells were then sorted by FACS and the 

resulting CD4+ Foxp3+ Treg population (>98% pure) was titrated into wells containing 4 x104 purified 

CD4+CD25- effector T cells, 3 x103 DC, and 1 µg/ml anti-CD3. Cultures were incubated at 37oC for 3 days 

with 3H thymidine added in the last ~18 hours of culture. Proliferation was determined as the counts (of 3H 

thymidine) per minute (cpm). Bars represent average + range for duplicate samples from a single experiment.   

 

4.3.5 Titrating the amount of PC61 administered shows two 100 µg 
doses of PC61 give the optimal depletion of Treg and cause a 
significant delay in tumour growth  

 

PC61 is typically administered in relatively large quantities (200-500 µg/mouse) to cause a 

decrease in the frequency of CD25+ Treg in the blood and organs of mice (310, 311, 374). 

It was of interest to determine if optimal depletion of the Treg population could be 

achieved using lower or repeated doses of PC61.  

 

Mice were given a single i.p. injection of 75, 100 or 125 µg of PC61 and then tail bled 

over subsequent days so that the effect of PC61 on the frequency of Treg in the blood 
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could be examined by flow cytometry over time (Figure 4.6A). By day 6 after PC61 

treatment, all of the groups exhibited approximately 85% depletion of the CD25+ CD4+ 

Treg population. The frequency of this population slowly increased over time until it 

returned to basal levels by day 44 in the mice that received 75 µg, and day 53 for the 

groups that received 100 µg and 125 µg. Because the rate of recovery of the Treg 

population was similar in mice that received 100 µg or 125 µg PC61, 100 µg of PC61 was 

chosen as the optimal amount to be delivered in a single dose. Representative dot plots 

from mice 3 days after they were given a single i.p. injection of 100 µg of PC61 are shown 

(Figure 4.6B). 
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Figure 4.6: A single 100 µg dose of PC61 is sufficient to reduce the frequency of both 
CD25+ and Foxp3+ cells in the blood for a prolonged period of time.  
Mice were given a single dose of PC61 by i.p. injection, or were left untreated as a control, and were tail bled 

regularly. Blood samples were analysed by flow cytometry using forward and side scatter properties to select 

the live leukocyte population.  A) The frequency of CD25+ cells as a percentage of CD4+ cells was monitored 

as an indication of the frequency of Treg in the blood. Data represents a single experiment with 3 mice per 

group. Average frequencies + SD are shown. Statistics were calculated using a two-way repeated measures 

ANOVA test with a Bonferroni post-test. Values of p represent statistical differences between the control 

group and the group indicated by the colour of the asterix and the values are: *=<0.05, **=<0.01 and 

***=<0.001. B) Flow cytometric data from a separate experiment is shown. Blood samples were analysed in 

more detail by including a Foxp3 antibody to show a reduction in the frequency of Foxp3+ cells as well as a 

reduction in the frequency of Foxp3+ CD25+ cells. Numbers shown in graphs represent the percent of the 

population within the gate. 
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Depletion of Treg using PC61 is known to improve the anti-tumour immune response as 

evidenced by a delay in or even complete regression of a range of tumours such as various 

leukaemias and fibrosarcomas (154). To establish the effect of Treg on tumour growth in 

the B16.OVA model, tumour size was monitored over time in mice that had or had not 

received either one or two 100 µg i.p. injections of PC61 prior to tumour inoculation. 

Experiments reached their endpoint when the first mouse required euthanasia due to the 

tumour reaching the largest size permitted by ethics (150-200 mm2). This typically 

occurred no earlier than day 17 after tumour inoculation but natural variation between 

experiments means that some experiments ran for a longer time.  

 

Tumours showed a trend towards delayed growth after treatment with a single 100 µg dose 

of PC61 (Figure 4.7A), but the delay in growth only became significant after treatment 

with two 100 µg doses of PC61 prior to tumour inoculation (Figure 4.7B). The experiment 

in Figure 4.6A showed that there was little benefit in administering more than 100 µg of 

PC61 in a single dose. However, administering two doses probably results in a significant 

delay in tumour growth simply because the treatment gives more reproducible depletions. 

Mice, therefore, received two 100 µg doses of PC61 prior to B16.OVA injection in all 

subsequent tumour experiments unless stated. At the experimental endpoint, tumours and 

tumour draining and non-draining lymph nodes were removed and processed into single 

cell suspensions. The frequency of Treg was found to be significantly lower in the lymph 

nodes and tumours of PC61 treated mice (Figure 4.7C). No difference in Treg frequency 

was found when comparing the draining and non-draining lymph nodes of the same 

mouse. 
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Figure 4.7: PC61 treatment delays tumour growth. 
C57BL/6 mice were treated with (A) a single 100 µg dose of PC61 (dotted line) or (B) two 100 µg doses of 

PC61 (dotted line) or left untreated, and inoculated with tumour one day after PC61 treatment (solid line). 

Tumour growth was measured over time. Average tumour sizes + SD are shown. Results are from 1 of 3 

repeat experiments containing 4-5 mice per group that gave similar results. Statistics were calculated using a 

two-way repeated measures ANOVA test with a Bonferroni post-test where * = p<0.05 and *** = p<0.001. 

C) Lymph nodes and tumours were analysed 17 days after tumour inoculation by flow cytometry and Treg 

levels were compared.  Data represents a compilation of 2 experiments containing 5 mice per group per 

experiment. Average frequencies + SD are shown. Statistics were calculated using a two-way ANOVA test 

with a Bonferroni post-test where ** = p<0.01. 
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4.3.6 The presence of tumour does not affect the kinetics of Treg 
depletion and recovery after PC61 treatment  

 

Studies have shown that tumours are able to actively recruit Treg based on the production 

of CCL22 by NK cells and macrophages within the tumour (372, 375). This suggested the 

possibility that peripheral reconstitution of the Treg population may be altered in tumour 

bearing individuals.  

 

Mice were given two 100 µg i.p. injections of PC61, 3 days apart, before tumour 

inoculation, and the circulating Treg levels were again followed over time in the blood. 

The frequency of Foxp3+ Treg was reduced by a moderate amount (40-50%) by day 6 in 

both the non-tumour bearing and tumour bearing mice. This reduction in the number of 

Treg was maintained throughout the experiment, which ended when the tumour bearing 

mice were euthanased for ethical reasons (Figure 4.8A). The frequency of Treg in the 

blood of non tumour bearing mice at day 3 was similar in Treg depleted and non depleted 

groups, however, this is probably because the cells can survive for a few days without IL-2 

after engagement of CD25 on the T cell by PC61. This is supported by the finding that at 

day 3, PC61 treatment reduced the frequency of the CD25+ population of Foxp3+ cells 

from 60% to 0%. CD25 expression by the Foxp3+ Treg returned to pre-treatment levels by 

day 22 in both the non-tumour bearing and tumour bearing mice (Figure 4.8B). This 

indicates that the expression of CD25 by Treg in tumour bearing and non-tumour bearing 

mice was affected similarly by PC61 treatment. 

 

These data show that the Foxp3+ population was expressing CD25 by the end of the 

experiment but the frequency of the Foxp3+ Treg population was still reduced in PC61 

treated mice, and the presence of tumour did not alter these trends. 
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Figure 4.8: The presence of tumour does not affect the kinetics of peripheral Treg 
depletion and recovery after PC61 treatment. 
Foxp3-GFP mice were depleted of Treg using two 100 µg doses of PC61 (solid red squares) or left non 

depleted (solid black squares) as a control and tail bled regularly. The dotted and solid lines indicate when 

mice received the PC61 treatment and B16.OVA tumour inoculation, respectively. (A) The frequency of 

Foxp3+ Treg within the CD4+ population was monitored. (B) The expression of CD25 by CD4+ Foxp3+ Treg 

was monitored. Data is from 1 of 2 experiments with each experiment containing 5 mice per group. Average 

frequency + SD are shown. Statistics were calculated using a two-way repeated measures ANOVA test with 

a Bonferroni post-test where * = p<0.05, ** = p<0.01 and *** = p<0.001. 

 

 

 

 

 



Chapter 4: Treg in murine melanomas are suppressive and localise in close proximity to DC 

 
121 

4.3.7 IHC staining of tumour sections shows Treg and DC co-localise 
within tumours 

 

Figures 4.1 to 4.8 show that both Treg and DC are present in tumours and that in the 

absence of Treg, tumours grow more slowly. It was of interest to investigate the possibility 

that Treg interact with DC within tumours and, therefore, have the opportunity to directly 

suppress DC. To examine this possibility, immunohistochemical (IHC) staining of sections 

using fluorescently labelled mAb was performed.  

 

The fluorescence microscope used to identify cells by IHC staining was capable of 

distinguishing two fluorophores. Unfortunately, there is no single marker that can be used 

to definitively identify DC and cell types other than DC also express CD11c, however, DC 

express the highest level of CD11c (376). To assess the specificity of the CD11c antibody, 

a tumour section labelled using the appropriately matched FITC conjugated CD11c isotype 

control mAb (Figure 4.9A) was compared to a consecutive tumour slice that had been 

labelled with CD11c-FITC (Figure 4.9B). This was further confirmed by comparing the 

labelling of CD11b-bio-Str Alexa Fluor 555 and CD11c-FITC on the same tumour section 

(Figure 4.9C). A range of cells expresses CD11b, including granulocytes, immature 

myeloblasts and some DC subsets (354, 376). Overlaying the CD11c and CD11b stains 

showed some co-expression of the two markers as expected (Figure 4.9D). Cells that were 

positive for CD11c or CD11b alone did not co-localise indicating that these cells are 

unlikely to interact with each other (Figure 4.9D). It was decided that CD11c would be 

sufficient to define TIDC in this context because only the highest antibody expressing cells 

were easily discernible from background in these IHC stains, and a reasonable proportion 

of these cells appeared to co-express CD11b (Figure 4.9D). 
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Figure 4.9: Fluorescent IHC analysis of B16.OVA tumour sections reveals the 
presence of DC. 
B16.OVA tumours were excised from mice 14 days after inoculation, sliced into 20 µM thick sections and 

mounted in preparation for IHC staining. Consecutive sections were stained using mAb for either A) the 

appropriately matched FITC conjugated CD11c isotype control or B) CD11c-FITC (red arrows) and C) 

CD11b-bio-Str Alexa Fluor 555 (green arrows). D) Images of the CD11c-FITC and CD11b-bio-Str Alexa 

Fluor 555 mAb staining of the same section were overlayed to show co-localisation of the two markers 

(yellow arrows). Some CD11b-Alexa Fluor 555 single positive cells (green arrows) are also present. 

 

Tumours are characterised by abnormal vasculature (167, 168) and necrotic areas, 

particularly in the centre of the tumour, leading to poor penetration of immune cells (167, 

377). To determine if this leads to an uneven distribution of DC throughout the tumour 

section, whole tumour sections were examined by IHC staining.  
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The outermost layer of brightly stained cells (white circle Figure 4.10) was determined to 

consist of tumour stromal cells because they consistently showed a high proportion of 

mAb labelling, regardless of the mAb used (data not shown). Furthermore, under 

brightfield microscopy, these cells did not appear to be the characteristic black colour of 

the melanoma cells (data not shown). TIDC (CD11c-Alexa Fluor 555+ cells) were found 

just inside the stromal layer (white arrows) and exhibited lower levels of mAb labelling in 

comparison to the stromal layer, although they were still easily distinguishable from 

background. The tumours used in this experiment contained some DC deep within the 

tumour interior although most were found to reside around the tumour perimeter (Figure 

4.10).   

 

Figure 4.10: TIDC are found at the tumour perimeter. 
Sections were prepared as in Figure 4.1 and stained using a CD11c-bio-Str Alexa Fluor 555 mAb. The white 

arrow indicated CD11c+ DC. The white circle highlights non-specific binding of the mAb by the tumour 

stromal cells.  

 

Foxp3 is accepted as the most definitive marker currently known for Treg (219). The 

presence of Treg within tumour tissue was therefore examined by labelling consecutive 

tumour sections with mAb for the appropriately matched FITC conjugated Foxp3 isotype 
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control (Figure 4.11A) and Foxp3-FITC (Figure 4.11B). Positive staining was only 

observed in the presence of the Foxp3-FITC antibody (Figure 4.11B). The specificity of 

the Foxp3 antibody was further confirmed by co-labelling the Foxp3-FITC labelled section 

with a CD4-bio-Str Alexa Fluor 555 mAb (Figure 4.11C). Foxp3 is a nuclear protein, 

while CD4 is mostly found at the cell surface so CD4+ Foxp3+ cells appear as a green 

nucleus surrounded by a red sphere and are found mostly around the tumour perimeter 

(Figure 4.11D). 

 

 

Figure 4.11: Fluorescent IHC analysis of B16.OVA tumour sections reveals the 
presence of Treg. 
Consecutive tumour sections were prepared as in Figure 4.1 and stained using either A) the appropriately 

matched FITC conjugated Foxp3 isotype control or B) Foxp3-FITC (red arrows) and C) CD4-bio-Str Alexa 

Fluor 555 (green arrows). D) Images of the Foxp3-FITC and CD4-bio-Str Alexa Fluor 555 mAb staining of 

the same section were overlayed to show co-localisation of the two markers (yellow arrows). 



Chapter 4: Treg in murine melanomas are suppressive and localise in close proximity to DC 

 
125 

The experiments shown in Figures 4.9 to 4.11 have validated that the CD11c and Foxp3 

antibodies are specific and sufficient to define TIDC and Treg, respectively, in IHC 

labelling of sections. If Treg are responsible for suppressing TIDC, these cells must 

interact or at least come into close contact within the tumour (260, 264-266). The 

possibility of co-localisation of Treg and DC within tumours was therefore investigated 

using a combination of flow cytometry and IHC staining of tumour sections. 

