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Abstract

This thesis is about data mining in automotive warranty analysis, with an
emphasis on modeling the mean cumulative warranty cost or number of
claims (per vehicle). In our study, we deal with a type of truncation that
is typical for automotive warranty data, where the warranty coverage and
the resulting warranty data are limited by age and mileage. Age, as a func-
tion of time, is known for all sold vehicles at all time. However, mileage is
only observed for a vehicle with at least one claim and only at the time of
the claim. To deal with this problem of incomplete mileage information,
we consider a linear approach and a piece-wise linear approach within a
nonparametric framework. We explore the univariate case, as well as the
bivariate case. For the univariate case, we evaluate the mean cumulative
warranty cost and its standard error as a function of age, a function of
mileage, and a function of actual (calendar) time. For the bivariate case,
we evaluate the mean cumulative warranty cost as a function of age and
mileage. The effect of reporting delay of claim and several methods for
making prediction are also considered. Throughout this thesis, we illus-
trate the ideas using examples based on real data.
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Chapter 1

Introduction

A product warranty is an agreement between the seller and buyer, which
establishes a liability between these parties in the event of failure. It spec-
ifies the expected performance of the product and the redress available to
the buyer if a failure occurs. Here, the seller refers to the party responsible
for assuring the warranty terms are met, and this is usually the manufac-
turer or retailer of the product. Then, the buyer is normally the ultimate
paying consumer [Blischke and Murthy, 1996].

At present, product warranty plays an increasingly important role in
the world of businesses and its uses are widespread. However, servicing
claims is a cost to the seller. A seller may suffer great losses of millions
or even billions of dollars if the true warranty cost is underestimated. On
the other hand, overestimating the true warranty cost will make the the
seller’s products uncompetitive in the market. Therefore, extracting infor-
mation from warranty data and using it in forecasting warranty cost, as
well as in the research and development of the product, are of particular
interest to the sellers or manufacturers.

In this thesis, we consider the data mining process in automotive war-
ranty analysis, with an emphasis on modeling the mean cumulative war-
ranty cost or number of claims (per vehicle). Automotive warranty gen-
erally guarantees free repairs subject to both age and mileage limits. In
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the USA, till recently, the most common limit was 36 months or 36000
miles, whichever comes first. As sales records are retained, vehicle’s age
is known for all sold vehicles at all time. However, odometer readings are
only recorded at the dealerships at the time of a claim, and then posted
to the warranty database. Even though it is technically feasible to track
mileage accumulation on all vehicles, this is currently not a common prac-
tice due to cost and privacy reasons. Therefore, automotive warranty anal-
ysis involves two variables (age and mileage), but the information of one
of them (mileage) is incomplete [Chukova and Robinson, 2005].

In our study, we deal with the problem of incomplete mileage informa-
tion explicitly by using a linear approach and a piece-wise linear approach
within a nonparametric framework. We explore the univariate case, as
well as the bivariate case. For the univariate case, we model the mean cu-
mulative warranty cost and its standard error as a function of age, a func-
tion of mileage, and a function of the actual time. For the bivariate case,
we model the mean cumulative warranty cost as a function of age and
mileage. Besides, we also take into consideration the effect of reporting
delay of claim. Several methods for making prediction are also consid-
ered.

Next, we provide the objectives and motivations of this research, an
overview of warranty concepts, a review of relevant literature, and the
organization of the thesis.

1.1 Research Objectives and Motivations

As mentioned earlier, underestimating warranty cost may result in signif-
icant losses to the seller, while overestimating warranty cost will make the
seller’s product uncompetitive. Thus, estimation of warranty cost from
available warranty data has become an essential task for the seller. How-
ever, the incompleteness and uncleanliness of warranty data create some
problems in estimating warranty cost. Therefore, one of the main objec-
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tives of our research is to derive an effective and relatively simple method
for estimating the warranty cost (more precisely, the mean cumulative
warranty cost per vehicle) by utilizing warranty data. In addition, we
are also interested in investigating the relationship between the variability
of driving pattern and warranty cost, as well as extracting other notable
trends in the warranty cost.

1.2 Overview of Warranty Concepts

Now, we briefly discuss some key warranty concepts and terminology.

1.2.1 The Role of Product Warranty

According to Blischke and Murthy [1996], a product warranty serves dif-
ferent purposes from different points of view. They summarized the roles
of warranty to the buyer and seller (or manufacturer) as follows.

From the buyer’s point of view, the main role of a warranty is protec-
tional as it provides a mean of redress in the event of failure. A warranty
assures the buyer that a faulty item will either be repaired or replaced at
no cost or at a reduced cost. Sometimes, a partial or full reimbursement
will be given. The second role of warranty is informational, where the war-
ranty terms act as a signal of quality to the buyers. Usually, buyers assume
that a product with a longer warranty is often more reliable and has higher
quality than one with a shorter warranty.

From the seller’s point of view, one of the main roles of warranty is
also protectional. The warranty terms often specify the conditions of use
for which the product is intended. Certain requirements of care and main-
tenance may also be included in the warranty terms. Consequently, if the
warranty terms are violated, the seller only need to provide limited cov-
erage or no coverage in the event of failure. The second role of warranty
for seller is promotional. Warranty has been used as an effective promo-
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tional tool and an instrument to compete with other sellers in the market,
since buyers usually infer a more reliable product when a long warranty
is provided.

1.2.2 Repairability and Degree of Repair

Repairability is one of the most important features that differentiate the
items in warranty analysis. An item can be categorized in terms of re-
pairability as a repairable item, a non-repairable item, or a complex item. In
the event of failure, a repairable item (e.g. television) could be repaired
or replaced, while a non-repairable item (e.g. frying pan) will require re-
placement. A complex item may have both repairable and non-repairable
components, and it can be considered as a system. An example of com-
plex item is a vehicle, which consists of many systems, subsystems and
components.

Pham and Wang [1996] defined the degree of repair as a degree to
which the ability of the item to function is restored after a repair. They
categorized repairs in terms of their impact on the repaired item as follows:

• Improved Repair - A repair that makes the item better than when it
was initially purchased.

• Complete Repair - A repair that resets the performance of the item, so
that it operates as a new one upon restart.

• Imperfect Repair - A repair that contributes to some noticeable im-
provement of the item, which makes the performance and expected
lifetime of the item as it was at an earlier age. It sets back the clock
for the repaired item.

• Minimal Repair - A repair that brings the item from a ’down’ state to
an ’up’ state and it has no effect on the performance of the item.
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• Worse Repair - A repair that worsens the item, which makes the per-
formance of the item as it would have been at a later age. It sets
forward the clock for the repaired item.

• Worst Repair - A repair that destroys the item accidentally.

Some possible reasons that may lead to the occurrence of worse and
worst repair are incorrect assessment of the faulty item, damage cause to
the adjacent parts or subsystem of the item while repairing the faulty part,
partial or incomplete repair of the faulty part, human errors such as incor-
rect adjustment and further damage of the item, replacement with faulty,
incompatible, or low quality parts, etc. The repair that takes place usually
depends on factors like warranty reserves, related costs, reliability and
safety requirement, etc.

1.2.3 Dimensionality of Warranty

The dimensionality of a warranty refer to the number of variables specified
in the warranty terms. The most common warranty is one-dimensional
warranty, and the age of the product (or time from purchase) is the most
commonly used warranty variable. Another possible variable is the amount
of usage measured in miles or hours depending of the type of product.
The warranty coverage expires once the preset limit of age or usage is ex-
ceeded. Then, higher-dimensional warranty involves two or more variables
measuring the product service, with guaranteed service amount speci-
fied for each variables. Higher-dimensionality warranty is often asso-
ciated with complex or multi-component item. An example of higher-
dimensional warranty is a two-dimensional warranty based on age and
mileage, which is commonly used in automotive industry. The warranty
coverage expires when the age limit or mileage limit is exceeded, whichever
occurs first. Higher-dimensional warranties with more than two warranty
variables are used only in a few specialized applications, such as the air-
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craft industry which may have age, flight hours, and number of flights as
the warranty variables [Blischke and Murthy, 1996].

1.2.4 Base and Extended Warranty

Base warranty coverage is the original warranty coverage provided by the
seller at no additional cost, as the cost of base coverage is included in the
selling price of the product. The seller may also provide an option of pur-
chasing an extended warranty coverage that comes into effect after the base
coverage expires [Rai and Singh, 2009]. In our study, we do not consider
extended warranty, i.e., claims that occur outside the base warranty cov-
erage would not be considered.

1.2.5 Warranty Reserve

Warranty reserve is the fund, or sum of money, set aside by the seller for
the purpose of servicing the warranty claims [Jayaraman, 2008]. The size
of warranty reserve depends on the forecasted warranty cost, as well as
the other factors like product quality and the number of products under
coverage. Thus, accurate forecast of warranty cost is essential to the seller,
so that the seller is able to design the warranty reserve and warranty pro-
gram efficiently to ensure sound cashflow.

1.3 Review of Literature

Here, we provide a brief review of literature that is relevant to our re-
search. Lately, the area of warranty analysis has been a very active research
field, and the literature on warranty analysis is very rich. For instance, the
general concepts of warranty analysis are given by Blischke and Murthy
[1994] and Blischke and Murthy [1996], while Rai and Singh [2009] provide
a discussion on the issues, strategies and methods related to the analysis
of warranty data.
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In our research, we follow closely the ideas of Chukova and Robinson
[2005] and Christozov et al. [2008], which are based on the robust estima-
tor proposed by Hu and Lawless [1996]. Chukova and Robinson [2005]
adopted the robust estimator and a simple linear mileage accumulation
model to estimate the number of vehicles that are eligible to generate a
claim at a given age or mileage in estimating the mean cumulative war-
ranty cost. Then, Christozov et al. [2008] extended the results of Chukova
and Robinson [2005] by allowing for variation in the rate of mileage accu-
mulation over a vehicle’s lifetime. They relaxed the linearity assumption
for mileage accumulation and proposed instead a piece-wise linear model
with nodes occurring at the observed mileages corresponding to warranty
claims.

Some other past literature relevant to our study are Lawless et al. [1995]
which also dealt with the incomplete mileage information problem by us-
ing a simple linear mileage accumulation model, Lawless [1998] which
took into account the bias due to reporting delay of claim in the analysis
of warranty claims and costs, etc.

1.4 Organization of the Thesis

This thesis is organized as follows:

• In Chapter 2, we briefly discuss the warranty claim process, the struc-
ture of warranty database, and the characteristics of automotive war-
ranty data.

• In Chapter 3, we introduce the data mining process.

• In Chapter 4, we present the summary of the datasets that we are
going to use.

• In Chapter 5, we introduce the robust estimator which forms the ba-
sis of this thesis.
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• In Chapter 6, we discuss the models for estimating mean cumula-
tive warranty cost, which use a linear approach in modeling mileage
accumulation.

• In Chapter 7, we extend the results of Chapter 6 by using a piece-
wise linear approach in modeling mileage accumulation.

• in Chapter 8, we propose a bivariate model for estimating mean cu-
mulative warranty cost, using age and mileage as the warranty vari-
ables.

• In Chapter 9, we discuss several methods for predicting mean cumu-
lative warranty cost.

• In Chapter 10, we present the conclusions, discussions, and direc-
tions of future research of our study.

Throughout the thesis, we will illustrate the ideas using examples based
on real data. Microsoft Excel, Microsoft Access, and statistical program-
ming language R are used to manage and extract the information we need
from the raw data. Then, the models are built in statistical programming
language R.

8



Chapter 2

Automotive Warranty Data

a
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0 tl

Figure 2.1: Warranty coverage region

Automotive warranties generally guarantee free repairs subject to both
age and mileage limits. Let la and lm denote the age limit and mileage
limit of a warranty, respectively. In this thesis, we adopt the standard of
la = 36 months and lm = 36000 miles. (Note: Sometimes, we write 36K

miles for 36000 miles, whereK represents 1000.) Figure 2.1 shows the war-
ranty coverage region [0, la) × [0, lm) for an automotive warranty. Under
this policy, the manufacturer agrees to repair a failed vehicle free of charge
to the buyer up to age la or up to mileage lm, whichever occurs first. There-
fore, only repairs that occur within warranty coverage are included in the
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warranty database. In this chapter, we discuss the warranty claim process,
the structure of warranty database, and the characteristics of automotive
warranty data.

2.1 Warranty Claim Process

No

Within
warranty?

Failure detected
by the user

Take the vehicle
to AD or a repair
center

Take the vehicle
to AD and claim sheet

filled by technician

Repair carried out

Repair carried 
out at own
expenses

Completed claim
sheet submitted to
manufacturer

Within
warranty?

Enter into database
and process claim claim

Reject

Yes

No

Yes

Figure 2.2: Warranty claim process

Figure 2.2 provides a brief overview of the warranty claim process (modi-
fied from Rai and Singh [2009]). The process begins with the user detecting
the failure. If the vehicle is out of warranty coverage, then it will be taken
to the authorized dealership (AD) or other repair center, and the repair is
carried out at the owner’s expenses. Usually, the latter will be the prefer-
able choice due to the higher cost charged by the authorized dealership.
On the other hand, if the vehicle is still within warranty coverage, then it
will be taken to the authorized dealership. Then, repair is carried out by
the technician and a claim sheet is filled. After that, the completed claim
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sheet will be submitted to the manufacturer electronically. Subsequently,
the manufacturer will check whether the claim is valid or not. If the claim
is found to be invalid, then the claim is rejected. Otherwise, the data is
entered into the database and the claim is processed. Note that we refer to
the date for which the repair takes place as the warranty date and the date
for which the claim is posted to the dataset as the process date.

2.2 Structure of Automotive Warranty Database

Next, we consider the general structure of an automotive warranty database.
In an automotive warranty database, usually the vehicle records and claim
records are kept in separate tables, which are linked together by “pri-
mary key”. The primary key is usually the vehicle’s identification number
(VID). For illustration, Table 2.1 and Table 2.2 are the sample vehicle record
table and sample claim record table, which are linked together by VID.

The purpose of using separate tables is to improve the structure of the
database and the efficiency of data management. By using separate tables,
there is no need to include all of the details of a vehicle along with each of
its claim records. Hence, we can save time and effort to store redundant
information. The cost and capacity of data storage can also be reduced.
By avoiding redundant information, it will also be easier to update the
database, and the chance of making errors can be decreased [Microsoft,
n.d.].

VID Prod. Date Sale Date Del. Date Place of Sale Owner Address
000016 21/07/2000 31/07/2000 31/07/2000 New York John Smith ...
000022 29/09/2000 10/10/2000 10/10/2000 New York Lisa Johnston ...
000035 12/12/2000 01/01/2001 01/01/2001 Chicago Mark Hansen ...
000044 31/12/2000 05/01/2001 06/01/2001 Orlando Paul Lee ...
000064 08/01/2001 04/02/2001 04/02/2001 Memphis Megan Hall ...
000089 15/01/2001 01/03/2001 05/03/2001 Dallas Tony Adams ...

Table 2.1: Sample vehicle records
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Claim ID VID Warr. Date Proc. Date Mileage Cost Type
000908 000016 16/02/2001 18/02/2001 8045 20 P001
000911 000022 22/04/2001 30/04/2001 8006 12 A022
010299 000044 25/04/2001 26/04/2001 6111 18 A014
011234 000016 10/05/2001 14/05/2001 10250 22 P007
011308 000146 10/11/2001 15/11/2001 7500 15 M122
011309 000146 10/11/2001 15/11/2001 7500 21 P012

Table 2.2: Sample claim records

In the vehicle record and claim record tables, usually each column cor-
responds to a data field or variable, and each row corresponds to a case or
observation (i.e., a vehicle). Some common data fields for vehicle record
include VID, production date, sale date, delivery date, place of sale, name
and contact of the vehicle’s owner, etc. On the other hand, some usual
data fields for claim record include claim ID, VID, warranty date, process
date, accumulated mileage, total cost of claims, type of claim, and so on.

Since vehicle is a complex system that consists of many sub-systems
and components, and each sub-system or component has its own claims,
the size of automotive warranty database is usually large and getting ac-
cess to the information that we want can be a challenging task. Fortu-
nately, using the techniques of data mining and appropriate computer
software, we are able to extract the information needed for our analysis.
We will discuss the process of data mining in the next chapter.

2.3 Characteristics of Automotive Warranty Data

Automotive warranty data is a form of field data that provides important
information on the reliability of the vehicles. It helps the manufacturers
to avoid the need and cost of running expensive laboratory tests. Besides,
the information obtained from warranty data may be more reliable than
that obtained through laboratory tests, because warranty data captures the
actual usage behavior and environmental exposure of the vehicles that are
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difficult to simulate in the laboratory [Rai and Singh, 2003]. Thus, if this
data is well-analyzed, it will be very useful to the planning and decision
making of the manufacturers.

However, automotive warranty data has two undesirable characteris-
tics: incompleteness and uncleanliness. Due to these shortcomings, Rai and
Singh [2009] described the warranty data as not always perfect for statis-
tical analysis.

2.3.1 Incompleteness

First of all, as the automotive warranty dataset only includes those re-
pairs that occur within the warranty coverage, no information beyond the
warranty limits is available. This creates a form of incompleteness, and
the automotive warranty data is said to be right-truncated at the age and
mileage limits [Rai and Singh, 2009].

Secondly, the odometer readings are only observed at the time of the
claim for a vehicle with at least one claim, whereas the mileage informa-
tion for a vehicle without claims is completely unknown. These result in
incomplete mileage information, which can be challenging to analyze. For
instance, we may not know whether a vehicle is still under warranty cov-
erage at a given time and hence is eligible to generate claims or not. A
vehicle that is still within the age limit may have reached the mileage limit
already and hence out of coverage, but this is unknown.

Besides, reporting delay of claim might occur, where there is a delay
between the times when a warranty event (repair) occurs and when the
claim is posted to the database [Chukova and Robinson, 2005]. As a result,
the dataset used in analysis may not include all valid claims, and hence it
is incomplete.

Note that automotive warranty data may also be incomplete due to
missing warranty data, where vehicles are lost due to an accident or theft
[Rai and Singh, 2009].
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2.3.2 Uncleanliness

Automotive warranty data is often known to be messy and unclean for
reasons such as inaccurate reporting of failures, unintended data entry
error, etc.

Inaccurate reporting of failures is closely related to the type of failure
mode. As according to Rai and Singh [2009], vehicle failures experienced
by users can be mainly classified into two categories: hard failures and soft
failures. Hard failures are those that make the vehicle inoperative until re-
paired (e.g., engine does not start), and they are usually reported immedi-
ately. On the other hand, soft failures are those that degrade performance
but the vehicles can still be operated (e.g., unusual engine noise). For this
type of failure, the users may report it immediately, or later at a conve-
nient time. The latter gives rise to inaccurate reporting of failures and the
failures are only known to have occurred prior to the reported time. As a
result, the actual time and mileage at the time of failure is unknown. Such
data is said to be left-censored.

Uncleanliness of automotive warranty data may also arise due to data
masking, which is a practice for protecting data privacy and proprietary.
Data masking prevents the exposure of sensitive or confidential informa-
tion to the company’s competitors and any unauthorized user. Some com-
mon data masking methods includes data substitution, numerical manip-
ulation, data shuffling, etc [Wikipedia, n.d.]. As a result of data masking,
automotive warranty data may sometimes contains some inconsistent or
impossible data. For example, a vehicle may have accumulated unusually
large mileage that is not compatible with its age, say 1500 miles while it is
1 day old.

Unclean warranty data may potentially hide the inherent failure pat-
terns and such data can be misleading. Thus, it is essential to screen war-
ranty data before undertaking any statistical analysis.
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Chapter 3

Data Mining Process

Data mining is the process of extracting or “mining” knowledge from large
amount of data [Han and Kamber, 2001]. Nowadays, due to the develop-
ment of information technology and the growth of data collection, data
mining has become an increasingly important instrument for extracting
useful information from raw data. In 1996, Cross-Industry Standard Process
for Data Mining (CRISP-DM) was developed by analysts from Daimler-
Chrysler, SPSS, and NCR. CRISP-DM provides a standard process model
that is non-proprietary and freely available for data mining [Chapman
et al., 2000]. According to CRISP-DM, the process of data mining can be
divided into the following six phases:

• Phase 1: Business understanding

• Phase 2: Data understanding

• Phase 3: Data preparation

• Phase 4: Modeling

• Phase 5: Evaluation

• Phase 6: Deployment

15



Figure 3.1 shows the CRISP-DM data mining model and the relationship
between the six phases. Note that, if needed, we may have to return to the
previous phase of the process.

     Preparation

ModelingEvaluationDeployment

   
     Business           Data
Understanding Understanding

        Data

Figure 3.1: CRISP-DM data mining model

3.1 Phase 1: Business Understanding

In the first phase, we have to assess the business goals of the client and
find out all of the details about the resources, constraints, requirements
and other related factors. For instance, we may want to know about the
human resources, technical support, data, computing software and hard-
ware that are available, as well as the schedule of completion and the ex-
pectations of the client. Next, we have to determine the objectives of the
data mining process based on the business goals and the requirements of
the client, and then preparing a preliminary strategy to achieve these ob-
jectives [Chapman et al., 2000]. In an automotive industry, a business goal
might be “reducing the number of claims and the associated costs”. Then,
the possible objectives of the data mining process would be:

• describing the patterns of claims,

• estimating the expected number of claims or cost of claims for a ve-
hicle,
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• predicting the number of claims or cost of claims at a given vehicle
age,

• investigating the association between different types of claims,

and so on.

