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Abstract 

Under certain regimens of repeated pre-exposure, psychostimulant drugs show 

an increase in locomotor activity across days of testing and, after abstinence 

from the drug, a greater responsiveness to a subsequent challenge dose of the 

drug. This phenomenon, termed behavioural sensitisation, is thought to 

underlie certain aspects of drug addiction such as drug seeking and relapse. 

Repeated administration of +/-3, 4-Methylenedioxymethamphetamine 

(MDMA, ecstasy) produced sensitised hyperactivity in rats suggesting a lasting 

neurological change. The present studies sought to evaluate some of the 

parameters around both the induction and expression of behavioural 

sensitisation to MDMA and to evaluate if the sensitivity of the dopamine (DA) 

D1 and D2 receptors had altered under the current pre-exposure regimen of 

MDMA. Further, following MDMA pre-exposure that results n behavioural 

sensitisation, changes in potency to the reinforcing effects of MDMA were 

investigated through the self administration paradigm. Finally, high 

performance liquid chromatography (HPLC) was used to evaluate changes in 

brain amine levels following sensitisation to MDMA locomotor activating 

effects. 

 

Rats received a pre-treatment regimen consisting of 5 daily injections of 

MDMA (0.0, 5.0 or 10mg/kg i.p). MDMA-produced locomotor activity was 

measured after 2, 9 or 28 days of withdrawal. In other groups, hyperactivity 

following administration the DA D1 agonist SKF81297 (0.0, 0.5, 1.0, 2.0, 4.0 

or 8.0 mg/kg), or the D2-like DA agonist apomorphine (0.0, 0.5, 1.0, 2.0 or 4.0 

mg/kg) was measured in groups that received pre-exposure to MDMA (10.0 
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mg/kg) or vehicle. The effects of the D1 antagonist SCH23390 (0.0, 0.01, 0.02, 

or 0.04 mg/kg), the D2 antagonist eticlopride (0.03, 0.01, 0.003, 0.05, 0.1, or 

0.2 mg/kg) or the 5-HT2C antagonist RS102221 (0.0, 0.25, 0.5, or 1.0 mg/kg) 

on MDMA-produced hyperactivity in MDMA or vehicle pre-treated rats was 

also measured. In Experiment 3, effects of MDMA or vehicle pre-treatment on 

latency to acquisition of MDMA (0.5 or 1.0 mg/kg/infusion) self-

administration was measured. In Experiment 4 effects of pre-treatment on brain 

tissue levels of  DA, its metabolite homovanillic acid (HVA), serotonin (5-HT) 

and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) were determined.  

 

The regimen of 5 daily treatments of 10.0mg/kg produced persistent 

behavioural sensitisation and cross-sensitisation to hyperactivity produced by 

DA receptor agonists. These effects were not, however, reflected in sensitised 

responses to the ability of the antagonists to attenuate MDMA-produced 

hyperactivity. Pre-treatment with MDMA did not decrease latency to 

acquisition of self-administration. Rather, there was an increased latency to 

acquisition of self-administration in the MDMA pre-treated rats. MDMA pre-

treatment decreased levels of the serotonin metabolite 5-HIAA in the frontal 

cortex and hippocampus. Following the current pre-treatment regimen, MDMA 

produced behavioural sensitisation is mediated by neuroadaptations in central 

dopaminergic substrates. The persistent locomotor sensitisation is similar to 

that produced by other amphetamine-like stimulants and might underlie use 

and abuse of this compound.  
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MDMA 

 

The amphetamine derivative, 3, 4-methylenedioxymethamphetamine 

(MDMA or ‘ecstasy’) was synthesised around 1912 and a patent was 

granted in 1914 (Green, Mechan, Elliott, O'Shea, & Colado, 2003; 

Kalivas, Duffy, & White, 1998). It is chemically similar to 

amphetamine, methamphetamine, mescaline (see figure 1) and a 

number of ring-substituted phenethylamines and is both a stimulant and 

hallucinogenic compound (Battaglia, Brooks, Kulsakdinun, & De 

Souza, 1988; Baumann, Wang, & Rothman, 2006; Gold, Koob, & 

Geyer, 1988).  

 

 

Figure 1.chemical structure of Amphetamine, mescaline and MDMA. 

 

Research in the early part of the 20th century is scant but the LD 50 

(the Lethal Dose in 50% of animals tested) was investigated by the U.S. 

military in the 1950s. During the early 60s it was reportedly first used 

recreationally (Watson & Beck, 1991). In the 1980’s it was used as an 

adjunct to psychotherapy before the U.S. drug enforcement 

administration changed its classification to a schedule 1 drug and 

hence, illegal (Green, et al., 2003). 
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MDMA was a popular recreational drug in the United Kingdom in the 

1980’s (Cole and Sumnall, 2003) with popularity of the drug increasing 

during the 1990’s leading to more widespread use. A number of survey 

studies have suggested increased use throughout the 1990s depending 

upon the population sampled. For example, in a sample of 158 current 

drug users 82% said that they had used MDMA in the previous year 

(Williamson, et al., 1997) while only 4% of medical students surveyed 

at, or near, the same time reported MDMA use (Webb, Ashton, Kelly, 

& Kamali, 1998). The same authors reported 13% use by UK university 

students while U.S. student’s use increased from 2.8% in 1997 to 4.7% 

in 1999 and 10.6% in the final 2000 survey (Strote, Lee, & Wechsler, 

2002). 

 

The United Nations Office on Drugs and Crime (UNODC, 2004) 

presented long-term worldwide trends in production, trafficking and 

abuse of drugs. The reports revealed that the consumption of certain 

illicit drugs such as heroin and cocaine were decreasing while during 

the last previous decade, amphetamine-type stimulants (mainly 

MDMA) were the second most commonly used illicit drug. 

 

In New Zealand, the Expert Advisory Committee on Drugs reported an 

increase in overall use. Those who positively responded to the question, 

“had they ever used MDMA?” increased from 3% - 5.4% between 

1998 and 2001. The greatest reported use, as well as greatest increase 
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in use, came from the 20-24 year age group of survey respondents. In 

this age group, use of MDMA during the previous 12 months rose from 

3%-10% between 1998 and 2001 (The Expert Advisory Committee on 

Drugs [EACD], 2004). These figures put New Zealand on a roughly 

equal footing, in terms of use, with other overseas sample results. 

 

Consistent with the reported increases of use have been increases in 

associated medical complications. MDMA induces a number of serious 

effects such as cardiac arrhythmias, hypertension, hyperthermia, 

hyponatremia (disturbance of the salts in the blood), liver 

complications, seizures and coma (Schifano, 2004). Deaths attributable 

to ecstasy use are rare but they are increasing. In the U.K., out of all the 

drug related deaths, ecstasy use in 1997 accounted for 1.2% rising to 

4.1% in 2002 (Schifano, Corkery, Deluca, Oyefeso, & Ghodse, 2006). 

 

MDMA Pharmacology 

 

MDMA is a racemic molecule in that it has two enantiomers. The 

(S)(+)-enantiomer is a more potent dopamine releaser while the (R)(-)-

enantiomer shows a higher affinity for serotonin receptors (Johnson, 

Hoffman, & Nichols, 1986).  MDMA is usually formulated and 

consumed as a racemate, a 1:1 mixture of its enantiomers (Pizarro, et 

al., 2004) and acts on a number of different neurochemical systems 

releasing presynaptic serotonin (5-HT), dopamine (DA) and 

norepinephrine (NE). MDMA induces increases in extracellular 
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monoamine concentrations through three direct actions (Cole & 

Sumnall, 2003):  

 

Firstly, MDMA is a substrate for the serotonin (SERT), dopamine 

(DAT) and norepinephrine (NET) transporters binding to, and blocking 

the transporter. As presynaptic plasma membrane transporters rapidly 

remove the released monoamine from the synapse, blockage of this 

process increases extracellular levels of all the monoamines (Colado, 

O'Shea, & Green, 2004; Gough, Ali, Slikker, & Holson, 1991; Green, 

et al., 2003; Lyles & Cadet, 2003; S. R. White, Obradovic, Imel, & 

Wheaton, 1996). Evidence of the transporter interactions of MDMA 

can be seen when serotonin selective reuptake inhibitors (SSRIs), such 

as fluoxetine, when co-administered with MDMA, attenuate increases 

in 5-HT (Berger, Gu, & Azmitia, 1992; Hekmatpanah & Peroutka, 

1990; Rudnick & Wall, 1992). Similarly, the DA reuptake inhibitor, 

GBR12909, prevented MDMA induced DA release in-vitro (Koch & 

Galloway, 1997) as well as in-vivo (Nash & Brodkin, 1991) . In 

addition, extracellular norepinephrine (NE) levels were reduced by co-

administration of the NE-uptake blocker, desmethylimipramine 

(Fitzgerald & Reid, 1990). 

 

Secondly, when MDMA binds to the SERT it also induces a carrier 

mediated release of neurotransmitter. MDMA enters presynaptic nerve 

cells through passive diffusion across the membrane wall (Rudnick & 

Wall, 1992) and through the actions of the SERT into the cell nerve 
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endings (Crespi, Mennini, & Gobbi, 1997). Once inside the cell, 

MDMA induces a mechanism of calcium independent release of 

serotonin into the synapse, by preventing the repackaging of cytosolic 

5-HT into vesicles through the reversal of vesicular (Rudnick & Wall, 

1992, 1993) and plasma membrane(Iravani, Asari, Patel, Wieczorek, & 

Kruk, 2000).  

 

Thirdly, MDMA inhibits monoamine oxidase (MAO). MAO is an 

enzyme with two subtypes; MAO-A is found in the extracellular fluid, 

and MAO-B is located in the cytosolic fluid (Westlund, Denney, 

Kochersperger, Rose, & Abell, 1985). Both MAO-A and MAO-B were 

inhibited by in-vitro application of MDMA although, there was a 

preferential effect on MAO-A (Gu & Azmitia, 1993; Leonardi & 

Azmitia, 1994). The consequence of this effect of MDMA resulted in 

high extracellular levels of 5-HT and a greater level of intracellular 5-

HT available for reverse vesicular transport.  MAO-A also plays a 

central role in metabolising serotonin, norepinephrine and dopamine 

(Kato, Dong, Ishii, & Kinemuchi, 1986). Extracellular increases in the 

monoamines are thereby also produced by MAO inhibition. 

 

A linear proportional increase in MDMA-produced DA occurred with 

increasing levels of 5-HT (Jacocks & Cox, 1992; S. R. White, Duffy, & 

Kalivas, 1994) suggesting that increases in extracellular 5-HT may 

trigger DA release via interaction with receptors. There are at least 14 

distinct 5-HT receptors belonging to seven families [5-HT1 through 5-
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HT7] (Hoyer, Hannon, & Martin, 2002) with the 5-HT1B, 5-HT2A, 5-

HT2C, 5-HT3 and 5-HT4 receptors all involved in the modulation of DA 

release. Of particular interest, activation of the 5-HT2A and 5-HT2C 

receptors produce opposite effects on DA release. Systemic 

administration of the 5-HT2A receptor antagonist ketanserin, and the 

selective 5-HT2A antagonist MDL100,907 attenuated MDMA-induced 

increases in striatal dopamine efflux (Nash, 1990; Schmidt, Abbate, 

Black, & Taylor, 1990). In contrast, the selective 5-HT2C receptor 

agonist, RO 60-0175, decreased DA release (Di Matteo, 2000) while 

the receptor antagonist, SB 243213, increased DA release (Berg, et al., 

2006). These results suggest that in addition to MDMA induced DA 

release through DAT function, secondary actions of 5-HT also 

contribute to extracellular DA increases. 

 

The deleterious effects of MDMA  

 

There have been numerous investigations of the long term effects of 

MDMA in guinea pigs (Battaglia, Brooks, et al., 1988), dogs 

(Nishisawa, Mzengeza, & Diksic, 1999), non-human primates 

(Frederick, et al., 1995), chickens (Bronson, Jiang, Clark, & DeRuiter, 

1994) and  rats (e.g. Commins, et al., 1987; Malpass, White, Irvine, 

Somogyi, & Bochner, 1999; Marston, Reid, Lawrence, Olverman, & 

Butcher, 1999). 
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It has long been noticed that the sensitivity to the neurotoxic effects of 

amphetamine derivatives such as MDMA differs across mammalian 

species. Primates are more vulnerable to substituted amphetamines than 

rats or guinea pigs whereas mice are remarkably tolerant (Stone et al., 

1987). In rats, young animals were found to be much more resistant 

against the long-term neurotoxic effects of these drugs than adult ones 

(Broening et al., 1994) and different strains of rats have displayed 

different responses to MDMA. For example, MDMA is 

demethylenated by the CYP2D1 hepatic cytochrome P450 enzymes in 

the rat (Kumagai et al., 1994). This enzyme is expressed, differentially 

in rat strain with subsequent alterations in metabolism of MDMA 

(Malpass et al., 1999). The Dark Agouti rat for example, exhibits 

enzymic deficiencies whereas the Sprague Dawley strain has more 

effective CYP2D1 enzyme capacity. 

 

Mice have also being used in  investigations of the long term effects of 

MDMA, but the pharmacological effects of MDMA appear to differ 

from those of other species studied (Green, et al., 2003; Lyles & Cadet, 

2003).  In mice, the acute effects of MDMA are similar to the rat 

(Logan, Laverty, Sanderson & Yee, 1988) however, repeated large 

doses of MDMA (3 x 50mg) produced a small prolonged fall in 5-HT 

and 5-HIAA but marked falls in DA and DOPAC (Logan et al.,1988). 
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A large number of studies have reported lasting decrements in 5-HT 

and its major metabolite, 5-hydroxyindoleacetic acid (5-HIAA); 

reductions in [3H] paroxetine binding that reflect reduced density of 

SERT; and reduced serotonergic axonal density in brain tissue 

(Gouzoulis-Mayfrank & Daumann, 2006 ; O'Shea, Granados, Esteban, 

Colado, & Green, 1998; Ricaurte, McCann, Szabo, & Scheffel, 2000).  

 

Following MDMA exposure there is a biphasic modulation of 5-HT 

and 5-HIAA. There is an initial rapid increase in extracellular 5-HT (1-

4 hours following injection) with levels returning to baseline within 24 

hours. Over a period of 3-4 days there is evidence of deficits in 5-HT 

and 5-HIAA (Battaglia, et al., 1987; Colado, Murray, & Green, 1993; 

Schmidt, 1987; Stone, Stahl, Hanson, & Gibb, 1986). These deficits 

were reported following the administration of a single moderately high 

dose of MDMA (10mg/kg) (Schmidt, 1987) or repeated low (4.0mg/kg 

twice daily for 4 days) (O'Shea, et al., 1998) or high (10-40mgkg twice 

daily) (Commins, et al., 1987) doses. 

 

Following a large dose of MDMA (20mg/kg twice daily for 4 days) a 

marked reduction in the density of uptake sites was observed (Battaglia, 

et al., 1987). A decrease in 5-HT and 5-HIAA does not, however, 

necessarily reflect axonal terminal damage. Immunocytochemical 

evidence supported the finding that neurodegeneration had occurred 

within terminal, dendritic and cell body regions (Commins, et al., 1987; 

O'Hearn, 1988).  
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MDMA induced neurotoxicity in non-human primates has also been 

reported (Fischer, Hatzidimitriou, Wlos, Katz, & Ricaurte, 1995; Insel, 

Battaglia, Johannessen, Marra, & De Souza, 1989; Ricaurte, DeLanney, 

Irwin, & Langston, 1988; Ricaurte, Martello, Katz, & Martello, 1992; 

Scheffel, Lever, Stathis, & Ricaurte, 1992). There is, however, an 

important difference between the non-human primate and rodent data. 

The dose required to induce deficits in non-human primates was less 

than that required for rodents (De Souza, Battaglia, & Insel, 1990; 

Ricaurte, 1989) and the deficits were more persistent (Hatzidimitriou, 

McCann, & Ricaurte, 1999). 

  

It is tempting, given the non-human primate data, to infer that 

comparable MDMA induced deficits are produced in humans who 

abuse MDMA. Although there are indications of MDMA induced 

deficits (McCann, Mertl, Eligulashvili, & Ricaurte, 1999; Ricaurte, 

DeLanney, Wiener, Irwin, & Langston, 1988), a history of multiple 

drug use, variables such as questionable drug purity and dosage, make 

it difficult to draw robust, transferable conclusions from these studies.  

 

Brain reward mechanisms 

 

A number of converging pieces of evidence have implicated 

mesolimbic DA in brain reward mechanisms. Single cell recordings in 

monkeys showed increased  extracellular DA levels in the ventral 
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tegmental area (VTA) upon food presentation (Schultz, Apicella, & 

Ljungberg, 1993). There were extracellular DA increases in the nucleus 

accumbens (NAc) during sex behaviour in the rat (Pfaus, et al., 1990). 

Similarly, access to water for water deprived rats, increased nucleus 

accumbens DA (Young, Joseph, & Gray, 1992). In humans, 

neuroimaging techniques have provided evidence of increased 

dopamine activity in ventral striatal areas during reward related tasks 

(Schott, et al., 2008). Taken together, this strongly suggests that DA is 

a critical neurotransmitter for the mediation of reinforcement. Animal 

models are ideally suited for delineating aspects of not only natural 

rewards such as sex, and food, but also drug induced reinforcement.  