 

Large tumours were removed from mice ~17 days after inoculation and processed into 

single cell suspensions. Flow cytometric analysis of the suspensions showed that tumour 

resident Treg and DC occur at very low frequencies (Figure 4.12A). Despite this, analysis 

of tumour sections by IHC staining showed that an average of 13% of the Treg could be 

found co-localising with DC within the tumour (Figure 4.12B and D). This was far higher 

than the ~2.25% of total CD4+ T cells found co-localising with DC (Figure 4.12C). To 

determine the percentage of the CD4+ T cells found co-localising with DC that were 

actually Treg, the following calculations were performed: 

W = proportion of Treg found co-localising with DC in tumours = 0.13 (Figure 4.12D) 

X = proportion of CD4+ cells that are Treg in tumours = 0.15 (Figure 4.7A) 

Y = proportion of CD4+ cells found co-localising with DC in tumours = 0.0225 

      (Figure 4.12C) 

Z = percentage of CD4+ T cells found co-localising with DC that were Treg 

   = W.X  x 100 = 0.13 x 0.15  x 100 = 87% 

         Y                     0.0225 

 

Treg constitute ~15% of the CD4+ population within tumours, however according to the 

above calculations, Treg constitute 87% of the CD4+ cells that were found co-localising 

with DC in tumours. This is far higher than one could expect if this were chance alone. 



Chapter 4: Treg in murine melanomas are suppressive and localise in close proximity to DC 

 
126 

 

 

 

 

 

 

Figure 4.12: Fluorescent IHC analysis of B16.OVA tumour sections shows the co-
localisation of DC and Treg. 
B16.OVA tumours were excised from mice ~17 days after inoculation. A) Tumour samples were analysed by 

flow cytometry for the frequency of CD4+, Foxp3+ Treg and CD45+, CD11chi DC within the live cell 

population. B) Sections were prepared as in Figure 4.1 and stained for Foxp3-FITC (B, red arrow) and 

CD11c-bio-Str Alexa Fluor 555 (B, green arrow). Images of the two antibodies from the same section within 

the white boxes were enlarged and overlayed to show co-localisation of the CD11c+ DC and the Foxp3+ Treg 

(B-white arrow). C) An overlay of a tumour section prepared as in Figure 4.1 and stained for CD4-FITC 

(orange arrow) and CD11c-bio-Str Alexa Fluor 555 (green arrow). The white circle indicates a CD4+ T cell 

and a TIDC that are co-localising together. D) The frequency of CD4+ T cell and Foxp3+ Treg found co-

localising with CD11c+ DC was determined by scoring the numbers of cells occurring individually or co-

localising with the DC. Data is an average of the frequencies obtained from IHC analysis of 2 tumour 

sections, from each of 2 different tumours or 4 sections in total. 
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4.4 Discussion 
 

The purpose of the experiments described in this chapter was to investigate the possibility 

that Treg interact with DC within murine B16.OVA melanomas. 

 

In order for an efficient immune response to be mounted, Ag bearing DC must migrate to 

the draining lymph node (156). It is possible that the inability of mice to control B16.OVA 

growth may be explained by results described in this thesis showing that there is no 

increase in the frequency of DC in the tumour draining lymph node. This data, combined 

with the large frequency of DC observed in the tumour and the similar sizes of the draining 

and non draining lymph nodes may suggest that the DC are migrating inefficiently to the 

draining lymph node. This possibility is supported by studies that show that treatments that 

improve DC maturation status and migration to the lymph node are effective anti-tumour 

immunotherapies (156, 378). 

 

Previous studies have further suggested that Treg may interfere with DC migration to the 

draining lymph node in both a tumour (156) and an inflammation (379) model. To 

examine this possibility, the effect of Treg on DC frequency, phenotype and function in 

tumours and lymph nodes was assessed. Treg were found in high frequencies even in very 

small tumours (as small as 8mm2) and the frequency continued to increase as the tumours 

increased in size. These Treg were assumed to be fully functional based on their 

expression of CD25 and on their ability to suppress CD4 T cell proliferation in vitro. The 

accumulation of Treg from a very early time point in tumour growth would indicate that 

immunosuppression by Treg has an important early role in the B16.OVA tumour evading 

the immune response and becoming established. Studies in which Treg frequency showed 

a neutral (380) or positive (381) correlation with clinical outcome may have been subject 
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to various confounding issues. These studies were conducted in humans where Foxp3 

staining can be ambiguous and may even be the result of confusion due to the transient 

expression of Foxp3 by newly activated CD4+ T effector cells (245), which would account 

for the positive correlation with Treg. Individuals with fast growing tumours may not have 

sufficient time to mount an anti-tumour response, regardless of the presence or absence of 

Treg resulting in a neutral correlation with Treg. 

 

There are a number of possibilities that could influence the accumulation of Treg in 

tumours: trafficking of Treg out of other tissues and into the tumour, conversion of CD4+ 

Foxp3- T cells to CD4+ Foxp3+ Treg, or thymic production of Treg. It is unlikely that large 

numbers of Treg traffic from other tissues to the tumour since no increase in peripheral 

Treg levels were seen in tumour bearing mice. It is possible that some Treg are converted 

from CD4+ Foxp3- T cells because the tumour environment is known to have high levels of 

TGF-β, which can be produced in small amounts by the tumour cells themselves or in 

larger amounts by Treg (382) and immature myeloid DC (383). TGF-β and IL-2 are 

known to drive the conversion of Foxp3-, CD4+ T cells to Foxp3+ Treg in vivo (235, 384, 

385), while TGF-β alone can stimulate proliferation of CD4+ Foxp3+ Treg.  

 

It is most likely, however, that the Treg that accumulate in the tumour come from the 

natural pool of thymically produced Treg and are not the result of conversion from CD4+ 

Foxp3- T cells. This possibility is supported by work showing that the majority of Treg that 

accumulate in tumours are the result of proliferation of natural Treg and not the conversion 

of CD4+ Foxp3- cells to Treg (383, 386). The authors showed this by adoptively 

transferring a 10 to 1 ratio of Thy1.1 CD4+, CD25- T cells and Thy1.2+ CD4+ CD25+ Treg 

together into Balb/c SCID mice, which have no T or B cells of their own. After 

challenging the mice with the fibrosarcoma CMS-5, CD4+ CD25+ Treg were found to 
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constitute 30-50% of the tumour infiltrating lymphocytes in the developing tumours 

indicating the Treg population had expanded. However, 80% of the Treg were found to 

express the Thy1.2 marker. The Authors suggest this data indicates that the majority of the 

Treg present were the result of proliferation of the transferred Treg rather than conversion 

of the Thy1.1+ CD4+ CD25- T cells into Treg (386), however, proliferation of the Treg was 

not directly assayed. It is, therefore, possible that the high level of Thy1.2+ CD4+ CD25+ 

Treg found in the tumour were the result of differential tissue homing of the Thy1.1+ CD4+ 

CD25- T cells and the Thy1.2+ CD4+ CD25+ Treg. A further study using the B16.F10 

melanoma model in C57BL/6 mice showed that CD4+ CD25+ Treg can incorporate BrdU 

while in the tumour in response to TGF-β produced by immature myeloid DC (383). This 

shows that Treg are actively proliferating in the tumour, and that the local proliferation of 

thymically produced Treg is the main method of Treg accumulation in the tumour.  In 

contrast to those studies, one study using the CT26 tumour model in Balb/c mice has 

shown that reconstituted Treg are mainly the result of tumour driven conversion of 

Thy1.1+ CD4+ CD25- T cells into CD4+ CD25+ Treg and does not require CD4+ CD25+ 

Treg to be produced by the thymus (240). However, this study only transferred CD4+ 

CD25- T cells and so it cannot compare this rate of Treg reconstitution to that seen as the 

result of proliferation of existing Treg. 

 

In order to be able to study aspects of the immune response in the absence of Treg, mice 

were treated with the anti-CD25 mAb PC61. Little benefit to the level or duration of Treg 

depletion was found in administering more than 100 µg PC61 in a single injection. 

However, two 100 µg doses of PC61 were required to show a significant delay in tumour 

growth. For this reason, in all further experiments mice were given two 100 µg doses of 

PC61 three days apart before tumour inoculation to achieve maximal Treg depletion and 

delayed tumour growth. Using this treatment regime, it was determined that the Treg 
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population remained significantly depleted even when the tumours reached the maximum 

size. A similar time course of Treg reconstitution was also observed in non-tumour bearing 

mice. These results indicate that the presence of tumours did not accelerate the 

reconstitution of the peripheral Treg population despite the fact that tumours have been 

reported to produce TGF-β  (180, 182), which promotes the conversion of CD4+ Foxp3- T 

cells to Treg.  

 

The Foxp3+ Treg population that persisted after PC61 treatment lacked CD25 expression. 

While Treg isolated from IL-2-/- or IL-2Rα-/- mice still show suppressive function in vitro 

(223, 387), it has been shown that the down regulation of CD25 expression by Treg results 

in a loss of suppressive function by these cells in vivo (311). These cells were able to 

recover to normal levels of CD25 expression by the end of the experiments performed in 

this thesis, however, these cells represented only 30-50% of the Treg population. At the 

endpoint of the experiments conducted in this thesis, therefore, a significant reduction in 

tumour size and the frequency of Treg in the blood, lymph nodes and tumours of PC61 

treated mice was still evident.   

 

Two-photon intravital microscopy has been used to show that Treg and DC interact within 

lymph nodes resulting in a decreased interaction time between DC and CD4+ T cells (275). 

Using IHC staining of tumour sections, experiments within this thesis showed that a high 

proportion of Treg and DC could be found co-localising within the tumour periphery. IHC 

methods cannot definitively show that the cells are interacting within the tumour tissue. 

However, the high frequency of Treg and DC found co-localising within the tumour 

indicates that the cells have ample opportunities to interact with one another.  

It is possible that the co-localisation of TIDC and Treg would allow the Treg to suppress 

the TIDC. It has also been suggested, using an allograft model, that activation of the Treg 
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by tissue resident DC is necessary for the Treg to become functional, migrate to the lymph 

node and suppress the immune response (388). The activation of Treg might therefore 

explain the co-localisation of TIDC and Treg observed in this chapter. Both of these 

possibilities would result in a suppressed anti-tumour immune response. 

 

4.5 Conclusions 
 

The experiments performed in this chapter clearly show that B16.OVA melanomas grow 

faster in the absence of Treg. Treg and DC were found to co-localise within tumours at a 

rate far higher than could be expected by random chance alone suggesting that these cells 

may in fact, interact within the tumour tissue.  
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5.1 Introduction 
 

The experiments described in Chapter 4 showed that Treg are present in murine B16.OVA 

melanomas and that they are functional as demonstrated by their ability to suppress CD4+ 

T cell proliferation in vitro and by the decreased rate of tumour growth in mice that were 

treated with PC61 to deplete Treg. Treg and DC were also found to co-localise in the 

tumour periphery suggesting that these cells interact. 

 

Two possibilities exist to explain why Treg and DC interact in the tumour. A recent study 

using an allograft model has suggested that Treg are activated by DC in the tissue and then 

traffic to the draining lymph node where they suppress the T cell response to the allograft 

(388). Alternatively, the Treg could be inhibiting the activation of the DC and impairing 

the ability of the DC to stimulate a T cell response in the draining lymph node. As 

discussed in detail in the general introduction, in vitro studies (273, 274) and an in vivo 

NOD mouse model (272) have shown that the expression of DC activation markers CD40, 

CD80, CD86 and MHC II is reduced in the presence of Treg. To date, no studies have 

shown whether Treg play a significant role in suppressing DC in the tumour micro-

environment where other suppressive factors such as IL-10, TGF-β (180) and myeloid 

derived suppressor cells (389) are also present .  
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5.2 Aims 
 

The purpose of the experiments described in this chapter was to investigate the effects of 

Treg on DC frequency, phenotype and function. The murine B16.OVA melanoma model 

was used because previous studies from our laboratory showing TIDC function is 

inefficient also used this model. In addition, tumour specific T cell responses could be 

analysed because of the existence of OVA specific TCR transgenic mice. It was 

hypothesised that in the absence of Treg, host DC would be more effective at mounting an 

effective anti-tumour immune response. 

 

The specific aims were: 

• To investigate the effects of Treg on DC frequency and phenotype in tumours and 

lymph nodes 

• To determine if Treg affect the ability of DC to elicit an anti-tumour T cell 

response either ex vivo or in vivo 
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5.3 Results 
 

5.3.1 Flow cytometric analysis shows that Treg do not affect DC 
frequency in tumours or lymph nodes 

 

Figure 4.11 showed that PC61 treatment delayed tumour growth, presumably because of 

an improved anti-tumour immune response. The following experiments were designed to 

investigate if the improved anti-tumour response observed in PC61 treated mice was the 

result of an increase in the migration of DC from the tumour to the tumour draining lymph 

node. To address this possibility, the frequency of DC in the tumour and lymph nodes was 

assessed. 

 

Tumours were excised from PC61 treated and untreated mice 17 days after tumour 

inoculation, processed into single cell suspensions, and the number of DC was determined 

by flow cytometry.  The number of DC per mg of tumour tissue was found to be similar in 

PC61 treated (depleted) and untreated (non-depleted) mice (Figure 5.1A). It was shown in 

Figure 4.7, however, that PC61 treated mice have smaller tumours at the later stages of 

growth. To investigate whether differences in tumour size between Treg depleted and non-

depleted groups affected the frequency of DC per mg of tumour tissue, the frequency of 

TIDC was compared using size matched tumours from PC61 treated and untreated mice. 

Mice were inoculated with tumour 1-7 days apart so that tumours of a range of sizes could 

be compared by flow cytometry on the same day. When the number of TIDC per mg of 

tumour tissue was analysed according to tumour size, no difference was found between the 

PC61 treated and untreated mice (Figure 5.1B). For further experiments it was meaningful 

to compare DC at day 17-19 because at this time, the difference in tumour sizes between 

PC61 treated and untreated mice was most apparent (Figure 4.7) and there was still a 

significant reduction in the blood, lymph node and intratumoral Treg frequency (Figure 
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4.7). No difference in the frequency of DC within the CD45+ population (Figure 5.1C) was 

observed in tumours or tumour draining and non-draining lymph nodes regardless of PC61 

treatment. Furthermore, no difference in the frequency of DC was observed between the 

draining and non-draining lymph nodes of the same animal. Total cell numbers of the 

lymph nodes was not assessed, however, the draining lymph node did not appear to be 

bigger than the non-draining lymph node. This suggests that the frequency of DC in the 

draining lymph node was not significantly increased because there was no increase in the 

migration of DC to the draining lymph node in response to the presence of tumour.   

