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Abstract

Modern computer systems often involve multiple processes or threads of control that com-

municate through shared memory. However, the implementation of correct and efficient data

structures that can be shared by several processes is frequently challenging. This thesis is

concerned with the design and verification of a class of shared memory algorithms known

asnonblocking algorithms, which are implementations of shared data structures that provide

strong progress guarantees. Nonblocking algorithms offeran appealing alternative to tra-

ditional techniques for the implementation of shared memory data structures, but they are

difficult to design, and extant algorithms can often be applied in only a limited range of sys-

tems. Furthermore, because of their subtlety, it is notoriously difficult to determine whether

a given nonblocking algorithm is correct.

This thesis addresses these difficulties in two ways. First,we present techniques for the

verification of nonblocking algorithms that dynamically allocate memory. These techniques

allow the construction of formal and complete proofs of correctness, so that each proof may

be checked by a mechanical proof assistant. Applying techniques first developed for the

verification of distributed algorithms, we use labelled-transition systems to model algorithms

and their specifications, and simulation relations to provethat an implementation meets its

specification. Nonblocking algorithms often require a particular notion of simulation, called

backward simulation, that is rarely necessary in other contexts. This thesis contributes to the

relatively limited collective experience in the use of backward simulation.

The second set of contributions addresses the limitations of many extant nonblocking

algorithms. While many nonblocking algorithms allocate memory dynamically, it is difficult

to determine in a nonblocking context when it is safe to free memory. We present techniques

to accomplish this. Furthermore, many nonblocking algorithms depend on the availability of

two powerful synchronisation primitives, known asload-linkedandstore-conditional, which

are not normally provided by hardware. We present implementations of these primitives that

work on commonly available platforms.
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Chapter 1

Introduction

Computer systems in which independent processes concurrently access data structures present

challenges not found in systems in which data structures areaccessed sequentially by one pro-

cess. Data structures that are to be accessed concurrently by several processes must somehow

ensure that concurrent accesses maintain the consistency of the data structure.

The standard technique for implementing concurrent data structures is to usemutual ex-

clusion: at most one process is allowed to execute an operation on a given structure at any

given time. Mutual exclusion reduces the problem of maintaining consistency during con-

current operations to the problem of maintaining consistency during a single operation.

Unfortunately, mutual exclusion can create several software-engineering and performance

issues [Gre96, Fra03]. The most prominent software-engineering issue that arises when us-

ing mutual exclusion is the problem ofdeadlock. In some systems it is necessary for several

processes to acquire exclusive access to intersecting setsof data structures. In such situations,

it may be possible for each process to acquire exclusive access to data structures in an order

that prevents any process from making progress. The termdeadlockdescribes situations in

which this occurs. Techniques do exist to solve this problem(see [Bac98, Lea00] for discus-

sion). However, software engineers still need to reason about the order in which exclusive

access is acquired. This is error prone and can lead to bugs that are difficult to reproduce and

fix.

Furthermore, data structures based on mutual exclusion tend to perform poorly when

being accessed by a large number (dozens or hundreds) of processes. It is possible for a

process to be delayed — by an action of a scheduler, a limitation of the underlying hardware,

or even process failure — while holding exclusive access to adata structure. When this

1



2 CHAPTER 1. INTRODUCTION

happens, all processes awaiting access to that data structure are delayed as well. When many

processes are awaiting access to that data structure, performance of the system as a whole

can degrade massively.

These issues have motivated researchers to seek ways of implementing shared data struc-

tures that do not depend on mutual exclusion. Such implementations are known asnonblock-

ing algorithms.

Because they do not rely on mutual exclusion, nonblocking algorithms avoid the problem

of deadlock. Furthermore, numerous empirical studies (both simulations and experiments

on real machines) have found that there are important situations in which nonblocking al-

gorithms outperform their lock-based counterparts. ([ST95, MS98b, Har01, TZ01a, Fra03,

HLMS03, SS03] provide examples.) These experiments suggest that nonblocking algorithms

frequently scale better than lock-based solutions, as contention increases.

Nonblocking algorithms are typically significantly more complicated than sequential im-

plementations or implementations based on mutual exclusion. Because of this complexity, it

is very difficult to determine if an algorithm is correct. Therefore, careful researchers provide

some kind of proof of correctness of novel algorithms. This thesis is partly concerned with

techniques for constructing such proofs.

For reasons that we shall discuss shortly, a challenging problem in the development of a

nonblocking algorithm is the question of how to determine when it is safe to reclaim memory

from a nonblocking data structure. Furthermore, nonblocking algorithms frequently depend

on the availability of functionality that modern systems donot provide. This thesis addresses

both these issues.

The remainder of this chapter is organised as follows. Section 1.1 provides a short intro-

duction to the field of nonblocking algorithms. This provides context for Section 1.2, which

outlines the contributions presented in the thesis. Finally, Section 1.3 defines notation used

in the thesis.

1.1 Nonblocking Algorithms

Nonblocking algorithms provide variousprogress guaranteesabout the ability of any process

to complete operations in the presence of failure or delay byother processes. As discussed

in Section 1.1.1, these progress guarantees come in variousstrengths, all of which preclude

the use of mutual exclusion.

In order to support nonblocking implementations of nontrivial data structures, the under-
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lying system needs to providestrong synchronisation primitives. These are operations that

allow processes to read and modify memory locations atomically, and are typically provided

by hardware. Such primitives are discussed in Section 1.1.2. Moreover, considerable inge-

nuity must be employed in the development of these algorithms. Section 1.1.3 describes one

classic algorithm (adapted from an algorithm in [MS98a] that is itself adapted from [Tre86]),

illustrating important issues associated with the design of nonblocking algorithms.

1.1.1 Nonblocking Progress Guarantees

Several nonblocking progress guarantees have been treatedin the literature. Currently, the

most well established arewait-freedomandlock-freedom[Her91].1 An algorithm iswait-free

iff for every execution, every operation is guaranteed to complete after a finite number of its

own steps, regardless of the delay or failure of any other operation. An algorithm islock-free

iff for every execution, some operation is guaranteed to complete after a finite number of

steps of the execution, regardless of the delay or failure ofany other operation.

Lock-freedom is the weaker condition: lock-freedom allowsthe possibility that some

processesnevercomplete their operations. So long as some processes are completing, the

others may be prevented from making progress. Wait-freedomprecludes this property: every

process is guaranteed to complete. Every wait-free algorithm is lock-free.

Both wait-freedom and lock-freedom preclude the use of mutual exclusion. A process

that failed while holding exclusive access to a data structure would prevent all other processes

from completing operations that required access to that data structure.

1.1.2 Synchronisation Primitives

Nonblocking algorithms normally make substantial use of powerful synchronisation primi-

tives. We describe the most important such operations: thecompare-and-swap(CAS) op-

eration; and theLoad-linked/Store-conditional(LL/SC) operation pair. Herlihy [Her91] has

shown that any sequential data structure can be implementedusing either CAS or LL/SC, and

that other common synchronisation primitives (such astest-and-setor swap) are insufficient

to construct nonblocking implementations of many important data structures.

1There is ambiguity in the literature between the termslock-freeand nonblocking. They have sometimes

been used synonymously. However, we follow an existing convention wherebynonblockingdescribes the whole

family of algorithms that do not rely on mutual exclusion, and lock-freedescribes a class within that family.
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boolean CAS(val *loc,
val old,
val new) {

atomically {
if (*loc = old){

*loc := new;
return true;

} else return false;
}

}

Figure 1.1: Semantics of the CAS operation. Here (and through much of this thesis) we
use a C-syle pseudocode. A declaration likeval *loc specifies thatloc is a pointer to a
value of typeval. An expression like*loc evaluates to the value referenced byloc. The
expression*loc may be used on the left-hand side of an assigment, in which case the value
at the address is changed to the value of the right-hand-sideexpression. We break with the C
convention by denoting assignment with the symbol ”:=”, and the test for equality (returning
a boolean) with ”=”.

Pseudocode representing the semantics of the CAS operationis presented in Figure 1.1.

The CAS operation takes three arguments, a locationloc (sometimes called thetarget of

the CAS), and two values,old andnew, and returns a boolean value. The value currently

atloc is tested againstold. If they are equal, then the value atloc is updated tonew and

the CAS returnstrue (in this case, we say that the CASsucceeds); otherwise, no change to

the value atloc occurs and the CAS returnsfalse (in this case we say that the CASfails).

These comparisons and updates happen atomically. That is, no other operation on memory

appears to occur during the CAS operation.

Pseudocode representing the semantics2 of the LL/SC operations is presented in Figure

1.2. LL and SC are used in pairs: every invocation of SC on a locationloc by some process

must follow an LL operation toloc by the same process, with no intervening SC toloc by

that process. In this case, we say that the SCmatchesthe earlier LL, and that the LLmatches

the SC. The LL operation reads the value from the location; the SC operation conditionally

stores a new value to the location,succeedingand returningtrue, if no other SC to the

location has succeeded since the matching LL. The SCfails and returnsfalse otherwise,

leaving the location unchanged. We say that an LL isoutstandingif it has no matching SC.

2There are several possible variations on the semantics of LL/SC, that describe how LL/SC interacts with

ordinary store operations, or that provide additional operations. We ignore these extensions for now.
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val LL(val *loc) {
return *loc;

}

bool SC(val * loc, val newval) {
atomically {
if (no SC has returned true

since the last LL of
this process) {

*loc := newval;
return true;

} else {
return false;

}
}

}

Figure 1.2: Semantics of the LL/SC operations.

(Note that if an SC matches an LL, then the SC is executed by thesame process that executed

the LL.)

Most contemporary multiprocessors offer either CAS or LL/SC as primitive instructions.

Unfortunately, as far as we know, no hardware implementation of the LL/SC operations

provides the strong semantics described above. To make hardware implementations feasible,

restrictions are added [Moi97]: for instance, programmersmay be limited to using only one

LL at a time, without a matching SC (so only one location can bethe subject of an unmatched

LL at a time); reads or writes to memory may be disallowed between the time when an LL

is executed and its matching SC completes; or an SC may failspuriously, that is, without an

SC being executed to the location since the matching LL. In practice, these restricted LL/SC

operations are normally used to implement a CAS operation (as in [MS96a, Moi97]).

Both CAS and LL/SC share an important restriction: they onlyallow atomic modification

of one location at a time. One generalisation of the CAS operation, thedouble compare-

and-swap(or DCAS), does not suffer from this restriction. DCAS behaves just like CAS,

but compares and modifies two independent locations, succeeding iff both locations contain

their respectiveold values. Pseudocode representing the semantics of DCAS is presented in

Figure 1.3.

As a rule, DCAS is not provided by multiprocessor systems, the only exceptions known
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boolean DCAS(val *addr1, val *addr2,
val old1, val old2,
val new1, val new2) {

atomically {
if ((*addr1 = old1) &&

(*addr2 = old2)) {

*addr1 := new1;

*addr2 := new2;
return true;

} else return false;
}

}

Figure 1.3: Semantics of the DCAS instruction.

to us being systems based on the Motorola 68030 processor. However, the operation has

received attention from researchers because of its potential to make the development of non-

blocking algorithms significantly easier.

1.1.3 An Illustrative Example

We now describe several versions of a lock-free stack algorithm known as theTreiber stack.

The algorithm was originally presented in [Tre86], but is described in a more accessible fash-

ion in [MS98a].3 The versions presented here are adapted from the latter. TheTreiber stack

is very simple, taking only a couple of paragraphs to describe, but it illustrates several impor-

tant techniques used in nonblocking algorithms, and important difficulties that the designer

must overcome.

A stack, a classic data structure in computer science, is an object that contains a sequence

of values from some type, and providespushand pop operations which add and remove

elements in alast-in-first-out fashion. In Treiber’s algorithm, the stack is represented as a

linked-list of nodes accessed by aHead variable. Each node has aval field which contains

some application specific value, and anext field, which points to the next node in the list.

The structure of the nodes contained in the stack, the globalvariable and the initial state are

declared in Figure 1.4. Pseudocode for the stack operationsis presented in Figure 1.5.

The presentations given in [Tre86] and [MS98a] describe thealgorithm in terms of the

3The original paper presents the algorithm using System/370assembler code.
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struct node {
value val; node *next

}

node *Head;
initially Head = null;

Figure 1.4: The node structure, the global variableHead, and the initial condition for the

stack implementation.

void push(value v) {
H1. nd := new node();
H2. nd->val := v;
H3. while(true) {
H4. head := LL(&Head);
H5. nd->next := head;
H6. if (SC(&Head, nd))

break;
H7. }
H8. return;
}

value pop() {
P1. while (true) {
P2. head := LL(&Head);
P3. if (head = null)
P4. return empty;
P5. next := head->next;
P6. if (SC(&Head, next))

break;
P7. }
P8. return head->val;
}

Figure 1.5: Pseudocode for the stack operations.

CAS operation. We describe it here using LL/SC because this is somewhat simpler. Another

point to note is that the code just presented does not explicitly recycle memory. The steps that

must be taken to obtain an algorithm that uses CAS and recycles memory are informative,

and are discussed below.

We first describe thepushoperation. A processp executingpushfirst allocates a new

node (line H1), sets itsval field to the value being pushed (H2) and then attempts to link

the new node onto the stack. Processp does this by repeatedly using LL to load the current

Head (H4); setting thenext field of the new node to the pointer it read fromHead (H5);

and using SC to swing theHead pointer to the new node (H6). Once this has been achieved,

the value has been successfully added to the stack, the loop terminates andp returns.

This looping pattern is very common in nonblocking algorithms. A process reads some

shared variable (in this caseHead); executes some operations based on that value, the effects

of which are not visible to other processes (in this case, modifying the freshly allocated node

at H5); and finally uses a synchronisation primitive to modify the shared variable, but only if

the value of the variable has not changed since the earlier read (in this case, using the SC on

line H6). If the modification fails, the process returns to the start of the loop, and tries again.

We turn now to thepopoperation. A processp executing apopoperation enters a loop
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in which it tries to remove a node from the top of the stack.p repeatedly reads the current

value ofHead using LL (P2) and checks if the value read isnull (P3). If so, the stack was

empty whenp executed line P2, sop returns an indication that the stack was empty (P4). If

Head was notnull, p reads thenext field of the node (P5) and then uses SC to attempt to

setHead to thenext value (P6), thus removing the node. If this succeeds,p exits the loop

and returns the value contained in the node just removed.

Recycling Memory

We turn now to the issue of recycling memory. This is a difficult issue in nonblocking algo-

rithm design. In the case of the Treiber stack, a popping process cannot simply free a node to

the system after removing it from the stack, as would be possible in a sequential implemen-

tation, or one based on mutual exclusion. To see why, supposethat we replace line P8 with

the following code:

P8: val := head->val;
P9: free(head);
P10:return val;

The resulting stack implementation frees nodes after removing them from the stack. Now,

consider the following execution.

• A processp invokespop when the stack is not empty. It loadsHead (which is not

null) and is delayed.

• Another processq invokespop. It executes all of thepopcode, including P9 and P10.

Note thatq’s head variable is the same asp’s.

• Processp now continues its execution, attempting the read ofhead->next at line

P5. However,q has freed this node. Therefore, this read is illegal in many systems,

and may cause an error.

The fundamental problem is that it is difficult to determine when a process has a stale ref-

erence to a block of memory (that is, to a block of memory that might be freed by another

process). Because of this issue, nonblocking algorithms are normally unable to free mem-

ory to the system without additional support. A garbage collector can be used to recycle

storage, since a collector can determine when no referencesto a piece of memory exist.

However, garbage collection can only be used in certain contexts: garbage collection may
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be deemed inappropriate in the context of operating system software, or it may interfere

with real-time requirements. Moreover, it seems very likely that algorithms that depend on

garbage collection will not be useful in the implementationof a garbage collector. Finally,

some programming languages (for example, C/C++) are not well suited to garbage collection:

efficient garbage collection sometimes requires the cooperation of the non-garbage collection

processes, as well as precise information about the types ofvariables.

One solution is to never free memory to the system. Rather than returning unused mem-

ory to the system, we place it on a freelist local to the process or application. An access to a

node already placed on such a freelist will not cause an error. However, this solution prevents

the amount of memory used by a data structure from falling, and may not be acceptable in

contexts where the size of available memory is small relative to application requirements. A

spike in the frequency of push operations may cause the totalmemory consumed by the stack

to increase, and that consumption cannot fall for the lifetime of the stack. (One important

application of the Treiber stack is as a freelist that is shared by processes [MS98a]. Stack

nodes are used as memory buffers in the application data structure. In such a context, the

Treiber stack does not itself need a freelist, because aftera node has been removed from the

stack, it will be used by the application.)

Other techniques that enable unused memory to be given back to the system exist, and

are discussed in Chapters 5 and 6. The main point here is that recycling memory from

nonblocking data structures is tricky, and simple solutions are not always applicable.

CAS and the ABA Problem

As noted in the previous section, Treiber’s stack algorithmused the CAS synchronisation

primitive, rather than LL/SC. A simple attempt at using CAS to implement a nonblocking

stack is presented in Figure 1.6. The LL operations at lines H4 and P2 have been replaced by

reads; the SC operations at lines H6 and P6, have been replaced by CAS operations. The idea

is that the CAS operation provides a similar kind of conditional update as the SC operation.

Therefore, it might seem that a successful CAS operation applied to Head by one process

should only modifyHead if no other process has done so since the earlier read.

This algorithm will work correctly if memory is never recycled, or if garbage collection

is used. However, it is incorrect in a context where memory isrecycled using a local freelist.

To see why, suppose that we replace line P8 with the followingcode

P8: val := head->val;
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void push(val v) {
H1. node * nd, head;
H2. nd := new node();
H3. nd->val := v;
H4. while(true) {
H5. head := Head;
H6. nd->next := head;
H7. if (CAS(&Head, head, nd))

break;
H8. }
H9. return;
}

val pop(val *out) {
P1. node * head, next;
P2. while (true) {
P3. head := Head;
P4. if (head = null)
P5. return empty;
P6. next := head->next;
P7. if (CAS(&Head, head, next))

break;
P8. }
P9. return head->val;
}

Figure 1.6: Stack algorithm using CAS. This algorithm does not explicitly recycle memory.

P9: to freelist(head);
P10:return val;

whereto freelist adds its argument onto a freelist. Now, consider the following execu-

tion, illustrated in Figure 1.7:

• Some processp invokespop while the stack is not empty. It loadsHead (which is

non-null) and thenhead->next before being delayed. This situation is illustrated

in Figure 1.7(i).

• Another processq invokespoptwice, removing the top two nodes (those markeda and

b in the figure). The nodes removed from the stack during these operations are placed

on a freelist.

• A processr invokespush, adding a node distinct fromp’s next variable onto the stack,

and thenq invokespush, placing the node referenced byp’s head variable onto the

stack. The resulting state is illustrated in Figure 1.7(ii).

• Processp now continues its operation, executing the CAS at line P8 of Figure 1.6. This

CAS succeeds in modifyingHead because processq set that variable to be equal to

p’s head variable. This results in the situation illustrated in Figure 1.7(iii). The node

markedc has been incorrectly removed from the stack, and that markedb has been

incorrectly added.

The problem is that CAS does not guarantee to modify a location only if the value in the

location has not changed since the location was last read. Itonly guarantees that the value is
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Figure 1.7: States of the stack implementation in Figure 1.6leading to an error when recy-

cling through a freelist.
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the same as it was before. Note that the stack implementationthat used LL/SC did not suffer

from this problem because the semantics of LL/SC guarantee that the SC will fail if the value

has changed. Also note that if memory was never recycled, thenode markeda could never

have been replaced on the stack. Similarly, if garbage collection was used the collector would

delay recycling of the node markeda until after p had executed a (failing) CAS and reread

theHead variable at line P2.

This issue with the use of the CAS operation is known as theABA problem[PLJ94].

Recall that a typical way to use CAS (as exemplified in the stack algorithm) is to read a value,

call it A, from a location (in our caseHead), and to then use CAS to change the value at that

location fromA to a new value. The intent is often to ensure that the CAS only succeeds

if the value in the location has not changed since it was read (an effect which is achieved

directly by the LL/SC operations). However, the location might change to a different value

B and back toA again between the read and the CAS, in which case the CAS can succeed.

Typically, such a pattern will cause an algorithm to behave incorrectly.

In general, the ABA problem does not arise when garbage collection is used, so long

as CAS is only used to modify pointer values, and no pointer can appear twice in the same

location without first becoming unreachable and subsequently being reallocated.4 This is the

case with the Treiber stack, and numerous other nonblockingalgorithms. However, as we

argued earlier, garbage collection is not always applicable.

Figure 1.9 presents pseudocode for a version of the stack algorithm that does not suffer

from the ABA problem, even when recycling nodes through a freelist, and does not depend on

garbage collection (this is essentially the algorithm presented in the original paper [Tre86]).

We introduce a new typerefint t, presented in Figure 1.8. Members of therefint t

type have both a pointer to a node and an integer, called aversion number. There are systems

where the CAS operation can atomically compare and modify both a pointer and an integer

(for example, a 32-bit system with a 64-bit CAS). In such systems, an algorithm may use

CAS to increment the version number of arefint t every time the value of the pointer is

changed. Assuming for a moment that the version number can take the value of any integer,

if a location containing arefint t has the same value at two points in time, then it had the

same value throughout that interval.

This idea is applied in the stack by givingHead the typerefint t, and incrementing

its version number at lines H6 and P6. Now, an execution like the one illustrated in Figure 1.7

4This situation can always be achieved by introducing a levelof indirection between values and locations.
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struct {node *ptr;
int ver} refint t

Figure 1.8: Therefint t type. If x has typerefint t, we usex.ptr to refer to the
pointer member, andx.ver to refer to the integer.

cannot occur. The modifications to the version number that would be carried out by processes

q andr during their operations would preventp’s CAS from succeeding.

This version number technique, or one very like it, is used ina range of other nonblocking

algorithms ([TSP92, Moi97, MS98a, LMS03a, HF03, JP03, DHLM04] provide examples).

Note that so far we have pretended that the version number canincrease without bound.

However, in practice, version numbers can only represent a finite range of values, and the

version number may wrap-around to a value that was previously in the location. But if

sufficient bits are used to represent the version number, it can be made extremely unlikely

that this wrap-around will cause a problem [Moi97].

However, the version-number technique requires that CAS beable to modify two adjacent

values simultaneously: the pointer and the version number.This is impossible in many

multiprocessor systems. If the system uses 64-bit pointers, but only provides a 64-bit CAS,

the CAS cannot atomically modify both the pointer and the version number.

As discussed in Section 1.2 and in Chapters 5 and 6, this thesis presents techniques for

overcoming the ABA problem, as well as enabling storage reclamation from nonblocking

data structures.

1.1.4 Verification of Nonblocking Algorithms

As has already been mentioned, nonblocking algorithms are typically more complicated

than their lock-based counterparts. This extra complexityoften makes it difficult to deter-

mine whether an algorithm is correct. Indeed, several algorithms from the literature have

been shown to be incorrect after publication (for example, [MP91, DFG+00, Val94, Val95,

TZ01b]).

Because of this, careful researchers provide evidence thattheir novel algorithms are cor-

rect. This evidence typically takes one of two forms:

• Some kind of rigorous testing or model-checking is carried out (eg., [MS96b, Har01]).

• Some sort of manually constructed formal proof or semi-formal argument is presented,
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struct node {
val val; node *next

}

refint t *Head;
initially Head = (null, 0);

void push(val v) {
H1.nd := new node();
H2.nd->val := v;
H3.while(true) {
H4. head := Head;
H5. nd->next := head.ptr;
H6. if (CAS(&Head, head,

(nd,
head.ver+1)))

break;
H7. }
H8.return;
}

val pop(val *out) {
P1.while (true) {
P2. head := Head;
P3. if (head.ptr = null)
P4. return empty;
P5. next := head.ptr->next;
P6. if (CAS(&Head, head,

(next,
head.ver+1)))

break;
P7. }
P8.return head.ptr->val;
}

Figure 1.9: Types, initial state and pseudocode for the version number stack.
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purporting to show that the algorithm is correct (eg., [DFG+00, JP03, MNSS05]).

Rigorous testing and model-checking can be used to find errors in many systems. Both ap-

proaches suffer from the drawback that typically they only examinesomepossible executions

of a given algorithm, rather than guaranteeing correctnessfor all executions. (Any model

checking algorithm can only enumerate finitely many states directly, in finite time. Some

advanced model-checking techniques may be able to check allexecutions of an unbounded

system, using a bounded approximation of the original system. We return to this issue in

Chapter 2).

The other approach, manually constructing a formal or semi-formal argument, is perhaps

more popular. A formal argument or proof has the advantage that it covers all possible

executions of an algorithm. Unfortunately, published proofs are often long and difficult, or

lacking in rigor. Both these conditions make the proofs lessreliable. For example, [DFG+00,

TZ01b] present incorrect algorithms, along with semi-formal correctness arguments.

[Gao05] has noted that many nonblocking algorithms seem to have the property that au-

tomatic verification is impossible and manual verification is inadequate. Some recent work

[CDG05, Doh03, DGLM04, GGH05a, GGH05b] has attempted to finda middle ground, us-

ing proof checkingandmachine-assisted theorem provingto verify nonblocking algorithms.

As discussed in the next section, the development of such techniques is one of the central

concerns of this thesis.

1.2 Contributions and Overview of the Thesis

The contributions of this thesis can be divided into two categories. The first involves the

verification of nonblocking algorithms. The second involves lifting the restrictions suffered

by many nonblocking algorithms relating to memory reclamation and the availability of syn-

chronisation primitives. Accordingly, this thesis is divided into two parts. Part I is concerned

with the verification of nonblocking algorithms. Part II is concerned with memory reclama-

tion techniques and synchronisation primitives.

1.2.1 Techniques for Verifying Nonblocking Algorithms

As discussed in Section 1.1.4, it is desirable to develop techniques for the verification of

nonblocking algorithms that provide a greater level of assurance of correctness than the stan-

dard techniques currently used. Part I of this thesis describes and applies such techniques to
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the verification of nonblocking algorithms. Much of this work is built from techniques first

developed in [Doh03], which in turn are based on work originally developed for the verifica-

tion of distributed systems [LV93, Lyn96]. The work reported in [Doh03] was an attempt to

model and verify an algorithm known as theSnark algorithm[DFG+00], which is an imple-

mentation of a double-ended queue (a structure containing asequence of values that supports

bothadd andremoveoperations at both ends). That effort resulted in the discovery that the

algorithm as originally published is incorrect. The verification work of this thesis extends

that of [Doh03] by showing how algorithms of greater complexity can be verified, using a

broader range of verification techniques.

Chapter 2 describes a technique in which both implementations and their specifications

are formalised aslabelled transition systems(LTS). This allows us to apply a powerful tech-

nique that usessimulation relations. A simulation relation is a relation between the states

of an LTS representing an implementation and an LTS representing a specification, the exis-

tence of which guarantees that every observable behaviour of the implementation is allowed

by the specification.

The verification work presented in this thesis has three important features. First, we

verify algorithms that use dynamically allocated memory and present a useful technique for

describing the properties of this memory within a simulation relation. This technique is

applied to verifications in Chapters 3 and 6.

Second, we use a certain kind of simulation relation called abackward simulation. Back-

ward simulations are needed very infrequently in most verification contexts, but are more of-

ten necessary in the verification of nonblocking algorithms(algorithms from [Blo88, Fra03,

DDG+04, MNSS05] would all require backward simulations if verified using simulation re-

lations). Because of this and the fact that backward simulations appear to be, in some sense,

trickier than the simulations that are typically required,we believe that this work contains

useful insights into the verification of nonblocking algorithms. Verifications presented in

Chapters 3 and 4 use backward simulations.

Third, all the verifications presented in this thesis have been proof-checked using the

PVS proof assistant [PVS]. This gives them a greater degree of reliability than proofs that

are constructed manually.

The specific verifications presented in this thesis are as follows. Chapter 3 describes the

verification of a variant of a nonblocking queue algorithm first presented in [MS96b]. This

verification is the simplest of those presented in the thesis, and so serves as an introduction

to the verification techniques. Additionally, during the verification process, we discovered a
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useful optimisation of this algorithm, which is also presented in Chapter 3. Chapter 4 presents

a subtle verification using backward simulation. This formsthe most interesting part of the

verification of a corrected version of the Snark algorithm mentioned in Section 1.2.1. The

verification functions as an extended example of the application of backward simulation to

nonblocking algorithms.

As we describe in the next section, Chapter 6 in Part II presents an implementation of the

LL/SC operation pair. We apply the techniques of Part I to theverification of this algorithm.

This verification is large, reflecting the complexity of the algorithm, but is a straightforward

application of the techniques presented in Chapter 3. Its main purpose is to provide evidence

for the correctness of the LL/SC implementation, and to showthat our techniques can be

applied to complicated algorithms.

1.2.2 Novel Nonblocking Algorithms

We have described two important limitations that restrict the application of nonblocking al-

gorithms in modern computer systems.

• Many nonblocking algorithms depend on garbage collection to reliably release mem-

ory back to the system. (The presence of a garbage collector is assumed in [DFG+00,

LMS03a, HLM02a, HHL+06]. Many more examples exist.)

• Many nonblocking algorithms require the LL/SC operations,or a CAS operation that

can compare-and-swap both a pointer and an adjacent versionnumber, in order to

overcome the ABA problem. Such operations are not availableon many systems.

We encountered both these issues in Section 1.1.3. Significant research has been conducted

into schemes that enable memory reclamation from nonblocking data structures, various

LL/SC implementations, and alternative solutions to the ABA problem [Val94, AM95, Moi97,

Gre99, Moi00, DMMm01, HLM02b, JP03, Mic04, Jay05].5 Part II of this thesis presents our

contributions to this effort. In Chapter 5 we present a novelnonblockingreference-counting

technique that enables memory reclamation from nonblocking data structures. This tech-

nique has certain advantages over prior proposals, relating to its overall resource consump-

tion. However, this technique requires a CAS operation thatcan compare-and-swap both a

pointer and a counter. As with version-numbering, this reference counting technique cannot

be applied on all systems.

5A correction to an error in [Val94] is presented in [MS95].
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The main result described in Chapter 6 overcomes this problem. We present an imple-

mentation of the LL/SC operation pair that may be applied to arbitrarily sized data, that

requires only a CAS operation that can atomically modify a pointer value. This implemen-

tation can be used with the reference-counting technique toenable nonblocking memory

reclamation from many dynamic sized nonblocking data structures. Further, the LL/SC im-

plementation itself can be used in any algorithm that requires the LL/SC operations with their

full semantics, or in algorithms that require a CAS or LL/SC operations applicable to both a

pointer and other data, such as a version number. Thus, such algorithms can be used even in

systems where LL/SC operations, or a CAS operation that can modify multiple values, would

otherwise be unavailable.

Similar claims could be made for previous approaches to memory reclamation and solu-

tions to the ABA problem. However, existing solutions have one of two major drawbacks:

• They depend on very unusual properties of the underlying system: either an exotic

synchronisation primitive such as DCAS (as in [DMMm01]) or memory blocks not

changing layout after reclamation (as in [Val94, Gre99]).

• They require that the maximum number of processes that will ever use the facility be

known in advance (eg., [Her91, AM95, LMS03a, JP03, HLM02b, Mic04, LMS03a,

JP03]).

These drawbacks are discussed in more detail in Chapters 5 and 6. However, it is worth noting

here that it is common for nonblocking algorithms to requirethat the maximum number of

processes be known in advance (eg., [Her91, AM95, LMS03a, JP03]). In fact, the results

presented in Chapters 5 and 6 are the first nonblocking algorithms that allocate and release

dynamic memory and do not depend on exotic synchronisation primitives or knowledge of

the maximum number of processes that will access the data structure.

1.3 Notation

This section describes notation used in the thesis.

Logic, Sets and Functions

We use the standard logical connectives, listed here in order of increasing binding power:∀

for ‘for all’; ∃ for ‘there exists’;⇒ for implies;∨ for ‘or’; ∧ for ‘and’; ¬ for ‘not’. These
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binding conventions are the same as those used in PVS [COR+95]. The scope of bound

variables extends to the end of the expression following thequantifier, and we use a dot

notation to separate quantifier and predicate. Thus, in

∀ x • P ⇒ Q(x)

x is bound over the predicateQ.

We useN to denote the natural numbers,Z to denote the integers andbool to denote the

booleans{true, false}. We use ranges of the form[i . . . j] to denote the set of integersk

such thati ≤ k andk ≤ j. S× T is the Cartesian product of setsSandT. The projectionsπ1
andπ2 return the first and second members of these products, respectively. Expressions of

the form
∏

s∈S

e

wheree is some set expression that may involves, denotes the product of the setse across

the index setS. For products like this, we use the projectionsπs for eachs∈ S.

For complex products, we often use mnemonic access names with a dot syntax. For

example, for some tuplet ∈ X× (Y×Z) we might stipulate thatt.x = π1(t), t.y = π1(π2(t))

andt.z= π2(π2(t)).

Given a relationR : S× T ands∈ S, R[s] is the relational image ofsontoT:

R[s] = {t ∈ T | R(s, t)}

We often need to modify the value of a function at a certain point: given a function

f : S→ T, s∈ Sandt ∈ T, let f ⊕ {s 7→ t} be the function just likef , but with f (s) = t, i.e.,

for everys′ ∈ S:

f ⊕ {s 7→ t}(s′) =

{

f (s′) if s′ 6= s

t if s′ = s

Finally, given a functionf , let dom f be the domain off .

Sequences

We make substantial use of sequences. We view sequences as functions over some (possibly

infinite) prefix ofN (so sequences are indexed from zero). When a sequence is a function over

a finite prefix ofN, we say that the sequence isfinite. Otherwise, we say that it isinfinite.



20 CHAPTER 1. INTRODUCTION

We uselength(α) to denote the length of the finite sequenceα.6 When length(α) = 0,

we say thatα is empty. Bythe empty sequence, we mean the unique sequence〈〉 such that

length(〈〉) = 0. Given two (finite or infinite) sequencesα andβ we say thatα andβ have the

same lengthif and only if α andβ are both infinite, orlength(α) = length(β). Sometimes

we need to quantify over the domain of a sequence, excluding its last element if it is finite.

Thus, given a sequenceα, let dom−α bedom α whendom α = N (i.e.,α is infinite), and

all but the greatest element ofdom α whenα is finite. Given some setS, let S∗ be the set of

finite sequences whose values are elements ofS, and letS∞ be the set of (finite or infinite)

sequences whose values are elements ofS.

6Precisely, whenα is finite, length(α) is the size of the graph ofα.
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Chapter 2

Verification

This chapter describes a formal methodology for verifying concurrent algorithms using tran-

sition systems. This approach is based on the work of Lynchet al. [LT87, LV93, Lyn96],

and developed from previous work in the verification of nonblocking algorithms [Doh03,

CDG05].

In Section 2.2, we definelinearisability [HW90], the notion of correctness that we ap-

ply to nonblocking algorithms in this thesis. Linearisability is a correctness condition for

concurrent implementations of objects (such as stacks and queues) that have a sequential

specification. As mentioned in the introduction, we use transition systems calledI/O au-

tomata[LT87] to model the specifications and implementations thatwe use in this work. I/O

automata are described in Section 2.3.

Transition systems, such as I/O automata, are a natural choice for modelling, specifying

and verifying concurrent systems. Section 2.1 outlines thereasons for this, and describes

some of the advantages of the I/O automaton model. We also discuss how our use of I/O au-

tomata relates to the goal of constructing proofs of correctness that are mechanically check-

able.

Section 2.4 definessimulation relations. A simulation relation is a relation between the

states of two automata, the existence of which guarantees that one automaton implements

the other automaton. Section 2.5 defines some notation for describing I/O automata. Section

2.6 shows how to construct simple specification automata that are known to have the desired

correctness property, linearisability.

23
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2.1 Transition Systems and Verification

Transition systems are frequently used to provide mathematical models of concurrent systems

(such as nonblocking algorithms) ([CM88, Sha93, Lyn96, AHR00, Lam94] provide examples

in different settings). Briefly, transition systems are structures with a set ofstates(sometimes

called itsstate space), a set ofinitial states, and atransition relationbetween states. The use

of transition systems is appealing when the algorithm beingverified has a notion ofstate, as

with a shared-memory nonblocking algorithm.

Labelled transition systems (LTS) are transition systems where each transition has alabel.

Labels are used to distinguish betweeninternal transitions (modelling steps in a computation)

that are “invisible” and those that are externally visible (modelling invocations and responses

of operations).

Specifying an LTS amounts to specifying the properties of its externally observable be-

haviour: that is, the sequences of external labels that it can produce. LTSs themselves can

be viewed as specifications of external behaviours. Thus, wecan use anabstractLTS as a

specification of aconcreteLTS, that represents the behaviour of an implementation. This is

the approach used in this thesis.

The size of a transition system’s state space partly determines the difficulty of verify-

ing the system’s properties. As we discuss in Section 2.1.2,if a system has a ”small” finite

state space, then many important questions about the behaviour of the system can be an-

swered automatically. On the other hand, if the system has infinitely many states, verifying

its properties can be very challenging. In this thesis, we wish to verify systems that have

an unbounded number of processes, sharing an unbounded amount of dynamically allocated

memory. Thus, the systems of interest to us have infinite state spaces.

We usesimulation relations[LV93] to show that an algorithm meets its specification.

Simulation relations are relations over the states of two LTSs. The existence of a simulation

relation from one LTS to another guarantees that the observable behaviour of the first is

shared by the second.

Simulation relations have a very useful property: they reduce reasoning about all possible

behaviours of the LTS to reasoning about the individual transitions. In this respect they are

akin to proofs relying on invariants, which reduce reasoning about all possible states of an

LTS to reasoning about transitions. Thislocality of proof obligations makes reasoning about

a large class of possibilities tractable.
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2.1.1 Mechanical Assistance for Verification

There are two main kinds of mechanical assistance availablefor the formal verification of

transition systems: model checking and theorem proving. Wediscuss each in turn.

2.1.2 Model Checking

Model checking [CE82, CES86, QS82] is a verification technique based on generating a rep-

resentation of the reachable states of a transition system.This representation must allow us to

determine mechanically whether some state fails to satisfysome given property. Numerous

model checkers are available (e.g., [Spi, SMV, dSp, YML99, Mur]). Modern model check-

ers can explore large finite state spaces. This makes them capable of automatically verifying

properties of a broad range of finite systems. Moreover, it ispossible to model check finite

instances of systems with unbounded or infinite sets of reachable states. For example, an in-

stance of a concurrent algorithm that uses shared memory canbe verified automatically using

model checking, so long as the instance in question uses a small, fixed amount of memory,

and has a small number of processes. Indeed, the algorithms discussed in Chapters 3 and

6 were model checked (using the model checker Spin [Hol97]) during their development or

verification. Moreover, bugs were found in the early versions of the the LL/SC algorithm of

Chapter 6. However, checking a finite instance of an algorithm is a long way from providing

a general verification, so other techniques must be examined.

Model checkers can only generate a finite representation of aset of reachable states.

Therefore, if we wish to verify infinite systems, we must find some way to represent the

infinite set of reachable states finitely. Such finite representations are known asabstrac-

tions. Substantial attention has been given to developing ways toconstruct abstractions (e.g.

[DD02, GS97, BCDR04, MYRS05], but there are many more examples). Some of this work

has been directed towards the verification of systems involving concurrent access to shared

memory (e.g., [Yah01, WS02, ARR+07a]). We discuss some of these contributions in detail

in Chapter 3. In general, obtaining a precise finite representation of the infinite state space of

such systems is a very difficult problem. Many techniques generate an abstraction that is an

over-approximationof the system in question. That is, the abstraction may represent more

states than are reachable by the system, or generate a representation of behaviours that do not

belong to the system. Often, such over-approximations cannot be used to verify that a system

has a property of interest, even when the system does have theproperty.
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2.1.3 Theorem Proving

One of the advantages of using rigorous mathematical modelsand specifications is that proof

obligations can be submitted to a mechanical theorem prover. A mechanical theorem prover

is an application capable, at least, of checking proofs of theorems expressed in some kind of

formal notation. Most provers have some ability toconstructproofs, using heuristic-driven,

automated proof search and decision procedures. Unlike model checkers, theorem provers

can be readily used to verify properties of systems of unbounded size.

Like model checkers, there are several theorem provers available (for example [PVS, LP ,

isa, met]). Most provide an input language based on mathematical logic and some mechanical

proof automation. The verifications presented in this thesis have been checked using the PVS

proof assistant [COR+95]. PVS is widely used in academia and industry, provides aneasily

learned higher-order logic1 with powerful constructs and is well supported by developers.

The use of a mechanical theorem prover offers several advantages over the construction of

proofs by hand. Automated proof search relieves the human ofmuch of the responsibility for

carrying out tedious, mechanical reasoning. The PVS systemcan carry out simple quantifier

instantiation and propositional reasoning automatically, as well as applying lemmas based on

reasonable heuristics. PVS also has sophisticated decision procedures for equational logic

and pure boolean expressions. In combination, these features mean that a user of the PVS

system can submit most simple proof goals to the PVS prover, with good reason to hope that

they can be proved without any human intervention.

Proofs are checked with mechanical precision. In the ideal case, steps in an argument are

matched against the rules of the logic that the prover supports. However, the use of decision

procedures in a theorem proving system complicates this issue somewhat: the mechanically

checked proof may rely on the correctness of decision procedures that do not explicitly rep-

resent applications of proof rules. Still, in the PVS system, these decision procedures are

implementations of well-understood algorithms. While these implementations may contain

bugs, successfully checking a proof using PVS provides a high level of assurance that the

proof is correct and complete.

The main difficulty in conducting a verification by proving theorems, using a proof assis-

tant to check or construct the proofs, is the high level of human involvement. In many cases,

model checkers are able to eliminate all, or almost all, needfor human insight. The human

theorem prover must express the correctness conditions of the system in question, state lem-

1Where quantification over functions is allowed.
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mas and invariants that are necessary for the proof, and (at least) guide the prover through

the process of constructing the proofs.

2.2 Correctness

In order to prove that an implementation of a data structure is correct, we must be able to

state precisely the correctness conditions for that implementation: that is, we must be able

to specifythem. In this thesis, we focus on concurrent implementations of datatypes with

a clear sequential specification. Stacks and queues are examples of such datatypes. In this

setting, a natural way to specify the behaviour of a concurrent datatype is to transform a

sequential specification of the datatype into a concurrent one. This is the approach taken

by the dominant correctness condition for concurrent implementations of sequential data

structures:linearisability.

In essence,linearisability [HW90] requires that there be some point between the invo-

cation and response of each operation on a concurrent data structure, called alinearisation

point, when the operation appears to all processes to take effect.The linearisation points

form a sequence of operations on the object that must conformto the object’s sequential

specification. This correctness condition has become standard in the nonblocking algorithms

literature. One of the reasons why linearisability has become popular is because it is alocal

property [HW90]: that is, a system of linearisable implementations is linearisable exactly

when each implementation within that system is linearisable.

The remainder of this section formally defines linearisability. Section 2.2.1 defines a

notion ofsequential datatype, and Section 2.2.2 defines linearisability in terms of this defini-

tion.

2.2.1 Sequential Datatypes

We view a sequential datatype as a specification of a set of valid behaviours, where a be-

haviour is a sequence of operations of the datatype, and responses to those operations. What

follows is a simple way to define datatypes formally, adaptedfrom [Lyn96, Section 9.4].

Each datatype is equipped with a set of invocations and responses, that constitute the inter-

face to the datatype. The behaviours of the datatype, which we call tracesare sequences of

pairs invocations and responses.

A datatypeD is a tuple(D,D0, I ,R,u) whereD is the set ofvaluesof the datatype;
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D0 ⊆ D is the set of initial values;I is the set of invocations;R is the set of responses; and

u : D×I → D×R is anupdate functionthat defines how the datatype responds to invocations.

The update functionu defines the effect of these operations on members of the datatype.

We model a behaviour as a sequence of invocation/response pairs. For a datatypeD with

invocationsI and responsesR, define thesequential alphabetof D to bealpha(D) = I × R.

Definition 2.1 (Execution of datatype)

An executionof a datatypeD = (D,D0, I ,R,u) is a sequencee ∈ alpha(D)∗ such that

e0 ∈ D0, and for everyn ∈ dom−e, i ∈ I , r ∈ R, u(en, i) = (en+1, r).

We now define a notion of the externally observable behaviourof a datatype. Atrace

of a datatype is a sequence of pairs of invocations and responses that corresponds to some

execution of the datatype.

Definition 2.2 (Trace of datatype)

A traceof a datatypeD is a sequencet ∈ alpha(D)∗ such that there exists some executione

of D satisfyingdom−e= dom t, and for everyn ∈ dom−t, u(en, π1(tn)) = (en+1, π2(tn)).

As an example of this specification style, consider thestackdatatype. The stack contains

elements of some non-empty setT. It is modelled as a sequence of elements from that set.

Let the stack datatype beS = (D,D0, I ,R,u) where:

• D = T∗ is the set of sequences of elements fromT.

• D0 = {〈〉}, the set containing just the empty sequence.

• I = {push inv(t) | t ∈ T} ∪ {pop inv} and

R= {push resp, empty} ∪ {pop resp(t) | t ∈ T}

push inv(t) represents an invocation of the push operation with the parameter t;

pop inv represents an invocation of the pop operation;push resp signals that a push

operation has been completed;pop resp(t) represents the response to apop inv invo-

cation, with the return valuet; empty signals that an attempted pop operation found

the stack empty.

• The left side of the sequence is the top of the stack so that in response to a push,

we want to concatenate the pushed value onto the left side of the sequence. For a

pop, unless the stack is empty, we want to remove and return the leftmost value in the
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sequence; if the stack is empty, we should do nothing to its state, but returnempty as

a response. Hence, for anyd ∈ D, t ∈ T, the update functionu satisfies:

u(v, push inv(t)) = (〈t〉 ⌢ v, push resp)

u(〈〉, pop inv) = (〈〉, empty)

u(〈t〉 ⌢ v, pop inv) = (v, pop resp(t))

Stacks have traces like

〈(push inv(t1), push resp), (pop inv, pop resp(t1)), . . .〉

which has the following execution

〈 〈〉, 〈t1〉, 〈〉〉

2.2.2 Linearisability

We now turn to the definition of linearisability. Linearisability is due originally to Herlihy

and Wing [HW87, HW90], and has become a very common correctness condition for con-

current objects. The idea is to make it look to each process (and the observer) as though

each operation on a concurrent implementation of a datatypeoccurs between the invocation

and response of the operation, one at a time in an order consistent with the sequential spec-

ification of the datatype. The formal definition presented here is adapted from [HW87] and

[Lyn96].

Linearisability depends on a notion ofhistory. A history is a representation of a sequence

of interactions between a set of processes and a concurrent implementation of a datatype, and

corresponds to the notion of atraceof a datatype. In the definition oftracefrom the previous

section, we represented each operation as an invocation/response pair. However, in a concur-

rent setting, each operation takes place over some interval, so the invocation and response of

each operation may not beadjacentin any sense. Therefore, we model a concurrent operation

as an interval demarcated by an invocation at the beginning and a response at the end. Along

with each invocation or response, we record the process thatis executing the operation. We

need several definitions before we arrive at the definition ofhistory.

Definition 2.3 (Concurrent alphabet)

Given a datatypeD = (D,D0, I ,R,u) and a setPROC (whose members are calledpro-

cesses), the concurrent alphabet ofD for PROC, written alpha(D, PROC) is the set

(I ∪ R)× PROC.
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Normally we write elements of the concurrent alphabet as an invocation or response sub-

scripted by a process, so that(inv,p) ∈ alpha(D, PROC) becomesinvp.

We are only interested in sequences over the concurrent alphabet of a datatype that could

be generated by a system in which after making an invocation on an instance of the datatype,

no process makes another invocation before receiving a response. We call such sequences

well-formed. We first defineprocess subhistory, which, for a given processp is the sequence

of invocations and responses performed byp; then we definewell-formednessandhistory.

Definition 2.4 (Process subhistory)

Given a datatypeD, process setPROC, and sequences∈ alpha(D, PROC)∗, theprocess

subhistory for p∈ PROC in s, writtens | p, is the sequence of invocations and responses in

s that are indexed byp.

Definition 2.5 (Well-formedness)

Given a datatypeD and process setPROC, a sequences ∈ alpha(D, PROC)∗ is well-

formedif for everyp ∈ PROC, s | p begins with an invocation, and for everyn ∈ dom−(s |

p), if (s | p)n+1 is a response, then(s | p)n is an invocation.

Definition 2.6 (History)

Given a datatypeD and process setPROC, a history ofD andPROC is a well-formed

sequenceh ∈ alpha(D, PROC)∗.

We define an operation in a historyh to be a triple(n, invp, respp) wherep is a process,

hn = invp andrespp is the nextp-indexed response after the invocationinvp in the history.2

Some invocations may not have matching responses. These invocations are calledpending.

Definition 2.7 (Operation, pending invocation, complete history)

Given a datatypeD with invocationsI and responsesR, process setPROC, and execution

history h of D andPROC, an operation in his a triple (n, invp, respp) with hn = invp,

inv ∈ I andresp ∈ R such that there is somek satisfying(h | p)k = invp and(h | p)k+1 =

respp. A pending invocation in his a pair(n, invp) whereinvp ∈ I × PROC such that

hn = invp is the last element ofh | p. The sequencecomplete(h) is h with all pending

invocations removed.

