
Enhancing Client

Honeypots with Grid

Services and Workflows

by

David Stirling

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Master of Science

in Computer Science.

Victoria University of Wellington

2010

Abstract

Client honeypots are devices for detecting malicious servers on a network.

They interact with potentially malicious servers and analyse the Web pages

returned to assess whether these pages contain an attack. This type of at-

tack is termed a ‘drive-by-download’. Low-interaction client honeypots op-

erate a signature-based approach to detecting known malicious code. High-

interaction client honeypots run client applications in full operating systems

that are usually hosted by a virtual machine. The operating systems are

either internally or externally monitored for anomalous behaviour.

In recent years there have been a growing number of client honeypot

systems being developed, but there is little interoperability between systems

because each has its own custom operational scripts and data formats. By

creating interoperability through standard interfaces we could more easily

share usage of client honeypots and the data collected. Another problem is

providing a simple means of managing an installation of client honeypots.

Workflows are a popular technology for allowing end-users to co-ordinate e-

science experiments, so these workflow systems can potentially be utilised for

client honeypot management.

To formulate requirements for management we ran moderate-scale scans

of the .nz domain over several months using a manual script-based approach.

The main requirements were a system that is user-oriented, loosely-coupled,

and integrated with Grid computing—allowing for resource sharing across

organisations.

Our system design uses Grid services (extensions to Web services) to

wrap client honeypots, a manager component acts as a broker for user ac-

cess, and workflows orchestrate the Grid services. Our prototype wraps our

case study—Capture-HPC—with these services, using the Taverna workflow

system, and a Web portal for user access.

When evaluating our experiences we found that while our system de-

sign met our requirements, currently a Java-based application operating on

our Web services provides some advantages over our Taverna approach—

particularly for modifying workflows, maintainability, and dealing with fail-

ure. The Taverna workflows, however, are better suited for the data analysis

phase and have some usability advantages. Workflow languages such as Tav-

erna are still relatively immature, so improvements are likely to be made.

Both of these approaches are significantly easier to manage and deploy than

the previous manual script-based method.

Acknowledgments

I would like to express my gratitude to my supervisors—Dr. Peter Komisar-

czuk and Dr. Ian Welch—whose knowledge, support, and enthusiasm made

this thesis possible. I must also thank Christian Seifert for initially getting

me interested in client honeypots and providing a lot of assistance in this

area. A special thanks goes to Kyle Chard for his help with everything Grid-

related, reviewing this thesis, and generally making our shared office a more

enjoyable place. Thanks goes to the other DSRG (Distributed Systems Re-

search Group) members for their interest in my research and the feedback

they provided. I am grateful to InternetNZ for funding the .nz domain client

honypot study I have been involved in. I would finally like to acknowledge

my family and friends for their encouragement and support during my MSc.

i

Contents

1 Introduction 1

1.1 Research Questions . 2

1.2 Methodology . 2

1.3 Research Contributions . 3

1.4 Overview of Chapters . 4

2 Background and Related Work 6

2.1 Client Honeypots . 6

2.1.1 Capture Honeypot Client 9

2.1.2 Data Capture and Analysis 10

2.2 Grid Computing . 11

2.2.1 Service Oriented Architecture 12

2.2.2 WSRF Services . 13

2.2.3 Useful Grid Technologies 13

2.2.4 Grid Service Authoring Tools 15

2.3 Existing Instrument Middleware 15

2.3.1 CIMA . 16

2.3.2 GRIDCC . 16

2.4 Workflow Systems . 18

2.4.1 BPEL . 19

2.4.2 Taverna . 21

2.5 Grid Enabled Internet Instruments 22

2.6 Review . 24

ii

CONTENTS iii

3 Formulation of Requirements 25

3.1 Overview of Study . 25

3.2 System Architecture . 26

3.3 Procedure . 28

3.3.1 Installation . 28

3.3.2 Configuration . 28

3.3.3 Testing . 29

3.3.4 Operation and Termination 30

3.4 Data Analysis . 31

3.4.1 Results from Study . 31

3.5 General Requirements for Grid-based Automation 33

3.6 Use Cases . 34

3.6.1 Example Scenario . 35

3.6.2 Scenario Variations . 37

3.7 Main Requirements and Scope of Research 38

4 Design and Implementation 39

4.1 Architecture . 39

4.2 Workflow Design . 41

4.2.1 Areas of Application 41

4.2.2 BPEL and Taverna Evaluation 43

4.2.3 BPEL Workflows for Client Honeypot Modelling 45

4.2.4 Taverna Workflows for Client Honeypot Federation . . 50

4.3 Grid Service Design . 53

4.3.1 ClientHoneypotManager 53

4.3.2 ClientHoneypotWrapper 54

4.3.3 Interaction Diagram 55

4.4 System Implementation . 55

4.4.1 Custom Script and Wrapper Services 57

4.4.2 Web Portal . 59

4.4.3 Taverna Workflows . 59

4.5 Summary . 64

CONTENTS iv

5 Evaluation 66

5.1 Fulfilment of Requirements . 67

5.2 Evaluation Methodology . 68

5.2.1 Criteria . 68

5.2.2 Shared Features . 69

5.3 Evaluation against Taverna Workflows 70

5.3.1 Manual System with Scripts 70

5.3.2 Java & Web Services System 72

5.3.3 Comparison Summary 76

5.4 Generalisation of Evaluation 77

5.5 Summary . 79

6 Conclusion 81

6.1 Summary of Thesis . 81

6.2 Overall Contributions . 82

6.3 Future Work . 83

A Sample Capture-HPC Log 84

B Manual Operation Scripts 87

C Service Interfaces and Data Types 90

D Java & Web Services System Source Code 95

List of Figures

2.1 Client honeypot architecture. 8

2.2 Capture-HPC architecture. 10

2.3 CIMA architecture. 17

2.4 GRIDCC architecture. 17

2.5 GEII architecture. 23

3.1 Capture-HPC deployment diagram. 27

3.2 Graph of monthly .nz scan results 32

3.3 Use case diagram. 35

4.1 System architecture. 40

4.2 Workflow diagrams’ key. 46

4.3 BPEL workflow design using parallel forEach. 48

4.4 BPEL workflow design using parallel processes and event han-

dler. 49

4.5 Taverna workflow design modelling basic operation. 51

4.6 Taverna workflow design modelling more advanced operations. 52

4.7 Sequence diagram . 56

4.8 Component diagram of our prototype system. 58

4.9 Web portal screenshot. 60

4.10 Taverna workflow implementation modelling basic operation. . 63

4.11 Taverna workflow implementation modelling more advanced

operations. 65

v

List of Tables

3.1 Summary of .nz monthly scan results. 33

5.1 Evaluative comparison of Taverna to alternative system designs. 77

vi

Chapter 1

Introduction

Client honeypots are measurement devices for detecting malicious servers on

a network. They interact with potentially malicious servers and analyse the

Web pages returned to assess whether it contains an attack. This type of

attack is termed a ‘drive-by-download’. This has advantages over traditional

defences, such as firewalls and antivirus software, are ineffective against these

new threats [37] because the attack vectors delivered by the server maybe

unknown to the firewalls or the antivirus software. Locating malicious servers

and malware is a priority for helping protect consumers using the Web and

for collecting malicious code for analysis by security researchers.

There are two types of client honeypot systems: low-interaction and high-

interaction. Low-interaction client honeypots [37] operate a signature-based

approach to detecting known malicious code. High-interaction client honey-

pots run client applications (such as Web browsers) in full operating systems

that are usually hosted by virtual machines (VMs). These are either inter-

nally or externally monitored for suspicious state changes. Should malicious

content be found, the state of the host operating system is now suspect so it

must be reset to a clean state before it can interact with another server [38].

The client honeypot is an emerging research area. In recent years there

have been a growing number of client honeypot systems being developed

[44, 30, 35, 37, 45]. Between systems there is little interoperability, with

1

CHAPTER 1. INTRODUCTION 2

each system having its own custom operational scripts and data formats.

This means that there is a lack of code reuse for common tasks and users

require detailed knowledge of these systems before they can use them.

Through the use of standardised Web service interfaces interoperability

can be increased and implementation details abstracted, meaning that the

usage of client honeypots and the data collected can be shared more easily.

This can be expanded further with the use of Grid computing [15, 16], allow-

ing secure co-ordination of heterogeneous resources located across multiple

enterprises. This type of collaboration could potentially allow the collection

and analysis of data on a scale that is many times what is currently possible.

Workflow systems can be used to orchestrate these Web services, creat-

ing processes out of a number of individual tasks. These can be graphically

modelled allowing users with little programming knowledge to manipulate

complex workflows. For example, a user could create a workflow that com-

bined the speed of a low-interaction client honeypot with the accuracy of a

high-interaction client honeypot; this could then be run in a workflow engine

and shared with other researchers.

1.1 Research Questions

• How can we effectively create systems of different client honeypots to

perform measurements and analysis?

• What is the best method to automate the various tasks that encompass

client honeypot management?

1.2 Methodology

The main tasks that make up this research are:

• Gain experience by manually managing a client honeypot for moderate

scale scans.

CHAPTER 1. INTRODUCTION 3

• Design a Grid-based architecture for managing client honeypots.

• Evaluate workflow systems for this type of activity.

• Create realistic client honeypot operational use cases and implement

these as workflows.

• Implement a Web portal for browser based access to a client honeypot.

• Modify a client honeypot to use our architecture.

• Build a Java application for a comparative evaluation of our workflow

system.

1.3 Research Contributions

The main contributions of this research are:

1. Creation of use cases to model system requirements of a client honeypot

automation system, based on our experience of manually managing a

system for moderate-scale scans over a period of several months.

2. Creation of Grid services for wrapping client honeypots. These can be

used by workflow languages and standalone applications.

3. Implementation of workflows that use our services to model and control

complex processes used in client honeypot operation.

4. Evaluation of Introduce and gRAVI—two recently developed Grid ser-

vice authoring tools.

5. Evaluation of the Taverna workflow system for modelling and enacting

client honeypot workflows, based on our experiences.

CHAPTER 1. INTRODUCTION 4

1.4 Overview of Chapters

Background and Related Work provides background information on rel-

evant technologies: client honeypots, Grid computing and workflow

systems; and presents related work in the area of instrument middle-

ware.

Formulation of Requirements is focused on gathering requirements for

an automated client honeypot system. From our experience of manually

operating the Capture-HPC client honeypot for moderate-scale scans

we created use cases and system requirements.

Design and Implementation describes how we designed a system to fulfil

the main requirements, and implemented a prototype of this design us-

ing WSRF services, Taverna workflows and a Web portal. This chapter

includes an evaluation of BPEL and Taverna, determining their suit-

ability for our needs.

Evaluation covers the fulfilment of requirements, comparisons to other sys-

tem designs (script-based and Java with Web services), general work-

flow usage in our domain, and an evaluation of service authoring tools.

While our system design met the requirements, currently a Java-based

application operating on our Web services provides some advantages

over our Taverna approach. The Taverna workflows, however, are bet-

ter suited for the data analysis phase.

Conclusion gives a summary of the thesis, answers to our research ques-

tions, a listing of our contributions, and directions for future work.

Appendices provide a sample Capture-HPC log file for a malicious site, a

listing of shell scripts used during manual operation, the Web service

interfaces, and source code for the Java & Web services alternative

system design.

CHAPTER 1. INTRODUCTION 5

As part of this research we wrote two papers: [41] and [42]. The Formu-

lation of Requirements and the Design and Implementation chapters expand

upon the material covered in these papers.

Chapter 2

Background and Related Work

Section 2.1 gives background information on Client honeypots and describes

the architecture of Capture-HPC, our case study client honeypot. Section

2.2 introduces Grid computing—specifically the service-oriented architecture,

WSRF (Web Service Resource Framework), and other technologies and tools.

Section 2.3 describes related work in the area of instrument middleware—

CIMA and GRIDCC. Section 2.4 describes workflow systems, specifically

BPEL (Business Process Execution Language) and Taverna. Section 2.5

introduces the Grid Enabled Internet Instruments (GEII) research project

which we foresee our research being a part of. Finally, Section 2.6 provides

a review of all the material.

2.1 Client Honeypots

Honeypots are dedicated networked security devices that are designed to

lure malicious activity onto themselves, capturing all data associated with

an attack. The device itself has no added value to a system, so any network

traffic or new activity can be fully attributed to a security compromise—

thus eliminating the issue of false positives found in other intrusion detection

systems.

One of the major types of attack on the Internet is the client-side attack

6

CHAPTER 2. BACKGROUND AND RELATED WORK 7

which targets a client application. Instead of a client attacking a server, the

server delivers the attack to the client as part of the server’s response to

a client request. Common examples of these attacks are Web servers that

attack Web browsers. When the Web browser requests content from a web

server, the server returns a malicious page that attacks the browser. This

could lead to arbitrary code being executed on the client machine—this type

of attack is termed a ‘drive-by-download’.

An example of such an attack would be a user with Internet Explorer

6 simply browsing to http://wwww.blackmores.co.nz/1. Unknown to the

user, when the HTML content was downloaded and interpreted, a vulnerabil-

ity in IE 6 was exploited (ie. a buffer overflow in some JavaScript code) and a

piece of malicious code was executed outside the browser’s security sandbox.

This code downloads an executable to C:\msntstza.exe and launches this

new process. This malicious process may be adware, spyware, or a botnet

drone. The website owner may also be unaware that their site is serving

drive-by-downloads if their site was compromised by a third party, eg. an

attacker compromising the hosting company’s Web servers.

Traditional defenses—such as firewalls and antivirus software—are inef-

fective against these new threats because the attack vectors delivered by the

server maybe unknown to the firewalls or the antivirus software [38].

Client honeypots can be used to identify malicious servers on a network.

They do so by generating a queue of server requests, issuing these requests

to the servers one-by-one and consuming the response of the servers. After

a response is consumed, the client honeypot can perform an analysis that

determines whether the server is malicious or benign. Figure 2.1 shows the

architecture of a generic client honeypot.

A low-interaction client honeypot will analyse the server’s response and

match the signature to a list of known attacks. If there is a match, the server

will be classified as malicious. Honeyd Virtual Honeypot [30] is an example

of a low-interaction client honeypot.

1This was an actual attack we captured, the log files are included in Appendix A

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Client Honeypot

Request

Response

Request

Attack
Malicious

Server

Benign
Server

Figure 2.1: Client honeypot architecture [38].

A high-interaction client honeypot uses a more thorough approach. Full

client operating systems and applications are used and the entire system is

monitored for state changes. Classification is based on monitoring unautho-

rised state changes or actions occurring on the system after the client hon-

eypot has interacted with a server. Client honeypots are dedicated machines

and since no other activity is occurring on them, unauthorised state changes

such as new processes, newly installed files, etc. can be detected by the client

honeypot. Once state changes are detected and the classification has been

made, the machine needs to be reset into a clean state before it can interact

with another server [38]. The advantage of this approach is it can detect

both known and unknown attacks, however the increased resources needed

means this method is slower than a low-interaction client honeypot. Strider

HoneyMonkey [45] is an example of a high-interaction client honeypot.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

2.1.1 Capture Honeypot Client

Capture-HPC [35] is a high-interaction client honeypot being developed by

Seifert et al. We have chosen Capture-HPC as a case study for this research.