 

The similar DC frequency found in the draining and non-draining lymph nodes (Figure 

5.1) suggests that there is no significant migration of DC to the tumour draining lymph 

node irrespective of pre-treatment with PC61. To further investigate this possibility, the 

expression of CCR7 by tumour infiltrating and lymph node DC was investigated. CCR7 is 

an important lymph node homing chemokine receptor (390, 391) expressed at low levels 

on circulating T cells and DC and must be upregulated for cells to home to the lymph 

node. Treg mediated suppression of DC migration may therefore be reflected in changes in 

CCR7 expression by DC. 

 

Expression of CCR7 by tumour infiltrating and lymph node DC was examined in PC61 

treated and untreated mice ~17 days after tumour inoculation. CCR7 was expressed by 

very few TIDC (Figure 5.2A and B) and at very low levels (Figure 5.2C). No difference in 

CCR7 expression by TIDC was observed between PC61 treated and untreated mice. In the 

lymph node, however, a moderate number of DC expressed a low amount of CCR7 (Figure 

5.2D-F). PC61 treatment appeared to slightly decrease CCR7 expression by lymph node 

DC. These results further show that the delay in tumour growth caused by PC61 treatment 
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is unlikely to be the result of an increase in DC migrating to the lymph node, and the 

consequent immune response. 

 

 

Figure 5.1: Treg do not affect DC frequency in tumours or lymph nodes. 
C57BL/6 mice were depleted of Treg using two 100ug doses of PC61 or left non-depleted, as shown in 

Figure 4.7B, and inoculated with 105 B16.OVA cells. Tumours were excised from mice 10-17 days after 

tumour inoculation and analysed by flow cytometry. A) The number of DC per mg of tumour tissue at day 17 

after tumour inoculation was compared. Bars show the average number of DC + SD for pooled data from 2 

experiments each with 3-4 mice per group. B) Mice were inoculated with tumour 1-7 days apart to generate 

tumours of various sizes on the same day. Tumours were excised 10-17 days after tumour inoculation, 

divided into groups according to size and analysed for DC number per mg of tumour tissue. Bars show the 

average number of DC + SD for pooled data from 2 experiments each with 3-4 mice per group. C) The 

frequency of TIDC within the CD45+ population was compared in PC61 treated and untreated mice 17 days 

after tumour inoculation. The graph is a compilation of data from 3 experiments, each with 4-5 mice per 

group. Each dot represents one mouse. D) Lymph nodes were also excised at day 17 after tumour inoculation 

and analysed for the frequency of DC within the live population. Bars show the mean + SD. Data is a 

compilation of 3 experiments each with 5 mice per group. 

 



Chapter 5: Treg do not affect DC frequency, phenotype or function in a murine melanoma model 

 
139 

 

 

 

 

 

 

 

Figure 5.2: PC61 treatment may decrease the expression of CCR7 by DC in the 
lymph node but not the tumour. 
C57BL/6 mice were depleted of Treg using two 100ug doses of PC61 or left non-depleted, as shown in 

Figure 4.7B, and inoculated with 105 B16.OVA cells. Tumours and lymph nodes were excised from mice 

~17 days after tumour inoculation and analysed by flow cytometry for the expression of CCR7 by all 

CD11chigh DC. A) A representative histogram showing the percent of TIDC expressing CCR7 (solid black 

line) in comparison to the appropriately matched isotype control (grey filled histogram). The percentage of 

CD11chigh TIDC expressing CCR7 (B) and the MFI of CD11chigh TIDC expressing CCR7 (C) was compared 

in PC61 treated and untreated mice. D) A representative histogram showing the percent of lymph node DC 

expressing CCR7 (solid black line) in comparison to the appropriately matched isotype control (grey filled 

histogram). The percentage of CD11chigh lymph node DC expressing CCR7 (E) and the MFI of CD11chigh 

lymph node DC expressing CCR7 (F) was compared in PC61 treated and untreated mice. Results are from 

one experiment with 5 mice per group. Bars show the mean +SD and values of p were calculated using an 

unmatched two-way ANOVA test with a Bonferroni post-test. 
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5.3.2 Flow cytometry analysis shows Treg do not affect DC phenotype 
in tumours or lymph nodes 

 

The cell surface molecules CD40, CD86 and MHCII are maturation markers of DC and 

were found, by other Authors, to be altered in in vitro cultures of DC (272-274) in the 

presence or absence of Treg. It was therefore relevant to investigate the maturation status 

of DC in the B16.OVA model and the effects of Treg thereon. 

 

Expression of CD40, CD86 and MHC II on TIDC was examined by flow cytometry in 

comparison to isotype or fluorescence minus one (FMO) controls. The results showed that 

while most of the DC were mature, the CD11b+ subpopulation (Figure 5.3A) appeared to 

be more mature than the CD11b- subpopulation (Figure 5.3B) and the CD11b+ 

subpopulation might, therefore, be expected to migrate to the lymph node. Based on these 

findings, the following experiments show only the results for the CD11b+ DC subset and 

were designed to investigate the effect of Treg depletion on the phenotype of intratumoral 

and lymph node DC in vivo. 

 

Expression of the maturation markers CD40, CD86 and MHCII by TIDC was examined in 

PC61 treated and untreated mice ~17 days after tumour inoculation.  All markers were 

expressed on a similar number of cells (Figure 5.4A) and in similar amounts (MFI) on 

TIDC from both PC61 treated and non-treated mice (Figure 5.4B). This indicates the 

phenotype of TIDC is unaffected by Treg in the murine B16.OVA melanoma model. 
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Figure 5.3: Analysis of the phenotype of TIDC by flow cytometry. 
Tumours were excised from C57BL/6 mice ~17 days after tumour inoculation and analysed by flow 

cytometry. CD45+, CD11chigh DC were segregated into CD11b+ (A) and CD11b- (B) subpopulations that 

were then analysed for CD40, CD86 and MHC II expression. Fluorescence-minus-one controls (CD40) and 

appropriately matched isotype controls (CD86 and MHC II) are shown as grey filled histograms, while 

empty histograms show the level of expression of the various markers. Numbers on the graphs represent the 

percentage of cells expressing the relevant markers. 
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Figure 5.4: Treg do not affect the expression of activation markers by TIDC. 
C57BL/6 mice were depleted of Treg using two 100ug doses of PC61 or left non-depleted, as shown in 

Figure 4.7B, and inoculated with 105 B16.OVA cells. Tumours were excised from mice ~17 days after 

tumour inoculation and analysed by flow cytometry. The percentage (A) and MFI (B) of TIDC expressing 

the indicated maturation markers was compared between Treg depleted and non-depleted mice. The MFI 

values were calculated only for the cells that showed positive staining for the relevant marker as defined in 

A. Bars show the average + SD of a compilation of 3 independent experiments with 5 mice per group. 
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The activation status of the DC found in the lymph node was also examined because DC 

prime T cells in the lymph node. DC from the lymph nodes of the mice described in Figure 

5.4 were examined for expression of the DC maturation markers CD40, CD86 and MHC 

II. An increased frequency of DC expressing CD86 was observed in both the PC61 treated 

and untreated tumour bearing mice in comparison to the naïve control (Figure 5.5B). The 

DC of PC61 treated and untreated mice were also found to be expressing more CD86 and 

MHC II as indicated by an increase in MFI values (Figure 5.5B and C). No change in 

CD40 expression, or the percentage of DC expressing MHCII was observed (Figure 5.5A 

and C). These data indicate that the lymph node DC from tumour bearing mice are only 

moderately mature but that the maturation status of these DC is unaffected by Treg.  
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Figure 5.5: Treg do not affect the expression of activation markers by CD45+ 
CD11chigh DC in lymph nodes. 
C57BL/6 mice were depleted of Treg using two 100ug doses of PC61 or left non-depleted, as shown in 

Figure 4.7B, and inoculated with 105 B16.OVA cells. Lymph nodes were excised from mice ~17 days after 

tumour inoculation and analysed by flow cytometry. The percentage and MFI of DC expressing CD40 (A), 

CD86 (B) and MHCII (C) were compared in the tumour draining and non-draining lymph nodes from Treg 

depleted and non-depleted mice. The MFI values were calculated only for the cells that showed positive 

staining for the relevant marker.  Values for lymph nodes from non-tumour bearing mice were included as 

controls. Bars show the average + SD of a compilation of 3 independent experiments with 5 mice per group 

per experiment. Values of p were calculated using a non-parametric one-way ANOVA test with a Dunn's 

multiple comparison post-test. 
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5.3.3 Treatment with PC61 does not affect the ability of TIDC to 
stimulate T cell proliferation ex vivo 

 

Figures 5.1 to 5.5 have shown that Treg do not affect DC frequency or phenotype, 

however, it is still possible that Treg may affect DC function. To evaluate the function of 

TIDC, B16.OVA tumour samples were enriched for CD45+ cells by positive automacs 

separation and sorted by FACS to isolate a highly pure (>96%) CD45+ CD11c+ TIDC 

population. These TIDC were used to stimulate the proliferation of OVA specific CD4+ 

(OTII) and CD8+ (OTI) T cells in vitro.  To test the presentation of tumour Ag taken up by 

DC within the tumour, no further Ag was added to the assay except in the positive 

controls.   

 

In the absence of added Ag, sorted DC were unable to stimulate proliferation of OVA 

specific OTII T cells (Figure 5.6A) and induced only minimal proliferation of OVA 

specific OTI T cells (Figure 5.6B). The low proliferation of OTI T cells was not Ag 

specific, as it has been observed even when DC were prepared from B16 tumours not 

expressing OVA (366).  When TIDC were prepared from the tumours of Treg-depleted 

mice, no increase in the proliferation of OTI or OTII T cells could be observed (Figure 

5.6A and B). In fact OTI T cell proliferation was significantly decreased when stimulated 

with DC from the tumours of Treg-depleted mice (Figure 5.6B). This is unlikely to be due 

to a direct adverse effect of PC61 on DC function because although CD25 is expressed on 

20-30% of DC, it is only expressed at low levels (392). Furthermore, since the 

proliferation of OTI T cells is not thought to be Ag specific (366), the difference observed 

between DC from PC61 treated and untreated tumour bearing mice was not considered to 

be of consequence. Although TIDC were unable to present OVA Ag taken up within the 

tumour context, they appeared functional because they were able to stimulate T cell 

proliferation in the presence of specific peptide (Figure 5.6A and B). As a further test of 
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DC function, TIDC were used to stimulate the proliferation of allogeneic BALB/c T cells 

in vitro. TIDC from the tumours of Treg-depleted or non-depleted mice were both able to 

induce T cell proliferation, and Treg depletion did not improve this response (Figure 5.6C). 

The unpulsed TIDC control was not able to be included in these experiments due to the 

poor yield, however, this is not expected to influence the conclusion that the T cell 

proliferation observed was not Ag specific. These results suggest that while the TIDC may 

be able to present a range of Ag, presentation of tumour specific Ag is poor and is not 

improved by the depletion of Treg. 

 

5.3.4 Treg do not irreversibly impair the ability of TIDC to take up, 
process or present tumour protein 

 

To examine if the impaired in vitro T cell expansion seen in Figure 5.6 was due to an 

inability of the TIDC to take up and process proteins, TIDC were sorted by FACS from the 

day 17 tumours of PC61 treated and untreated mice. These TIDC were incubated with 

OVA specific peptide or OVA protein, washed to remove excess Ag, and used to stimulate 

OTII (Figure 5.7A) and OTI (Figure 5.7B) T cell proliferation in vitro.  TIDC incubated 

with peptide were able to stimulate a high level of Ag specific T cell proliferation (Figures 

5.6 and 5.7) indicating they were functional.  When incubated with OVA protein, TIDC 

were also able to stimulate Ag specific OTII and OTI T cell proliferation indicating that 

these TIDC have not lost the ability to take up, process and present protein.  The level of T 

cell proliferation was much lower in response to protein compared to peptide, however, 

this may be due at least in part to the short incubation time with the protein. No difference 

in T cell proliferation was observed between TIDC from PC61 treated or non-treated mice 

(Figure 5.7). These results show that prior exposure to Treg does not impair the ability of 

TIDC to take up, process and present Ag to CD4+ or CD8+ T cells. 
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Figure 5.6: Treg depletion does not affect the ability of TIDC to stimulate T cell 
proliferation ex vivo. 
C57BL/6 mice were depleted of Treg using two 100ug doses of PC61 or left non-depleted, as shown in 

Figure 4.7B, and inoculated with 105 B16.OVA cells. Tumours were excised ~17 days later and processed 

into single cell suspensions. CD45+ CD11chigh TIDC were sorted and titrated into cultures containing 2 x105 

T cells, and specific Ag where indicated. 3H thymidine was added to the samples for the final 18 hours of the 

3-day culture. Proliferation was determined as the counts (of 3H thymidine) per minute (cpm). (A) OTII T 

cell proliferation; specific peptide was used as a positive control and loaded on 103 TIDC/well before co-

culture with T cells. (B) OTI T cell proliferation; specific peptide was used as a positive control and loaded 

on 103 TIDC/well before co-culture with T cells. (C) Allogeneic T cell proliferation. Each graph is from one 

of 3 independent experiments containing 2-3 samples per group that gave similar results. Average ± range is 

shown and p was calculated using a two-way ANOVA test (excluding the +Ag groups) with a Bonferroni 

post-test. 
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Figure 5.7: TIDC are capable of taking up, processing and presenting Ag. 
C57BL/6 mice were depleted of Treg using two 100ug doses of PC61 or left non-depleted, as shown in 

Figure 4.7B, and inoculated with 105 B16.OVA cells. Tumours were excised from mice ~17 days after 

tumour inoculation and processed into single cell suspensions. CD45+ CD11chigh TIDC were sorted and 

incubated with 1 µg/ml specific peptide (1 hour) or 1 mg/ml OVA protein (2 hours) where indicated.  The 

DC (3 x103/well) were then washed and incubated with 2 x105 Ag specific T cells for 3 days. 3H thymidine 

was added to the samples for the final 18 hours of culture. Proliferation was determined as the counts (of 3H 

thymidine) per minute (cpm). Bars show the average + SD of a single experiment with 3-5 samples per 

group.   

