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Abstract 
 

In this thesis we investigate the ways in which the sensitivity, resolution and 

overall performance of an Earth’s field NMR system can be improved without 

significantly compromising its simplicity, portability or affordability.  We investigate 

the limits of the information obtainable using this device and present a range of 

methods for calculating and analyzing NMR spectroscopy experiments detected in the 

Earth’s magnetic field. 

We demonstrate significant improvements in the performance of a commercial 

Earth’s field NMR device, the Terranova-MRI, through several apparatus 

developments.  First-order shimming is added to the system in order to counter any 

local inhomogeneity of the Earth’s field.  The spectral resolution of the instrument is 

further improved through the introduction of a field locking system to counter the 

natural temporal drift in the magnitude of the Earth’s magnetic field.  External noise 

interference is reduced through the use of Faraday screening, effectively increasing 

the signal-to-noise ratio (SNR) performance of the device. 

We explore three signal enhancement methodologies for optimizing the SNR 

performance of the system.  Prepolarization, with an electromagnet as well as a 

permanent magnet array, is considered and compared to dynamic nuclear polarization 

(DNP) and hyperpolarization via optical pumping.  We present a detailed theoretical 

discussion of DNP in low-fields and demonstrate the application of this technique for 

signal enhancement in EFNMR.  An apparatus for performing DNP in the Earth’s 

field is presented and optimized. 

A density matrix approach to simulating one- and two-dimensional Earth’s 
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field NMR experiments is presented.  These numerical simulations, along with a 

perturbation theory approach to calculating one-dimensional EFNMR spectra of 

tightly coupled heteronuclear systems, are explored and compared to experimental 

spectra of the tetrahydroborate and ammonium ions.  These systems are of particular 

interest for NMR detected in the Earth’s field because they contain strongly coupled 

nuclei of differing spin, a situation previously unexplored in the literature. 

Multi-dimensional Earth’s field NMR spectroscopy methods, in particular the 

correlation spectroscopy (COSY) experiment, are implemented and optimized 

through the use of shimming, field stabilization and noise screening.  The 2D COSY 

spectrum of monofluorobenzene is analyzed and compared to calculated spectra in 

order to determine the indirect spin-spin coupling constants of this molecule in the 

Earth’s magnetic field.  A 2D COSY spectrum of 1,4-difluorobenzene is also 

presented and compared to simulation.  The SNR performance of COSY in the 

Earth’s field is greatly improved through the use of DNP for signal enhancement.  A 

high-quality, 2D COSY EFNMR spectrum with DNP acquired from 2,2,2-

trifluoroethanol is presented and compared to simulation.  The particular features of 

this spectrum, which result from the use of DNP for signal enhancement, are 

discussed with reference to a density matrix simulation and to a one-dimensional 

spectrum calculated using perturbation theory.  

The strong indirect spin-spin coupling regime in fields weaker than the Earth’s 

magnetic field is explored through exact calculations and density matrix simulations 

of a 13C-enriched methyl group.  A novel multi-dimensional EFNMR method for 

observing such spectra is discussed.  This experiment allows for the resolution of 

strongly coupled NMR spectra both in the Earth’s magnetic field, in the directly 

detected domain, and in weaker fields, in the indirectly detected domain.  

In the final section of this thesis, residual dipolar coupling is observed by 

EFNMR for the first time in a system of poly-γ-benzyl-L-glutamate (PBLG) in 

dichloromethane.  The form of the EFNMR spectrum of this liquid crystalline system 

is discussed and compared to equivalent high-field (9.4T) spectra. 
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CHAPTER 1. Introduction 

 

 

The nuclear magnetic resonance (NMR) phenomenon was first observed by 

Felix Bloch at Stanford University and Edward Purcell at Harvard University in 1946.  

For this discovery they received the Nobel Prize in Physics in 1952.   It was in 1954, 

while NMR was still a very young field of research, that Packard and Varian [1] first 

demonstrated the detection of nuclear precession in the highly homogeneous Earth’s 

magnetic field.  Therefore Earth’s field NMR (EFNMR) is almost as old as NMR 

itself.    

Pioneering work in the field of EFNMR was carried out in the 1950s and 

1960s [2-8].   In recent years there has been renewed interest in Earth’s field NMR 

due to a combination of factors but perhaps the most significant of these was the 

development of small, portable, low-cost pulsed Fourier Transform (FT) Earth’s field 

NMR spectrometers ideally suited to teaching the principles of NMR spectroscopy 

and imaging to students.  Indeed it is the potential of EFNMR for pedagogy which 

served, in a sense, as the starting point for the work contained in this thesis.  

In 2004, Paul Callaghan along with co-inventors Mark Hunter, Craig Eccles 

and Robin Dykstra and in collaboration with Victoria University of Wellington and 

Massey University formed a spin-out company, Magritek Limited.  This company 

was created to commercialize the portable NMR and MRI technology developed by 

the inventors as part of an Antarctic research project dating back to the early 1990s 

[9-13].  This research project centred around the development of a small, portable and 
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robust Earth’s field NMR system capable of carrying out pulsed-gradient-spin-echo 

(PGSE) NMR diffusion measurements on sea ice in situ in Antarctica.  The main 

commercial application of this Earth’s field NMR system, which has enjoyed great 

success over the last 5 years with over 100 units sold, is as a low cost, hands-on 

apparatus for teaching the basic principles of modern pulsed NMR and MRI to 

undergraduates.  Shortly after the formation of the company, the author of this thesis 

(Meghan Halse) joined Magritek Limited as an applications engineer whose main role 

was to expand the range of experiments which could be carried out on this Earth’s 

field apparatus.  The capabilities of this simple system were soon discovered to be 

much more comprehensive than what was first imagined, so much so that what started 

out as an investigation into the commercial possibilities of a clever little NMR 

apparatus evolved into a PhD thesis project. 

The goal of this thesis can be divided into two main aims.  The first aim is to 

investigate ways in which the sensitivity, resolution and overall performance of the 

Earth’s field NMR system can be improved without significantly compromising its 

main benefits: simplicity, portability and affordability.  The second major aim of this 

thesis is to investigate and push the limits of the information content available using 

such a simple, portable and affordable NMR system.   

The thesis starts, in Chapter 2, with an overview of the physics of nuclear 

magnetic resonance (NMR) and an introduction to the quantum mechanical aspects of 

NMR which are integral to understanding many of the results presented in this thesis. 

Chapter 3 provides an introduction to Earth’s field NMR including a 

discussion of the current state-of-the-art in EFNMR and an historical overview of the 

development of this field of research. 

Chapter 4 begins with an introduction to the commercial apparatus at the heart 

of all of the Earth’s field NMR experiment contained herein, the Terranova-MRI by 

Magritek Limited.  Following this introduction, apparatus improvements developed as 

part of this thesis are presented and the resultant improvement in sensitivity and 

spectral resolution are discussed.  These improvements include: auto-shimming, ultra-

low frequency (ULF) noise screening and temporal field stabilization.  

Chapter 5 addresses the issue of signal enhancement.  Three methods for 

signal augmentation in Earth’s field NMR are considered.  First prepolarization, both 

with an electromagnet and a permanent magnet array, is evaluated.  Second, dynamic 
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nuclear polarization (DNP) is discussed in the context of Earth’s field NMR 

spectroscopy.  Experimental DNP enhancement results are presented and compared to 

theory and to the prepolarization approach.  In addition, the design and 

implementation of the hardware required to achieve optimal DNP enhancements in 

Earth’s field NMR is discussed.  The third signal enhancement method explored in 

this chapter is hyper-polarization of xenon gas via optical pumping.  Hyperpolarized 

xenon gas is considered both for direct detection in the Earth’s field and also for 

polarization transfer to target 1H nuclei using SPINOE (spin polarization-induced 

nuclear Overhauser effect).  The viability and efficacy of this sensitivity enhancement 

method is evaluated and compared to prepolarization. 

Chapter 6 begins our discussion of information content in Earth’s field NMR 

spectroscopy by presenting a description of the density matrix formalism which is 

used throughout this thesis for numerical simulation of high resolution Earth’s field 

NMR spectroscopy experiments in one and two dimensions.  This chapter details how 

the density matrix simulations are implemented on a standard PC and compares a 

typical simulated spectrum to an experimental EFNMR spectrum.     

Chapter 7 explores a quantitative approach to interpreting 1D Earth’s field 

NMR spectra of systems of hetero-nuclei which are coupled via the indirect spin-spin 

(J) coupling interaction.  Unlike in strong laboratory magnetic fields (> 1 T), the 

indirect spin-spin coupling constant between hetero-nuclei is often of a similar order 

of magnitude to the difference in Larmor frequency of nuclei in the Earth’s magnetic 

field.  This provides us with the unique opportunity to observe the effect of strong 

indirect spin-spin coupling between nuclei with differing spin.  In this chapter we 

show how such spectra can be predicted and understood using time-independent 

perturbation theory. 

Chapter 8 extends the discussion of Earth’s field NMR spectroscopy to two 

dimensions.  2D correlation spectroscopy (COSY) experiments, carried out in the 

Earth’s magnetic field, are presented and discussed.  The significant improvement in 

the signal-to-noise ratio (SNR) and resolution of these multi-dimensional spectra as a 

result of the apparatus improvements presented in Chapters 4 and 5 (ULF noise 

screening, temporal field stabilization and dynamic nuclear polarization) are 

demonstrated. 

Chapter 9 investigates the strong indirect spin-spin coupling regime which 
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exists in fields weaker than the Earth’s magnetic field.  This coupling regime is 

discussed through the use of exact calculations and density matrix simulations of an 

illustrative example: a 13C-enriched methyl group.  A class of two-dimensional 

Earth’s field NMR spectroscopy experiments, which can be used to simultaneously 

observe strongly coupled spectra of small molecules in the Earth’s magnetic field as 

well as in weaker fields, is introduced.  The implementation of this technique as well 

as the potential insight it can provide into the sub-Earth’s field strong coupling regime 

is discussed.   

Chapter 10 explores the possibility of probing ordering in anisotropic liquids 

using EFNMR by considering a liquid crystal solution of the polymer poly-γ-benzyl-

L-glutamate (PBLG) in dichloromethane.  1H NMR spectra of this sample acquired at 

high-field (400 MHz) as well as in the Earth’s magnetic field are presented and 

discussed. 

 The thesis finishes in Chapter 11 with some conclusions and a brief 

discussion of novel Earth’s field NMR spectroscopy experiments which could be 

carried out in the future.  

The density matrix simulation code (introduced in Chapter 6) is included in 

Appendix A and a list of publications that resulted from this thesis is presented in 

Appendix B. 
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CHAPTER 2. Nuclear Magnetic Resonance 

 

 

2.1. Introduction to Nuclear Magnetic Resonance (NMR) 

 

At the heart of the nuclear magnetic resonance (NMR) phenomenon are 

atomic nuclei, possessing both magnetism and angular momentum.  These nuclei 

interact with magnetic fields, both static and time-varying, as well as each other and 

the local environment to give rise to a detectable nuclear precession signal which can 

contain information about a wide range of properties from the microscopic to the 

macroscopic.  NMR is fundamentally a quantum mechanical phenomenon but there 

exists a semi-classical picture of NMR which can be used to explain a large range of 

magnetic resonance and magnetic resonance imaging (MRI) experiments.   However, 

a deep understanding of the underlying quantum mechanics is necessary to 

successfully design and implement many advanced NMR experiments, particularly in 

the realm of NMR spectroscopy.  In the context of this thesis, an understanding of the 

true quantum mechanical description of NMR is essential.  Therefore, in this Chapter, 

we present an introduction to the basics of nuclear magnetic resonance using a 

predominantly quantum mechanical approach.  This introduction broadly follows that 

presented by Slichter [14] as well as that presented by Levitt [15], Abragam [16] and 

Callaghan [17]. 

Note that throughout this thesis scalar variables are in italics, such as the spin 

quantum number I, while boldface is used to denote vector quantities, such as B, as 
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well as operators which are matrices, be they a vector operator such as total angular 

momentum, J, or a single component operator such as Iz.  Hamiltonian operators are 

denoted using a script “H” which is boldface: H. 

 

2.1.1. Free Spins in a Static Magnetic Field 

 

A free spin is a system with angular momentum IJ =  and a collinear 

magnetic moment Iμ γ= , where γ is the gyromagnetic (also called magnetogyric) 

ratio of the nucleus, ħ is Plank's constant (6.626x10-34 Js) divided by 2π and I is a 

dimensionless angular momentum operator with Cartesian components Ix, Iy and Iz.  

In the absence of an external magnetic field, the magnetic moments of an ensemble of 

free spins are randomly oriented; however, when placed in a uniform magnetic field 

an average preferential alignment is introduced into the system by means of what is 

known as the Zeeman interaction.  The Hamiltonian which describes the Zeeman 

interaction is equal to the negative of the dot product between the nuclear magnetic 

moment, μ, and the external magnetic field, B.  If we define the laboratory frame of 

reference such that kB ˆ
0=B , the Hamiltonian can be written in terms of the z 

component of the nuclear spin’s angular momentum operator, Iz (Eq. 2-1).   

 

zB IBμ 0γ−=•−=H  

2-1 

 

The effect of the Zeeman interaction on a free spin can be understood, 

quantum mechanically, by solving the time-independent Schrödinger equation (Eq. 

2-2). 

  

nEn n=H  

2-2 

 

The solution of Eq. 2-2 under the influence of the Zeeman Hamiltonian (Eq. 

2-1) can be obtained using a formalism in which the basis states are defined in terms 

of the spin quantum number I, where I(I+1) is the eigenvalue of the angular 
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momentum operator I2, and the azimuthal spin quantum number, m, which is the 

eigenvalue of the angular momentum operator along z, Iz.  In the bra-ket notation 

these states are written as mI , .  Often the I is omitted and the ket is labeled simply 

by the azimuthal spin quantum number m.  The azimuthal spin quantum number 

represents a projection of the angular momentum along the longitudinal (z) direction 

of the quantum system, in this case the direction defined by the static field, B.  m can 

take any of 2I+1 discrete values ranging from –I to I.  Each different projection, or 

orientation, of the spin is associated with a magnetic energy, Em.  These magnetic 

energies are the eigenvalues of Eq. 2-2 and are defined by Eq. 2-3. 

 

mBEm 0γ−=  

2-3 

 

For an I =1/2 particle such as the 1H nucleus, there are two possible eigenstate 

orientations: spin-up ( 2
1 ) and spin-down ( 2

1− ), with corresponding energies: 

02
1

2
1 BE γ−=  and 02

1

2
1 BE γ=− .  We will call these states α  and β , respectively. 

These two possible energy states for the 1H nucleus are illustrated in the energy level 

diagram in Figure 2.1.   

 

 

Figure 2.1  Energy level diagram for a 1H nucleus under the influence of a static magnetic 

field, B0.  
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At any given time a nuclear spin can be either in an eigenstate or in a 

superposition state, ψ .  A superposition state is a linear combination of the available 

eigenstates weighted by superposition coefficients, cm. 

  


−=

=
I

Im
m mcψ  

2-4 

 

The superposition coefficients, cm, are complex and are normalized to unity. 

 


−=

=
I

Im
mc 1

2
 

 

It is often convenient to write these superposition states as column vectors.  

For example a superposition state for an I  = 1/2 nucleus is written as in Eq. 2-5. 

 











=

−
2
1

2
1

c

c
ψ  

2-5 

 

Similarly, the eigenstates can also be depicted in column vector form. 

 









=

0

1
α  









=

1

0
β  

2-6 

 

If a spin is in one of the eigenstates, m , a measurement of angular 

momentum along the axis of the field (Iz) will result in the value mħ.  However, while 

the nuclear spin occupies one of these eigenstates, measurements of angular 

momentum in the transverse plane (Ix or Iy) will have 2I+1 equally probable results 
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given by mħ where m = -I, -I+1,…, I.  Through the action of measuring Ix or Iy, the 

system will be forced into one of the 2I+1 eigenstates of the observed operator but 

there is no way to say, with certainty, which eigenstate that will be.   

If the nuclear spin occupies a superposition state, the measurement of Iz no 

longer yields a certain result and we can only define a probability for each of the 2I+1 

possible outcomes.  Naturally, there exist superposition states which provide certain 

outcomes for measurements of either Ix or Iy.  These are the eigenstates of Ix or Iy in 

the mI ,  basis.  These superposition states are listed below, in column vector 

notation, for an I = 1/2 particle such as a 1H nucleus.  The states are 

labeled x , x− , y  and y−  according to the component of angular momentum 

for which it is an eigenstate and the sign of its result.  For example x−  is an 

eigenstate of Ix for which a measurement of Ix yields a result of –½ħ.  

 









=

1

1

2

1
x  








−
=−

i

i
x

2

1
 









+
−

=
i

i
y

1

1

2

1
 









−
+

=−
i

i
y

1

1

2

1
 

2-7 

 

2.1.2. Nuclear Precession 

 

Suppose we know the state of the quantum mechanical spin system at a time t’ 

= 0.  What is the state of the system at a later time t’ = t if the system is under the sole 

influence of the Zeeman Hamiltonian in a static field kB ˆ
0=B  (Eq. 2-1)?  To find this 

out we must solve the time-dependent Schrödinger equation (Eq. 2-8). 
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)'()'( tt
dt

d
i ψψ H=  

2-8 

 

Substituting Eq. 2-1 into Eq. 2-8 we obtain a first-order differential equation. 

 

)'()'(
' 0 tBit

dt

d
z ψγψ I=  

2-9 

 

The solution to this equation is well known (Eq. 2-10).   

 

)0()exp()( 0 ψγψ tBit zI=  

2-10 

 

The exponential operator in Eq. 2-10 is simply the rotation operator around the 

z axis ( k̂ ). 

 

( ) )exp( zz i IR φφ −=  

2-11 

 

Therefore we can rewrite Eq. 2-10 as Eq. 2-12. 

 

( ) )0()( 0 ψγψ tBt z −= R  

2-12 

 

This rotation about the z axis by an angle of -γB0t is what is known as 

precession.  The characteristic frequency of this precession is called the Larmor 

frequency and is described by the Larmor equation (Eq. 2-13). 

 

00 Bγω −=  

2-13 
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The Larmor equation is the most important equation in NMR.  It is interesting 

to note that Planck’s constant does not appear in this expression.  This suggests that 

the quantum mechanical picture is closely associated with a classical description.  

Indeed this Larmor equation appears repeatedly in both the quantum mechanical and 

classical descriptions of magnetic resonance. 

Consider the case of a 1H nuclear spin.  If the initial state of the nuclear spin is 

an eigenstate ( α or β ), at a later time, t, the spin will remain in an eigenstate but 

this eigenstate will include a phase term, exp(iγB0mt). We can say that the spin 

remains in an eigenstate because the complex phase term associated with this new 

state does not alter the outcome of a measurement of Iz (or Ix and Iy) and so satisfies 

the same Eigen equation as the original eigenstate.  This implies that if the spin starts 

out in an eigenstate of the Zeeman Hamiltonian, the effect of the Larmor precession 

as a function of time is unobservable.  One other interesting thing to note here is that 

the presence of m in the phase factor means that for an I = ½ nucleus, where m = ±½, 

the spin precession requires a 720˚ rotation (not 360˚) to return to its initial state. 

Now consider the case of a 1H spin which starts out in one of those particular 

superposition states which are eigenstates of Ix or Iy: x , x− , y  and y− .  The 

effect of the rotation operator in Eq. 2-12 on these states is elucidated through the use 

of the matrix representation of Rz for a spin with I = ½ (Eq. 2-14). 

 

( ) ( )
( )





 −
=−=

2

2

exp0

0exp
)exp( φ

φ

φφ
i

i
i zz IR  

2-14 

 

If the 1H spin starts at time t’ = 0 in the state x−  after a time t the state of 

the spin can be calculated as follows: 

 

( ) ( )
( )

( )
( )








+−
−

=






−











−
=−−

22

22

2

2
0 0

0

0

0

exp

exp

2

1

exp0

0exp

2

1
πγ

πγ

γ

γ

γ
ii

ii

i

i

i

i
xtB

tB

tB

tB

tB

zR  

 

Now consider the particular case of a fixed period of time, t1, such that the 
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phase accumulated is exactly -π/2 (φ  = -γB0t1 = -π/2).   

 

( )
( ) y

i

i

i

ii
xz =








+
−

=







−

−
=−






−

1

1

2

1
exp0

0exp

2

1

2 4

4

π

ππ
R  

Therefore we see that the effect of precession on a spin in the x−  state is to 

evolve after a (positive) period of time,
0

1 2 B
t

γ
π= , into the state y .  If we repeat this 

calculation we find that after an additional time period, t1, the spin will evolve from 

the state y  into x  and then to y− after yet another time period, t1.  Finally, after 

a total evolution time of 4 t1, the spin will return to its initial state x− .  Therefore if 

we perform a measurement of either Ix or Iy as a function of time we will find that the 

result will oscillate between maximum and minimum values of ±½ħ at the Larmor 

frequency, ω0 = -γB0.   

We can obtain a more intuitive picture of precession through the use of a semi-

classical picture to model the behaviour of a magnetic moment, μ, in a static field B.  

This magnetic moment will experience a torque, given by Eq. 2-15, which is equal to 

the time rate of change of the total angular momentum, J. 

 

dt

d

dt

d IJ
Bμτ ==×=  

2-15 

 

It is known that Iμ γ= and so the time rate of change of the magnetic moment 

can be written as in Eq. 2-16. 

 

Bμ
μ ×= γ

dt

d
 

2-16 

. 

The interpretation of Eq. 2-16 is greatly simplified with the introduction of a 

rotating frame of reference.  Consider the S' frame of reference which rotates with 

respect to the laboratory frame, S, with an angular velocity of ω about the k̂  
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direction, i.e. about the direction of the static field B.   The relationship between the 

time rate of change
dt

dA
 of any arbitrary vector )(tA  computed in the laboratory frame 

S and its time rate of change
t∂

∂A
 computed in the rotating frame S' is given by Eq. 

2-17. 

 

Aω
AA ×+

∂
∂=

tdt

d
 

2-17 

. 

Using Eq. 2-17 and Eq. 2-16 the motion of the magnetic moment in the 

rotating frame, S', can be computed. 

 

)(
γ

γγ ω
BμμωBμ

μ +×=×−×=
∂
∂

t
 

2-18 

 

Eq. 2-18 can be adapted such that it maintains the same form as Eq. 2-16 if the 

uniform magnetic field B is replaced by an effective field: 
γ
ω

BBe += .   

 

eBμ
μ ×=

∂
∂ γ

t
 

2-19 

 

The choice of an angular frequency of oBω γ−=  about the direction of the 

field, B, results in a vanishing effective field.  In this case the magnetic moment is a 

fixed vector in the rotating frame.  In the Laboratory frame, however, the magnetic 

moment μ will precess about the static field at the now familiar Larmor 

frequency, 0Bω γ−=0 .  If we relate this back to our quantum picture we see that there 

is a conceptual correlation between this magnetic moment precessing around the static 

field at the Larmor frequency (in the Laboratory frame) and the evolution between the 
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quantum states x , y− , x−  and y  under the influence of the rotation operator, 

Rz.   

Inspection of Eq. 2-19 (or similarly Eq. 2-16) tells us that if the magnetic 

moment is collinear with the field, B, there will be no observed precession.  This is 

equivalent, in the quantum mechanical picture, to a 1H spin which starts out in one of 

the eigenstates, α  or β .  Recall that in this case the state of the spin will acquire a 

time dependent phase factor but that this phase factor does not change the outcome of 

an angular momentum measurement along any of the three Laboratory dimensions, x, 

y or z, and so the precession is undetected. 

 

2.1.3. Thermal Equilibrium and Spin Ensembles 

 

In a typical nuclear magnetic resonance experiment we are concerned not with 

a single nuclear spin but rather a very large spin ensemble containing numbers of 

spins on the order of 1025.  In order to understand the behaviour of a large group of 

non-interacting nuclear spins in a magnetic field we must introduce the idea of 

thermal energy and thermal equilibrium.    

Consider the Zeeman energy diagram for a 1H nucleus in Figure 2.1.  It is 

apparent from this depiction that the low energy state of the 1H nucleus is the spin-up, 

m = ½, state and therefore this will be the magnetically preferred orientation.  In the 

absence of any thermal energy, i.e. at absolute zero, all spins would populate this 

lowest energy state.  However, under more temperate conditions, interactions between 

the ensemble spins and the surrounding environment (often called the “lattice”) 

provide the means for spins to exist in the excited, higher energy state or indeed in 

any super-position state.  We cannot know the exact state of each spin at any given 

point in time without making a measurement, which will drive the system into an 

eigenstate.  What we can define, however, is the probability of a given spin being in 

either the high energy or low energy state using Boltzmann statistics.  Using these 

probabilities we can compute the ensemble average behaviour of the system as whole.   

The probability of a spin populating one of the available states can be thought 

of as a competition between thermal energy, which excites the spins to the higher 

energy state(s), and the magnetic energy, which favours the lowest energy state.  The 
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probability, Pm, of a spin occupying a given eigenstate is proportional to the 

Boltzmann Factor (Eq. 2-20), characterized by an exponential function of the ratio of 

the magnetic energy, Em, to the thermal energy, kT, where T is temperature and k is 

the Boltzmann constant (1.38x10-23 J/K)  

 







=






−∝

kT

mB

kT

E
P m

m
0expexp

γ
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The population ratio between two eigenstates m and 'm  is given by Eq. 2-21.   

 

( )
( ) 






 −

=
−
−

=
kT

Bmm

kTE

kTE

P

P

m

m

m

m 0

''

)'(
exp

/exp

/exp γ
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Consider an ensemble of 1H nuclei under the influence of a moderate magnetic 

field (on the order of 1 T) in thermal equilibrium at room temperature (298 K).  The 

population difference (Eq. 2-21) between the spin-up and spin-down states will be 

very small (~10-5).  However, the number of nuclei in the ensemble (on the order of 

1025) is so large that this very small excess of spins in the low-energy spin-up state 

gives rise to a macroscopic bulk magnetization in the “spin-up” orientation, i.e. along 

the direction of the static field, B.  It is this bulk magnetization which is manipulated 

to generate an NMR signal.   

 

( )

( )


−

=

−

==
I

Im

I

Im

kTmB

kTmBm
NM

0

0

exp

exp







γ

γ
γ  
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The magnitude of the bulk magnetization can be computed using Boltzmann 

statistics.  For an ensemble of n nuclear spins in a volume V with spin quantum 

number I, the magnetic moment per unit volume, M, can be written as the number of 
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nuclei per unit volume, N, times the average of the magnetic moments, Em, of the 

eigenstates weighted by their statistical probability (the Boltzmann Factor), where N = 

nV-1 (Eq. 2-22). 

Using the high temperature approximation, 0mBkT γ>> , which is valid for 

all temperatures above the mK range, a linear expansion for the Boltzmann 

exponential term can be substituted into Eq. 2-22 to yield a closed form expression for 

M (Eq. 2-23). 

 

kT

BIIN

I

m

kT

BN
M

I

Im

3

)1(

12
0

22
2

0
22 +

=
+

=

−

=  γγ
 

2-23 

. 

M is very difficult to observe by conventional magnetostatic methods.  

Nuclear magnetic resonance (NMR) techniques gain a considerable increase in 

sensitivity over magnetostatic methods by using, as the name suggests, the principle 

of resonance. 

 

2.1.4. Resonance and the Rotating Frame of Reference 

 

Consider once again the energy level diagram for a 1H nucleus in a static field, 

B0 (Figure 2.1).  What we wish to detect is some kind of spectral absorption between 

these Zeeman energy levels and therefore we need to excite transitions.  In order to 

conserve energy, any interaction which achieves this goal must be both time 

dependent and must fulfill the condition EΔ=ω , where ΔE is the energy difference 

between the initial and final nuclear Zeeman energies.   

The most commonly used method for such an excitation in magnetic 

resonance is a coupling to an alternating magnetic field, B1, oriented perpendicular to 

the static field, B0.  The perturbing term to the interaction Hamiltonian (Eq. 2-1) due 

to an alternating field with amplitude B1 is given by Eq. 2-24. 

 
tB x ωγ cos1I−=pertH  

2-24 
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The operator Ix is the component of the spin angular momentum along the î  

direction in the laboratory frame.  In order to more intuitively understand the function 

of this operator we re-write it in terms of the raising, I+, and lowering, I-, operators 

(Eq. 2-25). 

 

( )−+ += III
2

1
x  

2-25 

 

The raising and lowering operators (also called ladder operators) act on the 

Zeeman eigenstates according to the rules outlined in Eq. 2-26 

. 

 

1)1()1(

1)1()1(

−−−+=

++−+=

−

+

mmmIIm

mmmIIm

I

I

. 

2-26 

 

By inspection we see that, given the orthogonality of the eigenstates, m , the 

matrix elements mm xI'  vanish unless m' = m±1.  Thus, only adjacent energy level 

transitions are permitted.  The frequency of the alternating field is therefore given by 

Eq. 2-27.  

 

00 BBE γωγω ±=→±=Δ±=   

2-27 

 

Eq. 2-27 is the familiar Larmor equation.  Therefore we find that an 

alternating magnetic field, B1, which is perpendicular to B0 and oscillates in time at 

the Larmor frequency, will excite transitions between the various Zeeman levels of 

the system.  This simple spectral absorption picture, however, cannot be used to 

completely explain the NMR experiment.  To fully understand how nuclear 

precession is excited and detected we need to take a closer look at Hpert (Eq. 2-24) and 
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its effect on the system. 

Under the combined influence of a static magnetic field kB ˆ
00 =B and an 

alternating field itB ˆcos2 11 ω=B , the total Zeeman interaction Hamiltonian in the 

laboratory frame is given by Eq. 2-28. 

 

tBB ωγγ cos2 10 xz II  −−=H  

2-28 

 

Inserting this Hamiltonian into the time-dependent Schrödinger equation (Eq. 

2-8) we obtain the differential equation in Eq. 2-29.  

 

( ) ( ) ( )ttBBt
dt

d
i xz ψωγψ cos2 10 II +−=   

2-29 

 

We can simplify Eq. 2-29 by introducing an exponential operator notation [14] 

as shown in Eq. 2-30. 

 

( ) ( ) ( )
( ) ( ) ( )t

titiB

titiBB
t

dt

d
i

zxz

zxzz ψ
ωω

ωω
γψ 




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


−+

−+
−=

III

IIII
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expexp

1

10
  
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In Eq. 2-30 we have a time-dependent Hamiltonian with respect to stationary 

states, ψ .  What we would like to do is transform this expression in some way to 

obtain a stationary Hamiltonian.  To do this we must transform the stationary states 

ψ  into the explicitly time-dependent states 'ψ , as illustrated in Eq. 2-31. 

 

( )

( ) 'exp

exp'

ψωψ

ψωψ

z

z

ti

ti

I

I

−=

=
 

2-31 
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( )t'ψ  relates to ( )tψ  by means of a rotation through an angle of ωt about the 

z axis, where ( ) ( )00' ψψ = .  This is akin to the rotating reference frame, S’, 

introduced in the classical picture which rotates at an angular frequency of ω about 

the z axis of the stationary laboratory frame, S. 

Substituting Eq. 2-31 into Eq. 2-30 and multiplying by exp(-iωtIz) from the 

left, we obtain a new differential equation (Eq. 2-32).  The third term in this equation 

(Eq. 2-32) is time-dependent, rotating at an angular frequency of 2ω.  We will see in a 

moment how this term can be neglected, leaving us with a Hamiltonian which is time-

independent relative to the time-dependent states, 'ψ . 
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The first two terms in Eq. 2-32 represent a time-independent Hamiltonian, H’’, 

which is simply the interaction of a free spin with an effective field given by Eq. 2-33. 

 

iBkB ˆˆ
10 +







 +=
γ
ω

effB  

2-33 

 

If the alternating magnetic field B1 is applied in resonance with the precession 

of the nuclear spins, i.e. with ω ~ -γB0, the static field vanishes and the effective field 

is reduced to Eq. 2-34.  In this case, the frequency of the third term: 2ω = 2γB0 is 

much larger than its strength, γB1 and therefore can be neglected. 

 

( ) iBB ˆ
10 =−= γωeffB  

2-34 

 

In this new picture, we have replaced the “forward” or active rotation of Ix 
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relative to stationary wavefunctions, ψ , with a stationary Ix relative to “backward” 

or passively rotating wavefunctions, 'ψ .  Furthermore, if the rotation is in resonance 

with the Larmor frequency, the B0 field effectively disappears and the spins become 

quantized along the effective field (Eq. 2-34). 

The solution to Eq. 2-32 is presented in Eq. 2-35, using Eq. 2-31 to express the 

solution in terms of the stationary wavefunctions. 

 

( ) ( ) ( ) ( ) ( )0'expexp'exp ψωψωψ 





−−=−= t

i
tittit zz H


II  

2-35 

 

Now we can use Eq. 2-35 to compute the expectation value of μz when a 

rotating field is present.  First we assume that the alternating field is in resonance with 

the Larmor precession of the nucleus such that our time-independent Hamiltonian is 

defined by Eq. 2-36. 

 

xB I1' γ−=H  

2-36 

 

Using Eqs. 2-35 and 2-36 and some useful properties of exponential operators 

[14] we can compute the following expression for the time-dependence of the 

expectation value of μz under the influence of B1 in the rotating reference frame (Eq. 

2-37) where ω1 = γB1. 

( ) ( ) ( ) ttt yzz 11 sin0cos0 ωω μμμ −=  

2-37 

 

If the initial magnetization is purely longitudinal (along z), ( ) 00 =yμ  and so 

we can further simplify Eq. 2-37, as shown in Eq. 2-38. 

  

( ) ( ) tt zz 1cos0 ωμμ =  

2-38 
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Therefore, under the influence of the alternating field B1, the z magnetization 

oscillates in time at ω1.  This oscillation corresponds to the precession of μ about B1 

in the rotating frame at a frequency ω1 = γB1.  Therefore the effect of an alternating 

magnetic field, B1, applied perpendicular to the static field and in resonance with the 

Larmor frequency for a fixed period of time, τ, is to rotate the magnetization, in the 

rotating frame, through an angle γB1τ  about the direction of the alternating magnetic 

field, B1.   

 

2.1.5. Free Induction Decay (FID) 

 

Recall the evolution of the magnetization in the absence of an alternating 

magnetic field (section 2.1.2).  In the laboratory frame, the magnetization precesses 

about the static field at the Larmor frequency.  This precession is most easily 

observed if the magnetization lies in the transverse plane.  That is, if, on average, the 

spins are in an eigenstate of Ix (or Iy).  At thermal equilibrium the net magnetization is 

longitudinal, i.e. is aligned with the static magnetic field.  In this orientation 

precession is unobservable.  If we apply the alternating magnetic field B1, 

perpendicular to B0 and in resonance with the Larmor frequency of the nuclei for a 

fixed period of time we can rotate the net thermal equilibrium magnetization away 

from the longitudinal axis and into the transverse (xy) plane.  If we want to leave the 

magnetization fully in the transverse plane we need to apply the pulse for a time, t90, 

defined by Eq. 2-39, which corresponds to a rotation of π/2 radians (90˚). 

1
90 2 B

t
γ
π=  

2-39 

 

Immediately following the application of the alternating field, B1, the 

magnetization, now in the transverse plane, will begin to precess about B0 at the 

Larmor frequency. According to Faraday's law of induction, this precessing 

magnetization vector will induce an electromotive force (EMF) in a receiver coil 

which is in an appropriate orientation with respect to the precessing vector and is 

tuned to the Larmor frequency.  This coil detects changes in flux in the transverse 
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direction.  The time dependent signal recorded by the receiver coil is called the free 

induction decay (FID).  It is so-called because the signal is not driven by the presence 

of the B1 field at the time of detection. 

In most nuclear magnetic resonance applications, oscillating rather than 

rotating fields are used to excite the NMR signal.  A linearly polarized field with 

amplitude 2B1cos ωt can be considered as the sum of two fields rotating at the same 

angular frequency in opposite directions, i.e. with ±ω.  If ω is in the neighbourhood of 

the Larmor frequency the effect on the system of the alternating field is significant.  

As discussed previously, the counter-rotating component of the linearly polarized 

field, which is rotating at –ω, is off-resonance with respect to the Larmor frequency 

by 2ω.  Therefore the effect of this component is negligible.  In most NMR 

applications the same coil is used to generate the linearly polarized oscillating field 

for signal excitation as is used to detect the resultant nuclear precession.  Therefore it 

is often called the transceiver (transmitter and receiver) coil.  Other common names 

include B1 coil and excitation/detection coil. 

In laboratory NMR, the Larmor frequencies are generally in the 100 MHz 

range.  In these applications the duration of the alternating magnetic field pulse is 

typically on the order of μs.  In Earth’s field NMR, the Larmor frequency is very low 

(~ 2.3 kHz) and so the length of the Larmor period requires a B1 pulse with a duration 

on the order of milliseconds.  In laboratory NMR the Larmor frequency is in the 

radiofrequency range and so this short burst of oscillating magnetic field is commonly 

referred to as a radiofrequency (RF) pulse.  In the case of Earth’s field NMR the 

Larmor frequency is in the ultra-low frequency range of the RF spectrum and so is 

commonly referred to as an ULF (ultra-low frequency) pulse. 

 

 

2.2. Relaxation  

 

During the excitation process, an RF (or ULF) pulse at the Larmor frequency 

induces transitions between energy states.  This requires the introduction of energy 

into the spin system.  The process by which the nuclear spin energy is dissipated and 

thus the excited spins return to their equilibrium energy and orientation is called 
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relaxation.  Spin relaxation is a consequence of coupling within the spin system as 

well as between the spin system and the surrounding lattice.  The molecules of the 

system are in a state of thermally activated motion, which generates rapidly 

fluctuating electric and magnetic fields.  These oscillating fields provide the 

mechanisms for absorption of the spin energy.  If the frequency of the thermal 

motions of the lattice matches the Larmor frequency, transitions will be induced in the 

spin system and hence energy will be removed.  The transition energies involved are 

not large and therefore relaxation can occur as a result of molecular motions such as 

rotation, translation and reorientation.  

 

2.2.1. Longitudinal (Spin-Lattice) Relaxation 

 

The energy level transitions induced within the spin system due to the 

excitation pulse causes a change in the populations of the spin energy levels.  In this 

manner, the population difference between the lower energy state and the higher 

states rapidly decreases and the longitudinal component of the magnetization is 

reduced.   

It is the process of spin-lattice (longitudinal) relaxation which causes a 

recovery of the equilibrium net longitudinal magnetization, Mz.  Spin-lattice 

relaxation is the coupling of the spin system to the surrounding thermal reservoir, 

which is termed the lattice.  This process can be described by a phenomenological 

equation, Eq. 2-40, where M0 is the equilibrium longitudinal magnetization and T1 is 

the spin-lattice, or longitudinal, relaxation time.  T1 can range from nanoseconds up to 

seconds depending on the molecular dynamics of the sample.  
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dM zz −
=  
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Under the influence of spin-lattice relaxation, the time rate of change of the 

longitudinal magnetization, Mz, depends on the difference between the current 

longitudinal magnetization and the equilibrium magnetization, M0.  Therefore the time 

dependence of Mz can be described by an exponential growth (Eq. 2-41). 
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2.2.2. Transverse (Spin-Spin) Relaxation 

 

The net coherent transverse magnetization excited by an RF (or ULF) pulse 

during the course of an NMR experiment decays with time, i.e. it returns to its 

equilibrium value, by means of the process of spin-spin relaxation.  This relaxation 

process is characterized by the T2 time constant.  Spin-spin relaxation is due to the 

interactions between neighbouring spins within the spin system and is a function of 

the sample as well as the static field strength, B0. 

Macroscopically, the transverse magnetization decay is characterized by the 

transverse relaxation time, T2, and a simple rate law, given by Eq. 2-42.  
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The time dependent equation for the transverse magnetization is therefore an 

exponential decay, given by Eq. 2-43 where Mxy(0) is the initial transverse 

magnetization excited by the RF pulse. 

 

2.2.3. Field Inhomogeneity and Shimming 

 

Homogeneity of the static B0 field is essential in most applications of nuclear 

magnetic resonance (NMR) because any inhomogeneities in the field will cause de-

phasing of the coherent transverse magnetization.  As a consequence of this de-

phasing the observed signal, or free induction decay (FID), will decay more rapidly 
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than is predicted by T2 relaxation alone.  This effect is quantified by the effective 

spin-spin relaxation time constant: T2
*.  The relationship between the spin-spin 

relaxation time constant, T2, and T2
* is given by Eq. 2-44, where ΔB0 is a measure of 

the inhomogeneity of the static field, B0. 
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In many applications it is desirable to reduce ΔB0 so that T2
* is roughly equal 

to T2 and Earth’s field NMR, the subject of this thesis, is no exception.  The Earth’s 

magnetic field in and of itself is highly homogeneous but it is also relatively weak, 

therefore the local homogeneity of the Earth’s field can be significantly disrupted by 

the presences of ferrous or magnetic objects.  It is possible to find locations where 

these disruptions are minimal; however, it is often not feasible to search out such a 

spot before performing the desired EFNMR measurements.   

In NMR, “shimming” is a method for improving the homogeneity of the static 

B0 field.  In essence, shimming is accomplished by applying a magnetic field of 

arbitrary magnitude and geometry such that it cancels out the inhomogeneities in the 

underlying static magnetic field.   

In practice, shim fields of arbitrary geometry and magnitude are generated 

using a linear combination of spherical harmonics.  The simplest spherical harmonics 

are three orthogonal constant magnetic field gradients corresponding to the x, y and z 

dimensions in the laboratory frame.  These are referred to as first-order shims.  In 

many NMR and MRI systems higher-order shims (higher-order spherical harmonics) 

are also used to permit the generation of more complex shim fields and so allowing 

for the correction of more complex field inhomogeneities.   

 

 

2.3. Information Content in NMR 

 

In theory, all of the information available from NMR signals obtained using a 
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high-field laboratory instrument is also available from an Earth’s field NMR device.  

