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Abstract

Modern computer systems often involve multiple processdblreads of control that com-
municate through shared memory. However, the implememtati correct and efficient data
structures that can be shared by several processes istitggoeallenging. This thesis is
concerned with the design and verification of a class of sharemory algorithms known
asnonblocking algorithmswhich are implementations of shared data structures toatde
strong progress guarantees. Nonblocking algorithms affieappealing alternative to tra-
ditional techniques for the implementation of shared menu@ata structures, but they are
difficult to design, and extant algorithms can often be aapin only a limited range of sys-
tems. Furthermore, because of their subtlety, it is notstiodifficult to determine whether
a given nonblocking algorithm is correct.

This thesis addresses these difficulties in two ways. Rirstpresent techniques for the
verification of nonblocking algorithms that dynamicallyoglate memory. These techniques
allow the construction of formal and complete proofs of eotness, so that each proof may
be checked by a mechanical proof assistant. Applying tectasi first developed for the
verification of distributed algorithms, we use labellearition systems to model algorithms
and their specifications, and simulation relations to pribn an implementation meets its
specification. Nonblocking algorithms often require aipatar notion of simulation, called
backward simulationthat is rarely necessary in other contexts. This thesifriboites to the
relatively limited collective experience in the use of baekd simulation.

The second set of contributions addresses the limitatibmeamy extant nonblocking
algorithms. While many nonblocking algorithms allocatermoey dynamically, it is difficult
to determine in a nonblocking context when it is safe to fresmory. We present techniques
to accomplish this. Furthermore, many nonblocking alpang depend on the availability of
two powerful synchronisation primitives, known laad-linkedandstore-conditiongl which
are not normally provided by hardware. We present impleat@mts of these primitives that
work on commonly available platforms.
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Chapter 1

Introduction

Computer systems in which independent processes contdyraeness data structures present
challenges not found in systems in which data structureaaessed sequentially by one pro-

cess. Data structures that are to be accessed concurrgstydral processes must somehow
ensure that concurrent accesses maintain the consistétiey @ata structure.

The standard technique for implementing concurrent dati@tsires is to usenutual ex-
clusion at most one process is allowed to execute an operation ovea giructure at any
given time. Mutual exclusion reduces the problem of maimit@ consistency during con-
current operations to the problem of maintaining consstaturing a single operation.

Unfortunately, mutual exclusion can create several soéivemgineering and performance
issues [Gre96, Fra03]. The most prominent software-eeging issue that arises when us-
ing mutual exclusion is the problem déadlock In some systems it is hecessary for several
processes to acquire exclusive access to intersectingfaidta structures. In such situations,
it may be possible for each process to acquire exclusivesadoedata structures in an order
that prevents any process from making progress. The deadlockdescribes situations in
which this occurs. Techniques do exist to solve this prollsse [Bac98, Lea00] for discus-
sion). However, software engineers still need to reasomtaibe order in which exclusive
access is acquired. This is error prone and can lead to bagaréhdifficult to reproduce and
fix.

Furthermore, data structures based on mutual exclusiahtteperform poorly when
being accessed by a large number (dozens or hundreds) adsgex: It is possible for a
process to be delayed — by an action of a scheduler, a limtati the underlying hardware,
or even process failure — while holding exclusive access tlata structure. When this

1



2 CHAPTER 1. INTRODUCTION

happens, all processes awaiting access to that data seractudelayed as well. When many
processes are awaiting access to that data structuremparfoe of the system as a whole
can degrade massively.

These issues have motivated researchers to seek ways ehmepling shared data struc-
tures that do not depend on mutual exclusion. Such impleatiens are known asonblock-
ing algorithms

Because they do not rely on mutual exclusion, nonblockiggrdghms avoid the problem
of deadlock. Furthermore, numerous empirical studiesh(lsohulations and experiments
on real machines) have found that there are important nhsin which nonblocking al-
gorithms outperform their lock-based counterparts. ([3T@S98b, Har01, TZ01a, Fra03,
HLMSO03, SS03] provide examples.) These experiments stiggsonblocking algorithms
frequently scale better than lock-based solutions, asotioh increases.

Nonblocking algorithms are typically significantly morenaplicated than sequential im-
plementations or implementations based on mutual exclu@ecause of this complexity, it
is very difficult to determine if an algorithm is correct. Thtore, careful researchers provide
some kind of proof of correctness of novel algorithms. Thissis is partly concerned with
techniques for constructing such proofs.

For reasons that we shall discuss shortly, a challenginglgmoin the development of a
nonblocking algorithm is the question of how to determineewti is safe to reclaim memory
from a nonblocking data structure. Furthermore, nonblogkilgorithms frequently depend
on the availability of functionality that modern systemsrai provide. This thesis addresses
both these issues.

The remainder of this chapter is organised as follows. 8edtil provides a short intro-
duction to the field of nonblocking algorithms. This provddemntext for Section 1.2, which
outlines the contributions presented in the thesis. Bingkction 1.3 defines notation used
in the thesis.

1.1 Nonblocking Algorithms

Nonblocking algorithms provide variogsogress guaranteesbout the ability of any process
to complete operations in the presence of failure or delagthgr processes. As discussed
in Section 1.1.1, these progress guarantees come in vati@mgths, all of which preclude
the use of mutual exclusion.

In order to support nonblocking implementations of nomafidata structures, the under-
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lying system needs to providgrong synchronisation primitivesThese are operations that
allow processes to read and modify memory locations atdipieend are typically provided
by hardware. Such primitives are discussed in Section .1Nideover, considerable inge-
nuity must be employed in the development of these algosthection 1.1.3 describes one
classic algorithm (adapted from an algorithm in [MS98a} thdtself adapted from [Tre86]),
illustrating important issues associated with the desfgmablocking algorithms.

1.1.1 Nonblocking Progress Guarantees

Several nonblocking progress guarantees have been tieateel literature. Currently, the
most well established axeait-freedomandlock-freedonfHer91] An algorithm iswait-free
iff for every execution, every operation is guaranteed tmglete after a finite number of its
own steps, regardless of the delay or failure of any otheradjp®. An algorithm idock-free
iff for every execution, some operation is guaranteed topleta after a finite number of
steps of the execution, regardless of the delay or failuangfother operation.

Lock-freedom is the weaker condition: lock-freedom allave possibility that some
processesevercomplete their operations. So long as some processes apetom, the
others may be prevented from making progress. Wait-freqoi@tiudes this property: every
process is guaranteed to complete. Every wait-free alguoris lock-free.

Both wait-freedom and lock-freedom preclude the use of mlutdclusion. A process
that failed while holding exclusive access to a data streattould prevent all other processes
from completing operations that required access to that staticture.

1.1.2 Synchronisation Primitives

Nonblocking algorithms normally make substantial use ofigdul synchronisation primi-
tives. We describe the most important such operations.conegpare-and-swafCAS) op-
eration; and thé.oad-linked/Store-conditiongLL/SC) operation pair. Herlihy [Her91] has
shown that any sequential data structure can be implemastegd either CAS or LL/SC, and
that other common synchronisation primitives (suchess-and-sebr swap are insufficient
to construct nonblocking implementations of many impadrtéata structures.

There is ambiguity in the literature between the tetowk-freeand nonblocking They have sometimes
been used synonymously. However, we follow an existing eotiwn wherebyonblockingdescribes the whole
family of algorithms that do not rely on mutual exclusiondadock-freedescribes a class within that family.
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bool ean CAS(val =l oc,
val old,

val new) {

atomical ly {
if (xloc = old){
x| oCc : = new,
return true;
} else return fal se;

}
}

Figure 1.1: Semantics of the CAS operation. Here (and thraugch of this thesis) we
use a C-syle pseudocode. A declaration liltd *| oc specifies that oc is a pointer to a
value of typeval . An expression like | oc evaluates to the value referencedltnc. The
expressiorx | oc may be used on the left-hand side of an assigment, in whiehtbasvalue
at the address is changed to the value of the right-handesigle@ssion. We break with the C
convention by denoting assignment with the symbat”, and the test for equality (returning
a boolean) with £”.

Pseudocode representing the semantics of the CAS opeiafiwesented in Figure 1.1.
The CAS operation takes three arguments, a locdtion (sometimes called therget of
the CAS), and two valuegl d andnew, and returns a boolean value. The value currently
atl oc is tested againgil d. If they are equal, then the valuelabc is updated tmmewand
the CAS returns r ue (in this case, we say that the CA8cceeds otherwise, no change to
the value at oc occurs and the CAS returfi@l se (in this case we say that the CA&ls).
These comparisons and updates happen atomically. That @ther operation on memory
appears to occur during the CAS operation.

Pseudocode representing the semahtiéshe LL/SC operations is presented in Figure
1.2. LL and SC are used in pairs: every invocation of SC onatioe! oc by some process
must follow an LL operation tb oc by the same process, with no intervening SC ¢z by
that process. In this case, we say that theng&fcheghe earlier LL, and that the Limatches
the SC. The LL operation reads the value from the locatiom; 38 operation conditionally
stores a new value to the locatiosycceedingand returningt r ue, if no other SC to the
location has succeeded since the matching LL. Thda&d€and returnd al se otherwise,
leaving the location unchanged. We say that an Lousstandingf it has no matching SC.

2There are several possible variations on the semantics (8@Lthat describe how LL/SC interacts with
ordinary store operations, or that provide additional apens. We ignore these extensions for now.
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val LL(val =*loc) {
return x| oc;

}

bool SC(val * loc, val newal) {
atomical ly {
if (no SC has returned true
since the last LL of
this process) {
x| oc : = newal ;
return true;
} else {
return fal se;

}
}
}

Figure 1.2: Semantics of the LL/SC operations.

(Note that if an SC matches an LL, then the SC is executed bgaiime process that executed
the LL.)

Most contemporary multiprocessors offer either CAS or LL& primitive instructions.
Unfortunately, as far as we know, no hardware implementatibthe LL/SC operations
provides the strong semantics described above. To makevhadmplementations feasible,
restrictions are added [Moi97]: for instance, programnmeay be limited to using only one
LL at atime, without a matching SC (so only one location cathieesubject of an unmatched
LL at a time); reads or writes to memory may be disallowed eetwthe time when an LL
is executed and its matching SC completes; or an SC maggdaiiously that is, without an
SC being executed to the location since the matching LL. &ctre, these restricted LL/SC
operations are normally used to implement a CAS operati®sim(fMS96a, Moi97]).

Both CAS and LL/SC share an important restriction: they @tlgw atomic modification
of one location at a time. One generalisation of the CAS djmrathe double compare-
and-swap(or DCAS), does not suffer from this restriction. DCAS bedmyjust like CAS,
but compares and modifies two independent locations, sdicgedf bothlocations contain
their respectiveld values. Pseudocode representing the semantics of DCA8demied in
Figure 1.3.

As arule, DCAS is not provided by multiprocessor systems,ahly exceptions known
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bool ean DCAS(val =*addrl, val =*addr?2,
val ol dl, val old2,
val newl, val new2) {
atomical ly {
if ((raddrl = oldl) &&
(*addr2 = ol d2)) {
x*addrl : = newl;
*addr2 : = new?2;
return true;
} el se return fal se;

}
}

Figure 1.3: Semantics of the DCAS instruction.

to us being systems based on the Motorola 68030 processaveudg the operation has
received attention from researchers because of its pateatmake the development of non-
blocking algorithms significantly easier.

1.1.3 An lllustrative Example

We now describe several versions of a lock-free stack dlgaurknown as th@reiber stack
The algorithm was originally presented in [Tre86], but isctébed in a more accessible fash-
ion in [MS98a]? The versions presented here are adapted from the lattefTrEiteer stack
is very simple, taking only a couple of paragraphs to desciiot it illustrates several impor-
tant techniques used in nonblocking algorithms, and ingpordifficulties that the designer
must overcome.

A stack, a classic data structure in computer science, iBgctthat contains a sequence
of values from some type, and providpashand pop operations which add and remove
elements in dast-in-first-outfashion. In Treiber’'s algorithm, the stack is representec a
linked-list of nodes accessed byHaad variable. Each node hasval field which contains
some application specific value, andhext field, which points to the next node in the list.
The structure of the nodes contained in the stack, the glarable and the initial state are
declared in Figure 1.4. Pseudocode for the stack operasgresented in Figure 1.5.

The presentations given in [Tre86] and [MS98a] describeatberithm in terms of the

3The original paper presents the algorithm using System#3%6mbler code.
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struct node { node *Head;
val ue val ; node xnext initially Head = null;

}
Figure 1.4: The node structure, the global variadésad, and the initial condition for the
stack implementation.

voi d push(val ue v) { val ue pop() {

H1. nd := new node(); P1. while (true) {

H2. nd->val := v; P2. head : = LL(&Head);

H3. while(true) { P3. if (head = null)

H4. head : = LL(&Head); P4. return enpty;

H5. nd- >next : = head; P5. next := head->next;

H6. i f (SC(&Head, nd)) P6. i f (SC(&Head, next))
br eak; br eak;

H7. } P7. }

H8. return; P8. return head->val;

} ¥

Figure 1.5: Pseudocode for the stack operations.

CAS operation. We describe it here using LL/SC becausestismewhat simpler. Another
point to note is that the code just presented does not ettpliecycle memory. The steps that
must be taken to obtain an algorithm that uses CAS and recyetamory are informative,
and are discussed below.

We first describe th@ushoperation. A procesp executingpushfirst allocates a new
node (line H1), sets itgal field to the value being pushed (H2) and then attempts to link
the new node onto the stack. Procpsioes this by repeatedly using LL to load the current
Head (H4); setting thenext field of the new node to the pointer it read frafead (H5);
and using SC to swing thdead pointer to the new node (H6). Once this has been achieved,
the value has been successfully added to the stack, thedoomates ang returns.

This looping pattern is very common in nonblocking algarigh A process reads some
shared variable (in this casiead); executes some operations based on that value, the effects
of which are not visible to other processes (in this case,ifyiad the freshly allocated node
at H5); and finally uses a synchronisation primitive to mpdlife shared variable, but only if
the value of the variable has not changed since the earéér(ie this case, using the SC on
line HB). If the modification fails, the process returns te #tart of the loop, and tries again.

We turn now to theop operation. A procesp executing goop operation enters a loop
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in which it tries to remove a node from the top of the stapkepeatedly reads the current
value ofHead using LL (P2) and checks if the value readhisl | (P3). If so, the stack was
empty wherp executed line P2, sp returns an indication that the stack was empty (P4). If
Head was notnul | , preads thanext field of the node (P5) and then uses SC to attempt to
setHead to thenext value (P6), thus removing the node. If this succepdsits the loop
and returns the value contained in the node just removed.

Recycling Memory

We turn now to the issue of recycling memory. This is a diffiégssue in nonblocking algo-
rithm design. In the case of the Treiber stack, a poppingge®cannot simply free a node to
the system after removing it from the stack, as would be ptesgi a sequential implemen-
tation, or one based on mutual exclusion. To see why, sugbaseve replace line P8 with
the following code:

P8: val := head->val;

P9: free(head);
P10: return val;

The resulting stack implementation frees nodes after ramgahem from the stack. Now,
consider the following execution.

e A processp invokespop when the stack is not empty. It loadtead (which is not
nul | ) and is delayed.

e Another process| invokespop. It executes all of th@op code, including P9 and P10.
Note thatg's head variable is the same as.

e Process now continues its execution, attempting the reathefd- >next at line
P5. Howeverg has freed this node. Therefore, this read is illegal in masyesns,
and may cause an error.

The fundamental problem is that it is difficult to determinbem a process has a stale ref-
erence to a block of memory (that is, to a block of memory thigihtnbe freed by another
process). Because of this issue, nonblocking algorithrmsharmally unable to free mem-
ory to the system without additional support. A garbageemddr can be used to recycle
storage, since a collector can determine when no referelcaspiece of memory exist.
However, garbage collection can only be used in certainextsit garbage collection may
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be deemed inappropriate in the context of operating systd#tware, or it may interfere

with real-time requirements. Moreover, it seems very likiblat algorithms that depend on
garbage collection will not be useful in the implementatadra garbage collector. Finally,
some programming languages (for example, C/C++) are ndswigtd to garbage collection:
efficient garbage collection sometimes requires the catioer of the non-garbage collection
processes, as well as precise information about the typesiables.

One solution is to never free memory to the system. Ratherrgtarning unused mem-
ory to the system, we place it on a freelist local to the pre@gsapplication. An access to a
node already placed on such a freelist will not cause an.gfi@wever, this solution prevents
the amount of memory used by a data structure from falling, raay not be acceptable in
contexts where the size of available memory is small redetvapplication requirements. A
spike in the frequency of push operations may cause thenaalory consumed by the stack
to increase, and that consumption cannot fall for the fifetiof the stack. (One important
application of the Treiber stack is as a freelist that is etidoy processes [MS98a]. Stack
nodes are used as memory buffers in the application datetwteu In such a context, the
Treiber stack does not itself need a freelist, because aftede has been removed from the
stack, it will be used by the application.)

Other techniques that enable unused memory to be given batle tsystem exist, and
are discussed in Chapters 5 and 6. The main point here isebgtling memory from
nonblocking data structures is tricky, and simple soligiare not always applicable.

CAS and the ABA Problem

As noted in the previous section, Treiber's stack algoritlsad the CAS synchronisation
primitive, rather than LL/SC. A simple attempt at using CASimplement a nonblocking
stack is presented in Figure 1.6. The LL operations at lingésuhtl P2 have been replaced by
reads; the SC operations at lines H6 and P6, have been réffig¢2AS operations. The idea
is that the CAS operation provides a similar kind of conditibupdate as the SC operation.
Therefore, it might seem that a successful CAS operatiofiegbfo Head by one process
should only modifyHead if no other process has done so since the earlier read.

This algorithm will work correctly if memory is never recedl, or if garbage collection
is used. However, it is incorrect in a context where memongéycled using a local freelist.
To see why, suppose that we replace line P8 with the followotde

P8: val := head->val;
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voi d push(val v) { val pop(val =*out) {

Hl. node * nd, head; P1. node * head, next;

H2. nd := new node(); P2. while (true) {

H3. nd->val := v; P3. head : = Head;

HA.  while(true) { P4. if (head = null)

H5. head : = Head; P5. return enpty;

H6. nd- >next := head; P6. next := head->next;

H7. i f (CAS(&Head, head, nd)) P7. i f (CAS(&Head, head, next))
br eak; br eak;

H8. } P8. }

H9. return; P9. return head->val;

} }

Figure 1.6: Stack algorithm using CAS. This algorithm doesaxplicitly recycle memory.

P9: to_freelist(head);
P10: return val ;

wheret o_f r eel i st adds its argument onto a freelist. Now, consider the folhgnéxecu-
tion, illustrated in Figure 1.7:

e Some procesp invokes pop while the stack is not empty. It loaddead (which is
nonnul | ) and therhead- >next before being delayed. This situation is illustrated
in Figure 1.7(j).

e Another procesg invokespoptwice, removing the top two nodes (those markezhd
b in the figure). The nodes removed from the stack during thpseations are placed
on a freelist.

e Aprocess invokespush adding a node distinct froipis next variable onto the stack,
and theng invokespush, placing the node referenced pi head variable onto the
stack. The resulting state is illustrated in Figure 1.7(ii)

e Proces® now continues its operation, executing the CAS at line P8auire 1.6. This
CAS succeeds in modifyinglead because processset that variable to be equal to
p's head variable. This results in the situation illustrated in Figd.7(iii)). The node
markedc has been incorrectly removed from the stack, and that markeas been
incorrectly added.

The problem is that CAS does not guarantee to modify a locatidy if the value in the
location has not changed since the location was last readlyltgyuarantees that the value is
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Head
&——~ a ° b °
p.head p.next
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Head
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b °
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Figure 1.7: States of the stack implementation in Figureldafling to an error when recy-
cling through a freelist.
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the same as it was before. Note that the stack implementétaédused LL/SC did not suffer
from this problem because the semantics of LL/SC guarahtetie SC will fail if the value
has changed. Also note that if memory was never recycledhdde markech could never
have been replaced on the stack. Similarly, if garbage daiie was used the collector would
delay recycling of the node markeduntil after p had executed a (failing) CAS and reread
theHead variable at line P2.

This issue with the use of the CAS operation is known asAB& problem[PLJ94].
Recall that a typical way to use CAS (as exemplified in thekstdgorithm) is to read a value,
call it A, from a location (in our casead), and to then use CAS to change the value at that
location fromA to a new value. The intent is often to ensure that the CAS amtgeeds
if the value in the location has not changed since it was raadeffect which is achieved
directly by the LL/SC operations). However, the locatiorghtichange to a different value
B and back toA again between the read and the CAS, in which case the CAS caresil
Typically, such a pattern will cause an algorithm to beha®irectly.

In general, the ABA problem does not arise when garbage atiwite is used, so long
as CAS is only used to maodify pointer values, and no pointaraggear twice in the same
location without first becoming unreachable and subsetubaing reallocated. This is the
case with the Treiber stack, and numerous other nonblockigorithms. However, as we
argued earlier, garbage collection is not always appleabl

Figure 1.9 presents pseudocode for a version of the staokitalg that does not suffer
from the ABA problem, even when recycling nodes through elfsg and does not depend on
garbage collection (this is essentially the algorithm enésd in the original paper [Tre86]).
We introduce a new typeef i nt _t , presented in Figure 1.8. Members of thef i nt _t
type have both a pointer to a node and an integer, calleaisston numberThere are systems
where the CAS operation can atomically compare and modifly Bgointer and an integer
(for example, a 32-bit system with a 64-bit CAS). In such eys, an algorithm may use
CAS to increment the version number of af i nt _t every time the value of the pointer is
changed. Assuming for a moment that the version number &arthe value of any integer,
if a location containing aef i nt _t has the same value at two points in time, then it had the
same value throughout that interval.

This idea is applied in the stack by giviktgad the typer ef i nt _t , and incrementing
its version number at lines H6 and P6. Now, an execution likeohe illustrated in Figure 1.7

“This situation can always be achieved by introducing a lef/@ldirection between values and locations.
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struct {node =*ptr;
int ver} refint_t

Figure 1.8: Thea ef i nt _t type. If x has typer ef i nt _t , we usex. pt r to refer to the
pointer member, and. ver to refer to the integer.

cannot occur. The modifications to the version number thalavoe carried out by processes
g andr during their operations would prevepis CAS from succeeding.

This version number technique, or one very like it, is usealriange of other nonblocking
algorithms ([TSP92, Moi97, MS98a, LMS03a, HF03, JP03, DHI4}iprovide examples).
Note that so far we have pretended that the version numbemcagase without bound.
However, in practice, version numbers can only representi fiange of values, and the
version number may wrap-around to a value that was prewiaasthe location. But if
sufficient bits are used to represent the version numbeagnitoe made extremely unlikely
that this wrap-around will cause a problem [Moi97].

However, the version-number technique requires that CAgbleeto modify two adjacent
values simultaneously: the pointer and the version numidiis is impossible in many
multiprocessor systems. If the system uses 64-bit poinibeitsonly provides a 64-bit CAS,
the CAS cannot atomically modify both the pointer and thesiegr number.

As discussed in Section 1.2 and in Chapters 5 and 6, thisstpessents techniques for
overcoming the ABA problem, as well as enabling storagearaation from nonblocking
data structures.

1.1.4 Verification of Nonblocking Algorithms

As has already been mentioned, nonblocking algorithms yaiedlly more complicated
than their lock-based counterparts. This extra complexitgn makes it difficult to deter-
mine whether an algorithm is correct. Indeed, several dlgos from the literature have
been shown to be incorrect after publication (for exampR91, DFG 00, Val94, Val9s,
TZ01b]).

Because of this, careful researchers provide evidencehtbmtnovel algorithms are cor-
rect. This evidence typically takes one of two forms:

e Some kind of rigorous testing or model-checking is carriatd(eg., [MS96b, Har01]).

e Some sort of manually constructed formal proof or semi-fdrargument is presented,
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struct node {
val val; node *next

}

refint_t xHead;
initially Head = (null, 0);

voi d push(val v) { val pop(val xout) {

Hl. nd : = newnode(); P1. while (true) {

H2. nd->val := v; P2. head : = Head;

H3. whil e(true) { P3. if (head.ptr = null)
H4. head : = Head; P4. return enpty;

H5. nd->next := head. ptr; P5. next := head. ptr->next;
H6. if (CAS(&Head, head, P6. if (CAS(&Head, head,
(nd, (next,

head. ver +1))) head. ver +1)))
br eak; br eak;
H7. } P7. }
H8. return; P8. return head. ptr->val;
} }

Figure 1.9: Types, initial state and pseudocode for themersumber stack.
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purporting to show that the algorithm is correct (eg., [DfB, JP03, MNSS05)).

Rigorous testing and model-checking can be used to findssimanany systems. Both ap-
proaches suffer from the drawback that typically they omigreinesomepossible executions
of a given algorithm, rather than guaranteeing correcti@sall executions. (Any model
checking algorithm can only enumerate finitely many staiesctly, in finite time. Some
advanced model-checking techniques may be able to cheekexdutions of an unbounded
system, using a bounded approximation of the original syst&@/e return to this issue in
Chapter 2).

The other approach, manually constructing a formal or demial argument, is perhaps
more popular. A formal argument or proof has the advantage ithcovers all possible
executions of an algorithm. Unfortunately, published [sare often long and difficult, or
lacking in rigor. Both these conditions make the proofs tetiable. For example, [DFG00,
TZ01b] present incorrect algorithms, along with semi-fatrworrectness arguments.

[Gao05] has noted that many nonblocking algorithms seenavte the property that au-
tomatic verification is impossible and manual verificatisnnadequate. Some recent work
[CDGO5, Doh03, DGLM04, GGHO05a, GGHO5b] has attempted to dimiddle ground, us-
ing proof checkingandmachine-assisted theorem provittgverify nonblocking algorithms.
As discussed in the next section, the development of sud¢iiggees is one of the central
concerns of this thesis.

1.2 Contributions and Overview of the Thesis

The contributions of this thesis can be divided into two gatees. The first involves the
verification of nonblocking algorithms. The second invallidting the restrictions suffered
by many nonblocking algorithms relating to memory recldoragnd the availability of syn-
chronisation primitives. Accordingly, this thesis is died into two parts. Part | is concerned
with the verification of nonblocking algorithms. Part Il isrcerned with memory reclama-
tion techniques and synchronisation primitives.

1.2.1 Techniques for Verifying Nonblocking Algorithms

As discussed in Section 1.1.4, it is desirable to developrigges for the verification of
nonblocking algorithms that provide a greater level of emsce of correctness than the stan-
dard techniques currently used. Part | of this thesis deserand applies such techniques to
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the verification of nonblocking algorithms. Much of this was built from techniques first
developed in [Doh03], which in turn are based on work oritjjnaeveloped for the verifica-
tion of distributed systems [LV93, Lyn96]. The work repati@ [Doh03] was an attempt to
model and verify an algorithm known as tBeark algorithnr[DFG*00], which is an imple-
mentation of a double-ended queue (a structure contairsegjaéence of values that supports
both add andremoveoperations at both ends). That effort resulted in the disgothat the
algorithm as originally published is incorrect. The vesfion work of this thesis extends
that of [Doh03] by showing how algorithms of greater comfilexan be verified, using a
broader range of verification techniques.

Chapter 2 describes a technique in which both implememntstmd their specifications
are formalised akabelled transition system&TS). This allows us to apply a powerful tech-
nigue that usesimulation relations A simulation relation is a relation between the states
of an LTS representing an implementation and an LTS reptiegea specification, the exis-
tence of which guarantees that every observable behavidhe éimplementation is allowed
by the specification.

The verification work presented in this thesis has three napo features. First, we
verify algorithms that use dynamically allocated memorg aresent a useful technique for
describing the properties of this memory within a simulatielation. This technique is
applied to verifications in Chapters 3 and 6.

Second, we use a certain kind of simulation relation callbdakward simulationBack-
ward simulations are needed very infrequently in most \atiibn contexts, but are more of-
ten necessary in the verification of nonblocking algoritialgorithms from [Blo88, Fra03,
DDG'04, MNSS05] would all require backward simulations if vexifiusing simulation re-
lations). Because of this and the fact that backward sinomatappear to be, in some sense,
trickier than the simulations that are typically requiret believe that this work contains
useful insights into the verification of nonblocking algbms. Verifications presented in
Chapters 3 and 4 use backward simulations.

Third, all the verifications presented in this thesis havenbproof-checked using the
PVS proof assistant [PVS]. This gives them a greater degregliability than proofs that
are constructed manually.

The specific verifications presented in this thesis are &®ael Chapter 3 describes the
verification of a variant of a nonblocking queue algorithnstfipresented in [MS96b]. This
verification is the simplest of those presented in the thesid so serves as an introduction
to the verification techniques. Additionally, during theifieation process, we discovered a
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useful optimisation of this algorithm, which is also presehin Chapter 3. Chapter 4 presents
a subtle verification using backward simulation. This fotims most interesting part of the
verification of a corrected version of the Snark algorithmtimned in Section 1.2.1. The
verification functions as an extended example of the appicaf backward simulation to
nonblocking algorithms.

As we describe in the next section, Chapter 6 in Part Il ptssmimplementation of the
LL/SC operation pair. We apply the techniques of Part | tovidgfication of this algorithm.
This verification is large, reflecting the complexity of tHgaithm, but is a straightforward
application of the techniques presented in Chapter 3. lta japose is to provide evidence
for the correctness of the LL/SC implementation, and to sktimat our techniques can be
applied to complicated algorithms.

1.2.2 Novel Nonblocking Algorithms

We have described two important limitations that restiiet &pplication of nonblocking al-
gorithms in modern computer systems.

e Many nonblocking algorithms depend on garbage collectioreliably release mem-
ory back to the system. (The presence of a garbage collecémsumed in [DFGO0,
LMS03a, HLM02a, HHL06]. Many more examples exist.)

e Many nonblocking algorithms require the LL/SC operatiamsa CAS operation that
can compare-and-swap both a pointer and an adjacent versiober, in order to
overcome the ABA problem. Such operations are not availablemany systems.

We encountered both these issues in Section 1.1.3. Signifiesearch has been conducted
into schemes that enable memory reclamation from nonbigckiata structures, various
LL/SC implementations, and alternative solutions to thedBoblem [Val94, AM95, Moi97,
Gre99, Moi00, DMMmO01, HLM02b, JP03, Mic04, Jayd5PRart Il of this thesis presents our
contributions to this effort. In Chapter 5 we present a noweiblockingreference-counting
technique that enables memory reclamation from nonblgckliata structures. This tech-
nigue has certain advantages over prior proposals, rgladiits overall resource consump-
tion. However, this technique requires a CAS operation ¢chatcompare-and-swap both a
pointer and a counter. As with version-numbering, thisneiee counting technique cannot
be applied on all systems.

SA correction to an error in [Val94] is presented in [MS95].
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The main result described in Chapter 6 overcomes this probl&e present an imple-
mentation of the LL/SC operation pair that may be applied rimtiarily sized data, that
requires only a CAS operation that can atomically modify afgs value. This implemen-
tation can be used with the reference-counting techniquenaible nonblocking memory
reclamation from many dynamic sized nonblocking data sires. Further, the LL/SC im-
plementation itself can be used in any algorithm that reguine LL/SC operations with their
full semantics, or in algorithms that require a CAS or LL/Siemtions applicable to both a
pointer and other data, such as a version number. Thus, kyaifittams can be used even in
systems where LL/SC operations, or a CAS operation that catifygrmultiple values, would
otherwise be unavailable.

Similar claims could be made for previous approaches to mgnmeclamation and solu-
tions to the ABA problem. However, existing solutions have of two major drawbacks:

e They depend on very unusual properties of the underlyintesys either an exotic
synchronisation primitive such as DCAS (as in [DMMmO1]) oemmory blocks not
changing layout after reclamation (as in [Val94, Gre99]).

e They require that the maximum number of processes that well ese the facility be
known in advance (eg., [Her91, AM95, LMS03a, JP03, HLMO02lic®4, LMS03a,
JP03])).

These drawbacks are discussed in more detail in Chapters@ &fowever, it is worth noting
here that it is common for nonblocking algorithms to requirat the maximum number of
processes be known in advance (eg., [Her91, AM95, LMS03@3]JP In fact, the results
presented in Chapters 5 and 6 are the first nonblocking #hgaosithat allocate and release
dynamic memory and do not depend on exotic synchronisationitives or knowledge of
the maximum number of processes that will access the daiztste.

1.3 Notation

This section describes notation used in the thesis.

Logic, Sets and Functions

We use the standard logical connectives, listed here irr afdecreasing binding powelv
for ‘for all’; 3 for ‘there exists’;= for implies; Vv for ‘or’; A for ‘and’; — for ‘not’. These
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binding conventions are the same as those used in PVS {@8R The scope of bound
variables extends to the end of the expression followinganentifier, and we use a dot
notation to separate quantifier and predicate. Thus, in

VxeP = Q(x)

X is bound over the predicat@.

We useN to denote the natural numbefsto denote the integers amdol to denote the
booleans{true, false}. We use ranges of the forfn. .. ]| to denote the set of integeks
such thai < kandk <j. Sx T is the Cartesian product of s&¢@andT. The projectionsr;
and s return the first and second members of these products, tesbhecExpressions of

ITe

scS
wheree is some set expression that may invok/alenotes the product of the setaicross
the index se&. For products like this, we use the projectiondor eachs € S.

For complex products, we often use mnemonic access namesavdbt syntax. For
example, for some tuplec X x (Y x Z) we might stipulate thatx = 7 (t), t.y = 71 (ma(t))
andt.z = my(ma(t)).

Given arelatiorR: Sx T ands € S R[g is the relational image cfontoT:

the form

Rsf={teT | R(st)}

We often need to modify the value of a function at a certaimipogiven a function
f:S—T,seSandteT,letf @ {s— t} be the function just liké, but withf(s) =t, i.e.,
for everys € S

f(s) ifsd#s

f@{s»—>t}(s’):{t e s

Finally, given a functiorf, letdom f be the domain of.

Sequences

We make substantial use of sequences. We view sequencexctsrig over some (possibly
infinite) prefix ofN (so sequences are indexed from zero). When a sequence wiaffusver
a finite prefix ofN, we say that the sequencefisite. Otherwise, we say that it isfinite.
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We uselength(a) to denote the length of the finite sequencé Whenlength(a) = 0,
we say thaty is empty. Bythe empty sequence/e mean the unique sequengesuch that
length(({)) = 0. Given two (finite or infinite) sequencesand/ we say thatv and have the
same lengtlif and only if « and are both infinite, olength(a) = length(/3). Sometimes
we need to quantify over the domain of a sequence, exclutirgst element if it is finite.
Thus, given a sequeneg let dom™a bedom o whendom o = N (i.e., « is infinite), and
all but the greatest element d6m o whenq is finite. Given some se§, let S* be the set of
finite sequences whose values are elementy ahd letS™ be the set of (finite or infinite)
sequences whose values are elemeng of

®Precisely, when is finite, length(a) is the size of the graph af.
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Chapter 2

Verification

This chapter describes a formal methodology for verifyingaurrent algorithms using tran-
sition systems. This approach is based on the work of Lyatcil. [LT87, LV93, Lyn96],
and developed from previous work in the verification of nacking algorithms [Doh03,
CDGO05].

In Section 2.2, we definknearisability [HW90], the notion of correctness that we ap-
ply to nonblocking algorithms in this thesis. Linearisépilis a correctness condition for
concurrent implementations of objects (such as stacks apdes) that have a sequential
specification. As mentioned in the introduction, we usedition systems callet/O au-
tomata[LT87] to model the specifications and implementations Wause in this work. 1/0
automata are described in Section 2.3.

Transition systems, such as I/O automata, are a naturatecfimi modelling, specifying
and verifying concurrent systems. Section 2.1 outlinesréasons for this, and describes
some of the advantages of the 1/O automaton model. We alsasdisiow our use of I/O au-
tomata relates to the goal of constructing proofs of conesd that are mechanically check-
able.

Section 2.4 definesimulation relations A simulation relation is a relation between the
states of two automata, the existence of which guarantegstie automaton implements
the other automaton. Section 2.5 defines some notation $erideng 1/0 automata. Section
2.6 shows how to construct simple specification automataatigaknown to have the desired
correctness property, linearisability.

23
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2.1 Transition Systems and Verification

Transition systems are frequently used to provide matheatabtodels of concurrent systems
(such as nonblocking algorithms) ([CM88, Sha93, Lyn96, AMR_.am94] provide examples
in different settings). Briefly, transition systems areistures with a set dftates(sometimes
called itsstate spack a set ofinitial states, and @ansition relationbetween states. The use
of transition systems is appealing when the algorithm bearfied has a notion doftate as
with a shared-memory nonblocking algorithm.

Labelled transition systems (LTS) are transition systeimsre/each transition hasadbel.
Labels are used to distinguish betwésternal transitions (modelling steps in a computation)
that are “invisible” and those that are externally visibteo@elling invocations and responses
of operations).

Specifying an LTS amounts to specifying the properties ©€iternally observable be-
haviour: that is, the sequences of external labels thanitpcaduce. LTSs themselves can
be viewed as specifications of external behaviours. Thussameuse ambstractLTS as a
specification of a&oncreteL TS, that represents the behaviour of an implementatiotis iEh
the approach used in this thesis.

The size of a transition system'’s state space partly detesnihe difficulty of verify-
ing the system’s properties. As we discuss in Section 2ifla2system has a "small” finite
state space, then many important questions about the loeihadfi the system can be an-
swered automatically. On the other hand, if the system Hastaly many states, verifying
its properties can be very challenging. In this thesis, wehwo verify systems that have
an unbounded number of processes, sharing an unboundedhtaofiolynamically allocated
memory. Thus, the systems of interest to us have infinite sfadces.

We usesimulation relationgLV93] to show that an algorithm meets its specification.
Simulation relations are relations over the states of tw84.TThe existence of a simulation
relation from one LTS to another guarantees that the obiskerdaehaviour of the first is
shared by the second.

Simulation relations have a very useful property: they cedeasoning about all possible
behaviours of the LTS to reasoning about the individualdgiteans. In this respect they are
akin to proofs relying on invariants, which reduce reasgrabout all possible states of an
LTS to reasoning about transitions. Thasality of proof obligations makes reasoning about
a large class of possibilities tractable.
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2.1.1 Mechanical Assistance for Verification

There are two main kinds of mechanical assistance avaifabléhe formal verification of
transition systems: model checking and theorem provingdMfuss each in turn.

2.1.2 Model Checking

Model checking [CE82, CES86, QS82] is a verification techaifased on generating a rep-
resentation of the reachable states of a transition systaia.representation must allow us to
determine mechanically whether some state fails to satisfiye given property. Numerous
model checkers are available (e.g., [Spi, SMV, dSp, YML9@r) Modern model check-
ers can explore large finite state spaces. This makes thesbleagf automatically verifying
properties of a broad range of finite systems. Moreover,pbissible to model check finite
instances of systems with unbounded or infinite sets of eddeltstates. For example, an in-
stance of a concurrent algorithm that uses shared memoiyeceerified automatically using
model checking, so long as the instance in question uses I§ fise amount of memory,
and has a small number of processes. Indeed, the algorittstissded in Chapters 3 and
6 were model checked (using the model checker Spin [HolQTtihd their development or
verification. Moreover, bugs were found in the early versiofthe the LL/SC algorithm of
Chapter 6. However, checking a finite instance of an algoritha long way from providing
a general verification, so other techniques must be examined

Model checkers can only generate a finite representation seft @f reachable states.
Therefore, if we wish to verify infinite systems, we must firalree way to represent the
infinite set of reachable states finitely. Such finite repreg@ns are known aabstrac-
tions Substantial attention has been given to developing wagsristruct abstractions (e.g.
[DD02, GS97, BCDR04, MYRSO05], but there are many more exas)plSome of this work
has been directed towards the verification of systems imglgoncurrent access to shared
memory (e.g., [Yah0l, WS02, ARR7a]). We discuss some of these contributions in detail
in Chapter 3. In general, obtaining a precise finite reprasiem of the infinite state space of
such systems is a very difficult problem. Many techniquesge an abstraction that is an
over-approximatiorof the system in question. That is, the abstraction may septemore
states than are reachable by the system, or generate aargpites of behaviours that do not
belong to the system. Often, such over-approximationsadmused to verify that a system
has a property of interest, even when the system does hapedperty.
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2.1.3 Theorem Proving

One of the advantages of using rigorous mathematical meadelspecifications is that proof
obligations can be submitted to a mechanical theorem préverechanical theorem prover
is an application capable, at least, of checking proofs @btbms expressed in some kind of
formal notation. Most provers have some abilityctinstructproofs, using heuristic-driven,
automated proof search and decision procedures. Unlikehobeckers, theorem provers
can be readily used to verify properties of systems of untedrsize.

Like model checkers, there are several theorem proverkbia{for example [PVS, LP ,
isa, met]). Most provide an input language based on matheahkigic and some mechanical
proof automation. The verifications presented in this thikaive been checked using the PVS
proof assistant [COR95]. PVS is widely used in academia and industry, providesasily
learned higher-order logiavith powerful constructs and is well supported by develeper

The use of a mechanical theorem prover offers several aalyasiover the construction of
proofs by hand. Automated proof search relieves the humaruch of the responsibility for
carrying out tedious, mechanical reasoning. The PVS systentarry out simple quantifier
instantiation and propositional reasoning automaticatiywell as applying lemmas based on
reasonable heuristics. PVS also has sophisticated degsozedures for equational logic
and pure boolean expressions. In combination, these &satnean that a user of the PVS
system can submit most simple proof goals to the PVS provtr,geod reason to hope that
they can be proved without any human intervention.

Proofs are checked with mechanical precision. In the idese csteps in an argument are
matched against the rules of the logic that the prover suppblowever, the use of decision
procedures in a theorem proving system complicates thig issmewhat: the mechanically
checked proof may rely on the correctness of decision prgesdhat do not explicitly rep-
resent applications of proof rules. Still, in the PVS systéinese decision procedures are
implementations of well-understood algorithms. Whilesthémplementations may contain
bugs, successfully checking a proof using PVS provides h ldgel of assurance that the
proof is correct and complete.

The main difficulty in conducting a verification by provingettrems, using a proof assis-
tant to check or construct the proofs, is the high level of Annmvolvement. In many cases,
model checkers are able to eliminate all, or almost all, fieetiuman insight. The human
theorem prover must express the correctness conditiome &yistem in question, state lem-

Where quantification over functions is allowed.
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mas and invariants that are necessary for the proof, aneédat)lguide the prover through
the process of constructing the proofs.

2.2 Correctness

In order to prove that an implementation of a data structsireorrect, we must be able to
state precisely the correctness conditions for that imphgation: that is, we must be able
to specifythem. In this thesis, we focus on concurrent implementatioindatatypes with
a clear sequential specification. Stacks and queues arepeaof such datatypes. In this
setting, a natural way to specify the behaviour of a conctirdatatype is to transform a
sequential specification of the datatype into a concurreet drhis is the approach taken
by the dominant correctness condition for concurrent imglistations of sequential data
structuresiinearisability.

In essencelinearisability [HW90] requires that there be some point between the invo-
cation and response of each operation on a concurrent datduse, called dinearisation
point, when the operation appears to all processes to take effdd. linearisation points
form a sequence of operations on the object that must conforthe object’s sequential
specification. This correctness condition has become atdrid the nonblocking algorithms
literature. One of the reasons why linearisability has beez@opular is because it id@cal
property [HW9OQ]: that is, a system of linearisable impleta¢ions is linearisable exactly
when each implementation within that system is linearisabl

The remainder of this section formally defines linearisgbil Section 2.2.1 defines a
notion ofsequential datatypeand Section 2.2.2 defines linearisability in terms of tiard-
tion.

2.2.1 Sequential Datatypes

We view a sequential datatype as a specification of a set wf kahaviours where a be-
haviour is a sequence of operations of the datatype, andniesp to those operations. What
follows is a simple way to define datatypes formally, adagtedh [Lyn96, Section 9.4].
Each datatype is equipped with a set of invocations and nsg3p that constitute the inter-
face to the datatype. The behaviours of the datatype, whichalltracesare sequences of
pairs invocations and responses.

A datatypeD is a tuple(D, Dy, |, R,u) whereD is the set ofvaluesof the datatype;
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Dy C D is the set of initial values!; is the set of invocationsR is the set of responses; and
u: DxI — DxRisanupdate functiorthat defines how the datatype responds to invocations.
The update functioru defines the effect of these operations on members of theydatat
We model a behaviour as a sequence of invocation/resporise p@r a datatypé with
invocationsl and responseR, define thesequential alphabetf D to bealpha(D) =1 x R.

Definition 2.1 (Execution of datatype)
An executionof a datatypeD = (D,Dy,|,R u) is a sequence € alpha(D)* such that
e € Dy, and for everyn € dom~eji € |, r € R u(ey,i) = (€nt1,r).

We now define a notion of the externally observable behavidwa datatype. Arace
of a datatype is a sequence of pairs of invocations and respahat corresponds to some
execution of the datatype.

Definition 2.2 (Trace of datatype)
A traceof a datatypeD is a sequenceec alpha(D)* such that there exists some executon
of D satisfyingdom™—e = dom t, and for everyn € dom~t, u(en, 71 (tn)) = (€nt1, m2(tn)).

As an example of this specification style, considerdtaekdatatype. The stack contains
elements of some non-empty Set It is modelled as a sequence of elements from that set.
Let the stack datatype &&= (D, Dy, |, R, u) where:

e D = T*is the set of sequences of elements fflom
e Dy = {()}, the set containing just the empty sequence.
e | = {push_inv(t) | te T} U {pop_inv} and

R = {push_resp,empty} U {pop_resp(t) | t€ T}

push_inv(t) represents an invocation of the push operation with thenpeter t;
pop_inv represents an invocation of the pop operationsh_resp signals that a push
operation has been completedp_resp(t) represents the response tpaw_inv invo-
cation, with the return valug empty signals that an attempted pop operation found
the stack empty.

e The left side of the sequence is the top of the stack so thatsponse to a push,
we want to concatenate the pushed value onto the left sideeo§equence. For a
pop, unless the stack is empty, we want to remove and retarletfmost value in the
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sequence; if the stack is empty, we should do nothing toate sbut returrempty as
aresponse. Hence, for adye D, t € T, the update function satisfies:

u(v, push_inv(t)) = ((t) —~ v, push_resp)
U(<>,p0p_inv) = (<>7 empty)
u(({t) ~ v, pop_inv) = (v, pop_resp(t))

Stacks have traces like
((push_inv(ty), push_resp), (pop—inv, pop_resp(ty)), .. .)

which has the following execution

(0t O0)

2.2.2 Linearisability

We now turn to the definition of linearisability. Linearisély is due originally to Herlihy
and Wing [HW87, HW90], and has become a very common corrsstoendition for con-
current objects. The idea is to make it look to each procasd {lae observer) as though
each operation on a concurrent implementation of a dataigpers between the invocation
and response of the operation, one at a time in an order temsigith the sequential spec-
ification of the datatype. The formal definition presenteckhs adapted from [HW87] and
[Lyn96].

Linearisability depends on a notion loistory. A history is a representation of a sequence
of interactions between a set of processes and a concumplgmentation of a datatype, and
corresponds to the notion ofieace of a datatype. In the definition tfacefrom the previous
section, we represented each operation as an invocaspofise pair. However, in a concur-
rent setting, each operation takes place over some intewdhe invocation and response of
each operation may not lagljacentin any sense. Therefore, we model a concurrent operation
as an interval demarcated by an invocation at the beginmdgaesponse at the end. Along
with each invocation or response, we record the processstieaecuting the operation. We
need several definitions before we arrive at the definitionistbry.

Definition 2.3 (Concurrent alphabet)

Given a datatyp® = (D,Dy,|,R,u) and a setPROC (whose members are callgulo-
cessep the concurrent alphabet o for PROC, written alpha(D, PROC) is the set
(IUR) x PROC.
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Normally we write elements of the concurrent alphabet asnaocation or response sub-
scripted by a process, so thatv, p) € alpha(D, PROC) becomesnup.

We are only interested in sequences over the concurrerdtadplof a datatype that could
be generated by a system in which after making an invocaticendnstance of the datatype,
no process makes another invocation before receiving @mesp We call such sequences
well-formed We first defingorocess subhistorywhich, for a given processis the sequence
of invocations and responses performedobthen we definavell-formednesandhistory.