 

5.3.5 The absence of Treg does not improve the proliferation of 
transferred naïve Ag specific T cells in response to tumour Ag in 
vivo 

 

Several studies have shown that Treg mediated suppression is cell contact dependent (260, 

265, 266). It is possible that for effective inhibition, Treg must remain in contact with the 

target cell, which is not the case in the ex vivo assay used in the previous experiments of 

this project. It was therefore necessary to examine the function of TIDC using an in vivo 

assay.   

 

Lymph node cells from naive OTI and OTII mice were CFSE labelled and transferred into 

Treg-depleted or non-depleted mice approximately 2 weeks after tumour inoculation. 
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Proliferation of the transferred cells was examined in the tumour draining lymph nodes 3 

days later.  A significant number of the transferred OTI T cells could be observed 

proliferating in some mice, however, no obvious proliferation of the transferred OTII T 

cells occurred (Figure 5.8A).  Furthermore, OTI T cell proliferation was observed in only 

some mice that received the transferred T cells (Figure 5.8B) possibly due to the tumours 

being slightly too small at the time of T cell transfer. Depleting host mice of Treg did not 

significantly increase the number of mice that showed proliferation of the transferred T 

cells (Figure 5.8B). Despite this, all mice within each group were included in further 

analysis to avoid unintentionally biasing results. 

 

When the level of OTI T cell proliferation in the lymph node was compared, as shown in 

Figure 5.8B, some of the non-depleted mice showed proliferation, however, overall these 

mice did not show a significant increase in proliferation over the negative control (Figure 

5.8C). Depletion of Treg did not improve the level of OTI T cell proliferation over either 

the negative control or the non-depleted mice (Figure 5.8C). The high level of proliferation 

observed in the positive control groups indicated that the transferred T cells were 

functional. These data show that depleting mice of Treg does not improve the proliferation 

of tumour specific T cells in vivo. 

 

5.3.6 Using a RAG1-/- mouse model confirms that Treg do not affect 
DC phenotype or function 

 

RAG1-/- mice are completely devoid of all mature T cells (and B cells), including Treg 

(328). The experiments conducted in Figures 5.1 to 5.8 showed there was no effect of Treg 

on DC frequency, phenotype or function, however, at the time point examined, Treg 

depleted mice still had low levels of Treg in the blood, tumour and lymph nodes (Figure 
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4.7). Comparing anti-tumour responses in RAG1-/- and C57BL/6 mice, therefore, provides 

a model in which DC function can be studied in the complete absence of Treg.  

 

To assess whether the ability to recruit similar numbers of mature DC to the tumour after 

inoculation is similar in C57BL/6 and RAG1-/- mice, tumours were removed ~17 days 

after tumour inoculation and analysed by flow cytometry. Tumours from both mouse 

strains were found to have a similar frequency of DC (Figure 5.9A). RAG1-/- mice were 

found to have slightly fewer DC expressing the activation markers CD40, CD86 and MHC 

II (Figure 5.9B), however, when expressed, these markers were expressed at similar levels 

on the TIDC (Figure 5.9C). 
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Figure 5.8: Treg depletion failed to improve the in vivo proliferation of transferred  
T cells. 
C57BL/6 mice were depleted of Treg using two 100ug doses of PC61 or left non-depleted, as shown in 

Figure 4.7B, and inoculated with 105 B16.OVA cells. After 13-16 days each mouse was injected with 1.5 x 

106 naïve, CFSE-labelled OTI T cells and 1.5 x 106 naïve, CFSE-labelled CD25 depleted OTII T cells. 

Lymph nodes were removed 3 days later and OTI and OTII T cell proliferation was determined by flow 

cytometry. A) Representative dot plots of transferred OTII and OTI T cells in the tumour draining lymph 

node. Numbers on the graph refer to the percent divided cells.  B) The frequency of mice that showed either 

OTII (top) or OTI (bottom) T cell proliferation was determined using data compiled from 4 experiments. 

Population size (n) is shown on the graphs above the relevant bars. C) Percent divided OTI T cells in the 

tumour draining or injection site draining lymph nodes of mice receiving untreated DC, DC loaded with 

SIINFEKL Ag +/- tumour and +/- PC61, or tumour bearing mice +/- PC61, calculated as shown in panel A. 

Bars show the average percentage of divided cells. The graph shows data from 1 of 4 independent 

experiments that gave similar results. Experiments were performed with 5-10 mice per group and p was 

calculated using a non-parametric one-way ANOVA test. 
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Figure 5.9: TIDC from RAG1-/- mice show slightly impaired maturation. 
C57BL/6 and RAG1-/- mice were inoculated with B16.OVA cells. Tumours were excised from mice 17 days 

after tumour inoculation and analysed by flow cytometry. A) The frequency of CD11chigh TIDC in the live 

cell population was compared and p was calculated using an unpaired, one tailed students t test. B) The 

frequency of CD11b+ CD11chigh DC expressing the activation markers CD40, CD86 and MHC II were 

compared. Values of p, where *=p<0.05 and ***=p<0.001, were calculated using a two-way ANOVA test 

with a Bonferroni post-test. C) The MFI values were calculated only for the cells that showed positive 

staining for the relevant marker as defined in B. Data shown is from one experiment with 9-10 mice per 

group and bars show the average + SD.  
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It was of interest to determine whether the presence of T cells or Treg could alter the 

frequency of mature DC in the tumour or lymph nodes of RAG1-/- mice. RAG1-/- mice 

were reconstituted with 106 purified naive OTI T cells or naïve CD4+ CD25+ Treg from 

OTII mice one day before tumour inoculation and tumour size (Figure 5.10) and the 

phenotype of intratumoral and lymph node DC was assessed 17 days later (Figure 5.11). 

OTI T cells were chosen to reduce the possibility of cells converting into Treg in vivo. 

Reconstituting RAG1-/- mice with naïve OTI T cells significantly delayed tumour growth 

to the extent that the tumours were not large enough to be reliably weighed. These results 

suggest the OTI T cells have obtained some effector function, possibly as the result of 

lymphopenia-induced proliferation (393) or in response to the direct presentation of Ag to 

these T cells by the tumour cells (394). The presence of OTI T cells also appeared to 

slightly increase the frequency of CD40+ DC (Figure 5.11A) and decrease the level of 

MHC II (Figure 5.11A) expressed on TIDC. In the non-draining lymph node, reconstituted 

mice showed a slightly increased level of MHC II over the naïve non-tumour bearing 

control, however, this was not significantly different to the level seen in the non-

reconstituted mice (Figure 5.11D).  

 

When the effect of Treg on tumour growth was compared, no difference was found in 

tumour weight (Figure 5.10A), however, a slight reduction in the tumour cell number was 

seen (Figure 5.10B). A small but significant increase in the amount of MHC II expressed 

by TIDC was observed in the presence of Treg but without an increase in CD40 or CD86 

expression this is unlikely to be of consequence (Figure 5.12A). The lymph node DC 

appeared to express slightly more MHC II than DC from a naïve RAG1-/- mouse. There 

was no significant difference between the Treg reconstituted and non-reconstituted, tumour 

bearing RAG1-/- mice, however, indicating that Treg do not affect MHC II expression by 

the lymph node DC of RAG1-/- mice (Figure 5.12D). Overall these results show that the 
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reconstitution of RAG1-/- mice with CD8+ T cells or Treg does not affect the maturation 

of intratumoral or lymph node DC.   

 

 

Figure 5.10: The adoptive transfer of CD8+ T cells or Treg into tumour bearing 
RAG1-/- mice causes a delay in tumour growth. 
Purified naïve OTI T cells (106) or CD4+ CD25+ Treg from OTII mice (105) were adoptively transferred into 

RAG1-/- mice one day before inoculation with B16.OVA cells.  A) Tumours were removed 17 days after 

inoculation and weighed. B) Tumours were then processed into single cell suspensions and the number of 

live cells was counted using trypan blue exclusion. In some instances, tumours were not detectable (ND). 
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Figure 5.11: The adoptive transfer of CD8+ T cells into tumour bearing RAG1-/- mice 
does not affect the phenotype of intratumoral or lymph node DC. 
Purified naïve OTI T cells (106) were adoptively transferred into RAG1-/- mice one day before inoculation 

with B16.OVA cells.  Tumours (A) and lymph nodes (B-D) were removed 17 days after inoculation and 

analysed by flow cytometry for the expression of CD40, CD86 and MHC II on CD45+ CD11chigh CD11b+ 

DC. Lymph nodes from a naïve RAG1-/- mouse were used as the untreated control. Data shown is from one 

experiment with 5-6 mice per group. Bars show the average + SD and values of p were calculated using a 

two-way ANOVA test with a Bonferroni post-test.  
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Figure 5.12: The adoptive transfer of Treg into tumour bearing RAG1-/- mice does 
not affect the phenotype of intratumoral or lymph node DC.  
CD4+ CD25+ Treg were isolated from the lymph nodes of naïve OTII mice and 105 cells were adoptively 

transferred into RAG1-/- mice one day before inoculation with B16.OVA cells. Tumours (A) and lymph 

nodes (B-D) were removed 17 days after inoculation and analysed by flow cytometry for the expression of 

CD40, CD86 and MHC II on CD45+ CD11chigh CD11b+ DC.  Lymph nodes from a naïve RAG1-/- mouse 

were used as the untreated control. Data shown is from one experiment with 5-6 mice per group. Bars show 

the average + SD and values of p were calculated using a two-way ANOVA test with a Bonferroni post-test.  
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For the same reasons described above, it was also important to investigate the function of 

DC in the presence or complete absence of Treg using a RAG1-/- mouse model. C57BL/6 

and RAG1-/- mice were inoculated either with B16.OVA or the parental B16.F1, which 

does not express the OVA protein. Mice also received naïve CFSE labelled OTI cells and 

CD25 depleted OTII cells 15 days after tumour inoculation. A further 3 days after adoptive 

T cell transfer, tumours were measured and the tumour draining and non-draining lymph 

nodes were removed and processed for analysis by flow cytometry (Figure 5.13). After 

identifying the transferred cells based on their expression of CD45.1, the level of CD8+ 

and CD4+ T cell proliferation within the Vα2+ Vβ5.1,5.2+ Ag specific population was 

analysed (Figure 5.13). A large proportion of CD4+ and CD8+ T cells will undergo 

homeostatic proliferation when transferred into lymphopenic, but not into T cell sufficient 

hosts (393, 395, 396). It has been shown, however, that only 2-3 rounds of homeostatic 

proliferation occur in lymphopenic hosts in the absence of Ag (393, 395). In contrast, in 

the presence of Ag, T cells in lymphopenic hosts will proliferate extensively (395). 

Consistent with these studies, Figure 5.13 showed that a significant proportion of the 

transferred cells in both B16.OVA and B16.F1 tumour bearing RAG1-/- mice underwent 

some proliferation. Only a significant proportion of the transferred cells in C57BL/6 mice 

bearing B16.OVA, however, but not B16.F1 tumours proliferated more than three times. 

Based on these observations, the frequency of Ag specific proliferation by the Ag specific 

T cells was defined as the percentage of cells that had proliferated more than 3 times. 
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Figure 5.13: Flow cytometric analysis of the antigen specific T cell proliferation in 
response to tumours in vivo. 
C57BL/6 and RAG1-/- mice were inoculated with either 105 B16.OVA cells or 105 of the parental B16.F1 

tumour cell line. Fifteen days later mice were then given purified naïve, CFSE labelled OTI T cells (2 x106) 

and CD25 depleted, CFSE labelled OTII T cells (1.5 x106) by i.v. injection. A further 3 days after the 

adoptive T cell transfer, the tumour draining and non-draining lymph nodes were removed, processed into 

single cell suspensions and analysed by flow cytometry. Transferred cells were identified using the congenic 

CD45.1 marker while co-expression of the Vα2 and Vβ5.1,5.2 chains of the TCR was used to identify Ag 

specific T cells. Ag specific proliferation was defined as cells that had undergone more than 3 divisions. 

Numbers shown in the graphs represent the percentage of cells expressing the relevant markers.  
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No difference in tumour size was found between any of the groups 18 days after tumour 

inoculation (Figure 5.14A). These results indicate that the B16.OVA and B16.F1 tumours 

grow at a similar rate and that the anti-tumour response is similarly poor in both C57 and 

RAG1-/- mice. 

 

A significant increase in the proliferation of OTI T cells was observed in the draining 

lymph nodes in comparison to the non-draining lymph node of C57BL/6 mice inoculated 

with B16.OVA (Figure 5.14B). A similar trend was observed in the RAG1-/- mice but this 

was not found to be statistically significant (Figure 5.14B). C57BL/6 and RAG1-/- mice 

inoculated with B16.F1 showed negligible levels of Ag specific T cell proliferation 

because the tumour cells do not express OVA. Although similar results were observed for 

the proliferation of OT II cells, the very low levels of proliferation observed were probably 

background (Figure 5.14C). These data show that the level of Ag specific proliferation in 

the draining lymph node of Treg deficient (RAG1-/-) mice is not improved in comparison 

to Treg sufficient (C57BL/6) mice. Both the RAG1-/- mouse model and the PC61 

treatment model have therefore shown that Treg do not affect DC frequency, phenotype or 

function in response to the B16.OVA tumour.  
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Figure 5.14: Proliferation of tumour specific T cells in C57BL/6 and RAG1-/- mice. 
Mice were treated as in Figure 5.12. A) Tumour size was compared at the experimental endpoint. Each dot 

represents a single mouse. Statistical analysis was performed using a non-parametric one-way ANOVA test. 

The frequency of Ag specific proliferation of the OTI (B) and CD25 depleted OTII (C) T cells was compared 

between the draining and non-draining lymph nodes of mice. Bars show the average + SD. Statistical 

analysis was performed using an unmatched two-way ANOVA test with a Bonferroni post-test. Data shown 

is from one experiment with 6-9 mice per group. 

 

 

 

 

 

 



Chapter 5: Treg do not affect DC frequency, phenotype or function in a murine melanoma model 

 
168 

5.3.7 Treg do not suppress activated T cells  
 

In the experiments presented so far, Treg were found to have no effect on DC frequency, 

phenotype or function. It was then hypothesised, that the delayed tumour growth in 

response to PC61 treatment seen in Figure 4.7 may be the result of the absence of direct 

Treg mediated suppression on the T cells.  To test this possibility, activated OTI T cells 

were transferred into Treg-depleted or non-depleted mice 17 days after tumour inoculation, 

and mice were monitored for tumour size (Figure 5.15A) and survival (Figure 5.15B).  