 

The seminal work conducted by Olds and Milner (1954) showed that 

electrical brain stimulation could be powerfully reinforcing. These 

‘reward’ substrates are within the medial forebrain bundle in what has 

come to be known as the ‘reward pathway’. Subsequent studies have 

suggested that the reward pathway comprises the midbrain 

dopaminergic projections from the ventral tegmental area (VTA) into 

the nucleus accumbens (NAc) shell region and into the medial 

prefrontal cortex. Excitation and ensuing dopaminergic release from 

this system (the mesolimbic system) is critical to the acute reinforcing 

effects of drugs of abuse (Carelli, 2004; Dackis & O’Brien, 2001; Di 

Chiara, et al., 2004; Kelley & Berridge, 2002; Nestler, 2005; Robinson 

& Berridge, 1993; Salamone & Correa, 2002; Wise, 1998; Wolf, 2002). 

Indeed, nearly all drugs of abuse stimulate the release of dopamine at 
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some point along the mesolimbic pathway and, regardless of the 

specific and primary mechanism of action, all drugs of abuse activate 

dopaminergic transmission (directly or indirectly) in the nucleus 

accumbens (Di Chiara, et al., 2004; Nestler, 2005).   

 

One of the more powerful tools for measuring the reinforcing effect of 

drugs is the self-administration paradigm that allows drug-taking to be 

contingent on an operant response. In this procedure, laboratory 

animals are surgically prepared with an intravenous (IV) catheter and 

placed in an operant chamber with two response options (two levers, 

one the active lever, the other inactive). One response is associated with 

an IV infusion of a drug (active lever) the other response has no 

consequence (inactive lever). When presented with this choice, a 

significantly higher level of responding on the active lever suggests 

positive reinforcement is gained from infusion of the drug (Haney & 

Spealman, 2008). Virtually all drugs that are abused by humans are 

reliably self-administered by animals (Fischman & Schuster, 1978; 

Schuster & Thompson, 1969) and the patterns of use seen in animal 

I.V. self administration comparable to the pattern of use seen in humans 

(Gardner, 2000; Spealman & Goldberg, 1978). Thus, the self-

administration procedure provides a valid and reliable animal model of 

drug abuse liability and provides an animal model of human drug-

taking and drug-seeking behaviours (Henningfield, Cohen, & 

Heishman, 1991). 
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Under baseline conditions, responding under fixed ratio schedules 

increase as the dose of drug is reduced. It has been suggested that this 

increase in responding is compensatory and maintains a constant blood 

level of drug regardless of available dose. Disruptions to the 

mesolimbic DA system alter this pattern of drug taking. For example, 

the DA receptor blocker pimozide (Risner & Jones, 1976) or 

butaclamol (Yokel & Wise, 1976) produced dose-dependent increases 

in intravenous self administration (IVSA) of amphetamine consistent 

with a reduction in dose (Pickens & Thompson, 1968).  Dialysate 

samples taken from the nucleus accumbens during IVSA of 

amphetamine showed elevated DA levels (Ranaldi, Pocock, Zereik, & 

Wise, 1999). 

 

However, dopamine release alone cannot account for the distinction 

between occasional drug use and the chronic drug dependent state 

known as ‘addiction’. It has been suggested that drug addiction 

proceeds as a result of neuroadaptive processes in the brain reward 

system (Koob, 2006). When drugs of abuse repeatedly activate the 

reward system of the brain they induce a host of long lasting, complex 

neural adaptations that are maintained over time  ranging from hours to 

years, and perhaps a lifetime (Kauer & Malenka, 2007; Nestler, 2004). 

Adaptations of addiction have been modelled in the laboratory using 

animals (Deroche-Gamonet, Belin, & Piazza, 2004), including a 

“prominent animal model of addiction”, termed behavioural 

sensitisation (Wolf, 2002 (pg. 147)).   
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Amphetamine induced Behavioural Sensitisation  

 

Behavioural sensitisation has been studied to investigate 

neuroadaptations that occur after repeated exposure to drugs of abuse 

(Wise & Bozarth, 1987). Behavioural sensitisation is a progressive, 

long lasting increase in the psychomotor stimulating property of drugs 

of abuse that manifests itself in a number of behaviourally measurable 

ways. Various behaviours such as, sniffing, rearing and head 

movements have all been reported although it is usually measured as 

the enhanced locomotor activity following repeated exposure (Pierce & 

Kalivas, 1997; Post & Rose, 1976; Robinson, 1984; Robinson & 

Berridge, 1993; Stewart & Badiani, 1993; Wolf, 1998). 

 

Sensitisation was first reported early in the 1930’s (e.g. Downs & 

Eddy, 1932; Tatum & Seevers, 1931) although it wasn’t until the late 

1960’s and early 70’s that investigations into amphetamine induced 

behavioural sensitisation were pursued in earnest (Robinson & Becker, 

1986). Initial studies established that repeated amphetamine 

administration lead to one of two states, either tolerance or 

sensitisation. The manifestation of either condition depended upon 

manipulation of a number of factors such as dose, drug exposure, and 

time after exposure. For example, continual exposure (for a two or 

three day period), or repeated multiple high doses of amphetamine, 

resulted in tolerance to drug produced hyperactivity (Kuczenski & 

Leith, 1981). On the other hand, repeated intermittent administration 
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(daily injections), of relatively low doses, induced sensitisation 

(Robinson & Kolb, 1999). A single exposure to amphetamine also 

produced sensitisation to a number of drug-produced behaviours, such 

as stereotypy (Browne & Segal, 1977; Ellison & Morris, 1981) or 

rotation (Robinson, 1984; Robinson, Becker, & Presty, 1982). Repeated 

intermittent administration has been reported to produce a more robust 

and progressive increase in behaviour indicative of behavioural 

sensitisation (Kalivas & Stewart, 1991). 

 

Typically, single daily injections of 2-4mg/kg amphetamine result in 

behavioural sensitisation (Robinson & Kolb, 1999). More extreme 

exposures consisting of daily amphetamine administration in doses 

ranging from 5 to 32mg/kg (i.p.) produced behavioural tolerance (e.g. 

Demellweek & Goudie, 1983; Jackson, Bailey, Christie, Crisp, & 

Skerritt, 1981; Lewander, 1971; Robinson & Becker, 1982). It has been 

suggested that a critical factor is the interval between treatments rather 

than the dose (Robinson & Becker, 1986). Thus, relatively infrequent 

injections spaced up to a week apart may be more efficacious in 

producing sensitisation than injections given close together (Robinson, 

1984).  

 

The observation of sensitisation is also dependant on time since last 

exposure. Sensitisation was observed 3 days after an amphetamine pre-

treatment regime with the magnitude of the response increasing 5 and 

30 days post withdrawal (Kolta, Shreve, De Souza, & Uretsky, 1985). 



 23 

Ideally, more than a day withdrawal following exposure is required as 

sensitisation has been observed 7, 14 and 28 days after the last dose but 

not after a single day withdrawal (Hitzemann, Tseng, Hitzemann, 

Sampath-Khanna, & Loh, 1977).  

 

Behavioural sensitisation is also dependent on the environmental 

context in which the drug is administered. Conditioned effects elicited 

by situational and environmental cues associated with the drug come to 

exert a powerful control over the manifestation of behavioural 

sensitisation. Typically, when examining environmental and contextual 

cues, the animals are taken from their home cages and moved to a 

novel test environment. Half of these, the paired group, are injected 

with a psychostimulant (drug paired with environment) and half with 

saline, the unpaired group. When removed from the test environment 

and placed back in their home cages the saline unpaired group receive 

the drug, thereby isolating the contextual environment from this group. 

On the test day, only the previously paired group showed a sensitised 

response (Pert, Post, & Weiss, 1990).  

 

A number of researchers have used similar methodology to examine the 

role of context in amphetamine produced sensitisation. Although 

context dependent sensitisation was blocked (Stewart & Druhan, 1993), 

and extinguished once gained (Stewart & Vezina, 1991),  the majority 

of reports confirm that environmental contextual cues are extremely 

important for the manifestation of behavioural sensitisation (Ahmed, 
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Stinus, Le Moal, & Cador, 1993; Badiani, Anagnostaras, & Robinson, 

1995; Badiani, Browman, & Robinson, 1995; Drew & Glick, 1988; 

Mazurski & Beninger, 1987; Stewart & Druhan, 1993; Vezina, 

Giovino, Wise, & Stewart, 1989).  

 

Sensitisation and Intravenous Self-Administration 

 

Investigators typically, and successfully, have measured the latency to 

acquisition of self administration showing drug pre-exposed animals 

acquiring self administration faster than drug naive animals (Horger, 

Giles, & Schenk, 1992; Horger, Shelton, & Schenk, 1990; Piazza, 

Deminiere, Le Moal, & Simon, 1989). Animals pre-exposed to a 

sensitising regimen of amphetamine were predisposed to-self 

administer amphetamine (Horger, Giles, & Schenk, 1992; D. Piazza, Le 

Moal & Simon, 1989) as indicated by decreased latency to acquire an 

operant response. However, pre-exposure to amphetamine decreased 

latency to acquisition of only low doses of drug ( Piazza, Deminiere, Le 

Moal, & Simon, 1989) using a low fixed ratio (FR) reinforcement 

schedule. When high doses of the drug were made available, under the 

same FR schedule, there was no difference between amphetamine and 

vehicle pre-exposed animals (Lorrain, Arnold, & Vezina, 2000) 

suggesting prior exposure may reduce the threshold reinforcing dose.  

 

When high doses of amphetamine were available in the self-

administration paradigm, amphetamine break point on a progressive 
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ratio (PR) schedule of reinforcement were higher for amphetamine pre-

exposed rats (Mendrek, et al., 1998; Vezina, Pierre & Lorrain, 1999). In 

the PR schedule, the number of lever responses required to obtain a 

reinforcer is increased for each successive reinforcer until a ‘break 

point’ that fails to support continued operant responding is reached. It 

has been suggested that increases in break point from drug pre-exposed 

animals reflects higher motivation to further seek the drug (Arnold & 

Roberts, 1997).  

 

Decreases in latency to acquisition and higher break points indicate 

pre-exposure to amphetamine enhances drug seeking as well as the 

acquisition rate of self-administration. One suggestion for this 

alteration has been linked to the sensitisation of mesolimbic dopamine 

neurons. Higher break points have been associated with increases in 

NAc DA (Vezina et al., 1999) as well as sensitisation to the locomotor 

activating effects of amphetamine (Mendrek, et al., 1998; Vezina et al., 

1999). 

 

Non-human primates, mice and rats will all self-administer MDMA 

(Banks, et al., 2007; Braida & Sala, 2002; Cornish, et al., 2003; 

Daniela, Brennan, Gittings, Hely, & Schenk, 2004; Daniela, Gittings, & 

Schenk, 2006; Fantegrossi, Ullrich, Rice, Woods, Winger, 2002; 

Fantegrossi, et al., 2004; Ratzenboeck, Saria, Kriechbaum, & Zernig, 

2001; Schenk, Gittings, Johnstone, & Daniela, 2003; Schenk, Hely, 

Gittings, Lake, & Daniela, 2008; Schenk, et al., 2007).  There have 
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however, been noted differences in latency to acquisition of MDMA 

self-administration when compared to other self-administered drugs. 

Acquisition of MDMA self-administration is relatively slow (Schenk et 

al., 2003) with more variability in the latency to acquisition compared 

with other self-administered drugs (e.g. Horger, et al., 1990; Horger, et 

al., 1992). 

 

These differences might be due to the different pharmacology of 

MDMA. It has been suggested that drugs with a greater effect on DA 

compared to 5-HT have a higher subjective reinforcement value (Wee, 

Anderson, Baumann, Rothman, Blough, & Woolverton, 2005) with  

reinforcing efficacy positively correlated with inhibition of dopamine 

reuptake (Ritz, Lamb, Goldberg, & Kuhar, 1988; Wilcox, Rowlett, 

Paul, Ordway, & Woolverton, 2000) and increases in extracellular DA 

(Self & Nestler, 1995). Moreover, it has been suggested that the ratio of 

DA to 5-HT is a better indicator of drug abuse potential than solely a 

positive correlation with DA reuptake inhibition or increased DA 

release. For example, when different equipotent DA releasers that 

differed in 5-HT release were self administered by rhesus monkeys, 

responding was lower when 5-HT potency was higher (Wee, et al., 

2005).  Further, Ritz and Kuhar (1989) reported a negative correlation 

between potency as a reinforcer and 5-HT transporter binding affinity. 

These data suggest that the ratio of 5-HT to DA is an important 

determinant of self administration. 
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Because of the predominant effect of MDMA on the serotonin system it 

has been suggested that the lower DA:5-HT ratio may explain the 

increased latency to acquisition of self-administration of MDMA 

(Schenk, et al., 2007). For example, acquisition to MDMA self 

administration for drug naive rats was produced in about 12 days 

(Schenk et al., 2003), whereas acquisition to cocaine self-

administration has been reported in as few as 5 days (Schenk & 

Partridge, 1997). With repeated administration of MDMA, there are 

long-term reductions in brain tissue concentrations of 5-HT and in 5-

HT reuptake sites (Ricaurte et al., 2000; Green et al., 2003; Gudelsky 

andYamamoto, 2003) thereby increasing the DA:5-HT  ratio. With 

continued  self-administration studies, further decreases in 5-HT would 

be produced and this might explain the development of MDMA as an 

efficacious reinforcer (Schenk, et al., 2007) . 

 

Initiation and Expression of Sensitisation 

 

Behavioural sensitisation is comprised of two distinct components, 1) 

initiation (also called ‘development’, ‘acquisition’ or ‘induction) and 2) 

expression. The initiation of sensitisation is the development of the 

augmented locomotor behaviour while the expression refers to the 

manifestation of that behaviour (Kalivas & Stewart, 1991; Pierce & 

Kalivas, 1997; Robinson & Becker, 1986; Stewart & Badiani, 1993).  

Effects on different components of the mesolimbic DA system have 

been attributed to these two processes.  
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DA in the ventral tegmental area VTA appears to be responsible for the 

induction of behavioural sensitisation following repeated amphetamine 

exposure (Nelson, Wetter, Milovanovic, & Wolf, 2007; Pierce & 

Kalivas, 1997; Vanderschuren & Kalivas, 2000; Vezina, 1996; Wolf & 

Xue, 1998). Direct infusion of DA antagonists into the VTA 

completely blocked the acute locomotor activating effects of 

amphetamine (Vezina & Stewart, 1989). Repeated amphetamine 

injections into the VTA induced behavioural sensitisation to either 

systemically, or intra NAc amphetamine (Bjijou, Stinus, Le Moal, & 

Cador, 1996; Cador, Bjijou, & Stinus, 1995; Hooks, Jones, Liem, & 

Justice Jr, 1992; Kalivas & Weber, 1988; Vezina & Stewart, 1989). In 

contrast, injections of amphetamine into other mesolimbic substrates 

did not result in sensitisation (Hitzemann, Wu, Hom, & Loh, 1980; 

Kalivas & Weber, 1988; Perugini & Vezina, 1994). It would appear 

that drug effects within the VTA underlie the induction of behavioural 

sensitisation.  

 

Acute administration of amphetamine increased DA overflow in the 

NAc (Carboni, Imperato, Perezzani, & Di Chiara, 1989; Kalivas & 

Stewart, 1991; Robinson & Berridge, 1993; Sharp, Zetterstrom, 

Ljungberg, & Ungerstedt, 1987), but repeated intra-NAc administration 

did not result in further increases in synaptic DA (Dougherty & 

Ellinwood, 1981). Intra-NAc amphetamine produced locomotor 

activity (Pierce & Kalivas, 1995), and repeated administration resulted 
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in sensitisation. However, there was no sensitised response to a further 

amphetamine challenge (Kalivas & Weber, 1988). Thus the pattern of 

responding to a sensitising regime of amphetamine differs when the 

drug is infused into the VTA or the NAc.  

 

A comparison of the effect of amphetamine administered into the VTA 

and NAc helps to clarify their role in induction and expression of 

amphetamine sensitisation. (Cador, et al., 1995). Amphetamine injected 

into the NAc dose-dependently increased locomotor activity but 

repeated exposure failed to produce behavioural sensitisation. Repeated 

injections into the VTA did not produce locomotor activity but resulted 

in locomotor activity following an intra-NAc amphetamine challenge. 

It was concluded that repeated amphetamine expose to the NAc was not 

responsible for the dopaminergic adaptations underlying behavioural 

sensitisation (Cador, et al., 1995) 

 

Role of Dopamine D1 and D2-like Receptors in Amphetamine Sensitisation 

 

In the 1970’s it was proposed that there were two classes of dopamine 

receptor, the D1 and D2 (Cools & Van Rossum, 1976; Kebabian & 

Calne, 1979). Around the 1990’s further heterogeneity revealed at least 

five subtypes of dopamine receptors (D1-D5) (Civelli, Bunzow, & 

Grandy, 1993; Sibley & Monsma, 1992). The five subtypes are now 

divided into two families and these are referred to as the D1-like (D1, 

D5) and the D2-like (D2, D3, D4) dopamine receptors. The most 
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notable distinguishing function of the two receptor subtypes is the 

effect on adenylyl cyclase with the D1-like increasing and the D2-like 

decreasing adenylyl cyclase activity or having no effect. A further 

difference is the presence (or otherwise) of an autoreceptor; with 

pharmacological studies indicating that the DA autoreceptor is of the 

D2 type (Nisoli, et al., 2009). DA D2 receptors function both as 

presynaptic autoreceptors and as postsynaptic receptors. Presynaptic 

autoreceptors modulate dopamine synthesis and release, and inhibit 

neuronal firing. 