3.2 Phase 2: Data Understanding

In this phase, the first thing we need to do is to acquire the data. We can
either collect the data on our own or make use of secondary data from cer-
tain sources. After that, we need to explore the data in order to understand
the format, structure, and quantity of the data. Descriptive statistics of the
data and its pictorial representation will be useful here. Then, we have to
evaluate the quality of the data (e.g., errors, missing data, etc) and check
whether the data is appropriate for our analysis.

3.3 Phase 3: Data Preparation

The aim of this phase is to prepare the initial raw data and convert it to
a form suitable for the use in the subsequent phases. This phase usually
consists of data selection, data cleaning, data creation and so on. First of
all, we need to select the relevant subsets of data that are needed for our
analysis, and clean the data. Data cleaning usually involves the dealing of
missing data, outliers, and impossible data.

There are several methods to deal with missing data. The simplest
method is to discard the records with missing values. Alternatively, we
can replace the missing values with some constant such as the mean, mode,
or any constant specified by the analyst. Another popular method is re-
placing the missing values with values determined by some statistical
techniques like regression. For more details, see Han and Kamber [2001]
and Larose [2005].

17



An outliers is an observations that is significantly different from the
rest of the data and do not follow the general behavior of the data. For
example, an outlier vehicle may have a mileage accumulation rate of 500
miles per day, while the rest of the vehicles have mileage accumulation
rate between 20 and 50 miles per day. Outliers represent the extreme or
rare objects in the population that can happen by chance, or they can be
caused by measurement or typing errors. Usually, outliers will be elimi-
nated from the data and a note is made in the report. However, outliers
may sometimes be of particular interests and they may lead to interesting
findings. Further analysis can be performed on outliers and this is referred
to as outlier mining, which we will not cover here. See Han and Kamber
[2001].

Often, there are also some impossible data or data that are not consis-
tent with common sense in the data, which may occur due to human er-
rors. For example, in an automotive warranty data, there may be a claim
that occurs when the vehicle is 1 day old but has an accumulated mileage
of 6000 miles. Another example will be a claim with warranty date before
the sale date, i.e., repair took place before the vehicle is sold. Note that this
type of claim may also be incurred by the retailer, where failure occurs at
the retail outlet or during pre-sale testing by customer before the vehicle
is sold. This type of claim is known as the zero claim, which we will not
consider in our study. Impossible data should be corrected, if possible.
Otherwise, we may consider removing these data. Note that, outliers or
impossible data may also be caused by data masking (see Chapter 2.3.2).

After the data is cleaned, we may want to transform certain data vari-
ables or create some new variables (from the existing ones), if needed.
For example, a new variable “the number of days from the sale date un-
til the warranty date” will need to be calculated for modeling automotive
warranty claims. Finally, the data are ready to be used in the subsequent
phases.
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3.4 Phase 4: Modeling

In this phase, we need to select and construct the appropriate model to
extract the information “mined” under the data in order to accomplish the
objectives in Phase 1. In our study, our main objective of the data mining
process is to estimate the mean cumulative warranty cost (or number of
claims) per vehicle for vehicle with typical driving pattern. We will in-
troduce two types of nonparametric univariate models. The first model
will adopt a linear approach in modeling mileage accumulation, while the
second model will use a piece-wise linear approach. Besides, a bivariate
model will also be introduced. We will discuss these models in details in
the later sections.

3.5 Phase 5: Evaluation

In this phase, we need to evaluate the performance of the models, exam-
ine the results obtained, and review the whole data mining process. We
will need to evaluate the accuracy of the estimates produced, the advan-
tages and disadvantages of the models, and any relevant finding during
the data mining process. We also have to check that whether our objec-
tives are achieved. Finally, we need to make a decision on the use of the
data mining results. If the results are appropriate, we may continue to
the deployment phase. Otherwise, we may finish the data mining process
here, or revise the data mining process, or start a new data mining process
[Chapman et al., 2000].

3.6 Phase 6: Deployment

The final phase of the data mining process is deployment, i.e., to apply
the selected model, produce a final report, and make use of the results
[Chapman et al., 2000]. For warranty data mining, the results can be used
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to design the warranty programs, to improve the product reliability and
quality, etc.
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Chapter 4

The Datasets

Throughout this thesis, we will illustrate the models introduced using real
automotive warranty datasets. The main dataset that we used is called
Dataset 2001. It contains the records from 22 May 2000 (the first sale date)
up to 24 October 2003 for vehicles sold mainly in years 2000 and 2001.
The other datasets are called Dataset 1998, Dataset 1999, Dataset 2000, and
Dataset 2006. Datasets 1998 - 2000 contain the records for vehicles sold
mainly in years 1998, 1999, and 2000 respectively. Dataset 2006 contains
the records for vehicles sold mainly in years 2005 and 2006. In addition to
the vehicle and claim records, Dataset 2006 also includes several odometer
readings for each vehicle, which are not related to the time of making a
claim.

Before we use the above datasets in our analysis, we need to clean these
datasets. In our study, we remove the following data:

• Records of those vehicles with missing sale date. (Note: The whole
records for these vehicles, including their claim records, are removed.)

• Claims occurred with decreasing accumulated mileage. (Note: Only
the claim records are removed, not the whole records of the corre-
sponding vehicles. Similarly for the following claims.)

• Claims occurred before sale date. These claims may be incurred by
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the retailers or manufacturers. We will only consider those claims
incurred by the buyers (or on behalf of the buyers), which occur on
the sale date or after the sale date.

• Claims occurred outside the base warranty coverage (with la = 36

months and lm = 36000 miles).

In addition, we also remove those claims that occurred at unusual or ex-
treme usage rate, i.e., with a mileage accumulation rate (MAR) of less than
3 miles per day or more than 1000 miles per day. For example, if a claim oc-
curs at a vehicle’s age of 10 days and accumulated mileage of 15000 miles,
then we say that this claim occurs at a mileage accumulation rate of 1500
miles per day, and we would remove it.

Table 4.1 shows the summary of Dataset 2001 up to four different “cuts”
in time: 1 January 2001, 1 January 2002, 1 January 2003, and the actual “cut-
off” date 24 October 2003 (the latest process date of a claim). We assume
that this actual “cut-off” date is the “current date”. By using this dataset,
we will analyses the warranty cost on one major system of the vehicle,
which is not identified here but referred to as “System P”. For convenience,
we will call the claims corresponding to this system as P-claims.

Note that the vehicle’s age is given by the number of days from the sale
date until the current date inclusively (i.e., vehicle’s age = current date −
sale date + 1). So, a vehicle is 1 day old on its sale date. Then, the median
mileage accumulation rate (MAR) is estimated based on the latest claim
for those vehicles with at least one claim. It can be seen that the median
mileage accumulation rate is around 40 miles per day over the four time
cuts. This is more than the rate of 33 miles per day, which corresponds
approximately to reaching the 36000-mile limit in three years. Thus, most
vehicles leave the warranty coverage due to mileage accumulation.

Next, Table 4.2 shows the summary of Datasets 1998, 1999, 2000, and
2006. The start date refers to the first sale date in the dataset and the end
date refers to the “cut-off” date of the dataset (the latest process date of a
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claim). We will regard the end date as the current date for each of these
datasets.

01/01/2001 01/01/2002 01/01/12003 24/10/2003
Number of vehicles sold 16764 44761 44879 44890
Number of vehicles with claims 1669 12628 18882 21736
Number of claims 2554 25518 46820 59144
Total cost of claims 86122 751145 1464578 1953220
Number of vehicles with P-claims 48 508 974 1247
Total number of P-claims 50 579 1166 1510
Total cost of P-claims 14512 123292 222825 264539
Median vehicle age (days) 92 322 687 983
Median MAR (miles per day) 40 42 41 38
Median reporting delay (days) 11 8 8 8

Table 4.1: Summary of Dataset 2001

Dataset 1998 Dataset 1999 Dataset 2000 Dataset 2006
Start date 03/09/1997 18/08/1998 20/08/1999 21/07/2005
End date 31/10/2003 31/10/2003 24/10/2003 22/10/2008
Number of vehicles sold 40048 44755 34807 7440
Number of vehicles with claims 23941 24307 18394 6527
Number of claims 77719 74736 54656 38534
Total cost of claims 2583429 2652406 1838376 1350269

Table 4.2: Summary of Datasets 1998, 1999, 2000 and 2006

23



Chapter 5

The Robust Estimator

In this section, we introduce the robust estimator proposed by Hu and Law-
less [1996], which forms the basis of the models that we will introduce.
The robust estimator can be used to estimate the rate and mean functions
of a recurrent event process without any strong assumptions, and it is ro-
bust against the departure of Poisson assumption. Let ni(t) be the total
warranty cost (or number of claims) for vehicle i at time t. It will be con-
venient but not restrictive to think of time as discrete, that is t = 1, 2, . . .

Also, let Ni(t) be the accumulated warranty cost (or number of claims) up
to and including time t for vehicle i. Note that “time” here can be either
age or mileage of the vehicle, not necessarily the calendar time.

SupposeM vehicles have been under observation and their records are
included in the warranty database. Let τi, i = 1, 2, . . . ,M , be the time that
vehicle i has been under observation, that is from the vehicle’s sale date
until the time it is out of warranty coverage or until the “cut-off” date of
the dataset. We call τi the observation time of vehicle i. Its precise defini-
tion will depend on whether “time” is age, mileage, or actual time. Note
that τi’s may not be known exactly but only approximately. For example,
for “time” is age case, the observation time is given by τi = min(ai, la, yi),
where ai is the current age of vehicle i (on the “cut-off” date), la is the age
warranty limit, and yi is the age at which vehicle i exceeds (or would ex-
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ceed) the mileage limit lm. Usually, yi is not known. For “time” is mileage
case, the observation time is given by τi = min(ui(ai), lm, ui(la)), where
ui(a) is the mileage for vehicle i at age a and lm is the mileage warranty
limit. Again, ui(a) is usually unknown. Thus, in both cases, we need some
measures of the accumulated mileage in order to estimate τi [Hu and Law-
less, 1996].

Now, let Λ̂(t) be the estimator of Λ(t) = E[Ni(t)], the mean cumulative
warranty cost (or number of claims). In discrete time case, the incremental
rate function is λ(t) = Λ(t) − Λ(t − 1) with an initial condition Λ(0) = 0.
Let δi(t) be the indicator of whether vehicle i is under observation at time
t and hence eligible to generate a claim. For “time” is age case and “time”
is mileage case, we have δi(t) = I(τi ≥ t). Then, the total warranty cost (or
number of claims) at time t for all M vehicles is given by

n(t) =
M∑
i=1

δi(t)ni(t). (5.1)

It can be noted that δi(t) may be unknown in some cases, but the products
δi(t)ni(t) is always known and is available in the database. Hence, n(t) is
also always known. Suppose the observation process is independent of
the event (claim) process, then the rate function can be estimated by

λ̂(t) =
n(t)

MP (t)
, (5.2)

where P (t) is the probability that a vehicle is eligible to generate a claim
at time t. This is the robust estimator proposed by Hu and Lawless [1996],
and they assumed P (t) is known. But, P (t) is usually unknown and needs
to be estimated.

As stated in the paper of Chukova and Robinson [2005], it will be more
convenient to think in terms of M(t) = MP (t), that is the number of vehi-
cles that are eligible to generate a claim at time t. Then, from Eq. (5.2), we
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get

λ̂(t) =
n(t)

M(t)
, (5.3)

and consequently the associated mean cumulative function estimator is

Λ̂(t) =
t∑

s=1

λ̂(s), t = 1, 2, . . . , τmax, (5.4)

where τmax = max(τi) for i = 1, 2, . . . ,M . Under mild conditions and as-
suming known M(t), Hu and Lawless [1996] proved the asymptotic nor-
mality of Λ̂(t), with a standard error estimated by the square root of

V̂ ar[Λ̂(t)] =
M∑
i=1

{
t∑

s=1

[
δi(s)ni(s)

M(s)
− λ̂(s)

M

]}2

. (5.5)

Eq. (5.5) can be written as

V̂ ar[Λ̂(t)] =

M1∑
i=1

[
t∑

s=1

δi(s)ni(s)

M(s)
− Λ̂(t)

M

]2

+M2

[
Λ̂(t)

M

]2

, (5.6)

where M1 is the number of vehicles that have had at least one claim (and
therefore have some reported mileage history) and M2 is the number of
vehicle without claims, such that M1 + M2 = M . This expression helps to
improve computational efficiency. Note that, unless specified otherwise,
the 95% confidence intervals mentioned in this thesis are evaluated using
Eq. (5.5) or Eq. (5.6).

Chukova and Robinson [2005] computed M̂(t) as an estimate of M(t)

from the warranty data and substituted M̂(t) into Eq. (5.3) and Eq. (5.5) to
obtain λ̂(t), Λ̂(t), and the standard error of Λ̂(t). In our study, we follow the
same approach using different estimators ofM(t), which will be discussed
later. Note that the validity of Eq. (5.5), with M(t) replaced by M̂(t), is
not proven yet. Thus, we also consider the use of bootstrap method in
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estimating the standard error of Λ̂(t).

5.1 Properties of the Robust Estimator

In the paper of Hu and Lawless [1996], the proofs for the expected value
and variance of the robust estimator are given in sketch. Here, we show in
detail the proofs of these properties.

5.1.1 Expected Value of the Robust Estimator

Let us consider the expected values of λ̂(t) and Λ̂(t). Assume that the
observation process is independent of the event (claim) process and P (t)

is known. Let E[ni(t)] = λ(t), then E[δi(t)ni(t)] = P (t)λ(t) and

E[λ̂(t)] = E

[
n(t)

MP (t)

]
= E

[∑M
i=1 δi(t)ni(t)

MP (t)

]

=
MP (t)λ(t)

MP (t)

= λ(t).

Consequently, we have

E[Λ̂(t)] = E

[
t∑

s=1

λ̂(s)

]
=

t∑
s=1

λ(s) = Λ(t).

So, λ̂(t) and Λ̂(t) are the unbiased estimators for λ(t) and Λ(t), respectively.
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5.1.2 Variance of the Robust Estimator

Next, we consider the variance of Λ̂(t). Rewrite Λ̂(t) as

Λ̂(t) =
1

M

M∑
i=1

Xi(t), (5.7)

where

Xi(t) =
t∑

s=1

δi(s)ni(s)

P (s)
i = 1, 2, . . . ,M, (5.8)

are i.i.d. random variables. Note that E[Xi(t)] = Λ(t) since

E[Xi(t)] = E

[
t∑

s=1

δi(s)ni(s)

P (s)

]
=

t∑
s=1

λ(s) = Λ(t)

Now, let denote the covariance of ni(u) and ni(v) as c(u, v) = cov[ni(u), ni(v)]

for u, v = 1, 2, . . . , τmax. Then, we have

E[ni(u)ni(v)] = c(u, v) + λ(u)λ(v), (5.9)

since c(u, v) = cov[ni(u)ni(v)] = E[ni(u)ni(v)] − λ(u)λ(v). Consequently,
the covariance of Xi(s) and Xi(t) is

cov[Xi(s), Xi(t)] = cov

[
s∑

u=1

δi(u)ni(u)

P (u)
,

t∑
v=1

δi(v)ni(v)

P (v)

]

=
s∑

u=1

t∑
v=1

E

[
δi(u)δi(v)

P (u)P (v)
ni(u)ni(v)

]
− Λ(s)Λ(t)

=
s∑

u=1

t∑
v=1

{
E

[
δi(u)δi(v)

P (u)P (v)
ni(u)ni(v)

]
− λ(u)λ(v)

}
(5.10)
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Then, the variance of Λ̂(t) is given by

V ar[Λ̂(t)] =
1

M2
V ar

[
M∑
i=1

Xi(t)

]
=

1

M2
×M × cov[Xi(t), Xi(t)]

=
1

M

t∑
u=1

t∑
v=1

{
E

[
δi(u)δi(v)

P (u)P (v)
ni(u)ni(v)

]
− λ(v)λ(v)

}

=
1

M

t∑
u=1

t∑
v=1

1

P (u)P (v)
{E[δi(u)ni(u)δi(v)ni(v)]− P (u)λ(u)P (v)λ(v)}

=
1

M

t∑
u=1

t∑
v=1

1

P (u)P (v)
cov[δi(u)ni(u), δi(v)ni(v)]. (5.11)

Finally, by estimating cov[δi(u)ni(u), δi(v)ni(v)] with the following

ĉov[δi(u)ni(u), δi(v)ni(v)] =
1

M

M∑
i=1

[
δi(u)ni(u)− n(u)

M

] [
δi(v)ni(v)− n(v)

M

]
,

(5.12)

we obtain Eq. (5.5)

V̂ ar[Λ̂(t)] =
M∑
i=1

{
t∑

s=1

[
δi(s)ni(s)

M(s)
− λ̂(s)

M

]}2

after rearranging. Note that this is the proof of Eq. (5.5) with known M(t).
The validity of replacing M(t) by M̂(t) in Eq. (5.5) is not proven yet.
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Chapter 6

Modeling Mileage Accumulation:
Linear Approach

In this chapter, we briefly review the model suggested by Chukova and
Robinson [2005], which is based on the robust estimator proposed by Hu
and Lawless [1996]. We call this model the CR-Model. The CR-Model
makes an assumption that vehicles accumulate mileage approximately lin-
early with their age. In this model, an estimate of M(t), M̂(t), is com-
puted and substituted into Eq. (5.3) and Eq. (5.5) to obtain λ̂(t), Λ̂(t),
and the standard error of Λ̂(t). We will reproduce some of the results in
Chukova and Robinson [2005] by using the same dataset, but with differ-
ent approaches in preparing the data (see Chapter 4) and with different
computing softwares. In our study, we use statistical programming lan-
guage R, while Chukova and Robinson [2005] used Mathematica. In this
chapter, we will also propose a new model for estimating the mean cumu-
lative warranty cost per vehicle in the actual time case. Besides, we will
also consider the use of bootstrap method in estimating the standard error
of Λ̂(t). Note that, from now on, we shall use t to denote age, m to denote
mileage, and x to denote the actual (calendar) time.
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6.1 Overview of the CR-Model

6.1.1 “Time” is Age Case

Firstly, we consider the case where “time” is the age of the vehicle. Sup-
pose we ignore the withdrawals from warranty coverage due to exceeding
the mileage limit. Then, the estimate of the number of vehicles eligible to
generate a claim at the target age t, t ≤ la, is simply the number of vehicles
age t or older, that is

M̂(t) =
M∑
i=1

I(ai ≥ t), (6.1)

where ai is the current age of vehicle i (on the “cut-off” date). This is
the unadjusted estimator of M(t). To get the true warranty claim rate, we
need to adjust for withdrawals from warranty coverage due to exceeding
the mileage limit. Note that all adjustments made here and later will always be
to M̂(t).

q la0

m

t

lm

t

Figure 6.1: “Time” is age case

Recall that the observation time is given by τi = min(ai, la, yi), where
yi is the age at which the vehicles exceeds (or would exceed) the mileage
limit. Since odometers are not monitored continuously, yi is usually not
known even for vehicles with claims. Thus, for a vehicle with at least one
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claim, we simply extrapolate yi linearly using the age and mileage at the
time of the most recent claim. Let ri = βi/αi, where αi and βi are the
age and mileage of the vehicle at the latest claim respectively. Then, ri is
the estimated mileage accumulation rate (in miles per day) for vehicle i.
Subsequently, at the target age t, vehicle i will contribute to M̂(t) if it is
old enough and if its mileage at age t is estimated to have been within the
mileage limit lm. Thus, the contribution of vehicle i to M̂(t) is

I(ai ≥ t)I

(
ri ≤

lm
t

)
.

Figure 6.1 illustrates the above idea graphically using four hypothetical
vehicles. In this figure,

• the large square represents the warranty coverage region,

• the little black circles represent the age and mileage for the latest
claim of these vehicles, and

• the little squares represent the extrapolated mileages for these vehi-
cles at their current age (on the “cut-off” date).

• the straight lines represent the trajectories of the vehicles.

It can be seen that two of the vehicles are older than the target age tq. But,
one of them is estimated to leave the warranty coverage due to exceed-
ing the mileage limit before age tq, and hence it will not contribute to the
adjusted (for mileage) value of M̂(tq).

Now, we need to consider those vehicles that have not experienced
a claim. By using the information on the vehicles with claims, we can
construct an empirical distribution function for mileage accumulation rate
as follows

F̂ (r) =
1

M1

M1∑
i=1

I(ri ≤ r), (6.2)
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where M1 is the number of vehicles with claims. Consequently, the proba-
bility that a typical vehicle remains in warranty coverage at age t is F̂ ( lm

t
),

and hence the contribution to M̂(t) for a vehicle without claims is

I(ai ≥ t)F̂

(
lm
t

)
.

Every claim has a reporting delay associated with it (perhaps zero),
which results in undercounting the number of claims, and the correspond-
ing claim rate and cost. Reporting delay can be estimated by taking the dif-
ference between the warranty date and the processing date. Then, we can
derive an empirical distribution function for reporting delay as follows

Ĝ(d) =
1

Nc

Nc∑
j=1

I(dj ≤ d), (6.3)

where dj is the delay for claim j and Nc is the total number of claims in
the database. If vehicle i, currently at age ai, had experienced a claim at
age t ≤ ai, there is a time period of length (ai − t) for the claim to be
posted to the database. The estimated probability that the claim is posted
in that length of time is Ĝ(ai − t). Subsequently, the contribution to M̂(t)

for vehicle i becomes
I(ai ≥ t)Ĝ(ai − t).