Now, a historyh induces a natural partial order over its operations, denoted <h.

2The first component of an operation is used to distinguish it from other operations in the history that have

the same invocation and response.
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Definition 2.8 (Irreflexive partial order of a history, <h)

Given a datatypeD, process setPROC and execution historyh of D andPROC, <h is the

irreflexive partial order over the operations ofh defined by

(m, invp, respp) <h (n, inv′q, resp
′
q) if and only if there exists somek, such that

m< k < n andhk = respp.

We will extend the partial orders of histories to total orders, and then use these total or-

ders to construct traces of datatypes. This construction relies on some simple observations

about total orders of operations. First, observe that an irreflexive total order< over a set of

operationsS, such that< has a least element orS is empty, induces a sequence of operations

from S. If < has a least element, this sequence is constructed by laying out the operations of

S in the order determined by<; if S is empty, then the sequence is〈〉. Second, observe that,

given a historyh of datatypeD, such thath has some operation, any total order over the oper-

ations of that history has a (not necessarily unique) least element if it contains the irreflexive

partial order<h. (The operation(n, invp, respp) such thatrespp is the first response inh is

a least element.) Thus, given a historyh, any total order (empty or not) over the operations

of h that contains<h induces a sequence of operations. Finally, this sequence ofoperations

induces a sequence of invocations and responses ofD constructed by laying out in order the

pairs made up of the invocations and responses of each operation in the sequence, with the

process index removed.

We now define linearisability.

Definition 2.9 (Linearisability of histories)

A history h of datatypeD and setPROC is linearisableif it can be extended to a historyh′

by appending elements ofalpha(D, PROC), such that there exists an irreflexive total order

< over the operations ofcomplete(h′) satisfying the following conditions:

1. The partial order<h′ is contained in the total order<. That is, for every pair of

operationsO1,O2 in h′, O1 <h′ O2 impliesO1 < O2.

2. The sequence of invocations and responses induced by< is a trace ofD.

There are two sets of decisions which must be made to show thata given historyh can

be linearised: the choice of the extensionh′ and the construction of the total order<. An

example should illuminate how these choices should be made.With reference to the stack
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datatypeS introduced in the previous section, consider the followinghistory3:

h = 〈push invp(t1), push invq(t2), pop invr , push respq,

pop respr(t2), pop invr , pop respr(t1)〉

Figure 2.1 illustrates this history.

p

q

r

push inv(t1)

push inv(t2) push resp

pop inv pop resp(t2) pop inv pop resp(t1)

Figure 2.1: The operations of the example trace.

There are three operations inh:

O1 = (1,pushq(t2),push respq)

O2 = (2,popr ,pop respr(t2))

O3 = (5,popr ,pop respr(t1))

Also, there is one pending invocation:(0, pushp(t1)). Note that the response ofO3 returns

the valuet1. This value can only have been placed on the stack by processp during its push

operation, so we cannot construct a trace of the stack datatype from the operationsO1,O2 and

O3, however they are ordered. Hence, we cannot construct a total order on the operations ofh

to satisfy Definition 2.9. We need to extendh to a historyh′ such thatp’s pending invocation

becomes an operation. In that case,h′ will have a fourth operation,p’s push. So define

h′ = 〈pushp(t1),pushq(t2),popr ,push respq,
pop respr (t2),popr ,pop respr (t1), push respp〉

and letO4 = (0, pushp(t1), push respp). Note thatO4 is an operation ofh′.

Because there are no pending invocations inh′, complete(h′) = h′. All we need to do

now is construct the order< to satisfy clause (1) of Definition 2.9. We do this by choosing

3Strictly speaking, we should write the process-indexed invocations of push operations in the form

push inv(t)p, and similarly for other invocations or responses that havearguments. The form used here seems

more natural, and we use it throughout this thesis.
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a linearisation point, for each operation inh′. This is a point in the interval between the

invocation and response of each operation where we can thinkof the operation as ’taking

effect’. Once a linearisation point has been assigned to each operation, we letOi < Oj if

the linearisation point ofOi occurs before the linearisation point ofOj . Thus, the order of

linearisation points induces a total order on the operations of a history.

Since the response ofO2 returns the valuet2 we need to placeO1’s linearisation point

before that ofO2 (becauset2 needs to be in the stack forO2 to be able to return the value).

Also, O3 returnst1, the value pushed by the pending invocationpushp(t1), so we should

choose a linearisation point forO4 before that ofO3. Therefore, we must choose linearisation

points so that the following conditions are satisfied

O1 < O2, O4 < O3

Figure 2.2 illustrates one possibility for a set linearisation points consistent with these con-

straints.

p

q

r

push(t1)

push(t2) push resp

pop pop resp(t2) pop pop resp(t1)
O1

O2 O3

O4

Figure 2.2: The operations of the example trace.

This set of linearisation points induces the following order on the operations ofh′:

O1 < O2 < O4 < O3

This order induces the following trace of the stack datatype:

〈(push(t2),push resp), (pop,pop resp(t2)),
(push(t1),push resp), (pop,pop resp(t1))〉

This is the trace of the following execution ofS:

〈 〈〉, 〈t2〉, 〈〉, 〈t1〉, 〈〉 〉

There is another possible choice for the linearisation point chosen for the pending push,

O4: we could have stipulated that it occurred before the linearisation point ofO1 and still
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obtained a valid linearisation. There is often a substantial degree of freedom in choosing the

linearisation points for a history.

Note that choosing linearisation points between the invocations and responses of each

operation guaranteed that the resulting order contained<h (so we satisfied clause (2) of

Definition 2.9).

Note that we have defined linearisability only for individual histories. We need to ex-

tend this definition to cover concurrent implementations ofdatatypes. We model concurrent

objects, both implementations and specifications, asI/O automata[SAGG+93], which are

described in the next section. In this thesis, an I/O automaton is a labelled transition system

whose observable behaviour is defined to be a set of histories. We say that an I/O automaton

is linearisable if and only if every member of its set of histories is a linearisable history.

2.3 I/O Automata

The following definitions are adapted from definitions foundin [LT87, SAGG+93, Lyn96].

Definition 2.10 (I/O Automaton)

An I/O automatonis a tuple(external, internal, states, start, trans), whereexternalis a nonempty

set ofexternal actions; internal is a set ofinternal actionssuch thatexternal∩ internal = ∅;

statesis a set of states (sometimes called thestate spaceof the automaton);start⊆ statesis

a nonempty set of start states; andtrans ⊆ states× acts× statesis the transition relation,

whereacts= external∪ internal.

The definition of I/O automata given in [Lyn96] separates thesetexternal into setsInput

andOutput. As described in Section 2.6, we have no need of this distinction.

We define some helpful notation to describe I/O automata. Given an I/O automaton

A = (external, internal, states, start, trans), let externalA = external, internalA = internal,

statesA = states, startA = start andtransA = trans. Also, letactsA = externalA ∪ internalA.

When(s,a, s′) ∈ transA we writes
a

−→A s′, or s
a

−→ s′ when no confusion is possible. If

s
a

−→A s′ we may refer tosas thepre-stateof the transition, ands′ as thepost-state.

We define a notion of oftrace for I/O automata in a way similar to our definition for

datatypes. Just as with datatypes, the set of traces of an automaton constitutes itsbehaviour.

We begin with two preliminary definitions:execution fragments, executions, andmove.
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Definition 2.11 (Execution fragment)

An execution fragmentof an I/O automatonA is a sequenceα ∈ states∗A such that for all

n ∈ dom−α, there exists somea ∈ actsA such thatαn
a

−→ αn+1.

An executionof an automaton is an execution fragment that begins with a start state.

Definition 2.12 (Execution)

An executionof an I/O automatonA is an execution fragmentα ∈ states∗A such thatα0 ∈

startA.

The set of executions of an automatonA is denotedexecsA.

Definition 2.13 (Move)

An I/O automatonA movesfrom s∈ statesA to s′ ∈ statesA via µ ∈ acts∗A, writtens
µ

=⇒A s′,

iff s = s′ andµ = 〈〉, or there exists some execution fragmentα of A satisfyingdom− α =

dom µ, the first element ofα is s, the lasts′, and such that for alln ∈ dom− α, αn
µn−→ αn+1.

Now we are ready to define thetracesof an automaton. Traces constitute the observable

behaviour of an automaton, in an analogous way to the traces of a datatype. However, unlike

with datatype traces, automaton traces depend on the classification of actions into internal

and external: only the external actions are observable in a behaviour. This allows us to model

situations in which concurrent implementations make changes to state that are not observable

externally. For any automatonA and sequenceµ ∈ acts∗A, let traceA(µ) be the sequence of

external actions ofA occurring inµ.

Definition 2.14 (Trace)

A sequenceµ ∈ external∗A is a trace of automatonA iff there exists someν ∈ acts∗A such that

traceA(ν) = µ, and there exists somes∈ startA, s′ ∈ statesA such thats
ν

=⇒A s′.

The set of all traces of an automaton is denotedtracesA, and constitutes the observable

behaviour of the automatonA. We define a relation between automata calledtrace inclusion,

denoted≤T, as follows:

Definition 2.15 (Trace inclusion, Finite trace inclusion)

For any I/O automataA andB, A ≤T B iff tracesA ⊆ tracesB, andA ≤T∗ B iff for every

µ ∈ traces, if µ is finite, thenµ ∈ tracesB.

For any automataA and B, tracesA ≤T tracesB, then any behaviour exhibited byA can

also be exhibited byB. Therefore, ifB is correct with respect to some specification defined
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in terms of traces andA ≤T B, thenB is correct with respect to that specification as well.

Likewise, if A ≤T∗ B, thenA is correct with respect to the safety properties specified byB.

In this thesis, we focus on the verification of safety properties.

Note that trace inclusion (finite or not) is apre-order: that is, it is reflexive and transitive.

Because trace inclusion is a pre-order, we can reason hierarchically. Given a specification

automatonA and implementation automatonC, we can show thatC ≤T A if we can find an

intermediate automatonI such thatC ≤T I andI ≤T A. This is often a very useful strategy,

which we employ in Chapters 3 and 4.

During our verifications, we construct proofs thatA ≤T B or A ≤T∗ B, for given au-

tomataA andB. B provides the specification andA models the implementation. We call

our specification automataabstract automata, and our implementation automata asconcrete

automata.

2.4 Verifying Trace Inclusion

This section describes formal techniques for proving that the traces of one automaton are

included within the traces of another. Our approach is builtaround the use ofsimulation re-

lations: relations between the states of automata that satisfy certain properties, the existence

of which guarantees trace inclusion between the automata. We first definereachable states

andinvariants, then we discuss simulation relations.

One subset of the state-space of an automaton is particularly important: thereachable

states of the automaton. This is the set of states that can appear in an execution of the

automaton: i.e., the least set containing the start states and closed under the transition relation.

Definition 2.16 (Reachable states)

For an I/O automatonA, the set ofreachable states, denotedreachA is the least set satisfying

1. startA ⊆ reachA.

2. For alls, s′ ∈ statesA, if s∈ reachA ands
a

−→ s′ for somea ∈ actsA, thens′ ∈ reachA.

An invariant of an automaton is a superset of the reachable states of the automaton. Thus, in

order to prove that some propertyP is an invariant, we must show that Clauses 1 and 2 above

hold for P. We use invariants in our verifications, but simulation relations are much more

important to this thesis.
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A simulation relationis a relation over the states of two automata with certain properties,

the existence of which guarantees that every trace of one automaton is a trace of the other.

The existence of a simulation relation between abstract andconcrete automata guarantees that

the traces of the concrete automaton are also traces of the abstract automaton. This is because

a simulation relation allows the construction of an execution of the abstract automaton given

an execution of the concrete automaton, such that the abstract execution has the same trace

as the concrete execution. One way to think about a simulation relation is that it specifies

the sense in which the states of the concrete automatonrepresentthe states of the abstract

automaton. The simulation relations used in the following chapters will help to illuminate

this idea.

There are several different kinds of simulation relation, differing from one another in

their range of applicability and complexity. [LV93] provides a good survey of the classes of

simulation relations available. In this section we define two kinds of simulations relation:

forward simulationandbackward simulation. Different notions of forward simulation are

used in many verification contexts (for example [HHS86, CM88, WD96, Abr96, dREB98])

and the technique is well understood. Although backward simulation exists in several for-

malisms, it is not often applied. However, it is required in two of the verifications presented

in this thesis.

2.4.1 Forward Simulation

The following definition is adapted from [SAGG+93, Lyn96].

Definition 2.17 (Forward Simulation)

Given automataA andC such thatexternalA = externalC, a forward simulation Rfrom C to

A is a relation overstatesC × statesA satisfying:

1. For allsC ∈ startC, there is somesA ∈ startA such thatR(sC, sA).

2. For allsC, s′C ∈ reachC, anda ∈ actsC, if sC
a

−→ s′C, then for allsA such thatR(sC, sA),

there is somes′A ∈ statesA and execution fragmentβ of A such thatR(s′C, s
′
A), sA

β
=⇒ s′A

andtraceA(β) = traceA(a). Note thatβ may be the empty execution fragment.

The automatonA in the above definition is the abstract automaton; the automaton C is the

concrete automaton.

The existence of a forward simulation betweenA andC allows us to construct for any

execution ofC, an execution ofA with the same trace. We do this by an induction on the
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length of executions ofA with the hypothesis that: (i) for each executionα of C with given

length, there is some state ofA related to the last stateα; and (ii), this abstract state can

be reached by an abstract execution fragmentβ such thattrace(α) = trace(β). 1 above

gives us the base case and as the length of executions increases, the hypothesis is preserved

by applying 2. These observations are the basis of the proof of the following soundness

property:

Theorem 2.1 (Forward simulation implies trace inclusion)

If R is a forward simulation fromC to A, in the sense of Definition 2.17, thenC ≤T A.

The definition of forward simulation enables us to ”record” information about the his-

tory of the execution. This is achieved using existentiallyquantified variables within the

simulation relation. We use this technique several times inthis thesis.

Note that when using forward simulation, at each step in a concrete execution, we must

be able to choose an abstract action or execution fragment tosatisfy one of the conditions in

Definition 2.17. Because we construct the abstract execution by induction over the concrete

execution (beginning at the start of the concrete executionand moving forwards) this choice

can only be based on the earlier states of the execution. Thatis, we can use only the history

of the execution, not the future. Sometimes it is impossibleto make this choice based only

on the execution history (verifications in Chapters 3 and 4 provide examples). Backward

simulations, described in the next section, overcome this limitation.

2.4.2 Backward Simulation

The following definition of backward simulation is adapted from [SAGG+93].

Definition 2.18 (Backward Simulation)

Given automataA andC such thatexternalA = externalC, a backward simulation Rfrom C

to A is a relation overstatesC andstatesA satisfying:

1. For allsC ∈ startC, and allsA such thatR(sC, sA), sA ∈ startA.

2. For allsC ∈ reachC, s′C ∈ statesC, anda ∈ actsC, if sC
a

−→ s′C, then for alls′A such

that R(s′C, s
′
A), there is somesA ∈ statesA and execution fragmentβ of A such that

R(sC, sA), sA
β

=⇒ s′A and traceA(β) = traceA(a). As before,β may be the empty

execution fragment.

3. For allsC ∈ reachC, there exists somesA such thatR(sC, sA).
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There are three important differences between Definitions 2.17 and 2.18. First, Condition

1 of Definition 2.18 requires that every abstract state related to a concrete start state be an

abstract start state; the corresponding condition in Definition 2.17 requires only that some

related abstract pre-state exist. Second, Condition 2 of Definition 2.18 is dual to Condi-

tion 2 of Definition 2.17: for forward simulation, we begin with related pre-states and must

produce related post-states; for backward simulation, we begin with related post-states and

must produce related pre-states. Third, Condition 3 of Definition 2.18 has no analogue in the

definition of forward simulation.

To see why these differences exist we must understand how theexistence of a backward

simulation allows the construction of an abstract execution with the same trace as a given

concrete execution. We consider the argument for finite executions; the argument for infinite

executions is more technical and can be found in [Lyn96]. Given an execution ofC, Condition

3 allows us to choose an abstract state related to the final state of the concrete execution.

Condition 2 allows us to construct an abstract executionbackwardsfrom this state, having the

same trace as the given concrete execution. At the end of thisprocess, we choose an abstract

state that is related to the concrete start state. Condition1 guarantees that this abstract state

will be an abstract start state. These observations are the basis of the proof that the existence

of a backward simulation between two automata implies finitetrace inclusion.

Theorem 2.2 (Backward simulation implies finite trace inclusion)

If R is a backward simulation fromC to A, in the sense of Definition 2.17, thenC ≤T∗ A.

See [Lyn96] for a proof.

Note that the existence of a backward simulation between twoautomata only implies

finite trace inclusion. The existence of a backward simulation guarantees (finite or infinite)

trace inclusion iff the simulation isimage finite. A relationR : S× T is image finite iff for

everys∈ S, the set

{t ∈ T | R(s, t)}

is finite.4

In this thesis, we verify only safety properties. For this reason, we do not concern our-

selves with the image finiteness property. The backward simulation presented in Chapter 3

4Image finitness is required to construct infinite abstract traces from infinite concrete executions, using

König’s lemma [LV93].
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is image finite, whereas the backward simulation in Chapter 4is not. An image finite back-

ward simulation could be constructed along very similar lines to the simulation presented in

Chapter 4, but this is unnecessary for the verification of safety properties.

Note that, in contrast with forward simulation, when choosing an abstract action or exe-

cution fragment to satisfy 2 we can examine the future of the execution, but not the history.

This means that backward simulation can be applied in situations where forward simulation

cannot (andvice-versa). It turns out that applying both backwards and forwards simulation

results in a complete proof method for trace inclusion.

Theorem 2.3

Given automataA andC, if C ≤T A then there exists some automatonB, such that there is a

forward simulationRF from C to B and an image finite backward simulationRB from B to A.

See [LV93] for a proof. This technique of using both backwardand forward simulation is

used in Chapter 3.

In our verifications, when no forward simulation is possible, because it is impossible to

choose a step of the specification automaton for a step of the concrete automaton, we say

that the concrete automaton exhibitsprophetic linearisation. This term is meant to suggest

that we cannot find a linear order for some of the operations inan execution until after the

operations have been completed. Occasionally we speak offuture dependent linearisation

points. These are steps of an algorithm that are sometimes linearisation points, depending

on events that happen after the step in question. All algorithms that have future dependent

linearisation points exhibit prophetic linearisation, and require backward simulation to verify

using the methods presented in this thesis.

2.4.3 One step simulations

The simulation relations just presented are more general than is typically required. In par-

ticular, in the verifications presented in Chapters 3 and 6, the execution fragments used as

witnesses for Condition 2 of Definitions 2.17 and 2.18 are only ever single actions or the

empty sequence. Expressing the general definitions of the simulation relations in a formal

logic (such as that of PVS), and reasoning about those definitions introduces needless com-

plexity.

Therefore, we defineone-stepsimulations, in which these conditions are replaced with

simpler versions. The idea is as follows. When the concrete automaton takes an internal

action, the abstract automaton must either take an internalaction, or no action (ie., the abstract
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prestate must be related to the concrete poststate). When the concrete automaton takes an

external action, the abstract automaton must take the same external action.

Definition 2.19 (One step forward simulation)

Given automataA andC such thatexternalA = externalC, a one-step forward simulation R

from C to A is a relation overstatesC andstatesA satisfying:

1. For allsC ∈ startC, there is somesA ∈ startA such thatR(sC, sA).

2. For allsC ∈ reachC, s′C ∈ statesC anda ∈ actsC, if sC
a

−→ s′C anda ∈ externalC,

then for allsA such thatR(sC, sA), there is somes′A ∈ statesA such thatR(s′C, s
′
A) and

sA
a

−→ s′A.

3. For allsC ∈ reachC, s′C ∈ statesC anda ∈ actsC, if sC
a

−→ s′C anda ∈ internalC, then

for all sA such thatR(sC, sA), one of the following is satisfied:

(a) there is somes′A ∈ statesA and actionb ∈ internalA such thatR(s′C, s
′
A), sA

b
−→ s′A

(b) R(s′C, s
′
A).

Definition 2.20 (One step backward simulation)

Given automataA andC such thatexternalA = externalC, aone-step backward simulation R

from C to A is a relation overstatesC andstatesA satisfying:

1. For allsC ∈ startC, and allsA such thatR(sC, sA), sA ∈ startA.

2. For allsC ∈ reachC, s′C ∈ statesC anda ∈ actsC, if sC
a

−→ s′C anda ∈ externalC,

then for alls′A such thatR(s′C, s
′
A), there is somesA ∈ statesA such thatR(sC, sA) and

sA
a

−→ s′A.

3. For allsC ∈ reachC, s′C ∈ statesC anda ∈ actsC, if sC
a

−→ s′C anda 6∈ externalC, then

for all sA such thatR(s′C, s
′
A), one of the following is satisfied:

(a) there exists somesA ∈ statesA and actionb ∈ internalA such thatR(sC, sA),

sA
b

−→ s′A

(b) R(sC, sA).

4. For allsC ∈ reachC, there exists somesA such thatR(sC, sA).
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2.5 Describing I/O Automata

It is useful to have some notation to describe the states and transition relations of I/O au-

tomata. The notation we describe here is modelled closely onthe IOA language which is

used for describing I/O automata [GLV01, GL00]. The notation allows us to easily describe

components of the state space of an automaton, and describe its transition relation.

This section presents a simple I/O automaton that is used to illustrate this notation and

provides an example of the modelling style used in this thesis.

Our example is an automatonA, that models a stack containing elements inT (as defined

in Section 2.2.1), concurrently accessed by some setPROC of processes. Its external actions

are the concurrent alphabet of the stack datatype defined in Section 2.2.1. Specifically

externalA = ({push invp(t) | t ∈ T}∪
{pop inv, push resp, pop respp})× PROC

Its internal actions label transitions that represent eachprocess actually executing an opera-

tion (ie., the linearisation points of the operations), so we have

internalA = {do push, do pop} × PROC

Now, define a set ofprogram countersCOUNTER = {idle} ∪ alpha(D). The states

of A are pairs whose first component is a stack value, and whose second is a tuple of

COUNTER values indexed by elements ofPROC. Letting D = T∗ be the set of val-

ues of the stack datatype

statesA = D ×ΠpCOUNTER

The componentΠpCOUNTER associates with each process a program counter value that

is used to record whether the process is executing an operation and if so, what point in that

operation it is up to.

Typically, the set of states of an I/O automaton is a cartesian product, so it is useful to

introducestate variablesto access each element of the state of an automaton. These state

variables are just access names for the state type of the automaton. We introduce the state

variablespcp for eachp ∈ PROC andstack where, for anys ∈ statesA, s.stack = π1(s)

and,s.pcp = πp(π2(s)). Using this notation, we can define the set of start states ofA.

startA = {s∈ statesA | s.stack = 〈〉 ∧ ∀ p ∈ PROC • pcp = idle}
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push invp(t) :

prepcp = idle

eff pcp := push(t)

pop invp(t) :

prepcp = idle

eff pcp := pop

push respp :

prepcp = push resp

eff pcp := idle

pop respp(t) :

prepcp = pop resp(t)

eff pcp := idle

do pushp(t) :

prepcp = push(t)

eff stack := π1(u(stack, push(t))),

pcp := π2(u(stack, push(t)))

do popp :

prepcp = pop

eff stack := π1(u(stack, pop)),

pcp := π2(u(stack, pop))

Figure 2.3: Transition relation of theStackautomaton. Recall thatu is the update function

for theS dataype.

Several of the automata presented in this thesis have process-indexed variables: these

variables always represent the local state of each process,so sometimes we refer to them as

local variables. We also refer to un-indexed variables assharedvariables.

We now define the transition relation ofA. To do this, we will associate each action with a

preconditionand aneffectthat together specify the transitions labelled by that action. Figure

2.3 presents this association for the stack automaton.

The precondition of each action acts as a guard for the action. The precondition constrains

the values taken by state variables in pre-states of transitions labelled by the action. The effect

of each action is a set ofparallel assignments, where the post-state value of the variable on

the left-hand side is taken to be the value of the right-hand side expression in the pre-state.

Variables not mentioned on the left-hand side of any assignment keep the same value. For

example, the precondition and effect associated with the action do popp entail that

s
do pop

p

−→ s′ ⇔ s.pcp = pop ∧ s′.pcp = π2(u(s.stack, pop)) ∧

s′.stack = π1(u(s.stack, pop)) ∧

∀q 6= p • s′.pcq = s.pcq

Note that, given a pre-state and action there is only one possible post-state: every transi-
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tion relation discussed in this thesis has this property. The parallel assignment notation used

here is simpler and clearer than a more general relational notation that would be needed to

specify systems having a transition relation where there could be more than one post-state

for each pre-state and action.

2.6 Specification Automata

As mentioned in the introduction, the approach outlined here uses I/O automata to model

both the specifications and implementations of the algorithms that we verify. This section

describes how we construct I/O automata to act as specification automata in our verifications.

We show how to mechanically construct, from a given datatype, an automaton whose traces

are exactly the linearisable traces of that datatype. An automaton constructed by this method

is called thecanonical automatonfor that datatype. The construction presented here is based

on that presented in [Lyn96].

The construction is very simple. In fact, the stack automaton presented in the previous

section is the canonical automaton for the stack datatype. The canonical automata described

here model a system of processes executing operations on a shared instance of the given

datatype. Initially, no process is executing an operation (we say that every process is “idle”);

during the execution, each process repeatedly chooses an operation to invoke, executes the

steps of the operation and after producing a response action, returns to its “idle” state.

Fix a datatypeD with valuesD, initial valued0, invocationsI , responsesR and update

function u, and a set of processesPROC. Let A be the canonical automaton forD and

PROC. The actions ofA are defined as follows:

externalA = alpha(D, PROC)
internalA = {do inv | inv ∈ I} × PROC

The labelsdo inv must be distinct from each other and distinct from everything inalpha(D).

The states ofA are defined as follows:

statesA = D ×ΠpCOUNTER

whereCOUNTER = {idle} ∪ alpha(D).

As with the example stack of Section 2.5, we introduce variables to access the compo-

nents of a states: let s.d = π1(s) and lets.pcp = πp(π2(s)). The start states of the canonical

automaton are as follows:

startA = {s∈ statesA | s.d = d0 ∧ ∀p ∈ PROC • pcp = idle}
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invp :

prepcp = idle

eff pcp := inv

do invp :

prepcp = inv

eff d := π1(u(d, inv)),

pcp := π2(u(d, inv))

respp :

prepcp = resp

eff pcp := idle

Figure 2.4: Transition relation of the canonical automaton.

The transition relation of the canonical automatonA is presented in Figure 2.4. Each

identifier inv ranges over the setI of invocations, and eachresp ranges over the setR of

responses, so each such action presented in the figure shouldbe thought of as representing a

setof actions. Each operation is executed in three steps: a processp receives an invocation;

it then applies that invocation to the shared variable representing the datatype; and finally, it

completes the operation by taking a transition labelled by the response to that operation.

The construction of canonical automata presented here differs from the construction pre-

sented in [Lyn96, Section 13.2] in certain respects. The useof process-indexed invocations

and responses differs from the indexing used in [Lyn96]. Lynch uses indices on invocations

and responses, but there the interpretation is that the indices representports. This difference

is partly attributable to the fact that [Lyn96] is concernedwith distributed systems, whereas

here the concern is multi-processor systems. However, there is a more substantive differ-

ence between the two constructions of canonical automata, related to the relaxation here of

a condition on the I/O automata of [Lyn96] calledinput-enabledness. An input-enabled au-

tomaton has a set of external actions, calledinput actions that are enabled in every state.

This means that input-enabled automata canreceiveevery input from the external environ-

ment at all times. However, in a multi-processor system, each process can only invoke an

operation when it isnot in the middle of another operation on the same datatype. Therefore,

the canonical automata defined here arenot input enabled: invocations are enabled when the

invoking process isidle. Because we do not need to represent a set of input actions that must

be enabled, we do not separateexternalactions intoInput andOutput actions.

Our automata can be thought of as informal compositions of a shared object with its client

processes. This approach provides a straightforward way toguarantee that the traces of our

automata are actually histories rather than arbitrary sequences over the concurrent alphabet of

the datatype. (Recall that histories have the property thateach process subtrace starts with an
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invocation, and that after an invocation, each process waits for a response before attempting

another invocation).

2.6.1 Properties of Canonical Automata

This section presents results concerning linearisabilityof canonical automata, and explores

theoretically their usefulness in the verification of implementations of datatypes. The results

in this section are fairly straightforward and all have analogues in [Lyn96]. Their impor-

tance lies in showing soundness and the breadth of applicability of the proof method being

developed.

For the rest of this section, fix a datatypeD = (D,D0, I ,R,u) and a set of processes

PROC. Let A be the canonical automaton forD andPROC, constructed as in the previous

section.

Linearisability of the Canonical Automaton

We now outline the proof that every trace ofA is a history ofD andPROC and that every

trace is linearisable toD.

Note thatexternalA = alpha(D, PROC). Therefore, in order to show that every trace of

A is a history, we only need to show thatA produces only histories overalpha(D, PROC).

This is true by virtue of the preconditions on each transition.

Lemma 2.1 (The canonical automaton’s traces are histories)

All the traces ofC are histories ofD andPROC.

Proof: Consider some traceµ of C and processp:

• Note that for eachs∈ start(C), s.pcp = idle and for eacha ∈ actsA wherea is indexed

by someq 6= p, if s
a

−→ s′ thens.pcp = s′.pcp. Therefore, the firstp-indexed action

in µ must be an invocation, since the precondition of every otherp-indexed action

requires thats.pcp 6= idle.

• Assume there is an occurrence of ap-indexed invocation inµ. Each states appearing

in the execution which producedµ after this occurrence will haves.pcp 6= idle until an

occurrence of ap-indexed response. Hence if there is an action following thep-indexed

invocation inµ it must be a response.
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• A similar consideration shows that any action following a response inµ | p is an

invocation.2

We now outline the proof that every trace ofA is linearisable (cf. [Lyn96], Theorem

13.3).

Lemma 2.2 (Linearisability of canonical automaton)

A is linearisable toD.

[Lyn96] presents a proof of this theorem for a slightly different canonical automaton, but

the proof carries directly to the automata discussed here. The basic motivation is that an

order for the operations in any execution can be constructedaccording to the order ofdo

actions in that execution. That is, thedo actions act as linearisation points for the operations.

Since the transitions labelled bydo actions are just applications of the update function of

the datatype being implemented to a instance of that datatype, this order induces a valid

sequential execution.

Completeness of the Canonical Automaton

There is an important question remaining about the canonical automata constructed in this

section. Can we guarantee thatA hasevery linearisable history in its set of traces? This

is a very desirable property to have: if it holds and we have some automatonA meant to

implementD we know that if we are unable to showC ≤T A, then either we are not clever

enough or our implementation contains a bug. We do not have tofind some other way to spec-

ify linearisable histories. The following theorem formalises a sense in which the canonical

automaton iscomplete(cf. [Lyn96], Theorem 13.5).

Theorem 2.4 (Completeness of the canonical automaton)

All histories that are linearisable with respect toD are traces ofA.

Again, [Lyn96] provides a proof. Briefly, for every historyh linearisable with respect toD,

there is a total order over the operations ofh, witnessing its linearisability. An execution of

C can be constructed, containing invocation and response actions in the order given by the

history, with internaldo actions in the order given by the linearisation points.
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2.7 Concluding Remarks

This chapter presents the theoretical preliminaries of theverification techniques used in this

thesis. We note here that every verification presented in this thesis has been proof checked

using the PVS proof assistant. This provides a high degree ofassurance that our proofs

are correct. We do not present the PVS versions of our proofs in this thesis, or discuss the

techniques used in our PVS development in any detail.



Chapter 3

Verifying a Nonblocking Queue

Algorithm

This chapter describes a verification of a lock-free queue algorithm that is a variant of the

practical and widely-used algorithm of Michael and Scott [MS96b, MS98a]. In fact, we

verify a slightly optimised version of the algorithm. This optimisation was discovered during

the early stages of the verification process. This optimisation is minor and does not constitute

a significant change in the underlying algorithm, so henceforth we refer to the optimised

version as theM&S queue.

This verification is the simplest presented in this thesis, and thus serves as an introduction

to the techniques used in the other verifications. The verification of the M&S queue requires

both a forward and a backward simulation, so this chapter explores the use of both techniques.

Also, this algorithm uses dynamic memory, and so this verification provides an example of

the way we model a dynamic heap and relate heap objects to the abstract datatype.

This chapter presents work first reported in [DGLM04]. At that time, the work presented

here was the first complete formal verification of a version ofthe M&S queue. [YS03]

presented an earlier verification using a model-checking technique, but that work does not

describe a complete verification. [AC05] presents a formal verification of a queue algorithm

based on the Michael and Scott queue, using a technique basedon refinement and formal

proof. We discuss both of these contributions in Section 3.6.

Interestingly, none of this related work directly addresses the issue of prophetic lineari-

sation. The authors of [AC05] verify a modified M&S queue thatdoes not exhibit prophetic

linearisation. The authors of [YS03] do not directly consider the issue of whether the M&S

49
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(b)?(a) ?

TailHead Tail Head

a b c

Figure 3.1: Basic queue representation

struct refint t {
node *ptr;
int ver

}

struct node {
value val;
refint t next

}

struct queue{
refint t Head, Tail;

}

initialise(queue * Q) {
dummy := new node();
dummy->next := null;
Q->Head := (0, dummy);
Q->Tail := (0, dummy);

}

Figure 3.2: Declarations and initialisation.

queue meets some behavioural specification of a concurrent queue, focussing rather on veri-

fying that the M&S queue has certain invariants. The presentverification exploits one of the

main advantages of the I/O automaton framework: that it enables direct and formal treatment

of prophetic linearisation, using backward simulation.

Section 3.1 presents the M&S queue. Section 3.2 presents theabstract and concrete

automata. Section 3.3 presents the backward simulation. Section 3.4 presents the forward

simulation. In Section 3.5 we describe the most important parts of the proof. Section 3.6

presents a comparison with related work, and we conclude theChapter in Section 3.7.

3.1 The Queue Implementation

The M&S queue implements a queue as a linked list of nodes, each having aval and anext

field, along withHead andTail pointers.Head points to the first node in the list, which is

a dummy node; the remaining nodes contain the values in the queue. When no operation is

in progress,Tail points to the last node in the list. Figure 3.1 shows an empty queue and a

queue containing valuesa, b andc. The declarations and initialisation are shown in Figure

3.2. Pseudocode for theenqueue anddequeue operations is given in Figures 3.3 and 3.4.
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void enqueue(queue *Q, value v) {
E1. nd := new node();
E2. nd->val := v;
E3. nd->next.ptr := null;
E4. while (true){
E5. tail := Q->Tail;
E6. next := tail.ptr->next;
E7. if (tail = Q->Tail){
E8. if (next.ptr = null){
E9. if (CAS(&tail.ptr->next,

next,
(nd, next.ver+1))){

E10. break;
E11. }
E12. }else {
E13. CAS(&Q->Tail,

tail,
(next.ptr, tail.ver+1));

E14. }
E15. }
E16.}
E17.CAS(&Q->Tail,

tail,
(nd,tail.ver+1))

}

Figure 3.3: Pseudocode for the enqueue operation.
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bool dequeue(queue *Q, value *pv){
D1. while (true){
D2. head := Q->Head;
D3. next := head->next;
D4. if (head = Q->Head){
D5. if (next.ptr = null){
D6. return false;
D7. } else {
D8. *pv := next.ptr->val;
D9. if (CAS(&Q->Head,

head,
(next.ptr, head.ver+1))){

D10. tail := Q->Tail;
D11. if (head.ptr = tail.ptr){
D12. CAS(&Q->Tail,

tail,
(next.ptr, tail.ver+1))

}
break;

D13. }
D14. }
D15. }
D16. }
D17.free node(head.ptr);
}

Figure 3.4: Pseudocode for the dequeue operation.
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(a) (b)? ? ?

Figure 3.5: Queue representation variations

Shared locations containing pointers (i.e.,Head andTail variables andnext fields)

are usually updated using CAS operations. The one exceptionis in the initialisation of a new

node (line E3), where a store is sufficient because no other process can access a node while it

is being initialised. These shared locations contain aversion numberas well as a pointer. This

version number is incremented atomically every time the location is written. As discussed in

Section 1.1.3, this use of version numbers provides a very strong probabalistic guarantee that

ABA cannot occur. Henceforth, we assume that version numbers are unbounded.

A processp executing anenqueue operation acquires and initialises a new node (E1–

E3), and appends the new node to the list by repeatedly determining the last node in the

list, i.e., the node whosenext.ptr field isnull (E5–E8, E13), and attempting to make its

next.ptr field point to the new node (E9). Thenp attempts to makeTail point to this node

(E17).1 Betweenp appending its new node andTail being updated,Tail lagsbehind the

last node in the list. Examples of this situation are presented in Figure 3.5. In Figure 3.5(a),

the queue contains three elements. In Figure 3.5(b), the queue is empty, becauseHead points

to a node with anull next pointer.

We cannot determine the last node in the list by just readingTail, because another

enqueuing processq may causeTail to lag. Sincep cannot wait forq to updateTail (that

would compromise lock-freedom),p attempts to “help”q by doing the update (E13). Thus,

Tail can lag behind the end of the list by at most one node.

Also, another process may changeTail afterp reads it at E5, but beforep dereferences

(its local copy of) the pointer at E6. To ensure that the valueread at E6 is valid,p checks

at E7 thatTail has not changed sincep executed E5. If the test at E8 shows that the node

accessed at E6 had no successor at that time, then we know thatthe node was the last node in

the list at that time. Similarly, a successful CAS at E9 guarantees that thenext field of that

node is unchanged in the interval betweenp’s executions of E6 and E9.

We turn now to a description of thedequeue operation, presented in Figure 3.4. In this

informal description of the M& S queue, we provide a C-style signature for thedequeue

1The CAS at E17 can be deleted without affecting the correctness of the algorithm. However, without this

CAS,Tail would not point to the last node of the list in all quiescent states.
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operation. Rather thandequeue returning somenull value,dequeue returns a boolean

value that isfalse if and only if p found the queue empty. A parametervalue * pv is

used as a pointer to a location that holds the value that was dequeued, ifp found the queue

nonempty. This is the convention used in earlier presentations of the algorithm [MS96b,

MS98a].

A processp executing adequeue operation checks whether the dummy node (pointed

to by Head) has a successor (D2–D5). If not, then the queue was empty when p executed

D3, so the operation returnsfalse (D6). As in theenqueue operation,Head is read twice

to ensure that the node accessed at D3 was the dummy node at that time.

If the dummy node has a successor, thenp reads the value in the successor node (D8),

expecting that this node is the first non-dummy node in the list. Processp must read the value

now because concurrent operations may modify the value fieldof p’s next node after it is

removed from the list. After reading the value,p attempts to swingHead to point to the node

whose valuep read at D8 (D9). If the attempt succeeds, that node is the new dummy node;

its value is removed from the queue by the successful CAS. If the attempt fails,p retries the

operation from the beginning.

Oncep has successfully executed the CAS at D9, it remains to allow the old dummy

node to be reused. For the reasons discussed in Section 1.1.3, this node cannot be freed

to the system because another process may be about to access it. Instead, it is placed on a

freelist, using thefree node operation (D17). Thenew node operation (E1) returns a

node from the freelist, if one is available; otherwise, it allocates and returns a new node. In a

typical system, the freelist could be implemented using theTreiber stack, which is described

in Chapter 1.

Before passing the old dummy node tofree node, a dequeuing process checks for the

special case shown in Figure 3.5(b), where theHead andTail are “crossed”, becauseTail

is lagging and points to the old dummy node (D10-D11). In thiscase, it attempts to update

Tail (D12) before putting the old dummy node on the freelist.

Our algorithm differs from Michael and Scott’s original algorithm [MS96b, MS98a] in

that we test whetherTail points to the dummy node onlyafter Head has been updated,

so a dequeuing process readsTail only once. Thedequeue in the original algorithm

performs this test before checking whether thenext pointer in the dummy node isnull,

so it readsTail every time a dequeuing process loops. In the modified algorithm presented

here, processes only perform this read and test once for eachdeque operation. Under high

load, when operations retry frequently, this change will reduce the number of accesses to
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shared memory.

3.2 Modelling the Queue Specification and Implementation

We now describe the specification and implementation automata for our verification of the

M&S queue. Section 3.2 presents a formal definition of the queue datatype. The specification

automaton, denoted byAbsAut, is the canonical automaton for the queue datatype, and is

presented in Section 3.2.1. (The general construction of a canonical automaton is described

in Section 2.6). The implementation automaton, denoted byConcAut, models the M&S

queue algorithm directly, and is presented in Section 3.2.2.

The Queue Datatype

A queue contains a sequence of objects from some set (called hereV) and provides anen-

queueoperation, which adds a value to one end of the sequence, and adequeueoperation,

which removes a value from the opposite end of the sequence.

We define the queue datatype using a setQ, whose elements are the queues themselves,

along with functionsenq anddeq, modelling respectively enqueue and dequeue operations.

A queueQ ∈ Q is a triple (Q.seq,Q.Head,Q.Tail), whereQ.seq is a sequence of val-

ues,2 andQ.Head andQ.Tail are naturals satisfying the constraint thatQ.Tail ≤ Q.Head.

Q.Head andQ.Tail delimit the range corresponding to queue elements: the queue consists

of the integersQ.seq(Q.Head+1) through toQ.seq(Q.Tail), inclusive. A queueQ is empty,

written empty(Q), iff Q.Head = Q.Tail. Initially, Q.Head = Q.Tail = 0.

The functionenq, modelling the enqueue operation, takes as arguments a queue valueQ

and a valuev ∈ V to be enqueued and returns a new queue containing the value:

enq(Q, v) = (Q.seq ⊕ {Q.Tail + 1 7→ v},Q.Head,Q.Tail + 1)

The functiondeq, modelling the dequeue operation, takes as arguments a queue Q and

returns a pair consisting of a new queue (the old queue with the first element removed), and

a return valuein V⊥ = V ∪ {null} wherenull is some value not inV. A null return value

indicates that the queue is empty and so no value fromV is available.

deq(Q) =











((Q.seq,Q.Head+ 1,Q.Tail),

Q.seq(Q.Head+ 1)) if ¬empty(Q)

(Q, null) otherwise

2That is, a function from naturals to values as described in Section 1.3.
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Note that the functionsenq anddeq preserve the constraint thatQ.Head ≤ Q.Tail, where

Q is the new queue value returned by either function.

Finally, the queue datatype(D,D0, I ,R,u) is defined as follows:

D = Q

D0 = {Q | empty(Q)}

I = {enq inv(v) | v ∈ V} ∪ {deq inv}

R= {enq resp} ∪ {deq resp(r) | r ∈ V⊥}

u(Q, inv) =























(enq(Q, v), enq resp) if inv = enq inv(v)

for somev ∈ V

(π1(deq(Q)),

deq resp(π2(deq(Q)))) otherwise

3.2.1 The Abstract Automaton

AbsAuthas a shared variableQ, which holds the abstract queue. Thedo steps ofAbsAut

apply theenq anddeq functions defined in the previous section directly, rather than using the

queue’s update functionu, which simplifies the notation. Each processp, has a variablepcp

which ranges over the program counter values of the canonical queue automaton. The set of

initial states ofAbsAutis defined as follows.

startAbsAut= {ab | empty(ab.Q) ∧ ∀ p • ab.pcp = idle}

The transition relation ofAbsAutis presented in Figure 3.6.

3.2.2 The Concrete Automaton

The concrete automatonConcAutmodels the queue implementation described in Section 3.1.

The M&S queue uses a shared heap that contains the dynamically allocated nodes used in the

queue data structure. We first describe our model of the heap.We then describe the actions

and states of the concrete automaton.

The Heap Model

We model a heap in which every object is a node with two fieldsval andnext. Each of these

fields contains a pointer/version-number pair. This is a simplification designed to reduce

unnecessary complexity in the model. In the M&S algorithm,val fields are not equipped
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enq invp(v) :

prepcp = idle

eff pcp := enq(v)

do enqp :

prepcp = enq(v)

eff pcp := enq resp

Q := enq(Q, v)

enq respp :

prepcp = enq resp

eff pcp := idle

deq invp :

prepcp = idle

eff pcp := deq

do deqp :

prepcp = deq

eff pcp := deq resp(π2(deq(Q)))

Q := π1(deq(Q))

deq respp(r) :

prepcp = deq resp(r)

eff pcp := idle

Figure 3.6: The transition relation ofAbsAut. The variablep ranges over processes,v ranges

over values fromV, andr ranges overV⊥. Recall thatπ1(deq(Q)) is the queue returned by

the functiondeq, andπ2(deq(Q)) is the value.

with version numbers. However, the value of the version number of anyval field is never

mentioned in the definition of the transition relation of theconcrete automaton. Therefore,

the presence of version numbers in theval fields of our model makes no difference to its

behaviour.

We writePOINTER for the set of pointers,HEAP for the set of heaps, andFIELD

for the set of field names (eitherval ornext). A heaph ∈ HEAP is a pair(h.eval,h.unalloc):

the functionh.eval : POINTER×FIELD → POINTER×N takes a pointer to a node

and a field, and returns the pointer value and version number associated with that field of

that node inh; and h.unalloc is the set of pointers that have not yet been allocated inh

(so h.unalloc models the system freelist). Given some valuex : POINTER × N, let

x.ptr = π1(x) andx.ver = π2(x).

An assignmentpt→fd := (pt′, i), which updates fieldfd in the node pointed to bypt, is

modelled using a functionupdate: HEAP×POINTER×FIELD×POINTER×N →

HEAP defined by:

update(h,pt, fd,pt′ , i) = (h.eval ⊕ {(pt, fd) 7→ (pt′, i)},h.unalloc)

Allocation of a new node is modelled with the functionnew : HEAP → HEAP ×
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POINTER satisfying the following properties:

new(h) = (h′,null) ⇒ h.unalloc = ∅ ∧ h′ = h

new(h) = (h′,p) ∧ p 6= null ⇒
p ∈ h.unalloc ∧ h′.eval = h.eval ∧ h′.unalloc = h.unalloc \ {p}

Together, these properties guarantee thatnewreturns anull pointer exactly when it is applied

to a heap with an emptyunalloc set. Whennewis applied to a heap with nonemptyunalloc

set, it returns a pointer from that set, and a heap with that pointer removed from the set of

unallocated pointers.

Michael and Scott do not specify what happens ifenqueue is unable to allocate a new

node. A practical implementation might return from theenqueueoperation with an error

code, or raise an exception. However, this would require that the specification automaton

AbsAutbe able to represent an ”out of memory” error using some response action. However,

it is difficult to say when it is correct for a specification to return this kind of error, which

originates in the execution context of an implementation. We choose to ignore this issue. In

our model, ifnewreturnsnull, thenConcAutloops until space becomes available.

Note that in the heap model presented here, a process can dereference a pointer (by

applyingeval or by applyingupdate) even when that pointer isnull or in the setunalloc.

In a real system, this behaviour could cause an error. However, no memory is ever freed

in the M&S algorithm. Further, the only local variables thatcan benull are thenextp
variables, but every dereference of such a variable is preceded by a test that the variable

is notnull. So for simplicity, the heap model presented here ignores this issue. That is,

we assume that the heap functioneval is defined for all pointers and fields. However, we

do prove that the M&S queue has the property that only non-null and allocated variables

are ever dereferenced: Section 3.4 describes how we prove this property. In more complex

verifications, it would be preferable to have a heap model that represented the situations in

which dereferencing a pointer would be illegal. Chapter 6, which describes the verification

of a complex algorithm where deallocation does occur, presents an extended heap model in

which accesses to unallocated ornull pointers cause an error flag to be set. Once the error

flag has been set, the effect of all heap operations is undefined. Using that model, the proof

obligations of forward simulation require us prove that this error flag is never set during any

execution of the relevant automaton.
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The Concrete Automaton

Our concrete automaton must capture the assumed atomicity of the read, write and allocation

operations. We wish to model a situation in which each process can execute read, write and

allocation operations without interleavings with other processes. This is easily achieved using

I/O automata: each such atomic operation is modelled using one internal action. For example,

ConcAuthas an internal actione p modelling a processp executing line E1 ofenqueue,

allocating a new node from the freelist. An actione p models a processp executing line E2,

writing a value into theval field of its new node.

CAS operations conditionally modify the heap. We split these CAS operations into two

internal actions, one action modelling a successful CAS that modifies the heap; the other

modelling an unsuccessful CAS that leaves the heap unchanged. For example,ConcAuthas

internal actionsd  yesp andd  nop modellingp executing D9 when the CAS is successful

and unsuccessful, respectively. The precondition of each action is used to select which of

these actions a process should take: the precondition of theaction modelling a successful

CAS implies that the value in the location being CASed is equal to the given expected value;

and the precondition of the action modelling an unsuccessful CAS implies that the value in

the location is not the expected value.

Other conditionals (if statements), are modelled similarly to the CAS operations.They

are split into two internal actions, one modelling the case where the condition succeeds, the

other modelling the case where the condition fails. For example,ConcAuthas internal actions

d  yesp andd  nop modellingp executing D4, when the condition is respectively true or

false.