Figure 2.2 shows the architecture of Capture which runs on a group of net-

worked computers. A set of URLs to be tested is passed to the Capture-server

component, which (one-by-one) delegates these to Capture-client components

to test. The CaptureClient instance is executed inside a Virtual Machine

(VM) hosting Windows XP (a default installation and standard network se-

curity settings). Multiple VMs, each running a CaptureClient instance, can

be concurrently run inside the same VM environment on one physical ma-

chine. When the CaptureClient receives the URL from the server it invokes

Internet Explorer to visit the Web server and waits a set time (currently set

at 10 seconds). The CaptureClient continuously records any state changes—

by monitoring the registry, processes and file system—and sends this to the

server for analysis (exclusion lists are used to identify benign system activ-

ity). CaptureServer then makes a decision on whether the Web server is

malicious, in which case the server records the data and resets the VM to a

clean snapshot ready for the next URL to test [36].

CaptureServer controls the CaptureClients by using the VMWare VIX

API. The API interfaces with the VMWare Tools component which is in-

stalled in the Windows XP VM. This allows for control of the VM, both

internally and externally, such as launching applications and powering on

the VM respectively. During operation CaptureServer initially uses VIX to

revert the VM to its saved snapshot and launches the CaptureClient.exe

application (supplying its own IP address). The CaptureClient then creates

a TCP connection to the server and waits for URLs to be passed to it. When

it receives URLs it loads the browser to visit the page, reporting any state

changes back over the TCP connection. If the state changes indicate the

URL is malicious, CaptureServer resets the VM via VIX and the process

begins again.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

Capture Server

Capture Client

VMware

VM1 - WinXP

Client IE

VM2 - WinXP

Client IE

...

Web Server 1
Request

ResponseURLs

Web Server 2

Management
info

Output- Web
server lists, etc

...

Figure 2.2: Capture-HPC architecture.

2.1.2 Data Capture and Analysis

To analyse a drive-by-download attack it is necessary to gather the data

delivered from the Web server to the client. This cannot be done by simply

saving the HTML of the Web page as this does not include any external

JavaScript, iFrames, etc. This content will not necessarily be able to be

retrieved at a later date because with the dynamic nature of the Web, content

may change and sites can go down. A solution to this problem is to capture

all of the network data using the pcap (packet capture) API. Capture-HPC

uses the WinPcap utility to dump all network packets into a file for later

analysis.

However, research has shown custom tools have to be developed to access

and examine the dumped pcap data—decoding the network protocols—and

once the information is extracted from the network data it does not allow

behavioral analysis of the attack, limiting the ability to determine what hap-

pened on the attacked system [34]. The solution is to use HTTP and DNS

CHAPTER 2. BACKGROUND AND RELATED WORK 11

caches to persistently store all traffic, creating a simple record/replay mech-

anism for data collection and behavioural analysis [34]. The Squid HTTP

cache [47] and pdnsd DNS proxy [25] are suitable for this purpose—with only

simple modifications to their configuration files required to prevent flushing

and always force caching—thus allowing permanent data storage.

Using the data captured from tested URLs (log files and caches), data

analysis techniques can be used to gather a better insight into malicious Web

servers and the attacks they deliver. Analysis can be made of a specific URL

to determine the geographic locations of the Web server and exploit server

(using geo-IP services), characteristics of the HTML page, and the nature

of the attack. By examining large sets of sample URLs the aforementioned

URL-specific analysis can be used to draw inferences upon the experimental

population. These samples, when taken over a period of time, allow trends

to be analysed and possibly predictions to be made.

2.2 Grid Computing

Grid computing [16, 15] is an area of distributed computing, with the goal

being “co-ordinated resource sharing and problem solving in dynamic, multi-

institutional virtual organisations” [16]. The sharing that the Grid is con-

cerned with is not the traditional file access and transfer, but rather access

to computers, software, data, and other resources. This sharing is highly

controlled with access determined by rules related to membership of virtual

organisations (VOs). These VOs are formed from the heterogeneous resources

within a single enterprise or multiple enterprises (eg. collaborating universi-

ties) and any external resource sharing or service provider relationships.

To help define what a Grid is, Foster provides a checklist [13] of require-

ments for a Grid system:

• Coordinate resources that are not subject to centralised control—a Grid

integrates resources and users from different domains and addresses

CHAPTER 2. BACKGROUND AND RELATED WORK 12

issues of security, policy, payments, etc. that cannot be centrally man-

aged.

• Using standard, open, general-purpose protocols and interfaces—functionality

such authentication, authorisation, resource discovery, and resource ac-

cess all use multi-purpose protocols and interfaces.

• Deliver nontrivial qualities of service—a Grid allows its resources to be

used in a coordinated fashion to deliver various qualities of service to

meet complex user demands.

Client honeypots can currently be distributed but could potentially be en-

hanced further with Grid computing. Heterogeneous hardware located across

multiple enterprises could be coordinated to provide client honeypots with

data capture and analysis abilities. The Grid would also allow this data to

be shared within a VO, which may include a number of universities from

different countries. This type of collaboration could allow the collection and

analysis of data on a scale that is many times what is currently possible.

With this huge processing potential, almost real-time analysis may be fea-

sible. In Section 2.2.3 we describe some of the specific Grid technologies

that are applicable to client honeypots—including file transfer, storage and

security.

2.2.1 Service Oriented Architecture

Service-oriented architecture (SOA) is widely used in the business sector for

building large-scale information systems [8]. SOA defines standardised inter-

faces and protocols for exchanging data between services without requiring

knowledge of the internal implementation. This level of abstraction and in-

teroperability allows for complex applications to operate over multiple loosely

coupled systems using common services. The same principles that make SOA

desirable in the business domain are also applicable to scientific areas. Grid

computing is using a SOA approach for defining core services and providing

access to Grid resources [15].

CHAPTER 2. BACKGROUND AND RELATED WORK 13

Web services use XML messages that follow the Simple Object Access

Protocol (SOAP) standard [48]. A service usually has an attached Web Ser-

vice Description Language (WSDL) specification which defines a collection

of network endpoints—or ports—for the service. Any custom data types

are also specified in the WSDL as XML schemas. The SOAP and WSDL

specifications are developed by the World Wide Web Consortium (W3C).

These fine-grained Web services can be coupled together to create com-

plex processes using workflows. We will discuss workflow systems further in

Section 2.4.

2.2.2 WSRF Services

Standard Web services provide a stateless API to users. This is suitable for

many application domains but when operating with physical (and virtual)

resources there is a need to store state information. For example, in our

client honeypot domain access to VMs would need to be controlled—only

one client honeypot can use a VM at once—so state information on VMs is

required. Web Service Resource Framework (WSRF) is an extension of Web

services that allows the service to store this state information. This is stored

in resource variables forming part of the service.

WSRF services match resources to users by generating a unique endpoint

reference for each new resource and providing this to users. Subsequent calls

to methods that use this resource will include the endpoint reference in an

extended SOAP header. WSRF services are defined with a WSDL in the

same way as standard Web services are.

2.2.3 Useful Grid Technologies

Here we describe some of the Grid technologies that may be useful to client

honeypots:

• Grid middleware—is a collection of components enabling the under-

lying technology that forms a Grid. The components include software

CHAPTER 2. BACKGROUND AND RELATED WORK 14

services and libraries for resource monitoring, discovery, and manage-

ment, plus security and file management. Open Grid Services Archi-

tecture (OGSA) is developed by the Global Grid Forum (GGF) and

describes an architecture for service-oriented Grid computing environ-

ments. GT4 (Globus Toolkit 4) [14], gLite [23] and UNICORE [11] are

examples of Grid middleware systems.

• Grid Security Infrastructure (GSI)—these tools are used for au-

thentication (of users and services), secure communications, and autho-

risation on the Grid. They are also used for management functions such

as overseeing user credentials and group membership information. GSI

allows security across organisational boundaries and is therefore not

a centrally-managed system. It is a “single sign-on” system for users

of the Grid, so handles any delegation of credentials for computations

that involve multiple resources. [46]

• GridFTP—this is an extension to the standard File Transfer Protocol

(FTP) and is defined as part of the Globus Toolkit. The aim is to

provide a standard interface for reliable high-performance file transfer

over Grid systems. This is a necessity for many Grid applications that

need to transfer very large files reliably and securely. The main features

are: parallel data transfer, third-party controlled data transfer, GSI

security, and fault-recovery. [2]

• Grid Resource Allocation Manager (GRAM)—is a standard pro-

tocol for communicating with the various job schedulers available, such

as Condor, LSF (Load Sharing Facility), and PBS (Portable Batch Sys-

tem). GRAM address security, reliability, and performance concerns,

client and server management of resources, and the ability to transfer

data to and from remote resources. [12]

• Storage Resource Broker (SRB)—is a middleware system provid-

ing uniform access to heterogeneous large-scale data storage over the

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Grid. Features include logical address spaces, searchable metadata,

access control, and collections. SRBs work on top of existing storage

systems, real-time data sources, and relational database management

systems. Users have access to features such as collaborative sharing,

version control, replication, and preservation of distributed data collec-

tions. [31]

2.2.4 Grid Service Authoring Tools

Introduce [19] is an open-source toolkit for authoring WSRF compliant Grid

services—it aims to reduce the development and deployment effort by ab-

stracting the low-level implementation detail of the Globus Toolkit. Intro-

duce supports the creation of strongly-typed services, where input and output

data types to a service are defined and published.

Using a Java based GUI, users define their services and their method

signatures with built-in or custom data types. Introduce then generates the

low-level service code, leaving method stubs for the user to fill in with code

to implement the service functionality. A client application is also generated

to test the services. Introduce can then deploy the WSRF services to an

application container—GT4, JBoss or Apache Tomcat.

gRAVI (Grid Rapid Application Virtualization Interface) [7] is a plugin

for Introduce that helps developers wrap legacy command-line applications

with WSRF compliant Grid services. The aim is to require no user code and

limited technical knowledge, with the bridging code for the Introduce meth-

ods automatically generated. gRAVI can also create a basic Web application

to access the service through a Web browser.

2.3 Existing Instrument Middleware

To bring client honeypots to the Grid, we must look at existing work in this

field. While there is no other research in this specific area, a client honeypot

CHAPTER 2. BACKGROUND AND RELATED WORK 16

can be treated as a measurement instrument, so we can look at Grid instru-

mentation projects. There are several of these which have been developed

in the last few years on which to base the integration of instruments with

Grid computing. The two most important are the Common Instrument Mid-

dleware Architecture (CIMA) [9, 6] and the Grid Enabled Remote Instru-

mentation with Distributed Control and Computation (GRIDCC) project

[24, 17].

2.3.1 CIMA

CIMA provides a framework which has developed implementations from low

power wireless sensors through to collaboration and control of large physi-

cal sciences instruments. Figure 2.3 shows the CIMA architecture. CIMA

allows scientists to access, store and transport data and remotely control

scientific instruments and sensor in Grids. The emerging CIMA framework

provides the basis to encapsulate client honeypots and develop wide scale

Internet measurement systems. CIMA includes integration with GridSphere

portals and SRBs. However, the architecture may require extensions in secu-

rity/privacy, metadata for Internet measurements, enhanced business process

execution and data normalisation services.

2.3.2 GRIDCC

GRIDCC provides a similar solution, based on EGEE/gLite middleware [23].

Figure 2.4 shows the GRIDCC architecture. The main components are

the Virtual Control Room (VCR) and the Virtual Instrument Grid Service

(VIGS). Scientific workflows are executed through the Execution Services

(ES) using the Workflow Management Systems (WfMS) to manage Instru-

ment Elements (IE), Compute Elements (CE) and Storage Elements (SE).

GRIDCC has developed a number of instruments based on the EGEE

(Enabling Grids for E-sciencE) Grid implementation. The GRIDCC project

has implementations that encompass instrumentation on the electrical power

CHAPTER 2. BACKGROUND AND RELATED WORK 17

Figure 2.3: The CIMA extended architecture [5].

Figure 2.4: GRIDCC architecture [24].

CHAPTER 2. BACKGROUND AND RELATED WORK 18

grid, geo-hazard monitoring, meteorology, medical instruments and telecom-

munications. The GRIDCC project aims to put their Instrument Element

middleware into a FPGA (Field-programmable Gate Array) for integration

in smaller sensors.

2.4 Workflow Systems

Many business systems use workflows to manage their business processes.

Workflows are constructed by connecting multiple tasks according to their

dependencies and temporal relationships, which can be represented as either

a directed acyclic graph (DAG), or a non-DAG which allows loops in the

connections between elements. A DAG-based workflow provides sequence,

parallelism, and choice structures. In addition a non-DAG workflows can also

include the iteration structure. These four types of workflow structure can

be used to construct complex workflows, and sub-workflows can be combined

to form a large-scale workflow [49].

Workflows can be represented in a number of ways: by hand (such as

documenting a flow chart), writing programs in languages such as Java, or

using a workflow language that executes the workflow in a workflow engine.

Workflow languages have a number of benefits: a structured representation

designed specifically for this purpose, lack of required technical knowledge,

and a graphical representation of workflows.

In the recent past, there have been a large number of workflow languages/

systems developed for defining, managing and executing workflows. One

recent survey found over 30 scientific workflow systems [39]. It is probable

we will soon see consolidation and standardisation as the research area of

workflows matures.

Workflow languages for business and scientific domains tend to have dif-

fering focuses. Business workflow languages are usually services-oriented

with strong support for iteration and control of tasks; this can be consid-

ered control-oriented. Scientific workflow languages typically have strong

CHAPTER 2. BACKGROUND AND RELATED WORK 19

support for pipelining data—modifying some data and passing it on to the

next task—and are often DAG-based, these can be considered data-oriented.

In Section 2.3 we introduced two Grid instrument middleware frame-

works, CIMA and GRIDCC. Of these two, GRIDCC has provided an open-

source implementation for experimentation. The CIMA project uses Kepler

workflows [3], a DAG scientific workflow system based on the Ptolemy II sys-

tem for heterogeneous, concurrent modeling and design. GRIDCC uses the

Business Process Execution Language (BPEL) with extensions developed for

QoS (Quality of Service) and SLA (Service Level Agreements).

2.4.1 BPEL

BPEL is widely considered the de-facto standard for Web service orches-

tration, particularly in the business sector, and is more mature than many

alternatives. It is a convergence of two languages, WSFL (Web Services

Flow Language) and XLANG, developed by IBM and Microsoft respectively.

The current version, WS-BPEL version 2.0 [27] was approved by OASIS, the

international standards consortium, in April 2007. BPEL is a non-DAG, ex-

tensible XML-based language. The specification does not define a graphical

notation for visual representation of workflows, so this is left up to individual

vendors although flowchart conventions are often used.

Although originally developed for business processes, BPEL has also been

suggested for scientific workflows due to its expressibility, standardisation,

and maturity of tools [1]. However, BPEL does have some drawbacks for

this domain, such as a lack of integration with the Web Service Resource

Framework (WSRF) [10].

Grid Integration

A limitation of BPEL is its lack of integration with the Grid. Specifically

it does not support WSRF services, large file transfer mechanisms (such as

GridFTP) or the GSI security model. However, we have identified extensions

CHAPTER 2. BACKGROUND AND RELATED WORK 20

to BPEL that aim to integrate this missing Grid functionality.

Dornemann et al [10] have created extensions to BPEL to allow it operate

on WSRF (Web Service Resource Framework) resources by introducing a new

activity called gridInvoke (GI) which is derived from the invoke activity

and transparently handles the invocation of state-aware WSRF services. GI

allows Web services to store the state of operations and properties while

still being compatible to standard Web services. Utilising this framework

for workflows would prevent a number of possible error situations and assist

with integration into the Grid environment.