This adjustment results in an effect of decreasing M̂(t), and hence increas-
ing the rate function λ̂(t).

Note that, by assuming independence between the process of generat-
ing reporting delay and that generating mileage accumulation, the adjust-
ment for reporting delay can also be used along with the adjustment for
mileage. Table 6.1 shows the contribution of a vehicle to M̂(t) in each case.
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Case Vehicle with claims Vehicle without claims
Unadjusted I(ai ≥ t) I(ai ≥ t)

Adjusted for mileage I(ai ≥ t)I
(
ri ≤ lm

t

)
I(ai ≥ t)F̂

(
lm
t

)
Adjusted for delay I(ai ≥ t)Ĝ(ai − t) I(ai ≥ t)Ĝ(ai − t)

Adjusted for mileage
& delay I(ai ≥ t)I

(
ri ≤ lm

t

)
Ĝ(ai− t) I(ai ≥ t)F̂

(
lm
t

)
Ĝ(ai−t)

Table 6.1: Contribution to M̂(t) for vehicle i at target age t

Example

In this example, we estimate the mean cumulative cost of P-claims per
vehicle, Λ(t), up to the age limit of 36 months or equivalently 1095 days
(365 days per year) by using Dataset 2001. Note that, in the construction
of the empirical distribution function for mileage accumulation rate, F̂ (r),
we had used the mileage information from all claims, not just those for
System P.

Figure 6.2 shows the unadjusted Λ̂(t) and Figure 6.3 shows the ad-
justed for mileage Λ̂(t), along with the corresponding 95% confidence in-
tervals (CI). Then, Figure 6.4 illustrates the effect of the adjustment for
withdrawals from warranty coverage due to exceeding the mileage limit
of 36000 miles. Without further analysis, the bend in the unadjusted curve
could be due to a fall in the warranty claim rate with age. But, the adjusted
for mileage curve indicates that the “true” rate is not decreasing (or only
decreasing slightly), and the bend is caused by vehicles leaving coverage
due to mileage.

It can be observed that the difference between the unadjusted curve
and the adjusted for mileage curve increases as the vehicle’s age approaches
the age limit, and the latter goes across the unadjusted 95% confidence in-
terval when the vehicle’s age is about 900 days. This indicates that the
adjustment for mileage is becoming more statistically significant as the
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vehicle’s age increases. Based on the empirical distribution function for
mileage accumulation rate, F̂ (r), we estimate that approximately 2% of
the vehicles in our dataset reach the mileage limit in one year, 11% in one
and a half years, 29% in two years, 47% in two and a half years, and 62%
in three years.

Next, Figure 6.5 illustrates the effect of adjustment for reporting de-
lay. It can be seen that this adjustment is not substantial. It only has very
little effects at older vehicle’s age (≥ 800 days), as shown in Figure 6.6.
Then, Figure 6.7 illustrates the effect of simultaneous adjustment for both
mileage and reporting delay. This figure shows a similar pattern as Figure
6.4, and we may conclude that the effect of this adjustment is mainly due
to mileage.

Note that the above results replicate the results given by Chukova and
Robinson [2005].
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Figure 6.2: Unadjusted Λ̂(t)
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Figure 6.3: Adjusted for mileage
Λ̂(t)
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Figure 6.4: Unadjusted Λ̂(t) and
adjusted for mileage Λ̂(t)
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Figure 6.5: Unadjusted Λ̂(t) and
adjusted for delay Λ̂(t)
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Figure 6.6: Unadjusted Λ̂(t) and
adjusted for delay Λ̂(t), for t ≥ 800
days
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Figure 6.7: Unadjusted Λ̂(t) and
adjusted for mileage & delay Λ̂(t)

6.1.2 “Time” is Mileage Case

In this section, analogously to the “time” is age case, we consider the case
where “time” is the mileage of the vehicle. Let M̂(m) be the number of ve-
hicles eligible to generate a claim at the target mileage m, m ≤ lm. Similar
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to the “time” is age case, we consider the same linear mileage accumula-
tion model, and all adjustments will be made to M̂(m).

Firstly, we consider the unadjusted case, where we ignore withdrawals
from warranty coverage due to exceeding the age limit la. For a vehicle
with at least one claim, its current mileage can be estimated by airi, where
ai is the current age (on the “cut-off” date) and ri is the mileage accumu-
lation rate based on the latest claim. Hence, the contribution to M̂(m) for
the vehicle can be estimated by

I

(
ri ≥

m

ai

)
.

Then, the contribution for a vehicle with no claims is given by

1− F̂
(
m

ai

)
,

where F̂ (r) is the empirical distribution function for mileage accumula-
tion rate as given in Section 6.1.1. The above expression represents the
likelihood that the vehicle has reached m miles. Subsequently, to adjust
for withdrawals from warranty coverage due to exceeding the age limit la,
we simply replace ai in the unadjusted case by min(ai, la), the minimum of
the vehicle’s current age and the warranty age limit.

As in Figure 6.1, Figure 6.8 illustrates the idea for the “time” is mileage
case. It can be seen that three of the vehicles are estimated to have ex-
ceeded the target mileage mq at their current ages. But, one of them is
estimated to have exceeded the age limit before mileage mq, and hence it
will not contribute to the adjusted (for age) value of M̂(mq).
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Figure 6.8: “Time” is mileage case

For the “time” is mileage case, the adjustment for reporting delay of
claim is more complicated. Firstly, we consider the case for vehicles with
at least one claim. If vehicle i, now at age ai, has experienced a claim at
mileage m, its age at mileage m is estimated to be (m

ri
) and there is a time

period of length (ai− m
ri

) for the claim to be posted. Therefore, to adjust for
reporting delay, we multiply the initial contribution by Ĝ(ai − m

ri
), where

Ĝ(d) is the empirical distribution function for reporting delay as given in
Section 6.1.1. Next, for vehicles with no claims, no mileage accumulation
rate is available and so we have to consider all previous ages. Suppose
mileagem is attained at age j, where j ≤ ai, then the mileage accumulation
rate is (m

j
). Let us define the empirical probability mass function of the

mileage accumulation as

f̂(m, j) =

 1− F̂ (m) if j = 1;

F̂
(

m
j−1

)
− F̂

(
m
j

)
if j = 2, 3, . . .

(6.4)

If vehicle i had experienced a claim at age j, there is a time period of (ai−j)
for the claim to be posted. Consequently, the contribution to M̂(m) for
vehicle i becomes

ai∑
j=1

f̂(m, j)Ĝ(ai − j).
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Table 6.2 shows the contribution of a vehicle to M̂(m) in each case. As-
suming independence between the process of generating reporting delay
and that generating mileage accumulation, the simultaneous adjustment
for both withdrawals due to age and reporting delay is shown in the last
row of Table 6.2.

Case Vehicle with claims Vehicle without claims

Unadjusted I(ri ≥ m
ai

) 1− F̂ (m
ai

)

Adjusted for age I
(
ri ≥ m

min(ai,la)

)
1− F̂

(
m

min(ai,la)

)
Adjusted for delay I

(
ri ≥ m

ai

)
Ĝ
(
ai − m

ri

) ∑ai

j=1 f̂(m, j)Ĝ(ai − j)

Adjusted for age &
delay I

(
ri ≥ m

min(ai,la)

)
Ĝ
(
ai − m

ri

) ∑min(ai,la)
j=1 f̂(m, j)Ĝ(ai− j)

Table 6.2: Contribution to M̂(m) for vehicle i at target mileage m

Example

In this example, we estimate the mean cumulative cost of P-claims per
vehicle, Λ(m), up to the mileage limit of 36000 miles by using Dataset 2001.

Figure 6.9 shows the unadjusted Λ̂(m) and Figure 6.10 shows the ad-
justed for age Λ̂(m), along with the corresponding 95% confidence inter-
vals (CI). Then, Figure 6.11 and Figure 6.12 illustrate the effect of the ad-
justment for withdrawals from warranty coverage due to exceeding the
age limit of 36 months. Unlike the adjustment for mileage in the previous
example, this adjustment for age has little impacts here. This is because
the adjustment for age does not begin until the oldest vehicle exceeds the
age limit, which is three years from the first sale in our dataset. Also, there
is relatively few vehicles, only about 38%, that are estimated to leave war-
ranty coverage due to age (based on the empirical distribution function
for mileage accumulation rate).

Next, Figure 6.13 shows the effect of the adjustment for reporting delay
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and Figure 6.14 illustrates the effect of simultaneous adjustment for both
age and reporting delay. Both of these adjustments also have no significant
effects.

Note that the above results replicate the results given by Chukova and
Robinson [2005].
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Figure 6.9: Unadjusted Λ̂(m)
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Figure 6.10: Adjusted for age Λ̂(m)
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Figure 6.11: Unadjusted Λ̂(m) and
adjusted for age Λ̂(m)

30 31 32 33 34 35 36

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

miles (K)

co
st

adjusted for age ΛΛ̂((m))
adjusted for age 95% CI

unadjusted ΛΛ̂((m))
unadjusted 95% CI

Figure 6.12: Unadjusted Λ̂(m) and
adjusted for age Λ̂(m), for m ≥
30K miles
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Figure 6.13: Unadjusted Λ̂(m) and
adjusted for delay Λ̂(m)
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Figure 6.14: Unadjusted Λ̂(m) and
adjusted for age & delay Λ̂(m)

6.2 New Model: Actual Time Case

Sometimes, it may be of interest to analyze the data with respect to the
actual (calendar) time, instead of usage measures like age or mileage. For
example, in designing the warranty programs and warranty reserves, we
may want to know the mean cumulative warranty cost (or number of
claims) for a batch of vehicles sold after a certain date. Here, we develop a
new model for estimating the mean cumulative warranty cost per vehicle
in the actual time case, Λ(x). Again, all adjustments will always be made
to M̂(x).

Let X denote the current time (the “cut-off” date). Suppose we ignore
the withdrawals from warranty coverage due to mileage, then the estimate
of the number of vehicles eligible to generate a claim at the target time x,
x ≤ X , is simply the number of vehicles sold before or at time x and still
within the age limit, i.e.,

M̂(x) =
M∑
i=1

I(si ≤ x)I(zi ≤ la), (6.5)
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where si is the sale date and zi is the age at the target time of vehicle i. This
is the unadjusted estimator of M(x) (or we can say that this is the adjusted
for age estimator, since we have taken into account the age limit).

time, x0

lm

s1 s2 s3 s1+la s2+la s3+la

la

x

m

Xq

Figure 6.15: Actual time case

To get the true warranty claim rate, we need to adjust for withdrawals
due to mileage. We use a similar approach as in the previous two cases,
and all adjustments will be made to M̂(x). Then, for a vehicle with at least
one claims, its contribution to M̂(x) is given by

I(si ≤ x)I(zi ≤ la)I

(
ri ≤

lm
zi

)
.

For a vehicle with no claims, its contribution is given by

I(si ≤ x)I(zi ≤ la)F̂

(
lm
zi

)
,

where F̂ (r) is the empirical distribution function for mileage accumulation
rate as given in Section 6.1.1.
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Figure 6.15 illustrates this idea above graphically using four hypothet-
ical vehicles. In this figure,

• the large square represents the warranty coverage region,

• the little black circles represent the time and mileage for the latest
claim of the four vehicles, and

• the little squares represent the extrapolated mileages of the four ve-
hicles at the current time X .

• the straight lines represent the trajectories of the vehicles.

It can be seen that only the vehicle sold at time s3 is under warranty cov-
erage at the target time xq, and will contribute to M(xq). The other three
vehicles are all out of warranty coverage at time xq. Both of the vehicles
sold at time s1 leave warranty coverage due to age, and one of them is
also estimated to have exceeded the mileage limit before time xq. The ve-
hicle sold at time s2 is still within the age limit, but it is estimated to have
exceeded the mileage limit before time xq.

Now, we consider the effect of reporting delay of claim. If vehicle i had
experienced a claim at time x, then there is a time period of length (X −
x) for the claim to be posted to the database. The estimated probability
that the claim is posted in that length of time is Ĝ(X − x), where Ĝ(d) is
the empirical distribution function for reporting delay as given in Section
6.1.1. So, we can adjust the contribution of vehicle i by multiplying it
with Ĝ(X − x). Then, by assuming independence between the process of
generating reporting delay and that generating mileage accumulation, the
adjustment for reporting delay can also be used along with the adjustment
for mileage. Table 6.3 shows the contribution of a vehicle to M̂(t) in each
case.
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Case Vehicle with claims Vehicle without claims
Unadjusted I(si ≤ x)I(zi ≤ la) I(si ≤ x)I(zi ≤ la)

Adjusted for mileage I(si ≤ x)I(zi ≤ la)I
(
ri ≤ lm

zi

)
I(si ≤ x)I(zi ≤ la)F̂

(
lm
zi

)
Adjusted for delay I(si ≤ x)I(zi ≤ la)Ĝ(X − x) I(si ≤ x)I(zi ≤ la)Ĝ(X − x)

Adjusted for mileage
& delay

I(si ≤ x)I(zi ≤ la)I
(
ri ≤ lm

zi

)
×

Ĝ(X − x)

I(si ≤ x)I(zi ≤ la)F̂
(

lm
zi

)
×

Ĝ(X − x)

Table 6.3: Contribution to M̂(x) for vehicle i at target time x

Example

In this example, we estimate the mean cumulative cost of P-claims per
vehicle, Λ̂(x), for Dataset 2001 from 22 May 2000 (x = 1, the first sale date)
until 24 October 2003 (X = 1251, the current date or “cut-off” date).
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Figure 6.16: Unadjusted Λ̂(x) and
95% CI’s
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Figure 6.17: Adjusted for mileage
Λ̂(x) and 95% CI’s

Figure 6.16 shows the unadjusted Λ̂(x) and Figure 6.17 shows the ad-
justed for mileage Λ̂(x), along with the corresponding 95% confidence in-
tervals (CI). In both figures, we see that the mean cumulative cost of P-
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claims is initially zero, and then increases starting from x = 57 or 17 July
2000 (for which the first P-claim occurred).
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Figure 6.18: Unadjusted Λ̂(x) and
adjusted for mileage Λ̂(x)
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Figure 6.19: Unadjusted Λ̂(x) and
adjusted for delay Λ̂(x)

Figure 6.18 illustrates the effect of the adjustment for withdrawals from
warranty coverage due to exceeding the mileage limit of 36000 miles. With-
out further analysis, the bend in the unadjusted curve could be due to a fall
in the warranty claim rates over time. But, the adjusted for mileage curve
indicates that the “true” rate is only slightly decreasing. However, un-
like the adjustment for mileage in the example for “time” is age case, this
adjustment is less significant as the adjusted for mileage curve still falls
within the unadjusted 95% confidence interval and there is a substantial
overlap of the two corresponding 95% confidence intervals. Nevertheless,
this adjustment is becoming more significant, and we would expect the
adjusted curve to go across the unadjusted 95% confidence interval as the
time increase.
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Figure 6.20: Unadjusted Λ̂(x) and
adjusted for delay Λ̂(x), for day
x ≥ 1000
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Figure 6.21: Unadjusted Λ̂(x) and
adjusted for mileage & delay Λ̂(x)

Next, Figure 6.19 illustrates the effect of adjustment for reporting delay.
It can be seen that this adjustment is not substantial. Figure 6.21 illustrates
the effect of simultaneous adjustment for both mileage and reporting de-
lay. This figure shows a similar pattern as Figure 6.18, and we may con-
clude that the effect of this adjustment is mainly due to mileage.

6.3 Bootstrap Estimate of Standard Error

In this section, we contribute to the study of Chukova and Robinson [2005]
by using bootstrap method in estimating the standard error of the mean
cumulative function Λ̂(u), where u can be age t, mileage m, or the actual
time x. The bootstrap method was proposed by B. Efron in 1979 [Efron,
1979]. Two major uses of the bootstrap are: the estimation of the standard
error of a statistic and the construction of a confidence interval. There are
two types of bootstrap:

• nonparametric bootstrap method, where we resample the observations
with replacement.
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• parametric bootstrap method, where we build a theoretical model us-
ing estimated parameters and resample from that distribution.

Here, we consider the nonparametric bootstrap method.
Suppose we have a random sample x = (x1, x2, . . . , xM), where xi, i =

1, 2, . . . ,M, represents an observation. Let θ be the statistic of interest,
which can be evaluated as a function of x, say θ̂ = s(x). Then, the boot-
strap algorithm for estimating the standard error of θ̂ is given as follows
[Efron and Tibshirani, 1993]:

1. Draw B independent bootstrap samples x∗1,x
∗
2, . . . ,x

∗
B with replace-

ment from x.

2. Evaluate the bootstrap replication of θ̂ corresponding to each bootstrap
sample,

θ̂∗b = s(x∗b), for b = 1, 2, . . . , B. (6.6)

3. Estimate the standard error of θ̂ using the standard deviation of the
bootstrap replications. The result is called the bootstrap estimate of
standard error, denoted by ŝeB.

An usual question is: how many bootstrap samples should we use? Ac-
cording to Efron and Tibshirani [1993], for estimating standard error, the
number B will normally be in the range 25-200 (much larger values of B
are needed for bootstrap confidence intervals).

There are many methods for constructing bootstrap confidence inter-
vals. Here, we consider two types of 100(1− α)% confidence intervals:

• The standard bootstrap confidence interval

θ̂ ± z1−α/2 × ŝeB,

where z1−α/2 is the 100(1 − α/2)th percentile of the standard normal
distribution.
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• The percentile confidence interval, where the 100(α/2)th and 100(1 −
α/2)th percentiles of the bootstrap replications are taken as the lower
and upper limits of the confidence interval.

If the bootstrap distribution is assumed to be normal, then the standard
bootstrap confidence interval is valid, and the standard bootstrap confi-
dence interval and the percentile confidence interval will nearly agree. If
the bootstrap distribution is not normal, then the two types of confidence
intervals differ and the percentile confidence intervals is preferable [Efron
and Tibshirani, 1993].

Figures 6.22 - 6.27 show the 95% confidence intervals evaluated using
Eq. (5.5), the 95% standard bootstrap confidence intervals, and the 95%
percentile confidence intervals for the following six different estimates
computed in our examples: unadjusted Λ̂(t), adjusted for mileage Λ̂(t),
unadjusted Λ̂(m), adjusted for age Λ̂(m), unadjusted Λ̂(x), and adjusted
for mileage Λ̂(x). Here, we use B = 1000 and each observation consists of
the details of a vehicle, including its claim records. In each case, we see
that the three types of confidence intervals roughly agree and the differ-
ences between these confidence intervals are not significant. These results
suggest that Eq. (5.5), with M(t) replaced by M̂(t), works well for evalu-
ating the standard error. However, a mathematical proof is still required,
and we hope to achieve this in the future. Note that the 95% percentile
confidence intervals are (usually) asymmetric, while the other two types
of 95% confidence intervals are always symmetric.
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Figure 6.22: Unadjusted Λ̂(t) and 95% CI’s
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Figure 6.23: Adjusted for mileage Λ̂(t) and 95% CI’s
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Figure 6.24: Unadjusted Λ̂(m) and 95% CI’s
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Figure 6.25: Adjusted for age Λ̂(m) and 95% CI’s
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Figure 6.26: Unadjusted Λ̂(x) and 95% CI’s
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Figure 6.27: Adjusted for mileage Λ̂(x) and 95% CI’s
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6.4 Summary and Discussions

The models introduced in this chapter are based on the assumption that
vehicles accumulate mileage approximately linearly with their age. We
had considered “time” is age case, “time” is mileage case, and “time” is
actual (calendar) time case. Our findings can be summarized as follows:

• In the “time” is age case, the adjustment for mileage is becoming
statistically significant as the vehicle’s age increases. This is shown
by the increasing difference between the unadjusted curve and the
adjusted for mileage curve of the mean cumulative warranty cost as
the vehicle’s age increases.

• In the “time” is mileage case, the adjustment for age is not statis-
tically significant. This is because the adjustment for age does not
begin until the oldest vehicle exceeds the age limit, which is three
years from the first sale in our dataset. Also, the majority (62%) of
the vehicles in the dataset are estimated to leave coverage due to
mileage, instead of age.

• In the actual time case, as in the “time” is age case, the adjustment
for mileage is becoming statistically significant as the vehicle’s age
increases. Nevertheless, the effect of the adjustment for mileage in
the actual time case is less pronounced compared to the “time” is
age case.

• The adjustment for reporting delay has little impact in each of the
three cases.