However, there are many practical concerns which mean that it is very difficult, and 

in some cases extremely impractical, to extract the same range and quality of 

information from an Earth’s field device.  That being said, there remains a huge 

potential for obtaining important and useful information using Earth’s field NMR if 

clever acquisition schemes and hardware devices are used.  Broadly speaking, the 

types of information obtained via NMR can be grouped into three categories.  The 

first group of experiments involves spatial encoding.  Spatial encoding can be used 

not only to differentiate between spins in different locations in the sample but also to 

“tag” spins with their position at one point in time and then observe, at a later time, 

how the spins have moved.  The second group of NMR experiments uses chemical 

shift and indirect spin-spin coupling for chemical identification and structural 

analysis.  The third group of NMR experiments to be considered in this thesis is those 

which probe ordering within a sample via the residual dipole-dipole coupling of a 

probe solvent molecule. 

 

2.3.1.  Spatial Encoding 

 

A magnetic resonance imaging (MRI) experiment is essentially a nuclear 

magnetic resonance (NMR) experiment in which the signal is spatially encoded.  That 

is, the acquired signal contains information about the relative locations of the spins in 

the sample.  This spatial information is acquired through the use of magnetic field 

gradients.  Magnetic field gradients alter the magnitude of the underlying 

homogeneous field, B0, as a function of position.  Thus different magnetic field 

strengths will be experienced by groups of spins in different locations in the sample.  

The consequences of this can be readily illustrated through a consideration of the 

Larmor equation. 

First we will introduce a magnetic field gradient, G, which alters the 

magnitude of the static field, kB ˆ
0 , in the ji ˆ,ˆ  and k̂  directions.  It is important to note 

that while the magnitude, B0, of the static field is altered in the direction of the 

gradient the direction of the static field remains constant in the k̂ direction.  The 

assumption that any concomitant gradients, i.e. magnetic field components generated 
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by G along the î and ĵ directions, are negligible requires that the magnitude of the 

static field B is much greater than the magnitude of Gd, where d is the size of the 

sample. 
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As a consequence of this alteration in the uniformity of the static field by G, 

the Larmor frequency becomes dependent on position (Eq. 2-46). 
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This means that the spins at a point r1 within the sample will precess at a 

different frequency than the spins at a point r2.  Thus we have encoded spatial 

information into the frequency. 

Consider an isochromat within the sample at point r1, i.e. a localized 

collection of spins which precess at the same frequency.  The phase of these spins can 

be written as in Eq. 2-47. 
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If we represent the spatial distribution of spins in the sample with ρ(r) then we 

can write the total signal acquired, in an idealized experiment, as the sum of the 

density of spins at each location weighted by the spatially dependent phase term. 

 

( ) •+= rrGrG dtBitS )(exp)(),( 0γρ  

2-48 

  

The interpretation of Eq. 2-48 can be greatly simplified through the 
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introduction of the concept of k-space.  First we assume that we detect only the 

deviations from the Larmor frequency, ΔB0, and therefore can reduce the exponential 

term to ( )ti rG •γexp .  Second we introduce a k-space encoding vector (Eq. 2-49).  In 

many experimental situations the magnetic field gradient is time varying.  In this case 

k is more properly defined as in Eq.  2-50.   
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Eq. 2-49 defines what is known as k-space.  Substituting the k-space vector 

into Eq. 2-48 we obtain an expression for the signal, S, as a function of k. 
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By inspection we find that there is a Fourier relationship between the MRI 

signal in k-space, )(kS , and the spin density, )(rρ .  Therefore we may write the spin 

density as the inverse Fourier transform of S(k). 
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. 

Eq. 2-52 demonstrates that the spin density function, and hence an image of 

the sample, can be obtained by the application of a Fourier transform to the k-space 

signal.   Therefore, the complexity of the basic MRI experiment is focused almost 

entirely on how you chose to sample k-space. 
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2.3.2. Indirect spin-spin coupling 

 

Indirect spin-spin coupling is an interaction between nuclei through the 

mediation of non-localized electrons.  This interaction occurs through a covalent bond 

and so is only present between nuclei on the same molecule, i.e. it is entirely intra-

molecular.  The full indirect spin-spin coupling interaction is characterized by a 

second rank tensor, J.  However, in liquids we need only be concerned with the 

isotropic coupling part, J, which is a scalar quantity given by one-third of the trace of 

the tensor J  [18].   

The Hamiltonian for the isotropic component of the indirect spin-spin 

coupling interaction between two spins with angular momentum operators, I1 and I2, 

is given by Eq. 2-53. 

 

212 II •= JπH  

2-53 

Note that this coupling term is independent of field strength and so the 

magnitude of this interaction will be the same in a high-field spectrometer as it is in 

the Earth’s magnetic field.  Despite this lack of field dependence, in many cases there 

is an important difference between the case of indirect spin-spin coupling at high-

fields and at ultra-low fields.  In the case of B0 field strengths on the order of a Tesla, 

the indirect spin-spin coupling will typically be much weaker than the Zeeman 

interaction; therefore it is appropriate to use the secular approximation, i.e. to keep 

only the Iz1 Iz2 from the scalar product of I1 and I2, where z is the direction of the static 

field.  In the case of ultra-low fields, on the order of μT, the contribution of indirect 

spin-spin coupling terms are often of a similar magnitude to the Zeeman interaction 

terms and so all parts of the scalar product must be included.  This results in a much 

more complicated calculation for the ultra-low field case, which can significantly 

lengthen computation times when simulating multi-dimensional NMR experiments 

with systems of four or more spins and greatly complicates the interpretation of the 

spectra.  These details will be discussed in much more detail in Chapters 6, 7, 8 and 9. 
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2.3.3. Chemical Shift 

 

In the solid or liquid state a given nucleus is surrounded by atomic or 

molecular electron clouds which can interact with the nuclear spin angular momentum 

in a way which is characteristic of the local electronic environment.  The most 

significant effect of the surrounding electron clouds is magnetic shielding, which 

results when the electronic orbitals are perturbed by the applied field, B0.  This 

shielding causes the Larmor frequency to be shifted slightly.  This is the so-called 

chemical shift and can be used to identify the chemical environment of the nucleus.  

The Hamiltonian term due to chemical shift is simply a Zeeman operator with a slight 

reduction in the apparent static magnetic field (see Eq. 2-54 and Eq. 2-55). 

Chemical shifts are highly dependent on atomic number and so while the 

observed chemical shifts for 1H (protons) are on the order of only a few ppm (parts 

per million) the chemical shifts for heavier nuclei such as 13C and 31P can be hundreds 

of ppm [17].   

In ordered environments, molecular orbitals can exhibit rotational anisotropy 

and therefore the shielding effect of the electron cloud has a tensorial character.  The 

full Hamiltonian term for the chemical shift is given by Eq. 2-54, where S is the 

chemical shift tensor.   
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Under rapid isotropic rotation, as in most rapidly tumbling liquid samples, the 

chemical shift Hamiltonian can be simplified to contain only an isotropic chemical 

shift term, σi  [17]. 
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In ultra-low fields, the chemical shifts of most nuclei are vanishingly small 
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and so cannot be observed except in a few special cases [19]. 

 

2.3.4. Direct Dipolar (DD) Coupling 

 

In liquid systems, the magnetic moments of individual nuclei interact with the 

magnetic moments of surrounding nuclei even though the separation between them is 

much greater than their physical dimensions.  The interaction between these magnetic 

dipoles is mutual and arises from the magnetic field of one dipole acting on the 

magnetic moment of other remote dipoles [17].  This is called the magnetic dipole-

dipole interaction or direct dipolar (DD) coupling. 

 

 

Figure 2.2  A schematic of direct dipolar coupling  between two dipoles, μi and μj.  eij is a 

unit vector connecting the dipoles and Φij is the angle between this unit vector 

and the static field, B0. 

 

Figure 2.2 presents a schematic of direct dipolar coupling between two dipoles 

i and j with dipole moments μi and μj, respectively.  eij is a unit vector connecting the 

two dipoles, Φij is the angle between this unit vector and the static field, B0 and rij is 

the distance between the dipoles. 

The Hamiltonian which describes the direct dipolar interaction between two 

spins is given by Eq. 2-56 where bij, the dipolar coupling constant, is given by Eq. 

2-57 [15]. 
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The full expansion of the Hamiltonian in Eq. 2-57 is presented in Eq. 2-58 

where φij is the azimuthal component of Φij and Θij is the polar angle. 

If the static field, B0, is large the dipolar interaction will be much weaker than 

the Zeeman interaction and so we need to maintain only the secular (A and B) terms of 

the full expansion in Eq. 2-56.  The secular dipolar coupling Hamiltonian is given in 

Eq. 2-59. 
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In a liquid system, Θij is time dependent due to the tumbling of the molecule 

containing the coupled nuclei.  In all but the most viscous isotropic liquids, these 

molecular motions will average the overall effect of dipolar coupling to zero on the 

timescale of the NMR experiment.  In an anisotropic liquid, that is a liquid which is 

weakly oriented either locally or globally, the freely tumbling molecules feel a slight 

preference for a particular orientation or set of orientations.  In this case, the intra-
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molecular dipolar interactions do not average to zero.  This is called residual dipolar 

coupling (RDC).  The secular residual dipolar coupling Hamiltonian is defined by Eq. 

2-60 where the residual dipolar coupling constant is defined by Eq. 2-61.  The overbar 

in Eq. 2-61 denotes an average over all possible values of Θij weighted by their 

corresponding statistical probabilities [15]. 
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Consider the case of intra-molecular dipolar coupling between nuclei on a 

molecule whose motion is partially restricted because of local anisotropy in the 

system.  In this case the angle Θij can be broken up into two parts: (a) a fixed angle θ 

between the anisotropy director, a unit vector in the direction of the anisotropy, and 

the magnetic field and the time dependent angle αij(t) between eij, the unit vector 

connecting the coupled dipoles, and the anisotropy director.  The time averaged value 

of αij(t) is a function of the degree of orientation in the system and provides us with a 

measure of the anisotropy, while the absolute value of θ  quantifies the direction of 

the anisotropy relative to the static magnetic field.  Using the spherical harmonic 

addition theorem, we can re-write the residual dipolar coupling constant as shown in 

Eq. 2-62, where S, the so-called structure factor, is described by Eq. 2-63. 
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The observation of residual dipolar coupling of a probe solvent molecule in a 

weakly aligned liquid crystal system in the Earth’s magnetic field is explored in 

Chapter 10.  
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CHAPTER 3. Earth’s Field NMR  

 

 

3.1. Introduction 

 

Earth’s field NMR (EFNMR) refers to a class of nuclear magnetic resonance 

experiments where the nuclear spin precession is detected in the Earth’s magnetic 

field [20; 21].  The use of the Earth’s magnetic field for NMR experimentation is 

attractive because this field is highly spatially homogeneous, globally available and 

free.  In EFNMR the signal is typically detected in the Earth’s field, to take advantage 

of this high degree of homogeneity, but polarization is often achieved using additional 

fields to augment sensitivity.  In this chapter we will present a historical overview of 

EFNMR, discuss some of the applications of this technology and outline the 

challenges associated with performing modern, sophisticated NMR experiments in the 

Earth’s field. 

 

 

3.2. Sensitivity and Resolution in EFNMR 

 

The sensitivity of a basic NMR experiment is typically governed by the 

available equilibrium magnetization of the sample which is in turn given by the 

thermal polarization of the spin system.  This thermal polarization is described by Eq. 

3-1. 
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NMR signal is traditionally detected by an induction coil and therefore the 

strength of the signal will be proportional to the frequency of the oscillating 

magnetization, which is in turn determined by the field strength through the Larmor 

equation (Eq. 3-2). 

 

0Bγω −=  

3-2 

 

Inspection of Eq. 3-1 and 3-2 indicates that the signal strength, and hence the 

NMR sensitivity, is approximately proportional to B0
2.  In the case of Earth’s field 

NMR, B0 is on the order of 50 μT (0.5 G) and so sensitivity is a significant problem 

when compared to laboratory NMR instruments with fields on the order of a few 

Tesla.  The many strategies available for augmenting the sensitivity of EFNMR by 

increasing the available NMR signal are discussed in Chapter 5.  Other strategies to 

improve sensitivity include minimizing the noise pickup of the detection coil through 

screening (see Chapter 4) and changing the detection scheme to reduce the field 

strength dependence from B0
2 to B0.  This thesis deals exclusively with EFNMR 

strategies and experiments within the realm of Faraday induction detection.  However, 

a couple of the alternate detection schemes will be briefly mentioned later in this 

chapter. 

In addition to sensitivity, another feature of any NMR instrument which 

governs its overall performance is spectral resolution.  The final frequency resolution 

of a given NMR experiment is the result of a combination of instrument dependent, 

sample dependent and methodology dependent factors.  Inspection of the Larmor 

equation (Eq. 3-2) reveals the relationship between the NMR frequency resolution and 

the spatial homogeneity of the static field, B0.  If the strength of the B0 field varies 

with position, so too will the precession frequency of the spins.  This frequency 

variance across the sample will cause a de-phasing of the signal in the transverse 

plane and consequently a rapid decay of the transverse magnetization in the time 
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domain.  In the frequency domain this spread of frequencies will cause a broadening 

of spectral lines and therefore a coarsening of the actual spectral resolution.   

It is the relationship between field homogeneity and frequency resolution 

which provides some of the impetus for working in the Earth’s magnetic field, which 

is highly homogeneous over very large volumes.  This homogeneity is harnessed not 

only for frequency resolution in spectroscopic applications but also for improving 

sensitivity because it means that very large samples can be used, i.e. 100s of mL 

instead of a few mL, a typical sample size in laboratory NMR spectroscopy 

instruments.   

Due to the weak nature of the Earth’s magnetic field there are a few sources of 

degradation of its natural homogeneity which must be considered and, if possible, 

eliminated.  First the homogeneity of a 50 μT field is easily disrupted by magnetic or 

ferrous objects in close proximity to the detection coil.  Second, time varying field 

components, either due to the local environment or the diurnal variations of the 

Earth’s field itself, can cause a degradation of frequency resolution over the course of 

long experiments.  These issues are addressed in detail in Chapter 4. 

One of the central themes of this thesis is the optimization of sensitivity and 

resolution of Earth’s field NMR.  In some cases, improving the resolution of an 

instrument will concurrently result in improved sensitivity.  However, as will be seen 

with dynamic nuclear polarization (Chapter 5), some improvements to sensitivity can 

only be made at the expense of the spectral resolution and so a good compromise 

between resolution and sensitivity must be achieved.  This compromise is typically 

dictated by the requirements of a particular application. 

 

 

3.3. Information Content in Earth’s Field NMR 

 

In addition to a discussion of resolution and sensitivity, no evaluation of an 

NMR device would be complete without a consideration of the information available 

using that instrument.  In theory, all of the information available on a high field NMR 

device is available in the Earths’ magnetic field; however, in practice there are certain 

limitations typically governed by either sensitivity, resolution or a combination of 
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both. 

As at high-field, NMR parameters such as the T1 and T2 relaxation times can 

be measured; however, the long dead-times between signal excitation and detection, 

experienced by the B1 excitation coil due to the long Larmor period of the spins in the 

Earth’s magnetic field, prevent the accurate determination of T2 times much less than 

100 ms.     

Spatial encoding of the NMR signal in order to measure diffusion and/or flow 

as well as for imaging applications have been shown to be possible in the Earth’s field 

using specially designed gradient coils and pulse sequences analogous to those used 

for MRI in high fields [9; 10; 12; 22-25].   

A range of spectroscopic information is available using EFNMR and it is the 

exploration of this application which is the major focus of the latter part of this thesis.  

For most nuclei chemical shift is vanishingly small in the Earth’s magnetic field but J 

coupling interactions, both hetero-nuclear and homo-nuclear, can be observed in a 

range of small molecules.  In addition, the intra-molecular residual dipolar coupling of 
1H nuclei on a solvent molecule in an aligned medium, such as a liquid crystal, can be 

observed in the Earth’s magnetic field.  These spectroscopic applications of EFNMR 

are explored in Chapters 7 through 10 of this thesis. 

 

 

3.4. Historical Overview of Earth’s Field NMR 

 

3.4.1. First Observation of EFNMR 

 

Eight years following the first observations of Nuclear Magnetic Resonance 

(NMR) by Purcell and Bloch in 1946, Packard and Varian demonstrated the free 

precession of water molecule protons in the terrestrial magnetic field [1].  Therefore, 

Earth’s field NMR (EFNMR) can be said to be almost as old as NMR itself.   

In the Packard and Varian approach to the observation of proton free-

precession in the Earth’s magnetic field, a relatively strong but not necessarily 

homogeneous prepolarizing magnetic field, oriented perpendicular to the Earth’s 

magnetic field, is applied to the sample allowing the spin ensemble to come to an a 

priori thermal equilibrium polarization at this field strength.  This prepolarizing field 
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is then switched-off non-adiabatically, i.e. quickly on the timescale of the precessing 

magnetization, such that the net magnetization remains in a plane perpendicular to the 

Earth’s magnetic field and the subsequent free precession of the magnetization can be 

observed.   

 

3.4.2. EFNMR of Monofluorobenzene 

 

Along with this first demonstration of EFNMR using water, Packard and 

Varian also observed the beat pattern of the free precession of fluorine and proton 

nuclei coupled via the indirect spin-spin interaction in monofluorobenzene [1].  At 

this time the mechanism and form of the indirect spin-spin coupling interaction were 

not yet well understood.  The subsequent observation of this coupled spin system in 

the Earth’s magnetic field by Elliott and Schumaker in 1957 [26] was explained as a 

doublet with an observed splitting of 5.8 ± 0.2 Hz, an “average” of the range of H-F 

couplings within the monofluorobenzene molecule.  However, high resolution 

observations of monofluorobenzene by Bak, Schoolery and Williams [27] 

demonstrated that the indirect spin-spin coupling constants for the ortho, meta and 

para protons in the monofluorobenzene molecule were approximately 10 Hz, 6 Hz 

and 0.5 Hz, respectively.  This suggested that, unless there was a significant field 

dependence of indirect spin-spin coupling constants, the “average” coupling 

interpretation of Elliott and Schumaker was incorrect.  In 1962, Thompson and Brown 

presented a letter to the editor of the Journal of Chemical Physics [5] indicating that a 

detailed study of the beat patterns of the free precession of monofluorobenzene in the 

Earth’s field does indeed show a range of frequency components, as was consistent 

with the high-resolution observations at high-field.  This particular issue is of interest 

to this thesis because it can be resolved unequivocally through the combined use of 

2D NMR spectroscopy techniques employed in the Earth’s magnetic field and 

numerical simulations.  This issue is addressed in Chapter 8. 

 

3.4.3. Geophysical Applications of EFNMR 

 

In the early years of Earth’s field NMR, the method was used primarily for 

gaining low frequency data for relaxation dispersion and for the measurement of 
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scalar spin-spin coupling effects between hetero-nuclei [20].  These experiments were 

typically confined to remote outdoor environments for practical reasons addressed in 

the apparatus overview in Chapter 4.  Taking advantage of this ability to perform 

NMR outside of the laboratory with a small portable instrument, a number of 

predominantly geophysical applications of Earth’s field NMR were developed. 

The first, somewhat obvious, geophysical application of Earth’s field NMR is 

for the measurement of the terrestrial magnetic field, i.e. for Earth’s field 

magnetometry.  Recent developments in sensitivity enhancements schemes, which 

will be discussed in Chapter 5, have greatly improved the sensitivity and versatility of 

these devices [28; 29]. 

Another historic application of EFNMR is well-logging [30].  The idea of 

performing Earth’s field NMR inside a borehole in order to investigate the properties 

of oil reservoirs was first put forward by Brown and Gamson in 1960 [2] and has laid 

the foundation for modern NMR well-logging techniques using permanent magnet 

NMR devices.     

An application of Earth’s field NMR, which has become more prevalent in 

recent times, is NMR pedagogy.  In 1982, Callaghan and Legros presented a paper 

detailing a simple Earth’s field NMR apparatus that could be used in a teaching 

laboratory environment to demonstrate the basic principles of NMR to students [31].  

With the increasing importance of NMR and MRI in a wide range of scientific 

disciplines from Chemistry to Medicine, it has become more and more important to 

expose students to the principles of magnetic resonance at an undergraduate level.   

This contribution of Callaghan and Legros not only demonstrated the use of 

EFNMR for teaching but also presented an important improvement to the traditional 

scheme of Packard and Varian which uses the non-adiabatic switch off of the 

polarization field for signal excitation.  In practice, the rapid switch-off condition is 

not easy to achieve and so an adiabatic switching protocol was adopted in [31] 

whereby the net magnetization follows the slowly changing net field, the vector sum 

of the decreasing prepolarization field and the static Earth’s field, such that at the end 

of the switching process the enhanced net magnetization vector is aligned with the 

Earth’s magnetic field.  Using the receiver coil as a transmitter, the NMR signal is 

excited in the Earth’s field by a radiofrequency pulse at the Larmor frequency of the 

sample, in the manner of high-field NMR.  It should be noted that the Larmor 
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frequency of nuclei in the Earth’s field falls in the ultra-low frequency range of the 

electromagnetic spectrum and so this excitation pulse is referred to as a “ULF pulse” 

as opposed to the common high-field NMR nomenclature of an “RF pulse”.  In 2009 

there are two commercially available Earth’s field NMR teaching systems, the Teach-

spin system (www.teachspin.com) and the Magritek Terranova-MRI 

(www.magritek.com).  The latter, described in detail in Chapter 4, was used as the 

basis for the apparatus used throughout this thesis. 

Building on the use of ULF pulses to excite an NMR signal in the Earth’s 

field, a surface NMR method for groundwater prospecting was proposed by Semenov 

et al. in 1989 [32].  This method is capable of detecting ground water reserves at 

depths of up to 100 m through the use of a 100 m diameter wire loop arranged on the 

surface for both excitation and the detection of the NMR signal in the Earth’s 

magnetic field [33-37].  No prepolarization is required because of the huge volumes 

of water which are detected and the extremely high spatial homogeneity of the Earth’s 

magnetic field which permits the detection of a coherent free precession over large 

physical volumes.  Using both the amplitude and the phase of the NMR signal as a 

function of excitation pulse strength, an inversion method yields a depth profile of 

groundwater beneath the surface coil. 

In the early 1990s, Callaghan et al. developed an Earth’s field apparatus for in 

situ measurements of brine diffusivity of Antarctic sea ice using pulsed gradient spin 

echo (PGSE) NMR techniques [9-13; 38].  This application required the development 

of a specialized magnetic field gradient coil for use in the relatively weak Earth’s 

magnetic field (~ 0.6 G in Antarctica).   The gradient requirements of a PGSE 

measurement of brine diffusivity are such that, in the Earth’s field, the concomitant 

gradients generated by the magnetic field gradient coil, i.e. the components of the 

gradient field orthogonal to the main static field, cannot be neglected.  Therefore in 

the design process it is the net gradient in the magnitude of B that needs to be 

considered rather than simply the gradient in the component of the field parallel to a 

strong, dominant B0 field, as is the case in high-field PGSE NMR.  A combined 

Maxwell–Helmholtz configuration can be employed to produce a gradient in |B| along 

the axis of the gradient coil.  The superposition of the Maxwell pairs (opposed 

currents) and Helmholtz pairs (parallel currents) produces a nearly uniform d|B|/dx 

gradient in which the null point of the field is shifted out of the sample volume [12]. 
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3.4.4. Earth’s Field NMR Imaging 

 

In the 1990’s, Stepisnik and coworkers [22; 24; 25; 39; 40] developed a 

system for performing MRI using the Earth’s magnetic field.    In addition to the 

traditional components of the system such as a transmit/detect coil tuned to the 

Larmor frequency of the sample, a pre-polarization coil and a magnetic field gradient 

coil set, their Earth’s field imaging system also required a secondary detection coil, 

which was located a small distance from the main apparatus.  This second detection 

system, containing a standard sample such as water, was used as a frequency probe to 

track any fluctuations in the Earth’s magnetic field.  The NMR signal acquired with 

the reference sample was mixed with the NMR signal from the target sample in such a 

way that the resultant signal contained only deviations from the reference signal.  This 

heterodyne detection approach was important in order to correct for fluctuations in the 

magnitude of the Earth’s magnetic field due either to changes in the underlying field 

itself or changes in the immediate environment of the apparatus.  Although highly 

effective, this approach is slightly cumbersome in that it requires a second device and 

a feedback channel for the combining of the reference and sample signals. 

In addition to basic 2D imaging in the Earth’s magnetic field, Mohoric et al. 

[24] also demonstrated self-diffusion imaging and reported the implementation of 

other MRI techniques such as velocity imaging and slice selection.  3D MRI in the 

Earth’s magnetic field was demonstrated by Halse et al. in 2006 [41]. 

In recent years, noteworthy advancements have been made in imaging in fields 

on the order of the Earth’s magnetic field using either Superconducting Quantum 

Interference Devices (SQUIDs) [42-50] or atomic magnetometers [51; 52] for non-

Faraday detection of the MRI signals.  One exciting application of this technology is 

for the concurrent acquisition of magnetoencephalography (MEG) and MRI data 

using SQUIDs [49; 50; 53].  Using SQUIDs to perform MRI detection in microtesla 

fields, the Earth’s field range, allows these two methodologies to be naturally 

combined in the same system and so provides an anatomical map for MEG-localized 

neural sources.  Another biomedical application is the simultaneous detection of MRI 

and biological signals, such as neuronal currents, with SQUIDs [46; 54; 55]. 
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3.4.5. High-resolution Earth’s Field NMR Spectroscopy 

 

Another area in which significant advancements in Earth’s field NMR have 

occurred in recent years is NMR spectroscopy.  In early Earth’s field NMR 

experiments, the conventional wisdom was that the only spectroscopic information 

available was indirect spin-spin coupling between hetero-nuclei because chemical 

shifts in such a weak field are vanishingly small.  Recent experiments highlight, 

however, that this is not always the case. 

In 2005, Appelt et al. [56] demonstrated that the chemical shifts of 129Xe can 

be observed in the Earth’s magnetic field using 129Xe gas which has both 

exceptionally long T2's, 10 – 1000 s in liquid solvents, and a very large chemical shift 

difference of about 200 ppm between the free flowing gas and gas dissolved in a 

liquid solvent, such as toluene [56].  Key to the observation of 129Xe chemical shifts 

in the Earth’s magnetic field is the use of hyperpolarized 129Xe gas, thus overcoming 

the very low thermal polarization of 129Xe in the Earth’s magnetic field, which has a 

Larmor frequency of approximately 570 Hz.  The method for generating 

hyperpolarized 129Xe gas is discussed in Chapter 5. 

More recently, Appelt et al. [57-59] demonstrated that in cases where the 

magnetic equivalence between two groups of homonuclear spins is broken by the 

presence of unique indirect spin-spin couplings to a heteronucleus, homonuclear 

indirect spin-spin couplings can be observed in the Earth’s magnetic field.  In these 

experiments, the samples were pre-polarized by a 1 T Halbach permanent magnet 

array and then manually transported to the Earth’s field NMR probe for excitation by 

a ULF pulse and subsequent detection of the free precession.  The use of the Halbach 

array for prepolarization provides a polarization advantage that is orders of magnitude 

greater than the more traditional electromagnet approach because the latter is limited 

to much weaker magnetic fields for the practical reasons of field switching and 

resistive heating.  The use of the Halbach permanent magnet for prepolarization is 

especially advantageous because this type of array is largely self-screening and 

therefore can be located relatively close to the Earth’s field NMR probe without 

perturbing the homogeneity of the Earth’s field.   

In addition to these advancements in 1D spectroscopy, multi-dimensional 

spectroscopy has also been demonstrated to be possible in the Earth’s field.  In 2006, 
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Robinson et al. [60] presented the first 2D COSY acquired in the Earth’s magnetic 

field.  The multi-dimensional spectroscopy developments presented in this thesis (see 

Chapter 8) are a continuation of this 2D COSY work. 
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CHAPTER 4. EFNMR Apparatus 

 

 

4.1. Introduction 

 

All experiments presented in this thesis were performed using a Terranova-

MRI Earth’s field system (Magritek Ltd., Wellington, NZ), an example of which is 

pictured in Figure 4.1.   

 

 

Figure 4.1  Terranova-MRI probe and spectrometer (Photo courtesy of Magritek Limited. 

© Magritek Limited 2006) 

 

This system consists of three main parts: a three-component probe, an ultra-
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low frequency spectrometer and the Prospa software package running on a PC.  The 

components of the standard Terranova-MRI system are detailed in sections 4.2, 4.3 

and 4.4.  Several hardware and software improvements were made to this commercial 

apparatus as part of this thesis project.  These include: ultra-low-frequency noise 

shielding (4.5), auto-shimming (4.6.1) and temporal field stabilization (4.7).  Note 

that, where appropriate, some experiment specific hardware additions/improvements 

are detailed in later chapters. 

 

 

4.2. Terranova-MRI Three-coil Probe 

 

At the centre of the Terranova-MRI apparatus is a three-component probe 

which is responsible for pre-polarization, signal excitation and detection, shimming 

and spatial encoding.  The probe can be divided into three parts: the polarizing coil, 

the excitation/detection coil and the gradient coil set.  A schematic of the probe is 

presented in Figure 4.2. 

 

 

Figure 4.2  A schematic of the three coil probe: an outer solenoid for pre-polarization, an 

inner solenoid for signal excitation and detection and a set of gradient coils for 

imaging and/or shimming. (This schematic is courtesy of Mark Hunter, 

Victoria University of Wellington.) 
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4.2.1. Polarizing Coil 

 

The polarizing coil is a large solenoidal coil which is capable of providing a 

static magnetic field along the axis of the probe with a magnitude of 3.13 mT/A at its 

peak.  At the standard current of 6 A, this coil provides maximum prepolarization 

field of 18.7 mT.  The simple solenoidal design means that over a standard 75 mm 

diameter, 100 mm long sample the field has an inhomogeneity on the order of 10-15 

%.  This renders the field unsuitable for NMR detection but is perfectly viable for 

prepolarization.  This coil is used to enhance the sensitivity of Earth’s field NMR by 

allowing the sample to come to an a priori thermal equilibrium at the moderate field 

strength provided by the prepolarization coil before excitation and detection in the 

very weak, but highly homogeneous Earth’s magnetic field.  The theory of 

prepolarization is discussed in detail in Chapter 5. 

In addition to enhancing sensitivity thorough polarization enhancement, the 

pre-polarization coil increases the signal-to-noise ratio (SNR) of the NMR signal by 

acting as a shield from external ULF noise sources.  This is achieved by shorting the 

polarizing coil to ground during the detection stage of the pulse sequence [9; 61].  The 

polarizing coil has multiple layers of copper windings.  On average, the thickness of 

the copper is 10 mm.  Thus it is a very good shield for ULF noise.   If the external 

noise is directional, as is often the case, the shielding will be most effective at a very 

specific orientation.  Any deviation from this orientation results in a dramatic increase 

in the observed noise on the NMR signal.  Therefore the orientation of the long axis 

of the probe must be chosen according to noise shielding considerations in order to 

obtain good SNR. 

 

4.2.2. B1 (Transmit and Receive) Coil 

 

Signal excitation and detection is achieved using the innermost component of 

the Terranova-MRI probe, which is a solenoid with several thousand turns.  This coil 

is connected to a series of capacitors under software control within the ultra-low 

frequency spectrometer.  By changing the capacitance, the B1 coil is tuned to the 

Larmor frequency of the sample.  The coil has a DC resistance of approximately 330 

Ω, an inductance of approximately 0.5 H and requires a tuning capacitance in the nF 



 
48 CHAPTER 4.  EFNMR Apparatus     

 

range to tune to the Larmor frequency of protons in the Earth’s field (~ 2.3 kHz).  The 

quality factor, Q, of the coil is about 20.  The ring-down of the coil, i.e. the 

characteristic time of the dissipation of the energy in the coil following an excitation 

pulse, can be approximated by Q times the Larmor period.  Therefore, for a Larmor 

frequency of 2.3 kHz, the ring-down time constant is 9 ms.  A delay of 20 ms is 

typically introduced between the end of an excitation pulse and the beginning of 

signal acquisition in order to avoid any corruption of the detected signal by the ring-

down of the coil. 

 

4.2.3. Gradient Coils 

 

In order to encode spatial information into the NMR signal, it is necessary to 

perturb the homogeneity of the Earth’s magnetic field in a very controlled way, such 

that the magnitude of the field varies in the direction of the desired spatial encoding.  

This is achieved through the use of a three-axis gradient coil set.  For the most part, 

designing a gradient coil set for spatial encoding in the Earth’s magnetic field is 

analogous to gradient coil design in the high-field case.  However, there is one point 

of difference which is significant for imaging applications.  This difference is the 

orientation of the Earth’s field, BE, relative to the vertical. 

The orientation of BE for most locations on the planet is neither vertical nor 

horizontal but rather at a declination angle, d, to the vertical, z.  This magnetic field 

orientation affects the magnitude and direction of the magnetic field gradients 

generated by the gradient coil set.   In applications such as imaging, it is very 

important to be aware of the actual gradient fields produced by the gradient coil set.  

Therefore, as part of this thesis the effect of the relative orientation of the gradient coil 

set and the Earth’s magnetic field, BE, on the strength and orthogonality of the 

gradients was considered and characterized. 

In order to understand this problem we define two frames of reference: the 

laboratory frame, xyz, and the gradient coil set frame, x’y’z’.  For simplicity, we 

define the x axis of the laboratory frame such that it is aligned with x’, which 

represents the long axis of the gradient coil set; however it is important to note that 

the relative alignment of the coil frame and the laboratory frame is arbitrary.   

The gradient coil set consists of a saddle coil and two quadrupolar coils 45˚ 
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apart as in the standard electromagnet geometry [17].  This arrangement generates 

three linear magnetic field gradients that operate in the weak gradient field 

approximation: |Bg| << BE.  Ideally the z’ axis of the gradient coil set is aligned with 

the field, BE, and so the magnetic field gradients generated by the gradient coil set are 

orthogonal and are directed along x’, y’ and z’ respectively.  However, if the Earth’s 

magnetic field vector does not point along z’ in the gradient coil reference frame, non-

orthogonal gradients will result.   

As explained in section 4.2.1, when using the standard Terranova-MRI 

apparatus, the amount of external noise detected by the B1 coil is highly dependent of 

the orientation of x’ axis of the probe.  If we fix the absolute orientation of the x’ axis 

to minimize noise pickup (and so maximize SNR) we will typically not be able to 

align the z’ axis of the gradient coil set with BE.  This will lead to non-ideal gradient 

orientations and strengths.  In early work associated with this thesis, a compromise 

was determined whereby the single degree of freedom of the probe, a rotation about 

x’, is used to minimize the problems associated with the non-orthogonality of the 

gradients. 

 

 

Figure 4.3  (a) Gradient coil orientation such that z’ and y’ are coincident with z and y. The 

gradients which result from this orientation are all non-orthogonal. (b) 

Gradient coil orientation where z’ and y’ are rotated about the x axis such that 

BE lies in the xz’ plane.  BE is now at an angle θ with respect to z’ and is 

perpendicular to y’.  Gy is orthogonal to both Gz and Gx but Gx and Gz are non-

orthogonal relative to each other. The magnitude of Gy and Gz are reduced by a 

factor of cos θ. (Figure courtesy of Mark Hunter, VUW) 
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Consider the situation presented in Figure 4.3a where y’ and z’ are aligned 

with y and z in the laboratory frame. The magnetic field vector, BE, points at a 

declination angle, d, to the vertical and is at an angle φ  to the y axis in the horizontal 

plane.  The magnetic field gradients Gx, Gy and Gz generated by the gradient coil set 

in this orientation are non-orthogonal and their exact orientation is a complicated 

function of the angles d and φ.   

Now consider the situation presented in Figure 4.3b.  The gradient coil has 

been rotated about the x axis such that BE lies in the xz’ plane.  BE is now at an angle 

θ  to the z’ axis but is perpendicular to the y’ axis.  In this orientation, Gy and Gz will 

be directed along y’ and z’, respectively; however, Gx will be generated in the xz’ 

plane, rotated away from the x axis by an angle θ  about the y’ axis.  Therefore Gy is 

orthogonal with respect to both Gz and Gx but Gx and Gz will be non-orthogonal with 

respect to each other.  In addition to this non-orthogonality of the gradients, the 

magnitude of Gy and Gz will be reduced by a factor of cos θ.  As a result, a 3D MRI 

acquired with this gradient orientation will be geometrically correct in the xy’ and z’y’ 

planes but will be skewed by an angle θ in the xz plane and the field of view (FOV) of 

the image along y’ and z’ will be incorrect by a factor of cos θ.  This non-ideal 

character of the gradients can be countered if θ is well known because linear 

combinations of Gx and Gz can be used to generate two orthogonal gradients in the xz’ 

plane and compensate for the reduced strength of Gy and Gz.  

It should be noted that, as well as creating artifacts in images, any non-

orthogonality will also reduce the effectiveness of the gradients as first-order shims, 

particularly when the auto-shimming routine is used because this algorithm assumes 

that the optimal shim values for the three dimensions, x, y and z are independent.  This 

is only true if the three gradients are orthogonal.  (Auto-shimming is discussed in 

detail in section 4.6.1.)   

In the final apparatus used to obtain the results presented in this thesis, 

additional noise screening was achieved using a Faraday cage (see section 4.5).  The 

effectiveness of this additional screening is independent of the orientation of the x’ 

axis of the gradient coil and therefore the optimal gradient coil orientation, where z’ 

of the gradient coil set is aligned with BE, can be achieved without any decrease in 

signal-to-noise (SNR).  Therefore the above compromise between SNR and gradient 
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orthogonality becomes unnecessary.   

 

 

4.3. Terranova-MRI Ultra-low Frequency Spectrometer 

 

In some sense, the core of the Terranova-MRI apparatus is the ultra-low field 

spectrometer which executes and controls the pulse sequence, from turning on and off 

the polarizing coil to recording and processing the FID signal.  The Terranova-MRI 

ULF spectrometer described herein is very similar to a conventional high field 

laboratory system except that it operates in the kHz range.  Therefore relatively 

simple transceiver circuitry can be used and the signal can be sampled directly, 

eliminating the need for intermediate frequency (IF) stages.  

The control and signal processing part of the Earth’s field apparatus consists 

of a Digital Signal Processor (DSP) based pulse programmer and data acquisition unit 

that uses a Universal Serial Bus (USB) interface to communicate with a host 

computer.  By using a DSP a lot of the functional blocks can be implemented in 

software instead of hardware, and therefore greater flexibility can be achieved.   

The transmit (Tx) signal is generated using a digital oscillator algorithm 

running on the DSP. Multiple oscillators are implemented for multiple phases.  The 

power required for the B1 excitation is minimal therefore a low noise preamp can be 

connected permanently to the probe and ordinary operational amplifiers can be used 

to drive the probe.  A series of capacitors, under software control, are switched in for 

probe tuning. Probe impedance matching is not required due to the very long 

wavelength; the probe operates with a resonant impedance of several tens of kilo-

ohms. 

In addition to controlling the transmitting and receiving portions of the NMR 

experiment, the ULF spectrometer also contains five current controlled amplifiers 

which are used to drive the pre-polarizing coil, the three imaging/shimming gradient 

coils and either the PGSE gradient coil or the B0 lock coil depending on the 

requirements of the given experiment.   

The entire ULF spectrometer is housed within a box with physical dimensions 

of 340 x 240 x 160 mm and a mass of less than 5 kg.  This spectrometer can be run off 

of a 24 V, 10 A power supply or two series connected 12 V car batteries and so is 
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useful for both outdoor operation and laboratory use. 

 

 

4.4. Terranova-MRI Software Package: Prospa 

 

All of the Terranova-MRI pulse sequences are controlled by the Prospa 

software package (Magritek Ltd., Wellington, NZ) running on a PC.  Typically a 

laptop is used for portability and also because CRT monitors often produce noise in 

the 2 kHz range, which can be picked up by the B1 coil and degrade its SNR 

performance.   Experiments are executed by running macros within Prospa.  The 

software interfaces with the spectrometer via a USB connection, initiating the 

experiment and subsequently performing all of the post-processing and display of the 

detected signals. 

Within this thesis the Prospa software package is not only used for controlling 

the Terranova-MRI experiments but is also employed for data manipulation and 

display and for calculations and simulations. 

 

 

4.5. Ultra-low Frequency Noise Shielding 

 

Historically, one of the most significant practical limitations of NMR 

experiments carried out using the Earth’s magnetic field was the need to set-up the 

instrument in a remote, non-urban environment.  One of the reasons for this is that the 

Larmor frequency of protons in the Earth’s magnetic field is approximately 2.3 kHz, a 

frequency at which external noise pick-up in urban environments exceeds the Johnson 

noise of the receive coil by several orders of magnitude.   

In this thesis a two-fold strategy for noise reduction is used.  As described in 

section 4.2.1, the standard Terranova-MRI polarizing coil is shorted to ground during 

signal acquisition.  This shorted coil acts as a screen to ultra-low frequency noise.  

While this approach reduces the noise picked up by the detection coil sometimes by as 

much as two orders of magnitude, it is often insufficient to reduce noise to the level of 

either the Johnson noise of the coil (~ 0.6 μV) or the noise floor of the spectrometer 
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(1-2 μV).  Therefore a grounded Faraday cage is used to provide additional screening. 

Skin depths in common conductors such as copper and aluminium are quite 

significant at 2 kHz (approximately 1.5 mm for copper and 2 mm for aluminium).  

Therefore the wall thickness of the Faraday cage needs to be very large.  A copper 

box with a wall thickness of 10 mm and a mass of approximately 50 kg was found to 

reduce the amplitude of the external pick-up noise in the time domain by a factor of 

about 25, e.g. from 400 μV to 17 μV.  The shorting of the polarization coil further 

reduces this noise amplitude to 2.5 μV.  Note that when designing such a Faraday 

cage, care must be taken that the box is sufficiently large that any eddy currents 

induced by the switching of the polarizing or gradient fields do not disrupt the 

homogeneity of the field during signal detection. 