Amnuaykanjanasin and Nupairoj [4] propose an architecture to enable

Grid composition based on OGSI (Open Grid Services Infrastructure) and

BPEL. Their approach uses proxy services enabling users to interact with

OGSI Grid services, in particular supporting GSI security, factory and no-

tification mechanisms. These proxy services are orchestrated in workflows

using standard BPEL and allow run-time bindings. While the approach

of using automatically generated proxy services for every Grid service adds

complexity, the ability to use Grid security mechanisms, which implies cross-

organisational security, is highly beneficial.

A solution to the implementation of large file transfers, is to use Slomiski’s

proposal of pseudo partners [40] to encapsulate Grid file transfer services.

Partners in BPEL are services that a workflow needs and are typically mapped

to Web (or Grid) services. However, it is also possible to map BPEL partners

to locally implemented services with appropriate WSDL port types provided.

Services without a network endpoint are termed pseudo partners as they are

not accessible as ‘real’ Web services but still implement WSDL port types.

Tools such as the Web Services Invocation Framework (WSIF) can be used

to implement pseudo partners’ local services, for example a method in a Java

class. Pseudo partners can provide services such as support for large data

files transfers using GridFTP, component management XCAT, or interacting

with Condor [40].

CHAPTER 2. BACKGROUND AND RELATED WORK 21

2.4.2 Taverna

Taverna [28] is an open-source data-oriented scientific workflow system de-

veloped as part of the myGrid project. It consists of both a client-side Java

GUI application for workflow design and an execution engine for enacting

workflows. Like BPEL, Taverna supports the creation of complex workflows

containing Web Services and sub-workflows. Individual methods from a Web

service are called processors and are connected by data links or explicit con-

trol links if data does not flow between processors. Taverna workflows are

described using a proprietary language called Scufl (Simple Conceptual Uni-

fied Flow language), which is an XML-based language similar to BPEL—but

unlike BPEL, Scufl is a data-oriented language in which each processor is

passed input data and produces output data for subsequent processors. Data

flows are sent in XML form and complex inputs and outputs can be created

using a special Taverna processor called an XML splitter that combines or

breaks down data streams.

Unlike most data-flow languages, Taverna is a non-DAG system. Itera-

tion, however, is not explicit so does not have the same control has a lan-

guage like BPEL. Even with just implicit iteration Taverna is still a Turing-

compliant language [18]. Implicit iteration is used when a processor is given

more inputs than it expects—such as passing a list of elements into a pro-

cessor that consumes a single element—each input is processed individually

until the list has been iterated through and any outputs from the processor

are combined into a list once all input items have been processed.

Another kind of Taverna processor is the Java BeanShell. These are pieces

of Java code that are interpreted during workflow execution. This allows

powerful extensibility to workflows but requires programming knowledge.

BeanShells are typically used to transform the output of one processor before

it is input into the following processor. Taverna also includes some built-

in local processors (which act like BeanShells, with predefined inputs and

outputs) for simple tasks such as encoding a byte array into Base64.

CHAPTER 2. BACKGROUND AND RELATED WORK 22

2.5 Grid Enabled Internet Instruments

A client honeypot is a type of Internet instrumentation, that is, it takes a

measurement of an aspect of the Internet—the number of malicious servers

in a sample of URLs. Another type of Internet instrument is the network

telescope [26]. These are passive monitoring devices using unused IP address

space on a network that capture any packet sent to that address space. The

traffic received by network telescopes is called Internet Background Radia-

tion (IBR) [29]. This traffic may be caused by viruses, worms, malicious

hackers scanning for vulnerabilities, misconfiguration etc.—because there is

no legitimate reason to send traffic to this address space. Successfully detect-

ing and eliminating IBR traffic is important for both reducing the amount

of non-productive traffic and also affording a general increase in security.

The goal of the Grid Enabled Internet Instruments (GEII) research project

[22] is to develop a framework for using Grid technology combined with

emerging Internet instrumentation to provide large scale Internet measure-

ment mechanisms, thus enable new quality measures by which we could de-

termine the state of the Internet. Such measures might include a ‘Safety

Index’ or ‘Compromise Index’ which indicates the potential for a vulnerable

computer to be compromised, a “Malicious Web Server Index” being the per-

centage or attack capacity of malicious web servers on the Internet. These

instruments can capture large amounts of data requiring time consuming

analysis so using Grid technologies such as GridFTP, SRBs, and data pro-

cessing resources would be beneficial. Different components may be spread

across organisations to create a Grid of sensors with federated data collection

and analysis.

Figure 2.5 shows the proposed architecture of the GEII framework [22].

This shows a number of example instruments (with wrapper envelopes), the

central Federated Data Manager, and the Grid services offering processing,

storage, security and user interfaces. The example instruments are a VoIP

Quality Monitor [21], an IBR Network Telescope [29], and two client honey-

pots: Capture-HPC (our case study), and HoneyMonkey [45].

CHAPTER 2. BACKGROUND AND RELATED WORK 23

Instrument
Envelope

Instrument
Envelope

Instrument
Envelope

Instrument
EnvelopeFederated Data

Manager

SOAP

SRB Storage
Manager

GEII
PortalAnalysis Grid

Security
Manager

Web
Browser

Capture Honeypot ClientIBR Telescope

Honey MonkeyVoIP Quality Monitor

Figure 2.5: High-level view of the GEII architecture [22].

CHAPTER 2. BACKGROUND AND RELATED WORK 24

We foresee our research into client honeypot automation being one part of

the larger GEII project, with our solutions being extendible to other Internet

instruments.

2.6 Review

We now provide a brief review—to tie it all together—of the background and

related work covered in this chapter.

We described how client honeypots are used to detect malicious Web

servers serving ‘drive-by-downloads’—both in their high and low-interaction

variations (our case-study Capture-HPC is an example of the former). Grid

computing—with its resource sharing across organisations—is a potentially

valuable technology for enhancing client honeypot systems. Likewise, work-

flow languages—orchestrating tasks made up of Web services into complex

processes—is another potentially useful technology, with BPEL and Taverna

being two suitable languages. Client honeypots are one example of an In-

ternet instrument and we foresee our research being applicable to the wider

GEII research project.

We described two instrument middleware projects, CIMA and GRIDCC,

which have a similar goal of bringing instruments to the Grid, though the

their domain is physical instrumentation. Our focus in this research is to

explore workflows so not it is not necessary to use a complete instrument

middleware, but future integration is an option.

Chapter 3

Formulation of Requirements

In order to assess the requirements of an automated system we gained nec-

essary experience by manually operating Capture-HPC for moderate scale

scans over a period of seven months. This was part of a study of the .nz

domain, and from this experience we discovered the deficiencies of such a

manual approach.

In this chapter we begin by giving an overview of the study and the ar-

chitecture we used, in Sections 3.1 and 3.2 respectively. Section 3.3 describes

the procedure we used including installation, configuration, testing, opera-

tion and termination. Section 3.4 looks at the data analysis, presenting some

results from the study. In Section 3.5 we formulate general requirements for

Grid-based automation, and by creating uses cases, in Section 3.6, more spe-

cific requirements . Finally, in Section 3.7 we specify the main requirements

to focus on, and define the scope of our research.

3.1 Overview of Study

The study, commissioned by InternetNZ, gathered intelligence on the threat

from malicious servers across the .nz domain. The aim was to inspect a

representative set of the index pages of publicly accessible .nz Web servers

to determine if they host malicious content. This content may be placed

25

CHAPTER 3. FORMULATION OF REQUIREMENTS 26

there either deliberately or via a website defacement.

For this study we have completed seven monthly-scans where each scan

inspected approximately 250,000 hosts.

For more information on the study, including the project reports, see [20].

3.2 System Architecture

The set-up used for this study consisted of six machines—five Capture-clients

and one Capture-server—all running the Fedora Core 7 Linux distribution.

The Capture-server is a 2.13GHz Core 2 Duo (2GB memory and 160GB hard

disk), while the Capture-clients consist of three 2.4GHz Core 2 Quads (4GB

memory and 500GB hard disks) and two 2.8GHz Pentium Ds (1.5GB memory

and 80GB hard disks). Figure 3.1 shows the deployment diagram of the set-

up. The clients each have VMWare server (and additional VMWare VIX API

libraries), with up to three virtual machine instances. Each virtual machine is

an image created of Windows XP Service Pack 2 with the CaptureClient and

VMWare Tools installed inside. The server has CaptureServer, Squid Web

proxy cache, and pdnsd DNS proxy installed. Due to the risk of attacks,

security is very important for all the machines so restrictive firewalls were

configured and only remote access from static IP addresses is allowed. Key

authentication—using a 1024-bit shared key—was a final step used to prevent

unauthorised access.

Due to the dynamic nature of the Web and the possible use of IP-

tracking—whereby a malicious Web server logs IP addresses and serves be-

nign page when subsequently accessed—we stored the Web pages when we

accessed them. This meant malicious content could be later retrieved for

analysis [33]. This was implemented using Web and DNS proxies for the

clients, configured to persistently cache all data.

CHAPTER 3. FORMULATION OF REQUIREMENTS 27

Capture Server/Web Proxy

Capture Server

HTTP Proxy

DNS Proxy

Capture-Clients

VMWare Server

VMWare API

Guest Operating System(s) -
Client Honeypot

Capture Client
Guest Operating System(s) -
Client Honeypot

Capture Client

DNS/Web Servers
on Internet

Control Instructions

Classification

HTTP Requests/responses

DNS lookups/responses

Firewall

DNS/
HTTP

Requests
DNS/HTTP
Responses

Req/Resp

Req/Resp

Figure 3.1: Deployment diagram of our Capture-HPC setup.

CHAPTER 3. FORMULATION OF REQUIREMENTS 28

3.3 Procedure

Running our client honeypot system consisted of five steps: installation,

configuration, testing, operation and termination. In each of the following

sections we describe the step, problems encountered and improvements to be

made.

3.3.1 Installation

All the host machines in the cluster had a default Fedora Core 7 installation.

Capture-clients had VMWare Server 1.0.4 and VMWare VIX libraries in-

stalled, and a VMWare module compiled for the kernel. The Capture-server

had Java 1.6, Squid 2.6, PDNSD 1.2.6 and CaptureServer 2.0 packages in-

stalled.

For the client system a new VMWare image was created and Windows

XP SP2 was installed, then CaptureClient, VMWare tools and pcap packages

were installed. This image was archived and used for future installations.

The process of host machine installation could be simplified if a custom

Linux distribution was developed with all the requisite packages included and

if remote installation was used.

3.3.2 Configuration

Components such as the firewall, proxies, and CaptureServer needed their

configuration files edited and environment variables set. Networking was

configured for both the host systems and client systems (the server was as-

signed a new external IP address for every run to avoid IP tracking). SSH

was set up and keys were distributed. The VM image of the client system

was allocated to the Capture-clients.

The above configuration was done with a mixture of manual editing

(eg. setting up networking parameters such as the host IP address), copy-

CHAPTER 3. FORMULATION OF REQUIREMENTS 29

ing of files (eg. shell file with environment variables), and shell scripting1

(eg. distributing the VM images). Even tasks that could be scripted were

not necessarily simple, it could be an error-prone process because the scripts

were fairly unforgiving, and their interpreted and sequential nature meant

carrying out a number of steps over a list of Capture-clients could take a long

time to execute—up to half an hour.

If the process of installation was done via a custom distribution (as pro-

posed earlier), then some of this configuration could be handled at installa-

tion. Also, by giving Capture-servers more control over the set-up of Capture-

clients we would reduce the number of scripts and manual edits required.

3.3.3 Testing

Exclusion lists were used by Capture to exclude normal system activity—

running processes, registry activity, and file reads/writes. There was a sep-

arate exclusion list for each of these three types of activity. The rules are

formed by listing the operations and filepaths, with regular expression wild-

cards allowed. The following is an example of a fileMonitor.exl entry to

disregard IE accessing cookies:

+ Write C:\\Program Files\\Internet Explorer\\iexplore\.exe

C:\\Documents and Settings\\.+\\Cookies\\.+

Testing was required to check that no erroneous malicious activity was

reported during access to normal benign Web pages. This testing had to be

manually carried out as it requires knowledge of what normal system activity

is and the formulation of rules.

Another important task before operation was to check the optimum num-

ber of VMs per Capture-client for maximum throughput. As the number of

VMs increased, the usage of resources rose significantly. This was critical

during the VM revert operation as the large amount of disk access could

1A complete listing of the operational scripts we created is provided in Appendix B.

CHAPTER 3. FORMULATION OF REQUIREMENTS 30

cause a major bottleneck if multiple reverts were occurring, hence staggering

of reverts was necessary. Testing was required to find the “sweet spot” of

VMs per machine. Scripts were used to measure throughput (average number

of URLs per hour) and configuration files were adjusted as appropriate.

3.3.4 Operation and Termination

Immediately before a run was started the Web and DNS caches were cleared,

the list of URLs to test was copied to the Capture-server and its configuration

file edited with the parameters for the experiment, eg. visit time and details

of the VMs.

A script was then used to start CaptureServer and periodically check the

progress, restarting if necessary. Another script was run to give ongoing

statistics such as numbers of URLs visited, malicious pages, and time-outs.

At completion, the CaptureServer process was terminated and an email no-

tification could optionally be sent.

A complete run of the scan took 5–6 days with our configuration of 13

VMs. During operation this configuration remained static. If a change had

been required (such as adding or removing VMs), the CaptureServer would

need to have been stopped, configuration file edited, URL list rebuilt, and

server restarted. This would cause a drop in performance until the system

was properly up and running again. While it was sufficient to have a static

configuration for a study of our size, any larger experiment with more ma-

chines and over a longer period of time could find this inflexibility a problem;

especially because for a very large cluster the probability of at least one hard-

ware failure during the experiment would be quite high.

When undertaking progress checks it was noted that it would be bene-

ficial to be able to select from different levels of information in a progress

report. For example, sometimes we would just like to know the percentage of

URLs processed and other times we would like to know more in-depth infor-

mation such as a listing of positive URLs and throughput statistics. Also, the

progress statistics only gave overall figures, by not having more fine-grained

CHAPTER 3. FORMULATION OF REQUIREMENTS 31

data a machine running VMWare server could crash and result in reduced

overall throughput but would not be immediately obvious. Therefore a man-

agement function would be useful.

3.4 Data Analysis

When the operational run was completed all of the CaptureServer log files

were aggregated using a script. Pages that were determined to be malicious or

had crashed the browser were verified to prevent false positives. These could

occur if the exclusion lists had not triggered properly or did not include a

benign activity. This verification was done both manually and using a script

to filter common occurrences.

Using this list of verified malicious pages the caches were condensed to

include only these Web pages. Further runs were then made using a fully

patched Windows XP system operating on the cached data. Analysis was

also made of the IP addresses of Web servers—which were used to predict

their physical locations.

3.4.1 Results from Study

In this section we provide an overview of results from the study, more detailed

analysis can be found in [32]. Over the eight months of our study, a total

of 291 unique malicious URLs were identified in the .nz domain, or about

0.12% of all hosts. Figure 3.2 summarises the results of these monthly scans

(no scan was conducted in May).

An average of 73.6 malicious URLs were observed each month. There was

a high level of variation, with a standard deviation of 16.2, and fluctuations

between 52 (April 2008) and 97 (July 2008) malicious URLs. Regression

analysis using least squares determined a p-value of 0.413, meaning there is

no evidence of any trend.