In addition, we also used bootstrap method in estimating the standard
errors of the mean cumulative warranty cost. The results suggest that Eq.
(5.5), with M(t) replaced by M̂(t), works well for evaluating the standard
error. However, a mathematical proof is still required.
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Chapter 7

Modeling Mileage Accumulation:
Piece-Wise Linear Approach

In this chapter, we review the model proposed by Christozov et al. [2008],
which is also based the robust estimator of Hu and Lawless [1996] and is
an extension of the CR-Model. We will call this model the CCR-Model.
This model relaxes the linearity assumption on mileage accumulation and
allows for variation in the mileage accumulation rate over a vehicle’s life-
time. Instead of using only the last claim to estimate the mileage accu-
mulation rate, the CCR-model adopts a piece-wise linear approach, which
uses all of the claims in the warranty database to characterize driving pat-
tern (or mileage accumulation pattern). However, the CCR-Model does
not take into account the effect of reporting delay of claim. Here, we will
reproduce some of the results in Christozov et al. [2008] by using the same
dataset, but with different computing softwares (we used statistical pro-
gramming language R, while Christozov et al. [2008] used Microsoft Ex-
cel) and with different approaches in preparing the data (see Chapter 4).
We will also develop a new model for the estimating the mean cumulative
warranty cost per vehicle in the actual time case. Besides, we will also es-
timate the standard errors of the mean cumulative functions by bootstrap
method. Note that all adjustments will always be made to M̂(t), M̂(m), or

52



M̂(x).

7.1 Grouping the Vehicles with Claims

Before we consider the CCR-Model, we first divide the vehicles with claims
into several groups based on the their observed driving pattern (or mileage
accumulation pattern), as in Christozov et al. [2008]. To measure the vari-
ability of driving pattern of a vehicle, we partition the warranty coverage
region into strata, as shown in Figure 7.1, and then assign the vehicle to
a particular group associated with the number of strata its trajectory goes
through during its warranty life. We assume the trajectory of the vehicle
to be piece-wise linear between its consecutive claims, as shown in Figure
7.2.

Theorem 7.1. A vehicle is said to be stable with respect to a certain range, if the
trajectory of this vehicle remains within this range throughout its warranty life
[Christozov et al., 2008].

stratum 2

l
m

m

0 tl
a

stratum k

stratum 1

Figure 7.1: Warranty coverage region with strata

Let Πk, k > 0, denote the strata partition of the warranty coverage re-
gion with k strata. For example, the partition of the warranty coverage
region in Figure 7.1 is Π8. Then, a vehicle is said to be ki-stable, if the
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claims of this vehicle are spread within exactly ki strata of Πk, where ki is a
positive integer number such that k0 = 1 < k1 < k2 < . . . < k. This means
that this vehicle is stable with respect to an aggregated stratum consisting
ki strata of Πk. We denote the size of this group of vehicles by Mki

1 . In
addition, let Oki

1,s, s = 1, 2, . . . , k, be the number of ki-stable vehicles, for
which claims fall into stratum s of Πk, such that

Oki
1,1 +Oki

1,2 + . . .+Oki
1,k = Mki

1 . (7.1)

These counts Oki
1,s will be used to estimate the strata distribution, which

reflects the proportion of vehicles within each strata. Note that the counts
Oki

1,s may not be an integer. In order to estimate Oki
1,s, we need to take into

account the contribution of each ki-stable vehicle to the number of vehicles
in each of the ki strata for which the vehicle is ki-stable. We assume this
contribution to be uniform over the corresponding ki strata. This means
that each ki-stable vehicle contributes a fraction of 1/ki to each of these ki
strata. For example, Figure 7.2 shows the trajectory of a 38-stable vehicle,
which goes through strata 2, 3 and 4. So, the contribution of this vehicle to
the number of vehicles in each of these strata is 1/3.

a

l
m

m

1/3

1/3

1/3

0 tl

Figure 7.2: Trajectory of a 38-stable vehicle

By identifying the groups of vehicles with claims as above, we partition
the set of all M1 vehicles with claims into non-overlapping groups, called
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driving pattern groups (DPG’s). In each of these DPG’s, the variability of
driving pattern follows a similar pattern. Let kd be the size of the largest
number of stratum needed to describe the stable driving patterns of the
vehicles with claims effectively. Then, we will have several groups of ve-
hicles, such that the first group consists of M1

1 1-stable vehicles, the second
group consists of Mk1

1 k1-stable vehicles, . . . and the last group consists of
Mkd

1 kd-stable vehicles. Besides that, there will also be another group of
vehicles, say of size Mkd+1

1 , with unstable driving pattern. The vehicles in
this group are said to be unstable, as their driving trajectories during their
warranty lives go through more than kd strata of Πk. For this group of un-
stable vehicles, we simply apply the simple linear mileage accumulation
model used in Chapter 6, i.e., we assume that the trajectories of these ve-
hicles are approximately linear, determined by their latest claim. Further,
each unstable vehicle is assigned to a single stratum based on its latest
claim.

At the end, the whole set of vehicles with claims is partitioned into
non-overlapping groups, such that

M1 = M1
1 +Mk1

1 + . . .+Mkd
1 +Mkd+1

1 . (7.2)

In addition, the number of vehicles with claims within the stratum s is
given by

O1,s = O1
1,s +Ok1

1,s + . . .+Okd
1,s +Okd+1

1,s (7.3)

for s = 1, 2, ..., k. Note that the notion of unstable cars is not important.
We can build a model by using a total of k DPG’s, i.e., kd = k. As a result,
the number of unstable vehicles will be equal to zero.
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7.2 Estimating the Strata Distribution

By using the strata counts O1,s, s = 1, 2, ..., k, given by Eq. (7.3), we can
compute the strata distribution p = (p1, p2, . . . , pk), where ps = Prob(a ve-
hicle with claims belongs to stratum s) by

ps =
O1,s

M1

, for s = 1, 2, ..., k. (7.4)

We assume that the strata distribution is time independent, i.e., it remains
the same over different age intervals. Further, we also assume that the
driving patterns of the vehicles with and without claims are probabilisti-
cally the same. Thus, the strata distribution can be used as a reasonable
representation for the vehicles without claims, and hence the strata distri-
bution describes the set of all vehicles in the database.

Example

Let us divide the warranty coverage region into age-bins with size of one
month (each month has equal number of days) and mileage-bins with size
of 1000 miles. Also, let us partition the warranty coverage region into
k = 72 strata, so that each stratum is reasonably narrow. Then, the set of
vehicles with claims (or odometer readings) is divided into several non-
overlapping driving pattern groups (DPG’s) as follows:

• Vehicles with a single claim - group S. Note that multiple claims
occurred at the same time and mileage are regarded as a single claim.

• Vehicles with more than one claim

– Vehicles with all claims within one stratum - group W1.

– Vehicles with all claims within three strata - group W3.

– Vehicles with all claims within six strata - group W6.
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– Vehicles with all claims spread over more than six strata - group
U .
(This is the group of unstable vehicles.)

Next, in order to estimate the strata distribution for the above set of DPG’s,
we determine the contribution of a vehicle to a stratum in the following
way:

• For group S, each vehicle belongs to a single stratum determined by
its claim.

• For group W1, each vehicle belongs to a single stratum determined
by its claims.

• For group W3, each vehicle is uniformly distributed over the three
associated strata.

• For group W6, each vehicle is uniformly distributed over the six as-
sociated strata.

• For group U , each vehicle belongs to a single stratum determined by
its last claim.

Table 7.1 shows the number of vehicles with claims in each DPG for Datasets
1998 - 2001. Then, Figure 7.3 shows the estimated strata distribution for
these datasets, which are asymmetric and skewed to the left.

Dataset S W1 W3 W6 U
2001 11175 1619 3171 2230 3541
2000 8833 1557 2866 1957 3181
1999 11446 1888 3816 2719 4438
1998 10381 1936 3905 2840 4879

Table 7.1: Number of vehicles with claims in each DPG for Datasets 1998 -
2001
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Figure 7.3: Estimated strata distribution for Datasets 1998 - 2001

7.3 Overview of the CCR-Model

Now, our goal is to estimate the mean cumulative warranty cost (or num-
ber of claims) per vehicle. Here, we provide an overview of the CCR-
Model. We will consider the “time” is age case and the “time” is mileage
case.

7.3.1 “Time” is Age Case

Firstly, we consider the case where “time” is the age of the vehicle. Let us
define a regular partition 0 = t0 < t1 < . . . < tn−1 < tn = la of size n such
that

tj − tj−1 = ha, j = 1, 2, . . . , n,

where ha = la/n and la is the warranty age limit, as in Figure 7.4. If neces-
sary, we can extend this partition beyond the warranty age limit la. As the
“time” discretization is defined by the step ha, we assume discrete values
tj = jha for j = 1, 2, . . . , n, . . . , such that t0 = 0, t1 = ha, . . . , tn = la, tn+1 =
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Figure 7.4: Age-bins

Let N (t)
j be the number of vehicles with age within an age-bin ∆

(t)
j =

[tj−1, tj), j = 1, 2, . . . , n. As vehicle’s age is known for all vehicles at all
time, N (t)

j is always known. If we ignore withdrawals from warranty cov-
erage due to mileage, then the number of vehicles eligible to generate a
claim at the target age tq, tq ≤ la, is the number of vehicles age tq or older,
i.e.,

M̂(tq) =
M∑
i=1

I(ai ≥ tq) = M −
q∑
j=1

N
(t)
j , (7.5)

where ai is the current age of vehicle i (on the “cut-off” date).
Then, to adjust for withdrawals from warranty coverage due to mileage,

the estimator M̂(tq) is adjusted to

M̂(tq) =

(
M −

q∑
j=1

N
(t)
j

)(
k−q∑
s=1

ps

)
, (7.6)

where ps is the probability that a vehicle belongs to stratum s. For exam-
ple, consider Figure 7.4 and suppose we want to estimate M(t2). We need
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to estimate the number of vehicle age t2 or older, which are still under
warranty coverage at time t2. The number of vehicles age t2 or older is
equal to M −

∑2
j=1 N

(t)
j . At time t2, vehicles with driving patterns associ-

ated with strata 7 and 8 would have left the warranty coverage, whereas
vehicles with driving pattern associated with strata 1 to 6 would still be
under coverage. Therefore, the proportion of vehicles that are still under
coverage at time t2 is

∑6
s=1 ps. Hence, the required estimate is given by

M̂(t2) =

(
M −

2∑
j=1

N
(t)
j

)(
6∑
s=1

ps

)
.

Example I

In this example, we estimate the mean cumulative cost of P-claims per
vehicle, Λ̂(t), up to the age limit of la = 36 months by using Dataset 2001.
Note that, for convenience, we write t = tq = 1, 2, . . . (in months).

Figure 7.5 shows the unadjusted Λ̂(t) and Figure 7.6 shows the adjusted
for mileage Λ̂(t), along with the 95% confidence intervals (CI) evaluated
using Eq. (5.5), the 95% standard bootstrap confidence intervals, and the
95% percentile confidence intervals. We can see that the three confidence
intervals roughly agree in both cases.

Then, Figure 7.7 illustrates the effect of the adjustment for withdrawals
from warranty coverage due to exceeding the mileage limit of 36000 miles.
The adjusted for mileage curve indicates that the “true” warranty claim
rate is not decreasing (or only decreasing slightly). In addition, the increas-
ing difference between the unadjusted curve and the adjusted for mileage
curve indicates that the adjustment for mileage is becoming more statisti-
cally significant as the vehicle’s age increases.

It can be seen that the adjusted for mileage curve goes across the unad-
justed 95% confidence interval when the vehicle’s age is about 29 months.
Whereas in the example (for CR-Model) of Section 6.1.1, the adjusted for
mileage curve goes across the unadjusted 95% confidence interval when
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the vehicle’s age is approximately 900 days (about 29 months). Overall,
the results we obtained are quite similar to the results obtained using the
CR-Model.

Note that the above results replicate the results given by Christozov
et al. [2008].
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Figure 7.5: Unadjusted Λ̂(t) and
95% CI’s
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Figure 7.6: Adjusted for mileage
Λ̂(t) and 95% CI’s
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Figure 7.7: Unadjusted Λ̂(t) and adjusted for mileage Λ̂(t)
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Example II

Now, by using Datasets 1998 - 2001, we explore the relationship between
the variability of driving pattern and the mean cumulative warranty cost
(per vehicle). We will consider the adjusted for mileage Λ̂(t). Note that,
instead of using the cost of P-claims only, we examine the total cost of all
claims. Also, for each of the datasets, the set of vehicles with no claims is
divided into each DPG according to the proportion of vehicles with claims
in each DPG.

Let us consider the following DPG’s: S, W1, W3, W6, and U , as already
defined. Figures 7.8 - 7.11 show the mean cumulative warranty cost for
different DPG’s for Datasets 1998 - 2001 respectively. For Datasets 1998
- 2000, we see that group W1 has the lowest cost, followed by group W3

and group W6, while group U have the highest cost. For Dataset 2001, the
cost for group W1 is initially the lowest, but there is a sharp increase in
the cost of this group when the vehicle’s age exceeds 25 months for some
unknown reasons. Due to the lack of information, we are unable to look
into this further.
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Figure 7.8: Mean cumulative war-
ranty cost for different DPG’s for
Dataset 1998
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Figure 7.9: Mean cumulative war-
ranty cost for different DPG’s for
Dataset 1999
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Figure 7.10: Mean cumulative war-
ranty cost for different DPG’s for
Dataset 2000
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Figure 7.11: Mean cumulative war-
ranty cost for different DPG’s for
Dataset 2001

Figures 7.12 - 7.15 show the mean cumulative warranty cost for differ-
ent DPG’s at t = 36 months for Datasets 1998 - 2001 respectively. Except
for Figure 7.15 which corresponds to Dataset 2001, the other figures all
demonstrate an upward trend over DPG’s with increasing variability of
driving pattern. For further analysis, we fit a trend line to each of these
graphs (by using simple linear regression). For Datasets 1998 - 2000, the
slopes of the trend lines are 9.9098, 5.7303, and 8.6441 respectively. All of
these slopes are positive and significant at the 10% level. For Dataset 2001,
the slope of the trend line is 0.8840. Even though this slope is also positive,
it is not significant at the 10% level.
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Figure 7.12: Mean cumulative war-
ranty cost for different DPG’s at t =
36 months for Dataset 1998
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Figure 7.13: Mean cumulative war-
ranty cost for different DPG’s at t =
36 months for Dataset 1999
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Figure 7.14: Mean cumulative war-
ranty cost for different DPG’s at t =
36 months for Dataset 2000
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Figure 7.15: Mean cumulative war-
ranty cost for different DPG’s at t =
36 months for Dataset 2001

Next, we investigate further the relationship between the variability of
the driving pattern and the mean cumulative warranty cost by using a dif-
ferent definition of DPG’s, with more groups as follows: S,W1,W2, . . . ,W10,

and U (with claims spread over more than 10 strata). Figures 7.16 - 7.19
show the mean cumulative warranty cost for different DPG’s at t = 36
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months for Datasets 1998 - 2001 respectively. All of these figures, includ-
ing the one for Dataset 2001, demonstrate an upward trend over DPG’s
with increasing variability of driving pattern. Again, we fit a trend line to
each of these graphs. For Datasets 1998 - 2000, the slopes of the trend lines
are 3.8506, 2.4027, and 1.9952 respectively. All of these slopes are positive
and significant at the 10% level. For Dataset 2001, the slope of the trend
line is 0.9112, which is also positive. However, this slope is not significant
at the 10% level.

Overall, the above results suggest that a higher variability of driving
pattern leads to a higher mean cumulative warranty cost. This is a very
interesting observation that requires further study. It suggests that the
variability of driving pattern should be taken into account in modeling
mileage accumulation.
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Figure 7.16: Mean cumulative war-
ranty cost for different DPG’s at t =
36 months for Dataset 1998
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Figure 7.17: Mean cumulative war-
ranty cost for different DPG’s at t =
36 months for Dataset 1999
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Figure 7.18: Mean cumulative war-
ranty cost for different DPG’s at t =
36 months for Dataset 2000
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Figure 7.19: Mean cumulative war-
ranty cost for different DPG’s at t =
36 months for Dataset 2001

7.3.2 “Time” is Mileage Case

a

l
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Figure 7.20: Mileage-bins

Next, we consider the case where “time” is the mileage of the vehicle. Let
us define a regular partition 0 = m0 < m1 < . . . < mn−1 < mn = lm of size
n such that

mj −mj−1 = hm, j = 1, 2, . . . , n,
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where hm = lm/n and lm is the warranty mileage limit, as in Figure 7.20.
If necessary, we can extend this partition beyond the warranty mileage
limit lm. As the “time” discretization is defined by the step hm, we assume
discrete values mj = jhm for j = 1, 2, . . . , n, . . . , such that m0 = 0,m1 =

hm, . . . ,mn = lm,mn+1 = lm + hm, . . .

Then, letN (m)
j denote the number of vehicles with accumulated mileage

within a mileage-bin ∆
(m)
j = [mj−1,mj), j = 1, 2, . . . , n. In addition, con-

sider an age-strata grid (s, ti), determined by the stratum s for s = 1, 2, . . . , k,

and the age-bin ∆
(t)
i for i = 1, 2, . . . , n, . . . In order to estimate M̂(m), we

need to know N
(m)
j , j = 1, 2, . . . , n. Since the current mileage is not known

exactly even for vehicles with claims, we will estimate N (m)
j by using the

strata distribution and the age-strata grid (s, ti). The idea is similar to the
ideas of analyzing group data. For each cell (s, ti) of the age-strata grid,
we identify a typical mileage representation, say m(s, ti). For example,
in Figure 7.4, m(7, t2) represents the mileage for the cell (7, t2). Then, the
number of vehicles with current mileage equal to m(s, ti) is estimated by

Nm(s,ti) = psN
(t)
i . (7.7)

Subsequently, we estimate N
(m)
j by adding up the numbers of vehicles

with typical mileage representation that fall within the jth mileage-bin
∆

(m)
j , i.e.,

N
(m)
j =

∑
m(s,ti)∈∆

(m)
j

Nm(s,ti). (7.8)

For the unadjusted case, we first estimate N (m)
j by extending the age-

strata grid beyond the warranty age limit la to cover all vehicles, including
those that had exceeded the age limit. Consequently, the number of vehi-
cles that are eligible to generate a claim at the target mileage mq, mq ≤ lm,
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is given by

M̂(mq) = M −
q∑
j=1

N
(m)
j . (7.9)

In order to adjust M̂(mq) for withdrawals from warranty coverage due
to age, we first divide each mileage-bin into two parts, one part for vehi-
cles with age less than the age limit and the other part for vehicles with age
larger or equal to the age limit. Then, for a mileage-bin ∆

(m)
j = [mj−1,mj),

let

• N (m)
j1 be the number of vehicles in this mileage-bin with age less the

age limit, and

• N (m)
j2 be the number of vehicles in this mileage-bin with age larger

than or equal to the age limit,

such that N (m)
j1 + N

(m)
j2 = N

(m)
j . We can compute N (m)

j1 by the method for
estimating N

(m)
j above, but using the age-strata grid within the age-limit

only. Subsequently, the adjusted for age estimator for M(mq) is given by

M̂(mq) =

(
M̃ −

q∑
j=1

N
(m)
j1

)
+
(
M − M̃

) k∑
s=q+1

ps, (7.10)

where M̃ =
∑n

i=1N
(t)
i is the number of vehicles with age less than the

age limit. Note that we have corrected the adjusted for mileage estimator
given by Christozov et al. [2008].
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Figure 7.21: Unadjusted M̂(m) and adjusted for age M̂(m)

Figure 7.21 illustrates the difference between the unadjusted M̂(m) and
the adjusted for age M̂(m). Let mq denote the target mileage. The un-
adjusted M̂(mq) will count all vehicles with accumulated mileage greater
than or equal to mq, including those that had exceeded the age limit, as
represented by the shaded region. On the other hand, the adjusted for age
M̂(mq) will count

• the vehicles with accumulated mileage greater than or equal to mq

and with age less than age limit, and

• the vehicles with age greater than or equal to the age limit and belong
to strata q + 1, q + 2, . . . , k,

as represented by the shaded region surrounded by the dark solid line.
The vehicles with age greater than or equal to the age limit and belong to
strata q + 1, q + 2, . . . , k are included, as they would have reached mileage
mq before they exceeded the age limit.

Example I

In this example, we estimate the mean cumulative cost of P-claims per
vehicle, Λ̂(m), up to the mileage limit of lm = 36000 miles for Dataset 2001.
Note that, for convenience, we write m = mq = 1, 2, . . . (in unit of 1000’s).
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Figure 7.22: Unadjusted Λ̂(m) and
95% CI’s

0 5 10 15 20 25 30 35

0
2

4
6

8

miles (K)

co
st

adjusted for age ΛΛ̂((m))
adjusted for age 95% CI
95% standard bootstrap CI
95% percentile CI

Figure 7.23: Adjusted for age Λ̂(m)
and 95% CI’s
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Figure 7.24: Unadjusted Λ̂(m) and adjusted for age Λ̂(m)

Figure 7.22 shows the unadjusted Λ̂(m) and Figure 7.23 shows the ad-
justed for age Λ̂(m), along with the 95% confidence intervals (CI) eval-
uated using Eq. (5.5), the 95% standard bootstrap confidence intervals,
and the 95% percentile confidence intervals. We see that the three confi-
dence intervals roughly agree in both cases. Then, Figure 7.24 illustrates
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the effect of the adjustment for withdrawals from warranty coverage due
to exceeding the age limit of 36 months. It can be seen that this adjustment
is not significant, but it is slightly more significant than the corresponding
adjustment done in the example (for CR-Model) of Section 6.1.2.