In addition to the significant reduction in noise compared to using the shorted 

polarization coil alone, the use of the grounded Faraday cage also typically removes 

the angular dependence of the observed noise.  This means that the coil orientation 

can be determined by the relative orientation of the gradient coils and BE, thus 

ensuring the orthogonality of the gradient fields. 

It was found that the effectiveness of the Faraday cage was only slightly 

reduced when the end plates of the copper box were removed (as shown in Figure 4.4) 

such that the resultant open-ended box was oriented collinear with the sinusoidal 

receiver coil.  The substantial weight reduction of the Faraday cage achieved by 

removing the end caps is a very significant advantage and therefore the open-ended 

design is a good compromise between weight and effectiveness.  It was also found 

that an open-ended box of 12 mm thick aluminium achieved similar screening results 

as the 10 mm thick copper box.  The aluminium box is a much more attractive 

solution to the screening problem because, despite the increased wall thickness, the 

overall weight and cost of the aluminium Faraday cage will be greatly reduced when 

compared to the equivalent in copper.   

Note that in all of the experiments reported in this thesis, the copper box 

pictured in Figure 4.4 was used.  Following construction, it was found that the 

physical dimensions of this Faraday cage (260 mm x 220 mm x 300 mm) were not 

large enough to avoid eddy current problems associated with the switch-off of the 

polarizing coil and so a delay (typically 300 ms) is introduced between the switching 
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of the prepolarization field and the excitation of the signal to ensure that these eddy 

currents do not disrupt the homogeneity of the Earth’s field during signal detection.   

 

 

Figure 4.4 A photo of the Terranova-MRI probe within an open-ended  copper box used 

as a  Faraday cage.  This copper box is connected to the ground end of the B1 

connector to ensure a common ground for the system. 

 

 

4.6. Field Homogeneity 

 

The second reason that EFNMR has traditionally been performed outdoors is 

because of the degradation in the natural homogeneity of the Earth’s magnetic field 

which occurs due to the proximity of ferrous or magnetic materials in an indoor 

environment.  This can be overcome by a combination of a judicious placement of the 

apparatus and the use of first-order shimming.   

In order to ensure a high degree of field homogeneity, it is important to place 

the probe portion of the apparatus on a table or stand that is free of ferrous materials 

and to remove to a distance of 1 – 2 m any objects likely to disturb the field 

homogeneity.  It is often advisable to place the probe roughly in the centre of a room, 
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at a significant distance from all walls including the ceiling and the floor.   

As described in Chapter 2, shimming is the process by which a set of specially 

designed coils are used to generate weak, spatially varying magnetic fields that 

oppose any inhomogeneities in the underlying static magnetic field.  The simplest set 

of shims, so-called first-order shims, vary the magnitude of the magnetic field linearly 

in space.  In the case of Earth’s field NMR, it has been found that once the above 

described isolation of the apparatus is achieved, the dominant inhomogeneities in the 

field are linear and so can be effectively countered by first-order shimming.  The three 

orthogonal gradients designed for imaging and described above were found to be well 

suited for the purpose of first-order shimming.       

 

4.6.1. Auto-shimming 

 

As most experienced NMR spectroscopists know, shimming can often be a 

very tedious and time consuming process.  In order to obtain an efficient and 

consistent set-up procedure for the Terranova-MRI, an auto-shimming routine was 

developed.  This method employs a simple pre-polarize, pulse and collect experiment 

during which small currents, on the order of a few mA, are output to the three 

orthogonal gradient coils, which act as first-order shims.  The resultant FID and 

spectrum can be used to assess the quality or effectiveness of the given shim current 

values.  As the overall homogeneity of the field increases the time domain decay 

constant, T2*, will lengthen.  This results in a decrease in the linewidth of the peak in 

the frequency domain as it tends toward the so-called “homogeneous” or “T2-limited” 

linewidth.  As the linewidth decreases the peak height will increase, such that the 

totally peak integral remains roughly constant.  Therefore the height of the peak in the 

frequency domain provides a convenient measure of the quality of the shim. 

The optimal shim current values are obtained by repeating the pre-polarize, 

pulse and collect experiment with different shim current values until the peak height 

is maximized.  In order to arrive at the optimal shim values in an efficient and timely 

manner, a modified bisection approach is used.  At the beginning of the experiment, 

the user defines a search range, ΔImax, a final precision value, ΔImin, and initial shim 

values, Ix, Iy and Iz.  As a first point of reference an experiment is performed with the 

initial shim values and the peak height, hmax, is recorded.  An initial current step is 
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defined as ΔI = 0.25*ΔImax.  Starting first with Ix the shim current is updated to Ix’ = Ix 

+ ΔI.  An experiment is performed and the peak height, hnew, is compared to the 

reference, hmax.  If hnew > hmax, Ix is replaced with Ix’, hmax is replaced with hnew and the 

process is repeated with Iy.  If hnew < hmax the shim current is updated to Ix’ = Ix - ΔI 

and another experiment is performed.  Again, if hnew > hmax for this new shim current 

value, Ix is replaced with Ix’ and hmax is replaced with hnew.  If hnew < hmax, Ix and hmax 

remain unchanged and the process is repeated with Iy and then Iz.  Following the Iz 

step, the search window is reduced by 25%: ΔI  0.75*ΔI.  The search window is 

reduced by three quarters instead of a half to allow for the possibility of 

misidentifying the quality of a certain set of shim current values due to noise or other 

sources of external interference.  The autoshim experiment completes when the search 

window is less than the target precision stipulated by the user, ΔI < ΔImin.   Visual 

progress of the autoshim experiment is provided by a plot of peak height, hnew, as a 

function of iteration number.   

If a good initial guess of the optimal shim values is unavailable this macro 

typically takes 10 to 15 minutes to complete.  However, in day to day use when the 

apparatus is not moved significantly and so a good initial guess is available, a quick 

autoshim can be used to optimize the linewidth in just a few minutes.  For a large 

sample of tap water with a T2 of 2 s, a linewidth of better than 0.5 Hz is routinely 

obtained.  The T2 limited linewidth for water with a T2 of 2 s is 0.16 Hz. 
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A linewidth of better than 0.5 Hz for water in a field of 54 μT, therefore, 

corresponds to a residual inhomogeneity of less than 25 nT (467 ppm). 

Presented in Figure 4.5 are sample 1H FIDs (and corresponding spectra) 

acquired in the Earth’s field before (Figure 4.5a) and after (Figure 4.5b) auto-

shimming.  Note the concurrent increase in resolution and sensitivity achieved 

through the act of shimming; i.e. the 10-fold decrease in linewidth from 2 Hz to 0.2 

Hz results in a concurrent 10-fold increase in peak height from 0.4 to 4 (x 105 a.u.).  In 

this way a good shim is essential to optimizing both sensitivity and resolution. 
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Figure 4.5   (a) A sample 1H EFNMR FID  and corresponding spectrum acquired prior to 

running the auto-shim routine.    The linewidth is approximately 2 Hz.  (b) A 
1H EFNMR FID and corresponding spectrum acquired after optimization of 

the shim currents using the auto-shimming routine.  The linewidth is 

approximately 0.2 Hz.  

 
 
4.7. Temporal Field Stabilization 

 

4.7.1. Temporal Drift of Earth’s Field 

 

Another feature of the Earth’s magnetic field that presents a challenge to NMR 

and MRI alike is that there exist temporal changes in the magnitude of BE on the order 

of tens of nanotesla, changes which can occur on a time scale of hours or even 

minutes.  These daily, or diurnal, variations are caused by electric currents induced in 

the Earth by currents in the ionosphere [62].  In imaging, this temporal instability of 

the detection field can introduce a frequency shift and phase drift between successive 

lines in k-space resulting in artifacts in the reconstructed image.  In spectroscopy this 

temporal instability significantly degrades the resolution of the resultant spectra, can 

cause significant phase artifacts in multi-dimensional experiments and reduces the 

effectiveness of signal averaging. 
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4.7.2. Frequency Tracking 

 

High resolution NMR is naturally well suited to detecting small changes in 

frequency.  Therefore it is possible to track any changes in the Earth’s magnetic field 

with a high degree of precision through the use of a reference scan interleaved into 

any multi-step pulse sequence.   

There are several ways to process this reference scan in order to obtain a 

measure of the observed frequency drift.  The simplest approach is to record the 

frequency position of the maximum of the sample peak in the spectrum.  In order to 

improve the resolution of this approach without resorting to excessively long 

acquisition times, the FID can be zero-filled, i.e. padded with trailing zeros to 

artificially increase the spectral resolution upon Fourier transformation.  There are a 

few drawbacks to this simple approach.  First, a very high SNR is required to obtain a 

good measure of the frequency and second, if the line-shape is not symmetrical it is 

difficult to use this method to obtain the true central frequency of the peak.  Third, if 

the sample has a spectrum composed of several different peaks this is not a very 

efficient use of the available signal. 

A slightly more complicated, but computationally straight forward, approach 

is to use a cross-correlation.  The cross-correlation function can be thought of as a 

measure of the similarity of two functions with a time lag, or in our case a frequency 

shift, between them.  Mathematically the cross-correlation, C(ω), between two 

functions f(ω) and g(ω) can be written as in Eq. 4-1, where   denotes a cross-

correlation and f*denotes the complex conjugate of f.   
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The maximum of this cross-correlation between f and g will occur at the 

frequency shift, ω, for which the spectra are the most similar.  Therefore the 

frequency offset obtained from the maximum of the cross-correlation function 

provides a measure of the frequency drift measured not from the single datum point at 

the top of a single spectral peak but rather from every point in the spectrum.  In this 
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way, the SNR performance of the cross-correlation method is superior to that of the 

peak height approach in cases of spectra with either (a) more than one peak or (b) a 

single broad and asymmetrical peak.  

The calculation of a cross-correlation between two spectra is greatly facilitated 

by the use of the Fourier Transform (FT) cross-correlation theorem.  This theorem 

states that the cross-correlation of two functions (in frequency space) is equal to the 

FT of the product of the complex conjugate of the inverse FT of the first function and 

the inverse FT of the second function.  This is written mathematically in Eq. 4-2, 

where the functions F(t) and G(t) are defined by Eq. 4-3, FT{} denotes a Fourier 

transform, FT-1{}denotes an inverse Fourier transform,   denotes a cross-correlation, 

and F*(t) is the complex conjugate of F(t).  

 

{ })()(*)()()( tGtFFTgfC == ωωω   

4-2 

 

{ }
{ })()(

)()(
1

1

ω
ω

gFTtG

fFTtF
−

−

=

=
 

4-3 

.   

In this cross-correlation method for frequency tracking, a target spectrum 

obtained at the beginning of the measurement is stored and cross-correlated with all 

subsequent reference spectra to track any frequency drift.  Using the FT cross-

correlation theorem, C(ω) is easily calculated from the complex conjugate of the FID 

of the target spectrum and the FID of the reference spectrum.  As this method takes 

into account every point in the spectra, it is advantageous from an SNR standpoint to 

compare only a relevant frequency window, which can be easily extracted from the 

full spectrum prior to data analysis. 

On the left in Figure 4.6 two narrow, high SNR (~270) 1H EFNMR spectra of 

a 300 mL water sample are presented.  These spectra are shifted in frequency relative 

to one another by 1 Hz.  This frequency shift was achieved by changing the current in 

the B0 lock coil between measurements (see section 4.7.4 for details on the B0 lock 

coil).  On the right is the cross-correlation function of these two spectra, calculated 
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using the Fourier theorem in Eq. 4-2.  The peak of the cross-correlation function 

occurs at a frequency offset of 1 Hz, which reflects the shift observed between the two 

spectra on the left.  In this example, where the spectra have good SNR, are well 

resolved and contain a single intense peak, it would be expected that a simple peak 

maximum algorithm would determine the frequency drift as reliably as the cross-

correlation method. 
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Figure 4.6  Two example 1H EFNMR spectra of water shifted relative to each other in 

frequency by 1 Hz (left) and the cross-correlation function of these spectra 

(right) calculated using the Fourier theorem in Eq. 4-2. 
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Figure 4.7  Two example 1H EFNMR spectra of pure diethylphosphite, shifted relative to 

each other in frequency (left) and the cross-correlation function of these 

spectra (right) calculated using the Fourier theorem in Eq. 4-2. 

 
Now consider the case depicted in Figure 4.7.  The 1H EFNMR spectra on the 

left were acquired of 300 mL of pure diethylphosphite which has a very complicated 

spectrum and consequently much lower SNR than the water example in Figure 4.6.  
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Looking at these spectra, it is readily apparent that simply monitoring the change in 

the frequency at which the maximum peak height occurs will not accurately track the 

drift of the Earth’s field because there is a high probability of the algorithm 

sometimes choosing the peak around 2299 Hz as the maximum and sometime 

choosing the peak around 2304.5 Hz as the maximum.  However if we use the cross-

correlation method we see that the cross-correlation function (on the right in Figure 

4.7) has a single well defined maximum at the frequency offset of the two spectra.   

Therefore using a cross-correlation we obtain a robust measure of the frequency drift. 

 

4.7.3. Frequency Drift in Imaging 

 

In imaging applications we found that a measure of Earth’s field drifts can be 

used to set experimental time limits such that no field drift correction is required.   

In order to determine these experimental time constraints it is important to first 

understand the effect of the temporal changes in BE on an image.  To this end, we 

consider the effect of small changes in Larmor frequency, Δωn, on a typical two 

dimensional imaging experiment, where n is an integer denoting the phase encode 

gradient step.   

First we consider fluctuations in BE on a time scale of milliseconds.  Such 

fluctuations, occurring during the acquisition of a single transient, will cause a 

broadening of the line in the frequency domain and therefore limit the minimum 

achievable frequency resolution in the read or directly detected dimension of an 

image.  The extent of this broadening, and hence the frequency limitation, can be 

assessed using the acquisition of a single transient and observing the resultant 

frequency spectrum. 

 Next we consider the longer time fluctuations, occurring over minutes and 

hours.  For the purpose of a discussion of these longer characteristic time fluctuations 

we define a phase evolution time, t0.  This is the time during which the spins acquire a 

phase offset due to the frequency shift, Δωn.  This phase evolution time is dependent 

on the imaging pulse sequence employed.   

Let t be the time as measured from the centre of the echo signal, τE be the time 

between the 90˚ and 180˚ pulses, Gx be the read gradient amplitude and ky be the k-
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space encoding vector in the primary phase encode direction.  The signal, as a 

function of t and ky, is shown in Eq. 4-4. 
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In the read direction the k-space encoding vector is defined as follows. 
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Therefore the signal can be re-written as shown in Eq. 4-5. 
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Taking the inverse Fourier transform with respect to kx yields the expression 

given by Eq. 4-6. 
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. 

Therefore the consequence of a shift in the Larmor frequency of nωΔ  between 

successive lines in k-space is a shift of 
x

n

Gγ
ωΔ

 in the image space read dimension and a 

phase shift of 0tnωΔ .   

Consider first the effect on the read dimension.  The pixel size, xΔ , is given by 

the field of view (FOVx) divided by the number of points in the read dimension 

(Nread).  If the shift in the image due to drift in the Earth’s magnetic field is less than 

the pixel size then no image artifacts will results from this shift.  Therefore we require 
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Eq. 4-7 to be fulfilled. 
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If we consider the magnitude of the Earth’s field to have a maximum rate of 

change with respect to time, dBE/dt, then we can define the following maximum rate 

of change, with respect to time, of the Larmor frequency:
dt

dB

dt

df E

π
γ

2
= .  This 

quantity can be used to define a condition for the maximum total experiment time, as 

shown in Eq. 4-8.  
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The simplified form on the right hand side of Eq. 4-8 uses Eq. 4-9 as the 

definition of the read gradient strength. 
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Now consider the phase encode dimensions.  The phase shift 0tnωΔ  is 

proportional to the time t0 and therefore is dependent on the choice of pulse sequence.  

Consider the two pulse sequences in Figure 4.8.  In the case of the spin-echo pulse 

sequence (Figure 4.8a) the phase offset acquired during the first τE time period is 

unwound for all frequencies during the second τE time period, following the 180˚ 

pulse.  Therefore the phase evolution time, t0, is zero.  Consequently, for spin-echo 

imaging we need only be concerned with the read dimension shift (Eq. 4-8).   
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Figure 4.8  (a) Spin-echo imaging pulse sequence.  (b) Gradient-echo imaging pulse 

sequence. 

 

In the case of the gradient-echo pulse sequence (Figure 4.8b) a phase offset 

due to a change in the Larmor frequency is acquired throughout the τE time period 

between excitation and the centre of the echo. Thus t0 = τE and the phase offset term is 

non-zero.  We require that the phase drift over the whole experiment be much less 

than 2π.  Therefore we define a factor α, which takes values less than one, to quantify 

the extent to which the total phase drift must be less than 2π.  The required value of α 

will be set by the available signal-to-noise ratio and the need to keep image artifacts 

below the noise level. 

Accordingly, the total phase drift over the experiment must satisfy Eq. 4-10. 
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In terms of the maximum rate of change of the Larmor frequency with respect 

to time,
dt

dB

dt

df E

π
γ

2
= , the maximum total experiment time for a gradient echo 

imaging sequence, Tmax, is given by Eq. 4-11. 
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Notice that Eq. 4-11 has the same form as the read dimension constraint, Eq. 

4-8, scaled by a factor β, where α
τ

β
E

acqt
= .  In the simplest implementation of 

gradient echo tacq = τE and so  β = α.  However, it is common to reduce τE by 

employing a large amplitude, short duration initial gradient pulse followed by longer 

duration, low amplitude gradient pulse during echo acquisition.  This is done to 

improve SNR and can also slightly improve the total experiment time constraint 

because in this case, τE < tacq and so β will be greater than α.   

The choice of the α factor is experiment specific.  If there is a random 

distribution of phase shifts between lines in k-space, the image will suffer from 

ghosting artifacts in the phase dimension.  If the phase shifts correspond to a linear 

change in Larmor frequency, the image will be translated in the phase dimension.  In 

the former case, if the smearing of image intensity is less than the baseline noise in 

the image then no artifacts will be observed.  The SNR of the image will simply 

appear reduced.  In the second case, if the extent of the translation in the phase 

dimension is small compared to the pixel size then no artifacts will be observed. 

 

4.7.4. Frequency Stabilization using a B0 Lock 

 

While we can, in some cases, limit our total experiment time to avoid the 

observable manifestation of the effects of temporal field drift in imaging, there are 

many other NMR experiments, such as multi-dimensional spectroscopy pulse-

sequences, which are far more sensitive to temporal drifts in the Earth’s field.  In 

these cases we must actively correct for this drift in some way in order to optimize 

resolution and information content. 

In work on Earth’s Field NMR imaging by Stepisnik et al. [22] and Mohoric et 

al. [22; 24; 25], a reference coil, coupled with heterodyne detection, was used to 

compensate for any drift in the Larmor frequency during an imaging experiment.  

This method provides a good way of tracking the changes in frequency concurrently 

with the EFNMR experiment but the post-processing mixing stage does not correct 

for phase artifacts accrued during evolution times in multi-dimensional spectroscopy 

experiments.  Therefore a different approach is required to solve this problem.   
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As a result of the phase artifact problem in multi-dimensional experiments, 

which include evolution periods as well as signal detection periods, it is essential that 

the nuclear spins experience a constant background magnetic field.  Therefore any 

temporal changes in the Earth’s magnetic field need not only to be tracked but also 

need to be removed.  This can be achieved by an appropriately designed B0 lock coil, 

which produces a small offset field which can be used to oppose any drift in the 

Earth’s field.    

The design requirements for a B0 lock coil for the Earth’s field are three-fold: 

(1) it must be tunable by means of a current value under software control, (2) it must 

be able to generate a B0 field offset equal to the largest observed fluctuation in the 

Earth’s field (100 nT) and (3) the homogeneity of the B0 offset field must be such that 

target linewidths of better than 0.1 Hz (2 nT) can be achieved.  These conditions 

require only a 2% field homogeneity, which is easily realized using modern coil 

design techniques.   

One such coil, designed by Mark Hunter from the NMR group at Victoria 

University of Wellington, a multi-turn saddle coil, is pictured in Figure 4.9.  This coil 

is designed to generate a field homogeneous to better than 2 nT (0.1 Hz) for fields of 

± 117 nT (± 5 Hz) over a 100 mm sample diameter.   

 

 

Figure 4.9  Photo of a B0 lock coil  used to counter temporal drift in the Earth's magnetic 

field. 
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Figure 4.10  A calibration curve for the B0 lock coil (red squares) overlaid with a linear fit 

to determine the calibration constant (black line).  The calibration constant is -

0.313 ± 0.003 mA/Hz. 

 
For a well designed coil, the linearity of the relationship between the current 

and the B0 lock field produced over the range of offset fields required is such that no 

iteration is necessary in order to compensate for the observed field drift.  The field 

shift is simply quantified using a single reference scan and the current through the B0 

lock coil is adjusted according to a linear calibration curve.  A sample calibration 

curve for the coil pictured in Figure 4.9 is shown in Figure 4.10. 

 

 

Figure 4.11  A comparison of the observed  frequency drift of NMR signals acquired over a 

period of 24 hours both with (gray) and without (black) the use of field 

stabilization. 
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Figure 4.11 presents a the Larmor frequencies of a series of spectra acquired 

every minute over a period of 24 hours, both with and without the use of the B0 lock.  

The sample used was a 500 mL bottle of tap water.  The Larmor frequencies of the 

spectra acquired with frequency locking (shown in gray) is stable to within 

approximately ±0.3 Hz, which was the linewidth of the water peak in a single 

spectrum.  Meanwhile, the frequency of the series of spectra acquired without 

frequency locking (shown in black) experiences variations on the order of ±2 Hz.
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CHAPTER 5. Sensitivity Enhancement 

 

 

5.1. Introduction 

 

As noted in previous chapters, EFNMR enjoys the advantage of sub-hertz 

spectral resolution over large (> 100mL) sample volumes due to the natural 

homogeneity of the Earth’s field but it suffers from low sensitivity, a consequence of 

the approximate B0
2 dependence of signal-to-noise ratio (SNR) on field strength, 

which for the Earth’s field is on the order of 50 μT (0.5 G).  Therefore the viability of 

most applications of EFNMR depends on devising clever schemes for sensitivity 

enhancement.   

Sensitivity enhancement has two parts: decreasing the detected noise per unit 

signal and increasing the available signal.  The former is achieved in Earth’s field 

NMR through screening of external interference (pick-up noise reduction), as 

discussed in Chapter 4, or through the use of non-faraday detection as mentioned in 

Chapter 3.  The latter component of sensitivity enhancement, which we will call 

signal enhancement, is achieved in NMR through increasing the available 

magnetization or polarization.  Three approaches to signal enhancement were 

investigated as part of this thesis: prepolarization, dynamic nuclear polarization and 

hyperpolarization via optical pumping. 
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5.2. Prepolarization 

 

5.2.1. Theory 

 

Conceptually, one of the simplest approaches to signal enhancement is to pre-

polarize the sample using a strong but not necessarily homogeneous magnetic field 

prior to excitation and detection in a weaker but highly homogeneous magnetic field.  

In the pulse sequence presented in Figure 5.1, the sample is exposed to the polarizing 

field, Bpolz, for a period, tpolz, during which it comes to either full or partial thermal 

equilibrium with this field.  This prepolarization field is then removed from the 

sample and following a delay, td, the enhanced polarization is excited and detected in 

the highly homogeneous Earth’s magnetic field, BE,.   

 

 

Figure 5.1  Basic pre-polarize, pulse and collect pulse sequence.  The prepolarization 

pulse, Bpolz and/or the DNP irradiation, B1RF, are applied for a fixed period tpolz.  

Following an adiabatic switch-off of the pre-polarization pulse and a delay td, a 

90˚ ULF excitation pulse, B1ULF, is applied and the subsequent precessing 

transverse magnetization is detected. 

 

The maximum achievable enhancement factor (EF) relative to thermal 

polarization in the Earth’s field is given by Eq. 5-1.  Note that this expression assumes 

that the sample is allowed to come to full thermal equilibrium in the prepolarization 

field, i.e. tpolz ≥ 5T1. 
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Eq. 5-1 indicates that in order to achieve significant enhancements the 

polarization field must be large relative to the Earth’s field and the delay time, td, 

between the polarization phase and the detection phase of the pulse sequence must be 

very short compared to T1.  In the context of multi-dimensional spectroscopy it is very 

important that the enhancement factor is constant between successive transients.  

Therefore, it is imperative that the polarizing field strength, Bpolz, the polarizing time, 

tpolz, and the prepolarization to detection delay, td, are constant. 

In any prepolarization scheme, the prepolarization field can be generated by 

either an electromagnet or a permanent magnet array.  We start by considering the 

case of an electromagnet, which is very advantageous for a variety of reasons.  First, it 

is relatively easy and cost effective to construct an electromagnet which is not 

particularly homogeneous, that is with a homogeneity on the order of a few percent 

rather than a few parts per million (ppm).  Second, the field of the electromagnet can 

be switched on and off as required, providing the user with sufficient control over 

Bpolz, tpolz and td to ensure a constant enhancement factor between transients.  Third, 

the field is under software/spectrometer control and therefore is easily used in multi-

dimensional experiments.  There are, however, several practical limitations.  The first 

concern is field strength.  In order to achieve large magnetic fields with an 

electromagnet, large currents must be used and this can result in significant resistive 

heating in the coil.  Coil heating can be dealt with through the use of water cooling 

but this greatly complicates the overall system and limits its size, cost and portability.  

The second concern, which is also a matter of resistive heating, is the polarization 

time.  Long T1 samples will require long polarization times which will enhance the 

problem of coil heating.  The final practical concern is associated with the rapid 

switching of a strong polarizing field.  If Faraday screening is employed to reduce 

pick-up of external ULF noise, rapid switching of a strong polarizing field will give 

rise to strong eddy currents in the screen and so the delay time, td, will need to be 

sufficiently long so that there are no time dependent disruptions to the homogeneity of 
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the Earth’s field during detection. 

As shown by Appelt et al. [57], an attractive solution for single-shot 

experiments is the use of a permanent magnet Halbach array for prepolarization.  If 

high homogeneity is not a concern, Halbach arrays with field strengths of up to 2 T 

can be constructed without much difficulty.  A 300 mT Halbach array, built by Ben 

Parkinson at Victoria University of Wellington for use in this thesis, is pictured in 

Figure 5.2.  

One of the significant advantages of the Halbach design is that these arrays are 

largely self screening and so can be located within a few meters of the Earth’s field 

NMR probe without significantly disrupting the homogeneity of the detection field.  If 

shimming is available, the Halbach array can be located as close as 1-1.5 m from the 

EFNMR probe without disrupting the sub-hertz spectral resolution.  A photo showing 

the position of the 300 mT Halbach array relative to the EFNMR probe is presented in 

Figure 5.3.   

 

 

Figure 5.2  A photo of a 300 mT Halbach array with a 80 mm inner diameter.  This 

permanent magnet array was designed and built by Ben Parkinson of VUW.  

The weight of the magnet is about 5 kg. 
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Figure 5.3   A photo of the position of the Halbach array relatvie to the Earth's field NMR 

probe. 

 
Another attractive feature of the permanent magnet approach is that all of the 

electromagnet concerns of resistive heating and field switching are removed with the 

use of a Halbach array.   

The most significant disadvantage of the Halbach prepolarization approach 

lies in the transfer of the sample from the Halbach array to the EFNMR probe.  In 

reference [57] this transfer was done manually and transfer times were on the order of 

seconds.   In a multi-dimensional experiment, sample transport from Halbach to 

EFNMR probe would be very challenging to automate, especially in terms of 

maintaining a constant polarization time and transfer time.  Therefore this is not an 

attractive solution for the purposes of multi-dimensional experiments, such as the 

spectroscopy experiments discussed in Chapter 8. 

 

5.2.2. Comparison: Halbach and Electromagnet Prepolarization 

 

Figure 5.4 presents a comparison of two 1H EFNMR spectra acquired of 500 

mL of tap water, with  T1 ≈ T2 ≈ 2 s, using 18.7 mT electromagnetic prepolarization 

(black) and 300 mT Halbach prepolarization (red).  The transfer time, td, for the 

Halbach spectrum was approximately 1 s.  In the electromagnet spectrum, the delay 
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time, td, between the switch-off of the prepolarization coil and the signal excitation 

was 350 ms.  The observed SNR advantage of the Halbach prepolarization over the 

electromagnet prepolarization in this example is 10.3.  The theoretical relative 

enhancement, as predicted by Eq. 5-1, is 10.5. 
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Figure 5.4  Comparison of two 1H EFNMR spectra of 500 mL of water.  The spectrum in 

red was obtained using a 300 mT Halbach for pre-polarization.  The spectrum 

in black was obtained using an 18.7 mT electromagnet for pre-polarization.  

The signal enhancement advantage of prepolarization with the Halbach relative 

to the electromagnet is 10.3. 

 

 

5.3. Dynamic Nuclear Polarization (DNP) 

 

5.3.1. Introduction 

 

Dynamic Nuclear Polarization (DNP) can be defined as a technique for 

enhancing the polarization of a target nuclear spin, a 1H nucleus for example, above 

its equilibrium thermal polarization by means of a net polarization transfer from an 

excited free electron spin.  This polarization transfer is typically mediated by the 

Overhauser effect [63].  In most applications where DNP is used for signal 

enhancement, the free electron must be introduced into the sample via the addition of 
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a free radical.  The most commonly used DNP free radicals are nitroxide radicals [64], 

such as 4-oxo-TEMPO.  

The complete process of DNP can be broken down into three phases: (1) the 

excitation of the electron spins, (2) the polarization transfer between the excited 

electron spin and the target nuclear spin and (3) the detection of the enhanced nuclear 

polarization.  The detection of the nuclear polarization, phase 3, is analogous to a 

typical NMR experiment and so requires no new investigation in this context.   

The excitation of the electron spins, phase 1, can only be achieved and 

optimized through a thorough theoretical understanding of the energy levels and 

transition probabilities of the free electron spin system.  The transfer of polarization 

between the electron spins and the target nuclear spins, phase 2, can be understood 

and quantified through a consideration of the so-called Solomon Equations [65]. 

 

5.3.2.  Nitroxide Free Radicals in Ultra-low Magnetic Fields 

 

For the purposes of this discussion of DNP in the Earth’s magnetic field, the 

free radical 4-oxo-TEMPO containing 14N at natural abundance (99.6%) will be 

considered, exclusively.  Therefore, the intra-molecular free radical spin system under 

consideration contains a single free-electron spin, with a spin quantum number S = ½, 

and a single 14N nuclear spin, with a spin quantum number K = 1.  There exist a 

plurality of 1H spins within the free radical molecule; however, these nuclear spins are 

far removed from the site of the free-electron.  For the purposes of this discussion, 

any intra-molecular hyperfine coupling between the free electron and these 1H nuclear 

spins present in the 4-oxo-TEMPO molecule will be considered to be negligible.  The 

following theoretical treatment follows that of Guiberteau and Grucker [66]. 

For a given solvent-dependent hyperfine coupling constant, A, between the 

electron spin with angular momentum operator, S, and the nuclear spin with angular 

momentum operator, K, and in the presence of an external magnetic field zB ˆ00 =B  

the spin Hamiltonian can be written, in angular frequency units, as in Eq. 5-2. 

 

KSKS •+−−= ABB oKoS zz γγ H  

5-2 
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Figure 5.5  Energy level diagram for an unpaired electron spin, S, coupled to a 14N  

nucleus, K, in (a) the high-field case where γSB0 >> A and (b) the ultra-low 

field case where γSB0 << A. 

 

The Hamiltonian in Eq. 5-2 is not diagonal in either of the product operator or 

the total angular momentum representations.  In the high-field case (Figure 5.5a), 

where γSB0 >> A, the product operator formalism, characterized by the spin quantum 

numbers mS and mK, is typically used and the hyperfine coupling term is treated as a 

perturbation to the dominant Zeeman terms.  However, in ultra-low fields, such as the 

Earth’s magnetic field (~50 μT) the hyperfine coupling term is strongly dominant 

(Figure 5.5b).  Therefore, the diagonal representation is very closely related to the 

total angular momentum picture, characterized by the total angular momentum 

quantum number, F, and the total azimuthal spin quantum number, mF, where F = S + 

K. Due to this close association between the true diagonal representation of the 

Hamiltonian at very low fields and the total angular momentum picture, some aspects 

of this problem, the transition selection rules for example, can be best understood in 

terms of the total angular momentum basis.  However, as most of the operations on 

the system will be applied exclusively to the electron spin, S, it is also useful to 
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maintain the connection between the more commonly used and more intuitive product 

operator formalism and the exact diagonal representation.   

Accordingly, we can write down the six eigenfunctions of the spin 

Hamiltonian (Eq. 5-2) in terms of the product operator basis set (Eq. 5-3), where the 

constants α and β are defined by Eq. 5-4. 
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It is important to note that while the above system of equations defines the 

eigenfunctions of the spin Hamiltonian, 
Diag

i  , exactly in terms of the product 

operator kets, 
SKKS mm , , for all values of A and B0, they are only approximately 

related to the total angular momentum kets, 
FFmF , .  This approximate relationship 

is only appropriate for the ultra-low field case, where the hyperfine coupling term 

dominates the Hamiltonian, and is included in this treatment because it promotes an 

intuitive understanding of how a transition between the diagonal eigenstates relates to 

changes in the total angular momentum and azimuthal total angular momentum 

quantum numbers, F and mF.  In the case of B0 = 0, the relationship between the 

diagonal and product operator kets and the total angular momentum kets becomes 

absolute and the coefficients sinα, cosα, sinβ and cosβ reduce to the expected values 
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given by the Clebsch-Gordan coefficients.  In the opposite case, where γSB0 becomes 

large compared to A, the coefficients cosα and cosβ tend to 1, while the coefficients 

sinα and sinβ tend to 0.  The diagonal kets are, in this case, close to the product 

operator kets. 

The eigenvalues, or energy levels, of the spin system, which correspond to the 

eigenfunctions listed above, are the diagonal elements of the Hamiltonian in the 

diagonal representation.  Therefore the energy levels can be determined by applying 

the unitary transformation, diagSK →U , between the diagonal and product operator 

representations to the Hamiltonian written in the product operator formalism.  For 

transparency the product operator Hamiltonian matrix and the unitary transformation 

matrix are written explicitly below.  

 

HSK  = 



























++

−+−
+−

−
−−

0

0

0

0

0

0

0

0

22

02
1

2

222

222

202
1

22

00000

0000

0000

0000

0000

00000

B
BA

S
A

B
BAA

A
B

BA

A
S

B
BA

K

S

K

S

K

S

K

S

B

B

γ
γ

γ
γ

γ
γ

γ
γ

γ

γ

 

 

USKDiag  = 



























−
−

001000

0cos0sin00

cos000sin0

0sin0cos00

sin000cos0

000001

ββ
αα

ββ
αα

 

 



























== →→

6

5

4

3

2

1

*

00000

00000

00000

00000

00000

00000

E

E

E

E

E

E

DiagSKSKDiagSKDiag UU HH  



 
CHAPTER 5.  Sensitivity Enhancement  79 

  

The expressions for the exact energy levels, which are valid for all values of A 

and B0, are given by Eq. 5-5. (Note that these energy levels are written in angular 

frequency units.) 
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In the total angular momentum regime, the dominant (zeroth order) transition 

energy term corresponds to a transition between F = 3/2 and F = 1/2, which is 

characterized by the hyperfine coupling constant multiplied by a factor of 3/2, as 

calculated below. 
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In the product operator regime, the dominant (zeroth order) transition energy 

is given by a transition from mS = -1/2 to mS = +1/2.  Naturally, this transition is 

characterized by the Larmor frequency for the electron, as demonstrated below. 
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Figure 5.6 presents a plot of the exact energy levels of Eq. 5-5 over a range of 

values of B0.  This plot demonstrates the shift from the total angular momentum 
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regime at low B0, where the zeroth order energy difference is (3/2)A (A = 2π*42 MHz 

in this and all subsequent calculations) to a product operator regime at larger values of 

B0, where the zeroth order energy difference is γSB0 (2π x 280 MHz at 10 mT).  The 

Earth’s magnetic field is typically on the order of 50 μT and therefore falls into the 

total angular momentum regime.  However, the prepolarization field used with the 

Earth’s field apparatus, at 18.7 mT, is well into the product operator regime.  

Therefore it is important to continue to work with the exact expressions of the 

diagonal representation in order to maintain the ability to compare the potential of the 

DNP effect in both the Earth’s field and the prepolarizing field. 

 

 

Figure 5.6   Energy levels (in frequency units) of a coupled electron-14N system over a 

range of field values, B0, for a fixed hyperfine coupling constant A = 2π*42 

MHz. At ultra-low fields, such as the Earth’s magnetic field (50 μT), the 

dominant energy splitting is (3/2)A (2π*63 MHz).  In the higher field case, B0 

= 10 mT, the dominant energy splitting is given by the Larmor frequency of 

the electron (2π*280 MHz at 10 mT). 

 

Knowing the eigenfunctions and eigenvalues of the spin Hamiltonian, it is 

possible to determine which transitions are allowed and which are forbidden.  In 

NMR, the traditional means of inducing transitions within a spin system is through the 
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application of an RF field.  In a slight deviation from the traditional protocol of NMR, 

an RF field oriented parallel to B0 as well as an RF field oriented perpendicular to B0, 

will be considered.  The operator corresponding to the parallel orientation is Sz, and 

the operator corresponding to the perpendicular orientation is Sx.  [Note that only the 

electron spin operator, S, is used.  The nitrogen nucleus is left relatively undisturbed.  

Any disturbance felt by the 14N nucleus is a result of the hyperfine interaction with the 

electron.]  In order to obtain a more intuitive look at how the operator interacts with 

the product operator kets, the Sx operator is rewritten in terms of the raising and 

lowering operators, Sx = ½(S+
 + S-).   

Consider the system of equations in Eq. 5-3.  The allowed transitions excited 

by an RF field perpendicular to B0 are those having a non-zero transition probability 

under the influence of this field.  The transition probability is calculated according to 

Eq. 5-6. 

 

2

2
1 )( jiCWij

−+ += SS  

5-6 

. 

The resultant eight allowed transitions are: T12, T16, T23, T25, T34, T36, T45, and 

T56.   These are called π transitions.  The selection rules for π transitions can be 

obtained from inspection of the total angular momentum states associated with each 

of the diagonal states.  The allowed transitions correspond to ΔF = 0 or ±1 and ΔmF =  

±1.   

Similarly, the allowed transitions under the influence of an RF field oriented 

parallel to B0 can be determined from the transition probabilities, which are calculated 

according to Eq. 5-7.  The resultant two allowed transitions, called σ transitions, are 

T26 and T35.  The selection rules for these transitions are ΔF = ±1 and ΔmF = 0. 

 

2
jiCW zij S=  

5-7 

 

Figure 5.7 presents a plot of the transition energies (in frequency units) as a 
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function of B0 for all of the allowed transitions.  This plot suggests that at ultra-low 

fields the most promising transitions, those with the largest transition energies, are 

T16, T25 and T45 (π transitions) as well as T26 and T35 (σ transitions).  As B0 increases, 

the energy of the T45 transition decreases dramatically, while the T34 transition energy 

rapidly increases.   

 

 

Figure 5.7  Transition frequencies for all of the ten allowed transitions of the coupled 

electron-14N system as a function of B0 where A = 2π*42 MHz.  The vertical 

gray line indicates the Earth’s magnetic field at approximately 50 μT. The 

horizontal line corresponds to a fixed irradiation frequency of 130 MHz.  This 

fixed frequency is in resonance with a single electron transition at five specific 

values of B0, corresponding to the intersection of the horizontal gray line with 

the lines indicating the transition frequencies as a function of field.  

 

Expressions for the transition probabilities of each of the ten allowed 

transitions are given in Eq. 5-8.  Note: these transition probability calculations assume 

the optimal orientation of the RF field, i.e. for the π transitions the RF is 

perpendicular to B0 and for the σ transitions the RF is parallel to B0.  The constant C 

is a normalization factor which is calculated such that, for a given orientation of the 

RF field, = 1ijW .   
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Figure 5.8   Transition probabilities for the ten allowed transitions of the coupled electron-
14N system as a function of B0  for A = 2π*42 MHz. 

 
Plots of the transition probabilities for the allowed π and σ transitions as a 

function of B0 are shown in Figure 5.8.  At very low fields, the π transitions T45 

(orange) and T16 (dark purple) have the greatest transition probability and therefore 

these will be the easiest π transitions to saturate.  However, as B0 increases, the 

transition probability for T45 tends toward zero and the transition probabilities of T34 
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(blue) and T25 (gray) increase dramatically.  Therefore at higher fields T16, T34 and T25 

are the easiest π transitions to saturate.  Both of the σ transitions (T35 in dark blue and 

T26 in dark red) have relatively large transition probabilities at low values of B0; 

however, their relative probabilities drop off significantly as B0 increases.  Therefore 

the σ transitions are more easily induced in ultra-low magnetic fields.  

In order to achieve a polarization transfer between the unpaired electron spins 

and the target nuclear spins of the solvent, one or more of these transitions needs to be 

excited.  This is achieved through the application of a continuous wave (CW) 

radiofrequency (RF) field, B1RF, at a particular transition frequency.  There are two 

approaches to selecting the transition and field strength at which this is achieved. 

The first and most straightforward approach is to apply the RF excitation in 

the presence of only the Earth’s magnetic field, BE.  This approach has been 

previously reported for sensitivity enhancement of Earth’s field magnetometers [6, 7] 

and for Earth’s field NMR imaging [67-69]. As indicated by the vertical line in Figure 

5.7, this corresponds to a transition frequency (for T16) of approximately 68 MHz.  