Definition 2.4 (Process subhistory)

Given a datatyp®, process seP ROC, and sequencg < alpha(D, PROC)*, theprocess
subhistory for pc PROC in s, writtens | p, is the sequence of invocations and responses in
sthat are indexed bp.

Definition 2.5 (Well-formedness)

Given a datatypé and process s&? ROC, a sequencs € alpha(D, PROC)* is well-
formedif for everyp € PROC, s | p begins with an invocation, and for evamye dom™(s |
p), if (S| p)n+1 is a response, thes | p)n is an invocation.

Definition 2.6 (History)
Given a datatypé and process se? ROC, a history of D and PROC' is a well-formed
sequencé € alpha(D, PROC)*.

We define an operation in a histdmyto be a triple(n, invp, resp,) wherep is a process,
hn = invp andresp, is the nexip-indexed response after the invocationy, in the history?
Some invocations may not have matching responses. Theseations are calledending

Definition 2.7 (Operation, pending invocation, complete tstory)

Given a datatypé® with invocationsl and responseR, process seP ROC, and execution
history h of D and PROC, anoperation in his a triple (n, invp, respy) with hy = inuvp,
inv € | andresp € Rsuch that there is somesatisfying(h | p)x = invy and(h | p)ky1 =
resp,. A pending invocation in lis a pair(n, invp) whereinvp € 1 x PROC such that
hn = invp is the last element dfi | p. The sequenceomplete(h) is h with all pending
invocations removed.

Now, a historyh induces a natural partial order over its operations, dehate

2The first component of an operation is used to distinguistoinfother operations in the history that have
the same invocation and response.
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Definition 2.8 (Irreflexive partial order of a history, <)
Given a datatyp®, process seP ROC and execution historg of D and PROC, <y is the
irreflexive partial order over the operationstodefined by

(M, invp, resp,) <n (N, invg, respy) if and only if there exists somig such that
m < k < nandhg = respy,.

We will extend the partial orders of histories to total osjeand then use these total or-
ders to construct traces of datatypes. This constructiliesren some simple observations
about total orders of operations. First, observe that afléxive total ordex over a set of
operationsS, such thak has a least element &is empty, induces a sequence of operations
from S. If < has a least element, this sequence is constructed by laytrtheoperations of
Sin the order determined by; if Sis empty, then the sequence(}s Second, observe that,
given a historyh of datatypeD, such thah has some operation, any total order over the oper-
ations of that history has a (not necessarily unique) ldastent if it contains the irreflexive
partial order<p. (The operatior(n, invp, respp) such thatresp,, is the first response inis
a least element.) Thus, given a histdryany total order (empty or not) over the operations
of h that contains<y, induces a sequence of operations. Finally, this sequencpesétions
induces a sequence of invocations and respons®saoinstructed by laying out in order the
pairs made up of the invocations and responses of each mpenathe sequence, with the
process index removed.

We now define linearisability.

Definition 2.9 (Linearisability of histories)

A history h of datatypeD and setP? ROC is linearisableif it can be extended to a histoty

by appending elements afpha(D, PROC), such that there exists an irreflexive total order
< over the operations afomplete(h) satisfying the following conditions:

1. The partial ordeyy is contained in the total order. That is, for every pair of
operationg?1, Oy in i, 01 <y O impliesO; < O,.

2. The sequence of invocations and responses inducedibw trace ofD.

There are two sets of decisions which must be made to shovath@en historyh can
be linearised: the choice of the extensigrand the construction of the total order An
example should illuminate how these choices should be m@dth reference to the stack
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datatypeS introduced in the previous section, consider the followhigjory?:

h = (push_invy(t1), push_invy(t2), pop_inv,, push_respg,
pop_resp;(ta), pop_inv,, pop_resp; (1))

Figure 2.1 illustrates this history.

push_inv(ty)

|
P

push_inv(ty)  push_resp

pop_inv pop_resp(ta)  pop_inv pop_resp(ty)

Figure 2.1: The operations of the example trace.

There are three operationshn

O1 = (1, pushy(tz), pushresp)
Oy = (2, pop, pop-resp (t2))
O3 = (5,pop, pop-resp (t1))

Also, there is one pending invocatio(0, pushy(t1)). Note that the response 6f; returns
the valuet;. This value can only have been placed on the stack by prgogssng its push
operation, so we cannot construct a trace of the stack getétym the operation®;, O and

O3, however they are ordered. Hence, we cannot constructlatdir on the operations of

to satisfy Definition 2.9. We need to extehdio a historyh’ such thap’s pending invocation
becomes an operation. In that caseyill have a fourth operatiory’s push. So define

h = (pushy(t1), pushy(t2), pop, pushresp,
pop.resp (t2), pop, pop-resp (t), push-_respy)

and letOy = (0, pushy(t1), push-_respy). Note thatO, is an operation ofY.
Because there are no pending invocation®'jrromplete(h’) = K. All we need to do
now is construct the ordet to satisfy clause (1) of Definition 2.9. We do this by choosing

3Strictly speaking, we should write the process-indexedbéations of push operations in the form
push_inv(t)p, and similarly for other invocations or responses that lergeiments. The form used here seems
more natural, and we use it throughout this thesis.
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a linearisation poinf for each operation if'. This is a point in the interval between the
invocation and response of each operation where we can difittke operation as 'taking
effect’. Once a linearisation point has been assigned tb eperation, we le); < O if
the linearisation point o®; occurs before the linearisation point 6f. Thus, the order of
linearisation points induces a total order on the operatidra history.

Since the response @, returns the valué, we need to placé®;’s linearisation point
before that of©0, (becausd, needs to be in the stack f@?, to be able to return the value).
Also, Os returnst;, the value pushed by the pending invocatjaushy(t;), so we should
choose a linearisation point fG, before that ofD3. Therefore, we must choose linearisation
points so that the following conditions are satisfied

01 <02, O4<03

Figure 2.2 illustrates one possibility for a set lineaimatpoints consistent with these con-
straints.

push(ty)
|
p | o
push(tz) push_resp
q o
pop popresp(tz)  pop pop-resp(tr)
;
02 03

Figure 2.2: The operations of the example trace.

This set of linearisation points induces the following arde the operations df':
01 <0y <04 < O3
This order induces the following trace of the stack datatype

((pushty), pushresp), (pop, pop.-resfts)),
(push(ty ), pushresp), (pop, pop.respty )))

This is the trace of the following execution &f

< <>7 <t2>7 <>7 <t1>7 <> >

There is another possible choice for the linearisation tpolmosen for the pending push,
O4: we could have stipulated that it occurred before the lisation point ofO; and still
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obtained a valid linearisation. There is often a substhdédgree of freedom in choosing the
linearisation points for a history.

Note that choosing linearisation points between the intioea and responses of each
operation guaranteed that the resulting order containgdso we satisfied clause (2) of
Definition 2.9).

Note that we have defined linearisability only for individidigstories. We need to ex-
tend this definition to cover concurrent implementationgathatypes. We model concurrent
objects, both implementations and specifications/@sautomata|]SAGG'93], which are
described in the next section. In this thesis, an I/O automét a labelled transition system
whose observable behaviour is defined to be a set of histdlesay that an I/O automaton
is linearisable if and only if every member of its set of hige is a linearisable history.

2.3 1/0 Automata

The following definitions are adapted from definitions foundL.T87, SAGG"93, Lyn96].

Definition 2.10 (I/O Automaton)

An I/O automatoris a tuple(external internal, statesstart, trans), whereexternalis a nonempty
set ofexternal actionsinternal is a set ofinternal actionssuch thaexternalninternal = &;
statesis a set of states (sometimes called state spacef the automaton)start C statesis

a nonempty set of start states; anahs C statesx acts x statesis the transition relation,
whereacts= externalU internal.

The definition of I/O automata given in [Lyn96] separates shtexternalinto setsinput
andOutput. As described in Section 2.6, we have no need of this digtimct

We define some helpful notation to describe I/O automata.eiGan I/O automaton
A = (external internal, statesstart, trans), let externap = external internaly = internal,
stateg = states starty = startandtransy = trans. Also, letactsy = externah U internala.
When(s,a,) € transy we write s 2.4 ¢, ors -2 ¢ when no confusion is possible. If
s 254 § we may refer tes as thepre-stateof the transition, and’ as thepost-state

We define a notion of ofrace for I1/O automata in a way similar to our definition for
datatypes. Just as with datatypes, the set of traces of amatdn constitutes itsehaviour

We begin with two preliminary definitionsgxecution fragmentgxecutionsandmove.
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Definition 2.11 (Execution fragment)
An execution fragmenof an I/O automatorA is a sequencer € stateg such that for all
n € dom~a, there exists some € acts, such thatv, —— an; 1.

An executiorof an automaton is an execution fragment that begins withra state.

Definition 2.12 (Execution)
An executionof an 1/O automatorA is an execution fragment € stateg such thaty, €
starta.

The set of executions of an automat@is denotectzecsa.

Definition 2.13 (Move)
An /O automatorA movedrom s € state@ to s’ € stateg via p € acts,, writtens =“>A s,
iff s= ¢ andu = (), or there exists some execution fragmerif A satisfyingdom™ o =

dom 4, the first element ofv is s, the lasts, and such that for ati € dom™ «, an, o, Qnt1-

Now we are ready to define theacesof an automaton. Traces constitute the observable
behaviour of an automaton, in an analogous way to the trd@edatatype. However, unlike
with datatype traces, automaton traces depend on thefiatisn of actions into internal
and external: only the external actions are observable @hawiour. This allows us to model
situations in which concurrent implementations make ckang state that are not observable
externally. For any automatohand sequence € acts,, lettracea(p) be the sequence of
external actions of occurring ingu.

Definition 2.14 (Trace)
A sequence: € external is a trace of automatoA iff there exists some € acts, such that
tracea(v) = u, and there exists sonsec starty, S € stateg such thas ==, .

The set of all traces of an automaton is denategresa, and constitutes the observable
behaviour of the automatoh We define a relation between automata cattade inclusion
denoted<t, as follows:

Definition 2.15 (Trace inclusion, Finite trace inclusion)
For any 1/0 automat& andB, A <t BIiff tracesa C tracesg, andA <« Biff for every
1 € traces, if pis finite, thenu € tracesg.

For any automat# and B, tracesa <t tracesg, then any behaviour exhibited by can
also be exhibited by. Therefore, ifB is correct with respect to some specification defined
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in terms of traces an@ <t B, thenB is correct with respect to that specification as well.
Likewise, if A <t, B, thenA is correct with respect to the safety properties specified.by
In this thesis, we focus on the verification of safety prapert

Note that trace inclusion (finite or not) ipee-order. that is, it is reflexive and transitive.
Because trace inclusion is a pre-order, we can reason tigcally. Given a specification
automatorA and implementation automat@ we can show that <t Aif we can find an
intermediate automatadnsuch thaiC <t | andl <t A. This is often a very useful strategy,
which we employ in Chapters 3 and 4.

During our verifications, we construct proofs that<t B or A <t« B, for given au-
tomataA andB. B provides the specification ard models the implementation. We call
our specification automatbstract automataand our implementation automataa@mcrete
automata

2.4 Verifying Trace Inclusion

This section describes formal techniques for proving thatttaces of one automaton are
included within the traces of another. Our approach is lawdund the use afimulation re-
lations relations between the states of automata that satisfgingstoperties, the existence
of which guarantees trace inclusion between the automatafirgd definereachable states
andinvariants then we discuss simulation relations.

One subset of the state-space of an automaton is particutaplortant: thereachable
states of the automaton. This is the set of states that caeaapp an execution of the
automaton: i.e., the least set containing the start statéslased under the transition relation.

Definition 2.16 (Reachable states)
For an I/0O automatoA, the set ofeachable stateslenoted-cacha is the least set satisfying

1. starty C reacha.
2. Foralls,§ € states, if s € reacha ands — < for somea € acts,, thens € reacha.

An invariant of an automaton is a superset of the reachable states oftihvaton. Thus, in
order to prove that some propeRyis an invariant, we must show that Clauses 1 and 2 above
hold for P. We use invariants in our verifications, but simulation tielss are much more
important to this thesis.
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A simulation relationis a relation over the states of two automata with certaipg@nies,
the existence of which guarantees that every trace of orereton is a trace of the other.
The existence of a simulation relation between abstractandrete automata guarantees that
the traces of the concrete automaton are also traces ofsh@ettautomaton. This is because
a simulation relation allows the construction of an exenubf the abstract automaton given
an execution of the concrete automaton, such that the abstracution has the same trace
as the concrete execution. One way to think about a simualaétation is that it specifies
the sense in which the states of the concrete autonrafmesentthe states of the abstract
automaton. The simulation relations used in the followihgpters will help to illuminate
this idea.

There are several different kinds of simulation relatioiffedng from one another in
their range of applicability and complexity. [LV93] prowd a good survey of the classes of
simulation relations available. In this section we define #inds of simulations relation:
forward simulationand backward simulation Different notions of forward simulation are
used in many verification contexts (for example [HHS86, CM8&96, Abro96, dREB98])
and the technique is well understood. Although backwardikition exists in several for-
malisms, it is not often applied. However, it is requiredwotof the verifications presented
in this thesis.

2.4.1 Forward Simulation

The following definition is adapted from [SAG®3, Lyn96].

Definition 2.17 (Forward Simulation)
Given automat® andC such thaexternah = externat, aforward simulation Rrom C to
Ais a relation ovestateg x stateg satisfying:

1. For allsc € startc, there is somey € starta such thaR(sc, Sa).

2. Forallsc, s € reachc, anda € acts, if sc — s, then for allsa such thaR(sc, sa),
there is some, € stateg and execution fragmemtof A such thaR(s;, sy), Sa N Sh
andtracep(f) = tracea(a). Note that3 may be the empty execution fragment.

The automatorA in the above definition is the abstract automaton; the autmm@ is the
concrete automaton.

The existence of a forward simulation betwe®iand C allows us to construct for any
execution ofC, an execution ofA with the same trace. We do this by an induction on the
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length of executions of with the hypothesis that: (i) for each executiarof C with given
length, there is some state Afrelated to the last state; and (ii), this abstract state can
be reached by an abstract execution fragmestich thattrace(a) = trace(f). 1 above
gives us the base case and as the length of executions iesrdlas hypothesis is preserved
by applying 2. These observations are the basis of the protifeofollowing soundness
property:

Theorem 2.1 (Forward simulation implies trace inclusion)
If Ris a forward simulation fronC to A, in the sense of Definition 2.17, théh<t A.

The definition of forward simulation enables us to "recordformation about the his-
tory of the execution. This is achieved using existentialantified variables within the
simulation relation. We use this technique several timakimthesis.

Note that when using forward simulation, at each step in &mee execution, we must
be able to choose an abstract action or execution fragmeatify one of the conditions in
Definition 2.17. Because we construct the abstract exatbiyanduction over the concrete
execution (beginning at the start of the concrete execaimhmoving forwards) this choice
can only be based on the earlier states of the execution.ighaé can use only the history
of the execution, not the future. Sometimes it is imposdiblmake this choice based only
on the execution history (verifications in Chapters 3 andavide examples). Backward
simulations, described in the next section, overcome itmigdtion.

2.4.2 Backward Simulation

The following definition of backward simulation is adaptedri [SAGG"93].

Definition 2.18 (Backward Simulation)
Given automata® andC such thatexternah = externak, abackward simulation Rrom C
to Ais a relation ovestateg andstateg satisfying:

1. For allsc € startc, and allsa such thaR(sc, Sa), Sa € starta.

2. Forallsg € reachc, s € stateg, anda € acts, if sc LN S then for alls, such
that R(s, s5), there is somesy € stateg and execution fragmeni of A such that
R(sc,sa), sa N s, andtracea(f) = tracea(a). As before,5 may be the empty
execution fragment.

3. For allsc € reachc, there exists som&, such thaR(sc, Sa).
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There are three important differences between Definitioh3 and 2.18. First, Condition
1 of Definition 2.18 requires that every abstract state edlab a concrete start state be an
abstract start state; the corresponding condition in Defmi2.17 requires only that some
related abstract pre-state exist. Second, Condition 2 d¢ihllien 2.18 is dual to Condi-
tion 2 of Definition 2.17: for forward simulation, we begintivirelated pre-states and must
produce related post-states; for backward simulation, egenbwith related post-states and
must produce related pre-states. Third, Condition 3 of [t&fim2.18 has no analogue in the
definition of forward simulation.

To see why these differences exist we must understand hoexisience of a backward
simulation allows the construction of an abstract executigth the same trace as a given
concrete execution. We consider the argument for finitewgiats; the argument for infinite
executions is more technical and can be found in [Lyn96]eGian execution o, Condition
3 allows us to choose an abstract state related to the firtel stahe concrete execution.
Condition 2 allows us to construct an abstract execuimckwardsrom this state, having the
same trace as the given concrete execution. At the end gitbiess, we choose an abstract
state that is related to the concrete start state. Conditigmarantees that this abstract state
will be an abstract start state. These observations areagis bf the proof that the existence
of a backward simulation between two automata implies finéee inclusion.

Theorem 2.2 (Backward simulation implies finite trace inclwsion)
If Ris a backward simulation fror@ to A, in the sense of Definition 2.17, th€h<t- A.

See [Lyn96] for a proof.

Note that the existence of a backward simulation betweenamtomata only implies
finite trace inclusion. The existence of a backward simatagjuarantees (finite or infinite)
trace inclusion iff the simulation ignage finite A relationR : Sx T is image finite iff for
everys € S the set

{teT | R(st)}
is finite

In this thesis, we verify only safety properties. For thiasen, we do not concern our-
selves with the image finiteness property. The backwardlaiion presented in Chapter 3

“Image finitness is required to construct infinite abstraatds from infinite concrete executions, using
Konig's lemma [LV93].
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is image finite, whereas the backward simulation in Chapismét. An image finite back-
ward simulation could be constructed along very similagdimo the simulation presented in
Chapter 4, but this is unnecessary for the verification adtggiroperties.

Note that, in contrast with forward simulation, when chagsan abstract action or exe-
cution fragment to satisfy 2 we can examine the future of dexetion, but not the history.
This means that backward simulation can be applied in gitusiwvhere forward simulation
cannot (andsice-versa. It turns out that applying both backwards and forwardsusation
results in a complete proof method for trace inclusion.

Theorem 2.3
Given automat® andC, if C <1 A then there exists some automaf®rsuch that there is a
forward simulationRg from C to B and an image finite backward simulatiBg from B to A.

See [LV93] for a proof. This technique of using both backward forward simulation is
used in Chapter 3.

In our verifications, when no forward simulation is possilidlecause it is impossible to
choose a step of the specification automaton for a step ofdherete automaton, we say
that the concrete automaton exhiljii®phetic linearisation This term is meant to suggest
that we cannot find a linear order for some of the operatioraniexecution until after the
operations have been completed. Occasionally we spefikw€ dependent linearisation
points These are steps of an algorithm that are sometimes liadiarispoints, depending
on events that happen after the step in question. All algostthat have future dependent
linearisation points exhibit prophetic linearisationdarquire backward simulation to verify
using the methods presented in this thesis.

2.4.3 One step simulations

The simulation relations just presented are more geneaal ihtypically required. In par-
ticular, in the verifications presented in Chapters 3 andhé,execution fragments used as
witnesses for Condition 2 of Definitions 2.17 and 2.18 arey @ver single actions or the
empty sequence. Expressing the general definitions of thelaiion relations in a formal
logic (such as that of PVS), and reasoning about those defisiintroduces needless com-
plexity.

Therefore, we definene-stepsimulations, in which these conditions are replaced with
simpler versions. The idea is as follows. When the concretenaaton takes an internal
action, the abstract automaton must either take an intaatiain, or no action (ie., the abstract
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prestate must be related to the concrete poststate). Whetotitrete automaton takes an
external action, the abstract automaton must take the sai@mal action.

Definition 2.19 (One step forward simulation)
Given automata andC such thatexternah = externak, a one-step forward simulation R
from C to Ais a relation ovestateg andstateg satisfying:

1. For allsc € startc, there is somey € starta such thaR(sc, Sa).

2. For allsc € reache, S~ € stateg anda € actg, if sc — s anda € externak,
then for allsa such thatR(sc, sa), there is some), € stateg such thatR(s, s,) and
Sa i> S/A.

3. Forallsc € reachc, S € stateg anda € acts, if sc — s anda € internalc, then
for all sa such thaR(sc, sa), one of the following is satisfied:

(a) there is soms, € stateg and actiorb € internala such thaR(s;, s5), Sa o, Sh

(b) R(sc, sa)-

Definition 2.20 (One step backward simulation)
Given automata# andC such thaexternah = externak, aone-step backward simulation R
from C to Aiis a relation ovestateg andstateg satisfying:

1. For allsc € startc, and allsa such thaR(sc, Sa), Sa € starta.

2. For allsc € reache, S. € stateg anda € actg, if sc — s anda € externat,
then for alls, such thatR(s., s5), there is some, € stateg such thatR(sc, sa) and

3. Forallsc € reachc, S € stateg anda € acts, if sc — . anda ¢ externak, then
for all sa such thaR(s;;, sp), one of the following is satisfied:

(a) there exists somg, € states and actionb € internaly such thatR(sc, Sa),

(b) R(sc,sn).

4. For allsc € reachc, there exists soms, such thaR(sc, Sa).
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2.5 Describing I/O Automata

It is useful to have some notation to describe the statesrandition relations of 1/0O au-
tomata. The notation we describe here is modelled closelthenOA language which is
used for describing 1/0 automata [GLV01, GL0O]. The notatdlows us to easily describe
components of the state space of an automaton, and dedsrtbenisition relation.

This section presents a simple 1/0 automaton that is usdtustrate this notation and
provides an example of the modelling style used in this thesi

Our example is an automata@y) that models a stack containing element3 ifas defined
in Section 2.2.1), concurrently accessed by som@&s&D ' of processes. Its external actions
are the concurrent alphabet of the stack datatype defineglitio® 2.2.1. Specifically

externah = ({push_invy(t) | te T}U
{pop-inv, push_resp, pop_respy}) x PROC

Its internal actions label transitions that represent gmobess actually executing an opera-
tion (ie., the linearisation points of the operations), sohave

internaly = {do_push, do_pop} x PROC

Now, define a set gprogram counters"’OUNTER = {idle} U alpha(D). The states
of A are pairs whose first component is a stack value, and whosmdés a tuple of
COUNTER values indexed by elements 6fROC. LettingD = T* be the set of val-
ues of the stack datatype

stateg = D x [[L,COUNTER

The componenil,COUNT ER associates with each process a program counter value that
is used to record whether the process is executing an operatid if so, what point in that
operation it is up to.

Typically, the set of states of an I/O automaton is a cantepr@duct, so it is useful to
introducestate variabledo access each element of the state of an automaton. Thése sta
variables are just access names for the state type of thenatdn. We introduce the state
variablespc, for eachp € PROC andstack where, for anys € states, s.stack = ()
and,s.pc, = mp(ma(S)). Using this notation, we can define the set of start statés of

starty = {s € states, | s.stack = () AVp €& PROC e pc, = idle}
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push_invy(t) : pop_invp(t) :

pre pc, = idle pre pc, = idle

eff pc, := push(t) eff pe, := pop

push_respy, : pop_respp(t) :

prepc, = push_resp pre pc, = pop_resp(t)

eff pe, = idle eff pc, 1= idle

do_pushy(t) : do_pop,, :

prepc, = push(t) pre pc, = pop

eff stack := m(u(stack, push(t))), eff stack := m (u(stack,pop)),
pep = ma(U(stack, push(t))) pep = ma(U(stack, pop))

Figure 2.3: Transition relation of th8tackautomaton. Recall thatis the update function
for theS dataype.

Several of the automata presented in this thesis have pratdsxed variables: these
variables always represent the local state of each prosesgmetimes we refer to them as
local variables. We also refer to un-indexed variablestaredvariables.

We now define the transition relation &f To do this, we will associate each action with a
preconditionand areffectthat together specify the transitions labelled by thabactFigure
2.3 presents this association for the stack automaton.

The precondition of each action acts as a guard for the acTio@ precondition constrains
the values taken by state variables in pre-states of transitabelled by the action. The effect
of each action is a set gfarallel assignmentsvhere the post-state value of the variable on
the left-hand side is taken to be the value of the right-hade expression in the pre-state.
Variables not mentioned on the left-hand side of any assigrrkeep the same value. For
example, the precondition and effect associated with thierado_pop,, entail that

do_
s Y o Spep = pop A S .pep = ma(U(S stack, pop)) A

s.stack = m(u(s.stack, pop)) A
Vq# pes.pceg = Spcy

Note that, given a pre-state and action there is only ondlgegsost-state: every transi-
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tion relation discussed in this thesis has this propertg fdrallel assignment notation used
here is simpler and clearer than a more general relatiortatioo that would be needed to
specify systems having a transition relation where therédcbe more than one post-state
for each pre-state and action.

2.6 Specification Automata

As mentioned in the introduction, the approach outlineceheses 1/0O automata to model
both the specifications and implementations of the algmstithat we verify. This section
describes how we construct I/0O automata to act as spediiicatitomata in our verifications.
We show how to mechanically construct, from a given datgtgpeautomaton whose traces
are exactly the linearisable traces of that datatype. Aoraaton constructed by this method
is called thecanonical automatofor that datatype. The construction presented here is based
on that presented in [Lyn96].

The construction is very simple. In fact, the stack automgtesented in the previous
section is the canonical automaton for the stack datatype.c@nonical automata described
here model a system of processes executing operations oaredsimstance of the given
datatype. Initially, no process is executing an operatwoa gay that every process is “idle”);
during the execution, each process repeatedly choosesesatiop to invoke, executes the
steps of the operation and after producing a response aotitomns to its “idle” state.

Fix a datatypeD with valuesD, initial value dy, invocationsl, response® and update
function u, and a set of processd3ROC. Let A be the canonical automaton fér and
PROC. The actions oA are defined as follows:

externah = alpha(D, PROC)
internaly = {do_inv | inv € 1} x PROC

The labelslo_inv must be distinct from each other and distinct from everghimlpha(D).
The states oA are defined as follows:

stateg = D x [[LCOUNTER

whereCOUNTER = {idle} U alpha(D).

As with the example stack of Section 2.5, we introduce vég&gkbo access the compo-
nents of a state: lets.d = 7(s) and lets.pc, = mp(m2(S)). The start states of the canonical
automaton are as follows:

starty = {se states, | sd=dy AVp € PROC e pc, = idle}
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invy do_inv), : resp, :
prepc, = idle prepc, = inv pre pc, = resp
eff pcp :=inv eff d:=m(u(d,inv)), eff pc,:=idle

pep = m2(u(d, inv))

Figure 2.4: Transition relation of the canonical automaton

The transition relation of the canonical automa#iis presented in Figure 2.4. Each
identifier inv ranges over the sétof invocations, and eachesp ranges over the s&t of
responses, so each such action presented in the figure di®tlidught of as representing a
setof actions. Each operation is executed in three steps: @&gspaeceives an invocation;
it then applies that invocation to the shared variable greng the datatype; and finally, it
completes the operation by taking a transition labellechieyresponse to that operation.

The construction of canonical automata presented hewrslififorn the construction pre-
sented in [Lyn96, Section 13.2] in certain respects. Theofiggocessindexed invocations
and responses differs from the indexing used in [Lyn96].dtynses indices on invocations
and responses, but there the interpretation is that thedadepresergorts This difference
is partly attributable to the fact that [Lyn96] is concerneith distributed systems, whereas
here the concern is multi-processor systems. Howevere tises more substantive differ-
ence between the two constructions of canonical automel&ted to the relaxation here of
a condition on the I/O automata of [Lyn96] callatput-enablednessAn input-enabled au-
tomaton has a set of external actions, callgout actions that are enabled in every state.
This means that input-enabled automata @®iveevery input from the external environ-
ment at all times. However, in a multi-processor systemhgaocess can only invoke an
operation when it isotin the middle of another operation on the same datatype.€eftmer,
the canonical automata defined hereraseinput enabled: invocations are enabled when the
invoking process isdle. Because we do not need to represent a set of input actionsitisa
be enabled, we do not separatdernalactions into/nput andOutput actions.

Our automata can be thought of as informal compositions b&eesl object with its client
processes. This approach provides a straightforward wgudoantee that the traces of our
automata are actually histories rather than arbitraryesecgs over the concurrent alphabet of
the datatype. (Recall that histories have the propertyethel process subtrace starts with an
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invocation, and that after an invocation, each processsvi@ita response before attempting
another invocation).

2.6.1 Properties of Canonical Automata

This section presents results concerning linearisalilitganonical automata, and explores
theoretically their usefulness in the verification of implentations of datatypes. The results
in this section are fairly straightforward and all have agales in [Lyn96]. Their impor-
tance lies in showing soundness and the breadth of appltgadifi the proof method being
developed.

For the rest of this section, fix a datatype = (D, Dy, |,R,u) and a set of processes
PROC. LetAbe the canonical automaton fbrand PROC, constructed as in the previous
section.

Linearisability of the Canonical Automaton

We now outline the proof that every trace Adis a history ofD and PROC' and that every
trace is linearisable t®.

Note thatexternah = alpha(D, PROC). Therefore, in order to show that every trace of
Ais a history, we only need to show thajproduces only histories oveipha(D, PROC).
This is true by virtue of the preconditions on each transitio

Lemma 2.1 (The canonical automaton’s traces are histories)
All the traces ofC are histories oD and PROC.

Proof: Consider some trage of C and procesg:

¢ Note that for eacls € start(C), s.pg, = idle and for eacta € acts, whereais indexed
by someq # p, if s - & thens.pc, = s.pc,. Therefore, the firsp-indexed action
in ;- must be an invocation, since the precondition of every ofherdexed action
requires thas.pc, # idle.

e Assume there is an occurrence gf-endexed invocation in:. Each states appearing
in the execution which producegdafter this occurrence will havepg, # idle until an
occurrence of @-indexed response. Hence if there is an action followingptivelexed
invocation ing it must be a response.
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e A similar consideration shows that any action following apense inu | p is an
invocationd

We now outline the proof that every trace Afis linearisable (cf. [Lyn96], Theorem
13.3).

Lemma 2.2 (Linearisability of canonical automaton)
Alis linearisable td.

[Lyn96] presents a proof of this theorem for a slightly diffiet canonical automaton, but
the proof carries directly to the automata discussed hefle Basic motivation is that an
order for the operations in any execution can be construatedrding to the order afo
actions in that execution. That is, the actions act as linearisation points for the operations.
Since the transitions labelled ki actions are just applications of the update function of
the datatype being implemented to a instance of that daatyys order induces a valid
sequential execution.

Completeness of the Canonical Automaton

There is an important question remaining about the canbaigamata constructed in this
section. Can we guarantee thathaseverylinearisable history in its set of traces? This
is a very desirable property to have: if it holds and we havaesautomatorA meant to
implementD we know that if we are unable to shav<t A, then either we are not clever
enough or our implementation contains a bug. We do not haliedeome other way to spec-
ify linearisable histories. The following theorem fornsa&s a sense in which the canonical
automaton izomplete(cf. [Lyn96], Theorem 13.5).

Theorem 2.4 (Completeness of the canonical automaton)
All histories that are linearisable with respectlRaare traces oA.

Again, [Lyn96] provides a proof. Briefly, for every histohylinearisable with respect t®,
there is a total order over the operationshpfvitnessing its linearisability. An execution of
C can be constructed, containing invocation and respongenadhn the order given by the
history, with internallo actions in the order given by the linearisation points.
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2.7 Concluding Remarks

This chapter presents the theoretical preliminaries of/érdication techniques used in this
thesis. We note here that every verification presented itligsis has been proof checked
using the PVS proof assistant. This provides a high degresssidfirance that our proofs
are correct. We do not present the PVS versions of our proafsis thesis, or discuss the
techniques used in our PVS development in any detail.



Chapter 3

Verifying a Nonblocking Queue
Algorithm

This chapter describes a verification of a lock-free quegerdahm that is a variant of the

practical and widely-used algorithm of Michael and ScottiSd6b, MS98a]. In fact, we

verify a slightly optimised version of the algorithm. Thigtomisation was discovered during
the early stages of the verification process. This optintisas minor and does not constitute
a significant change in the underlying algorithm, so hemrtiefave refer to the optimised

version as thM&S queue

This verification is the simplest presented in this thesid,thus serves as an introduction
to the techniques used in the other verifications. The vatitin of the M&S queue requires
both a forward and a backward simulation, so this chaptdoex@the use of both techniques.
Also, this algorithm uses dynamic memory, and so this vetifim provides an example of
the way we model a dynamic heap and relate heap objects thstraet datatype.

This chapter presents work first reported in [DGLMO04]. Attttine, the work presented
here was the first complete formal verification of a versiorthef M&S queue. [YSO03]
presented an earlier verification using a model-checkiogriigue, but that work does not
describe a complete verification. [AC05] presents a forneaification of a queue algorithm
based on the Michael and Scott queue, using a technique basexfinement and formal
proof. We discuss both of these contributions in Section 3.6

Interestingly, none of this related work directly addrese issue of prophetic lineari-
sation. The authors of [AC05] verify a modified M&S queue thaes not exhibit prophetic
linearisation. The authors of [YS03] do not directly comsithe issue of whether the M&S

49
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Head Tail Head Tail

V4 \ /

@ |2 ®) | 2

[ ]
QD
[ ]
o
[ ]

c

Figure 3.1: Basic queue representation

struct refint_t { struct queue{
node =*ptr; refint_t Head, Tail;
int ver }
¥
initialise(queue * Q {
struct node { dummy : = new.node();
val ue val ; dumry->next := null;
refint_t next Q >Head : = (0, dumy);
} Q>Tail := (0, dumy);
}

Figure 3.2: Declarations and initialisation.

queue meets some behavioural specification of a concuruenieg focussing rather on veri-
fying that the M&S queue has certain invariants. The pregeritication exploits one of the
main advantages of the I/O automaton framework: that it kesatirect and formal treatment
of prophetic linearisation, using backward simulation.

Section 3.1 presents the M&S queue. Section 3.2 presentabi$teact and concrete
automata. Section 3.3 presents the backward simulatioatioBe3.4 presents the forward
simulation. In Section 3.5 we describe the most importamntspaf the proof. Section 3.6
presents a comparison with related work, and we conclud€ltiagter in Section 3.7.

3.1 The Queue Implementation

The M&S queue implements a queue as a linked list of nodehb, leadng aval and anext
field, along withHead andTai | pointers.Head points to the first node in the list, which is
a dummy node; the remaining nodes contain the values in taeegu/hen no operation is
in progress;Tai | points to the last node in the list. Figure 3.1 shows an empéug and a
gqueue containing values b andc. The declarations and initialisation are shown in Figure
3.2. Pseudocode for trenqueue anddequeue operations is given in Figures 3.3 and 3.4.
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voi d enqueue(queue *Q value v) {

El. nd := newnode();
E2. nd->val := v;
E3. nd->next.ptr := null;
E4. while (true) {
E5. tail := Q@ >Tail;
E6. next := tail.ptr->next;
E7. if (tail = @>Tail) {
ES. if (next.ptr = null){
EO. if (CAS(&tail.ptr->next,
next,
(nd, next.ver+1))){

E10. br eak;
E11.
E12. telse{
E13. CAS( &Q >Tai | ,

tail,

(next.ptr, tail.ver+1));
E14. }
E15. }
E16. }
E17. CAS(&Q >Tai |l ,

tail,

(nd, tail.ver+1))

Figure 3.3: Pseudocode for the enqueue operation.
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bool dequeue(queue *Q value *pv) {
DL. while (true) {

D2. head : = Q >Head;
D3. next := head->next;
D4. if (head = Q >Head) {
D5. if (next.ptr = null) {
D6. return fal se;
D7. } else {
D8. *pv @ = next.ptr->val;
D9. i f (CAS(&Q >Head,

head,

(next.ptr, head.ver+1))) {
D10. tail := Q>Tail;
D11. if (head.ptr = tail.ptr){
D12. CAS( &Q >Tai |,

tail,
(next.ptr, tail.ver+l))
}
br eak;

D13. }
D14, }
D15.
D16. }
D17. free_node( head. ptr);
}

Figure 3.4: Pseudocode for the dequeue operation.
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Figure 3.5: Queue representation variations

Shared locations containing pointers (ildead andTai | variables anchext fields)
are usually updated using CAS operations. The one exceigtinrthe initialisation of a new
node (line E3), where a store is sufficient because no otleeeps can access a node while it
is being initialised. These shared locations contaiaraion numbeas well as a pointer. This
version number is incremented atomically every time thatioo is written. As discussed in
Section 1.1.3, this use of version numbers provides a verpgiprobabalistic guarantee that
ABA cannot occur. Henceforth, we assume that version nusnder unbounded.

A processp executing arenqueue operation acquires and initialises a new node (E1—
E3), and appends the new node to the list by repeatedly dieiagrthe last node in the
list, i.e., the node whoseext . pt r field isnul | (E5-E8, E13), and attempting to make its
next .pt r field point to the new node (E9). Therattempts to mak&ai | point to this node
(E17)! Betweenp appending its new node afféi | being updatedTai | lagsbehind the
last node in the list. Examples of this situation are presgeirt Figure 3.5. In Figure 3.5(a),
the queue contains three elements. In Figure 3.5(b), theegsempty, becauddead points
to a node with aaul I next pointer.

We cannot determine the last node in the list by just readiagl , because another
enqueuing processmay causdai | to lag. Sincep cannot wait forg to updateTai | (that
would compromise lock-freedomp, attempts to “help’g by doing the update (E13). Thus,
Tai | can lag behind the end of the list by at most one node.

Also, another process may chanbgi | afterpreads it at E5, but beforgdereferences
(its local copy of) the pointer at E6. To ensure that the vakas at E6 is validp checks
at E7 thatTai | has not changed singeexecuted E5. If the test at E8 shows that the node
accessed at E6 had no successor at that time, then we knatvelraide was the last node in
the list at that time. Similarly, a successful CAS at E9 gotees that thaext field of that
node is unchanged in the interval betwg¥nexecutions of E6 and E9.

We turn now to a description of trllequeue operation, presented in Figure 3.4. In this
informal description of the M& S queue, we provide a C-styitgnature for thedequeue

1The CAS at E17 can be deleted without affecting the correstioé the algorithm. However, without this
CAS, Tai | would not point to the last node of the list in all quiescenates.
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operation. Rather thadequeue returning somenull value,dequeue returns a boolean
value that i al se if and only if p found the queue empty. A parametal ue * pv is
used as a pointer to a location that holds the value that waseded, ifp found the queue
nonempty. This is the convention used in earlier presamtstbf the algorithm [MS96b,
MS98a].

A processp executing adequeue operation checks whether the dummy node (pointed
to by Head) has a successor (D2-D5). If not, then the queue was empty pegecuted
D3, so the operation returifi@l se (D6). As in theenqueue operationHead is read twice
to ensure that the node accessed at D3 was the dummy nodetahtna

If the dummy node has a successor, tipareads the value in the successor node (D8),
expecting that this node is the first non-dummy node in theMsocesp must read the value
now because concurrent operations may modify the value digits next node after it is
removed from the list. After reading the valyeattempts to swindgfead to point to the node
whose valug read at D8 (D9). If the attempt succeeds, that node is the nemnt node;
its value is removed from the queue by the successful CA&elattempt failsp retries the
operation from the beginning.

Oncep has successfully executed the CAS at D9, it remains to allevotd dummy
node to be reused. For the reasons discussed in Section this.3iode cannot be freed
to the system because another process may be about to acdesseiad, it is placed on a
freelist using thef r ee_node operation (D17). Thenew node operation (E1) returns a
node from the freelist, if one is available; otherwise, ibehtes and returns a new node. In a
typical system, the freelist could be implemented usingTitetber stack, which is described
in Chapter 1.

Before passing the old dummy nodeftoee_node, a dequeuing process checks for the
special case shown in Figure 3.5(b), wherelkad andTai | are “crossed”, becaudai |
is lagging and points to the old dummy node (D10-D11). In daise, it attempts to update
Tai | (D12) before putting the old dummy node on the freelist.

Our algorithm differs from Michael and Scott’s original alghm [MS96b, MS98a] in
that we test whethefai | points to the dummy node onlgfter Head has been updated,
S0 a dequeuing process reasi | only once. Thedequeue in the original algorithm
performs this test before checking whether trext pointer in the dummy node isul |,
so it readsTai | every time a dequeuing process loops. In the modified algorjiresented
here, processes only perform this read and test once fordepie operation. Under high
load, when operations retry frequently, this change willuee the number of accesses to
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shared memory.

3.2 Modelling the Queue Specification and Implementation

We now describe the specification and implementation autorioa our verification of the
M&S queue. Section 3.2 presents a formal definition of thaiguatatype. The specification
automaton, denoted b&bsAut is the canonical automaton for the queue datatype, and is
presented in Section 3.2.1. (The general construction ahardcal automaton is described

in Section 2.6). The implementation automaton, denotedCbgicAuf models the M&S
gueue algorithm directly, and is presented in Section 3.2.2

The Queue Datatype

A queue contains a sequence of objects from some set (caled/hand provides amn-
gueueoperation, which adds a value to one end of the sequence, daqueueoperation,
which removes a value from the opposite end of the sequence.

We define the queue datatype using a@etvhose elements are the queues themselves,
along with functionseng anddeq, modelling respectively enqueue and dequeue operations.
A queueQ € Q is a triple (Q.seq, Q.Head, Q.Tail), whereQ.seq is a sequence of val-
ues’ andQ.Head andQ.T il are naturals satisfying the constraint taf’ail < Q.Head.
Q.Head andQ.T'ail delimit the range corresponding to queue elements: theegoeusists
of the integer®.seq(Q.Head+1) through toQ.seq(Q.Tail), inclusive. A queu&) is empty,
written empty(Q), iff Q.Head = Q.T'ail. Initially, Q. Head = Q.T'ail = 0.

The functioneng, modelling the enqueue operation, takes as arguments & gatieQ
and a valuey € V to be enqueued and returns a new queue containing the value:

enq(Q,V) = (Q.seq ® {Q.Tail + 1 — v}, Q.Head, Q.Tail 4+ 1)

The functiondeq, modelling the dequeue operation, takes as arguments & Quand
returns a pair consisting of a new queue (the old queue wilitst element removed), and
areturn valuein V; = V U {null} wherenull is some value not iV. A null return value
indicates that the queue is empty and so no value Wamavailable.

((Q.seq,Q.Head + 1,Q.Tail),
deq(Q) = Q.seq(Q.Head + 1)) if mempty(Q)
(Q,null) otherwise

2That is, a function from naturals to values as described @iQ@e1.3.
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Note that the functionsnq anddeq preserve the constraint th@t Head < Q.Tail, where
Q is the new queue value returned by either function.
Finally, the queue datatyg®, Dy, |, R, u) is defined as follows:

D=0
Do = {Q | empty(Q)}
| = {eng_inv(v) | ve V} U {deq_inv}
R= {eng_resp} U{deg_resp(r) | reV,}
(enq(Q, V), eng_resp) if inv = eng_inv(Vv)
for somev € V

u(Q, inv) = (m1(deq(Q)),

deq_resp(ma(deq(Q)))) otherwise

3.2.1 The Abstract Automaton

AbsAuthas a shared variabl@, which holds the abstract queue. Tie steps ofAbsAut
apply theenq anddeq functions defined in the previous section directly, rathantusing the
queue’s update functiom, which simplifies the notation. Each procgssas a variablec,
which ranges over the program counter values of the canamieaie automaton. The set of
initial states ofAbsAutis defined as follows.

startapsaut= {ab | empty(ab.Q) AV p e ab.pc, = idle}

The transition relation oAbsAutis presented in Figure 3.6.

3.2.2 The Concrete Automaton

The concrete automatd@oncAutmodels the queue implementation described in Section 3.1.
The M&S queue uses a shared heap that contains the dynangtatlated nodes used in the
gueue data structure. We first describe our model of the h&epthen describe the actions
and states of the concrete automaton.

The Heap Model

We model a heap in which every object is a node with two fieldsandnext. Each of these
fields contains a pointer/version-number pair. This is apfifination designed to reduce
unnecessary complexity in the model. In the M&S algorittwa] fields are not equipped
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eng-inv,(v) : do_eng,, : eng-resp,, :

prepc, = idle prepc, = eng(V) prepc, = eng-resp

eff pc, := eng(v) eff pc, := eng_resp eff pc, :=idle
Q:=enqQ,v)

deq-inv,, : do_deq,, : deq-resp,(r) :

pre pc, = idle pre pc, = deq pre pc, = deq_resp(r)

eff pc, := deq eff pc, := deg_resp(m2(deqQ))) eff pc, :=idle

Q:=mi(deqQ))

Figure 3.6: The transition relation é&fbsAut The variablgy ranges over processestanges
over values fronV, andr ranges oveVN . Recall thatr; (deq(Q)) is the queue returned by
the functiondeq andms(deq(Q)) is the value.

with version numbers. However, the value of the version nemd anyval field is never
mentioned in the definition of the transition relation of ttencrete automaton. Therefore,
the presence of version numbers in the fields of our model makes no difference to its
behaviour.

We write POINT E R for the set of pointersi £ AP for the set of heaps, andl E LD
for the set of field names (eitheul or next). Aheaph € H EAP is a pair(h.eval, h.unalloc):
the functionh.eval : POINTER x FIELD — POINTER x N takes a pointer to a node
and a field, and returns the pointer value and version nundgsaceated with that field of
that node inh; and h.unalloc is the set of pointers that have not yet been allocated in
(so h.unalloc models the system freelist). Given some value POINTER x N, let
X.ptr = 71 (X) andx.ver = ma(X).

An assignmenpt—fd := (pt’, i), which updates fieldd in the node pointed to bpt, is
modelled using a functionpdate: HEAP x POINTERXFIELDx POINTERXN —

HE AP defined by:

updatéh, pt,fd, pt’, i) = (h.eval & {(pt,fd) — (pt,i)}, h.unalloc)

Allocation of a new node is modelled with the functioew: HEAP — HEAP x



58 CHAPTER 3. VERIFYING A NONBLOCKING QUEUE ALGORITHM

POINTER satisfying the following properties:

newh) = (', null) = h.unalloc = @ AW =h

newh) = (h',p) A p # null =
p € h.unalloc AN .eval = h.eval AN .unalloc = hunalloc \ {p}

Together, these properties guarantee tiesireturns anull pointer exactly when it is applied
to a heap with an emptynalloc set. Whemewis applied to a heap with nonempty:alloc
set, it returns a pointer from that set, and a heap with thait@oremoved from the set of
unallocated pointers.

Michael and Scott do not specify what happensrifjueue is unable to allocate a new
node. A practical implementation might return from thequeueoperation with an error
code, or raise an exception. However, this would requiré ttie specification automaton
AbsAutbe able to represent an "out of memory” error using some respaction. However,
it is difficult to say when it is correct for a specification teturn this kind of error, which
originates in the execution context of an implementatior dNoose to ignore this issue. In
our model, ifnewreturnsnuil, thenConcAutloops until space becomes available.

Note that in the heap model presented here, a process caierdape a pointer (by
applyingeval or by applyingupdatg even when that pointer isul | or in the setunalloc.
In a real system, this behaviour could cause an error. Hayweeememory is ever freed
in the M&S algorithm. Further, the only local variables tltain benul | are thenext,
variables, but every dereference of such a variable is gegtéy a test that the variable
is notnul | . So for simplicity, the heap model presented here ignorissishue. That is,
we assume that the heap functiesul is defined for all pointers and fields. However, we
do prove that the M&S queue has the property that only meht and allocated variables
are ever dereferenced: Section 3.4 describes how we prvprtiperty. In more complex
verifications, it would be preferable to have a heap modélraresented the situations in
which dereferencing a pointer would be illegal. Chapter Biclw describes the verification
of a complex algorithm where deallocation does occur, prssgn extended heap model in
which accesses to unallocatedmurl | pointers cause an error flag to be set. Once the error
flag has been set, the effect of all heap operations is undeflgging that model, the proof
obligations of forward simulation require us prove thastéiror flag is never set during any
execution of the relevant automaton.
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The Concrete Automaton

Our concrete automaton must capture the assumed atomfitity cead, write and allocation
operations. We wish to model a situation in which each p®ces execute read, write and
allocation operations without interleavings with othesgesses. This is easily achieved using
I/O automata: each such atomic operation is modelled usiegndernal action. For example,
ConcAuthas an internal actioa_1, modelling a procesp executing line E1 oknqueue,
allocating a new node from the freelist. An actiarz, models a procegsexecuting line E2,
writing a value into theval field of its new node.