Example II

Now, by using Datasets 1998 - 2001, we explore the relationship between
the variability of driving pattern and the mean cumulative warranty cost
(per vehicle). We will consider the adjusted for age Λ̂(m). Note that, in-
stead of using the cost of P-claims only, we examine the total cost of all
claims. Also, for each of the datasets, the set of vehicles with no claims is
divided into each DPG according to the proportion of vehicles with claims
in each DPG.

Let us consider the following DPG’s: S, W1, W3, W6, and U , as already
defined. Figures 7.25 - 7.28 show the mean cumulative warranty cost for
different DPG’s for Datasets 1998 - 2001 respectively. For Datasets 1998
- 2000, we see that group W1 has the lowest cost, followed by group W3

and group W6, while group U have the highest cost. For Dataset 2001, the
cost for group W1 is initially the lowest, but there is a sharp increase in the
cost of this group when the vehicle’s mileage exceeds 25K miles for some
unknown reasons. Due to the lack of information, we are unable to look
into this further.
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Figure 7.25: Mean cumulative war-
ranty cost for different DPG’s for
Dataset 1998
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Figure 7.26: Mean cumulative war-
ranty cost for different DPG’s for
Dataset 1999
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Figure 7.27: Mean cumulative war-
ranty cost for different DPG’s for
Dataset 2000
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Figure 7.28: Mean cumulative war-
ranty cost for different DPG’s for
Dataset 2001

Figures 7.29 - 7.32 show the mean cumulative warranty cost for differ-
ent DPG’s at m = 36K miles for Datasets 1998 - 2001 respectively. Except
for Figure 7.32 which corresponds to Dataset 2001, the other figures all
demonstrate an upward trend over DPG’s with increasing variability of
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driving pattern. For further analysis, we fit a trend line to each of these
graphs (by using simple linear regression). For Datasets 1998 - 2000, the
slopes of the trend lines are 9.1855, 5.7994, and 8.9071 respectively. All of
these slopes are positive and significant at the 10% level. For Dataset 2001,
the slope of the trend line is 1.1768. Even though this slope is also positive,
it is not significant at the 10% level.
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Figure 7.29: Mean cumulative war-
ranty cost for different DPG’s at
m = 36K miles for Dataset 1998
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Figure 7.30: Mean cumulative war-
ranty cost for different DPG’s at
m = 36K miles for Dataset 1999
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Figure 7.31: Mean cumulative war-
ranty cost for different DPG’s at
m = 36K miles for Dataset 2000
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Figure 7.32: Mean cumulative war-
ranty cost for different DPG’s at
m = 36K miles for Dataset 2001
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Next, we investigate further the relationship between the variability of
the driving pattern and the mean cumulative warranty cost by using a dif-
ferent definition of DPG’s, with more groups as follows: S,W1,W2, . . . ,W10,

and U (with claims spread over more than 10 strata). Figures 7.33 - 7.36
show the mean cumulative warranty cost for different DPG’s at m = 36K

miles for Datasets 1998 - 2001 respectively. All of these figures, including
the one for Dataset 2001, demonstrate an upward trend over DPG’s with
increasing variability of driving pattern. Again, we fit a trend line to each
of these graphs. For Datasets 1998 - 2000, the slopes of the trend lines are
3.2474, 2.2805, and 1.9128 respectively. All of these slopes are positive and
significant at the 10% level. For Dataset 2001, the slope of the fitted trend
line is 0.4992, which is also positive. However, this slope is not significant
at the 10% level.

Overall, the above results suggest that a higher variability of driving
pattern leads to a higher mean cumulative warranty cost. Therefore, we
should take into account the variability of driving pattern in modeling
mileage accumulation. However, more study on this observation are re-
quired.
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Figure 7.33: Mean cumulative war-
ranty cost for different DPG’s at
m = 36K miles for Dataset 1998
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Figure 7.34: Mean cumulative war-
ranty cost for different DPG’s at
m = 36K miles for Dataset 1999
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Figure 7.35: Mean cumulative war-
ranty cost for different DPG’s at
m = 36K miles for Dataset 2000
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Figure 7.36: Mean cumulative war-
ranty cost for different DPG’s at
m = 36K miles for Dataset 2001

7.4 New Model: Actual Time Case

Now, we develop a new model for estimating the mean cumulative war-
ranty cost per vehicle in the actual time case, Λ(x). For simplicity and
better illustration of the idea, the models introduced here are based on the
partition we have already defined in our example, Π72. These models can
be modified easily for other forms of partition, if required.

Let X denote the current time (the “cut-off” date). Also, let us define
a regular partition of time 0 = x0 < x1 < . . . < xn−1 < xn, such that
X ∈ (xn−1, xn] and

xj − xj−1 = h, j = 1, 2, . . . , n,

as in Figure 7.37. Here, we have h = 1 month. Then, letN (x)
j be the number

of vehicles sold within a time-bin ∆
(x)
j = (xj−1, xj], j = 1, 2, . . . , n. As the

sale date of a vehicle is always known, N (x)
j is also always known.
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Figure 7.37: Time-bins

If we ignore withdrawals from warranty coverage due to mileage, then
the number of vehicles eligible to generate a claim at the target time xq is
simply the number of vehicles sold within the 36 months before xq, i.e.,

M̂(xq) =


∑q

i=1 N
(x)
q−i+1 if q = 1, 2, . . . , 35;∑36

i=1N
(x)
q−i+1 if q = 36, 37, . . . , n.

(7.11)

To take into account the withdrawals due to mileage, we will make the
adjustment for mileage separately for each time-bin. Suppose we make
the adjustment for mileage from the left-endpoint of each time-bin. This
means that all vehicles in a particular time-bin are regarded as having the
oldest possible age. For illustration, let us consider Figure 7.37 and the first
time-bin before the target time xq, ∆

(x)
q = (xq−1, xq]. A total of N (x)

q vehicles
would be sold within this time-bin, and these vehicles would have ages
between 0 and 1 month at the target time xq. To adjust for mileage, we
will regard all of these vehicle as being 1-month old. Then, the estimated
proportion of these N (x)

q vehicles that are still within the mileage limit at
time xq will be

∑71
s=1 ps, where ps is the probability that a vehicle belongs

to stratum s.
Similarly, the estimated proportion of the N

(x)
q−1 vehicles sold within
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∆
(x)
q−1 = (xq−2, xq−1] that are still within the mileage limit at time xq is∑70
s=1 ps; the estimated proportion of the N (x)

q−2 vehicles sold within ∆
(x)
q−2 =

(xq−3, xq−2] that are still within the mileage limit at time xq is
∑69

s=1 ps;
etc. Lastly, the estimated proportion of the N

(x)
q−35 vehicles sold within

∆
(x)
q−35 = (xq−36, xq−35] that are still within the mileage limit at time xq is∑36
s=1 ps. Therefore, the adjusted for mileage estimator for M(xq) is

M̂(xq) =


∑q

i=1

(
N

(x)
q−i+1 ×

∑72−i
s=1 ps

)
if q = 1, 2, . . . , 35;∑36

i=1

(
N

(x)
q−i+1 ×

∑72−i
s=1 ps

)
if q = 36, 37, . . . , n,

(7.12)

where ps is the probability that a vehicle belongs to stratum s.
We can make different adjustments for mileage to each time-bin, and

the resulting estimators for M(x) are slightly different from above. Sup-
pose we make the adjustment from the right-endpoint of each time-bin,
that is, all vehicles in a particular time-bin are regarded as having the
youngest possible age. Then the adjusted for mileage estimator for M(xq)

becomes

M̂(xq) =


∑q

i=1

(
N

(x)
q−i+1 ×

∑72−i+1
s=1 ps

)
if q = 1, 2, . . . , 35;∑36

i=1

(
N

(x)
q−i+1 ×

∑72−i+1
s=1 ps

)
if q = 36, 37, . . . , n.

(7.13)

Another adjustment, which is more conventional, will be to consider the
midpoint of each time-bin. Then, the adjusted for mileage estimator for
M(xq) becomes

M̂(xq) =


∑q

i=1

[
N

(x)
q−i+1 ×

(∑72−i
s=1 ps + 1

2
p72− i + 1

)]
if q = 1, 2, . . . , 35;∑36

i=1

[
N

(x)
q−i+1 ×

(∑72−i
s=1 ps + 1

2
p72− i + 1

)]
if q = 36, 37, . . . , n.

(7.14)
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Example I

In this example, we estimate the mean cumulative cost of P-claims per
vehicle, Λ̂(x), for Dataset 2001 from x = 1 (starting at the first sale date,
22 May 2000) until x = 42 (which includes the “cut-off” date, 24 October
2003). Note that, for convenience, we write x = xq = 1, 2, . . . , 42 (month).
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Figure 7.38: Unadjusted Λ̂(x) and
95% CI’s
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Figure 7.39: Adjusted for mileage
Λ̂(x) and 95% CI’s
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Figure 7.40: Unadjusted Λ̂(x) and adjusted for mileage Λ̂(x)
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Figure 7.38 shows the unadjusted Λ̂(x) and Figure 7.39 shows the ad-
justed for mileage Λ̂(x), along with the 95% confidence intervals (CI) eval-
uated using Eq. (5.5), the 95% standard bootstrap confidence intervals,
and the 95% percentile confidence intervals. In both cases, we see that the
three confidence intervals roughly agree. Then, Figure 7.40 illustrates the
effect of the adjustment for withdrawals from warranty coverage due to
exceeding the mileage limit of 36000 miles (by adjustment from the mid-
point of each time-bin). Compared to the adjustment for mileage in the
example for “time” is age case (see Section 7.3.1), this adjustment is less
significant here. The adjusted for mileage curve still lies within the un-
adjusted 95% confidence interval, and there is a substantial overlap of the
two corresponding 95% confidence intervals. Nevertheless, this adjust-
ment is becoming more significant, and we would expect the adjusted
curve to go across the unadjusted 95% confidence interval as time in-
creases.

Figure 7.41 illustrates the difference between the three adjustments for
mileage: from left-endpoint, from right-endpoint, and from the midpoint
of each time-bin. It can be observed that the curve for adjustment from
the left-endpoint is the highest, the curve for adjustment from the right-
endpoint is the lowest, while the curve for adjustment from the midpoint
lies between the two curves. Overall, the differences between the three
curves are not significant. As a conservative approach, we chose to adopt
the adjustment from the midpoint.

79



0 10 20 30 40

0
2

4
6

8
10

time (month)

co
st

adjustment 1 (midpoint)
adjustment 2 (left)
adjustment 3 (right)

25 30 35 40

5
6

7
8

9
10

time (month)

co
st

adjustment 1 (midpoint)
adjustment 2 (left)
adjustment 3 (right)

Figure 7.41: Different adjustments for mileage

Example II

Now, by using Datasets 1998 - 2001, we explore the relationship between
the variability of driving pattern and the mean cumulative warranty cost
(per vehicle). We will consider the adjusted for mileage Λ̂(x). Note that,
instead of using the cost of P-claims only, we examine the total cost of all
claims. Also, for each of the datasets, the set of vehicles with no claims is
divided into each DPG according to the proportion of vehicles with claims
in each DPG.

Let us consider the following DPG’s: S, W1, W3, W6, and U , as al-
ready defined. Figures 7.42 - 7.45 show the mean cumulative warranty
cost for different DPG’s for Datasets 1998 - 2001 respectively. In general,
for each these datasets, we see that group W1 has the lowest cost, followed
by group W3 and group W6, while group U have the highest cost. For
Dataset 2001, unlike in the previous examples, the cost for group W1 is
initially the lowest, and it only overtook group W3 after x = 35.
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Figure 7.42: Mean cumulative
warranty cost for different DPG’s
for Dataset 1998
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Figure 7.43: Mean cumulative
warranty cost for different DPG’s
for Dataset 1999
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Figure 7.44: Mean cumulative
warranty cost for different DPG’s
for Dataset 2000
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Figure 7.45: Mean cumulative
warranty cost for different DPG’s
for Dataset 2001

Figures 7.46 - 7.49 show the mean cumulative warranty cost for dif-
ferent DPG’s at x = 36 for Datasets 1998 - 2001 respectively. Note that
each of these datasets has different length of time period. So, for consis-
tency, we consider the mean cumulative warranty cost for different DPG’s
at x = 36. All of Figures 7.46 - 7.49 demonstrate an upward trend over
DPG’s with increasing variability of driving pattern. For further analysis,
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we fit a trend line to each of these graphs (by using simple linear regres-
sion). For Datasets 1998 - 2001, the slopes of the trend lines are 14.1963,
10.6491, 14.9861, and 9.2276 respectively. All of these slopes are significant
at the 10% level.
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Figure 7.46: Mean cumulative
warranty cost for different DPG’s
at x = 36 for Dataset 1998
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Figure 7.47: Mean cumulative
warranty cost for different DPG’s
at x = 36 for Dataset 1999
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Figure 7.48: Mean cumulative
warranty cost for different DPG’s
at x = 36 for Dataset 2000
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Figure 7.49: Mean cumulative
warranty cost for different DPG’s
at x = 36 for Dataset 2001
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Next, we investigate further the relationship between the variability of
the driving pattern and the mean cumulative warranty cost by using a dif-
ferent definition of DPG’s, with more groups as follows: S,W1,W2, . . . ,W10,

and U (with claims spread over more than 10 strata). Figures 7.50 - 7.53
show the mean cumulative warranty cost for different DPG’s at x = 36

for Datasets 1998 - 2001 respectively. Again, all of these figures demon-
strate an upward trend over DPG’s with increasing variability of driving
pattern. For Datasets 1998 - 2001, the slopes of the trend lines are 4.7529,
3.0578, 3.4205, and 2.6534 respectively. All of these slopes are significant
at the 5% level.

Overall, the above results suggest that a higher variability of driving
pattern leads to a higher mean cumulative warranty cost. Nevertheless,
more study on this observation are required.
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Figure 7.50: Mean cumulative
warranty cost for different DPG’s
at x = 36 for Dataset 1998
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Figure 7.51: Mean cumulative
warranty cost for different DPG’s
at x = 36 for Dataset 1999
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Figure 7.52: Mean cumulative
warranty cost for different DPG’s
at x = 36 for Dataset 2000
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Figure 7.53: Mean cumulative
warranty cost for different DPG’s
at x = 36 for Dataset 2001

7.5 Further Investigation

Since the driving pattern of a vehicle is determined by the odometer read-
ings at the time of making a claim, the driving pattern identified may be
dependent on the number of claims. Due to our modeling approach, it is
possible that a vehicle with more claims is more likely to have higher vari-
ability of driving pattern compared to those with fewer claims, and hence
has a higher warranty cost. Thus, to investigate further the relationship
between the variability of driving pattern and the mean cumulative war-
ranty cost, we examine the mean cumulative costs of all claims per vehicle
for different DPG’s by using Dataset 2006. In this dataset, each vehicle
has some odometer readings which are not related to the time of making a
claim. Thus, we will be able to characterize the driving pattern of a vehicle
in a better way and to reduce the influence of the number of claims on the
determination of driving pattern.

Now, let us consider the adjusted for mileage Λ̂(t), adjusted for age
Λ̂(m), and adjusted for mileage Λ̂(x) for the following DPG’s: S,W1,W3,W6,

and U . Note that, instead of using the vehicles with claims only, we use all
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vehicles in computing the strata distribution since all of them have some
mileage information. Also, all vehicles are divided into each DPG based
on their odometer readings, instead of claims. Figures 7.54 - 7.59 illustrate
the results. In each case, we observe that groupW1 has the lowest cost, fol-
lowed by group W3 and group W6, while group U have the highest cost.
Then, in Figures 7.55, 7.57, and 7.59, each of the trend lines (fitted by sim-
ple linear regression) has slope 29.3359, 18.2823, and 23.9869 respectively.
All of these slopes are significant at the 5% level.

The above results support our finding on the relationship between the
variability of driving pattern and the mean cumulative warranty cost, where
the mean cumulative warranty cost increases as the variability of driving
pattern increases. Of course, these results are based on a single dataset
only and more study are required.
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Figure 7.54: Adjusted for mileage
Λ̂(t) per DPG for Dataset 2006
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Figure 7.55: Adjusted for mileage
Λ̂(t) per DPG at t = 36 months
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Figure 7.56: Adjusted for age
Λ̂(m) per DPG for Dataset 2006
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Figure 7.57: Adjusted for age
Λ̂(m) per DPG at m = 36K miles
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Figure 7.58: Adjusted for mileage
Λ̂(x) per DPG for Dataset 2006
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Figure 7.59: Adjusted for mileage
Λ̂(x) per DPG at x = 36

7.6 Summary and Discussions

So far, we had estimated the mean cumulative cost of P-claims per vehicle
by using two different approaches in modeling mileage accumulation. In
Chapter 6, we made the assumption that vehicles accumulate mileage ap-
proximately linearly with their age. On the other hand, in this chapter, we
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relaxed the linearity assumption of mileage accumulation and allows for
variation in the rate of mileage accumulation over vehicle’s lifetime using
a piece-wise linear model.

We found that the results produced by these two approaches are quite
similar. A possible reason for this similarity is that the driving pattern (or
mileage accumulation pattern) for the majority of the vehicles are fairly
stable with respect to a reasonably narrow range, and hence a linear ap-
proximation for their trajectories is satisfactory. From Table 7.1, we see
that about 2/3 of the vehicles from each of the datasets, excluding those in
group S, are stable with respect to an aggregated stratum consisting of six
strata (with an angle of approximately 0.13 radian or 7.5 degree).

For the models introduced in this chapter, we estimate the mean cu-
mulative warranty cost (or number of claims) per vehicle at “time” tj, j =

1, 2, . . . , n, which define the regular partition. In the estimation procedure,
the warranty cost at a particular “time” tj actually includes the warranty
cost for the interval (tj−1, tj]. As a result, the precision of the results pro-
duced depends on the chosen partition. The narrower the intervals are,
the more precise the results are.

By considering the mean cumulative cost of all claims per vehicle for
different DPG, we observe that a higher variability of driving pattern tends
to result in a higher mean cumulative warranty cost. This is a very inter-
esting finding, which needs to be investigated further. It suggests that
we should take into account the variability of driving pattern in modeling
mileage accumulation. Note that we had excluded group S in the analysis
of this relationship, as it may not be sufficient to characterize a vehicle’s
driving pattern based on a single claim (or a single odometer reading).
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Chapter 8

Estimating Bivariate Mean
Cumulative Warranty Cost

In this chapter, we propose a new model for estimating bivariate mean
cumulative warranty cost (or number of claims) per vehicle as a func-
tion of age and mileage. We assume all vehicles to have some mileage
information (odometer readings), which may or may not be observed at
the time of making a claim. Let us define a regular partition of age 0 =

t0 < t1 < . . . < tn−1 < tn = la < . . . and a regular partition of mileage
0 = m0 < m1 < . . . < mn−1 < mn = lm < . . . , such that

tp − tp−1 = ha p = 1, 2, . . . , and mq −mq−1 = hm q = 1, 2, . . . ,

where ha = la/n and hm = lm/n. Together, these two partitions form an
age-mileage grid as in Figure 8.1. Then, let n(tp,mq) denote the total war-
ranty cost for cell (tp,mq) = (tp−1, tp] × (mq−1,mq] of the age-mileage grid
for all vehicles. Also, letN(tp,mq) be the number of vehicles in cell (tp,mq)

of the age-mileage grid, i.e., the number of vehicles with age within (tp−1, tp]

and with accumulated mileage within (mq−1,mq].
Now, let Λ(tp,mq) be the mean cumulative warranty cost up to and

including cell (tp,mq), with an initial condition Λ(0, 0) = 0. Then, the
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corresponding rate function is

λ(tp,mq) = Λ(tp,mq)− Λ(tp−1,mq)− Λ(tp,mq−1) + Λ(tp−1,mq−1). (8.1)

The rate function λ(tp,mq) can be estimated by

λ̂(tp,mq) =
n(tp,mq)

M̂(tp,mq)
, (8.2)

where M̂(tp,mq) denote the estimate for M(tp,mq), the number of vehicles
that are eligible to generate a claim in cell (tp,mq). Consequently, the mean
cumulative function estimator is given by

Λ̂(tp,mq) =

p∑
u=1

q∑
v=1

λ̂(tu,mv). (8.3)

This is the natural extension of the (univariate) robust estimator in Chapter
5. The mathematical expression for the standard error of Λ̂(tp,mq) is still
not available. Thus, we will evaluate the standard error of Λ̂(tp,mq) by
bootstrap method (see Section 6.3).

Next, we consider the estimation of M(tp,mq). We will use both linear
and piece-wise linear approaches in modeling mileage accumulation.

8.1 Estimation of M(tp,mq): Linear Approach

In this section, we introduce the first method to estimate M(tp,mq), the
number of vehicles that are eligible to generate a claim in cell (tp,mq). This
method adopts the simple linear mileage accumulation model in Chapter
6, i.e., we assume that vehicles accumulate mileage approximately linearly
with their age.