Since the field value is fixed as B0 = BE, determining the exact transition frequency in 

practice requires successive re-tuning and re-matching of the B1RF coil over a range of 

frequencies.  The exact resonant frequency of the transition is then deduced as that 

corresponding to the largest observed signal enhancement.  This process can be time 

consuming and is not easily automated; however it does have the advantage of 

requiring no other external magnetic field than the Earth’s field itself.   

In the second approach, following the field-cycled DNP experiment previously 

reported for indirect observation of electron paramagnetic resonance (EPR) spectra 

via DNP [66; 70-72], a higher frequency is chosen, for example 130 MHz, at which 

the B1RF coil tunes and matches very well.  A CW RF field at this frequency is applied 

in the presence of a weak prepolarizing field generated by an electromagnet (as in the 

pulse sequence in Figure 5.1).  Note that this prepolarizing field will necessarily be 

stronger than the Earth’s magnetic field, but it can be far below the value where some 

of the heating and eddy current problems of large electromagnetic prepolarization 

fields are experienced.  In order to determine the field at which a maximum 

enhancement is achieved, the strength of the prepolarizing field is iteratively varied, 

in the manner of field-cycled NMR, and the resultant signal is observed.  The DNP 

enhancement will increase and decrease as the chosen irradiation frequency moves in 
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and out of resonance with the various electron transitions.  This is illustrated by the 

horizontal line in Figure 5.7.  The benefit of this “field-cycled” approach for 

optimizing the DNP signal enhancement is not only larger signal enhancements 

compared to DNP performed directly in the Earth’s magnetic field due to the higher 

irradiation frequency but also a simplification and potential automation of the signal 

enhancement optimization. 

 

5.3.3. Polarization Transfer via the Overhauser Effect 

 

Given the excitation of one of the specific electron transitions discussed in the 

previous section, the resultant polarization transfer from the excited electron spins, S, 

to the target nuclear spins of the solvent, I, can be described and quantified using the 

Solomon equation [65], which defines the maximum DNP factor, DNPF, in terms of 

the ratio of the polarization of the excited electron spins to the thermal equilibrium 

polarization of the nuclear spins, I0, scaled by f, the leakage factor, s, the saturation 

factor and ρ, the coupling factor.  S0 is the thermal polarization of the electron spins 

and zS is the ensemble average expectation value of the electron polarization under 

the influence of the CW DNP irradiation. 
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The coupling factor, ρ, is a measure of the efficiency of the coupling between 

the electron spin and the nuclear spin and is a function of the dominant coupling 

mechanism.  Theoretically, ρ has a value of -1 for pure indirect spin-spin interactions 

and has a value of 0.5 for pure direct dipolar coupling [64].  In this thesis, liquid 

systems with relatively low free radical concentrations are used and therefore it is 

assumed that the dominant coupling mechanism between the target nuclear spins and 

the unpaired electron spins is the direct dipolar interaction.   

The leakage factor is a measure of how much of the spin-lattice relaxation of 

the target nuclei is driven by interactions with the electron spins.  The leakage factor, 
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f, can be calculated using Eq. 5-10, where T1,0 is the spin-lattice relaxation time of the 

nuclear spin ensemble in the absence of the free radical and T1 is the spin-lattice 

relaxation time in the presence of the free radical.   

 

0,1

11
T

T
f −=  

5-10 

       

Clearly Eq. 5-10 presents us with the need for a compromise. A value of f 

close to the maximum of unity implies a significantly faster free-radical induced 

relaxation and hence a broadening of the proton homogeneous linewidth.  

The saturation factor is a measure of the saturation of the chosen transition and 

is a function of RF power and the properties of the RF resonator.  A more 

comprehensive discussion of the saturation factor, the coupling factor and the leakage 

factor in the context of DNP at high magnetic fields can be found in [64]. 

In order to determine the maximum DNP factor for the various transitions as a 

function of B0, the expectation value of the electron spin system is evaluated assuming 

total saturation of the transition, i.e. assuming the equalization of the populations of 

the two energy levels involved in the chosen transition.  For the calculation of the 

maximum DNP factors, the saturation and leakage factors are assumed to be 1 and the 

coupling factor is assumed to be 0.5, the theoretical maximum for a liquid system 

where cross-relaxation is dominated by dipole coupling.  Enhancement factors are 

calculated relative to the thermal equilibrium polarization of protons in the Earth’s 

magnetic field (54 μT). 

Figure 5.9 presents the relative enhancement factors of four π transitions, T16, 

T45, T25 and T34, and two σ transitions, T26 and T35, over a range of prepolarization 

fields from 54 μT (no prepolarization) to 10 mT (moderate prepolarization).  For 

comparison, the maximum enhancement factor achievable by a prepolarizing field of 

1 T (without DNP) is indicated by the dotted line. 

This plot illustrates the dramatic sensitivity enhancements which are possible 

using DNP.  This enhancement is much larger than the high field maximum DNP 

enhancement given by the ratio of gyromagnetic ratios (~658 for protons) because of 
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the presence of the strong hyperfine coupling between the electron spin and the 

nitrogen nucleus.  In effect, the electron “sees” the field of the nitrogen nucleus 

perturbed by the Earth’s magnetic field rather than the Earth’s magnetic field 

perturbed by the nitrogen nucleus and so the thermal polarization of the electron 

spins, and in turn the maximum possible DNP enhancements, are much greater than is 

predicted by the electron Zeeman interaction in the external magnetic field alone. 

 

 

Figure 5.9   DNP Enhancement Factors calculated relative to thermal polarization of 1H 

nuclei in the Earth’s field (54 μT).  In this calculation A = 2π*42 MHz, s = 1, ρ 

= 0.5 and f = 1. The enhancement factor of prepolarization at 1 T is indicated 

by the horizontal dotted line.   

  

5.3.4. DNP Apparatus 

 

In order to perform DNP in the Earth’s magnetic field a few extra pieces of 

equipment are required.  These additions to the apparatus can be easily retro-fitted to 

the existing Terranova-MRI system described in Chapter 4.  The upgrade required for 

DNP includes: a function generator and high powered amplifier which operate in the 

100 MHz range, a B1RF coil tuned to the excitation frequency of the unpaired electrons 

and a means of controlling the high frequency RF with the existing Terranova 
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spectrometer.  The full DNP system is pictured in Figure 5.10. 

 

 

Figure 5.10  Full EFNMR DNP System 

 

The RF irradiation was generated by a PTS synthesizer (Programmed Test 

Sources, Littleton, MA, USA) which operates up to 250 MHz and was amplified by a 

Tomco AlphaS high powered amplifier (Tomco, Norwood, SA, Australia) which 

operates up to 150 MHz with a maximum power of 50 W.  The DNP irradiation 

pulses were triggered using a TTL pulse from the spectrometer and so were easily 

incorporated into all existing pulse sequences.   

The B1 coil used for the DNP irradiation, B1RF, was built to fit inside the 

existing ULF B1 coil, B1ULF , which has an i.d. of 75 mm.  In order to excite the π 

transitions, described above, it is necessary to design a coil such that B1RF is 

perpendicular to both the polarization field, Bp and the Earth’s field, BE.  It is not 

possible to use a simple solenoid because the self-resonance of a 75 mm diameter 

solenoid with a single turn is less than the target RF frequencies.    

The first DNP experiments were carried out with the simple, single turn saddle 

coil pictured in Figure 5.11.   
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Figure 5.11 A photo of the single turn saddle coil used for DNP irradiation at 64.4 MHz. 

 

The self-resonance of this single-turn saddle coil, with a diameter of 75 mm, 

was found to be very low and so it was difficult to tune the coil to the range of 

frequencies required (64 MHz to 150 MHz).  A DNP signal in the Earth’s magnetic 

field was observed at 64.4 MHz with this coil; however, it was very weak because of 

the inefficiency of the coil design.   

 

 

Figure 5.12  A comparison between 1H EFNMR FIDs and spectra of 100 mL of water 

doped with 1.5 mM of TEMPO acquired with (a) DNP irradiation in the 

Earth's field at 64.4 MHz and (b) prepolarization at 18.7 mT. 
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A comparison of the DNP enhanced signal observed in the Earth’s magnetic 

field using the saddle coil resonating at 64.4 MHz with a 50 W input signal and a 

spectrum acquired using 18.7 mT prepolarization is presented in Figure 5.12.  The 

DNP signal is approximately an order of magnitude weaker than the prepolarization 

signal. 

 

   

Figure 5.13  A photo of the three birdcage coils used for DNP irradiation which resonate at 68 

MHz, 124 MHz and 131.5 MHz, respectively.  Design parameters for these 

coils are presented in Table 5.1. 

 
In order to improve the DNP performance, new coils were built in a low-pass 

birdcage configuration.  We wish to perform DNP in a range of fields, from the 

Earth’s magnetic field up to a few mT, and so a number of low-pass birdcage coils 

were designed and constructed with the aid of BirdcageBuilder version 1.0 (Penn 

State, PA, USA).  These coils, pictured in Figure 5.13, were designed to tune to 

frequencies ranging from 68 MHz to 150 MHz.  A list of the design parameters of the 

various coils along with their resonant frequencies are listed in Table 5.1. 

The variable capacitors used to tune the B1RF coils were high power, non-

magnetic capacitors (Voltronics Corporation, Denville, NJ, USA) with a dynamic 

range of 2 – 20 pF.  The chip capacitors used on the rungs of the birdcage coils were 
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obtained from ATC Ceramics (Huntington Station, NY, USA).  It was found that the 

line of capacitors used for the original set of birdcage coils (ATC Ceramics, 100 

series) were slightly magnetic.  This compromised the field homogeneity and so the 

final B1RF coil was constructed from a line of non-magnetic chip capacitors (ATC 

Ceramics, 700 series).  A schematic of the tuning circuit is shown in Figure 5.14. 

 
Table 5.1 Design parameters for DNP low-pass birdcage coils 

Frequency 
(MHz) 

Diameter 
(mm) 

Length (mm) 
Number of 

Rungs 
Rung Width 

(mm) 
Capacitance 

(pF) 

68 59.1 105 16 3.0 47 
131.5 56.1 98 12 6.3 15 
124 65.0 113 8 7.0 27 

 

 

Figure 5.14  Resonant circuit used to tune and match the radiofrequency (RF) DNP irradiation 

coils. This circuit is constructed such that C1 and C2 are variable and L is the 

B1RF coil. 

 

5.3.5. Preliminary DNP Results 

 
Figure 5.15 presents a comparison of Earth’s field NMR spectra acquired of 

100 mL of water doped with 1.5 mM of TEMPO.  The spectrum in gray was acquired 

with an 18.7 mT prepolarizing field generated by an electromagnet.  The spectrum in 

black was acquired with a DNP irradiation at 68 MHz and no prepolarization.  By 

integrating the peaks we find that the DNP signal enhancement is greater than the 

prepolarization signal enhancement by a factor of -6.5.  Extrapolating this back to the 

Earth’s field strength of 54 μT, this is an enhancement over thermal equilibrium 

polarization of -2250.   

 



 
92 CHAPTER 5.  Sensitivity Enhancement 

 

 

Figure 5.15 A comparison between two 1H EFNMR spectra of 100 mL of water doped with 

1.5 mM of TEMPO acquired with 18.7 mT prepolarization (gray) and with 

DNP irradiation at 68 MHz (black).  The ratio of the integrals of the two peaks 

is -6.5.  DNPF = -2250 (@ 54 μT) 

 

 

Figure 5.16  The observed relative enhancement factor of a 1H EFNMR spectrum acquired 

with DNP irradiation at 131.5 MHz in the presence of prepolarization fields 

ranging from 2 mT to 8 mT.  The enhancement factor is calculated relative to 

thermal polarization at BE = 54 μT. The black circles are the experimental data 

and the solid line is a fit to Eq. 5-11.  Only π transitions are excited because of 

the relative orientation of B1RF and Bpolz. 
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Using a DNP irradiation of 131.5 MHz and the field cycling approach, a larger 

signal enhancement of approximately -3100 over thermal equilibrium at BE = 54 μT 

can be achieved in the presence of a 2.7 mT prepolarizing field.  This is illustrated by 

Figure 5.16, a field cycled DNP experiment which shows the DNP enhancement 

relative to thermal polarization in the Earth’s field as a function of prepolarization 

field strength.  The experimental spectrum (black dots) is compared to a simulated 

DNP spectrum (solid gray line) which was generated using the expression for the 

DNP factor as a function of prepolarization field, Bpolz, presented in Eq. 5-11 [66]. 
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In Eq. 5-11 g(Ei-Ej-ωRF,T2
*) is a Lorentzian shape function and DNPFij is the 

calculated DNP enhancement factor at the polarization field Bpolz relative to thermal 

polarization in the Earth’s field (BE = 54 μT) for the transition Tij.    

Due to the perpendicular orientation of B1RF relative to Bp, DNP enhancements 

are only observed when irradiating the three π transitions: T16, T25 and T34.  Under 

these experimental conditions it is clear that the maximum enhancement arises from 

irradiating T16. 

 

5.3.6. Bp Field Inhomogeneity 

 

The results presented in the previous section are not optimized because full 

saturation of the electron transitions has not been achieved.  This is due in large part 

to the inhomogeneity of the polarizing coil relative to the size of the sample.  This 

inhomogeneity has two adverse effects on the field-cycled DNP experiment.  First, it 

creates an ambiguity regarding the true field, Bp, experienced by the free electrons at a 

given polarizing current, Ip.  This means that it is difficult to properly calibrate the 

measurement and compare to the theoretical prediction.  Second, the inhomogeneity 

broadens the EPR spectral lines to such an extent that only partial saturation is 

possible. 

Figure 5.17 presents a plot of the field of the standard polarizing coil measured 
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along the axis of the probe and with Ip = 1 A.  Over a 100 mm sample, the field has an 

inhomogeneity of about 15%.  This corresponds to ΔBp (at 1 A) of 0.5 mT.  For an 

electron this will result in a broadening of the transition frequency by almost 15 MHz.  

The spin-spin relaxation time of the unpaired electrons in TEMPO is on the order of 

400 ns.  This means that the electron transitions are homogeneously broadened by 0.8 

MHz.  Compared to this, the 15 MHz broadening by the inhomogeneity of the 

polarizing coil is very significant and so we would expect full saturation of a given 

transition to require very high power irradiation. 
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Figure 5.17 The field of the standard prepolarizing coil along the axis of the solenoid with 

Ip = 1 A. 

 
The saturation of a given electron transition can be measured by plotting the 

observed DNP enhancement factor, DNPF, as a function of the output power of the 

high-power amplifier, P.  We expect the rate of change of the DNP enhancement, 

with respect to irradiation power, to be proportional to the difference between the 

enhancement factor at full saturation, DNPF0, and DNPF(P).  This dependence of a 

rate of change on a difference gives rise to an exponential growth of enhancement 

factor, as shown in Eq. 5-12, where P1 is the characteristic power which describes the 

exponential growth of DNP enhancement as a function of irradiation power. 



 
CHAPTER 5.  Sensitivity Enhancement  95 

  

( ) 

















−−=

1
0 exp1

P

P
DNPFPDNPF  

5-12 

 

Figure 5.18 presents a saturation measurement for the T16π transition at 124 

MHz in the field from a standard Terranova-MRI polarizing coil at 0.88 A.  This plot 

indicates that at 50 W we are not yet close to saturation and no exponential growth to 

a saturated enhancement value is evident.  Greatly increasing the irradiation power 

above the P = 50 W maximum shown here will cause significant heating in the 

sample and so should be avoided.  In addition increased RF input power may cause 

arcing in the tuning circuit and so degrade the performance of the resonator. 

 

 

Figure 5.18  A plot of DNPF, relative to thermal polarization at 18.7 mT, as a function of 

irradiation power.  This measurement was performed in the field from a 

standard prepolarizing coil with Ip = 0.88 A and irradiation at 124 MHz.  This 

corresponds to the T16π transition. 

 
Our inability to saturate the electron transitions with 50 W of irradiation power 

suggests that we are only obtaining signal from a small region of the sample in which 

the unpaired electrons experience a similar prepolarizing field.   
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Figure 5.19  Field-cycled DNP experiment at 124 MHz using the standard polarizing coil. 

 

Consider Figure 5.19, which presents the result from a field-cycled DNP 

measurement plotted as DNPF (relative to 18.7 mT thermal polarization) as a function 

of prepolarization current.  There are a number of things to notice about this 

measurement.  First, the transition peaks are very broad, spanning as much as 0.3 A (~ 

0.9 mT).  Second the peaks are highly asymmetrical, which suggests that this is not a 

result of homogeneous broadening of the electron transitions. 

 

 

Figure 5.20  2D  1H NMR spin-echo images acquired with DNP irradiation at 124 MHz with 

Ip = 0.82 mA (left),  Ip = 0.85 mA (centre) and Ip = 0.88 mA (right).  Images 

were acquired in a single scan with 64x16 points.  Images were zero-filled to a 

matrix of 64x64 points and were processed with a sine-bell-squared filter. 

 
In order to determine which region of the sample is excited at a given value of 

Ip, we acquire 2D YX 1H NMR images of a 50 mm o.d. and 90 mm long round 

bottom glass vessel containing 100 mL of an aqueous solution of 1.5 mM 4-oxo-
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TEMPO. The three images shown in Figure 5.20 were acquired with DNP irradiation 

at 124 MHz and with three different prepolarization current values: 0.82 mA, 0.85 

mA and 0.88 mA, respectively.  Referring to the field-cycled DNP measurement in 

Figure 5.19, these values of Ip span the peak which, at 124 MHz, corresponds to T16π.   

Based on the field profile in Figure 5.17, we expect the central region of the 

sample to be in resonance with T16π at lower Ip values while we expect the extremities 

of the sample to be in resonance at higher values of Ip.   This is clearly demonstrated 

by the images in Figure 5.20.  We find that the maximum enhancement in Figure 5.19 

actually corresponds to the excitation of signal from a very small region at the edges 

of the sample.  In order to maximize the DNP enhancement by saturating the electron 

transition over the entire sample, a much more homogeneous polarization field is 

required. 

 

5.3.7. Homogeneous Prepolarization Coil 

 
A prepolarization coil homogeneous to approximately 1% over a 100 mm 

long, 75 mm diameter sample size was designed by Mark Hunter to replace the 

standard coil on the Terranova-MRI.  The Bp/Ip for this coil, estimated to be 0.93 

mT/A, is approximately one-third that of the original prepolarizing coil (3.13 mT/A).  

Consequently, the homogeneous coil has a maximum field of 5.58 mT at 6 A, in 

contrast to the standard coil which has a maximum field of 18.7 mT at 6 A.  The new 

prepolarization coil was built on the same former as the original coil so that it could 

be easily incorporated into the original apparatus.  The finished coil is pictured in 

Figure 5.21. 

 

 

Figure 5.21 A photo of the homogeneous prepolarization coil 
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In order to compare the fields of the standard Terranova-MRI prepolarization 

coil and the new coil, 1D magnetic field maps were obtained along the long axis of 

the probe (x) at a current of 1 A.  The results of these field maps are presented in 

Figure 5.22.   

The plot in Figure 5.22a presents the absolute value of the field while Figure 

5.22b shows the deviation of the field from the mean, as a percentage of the mean 

field.  It is clear that the new coil is much more homogeneous than the previous coil.  

It is homogeneous to 0.5% and 1% over sample lengths of 90 mm and 105 mm, 

respectively.  The original coil is homogeneous to 0.5% and 1% over lengths of only 

12 mm and 39 mm, respectively.   

 

 

Figure 5.22  A comparison of field plots (along the long axis of the probe, x, at a current of 

1 A) of the standard Terranova-MRI polarizing coil (gray) and the new 

homogeneous polarizing coil (black).  (a) A comparison of the raw magnetic 

field data shows that the new polarizing coil is 3 times weaker than the 

standard coil.  (b) A comparison of the % deviation of the field from the mean 

as a function of x.  This plot clearly illustrates the homogeneity advantage of 

the new coil.  

  

A comparison of the thermally polarized NMR signal at 5 mT, obtained using 

the two different prepolarization coils and a large water sample, is presented in Figure 

5.23.  The SNR of the signal acquired using the new prepolarization coil is 83, which 

is an improvement over that of the original coil, which has an SNR of 50.  This result 

is not entirely unexpected because of the two-fold effect of shorting the polarization 



 
CHAPTER 5.  Sensitivity Enhancement  99 

  

coil during signal detection.  First and foremost, the shorted prepolarization coil acts 

as a Faraday cage and so greatly reduces the pick-up of external ULF interference.  

This effect would be expected to be much greater using the original prepolarization 

coil because this coil has a much thicker layer of copper than the new coil.  Second, 

the shorting of the prepolarization coil reduces the quality factor of the detection coil.  

It is expected that the new coil will reduce the Q of the B1 coil much less than the old 

coil.  As a result, it was expected that both the signal level and the noise level would 

increase, in absolute terms, using the new prepolarization coil.  Prior to testing the 

coils it was difficult to predict what the relative SNR performance of the two 

prepolarization coils would be. 

 

 

Figure 5.23  A comparison between 1H EFNMR spectra of 500 mL of water prepolarized  at 

5 mT using (a) the homogeneous polarizing coil and (b) the standard polarizing 

coil.  Notice that both the absolute signal and absolute noise detected by the 

homogeneous polarizing coil in (a) are less than that of the standard coil in (b); 

however, the SNR of the spectrum in (a) is 83 whereas the SNR of the 

spectrum in (b) is 50.  There is a net SNR advantage when using the 

homogeneous polarization coil when compared to the standard polarizing coil 

at the same prepolarization field strength. 
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Figure 5.23 demonstrates something unexpected.  Not only does the result 

from the new prepolarization coil have a higher SNR it also has, contrary to our 

expectation, a lower absolute level of detected signal and noise.  This indicates that 

the Q is reduced much more by the shorting of the new prepolarization coil than by 

the original coil.   

 

 

Figure 5.24  A comparison of the time domain (left) and frequency domain (right) pick-up 

noise of the EFNMR B1 coil (a) inside the homogeneous pre-polarization coil, 

shorted to ground, and (b) inside the standard pre-polarization coil, shorted to 

ground.   

 
An observation of the full noise spectrum (Figure 5.24), acquired without 

exciting any NMR signal, shows that in terms of efficacy of noise screening, the 

original coil performs much better at lower frequencies, as expected; however in the 

tuned region of the coil it appears as if the pickup noise in the case of the shorted 

homogeneous prepolarizing coil is less than in the case of the shorted standard coil.  

Therefore it seems that, in addition to the anticipated DNP advantages of the 

homogeneous coil, we also obtain an SNR advantage through reduced noise pick-up 

per unit detected signal. 

Figure 5.25 presents a field-cycled DNP experiments with 124 MHz 

irradiation using the homogeneous prepolarizing coil (blue dots) along with a 
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theoretical spectrum (black solid line) calculated from Equation 5-11 with A = 

2π*44.8 MHz, T2 = 200 ns, f = 0.7, s = 1, ρ = 0.3 and ΔBp = 0.3 %.  The field of the 

homogeneous coil was calculated from the prepolarization current using Bp/Ip = 0.932 

mT/A.  This value deviates slightly from the field calibration measured using a three-

axis hall probe (0.939 mT/A).  The average field experienced by the unpaired 

electrons in the sample is highly dependent on the sample size and shape.  Therefore a 

0.7% discrepancy between the field calibration at which we can obtain a reasonable fit 

to Equation 5-11 and that predicted by hall-probe measurements taken along the axis 

of the probe is to be expected. 
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Figure 5.25  Field-cycled DNP result with irradiation at 124 MHz using the standard the 

homogeneous prepolarizing coil and Bp/Ip = 0.932 mT/A (blue).  The black line 

corresponds to a theoretical DNP spectrum calculated with A = 2π*44.8 MHz, 

T2 = 200 ns, ΔB = 0.3%, s = 1, ρ = 0.3 and f = 0.7. 

 

Inspection of the plot in Figure 5.25 illustrates a number of advantages of the 

homogeneous coil over the standard prepolarization coil.  First, in comparison to the 

results presented in Figure 5.19, the maximum DNP enhancement factor is greater 

with the homogeneous coil than the standard coil.  Second, the three electron 

transitions are much sharper and more symmetrical in the homogeneous coil case 
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compared to the standard coil case.  Third, the calculated DNP spectrum is in very 

good agreement with the homogeneous coil spectrum with reasonable parameters 

such as an unpaired electron T2 of 200 ns.   

The advantage of the homogeneous coil is further illustrated by the saturation 

experiment shown in Figure 5.26.  Full saturation of the T16π transition is achieved 

with an RF power of only 50 W.  The increase in relative DNPF as a function of RF 

power obeys an exponential increase to a final saturated value, as expected.  
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Figure 5.26 DNPF relative to standard prepolarization (18.7 mT) as a function of 

irradiation power of the T16π transition in the homogeneous polarizing coil with 

124 MHz irradiation and Ip = 2.65 A.  A fit to the exponential growth function 

in Eq. 5-12 (black line) indicates that full saturation is reached with 50 W. 

 
2D 1H EFNMR images of a 50 mm diameter, 90 mm long round bottom vessel 

containing 100 mL of a 1.5 mM aqueous solution of 4-oxo-TEMPO are presented in 

Figure 5.27.  These image, acquired with DNP irradiation at 124 MHz in the field 

from the homogeneous prepolarization coil (Bp = 2.5 mT at Ip = 2.65 A), clearly 

demonstrate that the DNP signal excitation achieved in the field from this new 

prepolarization coil is homogeneous throughout the sample.  



 
CHAPTER 5.  Sensitivity Enhancement  103 

  

 

Figure 5.27  2D 64x32 1H NMR images of a 1.5 mM  aqueous solution of 4-oxo-TEMPO in 

a 50 mm o.d., 90 mm long round bottom glass vessel.  The images were 

acquired with DNP irradiation at 124 MHz in the homogeneous prepolarization 

coil with Ip = 2.65 mA (Bp = 2.5 mT).  Each image was acquired in 5 minutes 

with two scans. 

 

While the maximum DNP enhancement, relative to prepolarization at 18.7 

mT, indicated by Figure 5.25 is only 6.2 the actual SNR advantage is greater because 

a number of pulse sequence parameters, such as the delay between the switch-off of 

the prepolarization coil and the excitation pulse, can be optimized for the DNP case to 

further increase SNR.  Figure 5.28 presents a comparison of 1H EFNMR FIDs and 

spectra acquired of 100 mL of 1.5 mM aqueous solution of 4-oxo-TEMPO acquired 

with DNP in the homogeneous coil (Figure 5.28a) and with prepolarization at 18.7 

mT using the standard coil (Figure 5.28b).  The SNR of the DNP enhanced spectrum 

is 943, a factor of 14 greater than the SNR of the prepolarized spectrum, 68.  
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Figure 5.28  A comparison of 1H EFNMR FIDs and spectra  of 100 mL of 1.5 mM 4-oxo-

TEMPO in water acquried with (a) DNP in the homogeneous prepolarization 

coil (SNR = 943) and (b) pre-polarization at 18.7 mT with the standard 

prepolarization coil (SNR = 68).  The observed SNR improvement is 14. 

 

 

5.4. Hyper-polarization via Optical Pumping 

 

5.4.1. Theory 

 

Hyper-polarization of noble gas nuclei via optical pumping was first 

introduced by William Happer in 1972 [73].  In this method, circularly polarized 

resonance light is directed into a glass cell containing a saturated alkali metal vapor, 

typically rubidium, which has a high vapor pressure at moderate temperatures.  This 

incident circularly polarized light is absorbed by the alkali metal atoms and so the 

valence electrons of these atoms become spin polarized.  In properly designed 

systems almost half of the spin polarization of the incident photons is absorbed by the 

alkali metal atoms [74]. 

 In addition to the alkali metal vapor, the glass cell contains an abundance of 
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noble gas nuclei.  Collisions between the alkali metal and noble gas atoms result in a 

net transfer of spin polarization from the alkali metal valence electrons to the noble 

gas nuclei.  This polarization transfer is mediated by the hyperfine interaction.  An 

efficient optical pumping system can generate noble gas nuclear polarizations of tens 

of percent, five orders of magnitude greater than the thermal nuclear polarization 

available in even the strongest laboratory NMR magnets [74]. 

In order to prevent depolarization of the target noble gas nuclei, nitrogen gas is 

also present in the glass cell.  The N2 atoms act as a quench, relaxing the excited 

rubidium atoms before they can depolarize the target noble gas nuclei.  Hyper-

polarization via optical pumping is possible in a glass cell containing only the alkali 

metal vapor and the target noble gas atoms but the hyper-polarization process is much 

less efficient in this case and so the maximum achievable hyper-polarization levels of 

the noble gas nuclei are reduced in the pure gas case compared to optical pumping in 

the presence of nitrogen.  For 129Xe hyper-polarization a typical optical-pumping 

pumping mixture contains on the order of 2% N2 and 3-5% xenon pressurized to 60 

atm with 4He. 

The level of nuclear polarization achieved in an optical-pumping apparatus is 

dependent on the number of collisions between atoms and consequently on the 

amount of time the noble gas nuclei are in contact with the alkali metal atoms.  

Therefore, if the goal is to create a constantly flowing stream of hyperpolarized gas in 

real time, there will be a limit on the polarization level achieved which is dependent 

on the flow rate.  However, if the goal is to produce as high a level of gas polarization 

as possible, a so-called “stop-flow” approach is used.  In this case the noble gas is 

kept in the glass cell for a fixed period of time, during which it experiences multiple 

collisions with the excited alkali metal atoms and so acquires a large nuclear 

polarization.  Subsequently, the hyperpolarized gas is released from the optical 

pumping cell, either for immediate use in an NMR or MRI experiment or into some 

sort of storage container for later use. 

Once hyper-polarized, the T1 of noble nuclei is very long, anywhere from 100s 

of seconds to days depending on the nucleus and the storage conditions.  Therefore it 

is possible to hyperpolarize the noble gas nuclei in a mixture with a stop-flow 

protocol, collect the noble gas nuclei into a pure mixture for storage and then use this 

pure, maximally polarized gas in an NMR or MRI experiment at a later time.   
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In MRI, hyper-polarization of 3He and 129Xe nuclei via optical pumping is 

widely used as a means of producing large numbers of spin polarized nuclei for 

applications such as medical lung imaging [75; 76].  The viability of hyper-polarized 
83Kr lung MRI has also recently been demonstrated [77].  Another promising 

application of hyperpolarized gas is for NMR and MRI performed in weak magnetic 

fields because the gas polarization is independent of field strength.  

From August 2007 to January 2008, Associate Professor Thomas Meersman 

and Dr. Galina Pavlovskaya from the Department of Chemistry, Colorado State 

University visited the NMR group at Victoria University of Wellington to implement 

an optical pumping apparatus for producing hyperpolarized xenon gas.  Additional 

help with this project was provided by Dr. Mike Barlow from the University of 

Nottingham.  As a part of this thesis, and in collaboration with Prof. Meersman and 

Dr. Pavlovskaya, the potential for using hyperpolarized xenon gas for both direct 
129Xe detection in the Earth’s field and for polarization enhancement of solvent nuclei 

via the Spin Polarization-Induced Nuclear Overhauser Effect (SPINOE) was explored. 

 

5.4.2. Hyperpolarized 129Xe in the Earth’s Magnetic Field 

 

NMR spectroscopy of optically pumped 129Xe was first performed in the 

Earth’s magnetic field by Appelt et al. in 2005 [56].  In this paper, it was shown that 

because of the exceptionally long T2 of 129Xe in the gas phase, the large 129Xe 

chemical shifts (100s of ppm between 129Xe gas dissolved in a solvent, such as 

toluene, and 129Xe as a free gas) can be resolved in the Earth’s magnetic field.  In 

addition to providing spectroscopic information about the 129Xe gas, EFNMR also 

provides a way of evaluating the polarization level of the optically pumped 129Xe. 

Figure 5.29 presents a comparison of a 1H EFNMR spectrum of toluene pre-

polarized at 18.7 mT and a 129Xe EFNMR spectrum of hyperpolarized 129Xe gas at 

STP.  The 129Xe has much higher SNR, due to a very narrow linewidth of 0.1 Hz, but 

the integral of the peaks, 20.3 for toluene and 18.4 for the 129Xe gas, is comparable.  

The toluene linewidth is 0.4 Hz.  Note that the 129Xe was hyperpolarized using a stop-

flow protocol in which the gas is optically pumped in the rubidium cell for several 

seconds and then released into the sample vessel in the EFNMR probe for excitation 

and detection. 
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Figure 5.29  A comparison of (a) A 1H EFNMR spectrum of toluene thermally polarized at 

18.7 mT and (b) a 129Xe EFNMR spectrum of hyperpolarized 129Xe gas (3% Xe 

gas mixture at STP). 

 

In order to calculate the polarization of the 129Xe we must first deduce the 

polarization of the toluene at 18.7 mT.  This can be estimated as the population excess 

between spin-up and spin-down states of the 1H nuclei.  In the high temperature limit, 

this spin-up excess is proportional to the Boltzmann factor, Eq. 5-13, where k is 

Boltzmann’s constant (1.38x10-23 J/K), T is the temperature in K, Bp is the 

polarization field,   is Planck’s constant (6.626x10-34 Js) divided by 2π and γ is the 

gyromagnetic ratio of 1H (2.675x108 T s-1).   
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The Boltzmann factor is equal to 1.27x10-7 for protons at 18.7 mT and 298 K.  

The number of protons per unit volume of a given solvent is given by Eq. 5-14, where 

Nav is Avogadro’s number (6.022x1023), N1H/solvent is the number of 1H nuclei in each 

solvent molecule, Msolvent is the molecular mass of the solvent and ρsolvent is the density 

of the solvent.   
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The number of 129Xe nuclei per unit volume of a given ideal gas mixture at 

standard temperature and pressure (STP) is given by Eq. 5-15 where fXe is the fraction 

of the gas mixture which is xenon and  f129Xe is the natural abundance of 129Xe 

(26.4%).   
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The ratio, R, of the 1H signal from a volume of solvent to the 129Xe signal from 

a similar volume of gas at STP is given by Eq. 5-16. 
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For a comparison with toluene pre-polarized at 18.7 mT and a 3% Xe gas 

mixture, the polarization of the 129Xe nuclei can be estimated using Eq. 5-16 to 

be RP
Xe

1.0129 = . 

In the example in Figure 5.29, the integral of the toluene peak is 20.4 and the 

integral of the xenon peak is 18.3.  Therefore the 129Xe polarization is approximately 

9.2%.  This value is comparable to the 129Xe polarization levels measured at high-

field using the same apparatus and a stop-flow optical-pumping protocol. 

 

5.4.3. Spin Polarization-Induced Nuclear Overhauser Effect (SPINOE) 

 

Spin polarization-induced nuclear Overhauser effect (SPINOE), first presented 

by Navon et al. in 1996 [78], is a method whereby the hyperpolarization of optically 

pumped noble gas nuclei is transferred to target nuclei, typically in a liquid solvent or 

on a surface, via the nuclear Overhauser effect.  This polarization transfer between 

hyperpolarized noble gas nuclei and surface or solvent nuclei is analogous to the 

polarization transfer between excited free electron spins and target solvent nuclei in 

DNP and can be described by the Solomon Equations [65].  Hyperpolarized gas nuclei 



 
CHAPTER 5.  Sensitivity Enhancement  109 

  

are naturally in an excited state and so, unlike DNP, no irradiation of these spins is 

necessary.   

In order to observe the SPINOE effect, the hyperpolarized nuclei need to come 

into contact with the target nuclei in such a way that the preferred relaxation pathway 

for these excited nuclei is via cross-relaxation to the target nuclei in the solvent or on 

the surface.  The polarization transfer is mediated by the dipole interaction and so its 

efficiency is related to the distance of closest approach between the hyperpolarized 

nuclei and the target nuclei.  If the application involves the transfer of polarization to 

surface nuclei, the hyperpolarized gas is typically blown across the surface and the 

polarization transfer occurs at the boundary between the gas and the surface.  In the 

case of the polarization of a significant volume of liquid, contact between the 

hyperpolarized nuclei and the target nuclei is achieved by dissolving the gas in the 

solvent, often by means of bubbling the gas through the liquid.   

In 2001, Appelt et al. [79] used SPINOE to obtain significant NMR sensitivity 

enhancements in detection fields as low as 1 mT for 0.2 mL volumes of a range of 

solvents.  In order to obtain dissolution of the hyperpolarized gas in these solvents, the 

liquid solvent is frozen in a liquid nitrogen bath and a layer of xenon ice is allowed to 

form on the surface for a fixed period of time, on the order of minutes.  The nitrogen 

bath is then removed and a hot air stream is applied to the solvent and xenon ice.  As 

the ice melts it dissolves in the solvent and so the contact between the hyperpolarized 

xenon nuclei and the solvent nuclei is achieved.   At 1 mT, for an ice accumulation 

time of 12 minutes a signal enhancement of almost 1000 was obtained for 0.2 mL of 

toluene. 

At first glance these experiments seem to imply that SPINOE would be a very 

useful tool for signal enhancement of NMR experiments carried out in the Earth’s 

magnetic field.  However, attempts made in the course of this thesis to observe a 

SPINOE signal in the Earth’s magnetic field using hyperpolarized 129Xe gas bubbled 

through a large volume of toluene were ultimately unsuccessful.  Herein we will 

present a calculation of the maximum possible SPINOE enhancement compared to the 

prepolarization enhancement observed at 18.7 mT, which demonstrates that in the 

case of Earth’s field NMR where large sample volumes (100s of mL) can be used 

without a loss of spectral resolution, the scope for signal enhancement using SPINOE 

is very limited. 
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Consider a large 500 mL volume of toluene in a 75 mm diameter vessel within 

the Terranova-MRI probe.  Contained within this volume are approximately 2.3x1025 
1H nuclei (from Eq. 5-14) with a spin polarization of 1.3x10-7 in a prepolarization 

field of 18.7 mT (from Eq. 5-13).  In order to polarize this sample in the Earth’s field 

with hyperpolarized 129Xe we bubble a gas mixture, containing a volume fraction, fXe, 

of xenon through the bulk solvent. 

Consider a bubble with a radius, r, containing a gas with diffusion coefficient, 

Dg, within a solvent with viscosity, η, and density, ρs.   

From Stoke’s Law we know that the drag force, F, on the bubble is given by 

Eq. 5-17 where v is the velocity of the bubble. 

 

rvF πη6=  

5-17 

 

This force is balanced by the buoyancy force, Eq. 5-18, where Δρ is the 

difference in density between the liquid and the gas and g is the acceleration due to 

gravity (9.8 ms-2).   
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Solving Eq. 5-17 and Eq. 5-18 for the ascension velocity of a bubble as a 

function of its radius we obtain the “terminal velocity” given by Eq. 5-19. 
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5-19 

 

The rise time, t, of the bubble in a vessel of height, z, is given by Eq. 5-20.  

[Note that this calculation neglects the initial velocity and so will overestimate the rise 

time for bubbles with an initial velocity, v0.] 
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The average contact rate for the gas within the bubble hitting the surface is 

proportional to the diffusion constant divided by the radius of the bubble squared. The 

approximate number of collisions between a single xenon nucleus and the surface of 

the bubble which will occur during a given residence time, t, is described by Eq. 5-21. 
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r

D
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col 2

4
=  

5-21 

 

A number of collisions greater than or equal to one indicates that every xenon 

nucleus within the bubble will come into contact with solvent nuclei at least once 

during the residence time and so, assuming an 100% efficiency of polarization 

transfer between hyperpolarized xenon and target nuclei, the limiting factor on the 

maximum polarization enhancement of the solvent nuclei is the number of xenon 

nuclei in the bubble, not the contact rate.  Assuming more realistic polarization 

transfer efficiencies, more collisions are required to maximize polarization transfer, 

i.e. for a 20% efficiency five collisions are required to ensure a complete transfer of 

polarization to the target nuclei in the solvent.  If the number of collisions is less than 

the critical number stipulated by the transfer efficiency, only a fraction of the xenon 

nuclei within the bubble will interact with the solvent nuclei.   

Substituting Eq. 5-20 into Eq. 5-21 we find that the number of collisions, Ncol, 

between an individual xenon nucleus and the surface during the rise time of the 

bubble is on the order of: 
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Solving for r we find that, assuming a polarization transfer efficiency of Ceff 
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equal to Ncol
-1, the maximum bubble radius, rmax, for total polarization transfer 

between hyperpolarized xenon and the target solvent nuclei is given by Eq. 5-23.  

 

4
max

18
eff

g C
g

zD
r

ρ
η
Δ

=  

5-23 

 

For the case of pure xenon gas in toluene (η = 5.9x10-4 Pa s; Δρ = 0.8669 g 

ml-1; Dg = 1x10-5 m2s-1; fX e= 1) where z = 7.5 cm and Ceff = 0.2, we find that the 

maximum radius is 0.7 mm.  This corresponds to a residence time of 0.1 s.  

Now that we have determined the critical bubble size we can determine the 

number of bubbles required to hyperpolarize the solvent nuclei to a higher level than 

prepolarization at 18.7 mT.  The number of 129Xe atoms (at 26.4% natural abundance) 

in a bubble of radius, r, is: 

 

%4.26*
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Recall that the polarization of protons in a prepolarization field of 18.7 mT is 

1.3x10-7 and 2.3x1025 protons are present in a 500 mL volume of toluene.  Therefore 

the product of the hyper-polarization of the xenon nuclei, P129Xe, and the number of 
129Xe nuclei bubbled through 500 mL of toluene must exceed the product of the 18.7 

mT prepolarization level and the number of target toluene protons. 

 

18103129129 xPN
XeXe

>  

 

The number of bubbles, with a radius smaller than the critical radius, required 

to hyperpolarize the toluene protons to a level greater than prepolarization at 18.7 mT 

is therefore: 
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Using our critical bubble radius, 0.7 mm, and a pure xenon mixture with a 

polarization of 10%, 3.5x106 bubbles are required.  This corresponds to a volume of 

4.2 mL of the pure xenon gas mixture.  The polarization transfer must occur within 

the T1 time of the protons (on the order of 5 s) so that detection of the enhanced 

polarization can occur.  Therefore a flow rate of around 1 mL/s or 7x105 bubbles/s is 

required.   