Thus for each line of code in Figures 3.3 and 3.4,ConcAuthas either one or two internal

actions for each process. Also, because it is meant to implement a queue,ConcAuthas the

same external actions asAbsAut.

Each processp has a local “program counter” variablepcp, ranging over a type that

contains one value for each line of code containing a read, write, conditional or CAS, (for

example, there is a counter value e1 corresponding to line E1), and special valuesidle,

enq resp anddeq resp that play the same roles as inAbsAut. That is, whenpcp = idle,

processp is not executing any operation on the queue; whenpcp = enq resp, p is about to

return from an enqueue operation; and whenpcp = deq resp(r) for somer ∈ V⊥, p is about

to return from a dequeue operation with valuer.

ConcAuthas variablesh ∈ HEAP , Head, Tail ∈ POINTER × N, andfreelist ⊆
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{cs | cs.Head = cs.Tail ∧ cs.Head 6= null ∧ cs.Head.ver = 0 ∧

cs.Head
cs
→next.ptr = null ∧ ¬cs.free?(cs.Head.ptr) ∧

(∀ p • cs.pcp = idle) ∧

¬cs.free?(null) ∧ cs.Head
cs
→val = v0 ∧

cs.freelist ∩ cs.h.unalloc = ∅}

Figure 3.7: The initial states ofConcAut.

POINTER, which model the heap,Head, Tail and the freelist.3 For each processp,

there are variablesheadp, tailp, nextp ∈ POINTER × N, andnodep ∈ POINTER,

which model the local variables in the code, and a local variable resultp ∈ POINTER to

hold the value thatp returns from the dequeue operation.4

The initial states forConcAutare presented in Figure 3.7 and the transition relation is

presented in Figures 3.8, 3.9 and 3.10.

Figure 3.7 uses the notationpt
cs
→fd to meancs.h.eval(pt, fd) andcs.free?(pt) to mean

pt ∈ cs.unalloc ∪ cs.freelist. This notation is used in the remainder of this chapter and a

similar notation is used in Chapter 6.

3.2.3 The Intermediate Automaton

As discussed in Chapter 2, simulation proofs can often be done using aforward simulation,

in which the abstract execution is constructed by starting at the beginning of the concrete

execution and working forwards.

However, forward simulation is not sufficient to prove thatConcAutimplementsAbsAut.

The only point during adequeue operation at which the queue is guaranteed to be empty

is when the operation executes D3, loadingnull into next. A forward simulation would

need to determine at this point whether the operation will returnnull. This is not possible,

however, since the operation will retry ifHead is changed between the operation’s execution

of D2 and D4.

We use two examples to explain this. First we describe a situation in which a dequeuing

process returns empty, but where execution of neither D4 norD5 can be used as a linearisation

3Recall that the M&S queue uses a freelist to recycle nodes without releasing the memory back to the system

freelist.freelist models the M&S queue freelist;h.unalloc models the system freelist.
4In the pseudo-code of Figure 3.4, this value is returned in a location referenced by an input parameter.
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enq invp(v) :

prepcp = idle

eff pcp := e 1(v)

enq respp :

prepcp = enq resp

eff pcp := idle

e p :

prepcp = e 2(v)

eff nodep→val := v,

pcp := e 3

e p :

prepcp = e 5

eff tailp := Tail,

pcp := e 6

e p :

prepcp = e 2(v)

eff nodep→next.ptr

:= null,

pcp := e 5

e p :

prepcp = e 1(v)

eff h := π1(new nd()),

freelist :=

π2(new nd()),

nodep :=

π3(new nd()),

pcp :=

π3(new nd()) = null ?

e 1(v) : e 2(v)

e p :

prepcp = e 6

eff nextp := tailp→next,

pcp := e 7

e  yesp :

prepcp = e 7∧

tailp = Tail

eff pcp := e 8

e  nop :

prepcp = e 7∧

tailp 6= Tail

eff pcp := e 5

e  yesp :

prepcp = e 8∧

nextp.ptr = null

eff pcp := e 9

e  nop :

prepcp = e 8∧

nextp.ptr 6= null

eff pcp := e 13

e  yesp :

prepcp = e 9∧

tailp.ptr→next

= nextp

eff tailp→next :=

(nodep,

nextp.ver + 1),

pcp := e 17

Figure 3.8: Enqueue transitions ofConcAut(continued in next figure).
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e  nop :

prepcp = e 9∧

tailp.ptr→next 6=

nextp

eff pcp := e 5

e  yesp :

prepcp = e 13∧

tailp = Tail

eff Tail :=

(nodep, tailp.ver + 1),

pcp := e 5

e  nop :

prepcp = e 13∧

tailp 6= Tail

eff pcp := e 5

e  yesp :

prepcp = e 17∧

tailp = Tail

eff Tail :=

(nodep, tailp.ver + 1),

pcp := enq resp

e  nop :

prepcp = e 17∧

tailp 6= Tail

eff pcp := enq resp

Figure 3.9: Enqueue transitions ofConcAut.

point for the operation.

• Processp begins execution of adequeue operation when the queue is empty.p

executes lines D1-D3, loadingnull into itsnext variable at D3.

• Another processq executes a completeenqueue operation. The queue is no longer

empty.

• Processp executes lines D4-D5. Becausep’s next variable isnull and theHead

has not changed sincep’s operation began, the tests at both D4 and D5 succeed. Hence

p returnsfalseat D5.

Because processq completed an enqueue operation the queue is no longer empty whenp

executes D4 and D5. Therefore, neither D4 nor D5 can be used asa linearisation point for

p’s operation. The only point at which the queue is empty is when p executed D3, loading

null into itsnext field.

Unfortunately, we cannotalways choose D3 as a linearisation point when a process loads

null into itsnext field. To see why, consider the following execution.
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deq invp :

prepcp = idle

eff pcp := deq

deq respp(r) :

prepcp = deq resp(r)

eff pcp := idle

d p :

prepcp = d 2

eff headp := Head,

pcp := d 3

d p :

prepcp = d 3

eff nextp :=

headp.ptr→next,

pcp := d 4

d  yesp :

prepcp = d 4∧

headp = Head

eff pcp := d 5

d  nop :

prepcp = d 4∧

headp 6= Head

eff pcp := d 2

d  yesp :

prepcp = d 5∧

nextp.ptr = null

eff resultp := null,

pcp := deq resp

d  nop :

prepcp = d 5∧

nextp.ptr 6= null

eff pcp := d 8

d p :

prepcp = d 8

eff resultp :=

nextp.→val,

pcp := d 9

d  yesp :

prepcp = d 9∧

headp = Head

eff Head :=

(nextp.ptr,

headp.ver + 1),

pcp := d 10

d  nop :

prepcp = d 9∧

headp 6= Head

eff pcp := d 2

d p :

prepcp = d 10

eff tailp := Tail,

pcp := d 11

d  yesp :

prepcp = d 11∧

headp.ptr =

tailp.ptr

eff pcp := d 12

d  nop :

prepcp = d 11∧

headp.ptr 6=

tailp.ptr

eff pcp := d 17

d  yesp :

prepcp = d 12∧

tailp = Tail

eff Tail :=

(nextp.ptr,

tailp.ver + 1),

pcp := d 17

d  nop :

prepcp = d 12∧

tailp 6= Tail

eff pcp := d 17

d p :

prepcp = d 17

eff freelist :=

freelist ∪ {headp},

pcp := deq resp

Figure 3.10: Dequeue transitions ofConcAut.
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• As before, processp executes lines D1-D3 when the queue is empty.

• As before, another processq executes a completeenqueue operation.

• Now, another processr executes a completedequeue operation, followed by a com-

pleteenqueue operation. The queue now contains one element. Further, theexecu-

tion of r ’s dequeuehas modifiedHead.

• Processp executes the test at line D4 which fails because ofr ’s dequeue. Sop loops

back to the top of thewhile loop. p completes itsdequeue operation by removing

the last value thatr enqueued.

Therefore, we need to use abackward simulation, showing how to construct an abstract ex-

ecution by working from the last step of a (finite) concrete execution back to the beginning.

Because we are working backwards, we can distinguish between the two kinds of executions

exemplified above, and correctly choose linearisation points for dequeue operations that re-

turn empty.

Since only this one aspect requires backward simulation, wedefine an intermediate au-

tomatonIntAut, which captures the behaviour of the implementation that defies forward sim-

ulation, namely the handling ofdequeue on an empty queue, and is otherwise identical to

AbsAut. We then prove a backward simulation fromIntAut to AbsAut(see Section 3.3), and

a forward simulation fromConcAutto IntAut (see Section 3.4).

The intermediate automatonIntAut is identical to the abstract automaton, except that in

IntAut, a process executing adequeue operation may “observe” whether or not the queue is

empty at any time before it decides what value to return. In addition to the queue and counter

variables that are inAbsAut, each state ofIntAuthas a variableempty okp, to record whether

p has observed an empty queue during the currentdequeue operation. The initial states and

transition relation ofIntAut are presented in Figures 3.11 and 3.12 respectively.

{ab | empty(ab.Q) ∧ ∀ p • ab.pcp = idle}

Figure 3.11: The initial states ofIntAut. Note that these states are defined in precisely the

same way as the initial states ofAbsAut.
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enq invp(v) :

prepcp = idle

eff pcp := enq(v)

enq dop :

prepcp = enq(v)

eff pcp := enq resp

Q := enq(Q, v)

enq respp :

prepcp = enq resp

eff pcp := idle

deq invp :

prepcp = idle

eff pcp := deq

empty okp :=

false

obs emptyp :

prepcp = deq

eff empty okp :=

empty(deq)

deq nonemptyp :

prepcp = deq ∧

¬empty(deq)

eff pcp :=

deq resp(π2(deq(Q)))

Q := π1(deq(Q))

deq emptyp :

prepcp = deq ∧

empty ok

eff pcp :=

deq resp(null)

deq respp(r) :

prepcp = deq resp(r)

eff pcp :=

idle

Figure 3.12: The transition relation ofIntAut.

IntAuthas the same external actions asAbsAut, and the same internal actiondo enqp; the

only difference for these transitions is thatdeq invp setsempty okp to false. IntAut has a

new internal actionobserve emptyp that setsempty okp to record whether or not the queue

Q is empty, whichp may perform whenever its program counter value isdeq. Also, in place

of thedo deqp action inAbsAut, IntAut has two actions,deq emptyp anddeq nonemptyp,

allowing these cases to be treated separately. Thedeq nonemptyp action is the same as the

abstract automaton’sdo deqp action except that its precondition additionally requiresthat the

queue is nonempty. Thedeq emptyp action simply changesp’s program counter fromdeq to

deq resp(null). The precondition for this action requires thatempty okp is true, indicating

thatp has observed that the queue was empty at some point during itsexecution. The point

when this observation action takes place is the linearisation point for the operation.

Splitting dequeue operations that returnnull into one or more observations that the
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queue is empty, followed by a decision to returnnull based on the knowledge that we have

observed the queue to be empty at some point during the operation, makes it possible to

prove a forward simulation from the concrete automaton to the intermediate one, as we show

in Section 3.4. In the forward simulation, we match steps of the concrete automaton where a

process readsnull from Head with theobserve empty action of the same process.

3.3 The Backward Simulation

In this section we define a relationBSR (see Figure 3.13), and show that it is a backward

simulation fromIntAut to AbsAut. Given statesas of AbsAutand is of IntAut, the third

conjunct ofBSR requires that the queues represented by the two states are the same. The

first two conjuncts require that each process is roughly speaking “at the same stage” of the

same operation in both states, or is not executing any operation in either state. For example,

if p is idle in is (i.e., is.pcp = idle) thenp is also idle inas. The first conjunct (basic ok)

covers the simple cases; the second conjunct (dequeuerok) covers the only interesting case,

in which a process can be at slightly different stages in the two automata becausedequeue

operations can take place over two or more steps. Specifically, if in is, p has invokeddequeue

but has not yet executed eitherdeq emptyp or deq nonemptyp (i.e., is.pcp = deq), then in

as, eitherpcp is alsodeq, or pcp = deq resp(null), indicating thatp has already executed

deq emptyp. In the latter case,is.empty okp must also be true, showing thatp has observed

that the queue was empty at some point during itsdequeue operation. In a situation where

as.pcp = deq resp(null) but is.pcp = deq, the dequeue operation of processp has been

linearised earlier in the execution.

We turn now to the proof thatBSR is a backward simulation fromIntAut to AbsAut. For

convenience, we state the proof obligations forone-stepbackward simulation, as applied to

the automataIntAut andAbsAut.

1. For allis ∈ start(IntAut) and allassuch thatBSR(is,as), as∈ start(AbsAut).

2. For all is ∈ reachIntAut, is′ ∈ states(IntAut), a ∈ external(IntAut), if

is
a

−→ is′, then for allas′ such thatBSR(is′,as′), there is someassuch thatBSR(is,as)

andas
a

−→ as′.

3. For all is ∈ reach(IntAut), is′ ∈ states(IntAut), a ∈ internal(IntAut), then for allas′

such thatBSR(is′,as′), one of the following is satisfied:



3.3. THE BACKWARD SIMULATION 67

BSR(as, is) =̂

basic ok(as, is) ∧

dequeuerok(as, is) ∧

is.Q = as.Q

basic ok(is,as) =̂

∀ p • is.pcp 6= deq⇒ is.pcp = as.pcp

dequeuerok(as, is) =̂

∀ p • is.pcp = deq ⇒

(as.pcp = deq ∨

(as.pcp = deq resp(null) ∧ is.emptyokp))

Figure 3.13: The backward simulation relationBSR

(a) there exists someas and action b ∈ internal(AbsAut) such that

BSR(is,as) andas
b

−→ as′.

(b) BSR(is,as′).

4. For allis ∈ reach(IntAut), there exists someassuch thatBSR(is,as).

Conditions 1 and 4 are trivial, because related states ofIntAut andAbsAutare almost

identical, so we treat them very briefly. The first condition can be seen by observing that, for

any is ∈ startIntAut, is.Q is empty and all thep ∈ PROC areidle. Thus for any relatedas,

as.Q is empty and allp ∈ PROC are idle. For the second condition, observe that givenis

(reachable or not), we can construct anasasuch thatis.Q = as.Q and for all processesp,

is.pcp = as.pcp. It is easy to see that then we haveBSR(as, is).

Conditions 2 and 3 are more complicated. We define astep-correspondencefunction

[RR00], that determines the abstract action to choose, given an intermediate action and ab-

stract poststate. We use a step-correspondence function inthe verifications described in Sec-

tion 3.4 as well as Chapters 4 and 6, so the simple function used here serves as an introduction

to the technique.

The step-correspondence functions takes as arguments an intermediate actiona and an

abstract poststateas′. The functions returns either an abstract action or a special value⊥

that is not an abstract action. Whens(a,as′) is an action, anda is external,s(a,as′) returns

a as required by Condition 2 above. Whens(a,as′) is an action buta is internal,s(a,as′)
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provides a witness forb in Condition 3a. Finallys is defined so that ifs(a,as′) = ⊥ then

BSR(is,as′). Thus, ifs(a,as′) = ⊥, then we can fulfill Condition 3b. In this case, we say

that is
a

−→ is′ is astutterstep. Formally,s is defined as follows.

s(a,as′) =











































a if a ∈ externalIntAut

do enqp(v) if a = do enqp(v) for somep andv

do deqp if a = observe emptyp for somep and

as′.pcp = deq resp(null)

do deqp if a = deq nonemptyp for somep

⊥ otherwise

For every intermediate action a except observe empty, deq empty and

deq nonempty, we choose the same actiona for AbsAut. In the case of external actions,

this choice is required by Condition 2. Fordeq nonempty, we choosedo deq; and for

deq empty, we choose to stutter. Recall that adequeue operation on an empty queue is lin-

earised to a point at which it executesobserve empty, and not when it executesdeq empty.

We reflect this choice of linearisation point by choosingdo deq for exactly one execution of

observe empty within that operation. We guarantee that we only choosedo deq once by

examining that abstractpoststateto check whether the process has yet executed itsdo deq

operation. It has done so exactly when its abstract program counter isdeq resp(null).

We also define aprestate function, t that generates the abstract prestate. Just as the step-

correspondence functions, t takes as arguments an intermediate actiona and an abstract state

as′. Whens(a,as′) 6= ⊥, t(a,as′) returns the abstract pre-stateas required by Conditions 2

or 3a. Whens(a,as′) = ⊥, t(a,as′) = as′. Givens andt, we can combine Conditions 2, 3a

and 3b into one proof obligation.

For all is ∈ reachIntAut, is′ ∈ statesIntAut, a ∈ actsIntAut, if is
a

−→ is′, then for

all as′ such thatBSR(is′,as′), BSR(is, t(a,as′)) and if s(a,as′) 6= ⊥, t(a,as′)
s(a,as′)
−→ as′.

It is generally easy to constructt(a,as′). In many cases, we simply replace the program

counter of the processp whose action is being executed in the intermediate transition with

the value required by the precondition of the abstract action. The only nontrivial case arises

for thedo enq action, because to construct the program counter before theaction, we must

determine what value the enqueue operation is enqueuing. This is achieved by taking the

value from the queue position that is updated by thedo enq action.
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We now outline the proof that for all intermediate statesis, is′, and abstract statesas′ such

thatBSR(is′,as′) andis
a

−→ is′ wherea = observe emptyp for somep, BSR(is, t(a,as′)),

and further thatt(a,as′)
s(a,as′)
−→ as′, discharging the proof obligation forobserve empty

actions. We omit the cases wherea is some other action because they are straightforward and

tedious.

First, consider the case whereas′.pcp = deq resp(null). By dequeuerok of BSR,

we haveis′.empty okp. Becauseobserve emptyp setsempty okp to true if and only if

the queue is empty in stateis, and does not modify the queue, it follows that the queue is

empty in stateis′, and therefore byBSR, the queue is empty in stateas′. Therefore, the

abstract prestatet(a,as′) is just like as′, except thatt(a,as′).pcp = deq. Henceis.Q =

is′.Q = as′.Q = t(a,as′).Q. Furthermore, for each processq 6= p, is.pcq = is′.pcq and

t(a,as′).pcq = as′.pcq, so the predicatesbasic ok anddequeuerok are preserved when ap-

plied to the processq. Finally, is.pcp = t(a,as′).pcp = deq so dequeuer ok is true when

applied top, as isbasic ok.

It is usually straightforward to provet(a,as′)
s(a,as′)
−→ as′, since the construction oft(a,as′)

ensures that the precondition fors(a,as′) holds and applying the effect ofs(a,as′) to t(a,as′)

yieldsas′. It is slightly trickier in our case, where the intermediatetransition is anobserve empty

action. Not every execution ofobserve empty corresponds to a linearisation point for

a dequeue operation that returnsnull (IntAut can executeobserve empty multiple times

within a singledequeue operation, while inAbsAutthere is exactly onedo deq action per

dequeue operation). Therefore, for eachdequeue operation that returnsnull, we must

choosedo deq for exactly one occurrence ofobserve empty, and choose the empty action

sequence for the others.

We can only linearise adequeue operation by processp to an execution of the

observe emptyp action if thedequeue operation returnsnull. This is true if as′.pcp is

deq resp(null), in which case we can infer thatempty okp in is′ is true, from thedequeuerok

conjunct ofBSR. Becauseobserve emptyp setsempty okp to true if and only if the queue

is empty in stateis, and does not modify the queue, it follows that the queue is empty in state

is′, and therefore byBSR, the queue is empty in stateas′. Therefore, we can construct the

stateaswith an empty queue, which is needed to show thatas
do deqp
−→ as′ is a transition of the

abstract automaton. Thus, we show that we can choosedo deqp whena is observe emptyp

and as′.pcp is deq resp(null). In all other cases, we choose the empty sequence for the

abstract automaton whena is observe emptyp.
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rel(is, cs, f ) =̂

enqueueok(is, cs, f ) ∧ dequeueok(is, cs, f ) ∧

obj ok(is, cs, f ) ∧ nds ok(is, cs, f ) ∧

distinctnessok(is, cs, f ) ∧ procs ok(is, cs, f ) ∧

injective ok(is, cs, f ) ∧ accesssafetyok(is, cs, f )

Figure 3.14: Therel predicate

3.4 The Forward Simulation

In this section we describe a relationFSR, which is a forward simulation fromConcAutto

IntAut. Because the concrete and intermediate automata are very different, the simulation

relation and the proof are both substantially more complicated than the relation and proof

described in the previous section.

The forward simulation relation over concrete statecsand intermediate stateis is

FSR(cs, is) =̂ ∃ f : rel(is, cs, f )

wheref is a function from naturals to pointers which we refer to as the representation func-

tion. We explain the purpose off below, but briefly, it is used to constrain the structure of

the nodes inside the heap ofConcAut, and relate that structure to the queue ofIntAut. Figure

3.14 definesrel. The subpredicates ofrel are defined later in this section.

The most important part ofrel is the predicateobj ok (Figure 3.15), which expresses the

relationship between the concrete data structure, represented by nodes and pointers inCon-

cAut, and the queue variable ofIntAut. To express this relationship,obj okuses the represen-

tation functionf as follows. Recall that each state is ofIntAut contains a queue variableQ,

represented by a sequence andHead andTail variables indicating which indexes are relevant

in the current queue state. Ifobj ok(is, cs, f ) holds, thenf indicates which node corresponds

to each relevant position inis.Q.seq. That is, for eachi ∈ [is.Q.Head + 1 . . . is.Q.Tail],

f (i) is the queue node incs containing the valueis.Q.seq(i), and f (is.Q.Head) indicates

which queue node incs is the dummy node pointed to bycs.Head.ptr. Moreover, for each

i ∈ [is.Q.Head+1 . . . is.Q.Tail− 1], f (i +1) is the node pointed to by the next field off (i)

(i.e., f (i)
cs
→next).ptr = f (i + 1)), so that the order of values contained in the nodes ofcs

matches the order of values in the sequenceQ. seq of the intermediate automaton.
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obj ok(is, cs, f ) =̂

f (is.Q.Head) = cs.Head.ptr ∧ (1)

f (is.Q.Tail)
cs
→next.ptr = null ∧ (2)

(f (is.Q.Tail) = cs.Tail.ptr∨ (3a)

(f (is.Q.Tail) = cs.Tail.ptr
cs
→next.ptr ∧

¬cs.free(cs.Tail.ptr) ∧

cs.Tail.ptr 6= null)) (3b)

∧

∀ i : N • is.Q.Head ≤ i ≤ is.Q.Tail ⇒

(i 6= is.Q.Tail ⇒ (f (i)
cs
→next).ptr = f (i + 1)) ∧ (4a)

is.Q.seq(i) = (f (i)
cs
→val).ptr ∧ (4b)

¬cs.free(f (i)) ∧ (4c)

f (i) 6= null (4d)

Figure 3.15: Theobj okpredicate

Conjunct 1 ofobj ok asserts thatf (is.Q.Head) is the dummy node. Conjunct 2 states

that the last node in the queue has anull next pointer. Conjunct 3 captures the fact thatTail

can “lag” behind the real tail of the queue: eitherTail is accurate (3a), orcs.Tail.ptr points

to the next-to-last node in the queue, and that in such a situation cs.Tail.ptr is both allocated

and non-null.5 (3b). Conjunct 4 expresses properties of the nodes in the concrete queue: the

pointer value of thenext field of each queue node points to the node corresponding to the

next index (4a); the value in each queue node is the value in the corresponding position in

is.Q.seq (4b); none of the queue nodes is unallocated or in the freelist (4c); and none of the

queue nodes isnull (4d). (Conjuncts 4c and 4d, together with Conjunct 3a allow us to prove

thatcs.Tail.ptr is valid when the tail is not lagging.)

In order to show thatobj ok is preserved across transitions, we need to specify a new

representation function for the poststate of each transition. Our choice for the new func-

tion is motivated by our choice of step-correspondence. We discuss the step-correspondence

more completely in Section 3.5, but we note here that transitions of the forme 9 yesp (during

which a new node is added onto the queue) are each matched witha transition labelled by

5It is easy to infer this information from the other clauses ofobj ok in cases whereTail is not lagging.
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enqueueok(is, cs, f ) =̂

∀ p • (cs.pcp = idle ⇒ is.pcp = idle) ∧

(pc e 1 9(cs,p) ∨ cs.pcp = e 13⇒

is.pcp = enqueuing(cs.valp)) ∧

(cs.pcp = e 17∨ cs.pcp = enq resp ⇒ is.pcp = enq resp)

dequeue ok(is, cs, f ) =̂

∀ p • (cs.pcp = d 5∧ cs.nextp.ptr = null ⇒ is.empty okp) ∧

(pc d 2 9(cs,p) ⇒ is.pcp = dequeuing)

(pc d 10 17(cs,p) ∨ cs.pcp = deq resp ⇒

is.pcp = deq resp(cs.resultp))

Figure 3.16: Theenqueueok and dequeueok predicates. A predicate of the form

pc e m n(cs,p), wherem,n are integers, holds whencs.pcp = e i for somei ∈ [m. . . n].

do enqp in the intermediate automaton (during which a new value is added onto the sequence

of the intermediate automaton). The motivation for this is simple: enqueue operations ”ap-

pear to take effect” duringe 9 yesp anddo enqp transitions of the respective automata, so

these transitions are both linearisation points.

For a representation functionf , concrete actiona, concrete statecsand intermediate state

is, we use the new representation functionf ′, where

f ′ =

{

f ⊕ {is.Q.Tail + 1 7→ cs.nodep} if a = e  yes

f otherwise

That is, for transitions labelled by actions of the forme 9 yesp (during which a new node

is added onto the queue), we modify the representation function so thatf (is.Q.Tail + 1) is

the new node added onto the queue. This is because after the transition fromis labelled by

do enqp with poststateis′, is′.QTail = is.Q.Tail + 1, so that the new index is matched to

the new node. In every other case we use the old representation function.

Predicatesenqueueok anddequeueok (Figure 3.16) play the same role asbasic ok and

dequeuerok in the backward simulation. That is, they assert that each process is “at the same

stage” of the same operation in both states, or is not executing any operation in either state.

The other subpredicates ofrel capture properties needed to support the proofs that these

predicates are preserved across various transitions. We describe each in turn, giving an ex-

planation of each predicate’s meaning; a brief descriptionof how we show it is preserved
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distinctness ok(is, cs, f ) =̂

distinctness ok(is, cs, f ) ∧

distinctness ok(is, cs, f )

Figure 3.17: Thedistinctnessok predicate.

across transitions; and an outline of how it is used in the proof.

Thedistinctnessok (Figures 3.17 and 3.18) predicate says that nodes are not aliased in

ways that would render the algorithm incorrect. The properties asserted in this predicate

are critical to proving that other properties of various nodes are preserved by transitions that

modify the heap, or that return nodes to the freelist. The subpredicatedistinctness ok

ensures that neithernodep nor headp are part of the queue representation, during intervals

where they might be modified or, in the case ofheadp, added onto the freelist. This allows us

to prove thatobj ok is preserved across transitions where these nodes are modified or freed.

The subpredicatedistinctness ok states that various local pointer variables are not

aliased, either between the local variables of one process,or between local variables of dif-

ferent processes. We describe each conjunct in turn.

• Conjunct 3.3 asserts, for distinct processes, that thenode variables of each process are

not aliased, once the the new node has been allocated, and until it is enqueued.

• Conjunct 3.4 allows us to prove that thenode andhead.ptr expressions are not aliased

when the associated nodes might be modified or placed back on the freelist. The node

referenced byhead.ptr is only returned to the freelist once the dequeuing process

has successfully removed it from the queue. Furthermore, because a node might be

removed from the queue, placed on the freelist, and then reallocated to an enqueuing

operation, itis possible for thenode variable of an enqueuing process to point to the

same node as thehead.ptr variable of a dequeuing process. However, this can only

happen if thehead version number of the dequeuing process is out-of-date, in which

case, we don’t need to be able to prove thathead.ptr is not aliased by somenode

variable. Therefore, we allow ahead.ptr to alias a node whenhead.ver is out of date,

and the dequeuing process has not yet executed its CAS.

• Conjunct 3.5 allows us to prove thatnode is not aliased by anytail.ver while either
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distinctness ok(is, cs, f ) =̂

∀ p, i •(pc e 2 13(cs,p) ∧ is.Q.Head ≤ i ≤ is.Q.Tail ⇒

cs.nodep 6= f (i)) (3.1)

∧

(pc d 10 17(cs,p) ∧ is.Q.Head ≤ i ≤ is.Q.Tail ⇒

cs.headp.ptr 6= f (i)) (3.2)

distinctness ok(is, cs, f ) =̂

∀p,q•(p 6= q∧ pc e 2 13(cs,p) ∧

cs.nodep 6= null ∧ pc e 2 13(cs,q) ⇒

cs.nodep 6= cs.nodeq) (3.3)

∧

(pc e 2 13(cs,p) ∧ pc d 3 17(cs,q) ⇒

cs.nodep 6= cs.headq.ptr ∨

(pc d 3 9(cs,q) ∧ cs.headp.ver < cs.Head.ver)) (3.4)

∧

(pc e 2 13(cs,p) ∧ pc e 6 17(cs,q) ⇒

cs.nodep 6= cs.tailq.ptr ∨

cs.tailq.ver < cs.Tail.ver) (3.5)

∧

(p 6= q∧ pc d 3 17(cs,p) ∧ pc d 10 17(cs,q) ⇒

(pc d 10 17(cs,p) ∧ cs.headp.ver < cs.Head.ver) ∨

cs.headp.ptr 6= cs.headq.ptr) (3.6)

Figure 3.18: The predicatesdistinctness ok anddistinctness ok.
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node may be modified. For similar reasons as those given in thedescription of Conjunct

2, it is possible fornode to alias sometail.ptr, so we allowtail.ptr to alias somenode

whentail.ver is out of date.

• Conjunct 3.6 allows us to prove that, for distinct processes, thehead.ptr variables of

each process are not aliased when either might be returned tothe freelist. Again, we

allow aliasing to occur during intervals when it doesn’t matter.

Proving that thedistinctnessok predicates are preserved is fairly straightforward. When

a local variable is set to a new value (by aneval or new), we need to be able to prove that

the value being loaded is not the current value of the other variable in question. For example,

when proving that Conjunct 1 ofdistinctness ok is preserved across transitions labelled by

e 1p (whenp allocates a new node) we prove (using Conjunct 4 ofobj ok, and the definition

of thenewfunction) that the newly allocated node was not within the queue representation in

the prestate of the transition, and thus is not in the representation in the poststate.

Note that the body of the definition ofdistinctness ok does not mention the interme-

diate automaton, so the properties asserted bydistinctness ok are simple invariants. The

simulation relation asserts several other invariants of the concrete automaton. This is because

the proofs that these properties are preserved by the simulation relation depend ultimately on

assertions about the representation function made in theobj ok predicate. For example, the

proof that Conjunct 3.4 ofdistinctness ok is preserved over transitions labelled byd 2q

(whenq loadsHead into head), depends on the fact thatHead.ptr is not aliased by any

nodep variable in the prestate. But proving thatHead.ptr is never equal to somenodep de-

pends on the fact thatHead.ptr is never in the freelist, which in turn depends on the fact that

nodes within the queue representation are not in the freelist.

Certain invariants of the concrete automaton that currently appear within the simulation

relation could be expressed independently, and proved to beinvariant using the standard

inductive technique (briefly described in Section 2.4 of Chapter 2). However, it is not always

obvious which invariants can be proven independently of theproperties asserted byobj ok,

and there is nothing to be gained by trying to work this out. The simplest approach, which

we follow, is to include all these properties in the simulation relation.

The predicateinjective ok (Figure 3.19) asserts that the representation function is in-

jective over the domain[is.Q.Head . . . is.Q.Tail]. This ensures that each relevant index of

IntAut is represented by only one queue node, and that modificationsto one node do not

falsify properties of nodes corresponding to other indexes. Furthermore,injective ok allows
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injective ok(is, cs, f ) =̂

∀ i, j • is.Tail ≤ i ≤ is.Head ∧

is.Tail ≤ j ≤ is.Head ∧ f (i) = f (j) ⇒ i = j

Figure 3.19: Theinjective ok predicate.

nds ok(is, cs, f ) =̂

∀ p • (pc e 2 13(cs,p) ⇒

¬cs.free?(cs.nodep) ∧ cs.nodep 6= null) ∧

(pc e 3 13(cs,p) ⇒ cs.nodep
cs
→val.ptr = cs.valp) ∧

(pc e 4 13(cs,p) ⇒ cs.nodep
cs
→next.ptr = null)

Figure 3.20: Thends ok predicate.

us to prove that when a node is removed from the queue, it is no longer in the range of the

representation function.

It is trivial to prove thatinjective ok is preserved across transitions that do not modify

the representation function. Recall that there is only one class of transitions that modify the

representation function: those labelled bye 9 yesp, where the processp executes a successful

CAS, adding its new node onto the end of the queue. Proving that injective ok is preserved

across these transitions is accomplished by using Conjunct1 of distinctness ok to show

that the new node was not in the range of the representation function in the prestate.

The predicatends ok(is, cs, f ) (Figure 3.20) expresses properties of eachnodep variable

in the interval starting when the node is allocated and ending when it is added onto the queue.

This is the interval in which the fresh node is initialised. Each assignment to a newly allocated

node in the M&S queue algorithm corresponds to a conjunct ofnds ok that specifies the value

held in that field after the assignment. Showing thatnds ok is preserved across transitions

that modify the heap or the freelist amounts to doing one of three things:

• In cases where the modification is an update of a newly allocated node, showing that

the value being written has the appropriate properties.

• In cases where the modification is a write or CAS that is not oneof the initialising

writes executed by the process that allocated the node, using distinctnessok to prove
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access safety ok(is, cs, f ) =̂

∀ p•(pc e 6 17(cs,p) ⇒ cs.tailp 6= null ∧ (3.7)

¬cs.h.unalloc(cs.tailp.ptr)) (3.8)

∧ (3.9)

(pc d 3 17(cs,p) ⇒ cs.headp 6= null ∧ (3.10)

6= cs.h.unalloc(cs.headp.ptr)) (3.11)

∧ (3.12)

(pc d 4 17(cs,p) ⇒ cs.nextp 6= null ∧ (3.13)

6= cs.h.unalloc(cs.nextp.ptr)) (3.14)

∧ (3.15)

(cs.pcp = d 3 ⇒ (cs.headp.ptr
cs
→next).ptr = null ∨ (3.16)

¬cs.h.unalloc((cs.headp.ptr
cs
→next).ptr)) (3.17)

∧ (3.18)

∀ pt • ¬(cs.freelist(pt) ∧ cs.h.unalloc(pt)) (3.19)

Figure 3.21: Theaccesssafetyok predicate.

that the node being modified is not the newly allocated node.

• In cases where the transition places a node on the freelist, proving tha the node being

freed is not a newly allocated node, usingdistinctness ok.

Thends ok predicate is used to show preservation ofobj ok when an enqueuing process

successfully executes its CAS on thenext field of the tail node, adding it’s new node into

the queue. For example, Conjunct 2 asserts that when a process p attempts to add its new

node onto the queue, the value field of that node is equal to thevalue whichp is attempting to

enqueue. This, in combination with Conjunct 2 ofenqueueok, allows us to prove the crucial

property that after the node has been successfully added, the last element in the queue of the

intermediate automaton is the last element in the queue of nodes in the concrete automaton

(a property asserted by Conjunct 4b ofobj ok).

The predicateaccesssafetyok says that the implementation never dereferencesnull or
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accesses a node that is inunalloc, which is important for correct interaction with a memory

allocator.accesssafetyok asserts, for each program counter value where a dereferencecan

occur (through an invocation of eitherupdateor eval), that the pointer being dereferenced is

valid (non-null and allocated). This predicate is not used in the rest of the simulation relation.

It is included simply to provide confidence that the M&S algorithm interacts correctly with

the system memory allocator.

Theprocs okpredicate expresses several properties of the local variables of each process,

and the relationship between those local variables and the shared variables. Its subpredicates

are numnerous and are presented in Figures 3.22, 3.23 and 3.24. Theprocs okpredicate itself

is the conjunction of each of the subpredicates defined in these figures. Many of the subpred-

icates ofprocs ok are ad-hoc strengthenings of the simulation relation that were found to be

necessary to make the proof go through. We describe only the most important subpredicates

of procs ok, including those that are used in the proofs described in Section 3.5.

• procs ok 7 says that ifp is a dequeuing process that has executed D3 (loading the

nextp variable) but not yet executed D9 (the CAS), then ifp’s headp is accurate, its

nextp is also accurate. This is important for proving that during the D9 CAS, theHead

variable is correctly modified to point to the next node in thequeue.

• procs ok 9 says that if the test at D5 failed for some processp, then thenextp variable

is non-null.

• procs ok 15 says that if a processp is an enqueuing process about to execute the E9

CAS, then the pointer component ofnextp is null. This ensures that if the E9 CAs

is successful, the modified node has anull next value, and is thus the last node in the

queue.

• procs ok 16 records the fact that for a process enqueueingp, the newly allocated node

is distinct from thetailp node.

• procs ok 19states an important property that establishes what the testat E7 guarantees.

When a processp executes the E7 test, and that test succeeds, then eithernextp is not

null (in which casep will retry the loop), or the version number ofnextp is out of date

(and thus the next E9 CAS is doomed to fail), or thenextp variable is correct, and the

tailp variable points to the node that is last in the queue (and contains the last value in

the abstract queue). Thus, if it is still possible forp to successfully execute the E9 CAs
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procs ok 1(is, cs, f ) =̂

∀p • cs.pcp = d 4∧ cs.Head = cs.headp ∧

cs.nextp.ptr = null ⇒ is.empty okp

procs ok 2(is, cs, f ) =̂

∀p • pc d 3 9(cs,p) ⇒

cs.headp.ver < cs.Head.ver ∨ cs.headp = cs.Head

procs ok 3(is, cs, f ) =̂

∀p • pc e 6 17(cs,p) ∨ pc d 11 12(cs,p) ⇒

cs.tailp.ver < cs.Tail.ver ∨ cs.tailp = cs.Tail

procs ok 4(is, cs, f ) =̂

∀p • pc e 7 9(cs,p) ⇒

cs.nextp.ver ≤ (cs.tailp.ptr
cs
→next).ver

procs ok 5(is, cs, f ) =̂

∀p • pc e 8 9(cs,p) ∧ cs.nextp.ptr = null ⇒

cs.nextp.ver < cs.tailp.ptr
cs
→next.ver ∨

(cs.nextp = cs.tailp.ptr
cs
→next ∧

cs.tailp = cs.Tail ∧ cs.tailp.ptr = f (is.Q.Tail))

procs ok 6(is, cs, f ) =̂

∀p • (pc e 7 8(cs,p) ∨ cs.pcp = e 13) ∧ cs.nextp.ptr = null ⇒

cs.tailp.ver < cs.Tail.ver ∨

(cs.tailp = cs.Tail ∧ f (is.Q.Tail) = cs.nextp.ptr ∧

cs.tailp.ptr 6= cs.nextp.ptr)

procs ok 7(is, cs, f ) =̂

∀p • pc d 4 9(cs,p) ∧ cs.headp = cs.Head ∧ cs.nextp.ptr 6= null ⇒

cs.nextp.ptr = (cs.Head.ptr
cs
→next).ptr

procs ok 8(is, cs, f ) =̂

∀p • cs.pcp = d 12⇒ cs.headp.ptr = cs.tailp.ptr

Figure 3.22: Subpredicates ofprocs ok.
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procs ok 9(is, cs, f ) =̂

∀ p • pc d 8 12(cs,p) ⇒ cs.nextp.ptr 6= null

procs ok 10(is, cs, f ) =̂

∀ p • cs.pcp = d 9∧ cs.headp = cs.Head ⇒

cs.resultp = (cs.nextp.ptr
cs
→val).ptr

procs ok 11(is, cs, f ) =̂

∀ p • pc e 2 13(cs,p) ⇒ cs.nodep 6= cs.Tail.ptr

procs ok 12(is, cs, f ) =̂

∀ p • cs.pcp = d 17∨

(cs.pcp = d 11∧ (cs.headp.ptr = cs.tailp.ptr ∨

cs.tailp.ver < cs.Tail.ver)) ∨

(cs.pcp = d 12∧ cs.tailp.ver = cs.Tail.ver) ⇒

cs.headp.ptr 6= cs.Tail.ptr

procs ok 13(is, cs, f ) =̂

∀ p • cs.pcp = e 6∧ (cs.tailp.ptr
cs
→next).ptr = null ⇒

cs.tailp.ver < cs.Tail.ver ∨

(cs.Tail = cs.tailp ∧ cs.tailp.ptr = f (is.Q.Tail))

procs ok 14(is, cs, f ) =̂

∀ p • cs.pcp = e 13⇒ cs.nextp.ptr = null

Figure 3.23: Subpredicates ofprocs ok.

at this iteration through the loop, thenp has obtained an accurate snapshot ofTail and

Tail→next.

3.5 Verifying the Forward Simulation

The forward simulation relation defined here is a large and complicated assertion. The com-

plete simulation proof is correspondingly long and detailed. We will not attempt to describe

all of it. First, we outline the structure of the proof. Then,in Section 3.5.1, we presents a

careful manual proof that the criticalobj ok property is preserved by transitions modelling

successful CAS operations.
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procs ok 15(is, cs, f ) =̂

∀p • cs.pcp = e 9 ⇒ cs.nextp.ptr = null

procs ok 16(is, cs, f ) =̂

∀p • pc e 6 13(cs,p) ⇒ cs.nodep.ptr 6= cs.tailp.ptr

procs ok 17(is, cs, f ) =̂

∀p • pc d 3 17(cs,p) ⇒

(pc d 3 9(cs,p) ∧ cs.headp.ver < cs.Head.ver) ∨

¬cs.free?(cs, cs.headp.ptr)

procs ok 18(is, cs, f ) =̂

∀p • cs.pcp = e 17⇒

cs.tailp.ver < cs.Tail.ver ∨

(cs.tailp = cs.Tail ∧ f (is.Q.Tail) = cs.nodep ∧

cs.tailp.ptr 6= f (is.Q.Tail))

procs ok 19(is, cs, f ) =̂

∀p • cs.pcp = e 7∧ cs.nextp.ptr = null ⇒

cs.tailp.ver < cs.Tail.ver ∨

(cs.Tail = cs.tailp ∧ cs.nextp.ver < (cs.Tail.ptr
cs
→next).ver) ∨

(cs.Tail = cs.tailp ∧ cs.nextp = cs.Tail
cs
→next ∧

cs.tailp.ptr = f (is.Q.Tail))

procs ok 20(is, cs, f ) =̂

∀p • (cs.pcp = d 11∨ cs.pcp = d 12) ∧ cs.headp.ptr = cs.tailp.ptr ⇒

cs.tailp.ver < cs.Tail.ver ∨

(cs.tailp = cs.Tail ∧ f (is.Q.Tail) = cs.nextp.ptr ∧

cs.headp.ptr = cs.nextp.ptr)

procs ok 21(is, cs, f ) =̂

∀p • cs.pcp = d 10∧ cs.headp.ptr = cs.Tail.ptr ⇒

f (is.Q.Tail) = cs.nextp.ptr ∧ cs.headp.ptr 6= cs.nextp.ptr

Figure 3.24:
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procs ok 22(is, cs, f ) =̂

∀ p • cs.pcp = e 17⇒ cs.tailp.ver < cs.Tail.ver ∨ ¬cs.free?(cs.tailp.ptr)

procs ok 23(is, cs, f ) =̂

∀ p • cs.pcp = e 6∧ (cs.tailp.ptr
cs
→next).ptr 6= null ⇒

cs.tailp.ver < cs.Tail.ver ∨

(cs.Tail = cs.tailp ∧ (cs.tailp.ptr
cs
→next).ptr = f (is.Q.Tail))

Figure 3.25: Subpredicates ofprocs ok.

As in the backward simulation proof, we use a step-correspondence function to deter-

mine the intermediate action sequence to choose given a particular transition of the concrete

automaton. (Again, we always choose either a single action,or the empty action sequence.)

As before, this function maps each external action to itself, and maps all internal actions to

the empty action sequence, with the following exceptions:e  yesp, which models a suc-

cessful CAS at line E9, is mapped todo enqp; d  yesp is mapped todeq nonemptyp; d p

is mapped toobserve emptyp; andd  yesp is mapped todeq emptyp.

In contrast to the backward simulation, we do not need to specify a function to calculate

the intermediate state, because this is uniquely determined by the intermediate pre-state and

the action (if any) chosen because the poststate of each transition is uniquely determined by

the action and prestate (i.e., the effect of each action is deterministic).

3.5.1 A Proof Fragment

We now present a careful manual proof thatobj ok is preserved across two classes of tran-

sitions: those that represent the execution of line E9 by some process, where the CAS is

successful; and those that represent the execution of D9, also where the CAS is successful.

This is intended to illustrate the use of the representationfunction, and the style of reasoning

we use to verify algorithms that employ dynamic memory.

Successful E9 Transitions

Fix a concrete statecs and intermediate stateis such thatFSR(cs, is), with representation

function f . Fix also a concrete transitioncs
a

−→ cs′, wherea = e  yesp for somep,

and let is′ and f ′ be respectively the intermediate state and function determined by the
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step-correspondence and witness functions. That is,is′ satisfiesis
b

−→ is′ where b =

do enqp(cs.valp), and f ′ = f ⊕ {is.Q.Tail + 1 7→ cs.nodep}. When we say that part of

the simulation relationholds in the pre-state(respectivelyholds in the post-state), we mean

that it is true forcs, is andf (respectivelycs′, is′, f ′).

We need to show two things. First, that if the precondition ofe  yesp holds in the

pre-state (i.e., ifcs.pcp = e 9, cs.nextp = cs.tailp.ptr
cs
→nextandrel(is, cs, f )) then the in-

termediate precondition ofdo enqp(cs.valp) holds (i.e.,is.pcp = enq(v) wherev = cs.valp).

In other words, we need to show thatis′ exists. Second, we need to show that if the concrete

precondition and simulation relation hold, thenobj ok(is′, cs′, f ′).

The first obligation is a straightforward application ofenqueue ok to processp (see

Figure 3.16 on page 72). The second obligation is much more complicated. We begin by

making some observations about the transition:

cs.Tail.ptr = cs.tailp.ptr = f (is.Q.Tail) (1)

f ′(is′.Q.Tail) = cs.nodep (2)

Claim 1 is shown usingprocs ok 15 to show thatcs.nextp.ptr = null, and then using

procs ok 5 to show thatcs.Tail.ptr = cs.tailp.ptr = f (is.Q.Tail). Claim 2 follows imme-

diately from the construction off ′ and the effect ofdo enqp.

Conjunct 1 of obj ok (see Figure 3.15 on page 71) is preserved because

is′.Q.Head = is.Q.Head, but is.Q.Head < is.Q.Tail + 1 (recall that this is a constraint

on the set from whichis.Q is drawn). Thereforeis′.Q.Head 6= is.Q.Tail + 1, so by con-

struction off ′ and because Conjunct 1 ofobj ok holds in the pre-state,f ′(is′.Q.Head) =

f (is.Q.Head) = cs.Head.ptr = cs′.Head.ptr.

For Conjunct 2, by construction off ′ and the effect ofdo enqp, we havef ′(is′.Q.Tail) =

f ′(is.Q.Tail + 1) = cs.nodep Moreover, by Conjunct 3 ofnds ok, cs.nodep
cs
→next.ptr =

null. By procs ok 16,cs.tailp.ptr 6= cs.nodep, socs.nodep
cs′
→next.ptr = null, and thus

f ′(is′.Q.Tail)
cs′
→next.ptr = cs.nodep

cs′
→next.ptr = null

We show that Conjunct 3b holds in the post-state, arguing each sub-conjunct in turn.
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f ′(is′.Q.T ail) = cs.nodep by (ii) above

= cs.tailp.ptr
cs′
→next.ptr by construction ofcs′

= cs.T ail.ptr
cs′
→next.ptr by Claim 1 above

= cs′.T ail.ptr
cs′
→next.ptr becausecs′.T ail = cs.T ail

cs′.free?(cs′.T ail.ptr) = cs.free?(cs′.T ail.ptr) cs′.free?= cs.free?
= cs.free?(cs.T ail.ptr) cs′.T ail = cs.T ail
= cs.free?(f (is.Q.T ail)) by (i) above
= false conjunct 4c with

i = is.Q.T ail

Now by Claim 1,cs.Tail.ptr = f (is.Q.Tail), so by Conjunct 4d applied tois.Q.Tail,
cs.Tail.ptr 6= null. Therefore,cs′.Tail.ptr 6= null by the effect of thee  yes transition,
so the third conjunct is preserved. For the last conjunct of 3b we have

f ′(is′.Q.T ail) = cs.nodep by (ii) above
6= cs.tailp.ptr by procs ok 16
= cs.T ail.ptr by (i) above
= cs′.T ail.ptr

We prove Conjunct 4 by cases. For anyi such thatis′.Q.Head ≤ i ≤ is′.Q.Tail, either
i = is.Q.Tail+1 or is.Q.Head ≤ i ≤ is.Q.Tail. We treat the case in whichi = is.Q.Tail+1
first. is.Q.Tail + 1 = is′.Q.Tail so there is nothing to prove for Conjunct 4a. For Conjunct
4b we have

is′.Q.seq(i) = cs.valp by effect ofdo enqp
andenqueueok

= cs.nodep
cs
→val.ptr by nds ok

= cs.nodep
cs′
→val.ptr by effect ofe  yes

p

= f ′(i)
cs′
→val.ptr by (ii) above

4c and 4d follow fromnds ok and (ii) above.
It remains to consider the case in whichis.Q.Head ≤ i ≤ is.Q.Tail. For 4a, we further

distinguish the cases in whichi = is.Q.Tail and is.Q.Head ≤ i < is.Q.Tail. For the first
case, we have

f ′(i)
cs′
→next.ptr = f (i)

cs′
→next.ptr becausei 6= is.Q.T ail+ 1

= cs.tailp.ptr
cs′
→next.ptr by (i) above

= cs.nodep by effect ofe  yes
p

= f ′(is′.Q.T ail) by (ii) above
= f ′(i + 1) by effect ofdo enqp

If is.Q.Head ≤ i < is.Q.Tail, (4a) follows directly if we can show thatf (i) 6= cs.tailp.ptr.
This is becausei 6= is.Q.Tail and so (4a) holds fori in the pre-state and
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(f (i)
cs
→next).ptr ⇒ (f (i)

cs′
→next).ptr

= f (i + 1) = f (i + 1) givenf (i) 6= cs.tailp.ptr

⇒ (f ′(i)
cs′
→next).ptr i < is.Q.T ail so

= f ′(i + 1) f ′(i) = f (i)and
f ′(i + 1) = f (i + 1)

But if f (i) = cs.tailp.ptr then byinjective ok and (i) above, we havei = is.Q.Tail, contra-
dicting the hypothesis thati < is.Q.Tail.