 

Pre-treatment with the D1-like receptor antagonist, SCH23390, blocked 

the development of sensitisation produced by intra-VTA infusions of 

amphetamine (Vezina & Stewart, 1989). SCH23390 also blocked the 

development of sensitisation produced by repeated systemic injections 

of amphetamine (Stewart & Vezina, 1989). These finding implicated a 

critical role of D1-like receptors in the VTA in amphetamine 

sensitisation. However, an alternative explanation for the attenuation of 

sensitisation was raised. It was suggested that intra-VTA administration 

of the D1 like antagonist may have diffused into the entire brain (Di 

Chiara, 1993) explaining why subsequent administration of 

amphetamine had not produced a sensitised response. As a test of this 

hypothesis, intra-VTA amphetamine was co-administered with 

SCH23390, sulpiride (a selective D2 antagonist) or kitanserin (5-HT2 

antagonist). SCH23390, but not ketanserin or sulpiride, dose 

dependently blocked the induction of behavioural sensitisation. (Bjijou, 
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et al., 1996). Systemic administration of the D2 receptor antagonist, 

Ro22-2586, also failed to effect the development of sensitisation 

(Vezina & Stewart, 1989). As was found with sulpiride, intra-VTA 

administration of other D2 antagonists, spiperone or eticlopride, also 

failed to alter the induction of sensitisation to the locomotor activating 

effect of amphetamine (Bjijou, et al., 1996; Vezina, 1996). Thus DA 

D1-like, but not D2-like, receptors within the VTA appear critical to 

the initiation of sensitisation to amphetamine.  

 

Repeated amphetamine administration induced a subsensitivity of D2 

autoreceptors (Wolf, White, Nassar, Brooderson, & Khansa, 1993) 

which may, in part, explain the failure of the D2 antagonists to block 

the induction of sensitisation. These autoreceptors are impulse 

regulating on the pre-synaptic neuron and prolonged exposure to 

amphetamine reduced the responsiveness of the receptors thereby 

increasing DA synthesis and release. White and Wang (1984) showed 

that a relatively high daily dose of amphetamine (1 or 2 x 5mg/kg i.p. 

for 5 days) significantly reduced the ability of intravenous apomorphine 

(a non-selective DA agonist, having a slightly higher affinity for D2-

like dopamine receptors) to suppress dopamine firing in the VTA 

suggesting a subsensitivity of the D2 autoreceptor. With increases in 

dopamine release being induced through D2 autoreceptor subsensitivity, 

blocking the D2 receptor, as Vezina and Stewart (1989) and Bjijou and 

colleagues (1996) had done, would not be expected to block the process 
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of induction to amphetamine but rather augment the process 

(Vanderschuren, Schoffelmeer, Mulder, & De Vries, 1999).  

 

DA VTA autoreceptor subsensitivity is a transient alteration which 

does not persist during withdrawal from repeated amphetamine. 

Following repeated exposure to a low dose of amphetamine, and 3 days 

withdrawal, intra-VTA application of the D2 agonist, quinpirole, failed 

to reduce firing rates suggesting a subsensitivity of the autoreceptor. 

This decreased response, however, was no longer evident 14 days 

following treatment, even though behavioural sensitisation persisted 

(Wolf et al., 1993).  

 

MDMA and Locomotor Activity 

 

MDMA increases the release and prevents reuptake of DA. Following 

MDMA administration, increases in extracellular DA have been 

reported in striatum (Gudelsky & Yamamoto, 2008; Schmidt, Levin, & 

Lovenberg, 1987; Steele, Nichols, & Yim, 1987), nucleus accumbens 

(Bankson & Yamamoto, 2004; Cadoni, et al., 2005), prefrontal cortex 

(Nair & Gudelsky, 2004) and hippocampus (Shankaran & Gudelsky, 

1998).  

 

The mechanism of DA release is both transporter and impulse 

dependent with DAT inhibitors (Nash & Brodkin, 1991; Shankaran, 

Yamamoto, & Gudelsky, 1999) since the sodium channel blocker, 
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tertrodotoxin, (Yamamoto, Nash, & Gudelsky, 1995) attenuated 

release. MDMA induced locomotor activity was also attenuated by 

systemic administration of the D1 like antagonist, SCH23390, (Daniela 

et al., 2004) and  the D2 antagonist, eticlopride (Ball, Budreau & Rebec, 

2003).  

 

Although MDMA primarily promotes DA release via the transporter, 

the serotonin selective reuptake inhibitor (SSRI), fluoxetine, suppressed 

MDMA stimulated DA release suggesting a role of serotonergic 

mechanisms (Callaway, Wing, & Geyer, 1990).  Further, 5-HT2 

agonists potentiated (Gudelsky et al., 1994) and 5-HT2 antagonists 

suppressed (Nash, 1990; Schmidt et al., 1994; Yamamoto et al., 1995) 

the MDMA-induced DA increase. More specifically, the 5-HT2A 

receptors may modulate DA through increasing regulation of either DA 

synthesis or DA neuron firing rate (Schmidt et al. 1992; Gudelsky et al. 

1994). Indeed, basal firing rate of DA neurons were increased by 5-

HT2C receptor antagonists and inhibited by 5-HT2C receptor agonists 

(Di Matteo et al. 2000; Gobert et al. 2000) through a tonic inhibitory 

influence on release (Ball & Rebec, 2005). 

 

Because of the well documented role of DA in locomotor activity it is 

not surprising that both peripheral and central administration of 

MDMA increased locomotor activity. Gold and Koob (1988) were one 

of the first to demonstrate MDMA produced locomotor activity in rats 

and since then there have been a number of other reports (e.g. Bubar, 
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Pack, Frankel, & Cunningham, 2004; Yamamoto & Spanos, 1988). 

MDMA induced locomotor activity was decreased by systemic 

administration of the D1 like antagonist, SCH23390 (Daniela, et al., 

2004) and the D2 like antagonist, eticlopride (Ball, Budreau, & Rebec, 

2003).  Moreover, pharmacological blockade of the DAT inhibited 

MDMA induced locomotor activity (Callaway et al., 1990). The 

selective 5-HT2A antagonist MDL 100,907, also suppressed MDMA 

produced hyperactivity. Other less selective 5-HT2A antagonists 

(ritanserin, methiothepin, MDL 28,133A, SR46349 and clozapan) also 

reduced MDMA stimulated activity (Ball & Rebec, 2005; Kehne, et al., 

1996) but the 5-HT2C antagonist, SB242084, potentiated the locomotor 

stimulant effects of MDMA (Fletcher, Sinyard, & Higgins, 2006). It 

has been suggested that the 5-HT antagonists altered MDMA produced 

hyperactivity by modulating DA release (Ball & Rebec, 2005). 

 

Of interest, chronic treatment with DOI, although a 5-HT2A agonist, 

produced an inhibitory regulation of the 5-HT2C receptor, which 

increased MDMA produced locomotor activity. This was attributed to 

5-HT2A mechanisms because the response to the 5-HT2C receptor 

agonist, MK212, remained unaffected by repeated DOI pre-treatment. 

(Ross, Herin, Frankel, Thomas, & Cunningham, 2006). Indeed, 

repeated DOI treatment decreased 5-HT2A receptor protein expression 

in the PFC and shell of the NAc. Because 5-HT2A receptor activation 

increased DA release (Ball & Rebec, 2005), these findings suggest that 
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5-HT2A receptors in the DA terminal areas of the PFC and NAc might 

be critical to MDMA produced hyperactivity. 

 

MDMA and behavioural sensitisation 

 

Few studies have examined behavioural sensitisation to MDMA and fewer 

still have examined the mechanisms underlying the development or 

expression of sensitisation. Repeated intermittent administration of MDMA 

produced a progressive and enduring increase in the behavioural response 

to the drug. One of the early investigations into MDMA behavioural 

sensitisation was conducted by Spanos and Yamamoto (1989) who studied 

both the acute and chronic behavioural effects of MDMA. Acute effects 

showed a dose related increase in MDMA produced locomotor activity. 

Chronic exposure, consisting of alternate-day injections with locomotor 

challenge doses after the sixth and twelfth injections, produced a dose 

dependent increase in all behavioural measures. Furthermore, authors 

reported correlated extracellular in-vivo voltammetery measures of DA 

release paralleling the time course of MDMA induced hyperlocomotion. 

When examining the chronic behavioural effects of MDMA exposure 

Kalivas, Duffy and White (1998) concurred with Spanos and Yamamoto 

(1989), finding an augmented behavioural response to the drug. In addition, 

and paralleling amphetamine induced DA release, they found a dose 

dependent increase in extracellular DA in the nucleus accumbens 

suggesting there may be patterns of MDMA produced neuroadaptations 

that overlap with other commonly abused amphetamines. In corroboration 
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with this finding, MDMA induced increases in cell firing in the dorsal 

striatum were increased in sensitised rats (Ball et al., 2006). Serotonergic 

mechanisms might also be involved since the 5-HT1B/1D antagonist, 

GR127935, attenuated the development of sensitisation (McCreary et al., 

1999). However, Modi, Yang, Swann, & Dafn (2006) failed to find cross 

sensitisation to amphetamine and methylphenidate after repeated MDMA 

administration. Chronic administration produced sensitisation of only a 

transient nature evident on challenge day 13 but not on day 38. Chronic 

dosage of 5 mg/kg persisted for a longer period of time with motor indices 

of sensitisation still evident on day 38. The administration of 10.0 mg/kg 

MDMA however, produced increases in locomotor activity. This does not 

rule out the possibility of overlapping neural adaptations but may suggest 

those adaptations to be more akin to cocaine rather than amphetamine or 

methylphenidate. 

 

Intra-NAc core administration of the D1-like receptor antagonist, 

SCH23390, prevented the expression, but not the development, of 

behavioural sensitisation (Ramos, Goni-Allo, & Aguirre, 2004). 

Although Ramos et al. (2004) did not observe sensitised responding 

after SCH23390 D1 blockade through pre treatment with MDMA, D1 

receptor activation must still have occurred. The longer half life of 

MDMA versus SCH23390 would ensure D1 receptor activation past 

any evident time analysis of the 60 minute test for locomotion or post 

activity test chamber when the rats were placed back in their home 

cage. Indeed, the obvious interpretation is that made by the authors in 
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that the D1 receptor is not involved in the induction of sensitised 

responding. It was argued that projections from the prefrontal cortex 

(PFC) might mediate behavioural sensitisation to MDMA because 

ibotenic acid lesions of the dorsal medial PFC, that destroyed cell 

bodies, blocked both the induction and expression of sensitisation 

(Ramos, Goni-Allo, & Aguirre, 2005b). Dopaminergic mechanisms 

were implicated since administration of the D1 like receptor agonist, 

SCH23390, into the medial PFC blocked the expression of 

sensitisation. Because SCH23390 is also a 5-HT2C receptor agonist, this 

mechanism in the medial PFC might play a key role in behavioural 

sensitisation to MDMA. This idea was supported by the finding that 

attenuation of sensitisation produced by SCH23390 was reversed by 

administration of the 5-HT2C receptor antagonist, RS 102221 and 

sensitisation was produced by the 5-HT2C agonist MK212 (Ramos, 

Goni-Allo, & Aguirre, 2005a). These data support the idea that MDMA 

induced sensitisation was mediated by 5-HT2C receptor stimulation in 

the medial PFC and not by the blockade of medial PFC D1 receptors.  

 

The current investigation 

 

MDMA induces locomotor, as well as sensitised locomotor responding 

that can be attenuated through dopaminergic antagonists. Despite a 

plethora of evidence suggesting a crucial role of dopamine in 

behavioural sensitisation to psychostimulants, its role in MDMA 

sensitisation is yet to be fully investigated. It has been postulated that 
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activation of DA D1 receptors initiate the neural adaptations underlying 

amphetamine sensitisation (e.g. Stewart and Vezina 1989; Kalivas and 

Stewart 1991; Bjijou et al. 1996; Vezina 1996). DA D2 pre-synaptic 

receptors show evidence of transient sub-sensitivity (White and Wang 

(1984) while DA D2 post-synaptic receptors may become sensitised 

(Wolf et al., 1993). However, the role in MDMA induced sensitisation 

is less clear. One way to address this is through behavioural 

pharmacology.  

 

The following set of experiments aims to firstly determine parameters 

for the development of sensitisation to the locomotor activating effects 

of MDMA and it is hypothesised that repeated intermittent 

administration will produce an augmented locomotor activity in 

response to a further challenge dose of the drug. Secondly, the thesis 

will determine whether cross-sensitisation is produced to the locomotor 

activating effects of  D1-like and/or D2-like receptor agonists and 

antagonists. Thirdly, the relevance of sensitisation to drug self 

administration will be evaluated. Finally, because deficits in 5-HT have 

been reported following exposure to MDMA, HPLC analysis will be 

used. Tissue levels of 5-HT, DA and their primary metabolites will be 

measured to ascertain what changes in neurochemical levels result from 

repeated administration of MDMA. 
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Experiment 1: Induction and expression of behavioural 

sensitised responding to MDMA locomotor activating effects 

General methodology  

Subjects 

 

The subjects were male Sprague-Dawley rats, weighing between 250-350g 

(approximately 60 days old). The animals were bred at Victoria University in 

Wellington, New Zealand and were initially housed in pairs and then housed 

singly in a temperature- (21˚C) and humidity- (55%) controlled room. The 

colony was maintained on a 12-hr light/dark cycle with lights on at 0700. 

Food and water were available ad libitum except during testing periods. 

Laboratory animal care principles of the Victoria University of Wellington 

Animal Breeding Facility were followed, and the Victoria University of 

Wellington Animal Ethics Committee approved all protocols.  

Apparatus for locomotion studies 

 

Eight open field chambers (450mm x 450mm; Med Associates (ENV-

515) Vermont, USA) equipped with four banks of 16 photocells on each 

of the internal walls of the chamber were used to measure horizontal 

locomotion. Photocells were set at 25mm above the floor of the chamber 

and spaced evenly at 25mm centres around the periphery.  
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The open field boxes were interfaced with a computer and data were 

obtained using Med Associates software. Each activity chamber was 

enclosed in sound attenuating boxes (Med associates; Vermont USA). A 

beam ‘box’ was pre-set encompassing a 3 x 3 beam square (50mm x 

50mm).  Movement outside of this ‘box’ broke the beams and constituted 

one locomotor count.  

 

All testing was conducted during the light cycle. A red house light was 

illuminated during testing and white noise was also continually present to 

mask extraneous disturbances. Prior to and after each locomotor activity test, 

the chamber interiors were cleaned and wiped with Virkon ‘S’ disinfectant 

(Southern Veterinary Supplies, NZ).  

Drugs: 

• Racemic MDMA hydrochloride, (ESR Ltd, Porirua, New Zealand). 

• d-Amphetamine, (SIGMA; Australia).  

• SCH23390 Hydrochloride, [R(+)-7-Chloro-8-hydroxy-3-methyl-1-

phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride], (Tocris 

Bioscience, Natick, Massachusetts). 

• SKF81297 hydrobromide, [R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-

2,3,4,5-tetrahydro-1-H-3-benzazepine hydrochloride], (Tocris Bioscience, 

Natick, Massachusetts). 

• Apomorphine hydrochloride, [R-5,6,6a,7-tetrahydro-6-methyl-4H-

dibenzo[de,g]quinoline-10,11-diol hydrochloride],  (Tocris Bioscience, 

Natick, Massachusetts). 
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• Eticlopride, [S(-)-3-Chloro-5-ethyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-

hydroxy-2-methoxybenzamide hydrochloride], (SIGMA; Australia).  

All the above drugs were dissolved in sterile saline (0.9%NACL).  

• RS102221, [8-[5-(2,4-Dimethoxy-5-(4-

trifluromethylphenylsulfonamido)phenyl-5-oxopentyl]-1,3,8-

triazaspiro[4,5]decane-2,4-dione hydrochloride], (Tocris Bioscience, 

Natick, Massachusetts). 

 

All the above drugs were dissolved in sterile saline (0.9%NACL) 

apart from RS102221 which was suspended in a solution of 1% polysorbate 

80 (Tween® 80). 

Subcutaneous (SC) or Intraperitoneal (IP) injections were in a volume of 1 

ml/kg. All drug doses refer to the salt. 

 

General Sensitisation Protocol  

 

Rats were housed individually and were weighed and handled daily, one 

week prior to the commencement of all experiments. 

 

Days 1-5: 

Rats were transported daily from their home cages to the locomotor 

activity room and placed into the middle of the open field chambers. 

Locomotor activity was recorded for 15 or 30 minutes, recording was 

then paused while rats were administered drug or saline and activity was 

recorded for an additional 60 minutes. Activity data were collected at 5 
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min intervals during the 30 min pretreatment and 60 min post-treatment 

periods.  