Of the malicious URLs identified over the eight month period, a con-

CHAPTER 3. FORMULATION OF REQUIREMENTS 32

0

25

50

75

100

A
p
r-
0
8

M
a
y
-0
8

J
u
n
-0
8

J
u
l-
0
8

A
u
g
-0
8

S
e
p
-0
8

O
c
t-
0
8

N
o
v
-0
8

62

88

7778

97

62

51

Figure 3.2: Monthly scan results—counts of malicious servers in the .nz

domain (no scan was conducted in May).

siderable portion of the malicious URLs were newly classified as malicious

compared to the previous month. This data is shown in Table 3.1. In July

2008, for instance, nearly 80% of the malicious URLs were newly classified

as malicious compared to June 2008. Over the following four months, the

percentage of newly classified malicious URLs decreased continuously. In

November 2008, about 34% of the malicious URLs were newly classified as

malicious compared to October 2008.

All URLs were also inspected with a fully patched system. No URL suc-

cessfully attacked a system configured with fully patched versions of Windows

XP and Internet Explorer.

CHAPTER 3. FORMULATION OF REQUIREMENTS 33

Table 3.1: Summary of .nz monthly scan results.

Month Total

malicious

New ma-

licious

% new

malicious

Diff.

malicious

from prev.

month

% diff.

from

previous

month

Apr-08 51 - - - -

Jun-08 62 29 46.8 29 46.8

Jul-08 97 75 77.3 77 79.4

Aug-08 78 43 55.1 60 76.9

Sep-08 77 34 44.2 55 71.4

Oct-08 88 38 43.2 47 53.4

Nov-08 62 21 33.9 27 43.5

Average 73.6 40.0 50.1 49.2 61.9

3.5 General Requirements for Grid-based Au-

tomation

Using our experience of manually operating a client honeypot system we

have formulated the following requirements for automation using a Grid-

based architecture:

1. User-oriented—the aim being to focus on how the user wants to interact

with the instrument. From the user’s perspective they have a list of

URLs, and want them run on a particular type of client honeypot

configuration (OS, browser, visit time, etc.) and are not concerned with

the details of the actual set-up. This would require a broker service with

look-ups to a dynamic registry of client honeypots. Implementation

details, such as the configuration of Capture-clients, can be automated

by passing responsibility to the Capture-server. Users should also have

options such as the choice of different levels of detail in progress reports.

CHAPTER 3. FORMULATION OF REQUIREMENTS 34

2. Loosely-coupled—interoperability would allow various types of client

honeypots to be plugged in with the same interfaces. Instruments could

work in conjunction, for example low and high-interaction client honey-

pots could be used together for faster less-accurate and slower precise

runs respectively.

3. Grid-integrated—full incorporation of Grid technologies is important.

By using Grid services such as SRBs, GridFTP, GSI security, and

WSRF services, we can utilise the many Grid resources available, pro-

vide a flexible architecture and promote interoperability over multiple

sites.

4. Dynamic—the system should perform analysis as results are gathered,

such real-time analysis could allow for immediate response against new

attacks.

5. Fault-tolerant—to be successful on the Grid the system should not be

too rigid. It needs to be fault-tolerant so Capture-clients are monitored

and can be automatically added or removed. Ideally the whole state of

the system could be saved and migrated to another system.

For practical reasons we must limit the scope of our research and focus on

the core requirements. Therefore, we will focus on the first three—a system

that is user-oriented, loosely-coupled and Grid-integrated.

3.6 Use Cases

We have utilised use cases to help gather key requirements and help de-

fine the role the system must take in user interactions. Figure 3.3 shows a

use case diagram modelling system functionality from the user’s perspective.

The simplest non-trivial use case scenario would be a user submitting a list

of URLs to a client honeypot and simply receiving the results. In section

CHAPTER 3. FORMULATION OF REQUIREMENTS 35

3.6.1 we expand upon that scenario with a more complex experiment, and in

Section 3.6.2 we provide some variations to that specific scenario.

!"#$

!"#$%&

%&'()*+,-.$#

/0,#*1'2)*#34)1

(&'5#*6'!78'0,"1'1)

/0,#*1'2)*#34)1

9&'51:$1'/0,#*1

2)*#34)1'4$)/#"",*-

;&'<#1'/0,#*1

2)*#34)1'"1:1."

=&'>#$?,*:1#

4$)/#"",*-

<&'<#1'$#".01"

+,0#"

@&'>$:*"+#$'+,0#

A#B1#*6"C

A#B1#*6"C

A#B1#*6"C

A."#"C

A."#"C

D&'($#:1#'*#E

"#"",)*

Figure 3.3: Use case diagram showing the main functionality of the system

from the User actor’s perspective.

3.6.1 Example Scenario

In this specification we describe a particular path through a use case written

from the actor’s point of view, listing the steps needed to accomplish the

goal.

Use case name: Testing URLs on two differently configured systems.

Overview: The actor in this use case is a client honeypot user, eg. a

security researcher. The goal is to test whether a list of malicious URLs can

exploit vulnerabilities on two differently configured systems. Each system

CHAPTER 3. FORMULATION OF REQUIREMENTS 36

is a virtual machine and we assume images exist for each configuration. To

achieve this goal, a URL list is batch processed on the first VM, and then any

malicious URLs are feed into the second VM for further testing. An example

of this would be testing on a non-patched system and subsequently testing

on a patched system—by passing only the malicious URLs to the second VM

we significantly speed up the process.

Main scenario: Below shows the steps that make up this scenario. The

sub-use cases from Figure 3.3 are referenced in brackets.

1. User identifies a registered client honeypot system and logs in (A).

2. System authenticates the user (A).

3. User passes configuration options for first system (B).

4. User transfers a list of URLs to be tested (C, H).

5. User instructs the system to begin processing (D).

6. System invokes the client honeypot to begin processing on the first VM

(D).

7. User optionally requests the status of processing (E).

8. System outputs summary information of client honeypot progress (G).

9. When processing is finished, system informs user (C, D).

10. System transfers completed log files (G, H).

11. User aggregates the log files, extracting the malicious URLs into a new

list (outside the system).

12. User passes configuration options for second system (B).

13. User transfers their new list of aggregated malicious URLs (C, H).

14. User instructs the system to begin processing (D).

CHAPTER 3. FORMULATION OF REQUIREMENTS 37

15. System invokes the client honeypot to begin processing on the second

VM (D).

16. User optionally requests the status of processing (E).

17. System outputs summary information of client honeypot progress (G).

18. When processing is finished, system informs user (C, D).

19. System transfers completed log files (G, H).

20. User aggregates the log files, creating results lists— a list of URLs that

are malicious on both systems and another for those that are malicious

only on the first (outside the system).

Exceptions:

11a. There are zero malicious URLs—user skips processing URLs on the

second VM and goes to step 20 (creating the results lists).

3.6.2 Scenario Variations

Other client honeypot experiment use cases include:

• Combining two different client honeypot systems—in this scenario a

user passes URLs to one client honeypot system and feeds the output

into another system in the same organisation. An example would be

firstly using a low-interaction client honeypot and then feeding the

malicious pages into a high-interaction client honeypot, thus utilising

the speed of the former with the accuracy of the latter. The main

difference to the scenario specified in Section 3.6.1 is the need for the

user to identify and log into the second client honeypot.

• Combining client honeypots from multiple domains—the goal of this

use case is to test URLs on client honeypots located in different do-

mains. An example would be two universities collaborating—sharing

CHAPTER 3. FORMULATION OF REQUIREMENTS 38

their client honeypot resources. Compared to the scenario in Section

3.6.1 the security requirements will be higher as virtual organisation

security systems such as GSI would be used. Also, there may be re-

quirements to anonymise data to meet organisational requirements.

3.7 Main Requirements and Scope of Research

In this chapter we have uncovered a number of requirements for automating

client honeypot systems. For practical reasons we must limit the scope of

our research and focus on the core requirements—the goal is to implement a

prototype system which allows further functionality to be added later.

In Section 3.5 we specified the three general requirements we would focus

on a system that is user-oriented, loosely-coupled and Grid-integrated. The

detailed requirements are specified in terms of use cases, given in Section 3.6.

We define the scope of this research as follows:

• Focus on creating WSRF Grid services and the practicalities of work-

flows, such as combining multiple VM images and heterogeneous sys-

tems.

• Focus on the operation and data analysis phases of the client honey-

pot lifecycle. As already mentioned, the installation and configuration

phases could be largely automated by using a custom Linux distribu-

tion.

• Limit to a single organisation. Therefore security issues, resource man-

agement, and virtual organisations are not covered.

• Not include fault tolerance at this stage. Workflows and services will

throw generic exceptions on error conditions, but we will not focus on

fault recovery.

Chapter 4

Design and Implementation

This chapter focuses on the design and implementation of our system, cre-

ated to meet the requirements we gathered in the previous chapter. Section

4.1 describes our system architecture. Section 4.2 investigates the workflow

design including: areas of application, an evaluation of BPEL and Taverna,

and sample client honeypot workflows. Section 4.3 looks at our Grid services

that form the ClientHoneypotManager and ClientHoneypotWrapper compo-

nents. Section 4.4 describes the implementation of our prototype system,

which includes: WSRF services, a Web portal and Taverna workflows. We

conclude the chapter, in Section 4.5, with a summary of the material covered.

4.1 Architecture

To meet the requirements we identified in Section 3.7—a user-oriented, loosely-

coupled and Grid-integrated system—we needed to expand the client honey-

pot architecture. Components were required that allow integration of existing

client honeypots, manage and provide access to these systems, and interface

with Grid middleware.

Our design uses a service-oriented architecture (SOA) approach; this pro-

vides a necessary level of abstraction and interoperability using common ser-

vices. Above these services we use workflows to manage the orchestration

39

CHAPTER 4. DESIGN AND IMPLEMENTATION 40

of services into larger processes, automating the complex operation of client

honeypot systems. A workflow system allows processes to be made into com-

ponents and should enable users of the system to create and modify these

complex processes with ideally little technical knowledge.

Figure 4.1 shows our system architecture. An existing client honeypot is

encapsulated with the ClientHoneypotWrapper services. Above this is the

ClientHoneypotManager component which acts as a broker between users

and registered client honeypots. It also interfaces with Grid services such as

job schedulers and SRBs. User access to the ClientHoneypotManager and

the workflow system is provided through a Web portal.

Client Honeypot Manager

Client Honeypot

Web Portal

Wrapper Services

GRAM

Job Scheduler

SRBWorkflow Sytem

Figure 4.1: Architecture diagram of our system design—items with dashed

lines are existing Grid components.

The ClientHoneypotWrapper WSRF services provide a standard interface

for all client honeypot instances. An implementation of this service can

either call an exposed API in the client honeypot or provide a bridge to the

application directly. The service can be deployed as a GRAM (Grid Resource

CHAPTER 4. DESIGN AND IMPLEMENTATION 41

Allocation Manager) job for submission to a job scheduler.

The ClientHoneypotManager will use Grid indexing services for publica-

tion and subscription of registered ClientHoneypotWrappers. Data published

could include the capabilities of the system, with specification of VM configu-

rations. Via the Web portal, users could then create a client honeypot session

by specifying only the URLs to test and any requirements for the system to

test on, letting the ClientHoneypotManager deal with the job scheduling and

the details of the client honeypot operation.

The orchestration of these WSRF services can be achieved either with a

custom application, requiring pre-compiled code and users to have program-

ming knowledge; or using workflow systems, graphically modelling the opera-

tion and potentially allowing non-technical users to create complex processes.

Initially we investigated how workflow systems could benefit our system.

4.2 Workflow Design

4.2.1 Areas of Application

We saw workflows as an important mechanisms for automating the various

processes used in client honeypot management. There are two main areas

where workflows are potentially beneficial: (1) operating a specific client

honeypot and (2) federation of multiple client honeypots. These are detailed

in the following two sections.

Operating a Client Honeypot

Each client honeypot implementation has its own internal processes. In a

high-interaction client honeypot the main process involves the server com-

ponent delegating URLs to client components, analysing any state changes,

then classifying the results. If the individual tasks that make up this process

where exposed as Web Services, the entire process could be modelled with

workflows. By using workflows the processes can be viewed graphically and

CHAPTER 4. DESIGN AND IMPLEMENTATION 42

modified by someone without technical expertise of that client honeypot.

An example of a potential modification to a process made via a change to

the workflow is the implementation of a divide-and-conquer algorithm [38].

This algorithm visits 20 URLs at once (in separate windows), and determines

if there is a malicious URL amongst them, if there is, the set will be divided

and re-tested until the malicious page or pages are determined. Due to the

low count of malicious pages making division rare, the parallel visiting of

pages increases throughput significantly. Such a change in the operation

process could be made by creating a new workflow and graphically inserting

the appropriate control structure such as while loops and if statements.

The previous operational behaviour would still be accessible through the

original workflow. This contrasts with the current approach where changes

require the server component to be recompiled and redeployed.

Tight control over the internal processes could also allow runtime mod-

ifications of the system through Web services. An example would be the

ClientHoneypotManager adding or subtracting CaptureClients as resources’

availability changed.

While fine-grained control of client honeypot systems is useful, it brings a

few disadvantages too. There will be a reasonable amount of work involved in

modifying any client honeypots to expose its internal tasks as Web services.

There will be a performance penalty due to the added communication and

overhead of SOAP messages used in Web services. Also, it may be difficult to

create standard interfaces so that workflows created for one client honeypot

are compatible with another client honeypot system. This is because each

system’s internal implementations is unique, data types and methods vary,

so code may need to be rewritten to enable convergence.

Federation of Client Honeypots

This approach treats a client honeypot as a black box to which we pass in

URLs and it passes out classification information, thus we are not concerned

with the internal workings. As well as the classification of a URL we can

CHAPTER 4. DESIGN AND IMPLEMENTATION 43

also gather useful additional meta data on the Web page itself, ie. popularity

of site (from ranking sites), geographic location of the Web server, number

of redirects, etc. Using this meta data, machine learning techniques can

be implemented to generate better profiles of malicious pages, eg. for the

formulation of signatures for low-interaction client honeypots [34].

Workflows can be used that filter URLs returned from one client honey-

pot using additional meta data, and pass matching URLs to another client

honeypot to inspect. An example could be a workflow that tested if client

honeypot location—in terms of country domain—affected whether the Web

page was delivered as malicious. The workflow might test an initial list of

URLs on a New Zealand honeypot, filter the resulting malicious URLs to

only those of high popularity, pass these URLs to a client honeypot located

the UK, and finally aggregate the results.

This approach to workflow usage would require a standard WSRF service

interface to be developed which can be applied to any client honeypot in-

stance. A specific client honeypot would then be wrapped with this generic

interface, requiring little or no modification to its existing code. The post-

processing of pages for additional meta data could be an extensible part of

the service.

4.2.2 BPEL and Taverna Evaluation

In Sections 2.4.1 and 2.4.2 we gave an overview of the BPEL and Taverna

workflow systems. We now provide an evaluation of these systems for suit-

ability to model client honeypot workflows.

BPEL is a control-oriented workflow language. Its main strengths are its

maturity and wide support by industry tools and engines. Being a non-DAG

language it supports iteration (which is explicit), allowing complex control

structures to be expressed. A potential imitation of BPEL is it only supports

WSRF through an extension, but the extension is not compatible with the

current release (which has significant improvements in concurrency). Another

drawback is that the creation of workflows is a complicated process so is not

CHAPTER 4. DESIGN AND IMPLEMENTATION 44

suited to non-technical users. As one of the motivations we gave for using

workflows was to allow these non-techinical users to create and modify client

honeypot processes, this is significant.

Taverna is a data-oriented workflow language. Its strengths are: a simpler

system to develop workflows in, so non technical users should be able to

use it; and the integration of WSRF services is an example of the focus on

Grid computing. GSI security integration is also in development. Potential

limitations include the lack of explicit iteration affecting workflow design, and

the system’s immaturity—meaning there are bugs and functionality lacking

in some areas.