(4b), (4c) and (4d) all follow fori from the fact that these conjuncts held in the pre-state
and that becausei 6= is.Q.Tail + 1, is′.Q.seq(i) = is.Q.seq(i) andf ′(i) = f (i). Moreover,
noval fields, norfree?are modified by the transition.

Successful D9 Transitions

We now present a careful manual proof thatobj ok is preserved across transitions that rep-
resent the execution of D9 by some process, where the CAS is successful. As before, fix a
concrete statecsand intermediate stateis such thatFSR(cs, is), with representation function
f . Fix also a concrete transitioncs

a
−→ cs′, wherea = e  yesp for somep, and letis′ and

f ′ be respectively the intermediate state and function determined by the step-correspondence

and witness functions. That is,is′ satisfiesis
b

−→ is′ whereb = deq nonemptyp andf ′ = f .
We need to show that if the precondition ofd  yesp holds in the pre-state andrel(is, cs, f )
thenobj ok(is′, cs′, f ′).

As before, we need to show that the intermediate precondition holds (presented in Figure
3.12 on page 65). The first part of that precondition, thatis.pcp = deq is true by a simple
application ofdequeue ok to p (see Figure 3.16 on page 72). The second, that¬(is.deq), is
more complicated. Byprocs ok 9, procs ok 7 and the precondition ofe  yesp, we have

cs.nextp.ptr 6= null (i)

cs.nextp.ptr = cs.Head.ptr
cs
→next.ptr (ii)

Assume for the sake of contradiction, that(is.deq), ie., is.Q.Head = is.Q.Tail. Then , by
Conjunct (2) ofobj ok, we havef (is.Q.Head)

cs
→next.ptr = null. Also, by Conjunct (1) of

obj ok, f (is.Q.Head) = cs.Head.ptr. So,

null = f (is.Q.Head)
cs
→next.ptr

= cs.Head.ptr
cs
→next.ptr

= cs.nextp.ptr By ii above.

But this contradicts i above, so we have

is.Q.Head = is.Q.Tail (iii)
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We now show that each conjunct ofobj ok holds in the poststate. First, Conjunct 1.
Observe that by Conjunct 4a ofobj ok, and iii above, we have

f (is.Q.Head)
cs
→next.ptr = f (is.Q.Head + 1) (iv)

f ′(is′.Q.Head) = f (is.Q.Head+ 1) Definition of f ′ anddeq nonempty
transition

= f (is.Q.Head)
cs
→next.ptr iv above

= cs.Head
cs
→next.ptr Conjunct 1 ofobj ok

= cs.nextp.ptr ii above
= cs.Head.ptr Definition ofe  yesp transition

It is easy to see that Conjuncts 2, 3a and 3b are all preserved.None of the variables of
either automaton or fields that are mentioned in these conjuncts are modified by the concrete
or intermediate transitions.

For Conjunct 4, fix ani such thatis′.Q.Head ≤ i ≤ is′.Q.Tail. Becauseis′.Q.Head =
is.Q.Head+1 andis′.Q.Tail = is.Q.Tail, we may apply Conjunct 4 toi and obtain that 4a-
4d all hold in the prestate. Observe thatf ′ = f and none of the variables or fields mentioned
in 4a-4d are modified by the concrete or intermediate transitions. Therefore, 4a-4d must also
hold in the poststate.

3.6 Related Work

There have been several variations on the M&S queue, designed to work in various contexts.
Some are less general in the sense that they depend on unusualproperties of the runtime envi-
ronment to guarantee correctness ([Jav] depends on garbagecollection, [Lee07] depends on
properties of a realtime scheduler). Others allow non-linearisable behaviour [Lee07, FOL05].

The M&S queue has been used as a case study in previous work on the application of
formal methods to concurrent algorithms [YS03, AC05, WS05,BAM06, BAM07]. The re-
mainder of this section describes this work.

The authors of [YS03] present an automatic verification of certain properties of the M&S
queue, using a model-checking technique. This technique using three-valued logic (where
propositions can take the valuestrue, falseandunknown) to represent uncertainty. They call
their technique3VMC, for three-valued model checking.

The 3VMC technique is capable of constructing abstractionsof concrete systems with
unbounded state and of using this abstraction to check invariants of the original system. Typ-
ically, the user defines predicates over the states of the concrete system that describe prop-
erties relevant to the verification. The abstraction technique then uses these predicates and
others that are defined automatically to construct the abstraction. Like other kinds of model-
checking, the technique is interesting because usually only a very limited form of interaction
with a human is required to verify a given algorithm. Descriptions and applications of the
3VMC technique can be found in [Yah01, MYRS05].
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[YS03] verifies certain properties of the M&S queue. These properties are taken from
the paper presenting the original algorithm [MS96b] and arelisted here.

1. The linked list of nodes is always connected.

2. Nodes are only inserted after the last node of the linked list.

3. Nodes are only deleted from the beginning of the linked list.

4. Head always points to the first node in the linked list.

5. Tail always points to a node in the linked list.

[YS03] presents a formalisation of these properties in the logic of the tool used for the veri-
fication.

The verification presented in this chapter proves that the M&S queue satisfies the be-
havioural properties appropriate to the queue datatype (asspecified by the abstract automa-
ton). The approach of [YS03] verifies important invariant properties of the M&S queue, but
stops short of a full behavioural verification. No argument is presented, either in [MS96b] or
[YS03] as to why these properties should be considered sufficient for the correctness of the
queue implementation. There are several ways in which the M&S queue could satisfy these
properties, but the queue be incorrect, nevertheless. Thisis a consequence of the fact that
behavioural issues are simply not discussed. Adequeuemay returnfalse, even when the
list is nonempty. Nodes might only be inserted at the end of the list, but it might be possible
for anenqueueto complete without inserting a node. The linked-list may beconnected but
circular.

Apart from these issues, it is unclear whether the authors of[YS03] have actually verified
these properties when the queue is accessed by an unbounded number of enqueuing and de-
queuing processes. They report verifications showing that the properties are invariant when
the queue is accessed concurrently by one enqueuing processand one dequeuing process;
and by an unbounded number of concurrent enqueuers; and finally by an unbounded number
of concurrent dequeuers. However, no verification of the properties under concurrent access
by both unbounded enqueuers and some fixed (nonzero) number of dequeuers is reported, or
vice-versa. Contrast this with our verification, which proves that the M&S queue is correct,
for an unbounded number of concurrent enqueuers and dequeuers, relative to a behavioural
specification of the queue’s safety properties, given by linearisability and the canonical au-
tomaton.

Work presented in [ARR+07b] applies 3VMC to tackle the problem of proving linearis-
ability directly. They verify several implementations of concurrent data structures, including
the Treiber stack and the M&S queue, using a technique they call comparison under ab-
straction. Roughly speaking, they run the concurrent implementationsimultaneously with
a sequential implementation that has a similar layout in theheap. At a putative linearisa-
tion point in the execution of the concurrent implementation, the corresponding operation is
executed atomically on the sequential implementation. An isomorphism from the heap of
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the concurrent implementation to that of the sequential implementation (with some bounded
number of nodes not included in the domain of the isomorphism) is then used to infer that
the operation is correctly linearised. The 3VMC technique is used to ensure that the verified
algorithms are correct for an unbounded number of nodes.

This work has the advantage over [YS03] in that it attacks thequestion of behavioural
correctness directly. Proving behavioural correctness ofa concurrent data structure over
an unbounded heap without human intervention is a significant achievement. However, the
verification only works for a bounded number of concurrent operations. All their examples
prove correctness of the implementation for between two andfour concurrent operations. In
the case of the M&S queue, their technique succeeds in verifying just two concurrent threads.
The goal of the authors is to leverage the 3VMC technique to verifying data structures under
an unbounded number of concurrent operations.

The authors of [ARR+07b] describe interesting limitations in their ability to assign lin-
earisation points to operations, related to prophetic linearisation, amoung other issues. Each
procedure implementing an operation is assigned a particular statement in the code that acts
as the linearisation point for that operation. When this statement is executed, that particular
operation on the sequential data structure is triggered. The linearisation point of each oper-
ation cannot be a statement executed in another operation. Further, the question of whether
a particular occurrence of a statement in an execution is a linearisation point cannot be an-
swered by looking into the future of the execution. All threeof the verifications presented
in this thesis feature linearisation points that either arein other operations or that depend on
future knowledge. Therefore, these are significant restrictions.

Like us, the authors of [AC05] apply deductive techniques tothe verification of the M&S
queue. They formally derive a variant of the M&S queue, usinga notation and methodology
calledEvent-B[Abr03, ACM03], which is a version of the B Method [Abr96] that includes
support for reasoning about concurrency. Event-B is arefinementbased approach, where
successive algorithms (calledrefinements) are constructed, beginning with a specification,
and ending with an implementation. Each new refinement is shown to implement the previous
one, using rules for the correctness-preserving transformation of one refinement into another.
The authors of [AC05] use a proof assistant, calledClick ’ Prove to discharge the proof
obligations that arise from the application of these rules.

Their work is similar to ours in several respects. The specification and proof is based on
a formal notation; they construct their proofs using a mechanical theorem prover; and they
prove a behavioural property of the algorithm: that its externally observable behaviour is
indistinguishable from that of the specification.

However, there are two important differences. First, rather than using an abstract specifi-
cation of a linearisable queue as we do, they use as their specification a model that is essen-
tially the M&S queue as if all operations were executed atomically. That is, the model has a
linked-list of nodes,Head andTail variables that range over these nodes, andenqueue
anddequeue operations that modify these variables and nodes, and execute without in-
terleavings. It seems likely that they could have begun witha more abstract model built
directly from a simple sequential specification, and thus that their use of an implementation
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dependent specification does not reflect a fundamental limitation of the Event-B methodol-
ogy. However, showing that a linked representation of a sequence of values is correct is very
much a nontrivial task, and it would have been interesting tosee how it could be achieved in
the Event-B framework.

In any case, a more important difference is the way in which their work deals with
prophetic linearisation. Rather than determining whetherthe queue is empty based solely
on readingHead, the dequeue operation checks whetherHead andTail point to the same
node, and if so, whether the node referenced byHead has anull next pointer. If both tests
succeed, then the queue is empty whenTail->next is read. Because no further tests are
required after the read, it can serve as a linearisation point, and this can be determined as such
just by looking at the current state. Thus, they avoid dealing with the prophetic linearisation
of both the original M&S queue, and our optimisation.

The algorithm they ultimately derive has a significant difference from the M&S queue in
that version numbers are associated abstractly with queue nodes, rather than being associated
with locations (locations do not contain pointers and version numbers). Because of this
difference, it is not clear how to implement their algorithmdirectly on an actual machine. In
their model, the CAS operation checks that the version number of the nodehas not changed
when attempting a modification of theHead orTail pointer. CAS can in reality, only check
the number associated with the location being modified, not some node referred to from that
location.

Recent work has attended to the question of applying reductions to the executions of
nonblocking algorithms [WS05, Gro08], which has used the M&S queue as a case study.
This work is based on the idea that the order pairs of read, write and CAS operations in an
execution can often be reversed, without changing the observable behaviour of the execution.

[WS05] applies a static analysis technique to the problem ofverifying the M&S queue.
Their verification works in two phases. They prove manually that a version of the m&S
queue algorithm is correct, under the assumption that certain blocks of code are always ex-
ecuted atomically. Then they use a static analysis technique to show that, for any state that
can be reached by an execution of complete operations where these blocks are not executed
atomically (but are executed to completion), there is some execution where these blocks are
executed atomically that reaches the same state. The secondphase is the primary contribu-
tion of the work, and it suggests that aspects of similar verifications relating to complicated
interleavings can be completed automatically. The first phase of the verification effort could
be completed by simulation.

Significant work has been done on applying the backward simulation technique to the
verification of other algorithms and protocols. We defer detailed discussion of this work un-
til Chapter 4. However, verifications presented in [SAGG+93] and [Smi97] have the same
structure as the verification presented in this chapter. Like us, they use an intermediate au-
tomaton to capture the ”backwards” behaviour of the implementation, which admits a simple
backwards simulation to the specification automaton. Forward simulation is then used to
show that the concrete automaton implements the intermediate automaton. The verification
presented in Chapter 4, which treats an algorithm known asSnarkthat implements a double-
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ended queue object, departs from this pattern in that the backward simulation is substantially
more complicated. This reflects the greater complication ofthe prophetic linearisation in-
volved. In the M&S queue, the actions that are linearisationpoints given certain future events
are linearisation points for the process that takes the action. Moreover, the operations that are
linearised in this way do not modify the value of the queue. Incontrast, the Snark algorithm
has the property that an action of a processp can be a linearisation point of an operation of
some other processq 6= p, andq’s operation can modify the double-ended queue.

Relaxed Memory Models

Another attempt at automatic verification of the M&S queue (among other algorithms) is
presented in [BAM06] and [BAM07]. Their technique is interesting, because it analyses the
behaviour of the M&S queue in the context ofrelaxed memory models. Before describing
their contributions, we briefly introduce the concept of relaxed memory models.

Shared-memory architectures often do not implement an abstraction where all memory
operations appear to take effect to all processes at once. Rather, in many systems it is pos-
sible for processes to observe memory operations in different orders from one another. The
architecture provides some guarantee about what kind of operation orders might be observed
by a process running on the system. This guarantee is called thememory model, and mem-
ory models in which it is possible for processes to observe operations in different orders are
calledrelaxed memory models, or just relaxed models. Implementations of shared-memory
systems that provide relaxed models can benefit from important optimisations that greatly re-
duce memory-operation latency in common cases. However, they have the disadvantage that
they exhibit behaviours not possible in more intuitive models, and thus present a significant
problem for verification.

The work of [BAM06] and [BAM07] is based on applying decisionprocedures for sat-
isfiability of boolean propositions (that is, formulae without predicates or quantification).
[BAM07] describes an application calledCheckFencethat implements their technique. Given
a sequential specification of a datatype and a set of operations on that datatype, called atest,
CheckFence generates a boolean formula describing the possible behaviours of the datatype
when the given operations are executed. These operations are only partially ordered by the
test, and may execute in parallel. Also, given an algorithm (expressed in a subset of the C
language) and a formal description of a memory model, CheckFence generates a boolean
formula describing the possible executions of the algorithm, under the given memory model.
Finally, CheckFence determines whether any of the algorithm’s executions fail to meet the
allowed behaviours. This amounts to checking whether the first formula can be false while
the second formula is true: a boolean satisfiability problem.

The largest test reported in [BAM07] involved 12 operationsexecuted by two concurrent
processes and took several minutes (the test was carried on the M&S queue). One test on
the Snark algorithm involving eight concurrent operationstook about an hour. The tests are
themselves quite small, involving 200 to 300 memory accesses at most. Graphs presented
in [BAM07] show a near exponential increase in runtime and memory use as the number of
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memory accesses increases. Therefore, scaling the technique up to larger test sizes may be
difficult. Their approach is directed towards bounded testing, rather than full verification,
and is thus orthogonal to our work.

3.7 Concluding Remarks

The techniques used in the construction of the forward simulation in this chapter are applied
in Chapter 6 to the verification of a novel implementation of the LL/SC primitive. We review
two important aspects of the forward simulation presented in this chapter that will reappear
in that setting.

Dealing with the possibility of aliasing is critical to any verification of pointers. We must
be able to show that updates to heap objects accessed from onepointer variable do not destroy
properties of objects accessed from another variable. In the forward simulation presented in
this chapter, aliasing is constrained by thedistinctnessokandinjective okpredicates, as well
as some of theprocs ok predicates. Very similar techniques are used in the verification of
Chapter 6.

Our heap model is idealised in the sense that we allow pointers to be dereferenced, even
in cases where the pointer may benull or unallocated. (However, recall that we prove
that no process ever deallocates such a pointer.) This simple approach is inadequate for the
verification in Chapter 6, because explicit deallocations occur in that algorithm. The heap
model in that verification is very similar to the one used here. However, theeval andupdate
functions cause the heap to enter an ”error state” when applied to an invalid pointer. This
makes the proof more complicated. Chapter 6 describes how wedeal with this additional
complexity.
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Chapter 4

Another Application of Backward
Simulation

This chapter presents part of the verification of a nonblocking algorithm known as theSnark
algorithm [DFG+00]. The Snark algorithm is a lock-free implementation of the double-
ended queue datatype (henceforthdeque) that uses the DCAS synchronisation primitive. A
deque is like a stack or queue in that it provides operations on a sequence of values. However,
a deque generalises both datatypes in that it provides operations that add values to or remove
values fromeitherend of the sequence.

During an earlier verification attempt [Doh03] it was discovered that the Snark algorithm
as originally presented in [DFG+00], is incorrect. As we shall see, the corrected version,
first described in [DDG+04], presents several challenges to verification. Principal among
these challenges is the fact that the corrected version exhibits prophetic linearisation. This
prophetic linearisation is interesting partly because an operation with a future-dependent lin-
earisation point can have an effect that is visible to other operations. This is in contrast to
the M&S queue, in which the only operations with future dependent linearisation points do
not have a visible effect. As we shall see, a backward simulation used in the verification
of the corrected algorithm must account for the fact that thesequence of values in a state
of the implementation can be different from the sequence of values in a related state of the
specification.

Because this chapter is concerned with the verification of the corrected version of the al-
gorithm, we use the nameSnark algorithm(or sometimes, justSnark) to refer to this corrected
version. We describe the backward simulation proof betweenthe specification automaton and
an intermediate automaton that captures the Snark algorithm’s “backwards” behaviour. The
proof is significantly more complicated than other backwardsimulation proofs that we are
aware of (such as [SAGG+93, DGLM04, CG05]), which we believe is a consequence of
Snark’s particular kind of prophetic linearisation. Backward simulations tend to be trickier
to verify than forward simulations, but because they have been rarely necessary in practice,
there seems to be a lack of substantial examples in the literature.

93
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One motivation for our interest in backward simulation is the relatively large number of
nonblocking algorithms that would require the use of backward simulation, if they were to
be verified using simulation based techniques. ([MS98a, DDG+04] have already been dis-
cussed. Algorithms in [Blo88, LMS03b, Fra03, HHL+06] provide other examples.) Further-
more, there is a need to develop techniques for the verification of nonblocking algorithms that
exhibit complicated patterns of prophetic linearisation.The elimination queue of [MNSS05]
provides a good example.

A complete verification of the Snark algorithm would involvethe definition of a forward
simulation from a concrete automaton modelling the actual algorithm to the intermediate
automaton, along with a proof that it is a forward simulation. We do not produce or prove
such a forward simulation in this thesis. The techniques required to do so are essentially the
same as were used in the proof of the forward simulation presented in Chapter 3, and the
proof itself is very long and tedious. The novel and interesting aspects of the verification are
the construction of the intermediate automaton, and the backward simulation.

Section 4.1 describes the Snark algorithm presented in [DDG+04], and explains why it
exhibits prophetic linearisation. This is intended to motivate the backwards simulation that
we describe in this chapter in detail. Section 4.2 describesthe intermediate and abstract
automata used in the verification. Section 4.3 presents the backward simulation and Section
4.4 describes important aspects of the proof that it is in fact a simulation relation.

4.1 DCAS and the Snark Algorithm

This section describes the Snark algorithm, as presented in[DDG+04]. The deque datatype
encapsulates a sequence of values. A deque supports four operations: two operationspushLeft
andpushRight that each add a value onto one end of the sequence, andpopLeft and
popRight that each remove and return a value from one end of the sequence. As the
names suggest, thepushLeft operation adds a value to the end of the sequence from which
popLeft removes a value, and similarly forpushRight andpopRight.

Snark uses thedouble-compare-and-swap(DCAS) synchronisation primitive, a general-
isation of CAS that operates on two independent locations. The DCAS primitive was first
mentioned in Chapter 1, but we describe it again here for convenience. Figure 4.1 presents
pseudocode describing the semantics of DCAS. The DCAS operation takes as arguments two
locations, two expected values, and two new values. The two locations are independent, they
do not need to be adjacent. The new values are written into thetwo locations if and only if
both locations each contain the corresponding expected value.

DCAS has been used in the implementation of an experimental,nonblocking operating
system kernel for the Motorola 68030 processor [MP91], which is one of the very few pro-
cessors that supports DCAS. Later work produced DCAS-basedtechniques for the transfor-
mation of sequential data structures into functionally equivalent nonblocking data structures
[Gre02], and lock-free reference counting [DMMm01] (whichwe discuss in Chapter 5).

Significant attention has been given to the development of nonblocking deque imple-
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boolean DCAS(val *addr1, val *addr2,
val old1, val old2,
val new1, val new2) {

atomically {
if ((*addr1 = old1) &&

(*addr2 = old2)) {

*addr1 := new1;

*addr2 := new2;
return true;

} else return false;
}

}

Figure 4.1: Semantics of the DCAS operation.

mentations that use DCAS [ADF+00, DFG+00, MMm02, DDG+04]. Because the deque
datatype provides push and pop operations atboth ends of the sequence, it was thought
[ADF+00, DDG+04] that implementing the deque datatype would provide a good test case
for examining the utility of DCAS in the design of advanced data structures. The Snark algo-
rithm improved on previous proposals by requiring fewer DCAS operations in the best case.
However, the outcome of these experiments with deques, together with certain undesirable
properties of other algorithms that use DCAS, suggest that the DCAS operation does not
substantially extend the range of datatypes that admit simple and efficient implementations
[DDG+04]. Partly for these reasons, interest in DCAS-based data structures has waned in re-
cent years. However, as we shall see, the Snark algorithm provides an interesting case study
in the verification of nonblocking algorithms.

4.1.1 The Algorithm

We turn now to a description of the Snark algorithm. The declarations and initial state for the
Snark algorithm are presented in Figure 4.2. The Snark algorithm uses a doubly-linked list
in which each node is connected to its neighbours through itsL andR fields. TheV field of a
node contains a value. The Snark algorithm has two shared pointer variables, known ashats,
called respectivelyLeftHat andRightHat. These variables are used to access either end
of the doubly-linked list. Snark relies on a garbage collector to recycle unreachable storage.

Figure 4.3 illustrates a deque containing two elements. When the deque is not empty,
LeftHat (resp.RightHat) points to the leftmost (resp. rightmost) node that contains an
unpopped value. Snark uses sentinel nodes on either end of the deque to allow operations to
detect whether the deque is empty. A value in theV field of a sentinel node is not part of the
sequence of values contained in the deque. Observe that the inward pointers of the sentinels
are self-pointers. We say that a nodend is left-dead(resp. right-dead) whennd->L (resp.
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1. structure Node {
2. Node *L;
3. Node *R;
4. val V;
5. }

Node *Dummy, *LeftHat,

*RightHat;

initialise() {
1. Dummy := new Node();
2. Dummy->L := Dummy;
3. Dummy->R := Dummy;
4. LeftHat := Dummy;
5. RightHat := Dummy; }

Figure 4.2: The declarations and initial state for the Snarkalgorithm.

RightHat

A B

LeftHat

Figure 4.3: A deque containing two elements.

RightHatLeftHat

(a)

Dummy

LeftHat RightHat

(b)

Figure 4.4: Two empty deques. (a) Generic empty state. (b) Special case empty state using
theDummy node.
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nd->R) is equal tond. The following key properties together characterise the states of the
Snark algorithm that represent nonempty deques.

1. LeftHat is not left-dead, ie.,
LeftHat->L != LeftHat.

2. RightHat is not right-dead, ie.,
RightHat->R != RightHat.

3. The node to the left ofLeftHat is right-dead, ie.,
LeftHat->L->R = LeftHat->L.

4. The node to the right ofRightHat is left-dead, ie.,
RightHat->R->L = RightHat->R.

These properties imply that if eitherLeftHat is left-dead, orRightHat is right-dead then
the deque is empty. In fact, the Snark algorithm guarantees that if one hat points to a node
with such a self-pointer, then so does the other. This implies that the empty deque can be
represented by a variety of different configurations, all sharing the property thatLeftHat is
left-dead andRightHat is right-dead. Figure 4.4 illustrates two such states: (a) illustrates
the generic case; (b) illustrates the construction of an empty deque using a pointer constant
Dummy. Snark guarantees that in every stateDummy->L = Dummy->R = Dummy. The
representation illustrated in Figure 4.4(b) is used as an initial state, and can be reached by
removing values from the deque.Dummy is used during push operations whenever a left- or
right-dead node is needed to maintain properties (3) and (4)above.

We now describe thepushRight operation; thepushLeft operation is symmetric.
We first describepushRight under the assumption that the deque is not empty during the
operation. In that case, the operation adds a value onto the deque by doing the following:

1. The operation allocates a new node, theV field of the new node is set to the value being
added to the deque, and theR field of the fresh node is set toDummy.

2. RightHat is set to point to the new node, and theR field of the previously rightmost
node (the previous value ofRightHat) is set to point to the new node.

TheR field of the new node is set toDummy so that when the new node is added onto the
deque, the right sentinel is left-dead.1 The modifications to theV andR fields of the new node
can be accomplished using ordinary writes, because the new node is not visible to any process
except the process that allocated the node. As we describe shortly, the modification of the
RightHat andR field of the rightmost node is accomplished atomically usinga DCAS.

When the deque is empty, apushRight operation sets both theL andR fields of the
new node toDummy. Then, a DCAS is used to setLeftHat andRightHat to point to the
new node. This implies that when the node is added into the doubly-linked list, then both the
left- and right-sentinels are right- and left-dead, respectively.

1Because other modifications to the deque may occur during thepushRight operation, it is not safe to
simply read theR field of the rightmost node, and then set theR field of the new node to that value.



98 CHAPTER 4. ANOTHER BACKWARD SIMULATION

H1. rtype pushRight(val v) {
H2. nd := new Node();
H3. nd->R := Dummy;
H4. nd->V := v;
H5. while (true) {
H6. rh := RightHat;
H7. rhR := rh->R;
H8. if (rhR = rh) {
H9. nd->L := Dummy;
H10. lh := LeftHat;
H11. if (DCAS(&RightHat,

&LeftHat,
rh, lh,
nd, nd))

H12. return "ok";
H13. } else {
H14. nd->L := rh;
H15. if (DCAS(&RightHat,

&rh->R,
rh, rhR,
nd, nd))

H16. return "ok";
H17. }
H18. }
H19. }

Figure 4.5: Pseudocode for thepushRight operation.

Figure 4.5 presents pseudocode for thepushRight operation. (Pseudocode for the
symmetricpushLeft operation is presented in Figure 4.8 on page 102.) A processp ex-
ecutingpushRight allocates the new node and stores it in the variablend . Thenp sets
nd->R to point toDummy (H3). Next,p setsnd->V to the value that is being pushed (H4).
Now, p loads the current value ofRightHat into the local variablerh (H6). Recall that
if rh points to a right-dead node, andRightHat = rh, then the deque is empty. The
conditional at line H8 tests whether the deque may be empty, and if the test succeeds,p sets
nd->L to Dummy (H9). After loading the currentLeftHat (H10), p attempts to set both
theLeftHat andRightHat to the new node using DCAS (H11). If this succeeds, the
valuev has been successfully added onto the deque. If the DCAS fails, it must be that some
other process has updated the deque sincep loaded either of the left- and right-hats. In this
case,p retries the loop beginning at H5.

If the test at line H8 fails, then either the deque is not emptyor RightHat has been
modified sincep loaded it intorh. Is either case,p attempts to splice the node onto the right
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end of the deque. It setsnd->L to the value that it loaded fromRightHat at line H6 (H14),
and then attempts the DCAS at line H15. If this DCAS succeeds,it changes theRightHat
variable to point tond and setsrh->R (the rightwards field of the oldRightHat) to nd.
This adds the valuev onto the deque. If the DCAS fails,p retries the loop.

We now describe thepopRight operation;popLeft is symmetric. We first describe
the pushRight operation under the assumption that the deque is not empty during the
operation. In that case, the operation removes a value by making the rightmost node left-dead,
and settingRightHat to point to the node immediately to the left of the rightmost node
(i.e., settingRightHat to the previous value ofRightHat->L). This is accomplished
atomically using a DCAS. We say that the node which has been made left-dead by the DCAS
has beenremovedfrom the doubly-linked list.

Absent any concurrent modification, thepopRight operation can now return the value
in theV field of the node that has just been removed. However, it is possible for two con-
current pop operations to both remove the same node from the doubly-linked list. Because
of this, a pop operation mustsecurethe node that it just removed, before the value can be
returned. We describe at the end of this section how two processes can remove the same
node, and how a process can secure the node.

Figure 4.6 presents pseudocode for thepopRightoperation. (Pseudocode forpopLeft
is presented in Figure 4.9 on page 103.) A processp executingpopRight begins by load-
ing RightHat into the local variablerh (P3), andrh->L into the local variablerhl (P4).
Then, it tries to determine if the deque is currently empty. First it tests whetherrh->R is
right-dead (at line P5). If this test succeeds, it checks whetherRightHat still has the same
value as it did whenp executed line P3 (P6). The Snark algorithm has the property that once
a node contains a self-pointer in itsL or R fields, it always has a self-pointer in that field (at
least until the node is recycled by the garbage collector). Thus, becauserh was right-dead
whenp executed line P5,RightHat is right-dead ifRightHat = rh whenp executes
line P6. This implies that if the test at line P6 succeeds, then the deque is empty, sop returns
an indication that it found the deque empty. If the test at line P6 fails,p retries the loop, by
executing line P3 again.

If the test at line P5 fails,p attempts to remove a node from the right side of the doubly-
linked list. Using a DCAS it attempts to changeRightHat to point toRightHat->L and
makerh (the oldRightHat) left-dead (P8).

It is possible for two processes to successfully execute theDCAS at line P8 in such a
way that the same node is removed from the doubly-linked listtwice.2 Because of this, each
process is required tosecurethe node that it removes from the doubly-linked list, preventing
another process from returning the value associated with that node. We now describe how
this is achieved. The Snark algorithm has a special valuesecured that is never pushed onto
the deque and can be used to mark when a node has been secured bya process. After process
p removes a node from the list,p reads the node’sV value (P9) and, using CAS, attempts to
atomically replace the value in the node with thesecured marker (P11), unless the value

2I.e, the same pointer value is used as the expected value of the hat variable in each DCAS operation.



100 CHAPTER 4. ANOTHER BACKWARD SIMULATION

P1. val popRight() {
P2. while (true) {
P3. rh := RightHat;
P4. rhl := rh->L;
P5. if (rh->R = rh) {
P6. if (RightHat = rh)

return "empty";
P7. } else {
P8. if (DCAS (&RightHat,

&rh->L,
rh, rhl,
rhl, rh)) {

P9. result := rh->V;
P10. if (result != secured) {
P11. if (CAS(&rh->V,

result,
secured)) {

P12. rh->L := Dummy;
P13. return result;
P14. } else return "empty";
P15. } else return "empty";
P16. }
P17. }
P18.}

Figure 4.6: Pseudocode for thepopRight operation.

is already secured (tested at line P10). If the CAS is successful, p returns the value it read at
line P9 (P13). If theV field already containssecured or if the CAS at line P12 fails, then
some other process has already secured the node, andp returnsempty. Becausesecured
is a special value that is never pushed, only one process can succeed in its CAS on a given
node (until the node is reclaimed), so the successful process can safely return the value in the
node.

It may seem strange that a process returnsempty when it finds some other process has
secured the value of the node it removed from the list. However, it can be shown that if two
processes remove the same node, then the deque is empty when the second successful DCAS
is executed and that this DCAS occurs during both operations. Thus, failing processes can
returnempty without having to retry their entire operation, thereby avoiding the contention
that would be caused by a retry.

We now describe how it is possible for two processes to removethe same node from the
doubly-linked list. This can occur when thepopRight operation of one process overlaps
with apopLeft operation of another. Figure 4.7 illustrates a sequence of deque states where
two processes remove the node markedA from the doubly-linked list. The following example
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A

LeftHat RightHat

(a)

A

LeftHat RightHat

(b)

A

LeftHat RightHat

(c)

Figure 4.7: A sequence of states in which the node containingA is removed from the doubly-
linked list twice.

illustrates how this might occur.

• Processp invokespopRight when the deque contains one element (as illustrated by
(a) of Figure 4.7). Processp loadsrh andrhl and determines that the deque is not
empty (lines P3-P5 of Figure 4.6). Thenp is delayed.

• Likewise, another processq 6= p invokespopLeft and executes lines P3-P5, finding
the deque nonempty.

• Processp continues with its operation, using a DCAS to remove the nodepointed to by
its rh variable from the deque (line P8). The new deque state is illustrated in Figure
4.7(b).

• Likewise, processq executes the DCAS at line P8 of thepopLeft routine. Because
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H1. rtype pushLeft(val v) {
H2. nd := new Node();
H3. nd->L := Dummy;
H4. nd->V := v;
H5. while (true) {
H6. lh := LeftHat;
H7. lhL := lh->L;
H8. if (lhL = lh) {
H9. nd->R := Dummy;
H10. rh := RightHat;
H11. if (DCAS(&LeftHat,

&RightHat,
lh, rh,
nd, nd))

H12. return "ok";
H13. } else {
H14. nd->R := lh;
H15. if (DCAS(&LeftHat,

&lh->L,
lh, lhL,
nd, nd))

H16. return "ok";
H17. }
H18. }
H19. }

Figure 4.8: Pseudocode for thepushLeft operation.

LeftHat andlh->R have not changed sinceq loaded these values, the DCAS is
succesful. The new deque state is illustrated in Figure 4.7(c).

Now, one ofp or q is guaranteed to read the valueA from the node and successfully execute
a CAS to change the node’sV field to secured. The other will returnempty. Note that
the deque was empty whenq’s DCAS was executed. The Snark algorithm has the property
that whenever a node is removed twice, the deque was nonemptyat the point when the first
DCAS was executed, and empty at the point when the second DCASwas executed.

This ”double remove” can occur under a broad range of conditions. For example, it is
not necessary for there to be only one element in the deque when either of the pop operations
read the hat variable. All that is necessary is that apopLeft andpopRight operation
respectively read the same pointer value fromLeftHat andRightHat. This can happen
when several push and pop operations occur between the readsof each operation.

The Snark algorithm provides an instance of prophetic linearisation because there is no
way to determine whether a pop operation will return a value or empty until the execution
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P1. val popLeft() {
P2. while (true) {
P3. lh := LeftHat;
P4. lhr := lh->R;
P5. if (lh->L = lh) {
P6. if (LeftHat = lh)

return "empty";
P7. } else {
P8. if (DCAS (&LeftHat,

&lh->R,
lh, lhr,
lhr, lh)) {

P9. result := lh->V;
P10. if (result != secured) {
P11. if (CAS(&lh->V,

result,
secured)) {

P12. lh->L := Dummy;
P13. return result;
P14. } else return "empty";
P15. } else return "empty";
P16. }
P17. }
P18.}

Figure 4.9: Pseudocode for thepopLeft operation.

of the test at line P10 or the CAS at line P11. By the time these statements are executed,
any number of deque operations may have been completed sincethe corresponding node was
removed from the doubly-linked list. Therefore, we must choose a linearisation point for
each pop operation before its CAS. We defer a detailed discussion of the linearisation points
of the Snark algorithm until Section 4.2.4, when we describethe linearisation points for the
intermediate automaton. The Snark algorithm’s linearisation points can be inferred from the
intermediate automaton’s linearisation points, and a stepcorrespondence that we describe in
Section 4.2.5.

4.2 Modelling the Deque

This section describes the automata, an abstract, specification automatonAbsAut, and the
intermediate automaton to be verified,IntAut. The specification automaton is the canonical
automaton for the deque datatype (the general constructionof a canonical automaton is de-
scribed in Section 2.6; Section 4.2.1 contains the definition of the deque datatype). After
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describing the abstract automaton in Section 4.2.2, we describe the intermediate automaton
and discuss how it relates to the Snark algorithm in Section 4.2.3.

4.2.1 The Deque Datatype

As mentioned in the introduction to this chapter, a deque is like a stack or queue in that
it contains a sequence of values from some set (called hereV), but differs in that a deque
provides insert (called herepush) and remove (called herepop) operations on both ends of
the sequence. We capture the sequential semantics of a dequeusing the following speci-
fication. A dequedeq is a triple (deq.seq, deq.left, deq.right) wheredeq.seq is a func-
tion from integers toV, anddeq.left anddeq.right are integers, satisfying the constraint
that deq.left < deq.right. The sequence of values contained in the dequedeq is the se-
quence indeq.seq from deq.left to deq.right, not inclusive. A dequedeq is empty, written
empty(deq), whendeq.left = deq.right−1 (equivalently, whendeq.left ≥ deq.right−1).

Hitherto, we have stipulated that the deques provide four operations: one push opera-
tion for each side, and one pop operation for each side. This is the convention followed in
[DFG+00, DDG+04]. However, we define the deque datatype with only two operations: a
push operation and apop operation. Each operation has a parameter which indicates the
side at which the operation adds or removes a value. This notational variation removes some
redundancy from the model and the verification.

The following push function models the deque push operations. It takes as arguments
a deque valuedeq, a sides ∈ {left, right} = SIDE and a valuev ∈ V to be pushed. It
returns the deque that is the result of pushingv onto the appropriate side.

push(deq, s, v) =















(deq.seq ⊕ {deq.left 7→ v},
deq.left− 1, deq.right) if s = left

(deq.seq ⊕ {deq.right 7→ v},
deq.left, deq.right + 1) otherwise

The followingpop function, which returns a new deque value as well as aresponse value
in V⊥ = V ∪ {⊥} (where⊥ is a special value not inV), models pop operations. As with the
queue model in Chapter 3, a⊥ return value indicates that the deque is empty.

pop(deq, s) =























(deq,⊥) if empty(deq)
((deq.seq, deq.left+ 1, deq.right),

deq.seq(deq.left+ 1)) if s = left
((deq.seq, deq.left, deq.right − 1),

deq.seq(deq.right− 1)) otherwise
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Let v0 be any sequence,v0 : Z → V. The deque datatype(D,d0, I ,R,u) is defined as follows:

D = (Z → V)× Z× Z

d0 = (v0, 0, 1)

I = {push inv(s, v) | v ∈ V, s ∈ SIDE} ∪ {pop inv(s) | s ∈ SIDE}

R= {push resp} ∪ {pop resp(r) | r ∈ V⊥}

u(deq, inv) =























(push(deq, s, v), push resp) if inv =
push inv(s, v)
for somes, v

(π1(pop(deq, s)),
pop resp(π2(pop(deq, s)))) otherwise

4.2.2 The Abstract Automaton

AbsAutis the canonical automaton for the deque datatype as defined in Section 4.2.1.AbsAut
has a shared variabledeq, which holds the abstract deque value. As with the abstract queue
automaton of Section 3.2.1, thedo steps ofAbsAutapply the thepush andpop functions de-
fined in Section 4.2.1 directly, rather than using the updatefunctionu. AbsAuthas a program-
counter variablepcp for each processp, that records which operation (if any)p is currently
executing. The program counter variables range over the following set.

{push inv(s, v) | s∈ SIDE,v ∈ V} ∪ {pop resp(v) | v ∈ V} ∪

{pop inv(s) | s∈ SIDE} ∪ {idle,push resp}

The set of initial states ofAbsAutis presented in Figure 4.10; and the transition relation is
presented in Figure 4.11.

{ab | empty(ab.deq) ∧ ∀ p • pcp = idle}

Figure 4.10: The initial states ofAbsAut.

4.2.3 The Intermediate Automaton

In this section, we describe the intermediate automatonIntAut. In Section 4.2.5, we explain
how IntAut relates to the Snark algorithm.IntAutuses a setKEY , whose members are called
keys, in its representation of a deque. Rather than having a statevariable that is a deque
containing values,IntAut has a state variablekdeq that is a deque containing keys. That is,
kdeq has the same structure and operations as the deque datatype defined in Section 4.2.1 on
page 104, but the values that it contains range overKEY , rather thanV. IntAut maintains an
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push inv
p
(s, v) :

prepcp = idle
eff pcp := pushinv(s, v)

pop inv
p
(s) :

prepcp = idle
eff pcp := pop inv(s)

push resp
p
:

prepcp = pushresp
eff pcp := idle

pop resp
p
(r) :

prepcp = pop resp(r)
eff pcp := idle

do push
p
(v) :

prepcp = pushinv(s, v)
eff deq := push(deq, s, v),

pcp := push resp

do pop
p
:

prepcp = pop inv(s)
eff deq := π1(pop(deq, s)),

pcp := pop resp(π2(pop(deq, s)))

Figure 4.11: The transition relation ofAbsAut, for p ∈ PROC, v ∈ V, r ∈ V⊥, ands ∈
SIDE.

push invp(s, v) :

prepcp = idle

eff pcp := push inv(s, v)

push respp :

prepcp = push resp
eff pcp := idle

do pushp(k) :

prepcp = push inv(s, v) ∧
k 6∈ used

eff pcp := push resp,

used:= used∪ {k},
keyedval :=

keyedval⊕ {k 7→ v},
kdeq :=

push(kdeq, s, k)

Figure 4.12: Thepushactions of the automatonIntAut.

association between keys and values using another state variable keyed val : KEY → V,
so thatkeyed val mapped acrosskdeq.seq is a sequence of values inV.

Section 4.2.5 describes the relationship betweenIntAut and the Snark algorithm more
fully, but here we remark that the setKEY models the set of pointers of the Snark algorithm,
kdeq models the doubly-linked list, andkeyed val models theV field of Snark’s nodes. In
IntAut, a pop operation that returns a value (i.e., that does not findthe deque empty), first
ensures that some key has been removed fromkdeq since the invocation of the pop operation
(either by removing the key itself, or by observing the removal of a key by another process).
These steps model the operation reading a hat variable in theSnark algorithm, and then
successfully executing a DCAS on that hat. InIntAut, the pop operation latersecuresthe key
that has been removed fromkdeq, which givesp alone the right to return the value associated
with the key. This models a successful execution of the CAS operation in the Snark algorithm.
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pop invp(s) :

prepcp = idle

eff pcp := pop inv(s)
keyp := ⊥

pop respp(r) :

prepcp = pop resp(r)
eff pcp := idle

pop nonemptyp :

prepcp = pop inv(s) ∧
¬empty(kdeq) ∧
keyp = π2(pop(kdeq, s))

eff pcp := deciding(s),
val ok := val ok∪ {keyp},
popped:= popped∪ {keyp},
kdeq :=

π1(pop(kdeq, s))

observep :
prepcp = pop inv(s) ∧

¬empty(kdeq)
eff keyp :=

π2(pop(kdeq, s))

pop emptyp :
prepcp = pop inv(s) ∧

empty(kdeq)
eff pcp :=

pop resp(⊥)

contendp :
prepcp = pop inv(s) ∧

empty(kdeq) ∧
popped(keyp) ∧
keyp 6= ⊥

eff pcp := deciding(s)

secure valp :
prepcp = deciding(s) ∧

keyp ∈ val ok
eff pcp := pop resp(keyedval(keyp)),

val ok := val ok \ {keyp}

lose valp :
prepcp = deciding(s) ∧

keyp 6∈ val ok
eff pcp :=

pop resp(⊥)

Figure 4.13: Thepopactions of the automatonIntAut.
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We now describe the transitions of the intermediate automaton that relate to its im-
plementation of thepush operation. That is, transitions labelled by the external actions
push invp(s, v), push respp and the internal actiondo pushp(k) for each processp, side
s, value v, and keyk. Figure 4.12 presents the transition relation for transitions labelled
by these actions. Note that the preconditions and effects associated with thepush inv and
pop inv actions are precisely the same as withAbsAut. Thedo push transitions are more
complicated. Note that thedo push transitions have an extra argumentk ∈ KEY . The
precondition of thedo push transition asserts that this key must not have been already used
as an argument to ado push action. This is expressed using a state variableused ⊆ KEY .
When a key is used as an argument to ado push action, it is added toused, and no key
is ever removed from this set. The new key is associated with the value being pushed, via
the keyed val function, and the key is added to the appropriate side ofkdeq. Finally, a
do pushp(k) transition sets the program counter ofp to push resp, so that the next actionp
executes will bepush respp.

We now describe the transitions of the intermediate automaton that relate to its im-
plementation of thepop operation. As withAbsAut, actions of the formpop invp(s) and
pop respp(r) represent respectively the invocations and responses of pop operations.IntAut
also has the following internal actions, for each processp:

• observep, during which the processp observesa key at one end ofkdeq. Later,p may
remove this key fromkdeq. There may be severalobservep actions in each operation.

• pop nonemptyp, during whichp removes fromkdeq the key that it last observed. This
action may only occur whenkdeq is nonempty.

• pop emptyp, after whichp is guaranteed to return⊥ from the pop operation. This
action may only occur whenkdeq is empty.

• Three further actionscontendp, secure valp and lose valp. These actions are ex-
plained below, but they are used to regulate the steps by which a process observes that
a key has been removed fromkdeq, and then succeeds or fails in securing the right to
return that key.

Figure 4.13 presents the transition relation for these actions.
Figure 4.14 presents a state diagram that illustrates the structure of an execution of the

pop operation inIntAut by a processp. The identifiers in the boxes are program-counter
values, and the labels on the arrows are actions. The annotations in angle brackets indicate
preconditions. More precisely, an arrow from a box containing program-counter valuec, to
a box containing program-counter valuec′, labelled with actionap and annotationSmeans
that IntAut has a transition, labelled byap with a precondition implying that in the prestate,
pcp = c andSboth hold, and an effect implying that in the poststatepcp = c′. For the sake
of clarity, the other effects of the transitions are not depicted.

The transitions ofIntAut labelled by external actions are similar to those ofAbsAut. A
processp must be idle to take apop invp transition, and the program counter ofp is set
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pop invp(s)

< empty(kdeq) >

contendp

< empty(kdeq) >
< popped(keyp) >
< keyp 6= null key >

deciding

secure valp
< keyp ∈ val ok > < keyp 6∈ val ok >

lose valp

idle

observep

< ¬empty(kdeq) >

< ¬empty(kdeq) >

< keyp 6= null key >

π2(pop(kdeq, s)) >

pop nonemptyp

< keyp =

pop resp(r)

pop inv(s)

pop emptyp

Figure 4.14: State diagram for thepopoperation ofIntAut.
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to pop inv(s), indicating thatp has begun a pop operation on sides. A processp takes a
pop respp(r) transition when it has found some response valuer ∈ V⊥ to return from the
pop operation, indicated by a program counter value ofpop resp(r). Afterwards,p becomes
idle again.

While pcp = pop inv(s) (which holds just after the invocation of a pop operation),p can
take one or moreobservep actions, which record in another state variablekeyp : KEY ⊥ the
key at the end ofkdeq from whichp is popping.3 kdeq must be nonempty duringobservep

actions, so that this key is guaranteed to exist. Ifkdeq is empty,p may take apop emptyp
action, which setspcp to pop resp(⊥). Afterwards, during apop respp action,p returns an
indication that it found the deque empty.

Once a processp has observed a key,p may take one of two further internal actions:
pop nonemptyp or contendp. During apop nonemptyp action the key thatp most recently
observed is removed fromkdeq, andp’s program counter is set todeciding(s), which indi-
cates thatp is attempting to securekeyp while executing a pop operation on sides. IntAut
has a state variableval ok ⊆ KEY that records which keys have been popped but not yet
secured by any process (the “value” of the key is “ok” becauseit can still be secured and re-
turned by some process). The key thatp observed is added to the setval ok, indicating that
the key can be secured.IntAut has a further state variablepopped ⊆ KEY , which records
the set of keys that have been removed from the deque during any pop nonempty action.
Accordingly, the key thatp observed is added to this set.