CAS operations conditionally modify the heap. We split th€AS operations into two
internal actions, one action modelling a successful CA$ niadifies the heap; the other
modelling an unsuccessful CAS that leaves the heap unctiakge exampleConcAuthas
internal actionsl_g_yes, andd_g_no, modellingp executing D9 when the CAS is successful
and unsuccessful, respectively. The precondition of eatibrais used to select which of
these actions a process should take: the precondition addtien modelling a successful
CAS implies that the value in the location being CASed is etuthe given expected value;
and the precondition of the action modelling an unsucce€3As implies that the value in
the location is not the expected value.

Other conditionalsi(f statements), are modelled similarly to the CAS operatidiey
are split into two internal actions, one modelling the cabens the condition succeeds, the
other modelling the case where the condition fails. For edan€oncAuthas internal actions
d-4-yes, andd_4-no, modellingp executing D4, when the condition is respectively true or
false.

Thus for each line of code in Figures 3.3 and EéncAuthas either one or two internal
actions for each process. Also, because it is meant to imgsiea queueConcAuthas the
same external actions AdsAut

Each procesp has a local “program counter” variabje,, ranging over a type that
contains one value for each line of code containing a reaitle waonditional or CAS, (for
example, there is a counter valuglecorresponding to line E1), and special valids:,
eng-resp anddeq_resp that play the same roles as AbsAut That is, wherpc, = idle,
process is not executing any operation on the queue; when= enq_resp, p is about to
return from an enqueue operation; and when= deq_resp(r) for somer € V,, pis about
to return from a dequeue operation with vatue

ConcAuthas variable$y € HEAP, Head, Tail € POINTER x N, and freelist C
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{cs | csHead = csTail A csHead # null A cSHead.ver =0 A
csHeadSnext.ptr = null A —cs free?(csHead.ptr) A
(Vp e cspey = idle) A
—cs free?(null) A cs HeadSval = vy A
cs freelist N csh.unalloc = @}

Figure 3.7: The initial states @oncAut

POINTER, which model the heaghlead, Tai | and the freelist. For each procespg,
there are variableseady, taily, nexty, € POINTER x N, andnode, € POINTER,
which model the local variables in the code, and a local bigieesult, € POINTER to
hold the value thap returns from the dequeue operatfon.

The initial states foilConcAutare presented in Figure 3.7 and the transition relation is
presented in Figures 3.8, 3.9 and 3.10.

Figure 3.7 uses the notatigt3fd to meancsh.eval(pt, fd) and csfree?(pt) to mean
pt € csunalloc U cs freelist. This notation is used in the remainder of this chapter and a
similar notation is used in Chapter 6.

3.2.3 The Intermediate Automaton

As discussed in Chapter 2, simulation proofs can often be dsing aforward simulation
in which the abstract execution is constructed by startinthe beginning of the concrete
execution and working forwards.

However, forward simulation is not sufficient to prove tRatncAutimplementsAbsAut
The only point during alequeue operation at which the queue is guaranteed to be empty
is when the operation executes D3, loading | into next . A forward simulation would
need to determine at this point whether the operation wilirrenul | . This is not possible,
however, since the operation will retryhead is changed between the operation’s execution
of D2 and D4.

We use two examples to explain this. First we describe atgituan which a dequeuing
process returns empty, but where execution of neither DDbBaran be used as a linearisation

3Recall that the M&S queue uses a freelist to recycle noddsowitreleasing the memory back to the system

freelist. freelist models the M&S queue freelidt;unalloc models the system freelist.
“In the pseudo-code of Figure 3.4, this value is returned acation referenced by an input parameter.
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eng-inv,(v) : eng-resp,, : e_1p:

prepc, = idle prepc, = eng-resp prepc, = e 1(v)

eff pcy == e 1(v) eff pc, :=idle eff h:= 71 (new_nd()),
freelist .=

€2p &5p mo(new_nd()),

prepc, = e-2(v) prepc, = €5 nodep =

eff nodep—val :=v, eff tailp := Tail, 3(new_nd()),

pep = e3 pep = e 6 pep =
e3,: m3(new_nd()) = null ?

prepe, = e 2(v) el(v) : e2(v)

eff nodep—next.ptr

= null,
pep =€
e_6 : e_7-yes, : e-7-no, :
prepc, = €6 prepc, = e/ A prepc, = e/ A
eff nexty := tailp—next, tailp = Tail tailp # Tail
pep i=e’ eff pc,:=e8 eff pc,:=e5
e-8_yes,, : e_8_nop : €-9-yes, :
prepc, = €8 A prepc, = e8A prepc, = €9 A
nextp.ptr = null nextp.ptr # null tailp.ptr—next
eff pc,:=e9 eff pc, :=e 13 = nextp
eff tailp—next :=
(nodep,
nextp.ver + 1),
pep = el7

Figure 3.8: Enqueue transitions @dbncAut(continued in next figure).
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€-9-no, :
prepc, = €9 A
tailp.ptr—next #
nextp

eff pc,:=e5

e17-yes, :
prepc, = e 17/

taily = Tail
eff Tail :=

(nodep, tailp.ver + 1),

pep = eng-resp

CHAPTER 3. VERIFYING A NONBLOCKING QUEUE ALGORITHM

e_13-yes,, : €-13-n0, :
prepc, = €13 A prepc, = e 13 A
tailp = Tail tailp # Tail
eff Tail .= eff pc,:=e5
(nodep, tailp.ver + 1),
pep i= €5
€-17-n0,, :

prepc, = e 17/
tailp # Tail
eff pc, := eng_resp

Figure 3.9: Enqueue transitions @bncAut

point for the operation.

e Processp begins execution of @equeue operation when the queue is emptp.
executes lines D1-D3, loadinul | into itsnext variable at D3.

e Another processg executes a compleenqueue operation. The queue is no longer

empty.

e Proces9 executes lines D4-D5. Becaups next variable isnul | and theHead
has not changed sin@s operation began, the tests at both D4 and D5 succeed. Hence

p returnsfalseat D5.

Because procesy completed an enqueue operation the queue is no longer enfyay pv
executes D4 and D5. Therefore, neither D4 nor D5 can be usadirearisation point for
p's operation. The only point at which the queue is empty ismwhexecuted D3, loading

nul | into itsnext field.

Unfortunately, we cannaways choose D3 as a linearisation point when a process loads

nul | into itsnext field. To see why, consider the following execution.
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deq-inv,, :

pre pc, = idle

eff pc, == deq

d-3,:

prepc, = d-3

eff next, :=
headp.ptr—next,
pep i=d 4

d_5-yes, :

prepc, = d.5A

nextp.ptr = null
eff resulty := null,
pep = deq_resp

d-g-yes, :
prepc, = d.9A
heady = Head
eff Head :=
(nextp.ptr,
headp.ver + 1),
pep = d 10

d-11_yes,, :
prepc, = d_11A
headp.ptr =
tailp.ptr
eff pc, :==d.12

d_12_no, :

prepc, = d-12A
tailp # Tail

eff pc, == d.17

deq_resp,(r) :
prepc, = deq_resp(r)

eff pc, := idle

d_4-yes, :

prepc, = d4 A
heady = Head

eff pc, ;== d.5

d_5-no,, :

prepc, = d.5A
nexty.ptr # null

eff pc, :==d.8

d_9-no,, :

prepc, = A9 A
headp # Head

eff pc, :==d.2

d_11_noy :

prepc, = dL11A
headp.ptr #

tailp.ptr

eff pc, :=d.17

d-17,:

prepc, = d.17

eff freelist .=

freelist U {headp},

pcp = deq_resp
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d_2, :

prepc, = d.2

eff headp := Head,
pey :=d3

d_4-noy, :

prepc, = d4 A
headp # Head

eff pc, :==d.2

d_8, :

prepc, = d.8

eff resulty :=
nextp.—val,
pep i=d.9

d_10, :

prepc, = d_10

eff tailp := Tail,
pep i=d 11

d_12_yes,, :

prepc, = 12/
tailp = Tail

eff Tail .=
(nextp.ptr,

tailp.ver + 1),

pep = d 17

Figure 3.10: Dequeue transitions@bncAut
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e As before, procesg executes lines D1-D3 when the queue is empty.
e As before, another procegexecutes a compleenqueue operation.

e Now, another processexecutes a completdequeue operation, followed by a com-
pleteenqueue operation. The queue now contains one element. Furtheexieu-
tion of r's dequeuehas modifiedHead.

e Procesy executes the test at line D4 which fails becausesoflequeue. Sop loops
back to the top of th@hi | e loop. p completes itslequeue operation by removing
the last value that enqueued.

Therefore, we need to usebackward simulationshowing how to construct an abstract ex-
ecution by working from the last step of a (finite) concreteaiion back to the beginning.
Because we are working backwards, we can distinguish bettiegwo kinds of executions
exemplified above, and correctly choose linearisationtpdor dequeue operations that re-
turn empty.

Since only this one aspect requires backward simulationdefime an intermediate au-
tomatonintAut, which captures the behaviour of the implementation théesléorward sim-
ulation, namely the handling efequeue on an empty queue, and is otherwise identical to
AbsAut We then prove a backward simulation framiAut to AbsAut(see Section 3.3), and
a forward simulation fronConcAutto IntAut (see Section 3.4).

The intermediate automatdntAut is identical to the abstract automaton, except that in
IntAut, a process executingdequeue operation may “observe” whether or not the queue is
empty at any time before it decides what value to return. tlitemh to the queue and counter
variables that are iAbsAut each state dhtAuthas a variablempty_ok:p, to record whether
p has observed an empty queue during the cudeqt.eue operation. The initial states and
transition relation ofntAut are presented in Figures 3.11 and 3.12 respectively.

{ab | empty(ab.Q) AV p e ab.pc, = idle}

Figure 3.11: The initial states dfitAut Note that these states are defined in precisely the
same way as the initial statesAbsAut
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eng-inv,(v) : eng-do,, :

prepc, = idle prepc, = eng(v)

eff pg, := eng(v) eff pg := eng_resp
Q:=enqQ,v)

deg-inv, : obs_empty,, :

prepc, = idle pre pc, = deq
eff pG, := degq eff empty_oky =
empty_ok, := empty(deq
false
deq_empty,, : deq-resp,(r) :
prepc, = deq A prepc, = deg_resp(r)

empty_ok eff pg :=
eff pc, = idle
deq_resp(null)
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eng-resp,
prepc, = eng-resp
eff pg, := idle

deq-nonempty,, :
prepc, = deq A
—empty(deq)
eff pcp =
deq_resp(ma(deq(Q)))
Q := m(deq(Q))

Figure 3.12: The transition relation bitAut

IntAut has the same external actionsddmsAut and the same internal actid_enqp; the

only difference for these transitions is thaty_inv, setsempty_ok, to false IntAuthas a

new internal actiombserve_empty, that setempty_ok, to record whether or not the queue

Q is empty, whichp may perform whenever its program counter valuéedg. Also, in place

of the do_deq,, action inAbsAut IntAut has two actionsdeq_empty, anddeq_nonempty,

allowing these cases to be treated separately.déheronempty, action is the same as the

abstract automatonin_degy, action except that its precondition additionally requites the
queue is nonempty. Thixq_empty, action simply changegs program counter fromeq to
deq_resp(null). The precondition for this action requires thatpty_ok, is true, indicating

thatp has observed that the queue was empty at some point duriegeitsition. The point

when this observation action takes place is the lineaoisgibint for the operation.

Splitting dequeue operations that returnull into one or more observations that the
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queue is empty, followed by a decision to retuwrm// based on the knowledge that we have
observed the queue to be empty at some point during the aperatakes it possible to
prove a forward simulation from the concrete automaton eédaritermediate one, as we show
in Section 3.4. In the forward simulation, we match step$hefdoncrete automaton where a
process readsull from Head with the observe_empty action of the same process.

3.3 The Backward Simulation

In this section we define a relatidBS R (see Figure 3.13), and show that it is a backward
simulation fromIntAut to AbsAut Given statesas of AbsAutandis of IntAut, the third
conjunct of BS R requires that the queues represented by the two stateseasartie. The
first two conjuncts require that each process is roughlylgpgdat the same stage” of the
same operation in both states, or is not executing any dperat either state. For example,
if pisidleinis (i.e.,is.pc, = idle) thenp is also idle inas The first conjunctl§asic.ok)
covers the simple cases; the second conjuhetjjeuerok) covers the only interesting case,
in which a process can be at slightly different stages inwWwedutomata becauskqueue
operations can take place over two or more steps. Spedffidafi is, p has invokediequeue
but has not yet executed eithérq_empty, or deg-nonempty, (i.e.,is.pc, = deg), then in
as eitherpg, is alsodeq, or pG, = deg_resp(null), indicating thatp has already executed
deq-empty,. In the latter cases.empty_ok, must also be true, showing thahas observed
that the queue was empty at some point duringlétg.eue operation. In a situation where
aspc, = deg_resp(null) butis.pc, = deq, the dequeue operation of procgssas been
linearised earlier in the execution.

We turn now to the proof thaB S R is a backward simulation frodmtAut to AbsAut For
convenience, we state the proof obligationsdaoe-stepbackward simulation, as applied to
the automatdntAut and AbsAut

1. For allis € start(IntAut) and allassuch thatB.S R(is, as), as € start(AbsAuj.

2. For allis € reachintAut is' € stategintAut), a € externalIntAut), if
is 25 ig/, then for allas such thatBSR(is', as), there is somassuch thatB S R(is, as)
andas =+ as.

3. For allis € reach(IntAut), is’ € stategIntAut), a € internal(IntAut), then for allas
such thatBSR(is', as), one of the following is satisfied:
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BSR(asis) =
basic ok(as is) A
dequeuerok(as is) A
is.Q =asQ
basicok(is, as) =
Vp e is.pg, # deq=> is.pg, = aspcy
dequeuerok(as is) =
Vpeispg =deq=
(aspg = deq Vv
(aspg = degq_resp(null) A is.emptyok,))

Figure 3.13: The backward simulation relatibrb R

(a) there exists someas and action b € internal(AbsAuj such that
BSR(is, as) andas —» as.

(b) BSR(is,as).
4. For allis € reach(IntAut), there exists somassuch thatBSR(is, as).

Conditions 1 and 4 are ftrivial, because related statdatdfut and AbsAutare almost
identical, so we treat them very briefly. The first conditi@mde seen by observing that, for
anyis € starfpau, i1S.Q is empty and all thep € PROC areidle. Thus for any relateds
asQis empty and alp € PROC are idle. For the second condition, observe that gigen
(reachable or not), we can constructasasuch thais.Q = asQ and for all processeg,
is.pc, = aspcy,. Itis easy to see that then we hablé R(as is).

Conditions 2 and 3 are more complicated. We defirstep-correspondenctinction
[RROO0], that determines the abstract action to choosengiveintermediate action and ab-
stract poststate. We use a step-correspondence functiba uerifications described in Sec-
tion 3.4 as well as Chapters 4 and 6, so the simple functiot lusee serves as an introduction
to the technique.

The step-correspondence functistakes as arguments an intermediate acéi@md an
abstract poststatas. The functions returns either an abstract action or a special value
that is not an abstract action. Whs(@, as) is an action, ané is external,s(a, as) returns
a as required by Condition 2 above. Whs(@, as) is an action buf is internal,s(a, as)



68 CHAPTER 3. VERIFYING A NONBLOCKING QUEUE ALGORITHM

provides a witness fdb in Condition 3a. Finallysis defined so that i§(a,as) = L then
BSR(is,as). Thus, ifs(a,as) = L, then we can fulfill Condition 3b. In this case, we say
thatis — is’ is astutterstep. Formallysis defined as follows.

a if a € externalhaut
do_engp(v) if a= do_engy(v) for somep andv
s(aag) = do_deq, if a = observe_empty, for somep and
as.pc, = deq_resp(null)
do_deq, if a = deg-nonempty, for somep
1 otherwise

\

For every intermediate actiona except observe_empty, deq_empty and
deq_nonempty, we choose the same actiarfor AbsAut In the case of external actions,
this choice is required by Condition 2. Fdeq_nonempty, we choosedo_deq; and for
deq_empty, we choose to stutter. Recall thatleyueue operation on an empty queue is lin-
earised to a point at which it executés:erve_empty, and not when it executekq_empty.
We reflect this choice of linearisation point by choosifagdeq for exactly one execution of
observe_empty within that operation. We guarantee that we only chodseleq once by
examining that abstragtoststateto check whether the process has yet executedvitdeq
operation. It has done so exactly when its abstract progamter isdeq_resp(null).

We also define grestate functiont that generates the abstract prestate. Just as the step-
correspondence functi@t takes as arguments an intermediate aciiand an abstract state
as. Whens(a,as) # L, t(a,as) returns the abstract pre-staerequired by Conditions 2
or 3a. Whers(a,as) = L, t(a,as) = as. Givensandt, we can combine Conditions 2, 3a
and 3b into one proof obligation.

For allis € reachIntAut, is’ € stateau, @ € aCtSniaun if is — i, then for
all as such thatBSR(is’,as), BSR(is,t(a,as)) and ifs(a,as) # L, t(a,as)

) o

It is generally easy to construtta, as). In many cases, we simply replace the program
counter of the procegs whose action is being executed in the intermediate tramsitiith
the value required by the precondition of the abstract acfithe only nontrivial case arises
for the do_eng action, because to construct the program counter beforactien, we must
determine what value the enqueue operation is enqueuing i§ achieved by taking the
value from the queue position that is updated bydhe=nq action.
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We now outline the proof that for all intermediate stagess’, and abstract states such
that BSR(is’, as) andis —* is' wherea = observe_emptyy, for somep, BSR(is, t(a, as)),
and further that(a, as) S(a’—aS;) ag, discharging the proof obligation fabserve_empty
actions. We omit the cases wheres some other action because they are straightforward and
tedious.

First, consider the case wheagpc, = deq resp(null). By dequeuerok of BSR,
we haveiS’.empty_ok:p. Becausenbserve_empty, setsempty_ok, to true if and only if
the queue is empty in statg and does not modify the queue, it follows that the queue is
empty in statds’, and therefore byBSR, the queue is empty in stats. Therefore, the
abstract prestat{a,as) is just like as, except that(a,as).pG, = deg. Henceis.Q =
is.Q = as.Q = t(a,as).Q. Furthermore, for each procegs# p, is.p¢g = is’.pgy and
t(a,as).pgy = as.pgy, So the predicatebusic_ok anddequeuer,k are preserved when ap-
plied to the process. Finally, is.pG, = t(a,as).pG = deq SO dequeuer_ok is true when
applied top, as isbasic_ok.

It is usually straightforward to prov¢a, as) 229 a¢ , since the construction tfa, as)
ensures that the precondition fgg, as) holds and applying the effect sfa, as) tot(a, as)
yieldsas. Itis slightly trickier in our case, where the intermediamsition is ambserve_empty
action. Not every execution afbserve_empty corresponds to a linearisation point for
a dequeue operation that returngaull (IntAut can executebserve_empty multiple times
within a singledequeue operation, while inAbsAutthere is exactly ondo_deq action per
dequeue operation). Therefore, for eaakequeue operation that returnsull, we must
choosedo_deq for exactly one occurrence observe_empty, and choose the empty action
sequence for the others.

We can only linearise alequeue operation by procesp to an execution of the
observe_empty, action if the dequeue operation returngull. This is true ifas.pg, is
deq-resp(null), in which case we can infer thatpty_ok in is’ istrue, from thedequeuerok
conjunct of BSR. Becausebserve_empty, setsempty_ok, to trueif and only if the queue
is empty in statés, and does not modify the queue, it follows that the queue jstgin state
is’, and therefore byB SR, the queue is empty in stages. Therefore, we can construct the
stateaswith an empty queue, which is needed to show &sft(ﬁqp as is a transition of the
abstract automaton. Thus, we show that we can chdas&g, whena s observe_empty,
andas.pg, is deg_resp(null). In all other cases, we choose the empty sequence for the
abstract automaton whexis observe_empty,.
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rel(is,cs f) =
enqueueok(is, cs f) A dequeueok(is, cs f) A
obj_ok(is, cs,f) A ndsok(is, cs f) A
distinctnessok(is, cs ) A procs.ok(is, cs f) A
injective.ok(is, cs f) A accesssafetyok(is, cs f)

Figure 3.14: Theel predicate

3.4 The Forward Simulation

In this section we describe a relati®isR which is a forward simulation fronConcAutto
IntAut. Because the concrete and intermediate automata are \egedt, the simulation
relation and the proof are both substantially more comgditdahan the relation and proof
described in the previous section.

The forward simulation relation over concrete sted@and intermediate stateis

FSRcsis) =3f :rel(is,cs f)

wheref is a function from naturals to pointers which we refer to asrépresentation func-
tion. We explain the purpose dfbelow, but briefly, it is used to constrain the structure of
the nodes inside the heap©@bncAut and relate that structure to the queudndAut. Figure
3.14 definesel. The subpredicates o€l are defined later in this section.

The most important part o€l is the predicat@bj_ok (Figure 3.15), which expresses the
relationship between the concrete data structure, remexsdy nodes and pointers @on-
cAut and the queue variable bftAut To express this relationshipbj_ok uses the represen-
tation functionf as follows. Recall that each state islofAut contains a queue variab(@,
represented by a sequence &hehid andT ail variables indicating which indexes are relevant
in the current queue state.dbj_ok(is, cs f) holds, therf indicates which node corresponds
to each relevant position ii3.Q.seq. That is, for each € [is.Q.Head + 1...is.Q.T ail],
f(i) is the queue node ins containing the valués.Q.seq(i), andf(is.Q.Head) indicates
which queue node insis the dummy node pointed to g Head.ptr. Moreover, for each
i € [is.Q.Head+1...is.Q.Tail — 1], f(i 4+ 1) is the node pointed to by the next fieldfdf)
(i.e., f(i)Snext).ptr = f(i + 1)), so that the order of values contained in the nodessof
matches the order of values in the sequeQcseq of the intermediate automaton.
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obj ok(is,cs f) =

f(is.Q.Head) = cs Head.ptr A (1)
f(is.Q.Tail) Snext.ptr = null A (2)
(f(is.Q.T'ail) = csTail .ptrv (3a)

(f(is.Q.Tail) = csTail ptrSnext.ptr A
—csfree(csTail.ptr) A

csTail.ptr # null)) (3b)
A
Vi:NeisQ.Head <i<is.QTail =
(i #i8.Q.Tail = (f()Snext).ptr =f(i+1)) A (4a)
is.Q.seq(i) = (F(i)Sval).ptr A (4b)
—csfree(f(i)) A (4c)
f(i) # null (4d)

Figure 3.15: Thebj_ok predicate

Conjunct 1 ofobj ok asserts that(is.Q.Head) is the dummy node. Conjunct 2 states
that the last node in the queue haswd! next pointer. Conjunct 3 captures the fact thatil
can “lag” behind the real tail of the queue: eitléril is accurate (3a), asT ail.ptr points
to the next-to-last node in the queue, and that in such atisitues T'ail.ptr is both allocated
and nonnaull.> (3b). Conjunct 4 expresses properties of the nodes in thereenqueue: the
pointer value of thewext field of each queue node points to the node correspondingeto th
next index (4a); the value in each queue node is the valueeicdiresponding position in
is.Q.seq (4b); none of the queue nodes is unallocated or in the figdit3; and none of the
gueue nodes isull (4d). (Conjuncts 4c and 4d, together with Conjunct 3a allsvtouprove
thatcsT'ail.ptr is valid when the tail is not lagging.)

In order to show thabbj ok is preserved across transitions, we need to specify a new
representation function for the poststate of each tramsitiOur choice for the new func-
tion is motivated by our choice of step-correspondence. M&uds the step-correspondence
more completely in Section 3.5, but we note here that triamnsitof the forme_9_yes, (during
which a new node is added onto the queue) are each matchea wéhsition labelled by

®It is easy to infer this information from the other clause®bif ok in cases wher&ail is not lagging.
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enqueueok(is, cs f) =
Vpe (cspg = idle = is.pg, = idle) A
(pc_e-1.9(cs, p) vV espg = e13=
iS.pcy = enqueuingcsvalp)) A
(cspg = €17V cspg = eng_resp = iS.pG = eng_resp)
dequeue_ok(is,cs f) =
Vpe (Cspcy, = d5A csnextp.ptr = null = is.empty_ok,) A
(pcd-2.9(cs p) = is.pcy, = dequeuing)
(pcd-10.17(cs p) V cspey = deq-resp =
is.pcp, = deq_resp(csresultp))

Figure 3.16: Theenqueueok and dequeueok predicates. A predicate of the form
pc.e_m.n(cs p), wherem, n are integers, holds wherspc, = e_i for somei € [m...n].

do_eng, in the intermediate automaton (during which a new value deddnto the sequence
of the intermediate automaton). The motivation for thisiis@e: enqueue operations "ap-
pear to take effect” during 9_yes, anddo_eng, transitions of the respective automata, so
these transitions are both linearisation points.

For a representation functidnconcrete actiom, concrete statesand intermediate state
is, we use the new representation functférwhere

b f @ {is.Q.Tail +1 — csnodg} if a=-e_g_yes
o f otherwise

That is, for transitions labelled by actions of the foen9_yes, (during which a new node
is added onto the queue), we modify the representationimeb thatf (is.Q.T'ail + 1) is
the new node added onto the queue. This is because afteatisition fromis labelled by
do_enqy, with poststates’, is'.QTail = is.Q.Tail + 1, so that the new index is matched to
the new node. In every other case we use the old representatiotion.
Predicategnqueueok anddequeueok (Figure 3.16) play the same role aasic ok and
dequeuerokin the backward simulation. That s, they assert that eaobgss is “at the same
stage” of the same operation in both states, or is not exegatiy operation in either state.
The other subpredicates il capture properties needed to support the proofs that these
predicates are preserved across various transitions. ¥d¢gilde each in turn, giving an ex-
planation of each predicate’s meaning; a brief descripibhow we show it is preserved
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distinctness_ok(is,cs f) =
distinctnessi_ok(is, cs f) A

distinctness2_ok(is, cs )

Figure 3.17: Thalistinctnessok predicate.

across transitions; and an outline of how it is used in thefpro

Thedistinctnessok (Figures 3.17 and 3.18) predicate says that nodes are asedlin
ways that would render the algorithm incorrect. The proesrasserted in this predicate
are critical to proving that other properties of various e@dre preserved by transitions that
modify the heap, or that return nodes to the freelist. Themdicatedistinctnessi_ok
ensures that neitharode, nor heag, are part of the queue representation, during intervals
where they might be modified or, in the caséehg,, added onto the freelist. This allows us
to prove thabbj ok is preserved across transitions where these nodes are edodliffreed.

The subpredicatéistinctness2_ok states that various local pointer variables are not
aliased, either between the local variables of one procedstween local variables of dif-
ferent processes. We describe each conjunct in turn.

e Conjunct 3.3 asserts, for distinct processes, thattlke variables of each process are
not aliased, once the the new node has been allocated, ahidl isrénqueued.

e Conjunct 3.4 allows us to prove that thede andhead.ptr expressions are not aliased
when the associated nodes might be modified or placed badiedreelist. The node
referenced byhead.ptr is only returned to the freelist once the dequeuing process
has successfully removed it from the queue. Furthermoreqause a node might be
removed from the queue, placed on the freelist, and thetocaétd to an enqueuing
operation, itis possible for thenode variable of an enqueuing process to point to the
same node as thieead.ptr variable of a dequeuing process. However, this can only
happen if thehead version number of the dequeuing process is out-of-date hiatw
case, we don't need to be able to prove thatd.ptr is not aliased by someode
variable. Therefore, we allow/gead.ptr to alias a node whehead.ver is out of date,
and the dequeuing process has not yet executed its CAS.

e Conjunct 3.5 allows us to prove thabde is not aliased by anyail.ver while either
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distinctnessi_ok(is, cs f) =

Vp,ie(pce213(csp) Nis.Q.Head <i <is.Q.Tail =

csnodep # f(i)) (3.2)
A
(pc.d-10.17(cs p) Ais.Q.Head < i < is.Q.Tail =

csheadp.ptr # 1(i)) (3.2)

distinctness2_ok(is, cs f) =
Vp,qe(p# qApce213(csp) A
csnodep # null A pce2.13(cs q) =
csnodep # csnodeq) (3.3)
A\
(pce-2.13(cs, p) A pcd3.17(csq) =
csnodep # CSheadqg.ptr V
(pc_d_3.9(cs ) A csheadp.ver < csHead.ver)) (3.4)
A\
(pce-2.13(cs, p) A pceb_17(csq) =
csnodep # CStailg.ptr V
cstailg.ver < csTail.ver) (3.5)
A
(p#qApcd3.17(csp) Apcdl0l7(csq) =
(pcd_10-17(cs p) A csheadp.ver < csHead.ver) V
csheadp.ptr # csheadq.ptr) (3.6)

Figure 3.18: The predicate8stinctnessi_ok anddistinctness2_ok.
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node may be modified. For similar reasons as those given ohetbeription of Conjunct
2, itis possible fonode to alias someail.ptr, so we allowtail.ptr to alias somevode
whentail.veris out of date.

e Conjunct 3.6 allows us to prove that, for distinct processeshead.ptr variables of
each process are not aliased when either might be returrtbé foeelist. Again, we
allow aliasing to occur during intervals when it doesn'’t teat

Proving that thalistinctnessok predicates are preserved is fairly straightforward. When
a local variable is set to a new value (by @l or new), we need to be able to prove that
the value being loaded is not the current value of the othealva in question. For example,
when proving that Conjunct 1 @fistinctnessi_ok is preserved across transitions labelled by
e 1, (whenp allocates a new node) we prove (using Conjunct dlifok, and the definition
of thenewfunction) that the newly allocated node was not within thewgirepresentation in
the prestate of the transition, and thus is not in the reptatien in the poststate.

Note that the body of the definition dfstinctness2_ok does not mention the interme-
diate automaton, so the properties assertedibsinctness2_ok are simple invariants. The
simulation relation asserts several other invariants@ttncrete automaton. This is because
the proofs that these properties are preserved by the gionulelation depend ultimately on
assertions about the representation function made inlthek predicate. For example, the
proof that Conjunct 3.4 ofiistinctness2_ok is preserved over transitions labelled 2,
(whenq loads Head into head), depends on the fact th@fead.ptr is not aliased by any
nodep variable in the prestate. But proving thiead.ptr is never equal to someodey de-
pends on the fact thdf ead.ptr is never in the freelist, which in turn depends on the fadt tha
nodes within the queue representation are not in the fteelis

Certain invariants of the concrete automaton that cusreagpear within the simulation
relation could be expressed independently, and proved touagiant using the standard
inductive technique (briefly described in Section 2.4 of @ba2). However, it is not always
obvious which invariants can be proven independently ofptioperties asserted mbj_ok,
and there is nothing to be gained by trying to work this oute Shmplest approach, which
we follow, is to include all these properties in the simwatrelation.

The predicatanjective ok (Figure 3.19) asserts that the representation function-is i
jective over the domaifis.Q.Head . ..is.Q.Tail]. This ensures that each relevant index of
IntAut is represented by only one queue node, and that modificatioose node do not
falsify properties of nodes corresponding to other indekesthermoreijnjective ok allows
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injective ok(is,cs f) =
Vi,je isTail <i<is.HeadA
is.Tail <j<is.Head Nf(i) =f(j) =i=]

Figure 3.19: Thenjective ok predicate.

ndsok(is,csf) =
Vpe (pce213(csp) =
—~csfree?csnodep) A csnodep # null) A
(pce 3.13(cs p) = csnodepSval.ptr = cSvalp) A
(pce4.13(csp) = CSnodepgnext.ptr = null)

Figure 3.20: Thends. ok predicate.

us to prove that when a node is removed from the queue, it ismget in the range of the
representation function.

It is trivial to prove thatinjective ok is preserved across transitions that do not modify
the representation function. Recall that there is only dasscof transitions that modify the
representation function: those labelledeh9_yes,, where the procegsexecutes a successful
CAS, adding its new node onto the end of the queue. Provirgnjeative ok is preserved
across these transitions is accomplished by using Conjun€tiistinctnessi_ok to show
that the new node was not in the range of the representatiamidn in the prestate.

The predicatends ok(is, cs f) (Figure 3.20) expresses properties of eaolie,, variable
in the interval starting when the node is allocated and endinen it is added onto the queue.
This is the interval in which the fresh node is initialisedch assignment to a newly allocated
node in the M&S queue algorithm corresponds to a conjunatiefok that specifies the value
held in that field after the assignment. Showing thd$ ok is preserved across transitions
that modify the heap or the freelist amounts to doing one rafehthings:

e In cases where the modification is an update of a newly albdcabde, showing that
the value being written has the appropriate properties.

e In cases where the modification is a write or CAS that is not afnthe initialising
writes executed by the process that allocated the nodey dstinctnessok to prove
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access_safety_ok(is,csf)=

Vpe(pce6.17(cs p) = cstaily # null A (3.7)
—csh.unalloc(cstailp.ptr)) (3.8)
A (3.9)
(pc_d_3.17(cs p) = csheadp # null A (3.10)
# csh.unalloc(csheadp.ptr)) (3.11)
A (3.12)
(pcd4_17(cs p) = csnextp # null A (3.13)
# csh.unalloc(csnexty.ptr)) (3.14)
A (3.15)
(cspe, =d-3= (Csheadp.ptrgnemt).ptr = null vV (3.16)
~cshunalloc((csheady.ptrSnext).ptr)) (3.17)
A (3.18)
V pt @ —(cs freelist(pt) A csh.unalloc(pt)) (3.19)

Figure 3.21: Theaccesssafetyok predicate.

that the node being modified is not the newly allocated node.

e In cases where the transition places a node on the freai@ting tha the node being
freed is not a newly allocated node, usifigtinctness2_ok.

Thends ok predicate is used to show preservatiorobf ok when an enqueuing process
successfully executes its CAS on thext field of the tail node, adding it's new node into
the queue. For example, Conjunct 2 asserts that when a prp@tempts to add its new
node onto the queue, the value field of that node is equal teelne whichp is attempting to
enqueue. This, in combination with Conjunct 2esfqueueok, allows us to prove the crucial
property that after the node has been successfully addethshelement in the queue of the
intermediate automaton is the last element in the queueddsim the concrete automaton
(a property asserted by Conjunct 4botij_ok).

The predicateccesssafetyok says that the implementation never dereferemad$ or
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accesses a node that isunalloc, which is important for correct interaction with a memory
allocator. accesssafety ok asserts, for each program counter value where a derefecance
occur (through an invocation of eithepdateor eval), that the pointer being dereferenced is
valid (non«wull and allocated). This predicate is not used in the rest ofithelation relation.

It is included simply to provide confidence that the M&S alfjon interacts correctly with
the system memory allocator.

Theprocs ok predicate expresses several properties of the local Vesiabeach process,
and the relationship between those local variables andhdied variables. Its subpredicates
are numnerous and are presented in Figures 3.22, 3.23 ahdi®i@orocs ok predicate itself
is the conjunction of each of the subpredicates defined setfigures. Many of the subpred-
icates ofprocs ok are ad-hoc strengthenings of the simulation relation thekviound to be
necessary to make the proof go through. We describe only s important subpredicates
of procs.ok, including those that are used in the proofs described itice8.5.

e procsok 7 says that ifp is a dequeuing process that has executed D3 (loading the
nextp variable) but not yet executed D9 (the CAS), thep'sf head,, is accurate, its
nextp is also accurate. This is important for proving that durimg D9 CAS, the ead
variable is correctly modified to point to the next node inqoeue.

e procs ok 9 says that if the test at D5 failed for some procgsthen thenext, variable
is nonqnull.

e procs ok 15 says that if a procegsis an enqueuing process about to execute the E9
CAS, then the pointer component oéxt, is null. This ensures that if the E9 CAs
is successful, the modified node has@dl next value, and is thus the last node in the
queue.

e procs ok 16records the fact that for a process enqueugirte newly allocated node
is distinct from thetail, node.

e procs ok 19states an important property that establishes what thattEstguarantees.
When a procesp executes the E7 test, and that test succeeds, then eithgyis not
null (in which casep will retry the loop), or the version number ataxty is out of date
(and thus the next E9 CAS is doomed to fail), or thert, variable is correct, and the
tailp variable points to the node that is last in the queue (ancaguithe last value in
the abstract queue). Thus, if it is still possible jido successfully execute the E9 CAs
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procsok 1(is, cs f) =
Vpe cspc, =d4AcsHead = csheadp N
csnextp.ptr = null = is.empty_ok,
procsok 2(is,cs f) =
Vpe pcd39(csp) =
csheadp.ver < csHead.ver V cSheadp = cSHead
procs ok 3(is,cs f) =
Vpe pce6.17(csp)Vpcdll12(csp) =
cstailp.ver < csTail.ver V cstaily, = csTail
procs ok 4(is, cs f) =
Vpe pce79(csp) =
csnextp.ver < (CStailp.ptr-Snext).ver
procs ok 5(is, cs f) =
Vpe pces89(csp) Acsnexty.ptr =null =
Ccsnextp.ver < CStailp.ptrgnext.ver V
(csnexty = CStailp.ptrgnext A
cstailp = csTail A cstailp.ptr = 1(is.Q.T'ail))
procs ok 6(is, cs f) =
Vpe (pce78(csp)Vcspe, = el13) Acsnexty.ptr = null =
cstailp.ver < csTail.ver V
(cstailp = csTail AN(is.Q.T'ail) = csnextp.ptr A
cstailp.ptr # csnexty.ptr)
procsok 7(is,cs f) =
Vpe pcd49(csp) Acsheady = csHead A cSnextp.ptr # null =
csnextp.ptr = (CSHead.ptri%next).ptr
procs ok 8(is, cs f) =
Vpe cspc, =d.12= csheadp.ptr = cStailp.ptr

Figure 3.22: Subpredicates pifocs ok
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procsok 9(is, cs f) =
Vpe pcdB8.12(csp) = csnexty.ptr # null
procsok 10(is, cs f) =
Vpe cspc,=d9Acshead, =csHead =
csresultp = (CSnewtp.ptrﬁval).ptr
procsok 11(is, cs f) =
Vpe pce213(csp) = csnodep # csTail ptr
procsok 12(is,cs f) =
Vpe cspc,=d17V
(cspcy = d_11A (Csheadp.ptr = cStailp.ptr V
cstailp.ver < csTail.ver)) V
(cspcy = d-12 A cstailp.ver = csTail.ver) =
csheadp.ptr # csTail .ptr
procs ok 13(is, cs f) =
Vpe cspc,=e6A (Cstailp.ptri%nemt).ptr = null =
cstailp.ver < csTail.ver V
(csTail = cstaily A cstaily.ptr = f(is.Q.T'ail))
procs ok 14(is, cs f) =
Vpe cspc, =€ 13 = csnextp.ptr = null

Figure 3.23: Subpredicates pfocs ok

at this iteration through the loop, th@rhas obtained an accurate snapshdf @fl and

Tail—next.

3.5 \Verifying the Forward Simulation

The forward simulation relation defined here is a large andpiizated assertion. The com-
plete simulation proof is correspondingly long and dethilé/e will not attempt to describe
all of it. First, we outline the structure of the proof. Thém,Section 3.5.1, we presents a
careful manual proof that the criticabj_ok property is preserved by transitions modelling
successful CAS operations.
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procsok 15(is, cs f) =
Vpe CsSpg = €9 = csnextp.ptr = null
procs .ok 16(is,cs f) =
Vpe pce6.13(csp) = csnodep.ptr # CStaily.ptr
procsok 17(is, cs f) =
Vpe pcd3.1l7(csp) =
(pc_d_3-9(cs p) A csheadp.ver < csHead.ver) V
—CS free?(cs csheadp.ptr)
procsok 18(is,cs f) =
Vpe cspe,=el7=
cstailp.ver < csTail.ver V
(cstailp = csTail NT(is.Q.Tail) = csnodep A
cstailp.ptr # 1(is.Q.Tail))
procsok 19(is, cs f) =
Vpe cspc, = el Acsnexrty.ptr =null =
cstailp.ver < csTail.ver V
(csTail = cstaily A csnextp.ver < (cSTail ptrSnext).ver) V
(csTail = cstailp A cSnexty = csTail Snext A
cstailp.ptr = f(is.Q.Tail))
procs.ok 20(is,cs f) =
Vpe (cspc,=d11Vcspe, = d.12) A csheadp.ptr = CStailp.ptr =
cstailp.ver < csTail.ver V
(cstailp = csTail Nf(is.Q.Tail) = csnextp.ptr A
csheadp.ptr = csnextp.ptr)
procs ok 21(is, cs f) =
Vpe cspc, =d.10A csheadp.ptr = csTail .ptr =
f(is.Q.T'ail) = csnextp.ptr A CsSheadp.ptr # cSnextp.ptr

Figure 3.24:
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procs ok 22(is, cs f) =
Vpe cspc, =e17= cstailp.ver < csTail.ver vV ~csfree’(cstailp.ptr)
procs.ok 23(is, cs f) =
Vpe cspc,=e6A (Cstailp.ptri%nemt).ptr % null =
cstailp.ver < csTail.ver V
(csTail = cstailp A (cstailp.ptrSnext).ptr = f(is.Q.Tail))

Figure 3.25: Subpredicates pfocs ok

As in the backward simulation proof, we use a step-corredgace function to deter-
mine the intermediate action sequence to choose giveniayarttransition of the concrete
automaton. (Again, we always choose either a single aabiothe empty action sequence.)
As before, this function maps each external action to itselfl maps all internal actions to
the empty action sequence, with the following exceptions; yesp, which models a suc-
cessful CAS at line E9, is mappeddo_enq,; d_g-yesp is mapped taleg_nonempty,; d-3p
is mapped twbserve_emptyy; andd_5 yesp is mapped taleq_empty,,.

In contrast to the backward simulation, we do not need toigpadunction to calculate
the intermediate state, because this is uniquely detethiigehe intermediate pre-state and
the action (if any) chosen because the poststate of eadittoans uniquely determined by
the action and prestate (i.e., the effect of each actionterighénistic).

3.5.1 A Proof Fragment

We now present a careful manual proof thaf ok is preserved across two classes of tran-
sitions: those that represent the execution of line E9 byesprocess, where the CAS is
successful; and those that represent the execution of B@wdiere the CAS is successful.
This is intended to illustrate the use of the representdtiontion, and the style of reasoning
we use to verify algorithms that employ dynamic memory.

Successful E9 Transitions

Fix a concrete states and intermediate state such thatFSRcs is), with representation
function f. Fix also a concrete transitiors — c<, wherea = e-9-yes, for somep,
and letis’ and f’ be respectively the intermediate state and function deétecinby the
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step-correspondence and witness functions. Thaisissatisfiesis b, ig whereb =
do_engp(csvalp), andf’ = f @ {is.Q.Tail + 1 + csnodep}. When we say that part of
the simulation relatiomolds in the pre-statérespectivelyholds in the post-stajewe mean
that it is true forcs is andf (respectivelycs, is/, f').

We need to show two things. First, that if the preconditioreaf yes, holds in the
pre-state (i.e., itspg, = €9, csnext, = cstailp.ptri%nextandrel(is, cs f)) then the in-
termediate precondition ab_engy(cswvalp) holds (i.e.js.pc, = eng(v) wherev = cswvalp).

In other words, we need to show thsltexists. Second, we need to show that if the concrete
precondition and simulation relation hold, thelj_ok(is’, cs, f').

The first obligation is a straightforward application @fqueue_ok to processp (see
Figure 3.16 on page 72). The second obligation is much mamgpbcated. We begin by
making some observations about the transition:

csT ail.ptr = cstaily.ptr = f(is.Q.T'ail) (1)
f'(is'.Q.Tail) = csnodep (2)

Claim 1 is shown usingrocs.ok 15 to show thatcsnexty.ptr = null, and then using
procs.ok 5 to show thatsT ail.ptr = cstailp.ptr = f(is.Q.Tail). Claim 2 follows imme-
diately from the construction df and the effect oflo_engy,.

Conjunct 1 of objok (see Figure 3.15 on page 71) is preserved because
is'.Q.Head = is.Q.Head, butis.Q.Head < is.Q.T'ail + 1 (recall that this is a constraint
on the set from whiclis.Q is drawn). Thereforés’.Q.Head # is.Q.Tail + 1, so by con-
struction off’ and because Conjunct 1 obj ok holds in the pre-statd, (is".Q.Head) =
f(is.Q.Head) = cs Head.ptr = ¢S.Head.ptr.

For Conjunct 2, by construction éfand the effect oflo_eng,, we havef’(is’.Q.Tail) =
f/(is.Q.T'ail + 1) = csnodep, Moreover, by Conjunct 3 ofids ok, CSnodepi?next.ptr =
null. By procs.ok_16, cstailp.ptr # cSnodep, SOCSnOdepgnext.ptr = null, and thus

f’(is’.Q.Tail)gnemt.ptr = CSnodepE;next.ptr = null

We show that Conjunct 3b holds in the post-state, arguing sab-conjunct in turn.
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f'(is'.Q.Tail) = csnodep by (ii) above
= cstaz’lp.ptrcinext.ptr by construction ots
= csTail .ptrc—dmext.ptr by Claim 1 above
= CS’.Tail.ptTE;next.ptr becauses.Tail = csTail
cs.freeqcs. Tail.ptr) = csfreeqcs.Tail.ptr) cs.free?= csfree?
= csfreeqcsTail.ptr) cs.Tail = csTail
= csfree?f(is.Q.Tail)) by (i) above
= false conjunct 4c with
i =is.Q.Tail

Now by Claim 1,csTail.ptr = f(is.Q.T'ail), so by Conjunct 4d applied t8.Q.T ail,
csTail.ptr # null. Thereforecs.Tail.ptr # null by the effect of thee_g_yes transition,
so the third conjunct is preserved. For the last conjuncboi8 have

f'(is'.Q.Tail) = csnodep by (ii) above
# cstailp.ptr by procs ok 16
= csTail.ptr by (i) above
= cS.Tail.ptr

We prove Conjunct 4 by cases. For drsuch thats’.Q.Head < i < is'.Q.Tail, either
i =is.Q.Tail+1oris.Q.Head < i <is.Q.Tail. We treat the case in whiéh= is.Q.Tail+1
first. is.Q.T'ail + 1 = is'.Q.T'ail so there is nothing to prove for Conjunct 4a. For Conjunct
4b we have

is'.Q.seq(i) = cswvalp by effect ofdo_eng,
andenqueusok
= CSnodepgval.ptr by nds ok
= CSnodepc—%val .ptr by effect ofe_g_yes,
£ (1) Sval ptr by (ii) above

4c and 4d follow frormds.ok and (ii) above.

It remains to consider the case in whistQ.Head < i < is.Q.Tail. For 4a, we further
distinguish the cases in whidh= is.Q.T'ail andis.Q.Head < i < is.Q.Tail. For the first
case, we have

f’(i)gnezt.ptr = f(i)gnext.ptr becausé # is.Q.Tail + 1
= CStailp.ptTE;next.ptr by (i) above
= csnodep by effect ofe_g_yes,
= f/(is.Q.Tail) by (ii) above
= f'(i+1) by effect ofdo_enq,

If is.Q.Head < i < is.Q.Tail, (4a) follows directly if we can show théti) # cstailp.ptr.
This is because# is.Q.Tail and so (4a) holds fdrin the pre-state and
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(f(i)gnemt).lptr = (f(i )—mext) ptr _ _
=f(i+1) =fi+1) givenf (i) # cstailp.ptr
= (f'(i )—mext) ptr i <is.Q.Tail so
=f'(i+1) f/(i) = f(i)and
ffii+1)=f(i+1)

But if f(i) = cstailp.ptr then byinjective.ok and (i) above, we have= is.Q.7T'ail, contra-
dicting the hypothesis that< is.Q.T ail.

(4b), (4c) and (4d) all follow for from the fact that these conjuncts held in the pre-state
and that because+ is.Q.T'ail + 1, is'.Q.seq(i) = is.Q.seq(i) andf’(i) = f(i). Moreover,
no val fields, norfree?are modified by the transition.

Successful D9 Transitions

We now present a careful manual proof thaf ok is preserved across transitions that rep-
resent the execution of D9 by some process, where the CASdéessful. As before, fix a
concrete statesand intermediate state such thaFSRcs is), with representation function
f. Fix also a concrete transitiars -+ c< , Wherea = e-9-yesy for somep, and letis’ and

f’ be respectively the intermediate state and function detearby the step-correspondence

and witness functions. That is! satisfiess s is’ whereb = deq-nonempty, andf’ = f.
We need to show that if the preconditionfy_yes, holds in the pre-state andi(is, cs f)
thenobj_ok(is', cs, f').