PC61 treated and untreated mice showed a similar delay in tumour growth and survival 

indicating that Treg do not affect activated T cells. It is possible that these results were 

observed because the OTI T cells were transferred 17 days after PC61 treatment at which 

time some of the Treg had become functional again as indicated by the re-expression of 

CD25 (Figure 4.12). Based on the results shown in Figure 5.15, it was therefore not 

possible to determine whether PC61 treatment failed to show a delay in tumour growth in 

mice that received in vitro activated OTI T cells because the Treg population had partially 

recovered, or because Treg were unable to suppress the activated T cells. To address these 

issues, tumour size and survival were monitored in RAG1-/- and C57BL/6 mice that 

received activated OTI T cells 11 days after tumour inoculation. C57BL/6 and RAG1-/- 

mice showed a similar delay in tumour growth (Figure 5.16A) and survival (Figure 5.16B). 

The results found using the RAG1-/- model, therefore, were similar to the findings using 

the PC61 treatment model and were consistent with the hypothesis that Treg were unable 

to suppress the anti-tumour activity of activated T cells. 
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Figure 5.15: PC61 treatment does not affect the anti-tumour activity of adoptively 
transferred, activated OT I T cells. 
C57BL/6 mice were treated with two 100 µg doses of PC61 (dotted black lines) or left untreated, and 

inoculated with B16.OVA cells (first solid black line). Mice received 107 SIINFEKL activated OTI T cells 

17 days after tumour inoculation (second solid black line). A) Tumour growth was monitored over time and 

average tumour size + SD is shown.  B) Survival was also monitored over time. Data is from 1 of 3 

experiments that showed similar results and each experiment had 3-6 mice per group.   
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Figure 5.16: Treg do not affect the anti-tumour activity of adoptively transferred, 
activated OTI T cells. 
C57BL/6 and RAG1-/- mice were inoculated with B16.OVA cells on day 0 and given activated OTI T cells 

on day 11 (solid black line). A) Tumour growth was monitored over time and average tumour size + SD is 

shown.  B) Survival was also monitored over time. Data is from one experiment with 2-5 mice in the tumour 

only groups and 5 mice in the groups that received T cells.   
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5.4 Discussion 
 

The purpose of the experiments described in this chapter was to investigate the effects of 

Treg on DC in the murine B16.OVA melanoma model. As described in the general 

introduction, PC61 mAb treatment is not the only method of depleting Treg, however, it 

has shown success in improving anti-tumour responses in a number of tumour models. 

 

No increase in DC migration from the tumour to the draining lymph node was observed in 

Treg depleted mice despite the fact that PC61 treatment was found to cause a prolonged 

reduction in Treg frequency and a delay in tumour growth. Consistent with the observation 

that DC migrate to the lymph node upon expressing the lymph node homing chemokine 

receptor CCR7 (391), CCR7+ DC could only be found in the lymph nodes and not the 

tumour. Surprisingly, PC61 treatment appeared to decrease CCR7 expression on lymph 

node DC, however, this was not sufficient to result in a reduced frequency of DC in the 

draining lymph node. The ability of B16.OVA tumour cells to become established and 

grow in immune sufficient mice indicates that, without further treatment, the mice are 

unable to mount an efficient anti-tumour immune response in time to control the tumour. 

This possibility is supported by studies that show that treatments that improve DC 

maturation status and migration to the lymph node are effective anti-tumour 

immunotherapies (156, 378). These results collectively imply that while the inefficient 

anti-tumour response seen in the B16.OVA model may be partly due to the inefficient 

migration of Ag loaded DC to the draining lymph node, this is not due to Treg mediated 

suppression.  

 

The results presented in this chapter are consistent with a previous study showing that 

OX86 (anti-OX40) mAb treatment but not PC61 treatment resulted in an increase in the 
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frequency of DC in the tumour draining lymph node (156). As discussed in the general 

introduction, OX40 is expressed constitutively on Treg but is also upregulated on activated 

T cells (300). Piconese et al showed that inactivation of Treg using the OX86 mAb caused 

an increase in the migration of DC from the tumour to the draining lymph node. These DC 

were then able to stimulate an efficient anti-tumour immune response resulting in complete 

tumour regression. In comparison the study also showed that PC61 treatment did not cause 

a significant increase in DC frequency in the tumour draining lymph node and caused only 

incomplete tumour regression (156). The failure to see a difference in DC migration after 

PC61 treatment in the B16.OVA model may be because a small sub-population of CD25+ 

Treg is present in the PC61 treated group by the end of the experiment, and this population 

may be sufficient to suppress DC migration. It is also possible that unlike the CT26 colon 

carcinoma model used by Piconese et al, treatment of B16.OVA melanoma bearing mice 

may not result in an increase in the number of DC migrating from the tumour to the 

draining lymph node and therefore PC61 treatment could also not be expected to result in a 

similar increase. 

 

PC61 treatment was not found to improve the activation status of tumour infiltrating or 

lymph node DC. The TIDC appeared to be semi-mature according to the MFI values but 

the lack of an appropriate tissue control again makes it difficult to comment on the 

maturation status. It is obvious however that the TIDC did not show increased activation in 

response to PC61 treatment. The lymph node DC showed an increase in the amount of 

CD86 and MHC II expressed in comparison to lymph node DC taken from a naïve mouse 

indicating some maturation had occurred in response to the presence of tumour. A failure 

to increase the amount of CD40 expressed by these DC may help explain why tumour-

bearing mice fail to mount an efficient immune response. Activated DC are able to activate 

CD4+ T helper cells, which then transiently upregulate CD40L expression (397, 398). 
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CD40-CD40L ligation can then feed back on the DC causing further up regulation of the 

activation markers ICAM-1, CD80 and CD86. CD40 ligation further results in the 

production of cytokines such as IL-12 by the DC leading to CD8+ T cell proliferation and 

production of IFN-γ (23). The failure of DC to upregulate CD40 expression due to the 

absence of an inflammatory signal or the presence of suppressive factors such as Treg 

would then prevent the DC from becoming "licensed" to adequately stimulate a T cell 

response (399-401).  

  

Despite the fact that no change in DC frequency or phenotype was observed, a wealth of in 

vitro (272-275, 295) and non-tumour in vivo data (402) suggests that Treg have some 

effect on DC function. Consistent with previous work (366), experiments performed in this 

thesis showed that TIDC were unable to stimulate tumour Ag specific CD4 or CD8 T cell 

proliferation ex vivo unless the DC were first pulsed with the cognate peptide. Depletion of 

Treg failed to improve this response. It was decided to investigate if these TIDC were 

defective in their ability to take up or process proteins because the TIDC were able to 

present peptide that was pre-incubated with the DC but were unable to present Ag from the 

tumour. TIDC were able to stimulate a low level of antigen specific CD4 and CD8 T cell 

proliferation in response to pre-incubation with OVA protein (Figure 5.7). It is important 

to note that these cultures contained only 3 x103 DC per well and yet still achieved a level 

of T cell proliferation similar to or greater than that seen using 20 fold more DC (60 x103) 

in the absence of further Ag or protein (Figure 5.6). This indicates that despite the low 

level of proliferation in response to protein pulsed DC in comparison to Ag pulsed DC, this 

proliferation is real and not background. These findings suggest that the TIDC are able to 

take up and process proteins ex vivo, however, removing the DC from the tumours may 

also reverse the suppressive effect of the Treg making it important to study the effect of 

Treg on DC function in vivo. Similar to the ex vivo data, PC61 treatment did not improve 
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the ability of the DC to stimulate either CD4+ or CD8+ T cell proliferation in vivo. If the 

lack of an anti-tumour immune response was caused by tolerisation of the DC, it could be 

expected that the T cells would undergo an abortive program of proliferation. Since 

proliferation was observed in only a few mice, it is likely, instead, that the DC have 

defective Ag presenting function.   

 

DC phenotype and function was analysed at least 18 days after mice were treated with 

PC61. At this time point, PC61 treated mice had significantly less Treg in the tumour, 

lymph nodes and blood than untreated mice, however, they still had significant levels of 

Treg present. It was therefore important to confirm these findings in a model where more 

profound depletion could be achieved. The administration of diphtheria toxin to Foxp3-

DTR mice results in the complete depletion of Treg (249). The advantage of using these 

mice is that unlike PC61, the toxin can be administered multiple times to maintain Treg 

depletion without the possibility of affecting other cell groups such as activated T cells. 

The distinct disadvantage is that these mice have been shown to develop severe 

autoimmunity leading to death after 10-20 days of continuous treatment (249). Since the 

tumour experiments in this thesis routinely last 17-22 days after tumour inoculation, the 

Foxp3-DTR mice are likely to die during the tumour assays. Treatment could be delayed 

until the later stages of tumour growth however the resulting autoimmunity is still likely to 

cause some complications when assaying the anti-tumour response. For this reason, it was 

instead decided to investigate DC phenotype and function using RAG1-/- mice, which lack 

Treg but do not develop autoimmunity because they also lack mature T and B cells (328). 

 

Only a small difference in DC phenotype was found between the RAG1-/- and C57 mice 

and no difference in DC function was observed, which is consistent with the results found 

using PC61 to deplete Treg from C57BL/6 mice. Shreedhar et al have shown that DC 
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maturation, migration and function may be impaired in T cell deficient mouse strains such 

as RAG2-/- and SCID mice (403). The Authors used a hapten-sensitised skin model and 

were probably investigating the responses of skin resident DC populations in contrast to 

the experiments performed in this thesis, which examine the non-dermal DC population. 

Experiments were performed in this chapter to determine if, similar to the work of 

Shreedhar et al, the addition of T cells to the RAG1-/- mice would affect DC maturation. 

Mice were re-constituted with CD8+ T cells or Treg, however, they were not reconstituted 

with CD4+ T cells to avoid confounding results due to the possibility of conversion of the 

CD4+ CD25- T cells to Treg in mice during the course of a tumour experiment. Despite the 

lack of CD4 T cell help, the experiments performed in this chapter found no difference in 

the frequency of TIDC and only a small decrease in the ability of the DC to mature in 

RAG1-/- mice. These results would suggest that the absence of T cell help has a minimal 

effect on DC maturation in B16.OVA bearing RAG1-/- mice. During the in vivo 

proliferation assays, naïve OT II T cells were also transferred into the tumour bearing 

RAG1-/- and C57BL/6 mice for the last 3 days of the experiment. During this time it is 

unlikely that these T cells would be able to convert to Treg, however, these cells would be 

able to provide some CD4 T cell help to the DC. The lack of CD4 T cell help in this model 

therefore cannot fully explain why RAG1-/- mice do not show improved T cell 

proliferation over the C57BL/6 mice. It is more likely that RAG1-/- mice do not show an 

improvement in T cell proliferation because, as the results using the PC61 model 

suggested, Treg do not significantly affect DC frequency, phenotype or function in an in 

vivo mouse tumour model. 

 

Previous experiments in this thesis have shown that PC61 treatment causes a delay in 

tumour growth, which was not found to be the result of improved DC function. PC61 

treated and untreated mice showed a similar delay in tumour growth in response to the 
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transfer of in vitro activated tumour specific T cells, which suggests that Treg do not 

directly suppress activated T cells either. It has been shown that despite the fact that CD25 

is expressed by both Treg and activated T cells, PC61 treatment selectively depletes the 

Treg population without affecting the CD4+ or CD8+ populations (138). The failure of 

PC61 treatment to further delay tumour growth after the transfer of in vitro activated 

tumour specific CD8+ T cells was, therefore, not likely to be due to a negative effect of 

PC61 on the T cells. It is unlikely that PC61 treatment failed to improve the anti-tumour 

activity of the transferred, activated OTI T cells due to the transient nature of PC61 

treatment because similar results were obtained when comparing the anti-tumour activity 

of the activated T cells in C57BL/6 and RAG1-/- mice. These results suggest that Treg are 

unable to suppress T cells that have already been activated, however, the possibility that 

the number of transferred, activated OTI T cells may have been too great for the Treg to 

suppress must also be considered.  

 

5.5 Conclusions 
 

Experiments performed in this chapter showed that delayed tumour growth in Treg 

depleted mice was not the result of an improvement in DC migration, activation status or 

ability to stimulate proliferation of tumour specific T cells both ex vivo and in vivo in the 

absence of Treg. Experiments investigating the anti-tumour effect of activated tumour 

specific CTL also showed that Treg did not suppress these cells. These results would lead 

to the conclusion that the main mechanism of immunosuppression by which Treg promote 

tumour growth is their ability to suppress initial T cell activation and/or induction of 

effector function. The interaction of Treg and TIDC may, therefore, be the result of the 

Treg being "armed" in the tissue before migrating to the lymph node and suppressing T 

cell expansion and function, rather than the suppression of TIDC function by Treg. 



 

6.  
CHAPTER SIX 

 

PERFORIN DEFICIENT TREG 

INHIBIT CD8+ T CELL RESPONSES IN 

VIVO  
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6.1 Introduction 
 

As discussed in detail in the general introduction, the perforin-granzyme pathway is one of 

two lytic pathways used by CD8+ T cells to cause Ag specific target cell apoptosis and has 

been shown to be the main pathway responsible for the clearance of most viruses and 

cancers (91, 92).  As expected, perforin knockout (PKO) mice are unable to clear 

infections by cytopathic viruses and some cancers, which are controlled in immune 

sufficient mice (92, 93). In addition, PKO mice show increased CD8+ T cell responses 

after some types of immunizations such as with the superantigen Staphylococcal 

Enterotoxin B or viral infections such as Lymphocytic Choriomeningitis virus and 

Cytomegalovirus (97, 98). These findings suggest that perforin may be a critical 

component of immunoregulatory mechanisms that limit the expansion of CD8+ T cells in 

vivo (98).  

 

In brief, the perforin-granzyme pathway is activated by recognition of the target cell 

through interaction of the TCR-MHC/peptide complexes, and involves the release of lytic 

granules containing perforin and granzymes from the CTL (404). The contents of the lytic 

granules are taken up by the target cell into vesicles by mechanisms that probably include 

receptor dependent and independent endocytosis (96, 99, 104). Perforin is then thought to 

allow the granzymes to exit the vesicle and enter the cytoplasm (96) to activate various 

caspases and trigger apoptosis of the target cell (405-408). 