Let ri = βi/αi be the mileage accumulation rate (MAR) of vehicle i,
where αi and βi are the age and mileage of the vehicle at the latest odome-
ter reading respectively. Once we know ri for a vehicle, we can extrapolate
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the accumulated mileage of the vehicle at a given age easily. For instance,
the accumulated mileage for a vehicle with current age ai and MAR ri is
extrapolated to be airi. Then, let Ai and Bi be the age-bin and mileage-bin
that vehicle i belongs to at its current age. If the current age of a vehicle
is within the age-bin (tp−1, tp], then Ai = p. Similarly, if the extrapolated
mileage of a vehicle is within the mileage-bin (mq−1,mq], then Bi = q.
Consequently, the number of vehicles in cell (tp,mq) can be estimated by

N(tp,mq) =
M∑
i=1

I(Ai = p)I(Bi = q). (8.4)

To estimate M̂(tp,mq) using linear approach, there is no need to com-
pute N(tp,mq) explicitly. Suppose we ignore withdrawals from warranty
coverage (due to age or mileage), and whether the trajectory of a vehi-
cle actually goes through the target cell (tp,mq) or not, then M̂(tp,mq) is
simply given by

M̂(tp,mq) =
M∑
i=1

I(Ai ≥ p)I(Bi ≥ q). (8.5)

This is the unadjusted estimator for M(tp,mq). In order to adjust for with-
drawals from warranty coverage and to count only those vehicles that re-
ally go through the target cell (tp,mq), M̂(tp,mq) becomes

M̂(tp,mq) =
M∑
i=1

I(Ai ≥ p)I(Bi ≥ q)I

(
mq − 1

tp
≤ ri ≤

mq

tp − 1

)
. (8.6)
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Figure 8.1: Age-mileage grid, unadjusted M̂(tp,mq) and adjusted
M̂(tp,mq)

Figure 8.1 illustrates the idea of estimating M̂(tp,mq). For the unad-
justed case, M̂(tp,mq) is simply the number of vehicles with trajectory lies
in the shaded region, i.e., the number of vehicles with age larger than tp−1

and with mileage larger thanmq−1. Then, to take into account both age and
mileage warranty limit, and to consider only those vehicles that really go
through the target cell (tp,mq), M̂(tp,mq) counts only those vehicles with
trajectory lies in the shaded region surrounded by the dark solid line.

Example I

Let us define a set of age-bins with size of one month and a set of mileage-
bins with size of 1000 miles. Then, by using Dataset 2006, we estimate
the bivariate mean cumulative cost of P-claims per vehicle, Λ(t,m), up
to the age limit la = 36 months and the mileage limit lm = 36K miles.
Note that, for convenience, we write t = tp = 1, 2, . . . (in months) and
m = mq = 1, 2, . . . (in 1000 miles).
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Figure 8.2: Unadjusted Λ̂(t,m) Figure 8.3: Adjusted Λ̂(t,m)

Figure 8.2 shows the unadjusted Λ̂(t,m) and Figure 8.3 shows the ad-
justed Λ̂(t,m). Then, Figures 8.4 shows the comparisons between the un-
adjusted and adjusted Λ̂(t,m). It can be seen clearly that the adjusted
Λ̂(t,m) is much larger than the unadjusted Λ̂(t,m) for all t and m, where
the former completely lies above the latter. For t = m = 36, the adjusted
Λ̂(36, 36) is about 12 times of the unadjusted Λ̂(36, 36).

Figure 8.4: Unadjusted Λ̂(t,m) (lower) and adjusted Λ̂(t,m) (upper)

There is a huge difference between the unadjusted and adjusted re-
sults, because the adjusted M̂(t,m) is much lower than the unadjusted
M̂(t,m). The unadjusted M̂(t,m) counts all of the vehicles with age larger
than t and with mileage larger than m, no matter the vehicles actually go

92



through cell (t,m) or not. This leads to an overestimation of M(t,m). On
the other hand, the adjusted M̂(t,m) only counts those vehicles that actu-
ally go through cell (t,m). (See Figure 8.1.)

Example II

Now, we estimate the standard error of Λ̂(t,m) by bootstrap method, and
then compute the 95% standard bootstrap confidence interval and 95%
percentile confidence interval.

Firstly, we consider the unadjusted case. Figure 8.5 shows the unad-
justed Λ̂(t,m) with its 95% standard bootstrap CI, and Figure 8.6 shows
the unadjusted Λ̂(t,m) with its 95% percentile CI. It can be seen that the
two types of CI’s are very similar. For better illustration, Figure 8.7 shows
the unadjusted Λ̂(t, 36) and the two types of 95% CI’s, where we fix m at
36K miles. Similarly, Figure 8.8 shows the unadjusted Λ̂(36,m) and the
two types of 95% CI’s, where we fix t at 36 months. From these two fig-
ures, we see that the two types of CI’s are roughly the same.

Figure 8.5: Unadjusted Λ̂(t,m) and
95% standard bootstrap CI

Figure 8.6: Unadjusted Λ̂(t,m) and
95% percentile CI
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Figure 8.7: Unadjusted Λ̂(t, 36) and
95% CI’s
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Figure 8.8: Unadjusted Λ̂(36,m)
and 95% CI’s

Next, we consider the adjusted case. Figure 8.9 shows the adjusted
Λ̂(t,m) with its 95% standard bootstrap CI, and Figure 8.10 shows the ad-
justed Λ̂(t,m) with its 95% percentile CI. Again, it can be seen that the two
types of CI’s are very similar. For better illustration, Figure 8.11 shows
the adjusted Λ̂(t, 36) and the two types of 95% CI’s, where we fix m at
36K miles. Similarly, Figure 8.12 shows the adjusted Λ̂(36,m) and the two
types of 95% CI’s, where we fix t at 36 months. From these two figures, we
see that the two types of CI’s are nearly the same.

Figure 8.9: Adjusted Λ̂(t,m) and
95% standard bootstrap CI

Figure 8.10: Adjusted Λ̂(t,m) and
95% percentile CI
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Figure 8.11: Adjusted Λ̂(t, 36) and
95% CI’s
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Figure 8.12: Adjusted Λ̂(36,m) and
95% CI’s

8.2 Estimation ofM(tp,mq): Piece-Wise Linear Ap-

proach

Now, we introduce the second method to estimate M(tp,mq), the number
of vehicles eligible to generate a claim in cell (tp,mq), which uses a piece-
wise linear approach in modeling mileage accumulation as in Chapter 7.
To begin with, we partition the warranty coverage region into k strata,
and evaluate the strata distribution according to the procedure in Chapter
7. Note that, instead of using the vehicles with claims only, we use all
vehicles in computing the strata distribution since all of them have some
mileage information. Also, all vehicles are divided into each DPG based
on their odometer readings, instead of claims.
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Figure 8.13: Age-strata grid

Let us consider an age-strata grid (s, ti), determined by the stratum s

for s = 1, 2, . . . , k, and the age-bin (ti−1, ti] for i = 1, 2, . . . , n, . . ., shown
in Figure 8.13. Note that the age-strata grid can be extended beyond the
warranty coverage region, if necessary. For each cell (s, ti) of the age-strata
grid, we identify a typical mileage representation, say m(s, ti). Then, we
estimate the number of vehicles with current mileage equal to m(s, ti) by

Nm(s,ti) = psN
(t)
i , (8.7)

where ps is the probability that a vehicle belongs to stratum s and N
(t)
i is

the number of vehicles with age within (ti−1, ti]. Subsequently, we esti-
mate N(tp,mq) by adding up the numbers of vehicles with typical mileage
representation that fall within cell (tp,mq), i.e.,

N(tp,mq) =
∑

m(s,tp)∈(tp,mq)

Nm(s,tp). (8.8)

If we ignore withdrawals from warranty coverage (due to age or mileage),
and whether a vehicle actually goes through the target cell (tp,mq) or not,
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M̂(tp,mq) is simply given by

M̂(tp,mq) =
∑
u≥p

∑
v≥q

N(tu,mv). (8.9)

This is the unadjusted estimator for M(tp,mq).
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Figure 8.14: Adjusted M̂(tp,mq) - Case 1

Next, we consider the adjusted case which is more tricky. In the ad-
justed case, we only count those vehicles that go through the target cell
(tp,mq), while they are still under warranty coverage. That is, we count
only those vehicles that belong to the shaded area in Figure 8.14 or Fig-
ure 8.15. We need to consider two different cases. In Case 1, as illustrated
by Figure 8.14, the lines L and U which (partly) define the shaded region,
coincide with the boundary lines of the strata. Therefore, M(tp,mq) can
be estimated by the number of vehicles that are older than age tp−1 and
belong to the aggregated stratum formed by strata sl, . . . , su, i.e.,

M̂(tp,mq) =

(∑
i≥p

N
(t)
i

)(
su∑
s=sl

ps

)
, (8.10)

where ps is the probability that a vehicle belongs to stratum s and N
(t)
i is

the number of vehicles with age within (ti−1, ti]. Note that the estimator
above includes vehicles that belong to the little triangle below the shaded
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region. We assume the total number of these vehicles is negligible in our
estimation of M(tp,mq).
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Figure 8.15: Adjusted M̂(tp,mq) -
Case 2(a)

stratum s’

lm

0

m

tla

line L

line U

tp

mq

(tp, mq)

l

ustratum s’

Figure 8.16: Adjusted M̂(tp,mq) -
Case 2(b)

In Case 2, as illustrated by Figure 8.15, the lines L and U (or either one
of them) do not coincide with the boundary lines of the strata. So, to esti-
mate M(tp,mq), we first evaluate a lower bound and an upper bound for
M(tp,mq), and then take the average value of these bounds as an estimate
of M(tp,mq). We can apply the technique used in Case 1 to obtain the
lower and upper bounds for M(tp,mq). That is,

• We estimate the lower bound for M(tp,mq) by the number of vehi-
cles that are older than age tp−1 and belong to the largest aggregated
stratum (formed by strata sl, . . . , su) that is inside the shaded region,
as shown in Figure 8.15.

• We estimate the upper bound for M(tp,mq) by the number of vehi-
cles that are older than age tp−1 and belong to the smallest aggregated
stratum (formed by strata s′l, . . . , s

′
u) that includes the shaded region,

as shown in Figure 8.16.

Note that, the estimate of M(tp,mq) obtained by taking the average value
of the bounds is only a rough approximation. More precise procedure for
estimating M(tp,mq) could be developed, but it will require a significant
increase in the complexity of the model.
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The following proposition summarizes the estimators forM(tp,mq) used
in both Case 1 and Case 2:

Proposition 8.1. Let ξ1, ξ2, . . . , ξk be the slopes of the boundary lines of the
strata, as shown in Figure 8.13. Also, let RL and RU be the slopes of the lines
L and U , as in Figures 8.14 and 8.15, respectively. Then,

• The estimate for M(tp,mq) in Case 1 or the lower bound for M(tp,mq) in
Case 2 is given by

M̂L(tp,mq) =

(∑
i≥p

N
(t)
i

)(
su∑
s=sl

ps

)
, (8.11)

where

sl =

{
1 if mq−1 = 0

min{s : ξs ≥ RL} if mq−1 > 0,

su =

{
k if tp−1 = 0

max{s : ξs ≤ RU} − 1 if tp−1 > 0.

• The estimate for M(tp,mq) in Case 1 or the upper bound for M(tp,mq) in
Case 2 is given by

M̂U(tp,mq) =

(∑
i≥p

N
(t)
i

) s′u∑
s=s′l

ps

 , (8.12)

where

s′l =

{
1 if mq−1 = 0

max{s : ξs ≤ RL} if mq−1 > 0,

s′u =

{
k if tp−1 = 0

min{s : ξs ≥ RU} − 1 if tp−1 > 0.

• Consequently, the estimate of M(tp,mq), for any of Case 1 and Case 2, is
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given by

M̂(tp,mq) =
1

2

[
M̂L(tp,mq) + M̂U(tp,mq)

]
. (8.13)

For example, let us consider Figures 8.15 and 8.16, which involves k =

8 strata. Firstly, we obtain the lower bound for M(tp,mq). Since tp−1 and
mq−1 are both greater than zero, we have

sl = min{s : ξs ≥ RL} = 4 and su = max{s : ξs ≤ RU} − 1 = 5.

Then, the lower bound for M(tp,mq) is given by

M̂L(tp,mq) =

(∑
i≥p

N
(t)
i

)(
5∑
s=4

ps

)
.

Next, we obtain the upper bound for M(tp,mq). Since tp−1 and mq−1 are
both greater than zero, we have

s′l = max{s : ξs ≤ RL} = 3 and s′u = min{s : ξs ≥ RU} − 1 = 6.

Then, the upper bound for M(tp,mq) is given by

M̂U(tp,mq) =

(∑
i≥p

N
(t)
i

)(
6∑
s=3

ps

)
.

Finally, the estimate ofM(tp,mq) is given by the average value of M̂L(tp,mq)

and M̂U(tp,mq).

Example I

Let us define a set of age-bins with size of one month and a set of mileage-
bins with size of 1000 miles. Then, by using Dataset 2006, we estimate
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the bivariate mean cumulative cost of P-claims per vehicle, Λ(t,m), up to
the age limit la = 36 months and the mileage limit lm = 36K miles. Note
that, for convenience, we write t = tp = 1, 2, . . . (in months) and m =

mq = 1, 2, . . . (in 1000 miles). Also, the strata distribution is constructed by
using the definition of driving pattern groups (DPG’s) used in Chapter 7,
i.e., with 5 DPG’s: S,W1,W3,W6, and U .

Figure 8.17: Unadjusted Λ̂(t,m) Figure 8.18: Adjusted Λ̂(t,m)

Figure 8.17 shows the unadjusted Λ̂(t,m) and Figure 8.18 shows the ad-
justed Λ̂(t,m). Then, Figures 8.19 shows the comparisons between unad-
justed and adjusted Λ̂(t,m). It can be seen clearly that the adjusted Λ̂(t,m)

is much larger than the unadjusted Λ̂(t,m) for all t and m, where the for-
mer completely lies above the latter. Also, the results we obtained here
are quite similar to the results in Example I for linear approach. For better
comparison between the results produced by linear and piece-wise linear
approaches, Table 8.1 shows the values of unadjusted and adjusted Λ̂(t, t)

for t = m = 6, 12, 18, 24, 30, 36 produced by these two approaches. In
both unadjusted and adjusted cases, we see that the estimates produced
by these two approaches are very similar.
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Figure 8.19: Unadjusted Λ̂(t,m) (lower) and adjusted Λ̂(t,m) (upper)

Unadjusted Λ̂(t, t) Adjusted Λ̂(t, t)
t Linear PWL Linear PWL
6 1.2583 1.2584 3.3958 3.3778
12 1.8266 1.8265 7.5152 7.7210
18 2.9375 2.9393 19.1413 18.9235
24 4.7921 4.7986 44.7756 45.2015
30 6.5526 6.5611 73.2004 74.2236
36 9.1919 9.2010 111.7453 113.4169

Table 8.1: Unadjusted and adjusted Λ̂(t, t) for t = m =
6, 12, 18, 24, 30, 36, produced by linear and piece-wise linear
(PWL) approaches

Example II

Next, we estimate the standard error of Λ̂(t,m) by bootstrap method, and
then compute the 95% standard bootstrap confidence interval and 95%
percentile confidence interval.

Firstly, we consider the unadjusted case. Figure 8.20 shows the unad-
justed Λ̂(t,m) with its 95% standard bootstrap CI, and Figure 8.21 shows
the unadjusted Λ̂(t,m) with its 95% percentile CI. It can be seen that the
two types of CI’s are very similar. For better illustration, Figure 8.22 shows
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the unadjusted Λ̂(t, 36) and the two types of 95% CI’s, where we fix m at
36K miles. Similarly, Figure 8.23 shows the unadjusted Λ̂(36,m) and the
two types of 95% CI’s, where we fix t at 36 months. From these two figures,
we see that the two types of CI’s are roughly the same.

Figure 8.20: Unadjusted Λ̂(t,m)
and 95% standard bootstrap CI

Figure 8.21: Unadjusted Λ̂(t,m)
and 95% percentile CI
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Figure 8.22: Unadjusted Λ̂(t, 36)
and 95% CI’s
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Figure 8.23: Unadjusted Λ̂(36,m)
and 95% CI’s

Next, we consider the adjusted case. Figure 8.24 shows the adjusted
Λ̂(t,m) with its 95% standard bootstrap CI, and Figure 8.25 shows the ad-
justed Λ̂(t,m) with its 95% percentile CI. Again, it can be seen that the two
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types of CI’s are very similar. Then, Figure 8.26 shows the adjusted Λ̂(t, 36)

and the two types of 95% CI’s, where we fixm at 36K miles. Similarly, Fig-
ure 8.27 shows the adjusted Λ̂(36,m) and the two types of 95% CI’s, where
we fix t at 36 months. From these two figures, we see that the two types of
CI’s are nearly the same.

Figure 8.24: Adjusted Λ̂(t,m) and
95% standard bootstrap CI

Figure 8.25: Adjusted Λ̂(t,m) and
95% percentile CI
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Figure 8.26: Adjusted Λ̂(t, 36) and
95% CI’s
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Figure 8.27: Adjusted Λ̂(36,m) and
95% CI’s
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8.3 Univariate Mean Cumulative Warranty Cost

for Intervals

In this section, we consider two types of estimators for estimating the uni-
variate mean cumulative warranty cost for intervals as follows:

• the univariate estimators associated with the bivariate model, and

• the direct univariate estimators.

8.3.1 Univariate Estimator associated with the Bivariate Model

Associate with the bivariate rate function λ(tp,mq), there are two univari-
ate rate functions λ1(tp) and λ2(mq), where

• λ1(tp) is the mean warranty cost per vehicle for age-bin (tp−1, tp], and

• λ2(mq) is the mean warranty cost per vehicle for mileage-bin (mq−1,mq].

These functions are given by

λ1(tp) =
∑
q

λ(tp,mq) and λ2(mq) =
∑
p

λ(tp,mq), (8.14)

respectively. The above idea is similar to the idea of obtaining the marginal
distribution functions from a bivariate distribution function. To obtain
λ1(tp), we sum up λ(tp,mq) for all mq. Similarly, to obtain λ2(mq), we sum
up λ(tp,mq) for all tp. Then, the corresponding mean cumulative functions
are given by

Λ1(tp) =

p∑
j=1

λ1(tj) and Λ2(mq) =

q∑
j=1

λ2(mj), (8.15)

respectively. Note that Λ̂1(tp) is equal to Λ̂(tp, lm) and Λ̂2(mq) is equal to
Λ̂(la,mq), provided no claim has occurred outside the warranty coverage
region.
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8.3.2 Direct Univariate Estimator

Now, we consider the direct estimators for estimating the univariate mean
cumulative warranty cost over an age interval or mileage interval. Let

• Λ(tp) be the mean cumulative function of warranty cost up to and
including age-bin (tp−1, tp], and

• Λ(mq) be the mean cumulative function of warranty cost up to and
including mileage-bin (mq−1,mq].

Also, let λ(tp) and λ(mq) be the corresponding rate functions, n(tp) be the
total warranty cost for age-bin (tp−1, tp], and n(mq) be the total warranty
cost for mileage-bin (mq−1,mq].

To estimate Λ(tp) and Λ(mq), we use the robust estimator in Chapter 5,
with the intervals taken as the units of “time”. Then, for the “time” is age
case, the rate function can be estimated by

λ̂(tp) =
n(tp)

M̂(tp)
, (8.16)

where M̂(tp) is the estimated number of vehicles that are eligible to gen-
erate a claim in (tp−1, tp]. Consequently, the associate mean cumulative
function estimator is given by

Λ̂(tp) =

p∑
j=1

λ̂(tj). (8.17)

Similarly, for the “time” is mileage case, the rate function can be estimated
by

λ̂(mq) =
n(mq)

M̂(mq)
, (8.18)

where M̂(mq) is the estimated number of vehicles that are eligible to gen-
erate a claim in (mq−1,mq]. Consequently, the associate mean cumulative
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function estimator is given by

Λ̂(mq) =

q∑
j=1

λ̂(mj). (8.19)

The standard errors of Λ̂(tp) and Λ̂(mq) can be estimated by Eq. (5.5), with
M(tp) replaced by M̂(tp) and M(mq) replaced by M̂(mq), respectively.

We can compute M̂(tp) and M̂(mq) by using a linear or piece-wise lin-
ear approach in modeling mileage accumulation. Here, we introduce the
estimators for M̂(tp) and M̂(mq), which are modified from the CR-Model
(linear approach) in Chapter 6 and the CCR-Model (piece-wise linear ap-
proach) in Chapter 7. We assume all vehicles to have some mileage infor-
mation.

Linear Approach

Firstly, we consider the linear approach. For the “time” is age case, if we ig-
nore withdrawals from warranty coverage due to mileage, then the num-
ber of vehicles that are eligible to generate a claim in (tp−1, tp], M(tp), can
be estimated by

M̂(tp) =
M∑
i=1

I(Ai ≥ p). (8.20)

To adjust for withdrawals due to mileage, M̂(tp) becomes

M̂(tp) =
M∑
i=1

I(Ai ≥ p)I

(
ri ≤

lm
tp − 1

)
. (8.21)

For the “time” is mileage case, if we ignore withdrawals from warranty
coverage due to age, then the number of vehicles that are eligible to gen-
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erate a claim in (mq−1,mq], M(mq), can be estimated by

M̂(mq) =
M∑
i=1

I(Bi ≥ q). (8.22)

To adjust for withdrawals due to age, M̂(mq) becomes

M̂(mq) =
M∑
i=1

I(Bi ≥ q)I

(
ri ≥

mq−1

la

)
=

M∑
i=1

I

(
ri ≥

mq−1

min(ai, la)

)
, (8.23)

where ai is the current age of vehicle i.