As before, we need to show that the intermediate preconditdds (presented in Figure
3.12 on page 65). The first part of that precondition, thaic, = deq is true by a simple
application ofdequeue_ok to p (see Figure 3.16 on page 72). The second, tifstdeq), is
more complicated. Bprocs ok 9, procs ok 7 and the precondition of g yes,, we have

csnextp.ptr # null (i)

csnextp.ptr = cs Head.ptrSnextptr (ii)

Assume for the sake of contradiction, tlf@tdeq), ie.,is.Q.Head = is.Q.Tail. Then , by

Conjunct (2) ofobj_ok, we havd(iS.Q.Head)gnext.ptr = null. Also, by Conjunct (1) of
obj ok, f(is.Q.Head) = cs Head.ptr. So,

null = f(is.Q.Head)Snext.ptr
CSHead.ptrgnext.ptr
csnexty.ptr By ii above.

But this contradicts i above, so we have

is.Q.Head = is.Q.Tail (iii)
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We now show that each conjunct obj ok holds in the poststate. First, Conjunct 1.
Observe that by Conjunct 4a obj_ok, and iii above, we have

f(is.Q.Head) Snext.ptr = f(is.Q. Head + 1) (iv)
f'(is.Q.Head) = f(is.Q.Head + 1) Definition of f” anddeq_nonempty
transition
= f(is.Q.Head)Snext.ptr  ivabove
= csHeadSnext.ptr Conjunct 1 ofobj ok
= CcSnextp.ptr il above
= CcSHead.ptr Definition ofe_g_yes,, transition

It is easy to see that Conjuncts 2, 3a and 3b are all preseNede of the variables of
either automaton or fields that are mentioned in these cotguare modified by the concrete
or intermediate transitions.

For Conjunct 4, fix an such thais’.Q.Head < i < is’.Q.Tail. Becauses'.Q. Head =
is.Q.Head +1 andis'.Q.Tail = is.Q.Ta:il, we may apply Conjunct 4 tioand obtain that 4a-
4d all hold in the prestate. Observe tiiat= f and none of the variables or fields mentioned
in 4a-4d are modified by the concrete or intermediate triansit Therefore, 4a-4d must also
hold in the poststate.

3.6 Related Work

There have been several variations on the M&S queue, dastgneork in various contexts.
Some are less general in the sense that they depend on uptepeties of the runtime envi-
ronment to guarantee correctness ([Jav] depends on gatblgetion, [Lee07] depends on
properties of a realtime scheduler). Others allow nonaliitsable behaviour [Lee07, FOLO5].

The M&S queue has been used as a case study in previous wohle @pplication of
formal methods to concurrent algorithms [YS03, AC05, WSAMO06, BAMO7]. The re-
mainder of this section describes this work.

The authors of [YS03] present an automatic verification ofade properties of the M&S
queue, using a model-checking technique. This techniqungy ukree-valued logic (where
propositions can take the valugge, falseandunknown to represent uncertainty. They call
their technique8VMC, for three-valued model checking

The 3VMC technique is capable of constructing abstractminsoncrete systems with
unbounded state and of using this abstraction to checkiamtarof the original system. Typ-
ically, the user defines predicates over the states of theretmnsystem that describe prop-
erties relevant to the verification. The abstraction tegiithen uses these predicates and
others that are defined automatically to construct the att&n. Like other kinds of model-
checking, the technique is interesting because usuallyawéry limited form of interaction
with a human is required to verify a given algorithm. Destioips and applications of the
3VMC technique can be found in [Yah01, MYRSO5].
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[YSO03] verifies certain properties of the M&S queue. Thesapprties are taken from
the paper presenting the original algorithm [MS96b] andliated here.

1. The linked list of nodes is always connected.

2. Nodes are only inserted after the last node of the linksd li
3. Nodes are only deleted from the beginning of the linked lis
4. Head always points to the first node in the linked list.

5. Tail always points to a node in the linked list.

[YSO03] presents a formalisation of these properties in dggcl of the tool used for the veri-
fication.

The verification presented in this chapter proves that theSMiieue satisfies the be-
havioural properties appropriate to the queue datatypsp@sified by the abstract automa-
ton). The approach of [YS03] verifies important invariamgerties of the M&S queue, but
stops short of a full behavioural verification. No argumearpriesented, either in [MS96b] or
[YS03] as to why these properties should be considered muffior the correctness of the
gueue implementation. There are several ways in which th&SM&eue could satisfy these
properties, but the queue be incorrect, nevertheless. iFldsonsequence of the fact that
behavioural issues are simply not discussedlefjueuanay returnf al se, even when the
list is nonempty. Nodes might only be inserted at the end efidft, but it might be possible
for anenqueudo complete without inserting a node. The linked-list maycbanected but
circular.

Apart from these issues, it is unclear whether the authdrg®®3] have actually verified
these properties when the queue is accessed by an unboundbemof enqueuing and de-
gueuing processes. They report verifications showing treaptoperties are invariant when
the queue is accessed concurrently by one enqueuing prandssne dequeuing process;
and by an unbounded number of concurrent enqueuers; anlg figadn unbounded number
of concurrent dequeuers. However, no verification of theg@rbes under concurrent access
by both unbounded enqueuers and some fixed (nonzero) nuiihdbeqweuers is reported, or
vice-versa. Contrast this with our verification, which pesuthat the M&S queue is correct,
for an unbounded number of concurrent enqueuers and degueelative to a behavioural
specification of the queue’s safety properties, given bgdiisability and the canonical au-
tomaton.

Work presented in [ARRO7b] applies 3VMC to tackle the problem of proving linearis-
ability directly. They verify several implementations afrcurrent data structures, including
the Treiber stack and the M&S queue, using a technique thiéycomparison under ab-
straction Roughly speaking, they run the concurrent implementasgiomultaneously with
a sequential implementation that has a similar layout inhibap. At a putative linearisa-
tion point in the execution of the concurrent implementatiie corresponding operation is
executed atomically on the sequential implementation. gamiorphism from the heap of
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the concurrent implementation to that of the sequentialéempntation (with some bounded
number of nodes not included in the domain of the isomorphisrthen used to infer that

the operation is correctly linearised. The 3VMC techniguased to ensure that the verified
algorithms are correct for an unbounded number of nodes.

This work has the advantage over [YSO03] in that it attacksgtiestion of behavioural
correctness directly. Proving behavioural correctnesa obncurrent data structure over
an unbounded heap without human intervention is a signifiaehievement. However, the
verification only works for a bounded number of concurrergragions. All their examples
prove correctness of the implementation for between twofamdconcurrent operations. In
the case of the M&S queue, their technique succeeds in irggifyst two concurrent threads.
The goal of the authors is to leverage the 3VMC technique tifyiteg data structures under
an unbounded number of concurrent operations.

The authors of [ARROQ7b] describe interesting limitations in their ability tesign lin-
earisation points to operations, related to prophetialiisation, amoung other issues. Each
procedure implementing an operation is assigned a patistdtement in the code that acts
as the linearisation point for that operation. When thisestent is executed, that particular
operation on the sequential data structure is triggeree. lifkarisation point of each oper-
ation cannot be a statement executed in another operatiothef, the question of whether
a particular occurrence of a statement in an execution iseatisation point cannot be an-
swered by looking into the future of the execution. All thiifethe verifications presented
in this thesis feature linearisation points that eitheriarether operations or that depend on
future knowledge. Therefore, these are significant regirns.

Like us, the authors of [AC05] apply deductive techniqueth&verification of the M&S
queue. They formally derive a variant of the M&S queue, usimptation and methodology
calledEvent-B[Abr03, ACMO03], which is a version of the B Method [Abr96] thiacludes
support for reasoning about concurrency. Event-B iefmementbased approach, where
successive algorithms (calledfinementfsare constructed, beginning with a specification,
and ending with an implementation. Each new refinement iwshio implement the previous
one, using rules for the correctness-preserving transttiom of one refinement into another.
The authors of [AC05] use a proof assistant, calldlitk * Prove to discharge the proof
obligations that arise from the application of these rules.

Their work is similar to ours in several respects. The speatifin and proof is based on
a formal notation; they construct their proofs using a maats theorem prover; and they
prove a behavioural property of the algorithm: that its md#ly observable behaviour is
indistinguishable from that of the specification.

However, there are two important differences. First, nathan using an abstract specifi-
cation of a linearisable queue as we do, they use as theiifispion a model that is essen-
tially the M&S queue as if all operations were executed atafty. That is, the model has a
linked-list of nodesHead andTai | variables that range over these nodes, endqueue
and dequeue operations that modify these variables and nodes, and &xadthout in-
terleavings. It seems likely that they could have begun witmore abstract model built
directly from a simple sequential specification, and tha their use of an implementation
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dependent specification does not reflect a fundamentakliimit of the Event-B methodol-
ogy. However, showing that a linked representation of asecgi of values is correct is very
much a nontrivial task, and it would have been interestinge®how it could be achieved in
the Event-B framework.

In any case, a more important difference is the way in whiairtiwvork deals with
prophetic linearisation. Rather than determining whetherqueue is empty based solely
on readingHead, the dequeue operation checks whetHead andTai | point to the same
node, and if so, whether the node referencedHbésd has anul | next pointer. If both tests
succeed, then the queue is empty whar | - >next is read. Because no further tests are
required after the read, it can serve as a linearisatiort e this can be determined as such
just by looking at the current state. Thus, they avoid dgakith the prophetic linearisation
of both the original M&S queue, and our optimisation.

The algorithm they ultimately derive has a significant difece from the M&S queue in
that version numbers are associated abstractly with quedesnrather than being associated
with locations (locations do not contain pointers and warsiumbers). Because of this
difference, it is not clear how to implement their algoritkimectly on an actual machine. In
their model, the CAS operation checks that the version numbine nodéhas not changed
when attempting a modification of thé&ad or Tai | pointer. CAS can in reality, only check
the number associated with the location being modified, oiwtesnode referred to from that
location.

Recent work has attended to the question of applying reshgtio the executions of
nonblocking algorithms [WSO05, Gro08], which has used the 34§ueue as a case study.
This work is based on the idea that the order pairs of readearid CAS operations in an
execution can often be reversed, without changing the saker behaviour of the execution.

[WSO05] applies a static analysis technique to the problewedfying the M&S queue.
Their verification works in two phases. They prove manuatigtta version of the m&S
gueue algorithm is correct, under the assumption thatindstacks of code are always ex-
ecuted atomically. Then they use a static analysis teckrtigishow that, for any state that
can be reached by an execution of complete operations whese blocks are not executed
atomically (but are executed to completion), there is soreewion where these blocks are
executed atomically that reaches the same state. The spbasd is the primary contribu-
tion of the work, and it suggests that aspects of similarfieations relating to complicated
interleavings can be completed automatically. The firsspla the verification effort could
be completed by simulation.

Significant work has been done on applying the backward sitionl technique to the
verification of other algorithms and protocols. We defeadet! discussion of this work un-
til Chapter 4. However, verifications presented in [SA@3] and [Smi97] have the same
structure as the verification presented in this chaptere i they use an intermediate au-
tomaton to capture the "backwards” behaviour of the impletaton, which admits a simple
backwards simulation to the specification automaton. Fatvganulation is then used to
show that the concrete automaton implements the interrteedigomaton. The verification
presented in Chapter 4, which treats an algorithm knowsraskthat implements a double-
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ended queue object, departs from this pattern in that theAzad simulation is substantially
more complicated. This reflects the greater complicatiothefprophetic linearisation in-
volved. In the M&S queue, the actions that are linearisgbioints given certain future events
are linearisation points for the process that takes therackiloreover, the operations that are
linearised in this way do not modify the value of the queuecdntrast, the Snark algorithm
has the property that an action of a proceg=n be a linearisation point of an operation of
some other process+ p, andd's operation can modify the double-ended queue.

Relaxed Memory Models

Another attempt at automatic verification of the M&S queumdag other algorithms) is
presented in [BAMO06] and [BAMOQ7]. Their technique is intstiag, because it analyses the
behaviour of the M&S queue in the context refaxed memory modelsBefore describing
their contributions, we briefly introduce the concept ofikeld memory models.

Shared-memory architectures often do not implement amaaitisin where all memory
operations appear to take effect to all processes at ondbeRa many systems it is pos-
sible for processes to observe memory operations in diffeveders from one another. The
architecture provides some guarantee about what kind ehtipe orders might be observed
by a process running on the system. This guarantee is cadadémory modeland mem-
ory models in which it is possible for processes to obserngraifons in different orders are
calledrelaxed memory modelsr justrelaxed modelsimplementations of shared-memory
systems that provide relaxed models can benefit from impboojatimisations that greatly re-
duce memaory-operation latency in common cases. Howewwy htave the disadvantage that
they exhibit behaviours not possible in more intuitive medand thus present a significant
problem for verification.

The work of [BAMO06] and [BAMO7] is based on applying decisiprocedures for sat-
isfiability of boolean propositions (that is, formulae vath predicates or quantification).
[BAMO7] describes an application call&heckFencéhat implements their technique. Given
a sequential specification of a datatype and a set of opesatio that datatype, calledest
CheckFence generates a boolean formula describing thiélgolsshaviours of the datatype
when the given operations are executed. These operatieranbr partially ordered by the
test, and may execute in parallel. Also, given an algoriterp(essed in a subset of the C
language) and a formal description of a memory model, Chexé& generates a boolean
formula describing the possible executions of the algorjthnder the given memory model.
Finally, CheckFence determines whether any of the algoritexecutions fail to meet the
allowed behaviours. This amounts to checking whether tieffirmula can be false while
the second formula is true: a boolean satisfiability problem

The largest test reported in [BAMO7] involved 12 operatierscuted by two concurrent
processes and took several minutes (the test was carridied&S queue). One test on
the Snark algorithm involving eight concurrent operatitoak about an hour. The tests are
themselves quite small, involving 200 to 300 memory acceasenost. Graphs presented
in [BAMO7] show a near exponential increase in runtime andnomeg use as the number of
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memory accesses increases. Therefore, scaling the teehato larger test sizes may be
difficult. Their approach is directed towards bounded tggstrather than full verification,
and is thus orthogonal to our work.

3.7 Concluding Remarks

The techniques used in the construction of the forward sitiar in this chapter are applied
in Chapter 6 to the verification of a novel implementationhaf LL/SC primitive. We review
two important aspects of the forward simulation presentetthis chapter that will reappear
in that setting.

Dealing with the possibility of aliasing is critical to angnfication of pointers. We must
be able to show that updates to heap objects accessed fronoioiber variable do not destroy
properties of objects accessed from another variable.difditward simulation presented in
this chapter, aliasing is constrained by tligtinctnessok andinjective ok predicates, as well
as some of th@rocs ok predicates. Very similar techniques are used in the vetiibicaf
Chapter 6.

Our heap model is idealised in the sense that we allow paitteloe dereferenced, even
in cases where the pointer may bal | or unallocated. (However, recall that we prove
that no process ever deallocates such a pointer.) Thisesiaggroach is inadequate for the
verification in Chapter 6, because explicit deallocationsuo in that algorithm. The heap
model in that verification is very similar to the one used hétewever, thecval andupdate
functions cause the heap to enter an "error state” whenexppdi an invalid pointer. This
makes the proof more complicated. Chapter 6 describes hodeakwith this additional
complexity.
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Chapter 4

Another Application of Backward
Simulation

This chapter presents part of the verification of a nonbluglkilgorithm known as th8nark
algorithm [DFG*00]. The Snark algorithm is a lock-free implementation of thouble-
ended queue datatype (hencefalbué that uses the DCAS synchronisation primitive. A
deque is like a stack or queue in that it provides operatiorssequence of values. However,
a deque generalises both datatypes in that it provides tippesdahat add values to or remove
values fromeitherend of the sequence.

During an earlier verification attempt [Doh03] it was diseoed that the Snark algorithm
as originally presented in [DF@)Q], is incorrect. As we shall see, the corrected version,
first described in [DDG04], presents several challenges to verification. Prihcpaong
these challenges is the fact that the corrected versiorigxtgrophetic linearisation. This
prophetic linearisation is interesting partly because@aration with a future-dependent lin-
earisation point can have an effect that is visible to othmmrations. This is in contrast to
the M&S queue, in which the only operations with future degesti linearisation points do
not have a visible effect. As we shall see, a backward sinomaised in the verification
of the corrected algorithm must account for the fact thatsbguence of values in a state
of the implementation can be different from the sequenceatfes in a related state of the
specification.

Because this chapter is concerned with the verificationettrrected version of the al-
gorithm, we use the nannark algorithm(or sometimes, jus&nark) to refer to this corrected
version. We describe the backward simulation proof betwieespecification automaton and
an intermediate automaton that captures the Snark algtsitbbackwards” behaviour. The
proof is significantly more complicated than other backwsirdulation proofs that we are
aware of (such as [SAG®3, DGLMO04, CGO05]), which we believe is a consequence of
Snark’s particular kind of prophetic linearisation. Baeka simulations tend to be trickier
to verify than forward simulations, but because they hawnlyarely necessary in practice,
there seems to be a lack of substantial examples in thetlitera

93
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One motivation for our interest in backward simulation is tklatively large number of
nonblocking algorithms that would require the use of backMgamulation, if they were to
be verified using simulation based techniques. ([MS98a, D04} have already been dis-
cussed. Algorithms in [Blo88, LMS03b, Fra03, HHQ6] provide other examples.) Further-
more, there is a need to develop techniques for the veriitati nonblocking algorithms that
exhibit complicated patterns of prophetic linearisatidhe elimination queue of [MNSSO05]
provides a good example.

A complete verification of the Snark algorithm would involve definition of a forward
simulation from a concrete automaton modelling the actigdridhm to the intermediate
automaton, along with a proof that it is a forward simulatidie do not produce or prove
such a forward simulation in this thesis. The techniquesired to do so are essentially the
same as were used in the proof of the forward simulation ptedein Chapter 3, and the
proof itself is very long and tedious. The novel and inténgsaspects of the verification are
the construction of the intermediate automaton, and thkviza simulation.

Section 4.1 describes the Snark algorithm presented in [D®KG and explains why it
exhibits prophetic linearisation. This is intended to watie the backwards simulation that
we describe in this chapter in detail. Section 4.2 descrihesintermediate and abstract
automata used in the verification. Section 4.3 presentsabledmard simulation and Section
4.4 describes important aspects of the proof that it is indamulation relation.

4.1 DCAS and the Snark Algorithm

This section describes the Snark algorithm, as presentDG04]. The deque datatype
encapsulates a sequence of values. A deque supports foatiops: two operationgushLef t
andpushRi ght that each add a value onto one end of the sequencep@nbdef t and
popRi ght that each remove and return a value from one end of the seguehs the
names suggest, tishLef t operation adds a value to the end of the sequence from which
popLeft removes a value, and similarly fpushRi ght andpopRi ght .

Snark uses thdouble-compare-and-swgDCAS) synchronisation primitive, a general-
isation of CAS that operates on two independent locatiortsee DCAS primitive was first
mentioned in Chapter 1, but we describe it again here foremience. Figure 4.1 presents
pseudocode describing the semantics of DCAS. The DCAS tipetakes as arguments two
locations, two expected values, and two new values. Thedeatibns are independent, they
do not need to be adjacent. The new values are written intoatbédocations if and only if
bothlocations each contain the corresponding expected value.

DCAS has been used in the implementation of an experimamablocking operating
system kernel for the Motorola 68030 processor [MP91], Wiécone of the very few pro-
cessors that supports DCAS. Later work produced DCAS-bastahiques for the transfor-
mation of sequential data structures into functionallyiesjent nonblocking data structures
[Gre02], and lock-free reference counting [DMMmO1] (whielk discuss in Chapter 5).

Significant attention has been given to the development oblocking deque imple-
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bool ean DCAS(val =*addrl1, val =*addr?2,
val oldl, val ol d2,
val newl, val new2) {
atom cal ly {
if ((raddrl = oldl) &&
(*addr2 = ol d2)) {
x*addrl1l : = newl;
*addr2 : = new2;
return true;
} el se return fal se;

}
}

Figure 4.1: Semantics of the DCAS operation.

mentations that use DCAS [AD®0, DFG"00, MMmO02, DDG"04]. Because the deque
datatype provides push and pop operationdath ends of the sequence, it was thought
[ADFT00, DDG"04] that implementing the deque datatype would provide aldest case
for examining the utility of DCAS in the design of advancededstructures. The Snark algo-
rithm improved on previous proposals by requiring fewer C8Cdperations in the best case.
However, the outcome of these experiments with dequesthiegeith certain undesirable
properties of other algorithms that use DCAS, suggest tiatXCAS operation does not
substantially extend the range of datatypes that admitleisupd efficient implementations
[DDG04]. Partly for these reasons, interest in DCAS-based diatetsres has waned in re-
cent years. However, as we shall see, the Snark algorithmida®an interesting case study
in the verification of nonblocking algorithms.

4.1.1 The Algorithm

We turn now to a description of the Snark algorithm. The datians and initial state for the
Snark algorithm are presented in Figure 4.2. The Snark iigoiuses a doubly-linked list
in which each node is connected to its neighbours throughaisdR fields. TheV field of a
node contains a value. The Snark algorithm has two sharedgpaiariables, known dsats
called respectivelyef t Hat andRi ght Hat . These variables are used to access either end
of the doubly-linked list. Snark relies on a garbage collet recycle unreachable storage.
Figure 4.3 illustrates a deque containing two elements. the deque is not empty,
Lef t Hat (resp.Ri ght Hat ) points to the leftmost (resp. rightmost) node that corstain
unpopped value. Snark uses sentinel nodes on either end détiue to allow operations to
detect whether the deque is empty. A value in¥feeld of a sentinel node is not part of the
sequence of values contained in the deque. Observe thaiviiaed pointers of the sentinels
are self-pointers. We say that a naue is left-dead(resp. right-dead whennd- >L (resp.
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1. structure Node { initialise() {

2. Node *L; 1. Dunmmy : = new Node();
3. Node *R;
4
5

2. Dumy->L : = Dunmy;
. val V; 3. Dummy->R : = Dumy;
.} 4. LeftHat := Dumy;
5. RightHat := Dummy; }
Node *Dummy, =*LeftHat,
*Ri ght Hat ;

Figure 4.2: The declarations and initial state for the Sadgkrithm.
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Lef t Hat Ri ght Hat

Figure 4.3: A deque containing two elements.
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(@) (b)

Figure 4.4: Two empty deques. (a) Generic empty state. (bgi8pcase empty state using
the Dunmry node.
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nd- >R) is equal tond. The following key properties together characterise th&stof the
Snark algorithm that represent nonempty deques.

1. Lef t Hat is not left-dead, ie.,
LeftHat->L ! = Left Hat.

2. Ri ght Hat is not right-dead, ie.,
Ri ght Hat - >R ! = Ri ght Hat .

3. The node to the left dfef t Hat is right-dead, ie.,
Left Hat->L->R = Left Hat->L.

4. The node to the right d&® ght Hat is left-dead, ie.,
Ri ght Hat - >R->L = Ri ght Hat - >R

These properties imply that if eitheef t Hat is left-dead, oRi ght Hat is right-dead then
the deque is empty. In fact, the Snark algorithm guarantessiftone hat points to a node
with such a self-pointer, then so does the other. This imphat the empty deque can be
represented by a variety of different configurations, arsiy the property thdtef t Hat is
left-dead andRi ght Hat is right-dead. Figure 4.4 illustrates two such states: |@trates
the generic case; (b) illustrates the construction of antgm@que using a pointer constant
Dummry. Snark guarantees that in every stBtenmy- >L = Durmmy- >R = Dunmmy. The
representation illustrated in Figure 4.4(b) is used as #ialistate, and can be reached by
removing values from the dequBummy is used during push operations whenever a left- or
right-dead node is needed to maintain properties (3) and@ye.

We now describe theushRi ght operation; thepushLef t operation is symmetric.
We first describgpushRi ght under the assumption that the deque is not empty during the
operation. In that case, the operation adds a value ontoetingecby doing the following:

1. The operation allocates a new node, \tfeeld of the new node is set to the value being
added to the deque, and tRdield of the fresh node is set umy.

2. Ri ght Hat is set to point to the new node, and tRéeld of the previously rightmost
node (the previous value & ght Hat ) is set to point to the new node.

The R field of the new node is set tounmy so that when the new node is added onto the
deque, the right sentinel is left-de&d-he modifications to th¥ andR fields of the new node
can be accomplished using ordinary writes, because the oégvig not visible to any process
except the process that allocated the node. As we descrilsyshhe modification of the

Ri ght Hat andRfield of the rightmost node is accomplished atomically ugsifgCAS.

When the deque is empty,pushRi ght operation sets both the andR fields of the
new node tdumy. Then, a DCAS is used to skeef t Hat andRi ght Hat to point to the
new node. This implies that when the node is added into thblgdinked list, then both the
left- and right-sentinels are right- and left-dead, retipely.

1Because other modifications to the deque may occur duringtiséRi ght operation, it is not safe to
simply read theR field of the rightmost node, and then set Réeld of the new node to that value.
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Hl. rtype pushRi ght(val v) {

H2. nd : = new Node();

H3. nd- >R : = Dummy;

H4. nd->V : = v;

H5. while (true) {

H6. rh := Ri ght Hat ;

H7. rhR : = rh->R

H8. if (rhR=rh) {

Ho. nd->L : = Dummy;

H10. I h := LeftHat;

H11. i f (DCAS(&Ri ght Hat ,
&Left Hat ,
rh, |h,
nd, nd))

H12. return "ok";

H13. } else {

H14. nd->L := rh;

H15. i f (DCAS(&Ri ght Hat ,
&r h- >R,
rh, rhR
nd, nd))

H16. return "ok";

H17. }

H18. }

H19. }

Figure 4.5: Pseudocode for theishRi ght operation.

Figure 4.5 presents pseudocode for theshRi ght operation. (Pseudocode for the
symmetricpushLef t operation is presented in Figure 4.8 on page 102.) A progess
ecutingpushRi ght allocates the new node and stores it in the varialsle Thenp sets
nd- >Rto point toDumry (H3). Next,p setsnd- >V to the value that is being pushed (H4).
Now, p loads the current value & ght Hat into the local variable h (H6). Recall that
if rh points to a right-dead node, amil ght Hat = r h, then the deque is empty. The
conditional at line H8 tests whether the deque may be emptyjfahe test succeedp,sets
nd- >L to Dunmy (H9). After loading the currenitef t Hat (H10), p attempts to set both
the Lef t Hat andRi ght Hat to the new node using DCAS (H11). If this succeeds, the
valuev has been successfully added onto the deque. If the DCASIifaitsist be that some
other process has updated the deque sinoaded either of the left- and right-hats. In this
casep retries the loop beginning at H5.

If the test at line H8 fails, then either the deque is not engotiRi ght Hat has been
modified sincep loaded it intor h. Is either casep attempts to splice the node onto the right



4.1. DCAS AND THE SNARK ALGORITHM 99

end of the deque. It setsl- >L to the value that it loaded frolRi ght Hat atline H6 (H14),
and then attempts the DCAS at line H15. If this DCAS succeitdbanges th&i ght Hat

variable to point tand and setg h- >R (the rightwards field of the ol&i ght Hat ) to nd.
This adds the value onto the deque. If the DCAS failg,retries the loop.

We now describe thpopRi ght operation;popLeft is symmetric. We first describe
the pushRi ght operation under the assumption that the deque is not empiggdthe
operation. In that case, the operation removes a value bingntie rightmost node left-dead,
and settingRi ght Hat to point to the node immediately to the left of the rightmoste
(i.e., settingRi ght Hat to the previous value oRi ght Hat - >L). This is accomplished
atomically using a DCAS. We say that the node which has beele feft-dead by the DCAS
has beememovedrom the doubly-linked list.

Absent any concurrent modification, thepRi ght operation can now return the value
in the V field of the node that has just been removed. However, it isiplesfor two con-
current pop operations to both remove the same node fromahlehdlinked list. Because
of this, a pop operation mustcurethe node that it just removed, before the value can be
returned. We describe at the end of this section how two geEsecan remove the same
node, and how a process can secure the node.

Figure 4.6 presents pseudocode forflopRi ght operation. (Pseudocode fooplLef t
is presented in Figure 4.9 on page 103.) A progesgecutingpopRi ght begins by load-
ing Ri ght Hat into the local variable h (P3), and h- >L into the local variable hl (P4).
Then, it tries to determine if the deque is currently emptystht tests whether h- >Ris
right-dead (at line P5). If this test succeeds, it checkstidrdi ght Hat still has the same
value as it did whep executed line P3 (P6). The Snark algorithm has the propeatyance
a node contains a self-pointer in ltsor R fields, it always has a self-pointer in that field (at
least until the node is recycled by the garbage collectonus] becauseh was right-dead
whenp executed line PSRi ght Hat is right-dead ifRi ght Hat = r h whenp executes
line P6. This implies that if the test at line P6 succeeds) the deque is empty, goreturns
an indication that it found the deque empty. If the test a B fails,p retries the loop, by
executing line P3 again.

If the test at line P5 failsp attempts to remove a node from the right side of the doubly-
linked list. Using a DCAS it attempts to chanBeght Hat to point toRi ght Hat - >L and
maker h (the oldRi ght Hat ) left-dead (P8).

It is possible for two processes to successfully executdDBAS at line P8 in such a
way that the same node is removed from the doubly-linkedviste? Because of this, each
process is required tgecurethe node that it removes from the doubly-linked list, preiren
another process from returning the value associated wathrtbde. We now describe how
this is achieved. The Snark algorithm has a special vateur ed that is never pushed onto
the deque and can be used to mark when a node has been secarngbbgss. After process
p removes a node from the ligs,reads the node¥ value (P9) and, using CAS, attempts to
atomically replace the value in the node with ecur ed marker (P11), unless the value

2|.e, the same pointer value is used as the expected value béthvariable in each DCAS operation.
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P1. val popRight() {
P2. while (true) {
P3. rh : = Ri ght Hat ;

P4. rhl := rh->L;

P5. if (rh->R =rh) {

P6. if (RightHat = rh)

return "enpty";

P7. } else {

P8. i f (DCAS (&Ri ght Hat,
&r h->L,
rh, rhl,
rhl, rh)) {

P9. result := rh->V;

P10. if (result !'= secured) {

P11. if (CAS(& h->V,
result,
secured)) {

P12. rh->L : = Dunmy;

P13. return result;

P14. } else return "enpty";

P15. } el se return "enpty";

P16. }

P17. }

P18. }

Figure 4.6: Pseudocode for thepRi ght operation.

is already secured (tested at line P10). If the CAS is suidegsreturns the value it read at
line P9 (P13). If theV field already containsecur ed or if the CAS at line P12 fails, then

some other process has already secured the node, ratarnsenpt y. Becauseecur ed

is a special value that is never pushed, only one processucaeed in its CAS on a given

node (until the node is reclaimed), so the successful psozas safely return the value in the
node.

It may seem strange that a process retempt y when it finds some other process has
secured the value of the node it removed from the list. Howétvean be shown that if two
processes remove the same node, then the deque is emptyhelsatond successful DCAS
is executed and that this DCAS occurs during both operatidhsis, failing processes can
returnenpt y without having to retry their entire operation, therebyidirgy the contention
that would be caused by a retry.

We now describe how it is possible for two processes to rertttvsame node from the
doubly-linked list. This can occur when tip@pRi ght operation of one process overlaps
with apopLef t operation of another. Figure 4.7 illustrates a sequenceapiie states where
two processes remove the node markdrbm the doubly-linked list. The following example
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Figure 4.7: A sequence of states in which the node contaihisgemoved from the doubly-
linked list twice.

illustrates how this might occur.

e Procesg invokespopRi ght when the deque contains one element (as illustrated by
(a) of Figure 4.7). Procegsloadsr h andr hl and determines that the deque is not
empty (lines P3-P5 of Figure 4.6). Thepris delayed.

e Likewise, another process+# p invokespopLeft and executes lines P3-P5, finding
the deque nonempty.

e Proces® continues with its operation, using a DCAS to remove the rpmileted to by
its r h variable from the deque (line P8). The new deque state tifited in Figure
4.7(b).

e Likewise, process| executes the DCAS at line P8 of tpepLef t routine. Because
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Hl. rtype pushLeft(val v) {

H2. nd : = new Node();

H3. nd->L := Dummy;

H4. nd->V : = v;

H5. while (true) {

H6. | h := LeftHat;

H7. | hL : = | h->L;

H8. if (IhL =1h) {

Ho. nd- >R : = Dumy;

H10. rh := Ri ght Hat;

H11. i f (DCAS(&Left Hat,
&Ri ght Hat ,
I h, rh,
nd, nd))

H12. return "ok";

H13. } else {

H14. nd->R := 1| h;

H15. i f (DCAS(&Left Hat,
&l h->L,
I h, IhL,
nd, nd))

H16. return "ok";

H17. }

H18. }

H19. }

Figure 4.8: Pseudocode for tpeshLef t operation.

Lef t Hat andl h- >R have not changed sinagloaded these values, the DCAS is
succesful. The new deque state is illustrated in Figureeh.7(

Now, one ofp or g is guaranteed to read the valadrom the node and successfully execute
a CAS to change the nodeifield to secur ed. The other will returrenpt y. Note that
the deque was empty wheys DCAS was executed. The Snark algorithm has the property
that whenever a node is removed twice, the deque was nonengtg point when the first
DCAS was executed, and empty at the point when the second @& ®xecuted.

This "double remove” can occur under a broad range of cantiti For example, it is
not necessary for there to be only one element in the deque &itier of the pop operations
read the hat variable. All that is necessary is thatopLeft andpopRi ght operation
respectively read the same pointer value frioef t Hat andRi ght Hat . This can happen
when several push and pop operations occur between theagteadsh operation.

The Snark algorithm provides an instance of prophetic fisation because there is no
way to determine whether a pop operation will return a valuerpt y until the execution
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P1. val popLeft() {
P2. while (true) {

P3. | h := LeftHat;
P4. [hr :=1h->R
P5. if (Ih->L =1h) {
P6. if (LeftHat = |h)
return "enpty";
P7. } else {
P8. i f (DCAS (&Left Hat,
&l h- >R,
[ h, Ihr,
Lhr, 1h)) {
P9. result :=1h->V,
P10. if (result !'= secured) {
P11. if (CAS(& h->V,
resul t,
secured)) {
P12. | h->L : = Dunmy;
P13. return result;
P14. } el se return "enpty";
P15. } else return "enpty";
P16. }
P17. }
P18.}

Figure 4.9: Pseudocode for thepLef t operation.

of the test at line P10 or the CAS at line P11. By the time thésements are executed,
any number of deque operations may have been completedtsacerresponding node was
removed from the doubly-linked list. Therefore, we mustas® a linearisation point for
each pop operation before its CAS. We defer a detailed dismusf the linearisation points
of the Snark algorithm until Section 4.2.4, when we desctiifgelinearisation points for the
intermediate automaton. The Snark algorithm'’s lineansagpoints can be inferred from the
intermediate automaton’s linearisation points, and a stegespondence that we describe in
Section 4.2.5.

4.2 Modelling the Deque

This section describes the automata, an abstract, spéoificautomatonAbsAut and the
intermediate automaton to be verifidd{Aut The specification automaton is the canonical
automaton for the deque datatype (the general constructiarcanonical automaton is de-
scribed in Section 2.6; Section 4.2.1 contains the defmitibthe deque datatype). After
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describing the abstract automaton in Section 4.2.2, weritbesthe intermediate automaton
and discuss how it relates to the Snark algorithm in Sectiar84

4.2.1 The Deque Datatype

As mentioned in the introduction to this chapter, a dequékes & stack or queue in that
it contains a sequence of values from some set (called Vigrbut differs in that a deque
provides insert (called heqgush and remove (called heigop) operations on both ends of
the sequence. We capture the sequential semantics of a deigethe following speci-
fication. A dequedeq is a triple (deq.seq, deq.left,deq.right) wheredeg.seq is a func-
tion from integers tov, anddeq.left anddeq.right are integers, satisfying the constraint
thatdeq.left < deq.right. The sequence of values contained in the dedugis the se-
quence indeq.seq from deq.le ft to deq.right, not inclusive. A dequéeq is empty, written
empty(deq), whendeq.le ft = deq.right—1 (equivalently, whereqg.le ft > deq.right—1).

Hitherto, we have stipulated that the deques provide fo@rains: one push opera-
tion for each side, and one pop operation for each side. Ehisei convention followed in
[DFGT00, DDG"04]. However, we define the deque datatype with only two djmers: a
push operation and aop operation. Each operation has a parameter which indichtes t
side at which the operation adds or removes a value. Thisiowé variation removes some
redundancy from the model and the verification.

The following push function models the deque push operations. It takes as a&mfigm
a deque valudeq, a sides € {left,right} = SIDFE and a valuer € V to be pushed. It
returns the deque that is the result of pushiramnto the appropriate side.

(deq.seq @ {deq.left — V},
deq.left — 1,deq.right) if s =left
(deq.seq @ {deq.right — v},
deq.left,deq.right + 1) otherwise

push(deq, s,V) =

The following pop function, which returns a new deque value as well essponse value
inV, =VU{L} (wherel is a special value not i), models pop operations. As with the
gueue model in Chapter 3,lareturn value indicates that the deque is empty.

(deg, L) if empty(deq)
((deg.seq,deq.left + 1, deq.right),
pop(deq, s) = deq.seq(deq.left + 1)) if s =left

((deg.seq,deq.left,deq.right — 1),
deq.seq(deq.right — 1)) otherwise
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Letvy be any sequence, : Z — V. The deque datatyg®, dy, |, R, u) is defined as follows:

D=(Z—->V)xZxZ
dy = (vo,0,1)
| = {push_inv(s,v) | veV, s € SIDE} U {pop_inv(s) | s € SIDE}
R = {push_resp} U {pop_resp(r) | re V }
(push(deq, s,V), push_resp) if inv =
push_inv(s, V)
u(deq,inv) = for somes, v

(m1 (pop(deq, s)),
pop_resp(ma(pop(deq, s)))) otherwise

4.2.2 The Abstract Automaton

AbsAutis the canonical automaton for the deque datatype as defirelction 4.2.1AbsAut

has a shared variabliq, which holds the abstract deque value. As with the abstraetig
automaton of Section 3.2.1, thle steps ofAbsAutapply the theoush andpop functions de-
fined in Section 4.2.1 directly, rather than using the uptlatetionu. AbsAuthas a program-
counter variablerc, for each procesp, that records which operation (if anp)is currently

executing. The program counter variables range over th@fimig set.

{pushinv(s,v) | se€ SIDE\v e V}U{poprespv) | ve V}U
{pop.inv(s) | se€ SIDE} U {idle, pushresp}

The set of initial states oAbsAutis presented in Figure 4.10; and the transition relation is
presented in Figure 4.11.

{ab | emptyab.deq) AV pepc, = idle}

Figure 4.10: The initial states éfbsAut

4.2.3 The Intermediate Automaton

In this section, we describe the intermediate automéithut In Section 4.2.5, we explain
how IntAut relates to the Snark algorithrmtAutuses a sek E'Y, whose members are called
keys in its representation of a deque. Rather than having a statable that is a deque
containing valuesintAut has a state variabledeq that is a deque containing keys. That is,
kdeq has the same structure and operations as the deque datefypsidn Section 4.2.1 on
page 104, but the values that it contains range &Ver’, rather tharV. IntAut maintains an



106 CHAPTER 4. ANOTHER BACKWARD SIMULATION

push_inv,(s,v) : pop—inv,(s) :
prepc, = idle prepc, = idle
eff pg, := pushinv(s, v) eff pc, := popinv(s)
push_resp,, : pop_resp,(r) :
prepc, = pushresp prepc, = pop.resp(r)
eff pc, 1= idle eff pc, 1= idle
do_push,,(v) : do_pop,,
pre pc, = pushinv(s, v) pre pc, = pop-inv(s)
eff deq := push(deq,s,v), eff deq:= m (pop(deg,s)),
pep = push_resp pcp = pop_resp(ma(pop(deq, S)))

Figure 4.11: The transition relation éfbsAuf forp € PROC,v € V,r € V|, ands €
SIDE.

do_push,,(k) :
push_inv,(s,v) : pre pc, = pushinv(s,v) A
pre pc, = idle K¢ used
eff pc, := pushinv(s,v)  ©ff pey = push_resp,
used:= usedu {k},
push_resp,, : keyedval :—
prepc, = pushresp keyedval @ {k > V1,
eff pe, = idle kdeq =

push(kdeq, s, K)

Figure 4.12: Theoushactions of the automatdntAut

association between keys and values using another staaébledrcyed val : KEY — V,
so thatkeyed_val mapped acroskdeq.seq is a sequence of valuesh

Section 4.2.5 describes the relationship betwkAut and the Snark algorithm more
fully, but here we remark that the sEtF'Y models the set of pointers of the Snark algorithm,
kdeq models the doubly-linked list, anebyed_val models theV field of Snark’s nodes. In
IntAut, a pop operation that returns a value (i.e., that does nottliedieque empty), first
ensures that some key has been removed #dey since the invocation of the pop operation
(either by removing the key itself, or by observing the real@f a key by another process).
These steps model the operation reading a hat variable isrlaek algorithm, and then
successfully executing a DCAS on that hatlitAut, the pop operation latesecureghe key
that has been removed froteg, which givesp alone the right to return the value associated
with the key. This models a successful execution of the CASatjpn in the Snark algorithm.
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pop—inv,(s) :

prepc, = idle

eff pc, := pop.inv(s)
keyp:= L

pop-nonempty, :

pre pc, = pop.inv(s) A
—empty(kdeq) N
key, = ma(pop(kdeq, S))

eff pc, := decidings),
val ok := valLokU {key},
popped:= poppedJ {key},
kdeq :=

m1(pop(kdeq, 9))

contend,, :

pre pc, = pop.inv(s) A
empty(kdeq) N
poppedkey,) A
key, # L

eff pc, := decidingds)

lose_val,, :
pre pc, = decidings) A
key, & val_ok
eff pc, ==
pop.respg L)

pop-resp, () :
pre pc, = pop.resy(r)
eff pc, = idle

observe,, :
prepc, = pop.inv(s) A
—empty(kdeq)
eff key, :=
5 (pop(kdeq. s))

pop_empty,, :
prepc, = pop.inv(s) A
empty(kdeq)
eff pc, =
pop.resp L)

secure_valy, :

pre pc, = decidings) A
key, € val_ok

eff pc, := pop.respkeyedval(key)),
val_ok = val_ok \ {key}

Figure 4.13: Theopactions of the automatdntAut

107
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We now describe the transitions of the intermediate automé#tat relate to its im-
plementation of thgpushoperation. That is, transitions labelled by the externdioas
push_invy(s, V), push_resp, and the internal actiodo_pushy(K) for each procesp, side
s, valuev, and keyk. Figure 4.12 presents the transition relation for traosgilabelled
by these actions. Note that the preconditions and effescaged with theyush_inv and
pop_inv actions are precisely the same as wWiisAut The do_push transitions are more
complicated. Note that théo_push transitions have an extra arguméntc KEY. The
precondition of thelo_push transition asserts that this key must not have been alresely u
as an argument todv_push action. This is expressed using a state variatlel C K EY .
When a key is used as an argument tdoapush action, it is added ta.sed, and no key
is ever removed from this set. The new key is associated wéhvalue being pushed, via
the keyed_val function, and the key is added to the appropriate sidédef). Finally, a
do_pushy(K) transition sets the program counterpao push_resp, so that the next actiop
executes will bepush_respy.

We now describe the transitions of the intermediate automé#hat relate to its im-
plementation of thepop operation. As withAbsAut actions of the fornpop_inv,(s) and
pop-respy(r) represent respectively the invocations and responsespodjperations IntAut
also has the following internal actions, for each progess

e observep, during which the procegsobserves key at one end dfdeg. Later,p may
remove this key fronkdeq. There may be severabserve, actions in each operation.

e pop_nonemptyy,, during whichp removes fronkdeq the key that it last observed. This
action may only occur whehdeq is nonempty.

e pop_emptyp, after whichp is guaranteed to return. from the pop operation. This
action may only occur whehdeq is empty.

e Three further actionsontendy, secure_valp andlose_val,. These actions are ex-
plained below, but they are used to regulate the steps byhvehprocess observes that
a key has been removed fraleq, and then succeeds or fails in securing the right to
return that key.

Figure 4.13 presents the transition relation for theseasti

Figure 4.14 presents a state diagram that illustrates thetste of an execution of the
pop operation inntAut by a procesp. The identifiers in the boxes are program-counter
values, and the labels on the arrows are actions. The aiomsah angle brackets indicate
preconditions. Mare precisely, an arrow from a box contajrprogram-counter valug to
a box containing program-counter valde labelled with actiora, and annotatior means
thatIntAut has a transition, labelled kB, with a precondition implying that in the prestate,
pc, = candSboth hold, and an effect implying that in the poststatg = c’. For the sake
of clarity, the other effects of the transitions are not dega.

The transitions ofntAut labelled by external actions are similar to thoseAbsAut A
processp must be idle to take @op_inv, transition, and the program counter pfs set
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D

pop_invy(S)

observey
< —empty(kdeq) >

\J

L pop_inv(S)

J

contend, pop-_nonempty,

< empty(kdeq) > < —empty(kdeq) >

< popped(key,) > < key, =

< key, # null_key > mo(pop(kdeq, s)) >

< keyp, # null_key >

-
deciding —

secure_valp lose_valp,
< key, € val_ok > < key, & val_ok >

pop_empty,
< empty(kdeq) >

r{ pop_resp(r J<—

Figure 4.14: State diagram for tep operation ofintAut
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to pop_inv(s), indicating thatp has begun a pop operation on s&leA processp takes a
pop_respp(r) transition when it has found some response valeeV, to return from the
pop operation, indicated by a program counter valugopfresp(r). Afterwards,p becomes
idle again.

While pe, = pop-inv(s) (which holds just after the invocation of a pop operatignjan
take one or morebservep actions, which record in another state variahlzgp : KEY | the
key at the end okdeq from whichp is popping® kdeg must be nonempty duringbservep
actions, so that this key is guaranteed to existdéq is empty,p may take gop_empty,,
action, which setgc, to pop_resp(L). Afterwards, during @op_resp, action,p returns an
indication that it found the deque empty.

Once a procesp has observed a kep may take one of two further internal actions:
pop-nonempty, OF contendp. During apop_nonempty, action the key thap most recently
observed is removed froeq, andp’s program counter is set Weciding(s), which indi-
cates thap is attempting to securkey, while executing a pop operation on sigelntAut
has a state variableul_ok C K EY that records which keys have been popped but not yet
secured by any process (the “value” of the key is “ok” becausan still be secured and re-
turned by some process). The key tphatbserved is added to the setl_ok, indicating that
the key can be securethtAut has a further state variabl@pped C K EY', which records
the set of keys that have been removed from the deque duringannonempty action.
Accordingly, the key thap observed is added to this set.

By taking thecontend, action,p becomes eligible to secure the key that it last observed,
assuming that key has not yet been secured. The precondftiemiend, implies thatkey,,
has already been popped frameq and thatkdeq is empty, and its effect simply sefss
program counter tdeciding(s).

Once a procesgs program counter has becondeciding (via eitherpop_nonempty,, or
contendy), p takes either &ecure_valp action, or alose_valp action. The precondition of
the secure_valp action implies thakey, € val_ok, so no other process has yet secured the
value. The program counter pfis set topop_resp(keyed_val(keyp)), indicating thaip will
return the value associated withy,. key,, is removed from the setal_ok, indicating that
no other process can secure this key.

The procesp takes thedose_valp action if some other process secures the key last ob-
served byp. Accordingly, the precondition dbse_valp transitions implies thatey,, is not
in val_ok. The program counter qf is set topop_resp(L), so thatp’s next action will be a
response indicating thatfound the deque empty.

A stateis is an initial state ofntAutif and only if the following conditions hold.

e empty(is.kdeq),
e is.used = is.popped = &, so that no key issed or popped,

e is.wal_ok = @ so that no key can be secured,

3Note that in Figure 4.13, the invocation of thep function onkdeq does not update the value bfleg.
There is no assignment to tikdeq variable.
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e Forall processes, is.pc, = idle andis.key, = L, so that no operations are underway,
and no key has been observed.

4.2.4 Linearisation Points of the Intermediate Automaton

We now describe linearisation points for operations of thtermediate automaton. The
linearisation point for a push operation is straightfortveathedo_push, (k) step of each push
operation is the linearisation point for the operation. sTthoice is forced on us, because
after ado_push,(k) transition, the value pushed may be immediately popped etudned
by another process. Therefore, the value must be visibléh&r processes.