 

Days 6 & 7: 

For the majority of experiments, there was a two day withdrawal period 

during which the rats remained in the home cages. A number of 

experiments had extended withdrawal periods (see table 1) in which the 

rats remained in their home cages. 

 

Day 8: 

Rats were transported from their home cages to the locomotor activity 

room and placed into individual activity chambers. Activity was recorded 

during a 15 or 30 minute pretreatment and 60 minute post-treatment 

period. 

Data Analysis  

 

Data analyses (unless otherwise specified) were conducted on the activity 

counts during the post injection interval. Locomotor responses were 

analysed using a 1, 2 or 3-way (as specified in each results section) 

repeated measures Analysis of Variance (ANOVA) with the repeated 

measure of time. 
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Overall layout for experiment 1A and 1B  

            Table 1. 

Pre-treatment  
Exp. 1A Exp. 1B 

 Amphetamine 
(2.0mg/kg) 

Vehicle  MDMA 
(5.0mg/kg) 

Vehicle  MDMA 
(10.0mg/kg) 

Vehicle 

Day 1 vs. 
day 5 

Yes  Yes  Yes  Yes Yes Yes 

2-day 
Withdrawal 

Yes  Yes  Yes  Yes Yes Yes 

9-day 
withdrawal 

No No No No Yes Yes 

28-day 
withdrawal 

Yes  Yes  No No Yes Yes 

 

Table 1. Within experiment 1, drug pre-treatment and withdrawal periods 
vary. The table identifies the drug pre-treatment administered and withdrawal 
period used. 
 
 
 

Experiment 1a Amphetamine-produced sensitisation  

Background 

 

Repeated intermittent exposure to a number of stimulant drugs produces a 

sensitised locomotor response. The sensitised behavioural responses 

reflect a host of neuroadaptations. These complex changes are greatly 

impacted upon by a number of parameters in the drug administration 

regimen including withdrawal time from the last drug administration 

(Kolta, et al., 1985) dose ( Kalivas & Duffy, 1993; Paulson, Camp, & 

Robinson, 1991; Paulson & Robinson, 1995), drug exposure duration 

(Robinson & Becker,1986), and the context in which the drug is delivered 

(Badiani, Browman, et al., 1995; Badiani, Camp, & Robinson, 1997; 
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Robinson, Browman, Crombag, & Badiani, 1998; Stewart & Badiani, 

1993). 

 

To this end Experiment 1 as a whole was designed to determine the 

protocols required to induce reliable sensitisation to the locomotor 

activating effects of MDMA. To start, experiment 1 reproduced 

amphetamine sensitisation and then used the delivery and withdrawal 

protocols to attempt to induce MDMA sensitisation. Different doses of 

MDMA were used in the pre-treatment regimen, and following drug 

abstinence, varying challenge doses were administered in order to 

determine whether there were changes in the dose response function. 

Because MDMA is an amphetamine derivative, it was hypothesised that 

the induction and expression protocols for sensitisation to the behavioural 

effects of amphetamine and MDMA would be similar.  

 

Experiment 1a Procedure 

 

On days 1-5, rats (numbers vary and are reported in each experiment) 

were given a single daily administration of amphetamine (0.0 or 2.0 

mg/kg, IP). This dose and injection regimen has been shown to produce 

persistent sensitisation to the locomotor stimulant effects of amphetamine 

(Vanderschuren, Schmidt, et al., 1999) and has been used in a number of 

previous investigations (Laudrup & Wallace, 1999; McNamara, 

Davidson, & Schenk, 1993; Nordquist, et al., 2008). 
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After either 2 or 28 days of withdrawal, during which all rats were left in 

home cages, the locomotor  activating effects of  amphetamine (0.0 or 0.5 

mg/kg, IP) were measured as described above. 

 

Experiment 1a Results. 

 

Amphetamine pre-treatment day 1 vs. day 5 

 
Figure 1.1 shows locomotor activity as a function of time on Days 1 and 

5 of the pre-treatment regimen. A mixed 3-way ANOVA [Day (1 & 5) x 

Drug (amph or vehicle) X Time (12 five min bins)] on the counts post 

injection (‘time 0’) revealed a significant main effect of Day (F(1,22) = 

21.65, p< 0.05),  Drug (F(1,22) = 219.74, p< 0.05) and a significant 

interaction between Day and Drug (F(1,22) = 14.98, p< 0.05). There was 

also a 3 way interaction for Day x Drug x Time (F(11,242) = 2.46, p< 

0.05).  A post hoc analysis of the amphetamine data (Day x Time) showed 

that locomotor activity counts were higher on day 5 compared to day 1 of 

testing (F(1,22) = 18.95, p< 0.05). 
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Figure 1.1.  Locomotor counts for the 75 minutes of testing across days. 
Rats were administered either amphetamine (2.0mg/kg i.p.) (n=12) or 
vehicle (n=12) each day in the testing chamber. Locomotor counts are 
summed into bins of 5 minute intervals with time ‘0’ being the time of 
drug injection.  

 

Amphetamine pre-treatment 2-day withdrawal 

 

Figure 1.2 shows locomotor activity as a function of time on challenge 

day (day 8). A mixed 3-way ANOVA [pre-treatment (amph or vehicle) x 

Dose (0.0 or 0.5mg/kg) x time (12 five min bins)] revealed a significant 

effect of pre-treatment (F(1,82) = 3.99, p< 0.05), and Dose (F(1,82) = 

11.56, p< 0.05), but no interaction between pre-treatment and Dose 

(F(1,82) = 1.04, ns). 
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Figure 1.2.  Locomotor counts for the 75 minutes of testing following 
injection of either amphetamine (0.5mg/kg i.p.) or vehicle. Data were 
collected  following 2 days withdrawal. The first listing in the legend 
identifies the group’s pre-treatment drug while the second indicates the 
challenge drug. Sample sizes are in brackets beside the listings. 
Locomotor counts are summed into bins of 5 minute intervals with time 
‘0’ being the time of drug injection. 
 

Group differences were examined with a 1-way ANOVA (Veh-Amph, 

Amph-Amph,) on post injection totals.  An overall difference between the 

groups was found (F(1,49) =  4.18,  p< 0.05). Whereas the low dose of 

amphetamine failed to produce significant locomotor activation in the 

vehicle pre-treated rats, increased activity was produced in the 

amphetamine pre-treated rats during the initial 30 minute post injection 

period. When total locomotion for just the initial post injection 30 minute 

period was compared activity in the Amph-Amph group was significantly 

higher than activity of all other groups (p<0.05). 

 

(26) 

(25) 

(17) 

(18) 
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Amphetamine pre-treatment 28-day withdrawal 

 

A further group of vehicle (n=7) and amphetamine (n=7) pre-treated rats 

were administered 0.5 mg/kg i.p. amphetamine 28 days following the 

sensitisation regimen. Figure 1.3 shows the time course for the total 75 

minutes following amphetamine (0.5mg/kg i.p.) administration. 
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Figure 1.3.  Locomotor counts for the 75 minutes of testing following 28 
days withdrawal. All animals were challenged with amphetamine 
(0.5mg/kg i.p.) with the legend indicating vehicle and amphetamine pre-
treated rats. Locomotor counts are summed into bins of 5 minute intervals 
with time ‘0’ being the time of drug injection 
. 
 
 

The amphetamine pre-treated rats tended to be more responsive to the 

effect of amphetamine but the effects were of much smaller magnitude 

than when testing was conducted following 2 days withdrawal (Figure 

1.2). Additionally, amphetamine pre-treated rats tended to have higher 

activity scores during the pre-treatment phase of testing although 
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variability throughout testing was high. A repeated measures ANOVA 

(pre-treatment x time) failed to reveal any significant differences between 

the two groups over the 30 minutes post injection (F(1,6) = 1.085, p> 

0.05) or the 60 min post injection period (F(1,12) = 1.247, p> 0.05). 

 

Experiment 1b, MDMA-Produced Sensitisation   

Procedure 

 

On days 1-5, rats were given a single daily administration of MDMA 

(0.0, 5.0 or 10.0 mg/kg i.p.) and activity was measured. These doses were 

chosen based on previous literature that has demonstrated sensitisation 

(Ramos, et al., 2005a; Spanos & Yamamoto, 1989). After 2, 9 or 28 days 

of withdrawal, during which all animals remained in their home cages, 

locomotor activating effects of MDMA (0.0, 2.5, 5.0 & 10.0 mg/kg i.p.) 

were measured as above.  (28 day withdrawal animals were housed in 

pairs during the 28 day drug abstinence period). 
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Experiment 1b Results. 

 

5.0 mg/kg MDMA pre-treatment day 1 vs. day 5 

 

During initial tests, a large sample of rats were administered repeated 

intermittent administration of the lower (5.0 mg/kg, IP) dose of MDMA. 

The locomotor activating effects of MDMA as a function of time on Days 

1 and 5 of treatment are presented in Figure 1.4. MDMA produced 

hyperactivity (F(1,84) = 83.24, p< 0.05) was not substantially altered by 

repeated exposure and the ANOVA failed to reveal significant effects of 

Day (F(1, 84) = 2.2, ns) or an interaction between Day and Drug (F(1, 84) 

= 3.21, ns).  
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Figure 1.4.  Average locomotor counts for the 90 minutes of testing on 
day 1 and 5 following administration of MDMA (5.0mg/kg i.p.) (n=43) 
or vehicle (n=43) in the test boxes. Locomotor counts are summed into 
bins of 5 minute intervals with time ‘0’ being the time of drug injection.  
 
 
 
 

5.0 mg/kg MDMA pre-treatment 2-day withdrawal 

 
 
Following a two day withdrawal the motor activating effects of various 

doses of MDMA (0.0, 2.5, 5.0 10.0 mg/kg) were measured. Figure 1.5 

shows the time course data.  
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Figure 1.5.  Locomotor activating effects of various doses of MDMA 
following a 2-day withdrawal from daily administration of MDMA 
(5.0mg/kg i.p.) or vehicle. Top panel is the time course of locomotor 
activity for vehicle pre-treated rats. Bottom panel is the time course of 
locomotor activity for MDMA pre-treated rats. Locomotor counts are 
summed into bins of 5 minute intervals with time ‘0’ being the time of 
drug injection 
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A mixed 3-way ANOVA [Pre-treatment (MDMA or vehicle) x Dose (0.0, 

2.5, 5.0, 10.0) x time (12 five min bins)] revealed a main effect of Pre-

treatment (F(1,79) = 4.08, p<0.05) and Dose (F(3,79) = 23.73, p<0.05) 

but no significant interaction between Pre-treatment and Dose (F(3, 79) = 

0.44, ns).   

 

Figure 1.6 presents the total activity data collapsed across time following 

each dose of MDMA for the MDMA and vehicle pre-treatment groups. 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 2.5 5 10

Challenge dose MDMA (mg/kg) 

T
o

ta
l 

A
ct

iv
it

y 
C

o
u

n
ts

Vehicle pre-treat
MDMA Pre-treat (5.0 mg/kg)

 

Figure 1.6.  Total locomotor counts on challenge day for the 60 minutes 
post injection with vehicle and MDMA (5.0 mg/kg i.p.) pre-treated rats. 
After two days of withdrawal rats were challenged with MDMA (0.0, 2.5, 
5.0 or 10.0mg/kg i.p.). * difference from vehicle pre-treated group. 
 

Analysis on total locomotor activity counts during the 60 minutes post-

injection period was conducted using a 2-way ANOVA (Pre-treatment x 

Dose).  Main effects were echoed from the repeated measures analysis 
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(7) 
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*  

*  
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above [a main effect for Pre-treatment (F(1,79) = 4.08, p<0.05) and Dose 

(F(3,79)=23.73, p<0.05)]. Independent samples t-tests revealed MDMA 

pre-treated rats were more responsive to the 0.0 mg/kg (t(22) = -2.04, p< 

0.05) and the 2.5 mg/kg (t(6.396) = -2.57, p< 0.05) doses (Levene’s test 

for equal variances violated, adjusted df reported). 

 

10.0 mg/kg MDMA pre-treatment day 1 vs. day 5 

 

 

Figure 1.7 shows MDMA-produced hyperactivity on Days 1 and 5 of the 

higher dose pre-treatment regimen (0.0 (n=19) or 10.0 (n=21) mg/kg i.p.) 

A mixed 3-way ANOVA [Day (1 & 5) x Drug (MDMA or vehicle) X 

Time (12 five min bins)] on the post injection (‘time 0’) data revealed a 

main effect of Drug (F(1,38) = 284.57, p< 0.05), Day (F(1,38) = 4.87, 

p<0.05) and an interaction (F(1,38) = 7.86, p<0.05).  There was also a 3 

way interaction for Day x Drug x Time (F(11,418) = 4.43, p< 0.05). Post 

hoc analysis on the MDMA data (Day x Time) showed that MDMA-

produced hyperactivity was greater on Day 5 compared to Day 1 of 

treatment (F(1,36) = 5.16, p< 0.05). 
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Figure 1.7 Average locomotor counts for the 90 minutes of testing across 
days. Rats were administered either MDMA (10.0mg/kg i.p.) (n=21) or 
vehicle (n=19) each day in the test chambers. Locomotor counts are 
summed into bins of 5 minute intervals with time ‘0’ being the time of 
drug injection.  
 
 
 
 

10.0 mg/kg MDMA pre-treatment 2-day withdrawal 

 
 
Following a two day withdrawal locomotor activating effects of various 

doses of MDMA (0.0, 2.5, 5.0 10.0 mg/kg) were measured. Figure 1.8 

below presents the time course data.  
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Figure 1.8.  Locomotor activating effects of various doses of MDMA 
following a 2-day withdrawal from daily administration of MDMA 
(10.0mg/kg i.p.) or vehicle. Top panel is the time course of locomotor 
activity for vehicle pre-treated rats. Bottom panel is the time course of 
locomotor activity for MDMA pre-treated rats. Locomotor counts are 
summed into bins of 5 minute intervals with time ‘0’ being the time of 
drug injection 
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A repeated measures ANOVA [pre-treatment (MDMA or vehicle) x Dose 

(0.0, 2.5, 5.0, 10.0) x time (12 five min bins)] revealed a main effect of 

Pre-treatment (F(1,60)=15.841, p<0.05) and Dose (F(3,60)=35.71, 

p<0.05) but no significant interaction between Pre-treatment and Dose 

(F(3, 60) = 1.46, ns).   

 

Figure 1.9 presents the total activity data collapsed across time following 

each dose of MDMA for the MDMA and vehicle pre-treatment groups. 
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Figure 1.9.  Total locomotor counts on challenge day for the 60 minutes post 
injection with vehicle and MDMA (10.0 mg/kg i.p.) pre-treated rats. After 
two days of withdrawal rats were challenged with MDMA (0.0, 2.5, 5.0 or 
10.0mg/kg i.p.).  Numbers in brackets above each column is the sample size. 
* difference from vehicle pre-treated group 
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Analysis on total locomotor activity counts was conducted by using a 2-

way ANOVA (Pre-treatment x Dose). Post hoc t-tests revealed an 

increase in the activating effect of all doses of MDMA (p<0.05) accepting 

the 10.0 mg/kg challenge dose.  

 

10.0 mg/kg MDMA pre-treatment and 9 day withdrawal 

 

Figure 1.20 shows the time course of MDMA-produced hyperactivity 

(0.0 or 5.0 mg/kg, IP) for rats that had been pre-treated with the higher 

dose of MDMA (0.0 or 10.0 mg/kg, IP) 9 days earlier.   
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Figure 1.20. Locomotor activating effects of MDMA (0.0 or 5.0mg/kg 
i.p.) following a 9-day withdrawal from daily administration of MDMA 
(10.0mg/kg i.p.) or vehicle. The first listing in the legend identifies the 
group’s pre-treatment drug while the second indicates the challenge drug. 
Sample sizes are in brackets beside the listings. Locomotor counts are 
summed into bins of 5 minute intervals with time ‘0’ being the time of 
drug injection. 
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A repeated measures 3-way ANOVA [pre-treatment (MDMA or vehicle) 

x challenge (MDMA or vehicle) x time (12 five min bins)] failed to reveal 

a significant effect of pre-treatment (F(1,17) = 2.59, ns), or, perhaps due 

to the small sample sizes , an interaction between pre-treatment and 

challenge (F(1,17) = 2.60, ns). However, there was a main effect of 

Challenge (F(1,17) = 5.66, p<0.05).  

 

Figure 1.21 shows the time course of MDMA-produced hyperactivity 

(0.0 or 10.0 mg/kg, IP) for rats that had been pre-treated with MDMA 

(0.0 or 10.0 mg/kg, IP) 9 days earlier.  
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Figure 1.21. Locomotor activating effects of MDMA (0.0 or 10.0mg/kg 
i.p.) following a 9-day withdrawal from daily administration of MDMA 
(10.0mg/kg i.p.) or vehicle. The first listing in the legend identifies the 
group’s pre-treatment drug while the second indicates the challenge drug. 
Sample sizes are in brackets beside the listings. Locomotor counts are 
summed into bins of 5 minute intervals with time ‘0’ being the time of 
drug injection. 
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A repeated measures 3-way ANOVA [pre-treatment (MDMA or vehicle) 

x challenge (MDMA or vehicle) x time (12 five min bins)] failed to reveal 

a significant effect of pre-treatment (F(1,29) = 2.097, ns), or an 

interaction between pre-treatment and challenge (F(1,29) = 1.26, ns), but 

a main effect for challenge (F(1,29) = 93.39, p< 0.05).  