The two approaches to workflow usage we identified in the previous

section—operating a specific client honeypot and federation of multiple client

honeypots—have different requirements for the workflow system they are im-

plemented in. We now look at how these requirements apply to BPEL and

Taverna.

The control-oriented operation of a specific client honeypot fits the BPEL

workflow design, particularly the ability to include iteration. The increased

complexity of BPEL workflow design is not a significant issue because it

would likely be users with technical knowledge that would modify internal

honeypot processes.

The federation of multiple client honeypots is more of a data-oriented

process so suits Taverna’s model better. The simpler design process of Tav-

erna will benefit non-technical users, and the integration to the Grid is more

important at this higher data-processing level than it is at the lower control-

oriented level.

In the next two sections we will begin modelling these two workflow ap-

proaches with the counterpart workflow languages we have identified—BPEL

and Taverna.

CHAPTER 4. DESIGN AND IMPLEMENTATION 45

4.2.3 BPEL Workflows for Client Honeypot Modelling

To assess the expressability of BPEL as a workflow language for operating a

client honeypot we constructed workflows to model the operation of our case

study, Capture-HPC. We applied the constructs and semantics of WS-BPEL

version 2.0, currently the latest version. Of interest, this version introduces

new activity types of <repeatUntil>, and <forEach> (with both parallel

and sequential versions).

We now describe some of the issues encountered using BPEL and present

example workflows that try to address these identified issues. The function-

ality of Capture-HPC is exposed as Web services and the workflows invoke

and receive calls from these Web services. For ease of communication we

have chosen to model our workflows graphically, however there is no standard

graphical notation for BPEL. Most vendors have invented their own notation

or use the BPMN (Business Process Modelling Notation). These notations

all use a flowchart model—such as that used in UML activity diagrams—

with the addition of a block structure. At this stage we have modelled our

workflows in a simple graphical notation, Figure 4.2 shows a key for the dif-

ferent constructs used. At a later stage, when a workflow engine and tools

have been selected, we can map to the appropriate notation used.

An issue that we encountered when using BPEL was that the specifica-

tion does not define what happens if a workflow blocking for a <receive>

call, receives more than one call to the Web service. Therefore we cannot

use a single <receive> to deal with all clients returning results to the Cap-

tureServer in the Captue-HPC system. To avoid this we could implement

many top level workflows as a single BPEL engine can handle hundreds of

concurrent instances.

Figure 4.3 shows a workflow modelling the operation of Capture-HPC

using the <forEach> construct. The CaptureServer is initially passed a list

of URLs. For each registered CaptureClient a while loop is run in parallel.

This passes a URL to the CaptureClient to visit, receives state changes,

and determines if the Web server is malicious—in which case it resets the

CHAPTER 4. DESIGN AND IMPLEMENTATION 46

Start/End

Task

Loop

Decison

Block

Start and end points to the workflow

Individual tasks performed in the workflow. This
can be invoking another workflow or Web
service, blocking for a receiving a call from
another Web service, or performing a simple
operation such as manipulating variables.

A basic construct doing a Boolean test and
taking different paths depending on the result.

A basic construct of For and While loops.

Used to group sequential blocks together for use
in parallel or in loops.

Shows the flow of execution within the workflow

As above, but used for showing parallel
execution of blocks within a workflow

Figure 4.2: Workflow diagrams’ key.

CHAPTER 4. DESIGN AND IMPLEMENTATION 47

VM that the CaptureClient is running inside. The network data captured is

transferred to a storage location and the URL classification list is updated.

These loops continue until there are no more URLs left to test, whereby

the classification list is returned. By having a separate <receive> for each

CaptureClient in its parallel loop we avoid the issue of multiple calls to a

single <receive>.

The <forEach> construct allows for the execution of a sequential block an

arbitrary number of times in parallel. The number of concurrent instances

of this block can be determined at run time before actual execution, but

once it has begun there is no way to add another concurrent instance. To

fully control a honeypot’s operation we need to delegate URLs to clients

in parallel, and allow the number of these connected clients to increase or

decrease during operation.

Figure 4.4 shows an example workflow that avoids this concurrency lim-

itation. Initially CaptureServer receives a list of URLs. Then two processes

are run in parallel—the first delegates URLs to free CaptureClients until

there are no more left to delegate, the second performs routine checks for

timeout conditions on assigned URLs until all tasks are completed. Both

update status lists to keep track of CaptureClients and URLs. When both

parallel branches have completed the findings are returned.

An event handler is used to receive the results from CaptureClients. The

specification states that a business process can receive event handler messages

concurrently with the normal activity of the scope to which the event handler

is attached, thus allowing events to occur at arbitrary times while the normal

scope is still active [27]. Using this design clients can be added and removed

by modifying the status lists, thus avoiding the fixed concurrency issue of

the <forEach> construct.

CHAPTER 4. DESIGN AND IMPLEMENTATION 48

Start Receive list of
URLs

Receive state
changes from
CaptureClient

Invoke Client
Visit URL on

CaptureClient

Invoke Transfer
Captured Data

to SRB

while-
More
URLs

Give reset
decision to VM

NextURL

Return
Classification

List

End

for
each-

Capture
Client

instance = i

Determine if
malicious

Update
Classification

List

Figure 4.3: BPEL workflow of CaptureServer’s operation with parallel forE-

ach construct. Parallel while loops are run for each registered CaptureClient,

delegating URLs and processing results.

CHAPTER 4. DESIGN AND IMPLEMENTATION 49

Start Receive list of
URLs

Return results

End

while-
Unass
igned
URLs

Available
CaptureClientt

?

Wait

YES

Update status
lists

Invoke Process
URLs on

CaptureClient

Create URL list

NO

while-
Incom
plete
tasks

Task past time
limit?

WaitUpdate status
lists

NOYES

Receive class.
list from

CaptureClient
Update results Update status

lists

Normal Activity:

Event Handler:

Figure 4.4: BPEL workflow modelling CaptureServer delegating URLs to

CaptureClients. Parallel processes delegate URLs and check timeout condi-

tions, while an event handler processes results.

CHAPTER 4. DESIGN AND IMPLEMENTATION 50

4.2.4 Taverna Workflows for Client Honeypot Federa-

tion

In this section we use Taverna to model data-oriented workflows operating

on wrapper WSRF services that will encapsulate specific client honeypots.

In the same way we did with the previous BPEL workflows, we will again

use a simple graphical notation (Figure 4.2 specifies the key). For simplicity,

some of the non-essential data flow lines are omitted.

Figure 4.5 shows a simple workflow that will process a URL list and re-

turn the output files (URL classification lists and log files). The inputs to the

workflow are the URL list and optionally configuration options for the client

honeypot. A resource key is created which will identify this particular client

honeypot session. Then the Process URL List method is called, passing

the resource key, URL files and any configuration options. This is a block-

ing method so while this is operating the Get Status method outputs the

progress. When the processing is complete the workflow will move on to get

the files. The method to get the file list will return multiple file names, using

Taverna’s implicit iteration, each of these files will be individually retrieved

in the Get File method.

Figure 4.6 shows a more complex workflow—processing URLs on two dif-

ferently configured systems—which is the use case we described in Section

3.6.1. The workflow tests whether a list of malicious URLs can exploit vul-

nerabilities on two differently configured systems. So a URL list is processed

on the first VM, then any malicious URLs are fed into the second VM for

further testing. The first section is the same as our previous process in Fig-

ure 4.5, the difference is the output is parsed (to create a new input URL

list from the output’s malicious list) and this list is input into the second

Process URL List call (also passing any configuration options). When the

output files are retrieved from this client honeypot session the results are

aggregated to provide classification lists for the URLs over the two systems.

CHAPTER 4. DESIGN AND IMPLEMENTATION 51

Start Receive list of
URLs & config

Call Get File
List

Call Process
URL List
(blocking)

Decode Files

End

Call Get File

Call Get Status

Call Create
Resorce

Reference

Figure 4.5: Taverna workflow modelling basic operation of a client honeypot.

CHAPTER 4. DESIGN AND IMPLEMENTATION 52

Start
Receive list of

URLs & 2x
config

Call Get File
List

Call Process
URL List
(blocking)

Decode Files

Call Get File

Call Create
Resorce

Reference (1)

Call Get File
List

Call Process
URL List
(blocking)

Decode Files

End

Call Get File

Call Get Status
(2)

Call Create
Resorce

Reference (2)

Parse File

Call Get Status
(1)

Aggregate Files

Figure 4.6: Taverna workflow modelling processing URLs on two differently

configured systems.

CHAPTER 4. DESIGN AND IMPLEMENTATION 53

4.3 Grid Service Design

In this section we describe the WSRF interfaces designed for the two main

components of our system—the ClientHoneypotManager and the ClientHoney-

potWrapper services. Not all details are provided—for example custom data

types—these are provided in Appendix C. In section 4.3.3 we present an in-

teraction diagram that shows these services and their methods in operation.

4.3.1 ClientHoneypotManager

The purpose of this service is to be a broker between users and a number of

registered client honeypots. The user initially creates a new session by calling

the initiateSession method, this returns a reference to the CHSessionMan-

ager service context. The registerClientHoneypot and deregisterClientHoney-

pot methods are used to add or remove a client honeypot’s information from

the indexing service. The methods are defined as:

• CHSessionManagerReference initiateSession ();

• void registerClientHoneypot (ClientHoneypotDescriptor info);

• void deregisterClientHoneypot (ClientHoneypotDescriptor info);

The CHSessionManager service context deals with a specific user’s ses-

sion. It stores a Session resource (see section below for complex type defini-

tions). It has methods processURLs and terminateProcessing for starting or

stopping processing a list of URLs, and getStatus to get info on the current

session. These methods are defined as:

• String processURLs (int priority, ClientHoneypotConfig settings, Base64Binary

urlListFile, Reference endpointRef);

• void terminateProcessing ();

• SessionStatus getStatus ();

CHAPTER 4. DESIGN AND IMPLEMENTATION 54

4.3.2 ClientHoneypotWrapper

This service is designed to provide a WSRF wrapper for client honeypots.

The aim is to use a standardised generic client honeypot interface so that

the ClientHoneypotManager has a single service type to interact with. Each

client honeypot system (ie. Capture-HPC, HoneyMonkey, etc.) will require a

different implementation of this interface, but the service will be designed so

that these specific implementations require minimal changes at the back-end

to interact with the honeypots they are wrapping.

We have based this service on the services that the authoring tool gRAVI

creates to wrap legacy applications (described in Section 2.2.4). This ability

to wrap command-line applications with little code modification fits with

what we require. To implement these services we will have to standardise

the parameters and data types. Additionally we may need to extend the

gRAVI services to integrate resource allocation.

If we were to write these services by hand—without gRAVI—we would

have to write: low level Globus Toolkit code such as configuring resources,

maintenance code such as updating the service context’s state, code for han-

dling the various error conditions arising in the services, and client code for

testing and debugging.

The main service has the operation createResultsResource which returns

a new reference which is used to refer to this particular session. The run-

ClientHoneypotSh method will start the client honeypot with the provided

arguments and files (such as URL lists and configuration files). The resRef

parameter is optional, if null is provided a new reference is created and this

value is returned.

• ResourceReference createResultsResource ();

• ResourceReference runClientHoneypotSh (ResourceReference resRef,

String[] arguments, String[] filenames, Base64Binary[] inputFiles);

The service context for the client honeypot session has a number of meth-

ods for transferring files, requesting the status, and terminating processing.

CHAPTER 4. DESIGN AND IMPLEMENTATION 55

These are defined as:

• String[] getFileList();

• Base64Binary getSingleFileSOAP(String filename);

• Status getStatus();

• boolean killProcess();

• boolean sendFileSOAP(String filename, Base64Binary inputFile);

The methods provided for transfering files via SOAP also have GridFTP

versions (see Appendix C).

4.3.3 Interaction Diagram

Figure 4.7 shows a sequence diagram modelling the sequential operation of

the services we have specified in the previous two sections. This shows the

process of initiating a session and the user submitting a URL-list to be pro-

cessed. The manager looks up a suitable client honeypot, creates a resource

and starts processing. Status is periodically checked and a call-back is pro-

vided to the user. When processing is completed the files are transferred

and the manager returns the location of these files to the user. The status

can also be checked directly from the user, separate from the periodic status

updates. The User component could either be a workflow, Web portal, or

other application; while the Capture-HPC class could be replaced with any

specific client honeypot.

4.4 System Implementation

In this section we describe the proof-of-concept implementation of our sys-

tem design. Figure 4.8 shows the components of our implemented system.

CHAPTER 4. DESIGN AND IMPLEMENTATION 56

  























































Figure 4.7: Sequence diagram showing the interaction of components in our

system when processing a list of URLs.

CHAPTER 4. DESIGN AND IMPLEMENTATION 57

At the bottom of the diagram we have have an unmodified client honeypot—

in our initial implementation this is Capture-HPC. Above this is a custom

shell script which provides a bridge between the generalisation of the wrap-

per services and specification of our specific client honeypot—Capture-HPC.

Above the custom shell script is the ClientHoneypotWrapper WSRF service

which is a standardised component, requiring only the filepath to the custom

script to be modified and a unique service URL given when deployed. The

wrapper service and script implementations are described further in Section

4.4.1. Above this is the Web portal (described in Section 4.4.2) and the Tav-

erna workflow engine and user interface components (described in Section

4.4.3). We use these workflow components to design and enact workflows

that operate on our WSRF wrapper services.

Each of the described components can be located on different physical

machines, allowing flexibility in deployment. The Taverna workflow system

can be considered one part of the ClientHoneypotManger component, the

rest has been omitted to save time.

4.4.1 Custom Script and Wrapper Services

The custom Unix shell script converts the standardised parameters and data

types of the WSRF service to the specifics of Capture-HPC. The script also

adds functionality not in CaptureServer such as terminating processing and

outputting progress statistics. The usage of this intermediate script means

there is no need to modify either the existing client honeypot system or the

WSRF services. Developers of other client honeypots could simply write

their own ‘wrapper’ script to also use our WSRF services.

An alternative with tighter integration is to modify the WSRF services

to call an API that the client honeypot exposes. Capture-HPC 2.5 does not

currently expose an API.

The WSRF Grid services we use are the core services created by gRAVI.

These can be deployed to either a Globus container or an Apache Tomcat

installation that has the GT4 libraries installed. They also have the ability

CHAPTER 4. DESIGN AND IMPLEMENTATION 58

Custom Shell
Script

Unmodified
Client Honeypot

System

Web Portal
Access

ClientHoneypot
Wrapper WSRF

service

Taverna
Workflow
Engine

Taverna User
InterfaceUser

Figure 4.8: Component diagram of our prototype system.

CHAPTER 4. DESIGN AND IMPLEMENTATION 59

to be deployed as a GRAM job but we have not integrated it with any

job schedulers. This means that currently there is no resource allocation

mechanism to limit to single user access of high-interaction client honeypots’

resources. This would be necessary for most high-interaction client honeypots

in a production environment, as two instances could not use the same virtual

machines simultaneously.

In our tests of the services, options for security in the container were not

enabled.

4.4.2 Web Portal

The Web portal component of our system allows access to our ClientHoney-

potWrapper service through a Web browser. This basic Web application is

a modification of the one provided in gRAVI, Figure 4.9 shows a screenshot.

The user can upload URL lists and optional configuration files, and pass

standardised operational parameters to the service. After the user starts

the client honeypot, progress stats are displayed until processing is complete

whereby they can download the generated classifications. In our prototype

system the Web portal is not integrated with our Taverna workflows, though

it does allow the progress stats of workflows to be viewed if the resource key

from the workflow is imported.