1 mL/s is an feasible flow rate and so it is expected that if pure xenon gas, 

hyperpolarized to 10% were passed through 500 mL of toluene with bubbles smaller 

than 0.7 mm in radius, a polarization on par with prepolarization at 18.7 mT would be 

observed.  The situation is somewhat different, however, if we cannot generate 

bubbles with dimensions smaller than the critical radius.  In this case, we must define 

a critical length, lcritical, such that only xenon nuclei within one critical length of the 

surface will collide with the surface a sufficient number of times during the residence 

time of the bubble to transfer polarization to the solvent nuclei. 
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The number of interacting xenon nuclei within a bubble, where r > rmax, is 

given by Eq. 5-27. 
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Inserting this into Eq. 5-25 we obtain the following expression for the number 

of bubbles required to reach our required polarization level for r > rmax. 
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For a large bubble of 5 mm, approximately an order of magnitude larger than 

the critical bubble size, the critical length is 0.2 mm and 7.2x104 bubbles are required.  

This corresponds to a volume of 38 L of hyperpolarized xenon gas! This catastrophic 

increase in required gas volume is due to a combination of the inverse square 

dependence of residence time and inverse square dependence of collision rate, on 

bubble radii above the critical rmax.  Therefore it is absolutely essential to the success 

of the SPINOE experiment to have bubbles below the critical size (0.7 mm under the 

conditions indicated above).   

In the experiments undergone for this thesis we were unable to produce 

bubbles of less than a few mm and therefore it is not surprising that any SPINOE 

effect was too small to be observed.  However, there are several practical reasons 

why, even had we managed to generate small enough bubbles, the experiment would 

provide at best a polarization equal to 18.7 mT prepolarization. Recall that the goal of 

these experiments is to greatly increase the polarization of the target nuclei to at least 

an order of magnitude above that achieved using 18.7 mT prepolarization.  

The first limitation, not considered in the discussion above, is the difficulty 

associated with producing pure xenon gas hyperpolarized to 10% in a continuous flow 

regime.  This can only be achieved if the xenon were first hyperpolarized in a 

different gas mixture (3% Xe, 2% N, 95% He, for example) and then separated out 

and stored for later use in a continuous flow SPINOE experiment.  Depending on the 

storage conditions some T1 relaxation will occur and so 10% polarization is an 

optimistic polarization level.  (It should be noted, however, that this is not an 

impossible condition as the experiments presented by Appelt et al. [79] used pure 

xenon gas hyperpolarized to 20%.)  Using a 3% Xe mixture, instead of pure xenon 

increases the required gas volume to 140 mL, corresponding to a flow rate of 28 

mL/s.  Reducing the polarization level from 10% to 2% (a more realistic projection in 

a continuous flow regime) the required flow rate increases to more than 100 mL/s and 

therefore the experiment rapidly becomes unfeasible. 

The second assumption made above, which is unlikely to hold up in practice, 

is the idea of a total transfer of the xenon hyper-polarization to the target protons.  
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The polarization transfer, like that encountered in DNP, is governed by the Solomon 

Equations (Eq. 5-9) and so the maximum enhancement depends on many things 

including a coupling factor.  In the system for SPINOE described above the coupling 

mechanism is dipolar in nature and so the theoretical maximum coupling factor would 

be 0.5.   

The third issue is that during the discussion above we neglected the T1 

relaxation of the hyperpolarized gas which will result in irreversible depolarization of 

the xenon nuclei during the storage, flow and residence time periods and so decrease 

the polarization available for transfer.   

The final issue which will decrease the observed signal is T1 relaxation of the 

hyperpolarized protons during the period in which the xenon gas interacts with the 

solvent protons.   

Therefore based both on the theoretical projections and experimental results 

presented in this chapter we can conclude that (a) SPINOE is not effective for 

hyperpolarizing large volumes of sample for NMR or MRI in the Earth’s magnetic 

field, (b) DNP is the most promising method for signal enhancement of multi-

dimensional/multi-acquisition experiments and (c) for simple pulse and collect 

experiments, prepolarization by a strong permanent magnet, such as a Halbach array, 

is a very attractive and simple signal enhancement solution. 
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CHAPTER 6. Simulating EFNMR Spectra 

 

 

6.1. Introduction 

 

The interpretation of NMR spectra in an ultra-low field, such as the Earth’s 

magnetic field, is very difficult using a traditional high-field NMR approach.  The 

non-intuitive form of Earth’s field NMR spectra arises from (a) the lack of chemical 

shift information in all but a few very specialized cases, (b) the relative strength of 

indirect spin-spin coupling between hetero-nuclei compared to their difference in 

Larmor frequency and (c) the observation of homo-nuclear indirect spin-spin coupling 

due to a magnetic non-equivalence between homonuclei, which are otherwise 

chemically equivalent.  Given the complexity of EFNMR spectra, numerical 

simulations provide a powerful tool for proper interpretation of the various spectral 

features and for determining coupling constants.  In this chapter, a density matrix and 

product operator formalism [14; 80-82] will be presented as a useful way to 

numerically simulate EFNMR spectra. 

 

 

6.2. The Hamiltonian in Ultra-Low Fields 

 

In an ultra-low magnetic field, such as the Earth’s magnetic field, the 

Hamiltonian which describes a system of N interacting spins, including both 
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heteronuclear and homonuclear indirect spin-spin coupling but neglecting the 

vanishingly small effects of chemical shift is described, in angular frequency units, by 

Eq. 6-1. 
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In the high-field case, any heteronuclear indirect spin-spin couplings between 

spin i and spin j always satisfy the weak coupling condition, given by Eq. 6-2, where 

ωi and ωj are the Larmor frequencies of spin i and spin j, respectively. 

 

ij2 Jji πωω >>−  
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In addition, many observable homonuclear indirect spin-spin couplings also 

fulfill the weak coupling limit in high-fields because their Larmor frequencies are 

separated by significant chemical shifts.  Under these weak coupling conditions, it is 

permissible to apply what is known as the secular approximation to the Hamiltonian, 

which states that the indirect spin-spin coupling terms are small compared to the 

Zeeman terms and so only the IziIzj components of the indirect spin-spin coupling 

interaction need to be considered.  Using this approximation, the Hamiltonian is 

reduced to the expression in Eq. 6-3. 
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The modified Hamiltonian in Eq. 6-3 is diagonal in the product operator 

formalism and so is relatively easy to manipulate, which greatly simplifies any 

numerical simulations.  However, in the ultra-low field case it is the exception rather 

than the rule that the observed indirect spin-spin couplings satisfy the weak coupling 
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condition (Eq. 6-2).  Therefore, for simulations in the Earth’s magnetic field, the 

secular approximation cannot be applied to the Hamiltonian and so the full 

Hamiltonian in Eq. 6-1 must be used.   

 

 

6.3. The Density Matrix 

 

A density matrix is a mathematical tool for representing the statistical state of 

a quantum system and is typically denoted by the Greek letter ρ.  The density matrix 

is particularly useful for describing the state of an ensemble of spins and has a number 

of very convenient properties which can be exploited to track the evolution of a 

complex quantum system as a function of time and under the influence of various 

interactions. 

A density matrix is described, in general, by an ensemble average over the 

various eigenstates of the system.   Numerical simulations of EFNMR spectra start 

with an initial density matrix, ρ(0), which corresponds to the statistical state of the 

spin ensemble at thermal equilibrium.  The ensemble average of a group of spins at 

thermal equilibrium in the Earth’s magnetic field is given by Eq. 6-4, where α denotes 

the various eigenstates of the system, H is the full interaction Hamiltonian (Eq. 6-1), k 

is Boltzmann’s constant (1.38x10-23 m2 kg s-2 T-1), T is the temperature in Kelvin and 

the overbar denotes an ensemble average. 
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Eq. 6-4 can be simplified by using the high temperature approximation, |H| << 

kT, which holds true for all temperatures above a few mK.  This approximation allows 

us to simplify the above relation with a first order Taylor expansion.  The result of 

this expansion is shown in Eq. 6-5, where I is the spin quantum number of the nuclei 

in the system and 1 is the identity matrix. 
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There are two major terms in this first-order expansion.  The first is the 

identity matrix which corresponds to the unobservable portion of the spin system that 

has a net magnetization of zero.  No matter how we perturb the system, this term will 

never give rise to observable magnetization and so can be neglected.  The second 

term: H/kT, representing the spin excess in thermal equilibrium at a temperature T, is 

the observable portion of the density matrix.  The goal of these numerical simulations 

is to correctly represent the form of the NMR spectra and the relative peak heights.  

Therefore any constant scaling factor can be neglected.  In this way we can further 

simplify Eq. 6-5 as shown in Eq. 6-6. 
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Eq. 6-6 provides us with a starting point for our numerical simulation.  In 

addition to this density matrix, we require a few mathematical tools.  These tools 

provide a means of perturbing the spin ensemble from equilibrium, evolving the 

system with time and determining the observable magnetization at various points 

throughout the experiment. 

It is well known that the excitation phase of a basic NMR experiment is 

equivalent to a rotation.  A derivation of this well known principle can be found in 

Chapter 2.  Therefore the action of RF pulses (ULF pulses in the case of EFNMR) can 

be included in a density matrix calculation through the use of rotation operators.  

Operators for rotations of a spin-1/2 particle by an angle θ about the transverse axes x 

and y, are listed in Eq. 6-7. 
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All NMR experiments include time periods during which the spin system 

evolves with time under the influence of the time-independent spin Hamiltonian (Eq. 

6-1).  These evolutions are included in a density matrix calculation through the use of 

the evolution operator, defined in Eq. 6-8. 
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If the secular approximation is used, the Hamiltonian is diagonal in this 

representation and so the evaluation of Eq. 6-8 is relatively straight forward.  

However we have already noted that the secular approximation cannot be used in the 

context of ultra-low field NMR and so U(t) must be approximated by a discrete 

Taylor expansion up to an arbitrary order O with a carefully chosen time step, Δt (Eq. 

6-9).   
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The evolution time step, Δt, and the order of the Taylor expansion, O, in Eq. 

6-9 must be chosen such that the error associated with the truncation of the Taylor 

Series is much less than 1.  The dimensionless error for a single application of the 

evolution operator is on the order of
( )

!O

t OΔΔω
, where Δω is the bandwidth, in angular 

frequency, of the calculated spectrum.  This error is additive with each application of 

the evolution operator and so over the course of the simulation the cumulative error 

becomes
( )

!
2

1

O

t
NErr

O

pts

−ΔΔ≈ ωπ , where Npts is the total number of spectral points 



 
122 CHAPTER 6.  Simulating EFNMR Spectra 

 

spanning Δω.  For the numerically simulated NMR spectra presented in this thesis an 

order of O = 28 and evolution time steps on the order of a hundred μs were used to 

simulate spectra with Npts = 32768.  This gives rise to an error of 10-11.  The evolution 

operator is calculated only once at the start of the numerical simulation and so using a 

large value of O does not carry a significant computational time penalty. 

The final tool required to use the density matrix formalism for simulating 

NMR spectra is the observation operator.  One of the most powerful aspects of the 

density matrix representation is the ability to calculate the expectation value of any 

Hermitian operator, i.e. perform a measurement using that operator, at any point in 

time by simply applying the operator to the density matrix and taking the trace of the 

result.  This is shown mathematically for an observation operator, Iobs, in Eq. 6-10.  

 

))(( tTr obsobs ρΙI =  
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A measurement of the NMR signal is a combination of the projection of the 

density matrix onto the x axis using the spin operator, Ix, (the real signal) and the 

projection along the y axis using the spin operator, Iy (the imaginary signal).  The 

form of the total observation operator is therefore given by Eq. 6-11, where the sum is 

performed over only those groups of spins within the ensemble which we wish to 

observe and N* is the number of observed spin groups. 
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An example, in which we would not wish to observe all of the groups of spins 

represented in the density matrix, is if we had a system of protons coupled to a 13C.  

The 13C would be included in the density matrix because it is coupled to the protons 

but it would neither be excited (rotated) by the ULF pulses nor observed in the final 

stage of the experiment. 
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6.4. Simulating EFNMR Experiments 

 

Implementing a simulation of any given EFNMR experiment is relatively 

straight forward using the density matrix formalism outlined above.  For example, 

consider a basic pulse and collect experiment, where a 90˚ excitation is applied to a 

system of spins in thermal equilibrium and the subsequent evolution as a function of 

time is observed with a dwell time, Δt2. 

The first step is to define the spin system.  This includes the following 

information: 

 

• Number and type of nuclei 

• Indirect spin-spin coupling constants 

• Field strength, BE  

• Relaxation time, T2 

 

The next step is to define the parameters of the experiment.  This includes: 

 

• Sampling time, Δt2 

• Number of sample points, n2 

• Evolution time step, Δt 

• Order of evolution operator expansion, O 

 

[Note: the sampling time must be an integer multiple of the evolution time 

step in order to properly evolve and sample the system.] 

Next, we must generate the product spin operators, Ixn, Iyn and Izn, for each 

spin in the system.  A product operator for a system of N spin-1/2 nuclei is 

represented by a matrix with dimensions: 2N x 2N and is defined using the inner 

product of operators acting on each of the individual spins.  For example, the product 

operator Izn, for a system of N spin-1/2 nuclei, is equal to the inner product between a 

series of (n-1) 2 x 2 identity operators, 1, the spin operator Iz and a second series of 

(N-n) 2 x 2 identity operators.  If n = 2 and N = 2, this would be: 
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In this two spin example the final product operator is a 4 x 4 matrix.  

Similarly, we can use inner products to calculate product operator matrices for the 

rotation operator which will represent our 90x pulse.  This product operator is the 

inner product of Rx(90˚) (Eq. 6-7) operators for the spins which are excited by the 

pulse and identity operators, 1, for the spins which are not excited by the pulse. 

The observation matrix is calculated next using the Ix and Iy product operators 

for the groups of spins to be observed and Eq. 6-11. 

The full Hamiltonian (Eq. 6-1) is calculated using the spin product operators 

and indirect spin-spin coupling constants as defined at the start of the simulation.  The 

initial density matrix can then be calculated as ρ(0) = H.  The final operator to be 

calculated is the evolution operator (Eq. 6-9).  It is advisable at this point to confirm 

that the error term is much less than 1.  

To start the experiment we apply the rotation operator to the density matrix by 

“sandwiching” the density matrix, ρ(0) between the operator, R, and its Hermitian 

conjugate, R†. 

 

( ) ( ) †00 xx RρRρ =+  

6-12 

 

Note the designation of “+” on argument of the density matrix indicates that 

this is the density matrix immediately following the rotation.  This notation is used 

because in this context, the rotation is considered to be instantaneous and so involves 

no increase in time.   

Following the rotation we must evolve the system for the sample time period 

Δt2.  In almost all cases the evolution time, Δt, will be less than the sample time and 
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therefore several applications of the evolution operator will be required to evolve for 

the time period Δt2.   To evolve the system by a time Δt2 we perform the operation in 

Eq. 6-13, where the evolution operator U ( )tΔ  and it’s conjugate U†(Δt) are applied m 

times.   

 

( ) ( ) ( ) ( ) ( ) ( )ttttt ΔΔΔΔ=Δ + ††
2 ...0... UUρUUρ , 
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t

t
m

Δ
Δ

= 2  

 

Next we take a measurement of the observable magnetization.  This is done by 

multiplying the current density matrix by the observation operator matrix and taking 

the trace.  An exponential decay, with time constant T2, is added to the observation 

step to take into account spectral broadening due to transverse relaxation.  
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To complete the experiment, we repeat the evolution (Eq. 6-13) and 

observation (Eq. 6-14) steps n2 times.  The result of this sampling step is a complex 

vector with n2 points that corresponds to our FID signal.  It can be Fourier 

transformed to obtain the full spectrum.   

 

 

Figure 6.1 A diagram of the 2,2,2-trifluoroethanol molecule 

 

An example of a simulated 1D spectrum of 2,2,2-trifluoroethanol (pictured in 
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Figure 6.1) acquired in an Earth’s field of 53.9 μT with a coupling constant of 8.5 Hz 

between the C1H2 and C19F3 nuclei is shown in Figure 6.2.  All protons and the 

fluorine nuclei were rotated and observed in this example.  An experimental spectrum 

is presented in Figure 6.3 for comparison with the simulation. 

 

2150 2200 2250 2300
frequency (Hz)

 

Figure 6.2   A simulated spectrum of 2,2,2-trifluoroethanol at 53.9 μT with a hetero-

nuclear spin-spin coupling constant:  3J(1H,19F) =  8.5 Hz. 
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Figure 6.3  An example experimental spectrum of 2,2,2-trifluoroethanol for comparison 

with the simulation in Figure 6.2. 

 
The density matrix simulation macro was programmed in Prospa v2.1 

(Magritek Limited, New Zealand).  A copy of the simulation code can be found in 

Appendix A.  Simulation times were prohibitively long on a basic laptop computer for 

any more than six spins in 2D and seven in 1D.  However, if in 1D the Hamiltonian is 
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simplified to only calculate the deviation in frequency from a central frequency, 

thereby reducing the bandwidth of the calculation and so the number of evolution 

points required, systems with up to 8 or 9 spins are viable.  It is important to note that 

(a) the full Hamiltonian must be used to define the initial density matrix and (b) this 

same trick cannot be used in 2D because of the aliasing which occurs in the second 

under-sampled frequency dimension.  2D experiments and simulations will be 

discussed in more detail in Chapter 8. 
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CHAPTER 7. Analysis of EFNMR Spectra in 1D 

 

 

7.1. Introduction 

 

One of the distinguishing features of 1H NMR spectroscopy carried out in the 

relatively weak Earth’s magnetic field is the observation of strong indirect spin-spin 

(J) coupling between heteronuclei.  While the NMR spectra of tightly coupled nuclei 

of the same species, so-called AB spectra, are commonly observed using high field 

laboratory NMR spectrometers, the difference in Larmor frequency between 

heteronuclei in super-conducting magnets is such that the weak coupling condition is 

always satisfied for heteronuclear indirect spin-spin coupling.  Therefore working in 

the Earth’s magnetic field provides a unique opportunity to observe and analyze the 

spectra of tightly coupled nuclei of differing spin. 

As described in Chapter 6, density matrix simulations can be used to calculate 

the form of spectra acquired in the Earth’s magnetic field.  This is a very useful tool 

but in some cases a more intuitive understanding of strongly-coupled Earth’s field 

NMR spectra can be obtained using a different approach.  For strongly coupled 

systems of heteronuclei, perturbation theory can be used to predict the form of 1D 

EFNMR spectra and to promote an understanding of the connection between the 

various spectral features and the underlying quantum states of the system. 

The work presented in this chapter was carried out with the invaluable 

assistance of Professor Roderick Wasylishen from the University of Alberta, 
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Edmonton, AB, Canada. The research was part of a collaboration which included a 

one week research visit to the University of Alberta by Meghan Halse in August 2008 

followed by a visit to Victoria University of Wellington by Prof. Wasylishen in 

February 2009.   Additional assistance with experiments carried out at the University 

of Alberta was provided by Brett Feland and Dr. Guy Bernard. 

 

 

7.2. Time-Independent Perturbation Theory 

 

Consider a time-independent Hamiltonian, H0, for which the solution of the 

Schrödinger equation is known exactly. 

 

000
0 nEn n=H  

7-1 

 

Now consider a time-independent perturbation to this Hamiltonian, H1.  Under 

these conditions we write the full Hamiltonian, H, as in Equation 7-2, where λ is a 

dimensionless quantity which ranges in value from 0 (no perturbation) to 1 (full 

perturbation). 

 

10 HHH λ+=  

7-2 

 

The time-independent Schrödinger equation for the full Hamiltonian (Eq. 7-2) 

is therefore given by Eq. 7-3. 

 

( ) nEn n=+ 10 HH λ  

7-3 

 

The eigenvalues and eigenvectors of the full Hamiltonian can be written as 

linear combinations of the unperturbed eigenfunctions of H0. 
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In Eq. 7-4 N(λ) is a normalization factor.  N(0) is set to zero to fulfill the 

condition: 0nn →  as λ  0.  The constants, Cn,k(λ), can be represented as a power 

series in λ as shown in Eq. 7-5.  Note that Cn,k(0) is set to zero to fulfill the condition: 

0nn →  as λ  0. 
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The eigenvalues of Eq. 7-3, En, can also be written as a power series in λ.  
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Using Eq. 7-4 and Eq. 7-6, we can expand the Schrödinger equation (Eq. 7-3) 

and write it explicitly in powers of λ.  
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Identifying powers of λ in Eq. 7-7 provides a set of equations from which we 

can determine the energies, En
(i), and the constants, Cn,k

(i).  The zeroth-order in λ 

corresponds to the unperturbed solution of the Schrödinger Equation (Eq. 7-1).  The 

first-order in λ yields Eq. 7-8. 
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In order to determine the first-order energy, En
(1), we take the scalar product of 

Eq. 7-8 with the eigenfunctions, 0n , of the unperturbed Hamiltonian.  Following 

simplification we find that the first order energy is simply the diagonal elements of 

the perturbation Hamiltonian, H1, written in the basis of the unperturbed 

eigenfunctions, 0n . 
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To determine the coefficient, Cn,k
(1), we take the scalar product of Eq. 7-8 with 

the eigenfunction, 0k , of the unperturbed Hamiltonian, where k ≠ n. 
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Repeating this procedure for the second, third and fourth powers of λ we 

obtain Eqs. 7-11 and 7-12. 
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7.3. Strong Heteronuclear Indirect Spin-Spin Coupling 

 

7.3.1. Indirect Spin-Spin Coupling Analysis using Perturbation Theory  

 
In 1956, W. A. Anderson [83] used perturbation theory to derive expressions 

which could be used to predict the form of tightly coupled NMR spectra for systems 

of chemically non-equivalent spins in laboratory magnetic fields.  Using a similar 

approach, time-independent perturbation theory can be used to estimate the NMR 

spectra of groups of nuclei in the Earth’s magnetic field which are coupled via hetero-

nuclear indirect spin-spin coupling.  In this case the unperturbed Hamiltonian (in 

angular frequency units) is simply the sum of the Zeeman terms for each of the spins 

in the system. 
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The eigenvalues of this Hamiltonian are given by Eq. 7-14 where R refers to 
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each group (A, B, C…) of magnetically equivalent spins in the system and mRn 

denotes all of the values of the quantum numbers, mA, mB, mC… of the system.   

 

−=
R
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No chemical shift term is included in Eq. 7-13 because, except in a few 

unusual cases such as hyperpolarized 129Xe gas [56], chemical shifts are vanishingly 

small in the Earth’s field.  Also it is important to note that this approach does not take 

into account the possibility of chemically equivalent but magnetically non-equivalent 

nuclei.  Hence, in Earth’s field NMR, this approach only applies to heteronuclear 

indirect spin-spin coupling.  To include the effects of chemically equivalent but 

magnetically non-equivalent nuclei, the secular terms of the indirect spin-spin 

coupling Hamiltonian must be included in the unperturbed Hamiltonian as 

demonstrated by Hecht [84]. 

The unperturbed eigenfunctions, which correspond to the eigenvalues in Eq. 

7-14, are the product operator kets ...,, CBA mmm , where the individual terms in the 

product operator kets represent groups of magnetically equivalent spins.  Each of 

these groups of magnetically equivalent spins are characterized by: (a) a total spin 

angular momentum quantum number IR, which represents the vector sum of the 

individual spin angular momenta of the constituent spins and so can have a plurality 

of values and (b) the corresponding quantum number mR, which the takes values mR = 

–IR, -IR+1…+IR.   For example, a group of two magnetically equivalent I = 1/2 nuclei 

would be represented by total angular momentum values IR = 1 and IR = 0 with 

corresponding sets of azimuthal angular momentum values: mR = -1, 0, 1 and mR = 0.  

This grouping of magnetically equivalent nuclei is possible because, by definition, 

magnetically equivalent nuclei have identical Larmor frequencies as well as identical 

indirect spin-spin coupling constants with respect to all of the other nuclei in the 

system.  Therefore any indirect spin-spin coupling between these magnetically 

equivalent spins is unobservable.  

In the case of heteronuclear indirect spin-spin coupling, the perturbation 

Hamiltonian is given by Eq. 7-15, where JRS is the indirect spin-spin coupling 
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constant (in frequency units) between the R and S groups of magnetically equivalent 

spins.  Note that this perturbation Hamiltonian deviates from that used by Anderson 

[83] by the inclusion of the +−
SRII  term and the ½ factor. 
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Inserting Eq. 7-15 into Eq. 7-9 we find that the first-order energy difference is 

given by Eq. 7-16. 
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The first-order perturbation theory result (Equation 7-16) is the solution to the 

weak indirect spin-spin coupling problem, in which the secular approximation is 

applied to the full Hamiltonian.  Heteronuclear indirect spin-spin coupling in the 

relatively weak Earth’s magnetic field rarely fulfills the weak coupling condition and 

so higher-order terms in the perturbation theory expansion must be included to 

effectively model the system.  The second-, third- and fourth-order energy terms are 

given below (Eq. 7-17) for the case of heteronuclear indirect spin-spin coupling in the 

Earth’s magnetic field.  As mentioned above, these results were derived following the 

method used by Anderson [83].  Upon re-deriving the expressions for the second- and 

third-order energies (and the corresponding transition frequencies) some differences 

were found between our expressions and the results presented by Anderson.  Our 

expressions for the perturbation energies (Eq. 7-17) and transition frequencies (Eq. 

7-19) were found to be in much closer agreement with density matrix simulations than 

the previous expressions of Anderson. 
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All of the energy terms presented in Eq. 7-17 are summed over an arbitrary 

number of groups of magnetically equivalent spins with the exception of the fourth-

order energy term, highlighted by a “*”.  This fourth-order term has been calculated 

for a system of two groups of magnetically equivalent spins only.   

The energy terms in Eq. 7-17 can be used, along with the selection rules listed 

in Eq. 7-18, to determine the transition frequencies of a system containing two groups 

of magnetically equivalent spins.   

 

1;0;0;0 ±=Δ=Δ=Δ=Δ SRSR mmII  

7-18 

 

The selection rules in Eq. 7-18 represent a single quantum coherence of the S 

(1H) spins.  This single quantum coherence corresponds to no change in the total 

angular momentum quantum number of the detected S spins, IS, but a change of ±1 in 
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the azimuthal angular momentum quantum number, mS.  The R spins are not detected 

and so the selection rules do not allow for changes in IR or mR.  Remember that if 

there is more than one magnetically equivalent S nucleus, the total angular momentum 

quantum number is the vector sum of the spin quantum numbers of the individual 

spins and so a plurality of values will result.  All of the permutations of IS and mS 

must be included when calculating the transition frequencies for a given spin system.   
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The probabilities of a 1H transition between an initial state n  and final state 

'n  can be calculated according Eq. 7-20, where Ix is a product operator which acts 

on the observed nuclei only, i.e. the protons.  The initial and final states can be 

calculated using the expansion in Eq. 7-4 of the perturbed states in terms of the 

unperturbed (product operator) states. 

 

2

' 'nnP xnn I=  

7-20 

 

For the spectra calculated using perturbation theory in this thesis, the transition 

probabilities for the various 1H transitions were not explicitly calculated and it is 

assumed that all transitions are equally probable.  In the simulations and calculations 

presented herein, we compare only peak positions not peak integrals or heights. 

 

7.3.2. Strongly Coupled Two Spin System 
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In this chapter we wish to explore the situation of a group of I = ½ nuclei (e.g. 
1H’s) coupled to a quadrupolar nucleus such as 14N (I = 1), 10B (I = 3) or 11B (I = 3/2).  

In order to determine the validity of the perturbation theory approach to modeling this 

problem we first take a simple two spin case, which can be solved exactly through 

digitalization of the full Hamiltonian, and compare the resultant exact transition 

frequencies with those given by first-, second- and third-order perturbation theory.   
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Expressions for the exact energy levels for the coupled 11B – 1H system are 

presented in Eq. 7-21, where νH and νB are the Larmor frequencies in Hertz, as 

defined by Eq. 7-22.   

While this is a strongly coupled system, the Zeeman terms are dominant and 

so each of the eigenstates of this system are closely associated with, but not exactly 
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equal to, a product operator state of the form 
BH

mm 111 , , as defined by Equations 

7-23.  By inspection of these product operator states, we find that there are four 

allowed transitions for the observation of the proton (ΔmH = ±1).  These transitions 

are T16 = E1 – E6, T38 = E3 – E8, T52= E5 – E3 and T74 = E7 – E4. 
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Using Equations 7-21 we can compare the exact transition frequencies with 

those predicted by first-, second- and third-order perturbation theory for this two spin 

system as a function of the relative strength of the indirect spin-spin coupling between 

the spins.    

In Figure 7.1 the difference between the exact 1H transition frequencies and 

the transition frequencies calculated from first-order (short dashed line), second-order 

(long dashed line) and third-order (solid line) perturbation theory is shown as a 

function of the indirect spin-spin coupling constant between the 1H and the 11B nuclei.  

J is expressed as a fraction of the difference between the Larmor frequency of the 

protons and that of the 11B nucleus (1561 Hz at 54 μT).  The shaded area in Figure 7.1 

indicates the range of frequency differences which are unobservable in an 

experimental spectrum, assuming a resolution of 0.1 Hz.  Using this region as a guide, 

we can define values of J for which (A) first-order, (B) second-order and (C) third-

order perturbation theory accurately models the observed spectrum.  

A similar comparison can be done for the system of an I = 1/2 nucleus (1H) 

coupled to an I = 1 nucleus (14N) using the exact energy levels and transition 

frequencies calculated for the coupled free electron and 14N nucleus system discussed 
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in Chapter 5, where the hyperfine coupling constant, A, is replaced by the indirect 

spin-spin coupling constant, J.  The results of this calculation are comparable to those 

presented in Figure 7.1. 

 

 

Figure 7.1  The difference between the exact 1H transition frequencies and those predicted 

by first-order (short dashed line) second-order (long dashed line) and third-

order (solid line) perturbation theory as a function of the relative strength of 

the indirect spin-spin coupling constant  for a single 1H nucleus coupled to a 

single 11B nucleus in a field of 54 μT.  The shaded area highlights the range of 

unobservable frequency differences which are less than the target resolution of 

the experiment (0.1Hz).  Using this target resolution as a guide, the plot can be 

divided into the regions A, B and C in which first-, second- and third- order 

perturbation theory (respectively) can be used to accurately model the spin 

system.   

 

For the NaBH4 sample examined in section 7.3.6, 1J(1H,11B) = 80.9 Hz is  

5.2% of the difference in Larmor frequency between 11B and 1H in a field of 54 μT.  

Therefore it is expected that this spectrum can be described using third-order 

perturbation theory.  For the NH4NO3 sample examined in section 7.3.5, 1J(1H,14N) = 

52.75 Hz is approximately 2.5% of the difference in Larmor frequency between 14N 
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and 1H in a field of 54 μT.  Therefore it is expected that this spectrum can be 

described using second-order perturbation theory.     

 

7.3.3. Multiple 1H Spin Systems: 14N1H4 and 11B1H4 

 

While the two spin example in section 7.3.2 is informative, it does not fully 

illustrate the effect of the second- and third-order energy contributions for an ABn 

spectrum where n > 1 and A is a quadrupolar (I > ½) nucleus.  Due to the complexity 

involved in obtaining closed form analytical solutions to the Schrödinger equation for 

large spin systems under the influence of strong indirect spin-spin coupling, we use 

density matrix simulations to generate the exact spectra for the case of more than two 

spins and compare these results with perturbation theory. 

Consider the case of 11B1H4
¯, where we have an I = 3/2 nucleus coupled to four 

I = 1/2 nuclei with a coupling constant of 1J(11B,1H) = 80.3 Hz.  In Figure 7.2 we 

present calculated and simulated 1H NMR spectra of this anion acquired in a field of 

54 μT.   The spectrum calculated using first-order perturbation theory (Figure 7.2a) 

contains four lines, separated by 1J(11B,1H), which correspond to the four spin states 

of the 11B nucleus (m = +3/2, +1/2, -1/2 and -3/2).  This is the form of the 11B1H4
¯ 

spectrum in the high-field case, where the spins are weakly coupled and so the 

presence of a plurality of magnetically equivalent protons has no observed effect on 

the spectrum.   

In the second-order perturbation theory case (Figure 7.2b) the complexity of 

the spectrum is dramatically increased, with each of the four first-order lines further 

split into quartets.  It is also interesting to note that in the spectrum calculated from 

second-order perturbation theory the four multiplets are shifted to a higher frequency, 

relative to the first-order peaks, and are no longer equally spaced.   

The additional peak multiplicity in the second-order perturbation theory case 

is due to the presence of the four magnetically equivalent protons coupled to the 11B 

nucleus.  This multiplicity in tightly coupled heteronuclear systems has previously 

been observed in the Earth’s magnetic field in strongly coupled 13C-1H systems [58].  

The spectrum calculated from second-order perturbation theory does not capture the 

full 6-fold multiplicity predicted for this system by the vector model of Appelt et al. 

[59].  According to this model, if we consider one of the four protons as the observed 
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proton, the expected multiplicity is explained by the total angular momentum states of 

the remaining three protons.  The total angular momentum quantum number of these 

spins can have a value of 3/2 or 1/2 with corresponding azimuthal quantum numbers 

of m = 3/2, 1/2, -1/2, -3/2 and m = 1/2, -1/2, respectively.   To second-order, the states 

I = 3/2, m = 1/2 and I = 1/2, m = 1/2 are degenerate.  So too are the states I = 3/2, m = 

-1/2 and I = 1/2, m = -1/2.  As a result, only four lines are observed in the calculated 

spectrum instead of the full six.   

 

 

Figure 7.2  Calculated and simulated 1H NMR spectra of 11B1H4
¯  in a field of 54 μT with 

1J(11B,1H) = 80.3 Hz using: (a) first-order perturbation theory, (b) second-order 

perturbation theory, (c) third-order perturbation theory and (d) a density matrix 

simulation. 

 

In the spectrum calculated from third-order perturbation theory (Figure 7.2c) 

the full 6-fold multiplicity of the set of four peaks is observed.  The most striking 

feature of this spectrum is the strong asymmetry associated with this splitting of these 

multiplets.  In this tightly coupled regime, the second multiplet collapses to what 

would, at a resolution of 0.5 Hz, appear to be a singlet.  In the perturbation theory 

calculation there are six distinct transition frequencies associates with this multiplet 

but the splitting is very small and difficult to observe at the resolution (0.16 Hz) of the 

calculated spectrum. 
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Comparison of the calculated perturbation theory spectra (Figure 7.2a-c) with 

the spectrum calculated using a density matrix simulation (Figure 7.2d) illustrates, 

definitively, that a third-order calculation is necessary to accurately model this 

system.  A fourth-order energy term was calculated and compared with the density 

matrix simulation.  While the transition frequencies calculated from fourth-order 

perturbation theory provide better agreement with those of the density matrix 

simulation, the fourth-order contribution is very small and no significant difference in 

the overall characteristics of the spectrum is observed between third- and fourth-order.  

Therefore we conclude that, for this specific case, the addition of the fourth-order 

term is not particularly informative. 

Now consider the case of 14N1H4
+, where we have an I = 1 nucleus coupled to 

four I = 1/2 nuclei with a coupling constant of 1J(14N,1H)  = 52.75 Hz.  In Figure 7.3 

we present calculated and simulated 1H NMR spectra of this ion acquired in a field of 

54 μT.   

 

 

Figure 7.3  Calculated and simulated 1H NMR spectra of 14N1H4
+ in a field of 54 μT with 

1J(14N,1H) = 52.75 Hz using: (a) first-order perturbation theory, (b) second-

order perturbation theory, (c) third-order perturbation theory and (d) a density 

matrix simulation. 

 
As with the borohydride anion, a dramatic increase in spectral complexity is 

observed as we shift from the first-order perturbation theory calculation, shown in 

Figure 7.3a, to the second-order calculation, shown in Figure 7.3b.  In the second-
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order calculation, the peaks corresponding to the m = ±1 spin states of the 14N nucleus 

are quartets with a uniform splitting, while the m = 0 spin state is a singlet.  14N1H4
+ in 

a field of 54 μT and with 1J(1H,14N) = 52.75 Hz, is not as strongly coupled as the 
11B1H¯ case presented in Figure 7.2 and so we observe very little difference between 

the spectra calculated using second-order perturbation theory (Figure 7.3b) and third-

order perturbation theory (Figure 7.3c).  Indeed the form of the density matrix 

simulation in Figure 7.3d indicates that this system is well described by second-order 

perturbation theory. 

 
7.3.4. Determining the Sign of Indirect Spin-Spin Coupling Constants  

 
At the Colloque Ampère XIV in 1967, Georges-J. Béné showed a portion of a 

frequency domain 1H NMR spectrum of NH4NO3 acquired in the Earth’s magnetic 

field and suggested that with improved resolution one could deduce the sign of 
1J(14N,1H) based on corrections to frequencies calculated using third-order 

perturbation theory [85].  However, density matrix simulations of the 1H NMR 

spectrum of a strongly coupled 14N1H4
+ spin system in the Earth’s magnetic field 

show that the form of this spectrum is independent of the absolute sign of 1J(14N,1H).   

We believe that this misconception came about because of an error in W.A. 

Anderson’s original expression for the third order perturbation energy (appendix II in 

reference [83]).  NMR spectra calculated from this third order energy term exhibit 

spectral features which are dependent on the absolute sign of 1J(A,B) for strongly 

coupled ABn systems, where n > 1, A is a quadrupolar (I > ½) nucleus and B is the 

observed spin ½ nucleus.  For example, in the case of 11B1H4
¯, discussed in section 

7.3.3, the asymmetry of the splitting of the multiplets which correspond to the m = ±½ 

spin states of the 11B nucleus depends on the sign of J if the spectra are calculated 

using Anderson’s expression for the third-order perturbation energy.  However, 

density matrix simulations show that the form of this spectrum is independent of the 

sign of J and 1H NMR spectra of this system calculated using the third-order energy 

term presented in Equation 7-17, are also independent of the sign of J.  Indeed we find 

that third-order perturbation theory, or for that matter exact analysis, will not yield the 

sign any indirect spin-spin coupling constant in an AB spin system regardless of the 

spin of nucleus “A” and nucleus “B”.  This is further illustrated by considering the 
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exact expressions for the transition frequencies (Equations 7-24) for the coupled 11B – 
1H system discussed in section 7.3.2 
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Equations 7-24 show that T16(-J) = T38(J) and T52(-J) = T74(J).  Therefore a 

change in the sign of J will have no observable effect on the spectrum regardless of 

the relative strength of J and (νH - νB).   

A theorem which states that the sign of any indirect spin-spin coupling 

constant cannot be determined by NMR in systems of only two groups of spins with 

no additional coupling present is presented and proved by Corio in his classic text on 

high-resolution NMR [86].  The absolute sign of J can only be determined by NMR if 

there is another interaction present such as residual dipolar coupling in an aligned 

medium [87]. 

It is possible, however, to use EFNMR to determine the relative sign of J in 

systems of more than two groups of magnetically equivalent spins.  This application 

was discussed by Béné in his review of EFNMR in 1980 [20]. 

 

7.3.5. Analysis of an Experimental Spectrum of NH4NO3 

 

Consider the 1H NMR spectrum of an aqueous solution of ammonium nitrate.  

In the Earth’s magnetic field, this spin system is an AB4 spin-system where A = 14N 

has a nuclear spin, I = 1 and the B spins are the four magnetically equivalent 1H 

nuclei. In this case the natural abundance of 14N and 1H (99.6% and 99.9%, 

respectively) is such that no other isotopes of N and H need to be considered.  This 

particular spin system was first investigated in the Earth’s field by Brown and 
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Thompson [3] who analyzed the free-induction decay and compared the observed 

frequency components with a spectrum calculated using second-order perturbation 

theory.  The ammonium ion was studied at high-field by Wasylishen and Friedrich in 

1984 [88]. 

 

 

Figure 7.4 1H NMR spectrum of 500 ml 8 M NH4NO3 in 2 M HCl.  Directly below the 

experimental spectrum is a spectrum calculated from second-order perturbation 

theory using 1J(14N,1H) = 52.75 Hz  and BE = 53.3 μT.  Very good agreement 

between the observed and calculated spectra is observed.  For comparison, a 

spectrum calculated using first-order perturbation theory is shown below the 

second-order perturbation theory result. 

 

Figure 7.4 presents a 1H EFNMR spectrum acquired of a 500 ml solution of 8 

M NH4NO3 in 2 M HCl.  This spectrum was acquired using 49 scans in a total 

experiment time of 12 minutes.  Directly below the experimental spectrum is a 1H 

NMR spectrum calculated using second-order perturbation theory with 1J(14N,1H) = 

52.75 Hz, BE = 53.3 μT and a line broadening of 0.16 Hz.  Below the second-order 

result is a spectrum calculated using first-order perturbation theory and the same 

coupling and field strength parameters.  In this case 1J(14N,1H) is 2.5 % of the 

difference in Larmor frequency between 14N and 1H (2105.5 Hz).  Note that a portion 

of a 1H NMR spectrum of NH4NO3 acquired in the Earth’s magnetic field was 

previously presented, in 1967, by Georges-J. Béné [7].  The spectrum presented in 

Figure 7.4 is of comparable quality to this previously reported result. 

By inspection, we see that the features of this 14N1H4 spectrum are well 
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characterized by second-order perturbation theory.  The central peak in the observed 

spectrum is split into a dominant solvent proton peak and a weaker peak, shifted to a 

slightly higher frequency, which corresponds to the spin state m = 0 of the 14N 

nucleus.  The two multiplets, corresponding to the m = ±1 spin states of the 14N 

nucleus, consist of four peaks and are not symmetric about the central peak but rather 

are shifted to higher frequency relative to the first-order peak positions of νΗ ± J, 

where νΗ is the proton Larmor frequency. 