 

Figure 1.22 presents the total post-injection activity data collapsed across 

time following 9 days withdrawal for the MDMA and vehicle pre-

treatment groups. 
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Figure 1.22. Total post injection locomotor counts on challenge day for 
the 60 minutes post injection with vehicle and MDMA (10.0 mg/kg i.p.) 
pre-treated rats. After nine days of withdrawal rats were challenged 
with MDMA (0.0, 5.0 or 10.0mg/kg i.p.).  Numbers in brackets above 
each column is the sample size. * difference from vehicle pre-treated 
group 
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Analysis on total locomotor activity counts was conducted by using a 2-

way ANOVA (Pre-treatment x Dose). There were main effects for both 

pre-treatment (F(1,49) = 5.39, p< 0.05) and dose (F(2,49) = 32.48, p< 

0.05). Post hoc contrasts revealed an increase in the activating effect of 

both the 5.0mg/kg MDMA and 10.0 mg/kg MDMA challenge dose 

(p<0.05).  

 

10.0 mg/kg MDMA pre-treatment and 28 day withdrawal 

 

Figure 1.23 shows the time course of rats challenged with MDMA (5.0 & 

10.0mg/kg i.p.) following the 28 day withdrawal period from the MDMA 

(10.0mg/kg) pre-treatment  
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Figure 1.23. Locomotor activating effects of MDMA (5.0 or 10.0mg/kg 
i.p.) following a 28-day withdrawal from daily administration of MDMA 
(10.0mg/kg i.p.) or vehicle. The first listing in the legend identifies the 
group’s pre-treatment drug while the second indicates the challenge drug. 
Sample sizes are in brackets beside the listings. Locomotor counts are 
summed into bins of 5 minute intervals with time ‘0’ being the time of 
drug injection. 
 
 
A repeated measures 3-way ANOVA [pre-treatment (MDMA or vehicle) 

x Dose (5.0 & 10.0 MDMA) x time (12 five min bins)] revealed a 

significant effect of pre-treatment (F(1,41) = 4.97, p< 0.05), in addition to 

a main effect of Dose (F(1,41) = 25.53, p< 0.05), but no interaction 

between pre-treatment and Dose (F(1,41) = 1.04, ns). 
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Figure 1.24 presents the total post-injection activity data collapsed across 

time following 28 days withdrawal for the MDMA and vehicle pre-

treatment groups. 
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Figure 1.24. Total post injection locomotor counts on challenge day for 
the 60 minutes post injection with vehicle and MDMA (10.0 mg/kg i.p.) 
pre-treated rats. After 28 days of withdrawal rats were challenged with 
MDMA (5.0 or 10.0mg/kg i.p.).  Numbers in brackets above each column 
are the sample sizes. * difference from vehicle pre-treated group 
 
 
 

Analysis on total locomotor activity counts was conducted by using a 2-

way ANOVA (Pre-treatment x Dose) revealing both a Dose (F(1,41) = 

4.97, p< 0.05) and Pre-treatment (F(1,41) = 4.97, p< 0.05) main effect. 

Post hoc contrasts revealed an increase in the activating effect of the 5.0 

mg/kg MDMA challenge dose (p<0.05) but no difference in the 

10.0mg/kg MDMA challenge dose. 
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Experiment 1 Discussion 

 

This experiment was designed to develop protocols for sensitisation to the 

locomotor activating effects of MDMA. Repeated intermittent 

administration of both amphetamine and MDMA produced sensitised 

hyperactivity. This sensitised response was apparent during the pre-

treatment regimen and also following a 2 and 9-day withdrawal period for 

the MDMA pre-treated rats. 

 

Amphetamine-induced locomotor activity increased markedly from day 1 

to day 5. Following a 2-day withdrawal period, the response to a low dose 

of amphetamine was also enhanced. Additional tests were conducted to 

examine the persistence of the sensitised response however an 

amphetamine-produced sensitised response was no longer apparent 

following a 28 day withdrawal period. Although, 4 of the 7 amphetamine 

pre-treated animals had total post-injection locomotor counts approaching 

twice that of the average vehicle pre-treated group but variability was 

large and, as a group, it was not statistically reliable 

 

This finding is in contrast to other studies that have demonstrated an 

increase in the sensitised response following an extended withdrawal 

period of 28 days (Hitzemann , Tseng, Hitzemann, Sampath-Khanna & 

Loh, 1977; Paulson & Robinson,1995, 1996). It is possible that a 

different pre-treatment regimen may have resulted in a more persistent 

sensitised response in the above studies. However, under the current 
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conditions, sensitisation to the locomotor activating effects of 

amphetamine was observed 3, but not 28 days, following exposure. 

 

In contrast to the effects of repeated exposure to amphetamine, MDMA-

produced hyperactivity following the low dose (5mg/kg) failed to 

increase between days 1 and 5 of exposure. This result concurs with other 

findings (Ball, Budreau, & Rebec, 2006). Higher dose exposures 

however, showed an increase in MDMA produced activity from days 1-5 

of exposure.  

 

Following exposure to repeated doses of 5.0 mg/kg MDMA, a sensitised 

response to the effects of the lower dose of 2.5 mg/kg was observed. 

Repeated exposure to the higher dose of 10.0mg/kg MDMA increased 

locomotor activity between days 1 and 5 and following two days of 

withdrawal a sensitised response was observed to two lower doses (2.5 

and 5.0 mg/kg) of MDMA. Thus, the dose-effect curve for MDMA-

produced hyperactivity was shifted leftwards following both pre-

treatment regimens. Two other investigations have shown sensitisation 

following a similar MDMA pre-treatment regimen. In one, rats were 

treated for six consecutive days with 10.0 mg/kg MDMA, and tested with 

the same dose of MDMA following a 5-day withdrawal period (Modi, 

Yang, Swann, & Dafny, 2006). In the other, rats were treated for 5 days 

with a single dose of 10.0mg/kg per day followed by a 2 day withdrawal 

period (Colussi-Mas & Schenk, 2008). In both investigations 10.0 mg/kg 

pre-treatment produced a robust increase in MDMA-produced 
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hyperactivity across days during the pre-treatment period. The current 

investigation, in conjunction with the above data, suggests that a single, 

daily administration of the 10.0mg/kg pre-treatment dose compared to 

that of the 5mg/kg is the more effective pre-treatment dose during a 5-day 

exposure period to observe sensitisation. 

 

The present results suggest that a short withdrawal period enhances the 

manifestation of MDMA- induced behavioural sensitisation. The majority 

of investigations into MDMA sensitisation have also imposed a relatively 

short withdrawal period ranging from 48 hours to 12 days (Kalivas, et al., 

1998; McCreary, Bankson, & Cunningham, 1999; Ramos, et al., 2004; 

Spanos & Yamamoto, 1989). Consistent with these findings is the current 

data that show after 9 days withdrawal form repeated exposure to 

10.0mg/kg MDMA there was a sensitised response.  

 

Following longer withdrawal period of 28 days, however, sensitisation 

was no longer apparent. Instead, when compared to controls, the 

hyperactive response to 5.0 mg/kg MDMA - was decreased. This finding 

contrasts with a study that demonstrated sensitisation when testing was 

conducted following a 38 day withdrawal period (Modi, et al., 2006). The 

current results however, should be interpreted cautiously as the total 

locomotor activity counts in the saline control rats were extremely high. 

However, the locomotor counts for the MDMA pre-treated animals are 

comparable to the locomotor counts observed after 2 days (Figure 1.9) 

and 9 days (figure 1.22) withdrawal. One possible reason for the 
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increased response in vehicle rats is that during the 28 day withdrawal 

period rats were housed in pairs rather than singly as in the other groups. 

Housing environment is known to alter subsequent drug responses and 

animals housed in groups were more sensitive to amphetamine induced 

locomotor activity (Schaefer & Michael, 1991). If this is also true for 

MDMA produced hyperactivity the data suggest a differential influence 

of prior drug exposure. 

 

Of interest, there was a greater response in locomotor activity following 

administration of vehicle to the MDMA pre-treated rats. This conditioned 

effect has also been demonstrated following repeated administration of 

amphetamine (Anagnostaras & Robinson, 1996; Drew & Glick, 1988; 

Mazurski & Beninger, 1987; Vezina, et al., 1989). Although not 

specifically tested for, the current results suggest a role of context in the 

expression of MDMA-induced locomotor sensitisation. 

Summary experiment 1 

 

A sensitisation protocol was developed to induce sensitised responding to 

MDMA. An augmented locomotor response was evident across days of 

pre-treatment (day 1 vs. 5) and also evident with withdrawal periods of 

up to 9 days after the last exposure. Repeated administrations of either 

10.0 or 5.0 mg/kg for 5 days showed sensitised locomotor responding to a 

lower dose of the drug, however, the regimen of 5 daily treatments of 

10.0mg/kg produces persistent sensitisation.  
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Experiment 2: Changes in sensitivity of the D1 and D2 receptor to 

repeated intermittent exposure of MDMA 

Background 

 

An important mechanism underlying amphetamine produced hyperactivity is 

an increase in extracellular levels of DA in cell bodies and terminal regions 

of the mesolimbic system. Repeated intermittent administration of 

amphetamine increases the dopamine response and this sensitised 

neurochemical response is believed to result in behavioural sensitisation. The 

expression of sensitisation is typically measured as an increase in drug 

produced hyperactivity that can be explored with pharmacological 

manipulation of dopamine release, through for example, receptor activation 

or suppression. 

 

The role of the D1 and D2 receptors in amphetamine sensitisation has 

previously been investigated. Sensitisation was blocked by the D1-like 

antagonist, SCH23390 (Drew & Glick, 1990; Vezina & Stewart, 1989; 

Vezina, 1996) and sensitised locomotor activation was observed in response 

to the selective D1 dopamine receptor agonist, SKF81297, in amphetamine 

pre-treated rats (Chen et al., 2003). Intra VTA pre-exposure to the D2 

antagonist, eticlopride, blocked amphetamine produced locomotor activity 

(Tanabe, Suto, Creekmore, Steinmiller, Vezina, 2004) but effects of  the 

mixed D1/D2 agonist, apomorphine, has been equivocal. Following 

amphetamine-produced sensitisation, sensitisation to apomorphine-produced 
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stereotypy was observed (Kuczenski & Segal, 1999) but this pre-treatment 

regimen failed to increase apomorphine-produced horizontal activity 

(Vanderschuren et al., 1999).  

  

Blockade of dopamine D1 like and D2 –like receptors significantly attenuated 

MDMA-induced locomotor activity in rats (Ball et al., 2003; Daniela et al., 

2004). A role of dopamine receptors in both the initiation and expression of 

sensitisation has been suggested (Ramos et al., 2004; 2005a; 2005b). Cross 

sensitisation to amphetamine has also been demonstrated suggesting common 

neural adaptations mediating behavioural sensitisation (Modi et al., 2006).  

 

To date, the role of the D1 and D2 receptors in the expression of sensitisation 

to the behavioural effects of MDMA has not been comprehensively 

examined. The current investigation aims to identify potential changes in D1 

and D2 receptor sensitivity as a result of repeated intermittent exposure to 

MDMA. It is hypothesised that the DA D1 and D2 receptors will be sensitised 

following a regimen of repeated intermittent MDMA administration. The 

response to the selective D1-like agonist, SKF81297, and the D1/D2 agonist, 

apomorphine will be determined in MDMA sensitised rats. Additionally, the 

potency of selective antagonists to attenuate MDMA produced hyperactivity 

will also be measured.  
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Experiment 2a method 

Experiment 2 follows the previously described general sensitisation 

methodology of five, single daily injections of MDMA (10.0mg/kg) followed 

by 2 days withdrawal.  

 

The ranges of doses chosen for SCH23390 have been shown to attenuate 

MDMA produced hyperlocomotion (Daniela et al., 2004). The dose range of 

eticlopride was based on Ball et al. (2003) demonstration of the attenuation 

of MDMA produced hyperactivity. Doses of the D1 selective agonist, 

SKF81297, were based on Reavill, Bond, Overend, & Hunter, (1993) and 

doses of apomorphine were chosen based on previous amphetamine 

sensitisation studies (Kuczenski & Segal, 1999; Vanderschuren, Beemster, & 

Schoffelmeer, 2003; Võikar, et al., 1999). The doses for the selective 5-HT2C 

antagonist, RS102221, were based on Bonhaus, et al., (1997). 

Experiment 2a Results. 

Effects of SKF81297 in MDMA sensitised rats 

 

Figure 2.1 shows the time course of the effects of SKF81297 in vehicle and 

MDMA pre-treated rats. A three-way ANOVA [Pre-treatment (10.0 MDMA 

or vehicle) X Dose (0.0, 0.5, 1.0, 2.0, 4.0 and 8.0) X Time (12 five minute 

bins)] was conducted. There was a main effect of Pre-treatment (F(1,72) = 

20.48, p <0.05), and of Dose (F(5,72) = 16.36, p <0.05), but no interaction 

between Pre-treatment and Dose (F(5,72) = 1.04, ns). 
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Figure 2.1.  Locomotor activating effects of SKF81297 in MDMA and 
vehicle pre-treated rats. Symbols represent the mean (+SEM) number of 
activity counts. Locomotor counts are summed into bins of 5 minute 
intervals with time ‘0’ being the time of drug injection. 
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Figure 2.2 below presents the above data as total locomotor counts 

following the injection of various doses of SKF81297. Analysis on total 

locomotor activity counts was conducted by using a 2-way ANOVA 

(Pre-treatment x Dose) with post hoc contrasts. Post hoc contrasts 

revealed an effect of pre-treatment for the 0.0 mg/kg groups (F(1,12)= 

14.64, p< 0.05), the 1.0 mg/kg groups (F(1,12)=14.0, p< 0.05), the 2.0 

mg/kg groups  (F(1,12)= 5.68, p< 0.05) and the 4.0 mg/kg groups 

(F(1,12)= 5.66, p< 0.05). 
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Figure 2.2.  Mean total locomotor counts (+SEM) on challenge day 
during the 60 minute post injection period with for vehicle and MDMA 
(10.0 mg/kg i.p.) pre-treated rats. Numbers above each column represent 
the sample size used. * difference from vehicle pre-treated group 
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Effects of SCH23390 in MDMA sensitised rats 

 

Following the sensitisation regimen of 5 daily injections of MDMA (0.0 or 

10.0mg/kg) and 2-day withdrawal effects of the D1–like antagonist, 

SCH23390, on the locomotor activating effect of 5.0 mg/kg MDMA was 

measured. Figure 2.3 shows locomotor activity as a function of time on test 

day (day 8). A three-way ANOVA [Pre-treatment (10.0 MDMA or vehicle) X 

Dose (0.0, 0.01, 0.02, and 0.04) X Time (12 five minute bins)] revealed a 

main effect of Pre-treatment (F(1,54) = 13.40, p <0.05), and Dose (F(3,54) = 

4.74, p <0.05), but no interaction between Pre-treatment and Dose (F(3,54) = 

1.29, ns). 
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Figure 2.3.  Locomotor activating effects of SCH23390 in MDMA and 
vehicle pre-treated rats. Symbols represent the mean (+SEM) number of 
activity counts. Locomotor counts are summed into bins of 5 minute intervals 
with time ‘0’ being the time of drug injection. 
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Figure 2.4 shows the above data presented as total locomotor counts 

following the injection of MDMA. A one-way ANOVA on data from vehicle 

pre-treated animals failed to reveal a main effect of Dose (F(3,27) = 1.79, ns). 

There was however a main effect of dose in the MDMA pre-treated rats 

(F(3,27) = 3.30, p<0.05).  In the MDMA pre-treated group, post hoc analysis 

showed the  0.04 SCH23390 dose significantly decreased MDMA produced 

hyperactivity (F(1,13) = 13.80, p<0.05). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4.  Effects of SCH 23390 on MDMA-(5.0 mg/kg) produced 
hyperactivity in vehicle and MDMA pre-treated rats. Symbols represent 
the mean number of activity counts (+SEM). Numbers in brackets above 
each column is the sample size. * difference from vehicle pre-treated 
group 
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treatment (10.0 MDMA or vehicle) X Dose (0.0, 0.01, 0.02, and 0.04)] failed 

to reveal a significant effect of Pre-treatment (F(1,54) = 0.24, ns) or a 

significant interaction between Pre-treatment and Dose (F(3,54) = 0.22, ns) 

but a significant main effect of Dose was obtained (F(3,54) = 4.88, p<0.05). 

Subsequent post hoc analysis with a one-way ANOVA on vehicle pre-treated 

rats revealed that the 0.04 dose significantly reduced MDMA-produced 

hyperactivity (F(1,14) 6.50, p <0.05). In the MDMA pre-treated group the 

0.04 dose of SCH 23390 also significantly decreased MDMA-produced 

hyperactivity (F(1,14) 13.80, p <0.05). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5.  Effect of SCH 23390 on MDMA (5.0 mg/kg) produced 
hyperactivity in vehicle and MDMA-pre-treated rats. Data are expressed 
as mean percent change from vehicle (+SEM). * difference from vehicle 
pre-treated group. 
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Experiment 2b Results. 