Pop operations that return after taking apop_empty, action are linearised at the
pop-empty, action. This is becauseleq is empty at this point, and thus there are no values
that can be returned. Finding linearisation points for ogfep operations is much more dif-
ficult. Consider some procepghat executes a pop operation in which the following actions
occur (assuming # 1):

pop-invy(S), observey, contendp, secure_valp, pop_respy(V)

Because took acontendy action, we can show that there is some other progess such
thatq executed aop_nonempty, action between thebservep and contendp actions, and
such thatkey, = keyq. When thepop_nonempty, action took placekdeq was nonempty.

It may seem tempting to choose thisp_nonempty action as the linearisation point pks
operation. However, there is no guarantee tfiatexecuting a pop operation on the same side
asp's operation, and thus no guarantee that the valudnich p ultimately returns appears
on the appropriate side of the deque, at that point. (Theewalnay have been added to the
deque immediately prior tg's pop_nonempty action, and at a point when the deque was
nonempty.)

The only action at which the valuefinally returned byp is guaranteed to be at the ap-
propriate side of the dequedbserve,. For this reason, we choogs most recenbbservey
action as the linearisation point p& pop operation. Note that théservep action does not
modify kdeq. Therefore, if we are to make this counter-intuitive schemoek, we need to
account for the fact that the sequence of values in the aibstegue value represented at any
state ofIntAut is not the sequence of values obtained by mapgiaged_val acrosskdeq.
The backward simulation presented in Section 4.3 definesetagonship between the two
sequences precisely.

To be consistent with the linearisation points of operatitimat take acontend action,
we linearise each operation that takesap_nonempty action, and later returns a value
v #£ |, atthe most recenthserve action of that operation. We now need to find linearisation
points for pop operations that return, without taking apop_empty action. These are the
operations that takelase_val action during their execution. We want to find a point between
the invocation and response of each such operation at vidaiehis empty. For each process
p, the precondition ofose_valp asserts thatwval_ok(key,). Thus, there must be some other
processq # p that executed theecure_valq action at some point prior to these_val,
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action, withkey, = keyq. Therefore, eithep or q executed aontend action during its
operation. The precondition of thientend action asserts thdtdeq is empty. Therefore,

we linearise each operation by a procpshat takes dose_valp action during its execution,

at the priorcontendy that took place wheitey, = keyy. Note that in general, several
processes may be linearised at thisitend action, because several processes may take a
lose_val action with the same key.

There are three things to note about the scheme of lineangadints outlined above.

e The question of whether an action is the linearisation pafiain operation can only be
answered by considering events occurring later in the dixatu

e An action of one process can be the linearisation point oftear@rocess.

e The linearisation point of pop operations that do not returias no effect on the
shared data structure @ftAut, but does have an effect on the abstract deque being
represented.

These three properties make the verification challenging.

4.2.5 Snark Implementsl ntAut

We briefly describe the relationship between the Snark glgorandintAut A forward sim-
ulation exists between Snark ahtAut, which we do not discuss in detail in this thesis.
However, we give a brief overview of the simulation, payiragticular attention to the step
correspondence. The actual verification involves an autmmahose transitions model the
steps of the Snark algorithm in the same way as the concré&tenaton of Chapter 3 mod-
els the M&S queue. However, during this discussion, we suédke steps of the Snark
algorithm as though they were actions of an automaton thaefadhe Snark algorithm.

The keys oflntAut model pointers in the Snark algorithm, ahdeq of IntAut which
contains a sequence of keydeq.seq, models the doubly-linked list of Snark (not includ-
ing the sentinels). We identify the set of pointers of Snaithuhe set of keys ofntAut
The forward simulation asserts that, for each pointgrappearing in the doubly-linked list,
nd- >V is the valuekeyed_val(nd) in IntAut, and that the order in which pointers occur in
the doubly-linked list of Snark is the same as the order irctvipiointers occur ifkdeq.seq.
These properties imply that the sequence of values couttéinhe doubly-linked list is the
same as the sequence of values obtained by mappingi_val acrosskdeq.seq. In partic-
ular, if the doubly-linked list is empty in some state, thefeq is guaranteed to be empty in
related states dhtAut

The step correspondence used in the forward simulatiorciates actions representing
the successful execution of a DCAS in a push operation wihithpush, (k) action of the
executing process, whekeis the new node added onto the doubly-linked list. Note that i
transitions labelled byio_push,(k), k has not yet been added kdeg, and the value being
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pushed is associated with These two properties of the transition model the Snark-algo
rithm’s allocation and initialisation of the new node. Ather internal actions that represent
steps of the Snark algorithm that are taken during push tipesaare stutter steps.

When the doubly-linked list is nonempty, the step correglpoice associates actions that
represent reading a hat variable during a pop operation ththbservey, action of the ex-
ecuting process. The relationship between the doublhedinlist andkdeg ensures that the
pointer read from the hat variable is the same pointer obganintAut If the doubly-linked
list is empty, the step correspondence associates the fehd bat with thepop_empty,
action.

The step correspondence associates the successful eraaifie DCAS at line P8 with
the pop_nonempty, action if the doubly-linked list is nonempty. Such a DCAS s a
node from the doubly-linked list, and the simulation relatguarantees that the pointer to
that node is removed frorhdeq. If the doubly-linked list is empty, the step correspondenc
associates a successful DCAS with thetend,, action. It is possible to show that, if the
DCAS at line P8 can be executed successfully and the dourigd list is empty then the
value of the hat that is one of the targets of the DCABdigped in related states dhtAut,
and so the precondition @bntendp, is satisfied.

The simulation relation asserts that each pointer whase field is notsecur ed in
a state of the Snark algorithm, is netcured in any related state dhtAut The step cor-
respondence associates the successful execution of theaClik@ P11 withsecure_valp.
Steps of the Snark algorithm during which a process dissoet a node has already been
secured (either the failure of the test at line P10, or theiceessful execution of the CAS at
line P11) are associated withse_valp.

As usual, the step correspondence associates each imvocatiesponse of the Snark
algorithm with the same invocation or responseéntAut

4.3 The Backward Simulation

We now describe the backward simulation used in our prodfltitAut implementsAbsAut
Figure 4.15 presents the definition of backward simulattaken from Definition 2.18 on
page 38, applied to the automataAut andAbsAut As discussed in Chapter2, the existence
of such a relation allows us to inductively construct, foy &nite) execution ofintAut, an
execution ofAbsAutwith the same trace, and thus guaranteesltiiAutimplementsAbsAut
The simulation relatiok that we use in this verification is presented in Figure 4.16. W
describe the motivation behind the relati@nand discuss the highlights of the proof.

SegOk and WinnerUnique SeqO¥k describes the relationship between the abstract deque
andIntAuts key sequence. We first consider a simple assertion tHatttaadequately de-
scribe this relationship. The variablédeq and keyed_val of the intermediate automaton
together yield a sequence of values, thus:

o(is) = Aieis.keyed_val(is.kdeq.seqi))
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(Visy ® (ase R(is,as))) (4.2)
(Vis,is',as,a e

R(ig’,as) Ais S is' =

(Jas [ e
R(is,as) A as=2 ad A
trace(3) = trace((a))) (4.2)
(Vis : start(IntAut), as e R(is, as) =
as € start(AbsAuj) (4.3)

Figure 4.15: A relationR C stategIntAut) x stategIntAut) is a backward simulation
from IntAut to AbsAutif these conditions hold, wheris,is’ : stategintAut); asas :
stategAbsAul; a : actqIntAut); 5 : act§ AbsAuj*

R(is,as) =
CorrespondenceOk(as is) A
WinnerUnique(as is) A
(I3me SeqOk(as, is, m))

Figure 4.16: The simulation relatiaR.

It might seem tempting to build a simulation relation aroansimple relationship between
this sequence and thieq variable of the abstract automaton, i.e.,

asdeq.seq = o(is) Nis.left = askdeq.left N 44

is.right = askdeq.right (44)
However, the linearisation points of the intermediate matton preclude this. We need a
weaker property that allows the key sequence in the intelateedutomaton to contain values
that have been removed from the abstract deque, so that veboaselo_pop,, for transitions
labelled byobservey, (at least, wherp is executing an operation that returns a value). The
predicateSeqOFk, presented in Figure 4.17, defines such a propéltyOFk describes states
of AbsAutandIntAut and amatchfunctionm : Z — 7Z, that associates indexes between the
limits of the abstract deque with indexes between the liwiithe intermediate automaton
(Clause 4.5). For any between the limitaskdeq.left and askdeq.right, this function
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SeqOk(as is,m) =
(Vieasdeq.left <i < asdeq.right =
isleft < m(i) <is.right A
o(is)(m(i)) = asdeq.seq(i) A
—WinnerExists(as,is,is.kdeqg.sedm(i))))

A
(Vi,jeasdeq.left <1 << asdeq.right =
mii) < mij)
A

(Vieisleft <i < is.right =
InMatchRange(as m,i) V
WinnerExists(as is,is.keys(i)))

WinnerUnique(as is) =
Vp,qeaspc, = pop-resp(vi) A
aspcq = pop_resp(Vz) A is.key, = is.keyq A
vi#EFLAw#L=p=q

Figure 4.17: ThéSeqOk andWinnerUnique predicates.
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(4.5)
(4.6)
(4.7)

(4.8)

(4.9)
(4.10)

(4.11)
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deq.left deq.right
deq | |a|bjc| |
match
kdeq| |a| u| b| c| v| |

kdeq.left kdeq.righ

Figure 4.18: Thenatch function.

WinnerExists(as is, k) =
dp,ve aspep = pop_resp(V) A
vV# L Alskey, =K

InMatchRange(as m,i) =
Jjeasdeq.left <] < asdeq.right A
m(j) =i
OtherDecider Exists(is, p) =
dqeq# pAis.key, = is.keyq A
is.pcq = deciding(s)

Figure 4.19: Auxilliary predicates.

satisfies:
o(is)(m(i)) = asdeq.seq(i)

Thusm takes each abstract index to an intermediate index thas@ceged with the same
value. This is illustrated in Figure 4.18.
Not all indexes ofo betweenis.left andis.right are in the range of the functiom.
Each index between these limits not in the rangena$ associated bytdeq.seqwith a key
k that has already been observed by some prqeessing anobservep transition that is the
linearisation point fop’s operation. When this has occurred, we say thaaswonthe key
k. For the indexes that are in the rangamfno process has won the associated key (Clause
4.7). For a ke, Winner Exists formalises the idea that some procedsas observed at
the linearisation point op’s pop operation (Figure 4.19). This formalisation is avhik by
asserting thaisa pc, = k andaspc, = pop.respv), wherev is the value associate with
Clause 4.8 asserts that preserves the order of its domain and is injective. The final
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conjunct ofSeqOk constrains the properties of indexes in the intermediatenaaton. Each
index betweerns.le ft andis.right is either in the range ah (Figure 4.19), or is associated
with a key that has already been won.

WinnerUnique (Figure 4.17) asserts that at most one process has won egalibieh
enables us to prove thateqOk is preserved during intermediate transitions for which a
do_pop abstract transition is chosen when the abstract deque emuty.

One consequence of th&eqOk predicate is that wheteft = right — 1, the abstract
deque is empty. Thisis because, in ordemfdo be injective, the séis.kdeq.left..is.kdeq.right]
must have at least as many elements as thiasétleq.left..askdeq.right]. This is important
in the coming discussion.

CorrespondenceOk. CorrespondenceOk asserts that, in related abstract and intermedi-
ate states, every process satisfies one of six (mutuallysixe) predicates. Each predicate
constrains the values of local (that sindexed) variables in the given intermediate and ab-
stract states. The specific predicate that a given procsBesachanges during the execution
of each operation. Figure 4.20 presents ¢therespondenceOFk predicate, and its simpler
subpredicates. The remaining subpredicates are predatgedh the discussion.

To explain CorrespondenceOk, we describe the actions that each process may take
during the execution of an operation, and show which digjeach process satisfies at each
point in its operation. During this discussion, we define step correspondence used in
the verification. This step correspondence is essentialystheme of linearisation points
described in Section 4.2.4. Because we are dealing with lanzaids simulation, we will
traversebackwardshrough the actions of each operation.

Fix a transitionis = is’, where actiora is indexed by procesp. In addition, fix an
abstract stat@as such thatR(as,is’). We discuss each of the possible valuesaf turn.
During this discussion, we repeatedly claim that given thetract and intermediate program-
counter values of a process, only one of the disjunctsw@frespondenceOk can be satisfied.

It is easy to convince yourself of claims like this by inspegtthe various definitions.

We begin with the push operations. At different points in &ecution of a push op-
eration, a procesg satisfies/diecOk and PushOk. These predicates are presented in Fig-
ure 4.20. IdleOk asserts that a procepds not executing any operation in the abstract or
intermediate state, anbBlushOk asserts thap is executing a push operation in both the ab-
stract and intermediate states and that “at the same stage” in its operation. Assume that
a = push_resp,. Thenis.pc, = push_Resp andis/, pcp = idle. Because of thisp must
satisfy IdleOk(as, is’, p), which is the only disjunct o€ orrespondenceOFk that allowsp
to have thedle program counter. Ledsbe the abstract state that is the samasaat every
variable, except thaspc, = push_Resp. ThenPushOk(as is). Note thatas > as, so the
step correspondence can associate each action of thepforresp, with the same action
and obtain a transition of the abstract automaton (as redjly the conditions foR to be a
backward simulation relation).

None of the disjuncts of orrespondenceOk exceptPushOk can be true for any pro-
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CorrespondenceOk(as is) =
Vpe IdleOk(asis,p) V
PushOk(asis,p) V
FinishedPopOk(asis,p) V
LosingPopOk(as, is, p) V
WinningPopOk(asis, p) V
StartingPopOk(as is, p)
IdleOk(asis,p) =
aspc, = is.pc, = idle
PushOk(as is, p) =
aspep, = is.pcp, = push_inv(s,v) V
aspc, = is.pc, = push_Resp
FinishedPopOk(as is, p) =
aspep, = is.pcp, = pop-resp(r)
StartingPopOk(as, is,p) =
aspey, = is.pcp = pop-inv(s)

Figure 4.20:CorrespondenceOk, and subpredicates.

cessp wherepc, = push_Resp, so ifa = do_pushy(k) then PushOk(as, is', p). Letasbe
the abstract state that is the sameads except thatspc, = is.pc, = push_inv(s,v) for

some sidesandv € V, and thatdeq is modified so thaés.deq = pushasdeq,s,v). Then

PushOk(as is, p), andas 22*"%Y, aq.

A similar line of reasoning can be applied whan= push_invy(s,v). In this case,
is.pc, = idle andis’.pc, = push_invy(s,v) for some sidsand values, and saPushOk(as, is', p).
Therefore,as.pc, = push_inv(s,v). Letasbe the state likas except thatispc, = idle.
ThenIdleOk(as is, p) andas > as.

This covers the actions that may be taken during push opagatiWe turn now to the
actions that occur during pop operations, which are morepticated. During different inter-
vals in every pop operation, each procpssitisfiesFinished PopOk andStarting PopOk,
which are presented in Figure 4.2@inished PopOFk asserts that a procepshas com-
pleted its pop operation in both abstract and intermeditt®es and is waiting to return.
Starting PopOk asserts that a procegéas just begun its pop operation in both abstract and
intermediate states. Between intervals in whiphsatisfies Finished PopOk and



4.3. THE BACKWARD SIMULATION 119

WinningPopOk(as is, p) =
WinningDeciding(as is, p) V
WinningPopping(as is, p)

WinningDeciding(as, is, p) =

is.keyy # L A (4.12)
aspep, = pop-resp(is.keyed_val(is.keyp)) N (4.13)
is.pc, = deciding(s) A (4.14)
is.keyy, € is.popped N (4.15)
is.keyy, € is.val_ok (4.16)
WinningPopping(as is, p) =
is.key, # L Alis.pc, = pop_inv(s) A (4.17)
aspep, = pop-resp(is.keyed_val(is.keyp)) N (4.18)
(is.keyy & is.popped V is.key,, € is.val_ok) (4.19)

Figure 4.21: ThéVinningPopOk predicate, and subpredicates.

Starting PopOk, p satisfies eitheW inning PopOk or Losing PopO¥k, which are presented
in Figures 4.21 and 4.22, respectively. Progesatisfies? inning PopOk during a pop op-
eration if and only ifp returns a value (not.) from the operation. On the other hand, if
process satisfiesLosing PopOk during execution of a pop operation, then that operation
returns L. (Proces may also returnL by taking thepop_empty, action during the opera-
tion.)

A processp satisfies WinningDeciding during the interval afterp has taken a
pop_nonempty Or contend action, but before executingecure_val. p satisfies
WinningPopping during the interval betweapis lastonserve action and it9op_nonempty
or contend action.p’s operation is linearised at the beginning of this interval

A processp satisfiesLosingPost Lin during the interval beginning with the linearisa-
tion point of p's operation (acontend action of some process), and ending wipgakes the
lose_valp action. A proces® satisfiesLosingPreLin during the interval beginning with
the pop_nonemptyy, or contendp action. Ifp takes acontend, action, therp will not satisfy
LosingPreLin during that operation. This is because thetend, action is the linearisa-
tion point of p's operation. p will only satisfy LosingPreLin if it takes thepop_empty,,
action, and later takes thiese_valp action.

As before, we fix a transitiois = is/, and fix an abstract stass such thaiR(as, is’).
Assume first thai = push_respy(r) for somep andr € V. As beforeis'.pc, = idle and
thusIdleOk(as,is', p). Furtheris.pc, = push_Resp(r). Letasbe the state likas except
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LosingPopOk(as is, p) =
LosingPostLin(as is,p) V
LosingPreLin(asis,p) V

LosingPostLin(as, is, p) =

aspep = pop-resp(L) A (4.20)
is.pcp, = deciding(s) A (4.21)
is.keyp # L A
(is.keyy € is.val_ok =

Winner Exists(as is, k) A (4.22)

OtherDecider Exists(is, p))
LosingPreLin(asis, p) =

aspep = pop-inv(s) A (4.23)
is.pc, = deciding(s) Nis.key # L A (4.24)
(is.keyy € is.val_ok =

Winner Exists(as is, k)) (4.25)

Figure 4.22: Thd.osingPopOk predicate, and subpredicates.
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thataspc, = push_Resp(r). Thus,Finished PopOk(as is, p), andas > a<.

Now, assumea = lose_valp. In this casejs.pc, = deciding(s) for some sides and
is.key, & isval_ok. Also, is'.pc, = pop_resp(L) so thatFinished PopOk(as,is, p)
(since this is the only disjunct af'orrespondenceOk that allowsp to have the program
counter valuepop_resp(_L) in the intermediate automaton). These_valp actions are not
linearisation points, and thus are stutter steps in our stepgespondence. We show that
LosingPopOk(as,is, p) by showing thatL.osingPostLin(as,is,p). LosingPostLin as-
serts thap's pop operation is linearised in the abstract state. Thatcjs= pop_resp(L).
We already know thaas .pcy = pop-resp(L) (by FinishedPopOk and the intermediate
transition relation) ands.pc, = deciding(s). Note that becausis.pc, = deciding(s), p
must already have observed a key, and thusy, # L (this is an invariant ointAuf). Also,
the precondition of the transition implies thatey, ¢ isval_ok.

Note that ifis.val ok(is.keyy), LosingPostLin implies the a winner exists, fdreyp,
and there is some other process# p with is.key, = is.key, andis.pc, = decidings)
(Other Decider Exists is defined in Figure 4.19). We describe why this is so shortly.

LosingPostLin is true for somep in the poststate of some transition, but false in the
prestate under two conditions: & = contendy, or if a = contendy for some process
q # p such thatis".key, = is'.key, andq is the winner foris'.key,,. In either case, the
contend action is the linearisation point qf's operation. Letas be the abstract state like
as exceptaspc, = popinv(s) (wheresis the side thap is popping from, and satisfies
is’.pc, = decidings)). Note that becausis.kdeq = is'.kdeq is empty,asdeq = as.deq

. d : I -
is also empty. Thuss TP ad. Given this, ifa = conteng p satisfiesStarting PopOk

in the prestate. Otherwise, it can be shown that i conteng for some procesg # p
satisfyingis’.key, = is'key,, thenp satisfiesLosing PreLin in the prestate.

Consider the case wheae= pop nonempty for somep, whereas.pc, = pop.resg(L).
In this case, it must be thagt satisfies LosingPopOk. Moreover, the assertion that
Other Decider Exists within LosingPostLin enables us to prove that when a procpss
satisfiesLosing PreLin in the poststate. (This is a consequence of the facﬁ$hatayp has
only one "decider” immediately after it is removed frameq.) This is important, because
the pop_nonempty, action isnot a linearisation point fop, and the step correspondence
does not associate this intermediate action with an albsiction. However, the fact that
satisfiesLosing PreLin in the poststate enables us to prove thaatisfiesStarting PopOk
in the prestate.

We turn now to pop operations that return a value V. Such operations execute a
sequence of internal actions of the following form:

observg, X, secureval,

whereX is eitherpop_nonempty, or contend,. In either case, it can be show thasat-
isfies WinningDeciding between theX action, and thesecure_valp action, and satisfies
WinningPopping between th@bserve, action (which ig’s lastobserve action during the
operation) and thX action. Thesecure_valp action is a stutter step, and thiserve,, action
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is associated by the step correspondence witllehgop,, action.

Finally, if a = pop.empty, we can show thap satisfiesFinished PopOFk in the post-
state, and satisfiestarting PopOk in the prestate. The step correspondence associates such
actions with thedo_pop abstract action, anfeqOFk together with the transition relation of
IntAut guarantee thasdeq = as.deq is empty.

4.4 \erifying the Simulation

There are three components to the proof Ras a backward simulation. The initial state
condition, the totality condition, and the transfer corudit

For the initial state condition, we must prove that, foisfindassuch thaR(is, as), as €
startapsaut This amounts to showing thasdeqis empty and that for alp, aspc, = idle.
The predicateSeqOFk guarantees thati§.kdeq is empty (as is the case initially), thesdeq
is empty. Furthermore, for aph, whenis.pc, = idle, p must satisfy/dleOk. Therefore,
aspc, = idle. Furthermore,

For the totality condition, given an intermediate stateve must be able to construct an
abstract statevs such thatR(is, ws). It is possible to do this in such a way that the simple
relationship defined by 4.4 on page 114 holds betwsandws. This is achieved by letting
ws.deq.seq = o(is), and letting the limits ofs.kdeq match the limits ofws.deq thus: We
define eachws.pc, so that no process that is still popping has yet executetbisop in the
abstract automaton. Except whigipc, = deciding, we setws.pc, = iS.pcy,.

In order to satisfy the relatioR, we need to construabs so that each process with
IS.pc, = deciding is eitherWinningPopOk or LosingPopOk (those are the only dis-
juncts of CorrespondenceOk in which pc, = deciding is possible). Because satisfaction
of LosingPopOk by a procesp implies tﬁat ifkey, € val_ok then there is some process
that has won the key (the content of & nner Exists predicate), we need to choose some
winner for each ke, such that there is a processvith is.key, = k andis.pc, = deciding
We do this using a ahoicefunctionwinner : KEY — PROC satisfying

(Ipeis.key, = kAis.pc, = deciding =
winner(k) € {p | keyy Alis.pc, = deciding}

If is.pc, = deciding, is.key, € is.wal_-ok andp = winner(is.key,) we setaspc, =
pop-resp(is.keyed_val(is.keyy)). In any other case whes.pc, = deciding we setaspc, =
pop_resp(L).

Proving the transfer condition is by far the most involvegess of the proof. The proof
is a long and tedious case analysis on transitions, and lessdbecked using the PVS proof
assistant. As we did in Chapter 3, we present only a smalirfeany in detail: the proof that
the SeqOk predicate is preserved jserve actions.
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Successfubbserve Transitions

observep

Fix a proces®, intermediate states, is’ such thas — " is’ and abstract states and
match functiormsuch thaR(as, is’) andSeqOk(as, is’, m). We must choose a stadssuch
that SeqOk(as is,m') where

ma { as.deq.left — is'.kdeq.left + 1} if, for somev as.pc, = pop.respv) A
is’.pc, = pop.inv(left)

m =< ma { ad.deq.right — is'.kdeg.right — 1} if, for somev as.pc, = poprespv) A
is’.pc, = pop.inv(right)

m otherwise

do_
Furthermore, we must show that eitlaey= a< or as YR g
There are three cases to consider:

1. as.pc, = poprespv) for somev, andcs.pc, = pop.inv(left)

2. as.pc, = poprespv) for somev, andcs.pc, = pop.inv(right)

3. as.pc, # pop.respv)

do_po,

We first describe the construction a$ and the proof thabeqOk(as is,m’) andas e
as for the case wheres.pc, = pop.inv(left). The construction and proof for the case
wherecs .pcy = pop.inv(right) is symmetric. Second, we describe a proof thalﬂfpcp #
pop.respVv), then SeqOk(as,is,m). Note that we are choosing an abstract action and

prestate based on wheth@s operation has "already” been linearised.
In the case wheras.pc, = poprespv), we defineasto be the unique state satisfying

aspc, = pop.inv(left) A (4.26)

(Vqeq#p= aspcq = as.pcy) A (4.27)

asdeq.right = as.degq.right A (4.28)

asdeq.left = ag.deg.left — 1 A (4.29)

asdeq.seq= as.deq.seqd {as.deq left — is' keyedval(is. key,) } (4.30)

Informally, we changep’s program counter t@op_inv(left) indicating thatp’s operation
has not yet been linearised &g we extend the sequenekq.seqon the left by one; and
we set the value at this new index to be the value associatidiey, after the pop. Going
backwards, we are adding the value thatill eventually return to the sequence. Everything
else remains the same.
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Note that there is only one disjunct 6forrespondenceOk(as,is’) that is consistent
with

is'.pc, = pop.inv(s) A
as.pc, = poprespv) A
V£ L

That is,WinningPopping. Because of this fact,

v = is' keyedval(is'.key,)

do—popy,
We must prove thaas — " as. We prove that

aspcp = popinv(left) A (4.31)

— emptyasdeq) A (4.32)

asdeq.left = ad.deq.left — 1 A (4.33)

asdeq.right = as.deq.right A (4.34)

a§.pcp = pop.respasdeg.seqasdeq.left + 1)) (4.35)

The first is true by construction. The second is true because

asdeq.left = ad.deq.left — 1
< as.deq.right < asdeq.right — 1

The third and fourth statements are true by constructio. fifth is true because
asdeq.seqasdeq left + 1) = is".keyedval(is'.key,) =V

andas.pc, = pop.respv).

We now prove thatSeqOk(as,is, ), defined in Figure 4.17 on page 115. There are
three universally quantified formulae to verify. To verifietfirst two of these, fix ain such
thatasdeqg.left < i < asdegq.right. Assume first that # asdeg.left + 1. In this case,

m (i) = m(i) andas.deq.left < i < as.deq.right. We prove each of 4.5to 4.7 in turn.

e is.kdeq = is'.kdeq, so 4.5 follows from the fact thateqOk(as, is’, m), andas.deq.left <
i < as.deq.right.

e Becauses.keyed_val = is.keyed_val andis.kdeq = is'.kdeq, we haveos(is) =
o(is'). This, and the fact thafeqOk(as, is’, m) gives us

a(is)(i) = a(is') (i)
= as.deq.seqi)
= asdeq.se(i) sincei # asdeqg.left+ 1
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e The negation of th& inner Exists predicate applied tas is, andk = is.kdeq.seqn(i))
implies that there is no procegghat such thais.key = k andaspcy = pop.respv)
for somev. If there were no such process in the stagsandis’ (as is guaranteed by
the fact thatSeqOk(as, is’, m) andi # asdegq.left + 1), then it is enough to show that
p is not such a process in the statéssandis. This is easy to see, because

is.pc, = popLinv(left) # pop.respv)
for anyv.
To prove 4.8, fix g such that < | < asdeq.right. Becausé # asdeq.left + 1 and
j # asdeg.left+ 1, we haver! (i) = m(i) andn?(j) = m(j), and thusn/ (i) < m/(j).

Now assume that= asdeq.left + 1, so thatm/(i) = is’.kdeq.left + 1. Again, we prove
each of 4.5-4.7 in turn.

is.deqg.left < is.deg.left + 1
= m(i)
m (i) = is.deq.left + 1
< is.deq.right

The last inference holds because the transition relatigliés thatemptyis.kdeq).

o(is)(i) = is.keyed_val(is.kdeq.sedi))
= iS.keyed_val(iS’.keyp)
= asdeq.seqi)

e Again, becausaspc, = pop.inv(left), we know thatp is not the winner ofk =
is.kdeq.sedm (i)). However, because= asdeg.left+ 1, we cannot simply argue that
there was no winner fok in the intermediate and abstract poststates, so there is no
winner in the prestates. In fagi,js a winner fork in the poststates. This is because

iS’.keyp = is'.kdeq.sedis .kdeq.left + 1)
= is.kdeq.sedis.kdeq.left + 1)
= is.kdeq.seqm (i)
=k

andas.pg, = pop.resp(v). However, the fact thal/innerUnique(as, is’) is enough
to show thatp is the only winner fork in the poststates. Therefore, becapsis
not a winner in the prestates (on account of its program-‘eosuvalue), we have
—~WinnerExists(as, is, k).
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To prove 4.9 and 4.10, fix ainsuch thats.kdeq.left < i < is.kdeq.right. Assume that
i = is.kdeq.left + 1. In this casen (asdeq.left+ 1) =i and

asdeq.left < asdeq.left + 1
< asdeq.right

soasdegq.left + 1 provides a witness thdt M atch Range(as ', i).
Now assume that=# is.kdeq.left + 1. If
InMatchRange(as, m,i), then InMatchRange(as m,i), because the range of over
the sefasdeq.left..asdeq.right] is a superset of the rangerofover the sefasdegq.left..asdeq.right].
If WinnerExists(as,is,is.kdeq.sedi)) then the situation is more complicated. We
must show that there is still a winner fkr= is'.kdeq.sedi). To do this, we must show that
the winner ofk is not the procesp. Assume for a contradiction th&l .key, = k. By the
transition relation ofntAut, this implies that

k = is.kdeq.seqis.kdeq.left + 1)
which gives us

k = is.kdeq.seqis.kdeq.left + 1)
= is'.kdeq.seqi)
= is.kdeg.sedi)

So we can prove, under the assumption tHatey, = k, that
is.kdeq.sedi) = is.kdeq.seqis.kdeq.left + 1)
Recall that +# is.kdeg.left + 1. IntAut has the invariant that, for all y

kdeq.left < x < kdeg.right A
kdeq.left <y < kdeg.right A
kdeq.seqx) = kdeg.sedy) = x =y

It is easy to see why this is smtAut has the variable.sed which constrains keys to be fresh
when they are pushed ontdeq. However, this invariant implies thatiif£ is.kdeq.left + 1,
then

is.kdeq.sedi) # is.kdeq.seqis.kdeq.left + 1)

which provides our contradiction.
It remains to consider the case whaﬂépcp # poprespVv) for anyv. In this case, we
setas= as.
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4.5 Related Work

Backward simulations have been used several times to dicedions involving 10 automata
[BGLRO1, SAGG 93, Smi96]. All of these verifications have followed the sgpattern as
ours: a forward simulation demonstrating trace inclusietwleen a concrete automaton and
an intermediate automaton; and a backward simulation stgptace inclusion between the
intermediate automaton and the abstract automaton. Mergibwe intermediate automaton is
defined to be as close as possible to the abstract automdftering only in that it captures
the "backwards” behaviour. What separates the verificgtimsented in this chapter from
these prior examples is the relative complexity of our bakisimulation. While we cannot
argue formally that this complication is essential, it seg¢mus that the linearisation points
of the intermediate automaton force us to use a complicdatedlation relation. As has
already been noted, the pop operations may be linearisectiahs belonging to another
operation, and may be linearised at actions that do not mtftif shared data structure. This
forces us to use a nonobvious relationship between thedskarectures (thédeq anddeg,
expressed iveqOk), as well as maintain subtle information about the relatiom between
processes, within the simulation. For these reasons, theleaity of our simulation relation
approaches or exceeds that of many backward simulatioh® ilitérature.

There are other approaches to dealing with prophetic lis&@wn in the context of tran-
sition systems. These approaches make use of auxiliargblesi to relay information about
the future of an execution to the point where a linearisadiecision must be made. Prophecy
variables [AL91] can be used in this way. Eternity variajldes02b, Hes05] are similar to
prophecy variables in that they can be used to verify aligorst exhibiting prophetic lin-
earisation, but differ in that they avoid technical limitets on the soundness of prophecy
variables and backward simulation. (In our setting, thi®ants to avoiding the requirement
of image finiteness.)

[Hes02a] applies a correctness condition adapted to thitice¢ion of read/write regis-
ters (locations supporting only read and write operatiomshe algorithm of [Blo88], which
exhibits prophetic linearisation. It is unclear whethés ttorrectness condition can be gen-
eralised to other datatypes.

4.6 Concluding Remarks

In this chapter we have presented an elaborate backwardasiomu This work has two
goals: to complete a proof that the Snark algorithm is coreet to explore the construction
of backward simulation relations for the verification of @lighms that require nontrivial
backward simulations. Our interest in such techniquegsafiom the relative prevalence of
nonblocking algorithms that exhibit prophetic linearisat and the fact that such algorithms
often require subtle backward simulations. As with all tleifications in this thesis, our
complete proof has been checked using the PVS proof adsistan
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Chapter 5

Nonblocking Storage Reclamation

Recall from Chapter 1 that many nonblocking algorithmsesuifom serious drawbacks that
restrict their range of applicability. These include thahility to reliably release memory
back to the system; the need to know in advance the numbepoégses that will access a
given data structure; and dependence on rare or unimplesheghchronisation primitives.
Part Il of this thesis develops techniques for overcomiregé¢hlimitations. Whereas Part |
is about the verification of nonblocking algorithms, Parisibbout their design. The work
on verification is of independent interest, but also informs work in Part Il. We apply
techniques developed in Part | to the verification of theqipile result of Part II: the imple-
mentation of LL/SC variables described in Chapter 6.

This chapter describes a noletk-free reference countirtgchnique (abbreviated LFRC),
that enables processes to safely and reliably release mdrack to the system. The tech-
nique has two principle advantages over previous proposaidoes not require advanced
knowledge of the number of processes that will ever use thesy, nor does it depend on
the existence of exotic synchronisation primitives suclib@AS. However, it does require
that the system provide a CAS or LL/SC operation capableashaially testing and modify-
ing a pointer and an adjacent integer. This implies thatdéhbriique cannot be used in many
contemporary systems. However, Chapter 6 describes aefimgpitation of the LL/SC syn-
chronisation primitive (the LL/SC operations are define8éattion 1.1.2) that can be applied
to a location containing a pointer, as well as other infoiamatThis LL/SC implementation
can be combined with the LFRC technique of this chapter toomree the reliance on an
operation that can atomically modify a pointer and an intedeurther, this combination
preserves all the advantages of the LFRC technique regandé@mory reclamation and the
number of processes that will use the system.

We present our LFRC technique as a programming interfacediidd be used by a client
application. We also present a lock-freedom preservingnaechanical transformation from
code that does not recycle memory to behaviourally equitatede that uses our LFRC
interface to recycle memory.

The remainder of the Chapter is organised as follows. Seétib defines important con-
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cepts necessary for understanding the contributions iceutan Part 1. Section 5.2 gives a
brief overview of reference counting. Section 5.3 desgrite interface to our LFRC func-
tionality, and Section 5.4 describes the transformatioroafe that does not recycle mem-
ory to code that does. Section 5.5 applies our transformatiorreiber’s stack algorithm

[Tre86]. Section 5.6 describes the LFRC implementationeitaidl Section 5.7 provides an
overview of several other nonblocking memory managemafinigues, and a description
of the strengths and weaknesses of our approach, in coropavigh other proposals.

5.1 Pointer-cleanliness, Space-adaptivity, and Populan Oblivi-
ousness

Before describing the LFRC result, we explain and define soes&able properties of non-
blocking algorithms that have been difficult to achieve. Seheroperties are important for
understanding the contributions presented in Part || cftiésis.

5.1.1 Wide Synchronisation Primitives and Pointer Cleaniness

For some time, 64-bit architectures have been availabl®[H#&0t93, Sit92, WG94]. These
architectures support 64-bit addresses, allowing direct¢ss to huge virtual address spaces
[CBHLL92]. They also support atomic access to 64-bit valugisg synchronisation primi-
tives such as CAS. Operating systems and application saftiat exploit 64-bit addressing
have been slower to emerge. Thus, many important 32-bitatipgrsystems and applica-
tions are still in common use, and most 64-bit architectstggport them. As a result, for a
period of several years, techniques that use 64-bit syniation primitives to atomically
manipulate 32-bit pointers together with other informatisuch as version numbers, have
been broadly applicable. As discussed in Chapter 1, peddtick-free data structures com-
monly exploit such techniques (e.g., [MS96b, Tre86]). Tieréasing prevalence of 64-bit
operating systems and applications signals the end of taisTéherefore, it is important to
develop algorithms that do not depend on the ability to ataityi manipulate a pointer and
other information.

A wide synchronisation primitivés a primitive that can atomically modify a location
containing a pointer simultaneously with modifications tong set of other locations. A
narrow synchronisation primitive is one that is not wide. For exém@a CAS operation
in a 32-bit system where CAS can be applied to a 64-bit valuewsde synchronisation
primitive; a CAS operation in a 64-bit system where CAS camyglied to 64-bit values is
narrow. DCAS is another wide synchronisation primitive.eTDCAS operation is defined
in Section 4.1.1 on page 95, but recall that DCAS enables alsimeous comparison and
conditional modification of two independent locations. Agagithm is calledpointer-clean
if it can run on systems that do not provide any wide synclsation primitives.
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5.1.2 Space-adaptivity

Recall from Chapters 1 and 3 that in both the Treiber stack\&8 queue, it is not safe to
simply return unused memory to the system. This is becauigenalgorithm provides any
way for a process to determine when some other process hastarfio some node that may
be dereferenced. This limitation is very common among rmeibhg algorithms, and is an
important drawback in many systems where available mensomgstricted. An algorithm is
space-adaptivevhen it does not suffer from this problem.

More precisely, a space-adaptive implementation of agataises space that is bounded
by a function proportional to the current size of the datacitire, plus the number of pending
operations. The notion ofsize of the data structure must be defined precisely for each
datatype being implemented. To provide an example, wevidildLMO03b] and analyse the
adaptivity of the M&S queue. Defingueue size in statete be the number of queue nodes
reachable from thélead pointer ins minus one (ie., the number of nodes in the queue, not
countingDuntry). This is the number of elements contained in the abstraaigtepresented
by s. The M&S queue is not space adaptive because it does notdmeqodes to memory,
and so the total memory consumed is not bounded by the cwiantof the queue. The
maximum space consumed by the M&S queue in a given siatim fact proportional to the
maximum queue size in any state that occurs prigritoany execution.

This analysis suggests the flavour of space adaptivity, fijpltess only to the M&S queue.
To make the notion of space adaptivity precise in generaldefme a notion of-space-
adaptivity wheref is a function from the states of an algorithm to the naturahbers.
The idea is that the functioh returns the current size of the abstract data structureighat
represented by the given state. We thus reféras asize function

Definition 5.1 (f-space-adaptive)

An algorithm isf-space-adaptivéf, for every state appearing in any execution of the algo-
rithm, the space used is proportionaf tapplied to that state plus a constant times the number
of pending operations in that state.

Clearly, the choice of size function is important. For camta objects like stacks and queues,
a natural choice is the number of values that the object itlyreontains. We might think of
an LL/SC variable as a container that contains preciselye@@maent (the variable’s value), in
which case a natural notion of size for an LL/SC variable wdé some constant. However,
in Section 6.1, we argue that the appropriate notion of sizari LL/SC variable depends on
the number of outstanding LL operations for that varigble.

We frequently suppress the size functiowhen discussing the space-adaptivity proper-
ties of algorithms. Thus we say that a given algorithrepgace-adaptivérather tharf-space-
adaptivg when there is some reasonable size functiéor which the algorithm in question

!Recall from Section 2.2.2 that a pending operation is anaijmer with an invocation, but no matching
response.

2Recall from Section 1.1.2 that an outstanding LL operatioari LL operation that is not matched by an SC
operation of the same process.
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is f-space-adaptive.

5.1.3 Weak Space-adaptivity

The LL/SC implementation presented in the next chapterasemdaptive according to the
definition just given. However, the LFRC-based transforamapresented in Section 5.4
is not guaranteed to yield space-adaptive algorithms irsémse just described. This is a
limitation of reference counting itself, and is not partaouto our approach. Section 5.2
describes this limitation in detail. In this section we defannotion ofwveak space-adaptivity

that captures the space-adaptivity properties of referenanting based transformations,
under reasonable assumptions about the original algaritAs discussed in Section 5.7,
some other nonblocking memory-reclamation techniquasfgdhis notion of weak space-

adaptivity, without satisfying space-adaptivity prop&rguiescent states a state where there

are no pending operations.

Definition 5.2 (Weakly f-space-adaptive)
An algorithm isweakly f-space-adaptivi§ in every quiescent state appearing in any execu-
tion, the space consumed by the algorithm is proportionalagplied to that state.

So weakf -space-adaptivity constrains memory use, but only in qeiesstates. Afi-space-
adaptive algorithm is also weaklyspace-adaptive. This is becausd @pace-adaptive algo-
rithm may consume some bounded quantity of memory for eactlipg operation, but when
there are no pending operations (as in quiescent statesyptte used must be proportional
tof.

We sometimes use the expressgirongly space-adaptiyavhen we wish to emphasize
that an algorithm is space-adaptive, rather than merelkhyaspace-adaptive.

5.1.4 Population Obliviousness

A common technique in nonblocking algorithm design is tovjite each process with one
or moresingle-writer/multi-readervariables (SW/MR variables). All processes are able to
read these variables, but only one process ever modifiesveaielle. (Some examples of
this technique [AM95, HLMO02b, JP03, Mic04] are discusseéattion 5.7, and in Section
6.4. Further examples can be found in [Her91, LMS03a].) daihy, such SW/MR variables
are implemented using an array, with processes using tvaiidentifiers as indexes into the
array. Each variable is thus an entry in the array that canriteew by the process whose
identifier is the index of the entry, and can be read by anyrgihecess. This technique
requires knowledge of the maximum number of processes tilawer use a given instance
of the algorithm, so that an array of appropriate size carllbeated. Therefore, these algo-
rithms are implicitly parameterised by the maximum numidgrocesses for which a given
instance of the algorithm will function correctly. We call algorithm that is parameterised
by the maximum number of procesgaspulation aware An algorithm ispopulation oblivi-
ousiff it is not population aware [BMV 07].
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In systems where processes can be created dynamically,yitomampossible to de-
termine the maximum number of processes that may ever aacdgsta structure. In such
situations, population-oblivious algorithms are reqdird-urther, when SW/MR variables
are used, space must be allocated for these variables. gdis gannot be deallocated for
the life-time of the data structure. This precludes spatagtvity.

5.1.5 LFRCandLL/SC

The reference-counting technique presented in this chapmopulation oblivious, but not
pointer clean. Using our transformation, it is possible bbain weakly space-adaptive al-
gorithms from garbage collection dependent algorithmsthen, it is possible to modify an
existing algorithm, such that the result of our LFRC-basaddformation yields a strongly
space-adaptive algorithm. In Section 5.5.1, we show by glahow this is achieved. These
modifications require insight on the part of the programmaeqd cannot be described as a
mechanical transformation.

The LL/SC implementation presented in Chapter 6 is strosgce-adaptive, pointer-
clean and population oblivious. To our knowledge, it is thetfpublished nonblocking
LL/SC implementation to enjoy all three of these importardperties. Also, because it has
these three properties, it can be combined with the LFRQtresabtain a general memory
management technique that is pointer clean, populatiomiobs, and enables the construc-
tion of strongly space-adaptive algorithms. We descrilmdbmbination in Section 6.3.

5.2 Reference Counting

We briefly review reference counting, before going on to dbeoour technique. Reference
counting [Col60] is a classical technique for reclaimingised memory, that is used in some
garbage collection systems (e.g., [AKW88, WS91]). Them rmumerous variations (for
example [Wis93, DB76, LP01]), but here we recap the main.ideeaders are referred to
[JL96] for a detailed account.

Each object is associated withreference counthat counts the number of references to
that object (references to that object currently stored@all variables or shared locations).
This count is typically stored in a field of each object. Whha teference count of an
object falls to zero, the object is no longer accessible énhitbap, and so can be deallocated.
Every time a reference to some objecis created (which happens when a reference to
is stored in some variable or location) the reference cossw@ated witho is incremented.
Every time a reference to some objecis destroyed (which happens when a variable or
location containing a referenceads over-written, or an object containing a reference ts
deallocated) the reference count associated withdecremented. Whenever the reference
count of an object falls to zero, the object is deallocatedeca®ise the object may hold
references to other objects, this may result in furtherldeation.

Reference counting alone can only reclaim memory from datatsires that do not con-
tain cycles of references: i.e., structures such that tisen® path of references from any
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object back to itself. In a cycle of references, every obfes a non-zero reference count:
for every objecb in the cycle, there is some other object in the cycle holdingference to
0. A cyclic structure may thus become unreachable, but iexeete counts will never fall
to zero, and so it will not be deallocated by the basic refe@erounting scheme described
above. Reference counting systems typically overcomegpitiblem in one of two ways.
Some use a back-up garbage collector that periodicallickesarthe entire heap for unreach-
able memory (for example, [DeT90]). Others useyeale collecto{Chr84], that searches for
cycles among objects that have nonzero reference counesx@mple, [MWL90, PBK 05]).

In this chapter, we apply our LFRC solution to transform cdlokt does not recycle
memory into code that does. All reference counting techesgean be used to obtain such a
transformation. The resulting code is guaranteed to beifumally equivalent to the original
code, and to be free from accesses to deallocated memotheEueference-counting based
transformations provide the following guarantee aboutcWwhobjects will be freed. If the
original code has the property that no object is part of aregfee cycle when it becomes
unreachable, then in the transformed code, all objectdwitleallocated before they become
unreachable [JL96]. This guarantee is important to ourudision of the space-adaptivity
properties of code transformed using our LFRC techniqu&éctions 5.4.4 and 5.5.1).

5.2.1 Lock-free Reference Counting

The implementation of lock-free reference counting is lemajing because it is difficult to
safely update the reference count of an object in a lockdosext. A procesp may read a
reference to an objectfrom a location, bub may be subsequently deallocated befocan
incremento’s reference count. This can happen when another processsmis reference
count to fall to zero aftep’s read, and deallocates the memory. This is another instahc
the problem that precludes memory being released from tlatetiwres such as the Treiber
stack and M&S queue.

Lock-free reference counting is much simpler in an envirentrwhere it is legal to
access the reference-count field of an object after it has Heallocated. Some lock-free
reference-counting techniques are designed to work in an@nvironment [Val95, Rei04],
and we describe these solutions in Section 5.7. However,oist systems, once an object
has been deallocated, there are no guarantees as to thtylefjahy particular access to the
fields of the object, nor any guarantees about the contertsoeé fields. An environment
in which access to deallocated objects is legal can be eatulating an application freelist
(as in [Val95]), but this precludes freeing memory to theteys and thus precludes space-
adaptivity.

Our LFRC technique works by distinguishing between difféi@ntributions to the ref-
erence count of each object. For each obgedhe count of the number of shared locations
(locations accessible to more than one process) contamirgference t@ is maintained
separately from the count of the number of local variables teferencen. The objecto
cannot be deallocated until both counts fall to zero. Wheroagssp reads a reference to
from a shared location into a local variable, the count ofrtmber of local references
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is incremented, withoyp needing to access directly. Section 5.6 describes in detail how
this is achieved.

5.3 The Lock-free Reference Counting Interface

We first present the LFRC interface. Later, in Section 5.4,describe how to use this
interface to transform code that does not recycle memonptte ¢hat does. As usual, we
employ C-style pseudocode to describe the LFRC interface.

Fix a typeT to represent the type of application level objects (thatis,type of objects
that are to be reclaimed using the LFRC technique). In a negjramming language, this
type could be specified using a type parameter, or it coulddmatecular type, or it could be
identified with anCbj ect type at the top of the type hierarchy. Fixing the typsimplifies
the following presentation.