 

 

Figure 7.5  A 1H NMR spectrum of the solution of 8M NH4NO3 in 2 M HCl acquired at 

600 MHz on a standard high resolution Varian spectrometer.  As expected, this 

is a first-order spectrum with a uniform splitting of 52.5 Hz. 

 

For comparison with Figure 7.4, a high resolution 1H NMR spectrum of the 

ammonium ion was acquired at 600 MHz by Dr. John Ryan of Victoria University of 

Wellington on a laboratory Varian spectrometer.  This spectrum, presented in Figure 

7.5, is a classic first-order spectrum with 1J(1H,14N) = 52.5 Hz. 

 
7.3.6. Analysis of an Experimental Spectrum of NaBH4 

 
An experimental 1H EFNMR spectrum of the borohydride anion in an aqueous 

solution of sodium borohydride and sodium hydroxide is presented in Figure 7.6.   

This system was first studied at high-field by Smith et al. in 1977 [89].  In this 

case we will be focusing our attention on two different species, 11BH4
¯ where 11B has 

a nuclear spin of I = 3/2 and a natural abundance of approximately 80% as well as 
10BH4

¯ where 10B has a nuclear spin of I = 3 and a natural abundance of approximately 
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20%.  Prior to taking the magnitude of the spectrum in Figure 7.6, a complex 

Lorentzian line, centred about 2269.4 Hz and with a 1.1 Hz linewidth, was subtracted 

from the complex experimental spectrum to suppress the dominant central peak which 

corresponds to the solvent protons.  This was done so that all of the BH4 multiplets 

could be easily indentified in the magnitude spectrum.  The central peak in the 

resultant spectrum is the unsuppressed portion of this solvent proton peak.  Due to 

imperfections in the B1 transceiver coil, the spectrum could not be correctly phased 

over the full bandwidth.  Portions of the real spectrum, which have been phased 

locally, are shown in the insets to Figure 7.6 to illustrate the spectral resolution 

available in the complex spectrum. 

 

 

Figure 7.6   1H NMR spectrum of 500 ml 4.5 M NaBH4 in 8 M NaOH.  Below the 

experimental spectrum is a spectrum calculated using third-order perturbation 

theory with 1J(11B,1H) = 80.9 Hz  1J(10B,1H) = 27. 1 Hz and BE = 53.3 μT, 

where the contributions from 11BH4 and 10BH4 are weighted by 80% and 20%, 

respectively.  Inset into the figure are three regions of the real spectrum which 

have been phased locally.   
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Below the experimental spectrum is a spectrum calculated using third-order 

perturbation theory with 1J(11B,1H) = 80.9 Hz  1J(10B,1H) = 27. 1 Hz, BE = 53.3 mT 

and a linewidth of 0.16 Hz, where the contributions from 11BH4 and 10BH4 are 

weighted by 80% and 20%, respectively.  As explored in section 7.3.2, the 11B1H4 

portion of the spectrum, whose indirect spin-spin coupling constant is 5.2% of the 

difference in Larmor frequency between 1H and 11B, can be described by third-order 

perturbation theory, where the splitting of the four multiplets is strongly dependent on 

the spin state of the 11B nucleus.  T2 broadening gives the multiplet at 2235 Hz the 

appearance of a singlet; however the linewidth of this peak is consistent with the 

splitting of the multiplet predicted by third-order perturbation theory.   

The contribution from 10BH4
¯ is a set of seven multiplets, where the central 

multiplet is largely obscured by the solvent peak.   Under the conditions of this 

experimental spectrum, 1J(10B,1H) is only 1.3% of the difference in Larmor frequency 

between 10B (243.8 Hz) and 1H (2269.4 Hz) and so it is anticipated that second-order 

perturbation theory would be sufficient to describe this portion of the spectrum.  

While the resolution of the experimental spectrum is insufficient to resolve individual 

peaks within the seven multiplets, the width of these peaks corresponds well with the 

spectrum calculated using third-order perturbation theory.  

For comparison, a high resolution spectrum of the sodium borohydride 

solution was acquired at 600 MHz by Dr. John Ryan on a laboratory Varian 

spectrometer.  This spectrum, presented in Figure 7.7, is a first-order spectrum with 
1J(1H,11B) = 80.7 Hz and 1J(1H,10B) = 27.1 Hz. 

 

 

Figure 7.7   A 1H NMR spectrum of the BH4 anion acquired at 600 MHz on a Varian 

spectrometer.  This is a classic first-order spectrum with 1J(1H,11B) = 80.7 Hz 

and 1J(1H,10B) = 27.1 Hz. 
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CHAPTER 8. Multi-dimensional EFNMR Spectroscopy 

 

 

8.1. Introduction 

 

The suggestion that conventional 1D NMR spectroscopy could be expanded to 

incorporate multiple dimensions, i.e. one or more indirect evolution dimensions as 

well as a directly detected dimension, was first put forward by Jean Jeener at the 

Ampere international summer school in 1971 [90].  Although Jeener never published 

this idea, it was picked up by Ernst and co-workers who analyzed this experiment in 

greater detail and immediately recognized its potential for a wide range of 

applications [91].  The subsequent development of high-resolution, multi-dimensional 

NMR spectroscopy by Ernst earned him the Nobel Prize in Chemistry in 1991.   

Modern multi-dimensional NMR spectroscopy is an essential tool used for a 

wide range of applications in Chemistry, Physics, Biology and Medicine [82; 92].  In 

addition, many of the ideas and methods of multi-dimensional NMR spectroscopy 

were instrumental to the development of multi-dimensional magnetic resonance 

imaging (MRI).  

High-resolution 2D NMR spectroscopy was first performed in the Earth’s 

magnetic field by Jeremy Robinson, Dr. Andrew Coy and co-workers at Victoria 

University of Wellington and Magritek Ltd. in 2006 [60].  The development of multi-

dimensional Earth’s field NMR spectroscopy presented in this thesis is a continuation 

of this work and we gratefully acknowledge the helpful advice and guidance provided 

by both Jeremy and Andrew at the outset of this project. 
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8.1.1. 2D Correlation Spectroscopy (COSY) 

 

Modern multi-dimensional NMR spectroscopy includes a wide range of 

correlation and exchange pulse sequences.  In this chapter we will focus on the 

original experiment proposed by Jeener [90] and later explored in greater detail by Ad 

Bax and coworkers [92; 93].  This is the so-called correlation spectroscopy, or COSY, 

experiment.  

 

 

Figure 8.1   Earth's field NMR COSY pulse sequence with prepolarization (Bpolz) and/or 

DNP irradiation (B1RF). 

 

The COSY experiment consists of two 90x pulses, separated by an evolution 

time, t1, as illustrated in the pulse sequence in Figure 8.1.  In order to understand this 

experiment we divide it into four regions: preparation, evolution, mixing and 

detection.  In the Earth’s field NMR version of this pulse sequence, the preparation 

period includes the prepolarization and/or DNP irradiation, which enhances our 

available longitudinal magnetization, followed by the first 90x pulse, which tips the 

longitudinal magnetization into the transverse plane.  Evolution occurs during the 

delay period, t1, between the two 90x pulses.  Mixing is achieved by the second 90x 

pulse.  Finally, detection occurs as a function of the time t2 following the mixing 

pulse.  The experiment is repeated as a function of the evolution delay and so we 
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obtain a two dimensional matrix, S(t2,t1), which spans both the direct (t2) and the 

indirect (t1) dimensions.  A two-dimensional Fourier transform of this dataset yields a 

2D spectrum, s(f2,f1), with a direct (f2) and an indirect (f1) frequency dimension. 

To further explore the COSY pulse sequence we consider the simplest case of 

two heteronuclei with Larmor frequencies ω1 = γ1BE and ω2 = γ2BE, respectively.  The 

two nuclei are coupled via an indirect spin-spin coupling constant 2πJ.  This coupling 

constant satisfies the weak coupling condition, i.e. 2πJ << |ω1 – ω2|, and so the secular 

approximation can be applied to the interaction Hamiltonian (Eq. 8-1). 

 

212211212211 22 zzzzzz JJ IIIIIIII πωωπωω +→⋅+= ----H  

8-1 

 

 

Figure 8.2  A schematic of a 2D COSY spectrum of two J-coupled spin-1/2 nuclei. 

 

Figure 8.2 presents a schematic of a 2D COSY spectrum of two J-coupled 

spin-1/2 nuclei.  The diagonal peaks (solid circles) correspond to magnetization which 

was associated with the same spin during both evolution (t1) and detection (t2) and so 

experienced the same Larmor frequency in both time periods.  The off-diagonal peaks 

(open circles) arise from magnetization which originated on one spin during the 

evolution period (t1) and then was transferred to the other spin by the mixing pulse 

and so experienced a different Larmor frequency during the detection period (t2).  
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This transfer of magnetization occurs only if there is a coupling between the two spins 

and so off-diagonal peaks in a COSY spectrum can be used to determine connectivity 

in a molecule. 

In order to better understand the form of the COSY spectrum we present an 

analytical calculation for the simple case of two weakly coupled spins.  For 

convenience and tractability, we use the density matrix formalism to explore the 

evolution of the spin system throughout the pulse sequence in Figure 8.1 and under 

the influence of the interaction Hamiltonian in Eq. 8-1 [17; 94].  Recall that at thermal 

equilibrium (or in the case of Earth’s field NMR, directly following prepolarization or 

DNP signal enhancement) the magnetization is aligned with the static field.  

Therefore the density matrix prior to the first 90x pulse, ρ(0), is proportional to Iz1 + 

Iz2.  The application of a broadband 90x pulse tips this magnetization into the 

transverse plane, as indicated by Eq. 8-2.  This pulse acts on both of the spins. 
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Following the first 90x pulse, the system evolves under the influence of Eq. 

8-1 for a period of time, t1.  Having applied the secular approximation to the 

interaction Hamiltonian, the Zeeman and the indirect spin-spin coupling terms 

commute.  Therefore we can apply these terms sequentially.   

First consider the indirect spin-spin coupling interaction, 2πJIz1Iz2.  The 

evolution of the Iy1 and Ix1 operators under the influence of this interaction is 

illustrated in the precession diagrams presented in Figure 8.3(a) and Figure 8.3(b).  

With a characteristic frequency of πJ, Iy1 evolves into 2Ix1Iz2 and Ix1 evolves into 

2Iy1Iz2.   
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Next we apply the Zeeman terms of the interaction Hamiltonian: -ω1Iz1 -ω2Iz2 
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for the time period, t1. 

 

⎯⎯⎯⎯ →⎯ −− 2211 zz II ωω  

( ) ( ) ( ) ( )[ ] ( )

( ) ( )( ) ( ) ( )( )[ ] ( )112212212111111

1122122111111

sinsincos2sincos2

cossincossincos

Jttttt

Jttttt

yxzzyx

xyxy

πωωωω

πωωωω

IIIIII

IIII

−+−−

+++

 

8-4 

 

During the evolution (t1) portion of the pulse sequence (Eq. 8-4) we see that 

the bilinear J-coupling interaction (2πJIz1Iz2) creates a series of one- and two-spin 

coherences which are tagged with an evolution under the influence of either ω1 or ω2 

by means of the Zeeman interaction.   

 

a) b) 

  

 

c) 

 

 

Figure 8.3   

Precession diagrams in the rotating frame for 

a system of two J-coupled spin-1/2 nuclei 

under the influence of the bilinear secular J-

coupling operator in (a) and (b) and a B1 

pulse (applied along x) in (c). 

(After Callaghan [17]) 

 

Following our t1 evolution, we apply a second broadband 90x pulse using the 

operator: -π/2(Ix1 + Ix2).  The action of this pulse is described by the precession 

diagram in Figure 8.3(c).  This second 90x pulse is the mixing step in which 

magnetization is transferred between spins.  For example, the final coherence in Eq. 
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8-4 evolves from Iz1Iy2 to Iy1Iz2 under the influence of the mixing pulse. 
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In order to simplify the problem, we now discard all terms appearing in Eq. 

8-5 which cannot produce observable (single-quantum) coherences during the final 

evolution period.  This includes all double quantum coherences (Ix1Iy2 or Iy1Ix2) and 

pure longitudinal magnetization (Iz1 and Iz2).  The remaining observable terms are 

listed in Eq. 8-6. 
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As with our first evolution step (Eq. 8-3 and Eq. 8-4) we apply the J-coupling 

and Zeeman terms sequentially during the detection period.  First, we evolve under 

the influence of the J-coupling term for a time period t2. 
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Again we discard all but those terms which can give rise to signal-quantum 
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coherences under the influence of the Zeeman interaction.  The remaining terms are 

listed in Eq. 8-8. 
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Finally, we evolve under the influence of the Zeeman terms. 
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The first four terms in Eq. 8-9 give rise to the diagonal peaks in the two-

dimensional spectrum (Figure 8.2).  These coherences are tagged with the same 

Larmor frequency in both the t1 and t2 time periods and so appear near the diagonal in 

the final spectrum.  The small splitting between the peaks grouped on the diagonal is 

equal to the coupling constant, J and arises from the sin(πJt) and cos(πJt) factors in 

Eq. 8-9.  The final four terms in Eq. 8-9 give rise to the off-diagonal peaks in the 

COSY spectrum.  In this case, the magnetization originates on one spin during the 

evolution period (t1) but is transferred to the other spin by the mixing pulse and so 

experiences a different Larmor frequency in the detection period (t2).  These off-

diagonal peaks exhibit anti-phase behaviour because of the sin(πJt) factors.  In 

contrast, the diagonal peaks are in phase because these terms are modulated by 

cos(πJt).  This off-diagonal anti-phase behaviour can be a problem if the resolution of 

the spectrum is insufficient to resolve these peaks.  In this case cancellation can occur.  

However, clever phase cycling pulse sequences can use this anti-phase behaviour to 

advantage to extract additional coupling information from COSY spectra. 

It is evident from the calculation above that the transfer of magnetization will 
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not occur under the sole influence of the Zeeman interaction.  It is the J-coupling 

which creates the two-spin coherences which are required for magnetization transfer 

via the mixing pulse.  Therefore the presence of an off-diagonal peak at ( )22
1

12
1 , ωω ππ  

in the COSY spectrum indicates the presence of coupling between the two spins with 

Larmor frequencies of ω1 and ω2, respectively. 

 

8.1.2. 2D Density Matrix Simulations 

 

Analytical calculations of COSY spectra, like the one presented above, rapidly 

become intractable as more spins are added or, as is the case in many EFNMR COSY 

experiments, the weak coupling condition is violated.  As we have seen in previous 

chapters, strong coupling greatly complicates 1D EFNMR spectra and this is equally 

the case for multi-dimensional spectra.  In the case of strong coupling, the full I1· I2 

coupling term must be applied to the system, not just the more manageable Iz1· Iz2 

secular term.   In addition, the Zeeman and the indirect spin-spin coupling terms do 

not commute and so cannot be applied independently to the density matrix.  

Consequently, our theoretical investigation of multi-dimensional ENFMR COSY 

experiments will be carried out using an extended version of the density matrix 

simulation detailed in Chapter 6.   

Adding an indirect evolution dimension to the density matrix simulation is 

relatively straightforward.  Following the 90x excitation pulse, a period of t1 evolution 

is added in successive Δt1 evolution steps: Δt1, 2Δt1, 3Δt1, etc...  Each evolution step is 

achieved by means of m applications of the evolution operator, where m is given by 

Eq. 8-10, Δt is the time step of the evolution operator and Δt1 is the time step in the 

indirect dimension. Note that m must be an integer. 

 

t

t
m

Δ
Δ

= 1  

8-10 

 

Following this evolution period, a second 90x pulse is applied to the system by 

means of the same rotation operator used for the first excitation pulse.  The evolution 
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of the system as a function of the sampling time, Δt2, and the subsequent application 

of the observation operator are carried out in an identical manner to the 1D 

simulation.  This entire process is then repeated for successively longer t1 evolution 

periods so that we obtain a 2D time domain dataset, S(t2,t1) which can be Fourier 

transformed to obtain the COSY spectrum, s(f2, f1).   

 

 

8.2. 2D COSY in the Earth’s Field 

 

8.2.1. Experimental Considerations 

 

There are two main experimental considerations which need to be addressed 

before COSY can be successfully implemented on a Terranova-MRI Earth’s field 

NMR system.  The first is a hardware-specific issue regarding the actual phase and 

duration of the ULF excitation pulses.  The second is a more general concern 

regarding aliasing in the indirectly detected dimension.  Together these issues put 

strong constraints on the experimental parameters which must be used to successfully 

obtain a COSY spectrum in the Earth’s field. 

First we consider the problem of ULF pulse duration and phase.  The difficulty 

arises from the question of what happens when an ULF pulse which, due to a 

combination of its initial phase, frequency and duration, terminates at a phase which 

is not a multiple of π radians and hence when the amplitude of the ULF pulse is finite.  

This pulse is driven by an oscillating output voltage from the spectrometer.  The input 

signal to the B1 coil will stop after the fixed pulse duration regardless of the phase of 

the pulse at that time.  However, the response of the B1 coil to the abrupt termination 

of the pulse at a voltage other than zero is not well understood.  It is not unreasonable 

to assume that there will be some finite time during which the B1 irradiation continues 

as the output goes to zero.  This will introduce an uncertainty in the duration and 

therefore the flip angle of this pulse. 

In high field NMR, where the Larmor frequencies are on the order of 100s of 

MHz and the pulse durations are on the order of μs, this is unlikely to be a problem.  

Under these conditions the Larmor period is orders of magnitude shorter than the 
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pulse duration and so any uncertainty in the duration of the pulse caused by the phase 

at which the pulse terminates is minimal compared to the overall pulse duration.  

Under the conditions of Earth’s field NMR, the Larmor period is of the same order of 

magnitude as the pulse duration.  Therefore, if there is uncertainty in the way in which 

the pulse terminates it will translate into a significant uncertainty in the duration of the 

pulse. 

In order to ensure that the pulse duration and phase is consistent for each t1 

time step, we must chose the initial phase of the pulse such that the final phase is a 

multiple of π radians and we must require that the time step in the t1 dimension, Δt1, is 

an integer multiple of half the Larmor period so that this final pulse phase remains 

fixed throughout the COSY experiment.  If these steps are not taken, the 2D COSY 

spectrum suffers from significant artifacts, often in the form of abnormal fold-back in 

the f1 dimension.  

The second issue to be considered, when setting up a COSY experiment in the 

Earth’s field, is that of under-sampling t1.  In a COSY experiment, the bandwidth in 

the indirect dimension is determined by the inverse of the time step in the t1 

dimension, (Δt1)
-1.  In order to satisfy Nyquist in the indirect dimension, a Δt1 of 200 

μs would be required in a typical 1H EFNMR COSY experiment.  The resolution of 

the spectrum is given by (N1Δt1)
-1, where N1 is the number of steps in the t1 

dimension.  16384 t1 steps are required to obtain a resolution of 0.3 Hz in the indirect 

dimension if Δt1 = 200 μs.  Each t1 step requires a full t2 transient to be acquired and 

therefore the time necessary to obtain 16384 t1 steps is prohibitively long.  In order to 

acquire 1H EFNMR COSY data in a reasonable period of time we under-sample t1.  

This under-sampling causes aliasing in the f1 dimension.  However, if Δt1 is chosen 

carefully we can ensure that the aliasing does not result in a superposition of peaks in 

the final spectrum and therefore prevent information from being lost. 

The first step to determining the necessary parameters to avoid fold-back 

artifacts is to choose an appropriate minimum bandwidth which is twice the 

bandwidth of the region of interest in the 1D EFNMR spectrum.  For example, the 

minimum bandwidth of a 1H – 19F EFNMR spectrum of a sample such as 

trifluoroethanol in a field of 54 μT is twice the difference in Larmor frequency of 1H 

and 19F (2 * 136 Hz).  In practice we increase the minimum bandwidth by 15 – 20% 
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to ensure that we have allowed for all peaks in the spectrum. This minimum 

bandwidth can be used to define a maximum time step, Δt1max (3.1 ms in this case).   

In order to ensure that there is no overlap of folded peaks in the indirect 

dimension, the frequencies at the upper and lower extremes of the spectral window 

must be reflected into the same region of the 2D spectrum, i.e. the entire region of 

interest must appear in the positive region or the negative region of f1 in the final 

spectrum.  Take, for example, a spectrum ranging from Fa to Fb which is folded into a 

final bandwidth, Δf, ranging from –½ Δf to +½Δf.  Both Fa and Fb are much greater 

than Δf but (Fb – Fa) is less than Δf.  Peaks which occur at a frequency F in the true 

spectrum will appear at a frequency, F', in the “reduced” spectrum according to Eq. 

8-11, where n is an integer given by Eq. 8-12 and round() indicates Swedish 

rounding. 

 

fnFF Δ−='  
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Using Eqs. 8-11 and 8-12, the folded frequencies can be calculated for the 

extremities of the true spectrum: Fa and Fb.  If the sign of the folded frequencies, Fa' 

and Fb', are the same then the aliasing condition has been met and the minimum 

bandwidth can be used.  If the signs are opposite, the aliasing condition is violated 

and this calculation needs to be repeated for a larger bandwidth. In this manner we 

iteratively increase the bandwidth until the aliasing condition is met.  The minimum 

bandwidth at which the aliasing condition is met, Δf*, is used to calculate the dwell 

time in the t1 dimension: Δt1 = (Δf*)-1. 

Recall that the pulse phase problem discussed above requires that Δt1 be a half-

integer multiple of the period of the transmit frequency, Ftransmit.  Therefore the 

transmit frequency must be calculated from the chosen Δt1 according to Eq. 8-13 

where n is calculated from Eq. 8-12 with F = Fa (or Fb) and Δf = Δf*. 
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Having set the bandwidth in the f1 dimension, the spectral resolution in this 

dimension is determined by the number of t1 steps, N1. 

Once the 2D COSY experiment is executed with these carefully chosen 

parameters the resultant 2D matrix of time domain data, S(t2,t1), is Fourier 

transformed to obtain the 2D spectrum, s(f2, f1).  This spectrum will have four 

quadrants corresponding to positive and negative frequencies in f1 and f2.  First we 

extract the desired bandwidth from the positive region of the f2 dimension.  Since this 

is the directly detected dimension it requires no further processing and the frequency 

axis is calculated in the same manner as for a 1D EFNMR spectrum.   

The indirect dimension is slightly more complicated.  First we must determine 

which frequency region, the positive or the negative, needs to be extracted.  If Fa' and 

Fb' were both positive then the positive region in f1 is extracted.  If these folded 

frequencies were negative then the negative region in f1 is extracted.  If the negative 

portion of the spectrum is extracted, the data set needs to be reflected about the f2 axis.  

However, if the positive portion of the spectrum is extracted no reflection is 

necessary.   
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Eq. 8-14 presents the maximum and minimum values of the f1 frequency axis 

for both the case of positive folded frequencies and negative folded frequencies. 

Ftransmit and Fa' (in Eq. 8-14) are calculated from Eq. 8-11, Eq. 8-12 and Eq. 

8-13.  The number of points in the f1 dimension in the final spectrum is ½N1.  

Ideally, we would phase the 2D complex COSY spectrum so as to observe the 

anti-phase nature of the off-diagonal peaks.  However, in practice, imperfections of 
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the transceiver coil and long minimum t1 times (> 20 ms due to the ring-down of the 

B1 coil) result in a phase roll across the 2D spectrum which is difficult to remove.  

Therefore we observe the magnitude spectrum and any phase information is lost. 

In the original Earth’s field NMR COSY work presented by Robinson et al. 

[60], the sensitivity and resolution of the measurements were limited by (a) significant 

ULF noise interference, particularly at multiples of 50 Hz, the mains frequency 

harmonics, (b) local spatial inhomogeneities in the Earth’s field and (c) temporal 

variations in the Earth’s field over the 12+ hour measurements.  The resolution and 

sensitivity of the Earth’s field COSY experiments presented in this thesis are 

significantly improved with respect to these early experiments through the combined 

use of a Faraday screen, first-order shimming and field stabilization, as described in 

Chapter 4.   

 

8.2.2. Monofluorobenzene 

 

Consider the 1D 1H EFNMR spectrum of monofluorobenzene (C6H5F), 

presented in Figure 8.4.  This rather noisy spectrum appears to be a doublet with a 

single 19F-1H indirect spin-spin coupling constant of 5.8 Hz and a linewidth of around 

1 Hz. 

 

 

Figure 8.4   Complex 1H EFNMR spectrum of monofluorobenzene.  The real part is shown 

in black and the imaginary part is shown in gray.  The average splitting is 5.8 

Hz.  
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Figure 8.5 A schematic of the monofluorobenzene molecule. 

 

The monofluorobenzene molecule is pictured in Figure 8.5.  Inspection of this 

molecule suggests that there should be a range of both homonuclear and heteronuclear 

indirect spin-spin coupling constants associated with it.  However, the spectrum in 

Figure 8.4 appears to contain only a single coupling constant.   

The apparent simplicity of a 1H NMR monofluorobenzene spectrum acquired 

in the Earth’s field was first highlighted by Elliot and Schumaker in 1957, who put 

forward the suggestion that the observed spectrum was the result of an “average” of 

the 1H-19F couplings within the molecule [26].  Subsequent high-field observations of 

the 1H NMR spectrum of monofluorobenzene by Bak, Schoolery and Williams [27] 

showed that there were in fact three unique 1H-19F spin-spin coupling constants 

present in this molecule.  This finding suggested that either there was a strong 

dependence of J on field strength or the “average” coupling interpretation of Elliot 

and Schumaker was incorrect.  In 1962, Thompson and Brown wrote a letter to the 

Journal of Chemical Physics [5] suggesting that a detailed study of the frequency 

components of a 1H EFNMR FID acquired of monofluorobenzene did, in fact, yield a 

range of coupling constants in accordance with the findings, at high field, by Bak, 

Schoolery and Williams [27].   

A high-resolution 1H EFNMR COSY spectrum acquired from 300 mL of 

monofluorobenzene is presented in Figure 8.6.   Only the 1H spins are excited and 

detected in this measurement and so we observe only 1H diagonal peaks with no off-

diagonal components apparent in the spectrum.  This corresponds to the top right-

hand quadrant in the schematic in Figure 8.2. 



 
CHAPTER 8.  Multi-dimensional EFNMR Spectroscopy 165 

  

 

Figure 8.6   High-resolution EFNMR COSY acquired from 300 mL of pure 

monofluorobenzene.  This spectrum contains only the 1H – 1H quadrant of the 

full COSY spectrum (top right peaks in the schematic in Figure 8.2). 

 

 

Figure 8.7 EFNMR COSY spectrum (1H – 1H quadrant) calculated using a density matrix 

simulation of monofluorobenzene with a single "average" coupling constant of 

5.8 Hz and a line-broadening of 0.7 Hz. 
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Figure 8.7 presents a simulated COSY spectrum of monofluorobenzene 

carried out with a single 1H-19F coupling constant of 5.8 Hz and a line-broadening of 

0.7 Hz.  While the 1D projections of the simulation in Figure 8.7 are similar to those 

of the experimental spectrum in Figure 8.6, the features of the 2D spectrum are 

significantly different.  It is clear from a comparison of these spectra that the width of 

the peaks observed in the 1D 1H EFNMR spectrum (Figure 8.4) is not due to line-

broadening but rather the combined effect of a range of coupling constants.  

 

 

Figure 8.8  Density matrix simulation of a 2D EFNMR COSY (1H – 1H quadrant) of 

monofluorobenzene calculated using the full range of homonuclear and 

heteronuclear J-coupling constants reported in reference [95] (see Table 8.1). 

 

 Figure 8.8 presents a 1H EFNMR COSY of monofluorobenzene calculated 

with a density matrix simulation using the full complement of indirect spin-spin 

coupling constants (both homonuclear and heteronuclear) measured at high-field by 

Castellano et al. [95] (see Table 8.1).  Some of the high-resolution structure observed 

in the density matrix simulation is not fully resolved in the experiment (Figure 8.6) 

but we see that the overall structure of the simulated spectrum in Figure 8.8 is in 

much better agreement with experiment than the spectrum in Figure 8.7 which was 

simulated with a single “average” coupling constant.   
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Table 8.1 Indirect spin-spin coupling constants (in Hz) used for the simulated spectrum 

of monofluorobenzene in Figure 8.8 [95]. 

3J(H,F) 4J(H,F) 5J(H,F) 3J(H,H) 3J(H,H) 4J(H,H) 4J(H,H) 5J(H,H) 

9.084 5.742 0.236 8.361 7.393 2.766 1.073 0.429 

 
 
8.2.3. 1,4-difluorobenzene 

 

The spectra presented in the previous section contain only a small portion of a 

full COSY spectrum, i.e. only the 1H peaks occurring directly along the diagonal (top 

right corner in the schematic in Figure 8.2).  The full 2D COSY spectrum of 

monofluorobenzene cannot be observed because the SNR of the 19F signal is very low 

due to the number of peaks associated with it.  In order to observe a full 2D COSY 

spectrum, we consider instead 1,4-difluorobenzene (Figure 8.9).   

 

 

Figure 8.9  A schematic of the 1,4-difluorobenzene molecule. 

The difluorobenzene molecule contains a range of hetero- and homonuclear J-

coupling constants which have been measured at high field by Paterson and Wells 

[96].  The three bond heteronuclear indirect spin-spin coupling constant, 3J(1H,19F) = 

7.6 Hz, and the four bond heteronuclear indirect spin-spin coupling constant, 
4J(1H,19F) = 4.6 Hz, are significantly different.  Therefore, although the protons, and 

similarly the fluorine nuclei, are chemically equivalent, they are not magnetically 

equivalent.  This means that any calculations of spectra of this molecule must include 

the homonuclear proton-proton and fluorine-fluorine couplings. 
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Figure 8.10 2D 1H - 19F COSY spectrum acquired from 500 mL 1,4-difluorobenzene in the 

Earth's magnetic field. 

 

 

Figure 8.11  2D 1H - 19F COSY spectrum of 1,4-difluorobenzene calculated with a density 

matrix simulations and the coupling constants from reference [96]. 
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Figure 8.10 presents a full 2D 1H – 19F EFNMR COSY measurement of 500 

mL of 1,4-difluorobenzene.  An analogous spectrum, calculated using a density 

matrix simulation and the coupling constants from reference [96] is presented in 

Figure 8.11 for comparison.  Very good agreement between the experimental and 

calculated spectra is observed. 

A 2D EFNMR COSY of this molecule was presented by Robinson et al. in 

2006 [60].  The result in Figure 8.10 represents an improvement over this previously 

published result in terms of resolution and SNR due to the application of the apparatus 

and methodology developments (first order shimming, ULF noise screening and field 

stabilization) outlined in Chapter 4.  However, we observe that the SNR of this 

measurement (which was acquired over a period of 15 hours) is not particularly high.  

In order to improve the performance of this experiment we must utilize the signal 

enhancement techniques explored in Chapter 5. 

 

 

8.3. 2D COSY in the Earth’s Field with DNP 

 

In Chapter 5 we saw that dynamic nuclear polarization (DNP) can be used in 

EFNMR to achieve order of magnitude sensitivity enhancements, relative to 

prepolarization using the standard Terranova-MRI system, for samples on the order of 

100 mL doped with about 1 mM of 4-oxo-TEMPO.  As shown in the pulse sequence 

in Figure 8.1, DNP can be added to a COSY sequence in the preparation stage without 

changing any other aspects of the pulse sequence. 

 

 

Figure 8.12  A schematic of the 2,2,2-trifluoroethanol molecule 

 

Consider the 2,2,2-trifluoroethanol molecule pictured in Figure 8.12.  The 

hydroxyl proton is in rapid chemical exchange and so experiences, on average, no 

indirect spin-spin couplings.  NMR spectra of this molecule can be calculated using a 



 
170 CHAPTER 8.  Multi-dimensional EFNMR Spectroscopy 
 

 

single heteronuclear indirect spin-spin coupling constant between the three 

magnetically equivalent 19F nuclei and two magnetically equivalent 1H nuclei. 

   

 

Figure 8.13 2D 1H-19F COSY of 100 mL 2,2,2-trifluoroethanol doped with 1.5 mM 4-oxo-

TEMPO acquired in the Earth's magnetic field with DNP irradiation at 131.5 

MHz in a prepolarization field of 2.7mT. 

 
Figure 8.13 presents a 2D 1H - 19F EFNMR COSY spectrum of 100 mL of 

2,2,2-trifluoroethanol doped with 1 mM of 4-oxo-TEMPO acquired with DNP 

irradiation at 131.5 MHz in a prepolarization field of 2.7 mT.  A 2D COSY spectrum 

of 500 mL of 2,2,2-trifluoroethanol was presented by Robinson et al. [60].  The result 

presented in Figure 8.13 is of much higher quality than this previously reported result 

in terms of resolution and SNR.  Furthermore, the DNP spectrum was acquired from 

only 100 mL of sample with an overall experiment time of 11 hours compared to a 15 

hour measurement with 500 mL of sample. 

For comparison with the experimental spectrum in Figure 8.13, a COSY 

spectrum calculated using a density matrix simulation and a coupling constant of 8.5 
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Hz is presented in Figure 8.16.  The agreement between the experimental and 

simulated spectra is good but there are some noticeable differences, which can be 

attributed to a few unique features of spectra acquired using DNP.    

 

 

Figure 8.14  Density matrix simulation of a 2D 1H-19F COSY spectrum of 2,2,2-

trifluoroethanol acquired in the Earth's magnetic field 

 
To examine these differences in detail we compare a 1D projection of the 

experimental COSY spectrum (Figure 8.15) and a 1D spectrum calculated using a 

density matrix simulation (Figure 8.16).  The relative peak integrals of the three 

magnetically equivalent 19F nuclei, the two magnetically equivalent CH2 
1H nuclei 

and the hydroxyl 1H nucleus in the experimental and calculated spectra are 

summarized in Table 8.2.    

It is clear that the DNP enhancement of the 1H nuclei in the CH2 group is the 

most efficient, followed by the 19F nuclei.  The DNP enhancement of the 1H on the 

hydroxyl group is the least efficient due to the rapid chemical exchange of this proton 

between molecules. 
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Figure 8.15 1D projection of the 2D COSY spectrum in Figure 8.13 summed over f1. 

 

 

Figure 8.16  Density matrix simulation of a 1D 1H-19F EFNMR spectrum of 2,2,2-

trifluoroethanol with 3J(1H,19F) = 8.5 Hz. 

 
Table 8.2  Relative peak integrals 

 
No. of Nuclei per 

Molecule 
Calculated 
Spectrum 

DNP 
Spectrum 

19F (CF3) 3 50 % 44.1 % 

1H (CH2) 2 33% 47.4 % 

1H (OH) 1 17% 8.5% 

 

In addition to the difference in peak heights between the experimental and 

calculated spectra, we also observe in the calculated spectrum high-resolution 

structure which is not discernable in the experimental spectrum due to line-

broadening.  This high-resolution structure is a consequence of the relative strength of 

the 1H – 19F indirect spin-spin coupling.  The coupling constant, 3J(1H,19F) = 8.5 Hz, 

is 6.4% of the difference in Larmor frequency between 19F and 1H nuclei in a field of 

53 mT (133.2 Hz).  Therefore we can use third-order perturbation theory to model this 
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system.  Such a calculation is presented in Figure 8.17.  (Note that the uncoupled 

hydroxyl proton is omitted.)  We find that the perturbation theory result is in good 

agreement with both the density matrix spectrum (Figure 8.16) and the experimental 

spectrum (Figure 8.15). 

 

 

Figure 8.17  1D 1H-19F EFNMR spectrum of 2,2,2-trifluoroethanol calculated using third-

order perturbation theory with 3J(1H,19F) = 8.5 Hz.  The uncoupled 1H in the 

hydroxyl group was omitted in this calculation. 
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CHAPTER 9. Strong Coupling in Fields Below BE  

 

9.1. Introduction 

 
Throughout this thesis, our discussion of the so-called strong coupling regime 

has focused on molecules for which the indirect spin-spin coupling constant, J, was a 

few percent of the difference in the Larmor frequency between the coupled nuclei.  

This is the situation commonly encountered when detecting NMR precession of 

coupled hetero-nuclei in the Earth’s magnetic field (~ 50 μT).  At fields below BE, we 

encounter a different regime in which the indirect spin-spin coupling constant is equal 

to, or even larger than, the difference in Larmor frequency between the constituent 

nuclei.  In this case, the observed spectral features are quite different from those 

typically observed in the Earth’s field.  It is important to note that this regime is 

fundamentally different from that which is often encountered at higher fields between 

homo-nuclei separated by only a very small chemical shift, where the difference in 

Larmor frequency of the coupled nuclei is much less than the J coupling constant, but 

the absolute Larmor frequency of the constituent nuclei is much larger than the 

indirect spin-spin coupling constant. 

In a talk at the 10th International Conference on Magnetic Resonance 

Microscopy in 2009, Stephan Appelt postulated that the strong coupling regime which 

prevails in fields on the order of a few μT could be used for routine spectral analysis 

and identification in a manner analogous to high-field NMR [97].  In conventional 

high-field NMR, it is the chemical shift which separates chemical groups, allowing 
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for accurate chemical identification.  At or below the Earth’s magnetic field, chemical 

shifts of most nuclei are much smaller than the homogeneous spectral linewidth; 

therefore, it is only the indirect spin-spin coupling which provides chemical 

information.  While the chemical shift separation is lost, the strong coupling regime in 

microtesla fields renders chemical groups like 13CH2 and 13CH3 distinguishable [58].   

In his presentation at the ICMRM, Stephan Appelt determined the weakest field in 

which these distinguishing spectral features were observable by carrying out a 

perturbation theory calculation, similar to that in Chapter 7, but where the dominant 

interaction was the J coupling and the Zeeman term was the perturbation.  He found 

that a field of 0.4 μT (4 mG) was sufficient to observe the characteristic strong 

coupling patterns which allow us to distinguish similar chemical groups such as 13CH3 

and 13CH2. 

In this chapter, we will use density matrix simulations and exact calculations 

to explore the strong coupling regime which is encountered when indirect spin-spin 

coupling dominates the interaction Hamiltonian.  The goal of this investigation is to 

better understand this regime and to evaluate its potential for routine ultra-low field 

chemical analysis.  In addition, we will explore the advantages of using a multi-

dimensional EFNMR technique to simultaneously observe strongly coupled J spectra 

in both the Earth’s field and a weaker field, thus allowing us to directly observe the 

evolution between these two very different strong coupling regimes. 

 
 
 
9.2. Zero-field J coupled NMR 

 
The observation of NMR precession in fields below the Earth’s magnetic field, 

often called “zero”-field, or more correctly microtesla, NMR was first discussed by 

Weitekamp and co-workers [98-100] in the 1980s.  The experiments presented by 

Weitekamp were essentially field-cycling pulse sequences in which the sample was 

polarized and detected at high field (4.2 T) but was allowed to evolve during an 

intermediate t1 time period in “zero”-field.  The “zero”-field condition was met by 

moving the sample to the fringe field of a superconducting magnet where an 

additional field, B1, was applied such that it cancelled out the main fringe field.  The 

residual field was less than 10 μT.  The goal of these experiments was the acquisition 
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of high resolution spectra of poly-crystalline samples.  This is difficult to achieve at 

high-field because of the significant line broadening which results from the 

combination of the Zeeman and dipolar interactions.  In the “zero”-field case, the 

Hamiltonian is simplified because the Zeeman interaction is much smaller than the 

dipolar interaction and so the complexity of the resultant spectrum is dramatically 

reduced. 

The direct detection of NMR precession in a field below BE was first 

demonstrated by McDermott et al. [101] in 2002.  Using a SQUID for NMR signal 

detection, the 1H NMR spectrum of 3 mL of neat trimethyl phosphate was observed in 

a field of 4.8 μT.  The observed spectrum was a doublet, centred about the 1H Larmor 

frequency of 204 Hz, with a measured splitting of 10.4 Hz, corresponding to the 

hetero-nuclear indirect spin-spin coupling constant between the nine magnetically 

equivalent 1H nuclei and the single 31P nucleus.  This coupling constant is 8.6% of the 

difference of Larmor frequency between the 1H nuclei and the 31P nucleus at 4.8 μT; 

however, the resolution of the measurement was such that no additional splitting due 

to the strong coupling was observed.   

Recently, Ledbetter et al. [102] presented directly detected J coupled spectra 

in the true zero-field limit where no Zeeman interaction is present.  This is achieved 

by first prepolarizing a small volume of the sample in a 1.8 T Halbach magnet. This 

prepolarized liquid flows into a shielded cavity where the prevailing magnetic field is 

on the order of 0.1 nT.  The sample is exposed to a pulse of DC magnetic field 

perpendicular to the main field axis of the Halbach array.  This pulse rotates each 

nucleus by an angle proportional to its gyromagnetic ratio.  The longitudinal 

component of the magnetization is subsequently recorded by an atomic 

magnetometer.  The magnetometer is built on the micrometer scale, thus allowing for 

the detection of NMR signal from very small (μL) volumes of sample.   

The atomic magnetometer observes Mz directly; therefore the observation 

operator is given by Eq. 9-1, where the sum performed is over all observed nuclei. 
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In the absence of a static magnetic field, the full interaction Hamiltonian is 

simply the sum of the indirect spin-spin coupling terms between the constituent nuclei 

(Eq. 9-2). 
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The eigenstates of this Hamiltonian are the total angular momentum states of 

the form: FmFKS ,;, .  In this formalism, S and K are the total angular momentum 

quantum numbers of two groups of magnetically equivalent spins coupled via the 

indirect spin-spin coupling interaction.  F, the total angular momentum quantum 

number, is equal to the vector sum of S and K, and mF is the corresponding azimuthal 

quantum number.  Under the action of the observation operator in Eq. 9-1 the allowed 

transitions correspond to a change in F of ±1 and no change in mF, i.e. ΔF =  ±1 and 

mF = 0.  These transitions are equivalent to the sigma transitions discussed in the 

DNP theory section of Chapter 5.  The eigenvalues of Eq. 9-2 can be calculated from 

Eq. 9-3. 
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Using these eigenvalues, eigenvectors and selection rules the expected spectra 

for a range of heteronuclear coupled systems can be easily computed.  For example 

13C1H2 has eigenstates: Fm,;1, 2
3

2
1  and Fm,;1, 2

1
2
1 , where mF takes values from –F 

to F.  The energy levels are: JCH/2 and - JCH with a corresponding transition frequency 

of 3/2 JCH.  A similar calculation for 13C1H3 yields transitions at JCH and 2JCH.   