 

Recently, a number of in vitro studies have shown that both murine (306) and human (307, 

308) Treg show increased expression of granzymes after polyclonal stimulation. The 

addition of Treg to the in vitro culture of CD4+ CD25- effector T cells caused a significant 

increase in the level of effector T cell apoptosis (306-308). In vitro studies of Treg 



Chapter 6: Perforin deficient Treg suppress CD8+ T cell responses in vivo 

 
179 

function, however, are of limited relevance to in vivo immune responses. One in vivo study 

has shown that the frequency of apoptotic NK and T cells within the tumour ascites 

increased in wild type mice in comparison to either Treg depleted (by treatment with 

PC61), granzyme B deficient (GzmB-/-) or PKO mice (305). This study showed that in 

GzmB-/- mice, where growth of the TAP deficient subline of the Rauscher leukaemia 

virus-induced lymphoma (RMAS) is controlled significantly better than in wild type mice, 

only the transfer of wild type but not GzmB-/- or PKO Treg could partially restore the 

growth of tumours. In contrast, RMAS tumours in PKO mice grew slightly faster than in 

wild type mice. These results led the authors to conclude that one of the mechanisms by 

which Treg suppress immune responses is to directly kill target cells using the perforin-

granzyme pathway (305). These results suggest that the perforin-granzyme pathway is 

important for both Treg and T cell function, however, it is unclear if the survival of 

adoptively transferred wild type, GzmB-/- and PKO Treg was similar. This assay was 

performed in GzmB-/- mice where the T cells have impaired effector function, which may 

also make these results difficult to interpret. Furthermore, the authors did not directly test 

the mechanism by which the T cells died. In addition, it is known that while murine Treg 

are able to up-regulate granzyme B in response to in vitro anti-CD3 stimulation (72, 306, 

409), they do not up-regulate perforin (306).  It is clear that a more comprehensive study 

using an in vivo assay with less confounding interactions is required to investigate the 

possibility of direct target cell killing by Treg. 
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6.2 Aims 
 

The experiments described in this chapter were designed to investigate if the previously 

reported increased CD8+ T cell response seen in PKO mice might be due to Treg function 

being affected by the lack of perforin. Immune responses in C57BL/6 and PKO mice were 

examined with and without PC61 treatment to deplete the perforin sufficient and deficient 

Treg. T cell responses to OVA were studied because the OVA specific OTI mice were 

available. It was hypothesised that Treg could suppress T cell function in a perforin-

independent manner. 

 

The specific aims were: 

• To determine if perforin deficient Treg can suppress the expansion, effector 

phenotype or effector function of in vivo activated T cells 

• To determine if perforin deficient Treg can suppress the anti-tumour response 
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6.3 Results 
 

6.3.1 Treg mediated suppression of CD8+ T cell clonal expansion in 
vivo is not perforin dependent 

 

Studies have shown that in order for cells to be killed by granzyme, perforin must also be 

present (96, 407). Perforin deficient cells are, therefore, unable to utilise the perforin-

granzyme pathway of target cell lysis, which makes them a powerful tool for analysing the 

role of perforin in various cell types. To determine the role of perforin in Treg mediated 

suppression of T cell responses, the response of transferred, perforin sufficient OTI T cells 

(CD45.1+) was therefore examined with and without PC61 treatment in C57BL/6  

(CD45.2+) and PKO (CD45.2+) mice. This model was designed so that the transferred 

(CD45.1+) T cells were perforin sufficient in all host mice, whereas the Treg were perforin 

sufficient or deficient depending on the host mouse used. Mice were depleted of Treg 

using PC61 to show that the T cell response could be suppressed by functional Treg and to 

assess whether Treg require the expression of perforin to suppress the response. 

  

C57BL/6 and PKO mice were treated with a single 100 µg i.p. injection of PC61 on day -3 

or left untreated. All groups received naïve congenic lymph node cells i.v. on day -1 

followed by in vitro generated, bone marrow derived DC (BMDC) i.v. on day 0. In initial 

experiments, PC61 untreated and treated groups received BMDC that had been incubated 

with OVA and the NKT cell specific glycolipid α−Galactosylceramide (α−Gal) for the 

final 24 hours of culture. α-Gal is a powerful adjuvant known to boost T cell responses via 

its effect on NKT cells (410). In later experiments, PC61 untreated and treated groups 

received BMDC that had been incubated with OVA and LPS for the final 24 and 16 hours 

of culture, respectively, to avoid any confounding factors resulting from the α-Gal 

dependent activation of NKT cells (Figure 6.1).  
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Figure 6.1 shows the scheme of the experimental model used to assess the ability of 

perforin sufficient and deficient Treg to suppress T cell clonal expansion and effector 

function. This assay has several benefits over other models used to assess the role of 

perforin in Treg mediated suppression of the T cell response. This model is an in vivo 

assay and a number of different T cell responses can be easily monitored in the blood (or 

spleens for cytokine production). In addition, the assay has minimal interference from 

other cell types because the response of a single, specific population is directly measured.  

 

Treg are known to suppress clonal T cell expansion (260). For this reason, the response of 

normal cells in the presence of perforin sufficient or deficient Treg was compared. 

C57BL/6 and PKO mice were treated as in Figure 6.1 and expansion of the CD45.1+ T cell 

population was assessed 7 days after DC treatment. After gating on the live lymphocytes 

the frequency of transferred T cells was calculated as a percentage of the total CD8+ 

population (Figure 6.2A). Mice that received OVA-loaded DC showed a trend towards 

increased CD8+ T cell expansion in comparison to mice that received untreated DC 

(negative control), however, this difference was not found to be significant. Treatment of 

mice with PC61 before the transfer of OVA-loaded DC showed a trend towards increased 

expansion of the CD8+ T cell population in comparison to both the negative control group 

and the group that received OVA-loaded DC but no PC61 treatment. In PKO mice, the 

level of expansion of the CD8+ T cell population in mice that received PC61 treatment and 

OVA-loaded DC was significantly increased over the negative control (Figure 6.2B). 

These results show that Treg suppress expansion of the T cell population and suggest that 

PKO Treg are still functional.  

 

 

 



Chapter 6: Perforin deficient Treg suppress CD8+ T cell responses in vivo 

 
183 

 

 

 

 

 

 

 

Figure 6.1: Diagram of the experimental set up used to test the function of PKO Treg. 
C57 and PKO mice (both CD45.2+) received a single 100 µg i.p. injection of PC61 followed 2 days later by 

the i.v. injection of 7.5 x104 naïve, unsorted OTIxB6 congenic (CD45.1+) lymph node cells. A further 24 

hours later, mice received either 5 x105 untreated BMDC or OVA-loaded BMDC. Expansion, survival and 

phenotype of the transferred T cell population were investigated by tail bleeding mice 7 and 15 days after the 

transfer of BMDC. Production of effector cytokines by the transferred T cells was determined 7 days after 

the transfer of DC. A killing assay was also performed to determine the effector function of the transferred T 

cells 7 days after the transfer of BMDC. 
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Figure 6.2: Perforin deficient Treg can suppress clonal T cell expansion in vivo. 
C57 and PKO mice were treated as shown in Figure 6.1. A) Mice were tail bled 7 days after receiving DC 

and samples were analysed by flow cytometry. Live lymphocytes were identified based on PI exclusion and 

FSC vs. SSC properties. Expansion of the transferred T cell population was then determined by comparing 

the frequency of CD45.1+ cells within the total CD8+ population. B) Blood samples were analysed 7 days 

after immunisation with α−Gal treated or untreated DC. Data is from one experiment with 4-5 mice per 

group and bars show the mean + SD. p was calculated using a non-parametric one-way ANOVA and ns 

stands for not significant.  

 

Treating mice with OVA and α−Gal loaded BMDC triggers expansion of the T cell 

population by first activating NKT cells. These NKT cells can then activate and mature the 

DC leading to expansion of the T cells (410). It has been shown, however, that NKT cells 

have a role in stimulating Treg (411, 412) and in humans, Treg are known to be able to 

suppress NKT cell activation and function (413). This makes it more difficult to draw 

accurate conclusions about the role of perforin in Treg mediated suppression. It was 

decided, therefore, to examine whether treating DC with LPS instead of α−Gal would still 
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induce clonal expansion of the transferred CD8+ T cells in a manner that would again be 

susceptible to Treg mediated suppression. A pilot study using C57BL/6 mice showed that 

expansion of the CD8+ T cell population 7 days after BMDC treatment was significantly 

increased only in PC61 treated mice compared to the negative control (Figure 6.3A). When 

this experiment was repeated using C57BL/6 and PKO mice, PC61 treatment was found to 

increase expansion of the CD8+ T cell population after the transfer of OVA-loaded DC in 

comparison to the negative control in both C57BL/6 and PKO mice (Figure 6.3B). Similar 

results were seen 15 days after the transfer of OVA-loaded BMDC, although the size of the 

transferred T cell population had decreased in comparison to day 7 indicating the response 

had already peaked and begun to decline by day 15 (Figure 6.3C). These data show that 

Treg do not require perforin to suppress clonal expansion of the transferred T cells.     

 

Expansion of a T cell population is the overall result of both proliferation and death of the 

cells during a response. It was, therefore, important to also look at the cell death in 

response to the different treatments. In the presence of Treg, there was more death of the 

transferred CD8+ T cells in both C57BL/6 and PKO mice compared to Treg depleted mice 

(Figure 6.4A). Analysis of the CD45.1- (host) CD8+ T cell population showed that the 

overall level of cell death was similar in all groups (Figure 6.4B) indicating that the 

increased death found in Figure 6.4A was not due to bias introduced during sample 

preparation. These results suggest that death of the transferred CD8+ T cells does not 

involve direct killing by the Treg using the perforin-granzyme pathway. 
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Figure 6.3: Clonal expansion of the transferred CD8+ T cells in response to OVA 
loaded DC is increased at day 7. 
C57BL/6 and PKO mice were treated as shown in Figure 6.1 and the frequency of live CD8+ T cells that 

were CD45.1+ T cells was determined as shown in Figure 6.2. A) Blood samples were analysed 7 days after 

C57BL/6 mice received LPS treated or untreated BMDC. Data is from one experiment with 5 mice per 

group. B) Blood samples were analysed 7 days after C57BL/6 and PKO mice received LPS treated or 

untreated BMDC. Data is from one of 11 experiments, each showing similar results, with 4-7 mice per group. 

C) Blood samples from the same mice shown in B were collected and analysed 15 days after mice received 

LPS treated or untreated BMDC. Data is from 1 of 5 experiments each of which contained 4-7 mice per 

group and which showed similar results. All bars show the mean + SD. Values of p were calculated using a 

non-parametric one-way ANOVA test with a Dunn's multiple comparison post-test and ns stands for not 

significant. 
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Figure 6.4: Increased death of the transferred CD8+ T cells in the presence of Treg 
does not require perforin.  
C57BL/6 and PKO mice were treated as shown in Figure 6.1. Blood samples were analysed 7 days after 

C57BL/6 and PKO mice received LPS treated or untreated BMDC. Lymphocytes were identified based on 

FSC vs. SSC properties. The frequency of dying cells within the A) transferred CD45.1+ and B) host CD45.1- 

populations was determined by uptake of the viability dyes PI or DAPI. Death of the transferred T cells in 

the groups that received untreated DC was not tested (nt) because this population was too small for analysis. 

Bars show mean + SD and values of p were calculated using a non-parametric one-way ANOVA test with a 

Dunn's multiple comparisons post-test.  Data was compiled from 4 experiments each with 4-7 mice per group 

and which showed similar results.  
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It was also of interest to determine if perforin deficient Treg were able to affect the 

expression of an activated phenotype by T cells. KLRG1 is an ubiquitously expressed NK 

cell receptor, which, when expressed at high levels (KLRG1high) is an indicator of T cell 

activation (71). To determine whether Treg impair the ability of CD8+ T cells to become 

activated, the frequency of KLRG1high cells was compared in C57BL/6 and PKO mice 

with or without PC61 treatment. The frequency of KLRG1high cells was similar in PC61 

treated and untreated mice indicating that PC61 treatment does not affect the ability of 

transferred, naïve T cells to become activated (Figure 6.5A and B). To account for 

differences in the level of expansion of the CD45.1+ population (Figures 6.2 and 6.3), the 

frequency of CD45.1+ KLRG1high effector T cells was calculated as a percentage of the 

total CD8+ population and compared in C57BL/6 and PKO mice with or without PC61 

treatment. PC61 treated C57BL/6 and PKO mice both showed an increase in the frequency 

of KLRG1high cells. (Figure 6.5C and D). These data show that perforin-deficient Treg are 

able to inhibit the ability of the CD8+ T cell population to expand but there was no effect 

of Treg on the ability of CD8+ T cells to express an effector phenotype. 
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Figure 6.5: PC61 treatment does not affect the ability of transferred T cells to become 
activated. 
C57BL/6 and PKO mice were treated as shown in Figure 6.1. Blood samples were taken 7 days after BMDC 

transfer and analysed by flow cytometry. A) Representative dot plot showing the frequency of KLRG1high 

effector T cells within the transferred CD45.1+ T cell population. B) The frequency of KLRG1high effector T 

cells within the transferred CD45.1+ T cell population was compared between groups that received treated 

BMDC. C) Representative dot plot showing the frequency of CD45.1+ KLRG1high effector T cells within the 

total CD8+ T cell population. D) The frequency of CD45.1+ KLRG1high effector T cells within the total CD8+ 

T cell population was compared between groups that received treated BMDC. Bars show mean and SD and 

values of p were calculated using a non-parametric one-way ANOVA test with a Dunn's multiple comparison 

post-test. Data is from one of two experiments each with 4-7 mice per group and which showed similar 

results. 
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6.3.2 Treg mediated suppression of effector cytokine production by T 
cells is not perforin dependent 

 

The experiments in 6.3.1 found no role for perforin expressed by Treg in the Treg 

mediated suppression of T cell expansion, however, it is known that proliferation and 

effector function can be uncoupled during a response (414). As discussed in the general 

introduction, T cells can kill target cells using the contact dependent perforin-granzyme 

and FAS-FASL pathways, however T cells can also kill target cells by producing TNF-α 

and IFN-γ (85, 86, 415). It was, therefore, of interest to investigate the possibility that Treg 

may require perforin to suppress the production of effector cytokines by T cells.  