Our LFRC technigue uses several counters for each objett, afavhich counts refer-
ences from a different source. However, in order to dest¢hbd FRC interface we pretend
that each object is directly associated with a single attsteference count. This pretence
allows us to abstractly specify the behaviour of the LFR@riflaice, without describing the
implementation details.

Two types are exported from the LFRC interfaR&_Ref andRC_Cbj . Members of the
type RC_Ref represent references to objects, and members of the théx/@#j contain
the application level objects. Each value of tyg@ Ref has a field ef that yields a value
of type RC_.bj * (i.e., a pointer to arRC_Cbj ). Each value of typ&kC_Cbj contains an
object of typeT, which can be accessed using \tdield. Abstractly, each object of type
RC_(bj has an associated reference count, with the exceptiorubf , whose reference
count is undefined.

As has already been mentioned, our LFRC technique dependdimtinction between
local and sharedlocations. For our purposes, local locations exist on theksbf some
process and are only accessible to that process. Shardtbiacaxist in statically or dy-
namically allocated storage, and may be accessible to rmaredne process. References in
shared locations are represented using objects ofRgpBef . References in local locations
are represented using objects of tyR€ Cbj *. To ensure that memory is not reclaimed
prematurely, values of typ@C_Cbj * should never be written directly into shared locations
by application code.

We now describe the procedures provided by the LFRC interfac

voi d RC_Load(RC.Ohj **0, RC.Ref =*r)

RC_Load( o, r) copies the pointer stored at >r ef into the location pointed to byg. If
r->ref 1= null the reference count associated withr - >r ef ) isincremented. If the
value of* 0 before the operation is notul | , then the reference count associated witlo

is decremented. The location pointed todynust be local (i.e., must be on the stack of the
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process).

voi d RC_Store(RCRef *r, RC.Cbj =*0)

RC_St ore(r, 0) storeintor - >r ef . If the value ofr - >r ef before the operation is not
nul | , then the reference count associated with this value issdeanted. [fo ! = nul |
the reference count associated with is incremented. The location pointed to dynust be
local.

bool ean RC_.CAS(RCRef *r, RC.Obj *old, RC.Cbhj *new)

RC_CAS s an implementation of the CAS operation to be used agaistimnces oRC_Ref .

If r->ref = ol d the CAS is successful and- >r ef is changed tmew. Otherwise,
the CAS is unsuccessful armd >r ef is unchanged. If the CAS is successful apidd

I = nul |, then the reference count associated with d is decremented, and ifew ! =
nul | , then the reference count associated wittew is incremented. If the CAS is unsuc-
cessful, no reference counts are modified.

voi d RCDestroy(RCChj *0)

RC_Dest r oy is used to destroy local references before they are ovéewrdr go out of
scope. Ifo ! = nul | the reference count associated with is decremented.

voi d RCAI |l oc(RCObj *+*0)

RC_Al | oc allocatesRC_ hj objects.RC_Al | oc sets+ o to be a pointer of type RC_bj
that was previously unallocated and that has a referencet oful after the allocation (to
account for the reference created by the allocation). Iptlegious value of o is notnul |,
then the reference count associated witlo is decremented must point to a local location.

voi d RC_Shar edCopy( RC_Ref =*r, RC_Ref =*s)

RC_Shar edCopy(r, s) copiesthe pointes- >r ef intor->ref.Ifs->ref = null
then the reference count associated witls- >r ef ) is decremented. If the value of >r ef
before the operation is notul | , then the reference count assocated wifh - >r ef ) is
decremented. This copy operation is not atomic, in the séraddhe values oé- >r ef and

r - >r ef may never be identical during the operation. Rt Shar edCopy operation only
guarantees that at some point in the execution of the oparatie value ok- >r ef is the
value eventually written into - >r ef , and that if no other LFRC operations overlap with a
givenRC_Shar edCopy operation, thers- >ref = r->ref after the operation.

voi d RC_Local Copy(RCOhj **0, RC.Ohj *p)

RC_Local Copy( o0, p) copies the pointep into the location pointed to bg. If p ! =
nul | the reference count associated witfn is incremented. If the value &fo is notnul |
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before the operation, then the reference count«af is decrementedo must point to a local
location.

RC_.(bj *RC.Pass(RC.Obj *0)

RC_Pass( 0) returns the pointeo (so thatRC_Local Copy(0) = o is always true) and
if o 1= nul | the operation increments the reference count associated-wi The pur-
pose ofRC_Pass is to allow reference values to be passed during proceduogations.

5.4 Transformation

We now describe a transformation from code that does notleegemory, to functionally
equivalent code that recycles memory using our LFRC tectidur transformation pro-
vides an alternative to garbage collection, for use in envirents where garbage collection
is inappropriate, and a transformation like ours could &ksaised in an implementation of
garbage collection.

The main point of this section is to convince the reader thiatLé-RC technique could
be used to make a large class of algorithms space-adaptive.sdurce and target of our
transformation is essentially the C-style pseudocodewvtiedtave been using throughout the
thesis, and its syntax and semantics are not formally spdcifHowever, we feel that the
presentation is precise enough to be used as the basis fomalftransformation over a
specific programming language.

Because the LFRC technique handles shared and local reésréeifferently, we need to
carefully distinguish between expressions that can beuated without reading references
stored in shared locations, and those that require readshgrad reference. In order to make
this possible, we restrict the expressions and statemkeatsate allowed in the domain of
our transformation. Section 5.4.1 defines the set of exjpresshat may appear in programs
that we transform. The constructs from which these exprassire built should be familiar,
and should have familiar (informal) meanings. In SectighZ.we define the set of allowed
statements, and the transformation itself. Throughoutdieeussion, we assume that the
objects that are to be recycled using our LFRC transformdiive typerT.

5.4.1 Allowable Expressions

The goal of this section is to define a set of expressionsgdallowable expressionghat
may appear within programs in the domain of our transforomati We first define some
important categories of expressions, and then the allewatpressions themselves. In what
follows, let anS-variablebe a variable of typ&.

In accordance with our distinction between local and shhreations, we divide the set
of expressions into categories, according to whether tpeession is evaluated by reading
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local locations, or by reading a shared location. The eswas that are evaluated by reading
only local locations are calleldcal S-expressionswhereS is some type.

Definition 5.3 (Local S-expression)

A local S-expressioris an expression of typ8 in which the only variables are local vari-
ables, and the only operators are arithmetic operators lfenaerators: (address-of)x
(dereference), > (pointer-to-member)new (allocation) and[ -] (array application).

Note that the restriction on what operators may appear isitriegrohibit procedure invo-
cations. We have prohibited field access (the dot operatdhe interests of simplicity.

Below, we syntactically define a category of expressions dha evaluated by reading
precisely one shared location. We call members of this cayegharedS-expressionsThe
definition is complicated by the need to obtain a reasonatugidclass of allowable expres-
sions. We first define the categmiaredS-lvalue? which are expressions that are evaluated
by reading a single shared location, and to which the addriesperator& may be applied.

Definition 5.4 (SharedS-Ivalue)
A sharedS-lvalueis an expression of one of the following forms:

e a shareds-variableX,
e an expression- >f , wherex is a local variable and- >f has typeS,

e an expression of the form[ e] wheree is a local integer-expression, amdis a
statically allocated array with elements of type

The following category of5-address expressionscludes the expressiomsof type S+
such that Ais evaluated by reading a shared location.

Definition 5.5 (S-address expression)
An S-address expressias a local variablex of type S+, or an application of the address-of
operator& to a shared-Ivalue.

EveryS-address expression has type, but not every expression of ty[® is anS-address
expression.S-address expressions can be evaluated without readinghamgdslocations.

If Ais a shared address expression, thénmay be evaluated by reading a single shared
location.

Some programs contain one or m&@address expressiodssuch that A is sometimes
evaluated by reading only local locations (this is possifileexample, after a process writes
the address of one of its local variables into a shared lmehatiThis is not a syntactic property
of * A, because it depends on the behaviour of the running progvaenexclude from the
domain of our transformation all programs in which thereng axpressiors A that is ever
evaluated by reading a local location, and such tha a T+ -address expression. This is

3The set of share8-Ivalues defined here is a subset of the Ivalues of the C pnugiag language.
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necessary to enable us to syntactically distinguish espmes of typeT+ that are evaluated
by reading a shared location from those that are not.

Now we are in a position to define the class of expressionsatiea¢valuated by reading
at most one shared location.

Definition 5.6 (SharedS-expression)
A sharedS-expressioris a shareds-lvalue, or an expression of the forA whereA is an
S-address expression.

Each shared-expression has a single location that must be read in oodevdluate the
expression. This location can itself be evaluated usindath@ving function.

Definition 5.7 (Location of a sharedS-expression)
Thelocation of a shareds-expressiork, writtenloc(E), is defined by cases as follows:

e if Eis a shared®-Ivalue, thenoc(E) is the expressio&E,

e if Eis of the formx AwhereA is anS-address expression, thirt(E) is the expression
A

The location of a sharef-expression generalises the address-of opegator
The allowable expressionare those that fall within one of the following categories, f
some types:

e Expressions of the forr@AS( E, e, f) whereEis anS-address expression, aad
andf are localS-expressions. The only shared location that must be readatoae
such a CAS is the locatioB.

e Expressions of the formew S(), each of which allocates a new object of type
and returns a pointer to that object.

e Local S-expressions.

e SharedS-expressions. Recall that the only shared location muséae to evaluate a
sharedS-expressiork is the value ofoc(( )E) .

So we prohibit expressions that are evaluated by reading than one shared location. We
can obtain the effect of expressions involving more thansieaed location by introducing
one or more local variables, and decomposing the expregsiorseveral statements. For
example, the expressiony, whereY is a shared variable, is prohibited by the above rules.
However, we can emulate a statement of the form

X 1= =*Y
with the statements

X1 :=Y;
X = *xx1;
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Note that expressions that are evaluated by reading moreaih@ shared location cannot
usually be evaluated atomically, and are typically not apgate in code that purports to
describe a nonblocking algorithm.

In the interests of simplicity, we restrict the types of @btes and fields that occur in
programs.

e |ocal and shared variables, arrays, and fields can all havgy/pa that does not contain
an occurrence of *,

¢ a local variable whose type contains an occurrencerafust have typd* or T *,
e a shared variable or field whose type contains an occurrerte must have typd»,

e an array whose type contains an occurrencé&*omust have typg¢ T*] (i.e., the type
of the array elements must be ).

The next section describes the transformation of prograhtse expressions are all allow-
able expressions, and whose variables and fields satisfyibe restrictions.

5.4.2 The Transformation

Our transformation is composed of several modifications. nvgelify the types used in the
program, so that dynamically allocated objects are eqdipyth reference counts. We also
modify statements involving CAS operations, assignments allocations. Each of these
latter modifications is designed to ensure that the referenant of each object is updated
to accurately reflect the references created and destrgyeddn statement. Finally, we add
statements to the end of each procedure that decrementfédrenee count of each local
variable declared in the procedure. This reflects the fattréferences to objects from local
variables of a procedure are destroyed when the procediige ex

The first step is to translate the types of variables and fagigearing in the program. We
denote a type that contains an occurrence of some typasS( U) . The key to our trans-
lation of types is to turn locaB( T+) -expressions into expressions of typeRC_hj *) ,
and shared5( T*) -expressions into expressions of tyBéRC Ref ). We translate types
according to the following scheme:

1. local T* -variables become variables of tyR€ Obj *,
2. localT* * -variables become variables of tyB€ Ref *,
3. sharedr -variables become variables of tyR€_Ref ,

4. local and share8-variables, wher& does not contain an occurrenceTsf, preserve
their type,

5. fields of typeT* become fields of typ&C_Ref ,
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6. arrays of typd T+x] become arrays of typeRC_Ref ],
7. fields and arrays whose type does not invdlvepreserve their type.

Given these rules, for any ty@® T+) (that contains an occurrence Bf ), and any expres-
sionexp of typeS( T*) inthe original codeexp has typeS( RC_bj *) in the transformed
code iff it is a localS-expression, and typ8( RC_Ref ) in the transformed code iff it is a
sharedS-expression.

Next, we replace each expression of the farf , wheree is a local T+ -expression,
with the expressioff e- >v) . f . This does not change the type of the expression, it simply
reflects the fact that we need to evaluateutfeeld of anRC_Obj * value, in order to obtain
a value of the original typd, to which we can apply the field accesk. Also, we replace
each expression of the for@AS( E, e, f) whereEis aT*-address expression ardand
y are localT* -expressions, with the expressiB@ CAS(E, e, f).

Next, we translate each statement of each procedure onedyyin a way that reflects
the references created and destroyed by the statementw,Bedodefine the translation of
statements by cases. Any statement not covered by one @f ¢hsss is not allowed in the
domain of our transformation.

1. An assignment in which both the left- and right-hand salesallowable expressions,
and are not of typd= , is simply copied.

2. Anassignment of the form : = new T() ; , wherex is a localT+ -variable becomes
RCAIl oc(&x) ;.
3. Anassignment of the form : = E; , wherex is a localT+ -variable ancE is a shared

T+ -expression becomd¥C Load( &, E);.

4. An assignment of the forfE : = e; , whereE is a shared'* -expression ane is a
local T+ -expression becomd?C_St or e( loc(E), e).

5. An assignment of the forie : = F; , whereE andF are shared* -expressions be-
comesRC_Shar edCopy/( loc(E), loc(F)) .

6. An assignment of the form : = e, wherex is a local T+ -variable ance is a local
T+ -expression becomd¥C Local Copy( &x, e).

7. A procedure invocation of the form( eq, ..., e,) whereeq, ..., e, are the local
T+ -expressions that are actual argumentB lrecomes

P(RC Pass(ey), ..., RCPass(ep))
P may not contain any expressions of type that are not local expressions.

8. A statement of the formet ur n e;, where the expressioa is not of typeT* is
simply copied.
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Note that na et ur n statement can return a value of type.

Finally, for each procedure, and for each lo€alvariablex of that procedure, the state-
mentRC_Dest r oy( x) is added to the end of the procedure by the transformations Th
reflects the fact that a reference to each variable is destrajnen the procedure exits.

In Section 5.5, we apply our transformation to an examplerélgm.

5.4.3 Limitations

Our LFRC transformation can be used to transform a larges @ddgprograms. However,
there are several important restrictions. First, refezermay only be created by allocation,
or by copying existing references. Pointers cannot be géeeby pointer arithmetic, for ex-
ample. Other lock-free reference counting techniques tieveame restriction [DMMmO1,
HLMMO5].

The second, and most important limitation of our transfdiromais that the only opera-
tors appearing within expressions are arithmetic opesatord the operato&, * , - >, new
and-[ -] . For example, tuples of values are not allowed, which arenconty used in the
presentation of algorithms that exploit version numbeteghniques. Moreover, procedure
invocations cannot occur within expressions, and a poiotdype T+ cannot be returned
from any procedure. We justify these restrictions on theugds of simplicity. A formal
transformation over a well-defined programming languagg Ineeable to relax these restric-
tions, but such an effort is beyond the scope of this presenta

However, the utility of our LFRC technique extends beyone titansformation. It is
possible for a programmer to determine when a referencet caaus to be modified based
on application level knowledge, as opposed to simple synkot example, the value of a
local T -variable could be returned from a procedure by eliding &iktc RC_Dest r oy for
that variable. The programmer could then arrange to decrethe reference count of that
value at some later point. Clearly, care would be needed.

5.4.4 Obtaining Weak Space-adaptivity

Our transformation produces code satisfying weapace-adaptivity when two conditions
are satisfied:

e In quiescent states of the original algorithm, all memoxcept for some quantity
proportional tof applied to the state, is unreachable.

e This unreachable memory does not contain reference cycles.

It is easy to see why these conditions are sufficient for Wegace-adaptivity. Recall that
code transformed to use reference counting will dealloeditebjects before they become
unreachable, so long as, in the original code, no objectrisgba reference cycle when it
becomes unreachable. Thus, if the second condition abdds,hiben in quiescent states,
all unreachable objects have been deallocated. Furthg first condition holds, the set of
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reachable objects consumes memory allowed by the size afat@estructure being imple-
mented.

To see why our transformation is not enough to guarastemg space-adaptivity, con-
sider the case where some process is delayed while it hokfgr@ince to some object. This
object is reachable, and thus will not be deallocated. Ireggnit may contain references
to other objects, giving them a nonzero reference counturm, these objects may contain
references to further objects, none of which may be dedbdchy reference counting. The
algorithm in question may be such that this set of objectsh&lale from the delayed pro-
cess may be unbounded. Thus, the space consumed may exgemualiad on the memory
allowed for pending operations by the definition of strongcgpadaptivity. We discuss this
issue with regards to a specific algorithm in Section 5.5.1.

5.5 Transforming A Stack Algorithm

In this section, we apply the transformation described alio\a variant of the Treiber stack
given in Section 1.1.3. We show how to obtain both weakly anongly space-adaptive
versions of this algorithm.

Section 1.1.3 describes several variations of the Treifaeks The variant that we trans-
form is one that relied on garbage collection to recycle mmgnloresented in Figure 1.6 on
page 10). Using LFRC, we transform it to an algorithm thatlieily recycles memory.

We present the original stack algorithm in Figures 5.1 a@d Bhis implementation uses
CAS rather than LL/SC to modify thidead variable during push and pop operations. The
type ofHead is simply* Node, no version numbers are used. Nodes are not explicitly freed
after being removed from the stack. Indeed, as discussedatios 1.1.3, explicitly freeing
nodes at the end of pop operations would result in an incoalgorithm. This is for two
reasons, both of which stem from the fact that the algorithovides no way for one process
to determine that no other process can dereference a ptintenode, after the node has
been removed from the stack.

e A process executing a pop operation may dereference a ptordenode that has just
been freed (by following a locddead pointer).

e A pointer may be prematurely recycled back onto the stackewdime process still
has a pointer to the node, giving rise to the ABA problem.

Our LFRC transformation produces an algorithm in which passible to determine that a
pointer will no longer be dereferenced.

We now apply the LFRC transformation. The transformed deatitans are presented in
Figure 5.3; the transformed pseudocode is presented ind-ljd. These declarations and
code are obtained directly from Figures 5.1 and 5.2 by a sirapplication of the transfor-
mation described in Section 5.4. Shared variables and tshjee associated with reference
counts. Every time areference is created, the correspgmdiject’s reference count is incre-
mented, and every time a reference is destroyed the comdsgpobject’s reference count
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struct node { node *Head;
val val; node *next initially Head = null;

}

Figure 5.1: The node structure, the global variabéad, and the initial condition for the
original stack implementation.

voi d push(val v) {
node * nd, head;
nd : = new node();
nd->val := v;
whil e(true) {
head : = Head;
nd- >next : = head;
i f (CAS(&Head, head, nd))
br eak;
}

return;

T3% 1FHEERE

val pop() {
P1. node * head, next;

P2. while (true) {

P3. head : = Head;

P4. if (head = null)

P5. return enpty,

P6. next := head->next;

P7. i f (CAS(&Head, head, next))
br eak;

P8. }

P9. return head->val;

}

Figure 5.2: Pseudocode for the original stack operations.

struct node { RC_Ref Head;
val val; RC.Ref next initially Head.ref = null;

}

Figure 5.3: The transformed node and stack structures.
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is decremented. Note that initialjlead. ref = nul | . We do not constrain the initial
reference count dfiead because the reference counnefl | is undefined.

As with any garbage collection technique, reference cagnéblves the ABA problem.
In particular, once a popping process has executed the tdime P 3, the reference count
of * head is guaranteed to be nonzero until the process executes Ri2.TTherefore, it
cannot be deallocated and subsequently pushed back orgtattke

Because the stack implementation never produces refeognlas, and there is one node
per value in the stack, the transformed stack implememtatiesented in Figure 5.4 is weakly
space-adaptive. However, it is not strongly space-adapiio see why, consider a popping
process that is delayed after reading a pointer to some objefrom Head at line TP3.
Once this load has completed, the reference countwill not fall to zero, at least untip
completes one iteration of the loop. Neither will the refere counts of any of the objects
reachable frono. All these objects may be removed from the stack by pop ojpesathat
complete whilgpis delayed. Once this has happened, the memory consumedseydbjects
cannot be accounted for as part of the stack data structuoethdf, this memory is not
bounded by any constant, as the stack may be of any size pvbrecutes TP3. Therefore,
the transformed code is not strongly space-adaptive.

5.5.1 Obtaining Strong Space-adaptivity

We now describe how to obtain a strongly space-adaptivaorer3he key is to “break the
chain” of references that allow one delayed process to keembounded number of objects
from being deallocated.

We only need to modify theop implementation. Observe that, once a node has been
removed from the stack, itsext field can be overwritten without affecting the representa-
tion of the stack. Thus, we make popping processes overtigteext field with nul |
after a successful CAS. It is possible for a delayed poppioggss to readul | from this
field after it has been overwritten. However, this can onlygdem after thédlead variable has
been modified since the delayed process tdead at TP3. Thus, the CAS of the delayed
process is doomed to fail, so there can be no visible chantetstate of the data structure,
and the delayed process will simply retry the loop.

Figure 5.5 presents code for the modifigolp operation. The only change is at line P9,
wherehead- >next is overwritten withnul | . We claim that the memory consumed by this
transformed stack is bounded by a multiple of the number deeadn the stack, pluthree
nodes for every pending operation. The short explanatiotthis is that no chain of nodes
from thehead variable of either operation can be longer than one nodéowitthere being
at least one process with a pending pop operation that haghekecuted the assignment at
P9. However, since this is the first claim that an algorithespnted in this thesis is strongly
space-adaptive, we provide a more detailed argument.

Because reference counting guarantees to deallocate wydiafore it would become
unreachable in the original algorithm, we need only accdontmemory that is reachable
from Head, or a local variable of a process executing a pending oeratihe memory
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voi d push(val v) {

THL. RC_Obj * nd, head;

TH2. RCAI | oc(&nd);

THS. RC.St ore( & nd->v).val, v);

TH4. whil e(true) {

TH5. RC_Load( &ead, &Head);

THG. RC_St or e( & nd->v) . next, head);

TH7. i f (RC.CAS(&Head, head, nd))
br eak;

TH8. }

THO. RC Destroy(nd);

TH10. RC.Destroy(head);

TH11. return;

}

val pop() {

TP1. RC_Obj * head, next;

TP2. while (true) {

TP3. RC_Load( &ead, &Head);

TP4. if (head = null)

TP5. return enpty;

TP6. RC_Load( &ext, &(head->v).next);

TP7. i f (RC.CAS(&Head, head, next)){

TP8. RC_Destroy( next);

TP9. br eak;

TP10. }

TP11. }

TP12. RCDestroy(head);

TP13. RC.Destroy(next);

TP14. return (head->v).val;

}

Figure 5.4: Pseudocode for the transformed stack opegation
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val pop() {
P1. Node * head;

P2. while (true) {

P3. head : = Head;

P4. if (head = null)

P5. return enpty,

P6. next := head->next;

P7. i f (CAS(&Head, head, next))
br eak;

P8. }

P9. head- >next := null;

P10. return head->val;

}

Figure 5.5: Variant of the pop operation. The transformmatipplied to this code, along with
the push implementation of Figure 5.2, yields a stronglycepadaptive algorithm.

reachable frontHead is proportional to the size of the stack (one object per val8e if our
claim is false, then there is some state in which there anedomore nodes reachable from
the local variables of some process, that are not reachadteHead, nor reachable from
some other process. We show that this is impossible for eftttemperations. Our proof
depends on the the following important property of the stack

If there is a chain oh + 1 nodes reachable from thieead variable of either
push or pop or thenext variable ofpop, none of which are reachable from
Head, then there must be at leagpending pop operations. Moreover, thead
variable of each of these pendipgp operations refers to a node in the chain.

Because each node is not reachable fidemad, each node must have been removed from
the stack during a pop operation. If thext field of any node but the last in the chain had
been set taul | , then the chain would be less than- 1 nodes long. Thus, there must be
at leastn pop operations that have removed a node from the stack, byehexecuted the
assignment at P9. These are all pending pop operations.

We apply the above observation to each of the proceduresistéitk implementation.
The only local pointer variable of thpop procedure ishead. If there aren + 1 nodes
reachable from thénead variable of some procegs executing apop operation, but not
reachable fronHead, then there ar@ pending pop operations. One of these belongs. to
Thus ifn+ 1 > 2, there is at least one other pendingp operation whoséead variable
refers to one of the + 1 nodes reachable fropis head variable.

The push procedure has two local pointer variabldsead andnd (the new node).
These variables can be in one of three possible situatiorsiéstribe each in turn:

1. nd->next = nul | . This is the situation during the first iteration through thep
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in the push procedure, before the assignment at H5. If therenatel > 2 nodes
reachable from théead variable of thepush procedure, then there arepending
pop operations witthead variables referring to one of the nodes in the chain.

2. nd- >next = head. This is the situation after the assignment of H5 in Figué 5.
The argument for this situation is just like that for the poes.

3. nd- >next = hwherehis the pointer value of theead variable the last time that
the loop was executed. This is the situation during the staod subsequent iteration
through the loop, prior to the assignment at H5. In this sibua it is possible that
there are three nodes reachable from the local variablég piits h procedure that are
not reachable frorklead or any other local variables (i.end, head andh). However,
if there aren + 1 > 1 nodes reachable froimthat are not reachable frorfead, then
there aren > 0 pending pop operations witihead variables pointing into that chain.
Likewise for thehead variable of thepush operation.

Thus, if the number of nodes reachable from the local vagmlolf thepush procedure
exceeds three, there is always some other pending opevdtioits head variable referring
to one of those nodes.

5.5.2 Optimising Transformed Code

So far, we have stipulated that the only way to copy a locatesgion into a shared variable
is to use an invocation dRC_St or e. As discussed in the next sectioRC_ St ore is a
“heavyweight” procedure that uses a loop around a CAS dper&d atomically modify the
shared reference. There are cases when this heavyweiglitaghpgs unnecessary. It may
be that the location being stored to may only be modified bymwoeess. This is the case
when the location is within a region of memory that has beewlynallocated by a process,
and not yet exposed to other processes. The stores at line@saiti TH6 of Figure 5.4,
where apush operation initialises the newly allocated node are exampie this case, the
newly allocated node has not yet been pushed onto the stadkisanot yet visible to any
other process. Another example is the store at line P9 ofr€i§Lb, wherenul | is written
into thenext field of the node removed from the stack bpap operation. Here, the only
process that can modify theext field is the process that just removed the node from the
stack.

We provide a way to exploit these opportunities for optiti@aby extending the inter-
face with a procedurBC_Unsaf eSt or e that has the same behaviourRE St or e in situ-
ations where only one process can modify the shared referétmveverRC_Unsaf eSt or e
uses a simple write (without a loop) to modify the sharedresfee and can be expected to
be substantially faster th&®C_St or e. A simple way to optimise transformed code is to use
RC_Unsaf eSt or e where-ever it is safe to do so.

RC_Unsaf eSt ore( RC.Ref *xr, RC.(bj *0)
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struct RCRef {
RC_Obj =*ref;
i nt hol dC;

}

struct RCStatus {
i nt sharedC
int |local C

}

struct RC.Obj {
RC St at us st at us;
T v

}

Figure 5.6:

RC_Unsaf eSt ore(r, 0) storeso intor - >r ef . If the value ofr - >r ef before the oper-
ation is notnul | , then the reference count associated wifh - >r ef ) is decremented. If
o ! = nul |l the reference count associated with is incremented.

5.6 The Implementation

We now describe our LFRC implementation. We begin with armadee before proceeding
to a detailed description of the implementation. As beftiressome object typd’, represent-
ing the type of the application level objects that are to Hected.

Overview

LFRC makes use of three typeRC Ref , RC_St at us andRC_(bj , which are presented

in Figure 5.6. The typdRC_Cbj is the type of objects that have an associated reference
count. EacHRC (bj has a field holding an object of tydeand anRC_St at us field. The
RC_St at us field contains two countershar edC (which we call theshared countand

| ocal C (the local coun), the purpose of which is explained below. The tyR€@ Ref
represents shared referenceR@Obj objects. It contains a pointeref of type RC_Obj

*, and a countehol dC (thehold counj.

Our LFRC technique depends on both fields of R@&Ref structure being atomically
modifiable by a CAS operation. For example, if pointers ardiB2on a given system, and
we represent an integer using 32 bits, then we need a 64-tst @&ration to use LFRC on
that system. For this reason, our LFRC technique is not 6dldan. However, as we discuss
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below, incrementing thbol dCfield of aRC_Ref structure has the effect of incrementing
the reference count of the associated object. Becausespfittie possible to increment the
reference count of an object without dereferencing a poiatehe object, and without the
attendant risk that the object has already been deallocated

We explain the LFRC implementation by first describing inwats of the heap and pro-
cesses’ stacks in reachable states of the LFRC algorithnbédle by considering properties
that are guaranteed to hold in reachable states in whiclk @rerno pending LFRC opera-
tions. We call such stategiiescent state’s Let AllocRef s be the set of locations allocated
on the heap that contaRC _Ref structures; and leftackObjs be the set of locations on the
stack that contain allocated pointers of tyg@ Cbj =*. For each non-nulRC_Cbj =0, let
S(o) be the set of shared locations that hold reference®to

S(o) = {RC_Ref =*r € AllocRefs| r->ref = o}
LFRC guarantees that in reachable quiescent states, fomeaenullRC_Cbj * 0 we have:
| S(o) | = o->status. sharedC ()

For each objecd, we call the quantitp- >st at us. shar edCthe shared-reference count
of 0. As we discuss below, an LFRC operation that creates a shefeence to an object
RC_bj * 0 incrementso- >st at us. shar edC, and an operation that destroys a shared
reference decrements >st at us. shar edC.

We define for eaclRC_Obj = o the set of local locations that contain referencesdo
L(o).

L(o) = {RC.Qbj =*=*| € StackObjs| =I|

o}
Define thelocal-reference counof o, writtenirc,, as follows:

Irc, =0->status.local C+ 5 r->hol dC
re So)

So the local-reference countob is distributed betweea’s status field and thiol dCfield
of all the RC_Ref objects that refer t& 0. LFRC guarantees that in reachable quiescent
states, for eacRC_Obj *o0 we have:

| L(o)| = lre, (i)

As we discuss below, an LFRC operation that creates a lofeakrece to an objed®C_Obj

* 0 either increments thbol dC value of one of theRC_Ref objects that refer te o, or
increments- >st at us. | ocal C. An LFRC operation that destroys a local reference to an
object* 0 decrement®- >st at us. | ocal C.

“Itis important to distinguish between quiescent statek@f RC algorithm, and quiescent states of a client
algorithm that uses the LFRC functionality, such as thesfiammed stack of Section 5.5. In particular, a state
that is quiescent for the LFRC algorithm may not be a quigsstate of the client algorithm.
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In nonquiescent states (those states in which at least oR€ldperation is in progress)
these invariants are broken in certain ways. The sharedemée count of each object is
decrementedfter a shared reference to that object is destroyed, and thedstawat of each
object is incrementedeforea shared reference to that object is created. (These madidifisa
all occur withinRC_St or e andRC_CAS operations.) Because of this, the shared-reference
count of each object is alwaygreater than or equal tadhe number of shared references
pointing to that object. Thus, for d@RC Cbj =*o:

| S(0) |< 0->st at us. shar edC (iii)

Similarly, local-reference count values are decrementey after associated references
have been destroyed, and are incremented simultaneouslpmiefore the creation of local
references. However, it is possible for a local-referermentto underestimate the number of
local references to an object. This can occur during executi theRC_St or e andRC_CAS
operations. Briefly, after aRC_St or e or RC_CAS operation over-writes RC_Ref structure
that refers to an objeeto, the process executing the operation addsiiled C value of that
structure too- >st at us. | ocal C. This occurs when the process decrements the shared-
reference count of o. Thus, until thehol dC has been transferred to thecal C, irc,
may underestimaté L(o) |. However, because the shared-reference coumtoofs not
decremented until the point at which this transferral catgd, underestimation of the local-
reference count of an object can only occur when the shafedence count istrictly greater
thanthe actual number of shared references to that object. Ténsll RC_Obj *o:

if Irco <| L(o) | then| S(o) |< 0- >st at us. shar edC (iv)

These properties imply that when thbar edCandl ocal Cof an object are both zero,
there are no references to that object and the object maylékedeThis is because when the
shar edCis zero, thd ocal Cis at least as great as the number of local references to the
object. Assume for somBC_bj +o thato- >st at us. shar edC = 0. By (iii) above,
S(o) = @ and by the definition ofrc, Irc, = 0- >st at us. | ocal C. These two facts and
Invariant (iv) imply that ifo- >st at us. | ocal C= 0, then| L(o) |< Irc, = 0 and thus,
| L(o) |= @. So wheno- >st at us. shar edC= 0 ando- >st at us. | ocal C= 0 the
objecto may be freed.

Reference counting typically associates each object wsthgle reference count, and we
explained our LFRC interface in terms of a single count. W describe how our shared-
and local-reference counts implement a single referengetdor each object. We define the
abstract reference coumtf RC_Obj * 0 to be the sum ofrc, ando- >st at us. shar edC.

In quiescent states, we have the following identity:

| S(0) | 4+ | L(o) |= lrc, + 0- >st at us. shar edC V)

So in quiescent states the abstract reference count daas olunt the number of references
to each object. Further, when both the local- and sharederete counts of an object reach
zero in nongquiescent states, there are no references toljeat either in the heap or from

local variables of the application. Thus, the abstractresfee count is zero precisely when
the object is eligible for deallocation.
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voi d RCLoad(RC.Obj **0, RC.Ref xr) {
L1. RC_Ref a;
L2. RC_.Cbj *oldo := *o0

L3. do {

L4. a = *r;

L5. if (a.ref =null) {
L6. *0 1= null;

L7. br eak;

L8.

L9. } while(!CAS(r, a, <a.ref, a.holdC+1l>));
L10. =*xo0 := a.ref;

L11. RCDestroy(ol do);

}

Figure 5.7: TheRC_Load procedure.

The Implementation

We first describe the implementation of tR€_Load operation. RC_Load( o, r) loads

the pointerr - >r ef into the local location- o, simultaneously incrementing- >hol dC
using a CAS, and so incrementirags local-reference count. This reflects the fact that a
local reference to (r - >r ef ) is created by the operation. Pseudocode forR@e.oad
procedure is presented in Figure 5.7. A progesgecutingRC_Load first saves the current
value of* 0 in the local variableol do (L2). This is so that the local-reference count of
the value over-written byRC_Load can be decremented before the procedure exits (which
is achieved by invokindRC_Dest r oy on line L11). Thenp enters a loop (L3) in which

it attempts to read the pointer >r ef and atomically increment- >hol dC. Proces9
loads the current value of into the local variable (L4). Thenp tests whether the value of
r->ref wasnul | (L5). If it was, p setsxo to nul | and jumps out of the loop (L7). In
the case where- >r ef was notnul | whenp executed line L4p uses a CAS to increment

r - >hol dCwhile ensuring that - >r ef is the same as it was wherexecuted line L4. After
successfully executing the CAB,completes the loop and decrements the local reference
count of* ol do (L11).

We now describe an important procedure
Updat eSt at us that is not part of the LFRC interface, but is used throughbatLFRC
implementation.Updat eSt at us is used whenever thet at us component of an object
needs to be modifiedUpdat eSt at us( 0, scD, | cD) addsscD to the shared count of
*0 and addd cD to to the local count ok 0. Figure 5.8 presents pseudocode for the
Updat eSt at us procedure.

A processp executingUpdat eSt at us first checks whetheo is nul | . If it is, p re-
turns. Otherwisep enters a loop in which it repeatedly loadls>st at us (U4), constructs
a new status value by respectively addsgDel t a andl cDel t a to theshar edC and
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voi d Updat eStatus(RCObj *o, int scDelta, int IcDelta) {
Ul. RCStatus s, news;

if (o =null) return;
do {
S := o->status;
news := <s.sharedC+scDelta, s.l|ocal C+l cDelta>;

} while(!CAS(&(o->status), s, news));
if (news = <0, 0>)
Del et e(bj ect (0) ;

TESSES6R

Figure 5.8: ThdJpdat eSt at us procedure.

void RCStore(RCRef*r, RCObj x0) {

S1. RC.Ref a;
S2. UpdateStatus(o,1,0);
S3. do {

S4. a = *r;
S5. } while(!CAS(r, a, <o0,0>));
S6. UpdateStatus(a.ref, -1, a.holdC; }

Figure 5.9: TheRC_St or e procedure.

| ocal Ccomponents of the values just loaded (U5), and then attetmpise CAS to update
0- >st at us to this new status value. Finally,tests whether the new status value indicates
that no references to the object exist (U7). If this ispinvokesDel et eCbj ect on the
object. Del et eQbj ect is not part of the LFRC interface, but its function is to frée t
memory pointed to by. (In some circumstances, it will delete objects tkhat contains
references toDel et eQbj ect is discussed fully below.)

We turn now taRC_St or e. RC_St or e(r, 0) sets - >r ef too and modifies reference
counts appropriately by decrementing the shared-referenant of the previous value of
r - >r ef andincrementing that efo. Pseudocode for tHeC_St or e procedure is presented
in Figure 5.9. ProcegsexecutingRC_St or e(r, o) firstincrements the shared-reference
count of* 0 by calling Updat eSt at us (S2). (In the case where = nul | the call to
Updat eSt at us has no effect.) Them enters a loop (S3) in which it loads into the
local variablea (S4) and uses a CAS to set >r ef to the new valu® andr - >hol dCto
zero (S5). To see whiy- >hol dCis set to zero, consider Invariant (iv) of Section 5.6. The
size ofL(o) is unchanged, so to maintain the relationship between) | andirc, stipulated
by Invariant (iv), we need to ensure that, remains unchanged. Thus, we set>hol dC
to zero.

Note that once the S3-S5 loop has completeds; ef is the value ofr - >r ef when
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bool RC.CAS(RCRef *r, RC.Obj *old, RCObj *new) {

RC Ref a;
Updat eSt at us( new, 1, 0) ;
do {

a = *r;

if (a.ref I'=old) {
Updat eSt at us(new, - 1, 0) ;
return fal se;

BEIFRRYLE

} while(!CAS(r, a, <new, 0>));
Cl10. Updat eSt atus(a.ref, -1, a.hol dC);
Cll.return true;

}

Figure 5.10: ThdrC_CAS procedure.

the CAS successfully executed. After the loop has compldtexiiocal-reference count of
a. r ef will underestimate the number of local references.ihol dCis nonzero. However,
with the successful CAS$) destroyed a shared reference- o, but has not yet decremented
0- >st at us. shar edC. Thus, both properties (iii) and (iv) of Section 5.6 are presd.
We fix-up the local and shared countsaofr ef by invokingUpdat eSt at us to decrement
the shared count &. r ef and adda. hol dCto the local count o&. r ef (S6).

We now describe the implementation RE_CAS. RC_CAS implements the semantics of
the CAS operation on shar&C Ref targets, while managing reference counts. Pseudocode
for the RC_CAS procedure is presented in Figure 5.RE_CAS works in a similar fashion to
RC_St or e, the only added complexity being that the update must beitonal. A process
p executingRC_CAS(r, ol d, new) firstincrements the shared reference courtrodw
by calling Updat eSt at us( 0, 1, 0) (C2). (As before, in the case whenew = nul |
the call toUpdat eSt at us will have no effect.) This extra reference count is required
the case where this execution RE_CAS succeeds and creates another shared reference to
*new. If this execution ofRC_CAS fails, the reference count must be decremented (which
occurs at line C6).

Next p enters a loop (C3) in which it loads into the local variablex (C4) and checks
whethera. r ef is equal to the expected valoé d (C5). Ifis is not, theRC_CAS fails. In this
casep decrements the shared reference coumtm{C6) and return$ al se indicating fail-
ure. In the case wheie r ef = ol d, p attempts to update. r ef tonewandr . hol dC
to zero using a CAS (C9). Theol dC value is set to zero for the same reason as it is in
the RC_St or e. As with RC_St or e, the shared and local reference countaof ef must
be updated. This is achieved by callibpdat eSt at us(a. ref, - 1, a. hol dC) (C10).
Finally, p returnst r ue, indicating success.

We now describe the implementationRE _Dest r oy, which decrements the local ref-
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voi d RCDestroy(RCObj *0) {
Dl. UpdateStatus(o,O,-1);

}

Figure 5.11: ThdRC Dest r oy procedure.

void RCAIloc(RChj **0) {

Al. if (*xo !'= null)

A2, RC_Destroy(*0);

A4. o := mall oc(sizeof (RC.Ooj <T>));
A5. (*0)->status := <0, 1>;

}

Figure 5.12: ThdrC_Al | oc procedure.

erence count of a given object. PseudocoddrforDest r oy is presented in Figure 5.11. A
process executingRC_Destroy(o) calls UpdateStatus (D1) to decrement
o- >st at us. | ocal C. Note that it is possible for theocal C of an object to fall below
zero. This can occur, for example, when a process createsmbrference to an object by
callingRC_Load, incrementing théol dCof a shared reference to the object, and then calls
RC_Dest r oy without the shared reference being overwritten. Howdvecal Conly falls
below zero whershar edCis greater than zero.

We now describe the implementation RE_Al | oc, which allocatesRC_Cbj objects.
Pseudocode for thBRC Al | oc procedure is presented in Figure 5.12. A progessecut-
ing RC_Al | oc first tests whether the location into which the new referenitebe stored
contains a nomul | pointer (Al). If so, it decrements the local-reference ¢onfthat
pointer by callingRC_Dest r oy. Thenp allocates a neRC_Cbj object (expressed here by
mal | oc( si zeof (RC.Cbj <T>) ) into the given location (A4). Nexp sets thest at us
field of the new object t&0, 1> (A5). This reflects the fact that there are no shared refer-
ences to the new object (a consequence of the semantied dfoc) and that the operation
creates one local reference (in the locatign

We now describe the implementation D&l et ebj ect, which frees the memory

voi d Del et eObj ect (RC.Obj *0) {

OL. for each RCRef field f of *o do

2. Updat eSt at us(&o->f, -1, (o->f).hol dO);
3. free(0);

}

Figure 5.13: Thdel et eObj ect procedure.
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voi d RC_SharedCopy(RCRef*r, RCRefxs) {
S1. RCOhj *x :=null;

S2. RC.Load(&x, s);

S3. RCStore(r, x);

S4. RCDestroy(x);

}
Figure 5.14: ThdC Shar edCopy procedure.
voi d RC.Local Copy(RCObj **o, RCObj *p) {

L1. RC.Obj a = *0;;
L2. UpdateStatus(p,0,1);

L3. *0 : = p;
L2. RCDestroy(a);
}

Figure 5.15: ThdrC_Local Copy procedure.

associated witlRC_Obj objects. Pseudocode for tiel et eCbj ect procedure is pre-
sented in Figure 5.13. As well as releasing memory assaciatth an RC_Obj object,
Del et eObj ect must modify reference counts associated with objects tteatedierenced
by fields of the object being deleted. During an executiodalf et eCbj ect ( 0) , all the
fields of 0 of type RC_Ref are deallocated. This means that the locations contaihioggt
references are removed from the set of allocated locatiogiset eCbj ect only functions
correctly in cases where no other operation can modify thesfigf the object being deleted.
This is acceptable becauBel et eQbj ect is only invoked when some (unique) process
has determined that no references to the object exist.

We now describe th&C_Shar edCopy operation, which copies a reference from one
shared location to another. Pseudocode is presented imeFigli4. A process executing
RC_Shar edCopy first creates a local variable and initialises ittiol | (S1), and then loads
the pointer from the location referenced by its first argutmieto that local variable (S2).
Then it stores that pointer into the location referenceddgecond argument (S3). The new
copy of the pointer created during these operations museseayed, so that the associated
object can be reclaimed. This is achieved by calR@@ Dest r oy (S4), which decrements
the local-reference count of the object. TR@ Shar edCopy operation does not guarantee
that the copy is atomic.

The RC_Local Copy(o, p) operation (Figure 5.15) copigs into the location* 0,
overwriting the previous value at that location. Therefdine operation increments the local-
reference count of p (L1), and decrements that ek o (L2). Between these modifications,
RC_Local Copy simply assigng to * 0, thus effecting the copy.

TheRC_Pass operation (Figure 5.16) first ustlpdat eSt at us to increment the local-
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RC_.Cbj * RCPass(RCObj *o0) {

P1. UpdateStatus(o, 0, 1);
P2. return o;

}

Figure 5.16: Thd&rC_Pass procedure.

voi d RC_UnsafeStore(RCRef *r, RC.Obj *0) {
Updat eSt atus(o, 1, 0);

RCRef a := *r;

xr = <0, 0>;

UpdateStatus(a.ref, -1, a.holdC;

TEGSE

Figure 5.17: ThérC_Unsaf eSt or e procedure.

reference count of the object being passed as an argumenthemreturns a pointer to that
object.

The RC_Unsaf eSt ore(r, o) operation (Figure 5.17) efficiently copi@sinto the
shared location referenced by The operation first increments the shared-reference count
of o (Ul). Next, the operation records the current value 10f so that the reference counts
of r - >r ef may be updated after the location has been modified. TR@nsaf eSt or e
simply assigns the pointer being stored into the shareditotcawith a zerchol dC (reflect-
ing the fact that no new local references are being creaf€dis use of a write to update
the location is the source of the procedure’s efficiency. [bbe and CAS oRC_St or e is
avoided. FinallyRC Unsaf eSt or e updates the status of the object whose pointer was just
overwritten.

5.7 Related Work

Significant work has been done on developing techniquesfdaiming memory from non-
blocking data structures. We first review the techniquegdbas reference counting, before
describing other approaches.

Valois proposed a lock-free reference counting techifigunel applied it to nonblocking
implementations of a queue [Val94] and a linked-list [V3I9B his technique, each object
has a single reference-count field that counts the numbéoaHl(and shared) references to
that object. When a process executes a read operationt ibfids the pointer at the location

5As originally presented, the technique has two bugs. Thegs are explained and corrected in [MS95]. The
essentials of the technique remain the same.
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being read and then increments the associated objectienefecount. Because the memory
may be deallocated between the initial read and the increaiéhe reference count, Valois’
technique can only be used in an environment where it is legaad and modify the refer-
ence count of unallocated memory. This is in contrast to ®tRC technique, which requires
no such guarantee. [Rei04] describes a reference-coutetiingique based on LL/SC that is
similar to Valois’ proposal and shares the same limitation.

The authors of [MS95] report that Valois’ queue implementafVal94], which uses
reference counting, suffers from out-of-memory errorgnewhen the queue is small relative
to available memory (12 elements or less, with a free poolgd00 nodes). Valois' queue
is weakly space-adaptive, and a process delayed durdregaeue operation can prevent
any node added to the queue during the delay from being fretiidhe dequeue operation
completes. This suggests that weakly space-adaptiveithlgermust be used with care.

The authors of [DMMmO1] implement lock-free reference dingp using the DCAS
primitive. Each object has a reference-count field thatésemented whenever a reference
to the object is created. DCAS is used to solve the problenm@timenting this counter
while guaranteeing that the object is not deallocated. A¢sgp loads a value from a shared
location as follows:

1. preads the pointer stored in the location. Call this pointer
2. preads the reference-count field+d.

3. DCAS is used to simultaneously increment the referencatcand to test tha is in
the given location.

4. If the DCAS is successful, the pointeris returned from the operation. Otherwige,
retries the operation.

The requirement that the system provide the DCAS primigwhé most important limitation
of this technique. It implies that the solution is not poirdkean, and can only be used on the
very few systems that support DCAS. A further limitationhiatthe environment must allow
reads from deallocated memory (in step 2), and must allow B@?be applied to a location
in deallocated memaory, but only in the case that the DCAS fail step 3).

As well as containing the first presentation of the Treibaclst[Tre86] presents a tech-
nique for reclaiming memory from nonblocking data strueturEach data structure is equipped
with ause counthat counts the number of operations that have been invblkedot yet com-
pleted. Whenever this count is zero, there are no pendingatpes, and thus any memory
that has been removed from the data structure may be frebe ®ystem. The technique is
simple and reasonably efficient, the only manipulationshafed locations being two modi-
fications to the use count per operation (an increment atdbimbing, and a decrement at the
end). However, no memory can be freed until a quiescentistedached. Thus the technique
only allows the construction of weakly space-adaptive tlyms.