By taking thecontendp action,p becomes eligible to secure the key that it last observed,
assuming that key has not yet been secured. The preconditionof contendp implies thatkeyp
has already been popped fromkdeq and thatkdeq is empty, and its effect simply setsp’s
program counter todeciding(s).

Once a processp’s program counter has becomedeciding (via eitherpop nonemptyp or
contendp), p takes either asecure valp action, or alose valp action. The precondition of
thesecure valp action implies thatkeyp ∈ val ok, so no other process has yet secured the
value. The program counter ofp is set topop resp(keyed val(keyp)), indicating thatp will
return the value associated withkeyp. keyp is removed from the setval ok, indicating that
no other process can secure this key.

The processp takes thelose valp action if some other process secures the key last ob-
served byp. Accordingly, the precondition oflose valp transitions implies thatkeyp is not
in val ok. The program counter ofp is set topop resp(⊥), so thatp’s next action will be a
response indicating thatp found the deque empty.

A stateis is an initial state ofIntAut if and only if the following conditions hold.

• empty(is.kdeq),

• is.used = is.popped = ∅, so that no key isused or popped,

• is.val ok = ∅ so that no key can be secured,

3Note that in Figure 4.13, the invocation of thepop function onkdeq does not update the value ofkdeq.
There is no assignment to thekdeq variable.
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• For all processesp, is.pcp = idle andis.keyp = ⊥, so that no operations are underway,
and no key has been observed.

4.2.4 Linearisation Points of the Intermediate Automaton

We now describe linearisation points for operations of the intermediate automaton. The
linearisation point for a push operation is straightforward: thedo pushp(k) step of each push
operation is the linearisation point for the operation. This choice is forced on us, because
after ado pushp(k) transition, the value pushed may be immediately popped and returned
by another process. Therefore, the value must be visible to other processes.

Pop operations that return⊥ after taking apop emptyp action are linearised at the
pop emptyp action. This is becausekdeq is empty at this point, and thus there are no values
that can be returned. Finding linearisation points for other pop operations is much more dif-
ficult. Consider some processp that executes a pop operation in which the following actions
occur (assumingv 6= ⊥):

pop invp(s), observep, contendp, secure valp, pop respp(v)

Becausep took acontendp action, we can show that there is some other processq 6= p such
that q executed apop nonemptyp action between theobservep andcontendp actions, and
such thatkeyp = keyq. When thepop nonemptyq action took place,kdeq was nonempty.
It may seem tempting to choose thispop nonempty action as the linearisation point ofp’s
operation. However, there is no guarantee thatq is executing a pop operation on the same side
asp’s operation, and thus no guarantee that the valuev which p ultimately returns appears
on the appropriate side of the deque, at that point. (The value v may have been added to the
deque immediately prior toq’s pop nonempty action, and at a point when the deque was
nonempty.)

The only action at which the valuev finally returned byp is guaranteed to be at the ap-
propriate side of the deque isobservep. For this reason, we choosep’s most recentobservep

action as the linearisation point ofp’s pop operation. Note that theobservep action does not
modify kdeq. Therefore, if we are to make this counter-intuitive schemework, we need to
account for the fact that the sequence of values in the abstract deque value represented at any
state ofIntAut is not the sequence of values obtained by mappingkeyed val acrosskdeq.
The backward simulation presented in Section 4.3 defines therelationship between the two
sequences precisely.

To be consistent with the linearisation points of operations that take acontend action,
we linearise each operation that takes apop nonempty action, and later returns a value
v 6= ⊥, at the most recentobserve action of that operation. We now need to find linearisation
points for pop operations that return⊥, without taking apop empty action. These are the
operations that take alose val action during their execution. We want to find a point between
the invocation and response of each such operation at whichkdeq is empty. For each process
p, the precondition oflose valp asserts that¬val ok(keyp). Thus, there must be some other
processq 6= p that executed thesecure valq action at some point prior to thelose valp
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action, withkeyp = keyq. Therefore, eitherp or q executed acontend action during its
operation. The precondition of thiscontend action asserts thatkdeq is empty. Therefore,
we linearise each operation by a processp that takes alose valp action during its execution,
at the priorcontendp′ that took place whenkeyp = keyp′ . Note that in general, several
processes may be linearised at thiscontend action, because several processes may take a
lose val action with the same key.

There are three things to note about the scheme of linearisation points outlined above.

• The question of whether an action is the linearisation pointof an operation can only be
answered by considering events occurring later in the execution.

• An action of one process can be the linearisation point of another process.

• The linearisation point of pop operations that do not return⊥ has no effect on the
shared data structure ofIntAut, but does have an effect on the abstract deque being
represented.

These three properties make the verification challenging.

4.2.5 Snark ImplementsIntAut

We briefly describe the relationship between the Snark algorithm andIntAut. A forward sim-
ulation exists between Snark andIntAut, which we do not discuss in detail in this thesis.
However, we give a brief overview of the simulation, paying particular attention to the step
correspondence. The actual verification involves an automaton whose transitions model the
steps of the Snark algorithm in the same way as the concrete automaton of Chapter 3 mod-
els the M&S queue. However, during this discussion, we speakof the steps of the Snark
algorithm as though they were actions of an automaton that models the Snark algorithm.

The keys ofIntAut model pointers in the Snark algorithm, andkdeq of IntAut which
contains a sequence of keyskdeq.seq, models the doubly-linked list of Snark (not includ-
ing the sentinels). We identify the set of pointers of Snark with the set of keys ofIntAut.
The forward simulation asserts that, for each pointernd appearing in the doubly-linked list,
nd->V is the valuekeyed val(nd) in IntAut, and that the order in which pointers occur in
the doubly-linked list of Snark is the same as the order in which pointers occur inkdeq.seq.
These properties imply that the sequence of values contained in the doubly-linked list is the
same as the sequence of values obtained by mappingkeyed val acrosskdeq.seq. In partic-
ular, if the doubly-linked list is empty in some state, thenkdeq is guaranteed to be empty in
related states ofIntAut.

The step correspondence used in the forward simulation associates actions representing
the successful execution of a DCAS in a push operation with the do pushp(k) action of the
executing process, wherek is the new node added onto the doubly-linked list. Note that in
transitions labelled bydo pushp(k), k has not yet been added tokdeq, and the value being
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pushed is associated withk. These two properties of the transition model the Snark algo-
rithm’s allocation and initialisation of the new node. All other internal actions that represent
steps of the Snark algorithm that are taken during push operations are stutter steps.

When the doubly-linked list is nonempty, the step correspondence associates actions that
represent reading a hat variable during a pop operation withtheobservep action of the ex-
ecuting process. The relationship between the doubly-linked list andkdeq ensures that the
pointer read from the hat variable is the same pointer observed inIntAut. If the doubly-linked
list is empty, the step correspondence associates the read of the hat with thepop emptyp
action.

The step correspondence associates the successful execution of the DCAS at line P8 with
thepop nonemptyp action if the doubly-linked list is nonempty. Such a DCAS removes a
node from the doubly-linked list, and the simulation relation guarantees that the pointer to
that node is removed fromkdeq. If the doubly-linked list is empty, the step correspondence
associates a successful DCAS with thecontendp action. It is possible to show that, if the
DCAS at line P8 can be executed successfully and the doubly-linked list is empty then the
value of the hat that is one of the targets of the DCAS ispopped in related states ofIntAut,
and so the precondition ofcontendp is satisfied.

The simulation relation asserts that each pointer whoseval field is notsecured in
a state of the Snark algorithm, is notsecured in any related state ofIntAut. The step cor-
respondence associates the successful execution of the CASat line P11 withsecure valp.
Steps of the Snark algorithm during which a process discovers that a node has already been
secured (either the failure of the test at line P10, or the unsuccessful execution of the CAS at
line P11) are associated withlose valp.

As usual, the step correspondence associates each invocation or response of the Snark
algorithm with the same invocation or response ofIntAut.

4.3 The Backward Simulation

We now describe the backward simulation used in our proof that IntAut implementsAbsAut.
Figure 4.15 presents the definition of backward simulation,taken from Definition 2.18 on
page 38, applied to the automataIntAut andAbsAut. As discussed in Chapter2, the existence
of such a relation allows us to inductively construct, for any (finite) execution ofIntAut, an
execution ofAbsAutwith the same trace, and thus guarantees thatIntAut implementsAbsAut.

The simulation relationR that we use in this verification is presented in Figure 4.16. We
describe the motivation behind the relationR, and discuss the highlights of the proof.

SeqOk and WinnerUnique SeqOk describes the relationship between the abstract deque
and IntAut’s key sequence. We first consider a simple assertion that fails to adequately de-
scribe this relationship. The variableskdeq andkeyed val of the intermediate automaton
together yield a sequence of values, thus:

σ(is) = λ i • is.keyed val(is.kdeq.seq(i))
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(∀ is0 • (∃ as• R(is,as))) (4.1)

(∀ is, is′,as′,a •

R(is′,as′) ∧ is
a
−→ is′ ⇒

(∃ as, β •

R(is,as) ∧ as
β

=⇒ as′ ∧

trace(β) = trace(〈a〉)) (4.2)

(∀ is : start(IntAut),as• R(is,as) ⇒

as∈ start(AbsAut)) (4.3)

Figure 4.15: A relationR ⊆ states(IntAut) × states(IntAut) is a backward simulation
from IntAut to AbsAut if these conditions hold, whereis, is′ : states(IntAut); as,as′ :
states(AbsAut); a : acts(IntAut); β : acts(AbsAut)∗

R(is,as) =̂

CorrespondenceOk(as, is) ∧

WinnerUnique(as, is) ∧

(∃m•SeqOk(as, is,m))

Figure 4.16: The simulation relationR.

It might seem tempting to build a simulation relation arounda simple relationship between
this sequence and thedeq variable of the abstract automaton, i.e.,

as.deq.seq = σ(is) ∧ is.left = as.kdeq.left ∧

is.right = as.kdeq.right
(4.4)

However, the linearisation points of the intermediate automaton preclude this. We need a
weaker property that allows the key sequence in the intermediate automaton to contain values
that have been removed from the abstract deque, so that we canchoosedo popp for transitions
labelled byobservep (at least, whenp is executing an operation that returns a value). The
predicateSeqOk, presented in Figure 4.17, defines such a property.SeqOk describes states
of AbsAutandIntAut and amatchfunctionm : Z → Z, that associates indexes between the
limits of the abstract deque with indexes between the limitsof the intermediate automaton
(Clause 4.5). For anyi between the limitsas.kdeq.left and as.kdeq.right, this function
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SeqOk(as, is,m) =̂

(∀ i • as.deq.left < i < as.deq.right ⇒

is.left < m(i) < is.right ∧ (4.5)

σ(is)(m(i)) = as.deq.seq(i) ∧ (4.6)

¬WinnerExists(as, is, is.kdeq.seq(m(i)))) (4.7)

∧

(∀ i, j • as.deq.left < i < j < as.deq.right ⇒

m(i) < m(j)) (4.8)

∧

(∀ i • is.left < i < is.right ⇒

InMatchRange(as,m, i) ∨ (4.9)

WinnerExists(as, is, is.keys(i))) (4.10)

WinnerUnique(as, is) =̂

∀ p,q• as.pcp = pop resp(v1) ∧

as.pcq = pop resp(v2) ∧ is.keyp = is.keyq ∧

v1 6= ⊥ ∧ v2 6= ⊥ ⇒ p = q (4.11)

Figure 4.17: TheSeqOk andWinnerUnique predicates.
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a b c

deq.left deq.right

a u b c v

kdeq.rightkdeq.left

kdeq

deq

match

Figure 4.18: Thematch function.

WinnerExists(as, is, k) =̂

∃p, v• as.pcp = pop resp(v) ∧

v 6= ⊥ ∧ is.keyp = k

InMatchRange(as,m, i) =̂

∃ j • as.deq.left < j < as.deq.right ∧

m(j) = i

OtherDeciderExists(is,p) =̂

∃q• q 6= p∧ is.keyp = is.keyq ∧

is.pcq = deciding(s)

Figure 4.19: Auxilliary predicates.

satisfies:

σ(is)(m(i)) = as.deq.seq(i)

Thusm takes each abstract index to an intermediate index that is associated with the same
value. This is illustrated in Figure 4.18.

Not all indexes ofσ betweenis.left and is.right are in the range of the functionm.
Each index between these limits not in the range ofm is associated bykdeq.seqwith a key
k that has already been observed by some processp during anobservep transition that is the
linearisation point forp’s operation. When this has occurred, we say thatp haswon the key
k. For the indexes that are in the range ofm, no process has won the associated key (Clause
4.7). For a keyk, WinnerExists formalises the idea that some processp has observedk at
the linearisation point ofp’s pop operation (Figure 4.19). This formalisation is achieved by
asserting thatisa.pcp = k andas.pcp = pop resp(v), wherev is the value associate withk.

Clause 4.8 asserts thatm preserves the order of its domain and is injective. The final
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conjunct ofSeqOk constrains the properties of indexes in the intermediate automaton. Each
index betweenis.left andis.right is either in the range ofm (Figure 4.19), or is associated
with a key that has already been won.

WinnerUnique (Figure 4.17) asserts that at most one process has won each key, which
enables us to prove thatSeqOk is preserved during intermediate transitions for which a
do pop abstract transition is chosen when the abstract deque is nonempty.

One consequence of theSeqOk predicate is that whenleft = right − 1, the abstract
deque is empty. This is because, in order formto be injective, the set[is.kdeq.left..is.kdeq.right]
must have at least as many elements as the set[as.kdeq.left..as.kdeq.right]. This is important
in the coming discussion.

CorrespondenceOk. CorrespondenceOk asserts that, in related abstract and intermedi-
ate states, every process satisfies one of six (mutually exclusive) predicates. Each predicate
constrains the values of local (that is,p-indexed) variables in the given intermediate and ab-
stract states. The specific predicate that a given process satisfies changes during the execution
of each operation. Figure 4.20 presents theCorrespondenceOk predicate, and its simpler
subpredicates. The remaining subpredicates are presentedlater in the discussion.

To explainCorrespondenceOk, we describe the actions that each process may take
during the execution of an operation, and show which disjunct each process satisfies at each
point in its operation. During this discussion, we define thestep correspondence used in
the verification. This step correspondence is essentially the scheme of linearisation points
described in Section 4.2.4. Because we are dealing with a backwards simulation, we will
traversebackwardsthrough the actions of each operation.

Fix a transitionis
a
−→ is′, where actiona is indexed by processp. In addition, fix an

abstract stateas′ such thatR(as′, is′). We discuss each of the possible values ofa in turn.
During this discussion, we repeatedly claim that given the abstract and intermediate program-
counter values of a process, only one of the disjuncts ofCorrespondenceOk can be satisfied.
It is easy to convince yourself of claims like this by inspecting the various definitions.

We begin with the push operations. At different points in theexecution of a push op-
eration, a processp satisfiesIdleOk andPushOk. These predicates are presented in Fig-
ure 4.20. IdleOk asserts that a processp is not executing any operation in the abstract or
intermediate state, andPushOk asserts thatp is executing a push operation in both the ab-
stract and intermediate states and thatp is “at the same stage” in its operation. Assume that
a = push respp. Thenis.pcp = push Resp and is′, pcp = idle. Because of this,p must
satisfyIdleOk(as′, is′,p), which is the only disjunct ofCorrespondenceOk that allowsp
to have theidle program counter. Letasbe the abstract state that is the same asas′ at every
variable, except thatas.pcp = push Resp. ThenPushOk(as, is). Note thatas

a
−→ as′, so the

step correspondence can associate each action of the formpush respp with the same action
and obtain a transition of the abstract automaton (as required by the conditions forR to be a
backward simulation relation).

None of the disjuncts ofCorrespondenceOk exceptPushOk can be true for any pro-
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CorrespondenceOk(as, is) =̂

∀ p• IdleOk(as, is,p) ∨

PushOk(as, is,p) ∨

FinishedPopOk(as, is,p) ∨

LosingPopOk(as, is,p) ∨

WinningPopOk(as, is,p) ∨

StartingPopOk(as, is,p)

IdleOk(as, is,p) =̂

as.pcp = is.pcp = idle

PushOk(as, is,p) =̂

as.pcp = is.pcp = push inv(s, v) ∨

as.pcp = is.pcp = push Resp

F inishedPopOk(as, is,p) =̂

as.pcp = is.pcp = pop resp(r)

StartingPopOk(as, is,p) =̂

as.pcp = is.pcp = pop inv(s)

Figure 4.20:CorrespondenceOk, and subpredicates.

cessp wherepcp = push Resp, so if a = do pushp(k) thenPushOk(as′, is′,p). Let asbe
the abstract state that is the same asas′, except thatas.pcp = is.pcp = push inv(s, v) for
some sides andv ∈ V, and thatdeq is modified so thatas′.deq = push(as.deq, s, v). Then

PushOk(as, is,p), andas
do push(s,v)
−−−−−−−→ as′.

A similar line of reasoning can be applied whena = push invp(s, v). In this case,
is.pcp = idle andis′.pcp = push invp(s, v) for some sidesand valuev, and soPushOk(as′, is′,p).
Therefore,as′.pcp = push inv(s, v). Let asbe the state likeas′ except thatas.pcp = idle.

ThenIdleOk(as, is,p) andas
a
−→ as′.

This covers the actions that may be taken during push operations. We turn now to the
actions that occur during pop operations, which are more complicated. During different inter-
vals in every pop operation, each processp satisfiesFinishedPopOk andStartingPopOk,
which are presented in Figure 4.20.FinishedPopOk asserts that a processp has com-
pleted its pop operation in both abstract and intermediate states and is waiting to return.
StartingPopOk asserts that a processp has just begun its pop operation in both abstract and
intermediate states. Between intervals in whichp satisfies FinishedPopOk and
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WinningPopOk(as, is,p) =̂

WinningDeciding(as, is,p) ∨

WinningPopping(as, is,p)

WinningDeciding(as, is,p) =̂

is.keyp 6= ⊥ ∧ (4.12)

as.pcp = pop resp(is.keyed val(is.keyp)) ∧ (4.13)

is.pcp = deciding(s) ∧ (4.14)

is.keyp ∈ is.popped ∧ (4.15)

is.keyp ∈ is.val ok (4.16)

WinningPopping(as, is,p) =̂

is.keyp 6= ⊥ ∧ is.pcp = pop inv(s) ∧ (4.17)

as.pcp = pop resp(is.keyed val(is.keyp)) ∧ (4.18)

(is.keyp 6∈ is.popped ∨ is.keyp ∈ is.val ok) (4.19)

Figure 4.21: TheWinningPopOk predicate, and subpredicates.

StartingPopOk, psatisfies eitherWinningPopOk orLosingPopOk, which are presented
in Figures 4.21 and 4.22, respectively. Processp satisfiesWinningPopOk during a pop op-
eration if and only ifp returns a value (not⊥) from the operation. On the other hand, if
processp satisfiesLosingPopOk during execution of a pop operation, then that operation
returns⊥. (Processp may also return⊥ by taking thepop emptyp action during the opera-
tion.)

A processp satisfiesWinningDeciding during the interval afterp has taken a
pop nonempty or contend action, but before executingsecure val. p satisfies
WinningPopping during the interval betweenp’s lastonserve action and itspop nonempty
or contend action.p’s operation is linearised at the beginning of this interval.

A processp satisfiesLosingPostLin during the interval beginning with the linearisa-
tion point ofp’s operation (acontend action of some process), and ending whenp takes the
lose valp action. A processp satisfiesLosingPreLin during the interval beginning with
thepop nonemptyp or contendp action. Ifp takes acontendp action, thenp will not satisfy
LosingPreLin during that operation. This is because thecontendp action is the linearisa-
tion point of p’s operation. p will only satisfy LosingPreLin if it takes thepop emptyp
action, and later takes thelose valp action.

As before, we fix a transitionis
a
−→ is′, and fix an abstract stateas′ such thatR(as′, is′).

Assume first thata = push respp(r) for somep andr ∈ V⊥. As beforeis′.pcp = idle and
thusIdleOk(as′, is′,p). Further,is.pcp = push Resp(r). Let asbe the state likeas′ except
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LosingPopOk(as, is,p) =̂

LosingPostLin(as, is,p) ∨

LosingPreLin(as, is,p) ∨

LosingPostLin(as, is,p) =̂

as.pcp = pop resp(⊥) ∧ (4.20)

is.pcp = deciding(s) ∧ (4.21)

is.keyp 6= ⊥ ∧

(is.keyp ∈ is.val ok ⇒

WinnerExists(as, is, k) ∧ (4.22)

OtherDeciderExists(is,p))

LosingPreLin(as, is,p) =̂

as.pcp = pop inv(s) ∧ (4.23)

is.pcp = deciding(s) ∧ is.keyp 6= ⊥ ∧ (4.24)

(is.keyp ∈ is.val ok ⇒

WinnerExists(as, is, k)) (4.25)

Figure 4.22: TheLosingPopOk predicate, and subpredicates.
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thatas.pcp = push Resp(r). Thus,FinishedPopOk(as, is,p), andas
a
−→ as′.

Now, assumea = lose valp. In this case,is.pcp = deciding(s) for some sides and
is.keyp 6∈ isval ok. Also, is′.pcp = pop resp(⊥) so thatFinishedPopOk(as′, is′,p)
(since this is the only disjunct ofCorrespondenceOk that allowsp to have the program
counter valuepop resp(⊥) in the intermediate automaton). Thelose valp actions are not
linearisation points, and thus are stutter steps in our stepcorrespondence. We show that
LosingPopOk(as′, is,p) by showing thatLosingPostLin(as′, is,p). LosingPostLin as-
serts thatp’s pop operation is linearised in the abstract state. That is, pcp = pop resp(⊥).
We already know thatas′.pcp = pop resp(⊥) (by FinishedPopOk and the intermediate
transition relation) andis.pcp = deciding(s). Note that becauseis.pcp = deciding(s), p
must already have observed a key, and thusis.keyp 6= ⊥ (this is an invariant ofIntAut). Also,
the precondition of the transition implies thatis.keyp 6∈ isval ok.

Note that if is.val ok(is.keyp), LosingPostLin implies the a winner exists, forkeyp,
and there is some other processq 6= p with is.keyp = is.keyq and is.pcp = deciding(s)
(OtherDeciderExists is defined in Figure 4.19). We describe why this is so shortly.

LosingPostLin is true for somep in the poststate of some transition, but false in the
prestate under two conditions: ifa = contendp, or if a = contendq for some process
q 6= p such thatis′.keyp = is′.keyq and q is the winner foris′.keyp. In either case, the
contend action is the linearisation point ofp’s operation. Letas be the abstract state like
as′ exceptas.pcp = pop inv(s) (wheres is the side thatp is popping from, and satisfies
is′.pcp = deciding(s)). Note that becauseis.kdeq = is′.kdeq is empty,as.deq = as′.deq

is also empty. Thusas
do popp
−→ as′. Given this, ifa = contendp p satisfiesStartingPopOk

in the prestate. Otherwise, it can be shown that ifa = contendq for some processq 6= p
satisfyingis′.keyp = is′keyq, thenp satisfiesLosingPreLin in the prestate.

Consider the case wherea = pop nonemptyp for somep, whereas′.pcp = pop resp(⊥).
In this case, it must be thatp satisfiesLosingPopOk. Moreover, the assertion that
OtherDeciderExists within LosingPostLin enables us to prove that when a processp
satisfiesLosingPreLin in the poststate. (This is a consequence of the fact thatis′.keyp has
only one ”decider” immediately after it is removed fromkdeq.) This is important, because
the pop nonemptyp action isnot a linearisation point forp, and the step correspondence
does not associate this intermediate action with an abstract action. However, the fact thatp
satisfiesLosingPreLin in the poststate enables us to prove thatp satisfiesStartingPopOk
in the prestate.

We turn now to pop operations that return a valuev ∈ V. Such operations execute a
sequence of internal actions of the following form:

observep,X, securevalp

whereX is eitherpop nonemptyp or contendp. In either case, it can be show thatp sat-
isfiesWinningDeciding between theX action, and thesecure valp action, and satisfies
WinningPopping between theobservep action (which isp’s lastobserve action during the
operation) and theX action. Thesecure valp action is a stutter step, and theobservep action
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is associated by the step correspondence with thedo popp action.

Finally, if a = pop emptyp, we can show thatp satisfiesFinishedPopOk in the post-
state, and satisfiesStartingPopOk in the prestate. The step correspondence associates such
actions with thedo pop abstract action, andSeqOk together with the transition relation of
IntAut guarantee thatas.deq = as′.deq is empty.

4.4 Verifying the Simulation

There are three components to the proof thatR is a backward simulation. The initial state
condition, the totality condition, and the transfer condition.

For the initial state condition, we must prove that, for allis andassuch thatR(is,as), as∈
startAbsAut. This amounts to showing thatas.deq is empty and that for allp, as.pcp = idle.
The predicateSeqOk guarantees that ifis.kdeq is empty (as is the case initially), thenas.deq
is empty. Furthermore, for allp, when is.pcp = idle, p must satisfyIdleOk. Therefore,
as.pcp = idle. Furthermore,

For the totality condition, given an intermediate stateis, we must be able to construct an
abstract statews such thatR(is, ws). It is possible to do this in such a way that the simple
relationship defined by 4.4 on page 114 holds betweenis andws. This is achieved by letting
ws.deq.seq = σ(is), and letting the limits ofis.kdeq match the limits ofws.deq thus: We
define eachws.pcp so that no process that is still popping has yet executed itsdo pop in the
abstract automaton. Except whenis.pcp = deciding, we setws.pcp = is.pcp.

In order to satisfy the relationR, we need to constructws so that each process with
is.pcp = deciding is eitherWinningPopOk or LosingPopOk (those are the only dis-
juncts ofCorrespondenceOk in which pcp = deciding is possible). Because satisfaction
of LosingPopOk by a processp implies that ifkeyp ∈ val ok then there is some process
that has won the key (the content of theWinnerExists predicate), we need to choose some
winner for each keyk, such that there is a processp with is.keyp = k andis.pcp = deciding.
We do this using a achoicefunctionwinner : KEY → PROC satisfying

(∃ p• is.keyp = k∧ is.pcp = deciding) ⇒

winner(k) ∈ {p | keyp ∧ is.pcp = deciding}

If is.pcp = deciding, is.keyp ∈ is.val ok and p = winner(is.keyp) we setas.pcp =
pop resp(is.keyed val(is.keyp)). In any other case whenis.pcp = deciding we setas.pcp =
pop resp(⊥).

Proving the transfer condition is by far the most involved aspect of the proof. The proof
is a long and tedious case analysis on transitions, and has been checked using the PVS proof
assistant. As we did in Chapter 3, we present only a small fragment in detail: the proof that
theSeqOk predicate is preserved byobserve actions.
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Successfulobserve Transitions

Fix a processp, intermediate statesis, is′ such thatis
observep
−→ is′ and abstract stateas′ and

match functionmsuch thatR(as′, is′) andSeqOk(as′, is′,m). We must choose a stateassuch
thatSeqOk(as, is,m′) where

m′ =































m⊕ { as′.deq.left → is′.kdeq.left+ 1} if, for somev as′.pcp = pop resp(v) ∧

is′.pcp = pop inv(left)

m⊕ { as′.deq.right → is′.kdeq.right − 1} if, for somev as′.pcp = pop resp(v) ∧

is′.pcp = pop inv(right)

m otherwise

Furthermore, we must show that eitheras= as′ or as
do popp
−→ as′.

There are three cases to consider:

1. as′.pcp = pop resp(v) for somev, andcs′.pcp = pop inv(left)

2. as′.pcp = pop resp(v) for somev, andcs′.pcp = pop inv(right)

3. as′.pcp 6= pop resp(v)

We first describe the construction ofasand the proof thatSeqOk(as, is,m′) andas
do popp
−→

as′ for the case wherecs′.pcp = pop inv(left). The construction and proof for the case
wherecs′.pcp = pop inv(right) is symmetric. Second, we describe a proof that ifas′.pcp 6=
pop resp(v), thenSeqOk(as′, is,m′). Note that we are choosing an abstract action and
prestate based on whetherp’s operation has ”already” been linearised.

In the case whereas′.pcp = pop resp(v), we defineas to be the unique state satisfying

as.pcp = pop inv(left) ∧ (4.26)

(∀ q • q 6= p ⇒ as.pcq = as′.pcq) ∧ (4.27)

as.deq.right = as′.deq.right ∧ (4.28)

as.deq.left = as′.deq.left − 1 ∧ (4.29)

as.deq.seq= as′.deq.seq⊕ {as′.deq.left → is′.keyedval(is′.keyp)} (4.30)

Informally, we changep’s program counter topop inv(left) indicating thatp’s operation
has not yet been linearised inas; we extend the sequencedeq.seqon the left by one; and
we set the value at this new index to be the value associated with keyp after the pop. Going
backwards, we are adding the value thatp will eventually return to the sequence. Everything
else remains the same.
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Note that there is only one disjunct ofCorrespondenceOk(as′, is′) that is consistent
with

is′.pcp = pop inv(s) ∧

as′.pcp = pop resp(v) ∧

v 6= ⊥

That is,WinningPopping. Because of this fact,

v = is′.keyedval(is′.keyp)

We must prove thatas
do popp
−→ as′. We prove that

as.pcp = pop inv(left) ∧ (4.31)

¬ empty(as.deq) ∧ (4.32)

as.deq.left = as′.deq.left − 1 ∧ (4.33)

as.deq.right = as′.deq.right ∧ (4.34)

as′.pcp = pop resp(as.deq.seq(as.deq.left+ 1)) (4.35)

The first is true by construction. The second is true because

as.deq.left = as′.deq.left− 1

< as′.deq.right < as.deq.right − 1

The third and fourth statements are true by construction. The fifth is true because

as.deq.seq(as.deq.left+ 1) = is′.keyedval(is′.keyp) = v

andas′.pcp = pop resp(v).
We now prove thatSeqOk(as′, is,m′), defined in Figure 4.17 on page 115. There are

three universally quantified formulae to verify. To verify the first two of these, fix ani, such
that as.deq.left < i < as.deq.right. Assume first thati 6= as.deq.left + 1. In this case,
m′(i) = m(i) andas′.deq.left < i < as′.deq.right. We prove each of 4.5 to 4.7 in turn.

• is.kdeq = is′.kdeq, so 4.5 follows from the fact thatSeqOk(as′, is′,m), andas′.deq.left <
i < as′.deq.right.

• Becauseis.keyed val = is′.keyed val and is.kdeq = is′.kdeq, we haveσ(is) =
σ(is′). This, and the fact thatSeqOk(as′, is′,m) gives us

σ(is)(i) = σ(is′)(i)

= as′.deq.seq(i)

= as.deq.seq(i) sincei 6= as.deq.left+ 1
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• The negation of theWinnerExists predicate applied toas, is, andk = is.kdeq.seq(m′(i))
implies that there is no processq that such thatis.keyq = k andas.pcq = pop resp(v)
for somev. If there were no such process in the statesas′ andis′ (as is guaranteed by
the fact thatSeqOk(as′, is′,m) andi 6= as.deq.left+ 1), then it is enough to show that
p is not such a process in the statesasandis. This is easy to see, because

is.pcp = pop inv(left) 6= pop resp(v)

for anyv.

To prove 4.8, fix aj such thati < j < as.deq.right. Becausei 6= as.deq.left + 1 and
j 6= as.deq.left+ 1, we havem′(i) = m(i) andm′(j) = m(j), and thusm′(i) < m′(j).

Now assume thati = as.deq.left + 1, so thatm′(i) = is′.kdeq.left + 1. Again, we prove
each of 4.5-4.7 in turn.

•

is.deq.left < is.deq.left + 1

= m′(i)

m′(i) = is.deq.left + 1

< is.deq.right

The last inference holds because the transition relation implies thatempty(is.kdeq).

•

σ(is)(i) = is.keyed val(is.kdeq.seq(i))

= is.keyed val(is′.keyp)

= as.deq.seq(i)

• Again, becauseas.pcp = pop inv(left), we know thatp is not the winner ofk =
is.kdeq.seq(m′(i)). However, becausei = as.deq.left+1, we cannot simply argue that
there was no winner fork in the intermediate and abstract poststates, so there is no
winner in the prestates. In fact,p is a winner fork in the poststates. This is because

is′.keyp = is′.kdeq.seq(is′.kdeq.left+ 1)

= is.kdeq.seq(is.kdeq.left + 1)

= is.kdeq.seq(m′(i))

= k

andas′.pcp = pop resp(v). However, the fact thatWinnerUnique(as′, is′) is enough
to show thatp is the only winner fork in the poststates. Therefore, becausep is
not a winner in the prestates (on account of its program-counter value), we have
¬WinnerExists(as, is, k).
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To prove 4.9 and 4.10, fix ani such thatis.kdeq.left < i < is.kdeq.right. Assume that
i = is.kdeq.left + 1. In this casem′(as.deq.left + 1) = i and

as.deq.left < as.deq.left + 1

< as.deq.right

soas.deq.left + 1 provides a witness thatInMatchRange(as,m′, i).
Now assume thati 6= is.kdeq.left+ 1. If

InMatchRange(as′,m, i), thenInMatchRange(as,m′, i), because the range ofm′ over
the set[as.deq.left..as.deq.right] is a superset of the range ofmover the set[as.deq.left..as.deq.right].

If WinnerExists(as′, is′, is′.kdeq.seq(i)) then the situation is more complicated. We
must show that there is still a winner fork = is′.kdeq.seq(i). To do this, we must show that
the winner ofk is not the processp. Assume for a contradiction thatis′.keyp = k. By the
transition relation ofIntAut, this implies that

k = is.kdeq.seq(is.kdeq.left+ 1)

which gives us

k = is.kdeq.seq(is.kdeq.left+ 1)

= is′.kdeq.seq(i)

= is.kdeq.seq(i)

So we can prove, under the assumption thatis′.keyp = k, that

is.kdeq.seq(i) = is.kdeq.seq(is.kdeq.left+ 1)

Recall thati 6= is.kdeq.left + 1. IntAut has the invariant that, for allx, y

kdeq.left < x < kdeq.right ∧

kdeq.left < y < kdeq.right ∧

kdeq.seq(x) = kdeq.seq(y) ⇒ x = y

It is easy to see why this is so.IntAut has the variableused which constrains keys to be fresh
when they are pushed ontokdeq. However, this invariant implies that ifi 6= is.kdeq.left+ 1,
then

is.kdeq.seq(i) 6= is.kdeq.seq(is.kdeq.left+ 1)

which provides our contradiction.
It remains to consider the case whereas′.pcp 6= pop resp(v) for anyv. In this case, we

setas= as′.
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4.5 Related Work

Backward simulations have been used several times to do verifications involving IO automata
[BGLR01, SAGG+93, Smi96]. All of these verifications have followed the samepattern as
ours: a forward simulation demonstrating trace inclusion between a concrete automaton and
an intermediate automaton; and a backward simulation showing trace inclusion between the
intermediate automaton and the abstract automaton. Moreover, the intermediate automaton is
defined to be as close as possible to the abstract automaton, differing only in that it captures
the ”backwards” behaviour. What separates the verificationpresented in this chapter from
these prior examples is the relative complexity of our backward simulation. While we cannot
argue formally that this complication is essential, it seems to us that the linearisation points
of the intermediate automaton force us to use a complicated simulation relation. As has
already been noted, the pop operations may be linearised at actions belonging to another
operation, and may be linearised at actions that do not modify the shared data structure. This
forces us to use a nonobvious relationship between the shared structures (thekdeq anddeq,
expressed inSeqOk), as well as maintain subtle information about the relationship between
processes, within the simulation. For these reasons, the complexity of our simulation relation
approaches or exceeds that of many backward simulations in the literature.

There are other approaches to dealing with prophetic linearisation in the context of tran-
sition systems. These approaches make use of auxiliary variables to relay information about
the future of an execution to the point where a linearisationdecision must be made. Prophecy
variables [AL91] can be used in this way. Eternity variables[Hes02b, Hes05] are similar to
prophecy variables in that they can be used to verify algorithms exhibiting prophetic lin-
earisation, but differ in that they avoid technical limitations on the soundness of prophecy
variables and backward simulation. (In our setting, this amounts to avoiding the requirement
of image finiteness.)

[Hes02a] applies a correctness condition adapted to the verification of read/write regis-
ters (locations supporting only read and write operations)to the algorithm of [Blo88], which
exhibits prophetic linearisation. It is unclear whether this correctness condition can be gen-
eralised to other datatypes.

4.6 Concluding Remarks

In this chapter we have presented an elaborate backward simulation. This work has two
goals: to complete a proof that the Snark algorithm is correct, and to explore the construction
of backward simulation relations for the verification of algorithms that require nontrivial
backward simulations. Our interest in such techniques arises from the relative prevalence of
nonblocking algorithms that exhibit prophetic linearisation, and the fact that such algorithms
often require subtle backward simulations. As with all the verifications in this thesis, our
complete proof has been checked using the PVS proof assistant.
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Part II

Dynamic-sized Nonblocking Data
Structures
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Chapter 5

Nonblocking Storage Reclamation

Recall from Chapter 1 that many nonblocking algorithms suffer from serious drawbacks that
restrict their range of applicability. These include the inability to reliably release memory
back to the system; the need to know in advance the number of processes that will access a
given data structure; and dependence on rare or unimplemented synchronisation primitives.
Part II of this thesis develops techniques for overcoming these limitations. Whereas Part I
is about the verification of nonblocking algorithms, Part IIis about their design. The work
on verification is of independent interest, but also informsthe work in Part II. We apply
techniques developed in Part I to the verification of the principle result of Part II: the imple-
mentation of LL/SC variables described in Chapter 6.

This chapter describes a novellock-free reference countingtechnique (abbreviated LFRC),
that enables processes to safely and reliably release memory back to the system. The tech-
nique has two principle advantages over previous proposals. It does not require advanced
knowledge of the number of processes that will ever use the system, nor does it depend on
the existence of exotic synchronisation primitives such asDCAS. However, it does require
that the system provide a CAS or LL/SC operation capable of atomically testing and modify-
ing a pointer and an adjacent integer. This implies that the technique cannot be used in many
contemporary systems. However, Chapter 6 describes an implementation of the LL/SC syn-
chronisation primitive (the LL/SC operations are defined inSection 1.1.2) that can be applied
to a location containing a pointer, as well as other information. This LL/SC implementation
can be combined with the LFRC technique of this chapter to overcome the reliance on an
operation that can atomically modify a pointer and an integer. Further, this combination
preserves all the advantages of the LFRC technique regarding memory reclamation and the
number of processes that will use the system.

We present our LFRC technique as a programming interface that could be used by a client
application. We also present a lock-freedom preserving andmechanical transformation from
code that does not recycle memory to behaviourally equivalent code that uses our LFRC
interface to recycle memory.

The remainder of the Chapter is organised as follows. Section 5.1 defines important con-
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cepts necessary for understanding the contributions contained in Part II. Section 5.2 gives a
brief overview of reference counting. Section 5.3 describes the interface to our LFRC func-
tionality, and Section 5.4 describes the transformation ofcode that does not recycle mem-
ory to code that does. Section 5.5 applies our transformation to Treiber’s stack algorithm
[Tre86]. Section 5.6 describes the LFRC implementation in detail. Section 5.7 provides an
overview of several other nonblocking memory management techniques, and a description
of the strengths and weaknesses of our approach, in comparison with other proposals.

5.1 Pointer-cleanliness, Space-adaptivity, and Population Oblivi-
ousness

Before describing the LFRC result, we explain and define somedesirable properties of non-
blocking algorithms that have been difficult to achieve. These properties are important for
understanding the contributions presented in Part II of this thesis.

5.1.1 Wide Synchronisation Primitives and Pointer Cleanliness

For some time, 64-bit architectures have been available [Hei91, Mot93, Sit92, WG94]. These
architectures support 64-bit addresses, allowing direct access to huge virtual address spaces
[CBHLL92]. They also support atomic access to 64-bit valuesusing synchronisation primi-
tives such as CAS. Operating systems and application software that exploit 64-bit addressing
have been slower to emerge. Thus, many important 32-bit operating systems and applica-
tions are still in common use, and most 64-bit architecturessupport them. As a result, for a
period of several years, techniques that use 64-bit synchronisation primitives to atomically
manipulate 32-bit pointers together with other information, such as version numbers, have
been broadly applicable. As discussed in Chapter 1, practical lock-free data structures com-
monly exploit such techniques (e.g., [MS96b, Tre86]). The increasing prevalence of 64-bit
operating systems and applications signals the end of this era. Therefore, it is important to
develop algorithms that do not depend on the ability to atomically manipulate a pointer and
other information.

A wide synchronisation primitiveis a primitive that can atomically modify a location
containing a pointer simultaneously with modifications to some set of other locations. A
narrow synchronisation primitive is one that is not wide. For example, a CAS operation
in a 32-bit system where CAS can be applied to a 64-bit value isa wide synchronisation
primitive; a CAS operation in a 64-bit system where CAS can beapplied to 64-bit values is
narrow. DCAS is another wide synchronisation primitive. The DCAS operation is defined
in Section 4.1.1 on page 95, but recall that DCAS enables a simultaneous comparison and
conditional modification of two independent locations. An algorithm is calledpointer-clean
if it can run on systems that do not provide any wide synchronisation primitives.
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5.1.2 Space-adaptivity

Recall from Chapters 1 and 3 that in both the Treiber stack andM&S queue, it is not safe to
simply return unused memory to the system. This is because neither algorithm provides any
way for a process to determine when some other process has a pointer to some node that may
be dereferenced. This limitation is very common among nonblocking algorithms, and is an
important drawback in many systems where available memory is restricted. An algorithm is
space-adaptivewhen it does not suffer from this problem.

More precisely, a space-adaptive implementation of a datatype uses space that is bounded
by a function proportional to the current size of the data structure, plus the number of pending
operations.1 The notion ofsizeof the data structure must be defined precisely for each
datatype being implemented. To provide an example, we follow [HLM03b] and analyse the
adaptivity of the M&S queue. Definequeue size in state sto be the number of queue nodes
reachable from theHead pointer ins minus one (ie., the number of nodes in the queue, not
countingDummy). This is the number of elements contained in the abstract queue represented
by s. The M&S queue is not space adaptive because it does not free queue nodes to memory,
and so the total memory consumed is not bounded by the currentsize of the queue. The
maximum space consumed by the M&S queue in a given states is in fact proportional to the
maximum queue size in any state that occurs prior tos in any execution.

This analysis suggests the flavour of space adaptivity, but applies only to the M&S queue.
To make the notion of space adaptivity precise in general, wedefine a notion off -space-
adaptivity, where f is a function from the states of an algorithm to the natural numbers.
The idea is that the functionf returns the current size of the abstract data structure thatis
represented by the given state. We thus refer tof as asize function.

Definition 5.1 (f -space-adaptive)
An algorithm isf -space-adaptiveif, for every state appearing in any execution of the algo-
rithm, the space used is proportional tof applied to that state plus a constant times the number
of pending operations in that state.

Clearly, the choice of size function is important. For container objects like stacks and queues,
a natural choice is the number of values that the object currently contains. We might think of
an LL/SC variable as a container that contains precisely oneelement (the variable’s value), in
which case a natural notion of size for an LL/SC variable would be some constant. However,
in Section 6.1, we argue that the appropriate notion of size for an LL/SC variable depends on
the number of outstanding LL operations for that variable.2

We frequently suppress the size functionf when discussing the space-adaptivity proper-
ties of algorithms. Thus we say that a given algorithm isspace-adaptive(rather thanf -space-
adaptive) when there is some reasonable size functionf for which the algorithm in question

1Recall from Section 2.2.2 that a pending operation is an operation with an invocation, but no matching
response.

2Recall from Section 1.1.2 that an outstanding LL operation is an LL operation that is not matched by an SC
operation of the same process.
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is f -space-adaptive.

5.1.3 Weak Space-adaptivity

The LL/SC implementation presented in the next chapter is space-adaptive according to the
definition just given. However, the LFRC-based transformation presented in Section 5.4
is not guaranteed to yield space-adaptive algorithms in thesense just described. This is a
limitation of reference counting itself, and is not particular to our approach. Section 5.2
describes this limitation in detail. In this section we define a notion ofweak space-adaptivity
that captures the space-adaptivity properties of reference-counting based transformations,
under reasonable assumptions about the original algorithm. As discussed in Section 5.7,
some other nonblocking memory-reclamation techniques satisfy this notion of weak space-
adaptivity, without satisfying space-adaptivity proper.A quiescent stateis a state where there
are no pending operations.

Definition 5.2 (Weakly f -space-adaptive)
An algorithm isweakly f -space-adaptiveif, in every quiescent state appearing in any execu-
tion, the space consumed by the algorithm is proportional tof applied to that state.

So weakf -space-adaptivity constrains memory use, but only in quiescent states. Anf -space-
adaptive algorithm is also weaklyf -space-adaptive. This is because anf -space-adaptive algo-
rithm may consume some bounded quantity of memory for each pending operation, but when
there are no pending operations (as in quiescent states), the space used must be proportional
to f .

We sometimes use the expressionstrongly space-adaptive, when we wish to emphasize
that an algorithm is space-adaptive, rather than merely weakly space-adaptive.

5.1.4 Population Obliviousness

A common technique in nonblocking algorithm design is to provide each process with one
or moresingle-writer/multi-readervariables (SW/MR variables). All processes are able to
read these variables, but only one process ever modifies eachvariable. (Some examples of
this technique [AM95, HLM02b, JP03, Mic04] are discussed inSection 5.7, and in Section
6.4. Further examples can be found in [Her91, LMS03a].) Typically, such SW/MR variables
are implemented using an array, with processes using their own identifiers as indexes into the
array. Each variable is thus an entry in the array that can be written by the process whose
identifier is the index of the entry, and can be read by any other process. This technique
requires knowledge of the maximum number of processes that will ever use a given instance
of the algorithm, so that an array of appropriate size can be allocated. Therefore, these algo-
rithms are implicitly parameterised by the maximum number of processes for which a given
instance of the algorithm will function correctly. We call an algorithm that is parameterised
by the maximum number of processespopulation aware. An algorithm ispopulation oblivi-
ousiff it is not population aware [BMV+07].



5.2. REFERENCE COUNTING 135

In systems where processes can be created dynamically, it may be impossible to de-
termine the maximum number of processes that may ever accessa data structure. In such
situations, population-oblivious algorithms are required. Further, when SW/MR variables
are used, space must be allocated for these variables. This space cannot be deallocated for
the life-time of the data structure. This precludes space-adaptivity.

5.1.5 LFRC and LL/SC

The reference-counting technique presented in this chapter is population oblivious, but not
pointer clean. Using our transformation, it is possible to obtain weakly space-adaptive al-
gorithms from garbage collection dependent algorithms. Further, it is possible to modify an
existing algorithm, such that the result of our LFRC-based transformation yields a strongly
space-adaptive algorithm. In Section 5.5.1, we show by example how this is achieved. These
modifications require insight on the part of the programmer,and cannot be described as a
mechanical transformation.

The LL/SC implementation presented in Chapter 6 is stronglyspace-adaptive, pointer-
clean and population oblivious. To our knowledge, it is the first published nonblocking
LL/SC implementation to enjoy all three of these important properties. Also, because it has
these three properties, it can be combined with the LFRC result to obtain a general memory
management technique that is pointer clean, population oblivious, and enables the construc-
tion of strongly space-adaptive algorithms. We describe this combination in Section 6.3.

5.2 Reference Counting

We briefly review reference counting, before going on to describe our technique. Reference
counting [Col60] is a classical technique for reclaiming unused memory, that is used in some
garbage collection systems (e.g., [AKW88, WS91]). There are numerous variations (for
example [Wis93, DB76, LP01]), but here we recap the main idea. Readers are referred to
[JL96] for a detailed account.

Each object is associated with areference countthat counts the number of references to
that object (references to that object currently stored in local variables or shared locations).
This count is typically stored in a field of each object. When the reference count of an
object falls to zero, the object is no longer accessible in the heap, and so can be deallocated.
Every time a reference to some objecto is created (which happens when a reference too
is stored in some variable or location) the reference count associated witho is incremented.
Every time a reference to some objecto is destroyed (which happens when a variable or
location containing a reference too is over-written, or an object containing a reference too is
deallocated) the reference count associated witho is decremented. Whenever the reference
count of an object falls to zero, the object is deallocated. Because the object may hold
references to other objects, this may result in further deallocation.

Reference counting alone can only reclaim memory from data structures that do not con-
tain cycles of references: i.e., structures such that thereis no path of references from any
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object back to itself. In a cycle of references, every objecthas a non-zero reference count:
for every objecto in the cycle, there is some other object in the cycle holding areference to
o. A cyclic structure may thus become unreachable, but its reference counts will never fall
to zero, and so it will not be deallocated by the basic reference counting scheme described
above. Reference counting systems typically overcome thisproblem in one of two ways.
Some use a back-up garbage collector that periodically searches the entire heap for unreach-
able memory (for example, [DeT90]). Others use acycle collector[Chr84], that searches for
cycles among objects that have nonzero reference counts (for example, [MWL90, PBK+05]).