Piece-Wise Linear Approach

Next, we consider the piece-wise linear approach. For the “time” is age
case, if we ignore withdrawals from warranty coverage due to the mileage,
then the number of vehicles that are eligible to generate a claim in (tp−1, tp],
M(tp), can be estimated by

M̂(tp) =
∑
j≥p

N
(t)
j . (8.24)

Then, to adjust for withdrawals due to the mileage, M̂(tp) becomes

M̂(tp) =

(∑
j≥p

N
(t)
j

)(
k−p+1∑
s=1

ps

)
, (8.25)

where ps is the probability that a vehicle belongs to stratum s.
For the “time” is mileage case, if we ignore withdrawals from warranty

coverage due to the age, then the number of vehicles that are eligible to
generate a claim in (mq−1,mq], M(mq), can be estimated by

M̂(mq) =
∑
j≥q

N
(m)
j , (8.26)
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where

N
(m)
j =

∑
i

N(ti,mj) (8.27)

is the number of vehicles with mileage within (mj−1,mj]. Then, to adjust
for withdrawals due to the age, M̂(mq) becomes

M̂(mq) =
∑
j≥q

Ñ
(m)
j +

(
M − M̃

) k∑
s=q

ps, (8.28)

where M̃ is the number of vehicles with age within the age limit, and

Ñ
(m)
j =

n∑
i=1

N(ti,mj). (8.29)

is the number of vehicles with mileage within (mj−1,mj] and with age
within the age limit.

8.3.3 Discussions

Intuitively, one might think that λ̂(tp) = λ̂1(tp) and λ̂(mq) = λ̂2(mq). Un-
fortunately, these are not true because

λ̂(tp) =
∑
q

n(tp,mq)

M̂(tp)

=
∑
q

[
n(tp,mq)

M̂(tp,mq)
× M̂(tp,mq)

M̂(tp)

]

=
∑
q

[
λ̂(tp,mq)×

M̂(tp,mq)

M̂(tp)

]
6=
∑
q

λ̂(tp,mq),
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and similarly for λ̂(mq). Moreover, it can be shown that

λ̂(tp) ≤ λ̂1(tp) and λ̂(mq) ≤ λ̂2(mq), (8.30)

since M̂(tp) ≥ M̂(tp,mq) and M̂(mq) ≥ M̂(tp,mq).
By comparing the definitions of λ̂(tp) and λ̂(mq) with the definitions for

λ̂1(tp) and λ̂2(mq). We see that λ̂1(tp) and λ̂2(mq) will be the more reliable
and accurate estimators for the mean cumulative warranty cost. To explain
why, let us consider the warranty cost n(tp,mq) for cell (tp,mq). For λ̂1(tp)

and λ̂2(mq), n(tp,mq) is averaged over the estimated number of vehicles
that are eligible to generate a claim in that cell, M̂(tp,mq). On the other
hand, for λ̂(tp) and λ̂(mq), n(tp,mq) is averaged over M̂(tp) and M̂(mq) re-
spectively, which include vehicles with trajectories that do not go through
cell (tp,mq). Hence, the mean cumulative warranty cost is underestimated.

Example I

In this example, we estimate the mean cumulative cost of P-claims per
vehicle over an age interval and a mileage interval, Λ(t) and Λ(m), by
using Dataset 2006. We use both linear and piece-wise linear approaches
in modeling mileage accumulation. For convenience, we write t = tp =

1, 2, . . . (in months) and m = mq = 1, 2, . . . (in 1000 miles).
Figure 8.28 and Figure 8.29 show the results for the linear approach.

For the “time” is age case, we see that the unadjusted Λ̂(t) and the adjusted
for mileage λ̂(t) are initially similar, but the difference between the two
estimates increases as t increases. There is a kink at t = 22 months, where
the adjusted for mileage λ̂(t) starts to increase at a higher rate. For the
“time” is mileage case, the unadjusted Λ̂(m) and adjusted for age Λ̂(m) are
nearly identical for all m. The adjustment for age has very little impacts
here. This is because the adjustment for age does not begin until the oldest
vehicle exceeds the age limit, which is three years from the first sale in our
dataset. Also, the majority of the vehicles in the dataset are estimated
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to leave coverage due to mileage, instead of age. Based on the empirical
distribution of mileage accumulation rate (not shown), approximately 62%
of the vehicles in Dataset 2006 are anticipated to leave warranty coverage
due to exceeding the mileage limit, before they reach the age limit.
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Figure 8.28: Unadjusted Λ̂(t) and
adjusted for mileage Λ̂(t), by linear
approach
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Figure 8.29: Unadjusted Λ̂(m) and
adjusted for age Λ̂(m), by linear ap-
proach
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Figure 8.30: Unadjusted λ̂(t) and
adjusted for mileage λ̂(t), by piece-
wise linear approach
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Figure 8.31: Unadjusted Λ̂(m) and
adjusted for age Λ̂(m), by piece-
wise linear approach
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Then, Figure 8.30 and Figure 8.31 show the results for the piece-wise
linear approach. It can be seen that the results obtained by linear and
piece-wise linear approaches are very similar.

Example II

Now, using the results obtained by linear approach, let us compare the
direct univariate estimators, Λ̂(t) and λ̂(m) from the previous example,
with the univariate estimators associated with the bivariate model, λ̂1(t)

and λ̂2(m) (following from Example I of Section 8.1).
Firstly, we consider the unadjusted case. Figure 8.32 shows the un-

adjusted λ̂(t) and λ̂1(t), and Figure 8.33 shows the corresponding mean
cumulative functions Λ̂(t) and Λ̂1(t). It can be seen that λ̂(t) and λ̂1(t)

are initially similar, with λ̂1(t) being slightly greater than λ̂(t). Then, the
difference between the two estimates becomes larger at older age. Con-
sequently, Λ̂(t) and Λ̂1(t) are also similar initially and then the difference
between the two estimates increases as t increases, with Λ̂1(t) being greater
than Λ̂(t).
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Figure 8.32: Unadjusted λ̂(t) and
λ̂1(t)
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Figure 8.33: Unadjusted Λ̂(t) and
Λ̂1(t)
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Figure 8.34: Unadjusted λ̂(m) and
λ̂2(m)
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Figure 8.35: Unadjusted Λ̂(m) and
Λ̂2(m)

Then, Figure 8.34 shows the unadjusted λ̂(m) and λ̂2(m), and Figure
8.35 shows the corresponding mean cumulative functions Λ̂(m) and Λ̂2(m).
It can be seen that λ̂(m) and λ̂2(m) are very close to each other, but λ̂2(m)

is slightly greater than λ̂(m). Consequently, Λ̂(m) is also slightly greater
than Λ̂2(m).

Next, we consider the adjusted case. Figures 8.36 - 8.39 illustrate the
results. We observe a similar pattern, where λ̂1(t) is greater than λ̂(t), and
λ̂2(m) is greater than λ̂(m). In addition, the difference between λ̂(t) and
λ̂1(t), as well as the difference between λ̂(m) and λ̂2(m), are much larger
than the corresponding differences in the unadjusted case.

From Figures 8.34 and 8.38, we can observe one common feature for all
λ̂(m) and λ̂2(m), no matter they are adjusted or not. That is, there exists
a “spike” near the mileage limit of 36K miles, where the warranty cost is
much higher. This interesting observation may be attributed to the exis-
tence of “customer-rush near the warranty expiration limit”, which may
result in a relatively high number of claims and hence a high warranty
cost near the warranty expiration limit. Such a phenomenon may occur
as a result of soft failures, where the vehicle users delay failure reporting
until warranty is about to expire [Rai and Singh, 2004]. Note that, this
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phenomenon is not detected in “time” is age case, probably because the
majority of the vehicles leave warranty coverage due to mileage, instead
of age.
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Figure 8.36: Adjusted for mileage
λ̂(t) and adjusted λ̂1(t)
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Figure 8.37: Adjusted for mileage
Λ̂(t) and adjusted Λ̂1(t)
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Figure 8.38: Adjusted for age λ̂(m)

and adjusted λ̂2(m)
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Figure 8.39: Adjusted for age Λ̂(m)

and adjusted Λ̂2(m)
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8.4 Summary and Discussions

In this chapter, we had proposed a bivariate model for estimating the
mean cumulative warranty cost as a function of age and mileage. To deal
with the problem of incomplete mileage information, we considered both
linear and piece-wise linear approaches in modeling mileage accumula-
tion. Then, to evaluate the standard error of our estimate, we considered
the use of bootstrap method. In addition, we also considered two types of
univariate estimator for intervals: one associated with the bivariate model
(Section 8.3.1) and one direct estimator (Section 8.3.2).

Our findings can be summarized as follows:

• the results produced by using linear and piece-wise linear approaches
in modeling mileage accumulation are not significantly different.

• the results produced by the univariate estimators associated with the
bivariate model are very different from the results produced by the
direct univariate estimators for intervals. By comparing the defini-
tions of these estimators, we see that the univariate estimators as-
sociated with the bivariate model would be more reliable than the
direct univariate estimators. This suggests that a direct univariate
estimator might not be sufficient for estimating the mean cumulative
warranty cost, when the warranty program involves two variables.

In addition, from the univariate results, we also observed the phenomenon
of “customer-rush near warranty expiration limit” in “time” is mileage
case. We did not detect this phenomenon in “time” is age case, probably
because the majority (62%) of the vehicles in our dataset leave warranty
coverage due to mileage, instead of age. Of course, the above results are
based on a single dataset and more study are required.

The model introduced in this article is simple and straightforward, but
it requires all vehicles to have some mileage information. In practice, the
mileage information for vehicles with claims are available in the database,
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while the mileage information for vehicles without claims are usually un-
known. This is one major weakness of the model which we would like to
improve.
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Chapter 9

Predicting Mean Cumulative
Warranty Cost

In this chapter, we consider several simple methods for predicting the
mean cumulative function Λ(u), u = 1, 2, . . . ,where u can be age t, mileage
m, as well as the actual time x. Note that, in fact, we are predicting the es-
timated mean cumulative function Λ̂(u).

9.1 Curve Fitting

The first method of making prediction is curve fitting. From our examples,
we can see that some of the estimated mean cumulative functions Λ̂(u)

shows a roughly upward linear trend. So, for these estimates with linear
trend, we may try to fit a straight line (with no intercept) of the form

y = au. (9.1)

Here, y corresponds to Λ̂(u), u is the function argument, and a is the pa-
rameter to be estimated. We can estimate the parameter a easily by the
method of least squares (LS). For instance, Figure 9.1 shows the fitted LS
line for the adjusted for mileage Λ̂(t), produced by the CR-Model in the

117



example of Section 6.1.1. The estimated value of a is â = 0.0072, with sum
of squared errors equal to 61.5173. Note that the fitted line seems to have
a slope of approximately 1, and so a should also be close to 1. However,
this is not true because the graph has actually been rescaled.
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Figure 9.1: Adjusted for mileage
Λ̂(t) and the fitted LS line
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Figure 9.2: Adjusted for mileage
Λ̂(t) and the fitted LS curve

It can be noted that a straight line does not provide a very good fit in
this case, as shown by the large value of sum of squared error. So, instead
of using a straight line, we may try to fit a curve. Here, we suggest to fit a
curve of the form

y = aub (9.2)

i.e., the power law model. In Eq. (9.2), y corresponds to Λ̂(u), u is the
function argument, while a and b are the parameters to be estimated. We
can estimate these parameters by the method of least square. Note that
the statistical programming language R provides a useful built-in func-
tion nlm() for this purpose. Figure 9.2 shows the fitted LS curve for the
adjusted for mileage Λ̂(t). The estimated values of a and b are â = 0.0177

and b̂ = 0.8653 respectively. The sum of squared errors equal to 9.5168,
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which is much lower than that of using a straight line (61.5173). By com-
paring Figures 9.1 and 9.2, we also see that the fitted curve fits the data
better than the fitted line.
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Figure 9.3: Difference between unadjusted Λ̂(t) and adjusted for mileage
Λ̂(t)

Sometimes, it may be useful to model the difference between the un-
adjusted and adjusted Λ̂(u). By doing so, we will be able to estimate the
adjusted Λ̂(u) from the unadjusted Λ̂(u), which may be easier to compute.
For instance, let us model the difference between the unadjusted Λ̂(t) and
the adjusted for mileage Λ̂(t), produced by the CR-Model in the example
of Section 6.1.1, and try to fit a curve of the form of Eq. (9.2). Figure 9.3
shows the difference between these two estimates and the fitted LS curve.
The estimated values of a and b are â = 1.178 × 10−10 and b̂ = 3.3 respec-
tively, with sum of squared errors equal to 1.4416. Then, Figure 9.4 shows
the fitted adjusted for mileage Λ̂(t), which is obtained by adding up the
unadjusted Λ̂(t) and the fitted difference. On the other hand, Figure 9.5
shows the fitted unadjusted Λ̂(t), which is obtained by subtracting the fit-
ted difference from the adjusted for mileage Λ̂(t). In both cases, the fitted
curve provides a reasonably good fit. This implies that the curve fitted to
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the difference between the unadjusted Λ̂(t) and the adjusted for mileage
Λ̂(t) also provides a good fit, and we will be able to derive the adjusted
estimate from the unadjusted estimate with less computational effort.
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Figure 9.4: Unadjusted Λ̂(t) + fitted
difference
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Figure 9.5: Adjusted for mileage
Λ̂(t) − fitted difference

Curve fitting is a simple and straightforward method for making pre-
diction. However, this method has one major shortcoming: it does not
provide coverage probabilities and prediction intervals for the forecasts or
predicted values. To overcome this problem, we consider two methods
which provide predictive distributions for the forecasts. These methods
are simple linear regression and dynamic linear model.

9.2 Simple Linear Regression

The simple linear regression model has the form

Yi = β0 + β1Xi + εi, i = 1, 2, . . . , n, (9.3)

where

• Yi is the response variable,
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• Xi is the explanatory variable (a known constant),

• β0 and β1 are the parameters (i.e. the intercept and slope),

• εi is a random error term with mean zero and constant variance σ2.

We assume that εi and εj are independent for all i 6= j. Usually, we also
assume that the errors are normally distributed, i.e., εi ∼ N(0, σ2).

First of all, we provide some basic facts for simple linear regression. By
using the method of least squares, the estimates of the parameters β0 and
β1 are given by

β̂1 =
SXY
SXX

=

∑
i xiyi − nx̄ȳ∑
i x

2
i − nx̄2

and β̂0 = ȳ − β̂1x̄, (9.4)

where ȳ = 1
n

∑
i yi and x̄ = 1

n

∑
i xi. Consequently, the regression line is

given by Ŷi = β̂0 + β̂1Xi, and we define the residuals as ei = yi − ŷi, i.e.
the difference between the observed value and the fitted value. Then, an
unbiased estimate of σ2 is

σ̂2 =

∑
i e

2
i

n− 2
. (9.5)

Given a value x∗ and a fitted regression line Ŷi = β̂0 + β̂1Xi, the pre-
dicted value of y∗ is ỹ∗ = β̂0 + β̂1x∗, and the standard error of prediction is
given by

se(ỹ∗) = σ̂

√
1 +

1

n
+

(x∗ − x̄)2

SXX
(9.6)

Then, assume that the errors εi are normally distributed, the 100(1 − α)%

prediction interval for y∗ is

ỹ∗ ± tα/2σ̂

√
1 +

1

n
+

(x∗ − x̄)2

SXX
, (9.7)
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where tα/2 is the 100(1 − α/2)th percentile of the t-distribution with n − 2

degrees of freedom.
Now, we consider the application of simple linear regression in pre-

dicting Λ̂(u). Since Λ̂(u) are clearly not independent, it is not appropriate
to apply simple linear regression to Λ̂(u) directly. Therefore, instead of us-
ing Λ̂(u), we will work with the estimated rate function λ̂(u), which are
more likely to be independent. That is, we regard λ̂(u) as our response
variable Y and fit a simple linear regression model.

Suppose we had estimated λ̂(u) and hence Λ̂(u) for u = 1, 2, . . . , n, and
we would like to predict the value of Λ̂(n + k), k ≥ 1. By using the fitted
regression line for λ̂(u),

λ̂reg(u) = β̂0 + β̂1u, (9.8)

the predicted value of λ̂(n+ k) is given by

λ̃(n+ k) = β̂0 + β̂1(n+ k). (9.9)

Consequently, the predicted value of Λ̂(n+ k) is given by

Λ̃(n+ k) = Λ̂(n) +
k∑
j=1

λ̃(n+ j). (9.10)

Further, let Lj and Uj be the lower and upper limits of the 100(1 − α)%

prediction interval for λ̂(n+ j) respectively. By assuming independence of
λ̂(u), the 100(1− α)% prediction interval for Λ̂(n+ k) is given by

Λ̂(n) +
k∑
j=1

Lj ≤ Λ̂(n+ k) ≤ Λ̂(n) +
k∑
j=1

Uj. (9.11)

Note that the method above requires λ̂(u) to exhibit a roughly linear
trend. If λ̂(u) shows a nonlinear trend, we might include a quadratic term
u2 (and higher-order terms, if necessary). Then, the simple linear regres-
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sion would become a multiple linear regression.

Example

Let us consider the adjusted for mileage λ̂(t) and Λ̂(t), produced by the
CCR-Model in Example I of Section 7.3.1. Figure 9.6 shows the graph of
λ̂(t) and the fitted regression line which is downward sloping. Then, Fig-
ure 9.7 shows the graph of Λ̂(t) and the fitted curve

Λ̂reg(t) =
t∑

j=1

λ̂reg(j). (9.12)

It can be seen that the curve fits the data very well.
Next, Figure 9.8 shows the forecasts and the corresponding 95% pre-

diction intervals for Λ̂(t) for the last 18 month, based on the data of the
first 18 months. It can be seen that the forecasts are lower than the actual
data, but still lie within the 95% confidence interval for Λ̂(t). In addition,
the 95% prediction interval gets wider as t increases. This indicates, as
expected, that the forecasts further away are less precise.
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Figure 9.6: Adjusted for mileage
Λ̂(t) and fitted regression line
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Figure 9.7: Adjusted for mileage
Λ̂(t) and fitted curve
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Figure 9.9 shows the forecasts and the corresponding 95% prediction
intervals for Λ̂(t) for the last 12 month, based on the data of the first 24
months. It can be seen that the forecasts and the actual data are quite
close. With more data in hand, we are able to improve the precision of the
forecasts.
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Figure 9.8: 18-month forecast and
95% prediction interval
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Figure 9.9: 12-month forecast and
95% prediction interval

9.3 Dynamic Linear Model

Dynamic linear model (DLM) is an important class of state space model. In
this section, we follow the notations and definitions used by Campagnoli
et al. [2009]. Let Y1, Y2, . . . , Yt denote the observed values of a variable of
interest at “times” 1, 2, . . . , t, which may be scalars or p-dimensional vec-
tors. Then, the dynamic linear model is defined by the observation equation

Yt = Ftθt + vt, vt ∼ Np(0, Vt), for t ≥ 1, (9.13)

and the state equation or system equation

θt = Gtθt−1 + wt, wt ∼ Nq(0,Wt), for t ≥ 1, (9.14)
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where

• θt is a q-dimensional state vector,

• Ft and Gt are known matrices of order p× q and q × q respectively,

• {vt} and {wt} are two independent sequences of independent Nor-
mal random vectors, with means zero and known variances Vt and
Wt, respectively. Note that a dynamic linear model can also be fitted
with unknown Vt and Wt from a Bayesian perspective. See Campag-
noli et al. [2009] for more details.

In addition, at time t = 0, a Normal prior distribution for the state vector
is specified by

θ0 ∼ Nq(m0, C0), (9.15)

and it is assumed that θ0 is independent of {vt} and {wt}.
Here, we consider an example of DLM with p = 1 and q = 2, called the

linear growth model or local linear trend model. The linear growth model is a
polynomial DLM of order 2, and it is defined by

Yt = µt + vt, vt ∼ N(0, V ),

µt = µt−1 + βt−1 + wt,1, wt,1 ∼ N(0, σ2
µ),

βt = βt−1 + wt,2, wt,2 ∼ N(0, σ2
β),

(9.16)

with uncorrelated errors vt, wt,1 and wt,2. In matrix form, the model is
given by

F =
[
1 0

]
, θt =

[
µt

βt

]
, G =

[
1 1

0 1

]
, W =

[
σ2
µ 0

0 σ2
β

]
. (9.17)

In this model, µt and βt are interpreted as the local level and local growth rate
respectively. It is assumed that the current level µt changes linearly over
time and the growth rate may also evolve. Note that the matrices Ft, Gt, Vt
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and Wt are constant, and the system variances σ2
µ and σ2

β are allowed to be
zero.

9.3.1 Kalman Filter

For a given DLM, our main task is to forecast the value of the next state
vector θt+1 and the next observation Yt+1, based on the observations up to
the current time t, and to update our estimate once new data become avail-
able at time t + 1. This is a filtering problem and can be solved recursively
by the well-known Kalman filter.

Proposition 9.1 (Kalman Filter). Let y1:t denote the sequence Y1, Y2, . . . , Yt and
let

θt−1|y1:t−1 ∼ Nq(mt−1, Ct−1).

Then, the following statements hold [Campagnoli et al., 2009].