 

Analysis of intracellular TNF-α in unstimulated and stimulated splenocyte samples in 

comparison to appropriately matched isotype controls showed that cells required Ag re-

stimulation to produce TNF-α (Figure 6.6A). When the CD45.1+ population was compared 

between the treatment groups and mouse strains, a trend towards an increased number of 

cells expressing TNF-α was observed in the absence of Treg, however, this did not reach 

statistical significance (Figure 6.6B). A similar trend was also observed for the level of 

TNF-α produced per cell (Figure 6.6C). TNF-α production was not tested in the groups 

that did not receive OVA-loaded DC because Figure 6.3 shows that the population did not 

expand. 

 

To account for differences in the level of expansion of the CD45.1+ population (Figure 

6.3), the level of TNF-α production within the total CD8+ population was also analysed. 

TNF-α was produced by the transferred CD45.1+ CD8+ T cells but not the host CD45.1- 

CD8+ T cells (Figure 6.6D). Both the C57BL/6 and PKO mice that received OVA loaded 

BMDC and PC61 treatment showed an increase in the frequency of TNF-α producing cells 
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indicating that the expression of perforin by Treg is not required to suppress the production 

of TNF-α. Intracellular IFN-γ production was also analysed and the results were found to 

be similar to those described for TNF-α (Figure 6.7). 

 

6.3.3 Suppression of the in vivo killing of target cells does not require 
the expression of perforin by Treg 

 

The experiments performed in Figures 6.2 to 6.7 found that increased death of Ag specific 

CD8+ T cells in the presence of Treg and suppression of clonal T cell expansion, effector 

phenotype and effector cytokine production did not require the expression of perforin by 

Treg. To assess the role of perforin expression by Treg on the overall response of the 

transferred T cells, an in vivo killing assay was performed. 

 

To evaluate the cytotoxic function of the transferred T cells in vivo in each of the groups 7 

days after DC treatment, mice were given an equal number of non-Ag pulsed, CTO 

labelled control splenocytes, and low and high dose Ag pulsed target splenocytes labelled 

with low and high concentrations of CFSE, respectively. Blood samples were collected 4 

hours after the transfer of splenocytes and analysed by flow cytometry (Figure 6.8A). The 

percentage of target cell killing was determined by comparing the number of high dose Ag 

pulsed target splenocytes to control splenocytes in each mouse. The groups that received 

treated BMDC showed a trend towards an increase in Ag specific target cell killing, 

however, this was only found to be significant in the groups that also received PC61 

treatment (Figure 6.8B). Results were similar in both C57BL/6 and PKO mice indicating 

that perforin deficient Treg are capable of suppressing the cytotoxic function of in vivo 

activated OTI T cells. 
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Figure 6.6: Increased production of TNF-α  by transferred T cells does not require 
the expression of perforin by Treg. 
C57BL/6 and PKO mice were treated as shown in Figure 6.1. Spleens were removed 7 days after BMDC 

transfer, processed into single cell suspensions, restimulated with SIINFEKL for 4 hours in the presence of 

Golgi stop and analysed by flow cytometry. A) Representative histograms showing the percent of CD45.1+ T 

cells expressing TNF-α (solid green line) in comparison to the appropriately matched isotype control (grey 

filled histogram). The percentage of CD45.1+ expressing TNF-α (B) and the MFI of CD45.1+ cells 

expressing TNF-α (C) was compared between the treatments and mouse strains, respectively. D) A 

representative dot plot of the expression of TNF-α within the total CD8+ population. E) The percentage of 

total CD8+ cells that were TNF-α expressing CD45.1+ T cells was determined as shown in panel D and 

compared between the treatments and mouse strains, respectively. Bars show the mean + SD and values of p 

were calculated using a non-parametric one-way ANOVA test with a Dunn's multiple comparisons post-test. 

Data is from one of two experiments each with 4-7 mice per group and which show similar results. TNF-α 

expression by the CD45.1+ T cells was not tested (nt) in panels B and C. 
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Figure 6.7: Increased production of IFN-γ  by transferred T cells does not require the 
expression of perforin by Treg. 
C57BL/6 and PKO mice were treated as shown in Figure 6.1. Spleens were removed 7 days after BMDC 

transfer, processed into single cell suspensions, restimulated with SIINFEKL for 4 hours in the presence of 

Golgi stop and analysed by flow cytometry. A) Representative histograms showing the percent of CD45.1+ T 

cells expressing IFN-γ (solid green line) in comparison to the appropriately matched isotype control (grey 

filled histogram). The percentage of CD45.1+ expressing IFN-γ (B) and the MFI of CD45.1+ cells expressing 

IFN-γ (C) was compared between the treatments and mouse strains respectively. D) A representative dot plot 

of the expression of IFN-γ within the total CD8+ population. E) The percentage of total CD8+ cells that were 

IFN-γ expressing CD45.1+ T cells was determined as in panel D and compared between the treatments and 

mouse strains respectively. Bars show the mean + SD and values of p were calculated using a non-parametric 

one-way ANOVA test with a Dunn's multiple comparisons post-test. Data is from one of two experiments 

each with 4-7 mice per group and which show similar results. IFN-γ expression by the CD45.1+ T cells was 

not tested (nt) in panels B and C. 
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Figure 6.8: Perforin deficient Treg can suppress the killing of target cells in vivo. 
C57BL/6 and PKO mice were treated as shown in Figure 6.1. Seven days after BMDC treatment, mice 

received an equal ratio (4-6 x106 of each) of non-Ag pulsed, CTO (10 µM) labelled control splenocytes and 

target splenocytes that had been pulsed with 10 or 100 nM SIINFEKL and labelled with 0.2 µM or 2 µM 

CFSE, respectively. Mice were tail bled 4 hours later and samples were analysed by flow cytometry. A) 

Representative dot plots showing the number of control and target splenocytes recovered from mice from 

each treatment group within the live cell population. B) To determine the percentage of target killing, the 

number of 100 nM Ag-pulsed, 2 µM CFSE labelled splenocytes was compared to the number of control, 

CTO labelled splenocytes from each mouse. Bars show the mean + SD and values of p were calculated using 

a non-parametric one-way ANOVA test with a Dunn's multiple comparisons post-test. Data is from one of 

two experiments each with 4-7 mice per group and which show similar results. 
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6.3.4 Increased expansion of the T cell population in response to 
PC61 treatment does not lead to an improved anti-tumour 
response 

 

Figures 6.2 to 6.8 showed that perforin deficient Treg are capable of suppressing T cell 

proliferation, effector phenotype and effector function in response to OVA-loaded BMDC. 

It was of interest to determine whether perforin deficient Treg mediated suppression of the 

T cell response would be sufficient to affect tumour growth. To address this question, the 

model established in Figure 6.1 was adapted so that the expansion and function of the 

transferred lymphocyte population could be assessed in tumour bearing mice. This assay 

was set up in parallel with the experiment shown in Figure 6.3B using the same donor 

lymphocytes and BMDC to immunise the mice. Mice were treated with PC61 followed a 

day later by inoculation with B16.OVA. Mice were given naïve lymphocytes 9 days after 

receiving the tumour inoculation and a further 24 hours later when tumours were barely 

palpable, mice received untreated or OVA and LPS treated BMDC (Figure 6.9A). 

Expansion of the transferred T cell population was assessed 7 days after BMDC treatment 

and was significantly increased in the absence of Treg in both the C57BL/6 and PKO mice 

(Figure 6.9B). Expansion of the transferred lymphocytes in tumour bearing mice (Figure 

6.9B) was found to be approximately half that seen in non-tumour bearing mice (Figure 

6.3B). The experiments performed in Figures 6.3 and 6.9 were set up side by side using the 

same donor DC and T cells, however, the tumour bearing mice were treated with PC61 9 

days before the non-tumour bearing mice. Mice in Figure 6.9 received a 150 µg dose of 

PC61 instead of the 100 µg used in Figures 6.2-6.8 because in the tumour bearing mice the 

T cell assay was performed 8 days later than in the non-tumour bearing mice. This data 

suggests that while in tumour bearing mice this assay still results in increased expansion of 

the T cell population in the absence of Treg, the tumour may be able to suppress the 

response of the transferred T cells in a Treg-independent manner. Treatment with OVA 
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and LPS loaded BMDC succeeded in delaying tumour growth in both C57BL/6 and PKO 

mice, however, pre-treatment of mice with PC61 to remove Treg did not further improve 

the anti-tumour response observed in either C57BL/6 or PKO mice. This assay, therefore, 

could not be used to determine if Treg mediated suppression of the anti-tumour response is 

perforin-dependent. 
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Figure 6.9: PC61 treatment does not improve the anti-tumour activity of in vivo 
activated T cells. 
A) Schematic diagram of the experimental set up used to test the anti-tumour activity of in vivo activated T 

cells and the effect of perforin sufficient and deficient Treg thereon. B) Expansion of the transferred T cells 7 

days after BMDC treatment was analysed and gated as shown in Figure 6.2. Bars show the mean + SD and 

values of p were calculated using a non-parametric one-way ANOVA test with a Dunn's multiple 

comparisons post-test. Mice were monitored for C) tumour growth and D) survival over time. Arrows 

indicate when mice received each of the following treatments: PC61 (black arrow), B16.OVA (orange 

arrow), OTIxB6 congenic lymphocytes (green arrow), untreated or treated DC (blue arrow). In addition, the 

grey arrow indicates when expansion of the transferred T cells was analysed. C) Bars show the mean and SD. 

D) Statistical significance was calculated using a Logrank test and shows a significant delay in tumour 

growth in all groups that received treated DC but no difference between the groups that received treated DC. 

*** = p<0.0001. Data is from one of two experiments each with 2-5 mice in the control groups that received 

untreated DC and 3-7 mice per group that received the treated DC. Both experiments showed similar results. 
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6.4 Discussion  
 

The experiments described in this chapter were designed to determine whether Treg utilize 

the perforin-granzyme pathway to suppress immune responses. 

 

In contrast to some studies using viral models (97, 98), in this study, PKO mice did not 

exhibit an increased T cell response over that seen in C57BL/6 mice. This is probably 

because in the viral models, the PKO mice were unable to clear the infection as efficiently 

as the C67BL/6 mice. The model used in this study was based on the transfer of Ag-loaded 

DC and as such, the Ag source is similar in both the C67BL/6 and PKO mice, meaning the 

size of the T cell response is also similar in these mice. 

 

Similar to previous studies (261, 303), experiments described in this chapter found the 

presence of Treg led to suppression of T cell proliferation and inhibition of effector 

cytokine production and cytotoxic function. All results observed, however, were similar in 

C57BL/6 and PKO mice indicating Treg do not require perforin to mediate these effects in 

the in vivo model used.  

 

The results of this chapter contrast with a number of in vitro and in vivo studies. Firstly, 

Gondek et al (306) found that murine Treg show increased expression of GzmB mRNA 

and protein after in vitro polyclonal stimulation. In addition, that study found that while 

GzmB-/- Treg were less capable of suppressing CD4+ CD25- effector T cell proliferation 

in vitro than wt Treg, PKO Treg did not show impaired suppressive ability. When the 

effector T cells from the co-culture of T cells and wt Treg were analysed, the rate of 

apoptosis was found to increase as the number of Treg in the culture increased, which 

suggests that Treg may directly kill the effector T cells. The study did not, however, 
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compare the rate of effector T cell apoptosis from the co-culture of T cells and GzmB-/- 

Treg to show that in the presence of GzmB-/- Treg the rate of effector T cell apoptosis did 

not increase. The study also failed to rule out the possibility that the wt, PKO and GzmB-/- 

Treg differ in their capacity to survive. Without these controls it is difficult to conclude 

that the Treg were killing the effector T cells in a Gzm-dependent manner. Furthermore, 

the findings of Gondek et al are inconsistent with a number of studies that show that 

although granzyme is responsible for the majority of the target cell death, without perforin, 

granzyme cannot mediate its cytotoxic effect (92, 96, 104, 415). Two studies by Grossman 

et al have found that polyclonally activated natural (307) and adaptive (308) human Treg 

express granzymes. The addition of Treg to the in vitro culture of CD4+ CD25- effector T 

cells caused a significant increase in the level of effector T cell apoptosis (307, 308). 

Apoptosis of effector T cells in the presence of Treg was prevented by the addition of 

EGTA to the culture to block the calcium-dependent perforin polymerisation (307, 308). 

Based on these findings it was concluded that Treg were directly killing the effector T cells 

using the perforin-granzyme pathway (307, 308). These studies by Gondek et al and 

Grossman et al rely on polyclonal activation of the cells in in vitro cultures. As discussed 

in the general introduction, Treg are known to have different requirements for suppression 

in in vitro and in vivo models, which makes the physiological relevance of these in vitro 

studies limited. 

 

A recent study by Cao et al (305) using an in vivo tumour model has found that wild type 

mice showed an increase in the frequency of apoptotic NK and T cells within the tumour 

ascites in comparison to either Treg depleted (by treatment with PC61), GzmB-/- or PKO 

mice (305). These results suggest Treg require the perforin-granzyme pathway to cause 

apoptosis of NK and T cell populations. While the results themselves are indisputable, the 

interpretation of these results, as discussed below, may have broader implications than 
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those initially suggested. Using tumour clearance as the readout for an in vivo assay in 

perforin or granzyme knock out mice, which have had wild type or knock out Treg 

transferred back in only reflects the end result of a number of complex in vivo interactions. 

The lack of either granzyme or perforin in the host mice may confuse the issue of whether 

or not Treg require granzyme and perforin to mediate suppression because the host T cells 

will also lack granzyme or perforin. Furthermore, there are also a number of factors that 

complicate these findings: The treatment of GzmB-/- or PKO mice with PC61 further 

reduced the frequency of NK and T cell apoptosis indicating that these Treg are still 

capable of causing target cell apoptosis independent of the perforin-granzyme pathway. 