In this chapter, we apply our LFRC solution to transform codethat does not recycle
memory into code that does. All reference counting techniques can be used to obtain such a
transformation. The resulting code is guaranteed to be functionally equivalent to the original
code, and to be free from accesses to deallocated memory. Further, reference-counting based
transformations provide the following guarantee about which objects will be freed. If the
original code has the property that no object is part of a reference cycle when it becomes
unreachable, then in the transformed code, all objects willbe deallocated before they become
unreachable [JL96]. This guarantee is important to our discussion of the space-adaptivity
properties of code transformed using our LFRC technique (inSections 5.4.4 and 5.5.1).

5.2.1 Lock-free Reference Counting

The implementation of lock-free reference counting is challenging because it is difficult to
safely update the reference count of an object in a lock-freecontext. A processp may read a
reference to an objecto from a location, buto may be subsequently deallocated beforep can
incremento’s reference count. This can happen when another process causeso’s reference
count to fall to zero afterp’s read, and deallocates the memory. This is another instance of
the problem that precludes memory being released from data structures such as the Treiber
stack and M&S queue.

Lock-free reference counting is much simpler in an environment where it is legal to
access the reference-count field of an object after it has been deallocated. Some lock-free
reference-counting techniques are designed to work in suchan environment [Val95, Rei04],
and we describe these solutions in Section 5.7. However, in most systems, once an object
has been deallocated, there are no guarantees as to the legality of any particular access to the
fields of the object, nor any guarantees about the contents ofthose fields. An environment
in which access to deallocated objects is legal can be emulated using an application freelist
(as in [Val95]), but this precludes freeing memory to the system, and thus precludes space-
adaptivity.

Our LFRC technique works by distinguishing between different contributions to the ref-
erence count of each object. For each objecto, the count of the number of shared locations
(locations accessible to more than one process) containinga reference too is maintained
separately from the count of the number of local variables that referenceo. The objecto
cannot be deallocated until both counts fall to zero. When a processp reads a reference too
from a shared location into a local variable, the count of thenumber of local references too
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is incremented, withoutp needing to accesso directly. Section 5.6 describes in detail how
this is achieved.

5.3 The Lock-free Reference Counting Interface

We first present the LFRC interface. Later, in Section 5.4, wedescribe how to use this
interface to transform code that does not recycle memory to code that does. As usual, we
employ C-style pseudocode to describe the LFRC interface.

Fix a typeT to represent the type of application level objects (that is,the type of objects
that are to be reclaimed using the LFRC technique). In a real programming language, this
type could be specified using a type parameter, or it could be aparticular type, or it could be
identified with anObject type at the top of the type hierarchy. Fixing the typeT simplifies
the following presentation.

Our LFRC technique uses several counters for each object, each of which counts refer-
ences from a different source. However, in order to describethe LFRC interface we pretend
that each object is directly associated with a single abstract reference count. This pretence
allows us to abstractly specify the behaviour of the LFRC interface, without describing the
implementation details.

Two types are exported from the LFRC interface:RC Ref andRC Obj. Members of the
typeRC Ref represent references to objects, and members of the the typeRC Obj contain
the application level objects. Each value of typeRC Ref has a fieldref that yields a value
of typeRC Obj* (i.e., a pointer to anRC Obj). Each value of typeRC Obj contains an
object of typeT, which can be accessed using itsv field. Abstractly, each object of type
RC Obj has an associated reference count, with the exception ofnull, whose reference
count is undefined.

As has already been mentioned, our LFRC technique depends ona distinction between
local and shared locations. For our purposes, local locations exist on the stack of some
process and are only accessible to that process. Shared locations exist in statically or dy-
namically allocated storage, and may be accessible to more than one process. References in
shared locations are represented using objects of typeRC Ref. References in local locations
are represented using objects of typeRC Obj*. To ensure that memory is not reclaimed
prematurely, values of typeRC Obj* should never be written directly into shared locations
by application code.

We now describe the procedures provided by the LFRC interface.

void RC Load(RC Obj **o, RC Ref *r)

RC Load(o,r) copies the pointer stored atr->ref into the location pointed to byo. If
r->ref != null the reference count associated with*(r->ref) is incremented. If the
value of*o before the operation is notnull, then the reference count associated with**o
is decremented. The location pointed to byo must be local (i.e., must be on the stack of the
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process).

void RC Store(RC Ref *r, RC Obj *o)

RC Store(r,o) storeso intor->ref. If the value ofr->ref before the operation is not
null, then the reference count associated with this value is decremented. Ifo != null
the reference count associated with*o is incremented. The location pointed to byo must be
local.

boolean RC CAS(RC Ref *r, RC Obj *old, RC Obj *new)

RC CAS is an implementation of the CAS operation to be used against instances ofRC Ref.
If r->ref = old the CAS is successful andr->ref is changed tonew. Otherwise,
the CAS is unsuccessful andr->ref is unchanged. If the CAS is successful andold
!= null, then the reference count associated with*old is decremented, and ifnew !=
null, then the reference count associated with*new is incremented. If the CAS is unsuc-
cessful, no reference counts are modified.

void RC Destroy(RC Obj *o)

RC Destroy is used to destroy local references before they are overwritten or go out of
scope. Ifo != null the reference count associated with*o is decremented.

void RC Alloc(RC Obj **o)

RC Alloc allocatesRC Obj objects.RC Alloc sets*o to be a pointer of type*RC Obj
that was previously unallocated and that has a reference count of 1 after the allocation (to
account for the reference created by the allocation). If theprevious value of*o is notnull,
then the reference count associated with**o is decremented.omust point to a local location.

void RC SharedCopy(RC Ref *r, RC Ref *s)

RC SharedCopy(r, s) copies the pointers->ref intor->ref. If s->ref != null
then the reference count associated with*(s->ref) is decremented. If the value ofr->ref
before the operation is notnull, then the reference count assocated with*(r->ref) is
decremented. This copy operation is not atomic, in the sensethat the values ofs->ref and
r->refmay never be identical during the operation. TheRC SharedCopy operation only
guarantees that at some point in the execution of the operation, the value ofs->ref is the
value eventually written intor->ref, and that if no other LFRC operations overlap with a
givenRC SharedCopy operation, thens->ref = r->ref after the operation.

void RC LocalCopy(RC Obj **o, RC Obj *p)

RC LocalCopy(o,p) copies the pointerp into the location pointed to byo. If p !=
null the reference count associated with*p is incremented. If the value of*o is notnull
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before the operation, then the reference count of**o is decremented.o must point to a local
location.

RC Obj *RC Pass(RC Obj *o)

RC Pass(o) returns the pointero (so thatRC LocalCopy(o) = o is always true) and
if o != null the operation increments the reference count associated with *o. The pur-
pose ofRC Pass is to allow reference values to be passed during procedure invocations.

5.4 Transformation

We now describe a transformation from code that does not recycle memory, to functionally
equivalent code that recycles memory using our LFRC technique. Our transformation pro-
vides an alternative to garbage collection, for use in environments where garbage collection
is inappropriate, and a transformation like ours could alsobe used in an implementation of
garbage collection.

The main point of this section is to convince the reader that our LFRC technique could
be used to make a large class of algorithms space-adaptive. The source and target of our
transformation is essentially the C-style pseudocode thatwe have been using throughout the
thesis, and its syntax and semantics are not formally specified. However, we feel that the
presentation is precise enough to be used as the basis for a formal transformation over a
specific programming language.

Because the LFRC technique handles shared and local references differently, we need to
carefully distinguish between expressions that can be evaluated without reading references
stored in shared locations, and those that require reading ashared reference. In order to make
this possible, we restrict the expressions and statements that are allowed in the domain of
our transformation. Section 5.4.1 defines the set of expressions that may appear in programs
that we transform. The constructs from which these expressions are built should be familiar,
and should have familiar (informal) meanings. In Section 5.4.2, we define the set of allowed
statements, and the transformation itself. Throughout thediscussion, we assume that the
objects that are to be recycled using our LFRC transformation have typeT.

5.4.1 Allowable Expressions

The goal of this section is to define a set of expressions, called allowable expressions, that
may appear within programs in the domain of our transformation. We first define some
important categories of expressions, and then the allowable expressions themselves. In what
follows, let anS-variablebe a variable of typeS.

In accordance with our distinction between local and sharedlocations, we divide the set
of expressions into categories, according to whether the expression is evaluated by reading
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local locations, or by reading a shared location. The expressions that are evaluated by reading
only local locations are calledlocal S-expressions, whereS is some type.

Definition 5.3 (LocalS-expression)
A local S-expressionis an expression of typeS in which the only variables are local vari-
ables, and the only operators are arithmetic operators and the operators& (address-of),*
(dereference),-> (pointer-to-member),new (allocation) and·[·] (array application).

Note that the restriction on what operators may appear is meant to prohibit procedure invo-
cations. We have prohibited field access (the dot operator) in the interests of simplicity.

Below, we syntactically define a category of expressions that are evaluated by reading
precisely one shared location. We call members of this category sharedS-expressions. The
definition is complicated by the need to obtain a reasonably broad class of allowable expres-
sions. We first define the categorysharedS-lvalue,3 which are expressions that are evaluated
by reading a single shared location, and to which the address-of operator& may be applied.

Definition 5.4 (SharedS-lvalue)
A sharedS-lvalue is an expression of one of the following forms:

• a sharedS-variableX,

• an expressionx->f, wherex is a local variable andx->f has typeS,

• an expression of the forma[e] wheree is a local integer-expression, anda is a
statically allocated array with elements of typeS.

The following category ofS-address expressionsincludes the expressionsA of typeS*
such that*A is evaluated by reading a shared location.

Definition 5.5 (S-address expression)
An S-address expressionis a local variablex of typeS*, or an application of the address-of
operator& to a sharedS-lvalue.

EveryS-address expression has typeS*, but not every expression of typeS* is anS-address
expression.S-address expressions can be evaluated without reading any shared locations.
If A is a shared address expression, then*A may be evaluated by reading a single shared
location.

Some programs contain one or moreS-address expressionsA such that*A is sometimes
evaluated by reading only local locations (this is possible, for example, after a process writes
the address of one of its local variables into a shared location). This is not a syntactic property
of *A, because it depends on the behaviour of the running program.We exclude from the
domain of our transformation all programs in which there is any expression*A that is ever
evaluated by reading a local location, and such thatA is aT*-address expression. This is

3The set of sharedS-lvalues defined here is a subset of the lvalues of the C programming language.
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necessary to enable us to syntactically distinguish expressions of typeT* that are evaluated
by reading a shared location from those that are not.

Now we are in a position to define the class of expressions thatare evaluated by reading
at most one shared location.

Definition 5.6 (SharedS-expression)
A sharedS-expressionis a sharedS-lvalue, or an expression of the form*A whereA is an
S-address expression.

Each sharedS-expression has a single location that must be read in order to evaluate the
expression. This location can itself be evaluated using thefollowing function.

Definition 5.7 (Location of a sharedS-expression)
The locationof a sharedS-expressionE, written loc(E), is defined by cases as follows:

• if E is a sharedS-lvalue, thenloc(E) is the expression&E,

• if E is of the form*AwhereA is anS-address expression, thenloc(E) is the expression
A.

The location of a sharedS-expression generalises the address-of operator&.
Theallowable expressionsare those that fall within one of the following categories, for

some typeS:

• Expressions of the formCAS(E, e, f) whereE is anS-address expression, ande
andf are localS-expressions. The only shared location that must be read to evaluate
such a CAS is the locationE.

• Expressions of the formnew S(), each of which allocates a new object of typeS,
and returns a pointer to that object.

• LocalS-expressions.

• SharedS-expressions. Recall that the only shared location must be read to evaluate a
sharedS-expressionE is the value ofloc(()E).

So we prohibit expressions that are evaluated by reading more than one shared location. We
can obtain the effect of expressions involving more than oneshared location by introducing
one or more local variables, and decomposing the expressioninto several statements. For
example, the expression*Y, whereY is a shared variable, is prohibited by the above rules.
However, we can emulate a statement of the form

x := *Y

with the statements

x1 := Y;
x := *x1;
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Note that expressions that are evaluated by reading more than one shared location cannot
usually be evaluated atomically, and are typically not appropriate in code that purports to
describe a nonblocking algorithm.

In the interests of simplicity, we restrict the types of variables and fields that occur in
programs.

• local and shared variables, arrays, and fields can all have any type that does not contain
an occurrence ofT*,

• a local variable whose type contains an occurrence ofT* must have typeT* or T**,

• a shared variable or field whose type contains an occurrence of T* must have typeT*,

• an array whose type contains an occurrence ofT* must have type[T*] (i.e., the type
of the array elements must beT*).

The next section describes the transformation of programs whose expressions are all allow-
able expressions, and whose variables and fields satisfy thegiven restrictions.

5.4.2 The Transformation

Our transformation is composed of several modifications. Wemodify the types used in the
program, so that dynamically allocated objects are equipped with reference counts. We also
modify statements involving CAS operations, assignments and allocations. Each of these
latter modifications is designed to ensure that the reference count of each object is updated
to accurately reflect the references created and destroyed by each statement. Finally, we add
statements to the end of each procedure that decrement the reference count of each local
variable declared in the procedure. This reflects the fact that references to objects from local
variables of a procedure are destroyed when the procedure exits.

The first step is to translate the types of variables and fieldsappearing in the program. We
denote a typeS that contains an occurrence of some typeU asS(U). The key to our trans-
lation of types is to turn localS(T*)-expressions into expressions of typeS(RC Obj*),
and sharedS(T*)-expressions into expressions of typeS(RC Ref). We translate types
according to the following scheme:

1. localT*-variables become variables of typeRC Obj*,

2. localT**-variables become variables of typeRC Ref*,

3. sharedT*-variables become variables of typeRC Ref,

4. local and sharedS-variables, whereS does not contain an occurrence ofT*, preserve
their type,

5. fields of typeT* become fields of typeRC Ref,
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6. arrays of type[T*] become arrays of type[RC Ref],

7. fields and arrays whose type does not involveT* preserve their type.

Given these rules, for any typeS(T*) (that contains an occurrence ofT*), and any expres-
sionexp of typeS(T*) in the original code,exp has typeS(RC Obj*) in the transformed
code iff it is a localS-expression, and typeS(RC Ref) in the transformed code iff it is a
sharedS-expression.

Next, we replace each expression of the forme->f, wheree is a localT*-expression,
with the expression(e->v).f. This does not change the type of the expression, it simply
reflects the fact that we need to evaluate thev field of anRC Obj* value, in order to obtain
a value of the original typeT, to which we can apply the field access.f. Also, we replace
each expression of the formCAS(E, e, f)whereE is aT*-address expression andx and
y are localT*-expressions, with the expressionRC CAS(E, e, f).

Next, we translate each statement of each procedure one-by-one, in a way that reflects
the references created and destroyed by the statement. Below, we define the translation of
statements by cases. Any statement not covered by one of these cases is not allowed in the
domain of our transformation.

1. An assignment in which both the left- and right-hand sidesare allowable expressions,
and are not of typeT*, is simply copied.

2. An assignment of the formx := new T();, wherex is a localT*-variable becomes
RC Alloc(&x);.

3. An assignment of the formx := E;, wherex is a localT*-variable andE is a shared
T*-expression becomesRC Load(&x, E);.

4. An assignment of the formE := e;, whereE is a sharedT*-expression ande is a
localT*-expression becomesRC Store(loc(E), e).

5. An assignment of the formE := F;, whereE andF are sharedT*-expressions be-
comesRC SharedCopy(loc(E), loc(F)).

6. An assignment of the formx := e, wherex is a localT*-variable ande is a local
T*-expression becomesRC LocalCopy(&x, e).

7. A procedure invocation of the formP(e1,. . .,en) wheree1,. . .,en are the local
T*-expressions that are actual arguments inP becomes

P(RC Pass(e1),. . .,RC Pass(en))

P may not contain any expressions of typeT* that are not local expressions.

8. A statement of the formreturn e;, where the expressione is not of typeT* is
simply copied.
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Note that noreturn statement can return a value of typeT*.
Finally, for each procedure, and for each localT*-variablex of that procedure, the state-

mentRC Destroy(x) is added to the end of the procedure by the transformation. This
reflects the fact that a reference to each variable is destroyed when the procedure exits.

In Section 5.5, we apply our transformation to an example algorithm.

5.4.3 Limitations

Our LFRC transformation can be used to transform a large class of programs. However,
there are several important restrictions. First, references may only be created by allocation,
or by copying existing references. Pointers cannot be generated by pointer arithmetic, for ex-
ample. Other lock-free reference counting techniques havethe same restriction [DMMm01,
HLMM05].

The second, and most important limitation of our transformation is that the only opera-
tors appearing within expressions are arithmetic operators, and the operators&, *, ->, new
and ·[·]. For example, tuples of values are not allowed, which are commonly used in the
presentation of algorithms that exploit version numberingtechniques. Moreover, procedure
invocations cannot occur within expressions, and a pointerof type T* cannot be returned
from any procedure. We justify these restrictions on the grounds of simplicity. A formal
transformation over a well-defined programming language may be able to relax these restric-
tions, but such an effort is beyond the scope of this presentation.

However, the utility of our LFRC technique extends beyond the transformation. It is
possible for a programmer to determine when a reference count needs to be modified based
on application level knowledge, as opposed to simple syntax. For example, the value of a
localT*-variable could be returned from a procedure by eliding the call toRC Destroy for
that variable. The programmer could then arrange to decrement the reference count of that
value at some later point. Clearly, care would be needed.

5.4.4 Obtaining Weak Space-adaptivity

Our transformation produces code satisfying weakf -space-adaptivity when two conditions
are satisfied:

• In quiescent states of the original algorithm, all memory, except for some quantity
proportional tof applied to the state, is unreachable.

• This unreachable memory does not contain reference cycles.

It is easy to see why these conditions are sufficient for weakf -space-adaptivity. Recall that
code transformed to use reference counting will deallocateall objects before they become
unreachable, so long as, in the original code, no object is part of a reference cycle when it
becomes unreachable. Thus, if the second condition above holds, then in quiescent states,
all unreachable objects have been deallocated. Further, ifthe first condition holds, the set of
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reachable objects consumes memory allowed by the size of thedata structure being imple-
mented.

To see why our transformation is not enough to guaranteestrongspace-adaptivity, con-
sider the case where some process is delayed while it holds a reference to some object. This
object is reachable, and thus will not be deallocated. In general, it may contain references
to other objects, giving them a nonzero reference count. In turn, these objects may contain
references to further objects, none of which may be deallocated by reference counting. The
algorithm in question may be such that this set of objects reachable from the delayed pro-
cess may be unbounded. Thus, the space consumed may exceed any bound on the memory
allowed for pending operations by the definition of strong space-adaptivity. We discuss this
issue with regards to a specific algorithm in Section 5.5.1.

5.5 Transforming A Stack Algorithm

In this section, we apply the transformation described above to a variant of the Treiber stack
given in Section 1.1.3. We show how to obtain both weakly and strongly space-adaptive
versions of this algorithm.

Section 1.1.3 describes several variations of the Treiber stack. The variant that we trans-
form is one that relied on garbage collection to recycle memory (presented in Figure 1.6 on
page 10). Using LFRC, we transform it to an algorithm that explicitly recycles memory.

We present the original stack algorithm in Figures 5.1 and 5.2. This implementation uses
CAS rather than LL/SC to modify theHead variable during push and pop operations. The
type ofHead is simply*Node, no version numbers are used. Nodes are not explicitly freed
after being removed from the stack. Indeed, as discussed in Section 1.1.3, explicitly freeing
nodes at the end of pop operations would result in an incorrect algorithm. This is for two
reasons, both of which stem from the fact that the algorithm provides no way for one process
to determine that no other process can dereference a pointerto a node, after the node has
been removed from the stack.

• A process executing a pop operation may dereference a pointer to a node that has just
been freed (by following a localhead pointer).

• A pointer may be prematurely recycled back onto the stack while some process still
has a pointer to the node, giving rise to the ABA problem.

Our LFRC transformation produces an algorithm in which it ispossible to determine that a
pointer will no longer be dereferenced.

We now apply the LFRC transformation. The transformed declarations are presented in
Figure 5.3; the transformed pseudocode is presented in Figure 5.4. These declarations and
code are obtained directly from Figures 5.1 and 5.2 by a simple application of the transfor-
mation described in Section 5.4. Shared variables and objects are associated with reference
counts. Every time a reference is created, the corresponding object’s reference count is incre-
mented, and every time a reference is destroyed the corresponding object’s reference count
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struct node {
val val; node *next

}

node *Head;
initially Head = null;

Figure 5.1: The node structure, the global variableHead, and the initial condition for the
original stack implementation.

void push(val v) {
H1. node * nd, head;
H2. nd := new node();
H3. nd->val := v;
H4. while(true) {
H5. head := Head;
H6. nd->next := head;
H7. if (CAS(&Head, head, nd))

break;
H8. }
H9. return;
}

val pop() {
P1. node * head, next;
P2. while (true) {
P3. head := Head;
P4. if (head = null)
P5. return empty;
P6. next := head->next;
P7. if (CAS(&Head, head, next))

break;
P8. }
P9. return head->val;
}

Figure 5.2: Pseudocode for the original stack operations.

struct node {
val val; RC Ref next

}

RC Ref Head;
initially Head.ref = null;

Figure 5.3: The transformed node and stack structures.
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is decremented. Note that initiallyHead.ref = null. We do not constrain the initial
reference count ofHead because the reference count ofnull is undefined.

As with any garbage collection technique, reference counting solves the ABA problem.
In particular, once a popping process has executed the read at line TP3, the reference count
of *head is guaranteed to be nonzero until the process executes line TP12. Therefore, it
cannot be deallocated and subsequently pushed back onto thestack.

Because the stack implementation never produces referencecycles, and there is one node
per value in the stack, the transformed stack implementation presented in Figure 5.4 is weakly
space-adaptive. However, it is not strongly space-adaptive. To see why, consider a popping
processp that is delayed after reading a pointer to some objecto from Head at line TP3.
Once this load has completed, the reference count ofo will not fall to zero, at least untilp
completes one iteration of the loop. Neither will the reference counts of any of the objects
reachable fromo. All these objects may be removed from the stack by pop operations that
complete whilep is delayed. Once this has happened, the memory consumed by these objects
cannot be accounted for as part of the stack data structure. Further, this memory is not
bounded by any constant, as the stack may be of any size whenp executes TP3. Therefore,
the transformed code is not strongly space-adaptive.

5.5.1 Obtaining Strong Space-adaptivity

We now describe how to obtain a strongly space-adaptive version. The key is to “break the
chain” of references that allow one delayed process to keep an unbounded number of objects
from being deallocated.

We only need to modify thepop implementation. Observe that, once a node has been
removed from the stack, itsnext field can be overwritten without affecting the representa-
tion of the stack. Thus, we make popping processes overwritethenext field with null
after a successful CAS. It is possible for a delayed popping process to readnull from this
field after it has been overwritten. However, this can only happen after theHead variable has
been modified since the delayed process readHead at TP3. Thus, the CAS of the delayed
process is doomed to fail, so there can be no visible change tothe state of the data structure,
and the delayed process will simply retry the loop.

Figure 5.5 presents code for the modifiedpop operation. The only change is at line P9,
wherehead->next is overwritten withnull. We claim that the memory consumed by this
transformed stack is bounded by a multiple of the number of nodes in the stack, plusthree
nodes for every pending operation. The short explanation for this is that no chain of nodes
from thehead variable of either operation can be longer than one node, without there being
at least one process with a pending pop operation that has notyet executed the assignment at
P9. However, since this is the first claim that an algorithm presented in this thesis is strongly
space-adaptive, we provide a more detailed argument.

Because reference counting guarantees to deallocate memory before it would become
unreachable in the original algorithm, we need only accountfor memory that is reachable
from Head, or a local variable of a process executing a pending operation. The memory
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void push(val v) {
TH1. RC Obj* nd, head;
TH2. RC Alloc(&nd);
TH3. RC Store(&(nd->v).val, v);
TH4. while(true) {
TH5. RC Load(&head, &Head);
TH6. RC Store(&(nd->v).next, head);
TH7. if (RC CAS(&Head, head, nd))

break;
TH8. }
TH9. RC Destroy(nd);
TH10. RC Destroy(head);
TH11. return;
}

val pop() {
TP1. RC Obj* head, next;
TP2. while (true) {
TP3. RC Load(&head, &Head);
TP4. if (head = null)
TP5. return empty;
TP6. RC Load(&next, &(head->v).next);
TP7. if (RC CAS(&Head, head, next)){
TP8. RC Destroy(next);
TP9. break;
TP10. }
TP11. }
TP12. RC Destroy(head);
TP13. RC Destroy(next);
TP14. return (head->v).val;
}

Figure 5.4: Pseudocode for the transformed stack operations.
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val pop() {
P1. Node * head;
P2. while (true) {
P3. head := Head;
P4. if (head = null)
P5. return empty;
P6. next := head->next;
P7. if (CAS(&Head, head, next))

break;
P8. }
P9. head->next := null;
P10. return head->val;
}

Figure 5.5: Variant of the pop operation. The transformation applied to this code, along with
the push implementation of Figure 5.2, yields a strongly space-adaptive algorithm.

reachable fromHead is proportional to the size of the stack (one object per value). So if our
claim is false, then there is some state in which there are four or more nodes reachable from
the local variables of some process, that are not reachable from Head, nor reachable from
some other process. We show that this is impossible for each of the operations. Our proof
depends on the the following important property of the stack:

If there is a chain ofn + 1 nodes reachable from thehead variable of either
push or pop or thenext variable ofpop, none of which are reachable from
Head, then there must be at leastnpending pop operations. Moreover, thehead
variable of each of these pendingpop operations refers to a node in the chain.

Because each node is not reachable fromHead, each node must have been removed from
the stack during a pop operation. If thenext field of any node but the last in the chain had
been set tonull, then the chain would be less thann+ 1 nodes long. Thus, there must be
at leastn pop operations that have removed a node from the stack, but not yet executed the
assignment at P9. These are all pending pop operations.

We apply the above observation to each of the procedures in the stack implementation.
The only local pointer variable of thepop procedure ishead. If there aren + 1 nodes
reachable from thehead variable of some processp executing apop operation, but not
reachable fromHead, then there aren pending pop operations. One of these belongs top.
Thus if n + 1 > 2, there is at least one other pendingpop operation whosehead variable
refers to one of then+ 1 nodes reachable fromp’s head variable.

The push procedure has two local pointer variables:head andnd (the new node).
These variables can be in one of three possible situations. We describe each in turn:

1. nd->next = null. This is the situation during the first iteration through theloop
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in thepush procedure, before the assignment at H5. If there aren + 1 > 2 nodes
reachable from thehead variable of thepush procedure, then there aren pending
pop operations withhead variables referring to one of the nodes in the chain.

2. nd->next = head. This is the situation after the assignment of H5 in Figure 5.2.
The argument for this situation is just like that for the previous.

3. nd->next = h whereh is the pointer value of thehead variable the last time that
the loop was executed. This is the situation during the second and subsequent iteration
through the loop, prior to the assignment at H5. In this situation, it is possible that
there are three nodes reachable from the local variables of thepush procedure that are
not reachable fromHead or any other local variables (i.e.,nd, head andh). However,
if there aren+ 1 > 1 nodes reachable fromh that are not reachable fromHead, then
there aren > 0 pending pop operations withhead variables pointing into that chain.
Likewise for thehead variable of thepush operation.

Thus, if the number of nodes reachable from the local variables of thepush procedure
exceeds three, there is always some other pending operationwith its head variable referring
to one of those nodes.

5.5.2 Optimising Transformed Code

So far, we have stipulated that the only way to copy a local expression into a shared variable
is to use an invocation ofRC Store. As discussed in the next section,RC Store is a
“heavyweight” procedure that uses a loop around a CAS operation to atomically modify the
shared reference. There are cases when this heavyweight approach is unnecessary. It may
be that the location being stored to may only be modified by oneprocess. This is the case
when the location is within a region of memory that has been newly allocated by a process,
and not yet exposed to other processes. The stores at lines TH3 and TH6 of Figure 5.4,
where apush operation initialises the newly allocated node are examples. In this case, the
newly allocated node has not yet been pushed onto the stack, and is not yet visible to any
other process. Another example is the store at line P9 of Figure 5.5, wherenull is written
into thenext field of the node removed from the stack by apop operation. Here, the only
process that can modify thenext field is the process that just removed the node from the
stack.

We provide a way to exploit these opportunities for optimisation by extending the inter-
face with a procedureRC UnsafeStore that has the same behaviour asRC Store in situ-
ations where only one process can modify the shared reference. However,RC UnsafeStore
uses a simple write (without a loop) to modify the shared reference and can be expected to
be substantially faster thanRC Store. A simple way to optimise transformed code is to use
RC UnsafeStorewhere-ever it is safe to do so.

RC UnsafeStore(RC Ref*r, RC Obj*o)
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struct RC Ref {
RC Obj *ref;
int holdC;

}

struct RC Status {
int sharedC;
int localC;

}

struct RC Obj {
RC Status status;
T v;

}

Figure 5.6:

RC UnsafeStore(r,o) storeso into r->ref. If the value ofr->ref before the oper-
ation is notnull, then the reference count associated with*(r->ref)is decremented. If
o != null the reference count associated with*o is incremented.

5.6 The Implementation

We now describe our LFRC implementation. We begin with an overview before proceeding
to a detailed description of the implementation. As before,fix some object typeT, represent-
ing the type of the application level objects that are to be collected.

Overview

LFRC makes use of three types:RC Ref, RC Status andRC Obj, which are presented
in Figure 5.6. The typeRC Obj is the type of objects that have an associated reference
count. EachRC Obj has a field holding an object of typeT and anRC Status field. The
RC Status field contains two counterssharedC (which we call theshared count) and
localC (the local count), the purpose of which is explained below. The typeRC Ref
represents shared references toRC Obj objects. It contains a pointerref of typeRC Obj

*, and a counterholdC (thehold count).
Our LFRC technique depends on both fields of theRC Ref structure being atomically

modifiable by a CAS operation. For example, if pointers are 32bits on a given system, and
we represent an integer using 32 bits, then we need a 64-bit CAS operation to use LFRC on
that system. For this reason, our LFRC technique is not 64-bit clean. However, as we discuss
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below, incrementing theholdC field of aRC Ref structure has the effect of incrementing
the reference count of the associated object. Because of this, it is possible to increment the
reference count of an object without dereferencing a pointer to the object, and without the
attendant risk that the object has already been deallocated.

We explain the LFRC implementation by first describing invariants of the heap and pro-
cesses’ stacks in reachable states of the LFRC algorithm. Webegin by considering properties
that are guaranteed to hold in reachable states in which there are no pending LFRC opera-
tions. We call such statesquiescent states.4 Let AllocRefs be the set of locations allocated
on the heap that containRC Ref structures; and letStackObjs be the set of locations on the
stack that contain allocated pointers of typeRC Obj *. For each non-nullRC Obj *o, let
S(o) be the set of shared locations that hold references to*o:

S(o) = {RC Ref *r∈AllocRefs| r->ref = o}

LFRC guarantees that in reachable quiescent states, for each non-nullRC Obj *o we have:

| S(o) | = o->status.sharedC (i)

For each objecto, we call the quantityo->status.sharedC theshared-reference count
of o. As we discuss below, an LFRC operation that creates a sharedreference to an object
RC Obj*o incrementso->status.sharedC, and an operation that destroys a shared
reference decrementso->status.sharedC.

We define for eachRC Obj *o the set of local locations that contain references to*o,
L(o).

L(o) = {RC Obj **l∈StackObjs| *l = o}

Define thelocal-reference countof o, written lrco, as follows:

lrco = o->status.localC +
∑

r->holdC
r∈ S(o)

So the local-reference count of*o is distributed betweeno’s status field and theholdC field
of all the RC Ref objects that refer to*o. LFRC guarantees that in reachable quiescent
states, for eachRC Obj *o we have:

| L(o) | = lrco (ii)

As we discuss below, an LFRC operation that creates a local reference to an objectRC Obj

*o either increments theholdC value of one of theRC Ref objects that refer to*o, or
incrementso->status.localC. An LFRC operation that destroys a local reference to an
object*o decrementso->status.localC.

4It is important to distinguish between quiescent states of the LFRC algorithm, and quiescent states of a client
algorithm that uses the LFRC functionality, such as the transformed stack of Section 5.5. In particular, a state
that is quiescent for the LFRC algorithm may not be a quiescent state of the client algorithm.
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In nonquiescent states (those states in which at least one LFRC operation is in progress)
these invariants are broken in certain ways. The shared-reference count of each object is
decrementedaftera shared reference to that object is destroyed, and the shared count of each
object is incrementedbeforea shared reference to that object is created. (These modifications
all occur withinRC Store andRC CAS operations.) Because of this, the shared-reference
count of each object is alwaysgreater than or equal tothe number of shared references
pointing to that object. Thus, for allRC Obj *o:

| S(o) |≤ o->status.sharedC (iii)

Similarly, local-reference count values are decremented only after associated references
have been destroyed, and are incremented simultaneously with or before the creation of local
references. However, it is possible for a local-reference count to underestimate the number of
local references to an object. This can occur during execution of theRC Store andRC CAS
operations. Briefly, after anRC Store orRC CAS operation over-writes aRC Ref structure
that refers to an object*o, the process executing the operation adds theholdC value of that
structure too->status.localC. This occurs when the process decrements the shared-
reference count of*o. Thus, until theholdC has been transferred to thelocalC, lrco
may underestimate| L(o) |. However, because the shared-reference count of*o is not
decremented until the point at which this transferral completes, underestimation of the local-
reference count of an object can only occur when the shared-reference count isstrictly greater
than the actual number of shared references to that object. Thus,for all RC Obj *o:

if lrco <| L(o) | then| S(o) |< o->status.sharedC (iv)

These properties imply that when thesharedC andlocalC of an object are both zero,
there are no references to that object and the object may be deleted. This is because when the
sharedC is zero, thelocalC is at least as great as the number of local references to the
object. Assume for someRC Obj *o thato->status.sharedC = 0. By (iii) above,
S(o) = ∅ and by the definition oflrc, lrco = o->status.localC. These two facts and
Invariant (iv) imply that ifo->status.localC = 0, then| L(o) |≤ lrco = 0 and thus,
| L(o) |= ∅. So wheno->status.sharedC = 0 ando->status.localC = 0 the
objecto may be freed.

Reference counting typically associates each object with asingle reference count, and we
explained our LFRC interface in terms of a single count. We now describe how our shared-
and local-reference counts implement a single reference count for each object. We define the
abstract reference countof RC Obj *o to be the sum oflrco ando->status.sharedC.
In quiescent states, we have the following identity:

| S(o) | + | L(o) |= lrco + o->status.sharedC (v)

So in quiescent states the abstract reference count does in fact count the number of references
to each object. Further, when both the local- and shared-reference counts of an object reach
zero in nonquiescent states, there are no references to thatobject either in the heap or from
local variables of the application. Thus, the abstract reference count is zero precisely when
the object is eligible for deallocation.
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void RC Load(RC Obj **o, RC Ref *r) {
L1. RC Ref a;
L2. RC Obj *oldo := *o
L3. do {
L4. a := *r;
L5. if (a.ref = null) {
L6. *o := null;
L7. break;
L8. }
L9. } while(!CAS(r, a, <a.ref, a.holdC+1>));
L10. *o := a.ref;
L11. RC Destroy(oldo);
}

Figure 5.7: TheRC Load procedure.

The Implementation

We first describe the implementation of theRC Load operation.RC Load(o, r) loads
the pointerr->ref into the local location*o, simultaneously incrementingr->holdC
using a CAS, and so incrementingo’s local-reference count. This reflects the fact that a
local reference to*(r->ref) is created by the operation. Pseudocode for theRC Load
procedure is presented in Figure 5.7. A processp executingRC Load first saves the current
value of*o in the local variableoldo (L2). This is so that the local-reference count of
the value over-written byRC Load can be decremented before the procedure exits (which
is achieved by invokingRC Destroy on line L11). Thenp enters a loop (L3) in which
it attempts to read the pointerr->ref and atomically incrementr->holdC. Processp
loads the current value ofr into the local variablea (L4). Thenp tests whether the value of
r->ref wasnull (L5). If it was, p sets*o to null and jumps out of the loop (L7). In
the case wherer->ref was notnull whenp executed line L4,p uses a CAS to increment
r->holdCwhile ensuring thatr->ref is the same as it was whenpexecuted line L4. After
successfully executing the CAS,p completes the loop and decrements the local reference
count of*oldo (L11).

We now describe an important procedure
UpdateStatus that is not part of the LFRC interface, but is used throughoutthe LFRC
implementation.UpdateStatus is used whenever thestatus component of an object
needs to be modified.UpdateStatus(o,scD,lcD) addsscD to the shared count of

*o and addslcD to to the local count of*o. Figure 5.8 presents pseudocode for the
UpdateStatus procedure.

A processp executingUpdateStatus first checks whethero is null. If it is, p re-
turns. Otherwise,p enters a loop in which it repeatedly loadso->status (U4), constructs
a new status value by respectively addingscDelta andlcDelta to thesharedC and
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void UpdateStatus(RC Obj *o, int scDelta, int lcDelta) {
U1. RC Status s, new s;
U2. if (o = null) return;
U3. do {
U4. s := o->status;
U5. new s := <s.sharedC+scDelta, s.localC+lcDelta>;
U6. } while(!CAS(&(o->status), s, new s));
U7. if (new s = <0,0>)
U8. DeleteObject(o);
}

Figure 5.8: TheUpdateStatus procedure.

void RC Store(RC Ref*r, RC Obj *o) {
S1. RC Ref a;
S2. UpdateStatus(o,1,0);
S3. do {
S4. a := *r;
S5. } while(!CAS(r, a, <o,0>));
S6. UpdateStatus(a.ref, -1, a.holdC); }

Figure 5.9: TheRC Store procedure.

localC components of the values just loaded (U5), and then attemptsto use CAS to update
o->status to this new status value. Finally,p tests whether the new status value indicates
that no references to the object exist (U7). If this is so,p invokesDeleteObject on the
object. DeleteObject is not part of the LFRC interface, but its function is to free the
memory pointed to byo. (In some circumstances, it will delete objects that*o contains
references to.DeleteObject is discussed fully below.)

We turn now toRC Store. RC Store(r,o)setsr->ref too and modifies reference
counts appropriately by decrementing the shared-reference count of the previous value of
r->ref and incrementing that of*o. Pseudocode for theRC Store procedure is presented
in Figure 5.9. Processp executingRC Store(r, o) first increments the shared-reference
count of*o by calling UpdateStatus (S2). (In the case whereo = null the call to
UpdateStatus has no effect.) Then,p enters a loop (S3) in which it loads*r into the
local variablea (S4) and uses a CAS to setr->ref to the new valueo andr->holdC to
zero (S5). To see whyr->holdC is set to zero, consider Invariant (iv) of Section 5.6. The
size ofL(o) is unchanged, so to maintain the relationship between| L(o) | andlrco stipulated
by Invariant (iv), we need to ensure thatlrco remains unchanged. Thus, we setr->holdC
to zero.

Note that once the S3-S5 loop has completed,a.ref is the value ofr->ref when
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bool RC CAS(RC Ref *r, RC Obj *old, RC Obj *new) {
C1. RC Ref a;
C2. UpdateStatus(new,1,0);
C3. do {
C4. a := *r;
C5. if (a.ref != old) {
C6. UpdateStatus(new,-1,0);
C7. return false;
C8. }
C9. } while(!CAS(r, a, <new, 0>));
C10.UpdateStatus(a.ref, -1, a.holdC);
C11.return true;
}

Figure 5.10: TheRC CAS procedure.

the CAS successfully executed. After the loop has completed, the local-reference count of
a.refwill underestimate the number of local references ifa.holdC is nonzero. However,
with the successful CAS,p destroyed a shared reference to*o, but has not yet decremented
o->status.sharedC. Thus, both properties (iii) and (iv) of Section 5.6 are preserved.
We fix-up the local and shared counts ofa.ref by invokingUpdateStatus to decrement
the shared count ofa.ref and adda.holdC to the local count ofa.ref (S6).

We now describe the implementation ofRC CAS. RC CAS implements the semantics of
the CAS operation on sharedRC Ref targets, while managing reference counts. Pseudocode
for theRC CAS procedure is presented in Figure 5.10.RC CAS works in a similar fashion to
RC Store, the only added complexity being that the update must be conditional. A process
p executingRC CAS(r, old, new) first increments the shared reference count of*new
by callingUpdateStatus(o,1,0) (C2). (As before, in the case wherenew = null
the call toUpdateStatus will have no effect.) This extra reference count is requiredin
the case where this execution ofRC CAS succeeds and creates another shared reference to

*new. If this execution ofRC CAS fails, the reference count must be decremented (which
occurs at line C6).

Next p enters a loop (C3) in which it loads*r into the local variablea (C4) and checks
whethera.ref is equal to the expected valueold (C5). If is is not, theRC CAS fails. In this
casep decrements the shared reference count of*o (C6) and returnsfalse indicating fail-
ure. In the case wherea.ref = old, p attempts to updater.ref to new andr.holdC
to zero using a CAS (C9). TheholdC value is set to zero for the same reason as it is in
theRC Store. As with RC Store, the shared and local reference counts ofa.ref must
be updated. This is achieved by callingUpdateStatus(a.ref,-1,a.holdC) (C10).
Finally, p returnstrue, indicating success.

We now describe the implementation ofRC Destroy, which decrements the local ref-
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void RC Destroy(RC Obj *o) {
D1. UpdateStatus(o,0,-1);
}

Figure 5.11: TheRC Destroy procedure.

void RC Alloc(RC Obj **o) {
A1. if (*o != null)
A2. RC Destroy(*o);
A4. *o := malloc(sizeof(RC Obj<T>));
A5. (*o)->status := <0, 1>;
}

Figure 5.12: TheRC Alloc procedure.

erence count of a given object. Pseudocode forRC Destroy is presented in Figure 5.11. A
process executingRC Destroy(o) calls UpdateStatus (D1) to decrement
o->status.localC. Note that it is possible for thelocalC of an object to fall below
zero. This can occur, for example, when a process creates a local reference to an object by
callingRC Load, incrementing theholdC of a shared reference to the object, and then calls
RC Destroy without the shared reference being overwritten. However,localC only falls
below zero whensharedC is greater than zero.

We now describe the implementation ofRC Alloc, which allocatesRC Obj objects.
Pseudocode for theRC Alloc procedure is presented in Figure 5.12. A processp execut-
ing RC Alloc first tests whether the location into which the new referencewill be stored
contains a non-null pointer (A1). If so, it decrements the local-reference count of that
pointer by callingRC Destroy. Thenp allocates a newRC Obj object (expressed here by
malloc(sizeof(RC Obj<T>)) into the given location (A4). Nextp sets thestatus
field of the new object to<0, 1> (A5). This reflects the fact that there are no shared refer-
ences to the new object (a consequence of the semantics ofmalloc) and that the operation
creates one local reference (in the locationo).

We now describe the implementation ofDeleteObject, which frees the memory

void DeleteObject(RC Obj *o) {
O1. for each RC Ref field f of *o do
O2. UpdateStatus(&o->f, -1, (o->f).holdC);
O3. free(o);
}

Figure 5.13: TheDeleteObject procedure.



158 CHAPTER 5. NONBLOCKING STORAGE RECLAMATION

void RC SharedCopy(RC Ref*r, RC Ref*s) {
S1. RC Obj *x := null;
S2. RC Load(&x, s);
S3. RC Store(r, x);
S4. RC Destroy(x);
}

Figure 5.14: TheRC SharedCopy procedure.

void RC LocalCopy(RC Obj **o, RC Obj *p) {
L1. RC Obj a = *o;;
L2. UpdateStatus(p,0,1);
L3. *o := p;
L2. RC Destroy(a);
}

Figure 5.15: TheRC LocalCopy procedure.

associated withRC Obj objects. Pseudocode for theDeleteObject procedure is pre-
sented in Figure 5.13. As well as releasing memory associated with anRC Obj object,
DeleteObject must modify reference counts associated with objects that are referenced
by fields of the object being deleted. During an execution ofDeleteObject(o), all the
fields of*o of typeRC Ref are deallocated. This means that the locations containing those
references are removed from the set of allocated locations.DeleteObject only functions
correctly in cases where no other operation can modify the fields of the object being deleted.
This is acceptable becauseDeleteObject is only invoked when some (unique) process
has determined that no references to the object exist.

We now describe theRC SharedCopy operation, which copies a reference from one
shared location to another. Pseudocode is presented in Figure 5.14. A process executing
RC SharedCopy first creates a local variable and initialises it tonull (S1), and then loads
the pointer from the location referenced by its first argument into that local variable (S2).
Then it stores that pointer into the location referenced by its second argument (S3). The new
copy of the pointer created during these operations must be destroyed, so that the associated
object can be reclaimed. This is achieved by callingRC Destroy (S4), which decrements
the local-reference count of the object. TheRC SharedCopy operation does not guarantee
that the copy is atomic.

The RC LocalCopy(o, p) operation (Figure 5.15) copiesp into the location*o,
overwriting the previous value at that location. Therefore, the operation increments the local-
reference count of*p (L1), and decrements that of**o (L2). Between these modifications,
RC LocalCopy simply assignsp to *o, thus effecting the copy.

TheRC Pass operation (Figure 5.16) first usesUpdateStatus to increment the local-
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RC Obj * RC Pass(RC Obj *o) {

P1. UpdateStatus(o, 0, 1);
P2. return o;
}

Figure 5.16: TheRC Pass procedure.

void RC UnsafeStore(RC Ref *r, RC Obj *o) {
U1. UpdateStatus(o,1,0);
U2. RC Ref a := *r;
U3. *r := <o,0>;
U4. UpdateStatus(a.ref, -1, a.holdC);
}

Figure 5.17: TheRC UnsafeStore procedure.

reference count of the object being passed as an argument, and then returns a pointer to that
object.

The RC UnsafeStore(r, o) operation (Figure 5.17) efficiently copieso into the
shared location referenced byr. The operation first increments the shared-reference count
of o (U1). Next, the operation records the current value of*r, so that the reference counts
of r->refmay be updated after the location has been modified. Then,RC UnsafeStore
simply assigns the pointer being stored into the shared location, with a zeroholdC (reflect-
ing the fact that no new local references are being created).This use of a write to update
the location is the source of the procedure’s efficiency. Theloop and CAS ofRC Store is
avoided. Finally,RC UnsafeStore updates the status of the object whose pointer was just
overwritten.

5.7 Related Work

Significant work has been done on developing techniques for reclaiming memory from non-
blocking data structures. We first review the techniques based on reference counting, before
describing other approaches.

Valois proposed a lock-free reference counting technique5 and applied it to nonblocking
implementations of a queue [Val94] and a linked-list [Val95]. In his technique, each object
has a single reference-count field that counts the number of (local and shared) references to
that object. When a process executes a read operation, it first loads the pointer at the location

5As originally presented, the technique has two bugs. These bugs are explained and corrected in [MS95]. The
essentials of the technique remain the same.
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being read and then increments the associated object’s reference count. Because the memory
may be deallocated between the initial read and the increment of the reference count, Valois’
technique can only be used in an environment where it is legalto read and modify the refer-
ence count of unallocated memory. This is in contrast to our LFRC technique, which requires
no such guarantee. [Rei04] describes a reference-countingtechnique based on LL/SC that is
similar to Valois’ proposal and shares the same limitation.

The authors of [MS95] report that Valois’ queue implementation [Val94], which uses
reference counting, suffers from out-of-memory errors, even when the queue is small relative
to available memory (12 elements or less, with a free pool of 12,000 nodes). Valois’ queue
is weakly space-adaptive, and a process delayed during adequeue operation can prevent
any node added to the queue during the delay from being freed until thedequeue operation
completes. This suggests that weakly space-adaptive algorithms must be used with care.

The authors of [DMMm01] implement lock-free reference counting using the DCAS
primitive. Each object has a reference-count field that is incremented whenever a reference
to the object is created. DCAS is used to solve the problem of incrementing this counter
while guaranteeing that the object is not deallocated. A processp loads a value from a shared
location as follows:

1. p reads the pointer stored in the location. Call this pointero.

2. p reads the reference-count field of*o.

3. DCAS is used to simultaneously increment the reference count and to test thato is in
the given location.

4. If the DCAS is successful, the pointero is returned from the operation. Otherwise,p
retries the operation.

The requirement that the system provide the DCAS primitive is the most important limitation
of this technique. It implies that the solution is not pointer clean, and can only be used on the
very few systems that support DCAS. A further limitation is that the environment must allow
reads from deallocated memory (in step 2), and must allow DCAS to be applied to a location
in deallocated memory, but only in the case that the DCAS fails (in step 3).

As well as containing the first presentation of the Treiber stack, [Tre86] presents a tech-
nique for reclaiming memory from nonblocking data structures. Each data structure is equipped
with ause countthat counts the number of operations that have been invoked,but not yet com-
pleted. Whenever this count is zero, there are no pending operations, and thus any memory
that has been removed from the data structure may be freed to the system. The technique is
simple and reasonably efficient, the only manipulations of shared locations being two modi-
fications to the use count per operation (an increment at the beginning, and a decrement at the
end). However, no memory can be freed until a quiescent stateis reached. Thus the technique
only allows the construction of weakly space-adaptive algorithms.