 

Effects of Apomorphine in MDMA sensitised rats 

 

Figure 2.6 shows the effect of apomorphine in vehicle and MDMA pre-

treated rats. A three-way ANOVA [Pre-treatment (10.0 MDMA or vehicle) X 

Dose (0.0, 0.5, 1.0, 2.0 and 4.0) X Time (12 five minute bins)] revealed a 

main effect of Pre-treatment (F(1,72) = 20.93, p <0.05), and of Dose (F(4,72) 

= 11.97, p <0.05). There was also a significant interaction between Pre-

treatment and Dose (F(4,72) = 3.76, p <0.05). 
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Figure 2.6.  Locomotor activating effects of apomorphine in MDMA and 
vehicle pre-treated rats. Symbols represent the mean (+SEM) number of 
activity counts. Locomotor counts are summed into bins of 5 minute 
intervals with time ‘0’ being the time of drug injection. 
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Figure 2.7 below presents the above data expressed as total post injection 

locomotor counts. Analysis on total locomotor activity counts was conducted 

by using a 2-way ANOVA (Pre-treatment x Dose) with post hoc contrasts. 

Post hoc results revealed that MDMA pre-treated rats were more responsive 

to the 2.0mg/kg (F(1,14)= 6.76, p< 0.05), and the 4.0 mg/kg (F(1,12)= 6.97, 

p< 0.05) doses. 
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Figure 2.7.  Mean total locomotor counts (+SEM) on challenge day 
during the 60 minute post injection period with for vehicle and MDMA 
(10.0 mg/kg i.p.) pre-treated rats. Numbers above each column represent 
the sample size used. * difference from vehicle pre-treated group 
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Effects of eticlopride in MDMA sensitised rats 

 

 

Figure 2.8 shows the effect of eticlopride on MDMA-produced locomotor 

activity in the vehicle and MDMA pre-treated rats. A three-way ANOVA 

[Pre-treatment (10.0 MDMA or vehicle) X Dose (0.0, 0.05, 0.1, and 0.2) X 

Time (12 five minute bins)] was conducted. There was no main effect of Pre-

treatment (F(1,50) = 2.29, ns), or interaction between Pre-treatment and Dose 

(F(3,50) = 1.21, ns) but a main effect of  Dose (F(3,50) = 11.58, p <0.05) was 

produced  
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Figure 2.8.  Effects of eticlopride on MDMA-(5.0 mg/kg) produced 
hyperactivity in vehicle and MDMA pre-treated rats. Symbols represent 
the mean number of activity counts (+SEM). Numbers in brackets above 
each column is the sample size. Locomotor counts are summed into bins 
of 5 minute intervals with time ‘0’ being the time of drug injection. 
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Figure 2.9 shows the data presented as total post injection locomotor counts.  

There was a main effect of Dose for both the vehicle (F(3,23) = 4.35, P<0.05) 

and MDMA (F(3,27) = 8.23, p<0.05) pre-treated rats. A one-way ANOVA 

on the data from the vehicle and MDMA-pre-treated rats revealed that all 

doses of eticlopride reduced MDMA-produced hyperactivity (p <0.05).  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.9.  Effects of eticlopride on MDMA (5.0 mg/kg) produced 
hyperactivity in vehicle and MDMA pre-treated rats. Symbols represent 
the mean number of activity counts (+SEM). Numbers in brackets above 
each column is the sample size. * difference from vehicle pre-treated 
group. 
 
 
Figure 2.10 presents the above data as a percentage change from baseline. A 

two-way ANOVA [Pre-treatment (10.0 MDMA or vehicle) X Dose (0.0, 

0.01, 0.02, and 0.04)] was conducted. There was a significant effect of Dose 

(F(3,50) = 11.48, p<0.05) but the effect of  Pre-treatment (F(1,50) = 0.09, ns) 

or the interaction between  Pre-treatment and Dose (F(3,50) = 0.51, ns) were 

not significant.  
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Figure 2.10.  Effect of eticlopride on MDMA (5.0 mg/kg) produced 
hyperactivity in vehicle and MDMA-pre-treated rats. Data are expressed as 
mean percent change from vehicle (+SEM).  
 

Effects of Lower Doses of Eticlopride in MDMA sensitised rats 

 
In the previous groups, the lowest dose of eticlopride produced a large 

suppression of MDMA-produced activity in both groups. Therefore, several 

groups were subsequently tested with a lower dose range. Figure 2.11 shows 

the time course of MDMA (5.0 mg/kg) produced hyperactivity following this 

lower dose pre-treatment. A three-way ANOVA [Pre-treatment (10.0 MDMA 

or vehicle) X Dose (0.03, 0.01, 0.003 and 0.0) X Time (12 five minute bins)] 

was conducted. There was a significant main effect of Dose (F(3,41) = 3.15, 

p<0.05) but no significant main effect of Pre-treatment (F(1,41) = 1.49, ns) or 

a significant interaction between Pre-treatment and Dose (F(3,41) = 2.06, ns). 
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Figure 2.11.  Effects of low doses of eticlopride on MDMA (5.0 mg/kg) 
produced hyperactivity in vehicle and MDMA pre-treated rats. Symbols 
represent the mean number of activity counts (+SEM).Numbers in 
brackets above each column is the sample size. Locomotor counts are 
summed into bins of 5 minute intervals with time ‘0’ being the time of 
drug injection. 
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Figure 2.12 shows the data above presented as total locomotor counts 

following the injection of MDMA. A two way ANOVA revealed a 

significant main effect of Dose (F(3,41) = 3.15, p<0.05). A one-way 

ANOVA showed a significant main effect of Dose in the MDMA (F(3,22) = 

5.86, p<0.05) pre-treated groups but not in the vehicle pre-treated groups 

(F(3,22) = 1.78, ns). A one-way ANOVA on MDMA pre-treated rats showed 

all but the 0.003 dose to be significantly reduced compared to that of the 0.0 

dose (p <0.05).  
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Figure 2.12.  Effects of eticlopride on MDMA (5.0 mg/kg) produced 
hyperactivity in vehicle and MDMA pre-treated rats. Symbols 
represent the mean total number of activity counts (+SEM). Numbers 
in brackets above each column is the sample size. 
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Experiment 2c Results. 

 

Effects of RS102221 in MDMA sensitised rats 

 

Figure 2.13 shows the effect of RS102221 in vehicle and MDMA pre-treated 

rats. A three-way ANOVA [Pre-treatment (10.0 MDMA or vehicle) X Dose 

(0.0, 0.25, 0.5, and 1.0) X Time (12 five minute bins)] revealed a significant 

main effect of Pre-treatment (F(1,50) = 54.26, p<0.05) and a significant 

interaction between Pre-treatment and Dose (F(3,50) = 3.99, p<0.05) , but the 

effect of Dose was not significant (F(3,50) = 1.06 ns). 
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Figure 2.13.  Effects of RS102221 on MDMA (5.0 mg/kg) produced 
hyperactivity in vehicle and MDMA pre-treated rats. Symbols 
represent the mean number of activity counts (+SEM). Numbers in 
brackets above each column is the sample size. Locomotor counts 
are summed into bins of 5 minute intervals with time ‘0’ being the 
time of drug injection. 
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Figure 2.14 shows the data above presented as total number of locomotor 

counts following the injection of 5.0mg/kg MDMA. A one-way ANOVA on 

vehicle data showed no effect of Dose (F(3,27) = 1.11, ns) but a one-way 

ANOVA on the data from the MDMA pre-treated groups revealed  a main 

effect (F(3,23) = 3.10, p<0.05).  Post hoc analysis revealed that the doses of 

0.5 and 1.0 mg/kg RS102220 increased activity relative to the 0.25 mg/kg 

dose (p<0.05).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.14.  Effects of RS102221 on MDMA (5.0 mg/kg) produced 
hyperactivity in vehicle and MDMA pre-treated rats. Symbols represent 
the mean total number of activity counts (+SEM). Numbers in brackets 
above each column is the sample size. * difference from vehicle pre-
treated group 
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Figure 2.15 presents the above data as a percentage change from 

‘baseline’ (0.0 RS102221 dose) responding. A two-way ANOVA Pre-

treatment (10.0 MDMA or vehicle) X Dose (0.0, 0.25, 0.5 and 1.0mg/kg)] 

showed no significant effect of Pre-treatment (F(1,51) = 0.87, ns), no 

main effect of Dose (F(3,51) = 0.31, ns) but an interaction between Pre-

treatment and Dose (F(3,51) = 2.99, p<0.05). A one-way ANOVA 

showed a difference in MDMA pre-treated data (F(3,26) = 3.10, p<0.05) 

with the difference between the 0.25  and 1.0 dose F(1,14) = 7.39, 

p<0.05). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.15.  Effect of RS102221 on MDMA (5.0 mg/kg) produced 
hyperactivity in vehicle and MDMA pre-treated rats. Data are expressed 
as mean percent change from vehicle (+SEM).  
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Experiment 2 Discussion 

 

In accordance with experiment 1, and previous literature, the present study 

demonstrated that pre-exposure to MDMA produces sensitisation to its 

locomotor producing effects. The locomotor activating effects of 

amphetamine are widely agreed to be mediated by DA (Kalivas & Stewart, 

1991; Nestler, 1992; Robinson & Berridge, 1993: Segal, 1989) and the 

present investigation demonstrated hyperlocomotor producing effects of 

repeated MDMA might also reflect sensitisation in underlying dopaminergic 

substrates.  

 

Following repeated exposure to MDMA the D1 agonist, SKF81297, produced 

a greater locomotor response when compared to vehicle pre-treated animals. 

The leftward shift in the dose response curve suggests a sensitisation of the 

D1 receptor. Repeated exposure to amphetamine also produced D1 receptor 

sensitivity in sub-cortical structures such as the NAc (Henry & White, 1991) 

and VTA (Vezina, 1996). Further, pre-treatment with the D1–like receptor 

antagonist, SCH 23390, blocked both the development and expression of 

amphetamine produced behavioural sensitisation (Vezina, 1996; Vezina and 

Stewart 1989). In contrast, the development of MDMA-produced 

sensitisation was unaffected by pre-treatment with SCH23390 while but 

SCH23390 dose dependently blocked the expression of sensitisation (Ramos 

et al., 2004).   
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In the current investigation, the administration of the D1–like receptor 

antagonist, SCH23390, decreased MDMA produced locomotor activity to a 

comparable degree in both MDMA and vehicle pre-treated animals. This 

reduction in the response to MDMA supports the idea that the D1 receptor 

plays a role in the expression of MDMA-produced hyperactivity, as has been 

previously suggested (Daniela et al., Ball et al., Ramos et al.,). The failure to 

observe an increased potency of SCH 23390 in the MDMA pre-treated rats is 

not consistent with the idea that the D1 receptor became supersensitive as a 

result of pre-exposure.  

 

One possibility is that the effects of SCH 23390 are due to activity at 

alternate receptor sites. Thus, although SCH23390 has been extensively used 

as a dopamine D1 receptor antagonist (Bourne, 2001) it also binds with high 

affinity to 5-HT2C receptors functioning as an antagonist (Millan, Newman-

Tancredi, Quentric, & Cussac, 2001). Administration of 5-HT2C receptor 

antagonists increased DA firing rates and 5-HT2C receptor agonists decreased 

firing rates (Di Matteo et al. 2000; Gobert et al. 2000). Therefore, it is 

possible that these two effects of SCH 23390 counteracted each other. That 

is, the DA blocking effects would be expected to result in an antagonism of 

MDMA-produced hyperactivity whereas the effects on the 5HT2c receptor 

would be expected to enhance MDMA-produced hyperactivity.  Indeed, the 

current results support this hypothesis as the selective 5-HT2C antagonist, 

RS102221, potentiated MDMA-produced hyperactivity in the MDMA pre-

treated rats.   
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The locomotor activating effects of the mixed D1/D2 agonist, apomorphine, 

were increased across a range of doses in MDMA sensitised animals. 

Apomorphine is non-selective but it has greater affinity for the D2 receptor 

(Li, et al., 2006). The Ki for the D2 receptor was 5 nanomolars (nM) and for 

the D1 receptor it was 500 nM (Missale, Nash, Robinson, Jaber, & Caron, 

1998). Apomorphine therefore is a preferential DA D2 agonist.  

 

Following amphetamine pre-treatment, there have been reports of either no 

change or down regulation of D2 receptors (Muller and Seeman, 1979; 

Robinson & Becker, 1986) although DA D2 receptor agonists have been 

shown to induce augmented behavioural responses in sensitised rats (Levy et 

al., 1988; Ujike et al., 1990). It has been suggested, however, that 

sensitisation is accompanied by an increased sensitivity of the high-affinity 

D2 post synaptic receptors (Seeman, Tallerico, Ko, Tenn, & Kapur, 2002; 

Seeman, McCormick & Kapur, 2007). This might explain the increased 

apomorphine-produced hyperactivity observed in the present study.  

 

A transient decrease in the sensitivity of D2 auto receptors has also been 

reported following repeated amphetamine administration (Wolf et al., 1993). 

To ascertain whether this could explain the supersensitive response to 

apomorphine, effects of a low dose of the D2 antagonist, eticlopride, which 

would have preferentially blocked D2 autoreceptors (Salmi, Malmgren, 

Svensson, Ahlenius, 1998), were determined. Under these circumstances, an 

increase in MDMA -produced hyperactivity might have been expected. This 

was not observed, however, even when extremely low doses of eticlopride 
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were administered. These data are, therefore, not consistent with the idea that 

the autoreceptor became desensitised. Rather, the data suggest that MDMA 

pre-treatment resulted in an up-regulation of the postsynaptic D2 

mechanisms.  

 

Sustained receptor activation by DA agonists may alter the D2 coupling of the 

G-protein without alteration of receptor densities (Rudissaar, Harro, Pruus, 

Rinken, & Allikmets, 2008). Extracellular signals produce increases or 

decreases of second messengers such as cyclic adenosine monophosphate 

(cAMP) resulting in a number of biological responses (Gelowitz & Berger, 

2001). For example, when cocaine is chronically administered there is 

increased adenylyl cyclase and cAMP dependent protein kinase in neurons in 

the NAc (Miserendino, & Nestler, 1995). Further, administration of cholera 

toxin in the NAc, activating adenylyl cyclase, enhances the acute locomotor 

activating effects of amphetamine (Cunningham & Kelley, 1993). The 

uncoupling of the G-protein had been reported following chronic 

administration of the D2 agonist, apomorphine, without altering locomotor 

activity (Rudissaar, et al., 2008). However, supersensitivity of the D2 

receptors following unilateral lesions of the striatal system, enhanced Gi 

coupling and subsequent locomotor responses (Cai, Wang, & Friedman, 

2002; Cai, Zhen, Uryu, & Friedman, 2000). These data suggest that in 

neurons expressing D2 receptors an enhanced Gi coupling  may be produced 

following amphetamine sensitisation however, the exact mechanisms of 

action are, as yet, still unclear (Rudissaar et al., 2008; Schwendt, &  

McGinty, 2007; Traynor & Neubig, 2005). It is seemingly likely however, 
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that during the MDMA sensitising regimen changes in coupling to the 

adenylyl cyclase inhibiting D2 G-protein occurred. This may explain the 

differential locomotor producing effects of the D2 agonist and antagonist. 

 

Experiment 2 summary 

 

The current results are consistent with the hypothesis that locomotor 

sensitisation to MDMA is mediated by DA receptor mechanisms. There was 

cross-sensitisation between the effects of MDMA and both the D1-like 

agonist, SKF81297, and the preferential DA D2-like agonist, apomorphine. 

These effects were not, however, reflected in sensitised responses to the 

antagonists. Whereas the failure for the response to SCH 23390 to be 

increased in MDMA sensitised rats might be due to non selective effects, the 

failure to observe differential effects of the D2-like antagonist, eticlopride, 

suggests that there is an alteration in coupling of the D2 receptor mechanisms 

under conditions of D2 blockade.   
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Experiment 3: Changes in potency of reinforcement of MDMA as 

measured in the self-administration paradigm following repeated 

intermittent exposure to MDMA 

Background 

 

There is now strong evidence supporting the relationship between drug 

induced changes in mesolimbic dopamine and the rewarding effects and 

abuse liability of drugs as modelled by self administration. For example, 

neurotoxic lesions (Roberts, Koob, Klonoff, & Fibiger, 1980) or 

administration of D1-like and D2-like receptors antagonists (Caine & Koob 

1994; Pierre & Vezina, 1998; Woolverton & Virus, 1989) produced a 

rightward shift in the dose effect curve. Conversely, administration of direct 

or indirect (Schenk et al, 2003; Spealman, Barrett-Larimore, Rowlett, Platt, 

& Khroyan, 1999) dopamine agonists produced a leftward shift (Caine & 

Koob, 1994) supporting the idea that dopaminergic mechanisms underlie the 

reinforcing effects of drugs of abuse. 