4.4.3 Taverna Workflows

In this section we describe our experiences of using Taverna to implement the

workflows we designed in Section 4.2.4. There were a number of problems

we encountered, the main issues were:

• A GUI bug in Taverna 2.0 prevented us scavenging the WSDL for our

services. When the WSDLs for the main service and the context service

are both added, the service’s methods were merged with around half

the method names not displayed, meaning it was impossible to add

CHAPTER 4. DESIGN AND IMPLEMENTATION 60

Figure 4.9: Screenshot of our Web portal accessing the ClientHoneypotWrap-

per service, encapsulating Capture-HPC.

CHAPTER 4. DESIGN AND IMPLEMENTATION 61

these methods to the workflow. The previous version, Taverna 1.7.1,

does not have this issue.

• The lack of WSRF support in 1.7.1, however, meant we had to change

all the service context methods to pass the resource key as a parameter

rather than the SOAP header as WSRF services should. When the

resource key is explicitly passed the functionality remains the same,

meaning it is more of an inconvenience that we lose the transparency

of WS addressing.

• Another bug is that Taverna creates a malformed SOAP request for any

method that doesn’t have any parameters, throwing a security excep-

tion. To work around this we had to again change the WSRF services

to add dummy parameters to any methods with empty parameter lists.

• We found that once we started processing a list of URLs using the run-

ClientHoneypotSh method we could not get regular status updates on

the progress. This was partially due to the lack of explicit iteration in

Taverna, but even with a workflow language with explicit iteration—

such as BPEL—this functionality would be difficult to achieve. This is

because a workflow is like a service and only outputs values at comple-

tion, so intermediate values would need to be passed to another service.

So this type of publish/subscribe mechanism for notifications from ser-

vices is a feature lacking from all workflow systems, not just Taverna.

To get around this issue we had to write the resource reference for the

service context to a file using a BeanShell script, the user is then able

to input it into the Web portal to check progress.

• A limitation of the BeanShell implementation in Taverna 1.7.1 is the

object types of the inputs and outputs into the BeanShell processor.

These inputs and outputs must be specified from a predefined list and

are variations of strings and binary data, multiplicity can be specified

CHAPTER 4. DESIGN AND IMPLEMENTATION 62

as multi-dimensional lists1. This limits the usefulness of the BeanShell

system as a number of Web services will use custom types and other

primitive types such as arrays. We have found that other types can

be output from these beanshells (ie. an array can be passed out even

if the output was specified as a list) because it just passes a reference

to the object and the next processor can cast it as needed. This does

not work with the inputs as they are declared as their Taverna types

before they are assigned values, so would cause class cast exceptions if

cast to any other types. Taverna 2.0 addresses this issue.

• We found the process of workflow creation quite tedious. For each

service method used, XML splitters for input had to be added and

uniquely named. The local services (built-in functions) lacked simple

operations, eg. converting a list (which Taverna uses for all collections)

to an array, meaning these operations had to be written as new Bean-

Shell scripts. These scripts had to be written multiple times—if needed

more than once—as Taverna does not allow you to reuse them.

Figure 4.10 shows the Taverna implementation of our earlier designed

workflow—for basic operation of a client honeypot—that we gave in Figure

4.5. The service calls (in green) are matched, the additions are the XML

splitter (in purple) and BeanShells (in brown) for splitting and parsing the

data. Specifically, BeanShell scripts were needed for parsing filepaths to

filename strings, loading the files into Base64 encoded byte arrays, converting

ArrayLists to arrays, and writing the resource reference to file. For simplicity

this diagram omits some details, such as the individual ports on the XML-

splitters and string constants.

Figure 4.11 shows the Taverna implementation of our earlier more com-

plex workflow for processing URLs on two differently configured systems—

originally shown in Figure 4.6. In this workflow we utilise some of the sec-

tions from the previous Taverna workflow—method calls, XML-splitters, and

1In Taverna they are called lists though they are actually the Java ArrayList type.

CHAPTER 4. DESIGN AND IMPLEMENTATION 63

Figure 4.10: Taverna workflow modelling the basic operation of a client hon-

eypot.

CHAPTER 4. DESIGN AND IMPLEMENTATION 64

BeanShells—through the use of nested workflows.

4.5 Summary

In this chapter we have taken the requirements we formulated in Chapter

3 and designed a user-oriented, loosely-coupled and Grid-integrated system

using WSRF services and workflows.

We investigated the areas that workflows can be applied to client honey-

pots, finding that they are useful for both operating a specific client honeypot,

and the federation of multiple client honeypots. Our analysis showed that

these two areas have different requirements for workflows languages, the first

being more suited to control-oriented languages such as BPEL, and the sec-

ond suiting data-oriented languages such as Taverna. The expressibility of

both languages was assessed by graphically modelling sample workflows.

From our overall design we implemented a prototype system, encapsulat-

ing Capture-HPC—our case study client honeypot—with a shell script and

Grid services created with Introduce and gRAVI. Access to the Capture-

HPC functionality is provided through a Web portal. Taverna workflows

were created to implement the sample use cases we described in Section 3.6.

In the next chapter we will evaluate our system, determining if it meets

the requirements and whether it is an improvement on alternative system

designs.

CHAPTER 4. DESIGN AND IMPLEMENTATION 65

Figure 4.11: Taverna workflow implemented for processing URLs on two

differently configured systems.

Chapter 5

Evaluation

This evaluation chapter covers a number of different aspects of our system.

Firstly, in Section 5.1 we assess how well our original system requirements

are met.

One of the most important aspects of our system is the workflow com-

ponent, used for modelling and managing tasks. So in Section 5.2 we define

a set of criteria to enable us to make qualitative assessments of workflow

systems, including Taverna and alternative designs. These alternatives in-

clude a manual script-based system and a Java system that uses our WSRF

services. We also evaluate the authoring tools used to create these services.

Section 5.3 evaluates our Taverna workflow against the two alternatives.

As part of this evaluation we created a Java application, operating on our

WSRF wrapper services—implementing one of our Taverna workflows.

In Section 5.4 we look at the wider issue of applicability of workflow

systems to our domain, including missing features and requirements from

other Internet instruments.

Finally, in Section 5.5 we summarise our findings.

66

CHAPTER 5. EVALUATION 67

5.1 Fulfilment of Requirements

In this section we evaluate our system to determine how well it meets the

requirements we formulated in Chapter 3. These were derived from our ex-

perience of manually operating Capture-HPC for moderate scale scans over

a period of seven months. In Section 4.4 we showed how our implementa-

tion satisfied the use cases we had created in Section 3.6. We focused our

research on the key requirements—a system that is user-oriented, loosely-

coupled and Grid-integrated. We now assess how well we have met each of

these requirements.

We aimed to design a user-oriented system that focused on how the

user wants to interact with the system, hiding unnecessary detail. Our

Taverna workflows have addressed the use cases we specified in Section

3.6. Through our Web portal users can access client honeypots much more

easily—previously users had to log onto the machine physically or remotely

via SSH. All configuration options are optional and are standardised be-

tween client honeypots where possible, thus abstracting specific system de-

tail. Choice is provided to users of variable levels of detail in the status

updates given via the Web portal. Our ClientHoneypotManager component

provides a user-oriented distributed broker with indexing services so that

users can simply submit a URL list and system specification to the broker

service which will deal with the actual allocation.

Secondly, we were looking for a loosely-coupled system, providing inter-

operability of client honeypot systems. Our WSRF Web services provide

standard interfaces to wrap any client honeypot system, including both high

and low-interaction versions. No changes need be made to existing client

honeypots if either an intermediary custom shell script is written or an API

is exposed.

Thirdly, we wanted a system that is Grid-integrated, to utilise the many

Grid resources available, provide a flexible de-centralised architecture and

promote interoperability over multiple sites. Our system uses WSRF services,

allows GridFTP file transfers, and has a de-centralised design. It is able to

CHAPTER 5. EVALUATION 68

be integrated into GRAM for resource managers to control allocation of VM

resources. Underlying Grid security can be implemented via options in the

service container, allowing the services to be potentially securely used within

a virtual organisation.

5.2 Evaluation Methodology

Our methodology was to develop evaluation criteria (shown in Section 5.2.1),

implement three versions of workflows—using shell scripts, Taverna and Java—

and evaluate this experience. The Taverna and Java versions both have

shared features—the WSRF services created with the authoring tools Intro-

duce and gRAVI—which we evaluate in Section 5.2.2.

5.2.1 Criteria

We have devised the below criteria covering six important areas for evaluat-

ing our use of workflow technologies, the aim being to use this to perform

qualitative assessments of each workflow version (shell scripts, Taverna and

Java), allowing comparisons to be drawn.

• Required knowledge—the technical knowledge of the tools a user of the

system requires to create and modify a client honeypot process, for

instance in our system the required knowledge will relate to Taverna

and workflows languages in general. This also includes any low-level

knowledge of specific client honeypots if this is not abstracted.

• Modifying workflows—this will be an analysis of the effort required to

modify existing client honeypot workflows. A possible change could be

an existing process that feeds data from one client honeypot to another

and we want to modify this to anonymise the data. Our assessment

would be the effort required for this change.

CHAPTER 5. EVALUATION 69

• Maintainability—the ease with which users can maintain these work-

flows. This is particularly important for complex workflows, because

errors become more likely as complexity increases. Mechanisms such

as dividing into components will help the maintainability.

• Extensibility—the ability to extend the core functionality of the work-

flow. Unlike modifying workflows, this is adding significant function-

ality to the end of the workflow. Of particular interest is the means

to extend the workflow to include data analysis, eg. adding a function

that generates some meta data to each malicious URL, such as the IP

address of the Web server.

• Understandability—the ease with which a user can interpret a new pro-

cess introduced to them, particularly important for complex processes.

A graphical representation will help understandability.

• Dealing with failure—this is the ability to handle errors and recover to

carry on operation if possible. Of interest are errors that occur related

to client honeypot operation, eg. if an invalid configuration option is

given, or a VMWare Server crashes. Ideally there will be fine-grained

control of errors.

5.2.2 Shared Features

In this section we evaluate the tools we used to generate our WSRF Grid

services—Introduce and its plugin gRAVI.

Prior to using Introduce we had looked into the development of Web

services in Java. Even with a number of APIs available for Web services

it did not appear a straightforward solution, particularly as we wanted to

use WSRF services which are not well supported. The Introduce toolkit

generated thousands of lines of code, saving us a significant amount of time.

We found Introduce to be a stable Java application with a well-constructed

GUI for defining and deploying the services.

CHAPTER 5. EVALUATION 70

By using the gRAVI plugin we saved further time, as this tool generated

hundreds of lines of code. The code for handling file transfer, both with

SOAP and GridFTP was particularly useful. From taking a number of days

to write basic service skeletons, we could create full services in a number

of hours. This follows similar experiences of another researcher who had

spent over a month developing basic Web services for accessing a physics

application, and later used gRAVI to create full services in less than two

days [43].

A feature that would improve Introduce would be an integrated data type

creation tool that automatically updates the types used the service. Cur-

rently, custom data types have to be created manually using XML-schema

documents, and if changes are made to existing data types the affected meth-

ods have to reconstructed.

A few minor features which would improve gRAVI are: SOAP attach-

ments, and delegation as part of the GSI security.

5.3 Evaluation against Taverna Workflows

We now compare our Taverna workflow system to alternative system designs—

a manual system using shell scripts and a Java-based system that uses our

WSRF services—using the criteria we presented earlier.

In Section 5.3.3 we summarise this semi-taxonomy with a table that com-

pares the three alternative systems, assigning a star rating to each criterion.

5.3.1 Manual System with Scripts

In this section we compare our system’s Taverna workflow design and enact-

ment to the previous manual and script-based approach—previously used for

the management of client honeypots. The following is our comparison using

each of the criteria we stated in Section 5.2.1:

Required knowledge: The manual approach requires shell scripting ex-

CHAPTER 5. EVALUATION 71

perience and detailed knowledge of the specific client honeypot being

used. Our workflow approach requires knowledge of workflows and

Taverna but no knowledge of specific client honeypot details, such as

configuration options, components, and data formats.

So, in terms of scalability, when using our workflow system the required

knowledge would remain static if we increased the size of the modelled

process to include the operation of two or three different client honey-

pots. However, if using a script-based system, the technical knowledge

would increase, with details of each client honeypot system needed to

be known.

Modifying workflows: There is a similar amount of effort required for both

approaches. Changes would require lines of script changed or processors

changed in a workflow. These changes could mean either the script

parameters and return values could change, affecting other scripts; or

workflow inputs and data flow changes could affect sub-workflows and

super-workflows.

For example, adding an anonymising function would require a new shell

script to be written with the input data types matching the first client

honeypot’s output, and the script’s output data types to match the

second client honeypot. The top level control script would need to be

modified to call this new script and deal with passing the data. The

workflow approach would require a new anonymising processor between

the the two client honeypots, either as a BeanShell script or a service

call, and the appropriate data flow lines changed.

Maintainability: Any shell scripts will be specific to one particular client

honeypot system and usually a specific deployment. Therefore, there

is a lack or code sharing and testing which adds to the maintenance

overhead. Scripts can be more error prone to bugs in the code (eg. a

missed parameter passed) and require documentation.

CHAPTER 5. EVALUATION 72

Workflows can be shared and applied to other systems with little, or

no, modification. A data flow language like Taverna is easier to match

inputs and outputs of processors, though the type checking is limited

and BeanShell scripting is error-prone.

Extensibility: Scripts are well-suited for pipelining simple text but not

complex multi-value data types which have to be precisely matched

from one output script to the next input script. Larger scale data anal-

ysis is suited to parallel operations and Grid processing, supported by

workflows but not simple shell scripts.

Understandability: Small-scale scripts are easily understood, but for more

complex processes the scripts will need to be divided into components

and well documented to remain understandable. The graphical repre-

sentation of our workflows communicates the process effectively (until

we get to large processes), particularly the data flow between processors

and sub-workflow components.

Dealing with failure: Neither scripts or Taverna workflows deal with fail-

ure particularly well. Both will output what error has occurred but

it is difficult to code any error handling into the processes. Alterna-

tive workflow languages, such as BPEL, offer better exception handling

than Taverna.

In summary, for small-scale processes—operating on a client honeypot

that the user is familiar with—the scripting method is adequate. But for

any larger scale processes using more than one client honeypot, requiring

code reuse or data processing, our workflow approach is significantly better

suited.

5.3.2 Java & Web Services System

In the previous section we showed how our system design was an improvement

on the existing manual management method of using shell scripts. We now

CHAPTER 5. EVALUATION 73

evaluate our system against another alternative system design.

The service-oriented architecture of our design is effective for a loosely-

coupled and Grid integrated system. Therefore, the WSRF services for wrap-

ping and managing client honeypot systems appear a solid design with few

obvious alternatives. However, the effectiveness of the mechanism we use for

managing the processes that consist of these services (the workflow system

in our design) is less clear and requires further evaluation.

An alternative system design is a Java application that controls the or-

chestration of Web services. The Java application can then use our WSRF

wrapper services to control client honeypots, combining these services to

form complex processes in the same way workflows do.

As part of this evaluation we wrote a basic Java application that imple-

ments our workflow in Figure 4.11 for processing URLs on two differently

configured systems1. This was relatively straightforward, with less than a

hundred lines of code needed—this was partly because we could use some of

the Introduce generated client code to hide service invocation detail. The cre-

ation of this Java application provides a point of comparison to our Taverna

workflow designs. High-level scripting languages such as Ruby and Python

would be alternatives to our use of Java.