Reference-counting techniques provide more opportriitiéree memory than Treiber’s
proposal. This is because, using reference counts, all methat is not reachable from
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shared references will eventually be freed, so long as noegsofails. In Treiber’s approach,
if no quiescent state is reached, then no memory whatsoevebe freed, even if no pro-
cess fails. (This happens during intervals when new omgratcontinuously begin, before
all other operations have completed.) However, note thdt terhniques can be used to
construct weakly space-adaptive algorithms. Thus, it setiat our notion of weak space-
adaptivity is not precise enough to capture some distinstithat we might want to make
between memory reclamation techniques. We discuss plitgsibfor improvement in the
conclusions to the thesis (Chapter 7).

Herlihy et al. [HLMO02b, HLMMO05] and Michael [Mic04] indepelently proposed gen-
eral techniques that enable memory to be freed from nonisigaffata structures. We de-
scribe the basic idea, while ignoring important subtleinethe implementations, and differ-
ences between the two approaches. Prior to accessing adflogmaory, each process saves
a pointer to the block in an SW/MR register, which we cafjuard and then checks that
the pointer still exists in some other shared location. Rddreeing memory, each process
checks that no guard contains a pointer to any block abous foded. This technique guar-
antees that no memory is accessed after it has been freashgad no attempt is made to
free memory while it is referenced by a pointer in some shireation.

We expect the guard-based proposals to allow traversal iofgue significantly faster
than our LFRC approach. Using the techniques of [HLM03a]MicP4], a memory block
may be accessed after executing two reads and a write in Stecage (reading a pointer,
writing it to a guard, and then checking that the referenitleegists). Compare this with the
use of a CAS to increment a counter on every read in LFRC. CASatipns are typically
much more expensive than reads and writes, and in LFRC,a&e94S operations may be
needed for each read, even when the pointer value being @saddi changed. (This is
because other processes may increment the counter.) Tedsemmance disadvantages are
shared by the other reference-counting techniques, anddassar extent by the use-count
technique of Treiber [Tre86].

The guard-based approach has been used to enable memaragoh from the M&S
gueue [HLMMO2, Mic04], and used in the construction of a kbae reference counting
algorithm [HLMMO5]. The techniques can be used to allow mgmeclamation from a
very broad range of data structures. However, the resudtiggrithms are not population-
oblivious as originally presented. Although they can be enaapulation-oblivious [HLMO3b],
the resulting solutions are still not strongly space-astaptin the M&S queue, in the worst
case, they require space proportional to the number of psesethat ever access the queue,
plus space proportional to the size of the data structureth Bese drawbacks are a di-
rect consequence of the reliance on SW/MR registers. Haweehniques presented in
[HLMO3b] enable the technique to be used to construct weagbce-adaptive data struc-
tures. This is achieved using a counting technique (akiefierence counting) to enable the
deallocation of the SW/MR registers. However, we would expleese techniques to come
with a significant performance cost, compared with the ndabiapproach of [HLMMO02,
Mic04]. We revisit these issues in Chapter 6.
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5.8 Concluding Remarks

The main result of this chapter is a lock-free reference ogriechnique and a transforma-
tion based on this technique that produces algorithms &wgtcte memory from algorithms
that do not. The transformed algorithms are guaranteed twdadkly space-adaptive, and
may be strongly space-adaptive.

The most important limitation of the technique is that it & pointer clean. We ad-
dress this problem in the next chapter, by presenting agroaitan, strongly space-adaptive,
population oblivious implementation of an LL/SC variabMot only is this implementation
pointer clean, but the LL and SC operations \&ige synchronisation primitives, in the sense
defined in Section 5.1.1. Thus, the LL/SC implementation loarused to obtain pointer-
clean versions of algorithms that depend on wide synchatinis primitives. In particular,
we show how to apply the LL/SC implementation to our LFRC teghe, obtaining a gen-
eral pointer clean, space-adaptive and population-a@hl&zimemory management technique
for nonblocking algorithms.



Chapter 6

A Pointer-clean LL/SC

The main result of this chapter is a novel, lock-free, stipspace-adaptive and population
oblivious implementation of LL/SC variables. The implertaion enables the manipula-
tion of values of arbitrary width, while being pointer cleamhat is, the size of the value
over which the LL/SC variable ranges is not limited by prajesrof the underlying system
such as the size of locations that can be atomically modifigtus, in the terminology of
Section 5.1.1 we implementwide LL/SC variable. Section 6.1 discusses the definition of
space-adaptivity, as applied to LL/SC variables, and 8e@i2 describes the LL/SC imple-
mentation.

The LL/SC implementation presented in this chapter is th& fibinter-clean, space-
adaptive, population oblivious, wide LL/SC variable. Maover, to our knowledge it is the
first published [DHLMO04] nonblocking algorithm that usesndynically-allocated memory
to possess all these properties. Because the LL/SC imptati@nenjoys these properties, it
can be used to implement the LFRC technique described irréwops chapter. This means
that most extant lock-free algorithms that are not weakBcspadaptive or that depend on
wide synchronisation primitives can be transformed intcklree algorithms that do not
suffer these limitations. The use of the LL/SC variable ia t#RC technique is described
in Section 6.3.

Our LL/SC algorithm is somewhat complicated, and it will fetimmediately clear to
the reader that it satisfies its specification. Thereforehawe employed the techniques de-
veloped in Part | to verify our LL/SC implementation. Seanti®.5 describes our verification
of the LL/SC implementation.

Section 6.4 discusses previous LL/SC implementations p#met related work. We con-
clude the chapter in Section 6.6.

6.1 Space-adaptivity

In Section 5.1.2, we mentioned that the appropriate notfosizefor an LL/SC variable
should depend on the number of outstanding LL operationsreTare two reasons for this.
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T° d:a

—+ "] d:a d:b

(@) (b)

Figure 6.1. Simple LL/SC implementation. (a) A state of thgpiementation where the
variable contains valua. (b) The effect of the SC operation, changing the value of the
variable fromato b. The dashed line indicates the previous value of the pointer

First, any LL/SC algorithm needs to record which pending lpei@tions can be matched by
successful SC operations, and at least some memory muse@eaistore this information.
Simply recording which oN processes can execute a successful SC operation reflires
bits. All LL/SC implementations consume memory for thisgase. This memory is either
allocated per-operation (possibly on the stack), or pecgss (using single-reader/multi-
writer variables).

Second, because each LL is eventually matched by ah&@,memory consumed by a
pending LL will be released when the matching SC executesttars will be released by the
time the operation that invoked the LL completes. Memorysctoned by each outstanding
LL operation can be accounted for as consumed by the pengargiion that invoked the LL.
Thus, an LL/SC implementation that is (strongly or weaklgase-adaptive, but consumes
memory for outstanding LL operations, preserves the (gtmmweak) space-adaptivity of
any data structure that uses it.

Our LL/SC implementation is-space-adaptive, where the size functida one plus the
number of outstanding LL operations in the state. TherefaueLL/SC algorithm consumes
memory bounded bf plus a constant times the number of pending operations.

6.2 The LL/SC Implementation

A lock-free implementation of a population oblivious andrger clean LL/SC variable is
almost trivial if we assume unbounded memory. The idesstilied in Figure 6.1, is to use
an extra level of indirection to enable operations to datbanges to the LL/SC variable. We
would store values in contiguous regions of memory catledes each containing a value,
and maintain a pointer to theurrentnode. An LL operation would simply read the pointer
to the current node and return the contents of the node itsréde An SC operation would
allocate a new node, initialise it with the value to be stormd then use CAS to attempt

In some contexts, it is desirable for a process to “abandari’laoperation by never invoking a matching
SC. Section 6.2.4 describes anl i nk operation that provides this capability. For the purpodas® present
discussion, it is simplest to assume that each LL is evelgtoatched by an SC.
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to replace the previously current node with the new one. 8g i we never reclaim and
reuse any node, the CAS in each SC succeeds if and only ififiacechange to the pointer
between the CAS and the read in the preceding LL. Thus, theuS¢zeds if and only if the
CAS succeeds. This technique is well-known and used inmgstieat use garbage collection
to provide the illusion of unbounded memory. For example J8R-166 library [JSR], which
provides tools for building highly-concurrent and nonlidiog data structures in Java, uses
this technique.

Our implementation builds on this simple idea, but is coogikd by the need to explic-
itly free and reuse nodes in order to bound memory consumpifiove reclaim (and possibly
reuse) a node too soon, one of several problems can arisé. dfiraccess to a node that has
been reclaimed may cause an error, as discussed in ChapBacbnd, an LL reading the
contents of a node might in fact read part or all of a valueestdny an SC that is reusing the
node. Third, the CAS might succeed despite changes sinqgardkimus read because of the
recycling of a node: the ABA problem.

One possible solution is to apply the LFRC technique preskint the previous chap-
ter, by transforming the unbounded memory algorithm dbedriabove into a version that
recycles storage. This would involve introducing a holdrtoto the location containing
the pointer to the current node, and associating the nodeanshared-reference count. We
could then use these counters to determine when a node wasger Ireachable. We would
have each SC operation allocate a new node to replace the®|éod implement the LL/SC
semantics in essentially the same way as we did under thenpisn of unbounded memory.

The problem with this approach is that the LFRC techniqumftiee previous chapter is
not pointer-clean: the technique requires that the systewige a wide CAS operation that
can atomically compare-and-swap both a pointer and thedmidt. Our LL/SC algorithm
uses a more complicated, but pointer-clean technique &theeffect of modifying a pointer
and a hold count atomically. In Section 6.2.1, we give an\aeer of this technique, before
moving to a detailed description of the algorithm in Secta.2.

6.2.1 Overview

Rather than storing a pointer to the current node in a singlation, we alternate between two
locationspt r 0 andpt r 1. One of these pointers @irrentand refers to a node containing
the current value of the LL/SC variable. This node is callegturrent node The pointer that

is not current is called theoncurrent pointerthe location at which this pointer is stored is
called thenoncurrent addressand the node to which it refers is called thencurrent node
We use a version number (stored independentlptaf 0 andpt r 1) to indicate which of
these is the current pointer: if the version number is eveen pt r O refers to the current
node; otherwisgt r 1 does. For example, if the version number is changed from timur
five, the current pointer before the chang@is 0, and the current pointer after the change
isptrl. A hold countis stored adjacent to the version number and we require titat b
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B ptrO i ptrO —4\
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Figure 6.2: Two configurations of the LL/SC implementatibmboth illustrations the version
number, denoteder , is odd. Therefore, in both illustratiomqs r 1 is the current pointer and
pt r O is the noncurrent pointer. Thekfield of each node contains the value stored in that
node, and thet at us field is used to determine when it is safe to deallocate thendte
dashed arrow in (b) indicates the previous valuetof 0.

these integers be atomically modifiable by a CAS operatiBecause of this, the hold count
can be modified by a CAS which at the same time guaranteeshiatetsion number has
some expected value.

Each noden that has ever been the current node hasealecessorthe node that was
current immediately befora last became the current node. We equip each modéh a
pr ed field, which is guaranteed to point s predecessor, from the point wharbecomes
the current node untit is deallocated.

Our algorithm ensures that the value of the current poisteot changed in any interval
during which the version number does not change. Also, aywrithm ensures that the
noncurrent pointer may change (at most) once during arvaitar which the version number
does not change. During each interval in which the versianbrar has a given value, the
LL/SC implementation is in one of two configurations, whick @lustrated in Figure 6.2:

a the noncurrent pointer refers to the current node’s pesber (Figure 6.2(a)), or

b the noncurrent pointer refers to a node that will becomectiveent node after the
next change of the version number (Figure 6.2(b)). In thiecthepr ed field of the
noncurrent node will refer to the current node.

2For example, in a system with a 64-bit CAS operation, we ckotale 32-bits for the version number, and
32-bits for the hold count. This would allow more than foultibh unmatched LL operations without risk of
overflow, and another four billion successful SC operati@rithout risk of wraparound.
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The algorithm moves from a state matching Configurationdayte matching (b) when the
pointer in the noncurrent address is modified. This can oappken once during any interval
when the version number has a given value. The version nuisloety incremented when
the algorithm is in a state matching Configuration (b), aregbint when this occurs is the
linearisation point of some SC operation. When the versionlver is incremented, its parity
changes, and the previously noncurrent pointer becomesntui hus, we move from a state
matching Configuration (b) to one matching Configuration (a)
Because the value of the current pointer does not changegdarniy interval in which

the version number does not change, an LL operation canndietethe value of the current
pointer using the following protocol:

a read the version number,

b read the value of the pointer that would be current, assyithiat the version number
has not changed from the previous step,

¢ check that the version number is the same as was previobsbneed, retrying if the
version number has changed.

The linearisation point of the LL operation is the point wd#re check of the version number
succeeds. The LL operation completes by returning the ntstd the node that was current
when the operation was linearised.

The check that the version number has not changed while thentypointer was read is
achieved using a CAS operation that simultaneously incnésrtbe hold count. Our LL/SC
implementation maintains the invariant that the hold casrihe number of LL operations
that have been linearised during the interval in which threstit pointer had its present value.
This count is used to ensure two properties about the dedibmcof nodes after they have
been current:

e No nodenis deallocated until there is no outstanding LL operatiat thas linearised
during the interval when was current.

e No noden is deallocated until there is no outstanding LL operatiochsthatn is the
predecessor of the node that was current at the linearisptimt of the operation.

These properties enable a process that has an outstandiogelation to safely access both
the node that was current when the LL was linearised, anchtt’s predecessor. Moreover,
as we explain below, these properties guarantee thatc& s operations can be executed
without giving rise to the ABA problem. If an LL operation iméarised when a nodeis
current, we say that the LL operatigpins n Note that several LL operations can pin each
An SC operation begins by allocating a new node, initiagjsinwith the value to be
stored, and setting itpr ed field to n, wheren points to the node that the matching LL
operation pinned. The SC operation then attempts to writeirtqy to the new node into
the noncurrent address, using a CAS. The expected valugsiCAS is the predecessor of
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the noden (obtained fromn’s pr ed field). Recall thatn's predecessor cannot have been
deallocated since the linearisation point of the matchihgMoreover,pt r 0 andpt r 1 are
only ever over-written with values that have been newlycated. These two facts mean that
if the CAS to the noncurrent address is successful, thendrson number has not changed
since the matching LL, and the state immediately prior toGH#eS matches Configuration
(a). Afterwards, the state matches Configuration (b).

After executing the CAS to the noncurrent address, the gmteat executed the suc-
cessful CAS, or some other process that observes that tbathig is in a state matching
Configuration (b), increments the version number, whicléslinearisation point of the SC
operation. When this version number is incremented, the dolint is set to zero, reflecting
the fact that no LL operation has yet pinned the new node. Theegs that successfully
increments the version number transfers the previous lmldtosalue to &t at us field in
the node that was just made noncurrent, in a similar fastoahe LFRC technique. This
st at us field itself has three fieldd:ocal C, nl Candnl P.| ocal Cis used to count the
remaining outstanding LL operations that pinned this n@del the previous value of the
hold count is added to this fieldl Cis a boolean flag that is set when the hold count value is
transferred (i.e., after the node is “no-longer currerdr any noden, whenst at us. nl C
is true,l ocal Cis guaranteed to be at least as great as the number of regaimistanding
LL operations that pinned. After the linearisation point of each SC, theat us. | ocal C
count of the node pinned by the matching LL is decrementedréfbre, oncst at us. nl C
is true andst at us. | ocal C = 0, the node may be deallocated once it has been deter-
mined that it is not the predecessor of any node pinned by &tamding LL. The third
field of st at us, another flag calleahl P for “no-longer predecessor”, is used to record
this fact. For any nod@e, oncen- >st at us. nl Cis true andn- >st at us. | ocal C =
0, n- >pr ed- >st at us. nl Pis set. Finally, once both these conditions are satisfied, an
n->status. nl P = true, nmay be deallocated. We assume thatghat us field can
be atomically manipulated by the CAS operation. In a 64-¥stem, this would allow25?
LL/SC operation pairs to complete before wrap-around aecur

6.2.2 The Implementation

The overview of the algorithm just given ignores severaldnignt details. We now give a
detailed description of the implementation. Figure 6.3wshthe types used in our imple-
mentation. Each LL/SC variable is accessed through amiostaf theLoc structure, which
has thept r 0 andpt r 1 fields described above. Tlat r y field contains the version num-
ber and hold count in easable recordf typeEnt r yTag. A casable records one that fits
within the maximum word size that can be modified by a CAS uwdion.

We assume that the LL/SC variable being implemented rangaswembers of the type
Dat a. Thed field of theNode structure has this type, and contains the value stored in tha
node. The typdat a may be of arbitrary width. Instances Nbde are also equipped with
thepr ed andst at us fields.

The St at us structure has the integer fieldcal C, and the flagsl C (standing for
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typedef struct {

169

typedef struct {

Node *ptrQ, =ptrl; int ver;
EntryTag entry; i nt count;
} Loc; } EntryTag;
typedef struct { t ypedef struct {
Data d; int |ocal C
Node =*pred; bool nl C;
St at us st at us; bool nl P;
} Node; } Status;

Figure 6.3: Data types used in the LL/SC algorithm. Hm r yTag andSt at us types fit
into 64 bits, so can be atomically accessed using CAS.

Macr o:
I Nl TSTATUS (<0, false, false>)

initialise(Loc L) {
L->entry.ver : = 0;
L->entry.count := 0;
L->ptr0 : = pO;
L->ptrl1 := p1l;
L->ptr0->d : = dO;
L->ptr0O->pred : = ptrl;
L->ptr0O->status := <0, false, fal se>;
L->ptril->status := <0, true, fal se>;

Figure 6.4: Initial state of an LL/SC location, wheil® is the initial value of the location
andpO andp1l are distinct nomul | pointer values.

“no-longer current”) anahl P (standing for “no-longer predecessor”). A node may be freed
when both itsl Candnl P fields are true, and tHeocal Chas reached zero.

Figure 6.4 shows how an LL/SC location is initialised. Thecrod NI TSTATUS gives
the initial value for thest at us of a node. We set the version numbkamt ry. ver to
zero, indicating thapt r O is the current pointet.We setpt r 0 andpt r 1 to be any distinct
pointer values (denotga0 andp1), and initialise thel field of pt r O (the current pointer) to
be the initial value for the location (denotd@). We set thepr ed field of pt r 0 to point to
pt r 1 (the noncurrent pointer). At this point we have an instarf@@anfiguration (a), where
thept r 0- >pred = ptr 1. Itonly remains to set the fields associated with deallooatid

3The choice of initial version number is arbitrary, so longves initialise the corresponding current and
noncurrent nodes according to the parity of the the initeatsion number.
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Macr os:
CURRENT(l oc, ver) (ver%®2 =0 ? loc->ptr0O : |oc->ptrl)

Data LL(Loc *loc) {

L1. do {

L2. EntryTag e := loc->entry;

L3. nyver := e.ver;

L4. nynode := CURRENT(Il oc, e.ver);

L5. } while (! CAS(& oc->entry, e, <e.ver, e.count+1>));
L6. return nynode- >d;

}

Figure 6.5: Macros and the LL implementation.

the appropriate values. That is, we ket>ent r y. hol dCount to O (which indicates that
no LL operation has yet pinned the current node), andsthat us field of » pt r O to <O,
fal se, false> Weseptrl->statusto<0, true, fal se>, indicating that no
LL operation has pinnedt r 1, and thapt r 1- >st at us. | ocal Caccurately reflects this
fact.

Pseudocode for the LL operation is presented in Figure oBgawith a macro called
CURRENT. CURRENT( | oc, ver) obtains the current pointer of locatidroc, assum-
ing thatl oc- >ver = ver. Our implementation makes use pérsistent local variables
These are variables like local variables in that they arg aotessible to one process, but they
retain their value across procedure invocations. In paeiceach process has two persistent
local variablesitynode andnyver , which are set during the LL operation, and retain their
values until the matching SC completes.

A process executing an LL operation obtains a consistemt wiethe version number
and current pointer by executing a loop (L1-L5) in which tmegess reads thent r y field
(L2), obtains the current pointer (L4), and then checks thatentry field has not changed,
using a CAS (L5). If successful, the CAS increments the holaht, which guarantees that
the current node will not be deallocated until after thedigation point of the matching SC.
The loop ends when the CAS succeeds. The version number amhicpointer values are
recorded in the persistent local variablagver andnynode (L3 and L4). Recall that the
value of the current pointer does not change in any interbedre/the version number has not
changed. Thus, once the loop completes, we knowrtiiger andnynode were simulta-

“Programming languages typically do not provide persidtssal variables. However, they can be emulated
usingthread-local storages in Java [JTL], or th@t hr eads framework [But97, Section 5.4]. Alternatively,
persistent local variables can be emulated by using an arragsh-table to map thread or process identifiers to
variable values.
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Macr o:
NONCURADDR( | oc, ver) (ver9® = 0 ? & oc->ptrl : & oc->ptr0)

bool SC(Loc *loc, Data newd) {
S1. Node *new.nd := all oc(Node);
S2. new.nd->d : = newd;
new.nd- >pred : = nynode;
new.nd->status := | Nl TSTATUS;
S3. Node *pred.nd := nynode->pred;
S4. success = CAS( NONCURADDR(I| oc, nyver), pred_.nd, newnd);
S5. if (!success) free(newnd);

S6. while ((e :=1loc->entry).ver = nyver) {
S7. if (CAS(& oc->entry, e, <e.ver+l1l, 0>))
S8. transfer (mynode, e.count);

}

S9. rel ease(nmynode);
S10. return success;

}

Figure 6.6: The SC implementation.

neously the version number and current node of the LL/S@btriwhen the successful CAS
was executed. The LL operation ends by returning the valukd field of the node that
was determined to be current during the loop. The LL openatidinearised at the (unique)
point at whichp successfully executes the CAS at line L5.

Pseudocode for the SC operation is presented in Figure 1616y avith a macro called
NONCURADDR, obtains the address of the noncurrent pointer, for a giveation and version
number. To execute an SC operation, a progeaocates and initialises a new node with
the value to be stored, and stores the node observed astdoyréire previous LL (recorded
in mynode) in the node'spr ed field (lines S1 and S2). Thep,attempts to install the new
node into the noncurrent pointer using CAS (line S4). Theeetgd value for this CAS is
the predecessor of the node that was current when the mgtichiwas linearised (obtained
by reading thepr ed field of mynode). Recall that we cannot simply read the noncurrent
pointer, because this may change while the version numlsea lgaven value.

If the CAS at S4 succeeds, then the SC operation is succeathdugh the operation
is not linearised until the version number is next increradntf the CAS fails, then the SC
operation is unsuccessful, and the SC operation frees thiy mdlocated node (S5), which
has not become visible to any other thread.

If the S4 CAS is successful then the state immediately bafe&€AS matches Configu-
ration (a) and immediately after the CAS the state matchedi@ioration (b). If the S4 CAS
is unsuccessful and the version number has not yet beemirated since the matching LL
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was linearised, then the state already matched Configar@d)ovhen the CAS was executed
(in which case some other SC has successfully executed aAS#4ile the version number
had its current value). Whether or not the S4 CAS is succkgbfi SC operation attempts
to increment the version number. This is achieved using a §1&8 that the version number
component of the expected value in the CAS is the value of #nsian number when the
matching LL was linearised. Thus, if the version humber Hesady been modified at the
point of the S4 CAS, this attempt to increment the version lmemwill fail. If the incre-
ment succeeds, then the last SC operation to successfutlifyntbe noncurrent pointer is
linearised at the point where the increment occurs.

The loop test at line S6 first reads the current value ofghery field, and checks
whether the version number has not changed since the kadian point of the matching
LL, falling out of the loop if it has> The CAS at S7 attempts to increment the version
number, and set the hold count to zero. If this CAS is sucakéshich can be true of only
one SC operation for each version nhumber), then the SC isvibiat r ansf er procedure
to update thest at us field of the node that was current immediately prior to thecessful
CAS. (We explaint r ansf er shortly.) The linearisation point of an unsuccessful SC is
the earliest point at which that SC observes that the versimmber no longer has the value
that it had when the matching LL was linearised (which ocaitiser at S6 or S7). Once
the loop has completed.el ease is invoked, which decrements th@cal Cof mynode,
indicating that there is one less outstanding LL operatitat tvas linearised whemynode
was current.

Figure 6.7 presents pseudocode describingrthleease andt r ansf er operations,
as well as another operati@et NLPr ed and two macro<CLEAN and FREEABLE. The
expressiorCLEAN( post ) , wherepost is aSt at us value, returns true iff for all nodes
n- >st at us = post implies that there are no outstanding LL operations pinmnghe
expressior-REEABLE( post ) returns true iffCLEAN( post) = true andpost.nl P
has been set. In this case, it is safe to free any msieh than- >st at us = post.

The invocatiort r ansf er (nd, cnt) addscnt tond- >st at us. | ocal Cand sets
nd- >st at us. nl Cto true. This is achieved using a loop in which the procedessls the
current value ohd- >st at us (T2), constructs the appropriate new value (T3), and attemp
a CAS to sehd- >st at us to the new value.

Ther el ease procedure is called when an SC operation passes its liaiaripoint and
therefore needs to indicate that the number of outstandingplerations that have pinned the
node has fallen by one. The invocatiorl ease( nd) first copiesnd- >pr ed into a local
variablepr ed_nd (R1), and then uses a loop and CAS to decremént>st at us. | ocal C
(R2-R5). After this decrement has been completed, the duoeechecks whether the result-
ing st at us value isCLEAN, in which case the procedure sets theP flag of pr ed_nd- >
st at us usingset NLPr ed (explained below). Theel ease procedure then tests whether
the new status value IBREEABLE, and frees the node if the test succeeds. It is neces-
sary to readhd- >pr ed (and remember the value in a local variable) prior to decreaimg

The value of an assignmext =exp is the value ok immediately after the assignment.
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Macr os:
CLEAN( post) (post.count = 0 && post.nl Q)
FREEABLE( post) (CLEAN(post) && post.nl P)

voi d transfer(Node *nd, int cnt) {

T1. do {

T2. Statuspre := nd->status;

T3. Statuspost := <pre.local C+tcnt, true, pre.nlP>;
T4. } while (!CAS(&nd->status, pre, post));

}

voi d rel ease(Node *nd) {
R1. Node *pred_nd : = nd->pred,

R2 do {
R3. Status pre := nd->status;
R4. Status post := <pre.local CG1, pre.nlC pre.nl P>

R5. } while (!CAS(&nd->status, pre, post));
R6. i f (CLEAN(post)) set NLPred(pred.nd);
R7. i f (FREEABLE(post)) free(nd);

}

voi d set NLPred(Node *pred._nd) {

P1. do {

P2. Status pre := pred.nd->status;

P3. Status post := <pre.local C, pre.nlC, true>;

P4. } while (!CAS(&prednd->status, pre, post));
P5. i f (FREEABLE(post)) free(predmnd);

}

Figure 6.7: Helper procedures for the LL/SC implementation

nd- >st at us. | ocal C, rather than afterwards, because after the decrement, stirae
process may observed’s st at us value becomind-REEABLE, and thus free the node.

set NLPr ed( pr ed_nd) uses aloop and CASto settheat us. nl Pflag ofpr ed_nd
(P1-P4), and then tests whether the resulting status vekRHEABLE, freeing the node if
the test succeeds (P5).

This concludes our description of the basic algorithm. Veuls certain optimisations
and extensions in Section 6.2.4. We note here that it isghtifarward to generalise this
algorithm to several LL/SC variables. The persistent lo@alablesnyver andmynode
must be managed on a per-LL/SC variable basis. This wouldch&wed by equipping
each process with a map from LL/SC variables (representgubiaters toLoc objects)
to myver /nmynode pairs. Each LL operation would allocate a structure withceptor a
pointer to a node and a version number, and stoneer andnynode in that structure using
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the address of theoc structure as the key. Each SC operation would get the apptepr
values ofmynode andmmyver from the map, and after the SC completed, deallocate the
pointer/version-number péir.

6.2.3 Space-adaptivity

We now state an invariant of the LL/SC algorithm that guagaststrong space-adaptivity. In
every reachable state, every natis in one of the following states:

1. nis free.

2. Some procesp has allocatedh during an SC operation (at line S1), and eitpdras
not completed line S4 wuccess = fal se andp has completed line S4 but not
S5.

3. nis the noncurrent node, bais not the predecessor of the current node. (At this point,
the current pointer has been sentdut the SC operation that did so has not yet been
linearised.)

4. nis the current node.
5. nis the predecessor of the current node.
6. Some process has pinned, but has not completed the invocationradl ease(n) .

7. Some procegs has pinned the noda such thaim- >pred = n(i.e.,nis the prede-
cessor ofm), butp has not completed the invocationroél ease( m) .

Note that these states are not mutually exclusive. For elkamapnode may be in States
4 and 6 simultaneously. The proof of this invariant is a gtiiorward induction on the
executions of the algorithm. Initially, there are only twodes allocatedpt r 0 andpt r 1,
which respectively satisfy States 3 and 4. All other nodedrae. To show that the invariant
is preserved by each step of the algorithm, we argue for dapho the algorithm and each
noden, if nis in one of the seven states immediately before the step thege is some state
containingn immediately after the step.

The following property, which we refer to as thkean propertyis important to this argu-
ment:

For every node, if n has been the current node since it was last allocated, and
CLEAN( n- >st at us) is false, then eithamis the current node, or there is some
process that pinnedn during p's most recent LL operation, arghas not yet
completed the invocationel ease(n) .

®In Section 6.2.4, we discuss what would happen if an SC wemnkéd without a prior matching LL.
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This claim is justified as follows. IELEAN( n- >st at us) is false, eithen- >st at us. nl C
has not been set, o >st at us. | ocal Cis nonzero. In the first case, eitheis the cur-
rent node, or there is some procgssxecuting the r ansf er procedure such thatpinned

n during p's most recent LL and has yet to completel ease( n). For the second case,
recall that whem- >st at us. nl Cis true,n- >st at us. | ocal Ccounts the number of
processes that pinnedbut have not completedel ease(n) .

Fix a noden. Below, we consider all the steps during whicimay “leave” one of the
states, in the sense thais in one of the states immediately before the step, but nttah
state immediately after the step. We show for each such base ts in one of the seven
states enumerated above after the step. This is sufficigmot@ the invariant.

1. The only step during which can leave State 1 is by execution of line Sinifs
returned from the allocation. Afterwardsjs in State 2.

2. ncan only leave State 2 by a successful CAS operation at $vigithe “new” value
of the CAS), or the completion of line S5 (ifis the argument tbr ee). In the first
casenis in State 3 after the CAS. In the second casis,free after the deallocation.

3. n can only leave State 3 by a successful CAS at S7, which inerenibe version
number. Afterwardsn is in State 4.

4. The only step during which can leave State 4 is again by a successful CAS at S7.
Afterwards,nis in State 5.

5. ncan only leave State 5 by a successful CAS at S4, overwritinghe noncurrent ad-
dress. When this CAS is executeds the predecessor of the current node. The process
that executes this CAS pinned the current node during thehimag LL. Thereforen
is in State 7, both before and after the CAS.

6. ncan only leave State 6 when the last progetisat pinnedh completes its el ease
operation. Ifp makesn’s st at us field FREEABLE during the operation, themfrees
nbeforep completes the el ease procedure, placingin State 1. Otherwise, because
(by the clean propertyy's st at us field is CLEAN after p decrements- >| ocal C,
it must be thah- >st at us. nl Pis not set whemp decrements- >l ocal C. There-
fore, eithern is the predecessor of the current node, or there is some maglech
thatm- >pred = n and some process that pinnedm but has not completed the
r el ease operation. In the first casa,is in State 4 after theel ease operation. In
the second case, is in State 7 after the el ease operation. (In factn is in either
State 4 or State 7 both before and after the completion offikeation.)

7. n can only leave State 7 when the last procpdkat pinned the noden, such that
m->pred = n,completes theel ease operation. In this caggmakesns st at us
field CLEAN (by the clean property), and thus involsest NLPr ed onn. If this makes
n's st at us field FREEABLE, thenp freesn, sending it to State 1. Otherwisg's
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st at us field is not CLEAN after theset NLPr ed operation, and therefore, is in
State 6 after the operation.

Thus, for each proceggthat has executed an LL but not completed the matching St #re
at most three nodes (other than the current node and itsqaesta) that are not free: the node
pinned by the LL, that node’s predecessor, and possibly dyrelecated node. Therefore,
the space consumed by an LL/SC variable witbutstanding operations is bounded by a
multiple of 3k + 2 (the two extra nodes being the current and noncurrent nodésjs, the
LL/SC algorithm is strongly space-adaptive.

The space used by LL/SC variables in a state witk outstanding LL operations is in
O(V + k). Furthermore, the space used\Wy.L/SC variables in a system witN processes
is bounded byO(V + N).

6.2.4 Optimisations and Extensions

Our LL/SC implementation can be made more efficient by obsgrvthat if
FREEABLE( post ) holds before the CAS on line R5 or line P4, then the CAS does not
need to be executedyynode can simply be freed because there are no processes that still
have tor el ease this node. Similarly, a process that callsansf er at line S8 will al-
ways subsequently callel ease at line S9. Therefore, we can combine the effect of the
two CASes in those two procedures into a single CAS.

It is easy to extend our implementation to provide a methot&validating” the previous
LL, that is, determining whether its future matching SC ctih succeed. More precisely,
theval i dat e operation returns r ue if and only if no SC operation has completed suc-
cessfully since the most recent LL of the process invokiat)i dat e. The implementation
of theval i dat e operation simply determines whether the version numberchasged
since the linearisation point of the earlier LL, returningue if no change has occurred, and
f al se otherwise.

Hitherto, we have required every LL operation to be matchearm SC. There are ap-
plications in which it is desirable for a process to simplyaadon an LL operation, without
calling a matching SC. So it is desirable to provide a way tliciate that no future SC will be
invoked, after an LL. If a process decides not to invoke a hiatcSC operation for a previ-
ous LL operation, it must instead invoke anl i nk operation. The purpose of thial i nk
operation is to allow the LL/SC variable to free resourcesoeimted with any earlier un-
matched LL operation of the same process. The only semdfeat ef a procesp executing
unl i nk on a given LL/SC variable is to render the effect of any futBfe byp undefined,
until p executes another LL operation. Thal i nk operation can be implemented simply
by invoking r el ease, which indicates that the node which was pinned by the ed8ie
can be deallocated. Note thanl i nk would not be needed in an implementation that did
not allocate memory resources. It exists so that a procesimdzate that memory resources
associated with an earlier LL may be released.

So far we have not defined the effect of a process invoking anrS&location without
having invoked an earlier matching LL. In the case of our LL/®plementation, an SC
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without a matching LL could access memory that has beenabeadid, or could successfully
change the value of stored in the LL/SC variable. Howevés straightforward to modify our
algorithm so that an unmatched SC operation is guarantefed &md returnf al se without
accessing deallocated memory. We introduce another fmrsiscal boolean variable, which
we callmat ched, that we use as follows:

e Each LL operation setsat chedtot rue.

e Prior to executing the procedure defined in Figure 6.6, edchoferation checks
mat ched. Ifitis f al se, then the operation simply returfisal se. If mat ched
ist r ue, then theSC operation continues as normal. After the SC operation cetegl
the code in Figure 6.6, it setat ched tof al se.

To support several LL/SC variables in the application, wellddeep therat ched variable
along withrmynode andnyver in the map from locations to persistent local variables.

6.3 Pointer-clean Lock-free Reference Counting

The LL/SC implementation just described is populationvdbls, pointer clean, space-adaptive
and enables the manipulation of data values of arbitray §izs awide synchronisation
primitive). Because of these properties, it can be usedéniniplementation of the lock-
free memory management technique of the previous chaptrei@ome the problem that
our LFRC technique is not pointer clean. This yields a gdn@@pulation oblivious and
pointer-clean, lock-free memory management technique.

We transform certain loops in our implementation that re&CaRef object and later
use a CAS to conditionally update thef to a new value. Within these loops, we replace
the read with an LL operation and the CAS with an ST make this work, we must change
the type used to represent shared references. Thereforedefine theRC_Ref type to
be the type of LL/SC variables that range over pointer/faaldnt pairs. We declare a type
Ref Pai r

typedef struct {
RC_.Cbj =*ref;

i nt hol dC,

¥

This type is calledRC_Ref in Chapter 5. We now redefifeC_Ref to be the type of.oc
structures defined in Figure 6.3, where D&t a type is identified withRef Pai r .

Figure 6.8 presents the implementationR& Load using LL/SC. The implementation
is just like that in Figure 5.7 on page 154 except for two dédfeces. On line L4, we use an
LL operation to read the pointer and hold count containethe@tdcationr . On line L9, we

"It is frequently straightforward to transform a nonbloakialgorithm that depends on CAS into one that
depends LL/SC operations, using this approach.
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voi d RCLoad(RC.Obj **0, RC.Ref xr) {
L1. Ref Pai r a;
L2. RC_.Cbj *oldo := *o0

L3. do {

L4. a .= LL(r);

L5. if (a.ref =null) {
L6. *0 1= null;

L7. br eak;

L8.

Lo. } while(!'SC(r, <a.ref, a.holdC+1>));
L10. =*xo0 := a.ref;
L11. RCDestroy(ol do);

}

Figure 6.8: TheRC_Load procedure, modified to use LL/SC.

use an SC operation to attempt to increment the hold couhisdbtcation, retrying if the SC
fails.

The RC_CAS and RC_St or e operations must also modififC_Ref objects in shared
location. Both use a pattern similarRC_Load: each operation reads the current value of a
RC_Ref , and later executes a CAS to modify tRE Ref , repeating the read and CAS until
the operation is successful. We replace each such read wlith aperation, and each such
CAS with an SC. The resulting implementations are presenté&igures 6.9 and 6.9. All
other LFRC operations (includingpdat eSt at us) are implemented as in Section 5.6.

Unfortunately, this approach requires (at least) one LL{&@ for everyRC Load,
RC_CAS andRC_St or e, which implies the use of multiple CAS operations, as welaas
allocation. This is likely to increase the latency of openas substantially, relative to the
original implementation presented in Chapter 5.

6.4 Related Work

Moir [M0i97] presents a simple and direct wait-free LL/SCpl@mentation that uses CAS,
based on version numbering. The algorithm is lock-free a®d onlyO(V +k) space (where
V is the number of variables akds the number of outstanding LL operations). Except when
the variable is initialised (when space must be allocatedHte variable’s current value),
Apart from the memory containing the version number and #reable’s value, all memory
allocated remains accessible to only one thread. Unforlnahe algorithm is not pointer
clean.

The only previous pointer clean, CAS-based implementadidrl/SC is due to Jayanti
and Petrovic [JP03]. While their implementation is waédf it require©(VN) space (where
N is the number of processes that can access the LL/SC vasjables uses onl@(V + N)
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bool RCCAS(RCRef *r, RCObj *old, RCObj *new) {
Ref Pai r a;
Updat eSt at us(new, 1, 0) ;
do {
a = LL(r);
if (a.ref I'=old) {
Updat eSt at us(new, -1, 0) ;
return fal se;

B8AZEARLRA

}
} while(!'SC(r, <new, 0>));
C10. Updat eSt atus(a.ref, -1, a.hol dC);
Cll.return true;

}

Figure 6.9: TheRC_CAS procedure, modified to use LL/SC.

void RCStore(RCRef*xr, RCObj *0) {

S1. RefPair a;

S2. UpdateStatus(o,1,0);

S3. do {

S4. a .= LL(r);

S5. } while(!SC(r, <o,0>));

S6. UpdateStatus(a.ref, -1, a.holdC); }

Figure 6.10: ThdrC_St or e procedure, modified to use LL/SC.
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space in the worst case. Furthermore, the implementatifiPid3] is not population oblivi-
ous or space-adaptive. These limitations are all relatduetéact that their technique uses one
single-writer/multi-reader variable for each process AndEC variable implemented. When
a process executes an SC operation, it stores the new vale gingle-writer/multi-reader
variable, and then attempts to modify a shared location a&toath processes will observe the
new value as the abstract value of the LL/SC variable.

More recently, Jayanti and Petrovic have developed a wedtH£L/SC implementation
that is both pointer clean and population oblivious [JB05[he new implementation em-
ploys single-writer/multi-reader registers in a fashioniir to their earlier proposal [JP03].
However, these registers are managed within a structuted@dynamic array that allows
for the number of registers to be increased dynamicallys @izhieving population oblivi-
ousness. The resulting algorithm us@8/2? + N) space. Their dynamic array is an array
that provides wait-free concurrent operations, and tHatwal writes to occur at any index,
expand ing as necessary. The implementation of the dynamaig presented in [JP05] is not
space-adaptive, and it is not clear how a space-adaptivierngmtation could be constructed.

Anderson and Moir [AM99] also describe a wait-free implemagion of wide LL/SC
variables that require®(VN?) space. Again, their algorithm is neither population ollis,
nor space adaptive.

The general techniques for lock-free memory managemetinedtin Section 5.7 of
Chapter 5 can be used to implement lock-free LL/SC variabiteswuch the same way as
garbage collection can. However, none of the extant memawagement techniques are
both population oblivious and space-adaptive, so any Llif§lementation based on them
inherits these limitations. However, because the memagagement techniques do not
involve modification of shared counters during each opamnatihey are likely to result in
significantly faster LL/SC implementations.

6.5 Verifying the LL/SC Implementation

In this section, we describe the verification of the LL/SGoaitnm given in this chapter. This
verification uses forward simulation only, not requiringckaard simulation. The simula-
tion relation used is complicated relative to the forwamdation of Chapter 3, reflecting
the complexity of the algorithm itself. However, the tedugs used are fundamentally the
same. For this reason, we do not describe the verificatiors imach detail as we did the
verifications of Chapters 3 and 4.

As with the M&S queue, the LL/SC implementation uses dynaihi@llocated memory.
However, unlike the M&S queue, it releases that memory badtkd system. Therefore, we
must use a heap model in which dereferencing an unallocatetep causes an error. This
reflects the fact that in most systems, accesses to un@tbcaémory are illegal. Such a
model is described in Section 6.5.2. The primary intereshim verification (apart from the

8A population aware version of this algorithm is presentefl#07]
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assurance it provides that our LL/SC implementation isea)ris this heap model, and the
implications that it has for our simulation proof.

The present verification uses only two automatasAut modelling the specification, and
ConcAut modelling the implementation. Because there is no prapkieearisation, we do
not need a backward simulation or an intermediate automdtba specification automaton
AbsAut is the canonical automaton for the LL/SC datatype, both bictv are described
in Section 6.5.1. The implementation automat@ancAut models the LL/SC algorithm
directly, and is explained in Section 6.5.3. We define a fodwamulation between the two
automata as defined in Section 6.5.4. A proof has been cotetrusing the PVS proof
assistant that this relation is in fact a simulation.

6.5.1 The LL/SC Datatype and the Abstract Automaton

An LL/SC variable contains a current value (taken from somte/3, and provides an LL
operation that reads the current value and an SC operatmtbdifies the current value,
assuming there has been no successful SC in the intervatéetive process’s SC and its last
LL. Lets Vars = V x P(PROC). An LL/SC variable xc Vars is a pair(X.val, X.procs),
wherex.val € V andx.procs C PROC. Informally, X.val is the current value of the vari-
able, andk.procs is the set of processes that may currently execute suct&3foperations.
We model LL operations using the functidnl. : PROC x Vars — Vars x V defined by

LL(p,x) = ((x.val,x.procs U {p}), x.val)

We model SC operations using the functisy’ : PROC x Vars x V. — Vars x bool
defined by

[ ((v,@),true)  if p € x.procs
SCpx V) = { (x, false) otherwise
Given an initial valuevsy, we define the initial states of the LL/SC datatype to be
Init = {x: Vars | xwal =Vy A X.procs = &}

Note that each operation of the LL/SC datatype depends oimtio&ing process, but
we wish to constrain our specification automaton so that nogss may invoke an LL or
SC operation of a different process. This constitutes atcaing on the transition relation
of the abstract automaton. One way to express this consisaia give the invocations of
the LL/SC datatype the invoking process as a parameter, @mgtrain the precondition of
the corresponding invocations of the abstract automatdhatdhe process parameter of the
LL/SC invocation matches the process-index of then altstnatomaton. However, we feel
that it is simpler to define the invocations of the LL/SC dgtat so that they doot take a
process as an argument, and then definedtsteps of the abstract automaton so that they use
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l_invy, : sc_invp(v)

prepe, = idle prepc, = pe_pending

eff pc, == ll_inv eff pcy := sc_inv(v)

do_ll,, : do_scy, :

prepcy = ll-inv prepc, = sc_inv(Vv)

eff pc, := li_resp(ma(LL(p,var))) eff pc, := scresp(ma(SC(p,var)))
var := 71 (LL(p,var)) var := 71 (SC(p,var))

ll_resp,(v) : sc_resp,(b) :

prepc, = ll_resp(V) prepc, = sc_resp(b)

eff pc, := pc_pending eff pe, = idle

Figure 6.11: The transition relation sbsAut

the process-index of tr@o action as the first argument to thd. or SC functions. Therefore,
we define the invocations and responses of the LL/SC datatyse

I = {li_inv} U {li_resp(v) | ve V}
R ={li_resp(v) | ve V}U {sc_resp(b) | b € bool}

Because of this departure from the standard constructigdgheoflatatype, we do not define
an update function for the LL/SC. We use thé and SC functions directly in the transition
relation of the abstract automaton.

There is a second constraint on the executions of the abstwammaton, which can be
regarded as an extension of the well-formedness critefi@ection 2.2.2. Each process must
invoke the LL and SC operations alternately. That is, SC nrdy be invoked by a process
p in an execution whep's most recent operation @fis an LL; and LL may only be invoked
by p whenp’s most recent operation (if it exists) is an SC. We ensuretti@mexecutions of
the abstract automaton satisfy this constraint by introdpan extra program counter state
pc_pending. When a procesp completes an LL operatiomc, is set topc_pending, and
the precondition of transitions representing the invacatf SC operations by asserts that
pcp = pe-pending.

Apart from the two caveats just describes, the abstrachaattmAbsAultis just like the
canonical automata used so far in this the8issAuthas a shared variabler that holds the
current value of the LL/SC variable. The initial statusfdifsAutare defined as follows:

startapsaut= {ab | ab.var € Init AV p e ab.pc, = idle}

The transition relation is presented in Figure 6.11.
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6.5.2 The Heap Model

The heap model that we present here is much like the model @t€h3, but is augmented
with an operatioryree to free pointers, as well as a way to represent the fact thiafetenc-
ing or freeing pointers that are not allocated can resulhiaraor. We writePOINT E R for
the set of pointersH EAP for the set of heaps, anBlI ELD = {data, pred, status} for
the set of fields. A heap € HE AP is a triple of the form

(h.unallog h.evalfn h.error)
where

e h.unallocC POINTFER is the set of unallocated pointers. We require thatalloc
be infinite.

e hevalfn: POINTER x FIELD — POINTUER returns the value of each field of
each node,

e andh.error € bool is a flag used to distinguish error states of the heap fronmardi
states. That idh.error = trueiff some unallocated pointer has ever been dereferenced,
or passed tgree.

We use several functions that access and modify the statdhed, and the values of the
various fields. As has already been mentiongtke deallocates a node. Another function
load loads the value of a field, andore updates the value of a field. Finallew allocates a
new node. We axiomatise these functions so that when theib@apn error state (therror
flag is set) the functions are undefined. Figure 6.12 preseese axiomatisations.

Note that these functions may be total (in fact, when forsealiin PVS they are total).
They are undefined on some heaps in the sense that we canchtdmanything about the
values that they take on those heaps.

The constraint thatunalloc be infinite allows us to avoid the additional complexity
present in the verification of Chapter 3, where we made eagbeps loop during alloca-
tion if there was no available pointer.

6.5.3 The Concrete Automaton

Our construction or the concrete automaton, caleticAut from the code is much like that
of Chapter 3. A statesof ConcAuthas a program-counter variataiepc, for each process,
and a heagsh. Furthermoregshas arentryvariablecsentry € N x bool x bool modelling
theent ry value of the LL/SC algorithmcsentry.count models thd ocal Cfield of the
algorithm,csentry.nlC models thenl Cflag, andcsentry.nlP models thenl P f | ag.