 

The magnitude of the initial reinforcing effects of drugs was inversely related 

to drug dose. Thus, self-administration was acquired more rapidly when 

higher doses were available (Schenk et al, 1993; Carroll & Lac, 1997). 

Following systemic pre-treatment with amphetamine or cocaine, latency to 

acquisition of self-administration was reduced, suggesting an enhancement of 

the initial reinforcing effects (Horger et al., 1990; 1992; Schenk & Partridge, 

2000; Vezina et al., 1999). Pre-treatment with drugs other than the self-
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administered drug has also been shown to decrease the latency to acquisition 

of self-administration (Schenk et al, 1993; Schenk & Izenwasser, 2002). 

These findings suggest that pre-exposure to psychostimulants may increase 

their reinforcing effects and may produce neuroadaptations that are common 

and might underlie the abuse liability of some drugs. Given the role of 

dopamine in self administration it further suggests that these 

neuroadaptations are within the dopamine system.  

 

Latency to acquisition of self-administration of other drugs of abuse was 

inversely related to drug dose; higher doses led to more rapid acquisition 

(Schenk et al., 1991, 1993; Schenk & Partridge, 2000). In the case of 

MDMA, only one report has provided data on the relationship between 

acquisition rate and available dose for self-administration. In that study 

(Schenk et al., 2007), two doses of MDMA (0.25 and 1.0 mg/kg/infusion) 

were available. Latency to acquisition did not differ as a function of dose 

and, in both cases, latency to acquire self-administration was more variable 

and longer than the latency to acquire cocaine (0.5 mg/kg/infusion) self-

administration.  

 

Pre-exposure to MDMA facilitated cocaine self-administration (Fletcher, 

Robinson, & Slippoy, 2001), suggesting a sensitised response but, to my 

knowledge, there have not been studies that have examined the effects of 

prior exposure to MDMA on latency to acquisition of MDMA self-

administration.  
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Experiment two demonstrated an augmented locomotor response to both D1 

and D2 agonists following repeated MDMA administration. It is therefore 

hypothesised that a sensitised dopamine response would facilitate the 

acquisition of self-administration. In the current experiment two doses of 

MDMA were chosen for this acquisition study (0.5 and 1.0 mg/kg/infusion). 

Both doses were based on previous research showing acquisition of MDMA 

within approximately 12 days (Schenk, et al., 2003; 2007).  

 

Materials and methods 

 

1Subjects 

Subjects were male Sprague-Dawley rats bred in the vivarium at Victoria 

University of Wellington. They were initially housed in hanging 

polycarbonate cages in groups of four to six per cage, but once they reached 

weights of 250–275 g, they were individually housed. The humidity (74%) 

and temperature (21C) controlled animal colony was maintained on a 12:12-h 

light/dark cycle with lights on at 0700 hours. Food and water were freely 

available except during the short duration (2 hour) self-administration tests 

described below. 

 

Surgery 

Rats were implanted with a silastic catheter in the right jugular vein. The rats 

were deeply anesthetized with ketamine (60.0 mg/kg, IP) and pentobarbital 

                                                 

1 The Materials and methods sub-sections named ‘subjects’, ‘surgery’ and ‘apparatus’ have 
previously been described in Schenk S, Gittings D, Johnstone M, Daniela, E. (2003). 
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(20.0 mg/kg, IP), the external jugular vein was isolated, a catheter inserted 

and the distal end (22 ga stainless steel tubing) was passed subcutaneously to 

an exposed portion of the skull, where it was fixed to embedded jeweller’s 

screws with dental acrylic. Each day, the catheters were infused with 0.1 ml 

of a sterile saline solution containing heparin (30.0 IU/ ml) and ampicillin 

(250,000 IU/ml) to prevent infection and the formation of clots. The rats were 

allowed 5 days post-surgery for recovery prior to behavioural testing.  

 

Apparatus 

 

Self-administration training and testing were conducted in test chambers 

(Med Associates, ENV 001) enclosed in sound attenuating closets. The 

testing room containing the 31 test chambers was humidity (55%) and 

temperature (21ºC) controlled. Each chamber was equipped with two levers 

and a stimulus light. Depression of one lever (the active lever) resulted in an 

infusion of drug. Depression of the other lever (the inactive lever) was 

without programmed consequence. Infusions were in a volume of 0.1 ml 

delivered over 12.0 sec via Razel pumps equipped with 1.0 rpm motors and 

20.0 ml syringes.  

 

Procedure 

 

Rats received a pre-treatment consisting of MDMA (0.0 (n = 17) or 

10.0mg/kg (n = 18)), i.p) as per the 5 day sensitising regimen described in 

the general procedure section of Experiment 1. This was followed by a two 
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day withdrawal period. Catheters were implanted the following day and 

animals were allowed to recover for a further 5 days. Therefore, self 

administration testing began 9 days following the pre-treatment phase. This 

withdrawal period was chosen because a sensitised response to MDMA was 

produced 9 days following repeated MDMA administration in Experiment 

1b. 

 

Self-administration tests were conducted during daily 2 hour sessions. Every 

session began with an experimenter delivered infusion of MDMA. 

Thereafter, each depression of the active lever (FR1 reinforcement schedule) 

resulted in an automatic infusion of MDMA [0.5 or 1.0 mg/kg/infusion] 

paired with the illumination of a stimulus light located directly above the 

active lever. 

Testing continued for 14 days or until the number of active lever responses 

was greater than 10, and a preference for the active lever was demonstrated, 

as per Daniela et al., (2006) and Schenk et al., (2007).  The number of days 

required to meet this criterion was determined for each rat.  

Results 

 

Figure 3.1 shows the cumulative percentage of rats in each pre-treatment 

group that acquired MDMA self-administration as a function of days and 

MDMA dose. For all rats, regardless of pre-treatment and subsequent self-

administration dose, a total of 46% reached the self-administration criterion. 
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Figure 3.1. Cumulative percentage of rats that acquired MDMA self-
administration as a function of days of testing, pre-treatment condition and 
MDMA dose. 
 
 
Of the vehicle pre-treated group that self-administered 1.0mg/kg/infusion 

nearly 40% met the criteria for acquisition by day 5 and in this group the 

highest percentage of rats that acquired self-administration during the 14 day 

test period. There was an increase in the latency to acquisition for the vehicle 

pre-treated group that self-administered the lower dose of 0.5 mg/kg/infusion 

MDMA. The MDMA pre-treated rats were slower to acquire self-

administration and a lower percentage met the criteria within the test period 

when compared to their vehicle pre-treated counterparts. 

 

Rats pre-exposed to 10.0mg/kg MDMA for five days and tested with 1.0 

mg/kg/infusion MDMA had an average daily intake of 9.80mg/kg. Rats pre-

exposed to vehicle for five days and tested 1.0 mg/kg/infusion MDMA had 

an average daily intake of 8.51mg/kg. There was no difference in average 
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daily intake between MDMA and vehicle pre-exposed groups in the 

1.0mg/kg/inf condition [t(6) =1.45, p= 0.196]. 

 

Rats pre-exposed to 10.0 MDMA for five days and tested with 0.5 

mg/kg/infusion MDMA had an average daily intake of 3.59mg/kg. Rats pre-

exposed to vehicle for five days and tested 0.5 mg/kg/infusion MDMA had 

an average daily intake of 6.90mg/kg. There was a significant difference in 

average daily intake between MDMA and vehicle pre-exposed groups in the 

0.5mg/kg/infusion condition [t(4) =-3.396, p= 0.027] with vehicle animals 

having a higher daily average intake. 

 

Figure two shows the range of responses on the active and inactive lever for 

all rats that failed to reach criterion. The failure for these rats to acquire was 

related to the criterion of 10 responses rather than lack of active lever 

preference. 

Table 2. 

 

 

 

 

 

 

 

 

Table 2. Range of responses on the active and inactive lever for rats that 
failed to reach criterion.  

  Range of responses 

Pre-treatment MDMA 
(mg/kg/infusion) 

 

Inactive lever Active lever 

 
Vehicle (n=6) 

 
0.5 0.3 – 3.1 1.6- 3.6  

Vehicle (n=3) 1.0 0.0 - 5.0 0.6 - 5.3 

MDMA (n=5) 0.5 0.2 - 3.6 1.4 – 4.6 

MDMA  (n=5) 1.0 0 - 3.2 0.8 – 4.6 
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Discussion 

 

The present study was designed to determine whether pre-exposure to 

MDMA, under conditions that produced sensitisation to the locomotor 

activating effects of MDMA, decreased the latency to acquisition of MDMA 

self-administration.  Somewhat surprisingly, pre-treatment with MDMA did 

not decrease latency to acquisition. Indeed, in comparison to vehicle pre-

treated animals there was an increased latency to acquisition for the MDMA 

pre-treated rats.  

 

An inverse relationship between drug dose and latency to acquisition of self-

administration of other drugs of abuse has been demonstrated (Schenk et al., 

1991, 1993; Schenk & Partridge, 2000). Consistent with these findings 

latency to acquisition of MDMA self-administration was shorter for the 

group that self-administered the higher dose and a higher percentage of these 

rats met the criterion for acquisition within the temporal parameters of this 

experiment.  

 

In contrast to results of other studies, however, MDMA pre-treatment failed 

to decrease the latency to acquisition of self-administration. One possibility is 

that the doses of MDMA tested were too high to allow reliable decreases to 

be observed. Indeed, pre-exposure to amphetamine decreased the latency to 

acquisition of  self-administration of low doses (Piazza, et al., 1989; Pierre & 

Vezina, 1997) but failed to alter acquisition of self-administration when 
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higher doses were available (Lorrain, Arnold, & Vezina, 2000; Mendrek, 

Blaha, & Phillips, 1998).  

 

Another possibility is that pre-treatment with MDMA as in the present study 

sensitised the rats to the aversive effects of MDMA and hence delayed the 

acquisition of self administration. Indeed, there have been several reports of 

MDMA-produced aversion. A conditioned taste aversion was produced by 

MDMA (Lin, Atrens, Christie, Jackson, & McGregor, 1993).   MDMA also 

increased the latency to emerge from a darkened hide box (McGregor, et al., 

2003) and reduced activity on the elevated plus maze (Bull, Hutson, & Fone, 

2004), suggesting an anxiogenic effect (Navarro & Maldonado 2002). These 

initial aversive properties of MDMA might explain the gradual acquisition of 

self-administration in vehicle and also in MDMA-pre-treated rats.  

 

A final possibility for the failure of MDMA pre-treatment to enhance the 

reinforcing effects of MDMA relates to pharmacological effects of repeated 

exposure. It has been suggested that reinforcing efficacy of drugs is related to 

the relative effects on DA and 5HT neurotransmission. More specifically, it 

has been suggested that increased serotonergic effects are associated with 

decreased potency as a reinforcer. This idea is based on a number of 

empirical findings.  Firstly, administration of the 5-HT precursor tryptophan, 

which increases brain 5-HT synthesis, decreased self-administration of 

cocaine (McGregor, Lacosta, & Roberts, 1993) and amphetamine (Smith, Yu, 

Smith, Leccese, & Lyness, 1986). Secondly, pre-treatment with 5-HT 

reuptake inhibitors reduced cocaine self-administration (Carroll, Lac, 
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Asencio, & Kragh, 1990). Thirdly, the motivation to self-administer 

amphetamine analogues with greater 5-HT potency, but equipotent DA 

potency, was reduced as measured by progressive ratio responding (Wee, et 

al., 2005).  

 

A number of studies have shown that  MDMA increased 5-HT levels 

(Kalivas et al., 1998) and that chronic or long term exposure compromised 5-

HT neurotransmission (Battaglia, Yeh, & De Souza, 1988). These 

pretreatment regimens, however, were more stringent than those used in this 

study. Therefore the effects of the current regimen of MDMA on tissue levels 

of DA, 5-HT and their major metabolites were measured in Experiment 4. 

 

Experiment 4: Alterations of brain amine levels following repeated 

intermittent administration of MDMA 

Background 

 

Amphetamine administration increased DA levels and synaptic dopamine 

overflow throughout various neural substrates such as the striatum (Kolta, et 

al., 1985), prefrontal cortex (Ichikawa, Chung, Li, Dai, & Meltzer, 

2002),VTA (Wolf, et al., 1993), NAc (Kalivas & Stewart, 1991; Robinson & 

Berridge, 1993) and all DA terminal fields (Vezina, 2004). Because local 

application of amphetamine into the VTA, but not into the NAc, produced a 

sensitised locomotor response (Cador, et al., 1995; Kalivas & Weber, 1988), 
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it has been suggested that neuroadaptations initiated by the acute increase in 

synaptic DA in the VTA mediate sensitised hyperactivity (Vezina, 2004).  

 

The relationship between augmented DA release and the observation of 

locomotor sensitisation has been equivocal. In some studies, concordance 

between sensitised behavioural and neurochemical responses has been 

reported. For example, 7 days after repeated amphetamine administration 

there were increases in amphetamine-produced DA in the NAc of rats which 

coincided with sensitised hyperlocomotion (Scholl, Feng, Watt, Renner, & 

Forster, 2009). Other studies, however, have failed to replicate these effects. 

In one, sensitised hyperlocomotion was observed 7 days after withdrawal but 

there were no differences in amphetamine induced dopamine overflow in 

nucleus accumbens or striatal tissue (Weinstein, Narayanan, Byrnes, Uretsky, 

& Wallace, 1997). In another, sensitised locomotor activity observed 2 days 

following withdrawal that was not associated with an augmented DA 

response; a sensitised DA response was not observed until 10 days later 

(Kuczenski, Segal, & Todd, 1997; Wolf, et al., 1993). Finally, after repeated 

high doses of amphetamine, amphetamine-produced stereotypical behaviour 

was observed but there were no changes in amphetamine-produced increases 

in NAc DA levels (Segal, & Kuczenski 1999). These data suggest that, under 

certain regimens of administration, the behavioural and neurochemical 

indices of sensitisation to amphetamine may be dissociated. 

 

Following acute administration, MDMA increased extracellular synaptic 5-

HT and produced a moderate increase in dopamine levels (Schmidt, 1987). 
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Following chronic or high dose administration, however, MDMA reduced 

brain levels of 5-HT, tryptophan hydroxylase and the 5-HT metabolite, 5-

HIAA, (see Capela et al., 2009 for a review). Under some conditions, 

repeated administration of MDMA also produced behavioural and 

neurochemical sensitisation (Bubar, et al. 2004; Kalivas, et al, 1998; 

Yamamoto & Spanos, 1988). Behavioural sensitisation was accompanied by 

a moderate decrease in ventral striatal 5-HT (Ludwig, Mihov, & Schwarting, 

2007).   

 

In order to determine whether sensitisation produced in the present 

investigations was accompanied by changes in overall levels of 5-HT or DA, 

rats were pre-treated with 10.0 mg/kg MDMA in a manner that induced 

sensitisation and sacrificed two days after their final drug administration. 

Using HPLC tissue levels of DA, its metabolite HVA, 5-HT and its 

metabolite 5-HIAA were measured. It is hypothesised that, in accordance 

with previous literature, there will be a reduction in 5-HT levels of brain 

neurotransmitter along with its metabolite 5-HIAA. It is not predicted that 

there will be any change in DA or HVA. 

 

General Procedure 

 

Rats were pre-treated once daily with MDMA (0.0, 10.0 mg/kg) or, as a 

comparison, amphetamine (2.0 mg/kg I.P) for five days in as described in the 

general sensitisation protocols, experiment 1. Following two days withdrawal 
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rats were rendered unconscious with CO2 in an air tight chamber, decapitated 

and the brains rapidly removed.  

 

Brain Dissection 

 

Whole brains were placed in a stainless steel block for dissection into 1.0 mm 

coronal slices ( Heffner, Hartman, & Seiden, 1980). Slices were placed onto 

an inverted petri dish chilled by ice. The dorsal striatum, NAc, frontal cortex 

and amygdala and were dissected, placed in vials, weighed and stored at -80º 

C until analysed.  

 

HPLC analysis 

 

Tissue samples were homogenised in 0.1 N perchloric acid and centrifuged at 

10 000g for 30 min at 4º C. The supernatant was filtered and injected onto a 

high-performance liquid chromatography system (Agilent 1100 series) with 

electrochemical detection. The injection volume was 10 µL for the striatum 

and 20 µl for the other regions. 5-HT, 5-HIAA, DA and HVA were separated 

using a C18 reversed phase column (150 × 4.6 mm, 5 µm particle size; 

Eclipse XDB-C18, Agilent, USA). The mobile phase consisted of NaH2PO4 

(75 mM), octane-1-sulphonic acid (1.7 mM), EDTA (0.25 mM), 

triethylamine (100 µL/L) and methanol (10%), and was adjusted to pH 3 with 

phosphoric acid. The flow rate was 1 ml/min. Detection was performed using 

a coulometric detector (Coulochem III, ESA, USA). The guard cell potential 

was set at 450 mV and the analytical cell potential at 400 mV. 
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Chromatograms were acquired with ChemStation software. Concentrations 

are expressed as ng per mg of tissue. 

 

Peak areas corresponding to the DA, 5-HT, HVA and 5-HIAA were 

measured and concentrations were determined from the regression curve 

obtained with external standards. Working external standards (500 – 15.125 

ng/ml in 0.1N perchloric acid) were prepared daily from 1 mg/ml stock 

solutions and kept at -80°C.  