Rather than a standalone application, this type of system could also be a

JSP (Java Server Page) based Web application, or deployed as a Web service

the same way workflows can be exposed in languages such as BPEL.

We now compare this Java application design to our Taverna workflow

approach, again we use the criteria we defined in Section 5.2.1:

Required knowledge: A Java application approach to coding the service

would require only reasonable knowledge of Java programming and

some knowledge of Web service invocation. The workflow approach

requires quite detalied knowledge of the workflow language and the tool

used to design the workflows. Data flow languages such as Taverna are

simpler to learn than BPEL (due to the lower complexity and integrated

1The code for this application is provided in Appendix D

CHAPTER 5. EVALUATION 74

graphical editors), but are still not straightforward, and our experience

has shown that Java code is often required inside the workflow via

BeanShell scripts.

The Taverna workflow design tool is a stand-alone application. This

means it will be separate to the Web portal interface we use for sys-

tem access and no customisations can be made to the workflow design

system to make it more domain specific. Whereas, a Java application

could have its own custom interface for modifying the processes, and

target this towards client honeypots. If this type of dynamic applica-

tion was used it would also remove the need for any Java knowledge

to use such a process-modification system, though this would require

significant development work.

Modifying workflows: A well-designed Java application should generally

not require great effort to modify an existing process, both for small

and large changes. This is because objects, methods and variables can

easily be added, removed, or modified, and the strongly-typed system

will ensure the changes are well-formed.

Small changes to a Taverna workflow, such as adding a new processor

between two existing processors, can be achieved quite easily as this

just requires the modification of input and output data-flows. Larger

changes are more difficult because the data flow will need to be pre-

served but may need multiple changes which is error-prone without a

strongly typed system, and the GUI based system limits changes such

as “cutting” and “pasting” sections of a workflow.

For example, changing a parameter in a Web service method’s signature

from a boolean to an int would require only a text search and replace

to change the Java method calls and the generated stubs to be rebuilt.

However, using the Taverna GUI would require the WSDL to be re-

added, and each of those existing method processors and XML-splitters

deleted and the new version re-added and associated XML-splitters

CHAPTER 5. EVALUATION 75

created. The underlying XML of the workflow could be edited by hand

outside Taverna, though it would not be desirable to expect users to

have to do this, and be error prone for large modifications.

Maintainability: Both system designs should be quite simple to maintain

because they can both be divided into manageable components. The

Java application approach is better suited to debugging, with integrated

debuggers available. Debugging in Taverna is limited, break-points

can be set but we cannot inspect data-flow values or step through the

BeanShell scripts.

Error checking is also an advantage for compiled Java application code,

compared to the interpreted code in Taverna.

Extensibility: The componentisation of both system designs will allow ex-

tensibility to be easily implemented. However, Taverna is better suited

for scientific data analysis because of the mechanisms available for

pipelining, parallel execution and Grid integration. Data analysis is

an important part of the client honeypot process, and data gathered

with high-interaction client honeypots can be used to formulate the

signatures used in the high-speed low-interaction client honeypots [34].

Understandability: It is questionable which approach is more understand-

able and probably depends on individual users’ preferences—some may

prefer a pure code view, while others may prefer a graphical model. An

advantage of the pure code view of a Java application is the ability to

easily add comments to code to help readability, which is not possible

in Taverna. Another consideration of the graphical approach is that

there is still code in the processes, located in BeanShell scripts, which

takes more effort to access than a complete code listing. Some of the

drawbacks of the graphical approach are due to the immaturity of the

tools and improvements are likely to be made.

Dealing with failure: Java has a much better exception handling system

CHAPTER 5. EVALUATION 76

which gives fine-grained control of recovering from errors arising from

client honeypots. Taverna has poor error handling and workflows will

exit upon any errors encountered with no recovery options available.

For example, if a data analysis service went offline, in Java the exception

handler could skip this service (or use an alternative), but in Taverna

the entire workflow would exit after the specified number of service

retries failed.

Taverna relies on error handling to be implemented in the services

themselves. Tools external to the workflow may need to be used to

recover from error and start processing again. For example, if an ex-

ception was thrown before the workflow could retrieve and parse the

output files from a client honeypot, then this may have to be done by

another clean-up workflow, or manually.

To summarise these findings, we have determined that the Java applica-

tion approach improves on required knowledge, modifying workflows, dealing

with failure, and slightly better for maintainability. The undertandability of

both approaches is quite even, though improvements to Taverna’s GUI could

change this. The area that our Taverna workflows have an advantage is

extensibility, specifically the data analysis phase.

5.3.3 Comparison Summary

Table 5.1 summarises our findings, comparing the three system designs on

the five identified criteria. We assign a star rating to show if that criterion

is a strength or a weakness.

One area that we have not yet covered is performance in terms of process-

ing speed. Because high-interaction client honeypots need to wait a number

of seconds per URL to determine state changes—ten in our experiment—any

additional processing will be a small fraction of this delay, so we do not see

computational overhead/performance as a critical factor. The script-based

approach differs because the shell scripts are generally run locally, whereas

CHAPTER 5. EVALUATION 77

Table 5.1: Comparison of system designs. Each criterion is given a star

rating—one star is weak, three is satisfactory, and five is strong.

Manual script-

based

Taverna Java application

Required knowl-

edge

FF FFF FFFF

Modifying work-

flows

FFF FFF FFFFF

Maintainability FF FFF FFFF

Extensibility FF FFFFF FFF

Understandability FF FFF FFF

Dealing with failure F F FFFFF

the other two Web service approaches have the overhead of protocols (such

as SOAP) that will be slower. However indirect performance benefits are

gained through distribution, the ability to offload to remote providers, sim-

ple parallelism through multiple services, and Grid computing.

5.4 Generalisation of Evaluation

In the previous sections we have evaluated our system against manual script-

based operation and a Java application approach, particularly looking at our

Taverna workflow approach. We now want to take a step back and look

at how applicable workflow systems in general are to our domain, client

honeypots specifically, but also more widely for Internet instruments.

Workflow technology appeared promising because it is a system that is

dedicated to controlling processes constructed of Web services, with the

control-oriented language BPEL widely used in the business sector, and a

CHAPTER 5. EVALUATION 78

number of data-oriented languages used in scientific areas. These workflow

systems are presented as options for non-technical users to be able to ma-

nipulate complex service-based processes, but our experience suggests that

even relatively simple workflows need significant low-level code to work. An

illustration of this is the differences from our preliminary workflow designs

we created to their actual implementations. Figure 4.6 showed our prelimi-

nary workflow for modelling processing URLs on two differently configured

systems, Figure 4.8 was the actual Taverna implementation. The first model

shows 15 processors, but the implementation has 46 processors. This is due

to additions for the XML-splitters, local processors for doing basic type con-

versions, and nine BeanShell scripts for doing other conversions and loading

files. This changes a relatively straight-forward model into quite a complex

one, with increased effort both to construct and to understand it.

In Section 4.4.3 we outlined a number of issues we encountered using Tav-

erna. This is somewhat understandable given that workflows are a relatively

new area of research, with a large number of systems and little convergence,

especially in the data-oriented languages. We will now identify some useful

functionality not already in workflow systems.

The main piece of functionality we would like to see is a publish/subscribe

mechanism for workflows to get status updates from WSRF services and

notify users. Services generated by Introduce provide subscription options

so that a service user can provide an endpoint reference so they can receive

call-backs on resource state changes. A mechanism could be provided in the

workflow language to subscribe to this type of method and specify how any

notifications should be dealt with, ie. notifying the workflow user. This type

of functionality would allow us to subscribe a workflow to a client honeypot

while is has invoked a processing job, providing updated status and possibly

perform actions depending on upon this status.

More minor functionality we would like to see includes better exception

handling, automatic code generation (such as for XML-splitters), an inte-

grated debugger, easier conversion of types, and an improved GUI with easily

CHAPTER 5. EVALUATION 79

adjustable levels of detail for displaying a model.

Some of our experience is driven by the type of application we are devel-

oping for, and the workflow system we have used. Therefore, we acknowledge

that generalisation of our experiences may be limited. We have not found

any other published experiences of workflow usage in the same or similar

domains, so there is little to compare our findings with.

The domain we are interested in appears to have elements of both control-

oriented and data-oriented workflow system, but these are currently divergent

focuses of workflow systems. If this is not a unique requirement, a combined

approach to workflow systems could be developed. The maturity and design

of BPEL would appear to limit changes in orientation, so it may be more

feasibly for scientific workflow languages such as Taverna to become more

control oriented—a first step would be explicit iteration.

It is interesting to look at other Internet instruments to determine what

requirements they would have from workflows. A network telescope would

appear to fit a data-oriented workflow language due to its passive data col-

lection requiring very little control. This contrasts with the active data col-

lection requiring a high level control for a client honeypot system. A network

telescope requires significant data processing to get useful information so this

suits the parallel and pipelined nature of a data driven workflow.

5.5 Summary

In this chapter we have conducted a number of evaluations, we now briefly

summarise each.

We evaluated the Grid service authoring tools we used, Introduce and

gRAVI, finding them solid toolkits for service creation, saving developers

significant time and effort.

Next, we compared our Web service and Taverna workflow system to

our experiences to the manually managed script-based system we formed

our requirements from. We found that our system satisfied the identified

CHAPTER 5. EVALUATION 80

requirements of being user-oriented, loosely-coupled and Grid-integrated. For

anything apart from small-scale workflows our system scored better for the

criteria we assessed upon than the script-based operation.

We created a Java application that enacted our WSRF services as an

alternative system design for comparison. We found that the Java approach

was better suited on most of the criteria we assessed upon—modifying work-

flows, maintainability, and dealing with failure. The main area that Tav-

erna workflows showed an improvement was extensibility with good support

for data analysis through pipelining. Also, Taverna was good in terms of

usability—with a drag and drop GUI, minimum knowledge needed of under-

lying technology, and the ability to pass a workflow to a colleague which will

work in their Taverna.

The choice of which approach should be taken—Taverna or Java—will de-

pend upon the requirements of a specific project, ie. weighing how important

integrated data analysis mechanisms are compared to fault-handling and the

required technical knowledge for users.

Finally, we used our experiences with workflows to assess their applicabil-

ity to our domain. We found that, with some improvements, workflows could

be beneficial to our research area, particularly with the end-to-end control of

processes, from data collection to data analysis. Workflow technology may

however be better suited to Internet instruments with passive data collection,

such as network telescopes. We have identified some functionality that would

improve workflow systems, most significantly a publish/subscribe system for

workflows to monitor the state of WSRF resources.

Chapter 6

Conclusion

6.1 Summary of Thesis

The goal of this research is to enhance the previous manual script-based

approach to client honeypot management. Our prototype uses WSRF ser-

vices for wrapping client honeypots, Taverna to model and enact complex

workflows, and a Web portal for access.

Our evaluation showed that while our system design satisfied our func-

tional requirements, a Java-based application operating on our WSRF ser-

vices provides a number of advantages over the Taverna approach used in our

system—particularly for modifying workflows, maintainability, and dealing

with failure. However, Taverna workflows are better suited to the data analy-

sis phase of client honeypot operation and have some usability benefits—such

as a drag and drop GUI, minimum knowledge of underlying technology, and

the ability to easily share workflows. Workflow languages such as Taverna

are still relatively immature, so improvements are likely to be made. Both

of these approaches are significantly easier to manage and deploy than the

previous script-based method.

We now attempt to answer our two research questions. The first was:

How can we effectively create systems of different client honeypots

81

CHAPTER 6. CONCLUSION 82

to perform measurements and analysis?

Our research indicates that using WSRF services with standard inter-

faces designed to wrap a generic client honeypot allows simple integration of

different existing systems, with minimal development effort. The standard

interfaces allows a manager component to act as a broker to users, abstracting

unnecessary system detail.

The second question was:

What is the best method to automate the various tasks that en-

compass client honeypot management?

Both Taverna and a Java application—operating on our WSRF wrapper

services—provide good methods of client honeypot management. The Java

approach could be considered better, but this judgment is largely dependent

on factors of specific projects, such as the level and structure of data analysis

and the benefit of a graphical notation.

6.2 Overall Contributions

The main contributions of this research are:

1. Creation of use cases to model system requirements of a client honeypot

automation system, based on our experience of manually managing a

system for moderate-scale scans over a period of several months.

2. Creation of WSRF Web services for wrapping any client honeypot,

with minimum effort. These can be used by workflow languages and

Java-based applications.

3. Implementation of workflows that use our services to model and control

complex processes used in client honeypot operation.

4. Experience with Introduce and gRAVI, two recently developed Grid

service authoring tools.

CHAPTER 6. CONCLUSION 83

5. Evaluation of the Taverna workflow system for modelling and enacting

client honeypot workflows–finding that Java was better for modifying

workflows, maintainability, and dealing with failure; while Taverna had

advantages in extensibility and areas of usability.

6.3 Future Work

The research we have conducted leads directly and indirectly to a number of

pieces of future work, this includes:

• Implement the ClientHoneypotManger component in our system.

• Expand the current workflows to include data processing and analysis

functionality after data collection.

• Expand our system implementation to operate over multiple organisa-

tions, with required security mechanisms such as delegation of creden-

tials.

• Modify a workflow engine to support a publish/subscribe mechanism

to Web service notifications, and output this data to users.

• Investigate the idea of a hybrid workflow system which has both control-

oriented and data-oriented aspects.

• Use our architecture for other Internet instruments, ie. network tele-

scopes.

• Investigate the use of cloud computing abilities into our architecture,

eg. recruiting resources on demand.

Appendix A

Sample Capture-HPC Log

This appendix is a sample Capture-HPC log for a malicious URL. The site—

http://blackmores.co.nz—was visited in September 2008. Each entry in

the log contains: the type of system activity (file, process, or registry), the

timestamp, and the data values relating to that system activity.