The possibility that NK and T cell apoptosis was caused by Treg utilizing the Fas-FasL 

pathway cannot be ruled out because this has not been tested in mice. One study has 

shown, however, using human cells that the Fas-FasL pathway was not found to have a 

role in the Treg mediated increase in target cell apoptosis (307). It is possible, instead, that 

the NK and T cells receive better survival signals because the DC are more highly 

activated in the absence of Treg. Experiments in Chapter 5 of this thesis showed that DC 

did not up-regulate the activation markers CD40, CD86 and MHC II in vivo in the absence 

of Treg. However, it is possible that the T cell-DC interaction is still improved in the 

absence of Treg leading to an improved T cell response. The study by Cao et al (305) also 

did not assess the total number of live or dead NK and T cells. Figures 6.2 and 6.3 of this 

chapter showed that in the absence of Treg, the CD8+ T cell population expanded more. 

Therefore the decreased frequency of apoptosis seen in Treg depleted mice might actually 

be due to an increase in the total population size with little or no increase in apoptosis. 

 

The assay used in this thesis circumvents the issues encountered in previous studies 

providing a more direct readout of in vivo immune responses, and would lead to the 

conclusion that Treg mediated suppression of the T cell response does not require perforin. 
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The role of granzyme was not directly examined in this thesis, however, perforin is 

required for the majority of granzyme-mediated killing (82), suggesting that if GzmB is 

involved in Treg mediated suppression of the T cell response, it is by a mechanism other 

than direct killing of the T cells. 

  

Attempts to investigate the use of perforin by Treg in a tumour model were unsuccessful 

because treating mice with PC61 before tumour inoculation did not result in an improved 

anti-tumour response of the in vivo activated T cells. This was unlikely to be the result of 

an adverse effect of PC61 on the T cells because a previous study has shown PC61 does 

not deplete T cell populations other than Treg (138). It is possible that the anti-tumour 

response did not improve in Treg depleted mice over the non depleted mice because of the 

long delay between PC61 treatment and the re-establishment of tumour growth. The in 

vivo activation of tumour specific T cells caused the partial regression of the tumour to a 

similar degree in both the Treg depleted and non depleted mice and this probably negated 

any initial delay in tumour growth caused by the PC61 treatment. Mice received DC 

treatment 11 days after PC61 treatment, and although serum levels of PC61 were likely 

reduced by this stage (416), they were still sufficient to significantly suppress T cell 

expansion. According to Figure 6.3, at day 26 after PC61 treatment, which is also 15 days 

after DC treatment, the transferred T cell population may be expected to have contracted 

approximately 4 fold. At this stage, there would be a small population of functional Treg in 

the PC61 treated mice and the re-establishment of tumour growth indicated that the 

transferred T cell population was no longer capable of controlling tumour growth in both 

the Treg depleted and non depleted groups. 
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6.5 Conclusions 
 

An in vivo immunisation model was successfully adapted and used to show that Treg do 

not require perforin to mediate suppression of clonal T cell expansion or effector function. 

Increased cell death was observed in the presence of perforin sufficient and deficient Treg, 

indicating that it is unlikely that the Treg are directly killing T cells using the perforin-

granzyme pathway as a mechanism of suppression. The model was found to be unsuitable 

to assess the perforin dependence of Treg mediated suppression of an anti-tumour 

response.  
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The purpose of this thesis was to investigate and design strategies to improve the T cell 

mediated anti-tumour response. In particular, it was of interest to determine if the anti-

tumour activity of activated CD8+ T cells could be improved by inhibiting adenosine 

signalling. This thesis showed that both activated tumour specific T cells and tumour cells 

were inhibited in vitro by adenosine, an immunosuppressive molecule found in high 

amounts in the tumour microenvironment. Attempts to silence the A2a adenosine receptor 

gene in activated tumour specific CD8+ T cells or treating mice with the adenosine 

receptor antagonist caffeine, however, did not result in an improved anti-tumour response 

when using the B16.OVA model.  

 

The possibility that Treg are able to directly suppress the Ag presenting function of DC 

was also examined. TIDC and Treg were found to co-localise, suggesting that these cells 

might interact in the tumour environment. TIDC were also found to be defective in their 

ability to stimulate an anti-tumour immune response, however, this was not the result of 

Treg mediated suppression.  

 

Lastly, this thesis investigated the hypothesis that Treg mediated suppression of the CD8+ 

T cell response is perforin-dependent. The presence of Treg was associated with an 

increased rate of T cell death and Treg were found to suppress the proliferation of, the 

production of effector cytokines by and the cytotoxic function of CD8+ T cells. These 

suppressive mechanisms of Treg, however, were not found to involve the perforin-

granzyme pathway.  

 

These findings further the understanding of how tumours evade the anti-tumour immune 

response and provide insight into designing new strategies or successfully combining 

existing strategies for the treatment of cancer using immunotherapy. 
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7.1 Implications of the findings of this thesis 

 

As discussed in the general introduction, tumours contain a number of immunosuppressive 

factors, which lead to defective Ag presenting function of DC and impaired anti-tumour T 

cell responses. A wealth of in vitro and non-tumour in vivo data has suggested that DC 

function is inhibited by Treg, however, the results of this thesis suggest the defective TIDC 

function observed was not the result of Treg mediated suppression.  

 

Tumours contain high numbers of Treg, which are associated with a poor survival 

outcome. It is currently unclear whether Treg accumulate in the tumour mostly as the 

result of CCL22 mediated recruitment of natural Treg, which are produced by the thymus, 

or if CD4+ Foxp3- T cells are converted to Treg as the result of high levels of TGF-β, 

which is produced by malignant cells, Treg and MDSC. Treg are known to suppress the 

anti-tumour response but the target cell of Treg in vivo is unclear. The results of this thesis 

suggest that the phenotype and function of DC is unaffected by the presence of Treg. This 

is probably because the main mechanism of Treg mediated suppression of T cell responses 

is thought to be through the production of TGF-β and IL-10, which are also known to 

suppress DC function. Tumours typically have elevated levels of TGF-β and IL-10 but 

malignant cells and MDSC also produce these cytokines. Treg may, therefore, be capable 

of suppressing DC in tumours by producing TGF-β and IL-10, however this mechanism 

may be redundant in the tumour model because of the TGF-β and IL-10 produced by other 

cells. Experiments described in this thesis showed that Treg are able to suppress the anti-

tumour immune response and this would suggest that in a tumour model, in addition to 

suppression by TGF-β and IL-10 production, Treg must also use TGF-β and IL-10 

independent suppressive mechanisms. If this possibility were true, combining anti-TGF-β 

or anti-IL-10 therapies with therapies designed to inhibit or deplete Treg and MDSC may, 
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therefore, result in an anti-cancer immunotherapy of improved efficacy over the individual 

treatments.  

 

Preliminary results from this thesis also indicated that the anti-tumour activity of in vitro 

activated CD8+ T cells may be unaffected by the presence of Treg. These results suggest 

that Treg may mediate anti-tumour immune suppression in vivo by inhibiting early 

activation of the T cells. These findings suggest that the anti-tumour efficacy of in vitro 

activated T cells would not be improved by Treg depletion, however, the efficacy of in 

vivo activated T cells would be. This point is particularly important in human clinical trials 

where Treg are depleted using ONTAK, which consists of recombinant human IL-2 fused 

to fragments of diphtheria toxin. Unlike PC61, ONTAK is known to deplete Foxp3- CD25+ 

T cells in addition to depleting Foxp3+ CD25+ Treg (138), which may confound the effects 

of Treg depletion using ONTAK. According to the points discussed below, both in vitro 

and in vivo activated T cell therapies are likely to show improved efficacy when given in 

combination with anti-MDSC treatments. 

 

This thesis has shown that the defective Ag presenting function of TIDC is not the result of 

Treg mediated suppression of the DC instead, it may be because of the high levels of 

adenosine typically observed by other Authors in tumours. A number of in vitro studies 

have shown that adenosine is able to inhibit DC function in mice and humans (202-205). It 

is also possible that IL-10 producing MDSC are responsible for causing the defective Ag 

presenting function of TIDC (193, 417).  

 

Studies have shown that many tumours contain high numbers of MDSC, which are 

negatively correlated with disease outcome. MDSC are known to directly suppress CD8+ T 

cell proliferation and effector function, mostly through the production of TGF-β and IL-10 
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(222, 351, 359, 362). Interestingly, experiments described in this thesis that involved the 

adoptive transfer of activated OTI T cells into tumour bearing mice resulted in a significant 

increase in the frequency of CD45+ CD11b+ Gr1+ cells, a phenotype consistent with 

MDSC. Activated T cells produce IFN-γ and GM-CSF (357, 418), both of which are 

known to cause the conversion of myeloid cells to MDSC (358-361). These findings 

suggest that the efficacy of adoptive T cell therapy in treating tumour-bearing individuals 

would be improved by concomitant treatments to block MDSC recruitment to the tumour 

or function. Treatments designed to inhibit MDSC function or prevent adenosine signalling 

may also improve the efficacy of cancer immunotherapies by improving the ability of DC 

to stimulate a T cell response and by restoring effector function to T cells. 

 

It is evident from the findings of this thesis that there is considerable redundancy in the 

immunosuppressive mechanisms used by tumours, which means that these mechanisms 

may be able to compensate when one or more suppressive factors are reduced in response 

to immunotherapy. This possibility emphasises the need to understand the similarities and 

differences in the suppressive mechanisms utilised by tumours in order to design more 

effective tumour immunotherapies. Given the number of immunosuppressive mechanisms 

used by tumours and the level of redundancy of these mechanisms, the most reasonable 

strategy to treat cancer may involve combining active and passive forms of 

immunotherapy, rather than concentrating solely on treatments designed to relieve 

immunosuppression. For example, the adoptive transfer of activated CD8+ T cells or 

tumour Ag loaded DC with mAb specific for TGF-β, to relieve immunosuppression and 

OX86 or CTLA-4, which can simultaneously inhibit Treg function and directly stimulate 

activated CD8+ T cells is likely to be a promising approach to cancer immunotherapy in 

the future. 
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7.2 Summary and Conclusions 

 

The main findings of this thesis can be summarised with the following points: 

 

• Adenosine inhibits the proliferation of both activated CD8+ T cells and tumour 

cells. 

• The adoptive transfer of activated tumour specific CD8+ T cells may result in an 

increase in the frequency of tumour infiltrating MDSC. 

• The depletion of Treg causes a delay in tumour growth. 

• Treg and DC have the potential to interact within tumours. 

• The Ag presenting function of TIDC is defective, however, this is not due to 

suppression of the TIDC by Treg. 

• Treg do not affect the ability of activated tumour specific CD8+ T cells to reject 

tumours. 

• In the presence of Treg there was more CD8+ T cell apoptosis and the proliferation, 

production of effector cytokines and cytotoxic function of CD8+ T cells was 

suppressed using a mechanism that does not include the perforin-granzyme 

pathway. 

 

In conclusion, this thesis shows that high levels of adenosine and the presence of Treg are 

two mechanisms by which tumours evade the immune response. These mechanisms are 

distinct and yet they have some similarities in that one of the outcomes of both 

mechanisms may be the increased level of TGF-β and IL-10 in the tumour. These findings 

provide insight into future strategies for improving cancer immunotherapy such as 

improving the function or survival of DC. Understanding how immune suppression occurs 



Chapter 7: General Discussion 

 

213 

will help determine which treatments are most likely to combine favourably to further 

improve cancer immunotherapy techniques. 

 

7.3 Future directions 

 

The following is a list of suggestions for future work based on the findings of this thesis 

and indications for how these questions may be investigated: 

 

• The development of a method to silence the A2a adenosine receptor of activated T 

cells that is reliable and yields a high percentage of successfully silenced, long-

lived cells is necessary to make this therapy feasible in large scale clinical trials. 

• Further work is necessary to establish whether adenosine affects the growth of 

B16.OVA (and other) tumours in vivo and to determine if the expression profile of 

the adenosine receptor subtypes on tumours affects their growth in the presence of 

adenosine. 

o The effect of adenosine on tumour cell proliferation in vivo could be 

investigated by comparing the growth of B16.OVA tumours to B16.OVA 

tumours in which the A2a receptors gene has been knocked out. 

• It is important to determine if the naïve, OTI T cells that were able to proliferate in 

the in vivo proliferation assay after being transferred into tumour bearing hosts in 

the late stages of tumour growth were able to become effector T cells or if these 

cells became anergic. 

o OTI T cells could be isolated from the lymph nodes and spleens of mice 3 

days after T cell transfer (~17 days after tumour inoculation) and transferred 

into tumour bearing hosts to determine if the cells have acquired effector 

function. 
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• It is of interest to determine whether Treg must traffic through the tumour tissue to 

fully acquire the ability to suppress anti-tumour immune responses in the lymph 

node. 

o The trafficking of Treg to lymph nodes and tumours requires expression of 

the Chemokine Receptors CCR7 (419) and CCR4 respectively (372, 375, 

420). Therefore comparing the immune responses in RAG1-/- mice that 

have received CCR7 KO, CCR4 KO, CCR7 and CCR4 KO or wild type 

Treg should address this issue. 

• There are a number of possibilities which need to be investigated to determine how 

Treg mediate suppression of the anti-tumour response: 

o Treg may prevent CD8+ T cells from becoming fully activated which may 

result in T cell death 

o Treg may restrict access of the T cells to the DC resulting in fewer T cells 

becoming activated 

o TIDC do not stimulate a CD4+ T cell response, regardless of the presence of 

Treg, however, DC vaccines are capable of eliciting a CD4+ T cell response 

in the absence of Treg (139). These CD4+ T cells may provide survival 

signals to the DC resulting in a prolonged and expanded CD8+ T cell 

response in the absence of Treg. Therefore it is of interest to investigate the 

expression of pro-survival molecules such as bcl-2 and bcl-xl and anti-

survival molecules such as bax and bad in DC and T cells in the presence 

and absence of Treg. 

 

The findings of this thesis demonstrate that the tumour microenvironment is characterised 

by a number of different immunosuppressive factors. Often, eliminating one known 

suppressive factor fails to significantly improve the anti-tumour response because other 
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mechanisms are able to compensate for this loss. These observations emphasise the need to 

understand how the immunosuppressive mechanisms in tumours interact and overlap in 

addition to understanding the individual components. 
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