Ledbetter et al. [102] demonstrates both of the above cases using isotopically 

labeled methanol, ethanol 1 (12C1H3-
13C1H2-O

1H) and ethanol 2 (13C1H3-
12C1H2-O

1H).  

The latter two molecules have zero-field spectra which contain additional splittings 

caused by the presence of homonuclear coupling between the CH2 and CH3 protons, 

which are rendered magnetically non-equivalent by their different heteronuclear 
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coupling to the 13C nucleus.   

The ability to observe both homo- and hetero-nuclear spin-spin coupling at 

zero-field is a significant benefit when considering the possibility of using this 

technique to do a low-field analysis of small molecules.  However, the patterns which 

result from this combination of homo- and hetero- nuclear coupling are not as simple 

and readily identifiable as their high-field counter-part. 

 

 

Figure 9.1   Density matrix simulation of the zero-field spectrum of ethanol 1 (12C1H3-
13C1H2-O

1H) with 1J(13C,1H) = 140 Hz, 2J(13C,1H) = -4.6 Hz and 3J(1H,1H) = 7 

Hz.  The uncoupled hydroxyl proton is not included in the calculation. 

 

 

Figure 9.2  A simulated 1H NMR spectrum of ethanol in the high-field limit. 

 
Compare the simulated zero-field NMR spectrum of isotopically enriched 

ethanol 1 in Figure 9.1 with the simulated high-field 1H NMR spectrum of non-

enriched ethanol in Figure 9.2.  In the zero-field spectrum the methylene protons give 

rise to a peak at 3/2*1JCH (210 Hz) which is further split into a complicated 
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asymmetrical pattern by the homonuclear coupling to the methyl protons.  The methyl 

protons give rise to peaks at |2JCH| (4.6 Hz) and 2*|2JCH| (9.2 Hz) which are further 

split into a complicated pattern by the very strong homonuclear coupling to the 

methylene protons.  In a more complicated molecule these assignments would be very 

challenging. 

By comparison the high-field spectrum of ethanol is very easy to interpret.  

The contributions from the methyl, methylene and hydroxyl protons are 

unambiguously separated by their chemical shifts and are also identifiable by the 

simple peak multiplicity which arises from the weak homonuclear J coupling between 

the methyl and methylene groups.  The hydroxyl proton experiences no net indirect 

spin-spin coupling and so is a singlet.  The methylene protons are weakly coupled to 

the three methyl protons and so are split into a quartet with uniform splitting, 3JHH, 

and with a characteristic 1:3:3:1 amplitude ratio pattern.  The methyl proton peak is 

split into a triplet with characteristic peak amplitude ratios of 1:2:1 due to a 

homonuclear coupling to the two methylene protons. 

Another limitation of zero-field NMR spectra is that the homonuclear 

couplings are only evident when heteronuclear couplings break the magnetic 

equivalence between homo-nuclei.  This somewhat limits the technique to either 

isotopically labeled samples or those containing naturally abundant NMR active 

nuclei such as 19F and 31P.  Thus, while zero-field NMR spectra may be useful for 

molecular identification in some cases, it can not, in its current form, rival the ability 

of high-field NMR for molecular identification or structure determination. 

 

 

9.3. Microtesla (μT) NMR 

 
Consider now the μT coupling regime where we observe the evolution of 

coupled nuclei in very weak fields, where the Larmor frequencies of the constituent 

nuclei are on the same order of magnitude as the indirect spin-spin coupling constant.   

The complexity of the observed NMR spectrum of a given molecule rapidly 

increases as the field increases and the Zeeman interaction becomes more significant.  

Therefore we will consider first a rather simple example: 13C1H3.  The protons in this 

methyl group are magnetically equivalent and so can be treated together.  The angular 
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momenta of these nuclei can be combined to produce a total angular momentum of 

either 3/2 or 1/2.  Therefore this problem can be divided into two parts: the coupling 

between total angular momenta: S = 1/2 and K = 1/2, for which the closed form 

analytical solution is well known, and the coupling of total angular momenta: S = 1/2 

and K = 3/2, the energy levels for which we determined in Chapter 7.   
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The closed form expressions for the twelve energy levels are presented in Eq. 

9-4.  The first eight levels correspond to the S = 1/2, K = 3/2 coupled system, while 

the latter four levels belong to the S = 1/2, K = 1/2 coupled system.   

Table 9.1 presents the eigenvectors for the limiting cases of B0  0 and B0  

∞, written in the total angular momentum (
FFmF , ) and product operator 
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(
SKkS mm , ) formalisms, respectively.  The total angular momentum kets in the 

“zero”-field case are expanded in terms of the product operator kets using the 

Clebsch-Gordan coefficients.  This expansion will be useful when we relate the 

allowed transitions in the Earth’s field (54 μT) with those in a much weaker field (1 

μT).  Note that the values of S and K, the total quantum numbers for the 13C nucleus 

and the group of magnetically equivalent 1H nuclei, respectively, are explicitly listed 

in the table in order to distinguish the eigenvectors (such as 7  and 9 ) which 

appear to be the same but in fact correspond to different values of K. 

 

Table 9.1   Eigenvectors in the limiting cases of B  0 and B  ∞, written in the total 

angular momentum and product operator formalisms, respectively.  In the 

“zero”-field case, the total angular momentum kets are expanded in terms of 

the product operator kets using the Clebsch-Gordan coefficients. 
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In the limit as B0  0, where the indirect spin-spin coupling interaction 

dominates the interaction Hamiltonian, the conventional NMR formalism for signal 

detection does not apply.  Without a dominant static field, B0, the concept of excited 

magnetization precessing in a transverse plane no longer holds meaning.  Therefore 

the traditional observation operator (Eq. 9-5) is no longer relevant. 
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  Indeed the whole concept of detecting the NMR signal inductively is no 

longer a practical solution given the poor sensitivity of an induction coil at 

frequencies of only a few tens or hundreds of Hertz.  For this reason, among others, 

the previously discussed sub-Earth’s field NMR spectra were detected using either 

SQUIDs [101] or atomic magnetometers [102].  In these cases, the Mz magnetization 

is the quantity observed (not the rate of change of the flux through an induction coil) 

and so the observation operator is simply: γIz.   

For the purposes of our investigation of the evolution from the J coupling 

dominant regime at “zero”-field up to the Zeeman dominant regime which prevails in 

the Earth’s magnetic field, it would be useful to have a way of observing the “zero”-

field spectra with our conventional observation operator.  Fortunately we can do this 

using a multi-dimensional NMR technique similar to that presented by Weitekamp et 

al. in 1983 [98]. 
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9.3.1. Observation of μT NMR using Multi-dimensional EFNMR 

 

Consider the two-dimensional pulse sequence presented in Figure 9.3.  As 

with all of the previously presented multi-dimensional EFNMR pulse sequences in 

this thesis, the experiment starts with a pre-polarization period which includes a 

prepolarization pulse and/or a DNP irradiation pulse to increase the available 

polarization and so optimize the sensitivity of our measurement.  This prepolarization 

period is followed by a broadband excitation pulse which rotates the magnetization of 

all spins into the transverse plane.  During the subsequent t1 evolution time period, an 

offset field, Boff, is applied to the system.  This field cancels out BE such that the net 

field is our desired evolution field, Bev = BE + Boff.  At the end of the t1 evolution 

period, Boff is switched off adiabatically and the NMR signal is sampled as a function 

of time, t2, in the Earth’s magnetic field.  This sequence is repeated N1 times, for an 

incrementally longer t1 period each time, at which point we have acquired a full 2D 

data matrix, S(t1, t2).  The Fourier transform of this data set, s(f1, f2), is a 2D spectrum 

with the evolution in BE along f2, the directly detected dimension, and the evolution in 

Bev along f1, the indirectly detected dimension.  This 2D spectrum can be projected 

along f1 and f2 to recover the evolution field and Earth’s field NMR spectra, but more 

interestingly the full 2D spectrum can be used to map the evolution from one regime 

to the other.   

 

 

Figure 9.3   2D pulse sequence with evolution in the t1 domain carried out in the evolution 

field (BE + Boff) and the evolution in the t2 domain carried out in BE. 
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In order to understand the output of this experiment we return to our example 

of 13C1H3.  Consider first the case as B0 approaches zero.  The eigenstates collapse to 

the total angular momentum states, as shown in Table 9.1.  Since we are eventually 

detecting our magnetization in the traditional inductively coupled fashion, in the 

presence of the Earth’s magnetic field, we will consider only the effect of the standard 

NMR observation operator (Eq. 9-5) in this regime.  The selection rules associated 

with this observation operator in the limit as B0  0 are a change in total angular 

momentum of ±1 or 0 and a change in azimuthal angular momentum of ±1.  By 

inspection of the eigenstates in Table 9.1, we find that there are sixteen allowed 

transitions in this near zero-field regime (Eq. 9-6).   
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Figure 9.4 presents a density matrix simulation of a 1D NMR spectrum of 
13C1H3 in a field of 1 μT with JCH = 140 Hz.  The Larmor frequencies at 1 μT of 1H 

and 13C nuclei are 42.6 Hz and 10.7 Hz, respectively.  Inset in Figure 9.4 are zoomed 

regions of the spectrum which reveal the multiplet structure of the peaks clustered 

around 40 Hz.  Each peak in the spectrum is labeled according to the transitions in Eq. 

9-6.  Strictly speaking, a given line in an NMR spectrum does not directly result from 

a transition between two specific states.  In NMR, we observe an evolution of spin 

magnetization with time and Fourier transform this time-dependent signal to obtain a 

spectrum.   We do not directly observe energy emission or absorption.  Therefore it is 

not entirely appropriate to refer to lines in an NMR spectrum as transitions.  What 

these NMR lines really represent is the evolution of a phase coherence between two 

states.  However, conceptually, it is much easier to think about “allowed transitions”, 

“selection rules” and “transition frequencies” than phase coherences and these 

phenomena are closely related.  Therefore, while acknowledging the slight irregularity 

of this terminology, we will continue to think about the frequency components of the 

NMR spectra in terms of the corresponding allowed transitions and selection rules of 

the coupled system for the sake of promoting an intuitive understanding of the 

coupling regime and the underlying quantum mechanics. 
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Figure 9.4   A 1D NMR spectrum of 13C1H3 in a field of 1 μT calculated using a density 

matrix simulation with the standard NMR observation operator.  Inset is a 

zoomed region of the spectrum, around 40 Hz, which is included to show the 

multiplicity of the central groups of multiplets.  All peaks are labeled 

according to the transitions listed in Eq. 9-6. 

 

Returning to Figure 9.4, we can associate the triplets at either end of the 

spectrum with the F = 2  F = 1 transition for the K = 3/2, S = 1/2 coupled system.  

These peaks are shifted from the zero-field positions of ±2J because of the 

introduction of a finite Zeeman interaction.  Similarly, the singlet peaks 

corresponding to the F = 1  F = 0 transitions for the K = 1/2, S = 1/2 coupled 

system are shifted to higher frequency with respect to the zero-field peak positions of 

±J.  The two peaks closest to zero correspond to the ΔF = 0, F = 1, ΔmF = 1 

transitions for the K = 1/2, S = 1/2 coupled system.  The remaining quartet and 

doublet correspond to the ΔF = 0, ΔmF = 1 transitions for the K = 3/2, S = 1/2 coupled 

system with F = 2 and F = 1, respectively. 

Now consider the coupling situation in the Earth’s magnetic field.  While the 

indirect spin-spin coupling in the 13C1H3 group does not satisfy the weak coupling 

condition at 54 μT, this is still a Zeeman dominated regime and so the eigenstates are 

closely associated with the product operator states listed in Table 9.1.  Under the 

influence of the observation operator in Eq. 9-5, the selection rules for this system are 

ΔmS = ±1 and ΔmK = ±1.  Using these selection rules we can identify fourteen allowed 
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transitions (Eq. 9-7)  
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A comparison of Eq. 9-7 and Eq. 9-6 shows that the zero-field transitions 

FF
T 1,10,234 −→=−  and 

FF
T 0,11,256 →=−  are not allowed in the “high”-field 

case, i.e. their transition probabilities go to zero as the field increases. 

Figure 9.5 presents a density matrix simulation of a 1D NMR spectrum of 
13C1H3 in the Earth’s field (54 μT) with JCH = 140 Hz.  The Larmor frequencies at 54 

μT of 1H and 13C nuclei are 2299 Hz and 577.5 Hz, respectively.  Inset in Figure 9.5 

are zoomed regions of the spectrum which show the multiplet structure of the two 

quadruplets in the 1H portion of the spectrum.  The spectrum is labeled according to 

the associated transitions in Eq. 9-7.   

The various components of this spectrum are much more easily identified than 

the 1 μT case for two reasons.  First, the form of this spectrum is close to the weak 

field case which is familiar from conventional high-field NMR and second, the 

patterns which occur in this regime are easily divided into a contribution from the 

Zeeman interaction and the perturbation by the indirect spin-spin coupling interaction.  

The converse is not true in the “zero”-field regime. The six peaks centred about 577.5 

Hz (the Larmor frequency of 13C) can be associated with the four projections of the 

total angular momentum of the three 1H nuclei (mK = 3/2, 1/2, -1/2, and -3/2) with the 

additional splitting of the mK = ±1/2 peaks resulting from the slightly different 

transition frequencies for the cases of K = 1/2 and K = 3/2.  Similarly, the 1H peaks 

centred about 2299 Hz can be divided into two quartets corresponding to the mS = 

±1/2 spin states of the 13C nucleus.  The quartet nature of these peaks corresponds to 

the three possible projections of the total angular momentum of two of the 1H nuclei, 

assuming one of the 1H nuclei is the observed nucleus, for the K = 3/2 case plus an 

addition peak resulting from the K = 1/2 case. 

Having assigned the complete spectrum in both the 1 μT and 54 μT cases, we 

can simulate the full 2D experiment (depicted in Figure 9.3) and determine the 
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connection between the two regimes using the resultant 2D spectrum. 

 

 

Figure 9.5   A 1D spectrum of 13C1H3 in a field of 54 μT calculated with a density matrix 

simulation.  Inset is a zoomed view of the two 1H multiplets.  All peaks are 

labeled according to the transitions in Eq. 9-7. 

 

  Consider the 2D spectrum in Figure 9.6 which was calculated using a density 

matrix simulation with Bev = 1 μT, BE = 54 μT and JCH = 140 Hz.  The spectrum is 

divided, along f2, into a 13C region (mS = ±1) and a 1H region (mK = ±1).  With the 

exception of the central peaks of the 1H quartets, all lines are well separated along f2 

and so, by taking vertical slices through the 2D spectrum at the frequency of each 

EFNMR transition, we can map the EFNMR peaks to the corresponding evolution 

field peaks.   

A correspondence between a transition in the “zero”-field regime and the 

“high”-field regime means that the product operator states involved in the “high”-field 

transition evolve, as B  0, into one or other of the total angular momentum states 

involved in the “zero”-field transition.  Which states will evolve at “zero”-field into 

which states at “high”-field can be determined by considering the expansion of the 

total angular momentum “zero”-field states in terms of the product-operator “high”-

field states. 

For example, consider the transition between eigenstates 3  and 8 .  In the 

zero-field limit this transition occurs between the total angular momentum states: 

F
1,1 − and

F
2,2 − .  The former is a superposition of the

KS ,2
1

2
1 ,−− and 

KS ,2
3

2
1 ,−  
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product operator states while the latter is exactly equal to the product operator 

state:
KS ,2

3
2
1 ,−− . In the high-field limit, eigenstate 2 collapses into the exact state: 

KS ,2
1

2
1 ,−− while eigenstate 3  becomes

KS ,2
3

2
1 ,− .  Therefore the “zero”-field 

transition T38 is correlated with the “high”-field transition T’82 as well as T’38. 

 

 

Figure 9.6   A contour map of the 2D spectrum of 13C1H3 calculated using a density matrix 

simulation of the pulse sequence in Figure 9.3 (with an evolution field of 1 μT 

and an Earth’s field of 54 μT).  The contour maps of the 13C and 1H portions of 

the spectrum (in f2) are scaled separately in order to better indentify the much 

weaker peaks in the 13C portion. 

   

  Table 9.2 presents a full map of the correlations between the “zero”-field 

transitions, T, and the “high”-field transitions, T’.  The “high”-field transitions are 

listed along the top of each column while the “zero”-field transitions are listed at the 

start of each row.  A gray cell connecting transitions T and T’ indicates a correlation 

between these transitions.  Note that the T43 and T65 transitions do not have direct 

correlations to T’43 and T’65 because these are forbidden transitions in the high-field 

limit.  
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In order to more easily compare the results in Table 9.2 directly to the 

calculated spectrum in Figure 9.6, the transitions which belong to the same multiplet 

in the 1 μT and 54 μT 1D spectra are grouped together by horizontal and vertical 

coloured boxes.  By inspection we see that the mapping between T and T’ in Table 9.2 

is able to account for all of the peaks in the 2D spectrum. 

 

 

Table 9.2   Summary of all of the possible correlations between allowed transitions in the 

Zeeman dominated regime (columns) and the “zero”-field regime (rows). 

Transitions are labeled according to the initial and final eigenstates and are 

ordered such that the table corresponds to the 2D spectrum in Figure 9.6.  The 

coloured boxes group together transitions which are part of the same multiplet.  

A shaded box connecting two transitions indicates that the given "zero”-field 

transition correlates with the corresponding "high”-field transition. 

 

 
 

9.3.2. μT NMR of Small Molecules at Natural Abundance 

 
The isotopically enriched methyl group provides a good illustrative example 

for exploring the interplay between the two different strong coupling regimes present 
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in ultra-low fields.  However, large quantities of isotopically enriched samples are 

rarely available.  Since homonuclear J coupling can only be observed if there is 

heteronuclear J coupling present to remove magnetic equivalence between homo-

nuclei, the study of non-isotopically enriched samples is limited to small molecules 

containing NMR active nuclei with high natural abundance such as 31P and 19F.   

The opportunity for observing interesting effects in the “zero”-field indirect 

spin-spin coupling regime, even of small molecules at natural abundance containing 

either 31P or 19F, is limited for a number of reasons but there remain some interesting 

examples which are worth exploring.   

In the case of fluorinated hydrocarbons, such as the trifluoroethanol and 

fluorobenzene molecules which were used for the COSY experiments in Chapter 8, 

the observed indirect spin-spin interactions tend to be at least three bond couplings 

which are on the order of 10 Hz.  The difference in gyromagnetic ratio between 1H 

and 19F nuclei is only 6%.  Therefore a regime does not exist in which both the 

difference in Larmor frequency between coupled 1H and 19F nuclei and their absolute 

Larmor frequencies are on the same order of magnitude as the scalar coupling.  One 

or the other is typically either much larger or much smaller than JFH.   

In the case of 31P, the difference in Larmor frequency between 31P and 1H is 

much more significant (60%) and there exist many examples of molecules quite large 

single bond, indirect spin-spin coupling constants.  However in most of these 31P 

containing molecules, and indeed most small molecules of interest, a further 

complication is introduced by either the sheer number of magnetically equivalent 

protons present or the existence of observable homonuclear couplings. 

 

 

Figure 9.7  Dimethyl phosphite molecule 

 

One interesting 31P example to consider is dimethyl phosphite.  This molecule 
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(pictured in Figure 9.7) contains a single 31P nucleus which is very strongly coupled 

to a single 1H, with a one-bond indirect spin-spin coupling constant of approximately 

696 Hz.  This 31P nucleus is also coupled, less strongly, to six magnetically equivalent 
1H nuclei on two methyl groups.  These methyl protons are magnetically non-

equivalent with respect to the single proton and so experience a homonuclear coupling 

with respect to this proton which is, in theory, detectable. 

In order to properly simulate our 2D experiment using the density matrix 

formalism, all six methyl protons need to be included.  An 8-spin, 2D density matrix 

calculation is prohibitively long on a standard PC without first significantly 

optimizing the simulation code.  However, a simulation of an imaginary molecule in 

which only one methyl group is present is feasible and will demonstrate the features 

to be expected from a true experiment using the entire molecule.  Therefore the 

following results are simulated with five spins where one 1H nucleus is coupled to the 
31P nucleus with a coupling constant of 696 Hz and three additional magnetically 

equivalent 1H nuclei are coupled to the 31P nucleus with a coupling constant of -12 Hz 

and to the other 1H by a homo-nuclear coupling constant of 0.1 Hz. 

 

 

Figure 9.8  1D NMR spectrum of dimethyl phosphite in a field of 54 μT calculated using a 

density matrix simulation with only one methyl group and 1JPH = 696 Hz, 3JPH 

= -12 Hz and 4JHH = 0.1 Hz.   

 
Figure 9.8 presents a 1D NMR spectrum of our imaginary methyl phosphite 

molecule acquired in the Earth’s magnetic field (54 μT).  The 31P portion of the 

spectrum is split into two quartets, separated by approximately 700 Hz as a result of 

the coupling with the single 1H.  These peaks are quartets because of the coupling of 

the 31P nucleus to the methyl protons.  The 1H portion of the spectrum is divided into 

a doublet which corresponds to the single, strongly coupled 1H.  The peaks which 
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make up this doublet have some high resolution multiplet structure due to 

homonuclear coupling with the methyl protons.  The central pair of 1H peaks 

corresponds to the methyl protons.  This set of peaks are split by 0.5 Hz due to a 

combination of the homonuclear coupling and residual effects of the very strong one-

bond coupling between the 31P and the single 1H, mediated by the coupling between 

the 31P nucleus and the methyl protons. 

Figure 9.9 presents a 1D NMR spectrum of our methyl phosphite molecule in 

a field of 6.8 μT, calculated using a density matrix simulation.  The difference in 

Larmor frequency between 1H and 31P in this field is 25% of the strongest indirect 

spin-spin coupling constant in this molecule (171 Hz vs. 696 Hz) and the absolute 

Larmor frequency of the 1H nuclei (289 Hz) is 40% of this strong coupling constant.   

Therefore this regime is comparable to that of 13C1H3 in a field of 1 μT. 

 

Figure 9.9   1D NMR spectrum of dimethyl phosphite in a field of 6.8 μT calculated using 

a density matrix simulation with only one methyl group and 1JPH = 696 Hz, 
3JPH = -12 Hz and 4JHH = 0.1 Hz.  The insets show the multiplet structure of the 

outermost peaks. 

 

The spectrum in Figure 9.9 is not easily assigned because, unlike the previous 

example we considered, there are several couplings involved.  However, we can 

identify some features of this spectrum.   The outermost peaks, which are shown in 

the insets, consist of 6 peaks and likely correspond to ΔF = ±1, mF = ±1 transitions of 

the one-bond 696 Hz coupling between the 31P nucleus and the single 1H nucleus.  

The central multiplets around 289 Hz (the 1H Larmor frequency) and 200 Hz (the 

average of the 1H and 31P Larmor frequencies) likely corresponds to transitions with 

ΔF = 0 and mF = ±1.   
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In order to obtain more insight into this “zero”-field spectrum, we can 

simulate the 2D spectrum and observe the correlation between the 6.8 μT peaks and 

those at 54 μT.  The full calculated 2D spectrum is presented in Figure 9.10. 

As we might expect, no correlations are present between the central 1H peaks 

in f2, which correspond to the methyl protons, and the outermost peaks in f1.  These 

methyl peaks in f2 correlate exclusively with the multiplet at the 1H Larmor frequency 

in f1.  The coupling constant between the 31P nucleus and the methyl protons (-12 Hz) 

is much smaller than difference in Larmor frequency (171 Hz) and so no “zero”-field 

transitions at or near ±3JPH or ±2*3JPH are expected. 

The non-methyl proton peaks in f2 correlate only weakly with the peaks at the 
1H Larmor frequency in f1.  This correlation could be a consequence of the homo-

nuclear coupling with the methyl protons.  The non-methyl proton correlates most 

strongly with the multiplet at the average 1H and 31P Larmor frequency in f1 with 

some correlation apparent with the outermost multiplets. 

 

 

Figure 9.10 2D NMR spectrum of dimethyl phosphite calculated using a density matrix 

simulation with only one methyl group and 1JPH = 696 Hz, 3JPH = -12 Hz and 
4JHH = 0.1 Hz.  The evolution field (along f1) was 6.8 μT and the Earth’s field 

(evolution in f2) was 54 μT. 
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The 31P peaks in f2 correlate most strongly with the multiplet at the average 1H 

and 31P Larmor frequency and the outermost ΔF = ±1 multiplets in f1; however, some 

correlation is also observed with the peaks at the 1H Larmor frequency in f1 due to the 

relatively weak coupling with the methyl protons. 

Therefore we see that, while the unique strong coupling regime encountered in 

microtesla fields, where both the difference in Larmor frequency and the absolute 

Larmor frequencies of coupled nuclei is less than the indirect spin-spin coupling 

constant, exhibits some very interesting behaviour, the patterns which emerge are not 

easily identified and the underlying couplings are difficult to deduce without a 

complicated analysis.  Therefore, at present, it seems unlikely that this method will 

prove to be useful for routine, ultra-low field chemical analysis.  Nonetheless, the 

multidimensional technique could be used to provide insight into the interplay 

between the different strong coupling regimes present in ultra-low magnetic fields for 

some carefully chosen small molecules.   

 
9.3.3. Experimental Considerations 

 
The multidimensional experiment proposed in Figure 9.3 can be implemented 

in a number of ways.  Like the COSY experiments discussed in Chapter 8, the 

prepolarization scheme can consist of simple electromagnet prepolarization, DNP 

polarization or some combination of the two.   

The evolution phase can also be carried out in a number of ways.  

Conceptually, the simplest implementation is to build a coil for cancelling out the 

Earth’s magnetic field and to switch this field on and off adiabatically at the start and 

end of the t1 evolution time period.  In practice, however, it may prove challenging to 

engineer a coil which is simultaneously strong enough, homogeneous enough and is 

also oriented in precisely the correct direction so as to cancel, almost completely, the 

Earth’s magnetic field.  If the orientation of this offset field is not quite right, the 

minimum absolute field which can be achieved will be limited.  If the field is not 

sufficiently homogeneous, the spectrum in the indirect domain will suffer from 

significant T2* broadening. 

The problem of imperfect orientation of the offset coil can be avoided with a 

slightly different approach to the experiment.  Instead of working in the Earth’s field, 
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the experiment can be carried out in a shielded environment where the prevailing field 

is very small, similar to the experiments of Ledbetter et al. [102].  In this incarnation 

of our 2D experiment, the offset field is ramped up to a moderate value, in the Earth’s 

field range, during the prepolarization stage and ramped down to the desired evolution 

field during t1.  At the end of the t1 evolution period, the offset field is ramped back up 

to its initial value for the duration of the signal detection phase.  This version of the 

experiment will also remove any difficulties associated with the temporal instability 

of the Earth’s field and will dramatically decrease any pick-up noise originating from 

outside the shielded container.  The success of the experiment, in this form, rests on 

the homogeneity and stability of the offset field. 

The issue of an offset field which is not as homogeneous as the Earth’s 

magnetic field can be countered through the introduction of a broadband refocusing 

pulse exactly in the centre of each t1 evolution step.  This can be achieved by dividing 

the pulse of offset field into two equal segments of t1/2, with a 180 pulse applied in 

the presence of the Earth’s magnetic field in the middle.  If this is a true broadband 

180 pulse which inverts both of the coupled nuclei exactly in the middle of t1, the 

Zeeman evolution terms, including any T2* decay, will be refocused at the end of t1 

but the evolution under the J coupling interaction will remain.   

There are a couple of things to keep in mind regarding this version of the 2D 

experiment.  First, the Zeeman interaction will be refocused by this experiment and so 

the spectrum in the indirect dimension, f1, will be centred about 0 Hz.  Therefore a 

projection along f2 will result in a superposition of peaks.  Any projections along f2 

will have to be taken locally, integrating over only a region of the directly detected 

EFNMR spectrum.  Second, if the inhomogeneity of the evolution field is severe, the 

coupling regime experienced by spins in different portions of the sample will be 

demonstrably different.  Therefore, even though the inhomogeneity is refocused, the 

full spectrum may contain residual inhomogeneity effects which might make it 

difficult to interpret. 
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CHAPTER 10.  Dipolar Coupling in EFNMR 

 

10.1. Introduction 

 

One application of conventional NMR which has yet to be discussed in this 

thesis is the measurement of the anisotropy of complex fluids.  The measurement of 

anisotropy in liquids via NMR is typically achieved through the observation of either 

the quadrupolar interaction or residual dipolar coupling.  In this chapter we explore 

the possibility of detecting anisotropy using Earth’s field NMR.  This work was 

carried out with the invaluable assistance of Prof. Edward Samulski from the 

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 

USA. 

Anisotropy in the electric field surrounding a quadrupolar nucleus, i.e. a 

nucleus which possesses a non-zero electric quadrupole moment, results in a splitting 

in the observed NMR spectrum.  The size of this splitting is correlated with the degree 

of anisotropy and the relative orientation of the director of the anisotropic medium 

relative to the static magnetic field.  While this is a powerful method for measuring 

anisotropy at high-field, it is not suitable for Earth’s field NMR for two reasons.  

First, most quadrupolar nuclei are not observable via our EFNMR apparatus due to 

their characteristically short transverse relaxation times.  This enhanced T2 relaxation 

is due to the interaction of the non-zero nuclear quadrupole moment with local 

electric field fluctuations.  One notable exception to this rule is deuterium.  However, 

the gyromagnetic ratio of deuterium is very small, approximately one seventh that of 
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protons.  The cubic relationship between the magnitude of the inductively detected 

NMR signal and the nuclear gyromagnetic ratio means that the NMR sensitivity of 

even 100s of mL of D2O is far below the detection limit of our EFNMR device.  

Therefore any measurement of anisotropy carried out via EFNMR will depend on 

residual dipolar coupling of protons rather than the quadrupolar interaction. 

Dipolar-coupled NMR spectra of liquid-crystal systems have previously been 

observed in the zero-field limit indirectly using a 2D pulse sequence in which the 

NMR signal was excited and detected in a high-field magnet [103-105].  In these 

experiments, evolution in the indirect dimension was carried out at “zero”-field 

through either field-cycling of the main B0 field (in the case of an electromagnet) or 

shuttling of the sample to a region of “zero”-field outside the main magnet, as in the 

experiments of Weitekamp et al. discussed in Chapter 9 [98; 100]. 

 

 

10.2.  Residual Dipolar Coupling in Anisotropic Liquids 

 
 

 

Figure 10.1  A cartoon representation of a nematic liquid crystal phase in which the liquid 

crystal molecules are aligned locally forming domains of uniform molecular 

orientation (depicted here as green ovals).  The orientation of each domain is 

defined by a unit vector called a director. 
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Solutions of certain lyotropic liquid crystal molecules, within a specific range 

of concentration and temperature, form a nematic phase in which the rod-like long-

chain molecules become aligned.  This alignment is localized such that the system 

forms regions, or domains, in which the constituent liquid crystal molecules are 

aligned along a single director.  In the absence of a magnetic field, the orientations of 

these directors are randomly distributed through out the sample (Figure 10.1).   

 

 

Figure 10.2  A cartoon depicting the preferential orientation experienced by the dipolar 

coupled protons on a solvent molecule (depicted here as blue spheres) as a 

result of the local anisotropy of the nematic phase of the liquid crystal 

molecules.  If the size of a single domain is larger than the diffusion length of 

the solvent molecule, residual dipolar coupling will be observed in the NMR 

spectrum of the coupled nuclei. 

 
Consider the effect of this local anisotropy on the dipolar coupling between 

two nuclei on a probe solvent molecule, such as the two protons in a single 

dichloromethane (CH2Cl2) molecule (Figure 10.2).  If a single domain is larger than 

the diffusion length of the solvent molecule, its free tumbling will be restricted.  There 

will be an orientation, or small distribution of orientations, which is slightly preferred.  

As we saw in section 2.3.4 of Chapter 2, this preferred orientation will result in an 

incomplete averaging of the dipolar coupling interaction between the coupled protons 

in the solvent molecule and so these nuclei will experience residual dipolar coupling.  

The strength of this residual coupling depends on the degree to which the free 



 
200 CHAPTER 10.  Dipolar Coupling in EFNMR  

  

tumbling of the molecule is restricted.  This is quantified by the structure factor, S, 

defined in Chapter 2.  The so-called residual dipolar coupling constant is the full 

dipolar coupling constant scaled by the structure factor.   

The full interaction Hamiltonian for the intra-molecular, homonuclear dipolar 

interaction is given by Eq. 10-1, where the dipolar coupling constant is given by Eq. 

10-2. 
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The Hamiltonian for residual dipolar coupling is similar to Eq. 10-1 but where 

the dipolar coupling constant, bij, is replaced by the residual dipolar coupling constant, 

dij (Eq. 10-3), where S is the structure factor. 

 

ijij Sbd =  

10-3 

 

In the weak coupling case, where the Zeeman interaction strongly dominates 

the Hamiltonian, the secular form of the dipolar Hamiltonian can be used.  In the case 

of Earth’s field NMR, this approximation is not necessarily appropriate.  Therefore 

the full expansion (Eq. 10-4) should be used, where Θ is the polar angle and φ is the 

azimuthal angle associated with θ, the angle between the anisotropy director and the 

static magnetic field.  However, if the system is axially symmetric, the net effect of 

the C, D, E, and F terms will be averaged to zero and so only the A and B terms will 

survive, even in the strong coupling case. 
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Figure 10.3  A cartoon representation of a lyotropic liquid crystal system in a nematic phase 

in the presence of a strong static magnetic field, B0.  The localised domains are 

reoriented by means of the interaction of the field with the positive magnetic 

field anisotropy of each individual domain.  The residual dipolar coupling felt 

by the nuclei in the solvent molecules corresponds to a uniform angle Θ = 0 

with respect to the static field B0.  The resultant NMR spectrum is a doublet 

split by the residual dipolar coupling constant. 
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In the presence of a strong magnetic field, each domain experiences a torque 

as a result of the interaction of its net magnetic susceptibility anisotropy with the 

field.  This torque reorients the domains such that, at equilibrium, all are aligned 

either along the field, in the case of positive magnetic field anisotropy (as shown in 

Figure 10.3), or perpendicular to the field, in the case of negative magnetic field 

anisotropy.  An NMR spectrum acquired of the dipolar-coupled protons on the solvent 

molecules is a doublet split by the residual dipolar constant (Eq. 10-3) scaled by 

( )1cos3 2
2
1 −Θ  , where Θ is 0 for Δχ > 0 or π/2 for Δχ < 0. 

The strength of the Earth’s magnetic field is insufficient to align the liquid 

crystal domains and so a liquid crystal in a stable nematic phase will be ordered 

locally but will be globally unordered. In this case, there will be contributions to the 

NMR signal which arise from a random distribution of angles, θ. A random 

distribution of θ corresponds to a flat distribution of cos Θ between -1 and 1 and a flat 

distribution of φ between 0 and 2π. In the case of weak coupling, where only the A 

and B terms in Eq. 10-4 are retained, the resultant NMR spectrum contains the very 

distinctive powder pattern.  

 

 

Figure 10.4  A density matrix simulation of a powder pattern calculated with a residual 

dipolar coupling constant of 57.4 Hz. 

 

An example of a density matrix simulation of the NMR spectrum of a globally 

unordered nematic phase containing probe molecules with protons coupled with a 

residual dipolar coupling constant of 57.4 Hz is shown in Figure 10.4.   
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10.2.1. Poly-γ-benzyl-L-glutamate (PBLG) 

 

In order to observe residual dipolar coupling using EFNMR we require a 

solvent molecule containing two coupled protons which we can use to probe ordering 

in the system.  Water is ineligible, unfortunately, because any residual dipolar 

coupling effects are averaged out by the rapid chemical exchange of protons between 

molecules.  Therefore we require a liquid crystal system which forms a nematic phase 

with a suitable organic solvent.  One such lyotropic liquid crystal system, poly-γ-

benzyl-L-glutamate (PBLG) in dichloromethane (CH2Cl2), was studied by E. 

Samulski in his PhD thesis in 1969 [106] and was found to display a residual dipolar 

coupling constant of 50 Hz in a stable nematic phase.  PBLG is a readily 

commercially available, chemically inert homo-polypeptide which has good solubility 

in organic solvents.  It was the first synthetic polymer to exhibit a liquid crystal phase 

in 1950 [107].   

PBLG possesses a stable nematic phase over a range of concentrations.  The 

width of this concentration range increases with the molecular weight of the PBLG 

due to the increase in length per unit diameter of the molecule [108].  Below this 

stable nematic region is a biphasic nematic/isotropic regime in which the nematic and 

isotropic phases coexist.  The theory of lyotropic liquid crystal phase formation by 

Onsager [109] provides a means of roughly calculating the concentration at which the 

liquid crystal forms a nematic phase.  First we define the aspect ratio of the molecule, 

p = Ld-1, where L is the length of the rod-like liquid crystal molecule and d is it’s 

diameter.  The diameter is fixed for a particular system and is approximately 1.5 nm 

for a solvated PBLG molecule.  PBLG forms an alpha helix structure in solution.  

Each peptide unit translates 0.15 nm along the helical axis; therefore, the length of a 

given PBLG molecule can be defined as the degree of polymerization, n, multiplied 

by 0.15 nm.  Accordingly, p = 0.1n.  The theory of Onsager states that the volume 

fraction of the liquid crystal molecule needs to be approximately 4.22p-1 for a nematic 

phase to form [109].  In the case of PBLG this is a volume fraction of 42.2n-1. 

  In recent work, Marx and Thiele [108] have investigated the critical 

concentration at interface between the biphasic and stable nematic phases as a 

function of PBLG molecular weight.  The solvent used in these experiments was 

CDCl3.  They found that while the critical concentration decreases quite rapidly with 
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increasing molecular weight at low molecular weights, a plateau is reached at higher 

molecular weights.  This behaviour is qualitatively in agreement with the Onsager 

model described above. 

For the PBLG-CDCl3 system, the plateau critical concentration value was 6% 

(see Table 10.1) which is higher than predicted by the Onsager model.  In addition, 

Marx and Thiele found that the critical concentration of PBLG was solvent 

dependent.  For example they found that the critical concentration of PBLG in CD2Cl2 

was approximately 17% higher compared to that for PBLG in CDCl3. 

 

Table 10.1 Dependence of the critical concentration of PBLG in CDCl3 as a function of 

molecular weight.  Data taken from Marx and Thiele [108]. 
 

Molecular Weight 
(g/mol) 

Critical Concentration 
(%w/w) 

20 100 19.8 

32 000 12.0 

58 000 9.7 

106 000 8.5 

167 000 8.6 

384 000 7.3 

404 000 7.0 

602 000 6.2 

 

 

10.3. Experimental Results 

 
10.3.1.  Liquid Crystalline Sample 

 

The sample used in the experiments reported in this chapter was originally 

prepared as 5 g of PBLG with an average MW of 162900 in 70 mL of CH2Cl2 with 

350 μL of trifluoroacetic acid.  This was found to be well below the critical 

concentration for the nematic phase and so additional PBLG was added.  A summary 

of the quantities of PBLG in the final sample and the corresponding molecular 

weights and degree of polymerization (n) are listed in Table 10.2. 

The relative sensitivity of dichloromethane with respect to water can be 

calculated as the ratio of the number of 1H nuclei per unit volume for each molecule.  
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The density of dichloromethane is 1.3266 g/cm3 and the molar mass is 84.93 g/mol.  

Therefore there are 3.12x10-2 moles of 1H nuclei in every cm3 of dichloromethane.  

There are 0.11 moles of 1H nuclei in every cm3 of water.  Therefore the sensitivity of 

CH2Cl2 is about a third of that of water.   If we combine this with the very small 

volume of solvent available (70 mL) and the broad nature of the anticipated powder 

spectrum (with an expected residual dipolar coupling constant of 50 Hz) we see that 

this is a very challenging experiment from the point of view of sensitivity.  Therefore 

the experiments presented in this chapter are carried out using Halbach 

prepolarization at 0.3 T followed by rapid manual transport (~1.2 s) to the EFNMR 

probe for detection.  This experiment was repeated several times and the results were 

signal averaged.  The number of signal averages varied according to the SNR of the 

detected signal, i.e. the experiment was repeated until a reasonable SNR was 

achieved. 

 

Table 10.2 Summary of PBLG sample parameters 

Mass 
(g) 

Molecular Weight 
(g/mol) 

n 

6.95 162 900 743 

0.64 91 000 400 

0.67 150 000 1132 

0.27 248 000 416 

 

 

10.3.2.  Solid-Echo Pulse Sequence 

 

The NMR pulse sequence used in these liquid crystal experiments was what is 

known as a solid echo (Figure 10.5).  In the solid-echo pulse sequence, the sample is 

excited with a 90x pulse and is subsequently allowed to evolve for a short period, τ, 

equal to the typical “dead”-time of the probe, i.e. the time required for the energy in 

the transceiver coil following an excitation pulse to dissipate.  At a time τ following 

the first pulse, a second pulse, shifted in phase by π/2: 90y, is applied to the system.  

At a time τ following this second pulse the bilinear dipolar interaction is fully 

refocused and the signal is acquired.  This pulse sequence is called a solid-echo 

because it is widely used in the area of Solid-State NMR for measuring dipolar 
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couplings.  Since the spectral lines associated with dipolar (or residual dipolar) 

coupling can be quite broad, the signal decays very rapidly in the time domain.  The 

dead time of the detection coil is such that much important information is lost in the 

undetected region at the beginning of an FID.  In the echo experiment, this 

information is refocused at a time following the second pulse, τ, which is longer than 

the dead time of the transceiver coil and so all of the critical information is contained 

in the observed echo signal. 