 

Results 

 

Figure 4.1 below shows a chromatogram of 5-HT, 5-HIAA, DA and HVA 

standards separated using a C18 reversed phase column.  

 

 

 

 

 

 

 

 

 



 109 

 

Figure 4.1.  Chromatogram of amine standards injected onto a C18 
reversed phase column 
 

Table 4.1 presents results of the analyses of each of five brain regions from 

control rats and those that had undergone a sensitising regimen of MDMA 

(10.0 mg/kg I.P) or amphetamine (2.0mg/kg. I.P). Amphetamine and MDMA 

were compared to vehicle groups with a Bonferonni correction applied. 

 

m
in

2
4

6
8

10
12

14

nA
U0 5 10 15 20 25 30 35 40

 A
D

C
1 B

, A
D

C
1 C

H
A

N
N

E
L B

 (29080717.D
)

 5.788

 7.399

 10.698

 13.486

DA 

5-HIAA 

HVA 

5-HT 



 110 

Table 4.1.  Neurochemical concentrations in tissue of rats that received either vehicle, 
MDMA (10.0 mg/kg I.P) or amphetamine (2.0mg/kg. I.P) during a 5-day pre-
treatment regimen. ** = difference from vehicle pre-treated group (p< 0.01), n=6 
except for the ‘Amygdala MDMA’ group where n= 5. 
 

Structure  Concentration ng/mg tissue 

  DA 5-HIAA HVA 5-HT 

Striatum      

 Vehicle 31.14 + 3.69 0.55 + 0.03 1.65 + 0.14 0.79 + 0.11 

 Amph 30.26 + 2.93 0.52 + 0.04 1.44 + 0.08 0.79 + 0.11 

 MDMA 30.76 + 3.05 0.46 + 0.03 1.48 + 0.13 0.74 + 0.08 

      
Nucleus Acc      

 Vehicle 12.08 + 2.68 0.79 + 0.04 1.37 + 0.11 0.87 + 0.13 

 Amph 13.07 + 2.53 0.68 + 0.06 1.10 + 0.10 0.83 + 0.06 

 MDMA 13.91 + 3.49 0.63 + 0.04 1.09 + 0.11 0.86 + 0.14 

      
Frontal Cortex      

 Vehicle 0.20 + 0.04    0.54 + 0.03 0.08 + 0.01 0.98 + 0.14 

 Amph 0.20 + 0.01 0.43 + 0.03**  0.08 + 0.01 0.94 + 0.08 

 MDMA 0.22 + 0.03 0.38 + 0.02**  0.07 + 0.01 0.92 + 0.16 

      
Amygdala      

 Vehicle 0.88 + 0.16 0.62 + 0.06 0.11 + 0.01 1.12 + 0.14 

 Amph 0.88 + 0.16 0.52 + 0.07 0.07 + 0.01 1.18 + 0.18 

 MDMA 0.86 + 0.09 0.42 + 0.05 0.07 + 0.01 0.94 + 0.17 

      
Hippocampus      

 Vehicle 0.07 + 0.01    0.54 + 0.02 0.005 + 0.003 0.68 + 0.09 

 Amph 0.06 + 0.00 0.44 + 0.02**  0.000 + 0.000 0.75 + 0.07 

 MDMA 0.07 + 0.01 0.35 + 0.02**  0.003 + 0.002 0.75 + 0.07 
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Discussion 

 

A large number of studies have reported neurochemical effects of MDMA 

pre-treatment. In most studies, the MDMA pre-treatment regimen was 

substantive with animals exposed to doses of 20-40 mg/kg/day. These 

exposures typically resulted in behavioural tolerance rather than sensitisation 

to the behavioural effects of MDMA. Tolerance was accompanied by 

substantial decreases in both 5-HT and 5-HIAA (Marston et al., 1999; 

McNamara et al. 1995). The regimen in the current study was less extreme 

and produced a different profile of behaviour; i.e. sensitisation rather than 

tolerance. Differences in the neurochemical consequences were also observed 

in the present study.  

 

There were no significant effects of the daily exposures on 5-HT although 

there was a significant decrease in the primary metabolite, 5-HIAA, in two of 

the 5 sites measured. This finding is consistent with the decrease in 5-HIAA 

in the frontal cortex  previously reported (Ludwig, Mihov, & Schwarting, 

2008). Comparable effects were produced by repeated exposure to a 

sensitising regimen of amphetamine. 

 

A number of studies have also failed to observe changes in basal DA and 5-

HT levels, synthesis or metabolism following repeated exposure to 

amphetamine that resulted in sensitisation (Bonhomme, Cador, Stinus, Le 

Moal, & Spampinato, 1995; Paulson, et al., 1991). Other studies, however, 

have suggested that following more stringent exposure regimens alterations 
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in tissue levels were produced. For example, a reduction in levels of  5-HT 

and 5-HIAA in the striatum was observed 24 hrs after the last dose of a daily 

administration regimen of 5.0 mg/kg amphetamine (McMillen, Scott, & 

Williams, 1991). Additionally, chronic amphetamine administration in cats 

(twice daily increasing doses of 5-15mg/kg amphetamine for ten days) 

reduced levels of 5-HT and 5-HIAA up to50% in the cortex, hippocampus, 

striatum, brain stem and spinal chord when measured 9 days but not 14 days 

post withdrawal (Trulson & Jacobs, 1979).  

 

In the current results it is noticeable that the 5-HT metabolite 5-HIAA was 

reduced while levels of the parent molecule remained unchanged. Release 

and reuptake of 5-HT is the main source of extracellular 5-HIAA. Once 

released, the SERT moves the 5-HT molecules back into the presynaptic cell 

where it is bound into storage vesicles or deaminated to 5-HIAA. This 

metabolite is not stored but is passed back through to the extracellular area 

(Stenfors & Ross, 2004). Without 5-HT release there is a reduction in 5-

HIAA levels. A reduction in release could explain why there is no difference 

in absolute tissue levels of 5-HT but, at the same time, there is a reduction in 

5-HIAA levels. If there was a reduction in firing rates of serotonin neurons, 

differences in levels of 5-HIAA would be seen in all 5-HT terminal regions. 

Although only effects of MDMA or amphetamine were significant in two 

regions, for all regions there was a trend for reduced 5-HIAA.  

 

5-HT release is regulated by the 5-HT1A and 5-HT1B receptors with selective 

antagonists blocking both the feedback mechanism and increasing 



 113 

extracellular 5-HT while reducing absolute 5-HIAA levels (Hjorth, et al., 

2000). (Note that this is an absolute decrease in 5-HIAA and as there is 1000 

times more extracellular 5-HIAA than 5-HT there remains a larger 

proportional amount of 5-HIAA). However, there is a differential role of the 

5-HT1A and the 5-HT1B receptor in mediating changes in 5-HIAA levels as a 

function of 5-HT. Administration of the 5-HT1A receptor antagonist, 

robalzotan, directly into the frontal cortex, increased citalopram-produced 

extracellular 5-HT and decreased 5-HIAA levels (Hjorth, 1998). 

Administration of the 5-HT1B receptor antagonist, GR127935, also increased 

citalopram induced increases in extracellular 5-HT levels, but no change in 5-

HIAA levels was produced. Although antagonism of both the 5-HT1A and the 

5-HT1B autoreceptors increased 5-HT levels, only antagonism of the 5-HT1B 

disrupted the normal inverse relationship between 5-HT and5-HIAA. 

Stenfors and Ross (2004) interpreted this as due to stimulation of 5-HT1B 

autoreceptors by the elevated synaptic 5-HT concentration resulting in 

decreased 5-HT release. Applied to the current results it may suggest that 

intermittent MDMA administration produces an altered 5-HT1B auto receptor 

state, reducing 5-HT release (but not overall storage levels) and subsequent 

decrease of 5-HIAA levels. 

 

Experiment 4 Summary 

 

In previous studies, pre-exposure to amphetamine or MDMA under 

conditions that produced sensitised behavioural responses did not alter tissue 

levels of either DA or 5-HT (Bonhomme, et al. 1995; Paulson, et al., 1991).  
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The current results are consistent with this except that decreased levels of the 

serotonin metabolite 5-HIAA was produced in the frontal cortex and 

hippocampus.  The reduction in 5-HIAA levels may be due to a disruption to 

the 5-HT1B autoreceptor. Further evidence for this could be obtained through 

a microdialysis assay of terminal regions of serotonin cells which would be 

hypothesised to show a reduction in extracellular levels of 5-HT. 

Electrophysiology studies would be required to confirm a reduction in tonic 

firing of 5-HT cells. 

 

General Discussion 

 

The aim of the current thesis was to determine (1) some of the parameters for 

induction and expression of locomotor sensitisation following repeated 

MDMA exposure (2) Changes in sensitivity of the dopamine receptor 

mechanisms in sensitisation, and (3) if sensitisation was linked to reductions 

in the potency of the reinforcing effects of MDMA as measured by self 

administration and (4) what, if any, long term alterations in brain tissue levels 

of amines resulted from repeated exposure to MDMA. A group of four 

experiments were used to evaluate the above questions and results can be 

briefly summarised in the following manner. 

 

1) A single dose of 10.0mg/kg MDMA administered daily for five 

days produces reliable behavioural sensitisation. 

2) Following the sensitisation regimen, there is cross sensitisation to 

D1 and D2 agonists. However, even though a dose dependent 
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reduction in MDMA produced responding is attenuated by D1 and 

D2 antagonists, the potency of these antagonists is not altered by 

MDMA pre-treatment. This suggests that there are underlying 

mechanisms other than just receptor hypersensitivity responsible for 

the augmented locomotor activating effect of MDMA following a 

sensitisation dosing regimen. 

3) The protocol that induces locomotor sensitisation does not decrease 

latency to acquisition of MDMA in the self- administration 

paradigm suggesting there are no changes in the potency of MDMA 

as a reinforcer after the current pre-treatment regimen 

4) Following five single daily injections of 10.0mg/kg MDMA there 

are only minor reductions in the 5-HT metabolite 5-HIAA and no 

change in other brain amines tested.  

 

Experiment one demonstrated that of the two pre-exposure regimens, pre-

treatment with 10.0 mg/kg/day MDMA was the more effective and that 

behavioural sensitisation, unlike amphetamine sensitisation, was relatively 

short-lived. A sensitising regimen of amphetamine has shown increases in 

DA overflow up to three months following drug exposure (Hamamura, et al., 

1991).  Further, sensitised locomotor activity was apparent one year 

following amphetamine exposure (Paulson, et al., 1991). This may suggest 

that persistent sensitisation does not occur under the current pre-treatment 

regimen of MDMA however, a clear sensitised locomotor response was 

evident in all of the behavioural assays. These sensitised behavioural 

responses may nevertheless underlie motivational aspects of drug seeking 

and contribute to compulsive drug-taking that characterises abuse (Robinson 

& Berridge, 1993, 2003). 

 



 116 

It has been suggested that escalating dose administrations produce a different 

behavioural profile to that of repeated intermittent administration (Segal & 

Kuczenski, 1999). Animals treated previously with an intermittent or 

escalating dose of amphetamine have exhibited different patterns of FosB and 

c-Fos expression in mesolimbic dopaminergic cell bodies (Murphy, Pezze, 

Russig and Feldo, 2001). Furthermore, following different escalating dose 

administrations of amphetamine Russig, Murphy and Feldon (2005) found a 

reduction in amphetamine produced locomotor activity in day 1 of  the 

withdrawal phase but an increase (behavioural sensitisation) after 5 or 38 

days.  Given different administration schedules of amphetamine lead to 

different behavioural consequences, future research could establish if the 

long term expression of MDMA is evident following an escalating pre-

treatment dosing regimen compared to that of the current intermittent 

exposure. 

 

The current investigation demonstrated cross sensitisation to other dopamine 

agonists suggesting an underlying dopamine mechanism that is common in 

locomotor activating effects of psychostimulants. It has been suggested that 

the action of amphetamine in midbrain DA cell bodies is necessary for the 

induction of behavioural sensitisation. For example, repeated amphetamine 

injections into the ventral tegmental area, but not into the DA terminal field 

in the nucleus accumbens, produce an enhanced locomotor response to 

subsequent peripheral administration of amphetamine (Kalivas and Weber 

1988; Vezina and Stewart 1990). Also, the local microinjection of a DA D1 

receptor antagonist into the ventral tegmental area is sufficient to prevent the 
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development of behavioural sensitisation to systemic amphetamine treatment 

(Stewart and Vezina 1989). Ramos and colleagues (2004, 2005) investigated 

the action of D1 antagonist, SCH23390, in the prevention of development and 

expression of MDMA produced hyperlocomotion. It was argued that 

projections from the prefrontal cortex (PFC) might mediate behavioural 

sensitisation to MDMA and that dopaminergic mechanisms were implicated 

the expression of sensitisation. With the current investigation strongly 

implicating a sensitised D1 receptor and an augmented D2 mechanism in 

response to the current regimen of MDMA administration, it would be 

advantageous for future investigations to examine if these changes translate 

into increases in extracellular dopamine release using a more specific D1 

antagonist as SCH23390 activates 5-HT modulating effects of DA.  

 

Microdialysis analysis in the ventral tegmental area, nucleus accumbens and 

frontal cortex may aid in answering the questions as to what, if any, common 

underlying dopamine mechanisms exist with MDMA and amphetamine 

sensitisation. There have been consistent reports of amphetamine induced 

sensitisation related adaptations in DA neurotransmission in striatal (Kalivas 

and Stewart, 1991; Robinson, 1991; Robinson and Berridge, 1993; White and 

Wolf, 1991) caudate or nucleus accumbens (Kolta et al., 1985, Robinson and 

Becker, 1982; Robinson et al., 1982; Wilcox et al., 1986; Yamada et al., 1988) 

DA release. To date however, few studies have investigated neuroadaptations 

following repeated MDMA administrations that produce behavioural 

sensitisation. Fos expression, which measures protein changes in the 

expression of the immediate early gene c-fos, has been positively correlated 
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with the behavioural consequences of repeated drug exposure in the NAc shell 

(Colussi-Mas & Schenk, 2008) suggesting DA mediated changes from 

repeated intermittent exposure. As experiment two demonstrated alterations in 

receptor mechanism sensitivity and experiment four failed to show any 

changes in gross storage pools of brain amine levels, microdialysis techniques 

may help in the future. Recording relative extracellular levels of brain amines 

in specific areas of the mesolimbic DA pathway may indicate downstream 

alterations in DA overflow responsible for MDMA produced locomotor 

sensitisation. 

 

Changes in dopamine sensitivity may have been expected to increase the 

reinforcing effects of MDMA. When this was tested by examining latency to 

acquisition of self-administration, acquisition was delayed in MDMA pre-

treated animals. Of interest, pre-treatment with MDMA in rats sensitises 

cocaine-induced behavioural responses and increases cocaine-stimulated 

place preference (Horan et al., 2000; Kalivas et al., 1998). As the current pre-

treatment regimen produced sensitised locomotor activation, and may have 

modulated a common dopaminergic mechanism. This raises a question as to 

what, if any, circumstances could decrease latency to acquisition following 

MDMA administration? As mentioned above, different administration 

schedules of amphetamine lead to different behavioural consequences. 

Previous investigations that have looked at changes in potency to 

amphetamine (Piazza et al, 1990) and cocaine (Schenk & Partridge 1997) self 

administration did not use an escalating dosing regimen of stimulant. This 

may suggest that an escalating pre-treatment would not be hypothesised to 
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change the potency of latency to MDMA self-administration acquisition. It 

may have been that the self administration doses selected in the current 

investigation were too high and future studies that commence acquisition on 

a lower dose may show a change in potency resulting in a decrease in latency 

to acquisition.  

 

Throughout the current set of experiments neurochemical changes have been 

induced from exposure to MDMA. This was demonstrated by the reduction 

in 5-HIAA levels. The deficits observed in the current investigation are 

mirrored in a number of MDMA studies that identify neurochemical changes 

following MDMA administration (Battaglia, Yeh, et al., 1988; Commins, et 

al., 1987; Goñi-Allo, et al., 2007; Nair & Gudelsky, 2006). It has become 

increasingly clear that long lasting and perhaps permanent changes in the 

brain underlie maladaptive alterations associated with compulsive drug 

craving (Nestler, 2001). The current testing was conducted under steady state 

conditions whereas most neurochemical adaptations are examined in 

response to a further drug administration (Kalivas, et al. 1998).  

 

Neurochemical analysis under drug conditions may reveal differing 

neurochemical levels to those revealed in the current investigation.  

During amphetamine sensitisation there was a significantly elevated DA 

release in dorsal and ventral striatum (Paulson, Robinson, 1995; Robinson, 

Jurson, Bennett, & Bentgen, 1988) however there was no reported change in 

DA levels in the caudate or accumbens (Segal & Kuczenski, 1992). In future 

investigations, recording of DA release in dorsal and ventral striatum as well 
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as caudate and accumbens brain regions, during the MDMA sensitisation 

regimen, may reveal if there is any overlap in alterations of brain amine 

levels.  

 

Taken together, the current research shows that repeated administration of 

MDMA produces sensitisation to its locomotor activating effects that induced 

lasting dopaminergic and serotonergic neural adaptations.  
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