Reference-counting techniques provide more opportunities to free memory than Treiber’s
proposal. This is because, using reference counts, all memory that is not reachable from
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shared references will eventually be freed, so long as no process fails. In Treiber’s approach,
if no quiescent state is reached, then no memory whatsoever can be freed, even if no pro-
cess fails. (This happens during intervals when new operations continuously begin, before
all other operations have completed.) However, note that both techniques can be used to
construct weakly space-adaptive algorithms. Thus, it seems that our notion of weak space-
adaptivity is not precise enough to capture some distinctions that we might want to make
between memory reclamation techniques. We discuss possibilities for improvement in the
conclusions to the thesis (Chapter 7).

Herlihy et al. [HLM02b, HLMM05] and Michael [Mic04] independently proposed gen-
eral techniques that enable memory to be freed from nonblocking data structures. We de-
scribe the basic idea, while ignoring important subtletiesin the implementations, and differ-
ences between the two approaches. Prior to accessing a blockof memory, each process saves
a pointer to the block in an SW/MR register, which we call aguard, and then checks that
the pointer still exists in some other shared location. Prior to freeing memory, each process
checks that no guard contains a pointer to any block about to be freed. This technique guar-
antees that no memory is accessed after it has been freed, so long as no attempt is made to
free memory while it is referenced by a pointer in some sharedlocation.

We expect the guard-based proposals to allow traversal of pointers significantly faster
than our LFRC approach. Using the techniques of [HLM03a] or [Mic04], a memory block
may be accessed after executing two reads and a write in the best case (reading a pointer,
writing it to a guard, and then checking that the reference still exists). Compare this with the
use of a CAS to increment a counter on every read in LFRC. CAS operations are typically
much more expensive than reads and writes, and in LFRC, several CAS operations may be
needed for each read, even when the pointer value being read has not changed. (This is
because other processes may increment the counter.) These performance disadvantages are
shared by the other reference-counting techniques, and to alesser extent by the use-count
technique of Treiber [Tre86].

The guard-based approach has been used to enable memory reclamation from the M&S
queue [HLMM02, Mic04], and used in the construction of a lock-free reference counting
algorithm [HLMM05]. The techniques can be used to allow memory reclamation from a
very broad range of data structures. However, the resultingalgorithms are not population-
oblivious as originally presented. Although they can be made population-oblivious [HLM03b],
the resulting solutions are still not strongly space-adaptive. In the M&S queue, in the worst
case, they require space proportional to the number of processes that ever access the queue,
plus space proportional to the size of the data structure. Both these drawbacks are a di-
rect consequence of the reliance on SW/MR registers. However, techniques presented in
[HLM03b] enable the technique to be used to construct weaklyspace-adaptive data struc-
tures. This is achieved using a counting technique (akin to reference counting) to enable the
deallocation of the SW/MR registers. However, we would expect these techniques to come
with a significant performance cost, compared with the original approach of [HLMM02,
Mic04]. We revisit these issues in Chapter 6.
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5.8 Concluding Remarks

The main result of this chapter is a lock-free reference counting technique and a transforma-
tion based on this technique that produces algorithms that recycle memory from algorithms
that do not. The transformed algorithms are guaranteed to beweakly space-adaptive, and
may be strongly space-adaptive.

The most important limitation of the technique is that it is not pointer clean. We ad-
dress this problem in the next chapter, by presenting a pointer clean, strongly space-adaptive,
population oblivious implementation of an LL/SC variable.Not only is this implementation
pointer clean, but the LL and SC operations arewidesynchronisation primitives, in the sense
defined in Section 5.1.1. Thus, the LL/SC implementation canbe used to obtain pointer-
clean versions of algorithms that depend on wide synchronisation primitives. In particular,
we show how to apply the LL/SC implementation to our LFRC technique, obtaining a gen-
eral pointer clean, space-adaptive and population-oblivious memory management technique
for nonblocking algorithms.



Chapter 6

A Pointer-clean LL/SC

The main result of this chapter is a novel, lock-free, strongly space-adaptive and population
oblivious implementation of LL/SC variables. The implementation enables the manipula-
tion of values of arbitrary width, while being pointer clean. That is, the size of the value
over which the LL/SC variable ranges is not limited by properties of the underlying system
such as the size of locations that can be atomically modified.Thus, in the terminology of
Section 5.1.1 we implement awideLL/SC variable. Section 6.1 discusses the definition of
space-adaptivity, as applied to LL/SC variables, and Section 6.2 describes the LL/SC imple-
mentation.

The LL/SC implementation presented in this chapter is the first pointer-clean, space-
adaptive, population oblivious, wide LL/SC variable. Moreover, to our knowledge it is the
first published [DHLM04] nonblocking algorithm that uses dynamically-allocated memory
to possess all these properties. Because the LL/SC implementation enjoys these properties, it
can be used to implement the LFRC technique described in the previous chapter. This means
that most extant lock-free algorithms that are not weakly space-adaptive or that depend on
wide synchronisation primitives can be transformed into lock-free algorithms that do not
suffer these limitations. The use of the LL/SC variable in the LFRC technique is described
in Section 6.3.

Our LL/SC algorithm is somewhat complicated, and it will notbe immediately clear to
the reader that it satisfies its specification. Therefore, wehave employed the techniques de-
veloped in Part I to verify our LL/SC implementation. Section 6.5 describes our verification
of the LL/SC implementation.

Section 6.4 discusses previous LL/SC implementations, andother related work. We con-
clude the chapter in Section 6.6.

6.1 Space-adaptivity

In Section 5.1.2, we mentioned that the appropriate notion of size for an LL/SC variable
should depend on the number of outstanding LL operations. There are two reasons for this.
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d:a

d:a

d:b

(a) (b)

Figure 6.1: Simple LL/SC implementation. (a) A state of the implementation where the
variable contains valuea. (b) The effect of the SC operation, changing the value of the
variable froma to b. The dashed line indicates the previous value of the pointer.

First, any LL/SC algorithm needs to record which pending LL operations can be matched by
successful SC operations, and at least some memory must be used to store this information.
Simply recording which ofN processes can execute a successful SC operation requiresN
bits. All LL/SC implementations consume memory for this purpose. This memory is either
allocated per-operation (possibly on the stack), or per-process (using single-reader/multi-
writer variables).

Second, because each LL is eventually matched by an SC,1 any memory consumed by a
pending LL will be released when the matching SC executes, and thus will be released by the
time the operation that invoked the LL completes. Memory consumed by each outstanding
LL operation can be accounted for as consumed by the pending operation that invoked the LL.
Thus, an LL/SC implementation that is (strongly or weakly) space-adaptive, but consumes
memory for outstanding LL operations, preserves the (strong or weak) space-adaptivity of
any data structure that uses it.

Our LL/SC implementation isf -space-adaptive, where the size functionf is one plus the
number of outstanding LL operations in the state. Therefore, our LL/SC algorithm consumes
memory bounded byf plus a constant times the number of pending operations.

6.2 The LL/SC Implementation

A lock-free implementation of a population oblivious and pointer clean LL/SC variable is
almost trivial if we assume unbounded memory. The idea, illustrated in Figure 6.1, is to use
an extra level of indirection to enable operations to detectchanges to the LL/SC variable. We
would store values in contiguous regions of memory callednodes, each containing a value,
and maintain a pointer to thecurrent node. An LL operation would simply read the pointer
to the current node and return the contents of the node it refers to. An SC operation would
allocate a new node, initialise it with the value to be stored, and then use CAS to attempt

1In some contexts, it is desirable for a process to “abandon” an LL operation by never invoking a matching
SC. Section 6.2.4 describes anunlink operation that provides this capability. For the purposes of the present
discussion, it is simplest to assume that each LL is eventually matched by an SC.
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to replace the previously current node with the new one. So long as we never reclaim and
reuse any node, the CAS in each SC succeeds if and only if thereis no change to the pointer
between the CAS and the read in the preceding LL. Thus, the SC succeeds if and only if the
CAS succeeds. This technique is well-known and used in systems that use garbage collection
to provide the illusion of unbounded memory. For example, the JSR-166 library [JSR], which
provides tools for building highly-concurrent and nonblocking data structures in Java, uses
this technique.

Our implementation builds on this simple idea, but is complicated by the need to explic-
itly free and reuse nodes in order to bound memory consumption. If we reclaim (and possibly
reuse) a node too soon, one of several problems can arise. First, an access to a node that has
been reclaimed may cause an error, as discussed in Chapter 1.Second, an LL reading the
contents of a node might in fact read part or all of a value stored by an SC that is reusing the
node. Third, the CAS might succeed despite changes since theprevious read because of the
recycling of a node: the ABA problem.

One possible solution is to apply the LFRC technique presented in the previous chap-
ter, by transforming the unbounded memory algorithm described above into a version that
recycles storage. This would involve introducing a hold count to the location containing
the pointer to the current node, and associating the node with a shared-reference count. We
could then use these counters to determine when a node was no longer reachable. We would
have each SC operation allocate a new node to replace the old one, and implement the LL/SC
semantics in essentially the same way as we did under the assumption of unbounded memory.

The problem with this approach is that the LFRC technique from the previous chapter is
not pointer-clean: the technique requires that the system provide a wide CAS operation that
can atomically compare-and-swap both a pointer and the holdcount. Our LL/SC algorithm
uses a more complicated, but pointer-clean technique to give the effect of modifying a pointer
and a hold count atomically. In Section 6.2.1, we give an overview of this technique, before
moving to a detailed description of the algorithm in Section6.2.2.

6.2.1 Overview

Rather than storing a pointer to the current node in a single location, we alternate between two
locationsptr0 andptr1. One of these pointers iscurrent and refers to a node containing
the current value of the LL/SC variable. This node is called thecurrent node. The pointer that
is not current is called thenoncurrent pointer, the location at which this pointer is stored is
called thenoncurrent address, and the node to which it refers is called thenoncurrent node.
We use a version number (stored independently ofptr0 andptr1) to indicate which of
these is the current pointer: if the version number is even, thenptr0 refers to the current
node; otherwiseptr1 does. For example, if the version number is changed from fourto
five, the current pointer before the change isptr0, and the current pointer after the change
is ptr1. A hold countis stored adjacent to the version number and we require that both
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Figure 6.2: Two configurations of the LL/SC implementation.In both illustrations the version
number, denotedver, is odd. Therefore, in both illustrationsptr1 is the current pointer and
ptr0 is the noncurrent pointer. Thed field of each node contains the value stored in that
node, and thestatus field is used to determine when it is safe to deallocate the node. The
dashed arrow in (b) indicates the previous value ofptr0.

these integers be atomically modifiable by a CAS operation.2 Because of this, the hold count
can be modified by a CAS which at the same time guarantees that the version number has
some expected value.

Each noden that has ever been the current node has apredecessor: the node that was
current immediately beforen last became the current node. We equip each noden with a
pred field, which is guaranteed to point ton’s predecessor, from the point whenn becomes
the current node untiln is deallocated.

Our algorithm ensures that the value of the current pointer is not changed in any interval
during which the version number does not change. Also, our algorithm ensures that the
noncurrent pointer may change (at most) once during an interval in which the version number
does not change. During each interval in which the version number has a given value, the
LL/SC implementation is in one of two configurations, which are illustrated in Figure 6.2:

a the noncurrent pointer refers to the current node’s predecessor (Figure 6.2(a)), or

b the noncurrent pointer refers to a node that will become thecurrent node after the
next change of the version number (Figure 6.2(b)). In this case, thepred field of the
noncurrent node will refer to the current node.

2For example, in a system with a 64-bit CAS operation, we can allocate 32-bits for the version number, and
32-bits for the hold count. This would allow more than four billion unmatched LL operations without risk of
overflow, and another four billion successful SC operations, without risk of wraparound.
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The algorithm moves from a state matching Configuration (a) to one matching (b) when the
pointer in the noncurrent address is modified. This can only happen once during any interval
when the version number has a given value. The version numberis only incremented when
the algorithm is in a state matching Configuration (b), and the point when this occurs is the
linearisation point of some SC operation. When the version number is incremented, its parity
changes, and the previously noncurrent pointer becomes current. Thus, we move from a state
matching Configuration (b) to one matching Configuration (a).

Because the value of the current pointer does not change during any interval in which
the version number does not change, an LL operation can determine the value of the current
pointer using the following protocol:

a read the version number,

b read the value of the pointer that would be current, assuming that the version number
has not changed from the previous step,

c check that the version number is the same as was previously observed, retrying if the
version number has changed.

The linearisation point of the LL operation is the point where the check of the version number
succeeds. The LL operation completes by returning the contents of the node that was current
when the operation was linearised.

The check that the version number has not changed while the current pointer was read is
achieved using a CAS operation that simultaneously increments the hold count. Our LL/SC
implementation maintains the invariant that the hold countis the number of LL operations
that have been linearised during the interval in which the current pointer had its present value.
This count is used to ensure two properties about the deallocation of nodes after they have
been current:

• No noden is deallocated until there is no outstanding LL operation that was linearised
during the interval whenn was current.

• No noden is deallocated until there is no outstanding LL operation such thatn is the
predecessor of the node that was current at the linearisation point of the operation.

These properties enable a process that has an outstanding LLoperation to safely access both
the node that was current when the LL was linearised, and thatnode’s predecessor. Moreover,
as we explain below, these properties guarantee that certain CAS operations can be executed
without giving rise to the ABA problem. If an LL operation is linearised when a noden is
current, we say that the LL operationpins n. Note that several LL operations can pin eachn.

An SC operation begins by allocating a new node, initialising it with the value to be
stored, and setting itspred field to n, wheren points to the node that the matching LL
operation pinned. The SC operation then attempts to write a pointer to the new node into
the noncurrent address, using a CAS. The expected value in this CAS is the predecessor of
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the noden (obtained fromn’s pred field). Recall thatn’s predecessor cannot have been
deallocated since the linearisation point of the matching LL. Moreover,ptr0 andptr1 are
only ever over-written with values that have been newly allocated. These two facts mean that
if the CAS to the noncurrent address is successful, then the version number has not changed
since the matching LL, and the state immediately prior to theCAS matches Configuration
(a). Afterwards, the state matches Configuration (b).

After executing the CAS to the noncurrent address, the process that executed the suc-
cessful CAS, or some other process that observes that the algorithm is in a state matching
Configuration (b), increments the version number, which is the linearisation point of the SC
operation. When this version number is incremented, the hold count is set to zero, reflecting
the fact that no LL operation has yet pinned the new node. The process that successfully
increments the version number transfers the previous hold count value to astatus field in
the node that was just made noncurrent, in a similar fashion to the LFRC technique. This
status field itself has three fields:localC, nlC andnlP. localC is used to count the
remaining outstanding LL operations that pinned this node,and the previous value of the
hold count is added to this field.nlC is a boolean flag that is set when the hold count value is
transferred (i.e., after the node is “no-longer current”).For any noden, whenstatus.nlC
is true,localC is guaranteed to be at least as great as the number of remaining outstanding
LL operations that pinnedn. After the linearisation point of each SC, thestatus.localC
count of the node pinned by the matching LL is decremented. Therefore, oncestatus.nlC
is true andstatus.localC = 0, the node may be deallocated once it has been deter-
mined that it is not the predecessor of any node pinned by an outstanding LL. The third
field of status, another flag callednlP for “no-longer predecessor”, is used to record
this fact. For any noden, oncen->status.nlC is true andn->status.localC =
0, n->pred->status.nlP is set. Finally, once both these conditions are satisfied, and
n->status.nlP = true, n may be deallocated. We assume that thestatus field can
be atomically manipulated by the CAS operation. In a 64-bit system, this would allow262

LL/SC operation pairs to complete before wrap-around occurred.

6.2.2 The Implementation

The overview of the algorithm just given ignores several important details. We now give a
detailed description of the implementation. Figure 6.3 shows the types used in our imple-
mentation. Each LL/SC variable is accessed through an instance of theLoc structure, which
has theptr0 andptr1 fields described above. Theentry field contains the version num-
ber and hold count in acasable recordof typeEntryTag. A casable recordis one that fits
within the maximum word size that can be modified by a CAS instruction.

We assume that the LL/SC variable being implemented ranges over members of the type
Data. Thed field of theNode structure has this type, and contains the value stored in that
node. The typeData may be of arbitrary width. Instances ofNode are also equipped with
thepred andstatus fields.

TheStatus structure has the integer fieldlocalC, and the flagsnlC (standing for
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typedef struct {
Node *ptr0, *ptr1;
EntryTag entry;

} Loc;

typedef struct {
Data d;
Node *pred;
Status status;

} Node;

typedef struct {
int ver;
int count;

} EntryTag;

typedef struct {
int localC;
bool nlC;
bool nlP;

} Status;

Figure 6.3: Data types used in the LL/SC algorithm. TheEntryTag andStatus types fit
into 64 bits, so can be atomically accessed using CAS.

Macro:
INITSTATUS (<0, false, false>)

initialise(Loc *L) {
L->entry.ver := 0;
L->entry.count := 0;
L->ptr0 := p0;
L->ptr1 := p1;
L->ptr0->d := d0;
L->ptr0->pred := ptr1;
L->ptr0->status := <0, false, false>;
L->ptr1->status := <0, true, false>;

}

Figure 6.4: Initial state of an LL/SC location, whered0 is the initial value of the location
andp0 andp1 are distinct non-null pointer values.

“no-longer current”) andnlP (standing for “no-longer predecessor”). A node may be freed
when both itsnlC andnlP fields are true, and thelocalC has reached zero.

Figure 6.4 shows how an LL/SC location is initialised. The macroINITSTATUS gives
the initial value for thestatus of a node. We set the version numberentry.ver to
zero, indicating thatptr0 is the current pointer.3 We setptr0 andptr1 to be any distinct
pointer values (denotedp0 andp1), and initialise thed field ofptr0 (the current pointer) to
be the initial value for the location (denotedd0). We set thepred field of ptr0 to point to
ptr1 (the noncurrent pointer). At this point we have an instance of Configuration (a), where
theptr0->pred = ptr1. It only remains to set the fields associated with deallocation to

3The choice of initial version number is arbitrary, so long aswe initialise the corresponding current and
noncurrent nodes according to the parity of the the initial version number.
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Macros:
CURRENT(loc, ver) (ver%2 = 0 ? loc->ptr0 : loc->ptr1)

Data LL(Loc *loc) {
L1.do {
L2. EntryTag e := loc->entry;
L3. myver := e.ver;
L4. mynode := CURRENT(loc, e.ver);
L5. } while (!CAS(&loc->entry, e, <e.ver, e.count+1>));
L6.return mynode->d;
}

Figure 6.5: Macros and the LL implementation.

the appropriate values. That is, we setL->entry.holdCount to 0 (which indicates that
no LL operation has yet pinned the current node), and thestatus field of *ptr0 to <0,
false, false>. We setptr1->status to <0, true, false>, indicating that no
LL operation has pinnedptr1, and thatptr1->status.localC accurately reflects this
fact.

Pseudocode for the LL operation is presented in Figure 6.5, along with a macro called
CURRENT. CURRENT(loc, ver) obtains the current pointer of locationloc, assum-
ing thatloc->ver = ver. Our implementation makes use ofpersistent local variables.
These are variables like local variables in that they are only accessible to one process, but they
retain their value across procedure invocations. In particular, each process has two persistent
local variables,mynode andmyver, which are set during the LL operation, and retain their
values until the matching SC completes.4

A process executing an LL operation obtains a consistent view of the version number
and current pointer by executing a loop (L1-L5) in which the process reads theentry field
(L2), obtains the current pointer (L4), and then checks thatthe entry field has not changed,
using a CAS (L5). If successful, the CAS increments the hold count, which guarantees that
the current node will not be deallocated until after the linearisation point of the matching SC.
The loop ends when the CAS succeeds. The version number and current pointer values are
recorded in the persistent local variablesmyver andmynode (L3 and L4). Recall that the
value of the current pointer does not change in any interval where the version number has not
changed. Thus, once the loop completes, we know thatmyver andmynode were simulta-

4Programming languages typically do not provide persistentlocal variables. However, they can be emulated
using thread-local storageas in Java [JTL], or thepthreads framework [But97, Section 5.4]. Alternatively,
persistent local variables can be emulated by using an arrayor hash-table to map thread or process identifiers to
variable values.
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Macro:
NONCURADDR(loc, ver) (ver%2 = 0 ? &loc->ptr1 : &loc->ptr0)

bool SC(Loc *loc, Data newd) {
S1. Node *new nd := alloc(Node);
S2. new nd->d := newd;

new nd->pred := mynode;
new nd->status := INITSTATUS;

S3. Node *pred nd := mynode->pred;
S4. success := CAS(NONCURADDR(loc, myver), pred nd, new nd);
S5. if (!success) free(new nd);
S6. while ((e := loc->entry).ver = myver) {
S7. if (CAS(&loc->entry, e, <e.ver+1, 0>))
S8. transfer(mynode, e.count);

}
S9. release(mynode);
S10.return success;
}

Figure 6.6: The SC implementation.

neously the version number and current node of the LL/SC variable when the successful CAS
was executed. The LL operation ends by returning the value inthed field of the node that
was determined to be current during the loop. The LL operation is linearised at the (unique)
point at whichp successfully executes the CAS at line L5.

Pseudocode for the SC operation is presented in Figure 6.6, along with a macro called
NONCURADDR, obtains the address of the noncurrent pointer, for a given location and version
number. To execute an SC operation, a processp allocates and initialises a new node with
the value to be stored, and stores the node observed as current by the previous LL (recorded
in mynode) in the node’spred field (lines S1 and S2). Then,p attempts to install the new
node into the noncurrent pointer using CAS (line S4). The expected value for this CAS is
the predecessor of the node that was current when the matching LL was linearised (obtained
by reading thepred field of mynode). Recall that we cannot simply read the noncurrent
pointer, because this may change while the version number has a given value.

If the CAS at S4 succeeds, then the SC operation is successful, although the operation
is not linearised until the version number is next incremented. If the CAS fails, then the SC
operation is unsuccessful, and the SC operation frees the newly allocated node (S5), which
has not become visible to any other thread.

If the S4 CAS is successful then the state immediately beforethe CAS matches Configu-
ration (a) and immediately after the CAS the state matches Configuration (b). If the S4 CAS
is unsuccessful and the version number has not yet been incremented since the matching LL
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was linearised, then the state already matched Configuration (b) when the CAS was executed
(in which case some other SC has successfully executed an S4 CAS while the version number
had its current value). Whether or not the S4 CAS is successful, the SC operation attempts
to increment the version number. This is achieved using a CASsuch that the version number
component of the expected value in the CAS is the value of the version number when the
matching LL was linearised. Thus, if the version number has already been modified at the
point of the S4 CAS, this attempt to increment the version number will fail. If the incre-
ment succeeds, then the last SC operation to successfully modify the noncurrent pointer is
linearised at the point where the increment occurs.

The loop test at line S6 first reads the current value of theentry field, and checks
whether the version number has not changed since the linearisation point of the matching
LL, falling out of the loop if it has.5 The CAS at S7 attempts to increment the version
number, and set the hold count to zero. If this CAS is successful (which can be true of only
one SC operation for each version number), then the SC invokes thetransfer procedure
to update thestatus field of the node that was current immediately prior to the successful
CAS. (We explaintransfer shortly.) The linearisation point of an unsuccessful SC is
the earliest point at which that SC observes that the versionnumber no longer has the value
that it had when the matching LL was linearised (which occurseither at S6 or S7). Once
the loop has completed,release is invoked, which decrements thelocalC of mynode,
indicating that there is one less outstanding LL operation that was linearised whenmynode
was current.

Figure 6.7 presents pseudocode describing therelease andtransfer operations,
as well as another operationsetNLPred and two macrosCLEAN andFREEABLE. The
expressionCLEAN(post), wherepost is aStatus value, returns true iff for all nodesn,
n->status = post implies that there are no outstanding LL operations pinningn. The
expressionFREEABLE(post) returns true iffCLEAN(post) = true andpost.nlP
has been set. In this case, it is safe to free any noden such thatn->status = post.

The invocationtransfer(nd, cnt) addscnt to nd->status.localC and sets
nd->status.nlC to true. This is achieved using a loop in which the procedure reads the
current value ofnd->status (T2), constructs the appropriate new value (T3), and attempts
a CAS to setnd->status to the new value.

Thereleaseprocedure is called when an SC operation passes its linearisation point and
therefore needs to indicate that the number of outstanding LL operations that have pinned the
node has fallen by one. The invocationrelease(nd) first copiesnd->pred into a local
variablepred nd (R1), and then uses a loop and CAS to decrementnd->status.localC
(R2-R5). After this decrement has been completed, the procedure checks whether the result-
ing status value isCLEAN, in which case the procedure sets thenlP flag ofpred nd->
status usingsetNLPred (explained below). Therelease procedure then tests whether
the new status value isFREEABLE, and frees the node if the test succeeds. It is neces-
sary to readnd->pred (and remember the value in a local variable) prior to decrementing

5The value of an assignmentx:=exp is the value ofx immediately after the assignment.
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Macros:
CLEAN(post) (post.count = 0 && post.nlC)
FREEABLE(post) (CLEAN(post) && post.nlP)

void transfer(Node *nd, int cnt) {
T1.do {
T2. Statuspre := nd->status;
T3. Statuspost := <pre.localC+cnt, true, pre.nlP>;
T4. } while (!CAS(&nd->status, pre, post));
}

void release(Node *nd) {
R1.Node *pred nd := nd->pred;
R2 do {
R3. Status pre := nd->status;
R4. Status post := <pre.localC-1, pre.nlC, pre.nlP>;
R5. } while (!CAS(&nd->status, pre, post));
R6.if (CLEAN(post)) setNLPred(pred nd);
R7.if (FREEABLE(post)) free(nd);
}

void setNLPred(Node *pred nd) {
P1.do {
P2. Status pre := pred nd->status;
P3. Status post := <pre.localC, pre.nlC, true>;
P4. } while (!CAS(&pred nd->status, pre, post));
P5.if (FREEABLE(post)) free(pred nd);
}

Figure 6.7: Helper procedures for the LL/SC implementation.

nd->status.localC, rather than afterwards, because after the decrement, someother
process may observend’s status value becomingFREEABLE, and thus free the node.

setNLPred(pred nd) uses a loop and CAS to set thestatus.nlPflag ofpred nd
(P1-P4), and then tests whether the resulting status value isFREEABLE, freeing the node if
the test succeeds (P5).

This concludes our description of the basic algorithm. We discuss certain optimisations
and extensions in Section 6.2.4. We note here that it is straightforward to generalise this
algorithm to several LL/SC variables. The persistent localvariablesmyver andmynode
must be managed on a per-LL/SC variable basis. This would be achieved by equipping
each process with a map from LL/SC variables (represented aspointers toLoc objects)
to myver/mynode pairs. Each LL operation would allocate a structure with space for a
pointer to a node and a version number, and storemyver andmynode in that structure using
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the address of theLoc structure as the key. Each SC operation would get the appropriate
values ofmynode andmyver from the map, and after the SC completed, deallocate the
pointer/version-number pair.6

6.2.3 Space-adaptivity

We now state an invariant of the LL/SC algorithm that guarantees strong space-adaptivity. In
every reachable state, every noden is in one of the following states:

1. n is free.

2. Some processp has allocatedn during an SC operation (at line S1), and eitherp has
not completed line S4 orsuccess = false andp has completed line S4 but not
S5.

3. n is the noncurrent node, butn is not the predecessor of the current node. (At this point,
the current pointer has been set ton, but the SC operation that did so has not yet been
linearised.)

4. n is the current node.

5. n is the predecessor of the current node.

6. Some processp has pinnedn, but has not completed the invocation ofrelease(n).

7. Some processp has pinned the nodem such thatm->pred = n (i.e.,n is the prede-
cessor ofm), butp has not completed the invocation ofrelease(m).

Note that these states are not mutually exclusive. For example, a node may be in States
4 and 6 simultaneously. The proof of this invariant is a straightforward induction on the
executions of the algorithm. Initially, there are only two nodes allocated,ptr0 andptr1,
which respectively satisfy States 3 and 4. All other nodes are free. To show that the invariant
is preserved by each step of the algorithm, we argue for each step of the algorithm and each
noden, if n is in one of the seven states immediately before the step, then there is some state
containingn immediately after the step.

The following property, which we refer to as theclean propertyis important to this argu-
ment:

For every noden, if n has been the current node since it was last allocated, and
CLEAN(n->status) is false, then eithern is the current node, or there is some
processp that pinnedn during p’s most recent LL operation, andp has not yet
completed the invocationrelease(n).

6In Section 6.2.4, we discuss what would happen if an SC were invoked without a prior matching LL.
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This claim is justified as follows. IfCLEAN(n->status) is false, eithern->status.nlC
has not been set, orn->status.localC is nonzero. In the first case, eithern is the cur-
rent node, or there is some processp executing thetransfer procedure such thatp pinned
n during p’s most recent LL and has yet to completerelease(n). For the second case,
recall that whenn->status.nlC is true, n->status.localC counts the number of
processes that pinnedn but have not completedrelease(n).

Fix a noden. Below, we consider all the steps during whichn may “leave” one of the
states, in the sense thatn is in one of the states immediately before the step, but not inthat
state immediately after the step. We show for each such case that n is in one of the seven
states enumerated above after the step. This is sufficient toprove the invariant.

1. The only step during whichn can leave State 1 is by execution of line S1, ifn is
returned from the allocation. Afterwards,n is in State 2.

2. n can only leave State 2 by a successful CAS operation at S4 (ifn is the “new” value
of the CAS), or the completion of line S5 (ifn is the argument tofree). In the first
case,n is in State 3 after the CAS. In the second case,n is free after the deallocation.

3. n can only leave State 3 by a successful CAS at S7, which increments the version
number. Afterwards,n is in State 4.

4. The only step during whichn can leave State 4 is again by a successful CAS at S7.
Afterwards,n is in State 5.

5. n can only leave State 5 by a successful CAS at S4, overwritingn in the noncurrent ad-
dress. When this CAS is executed,n is the predecessor of the current node. The process
that executes this CAS pinned the current node during the matching LL. Therefore,n
is in State 7, both before and after the CAS.

6. n can only leave State 6 when the last processp that pinnedn completes itsrelease
operation. Ifp makesn’s status field FREEABLE during the operation, thenp frees
nbeforepcompletes therelease procedure, placingn in State 1. Otherwise, because
(by the clean property)n’s status field isCLEAN afterp decrementsn->localC,
it must be thatn->status.nlP is not set whenp decrementsn->localC. There-
fore, eithern is the predecessor of the current node, or there is some nodem such
that m->pred = n and some processq that pinnedm but has not completed the
release operation. In the first case,n is in State 4 after therelease operation. In
the second case,n is in State 7 after therelease operation. (In fact,n is in either
State 4 or State 7 both before and after the completion of the operation.)

7. n can only leave State 7 when the last processp that pinned the nodem, such that
m->pred = n, completes therelease operation. In this casepmakesm’s status
fieldCLEAN (by the clean property), and thus invokessetNLPred onn. If this makes
n’s status field FREEABLE, thenp freesn, sending it to State 1. Otherwise,n’s



176 CHAPTER 6. A POINTER-CLEAN LL/SC

status field is notCLEAN after thesetNLPred operation, and therefore,n is in
State 6 after the operation.

Thus, for each processp that has executed an LL but not completed the matching SC, there are
at most three nodes (other than the current node and its predecessor) that are not free: the node
pinned by the LL, that node’s predecessor, and possibly a newly allocated node. Therefore,
the space consumed by an LL/SC variable withk outstanding operations is bounded by a
multiple of 3k + 2 (the two extra nodes being the current and noncurrent nodes). Thus, the
LL/SC algorithm is strongly space-adaptive.

The space used byV LL/SC variables in a state withk outstanding LL operations is in
O(V + k). Furthermore, the space used byV LL/SC variables in a system withN processes
is bounded byO(V + N).

6.2.4 Optimisations and Extensions

Our LL/SC implementation can be made more efficient by observing that if
FREEABLE(post) holds before the CAS on line R5 or line P4, then the CAS does not
need to be executed;mynode can simply be freed because there are no processes that still
have torelease this node. Similarly, a process that callstransfer at line S8 will al-
ways subsequently callrelease at line S9. Therefore, we can combine the effect of the
two CASes in those two procedures into a single CAS.

It is easy to extend our implementation to provide a method for “validating” the previous
LL, that is, determining whether its future matching SC can still succeed. More precisely,
thevalidate operation returnstrue if and only if no SC operation has completed suc-
cessfully since the most recent LL of the process invokingvalidate. The implementation
of the validate operation simply determines whether the version number haschanged
since the linearisation point of the earlier LL, returningtrue if no change has occurred, and
false otherwise.

Hitherto, we have required every LL operation to be matched by an SC. There are ap-
plications in which it is desirable for a process to simply abandon an LL operation, without
calling a matching SC. So it is desirable to provide a way to indicate that no future SC will be
invoked, after an LL. If a process decides not to invoke a matching SC operation for a previ-
ous LL operation, it must instead invoke anunlink operation. The purpose of theunlink
operation is to allow the LL/SC variable to free resources associated with any earlier un-
matched LL operation of the same process. The only semantic effect of a processp executing
unlink on a given LL/SC variable is to render the effect of any futureSC byp undefined,
until p executes another LL operation. Theunlink operation can be implemented simply
by invoking release, which indicates that the node which was pinned by the earlier SC
can be deallocated. Note thatunlink would not be needed in an implementation that did
not allocate memory resources. It exists so that a process can indicate that memory resources
associated with an earlier LL may be released.

So far we have not defined the effect of a process invoking an SCon a location without
having invoked an earlier matching LL. In the case of our LL/SC implementation, an SC
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without a matching LL could access memory that has been deallocated, or could successfully
change the value of stored in the LL/SC variable. However, itis straightforward to modify our
algorithm so that an unmatched SC operation is guaranteed tofail and returnfalsewithout
accessing deallocated memory. We introduce another persistent local boolean variable, which
we callmatched, that we use as follows:

• Each LL operation setsmatched to true.

• Prior to executing the procedure defined in Figure 6.6, each SC operation checks
matched. If it is false, then the operation simply returnsfalse. If matched
istrue, then theSC operation continues as normal. After the SC operation completes
the code in Figure 6.6, it setsmatched to false.

To support several LL/SC variables in the application, we would keep thematched variable
along withmynode andmyver in the map from locations to persistent local variables.

6.3 Pointer-clean Lock-free Reference Counting

The LL/SC implementation just described is population-oblivious, pointer clean, space-adaptive
and enables the manipulation of data values of arbitrary size (it is awide synchronisation
primitive). Because of these properties, it can be used in the implementation of the lock-
free memory management technique of the previous chapter toovercome the problem that
our LFRC technique is not pointer clean. This yields a general, population oblivious and
pointer-clean, lock-free memory management technique.

We transform certain loops in our implementation that read aRC Ref object and later
use a CAS to conditionally update theref to a new value. Within these loops, we replace
the read with an LL operation and the CAS with an SC.7 To make this work, we must change
the type used to represent shared references. Therefore, weredefine theRC Ref type to
be the type of LL/SC variables that range over pointer/hold-count pairs. We declare a type
RefPair,

typedef struct {
RC Obj *ref;
int holdC;

}

This type is calledRC Ref in Chapter 5. We now redefineRC Ref to be the type ofLoc
structures defined in Figure 6.3, where theData type is identified withRefPair.

Figure 6.8 presents the implementation ofRC Load using LL/SC. The implementation
is just like that in Figure 5.7 on page 154 except for two differences. On line L4, we use an
LL operation to read the pointer and hold count contained at the locationr. On line L9, we

7It is frequently straightforward to transform a nonblocking algorithm that depends on CAS into one that
depends LL/SC operations, using this approach.
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void RC Load(RC Obj **o, RC Ref *r) {
L1. RefPair a;
L2. RC Obj *oldo := *o
L3. do {
L4. a := LL(r);
L5. if (a.ref = null) {
L6. *o := null;
L7. break;
L8. }
L9. } while(!SC(r, <a.ref, a.holdC+1>));
L10. *o := a.ref;
L11. RC Destroy(oldo);
}

Figure 6.8: TheRC Load procedure, modified to use LL/SC.

use an SC operation to attempt to increment the hold count at this location, retrying if the SC
fails.

The RC CAS andRC Store operations must also modifyRC Ref objects in shared
location. Both use a pattern similar toRC Load: each operation reads the current value of a
RC Ref, and later executes a CAS to modify theRC Ref, repeating the read and CAS until
the operation is successful. We replace each such read with an LL operation, and each such
CAS with an SC. The resulting implementations are presentedin Figures 6.9 and 6.9. All
other LFRC operations (includingUpdateStatus) are implemented as in Section 5.6.

Unfortunately, this approach requires (at least) one LL/SCpair for everyRC Load,
RC CAS andRC Store, which implies the use of multiple CAS operations, as well asan
allocation. This is likely to increase the latency of operations substantially, relative to the
original implementation presented in Chapter 5.

6.4 Related Work

Moir [Moi97] presents a simple and direct wait-free LL/SC implementation that uses CAS,
based on version numbering. The algorithm is lock-free and uses onlyO(V+k) space (where
V is the number of variables andk is the number of outstanding LL operations). Except when
the variable is initialised (when space must be allocated for the variable’s current value),
Apart from the memory containing the version number and the variable’s value, all memory
allocated remains accessible to only one thread. Unfortunately, the algorithm is not pointer
clean.

The only previous pointer clean, CAS-based implementationof LL/SC is due to Jayanti
and Petrovic [JP03]. While their implementation is wait-free, it requiresO(VN) space (where
N is the number of processes that can access the LL/SC variables); ours uses onlyO(V + N)
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bool RC CAS(RC Ref *r, RC Obj *old, RC Obj *new) {
C1. RefPair a;
C2. UpdateStatus(new,1,0);
C3. do {
C4. a := LL(r);
C5. if (a.ref != old) {
C6. UpdateStatus(new,-1,0);
C7. return false;
C8. }
C9. } while(!SC(r, <new, 0>));
C10.UpdateStatus(a.ref, -1, a.holdC);
C11.return true;
}

Figure 6.9: TheRC CAS procedure, modified to use LL/SC.

void RC Store(RC Ref*r, RC Obj *o) {
S1. RefPair a;
S2. UpdateStatus(o,1,0);
S3. do {
S4. a := LL(r);
S5. } while(!SC(r, <o,0>));
S6. UpdateStatus(a.ref, -1, a.holdC); }

Figure 6.10: TheRC Store procedure, modified to use LL/SC.
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space in the worst case. Furthermore, the implementation in[JP03] is not population oblivi-
ous or space-adaptive. These limitations are all related tothe fact that their technique uses one
single-writer/multi-reader variable for each process andLL/SC variable implemented. When
a process executes an SC operation, it stores the new value inthe single-writer/multi-reader
variable, and then attempts to modify a shared location so that all processes will observe the
new value as the abstract value of the LL/SC variable.

More recently, Jayanti and Petrovic have developed a wait-free LL/SC implementation
that is both pointer clean and population oblivious [JP05]8. The new implementation em-
ploys single-writer/multi-reader registers in a fashion similar to their earlier proposal [JP03].
However, these registers are managed within a structure, called adynamic array, that allows
for the number of registers to be increased dynamically, thus achieving population oblivi-
ousness. The resulting algorithm usesO(V2 + N) space. Their dynamic array is an array
that provides wait-free concurrent operations, and that allows writes to occur at any index,
expand ing as necessary. The implementation of the dynamic array presented in [JP05] is not
space-adaptive, and it is not clear how a space-adaptive implementation could be constructed.

Anderson and Moir [AM99] also describe a wait-free implementation of wide LL/SC
variables that requiresO(VN2) space. Again, their algorithm is neither population oblivious,
nor space adaptive.

The general techniques for lock-free memory management outlined in Section 5.7 of
Chapter 5 can be used to implement lock-free LL/SC variables, in much the same way as
garbage collection can. However, none of the extant memory management techniques are
both population oblivious and space-adaptive, so any LL/SCimplementation based on them
inherits these limitations. However, because the memory-management techniques do not
involve modification of shared counters during each operation, they are likely to result in
significantly faster LL/SC implementations.

6.5 Verifying the LL/SC Implementation

In this section, we describe the verification of the LL/SC algorithm given in this chapter. This
verification uses forward simulation only, not requiring backward simulation. The simula-
tion relation used is complicated relative to the forward simulation of Chapter 3, reflecting
the complexity of the algorithm itself. However, the techniques used are fundamentally the
same. For this reason, we do not describe the verification in as much detail as we did the
verifications of Chapters 3 and 4.

As with the M&S queue, the LL/SC implementation uses dynamically allocated memory.
However, unlike the M&S queue, it releases that memory back to the system. Therefore, we
must use a heap model in which dereferencing an unallocated pointer causes an error. This
reflects the fact that in most systems, accesses to unallocated memory are illegal. Such a
model is described in Section 6.5.2. The primary interest inthis verification (apart from the

8A population aware version of this algorithm is presented in[JP07]
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assurance it provides that our LL/SC implementation is correct) is this heap model, and the
implications that it has for our simulation proof.

The present verification uses only two automata:AbsAut, modelling the specification, and
ConcAut, modelling the implementation. Because there is no prophetic linearisation, we do
not need a backward simulation or an intermediate automaton. The specification automaton
AbsAut, is the canonical automaton for the LL/SC datatype, both of which are described
in Section 6.5.1. The implementation automatonConcAut, models the LL/SC algorithm
directly, and is explained in Section 6.5.3. We define a forward simulation between the two
automata as defined in Section 6.5.4. A proof has been constructed using the PVS proof
assistant that this relation is in fact a simulation.

6.5.1 The LL/SC Datatype and the Abstract Automaton

An LL/SC variable contains a current value (taken from some set V), and provides an LL
operation that reads the current value and an SC operation that modifies the current value,
assuming there has been no successful SC in the interval between the process’s SC and its last
LL. Lets V ars = V × P(PROC). An LL/SC variable x∈ V ars is a pair(x.val, x.procs),
wherex.val ∈ V andx.procs ⊆ PROC. Informally, x.val is the current value of the vari-
able, andx.procs is the set of processes that may currently execute successful SC operations.
We model LL operations using the functionLL : PROC × V ars → V ars× V defined by

LL(p, x) = ((x.val, x.procs ∪ {p}), x.val)

We model SC operations using the functionSC : PROC × V ars × V → V ars × bool
defined by

SC(p, x, v) =

{

((v,∅), true) if p ∈ x.procs
(x, false) otherwise

Given an initial valuev0, we define the initial states of the LL/SC datatype to be

Init = {x : V ars | x.val = v0 ∧ x.procs = ∅}

Note that each operation of the LL/SC datatype depends on theinvoking process, but
we wish to constrain our specification automaton so that no process may invoke an LL or
SC operation of a different process. This constitutes a constraint on the transition relation
of the abstract automaton. One way to express this constraint is to give the invocations of
the LL/SC datatype the invoking process as a parameter, and constrain the precondition of
the corresponding invocations of the abstract automaton sothat the process parameter of the
LL/SC invocation matches the process-index of then abstract automaton. However, we feel
that it is simpler to define the invocations of the LL/SC datatype so that they donot take a
process as an argument, and then define thedosteps of the abstract automaton so that they use
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ll invp :
prepcp = idle

eff pcp := ll inv

sc invp(v) :
prepcp = pc pending

eff pcp := sc inv(v)

do llp :
prepcp = ll inv

eff pcp := ll resp(π2(LL(p, var)))
var := π1(LL(p, var))

do scp :
prepcp = sc inv(v)
eff pcp := sc resp(π2(SC(p, var)))

var := π1(SC(p, var))

ll respp(v) :

prepcp = ll resp(v)
eff pcp := pc pending

sc respp(b) :

prepcp = sc resp(b)
eff pcp := idle

Figure 6.11: The transition relation ofAbsAut.

the process-index of thedoaction as the first argument to theLL orSC functions. Therefore,
we define the invocations and responses of the LL/SC datatypethus

I = {ll inv} ∪ {ll resp(v) | v ∈ V}

R = {ll resp(v) | v ∈ V} ∪ {sc resp(b) | b ∈ bool}

Because of this departure from the standard construction ofthe datatype, we do not define
an update function for the LL/SC. We use theLL andSC functions directly in the transition
relation of the abstract automaton.

There is a second constraint on the executions of the abstract automaton, which can be
regarded as an extension of the well-formedness criterion of Section 2.2.2. Each process must
invoke the LL and SC operations alternately. That is, SC may only be invoked by a process
p in an execution whenp’s most recent operation ofp is an LL; and LL may only be invoked
by p whenp’s most recent operation (if it exists) is an SC. We ensure that the executions of
the abstract automaton satisfy this constraint by introducing an extra program counter state
pc pending. When a processp completes an LL operation,pcp is set topc pending, and
the precondition of transitions representing the invocation of SC operations byp asserts that
pcp = pc pending.

Apart from the two caveats just describes, the abstract automatonAbsAutis just like the
canonical automata used so far in this thesis.AbsAuthas a shared variablevar that holds the
current value of the LL/SC variable. The initial status ofAbsAutare defined as follows:

startAbsAut= {ab | ab.var ∈ Init ∧ ∀ p • ab.pcp = idle}

The transition relation is presented in Figure 6.11.
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6.5.2 The Heap Model

The heap model that we present here is much like the model of Chapter 3, but is augmented
with an operationfree to free pointers, as well as a way to represent the fact that dereferenc-
ing or freeing pointers that are not allocated can result in an error. We writePOINTER for
the set of pointers,HEAP for the set of heaps, andFIELD = {data, pred, status} for
the set of fields. A heaph ∈ HEAP is a triple of the form

(h.unalloc,h.evalfn,h.error)

where

• h.unalloc⊆ POINTER is the set of unallocated pointers. We require thath.unalloc
be infinite.

• h.evalfn : POINTER × FIELD → POINTER returns the value of each field of
each node,

• andh.error ∈ bool is a flag used to distinguish error states of the heap from ordinary
states. That is,h.error = true iff some unallocated pointer has ever been dereferenced,
or passed tofree.

We use several functions that access and modify the state of aheap, and the values of the
various fields. As has already been mentioned,free deallocates a node. Another function
load loads the value of a field, andstore updates the value of a field. Finally,new allocates a
new node. We axiomatise these functions so that when the heapis in an error state (theerror
flag is set) the functions are undefined. Figure 6.12 presentsthese axiomatisations.

Note that these functions may be total (in fact, when formalised in PVS they are total).
They are undefined on some heaps in the sense that we cannot conclude anything about the
values that they take on those heaps.

The constraint thatunalloc be infinite allows us to avoid the additional complexity
present in the verification of Chapter 3, where we made each process loop during alloca-
tion if there was no available pointer.

6.5.3 The Concrete Automaton

Our construction or the concrete automaton, calledConcAut, from the code is much like that
of Chapter 3. A statecsof ConcAuthas a program-counter variablecs.pcp for each processp,
and a heapcs.h. Furthermore,cshas anentryvariablecs.entry∈ N× bool× bool modelling
theentry value of the LL/SC algorithm.cs.entry.count models thelocalC field of the
algorithm,cs.entry.nlC models thenlC flag, andcs.entry.nlP models thenlP flag.

The initial states ofConcAutare defined in Figure 6.13.ConcAuthas the same external
actions asAbsAut. We define the internal actions somewhat differently to the way we did
in Chapter 3. We combine some of the steps of the algorithm into pairs, such that each pair
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free(h,pt) = h′ ⇒

(¬h.error ∧ pt 6∈ h.unalloc ⇒

h′ = (false,h.unalloc ∪ {pt},h.eval))

∧

(h.error ∨ pt 6∈ h.unalloc ⇒

h′.error)

load(h,pt, f ) = (h′,pt′) ⇒

(¬h.error ∧ pt 6∈ h.unalloc ⇒

h′ = h∧ pt′ = h.eval(pt, f ))

∧

(h.error ∨ pt ∈ h.unalloc ⇒

h′.error)

store(h,pt, f , x) = h′ ⇒

(¬h.error ∧ pt 6∈ h.unalloc ⇒

h′ = (h.error,h.unalloc,h.eval ⊕ {(pt, f ) → x}))

∧

(h.error ∨ pt ∈ h.unalloc ⇒

h′.error)

new(h) = (h′,pt) ⇒

h.error = h′.error

∧

(¬h.error ⇒

pt 6= null ∧

pt ∈ h.unalloc ∧

h′.eval = h.eval ∧

h′.unalloc = h.unalloc \ {pt})

Figure 6.12: Axiomatisations of the heap functions.
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startConcAut=̂ (6.1)

{cs | cs.entry= (0, 0) ∧ (6.2)

valid pointer(cs.h,ptr0)∧ (6.3)

valid pointer(cs.h,ptr1)∧ (6.4)

cs.h.eval(ptr0, status) = INITSTAT ∧ (6.5)

cs.h.eval(ptr0,pred) = ptr1 ∧ (6.6)

cs.h.eval(ptr1, status) = (0, true, false)} (6.7)

Figure 6.13: The initial states ofConcAut.

contains some local operation, and at most one read, write orCAS operation. For example,
ConcAuthas an actiontrans  p modelling the execution by some processp of the lines T3
and T4 of thetransfer procedure in Figure 6.7. This constitutes a local operation(the
construction of a newstatus value), and one CAS.