(i) The one-step-ahead predictive distribution of θt given y1:t−1 is Nq(at, Rt)

with

at = Gtmt−1 and Rt = GtCt−1G
′
t +Wt. (9.18)

(ii) The one-step-ahead predictive distribution of Yt given y1:t−1 is Np(ft, Qt)

with

ft = Ftat and Qt = FtRtF
′
t + Vt. (9.19)

(iii) The filtering distribution of θt given y1:t is Nq(mt, Ct) with

mt = at +RtF
′
tQ
−1
t et and Ct = Rt −RtF

′
tQ
−1
t FtRt, (9.20)

where et = Yt − ft is the forecast error. (Note: A′ denote the transpose of
matrix A.)
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Often, one might be interested in looking a bit further in the future, say
k steps ahead for k ≥ 1. Then, the predictive distributions for the k-step-
ahead state vector θt+k and observation Yt+k can be computed by using the
following proposition.

Proposition 9.2. Let at(0) = mt andRt(0) = Ct. Then, for k ≥ 1. the following
statements hold [Campagnoli et al., 2009].

(i) The predictive distribution of θt+k given y1:t is Nq(at(k), Rt(k)) with

at(k) = Gt+kat(k − 1) and Rt(k) = Gt+kRt(k − 1)G′t+k +Wt+k.

(9.21)

(ii) The predictive distribution of Yt+k given y1:t is Np(ft(k), Qt(k)) with

ft(k) = Ft+kat(k) and Qt(k) = Ft+kRt(k)F ′t+k + Vt+k. (9.22)

9.3.2 Statistical Programming Language R: Package dlm

Now, we briefly introduce some useful functions for the implementation
of DLM, provided by the R package dlm:

• dlm(): This function creates a DLM object.

• dlmModPoly(): This function creates an n-th order polynomial DLM,
and can be used to set up a linear growth model with the argument
order=2 (which is the default).

• dlmMLE(): This function returns the maximum likelihood estimates
(MLE) of the unknown parameters in a specified DLM for a given
dataset.

• dlmLL(): This function returns the negative log-likelihood of a spec-
ified DLM for a given dataset.
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• dlmFilter(): This function applies the Kalman filter. Its output
includes the data, the specified DLM, the mean and variance of the
predictive and filtered distributions for state vector, and the one-
step-ahead forecasts. Note that the variances are given in term of
their singular value decomposition (SVD).

• dlmSvd2var(): This function can be used to reconstruct the vari-
ances from their SVD.

• dlmForecast(): This function evaluates the mean and variance of
the predictive distribution for future states and observations.

For more details, see Campagnoli et al. [2009].

Example

Let the adjusted for mileage Λ̂(t), produced by the CCR-Model in Example
I of Section 7.3.1, be the variable of interest Yt. Suppose the variances V
and W are known (they were actually estimated) as follows:

V = 0.002325481 and W =

[
0.001828051 0

0 0.0007354366

]
.

Then, we fit a linear growth model with the above variances. In addition,
we initialize the model with

m0 =

[
0

0

]
, and C0 =

[
1× 107 0

0 1× 107

]
,

which is the default setting for dlmModPoly(). Note that we assume V
and W are known, but they were actually estimated by using dlmMLE().

Figure 9.10 shows the one-step-ahead forecasts and the corresponding
95% prediction intervals for Λ̂(t). It can be seen that the forecasts and the
actual data are very close. Note that the prior variance C0 is very large,

128



and hence the standard errors of the first few forecasts will also be very
large. Here, we left out the first three forecasts to allow the Kalman filter
to adjust.
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Figure 9.10: One-step-ahead forecast and 95% prediction interval

Next, Figure 9.11 shows the forecasts and the corresponding 95% pre-
diction intervals for Λ̂(t) for the last 18 month, based on the data of the first
18 months. Similarly, Figures 9.12 shows the forecasts and the correspond-
ing 95% prediction intervals for Λ̂(t) for the last 12 months, based on the
data of the first 24 months. In both figures, we can see that the forecasts
and the actual data are quite close. Also, the 95% prediction interval gets
wider as t increases. This indicates, as expected, that the forecasts further
away are less precise.

Then, let us consider the forecasts for the last 6 months produced based
on the data of the first 18 months and 24 months. By comparing Fig-
ures 9.11 and 9.12, it can be noted that the forecasts based on the first 18
months are closer to the actual data than the forecasts based on the first 24
months. However, the 95% prediction intervals for the forecasts based on
the first 18 months are wider than that for the forecasts based on the first
24 months, which indicate a greater level of uncertainty. Thus, in prac-
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tice, we would prefer to use the forecasts based on the first 24 months, i.e.,
based on more data.
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Figure 9.11: 18-month forecast and
95% prediction interval
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Figure 9.12: 12-month forecast and
95% prediction interval

9.4 Method Comparisons: Simple Linear Regres-

sion vs Dynamic Linear Model

Now, let us compare the two methods for prediction: simple linear regres-
sion and dynamic linear model. Table 9.1 shows the 12-month forecast
and the corresponding 95% prediction intervals (lower limits, upper lim-
its, and interval widths) produced by the two methods in our examples. It
can be seen that the forecasts produced by the two methods are both quite
close to the actual data. However, the 95% prediction intervals for the
simple linear regression approach are wider than that for dynamic linear
model, which indicate a greater level of uncertainty.
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Simple Linear Regression Dynamic Linear Model
t Λ̂(t) Forecast Residual Lower Upper Width Forecast Residual Lower Upper Width

25 5.6762 5.5814 0.0947 5.4110 5.7518 0.3408 5.6109 0.0652 5.4236 5.7983 0.3748
26 5.8149 5.7648 0.0501 5.4224 6.1073 0.6849 5.8166 -0.0017 5.5477 6.0854 0.5378
27 5.9405 5.9451 -0.0047 5.4289 6.4614 1.0325 6.0222 -0.0817 5.6577 6.3866 0.7289
28 6.3130 6.1224 0.1906 5.4305 6.8142 1.3837 6.2278 0.08520 5.7563 6.6993 0.9430
29 6.4970 6.2966 0.2005 5.4271 7.1660 1.7388 6.4334 0.0637 5.8448 7.0220 1.1772
30 6.6242 6.4677 0.1565 5.4187 7.5167 2.0980 6.6390 -0.0148 5.9243 7.3537 1.4295
31 6.7840 6.6357 0.1483 5.4050 7.8665 2.4615 6.8446 -0.0606 5.9954 7.6938 1.6984
32 6.8809 6.8007 0.0802 5.3860 8.2154 2.8295 7.0502 -0.1693 6.0587 8.0417 1.9830
33 7.1339 6.9626 0.1712 5.3616 8.5636 3.2020 7.2558 -0.1220 6.1147 8.3970 2.2823
34 7.3527 7.1215 0.2313 5.3317 8.9112 3.5794 7.4614 -0.1087 6.1636 8.7592 2.5956
35 7.3852 7.2772 0.1080 5.2964 9.2581 3.9618 7.6670 -0.2818 6.2059 9.1281 2.9222
36 7.4710 7.4299 0.0411 5.2553 9.6046 4.3492 7.8727 -0.4017 6.2418 9.5035 3.2616

Table 9.1: 12-month forecast and 95% prediction intervals

Next, we compare the performances of the two methods by consid-
ering three different measures of accuracy: the mean absolute deviation
(MAD), mean square error (MSE), and the mean absolute percentage error
(MAPE), defined respectively by

MAD =
1

h

∑
t

|et|, (9.23)

MSE =
1

h

∑
t

e2
t , (9.24)

MAPE =
1

h

∑
t

|et|
Yt
, (9.25)

where h is the number of terms, et = Yt − Ỹt is the residual, Yt is the data,
and Ỹt is the forecast. Table 9.2 shows the measures of accuracy for the
two methods (based on the 12 month forecast). It can be seen that, in the
case of 12-month forecast, none of the two methods is clearly better than
the other.
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Method MAD MSE MAPE
Simple Linear Regression 0.123093 0.019758 0.018321
Dynamic Linear Model 0.121363 0.026855 0.017367

Table 9.2: Measures of accuracy

The effectiveness of the simple linear approach depends on how well
the model fits the data. In our examples, the simple linear regression
model fitted based on the data of the first 24 months provides a reason-
ably good fit, and hence the 12-month forecast produced is quite accurate.
But, if the model does not fit the data well, then the results obtained will
also be less precise as in the case of 18-month forecast (see Figure 9.8).
In addition, the simple linear regression approach assumes that the esti-
mated rate functions λ̂(u) are independent (which is difficult to justify). If
this assumption fails, then the results produced may not be reliable. Thus,
in practice, we would recommend to use dynamic linear model.

9.5 Predicting Bivariate Mean Cumulative War-

ranty Cost

In this section, we consider one possible method for predicting the (es-
timated) bivariate mean cumulative warranty cost Λ̂(t,m), which is the
extension of the simple linear regression approach used in the univariate
case. Instead of using simple linear regression, we use multiple linear re-
gression.

In general, the multiple linear regression has the form

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik + εi, i = 1, 2, . . . , n, (9.26)

where

• Yi is the value of the response variable,
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• Xi1, . . . , Xik are the values of the explanatory variables (known con-
stants),

• β0, β1, . . . , βk are the parameters,

• εi is a random error term with mean zero and constant variance σ2.

We assume that εi and εj are independent for all i 6= j. Usually, we also
assume that the errors are normally distributed, i.e., εi ∼ N(0, σ2). Equiv-
alently, in matrix form, the model is given by

Yn×1 = Xn×rβr×1 + εn×1, εn×1 ∼ N(0, σ2I), (9.27)

where r = k + 1, I is an identity matrix, and X has full column rank. (For
convenience, we will omit the dimensions of these matrices from now on.)

The estimates of β and σ2 are given by

β̂ = (X′X)−1X′Y and σ̂2 =
1

n− r
Y′
[
I−X(X′X)−1X′

]
Y (9.28)

respectively. Then, given a (column) vector x∗, the point estimate of the
response is ỹ∗ = x′∗β̂ and the standard error of prediction is given by

se(ỹ∗) = σ̂
√

1 + x′∗(X
′X)−1x∗. (9.29)

Consequently, the 100(1− α)% prediction interval for y∗ is

ỹ∗ ± tα/2σ̂
√

1 + x′∗(X
′X)−1x∗, (9.30)

where tα/2 is the 100(1 − α/2)th percentile of the t-distribution with n − r
degrees of freedom.

Now, we consider the application of multiple linear regression in the
predicting Λ̂(t,m). As similar to the univariate case, we work with the es-
timated rate function λ̂(t,m), instead of using Λ̂(t,m). That is, we assume
that λ̂(t,m) are independent and fit a multiple linear regression model to
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λ̂(t,m), where the explanatory variables are functions of t and m.
Suppose we had estimated λ̂(t,m) and hence Λ̂(t,m) for t = 1, 2, . . . , a,m =

1, 2, . . . , b, and we would like to predict the value of Λ̂(a + u, b + v) for
u, v ≥ 1. Let λ̃(a + u, b + v) be the predicted value given by the fitted
multiple regression model

λ̂reg(t,m) = Xβ̂. (9.31)

Then, the predicted value of Λ̂(a+ u, b+ v) is given by

Λ̃(a+ u, b+ v) = Λ̂(a, b) +
a∑
i=1

v∑
j=1

λ̃(i, b+ j) +
u∑
i=1

b∑
j=1

λ̃(a+ i, j)

+
u∑
i=1

v∑
j=1

λ̃(a+ i, b+ j). (9.32)

Further, let Lij and Uij be the lower and upper limits of the 100(1 − α)%

prediction interval for λ̂(a + i, b + j) respectively. Then, the lower and
upper limits of the 100(1 − α)% prediction interval for Λ̂(a + u, b + v) are
given by

Λ̂(a, b) +
a∑
i=1

v∑
j=1

Li,b+j +
u∑
i=1

b∑
j=1

La+i,j +
u∑
i=1

v∑
j=1

La+i,b+j (9.33)

and

Λ̂(a, b) +
a∑
i=1

v∑
j=1

Ui,b+j +
u∑
i=1

b∑
j=1

Ua+i,j +
u∑
i=1

v∑
j=1

Ua+i,b+j (9.34)

respectively.
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Example

Let us consider the unadjusted λ̂(t,m) and Λ̂(t,m) computed in Example I
of Section 8.1. Here, we fit the following multiple linear regression model
with an interaction term

λ̂(t,m) = β0 + β1t+ β2m+ β3(t×m) + ε. (9.35)

Note that the interaction term is regarded as an explanatory variable. Fig-
ure 9.13 shows the graph of Λ̂(t,m) and the fitted plane

Λ̂reg(t,m) =
t∑
i=1

m∑
j=1

λ̂reg(i, j), (9.36)

where

λ̂reg(t,m) = β̂0 + β̂1t+ β̂2m+ β̂3(t×m). (9.37)

Figure 9.13: Unadjusted Λ̂(t,m) and fitted plane

For better illustration, Figure 9.14 shows the unadjusted Λ̂(t, 36) and
the fitted curve (part of the fitted plane), where we fix m at 36K miles.
Similarly, Figure 9.15 shows the unadjusted Λ̂(36,m) and the fitted curve,
where we fix t at 36 months. From these two figures, we see that the fitted
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curve provides a reasonably good fit.
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Figure 9.14: Unadjusted Λ̂(t, 36)
and fitted curve
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Figure 9.15: Unadjusted Λ̂(36,m)
and fitted curve

Next, Table 9.3 shows the forecasts and the corresponding 95% predic-
tion intervals for Λ̂(t, t) for t = m = 31, 32, . . . , 36, based on the data up
to t = m = 30. It can be seen that the forecasts are higher than the actual
data, and the residual increases as t increases. The 95% prediction interval
also gets wider as t increases.

t Λ̂(t, t) Forecast Residual Lower Upper Width
31 6.7330 7.0272 -0.2942 4.0846 9.9697 5.8851
32 6.9484 7.5591 -0.6107 1.5755 13.5427 11.9672
33 7.2497 8.1560 -0.9063 -0.9676 17.2796 18.2472
34 7.4031 8.8260 -1.4228 -3.5371 21.1890 24.7260
35 7.9421 9.5774 -1.6353 -6.1250 25.2798 31.4047
36 9.1919 10.4193 -1.2274 -8.7230 29.5616 38.2845

Table 9.3: Forecast and 95% prediction interval of Λ̂(t, t) for t = m =
31, 32, . . . , 36.

Even though the forecasts computed are not very far from the actual
data, the 95% prediction intervals produced are too wide and hence they
are not very informative. A better method for predicting the bivariate
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mean cumulative warranty cost would need to be developed, and this will
be part of our future research.

Remark If the phenomenon of “customer-rush near the warranty expi-
ration limit” exist, certain adjustment needs to be done to the prediction
procedure in order to avoid biasness of the results. In this thesis, we do
not look into this problem. This is also one of the possible directions for
our future research.

9.6 Summary and Discussions

In this chapter, we had considered several methods for predicting the uni-
variate mean cumulative warranty cost. The first method introduced is
curve fitting. This method is simple, but it does not provide coverage
probabilities and prediction intervals for the forecasts or predicted values.
To overcome this problem, we consider two additional methods: simple
linear regression and dynamic linear model. The simple linear regression
approach assumes that the estimated rate functions λ̂(u) are independent.
Since it is difficult to justify this independence assumption, we recom-
mend caution. In practice, we would recommend to use dynamic linear
model. At the end of this chapter, we also suggested the use of multiple
linear regression in predicting bivariate mean cumulative warranty cost.
We showed that the performance of this method is not satisfactory, and
hence development of a better prediction method is needed.
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Chapter 10

Conclusions, Discussions and
Future Works

One of the main objectives of our research is to utilize the content of war-
ranty data in estimating and predicting mean cumulative warranty cost
per vehicle. So far, in this thesis, we had discussed the structure of auto-
motive warranty database, the characteristics of warranty data, the data
mining process, the robust estimator and some of its extensions, predic-
tion, etc.

In our study, we had followed closely the ideas in Chukova and Robin-
son [2005] and Christozov et al. [2008], which we called the CR-Model and
CCR-Model respectively (according to the authors’ names). Both of these
models are based on the robust estimator, which relies on the assumption
that the observation process is independent of the event process. With-
out requiring any supplementary source of data for mileage accumulation,
these models deal with the problem of incomplete mileage information,
which typically occurs in automotive warranty analysis by using different
approaches in modeling mileage accumulation.

The CR-Model makes an assumption that vehicles accumulate mileage
approximately linearly with their age. This model is simple and conve-
nient, but it only uses the last claim to extrapolate mileage accumulation
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rate and it does not account for changes in this rate with age. By using dif-
ferent computing softwares (we used statistical programming language R,
while Chukova and Robinson [2005] used Mathematica) and different ap-
proach in preparing the data (see Chapter 4), we managed to reproduce
some of the results given by Chukova and Robinson [2005] using the same
dataset. In addition, we also made our own contribution as follows:

• We proposed a new model for estimating the mean cumulative war-
ranty cost in the actual time case, by using the same linear approach
in modeling mileage accumulation. This actual time model will be
useful for planning warranty program and warranty reserve.

• We used bootstrap method in the estimation of standard error. The
results we obtained suggest that Eq. (5.5), with M(t) replaced by
M̂(t), works well for evaluating the standard error. However, a math-
ematical proof is still required, and we hope to achieve this in the
future.

The CCR-Model uses a piece-wise linear approach in modeling mileage
accumulation, and it takes into consideration the variability in driving pat-
tern (or mileage accumulation pattern). However, This model does not
take into account the effect of reporting delay of claim. By using different
computing softwares (we used statistical programming language R, while
Christozov et al. [2008] used Microsoft Excel) and different approach in
preparing the data (see Chapter 4), we managed to reproduce some of the
results given by Christozov et al. [2008] using the same dataset. In addi-
tion, we also made our own contributions as follows:

• We proposed a new model for estimating the mean cumulative war-
ranty cost in the actual time case, by using the same piece-wise linear
approach in modeling mileage accumulation.

• We applied bootstrap method in estimating the standard errors of
the mean cumulative warranty cost.
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• We investigated the relationship between the variability of driving
pattern and the mean cumulative warranty cost. We observed that
a higher variability of driving pattern leads to a higher mean cu-
mulative warranty cost. This is a very interesting observation that
requires more study. It suggests that we should take into account the
variability of driving pattern in modeling mileage accumulation.

Due to our modeling approach, there is some concerns regarding the de-
pendency of the identified driving pattern on the number of claims, as a
vehicle with more claims may be more likely to have higher variability of
driving pattern compared to those with fewer claims. Thus, we investi-
gate further the relationship between mean cumulative warranty cost and
variability of driving pattern by using Dataset 2006. In this dataset, each
vehicle has some odometer readings which are not related to time of mak-
ing a claim. Hence, we will be able to characterize the driving pattern of a
vehicle in a better way and to reduce the influence of the number of claims
on the determination of driving pattern. The results produced again show
that the mean cumulative warranty cost tends to increase as the variability
of driving pattern increases. Of course, these results are based on a single
dataset and more study are required.

In Chapter 8, we proposed a bivariate model for estimating the mean
cumulative warranty cost as a function of age and mileage, by consid-
ering both linear and piece-wise linear approaches in modeling mileage
accumulation. As the mathematical expression for the standard error of
the bivariate estimate is still not available, we used bootstrap method to
evaluate the standard error. Besides, we also considered two types of uni-
variate estimator for intervals: one associated with the bivariate model
(Section 8.3.1) and one direct estimator (Section 8.3.2). Our findings can be
summarized as follows:

• The results produced by using linear and piece-wise linear approaches
in modeling mileage accumulation are not significantly different.
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• The results produced by the univariate estimators associated with
the bivariate model are very different from the results produced by
the direct univariate estimators for intervals. By comparing the def-
initions of these estimators, we see that the univariate estimators as-
sociated with the bivariate model would be more reliable than the
direct univariate estimators. This suggests that a direct univariate
estimator might not be sufficient for estimating the mean cumulative
warranty cost, when the warranty program involves two variables.

In addition, from the univariate results, we also observed the phenomenon
of “customer-rush near warranty expiration limit” in “time” is mileage
case. We did not detect this phenomenon in “time” is age case, probably
because the majority of the vehicles in our dataset leave warranty coverage
due to mileage, instead of age. Again, the above results are based on a
single dataset and more study are required.

In Chapter 9, we considered several methods for predicting the uni-
variate mean cumulative warranty cost. The first method introduced is
curve fitting. This method is simple, but it does not provide coverage
probabilities and prediction intervals for the forecasts or predicted values.
To overcome this problem, we consider two additional methods: simple
linear regression and dynamic linear model. The simple linear regression
approach assumes that the estimated rate functions λ̂(u) are independent.
Since it is difficult to justify this independence assumption, we recom-
mend caution. In practice, we would recommend to use dynamic linear
model. At the end of this chapter, we also suggested the use of multiple
linear regression in predicting bivariate mean cumulative warranty cost.
We showed that the performance of this method is not satisfactory, and
hence development of a better prediction method is needed.

We have reached the end of this thesis, but our study does not end here.
In the future, we like to further our study on the relationship between
the variability of driving pattern and the mean cumulative warranty cost,
as well as the phenomenon of “customer-rush near warranty expiration
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limit”. We also like to develop some better methods for predicting the
warranty cost in both univariate and bivariate cases. In addition, we also
like to improve the current bivariate model to account for vehicles without
mileage information and reporting delay of claim, and to derive a mathe-
matical expression for the standard error of the bivariate estimate.

Note that we do not include the R programs in this thesis due to the
sizes of these programs, but they are available upon request.
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