The initial states ofConcAutare defined in Figure 6.1 oncAuthas the same external
actions asAbsAut We define the internal actions somewhat differently to tlas we did
in Chapter 3. We combine some of the steps of the algorithmpatrs, such that each pair
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free(h,pt) = h' =
(=h.error A pt & h.unalloc =
h = (false h.unalloc U {pt}, h.eval))
A
(h.error Vv pt & h.unalloc =
h'.error)

load(h, pt,f) = (W, pt) =
(=h.error A pt & h.unalloc =
h' =hApt = h.eval(pt,f))
A
(h.error v pt € h.unalloc =
h'.error)

storgh, pt,f,x) = h' =
(=h.error A pt € h.unalloc =
h' = (h.error, h.unalloc, h.eval ® {(pt,f) — x}))
A
(h.error v pt € h.unalloc =
h'.error)

newh) = (', pt) =
h.error = h'.error
AN
(—h.error =
pt # null A
pt € h.unalloc A
W .eval = h.eval A

h.unalloc = h.unalloc \ {pt})

Figure 6.12: Axiomatisations of the heap functions.
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startconcaur= (6.1)
{cs | csentry= (0,0) A (6.2)
valid_pointer(csh, ptr0) A (6.3)
valid_pointer(csh, ptr1)A (6.4)

csh.eval (ptr0, statug = INITSTAT A (6.5)

csh.eval (ptr0, pred) = ptr1 A (6.6)

csh.eval (ptrl, statug = (0, true, false) } (6.7)

Figure 6.13: The initial states @oncAut

contains some local operation, and at most one read, wriBA& operation. For example,
ConcAuhas an actiotirans_3-4,, modelling the execution by some processf the lines T3
and T4 of thet r ansf er procedure in Figure 6.7. This constitutes a local operatiba
construction of a newt at us value), and one CAS.

This technique slightly reduces the number of actions tleatnwst consider, and helps to
reduce the complexity of the verification. However, it metrat ConcAutdoes not directly
model all the interleavings possible in the actual alganitihat is, we only model executions
in which certain pairs of actions are always adjacent, whdadt, they may be separated by
the actions of other processes. We justify this on the bhatsal but one action of each such
pair may be reordered arbitrarily with the actions of allestiprocesses. The actions that
model more than one step of the algorithm can be identifiedh fitee fact that they contain
more than one line number.

As in Chapter 3, we define a notation to use the heap functioasriore natural fashion.
Forcs e statesConcAupt € POINTER andf € FIELD, let

ptf = load(cs.h, f)

6.5.4 The Simulation Relation

In this section we describe a forward simulation relatiammfrConcAutto AbsAut the ex-
istence of which guarantees that the trace€ohcAutare traces oAbsAut This is by far
the most complicated simulation relation presented sonféine thesis, but it is constructed
along the same lines as the forward simulation of Chapteh@. most interesting aspect of
the verification is how we show that no unallocated pointeleieeferenced.

Figure 6.19 presents the simulation relati®R which is an existential quantification
over five functions. The predicatel, also in Figure 6.19 describes the properties of these
functions, and their relationship to related states ofwwedutomata. Each of these functions
records some aspect of the history of an execution. The doofaéach function iN, and
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l_invy, : l_respy(v) :
prepc, = idle prepc, = perespll A
eff pcp :=pcll 2.3 pt = 7 (load_data(h, mynodg))

eff pc, 1= pc_pending,
h := 71 (load_data(h, mynodg))

ll2_3,: ll_4yp - ,
prepc, = pcll_2_3 prepc, = pcll_4
eff pc, := pell_4, eff pcp := pc_ll_s,

Il_e, := entry, mynodeg :=

myvep, := entry.ver CURRENT_PTR(s, myvep)
l_5p :

prepc, == pell_5
eff let suc= (ll_g = entry) in
pc:= suc? pc_respll
s pell 2.3,
entry :=
suc? (entry.ver,
entry.count+ 1)
:entry

Figure 6.14: The LL transitions @oncAut



sc_invp(v) :

prepc, := pcpending

eff pc, := pe_sc_,
sc_newdp :=V

SC_lp :

prepc, = pcsc.1

eff let (newh pt) = new(h) in
pcp := pesc.2a,
h := newh
sc.new.nd, := pt

sc_2by, :
prepc, = pc.sc2b
eff pc, := pcsc2c,
h := store_pred(h,
sc_new.nd,, mynodeg)

sC_3p :
prepc, = pc.sc3
eff pc, := pcsc4,
(h,pred.nd,) :=
load_pred(h, mynodg)

SC_BHp :

prepc, = pc.sc.5

eff pc, := pc_sc6,
h:= —scsuccess?

free(h, sc.new.nd,)

:h

6.5. VERIFYING THE LL/SC IMPLEMENTATION

sc_respp(b) :

pre pc, := PC_resp.scA
scsuccess=b

eff pc, = idle

SC_2CLp :
prepc, = pc.sc.2a
eff pc, := pc_sc.2b,
h := store data(h,
sc.new.nd,
sc.newg)

SC_2Cp .
prepc, = pcsc.2c
eff let newh= store stat(h,
sc.new.nd,
INITSTAT) in
pCp i= PC_SC.3,
h := newh

sC_4p :
prepc, = pc.sc4
eff let (newpt, newptrl, sug =
CAS_NONCURADDR
(s, myvep,
pred.nd,,
sc.new.nd,) in
PCp i= PC_SC.,
sc.success := true,
ptr0 := sc.new.nd,
ptrl := newptr

sc_6y :

prepc, = pc.sc6
eff pc, := pcse.7.9,
sce, := entry

Figure 6.15: The SC transitions GoncAut(continued in Figure 6.16).
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SC_T7-9-N0p : SC_7-9-yesy :

prepc, = pesc.7-9 A prepc, = pe.sc.7-9 A
SCep.ver # myvep SC.ep.ver = myvep A

eff pc, := pcrel 3 sce, = entry

eff pc, 1= pctrans 2,
entry:= (sc.e,.ver+ 1,0),
trans_count, := sc_ey.count

sc_7-9-loopy, :

prepc, = pc-sc.7-9
SC.€p.ver = myvep A
sc.e, # entry

eff pc, := pcsc6

Figure 6.16: The SC transitions GoncAut(continued from Figure 6.15).

each function should be thought of as taking eidtiat has been the version number at some
earlier point in the execution to some process or pointerttad a special relationship with
the version number. For some executiorCaincAuf leti be a natural number such thatas

the version number at some point in the execution.

o buffer(i) is the value of the pointer that was current wimemas the version number.

e winner(i) is the process whose successful SC operation mattie current version
number.

e If i is no longer the version numbéransferexi) is the process that executed the suc-
cessful CAS operation that changed the version number iftori+ 1, and thus trans-
ferred the hold count frorentryto buffer(i).

¢ If the nIP flag of buffer(i) has been sesetteli) is the process that set that flag.

o If buffer(i) has been freed singewas the version numberleasefi) is the process
that calledfree on buffer(i), releasing its memory back to the system.

As we shall see, these functions are applied throughoutithelaion relation to constrain
properties of the nodes, and various processes. Furthermsing these functions, it is easy
to show that there is a unique process that setalthlag of each node, and a unique process
that releases each node.

As with previous verifications, the transfer condition oé tfefinition of forward simula-
tion allows us to define a new function for each poststatehabthe properties listed above
can be preserved. In what follows, we use the conventionitHats one of the function
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trans_2y :
pre pc, = pc.trans 2
eff pc, 1= pctrans 3.4,
(h, prep) :=
load_stat(h, mynodeg)

rel_3, :
prepc, = pcrel3
eff pc, := pcrel 4.6
(h, prep) :=
load_stat(h, mynodeg)

rel_4-6_yes, :
prepc, = pcrel4-6 A

pre, = statugh, mynodg)
eff let pos}, = (prey.count— 1,

trans_3_4p :
prepc, = pc.trans 3.4
eff let post, = (prey.countt-
trans_count,
true, prey.niP) in
let (newh sug = CSTATh,
mynode,
prep, posy in
pcp i=suc? pcrel_3 : pctrans2,
h:= newh

rel_4_6_noy :
prepc, = pcrel-4-6 A

pre, # statugh, mynodg)
eff pc, := pcrel3

rel_7, :
prepc, = perel-7
eff pc, := pcrespsc
h:= FREEABLE(rel_posp) ?

prey.niC, prey.niP) in free(h, mynodg)
let newh= 7, (CSTATh, mynodsg, :h
prep, pos) in
pep := CLEAN(posY 7 pc_set 2
. perel 7,

rel_pos}, := post
h := newh

Figure 6.17: The r ansf er andr el ease transitions ofConcAut
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set_2y, :
prepc, = pc.set2
eff pc := pcset3. 4,
(h, prey) =
load_stat(h, pred.nd,)

set_pyp :
prepc, = pc.sets
eff let post= (pre,.count
prey.niC, true)in
pep i= perel-7,
h:= FREEABLEposY) ?
free(h, pred.nd,)
. h

CHAPTER 6. APOINTER-CLEAN LL/SC

set-3-4p :
prepc, = pc.set3 4
eff let post= (prey.count
pre,.niC, true) in
let (newh sug) =
CSTAT, pred_nd,,
CSTAT prg, posi in
pcp = suc? pcsets
: pcset2,
h := newh

Figure 6.18: Theset NLPr ed transitions ofConcAut
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SRas cs) =
3 buffer, winner, transferer setter releasere
rel(as, cs, buffer, winner, transferer setter releasey

rel(as cs buffer, winner, transferer, setter release) =
—error(h(cs)) A
rc_ok(cs buffer, transferep A
buffers ok(as, cs buffer, winner, transferep A
ll_lin_ok(as cs buffer, winner) A
sclin_ok(as cs buffer, winner) A
persistentsok(cs, buffer) A
distinctnessok(cs buffer, transferer setter, releasel A
ll_ok(as cs) A
sc.ok(as, cs) A
trans_ok(cs transferep A
set ok(cs buffer, transferer setten A
releaseok(cs release) A
statusok(cs buffer, transferer setter releasel)

Figure 6.19: The simulation relatid®R and the predicateel.
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variables whose existence is assertedSBythenf’ is the new function used to witness the
variablef in SRover the abstract and concrete poststates. For each imaraitConcAut cs
-2, ¢<, and abstract statssuch thaSRas cs), we choose functions to witneS&Kas, cs)

as follows:

e If a = sc_4 yes_p for somep, (modelling successful execution of the CAS at line S4),
then

buffer = buffer& {csentry.ver 4+ 1 — cssc.new.nd,}
Otherwisebuffer = buffer.
o If a = sc_4_yes, for somep, then
winner = winner® {csentryver + 1 — p}
Otherwisewinner = winner.

o If a = sc_7_9_yes, for somep (modelling successful execution of the CAS at line S7),
then

transferef = transferer® {csentryver — p}
Otherwisetransferef = transferer

o If a=rel_4-6_yes, for somep (modelling the successful execution of the CAS at line
R6) and the value afs .mynodgﬁstatusis CLEAN then

settef = setter® {csmyver, — 1 — p}

Therefore p becomes the setter for the node that was current prior tartearisation
point of p's earlier LL operation. For othe, settef = setter

o If a=rel_46_yes, for somep, and the value oté.mynodggstatusis FREEABLE
then

releasef = releaserd {csmyvep — p}

Otherwiseeleasef = releaser

We elaborate on the importance of these functions shortiynBw, we remark that the func-
tionstransferer, setter andreleaser make it easy to prove that for each version number,
there is only one process that will perform theansf er ,set NLPr ed orf r ee operations
on the current node of that version number.

An important concept in our description of the algorithm iecBon 6.2 was the notion
of pinninga node. Figure 6.21 presents the predigaiening that formalises an analogous
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rc(cs, buffer, transferer i) =

(

0 csentryver < i
csentry.count i= csentry.ver
buffer(i)=3 statuscount+

6.8
trans counics)(transfereri)) during_transfer(cs transfereri) ©8)
buffer(i)-3 statuscount Ip e pinning(cs i)(p)
0 otherwise

\
Figure 6.20: The reference-counting function

notion forversion numbersA processp pins iat every point during the interval beginning
with the successful execution of the CAS at line II44,,), and ending with the successful
execution of the CAS at line R5¢l_4_6_yes,), and when = myvep. This is expressed
using program counter values.

One key difficulty in this verification is being able to provet no read, write or CAS
to the heap dereferences a pointer that has been deallod&tedchieve this with the help
of a reference counting function, which is defined over cetecstates using the: f fer and
trans ferer functions. This function does not assign reference countsoties, rather, it
assigns reference counts to natural numbers. As we shalhgesimulation relation asserts
that, for each dereference in the algorithm (with some max@eptions), the version num-
ber during the interval when the node was current has a noneéerence count. Further,
the simulation relation asserts that no node is deallocai¢itl after the reference count of
it's corresponding version number has reached zero. Tleeemée-counting functionc is
defined in Figure 6.20.

For each natural, the reference count afis zero until the version number reaches
While i is the version number, its reference count is the value ofntild count. While
the hold count is being transferedtof fer(i) by the procesgrans ferer(i), i's reference
count is the local count dfuf fer(i) plus the value thatransferer(i) is about to add to
buffer(i)— count. (The predicateluring_transfer describes this interval formally, and is
presented in Figure 6.21). Once this transfer has been alistied,i’s reference count is

count

the value ofbuffer(i) =", until no process is pinning at which pointi’s reference count

becomes zero. Note that because each natural number isyenhgitsion number once in any

execution, the reference count cannot become nonzeratladier are no pinning processes.
Fix a transitioncs —= c<. It is straightforward to prove the following:

o If a= sc4-yes), for somep, thenrc(cs, buffer, transferef, cs .entry.ver) = 0.
e If a=li_5, for somep, andcs.li_e;, = csentry,

rc(cs buffer, transferer csmyvep) + 1 = rc¢(cs, buffer, transferef, cs.myvep)
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pinning(cs i) ={p |
myver(cc)(p) =1 A
(CSpcp = pcresp-ll V €spc, = pe_pending V
CSpcp = pesc-1 V CSpcy = pe-sc2a V
Cspcp = pe_sc_2b Vv CSpcp = pe-sc_2¢ V
CSpcp = pe_sc_3 V CSpcp = pe-sc4 V
CSpcp = pe-sc_5 V CSpep = pc_sc_6V
CSpcp = pe_sc_7-9 V CSpcy = pe_trans_2 V
CSpep = pe_trans_3-4 VvV CSpcp = pe_rel_3 Vv
cspc, = pe_rel_4.6)}

Figure 6.21: The setinning of processes that pin a natural number.

during-transfer(cs transferer i) = (6.9)
lettr = transfere(i) in (6.10)
(cspey = petrans 2 vV (6.11)
CSpcy, = petrans3_4) A (6.12)
csmyveg =i (6.13)

Figure 6.22: Theluring transfer predicate.
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rc_ok(cs buffer, transferep = (6.14)
Vi e: rc(cs buffer, transfereri) =| pinning(cs i) | (6.15)

Figure 6.23: Thec_ok predicate.

o If a=rel_4 6_yes, for somep, then

rc(cs buffer, transferer csmyvep) — 1 = rc¢(cs, buffer, transferef, cs.myvep)

e No other action changes the valuesef at any otheri € N. In particular, ifa =
trans_3—4, andCSmynodepi%status: csprey, then the reference count eémyvep
(and all other integers) is unchanged.

Equipped with the functionsc andpinning, we are in a position to define an important
property that enables us to prove that no dereference tdooatdd memory occurs. Fig-
ure 6.23 defines thec_ok predicate, which states that the function accurately counts the
number of processes that have pinned each natural number.

After the reference count of a numbiehas fallen to 0, certain operations may still be
applied tobuffer(i). In particular, buffer(i)— statusnlP may be set during aet NLPr ed
operation, ouf fer(i) may be passed tfreeduring ar el ease or set NLPr ed oper-
ation. In each case, we need to show that when these operatioar,bw f fer(i) is still
allocated. The primary goal of thet_ok andrelease_ok predicates is to state properties
of the algorithm during those operations that allow us toverthat no node is freed when
it's associated version number has a nonzero referencd, @anohmoreover, that no node is
freed while a process executisgt NLPr ed orr el ease might access the node. (Figure
6.24 presents theet_ok predicate. Auxiliary predicates are presented in Figu2é.Grigure
6.26 presents theelease_ok predicate.)

The status_ok predicate is presented in Figure 6.27. This predicate ibescproperties
of thest at us field of each node, during the interval where the version remsbrrespond-
ing to the node isictive A numberi is active from the point when= entry.ver — 1 until the
point immediately beforéuffer(i) is passed téree

The predicatéuf fers_ok, presented in Figure 6.29, describes the state oktliey
field, and the nodes referenced jy-0o andptri. In particular, this predicate describes the
two configurations of the algorithm that are illustrated igufe 6.2 on page 166. It also
asserts that théat a field of the current node contains the same value as the LL#gi@hle
in related states of the abstract automaton.
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setok(cs buffer, transferer setten =

set okl (cs buffer, transferer setten A (6.16)
setok2(cs) (6.17)
(6.18)
set okl (cs buffer, transferer sette) =
Vp e (in_sefcs p) A —slow.sefcs p) = (6.19)
csmyvep < csentryver A (6.20)
p = settefcsmyvep — 1) A (6.21)
rc(cs buffer, transferer csmyvep) = 0 A (6.22)
(cspcp = pesets v (6.23)
—thepredcs p)-> statusnlP) A (6.24)
—unallocatedcsh, thepredcs p))) (6.25)
A (6.26)
(pc(cs)(p) = pe_sets A (6.27)
FREEABLEcspre,, count, csprep.niC, true) = (6.28)
(csprey.count, csprey.niC, true) = (6.29)
thepredcs p)-=statug (6.30)
(6.31)
setok2(cs) =

Vp,q e cspc, = pesets A

FREEABLECcs prey.count, csprep.niC, true) A (6.32)

(in_sefcs q) V pc(cs)(q) = perel-7) A
csmyvep = csmyveg + 1 =
—~FREEABLEcsrel_post,) (6.33)

Figure 6.24: Theet_ok predicate.
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in_sefcs p) =
CSpcp = pe_set_2 V
CSpcy = pcset_3-4V
CSpcy = pe-sel_5

slow.sefcs p) =
CSpcy = pe-set_5 N\
~F'REEABLE((csprey.count, csprey.niC, true))

Figure 6.25: Auxiliary predicates akt_ok.

releaseok(cs releasey =
Vpe ((pc(cs)(p) = perel_3 Vv pc(cs)(p) = perel_4.6 V
in_sefcs p) Vv pc(cs)(p) = pc.rel_7)
= myve[cs)(p) < ver(entry(cs))) (6.34)
A (6.35)
((in_sefcs p) V pc(cs)(p) = perel_7) A
FREEABLErel_postcs)(p))

= p = releasefmyvercs)(p)) A (6.36)
csrel_pos}, = csmynodg SstatusA (6.37)
valid_pointer(csh, csmynodg)) (6.38)

Figure 6.26: Theeclease_ok predicate.
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statusok(cs buffer, transferer setter release) = (6.39)
statusokl (cs buffer, transferer, setter releasey A (6.40)
statusok2(cs buffer, transferer, setter releasey A (6.41)
statusok3(cs buffer, transferer setter releasel) (6.42)

(6.43)

statusokl (cs buffer, transferer setter release) = (6.44)

Vi e i < csentry.ver A active versior(cs buffer, transferer setter releaseri) =
(6.45)

(—buffer(i)SstatusnlC < during_transfer(cs transfereri))) (6.46)
(6.47)

statusok2(cs buffer, transferer setter release) = (6.48)

Vi ei < csentryver A (6.49)
active.versior(cs buffer, transferer setter releaseri) = (6.50)

i = csentryver— 1V (6.51)
(—buffer(i)SstatusnlP A (3p e p € pinning(cs i + 1))) v (6.52)
(—buffer(i)ZstatusnlP < during_sef(cs setteri)) (6.53)
statusok3(cs buffer, transferer setter release)y = (6.54)
Vie (i < ver(entry(cs)) A (6.55)
active.versior{(cs, buffer, transferer setter releaseri) = (6.56)

i = ver(entry(cs)) — 1V (6.57)

0 < rc(cs buffer, transferen (i) v (6.58)
buffer(i)->statuscount = 0) (6.59)

Figure 6.27: Thetatus_ok predicates.



6.5. VERIFYING THE LL/SC IMPLEMENTATION

active.versior{(cs, buffer, transferer setter releaseri) =
letrl = releasefi) in
let st = sette(i) in
let pre = cspreg in
(i = csentry.ver + 1 A transienfcs)) v
i = csver.entry Vv
i = csverentry— 1V
0 < rc(cs buffer, transferer i) v
0 < rc(cs buffer, transfereri + 1) v
(inset(cs st) vV csmyveg =i+ 1 A
_'(CSpcst = pGsets A
—~FREEABLE pre.count, pre.niC, true)))) V
((inset(csrl) vV cspe,y = pgeky) A
FREEABLEcsrel,0st) A csmyve = i)

Figure 6.28: Theictive_version predicate.
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(6.60)
(6.61)
(6.62)
(6.63)
(6.64)
(6.65)
(6.66)
(6.67)
(6.68)
(6.69)
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buffersok(as, cs buf fer, winner,transferer) =

let cur = CURRENTPTR(cs csentry.ver), (6.70)
let noncur= OLD_PTR(cs csentry.ver) in (6.71)
(cur = buffer(csentry.ver) A (6.72)
curSdata= asvar.val A (6.73)
curSstatus= INIT_STATUS\ (6.74)
curSpred = buffer(csentry.ver — 1) A (6.75)
valid_pointer(csh, cur) A (6.76)
valid_pointer(csh, buffer(csentry.ver — 1)) A (6.77)
—buffer(csentry.ver — 1) SstatusnlP) A (6.78)
(noncur= buffer(csentryver — 1) (6.79)
v (6.80)
(noncur = buffer(ver(entry(cs)) + 1) A (6.81)
transientfcs) A (6.82)
awaiting_lin(cs csentry.ver), winner(csentry.ver + 1) A (6.83)
aspc, = sc_resp(oldgdata) A (6.84)
oldSstatus= INIT_STATUS\ (6.85)
oldSpred = CURRENTPTR(cs csentry.ver) A (6.86)
valid_pointer(csh, old))) (6.87)

Figure 6.29: Théuf fers_ok predicate.
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awaiting_lin(cs i, p) =

(cspep = pe_set_5 V (6.88)
cspep = pe-sc_6 vV (6.89)
CSpcy = pe-sc_7-9) A (6.90)
csmyvery = | (6.91)
(6.92)

modsnew nodgcs p) = (6.93)
CSpcy = pe_sc_2a V CSpcy = pe_sc_2bV (6.94)
Cspep = pe-sc_2¢ V €Spe, = pe-sc-3V (6.95)
Cspep = pe-sc4V (6.96)
(cspc, = pe_sc_5 A =CSsc_succp) (6.97)

Figure 6.30: Auxiliary predicates of the simulation redati

transientcs) =
OLD_PTR(cs ver(csentry)) #
CURRENTPTR(cs csentry.ver) = pred

Figure 6.31: The predicateansient describing states in which the next SC to be linearised
has been determined, but the linearisation point has ndigest reached.

thepredcs p) =
cspep, = perespll vV cspe, = pependingV
CSpc, = pc.sc1V cspe, = pc.sc2a
thep mynodgi?pred cszcz = Ec_scjbv\/ cﬁpzp :ppasa2cv\/
cspep = pe.sc.3
| cspred_nd, otherwise

Figure 6.32: Thehepredfunction, which returns the predecessor of the current rafde
process.
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during_sef(cs setteri) =

let st = sette(i) in (6.98)
(cspeg = peset2 V cspeg = peset3_4) A (6.99)
csmyveg =i+ 1 (6.100)

(6.101)

after_releasécs p) =
in_setcs p) V pc(cs)(p) = pcrel_7 (6.102)

Figure 6.33: Predicates defining important intervals inekecution of SC operations.
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lin_okl (as cs buffer, winner, p) =

(csmyvep = csentry.ver = p € asvar.procs) A (6.103)
(thepredcs p) = OLD_PTR(cs csmyvep) =
csmyvep, = csentry.ver) A (6.104)
(thepredcs p) # OLD_PTR(cs csmyvep) = p # winnercsmyvep + 1)  (6.105)
(6.106)
lin_ok2(as, cs, buffer, winner, p) =
—CSsc.successA (6.107)
p # winner(csmyvep + 1) A (6.108)
(csmyvep = csentry.ver = transientcs)) A (6.109)
(csmyvep # csentry.ver = p € asvar.procs) A (6.110)
aspc, = pc.dasc (6.111)
(6.112)
lin_ok3(as, cs, buffer, winner, p) =
csscsuccess) A (6.113)
p = winner(csmyvep + 1) A (6.114)
csmyvep = csentry.ver A (6.115)
transienfcs) A (6.116)
p € asvar.procs A (6.117)
aspc, = pc.dasc (6.118)
(6.119)
lin_ok4(as cs p) =
—CsscsuccessA p € asvar.procs A (6.120)
aspc, = pc.dasc (6.121)
(6.122)
lin_ok5(as, cs winner, p) =
(csscsuccess= aspc, = sc_resp(true)) A (6.123)
aspc, = perespscA (6.124)
csmyvep < csentry.ver (6.125)

Figure 6.34: Théin_ok predicates.
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sclin_ok(as cs buffer, winner) =

Vp e (pc(cs)(p) = pcpending=
aspc, = pc_pending/
lin_okl (ab, cs buffer, winner, p))

—~

(pc(cs)(p) = pe_sc1 V pe(cs)(p) = pcsc2aV
c(cs)(p) = pc_sc2b Vv pc(cs)(p) = pesc2¢c V
c(cs)(p) = pc.sc3 V pe(cs)(p) = pcscd) =

pc(ab)(p) = pc.da_scA

lin_okl(ab, cs buffer, winner, p))

T T

(pc(cs)(p) = pe_scb V pe(cs)(p) = pesc6 VvV
pc(cs)(p) = pesc.7_9 =

lin_ok2(ab, cs, buffer, winner, p)

v

lin_ok3(ab, cs, buffer, winner, p)

Y

(lin_ok5(ab, cs winner, p) A

succes&b)(p) A

p = winner(myvexcs)(p) + 1))

A

(pc(cs)(p) = petrans 2 A p/ = winnermyvelcs)(p) + 1) =

lin_ok4(ab, cs p))
A

((pc(cs)(p) = pe_trans.3_4 V pe(cs)(p) = pcrel_3 Vv

pc(cs)(p) = pcrel_4_6 V pc(cs)(p) = pcrel_7 Vv

inset(cs p) Vv pc(cs)(p) = pc_resp.sc)
= lin_ok5(ab, cs winner, p))

Figure 6.35: Thesc_lin_ok predicate.

(6.126)
(6.127)
(6.128)
(6.129)
(6.130)

(6.131)
(6.132)
(6.133)
(6.134)

(6.135)
(6.136)
(6.137)
(6.138)
(6.139)
(6.140)
(6.141)
(6.142)
(6.143)
(6.144)
(6.145)
(6.146)
(6.147)
(6.148)
(6.149)
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persistentsok(cs buffer) =

Vpe (=(pc(cs)(p) = idle Vv pc(cs)(p) = pell_2_3 v (6.150)
pc(cs)(p) = pell_4 Vv pe(cs)(p) = pell_5 Vv (6.151)
in_sefcs p) Vv pc(cs)(p) = pcrel_7 vV (6.152)
pc(cs)(p) = pcrespsc) =

—unallocatedcsh, thepredcs p)) A (6.153)
—thepredcs, p) statusnlP) (6.154)
A (6.155)
(= (pc(cs)(p) = idle v pc(cs)(p) = pell_2_3 v (6.156)
pc(cs)(p) = pell_4 Vv pe(cs)(p) = pell_5 Vv (6.157)
pc(cs)(p) = pcresp.sc) =

(valid_pointer(h(cs), mynodécs)(p)) V after_releasécs p)) A (6.158)
thepredcs, p) # null A (6.159)
mynodécs)(p) = bufferimyvercs)(p)) A (6.160)
thepredcs, p) = buffemyvelcs)(p) — 1) A (6.161)
mynodécs)(p)/ = thepredcs p) A (6.162)

myvelcs)(p) <= ver(entry(cs))) (6.163)
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distinctnessokl (cs buffer, transferer setter release) =

Vi,] e active versior(cs buffer, transferer setter releaseri) A (6.164)

active versior{(cs buffer, transferer setter releaserj) Ai/ =]

= buffer(i)/ = buffer(j) (6.165)
(6.166)

distinctnessok2(cs buffer, transferer setter releasel = (6.167)

Vp,i e activeversior{cs buffer, transferer setter releaseri) A (6.168)

modsnew.nod€cs p) =

sc.new.nd(cs)(p)/ = buffer(i) (6.169)
(6.170)

distinctnessok3(cs) =

v p,q e modsnewnodgcs p) A modsnewnodgcs q) Ap/ =q (6.171)

= sc.new.nd(cs)(p)/ = scnewnd(cs)(q) (6.172)

distinctnessok(cs buffer, transferer setter release =

distinctnessokl (cs buffer, transferer setter releasey A (6.173)
distinctnessok2(cs buffer, transferer setter releasey A (6.174)
distinctnessok3(cs) (6.175)
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ll_ok(ab, cs) =
Vp e (pccs)(p) = pal_5 = myveKcs)(p) = ver(ll_e(cs)(p)) A
(—myvelcs)(p) = ver(entry(cs))
Y,
mynodécs)(p) = CURRENTPTR(cs myvefcs)(p))))
A

(Pe(cs)(p) = perespll = data(h(cs))(mynodécs)(p)) = val(ab)(p))

sc.ok(ab, cs)eqdef
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(6.176)
(6.177)
(6.178)
(6.179)
(6.180)
(6.181)
(6.182)
(6.183)

Vp e (pc(cs)(p) = pescl Vv pe(cs)(p) = pesc2aV pe(cs)(p) = pesc2b vV

pc(cs)(p) = pcsc2c Vv pe(cs)(p) = pesc3 Vv pe(cs)(p) = pc.sc4
= sc.newdcs)(p) = val(ab)(p))
A
(modsnew.noddcs p) =
valid_pointer(h(cs), sc.new.nd(cs)(p)))
A
(pc(cs)(p) = pe_sc2b Vv pe(cs)(p) = pcsc2c V pe(cs)(p) = pesc3 V
pc(cs)(p) = pcscd =
data(h(cs))(sc.new.nd(cs)(p)) = sc.newdcs)(p))
A
(pc(cs)(p) = pe_sc2c Vv pe(cs)(p) = pe.sc3 V
pc(cs)(p) = pescd
= pred(h(cs))(sc.new.nd(cs)(p)) = mynodécs)(p))
A
(pe(cs)(p) = pe-sc.3 V pe(cs)(p) = pe-sc4
= scnewnd, Sstatus= INIT_STAT)
A
(pc(cs)(p) = pesc.7_9 = ver(sce(cs)(p)) <= ver(entry(cs)) A

myvexcs)(p) <= ver(sc.e(cs)(p)))

(6.184)
(6.185)
(6.186)
(6.187)

(6.188)
(6.189)
(6.190)

(6.191)
(6.192)
(6.193)
(6.194)
(6.195)
(6.196)
(6.197)

(6.198)
(6.199)
(6.200)
(6.201)
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trans_ok(cs, transferep = (6.202)
vV p e(pc(cs)(p) = pctrans2 Vv pc(cs)(p) = pc_trans.3_4) (6.203)
= p = transfere{myvefcs)(p)) A (6.204)
myvercs)(p) < ver(entry(cs)) A (6.205)

—~csmynodg SstatusnlC (6.206)
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6.6 Concluding Remarks

The main result of this chapter is a lock-free LL/SC impletagion that is space-adaptive,
population oblivious and pointer clean. We have applied implementation to the LFRC
technique of the previous chapter, to obtain a general @ogitan and population obliv-
ious lock-free memory-management technique. We belieat ttis is the first memory-
management technique to possess all of these properties.

The LL/SC implementation presented here depends for it®ecimess on properties of
the memory allocator. If the algorithm is used with a memdtgcator that is not lock-
free, then the algorithm will not be lock-free in that contefDG02] presents a lock-free
memory allocator that can be used with our algorithm, présgrits advantages. However,
it exploits certain system properties that are not widelgilable. [DHLMO04] presents a
lock-free freelist that is population oblivious, pointdée@n and space-adaptive (it can safely
release memory back to the system when the memory is no loageired by a client appli-
cation). Because of these properties, it can be used to rmamamnory buffers for our LL/SC
implementation.
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Chapter 7

Conclusions

In this concluding chapter we evaluate the contributiores@nted in this thesis, and discuss
possibilities for future work. The contributions of thisesis are divided into two categories.
Part | is concerned with the verification of nonblocking altions, and Part 1l is concerned
with their design. Inverting the order of the thesis’s paaisd reverting to the order of the
title, Section 7.1 evaluates the work of Part Il, and Secfighevaluates the work of Part I.
Section 7.3 describes a new verification methodology knasweparation logidhat seems
very promising. Separation logic has been used in the vatific of nonblocking algo-
rithms, and addresses modelling issues that have beeredjitoour framework. Separation
logic is a member of a family of verification techniques anifing with the work of Floyd
[Flo67] and Hoare [Hoa69], which we refer to agomatictechniques, and describe by way
of background in Section 7.3. Section 7.4 discusses vdiditassues raised bransac-
tional memory a technique for constructing concurrent implementatiohshared objects
that has recently attracted a great deal of interest in thélooking algorithms community
and beyond.

7.1 Nonblocking Algorithms

The LL/SC algorithm presented in Chapter 6 is the first noclitgy algorithm that is space-
adaptive, population oblivious and pointer-clean. Furti@e, in combination with the
LFRC technique of Chapter 5, the LL/SC algorithm can be usedake any garbage collec-
tion dependent algorithm space adaptive, population iobis/and pointer-clean. These are
important properties for practical algorithms. Howeviee techniques presented in Part Il re-
quire at least one atomic modification of a counter value ¥eryoperation; some operations
require several such modifications. For this reason, ik&ithat our LL/SC implementation
will perform worse than some other proposals that do notyethie same generality. It is very
likely that the most efficient existing techniques for obiag space-adaptive algorithms are
the guard based proposals of [HLM02b, HLMMO05] and [MicO2¢cB#]. As noted in Chapter
5, these techniques are not themselves space-adaptivé) aodhe versions, are not popu-
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lation oblivious. However, it seems that they could be mame adaptive and population
oblivious using the techniques of Part Il. It is fairly sgjaiforward to achieve population
obliviousness. [HLMO3b] and [Mic04] both present techrdgudor achieving this. The idea
is that rather than using an array of guards, which must leeattkd with a particular size
(as originally proposed in [HLMO02b, Mic02]), guards areoatited in a linked-list which can
be dynamically expanded. [HLMO03b] extends this approadh wireference-counting tech-
nigue that allows guards to be deallocated when they arengetaneeded. As mentioned in
Chapter 5, this technigue enables the construction of wesgddce-adaptive algorithms.

Thus, the goal is to obtain a solution that is strongly spadaptive, while preserving the
performance properties of the guard-based proposals. Wesmthe techniques of Part Il
to construct a linked-list from which deallocation is ptsj even in the presence of process
failures. Traversing this list would be at least as expensis the technique presented in
[HLMO3Db], but using the guards within application code webble as cheap as the original
proposals [HLMO02b, Mic04]. However, a traversal of the tidtguards must occur when-
ever any memory is to be freed, so it would be useful to opentiiés step. One appealing
possibility is to have two linked lists of guards. The firstioh we call theprimary list, is
used for application purposes. The second, which we cakldix@iary list, is used to safely
traverse the primary list, while enabling deallocatiomirthe primary list. Thus, guards in
the auxiliary list would be used to protect nodes in the primist. Because guards in the
auxiliary list are only used during operations on one datacsire (the primary list), and
the operations of this data structure can be implementexy @sstatically known number of
guardst each process needs only a statically determined numberaoflgin the auxiliary
list.

In this scheme, traversal of the primary list would be pdssikithout manipulating
counts, and would thus recover much of the efficiency of theyapased approach. Traversal
of the auxiliary list would depend on the techniques of Fagnd would thus be significantly
slower. However, traversals of the auxiliary list would ecouch less frequently under ex-
pected loads. This is because the auxiliary list only neediettraversed when guards from
the primary list are destroyed. We would expect these everiis substantially less frequent
than the deallocation of memory by the application itself.

One interesting verification issue raised by these algostis the question of verifying
space-adaptivity. Space-adaptivity is a safety propditg, an invariant, and is therefore
proved by induction on the length of executions. Howevedrinclusion does nothing to
capture space adaptivity. The idea would be to introducenetifion that measured space us-
age in each state, and prove that in all reachable statesytigtion sits within an appropriate
bound.

1The necessary operations, inserting a new guard, removiugad, and traversing the list collecting the
guards, all require at most three guards.
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7.2 \Verification

The verifications presented in this thesis are based orldabthnsition systems and simula-
tion relations. Labelled-transition systems are very garstructures that have been used to
model a broad class of computer systems. This enables tistrection of full behavioural
verifications of unbounded or infinite state models withinndfarm setting. Furthermore,
because labelled-transition systems and their propeartiede expressed in ordinary mathe-
matical notation, it is straightforward to express the madthe language of a proof checker,
and so to construct formal and precise proofs.

Simulation relations themselves provide additional athges. There is a natural cor-
respondence between the linearisation points of an afgoyiand the step-correspondence
of the simulation relation used to verify the algorithm. tRermore, simulation relations
can deal with unusual or complicated linearisation poittsr example, the verification in
Chapter 6 has executions where the step of one process cha liecarisation point of an-
other process. A more important example is the questionlafdd serialisation: backward
simulation provides a natural way to treat delayed sedtiia. These unusual patterns of
linearisation seem to be very important in nonblocking gthms.

However, there are significant disadvantages to fully diédwcserification based on
labelled-transition systems and simulation relations.e @rominent problem is the issue
of coding: the models presented in this thesis are large amgplex, and this size and com-
plexity affects the simulation relations as well. This gaglis tedious and (in the absence of
automation) error prone, and the loss of syntactic strectonakes the verification difficult.
For example, our models contain no information about thpesas variables, and informa-
tion about allocation of references that is obvious in theupecode is lost.

Another problem is that the human effort and skill neededotwstruct a formal proof is
substantial. As discussed in Sections 2.1 and 3.6, marfjoatidon techniques employ auto-
matic methods, which can verify properties of systems withmman intervention within a
few seconds or hours. The price of the generality of labdHadsition systems is the extra
effort required in verifying their properties.

Sections 7.2.1 and 7.2.2 describe further limitations of approach, and make tenta-
tive suggestions as to how they might be addressed. In plrticSection 7.2.1 describes
difficulties associated with representing the compositibrshared-memory objects in the
I/0 automaton framework, and Section 7.2.2 outlines thevexice of relaxed consistency
models to nonblocking algorithms and their verification.

7.2.1 Compositionality

Currently, we do not make use of the facilities for composangpmata provided in the I/O
automaton framework. The notion of composition defined is framework is not well
suited to reasoning about collections of objects in shamediory. Rather, it is designed
to model the composition of distributed processes that conicate via message passing.
This focus on distributed systems has two important draké&ar using the same notion of
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composition in a shared-memory setting.

First, objects in shared memory share their state. At Itlasy, share the same heap and
address space. Also, several objects may share the sartist foeether supporting data
structures. Because of this, the behaviour of a compositiarbjects depends on how each
object manipulates this shared state. This is quite diftete a message passing system,
where the state of each object (process) is isolated frorstéttes of all other objects.

Second, the compositionality principle for I/O automatquiees that the composed au-
tomata be input-enabled. This condition seems unnaturaadtomata that model objects
in shared memory. In a shared-memory context, when a proceskes an operation on
some object, that process is guaranteed to do nothing etdgheoperation is complete.
Therefore, the input actions (invocations) are simply mattded in all states.

Both these issues can be addressed within the 1/O automaoeork, but with some
cost. The second issue is perhaps more straightforwardtledirst. It is possible to define
the transition relations of automata that represent dagatgo that input (i.e., invocation) ac-
tions are input enabled, and require that these actionsarkad by a process only when that
process has no pending operations. This amounts to plagogsiraint on the environment
of the automaton. Such an approach is used in [Lyn96, Set8#]. One drawback is that
it becomes necessary to prove that whenever an input aaticuron a client automaton,
there is no pending operation in the datatype automaton.

A more important issue is that we still have no guidance alout to deal with the
fact that different data structures may share the same lugagther state. Note that the
specification of a shared-memory object will frequently mantion heap operations. These
are typically not visible in the specification and are hidégrits implementations. (In this
thesis, we have achieved this hiding by making actions thatspond to reads, writes and
allocations into internal actions.) However, in order tonpmse one shared memory object
with another, it is necessary to have some guarantee abautéch object will manipulate
the heap. This means that our specifications would needltedi@such information, and our
composition rule would need to exploit this information.

The work discussed in Section 7.3 addresses the issue ofositiopality more directly.

7.2.2 Relaxed Consistency Models

One important issue that has not been treated in this thesieiquestion of relaxed con-
sistency models. We have assumed that all operations oadcshamory are atomic. This
assumption is not satisfied by most implementations of shaemory. The impact of opera-
tion reordering is more important in nonblocking algoriththan algorithms that use mutual
exclusion. This is because primitives that support mutkelusion, such as locks, typically
implement semantics guaranteeing that if every locatiammlg accessed under mutual ex-
clusion, then all read and write operations will appear tsbguentially consistent. Such
semantics can be expressed by defining a constraint on aacte tisat code satisfying the
constraint is guaranteed to behave as if the underlying memere sequentially consistent
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[AH90, MPA05]2 Unfortunately, nonblocking algorithms frequently do natisfy data-
race freedom constraints. Therefore, when implementingréolocking algorithm on real
hardware, the programmer must be aware of reorderings edldyy the memory model. So
the need to deal directly with relaxed consistency modethénverification of nonblocking
algorithms is more pressing than in lock-based, sharedaneaigorithms.

[CLMTO5] uses an I/0O automaton model, referred to pawial-order machineto repre-
sent a shared memory system conforming to a specific relaxesistency model. It would be
interesting to use such an automaton as the basis for madedsblocking algorithms run-
ning over shared memory systems exhibiting various flavotirelaxed consistency. How-
ever, constructing a plausible model is quite differentdmpleting a proof of correctness.
It is unclear whether the method of transition systems andilsition relations would be
effective for constructing formal verifications.

We return to the issue of relaxed consistency models in @eeti3.

7.3 Axiomatic Approaches

This thesis has used labelled-transition systems as mimadelsncurrent shared-memory sys-
tems. However, there is a tradition of usiagiomatic semanticef programming languages
as the basis for modelling and verifying shared-memory goeat systems. Axiomatic se-
mantics, as applied to sequential systems, originates twithwork of Floyd [Flo67] and
Hoare [Hoa69]. (Notations that use the axiomatic style areetimes referred to ddoare
logics) There have been several proposals for extending the atiorapproach to con-
current systems, for example [Hoa73, OG76, LS84], and thctdrere has been a flurry of
work in this area [Bro04, O'HO7, VP07] (based on [I001, Rey0 this section, we out-
line the axiomatic approach and describe recent advanodsyea evaluate the advantages
and disadvantages of these approaches relative to ouitivarsystem based techniques.

In the axiomatic approach, the effect (or meaning) of a @oyis described using pre-
and postconditions. That is, assertions of the form “if taéugs of the program variables
satisfyP before the program is executed, then they satBfyhen the program terminate$”.
Such assertions are written formally as

{P}S{Q}

whereSis the program in question. HeReis referred to as the precondition adas the
postcondition. NormallyP and Q are written in some version of first-order logic. Such
assertions can be used to formalise the semantics of pragraghanguages and also of data
structures and their operations. Specifications of datetsires typically involve the use of
auxiliary variables.

2Real memory models tend to provide additional guarantemstahe possible behaviour of memory accesses.
We ignore that detail here.
3We ignore here the possibility that our programs, or theirstituent commands, fail to terminate.
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One advantage of the axiomatic approach is that the effeeadfi program is specified
in terms of the effect of its component parts, thus explgitime structure of the syntax. For
example, if we know that the progra&is such thaf P}S{Q} and the progrant is such that
{Q}T{R} then we can conclude that the effect of #efuential compositionf SandT is
{P}S T{R}.

The fact that we are axiomatising the effect of a programgauéts syntactic structure
provides one of the most important advantages of the axiorapproach over our labelled-
transition system techniques. The complicated and eraorgpencoding into labelled-transition
systems is unnecessary. Furthermore, in the axiomatioapiprit is possible to exploit the
structure of code to generate the properties (or invadhtt are needed to make the proof
work.

Perhaps the most important early attempt at applying thenzedic approach to concur-
rent programs is the work of Owicki and Gries [OG76]. Unfourtely, their techniques,
along with others (e.g., [Hoa73]), did not address the isdyminters, and the possibility of
aliasing that they introduce. Furthermore, they did not deactly with dynamic memory
allocation. However, a new approach knowrseparation logidRey02, O’'HO7] attempts to
address these issues.

Syntactically, the key aspect of separation logic is itsafseconnective known asepa-
rating conjunctionthat behaves like ordinary conjunction in propositionaido except that
each of its arguments refers to (is about) disjoint partsheflieap. This interpretation is
enforced by the proof rules governing separating conjanctseparating conjunction allows
the statement and proof of heap properties, without neetirexplicitly state properties
about aliasing relationships or reachability.

Separation logic has been used to verify a version of thé@&reitack [PBO07], as well as
several other sequential and concurrent algorithms ([@)HPesents examples, and provides
pointers to other verifications in the literature).

One appealing aspect of this work is that a form of compasitian be directly achieved
using separating conjunction, even in the presence of dlierap state. Because each argu-
ment of a separating conjunction is about disjoint parthefiteap, each separating conjunc-
tion guarantees that the heap operations of two objectssitisfy the specification cannot
interfere.

Mechanical assistance for theorem proving in separatigit s at a preliminary stage.
An application calledSmallfoot[BCO06, SmF] can be used to verify both sequential and
concurrent code using separation logic. However, as yetlfdwiadoes not provide any
facilities for human interaction: proofs must be found awdtically by the application or not
at all. Furthermore, there are limited definitional fa@kt Predicates describing singly- and
doubly-linked lists are hardwired into the application,asoto allow nontrivial verifications.
Inductive definitions cannot be directly expressed in Simetls specification language. It is
likely that these limitations can be overcome, given sudfitiattention. However, it seems
likely that useful mechanical assistance for proofs of ificant size will not be available
until the work on Smallfoot has advanced substantially.
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7.4 Transactional Memory

Much of the recent work in the field of nonblocking algorithrmsoncerned with the devel-
opment and use dfansactional memorjHM93]. Much of this work has focussed on hard-
ware implementations of transactional memory [AAB5, MBMT06, BMVT07], but there
are several software-only implementations [ST95, HLMG2&03, DSS06, SATF06], and
implementations that use hardware transactional-memamjitives, augmented by software
[DFLT06, MTC"07]. The implementations that involve a software aspecfrargiently as
complicated as nonblocking implementations of standatd skauctures. Thus, they present
interesting and important verification challenges.

However, there are important questions about the semanttiteinsactional memory,
among them:

e How do transactional operations interact with nontrarisaat operations? For exam-
ple, can a transaction observe writes executed by a prooesgecuting a transaction?

e How should exceptions thrown during a transaction be praieaty

e What progress guarantees are desirable, and in what sitg@tMust the system guar-
antee progress to each transaction? Or is progress on ansy@tie basis acceptable
(as with lock-freedom)? Are probabilistic guarantees ptat@e? Must transactions be
able to survive across page-faults or descheduling of theggs executing the trans-
action?

These issues, which are the subject of recent work (e.g.08/@BHI08]) are of particular
relevance to the specification of transactional memonyesyst [MG08, ABHI08] do not use
transition systems (at least, not of the kind used in thisifén the specification of transac-
tional memory. Rather, they apply techniques developedawige operational semantics for
programming languages. Therefore, using labelled-ttianssystems such as I/O automata
to describe the semantics of transactional memory mighnhtezasting in itself. Another
possibility is to adapt the techniques of operational sditsno define 1/0 automata rep-
resenting transactional memory. In any case, the developofdechniques for specifying
transactional memory systems such that their implememsian be naturally verified is an
important goal.

The growth in popularity of transactional memory may insee¢ghe need for nonblock-
ing memory management solutions of the kind discussed inlRzfrthe thesis, and Section
7.1 of this chapter. Most proposed transactional memoryempntations that depend on
software (whether software only or hybrid) depend for tlwirectness on the system not
releasing memory that may be accessed by a delayed tramsf@5S06] is one exception).
For this reason, many such proposals assume the presengarbiae collector. However, if
software or hybrid transactional memory is to be applicahitside of garbage collected en-
vironments, efficient and correct concurrent memory mameggé techniques must be found.
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