 

 

Figure 10.5 1D EFNMR solid-echo pulse sequence.  In the experiments carried out for this 

chapter, prepolarization is achieved using a 0.3 T Halbach. 

 

10.3.3.  NMR Results 

 

The first NMR spectrum of our PBLG sample was acquired on August 14, 

2009, using a commercial 400 MHz Bruker spectrometer.  The PBLG sample 

intended for Earth’s field NMR was prepared in a 55 mm diameter glass jar with a 

Teflon screw top.  In order to investigate the state of the sample in the high-field 

magnet, some of the bulk PBLG solution was poured into an 18 mm (outer diameter) 

tube and placed into a 25 mm diameter B1 coil in the 400 MHz (9.4T) Bruker magnet.  

The spectral linewidth at 400 MHz for this sample size was on the order of a few 100 

Hz, too broad to directly observe the anticipated residual dipolar splitting of 50 Hz.  

Therefore the dipolar splitting was observed indirectly using the 2D experiment in 

Figure 10.6.   

In this 2D echo experiment, the 180y pulse refocuses the Zeeman interaction 

but not the bilinear dipolar coupling.  Therefore, by repeating the pulse sequence with 
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incrementally longer t1 times, a 2D data matrix is built up as a function of both t1 and 

t2, the Fourier transform of which contains the dipolar spectrum in the indirect 

dimension with no contribution from the field inhomogeneity.  In all experiments, the 

t1 step size was 10 ms, resulting in a bandwidth in the indirect domain of 100 Hz.  An 

integral over f2, the direct frequency dimension, yields a dipolar coupled spectrum in 

f1.  An example 2D spectrum is shown in Figure 10.7 with the corresponding  f1 

spectrum shown in Figure 10.8. 

 

 

Figure 10.6  2D echo pulse sequence designed to observe high resolution dipolar coupled 

spectra in the indirect dimension by acquiring successive echo signals with 

incrementally longer t1 and Fourier transforming the resultant 2D data matrix.  

The spectrum along the indirect (f1) dimension of this 2D dataset is a high 

resolution spectrum containing only the effects of bilinear interactions such as 

dipolar coupling. 

 

The 2D spectrum in Figure 10.7 (and corresponding 1D projection in Figure 

10.8) was acquired of the PBLG solution on August 14, 2009.  This spectrum contains 

a residual dipolar splitting of 28 Hz as well as an isotropic peak which accounts for 

approximately 25% of the total signal.  This indicates that the sample is not in a stable 

nematic phase but rather is in the biphasic nematic/isotropic regime.  Therefore, the 

concentration of PBLG needs to be increased in order to reach a stable nematic phase. 

In order to increase the concentration of PBLG in our bulk sample, 

approximately 15% of the solvent was allowed to evaporate (leaving approximately 

60 mL) and the full sample was left to equilibrate for a couple weeks.  On October 14, 

2009, the 2D spectroscopy experiment was repeated on the 400 MHz spectrometer.  

Once again only a portion of the bulk sample, poured into an 18 mm tube and placed 
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in a 25 mm B1 coil inside the 9.4 T magnet, was used.  Figure 10.9 presents the 

resultant indirectly detected 1H NMR spectrum.  A residual dipolar coupling of 57 Hz 

is observed with no significant isotropic peak present.  There is a small amount of 

signal at 0 Hz; however a small artifact at 0 Hz is expected due to imperfections in the 

refocusing pulse.  The result in Figure 10.9 was found to be stable over a range of 

temperatures from 15˚C to 25˚C. 

 

 

Figure 10.7  2D echo spectrum (using the pulse sequence in Figure 10.6) carried out on a 

400 MHz Bruker spectrometer.  This spectrum was acquired of the PBLG 

sample on August 14, 2009.  The indirect f1 dimension shows dipolar coupling 

with a splitting of 28 Hz along with a significant isotropic peak.   The sample 

is in the biphasic nematic/isotropic phase. 

 
 

 

Figure 10.8  1D 1H NMR magnitude spectrum of the PBLG sample, calculated from the 

complex 2D spectrum in Figure 10.7. 
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Figure 10.9  1D indirectly detected 1H NMR spectrum of the more concentrated PBLG 

sample acquired on a 400 MHz Bruker spectrometer on October 14, 2009.  The 

residual dipolar splitting is 57 Hz with no significant isotropic component.  

(Some signal at 0 Hz is expected due to imperfect refocusing pulses.) 

 
Having achieved the stable nematic phase, the sample was once again 

recombined into the EFNMR sample vessel and left to equilibrate for a few days.  On 

October 18, 2009 a series of solid-echo 1H EFNMR spectra with Halbach 

prepolarization were acquired and signal averaged.  The resultant spectrum is 

presented in Figure 10.10a.  Despite the poor SNR, it is clear that there is residual 

dipolar coupling present in this system.  Figure 10.11 presents the same experimental 

spectrum overlaid with a simulated 1H EFNMR spectrum calculated with a powder 

averaged density matrix simulation using a residual dipolar coupling constant of 42.5 

Hz. 

  The solid-echo experiment was repeated two days later on the same sample.  

With the exception of an increased number of signal averages in order to improve 

SNR, the measurement protocol was unchanged from the previous measurement on 

October 18th. The 1H EFNMR spectrum (Figure 10.10b) was found to have narrowed.  

While the form of the spectrum continues to resemble a powder pattern, the apparent 

residual dipolar coupling constant, in this case, is only 27 Hz.  A further narrowing of 

the spectrum was found on October 31, 2009.  At this time, only a broad line with no 

apparent dipolar splitting was observed (Figure 10.10c).  On November 23, 2009, the 

EFNMR solid-echo experiment produced a narrow line, with a linewidth comparable 

to that of tap water (Figure 10.10d).  Only four signal averages (as compared to 37 

averages employed for the spectrum in Figure 10.10b) were used because of the 

inherently high SNR of this narrow line. Repeated measurements at different 

temperatures, from 4°C to 20°C, gave the same result. 
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Figure 10.10  1H EFNMR solid-echo spectra of the PBLG solution acquired on (a) Oct. 18th, 

(b) Oct. 20th, (c) Oct. 31st, and (d) Nov. 23rd. 
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Figure 10.11 A comparison between the experimentally measured 1H EFNMR solid-echo 

spectrum of the PBLG solution on October 18th (black) and a powder 

averaged density matrix simulation (red) using a residual dipolar coupling of 

42.5 Hz.  The full interaction Hamiltonian (Eq. 10-4) was used in the density 

matrix calculation. 

 

 

10.4. Discussion and Future Work 

 

Several features of the liquid crystal NMR spectra presented herein are 

puzzling and require further investigation. 

The original PBLG solution measured at 9.4 T on August 14, 2009 contained a 

total of 8.53 g of PBLG (as summarized in Table 10.2) in 70 mL of dichloromethane. 

Using the model of Onsager [109] to predict the critical volume fraction of PBLG at 

the boundary of the nematic phase, we find that the nematic state transition should 

occur for this mass of PBLG at a volume of solvent (assuming no change of volume 

of PBLG in solution) of approximately 110 mL. This is inconsistent with our 

observations. However, if we consider the results of Marx and Thiele [108] 

summarized in Table 10.1 and include the apparent 17% increase in critical volume 

fraction for a PBLG solution in dichloromethane as opposed to chloroform, the 

volume of solvent required to reach the critical concentration is approximately 60 mL 

for the range of PBLG masses and molecular weights listed in Table 10.2. This is 

more in line with our findings at 9.4 T. 

The observed 1H NMR spectra in the Earth’s magnetic field pose more 

difficult questions as to what is really happening in this liquid crystal system. The first 

recorded EFNMR spectrum (Figure 10.10a) exhibits a residual dipolar coupling of 
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42.5 Hz, rather than the 57 Hz splitting that was observed at high-field. It is possible 

that while the high-field sample was in the imperfectly sealed 18 mm sample tube 

some of the solvent evaporated, effectively increasing the PBLG concentration. Upon 

recombination of this sample with the bulk solution, the final PBLG solution would 

be fractionally less concentrated than the volume of sample observed at high-field. 

There is a strong dependence of residual dipolar coupling constant on the liquid 

crystal concentration because a more concentrated solution will posses a stronger 

degree of asymmetry and so a larger structure factor.  Therefore, a reduction in 

concentration would be manifested in the spectrum as decrease in the observed 

residual dipolar coupling constant. In any future experiments a sample vessel needs to 

be designed which will fit into both the 400 MHz spectrometer and EFNMR probe so 

that the spectra can be compared directly without any ambiguity regarding the liquid 

crystal concentration. A 25 mm diameter, 150 mm long tube which is well sealed 

would fulfil this criterion. 

Perhaps the most confusing aspect of the spectra presented in Figure 10.10 is 

the progressive decrease in apparent residual dipolar coupling as a function of the 

“age” of the sample. In this case, the sample was sealed between measurements and 

so a decrease in concentration is impossible. However, an increase in concentration, 

due to evaporation of the solvent, is possible.  If the concentration is in fact increasing 

with time, the decrease in observed splitting is very puzzling as we would expect an 

increase in residual dipolar coupling constant with increasing concentration.   

Concurrent with the changes observed in the EFNMR spectra with time, there 

were some observed macroscopic changes to the sample as well.  Immediately prior to 

the EFNMR measurement on October 31, it was found that the viscosity of the sample 

had significantly increased such that it was not possible to flow a small volume of the 

sample into a 5 mm NMR tube. (When the sample was in the biphasic state in August, 

the viscosity was such that it could be transferred into a 5 mm NMR tube without 

much difficulty.) By November 23rd, the sample ceased flowing entirely, even when 

held upside-down for several minutes.   

Based on the observed decrease in residual dipolar coupling with the age of 

our sample and the concurrent increase in viscosity, we postulate that the sample has 

undergone some sort of phase change into either: (a) a nematic state in which the 

ordered domains are much smaller than the diffusion length of the dichloromethane 
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molecules or (b) some kind of gel phase which does not possess any local anisotropy.   

In the future, we hope to recover the PBLG from our current highly viscous sample 

and make a fresh solution at a concentration in the stable nematic region. Comparable 

measurements of this fresh sample at both 9.4 T and in the Earth’s magnetic field will 

hopefully resolve our questions regarding the apparent difference in measured 

residual dipolar coupling constant in these two regimes. In addition, we hope such 

experiments will confirm that we are in fact observing residual dipolar coupling via 

EFNMR and that such measurements are repeatable. 
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CHAPTER 11.  Conclusions and Future Work 

 

11.1. Conclusions 

 
The detection of nuclear precession in the Earth’s magnetic field is a very old 

idea, almost as old as NMR itself.  Its high degree of spatial homogeneity, combined 

with the fact that it is readily available in all but a few places on the globe, render the 

Earth’s magnetic field very attractive for use for detection in NMR.  However there 

are many difficulties associated with obtaining and analyzing high-quality NMR 

spectra in such a weak field.  In this thesis we investigated the resolution, sensitivity 

and information content of a simple, portable, low-cost Earth’s field NMR apparatus 

with the ultimate goal of increasing the range of experiments and diversity of 

information which can be obtained using such a seemingly simple device.   

The first challenge associated with EFNMR addressed in this thesis was the 

optimization of resolution and sensitivity.  While the Earth’s field itself is highly 

spatially homogeneous, this homogeneity is easily disrupted by ferrous or magnetic 

objects and suffers from small but significant temporal instabilities.  In addition, the 

very low Larmor frequencies of nuclei in the Earth’s field render EFNMR 

measurements highly susceptible to interference from external ULF noise sources.  

The sensitivity of EFNMR is also significantly limited by the dependence of signal on 

the square of the static field strength. 

In Chapter 4 of this thesis we presented a range of apparatus improvements 

which were implemented to address the problems of field inhomogeneity, field 

instability and external noise interference.  Through the use of first-order shimming, 



 
216 CHAPTER 11.  Conclusions and Future Work  

  

field stabilization via a B0 lock field and feedback loop and noise screening using a 

Faraday cage we demonstrated how high-resolution EFNMR spectra can be acquired 

in an indoor, urban environment.  

Signal enhancement methods for EFNMR were considered in Chapter 5.  First 

we compared the advantages and disadvantages of prepolarization by an 

electromagnet and by a permanent magnet array.  The former method enjoys the 

benefit of ease of implementation and automation but is limited by resistive heating 

concerns to moderate field strengths (10s of mT) and so only modest signal 

enhancements are obtainable using this method.  Permanent magnet arrays can be 

used to reach stronger fields (up to 2 T) and pose no problems with regards to sample 

or instrument heating, but it is difficult to implement this approach for 

multidimensional experiments and so its application is limited to predominantly one-

dimensional, single-shot applications.   

The next signal enhancement method to be considered was dynamic nuclear 

polarization, in which the polarization of unpaired electrons, excited by RF 

irradiation, is transferred to target nuclei via cross-relaxation.  We showed that 

dynamic nuclear polarization can be used in the Earth’s magnetic field to provide 

signal enhancements much greater than the ratio of the gyromagnetic ratios of the 

electrons and the target nuclei.  This apparent violation of the high-field maximum 

DNP enhancement limit is due to the strength of the hyperfine coupling between the 

unpaired electron and neighboring 14N nucleus in nitroxide free radicals.  In ultra-low 

fields this hyperfine coupling dominates the interaction Hamiltonian and so the 

polarization of the electron is much greater than that predicted by the Zeeman 

interaction alone.  Thus the amount of polarization which can be successfully 

transferred to the detected nuclei is not just a function of the field but of the hyperfine 

coupling constant as well. 

In Chapter 5 we demonstrated a DNP enhancement of -2250 over thermal 

polarization in the Earth’s field for 1H nuclei in water doped with 1.5 mM of 4-oxo-

TEMPO irradiated at 68 MHz.  EFNMR signal enhancement using DNP was further 

improved through the application of the RF irradiation at a higher frequency in the 

prepolarization field, followed by detection in the Earth’s magnetic field.  This 

approach was used at 124 MHz, and in conjunction with a modified homogeneous 

prepolarization coil, to provide an SNR advantage of 14 over prepolarization at 18 mT 
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using the standard prepolarization coil.  While this SNR advantage is a significant 

achievement this method has a few limitations.  DNP requires the introduction of a 

free radical into the system, usually by doping the sample with a nitroxide radical 

such as 4-oxo-TEMPO.  This free radical shortens the signal lifetimes of the target 

nuclei by providing additional pathways for relaxation.  This cross-relaxation is the 

mechanism which drives the polarization transfer and so is to be desired.  However it 

has the adverse effect of coarsening the spectral resolution through a reduction in T2.  

Therefore the DNP signal enhancement method requires a compromise between 

resolution and sensitivity.  In addition to this loss of resolution, the doping of the 

sample with a nitroxide free radical will not be desirable in all EFNMR applications. 

The final signal enhancement method considered was hyperpolarization via 

optical pumping.  A 129Xe NMR spectrum of optically pumped xenon gas acquired in 

the Earth’s magnetic field was presented and used to estimate the degree of 

polarization of the gas to be 9.2%.   Despite the obvious SNR advantages of direct 

detection of hyperpolarized gases it was found that the use of hyperpolarized gas for 

the indirect polarization of target nuclei in a solvent via the SPINOE effect was 

inefficient in the case of the large sample volumes (100s of mL) which can be used in 

EFNMR without a significant loss in spectral resolution.  Therefore prepolarization 

and dynamic nuclear polarization (DNP) methodologies were found to be the best 

signal enhancement methods for EFNMR.  The choice between the prepolarization 

and DNP methods is strongly dependent on the sample and the application. 

The second half of this thesis focused on the investigation of the information 

content of EFNMR.  A number of one- and two-dimensional spectroscopy 

experiments were implemented and analyzed using numerical simulations, time-

independent perturbation theory calculations and exact analysis. 

A density matrix simulation tool was developed for the particular case of 

Earth’s field NMR.  This simulation does not use the secular approximation to 

evaluate the indirect spin-spin coupling term in the interaction Hamiltonian and 

therefore captures the features associated with strong coupling.  The full indirect spin-

spin coupling term is used in the interaction Hamiltonian.  The evolution operator is 

consequently estimated from this Hamiltonian using a truncated Taylor series 

expansion.  The order to which this series is calculated and the time step of the 

evolution operator are chosen such that the error associated with this truncation is 
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negligible.  The simulation was written in Prospa v2.2 (Magritek, Ltd., Wellington, 

New Zealand).  The full code is reproduced in Appendix A of this thesis 

In Earth’s field NMR, the difference in Larmor frequency between 

heteronuclei is such that strong indirect spin-spin coupling can be observed between 

nuclei of differing spin.  While strong coupling between homonuclear spins, which 

necessarily have the same spin quantum number, has long been studied in high-field 

NMR, the situation of strong coupling between nuclei of differing spin has not 

previously been discussed in detail.   

In Chapter 7, strong coupling between a plurality of 1H nuclei and nuclei of 

differing spin (14N, 11B and 10B) was investigated.  Time-independent perturbation 

theory was evaluated as a tool for accurately modeling strongly coupled systems of 

nuclei of differing spin through comparisons with exact calculations of two-spin 

systems and density matrix simulations of systems of more than two strongly-coupled 

nuclei.  It was found that second-order perturbation theory could be used to 

characterize the 1H EFNMR spectrum of the ammonium ion, NH+, in a field of 

approximately 54 μT.  In this case the indirect spin-spin coupling between the 14N 

nucleus and the 1H nuclei is 2.5% of the difference in Larmor frequency.  In the case 

of the tetrahydroborate ion, BH4¯, it was found that third-order perturbation theory 

was required to accurately model the coupling between the 11B nucleus and 1H nuclei, 

where the indirect spin-spin coupling constant is 5.2% of the difference in Larmor 

frequency between nuclei at 54 μT.  In this same system, the coupling between the 
10B nucleus and the 1H nuclei is only 1.3% of the difference in Larmor frequency at 

54 μT and so could be modeled by second-order perturbation theory. 

In Chapter 8 we presented 2D EFNMR measurements using the correlation 

spectroscopy (COSY) experiment.  A 1H 2D COSY EFNMR spectrum of 

monofluorobenzene was presented and compared with density matrix simulations to 

show that the one-dimensional spectrum of this molecule, which appears to be a 

doublet suffering from significant line-broadening, is in fact the result of a range of 

heteronuclear and homonuclear coupling constants, as observed at high-field.   

A full 1H – 19F 2D COSY spectrum of 1,4-difluorobenzene was also presented 

and compared to simulation.  This spectrum was acquired using the various apparatus 

developments detailed in Chapter 4 (shimming, field stabilization and ULF screening) 
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and represented a significant improvement in SNR and resolution over the previously 

reported 2D EFNMR spectra results.   

The sensitivity of these multi-dimensional EFNMR spectroscopy experiments 

was further improved through the use of dynamic nuclear polarization for signal 

enhancement.  A high-quality, high-SNR 2D 1H – 19F COSY EFNMR spectrum 

acquired from 2,2,2-trifluoroethanol using DNP was presented and compared to 

simulation.  Analysis of the observed spectrum showed that the signal enhancement 

associated with the CH2 protons was the greatest, followed by the signal enhancement 

of the CF3 
19F nuclei.  The hydroxyl proton, which is in rapid chemical exchange at 

room temperature, benefited the least from DNP signal enhancement. 

In Chapter 9 we considered the indirect spin-spin coupling regime which 

prevails at fields significantly weaker than the Earth’s magnetic field through 

simulations of 1D and 2D spectroscopy experiments.  We found that for some 

molecules containing J coupled hetero-nuclei, there exists a coupling regime in which 

both the difference in Larmor frequency between the coupled nuclei as well as their 

absolute Larmor frequencies are on the same order of magnitude, but smaller than, the 

coupling constant.  In this regime some very interesting spectral patterns emerge, 

although these patterns were found to be much more complicated than the analogous 

regime at high-field in which the Zeeman interaction strongly dominates over the 

indirect spin-spin coupling interaction. 

We explored this unique coupling regime through a detailed analysis, 

combining density matrix simulations and exact calculations, of the coupling of the 
13C1H3 chemical group in a field of 1 μT and in the Earth’s magnetic field (54 μT).   

The evolution from the “zero”-field coupling regime to that which prevails in 

the Earth’s magnetic field was further investigated through the use of a novel 2D 

EFNMR pulse sequence in which the spins are allowed to evolve under the influence 

of an evolution field (much smaller than the Earth’s field) during an evolution time 

period, t1, prior to detection in the Earth’s magnetic field.  The resultant 2D spectrum 

correlates the peaks in the very weak t1 evolution field with those in the Earth’s 

magnetic field.  This 2D pulse sequence was demonstrated through density matrix 

simulations of 13C1H3 and a modified version of the dimethyl phosphite molecule, in 

which only one methyl group was included.  It was found that while, in some 

particular examples, these microtesla NMR spectroscopy experiments demonstrate 
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some very interesting quantum mechanics, the application of this technique to routine 

chemical analysis of a wide range of molecules is limited by the complexity of the 

spectral patterns and the necessity of having one or more NMR-active heteronuclei 

present to break the magnetic equivalence between homonuclei. 

Anisotropy in ordered media is typically measured in NMR through the use of 

either the quadrupolar coupling of nuclei with spin > ½ or residual dipolar coupling.  

In Chapter 10 we considered the case of a liquid crystal (PBLG) in a nematic phase 

solution of dichloromethane.  The residual intra-molecular dipolar coupling between 

the two 1H nuclei on the dichloromethane molecule was measured at high-field to be 

57 Hz in the mono-domain state induced in the sample by the strong magnetic field.  

In the Earth’s magnetic field, a series of spectra were obtained, over time, which 

showed an evolution from a poly-domain state with a residual dipolar coupling of 

42.5 Hz to a single narrow isotropic peak with no observed residual dipolar 

interaction.  Concurrent macroscopic changes in the sample properties, such as a 

dramatic increase in viscosity, suggest that the sample transitioned into some kind of 

non-nematic state as a result of an increase in liquid crystal concentration due to 

solvent evaporation over time.  More work is required on this liquid crystalline system 

to investigate the features of this system and fully explain our observed EFNMR 

results. 

 

  

11.2. Future Work 

 
There remain many avenues for future research in the area of Earth’s field 

NMR spectroscopy.  The following are a few ideas for interesting Earth’s field NMR 

experiments which could be pursued in the future.   

 

11.2.1.  Non-1H EFNMR spectroscopy with DNP 

 

The most significant barrier to any Earth’s field spectroscopic experiments in 

which the detected nucleus is not 1H (or 19F) is sensitivity.  SNR is approximately 

equal to the cube of the gyromagnetic ratio.  Two factors of γ arise from the 

expression for thermal polarization and one factor of γ is due to the faraday induction 
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at the γ-dependent Larmor frequency.  For 19F nuclei there is a loss in sensitivity of 

only 17% with respect to 1H nuclei.  The loss in sensitivity is much more catastrophic 

for other nuclei.  31P nuclei, for example, suffer from a 93% loss in sensitivity 

compared to 1H nuclei.  Therefore detection of 31P EFNMR spectra, even with 

prepolarization, is a significant challenge.   

 

 

Figure 11.1 Dimethylphosphite 

 

Consider the case of the dimethyl phosphite molecule, pictured in Figure 11.1.  

The single 31P nucleus experiences a very strong one-bond, indirect spin-spin 

coupling with a 1H nucleus (1J(31P,1H) = 696 Hz) and a weaker three-bond coupling 

with the remaining six methyl 1H nuclei (3J(31P,1H) = -12 Hz).  The former coupling 

constant is 49% of the difference in Larmor frequency between 1H and 31P and so this 

coupling is very strong indeed.   

 

 

Figure 11.2 The higher-frequency portion of a 31P EFNMR spectrum acquired from 500 

mL of pure dimethylphosphite (300 averages, 2.5 hours). (The narrow peak 

occurring at a slightly lower frequency than the central peak is a noise peak.)  

A spectrum calculated using fourth-order perturbation theory is presented 

below the observed spectrum for comparison. 
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Figure 11.3 Full 31P EFNMR spectrum of dimethylphosphite calculated from fourth-order 

perturbation theory. 

 
The higher-frequency portion of a 31P EFNMR spectrum of dimethyl 

phosphite is presented in Figure 11.2.  Below the observed spectrum is a spectrum 

calculated using fourth-order perturbation theory.  The full 31P spectrum calculated 

from perturbation theory is presented in Figure 11.3.  It is clear from Figure 11.2 that 

improved SNR is required to obtain high-quality 31P spectra. 

DNP is an attractive solution for 31P EFNMR because its sensitivity does not 

depend on the thermal polarization of 31P and so the only explicit dependence of SNR 

on gyromagnetic ratio is via the Larmor frequency and Faraday induction.  The 

coupling factor between the unpaired electrons in the free radical and the 31P nuclei is 

dependent on γ and so we may find a decreased efficiency of polarization transfer 

from the unpaired electrons to the 31P nuclei compared to 1H nuclei.  However, the 

overall SNR benefits of DNP should be significant. 

 
 
11.2.2. Modified 2D COSY EFNMR experiments  

 

During the evolution (t1) period in a 2D COSY experiment, it is possible to 

refocus the heteronuclear indirect spin-spin coupling by selectively rotating one of the 

constituent nuclei by 180˚.  If this modification to the COSY sequence is applied in 

the middle of the t1 time period, as pictured in the pulse sequence in Figure 11.4, there 

will be no net effect of the heteronuclear coupling during the evolution portion of the 

experiment.   

The effects of heteronuclear coupling will only be observed in the directly 

detected dimension, t2.  Any homonuclear coupling will not be affected by the 
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selective 180˚ pulse and so some off-diagonal structure in the modified COSY spectra 

would be expected in situations where homonuclear indirect spin-spin coupling is 

present between magnetically non-equivalent nuclei. 

 

.  

Figure 11.4 2D COSY pulse sequence with a selective 180˚ pulse introduced in the middle 

of the t1 evolution time period. 

 

 

Figure 11.5  The four spin system used for the modified COSY simulations. 

 

Consider the molecule pictured in Figure 11.5.  This molecule contains a range 

of heteronuclear 1H – 19F indirect spin-spin couplings as well as homonuclear 1H – 1H 

and 19F – 19F couplings.  These are summarized in Table 11.1.   

 

Table 11.1  Coupling constants used for COSY simulations 

3J(1H,19F) 
(Hz) 

4J(1H,19F) 
(Hz) 

3J(1H,1H) 
(Hz) 

5J(19F,19F) 
(Hz) 

7.6 4.6 8 12 
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A COSY spectrum and modified COSY spectra, simulated from this spin 

system, are presented in Figure 11.6, Figure 11.7 and Figure 11.8, respectively.  The 

first thing we notice in the modified spectra is that peaks only appear along a narrow 

range of frequencies in the f1 dimension.  This range of frequencies corresponds to the 

Larmor frequency of the spin which is not refocused by the 180˚ pulse.  In Figure 11.7 

the 19F nuclei are refocused and so in f1 we observe signal near 2300 Hz only.  The 

opposite is the case in Figure 11.8 and so in f1 we observe signal around 2265 Hz 

only.   

If we compare the off-diagonal peaks in the modified COSY spectra with the 

traditional COSY spectrum we see some curious features appear in the former which 

are quite different from the features observed in the latter.  The form of these features 

will be dependent on the homonuclear coupling constants.  Therefore analysis of this 

type of spectrum may provide information on the homonuclear coupling constants 

which is not readily apparent in the traditional COSY spectrum containing the full 

influence of heteronuclear as well as homonuclear coupling in the indirect dimension.  

More simulation and experiment would be required to fully understand the 

relationship between these modified spectra and the underlying coupling constants. 

 

 

Figure 11.6  COSY spectrum simulation of an H2F2 system 
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Figure 11.7 Modified COSY spectrum simulation of a H2F2 system (19F refocused) 

 

 

 

Figure 11.8 Modified COSY spectrum simulated of a H2F2 system (1H refocused) 
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Appendix A. Prospa Density Matrix Simulation 

 

procedure(simulate_COSY) 
 
# Initialise the clock 
   time(0) 
    
# Some constants 
   gammaC13 = 6.728e7       # Additional gamma value 13C 
   gammaF19 = 2.517e8       # Additional gamma value 19F 
   gammaSi29 = -5.319e7     # Additional gamma value 29Si 
   gammaElec = -1.761e11    # Additional gamma value for electrons 
   gammaN14 = 1.9338e7      # Additional gamma value for 14N 
   gammaB11 = 8.5847e7      # Additional gamma value for 11B 
   gammaB10 = 2.874e7       # Additional gamma value for 10B 
   gammaP31 = 10.8394e7     # Additional gamma value for 31P 
 
# Experimental conditions 
   BE = 2295.9*2*pi/gamma    # Earth's magnetic field (T) 
   T2 = 5                    # Long T2 to permit good res. (s) 
 
# Spin system 
   # Relative gammas of spins in system 
   gammaVect = [gammaF19,gamma,gamma,gamma,gamma,gamma]/gamma  
   numSpins = [1,1,1,1,1,1] 
   observe = [0,1,1,1,1,1] 
   spin = [0.5,0.5,0.5,0.5,0.5,0.5] 
   num_spins = size(gammaVect)      # Number of spins           
 
# Only measure about the centre frequency 
   centreFreq = 0  
 
# Define J coupling constants 
   JFF = 12*2*pi 
   JFH3 = 8.5*2*pi 
   JFH4 = 5*2*pi 
   JFH5 = 2*2*pi 
   JHH3 = 8*2*pi 
   JHH4 = 2*2*pi 
   JHH5 = 0*2*pi 
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# J coupling matrix 
   Jmat = matrix(num_spins,num_spins) 
   Jmat[1,0] = JFH3 
   Jmat[2,0] = JFH4 
   Jmat[3,0] = JFH5 
   Jmat[4,0] = JFH4 
   Jmat[5,0] = JFH3 
   Jmat[2,1] = JHH3 
   Jmat[3,1] = JHH4 
   Jmat[4,1] = JHH5 
   Jmat[5,1] = JHH4 
   Jmat[3,2] = JHH3 
   Jmat[4,2] = JHH4 
   Jmat[5,2] = JHH5 
   Jmat[4,3] = JHH3 
   Jmat[5,3] = JHH4 
   Jmat[5,4] = JHH3 
 
# Angles in degrees. phi --> x  alpha --> y  theta --> z 
   phi = [0,90,90,90,90,90]      # Rotation angle for each nucleus 
   alpha = [0,0,0,0,0,0]           
   theta = matrix(num_spins) 
 
# Acquisition parameters (t2 domain) 
   O = 28 
   bandwidth = 6666.67 
   numPts = 32768*2 
   numSmpls =16384*2 
   freqRes = bandwidth/numSmpls 
   acqTime = 1/freqRes 
   dwell = acqTime/numPts 
   dwellt2 = acqTime/numSmpls 
   ratio = dwellt2/dwell 
   t2 = [0:1:numSmpls-1]*dwellt2 
   f2 = ([0:1:numSmpls-1]-numSmpls/2)/acqTime 
 
# Acquisition parameters (t1 domain) 
   numt1 = 256               # number of t1 steps 
   dwellt1 = 18.9e-3         # dwell time in the t1 domain (s) 
   maxt1 = dwellt1*numt1     # maximum t1 time 
   ratio2 = dwellt1/dwell    # Number of evolution steps for each  

 dwellt1 
   if (ratio2 - trunc(ratio2)) != 0 
      message("Warning","dwellt1 was changed from $dwellt1*1000$                   
               ms to $round(ratio2)*dwell*1000$ ms") 
      ratio2 = round(ratio2) 
      dwellt1 = ratio2*dwell 
   endif 
   Error = 2*pi*numSmpls*(bandwidth*dwell)^(O-1)/factorial(O) 
  
# Define output matrix 
   output = cmatrix(numSmpls,numt1) 
 
# Make unique output file name and define output matrix 
   if numt1 > 1 
      expDim = "2D" 
      extension = ".2d" 
   else 
      expDim = "1D" 
      extension = ".1d" 
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   endif 
   root = getmacropath() 
   specName = "\\COSYC6H5Fsim" 
   filename = root+specName+extension 
   index = 0 
   while isfile(filename) 
      index=index+1 
      filename = root+specName+"$index$"+extension 
   endwhile 
 
# Output parameters to CLI 
   pr "\nEvolution Parameters" 
   pr "\n   Number of Points:   $numPts$" 
   pr "\n   dwell time:         $dwell$" 
   if expDim = "2D" 
      pr "\n\nt1 Parameters" 
      pr "\n   Number of t1 steps: $numt1$" 
      pr "\n   dwell time:         $dwellt1$ s" 
      pr "\n   Resolution:         $1/dwellt1/numt1$ Hz" 
   endif 
   pr "\n\nAcquisition Parameters" 
   pr "\n   Number of Points:   $numSmpls$" 
   pr "\n   dwell time:         $dwellt2$ s" 
   pr "\n   Resolution:         $1/acqTime$ Hz" 
   pr "\n\nError" 
   pr "\n   Error:              $Error$" 
   pr "\n   Centre Frequency:   $centreFreq/2/pi$ Hz" 
 
# Pauli spin matrices for I = 1/2 
   Ixs0.5 = [0, 1/2; 1/2, 0] 
   Iys0.5 = [0,-1/2; 1/2, 0]*i 
   Izs0.5 = [1/2, 0; 0, -1/2] 
 
# Pauli spin matrices for I = 1 
   Ixs1 = [0,1,0;1,0,1;0,1,0]/sqrt(2) 
   Iys1 = [0,-1,0;1,0,-1;0,1,0]*i/sqrt(2) 
   Izs1 = [1,0,0;0,0,0;0,0,-1] 
 
# Pauli spin matrices for I = 1.5 
   Ixs1.5 = 

[0,sqrt(3),0,0;sqrt(3),0,2,0;0,2,0,sqrt(3);0,0,sqrt(3),0]/2 
    

Iys1.5 = [0,-sqrt(3),0,0;sqrt(3),0,-2,0;0,2,0,-
sqrt(3);0,0,sqrt(3),0]*i/2 

    
Izs1.5 = [3,0,0,0;0,1,0,0;0,0,-1,0;0,0,0,-3]/2 

 
# Pauli spin matrices for I = 3 
   Ixs3 = 

1/sqrt(2)*[0,sqrt(3),0,0,0,0,0;sqrt(3),0,sqrt(5),0,0,0,0;0,sqrt(5)
,0,sqrt(6),0,0,0;0,0,sqrt(6),0,sqrt(6),0,0;0,0,0,sqrt(6),0,sqrt(5)
,0;0,0,0,0,sqrt(5),0,sqrt(3);0,0,0,0,0,sqrt(3),0] 

 
   Iys3 = i/sqrt(2)*[0,-sqrt(3),0,0,0,0,0;sqrt(3),0,-

sqrt(5),0,0,0,0;0,sqrt(5),0,-sqrt(6),0,0,0;0,0,sqrt(6),0,-
sqrt(6),0,0;0,0,0,sqrt(6),0,-sqrt(5),0;0,0,0,0,sqrt(5),0,-
sqrt(3);0,0,0,0,0,sqrt(3),0] 

   Izs3 = 
[3,0,0,0,0,0,0;0,2,0,0,0,0,0;0,0,1,0,0,0,0;0,0,0,0,0,0,0;0,0,0,0,-
1,0,0;0,0,0,0,0,-2,0;0,0,0,0,0,0,-3] 
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# Create identity matrices for each spin 
 
   for n = 0 to num_spins-1 
      dimension = spin[n]*2+1 
      Id = identity(dimension,dimension) 
      assign("Id$n+1$",Id,"local") 
   next(n) 
 
   for d = 0 to 2 
 
      if d = 0 
         dim = "x" 
         angle = eval("phi")*pi/180 
      elseif d = 1 
         dim = "y" 
         angle = eval("alpha")*pi/180 
      elseif d = 2  
         dim = "z" 
         angle = eval("theta")*pi/180 
      endif 
 
    
      for m = 1 to num_spins 
 
         if spin[m-1] != 0.5 
            R = eval("Id$m$") 
         else 
            R = cmatrix(2,2) 
            if dim = "x" 
               R[0,0] = cos(angle[m-1]/2) 
               R[0,1] = -i*sin(angle[m-1]/2) 
               R[1,0] = -i*sin(angle[m-1]/2) 
               R[1,1] = cos(angle[m-1]/2) 
            elseif dim = "y" 
               R[0,0] = cos(angle[m-1]/2) 
               R[0,1] = sin(angle[m-1]/2) 
               R[1,0] = -sin(angle[m-1]/2) 
               R[1,1] = cos(angle[m-1]/2) 
            else 
               R[0,0] = exp(-i*angle[m-1]/2) 
               R[1,1] = exp(i*angle[m-1]/2) 
            endif 
         endif 
         Rn = trans(conj(R)) 
         if m = 1 
            A = eval("I$dim$s$spin[0]$") 
            B = R 
            C = Rn 
         else 
            A = Id1 
            B = outer(B,R) 
            C = outer(C,Rn) 
         endif 
         for n = 2 to num_spins 
            if n=m 
               A = outer(A,eval("I$dim$s$spin[n-1]$")) 
            else 
               A = outer(A,eval("Id$n$")) 
            endif 
         next(n) 
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         assign("I$dim$$m$",A,"local") 
      next(m) 
      assign("R$dim$",B,"local") 
      assign("R$dim$n",C,"local") 
   next(d) 
    
# Construct the Hamiltonian (in ang. freq. units) and density     
  matrix 
 
   # First the Zeeman terms 
   H = (-gammaVect[0]*gamma*BE+centreFreq)*Iz1 
   rho = numSpins[0]*gammaVect[0]*gamma*BE*Iz1 
   for n = 1 to num_spins-1 
      H = H + (- gammaVect[n]*gamma*BE+centreFreq)*eval("Iz$n+1$") 
      rho = rho +  
            numSpins[n]*gammaVect[n]*gamma*BE*eval("Iz$n+1$") 
   next(n) 
 
   # J coupling terms 
   for n = 0 to num_spins-2 
      for m = n+1 to num_spins-1 
         Jterm = Jmat[m,n]*(eval("Ix$n+1$")*eval("Ix$m+1$") 
                           +eval("Iy$n+1$")*eval("Iy$m+1$") 
                           +eval("Iz$n+1$")*eval("Iz$m+1$")) 
         H = H + Jterm 
         rho = rho - Jterm 
      next(m) 
   next(n) 
 
# Calculate the evolution matrix to Oth order 
   dimensionality = spin[0]*2+1 
   for n = 1 to num_spins-1 
      dimensionality = dimensionality*(2*spin[n]+1) 
   next(n) 
   Id = identity(dimensionality,dimensionality) 
   E = Id 
   for n = 1 to O 
      for m = 1 to n 
         if m = 1 
            Hprime = i*dwell*H 
         else  
            Hprime = Hprime*i*dwell*H 
         endif 
      next(m) 
      E = E + Hprime/factorial(n) 
   next(n) 
   En = trans(conj(E)) 
 
# Create a matrix for the evolution of one step in t2 
   Ent2 = En 
   Et2 = E 
   for n = 1 to ratio-1 
      Ent2 = Ent2*En 
      Et2 = Et2*E 
   next(n) 
 
# Create a matrix for the evolution matrix for on step in t1 
   if expDim = "2D" 
      Ent1 = "En" 
      Et1 = "E" 
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      for n = 1 to ratio2-1 
         Ent1 = Ent1*En 
         Et1 = Et1*E 
      next(n) 
   endif 
 
# Generate observation operator  
   first = 1 
   for n = 1 to num_spins 
      if observe[n-1] = 1 
         if first = 1 
            Iobs = eval("Ix$n$")+ i*eval("Iy$n$") 
            first = 0 
         else 
            Iobs = Iobs + eval("Ix$n$")+ i*eval("Iy$n$") 
         endif 
      endif 
   next(n) 
 
 
####### BEGIN EXPERIMENT ########## 
 
       
# Apply first x rotation pulse 
   rho_plus = Rxn*rho*Rx 
 
# Loop over t1 steps 
 
   for tt = 0 to numt1-1 
 
      if expDim = "2D" 
 
         # Evolve during the t1 time period (include T2 decay) 
         rho_plus = exp(-dwellt1/T2)*Ent1*rho_plus*Et1 
 
         # Apply second x rotation pulse 
         rho_t2 = Rxn*rho_plus*Rx 
 
      else 
       
         rho_t2 = rho_plus 
 
      endif 
 
   # Observe as a function of time by applying time evolution with  
     Hamiltonian (and relaxation) and then  
    
      for n = 0 to numSmpls-1 
         rho_t2 = exp(-dwellt2/T2)*Ent2*rho_t2*Et2 
         output[n,tt] = trac(rho_t2*Iobs) 
      next(n) 
 
      if tt%10 = 0 
         pr "\nt1 step number $tt$  time = $time()/60,4.2f$ min" 
      endif 
    
   next(tt) 
 
   save(filename,output) 
   time2 = time() 
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   hrs  = trunc(time2/3600) 
   mins = trunc((time2-hrs*3600)/60) 
   secs = time2-hrs*3600-mins*60 
 
   pr "\n\nTotal Simulation Time:  
      $hrs,2.0f$:$mins,2.0f$:$secs,2.0f$" 
   pr "\nSaved to: $filename$" 
 
   if expDim = "1D" 
      output1D = submatrix(output,0,numSmpls-1,0,0) 
      multiplot("1d",2,1) 
      curplot("1d",1,1) 
      drawplot("false") 
      plot(t2,output1D) 
      xlabel("time (s)") 
      title("Time Domain Data") 
      ylabel("") 
      curplot("1d",2,1) 
      plot(f2+centreFreq/2/pi,mag(ft(output1D))) 
      xlabel("frequency (Hz)") 
      title("Frequency Spectrum") 
      ylabel("") 
      drawplot("true") 
   else 
      image(output,[0,acqTime],[0,maxt1]) 
      title("Time Domain COSY Data") 
      xlabel("t2 (s)") 
      ylabel("t1 (s)") 
   endif 
   
   assign("output",output,"global") 
   assign("t2",t2,"global") 
   assign("f2",f2,"global") 
 
endproc() 
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