This technique slightly reduces the number of actions that we must consider, and helps to
reduce the complexity of the verification. However, it meansthatConcAutdoes not directly
model all the interleavings possible in the actual algorithm. That is, we only model executions
in which certain pairs of actions are always adjacent, when in fact, they may be separated by
the actions of other processes. We justify this on the basis that all but one action of each such
pair may be reordered arbitrarily with the actions of all other processes. The actions that
model more than one step of the algorithm can be identified from the fact that they contain
more than one line number.

As in Chapter 3, we define a notation to use the heap functions in a more natural fashion.
Forcs∈ statesConcAut, pt ∈ POINTER andf ∈ FIELD, let

pt
cs
→f = load(cs.h, f)

6.5.4 The Simulation Relation

In this section we describe a forward simulation relation from ConcAutto AbsAut, the ex-
istence of which guarantees that the traces ofConcAutare traces ofAbsAut. This is by far
the most complicated simulation relation presented so far in the thesis, but it is constructed
along the same lines as the forward simulation of Chapter 3. The most interesting aspect of
the verification is how we show that no unallocated pointer isdereferenced.

Figure 6.19 presents the simulation relationSR, which is an existential quantification
over five functions. The predicaterel, also in Figure 6.19 describes the properties of these
functions, and their relationship to related states of the two automata. Each of these functions
records some aspect of the history of an execution. The domain of each function isN, and
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ll invp :
prepcp = idle

eff pcp := pc ll  

ll respp(v) :
prepcp = pc resp ll ∧

pt = π2(load data(h,mynodep))
eff pcp := pc pending,

h := π1(load data(h,mynodep))

ll  p :
prepcp = pc ll 2 3

eff pcp := pc ll 4,

ll ep := entry,
myverp := entry.ver

ll p :
prepcp = pc ll 4

eff pcp := pc ll ,

mynodep :=
CURRENT PTR(s,myverp)

,

ll p :
prepcp := pc ll 5

eff let suc= (ll ep = entry) in
pc := suc? pc resp ll

: pc ll 2 3,
entry :=

suc? (entry.ver,
entry.count+ 1)

: entry

Figure 6.14: The LL transitions ofConcAut.
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sc invp(v) :
prepcp := pc pending
eff pcp := pc sc ,

sc newdp := v

sc respp(b) :
prepcp := pc resp sc∧

sc successp = b
eff pcp := idle

sc p :
prepcp = pc sc 1

eff let (newh,pt) = new(h) in
pcp := pc sc 2a,
h := newh,
sc new ndp := pt

sc ap :
prepcp = pc sc 2a
eff pcp := pc sc 2b,

h := store data(h,
sc new ndp,
sc newdp)

sc bp :
prepcp = pc sc 2b
eff pcp := pc sc 2c,

h := store pred(h,
sc new ndp,mynodep)

sc cp :
prepcp = pc sc 2c
eff let newh= store stat(h,

sc new ndp,
INITSTAT ) in

pcp := pc sc 3,

h := newh

sc p :
prepcp = pc sc 3

eff pcp := pc sc 4,

(h,pred ndp) :=
load pred(h,mynodep)

sc p :
prepcp = pc sc 4

eff let (newptr0,newptr1, suc) =
CAS NONCURADDR

(s,myverp,
pred ndp,
sc new ndp) in

pcp := pc sc 5,

sc successp := true,
ptr0 := sc new ndp,
ptr1 := newptr1

sc p :
prepcp = pc sc 5

eff pcp := pc sc 6,

h := ¬sc successp ?
free(h, sc new ndp)
: h

sc p :
prepcp = pc sc 6

eff pcp := pc sc 7 9,

sc ep := entry

Figure 6.15: The SC transitions ofConcAut(continued in Figure 6.16).
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sc   nop :
prepcp = pc sc 7 9 ∧

sc ep.ver 6= myverp
eff pcp := pc rel 3

sc   yesp :
prepcp = pc sc 7 9 ∧

sc ep.ver = myverp ∧
sc ep = entry

eff pcp := pc trans 2,

entry := (sc ep.ver+ 1, 0),
trans countp := sc ep.count

sc   loopp :
prepcp = pc sc 7 9

sc ep.ver = myverp ∧
sc ep 6= entry

eff pcp := pc sc 6

Figure 6.16: The SC transitions ofConcAut(continued from Figure 6.15).

each function should be thought of as taking eachi that has been the version number at some
earlier point in the execution to some process or pointer that had a special relationship with
the version number. For some execution ofConcAut, let i be a natural number such thati was
the version number at some point in the execution.

• buffer(i) is the value of the pointer that was current whenn was the version number.

• winner(i) is the process whose successful SC operation maden the current version
number.

• If i is no longer the version number,transferer(i) is the process that executed the suc-
cessful CAS operation that changed the version number fromi to i +1, and thus trans-
ferred the hold count fromentry to buffer(i).

• If the nlP flag ofbuffer(i) has been set,setter(i) is the process that set that flag.

• If buffer(i) has been freed sincen was the version number,releaser(i) is the process
that calledfreeon buffer(i), releasing its memory back to the system.

As we shall see, these functions are applied throughout the simulation relation to constrain
properties of the nodes, and various processes. Furthermore, using these functions, it is easy
to show that there is a unique process that sets thenlP flag of each node, and a unique process
that releases each node.

As with previous verifications, the transfer condition of the definition of forward simula-
tion allows us to define a new function for each poststate, so that the properties listed above
can be preserved. In what follows, we use the convention thatif f is one of the function
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trans p :
prepcp = pc trans 2

eff pcp := pc trans 3 4,

(h,prep) :=
load stat(h,mynodep)

trans  p :
prepcp = pc trans 3 4

eff let postp = (prep.count+
trans countp,
true,prep.nlP) in

let (newh, suc) = CSTAT(h,
mynodep,
prep,post) in

pcp := suc? pc rel 3 : pc trans 2,

h := newh

rel p :
prepcp = pc rel 3
eff pcp := pc rel 4 6

(h,prep) :=
load stat(h,mynodep)

rel   nop :
prepcp = pc rel 4 6 ∧

prep 6= status(h,mynodep)
eff pcp := pc rel 3

rel   yesp :
prepcp = pc rel 4 6 ∧

prep = status(h,mynodep)
eff let postp = (prep.count− 1,

prep.nlC,prep.nlP) in
let newh= π1(CSTAT(h,mynodep,

prep,post)) in
pcp := CLEAN(post) ? pc set 2

: pc rel 7,
rel postp := post,
h := newh

rel p :
prepcp = pc rel 7
eff pcp := pc resp sc,

h := FREEABLE(rel postp) ?
free(h,mynodep)
: h

Figure 6.17: Thetransfer andrelease transitions ofConcAut.
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set p :
prepcp = pc set 2
eff pc := pc set 3 4,

(h,prep) :=
load stat(h,pred ndp)

set  p :
prepcp = pc set 3 4

eff let post= (prep.count,
prep.nlC, true) in

let (newh, suc) =
CSTAT(h,pred ndp,
CSTAT prep,post) in

pcp := suc? pc set 5
: pc set 2,

h := newh

set p :
prepcp = pc set 5
eff let post= (prep.count,

prep.nlC, true)in
pcp := pc rel 7,
h := FREEABLE(post) ?

free(h,pred ndp)
: h

Figure 6.18: ThesetNLPred transitions ofConcAut.
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SR(as, cs) =̂

∃ buffer,winner, transferer, setter, releaser•

rel(as, cs,buffer,winner, transferer, setter, releaser)

rel(as, cs,buffer,winner, transferer, setter, releaser) =̂

¬error(h(cs)) ∧

rc ok(cs,buffer, transferer) ∧

buffers ok(as, cs,buffer,winner, transferer) ∧

ll lin ok(as, cs,buffer,winner) ∧

sc lin ok(as, cs,buffer,winner) ∧

persistentsok(cs,buffer) ∧

distinctnessok(cs,buffer, transferer, setter, releaser) ∧

ll ok(as, cs) ∧

sc ok(as, cs) ∧

trans ok(cs, transferer) ∧

set ok(cs,buffer, transferer, setter) ∧

releaseok(cs, releaser) ∧

statusok(cs,buffer, transferer, setter, releaser)

Figure 6.19: The simulation relationSR, and the predicaterel.
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variables whose existence is asserted bySR, thenf ′ is the new function used to witness the
variablef in SRover the abstract and concrete poststates. For each transition of ConcAut, cs

a
−→ cs′, and abstract stateassuch thatSR(as, cs), we choose functions to witnessSR(as′, cs′)
as follows:

• If a = sc  yes p for somep, (modelling successful execution of the CAS at line S4),
then

buffer′ = buffer⊕ {cs.entry.ver+ 1 → cs.sc new ndp}

Otherwisebuffer′ = buffer.

• If a = sc  yesp for somep, then

winner′ = winner⊕ {cs.entry.ver+ 1 → p}

Otherwisewinner′ = winner.

• If a = sc   yesp for somep (modelling successful execution of the CAS at line S7),
then

transferer′ = transferer⊕ {cs.entry.ver → p}

Otherwisetransferer′ = transferer.

• If a = rel   yesp for somep (modelling the successful execution of the CAS at line

R6) and the value ofcs′.mynodep
cs′
→statusis CLEAN then

setter′ = setter⊕ {cs.myverp − 1 → p}

Therefore,p becomes the setter for the node that was current prior to the linearisation
point of p’s earlier LL operation. For othera, setter′ = setter.

• If a = rel   yesp for somep, and the value ofcs′.mynodep
cs′
→statusis FREEABLE

then

releaser′ = releaser⊕ {cs.myverp → p}

Otherwise,releaser′ = releaser.

We elaborate on the importance of these functions shortly. For now, we remark that the func-
tions transferer, setter andreleaser make it easy to prove that for each version number,
there is only one process that will perform thetransfer,setNLPred orfree operations
on the current node of that version number.

An important concept in our description of the algorithm in Section 6.2 was the notion
of pinninga node. Figure 6.21 presents the predicatepinning that formalises an analogous
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rc(cs,buffer, transferer, i) =̂










































0 cs.entry.ver < i

cs.entry.count i= cs.entry.ver

buffer(i)
cs
→status.count+

trans count(cs)(transferer(i)) during transfer(cs, transferer, i)

buffer(i)
cs
→status.count ∃ p • pinning(cs, i)(p)

0 otherwise

(6.8)

Figure 6.20: The reference-counting functionrc.

notion forversion numbers. A processp pins iat every point during the interval beginning
with the successful execution of the CAS at line L4 (ll p), and ending with the successful
execution of the CAS at line R5 (rel   yesp), and wheni = myverp. This is expressed
using program counter values.

One key difficulty in this verification is being able to prove that no read, write or CAS
to the heap dereferences a pointer that has been deallocated. We achieve this with the help
of a reference counting function, which is defined over concrete states using thebuffer and
transferer functions. This function does not assign reference counts to nodes, rather, it
assigns reference counts to natural numbers. As we shall see, the simulation relation asserts
that, for each dereference in the algorithm (with some minorexceptions), the version num-
ber during the interval when the node was current has a nonzero reference count. Further,
the simulation relation asserts that no node is deallocateduntil after the reference count of
it’s corresponding version number has reached zero. The reference-counting functionrc is
defined in Figure 6.20.

For each naturali, the reference count ofi is zero until the version number reachesi.
While i is the version number, its reference count is the value of thehold count. While
the hold count is being transfered tobuffer(i) by the processtransferer(i), i’s reference
count is the local count ofbuffer(i) plus the value thattransferer(i) is about to add to
buffer(i)→count. (The predicateduring transfer describes this interval formally, and is
presented in Figure 6.21). Once this transfer has been accomplished,i’s reference count is

the value ofbuffer(i)
count
→ , until no process is pinningi, at which pointi’s reference count

becomes zero. Note that because each natural number is only the version number once in any
execution, the reference count cannot become nonzero afterthere are no pinning processes.

Fix a transitioncs
a

−→ cs′. It is straightforward to prove the following:

• If a = sc  yesp for somep, thenrc(cs′,buffer′ , transferer′, cs′.entry.ver) = 0.

• If a = ll p for somep, andcs.ll ep = cs.entry,

rc(cs,buffer, transferer, cs.myverp) + 1 = rc(cs′,buffer′ , transferer′, cs′.myverp)
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pinning(cs, i) =̂{p |

myver(cc)(p) = i ∧

(cs.pcp = pc resp ll ∨ cs.pcp = pc pending ∨

cs.pcp = pc sc  ∨ cs.pcp = pc sc a ∨

cs.pcp = pc sc b ∨ cs.pcp = pc sc c ∨

cs.pcp = pc sc  ∨ cs.pcp = pc sc  ∨

cs.pcp = pc sc  ∨ cs.pcp = pc sc  ∨

cs.pcp = pc sc   ∨ cs.pcp = pc trans  ∨

cs.pcp = pc trans   ∨ cs.pcp = pc rel  ∨

cs.pcp = pc rel  )}

Figure 6.21: The setpinning of processes that pin a natural number.

during transfer(cs, transferer, i) =̂ (6.9)

let tr = transferer(i) in (6.10)

(cs.pctr = pc trans 2 ∨ (6.11)

cs.pctr = pc trans 3 4) ∧ (6.12)

cs.myvertr = i (6.13)

Figure 6.22: Theduring transfer predicate.
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rc ok(cs,buffer, transferer) =̂ (6.14)

∀ i •: rc(cs,buffer, transferer, i) =| pinning(cs, i) | (6.15)

Figure 6.23: Therc ok predicate.

• If a = rel   yesp for somep, then

rc(cs,buffer, transferer, cs.myverp)− 1 = rc(cs′,buffer′ , transferer′, cs′.myverp)

• No other action changes the value ofrc at any otheri ∈ N. In particular, if a =
trans  p andcs.mynodep

cs
→status= cs.prep, then the reference count ofcs.myverp

(and all other integers) is unchanged.

Equipped with the functionsrc andpinning, we are in a position to define an important
property that enables us to prove that no dereference to unallocated memory occurs. Fig-
ure 6.23 defines therc ok predicate, which states that therc function accurately counts the
number of processes that have pinned each natural number.

After the reference count of a numberi has fallen to 0, certain operations may still be
applied tobuffer(i). In particular,buffer(i)→status.nlP may be set during asetNLPred
operation, orbuffer(i) may be passed tofreeduring arelease or setNLPred oper-
ation. In each case, we need to show that when these operations occur,buffer(i) is still
allocated. The primary goal of theset ok andrelease ok predicates is to state properties
of the algorithm during those operations that allow us to prove that no node is freed when
it’s associated version number has a nonzero reference count, and moreover, that no node is
freed while a process executingsetNLPred or release might access the node. (Figure
6.24 presents theset ok predicate. Auxiliary predicates are presented in Figure 6.25. Figure
6.26 presents therelease ok predicate.)

Thestatus ok predicate is presented in Figure 6.27. This predicate describes properties
of thestatus field of each node, during the interval where the version number correspond-
ing to the node isactive. A numberi is active from the point wheni = entry.ver− 1 until the
point immediately beforebuffer(i) is passed tofree.

The predicatebuffers ok, presented in Figure 6.29, describes the state of theentry
field, and the nodes referenced byptr andptr. In particular, this predicate describes the
two configurations of the algorithm that are illustrated in Figure 6.2 on page 166. It also
asserts that thedata field of the current node contains the same value as the LL/SC variable
in related states of the abstract automaton.
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set ok(cs,buffer, transferer, setter) =̂

set ok1(cs,buffer, transferer, setter) ∧ (6.16)

set ok2(cs) (6.17)

(6.18)

set ok1(cs,buffer, transferer, setter) =̂

∀p • (in set(cs,p) ∧ ¬slow set(cs,p) ⇒ (6.19)

cs.myverp < cs.entry.ver∧ (6.20)

p = setter(cs.myverp − 1) ∧ (6.21)

rc(cs,buffer, transferer, cs.myverp) = 0 ∧ (6.22)

(cs.pcp = pc set 5 ∨ (6.23)

¬thepred(cs,p)
cs
→status.nlP) ∧ (6.24)

¬unallocated(cs.h, thepred(cs,p))) (6.25)

∧ (6.26)

(pc(cs)(p) = pc set 5 ∧ (6.27)

FREEABLE(cs.prep, count, cs.prep.nlC, true) ⇒ (6.28)

(cs.prep.count, cs.prep.nlC, true) = (6.29)

thepred(cs,p)
cs
→status) (6.30)

(6.31)

set ok2(cs) =̂

∀p,q • cs.pcp = pc set 5 ∧

FREEABLE(cs.prep.count, cs.prep.nlC, true) ∧ (6.32)

(in set(cs,q) ∨ pc(cs)(q) = pc rel 7) ∧

cs.myverp = cs.myverq + 1 ⇒

¬FREEABLE(cs.rel postq) (6.33)

Figure 6.24: Theset ok predicate.
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in set(cs,p) =̂

cs.pcp = pc set  ∨

cs.pcp = pc set   ∨

cs.pcp = pc set 

slow set(cs,p) =̂

cs.pcp = pc set  ∧

¬FREEABLE((cs.prep.count, cs.prep.nlC, true))

Figure 6.25: Auxiliary predicates ofset ok.

releaseok(cs, releaser) =̂

∀p • ((pc(cs)(p) = pc rel 3 ∨ pc(cs)(p) = pc rel 4 6 ∨

in set(cs,p) ∨ pc(cs)(p) = pc rel 7)

⇒ myver(cs)(p) < ver(entry(cs))) (6.34)

∧ (6.35)

((in set(cs,p) ∨ pc(cs)(p) = pc rel 7) ∧

FREEABLE(rel post(cs)(p))

⇒ p = releaser(myver(cs)(p)) ∧ (6.36)

cs.rel postp = cs.mynodep
cs
→status∧ (6.37)

valid pointer(cs.h, cs.mynodep)) (6.38)

Figure 6.26: Therelease ok predicate.
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statusok(cs,buffer, transferer, setter, releaser) =̂ (6.39)

statusok1(cs,buffer, transferer, setter, releaser) ∧ (6.40)

statusok2(cs,buffer, transferer, setter, releaser) ∧ (6.41)

statusok3(cs,buffer, transferer, setter, releaser) (6.42)

(6.43)

statusok1(cs,buffer, transferer, setter, releaser) =̂ (6.44)

∀ i • i < cs.entry.ver∧ active version(cs,buffer, transferer, setter, releaser, i) ⇒
(6.45)

(¬buffer(i)
cs
→status.nlC ⇔ during transfer(cs, transferer, i))) (6.46)

(6.47)

statusok2(cs,buffer, transferer, setter, releaser) =̂ (6.48)

∀ i • i < cs.entry.ver∧ (6.49)

active version(cs,buffer, transferer, setter, releaser, i) ⇒ (6.50)

i = cs.entry.ver− 1 ∨ (6.51)

(¬buffer(i)
cs
→status.nlP ∧ (∃ p • p ∈ pinning(cs, i + 1))) ∨ (6.52)

(¬buffer(i)
cs
→status.nlP ⇔ during set(cs, setter, i)) (6.53)

statusok3(cs,buffer, transferer, setter, releaser) =̂ (6.54)

∀ i • (i < ver(entry(cs)) ∧ (6.55)

active version(cs,buffer, transferer, setter, releaser, i) ⇒ (6.56)

i = ver(entry(cs)) − 1 ∨ (6.57)

0 < rc(cs,buffer, transferer)(i) ∨ (6.58)

buffer(i)
cs
→status.count= 0) (6.59)

Figure 6.27: Thestatus ok predicates.
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active version(cs,buffer, transferer, setter, releaser, i) =̂

let rl = releaser(i) in

let st= setter(i) in

let pre= cs.prest in

(i = cs.entry.ver+ 1 ∧ transient(cs)) ∨ (6.60)

i = cs.ver.entry∨ (6.61)

i = cs.ver.entry− 1 ∨ (6.62)

0 < rc(cs,buffer, transferer, i) ∨ (6.63)

0 < rc(cs,buffer, transferer, i + 1) ∨ (6.64)

(inset(cs, st) ∨ cs.myverst = i + 1 ∧ (6.65)

¬(cs.pcst = pcset5 ∧ (6.66)

¬FREEABLE((pre.count,pre.nlC, true)))) ∨ (6.67)

((inset(cs, rl) ∨ cs.pcrl = pcrel7) ∧ (6.68)

FREEABLE(cs.relpostrl ) ∧ cs.myverrl = i) (6.69)

Figure 6.28: Theactive version predicate.
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buffers ok(as, cs, buffer, winner, transferer) =̂

let cur = CURRENTPTR(cs, cs.entry.ver), (6.70)

let noncur= OLD PTR(cs, cs.entry.ver) in (6.71)

(cur = buffer(cs.entry.ver) ∧ (6.72)

cur
cs
→data= as.var.val ∧ (6.73)

cur
cs
→status= INIT STATUS∧ (6.74)

cur
cs
→pred= buffer(cs.entry.ver − 1) ∧ (6.75)

valid pointer(cs.h, cur) ∧ (6.76)

valid pointer(cs.h,buffer(cs.entry.ver − 1)) ∧ (6.77)

¬buffer(cs.entry.ver− 1)
cs
→status.nlP) ∧ (6.78)

(noncur= buffer(cs.entry.ver− 1) (6.79)

∨ (6.80)

(noncur= buffer(ver(entry(cs)) + 1) ∧ (6.81)

transient(cs) ∧ (6.82)

awaiting lin(cs, cs.entry.ver),winner(cs.entry.ver + 1) ∧ (6.83)

as.pcp = sc resp(old
cs
→data) ∧ (6.84)

old
cs
→status= INIT STATUS∧ (6.85)

old
cs
→pred= CURRENTPTR(cs, cs.entry.ver) ∧ (6.86)

valid pointer(cs.h,old))) (6.87)

Figure 6.29: Thebuffers ok predicate.
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awaiting lin(cs, i,p) =̂

(cs.pcp = pc set  ∨ (6.88)

cs.pcp = pc sc  ∨ (6.89)

cs.pcp = pc sc  ) ∧ (6.90)

cs.myverp = i (6.91)

(6.92)

modsnew node(cs,p) =̂ (6.93)

cs.pcp = pc sc a ∨ cs.pcp = pc sc b∨ (6.94)

cs.pcp = pc sc c ∨ cs.pcp = pc sc ∨ (6.95)

cs.pcp = pc sc ∨ (6.96)

(cs.pcp = pc sc  ∧ ¬cs.sc succp) (6.97)

Figure 6.30: Auxiliary predicates of the simulation relation.

transient(cs) =̂

OLD PTR(cs, ver(cs.entry)) 6=

CURRENTPTR(cs, cs.entry.ver)
cs
→pred

Figure 6.31: The predicatetransient, describing states in which the next SC to be linearised
has been determined, but the linearisation point has not yetbeen reached.

thepred(cs,p) =̂

thep































mynodep
cs
→pred

cs.pcp = pc resp ll ∨ cs.pcp = pc pending∨

cs.pcp = pc sc 1 ∨ cs.pcp = pc sc 2a∨

cs.pcp = pc sc 2b∨ cs.pcp = pc sc 2c∨

cs.pcp = pc sc 3

cs.pred ndp otherwise

Figure 6.32: Thethepredfunction, which returns the predecessor of the current nodeof a
process.
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during set(cs, setter, i) =̂

let st= setter(i) in (6.98)

(cs.pcst = pc set 2 ∨ cs.pcst = pc set 3 4) ∧ (6.99)

cs.myverst = i + 1 (6.100)

(6.101)

after release(cs,p) =̂

in set(cs,p) ∨ pc(cs)(p) = pc rel 7 (6.102)

Figure 6.33: Predicates defining important intervals in theexecution of SC operations.
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lin ok1(as, cs,buffer,winner, p) =̂

(cs.myverp = cs.entry.ver ≡ p ∈ as.var.procs) ∧ (6.103)

(thepred(cs,p) = OLD PTR(cs, cs.myverp) ⇒

cs.myverp = cs.entry.ver) ∧ (6.104)

(thepred(cs,p) 6= OLD PTR(cs, cs.myverp) ⇒ p 6= winnercs.myverp + 1) (6.105)

(6.106)

lin ok2(as, cs,buffer,winner, p) =̂

¬cs.sc successp ∧ (6.107)

p 6= winner(cs.myverp + 1) ∧ (6.108)

(cs.myverp = cs.entry.ver ⇒ transient(cs)) ∧ (6.109)

(cs.myverp 6= cs.entry.ver ≡ p 6∈ as.var.procs) ∧ (6.110)

as.pcp = pc do sc (6.111)

(6.112)

lin ok3(as, cs,buffer,winner, p) =̂

cs.sc successp) ∧ (6.113)

p = winner(cs.myverp + 1) ∧ (6.114)

cs.myverp = cs.entry.ver∧ (6.115)

transient(cs) ∧ (6.116)

p ∈ as.var.procs ∧ (6.117)

as.pcp = pc do sc (6.118)

(6.119)

lin ok4(as, cs,p) =̂

¬cs.sc successp ∧ p 6∈ as.var.procs ∧ (6.120)

as.pcp = pc do sc (6.121)

(6.122)

lin ok5(as, cs,winner,p) =̂

(cs.sc successp ≡ as.pcp = sc resp(true)) ∧ (6.123)

as.pcp = pc resp sc∧ (6.124)

cs.myverp < cs.entry.ver (6.125)

Figure 6.34: Thelin ok predicates.
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sc lin ok(as, cs,buffer,winner) =̂

∀ p • (pc(cs)(p) = pc pending⇒

as.pcp = pc pending∧ (6.126)

lin ok1(ab, cs,buffer,winner, p)) (6.127)

∧ (6.128)

((pc(cs)(p) = pc sc 1 ∨ pc(cs)(p) = pc sc 2a∨ (6.129)

pc(cs)(p) = pc sc 2b∨ pc(cs)(p) = pc sc 2c∨ (6.130)

pc(cs)(p) = pc sc 3 ∨ pc(cs)(p) = pc sc 4) ⇒

pc(ab)(p) = pc do sc∧ (6.131)

lin ok1(ab, cs,buffer,winner,p)) (6.132)

∧ (6.133)

(pc(cs)(p) = pc sc 5 ∨ pc(cs)(p) = pc sc 6 ∨ (6.134)

pc(cs)(p) = pc sc 7 9 ⇒

lin ok2(ab, cs,buffer,winner,p) (6.135)

∨ (6.136)

lin ok3(ab, cs,buffer,winner,p) (6.137)

∨ (6.138)

(lin ok5(ab, cs,winner,p) ∧ (6.139)

success(ab)(p) ∧ (6.140)

p = winner(myver(cs)(p) + 1))) (6.141)

∧ (6.142)

(pc(cs)(p) = pc trans 2 ∧ p/ = winner(myver(cs)(p) + 1) ⇒ (6.143)

lin ok4(ab, cs,p)) (6.144)

∧ (6.145)

((pc(cs)(p) = pc trans 3 4 ∨ pc(cs)(p) = pc rel 3 ∨ (6.146)

pc(cs)(p) = pc rel 4 6 ∨ pc(cs)(p) = pc rel 7 ∨ (6.147)

inset(cs,p) ∨ pc(cs)(p) = pc resp sc) (6.148)

⇒ lin ok5(ab, cs,winner,p)) (6.149)

Figure 6.35: Thesc lin ok predicate.
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persistentsok(cs,buffer) =̂

∀p • (¬(pc(cs)(p) = idle∨ pc(cs)(p) = pc ll 2 3 ∨ (6.150)

pc(cs)(p) = pc ll 4 ∨ pc(cs)(p) = pc ll 5 ∨ (6.151)

in set(cs,p) ∨ pc(cs)(p) = pc rel 7 ∨ (6.152)

pc(cs)(p) = pc resp sc) ⇒

¬unallocated(cs.h, thepred(cs,p)) ∧ (6.153)

¬thepred(cs,p)
cs
→status.nlP) (6.154)

∧ (6.155)

(¬(pc(cs)(p) = idle∨ pc(cs)(p) = pc ll 2 3 ∨ (6.156)

pc(cs)(p) = pc ll 4 ∨ pc(cs)(p) = pc ll 5 ∨ (6.157)

pc(cs)(p) = pc resp sc) ⇒

(valid pointer(h(cs),mynode(cs)(p)) ∨ after release(cs,p)) ∧ (6.158)

thepred(cs,p) 6= null ∧ (6.159)

mynode(cs)(p) = buffer(myver(cs)(p)) ∧ (6.160)

thepred(cs,p) = buffer(myver(cs)(p) − 1) ∧ (6.161)

mynode(cs)(p)/ = thepred(cs,p) ∧ (6.162)

myver(cs)(p) <= ver(entry(cs))) (6.163)
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distinctnessok1(cs,buffer, transferer, setter, releaser) =̂

∀ i, j • active version(cs,buffer, transferer, setter, releaser, i) ∧ (6.164)

active version(cs,buffer, transferer, setter, releaser, j) ∧ i/ = j

⇒ buffer(i)/ = buffer(j) (6.165)

(6.166)

distinctnessok2(cs,buffer, transferer, setter, releaser) =̂ (6.167)

∀ p, i • active version(cs,buffer, transferer, setter, releaser, i) ∧ (6.168)

modsnew node(cs,p) ⇒

sc new nd(cs)(p)/ = buffer(i) (6.169)

(6.170)

distinctnessok3(cs) =̂

∀ p,q • modsnew node(cs,p) ∧ modsnew node(cs,q) ∧ p/ = q (6.171)

⇒ sc new nd(cs)(p)/ = sc new nd(cs)(q) (6.172)

distinctnessok(cs,buffer, transferer, setter, releaser) =̂

distinctnessok1(cs,buffer, transferer, setter, releaser) ∧ (6.173)

distinctnessok2(cs,buffer, transferer, setter, releaser) ∧ (6.174)

distinctnessok3(cs) (6.175)
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ll ok(ab, cs) =̂

∀p • (pc(cs)(p) = pcl l 5 ⇒ myver(cs)(p) = ver(ll e(cs)(p)) ∧ (6.176)

(¬myver(cs)(p) = ver(entry(cs)) (6.177)

∨ (6.178)

mynode(cs)(p) = CURRENTPTR(cs,myver(cs)(p)))) (6.179)

∧ (6.180)

(pc(cs)(p) = pc resp ll ⇒ data(h(cs))(mynode(cs)(p)) = val(ab)(p)) (6.181)

(6.182)

sc ok(ab, cs)eqdef (6.183)

∀p • (pc(cs)(p) = pc sc 1 ∨ pc(cs)(p) = pc sc 2a∨ pc(cs)(p) = pc sc 2b∨
(6.184)

pc(cs)(p) = pc sc 2c∨ pc(cs)(p) = pc sc 3 ∨ pc(cs)(p) = pc sc 4 (6.185)

⇒ sc newd(cs)(p) = val(ab)(p)) (6.186)

∧ (6.187)

(modsnew node(cs,p) ⇒

valid pointer(h(cs), sc new nd(cs)(p))) (6.188)

∧ (6.189)

(pc(cs)(p) = pc sc 2b∨ pc(cs)(p) = pc sc 2c∨ pc(cs)(p) = pc sc 3 ∨ (6.190)

pc(cs)(p) = pc sc 4 ⇒

data(h(cs))(sc new nd(cs)(p)) = sc newd(cs)(p)) (6.191)

∧ (6.192)

(pc(cs)(p) = pc sc 2c∨ pc(cs)(p) = pc sc 3 ∨ (6.193)

pc(cs)(p) = pc sc 4 (6.194)

⇒ pred(h(cs))(sc new nd(cs)(p)) = mynode(cs)(p)) (6.195)

∧ (6.196)

(pc(cs)(p) = pc sc 3 ∨ pc(cs)(p) = pc sc 4 (6.197)

⇒ sc new ndp
cs
→status= INIT STAT) (6.198)

∧ (6.199)

(pc(cs)(p) = pc sc 7 9 ⇒ ver(sc e(cs)(p)) <= ver(entry(cs)) ∧ (6.200)

myver(cs)(p) <= ver(sc e(cs)(p))) (6.201)
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trans ok(cs, transferer) =̂ (6.202)

∀p •(pc(cs)(p) = pc trans 2 ∨ pc(cs)(p) = pc trans 3 4) (6.203)

⇒ p = transferer(myver(cs)(p)) ∧ (6.204)

myver(cs)(p) < ver(entry(cs)) ∧ (6.205)

¬cs.mynodep
cs
→status.nlC (6.206)
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6.6 Concluding Remarks

The main result of this chapter is a lock-free LL/SC implementation that is space-adaptive,
population oblivious and pointer clean. We have applied this implementation to the LFRC
technique of the previous chapter, to obtain a general pointer-clean and population obliv-
ious lock-free memory-management technique. We believe that this is the first memory-
management technique to possess all of these properties.

The LL/SC implementation presented here depends for its correctness on properties of
the memory allocator. If the algorithm is used with a memory allocator that is not lock-
free, then the algorithm will not be lock-free in that context. [DG02] presents a lock-free
memory allocator that can be used with our algorithm, preserving its advantages. However,
it exploits certain system properties that are not widely available. [DHLM04] presents a
lock-free freelist that is population oblivious, pointer clean and space-adaptive (it can safely
release memory back to the system when the memory is no longerrequired by a client appli-
cation). Because of these properties, it can be used to manage memory buffers for our LL/SC
implementation.
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Chapter 7

Conclusions

In this concluding chapter we evaluate the contributions presented in this thesis, and discuss
possibilities for future work. The contributions of this thesis are divided into two categories.
Part I is concerned with the verification of nonblocking algorithms, and Part II is concerned
with their design. Inverting the order of the thesis’s parts, and reverting to the order of the
title, Section 7.1 evaluates the work of Part II, and Section7.2 evaluates the work of Part I.
Section 7.3 describes a new verification methodology known as separation logicthat seems
very promising. Separation logic has been used in the verification of nonblocking algo-
rithms, and addresses modelling issues that have been ignored in our framework. Separation
logic is a member of a family of verification techniques originating with the work of Floyd
[Flo67] and Hoare [Hoa69], which we refer to asaxiomatictechniques, and describe by way
of background in Section 7.3. Section 7.4 discusses verification issues raised bytransac-
tional memory, a technique for constructing concurrent implementationsof shared objects
that has recently attracted a great deal of interest in the nonblocking algorithms community
and beyond.

7.1 Nonblocking Algorithms

The LL/SC algorithm presented in Chapter 6 is the first nonblocking algorithm that is space-
adaptive, population oblivious and pointer-clean. Furthermore, in combination with the
LFRC technique of Chapter 5, the LL/SC algorithm can be used to make any garbage collec-
tion dependent algorithm space adaptive, population oblivious and pointer-clean. These are
important properties for practical algorithms. However, the techniques presented in Part II re-
quire at least one atomic modification of a counter value for every operation; some operations
require several such modifications. For this reason, it is likely that our LL/SC implementation
will perform worse than some other proposals that do not enjoy the same generality. It is very
likely that the most efficient existing techniques for obtaining space-adaptive algorithms are
the guard based proposals of [HLM02b, HLMM05] and [Mic02, Mic04]. As noted in Chapter
5, these techniques are not themselves space-adaptive, andin some versions, are not popu-
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lation oblivious. However, it seems that they could be made space adaptive and population
oblivious using the techniques of Part II. It is fairly straightforward to achieve population
obliviousness. [HLM03b] and [Mic04] both present techniques for achieving this. The idea
is that rather than using an array of guards, which must be allocated with a particular size
(as originally proposed in [HLM02b, Mic02]), guards are allocated in a linked-list which can
be dynamically expanded. [HLM03b] extends this approach with a reference-counting tech-
nique that allows guards to be deallocated when they are no longer needed. As mentioned in
Chapter 5, this technique enables the construction of weakly space-adaptive algorithms.

Thus, the goal is to obtain a solution that is strongly space-adaptive, while preserving the
performance properties of the guard-based proposals. We can use the techniques of Part II
to construct a linked-list from which deallocation is possible, even in the presence of process
failures. Traversing this list would be at least as expensive as the technique presented in
[HLM03b], but using the guards within application code would be as cheap as the original
proposals [HLM02b, Mic04]. However, a traversal of the listof guards must occur when-
ever any memory is to be freed, so it would be useful to optimise this step. One appealing
possibility is to have two linked lists of guards. The first, which we call theprimary list, is
used for application purposes. The second, which we call theauxiliary list, is used to safely
traverse the primary list, while enabling deallocation from the primary list. Thus, guards in
the auxiliary list would be used to protect nodes in the primary list. Because guards in the
auxiliary list are only used during operations on one data structure (the primary list), and
the operations of this data structure can be implemented using a statically known number of
guards,1 each process needs only a statically determined number of guards in the auxiliary
list.

In this scheme, traversal of the primary list would be possible without manipulating
counts, and would thus recover much of the efficiency of the array-based approach. Traversal
of the auxiliary list would depend on the techniques of Part II, and would thus be significantly
slower. However, traversals of the auxiliary list would occur much less frequently under ex-
pected loads. This is because the auxiliary list only needs to be traversed when guards from
the primary list are destroyed. We would expect these eventsto be substantially less frequent
than the deallocation of memory by the application itself.

One interesting verification issue raised by these algorithms is the question of verifying
space-adaptivity. Space-adaptivity is a safety property,like an invariant, and is therefore
proved by induction on the length of executions. However, trace inclusion does nothing to
capture space adaptivity. The idea would be to introduce a function that measured space us-
age in each state, and prove that in all reachable states, this function sits within an appropriate
bound.

1The necessary operations, inserting a new guard, removing aguard, and traversing the list collecting the
guards, all require at most three guards.
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7.2 Verification

The verifications presented in this thesis are based on labelled-transition systems and simula-
tion relations. Labelled-transition systems are very general structures that have been used to
model a broad class of computer systems. This enables the construction of full behavioural
verifications of unbounded or infinite state models within a uniform setting. Furthermore,
because labelled-transition systems and their propertiescan be expressed in ordinary mathe-
matical notation, it is straightforward to express the model in the language of a proof checker,
and so to construct formal and precise proofs.

Simulation relations themselves provide additional advantages. There is a natural cor-
respondence between the linearisation points of an algorithm, and the step-correspondence
of the simulation relation used to verify the algorithm. Furthermore, simulation relations
can deal with unusual or complicated linearisation points.For example, the verification in
Chapter 6 has executions where the step of one process can be the linearisation point of an-
other process. A more important example is the question of delayed serialisation: backward
simulation provides a natural way to treat delayed serialisation. These unusual patterns of
linearisation seem to be very important in nonblocking algorithms.

However, there are significant disadvantages to fully deductive verification based on
labelled-transition systems and simulation relations. One prominent problem is the issue
of coding: the models presented in this thesis are large and complex, and this size and com-
plexity affects the simulation relations as well. This coding is tedious and (in the absence of
automation) error prone, and the loss of syntactic structure makes the verification difficult.
For example, our models contain no information about the scope of variables, and informa-
tion about allocation of references that is obvious in the pseudocode is lost.

Another problem is that the human effort and skill needed to construct a formal proof is
substantial. As discussed in Sections 2.1 and 3.6, many verification techniques employ auto-
matic methods, which can verify properties of systems without human intervention within a
few seconds or hours. The price of the generality of labelled-transition systems is the extra
effort required in verifying their properties.

Sections 7.2.1 and 7.2.2 describe further limitations of our approach, and make tenta-
tive suggestions as to how they might be addressed. In particular, Section 7.2.1 describes
difficulties associated with representing the compositionof shared-memory objects in the
I/O automaton framework, and Section 7.2.2 outlines the relevance of relaxed consistency
models to nonblocking algorithms and their verification.

7.2.1 Compositionality

Currently, we do not make use of the facilities for composingautomata provided in the I/O
automaton framework. The notion of composition defined in this framework is not well
suited to reasoning about collections of objects in shared-memory. Rather, it is designed
to model the composition of distributed processes that communicate via message passing.
This focus on distributed systems has two important drawbacks for using the same notion of
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composition in a shared-memory setting.
First, objects in shared memory share their state. At least,they share the same heap and

address space. Also, several objects may share the same freelist or other supporting data
structures. Because of this, the behaviour of a compositionof objects depends on how each
object manipulates this shared state. This is quite different to a message passing system,
where the state of each object (process) is isolated from thestates of all other objects.

Second, the compositionality principle for I/O automata requires that the composed au-
tomata be input-enabled. This condition seems unnatural for automata that model objects
in shared memory. In a shared-memory context, when a processinvokes an operation on
some object, that process is guaranteed to do nothing else until the operation is complete.
Therefore, the input actions (invocations) are simply not enabled in all states.

Both these issues can be addressed within the I/O automaton framework, but with some
cost. The second issue is perhaps more straightforward thanthe first. It is possible to define
the transition relations of automata that represent datatypes so that input (i.e., invocation) ac-
tions are input enabled, and require that these actions are invoked by a process only when that
process has no pending operations. This amounts to placing aconstraint on the environment
of the automaton. Such an approach is used in [Lyn96, Section13.2]. One drawback is that
it becomes necessary to prove that whenever an input action occurs on a client automaton,
there is no pending operation in the datatype automaton.

A more important issue is that we still have no guidance abouthow to deal with the
fact that different data structures may share the same heap,or other state. Note that the
specification of a shared-memory object will frequently notmention heap operations. These
are typically not visible in the specification and are hiddenby its implementations. (In this
thesis, we have achieved this hiding by making actions that correspond to reads, writes and
allocations into internal actions.) However, in order to compose one shared memory object
with another, it is necessary to have some guarantee about how each object will manipulate
the heap. This means that our specifications would need to include such information, and our
composition rule would need to exploit this information.

The work discussed in Section 7.3 addresses the issue of compositionality more directly.

7.2.2 Relaxed Consistency Models

One important issue that has not been treated in this thesis is the question of relaxed con-
sistency models. We have assumed that all operations on shared memory are atomic. This
assumption is not satisfied by most implementations of shared memory. The impact of opera-
tion reordering is more important in nonblocking algorithms than algorithms that use mutual
exclusion. This is because primitives that support mutual exclusion, such as locks, typically
implement semantics guaranteeing that if every location isonly accessed under mutual ex-
clusion, then all read and write operations will appear to besequentially consistent. Such
semantics can be expressed by defining a constraint on code, such that code satisfying the
constraint is guaranteed to behave as if the underlying memory were sequentially consistent
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[AH90, MPA05].2 Unfortunately, nonblocking algorithms frequently do not satisfy data-
race freedom constraints. Therefore, when implementing a nonblocking algorithm on real
hardware, the programmer must be aware of reorderings allowed by the memory model. So
the need to deal directly with relaxed consistency models inthe verification of nonblocking
algorithms is more pressing than in lock-based, shared-memory algorithms.

[CLMT05] uses an I/O automaton model, referred to as apartial-order machine, to repre-
sent a shared memory system conforming to a specific relaxed consistency model. It would be
interesting to use such an automaton as the basis for models of nonblocking algorithms run-
ning over shared memory systems exhibiting various flavoursof relaxed consistency. How-
ever, constructing a plausible model is quite different to completing a proof of correctness.
It is unclear whether the method of transition systems and simulation relations would be
effective for constructing formal verifications.

We return to the issue of relaxed consistency models in Section 7.3.

7.3 Axiomatic Approaches

This thesis has used labelled-transition systems as modelsfor concurrent shared-memory sys-
tems. However, there is a tradition of usingaxiomatic semanticsof programming languages
as the basis for modelling and verifying shared-memory concurrent systems. Axiomatic se-
mantics, as applied to sequential systems, originates withthe work of Floyd [Flo67] and
Hoare [Hoa69]. (Notations that use the axiomatic style are sometimes referred to asHoare
logics.) There have been several proposals for extending the axiomatic approach to con-
current systems, for example [Hoa73, OG76, LS84], and recently there has been a flurry of
work in this area [Bro04, O’H07, VP07] (based on [IO01, Rey02]). In this section, we out-
line the axiomatic approach and describe recent advances, and we evaluate the advantages
and disadvantages of these approaches relative to our transition-system based techniques.

In the axiomatic approach, the effect (or meaning) of a program is described using pre-
and postconditions. That is, assertions of the form “if the values of the program variables
satisfyP before the program is executed, then they satisfyQ when the program terminates”.3

Such assertions are written formally as

{P}S{Q}

whereS is the program in question. HereP is referred to as the precondition andQ as the
postcondition. Normally,P and Q are written in some version of first-order logic. Such
assertions can be used to formalise the semantics of programming languages and also of data
structures and their operations. Specifications of data structures typically involve the use of
auxiliary variables.

2Real memory models tend to provide additional guarantees about the possible behaviour of memory accesses.
We ignore that detail here.

3We ignore here the possibility that our programs, or their constituent commands, fail to terminate.
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One advantage of the axiomatic approach is that the effect ofeach program is specified
in terms of the effect of its component parts, thus exploiting the structure of the syntax. For
example, if we know that the programS is such that{P}S{Q} and the programT is such that
{Q}T{R} then we can conclude that the effect of thesequential compositionof S andT is
{P}S; T{R}.

The fact that we are axiomatising the effect of a program using its syntactic structure
provides one of the most important advantages of the axiomatic approach over our labelled-
transition system techniques. The complicated and error prone encoding into labelled-transition
systems is unnecessary. Furthermore, in the axiomatic approach it is possible to exploit the
structure of code to generate the properties (or invariants) that are needed to make the proof
work.

Perhaps the most important early attempt at applying the axiomatic approach to concur-
rent programs is the work of Owicki and Gries [OG76]. Unfortunately, their techniques,
along with others (e.g., [Hoa73]), did not address the issueof pointers, and the possibility of
aliasing that they introduce. Furthermore, they did not deal directly with dynamic memory
allocation. However, a new approach known asseparation logic[Rey02, O’H07] attempts to
address these issues.

Syntactically, the key aspect of separation logic is its useof a connective known assepa-
rating conjunctionthat behaves like ordinary conjunction in propositional logic, except that
each of its arguments refers to (is about) disjoint parts of the heap. This interpretation is
enforced by the proof rules governing separating conjunction. Separating conjunction allows
the statement and proof of heap properties, without needingto explicitly state properties
about aliasing relationships or reachability.

Separation logic has been used to verify a version of the Treiber stack [PBO07], as well as
several other sequential and concurrent algorithms ([O’H07] presents examples, and provides
pointers to other verifications in the literature).

One appealing aspect of this work is that a form of composition can be directly achieved
using separating conjunction, even in the presence of shared heap state. Because each argu-
ment of a separating conjunction is about disjoint parts of the heap, each separating conjunc-
tion guarantees that the heap operations of two objects thatsatisfy the specification cannot
interfere.

Mechanical assistance for theorem proving in separation logic is at a preliminary stage.
An application calledSmallfoot[BCO06, SmF] can be used to verify both sequential and
concurrent code using separation logic. However, as yet Smallfoot does not provide any
facilities for human interaction: proofs must be found automatically by the application or not
at all. Furthermore, there are limited definitional facilities. Predicates describing singly- and
doubly-linked lists are hardwired into the application, soas to allow nontrivial verifications.
Inductive definitions cannot be directly expressed in Smallfoot’s specification language. It is
likely that these limitations can be overcome, given sufficient attention. However, it seems
likely that useful mechanical assistance for proofs of significant size will not be available
until the work on Smallfoot has advanced substantially.
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7.4 Transactional Memory

Much of the recent work in the field of nonblocking algorithmsis concerned with the devel-
opment and use oftransactional memory[HM93]. Much of this work has focussed on hard-
ware implementations of transactional memory [AAK+05, MBM+06, BMV+07], but there
are several software-only implementations [ST95, HLM02a,HF03, DSS06, SATH+06], and
implementations that use hardware transactional-memory primitives, augmented by software
[DFL+06, MTC+07]. The implementations that involve a software aspect arefrequently as
complicated as nonblocking implementations of standard data structures. Thus, they present
interesting and important verification challenges.

However, there are important questions about the semanticsof transactional memory,
among them:

• How do transactional operations interact with nontransactional operations? For exam-
ple, can a transaction observe writes executed by a process not executing a transaction?

• How should exceptions thrown during a transaction be propagated?

• What progress guarantees are desirable, and in what situations? Must the system guar-
antee progress to each transaction? Or is progress on a system wide basis acceptable
(as with lock-freedom)? Are probabilistic guarantees acceptable? Must transactions be
able to survive across page-faults or descheduling of the process executing the trans-
action?

These issues, which are the subject of recent work (e.g., [MG08, ABHI08]) are of particular
relevance to the specification of transactional memory systems. [MG08, ABHI08] do not use
transition systems (at least, not of the kind used in this thesis) in the specification of transac-
tional memory. Rather, they apply techniques developed to provide operational semantics for
programming languages. Therefore, using labelled-transition systems such as I/O automata
to describe the semantics of transactional memory might be interesting in itself. Another
possibility is to adapt the techniques of operational semantics to define I/O automata rep-
resenting transactional memory. In any case, the development of techniques for specifying
transactional memory systems such that their implementations can be naturally verified is an
important goal.

The growth in popularity of transactional memory may increase the need for nonblock-
ing memory management solutions of the kind discussed in Part II of the thesis, and Section
7.1 of this chapter. Most proposed transactional memory implementations that depend on
software (whether software only or hybrid) depend for theircorrectness on the system not
releasing memory that may be accessed by a delayed transaction ([DSS06] is one exception).
For this reason, many such proposals assume the presence of agarbage collector. However, if
software or hybrid transactional memory is to be applicableoutside of garbage collected en-
vironments, efficient and correct concurrent memory management techniques must be found.
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