Of particular interest is: (1) the entry where the malicious executable is

downloaded:

"file","25/9/2008 6:49:50.515","C:\Program Files\Inte

rnet Explorer\IEXPLORE.EXE","Write","C:\msntstza.exe"

(2) the entry for the executable being loaded as a new process:

"process","25/9/2008 6:49:50.561","C:\Program Files\I

nternet Explorer\IEXPLORE.EXE","created","C:\msntstza

.exe"

The full listing follows (some repeated entries have been removed for

brevity):

"process","25/9/2008 6:49:49.983","C:\Program Files\Internet Explorer\IEXPLORE.EXE",

"created","C:\WINDOWS\Temp\vv0QZXFd.com"

"file","25/9/2008 6:49:50.124","C:\WINDOWS\Temp\vv0QZXFd.com","Write","C:\WINDOWS\Te

mp\twe1.tmp"

84

APPENDIX A. SAMPLE CAPTURE-HPC LOG 85

"file","25/9/2008 6:49:50.140","C:\Program Files\Internet Explorer\IEXPLORE.EXE","Wr

ite","C:\WINDOWS\WindowsUpdate.log"

"registry","25/9/2008 6:49:50.202","C:\WINDOWS\Temp\vv0QZXFd.com","SetValueKey","HKL

M\SOFTWARE\Microsoft\MSSMGR\Data"

"file","25/9/2008 6:49:50.233","C:\WINDOWS\Temp\vv0QZXFd.com","Write","C:\WINDOWS\sy

stem32\winwpa32.dll"

"registry","25/9/2008 6:49:50.218","C:\WINDOWS\Temp\vv0QZXFd.com","SetValueKey","HKL

M\SOFTWARE\Microsoft\MSSMGR\LSTV"

"registry","25/9/2008 6:49:50.218","C:\WINDOWS\Temp\vv0QZXFd.com","SetValueKey","HKL

M\SOFTWARE\Microsoft\MSSMGR\Brnd"

"registry","25/9/2008 6:49:50.233","C:\WINDOWS\Temp\vv0QZXFd.com","SetValueKey","HKL

M\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify\winwpa32\Asynchron

ous"

"registry","25/9/2008 6:49:50.233","C:\WINDOWS\Temp\vv0QZXFd.com","SetValueKey","HKL

M\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify\winwpa32\DllName"

"registry","25/9/2008 6:49:50.233","C:\WINDOWS\Temp\vv0QZXFd.com","SetValueKey","HKL

M\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify\winwpa32\Impersona

te"

"registry","25/9/2008 6:49:50.233","C:\WINDOWS\Temp\vv0QZXFd.com","SetValueKey","HKL

M\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify\winwpa32\Startup"

"registry","25/9/2008 6:49:50.233","C:\WINDOWS\Temp\vv0QZXFd.com","SetValueKey","HKL

M\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify\winwpa32\Shutdown"

"registry","25/9/2008 6:49:50.233","C:\WINDOWS\Temp\vv0QZXFd.com","SetValueKey","HKL

M\SOFTWARE\Microsoft\MSSMGR\MSLIST"

"file","25/9/2008 6:49:50.515","C:\Program Files\Internet Explorer\IEXPLORE.EXE","Wr

ite","C:\msntstza.exe"

"process","25/9/2008 6:49:50.561","C:\Program Files\Internet Explorer\IEXPLORE.EXE",

"created","C:\msntstza.exe"

"file","25/9/2008 6:49:50.515","C:\Program Files\Internet Explorer\IEXPLORE.EXE","Wr

ite","C:\msntstza.exe"

"process","25/9/2008 6:49:50.608","C:\Program Files\Internet Explorer\IEXPLORE.EXE",

"terminated","C:\msntstza.exe"

"file","25/9/2008 6:49:50.515","C:\Program Files\Internet Explorer\IEXPLORE.EXE","Wr

ite","C:\msntstza.exe"

"file","25/9/2008 6:49:51.640","C:\WINDOWS\Temp\vv0QZXFd.com","Write","C:\WINDOWS\Te

mp\twe1.bat"

"process","25/9/2008 6:49:52.218","C:\WINDOWS\Temp\vv0QZXFd.com","created","C:\WINDO

WS\system32\cmd.exe"

"file","25/9/2008 6:49:52.202","System","Write","C:\WINDOWS\Temp\twe1.bat"

"file","25/9/2008 6:49:52.218","C:\WINDOWS\Temp\vv0QZXFd.com","Write","C:\WINDOWS\Te

mp\vv0QZXFd.bat"

"file","25/9/2008 6:49:52.218","System","Write","C:\WINDOWS\Temp\vv0QZXFd.bat"

"process","25/9/2008 6:49:52.233","C:\WINDOWS\Temp\vv0QZXFd.com","created","C:\WINDO

WS\system32\cmd.exe"

"file","25/9/2008 6:49:53.811","C:\WINDOWS\system32\cmd.exe","Delete","C:\WINDOWS\Te

mp\vv0QZXFd.com"

"file","25/9/2008 6:49:53.936","C:\WINDOWS\system32\cmd.exe","Write","C:\Program Fil

APPENDIX A. SAMPLE CAPTURE-HPC LOG 86

es\Capture\logs\deleted_files\C\WINDOWS\Temp\vv0QZXFd.bat"

"file","25/9/2008 6:49:53.952","C:\WINDOWS\system32\cmd.exe","Delete","C:\WINDOWS\Te

mp\vv0QZXFd.bat"

"process","25/9/2008 6:49:53.999","C:\WINDOWS\Temp\vv0QZXFd.com","terminated","C:\WI

NDOWS\system32\cmd.exe"

"file","25/9/2008 6:49:53.983","C:\WINDOWS\system32\cmd.exe","Delete","C:\WINDOWS\Te

mp\twe1.tmp"

"process","25/9/2008 6:49:54.77","C:\WINDOWS\Temp\vv0QZXFd.com","terminated","C:\WIN

DOWS\system32\cmd.exe"

"file","25/9/2008 6:49:54.61","C:\WINDOWS\system32\cmd.exe","Write","C:\Program File

s\Capture\logs\deleted_files\C\WINDOWS\Temp\twe1.bat"

"file","25/9/2008 6:49:54.61","C:\WINDOWS\system32\cmd.exe","Delete","C:\WINDOWS\Tem

p\twe1.bat"

Appendix B

Manual Operation Scripts

The following are brief descriptions of the shell scripts we created for the

manual operation of Capture-HPC (as described in Chapter 3):

• check server csv.sh

Every 60 seconds prints out stats on the current CaptureServer progress.

The data includes number of URLs visited, number of malicious URLs,

safe URLs, and error counts. The data is in CSV format so the data

can easily be piped to a file and opened in a spreadsheet application.

• clear pdnsd cache.sh

Clears the PDNSD cache. Must be run as root. The old cache is copied

to archived caches in the proxy users home directory.

• clear squid cache.sh

Clears the Squid cache. This will stop and restart the Squid service.

The old cache is copied to archived caches in the proxy users home

directory.

• combine logs.sh <directory-containing-partial-logs>

This script is used to combine the log files from a number of partial

logs into a combined log for each type of log (ie. error.log, malicious.log,

87

APPENDIX B. MANUAL OPERATION SCRIPTS 88

progress.log, and safe.log). The directory passed as a parameter should

contain only these partial log directories.

The script will remove all the empty log files that CaptureServer creates

for safe URLs (which could be hundreds of thousands) so can take some

time to complete.

• push vm.sh <vm-image-directory>

Pushes the VM image directory (passed as a parameter) to all the

clients specified in the script and installs these into VMWare Server,

which involves registering the VM, powering it on and creating a snap-

shot. The script uses key-based scp so the user needs to add their

identity to the authentication agent be issuing the ssh-add command

prior to running this script.

• start and keep resuming server.sh <input-urls-filepath>

This starts CaptureServer using the start server.sh script below,

passing it the URL file parameter. Then every 15min it checks that

the server is still progressing. If its not (indicating CaptureServer has

probably crashed), it will call the stop server move log.sh script, which

will kill the CaptureServer process and moves the logs into the Capture-

Server directory, with the number of remaining URLs to visit appended

to their name). If there no are more URLs left to inspect, the server

will be restarted. NOTE: When the server restarts, the <input-urls-

filepath> is truncated to only those URLs remaining to be visited.

Therefore the script makes a copy of the input-urls file with “.original”

appended.

• start server.sh <input-urls-filepath>

Starts CaptureServer.jar (with the specified URL file) and passes it

some standard parameters, these include the memory usage (-Xms512m

-Xmx1024m) IPStack (-Djava.net.preferIPv4Stack=true), and server

IP address/port (-s 10.0.0.1:7070).

APPENDIX B. MANUAL OPERATION SCRIPTS 89

• start squid.sh

Starts the Squid proxy cache as a background process.

• stop server move log.sh <input-urls-filepath>

Generally only used as part of the start and keep resuming server.sh

script. Kills the CaptureServer process and moves the logs into the

CaptureServer directory, with the number of remaining URLs to visit

appended to their name. It then truncates the input URL file to only

the remaining URLs or indicates if there are no more URLs to inspect.

Appendix C

Service Interfaces and Data

Types

This appendix specifies the WSRF interfaces for our two Grid services,

and subsequently the complex data types used.

The ClientHoneypotManager interface is defined:

– CHSessionManagerReference initiateSession ();

– void registerClientHoneypot (ClientHoneypotDescriptor info);

– void deregisterClientHoneypot (ClientHoneypotDescriptor info);

– String processURLs (int priority, ClientHoneypotConfig settings,

Base64Binary urlListFile, Reference endpointRef);

– void terminateProcessing ();

– SessionStatus getStatus ();

The ClientHoneypotWrapper interface is defined:

– ResourceReference createResultsResource ();

– ResourceReference runClientHoneypotSh (ResourceReference resRef,

String[] arguments, String[] filenames, Base64Binary[] inputFiles);

90

APPENDIX C. SERVICE INTERFACES AND DATA TYPES 91

– String[] getFileList();

– Base64Binary getSingleFileSOAP(String filename);

– Status getStatus();

– boolean killProcess();

– boolean sendFileSOAP(String filename, Base64Binary inputFile);

– String[] getAllFilesGridFTP();

– boolean getSingleFileGridFTP(String filename);

– String getDir();

– State getStateRP();

We now present the complex types used in the previous WSRF services

in a readable form, they are formally defined in a XSD file. There are a

number of enumerated types included, the values will be defined in any

implementation and relate to a specific namespace. Within a complex

type definition we use ‘[]’ to define an optional type and ‘*’ to show that

more than one of the indicated types may be included. The complex

types are:

– ClientHoneypotDescriptor: int clientHoneypotType, String

clientHoneypotName, String location, int country, [int numberN-

odes], *[DataPair additionallData]

1. clientHoneypotType is the classification of the client honeypot

system, eg. HIGH INTERACTION.

2. clientHoneypotName is the system’s name, eg. “Capture-HPC”.

3. location is the URI of the system.

4. domain is the domain where the system is located, eg. “.nz”.

5. numberNodes is relevant if the system comprises of multiple

nodes.

6. additionallData is any other searchable information to be stored.

APPENDIX C. SERVICE INTERFACES AND DATA TYPES 92

– SystemDescriptor: int OS, [int OSVersion], *(int browser), *[int

browserPlugin], *[int clientApp]

1. OS is the Operating System on the client system, eg. WINDOWS XP.

2. OSVersion is the specifc version of the OS, eg. SP2.

3. browser is a Web browser installed on the client system, eg. FIREFOX 3 1.

4. browserPlugin is any plugin installed in the Web browser,

eg. FLASH 9.

5. clientApp is any other applications installed in the client sys-

tem, eg. ACROBAT 9.

– ClientHoneypotConfig: int clientHoneypotType, [SystemDe-

scriptor clientSystemType], [int visitTime], *[DataPair addition-

alConfig], *[int pageMetaDataToCollect]

1. clientHoneypotType is the classification of the client honeypot

system, eg. HIGH INTERACTION.

2. clientSystemType is a descriptor of the client OS and appli-

cations.

3. visitTime is an option for high-interaction client honeypots to

specify the length of time to capture state changes after the

Web page loads.

4. additionalConfig is any system-specifc configuration options,

suh as setting the Java heap size for CaptureServer.

5. pageMetaDataToCollect is the name of any meta data at-

tributes to collect for malicious pages, eg. NUMBER OF REDIRECTS.

– Session: String ClientHoneypotLocation, String resultsLocationURI,

String creationTime, String sessionStatusReference

1. ClientHoneypotLocation is the URI of the client honeypot sys-

tem.

2. resultsLocationURI is the location where the results files will

be posted.

APPENDIX C. SERVICE INTERFACES AND DATA TYPES 93

3. creationTime is the timestamp of the session.

4. sessionStatusReference is a reference to the status of the ses-

sion.

– SessionStatus: int state, datetime startTime, int totalURLs,

int visitedCount, int maliciousCount, int safeCount, [int network-

Errors], [int processErrors], [int timeoutErrors], int totalErrors,

*[DataPair additionalData]

1. state is an enumerated value indicating the current state of

the client honeypot, eg. PROCESSING.

2. startTime is the timestamp of the current scan.

3. totalURLs is the total number of URLs being examined in the

session.

4. visitedCount, maliciousCount, and safeCount are counts of

pages processed.

5. networkErrors, processErrors, and timeoutErrors are counts

of specific error conditions from the pages processed.

6. totalErrors is the total of all error conditions from the pages

processed.

7. additionalData is any additional status information.

– MaliciousList: int count, *[URLData maliciousURL]

1. count is the number of malicious URLs in the list

2. maliciousURL provides data on an individual malicious URL.

There should be a separate entry for every malicious URL

counted.

– URLData: String url, *[DataPair metaData]

1. url is the URL that data is to be provided on.

2. metaData is meta data about the URL, such as the geographic

location of the Web server.

– DataPair: String attribute, String value

APPENDIX C. SERVICE INTERFACES AND DATA TYPES 94

1. attribute is the name of an attribute which has been measured.

2. value is the corresponding data value measured.

Appendix D

Java & Web Services System

Source Code

The following is the sample code we wrote for the Java & Web services

system (described in Section 5.3.2):

import java.io.File;

import java.rmi.RemoteException;

import org.apache.axis.types.URI;

//Introduce generated client code

import nz.ac.mcs.vuw.dsrg.geii.clienthoneypotwrapper.client.

ClientHoneypotWrapperClient;

import nz.ac.mcs.vuw.dsrg.geii.clienthoneypotwrapper.context.client.

ClientHoneypotWrapperResultResourceClient;

import nz.ac.mcs.vuw.dsrg.geii.clienthoneypotwrapper.context.stubs.types.

ClientHoneypotWrapperResultResourceReference;

public class ClientHoneypotProcessor {

public static void main(String[] args) {

//Variables for testing

String url =

"http://10.73.2.133:8080/wsrf/services/cagrid/ClientHoneypotWrapper";

ClientHoneypotWrapperResultResourceReference resRef1 = null , resRef2 = null;

String pipedFile="safe.txt";

String[] args1={"-u", "test-urls.txt"};

String[] args2={"-u", pipedFile};

95

APPENDIX D. JAVA & WEB SERVICES SYSTEM SOURCE CODE 96

String localResultsDir1="/Users/dave/Desktop/run-1";

String localResultsDir2="/Users/dave/Desktop/run-2";

String[] inputFilepaths1={"/Users/dave/Desktop/test-urls.txt"};

String[] inputFilepaths2={localResultsDir1 + "/" + pipedFile};

System.out.println("Starting processing 1");

resRef1 = startProcessing(url, resRef1, args1, inputFilepaths1);

getOutputFiles(localResultsDir1, resRef1);

System.out.println("Starting processing 2");

resRef2 = startProcessing(url, resRef2, args2, inputFilepaths2);

getOutputFiles(localResultsDir2, resRef2);

}

public static ClientHoneypotWrapperResultResourceReference startProcessing(

String url, ClientHoneypotWrapperResultResourceReference resRef, String[]

arguments, String[] inputFilepaths){

final ClientHoneypotWrapperClient client;

try {

client = new ClientHoneypotWrapperClient(url);

} catch (URI.MalformedURIException e) {

throw new IllegalArgumentException("Malformed URL: " + url, e);

} catch (RemoteException e) {

throw new IllegalArgumentException("Remote Exception", e);

}

//load files into Base64 arrays

String[] fileNames = new String[inputFilepaths.length];

byte[][] data = new byte[inputFilepaths.length][];

File inputFile;

for (int i=0; i<inputFilepaths.length; i++) {

inputFile = new File(inputFilepaths[i]);

fileNames[i] = inputFile.getName();

data[i] = ClientHoneypotWrapperClient.encode(inputFile);

}

try {

resRef = client.runClientHoneypotShBLOCK(resRef, arguments,

fileNames, data);

} catch (Exception e) {

System.out.println(e);

throw new RuntimeException("Error invoking command ", e);

}

System.out.println("resRef1:"+ resRef.toString());

return resRef;

APPENDIX D. JAVA & WEB SERVICES SYSTEM SOURCE CODE 97

}

public static void getOutputFiles(String localDir,

ClientHoneypotWrapperResultResourceReference resReference){

ClientHoneypotWrapperResultResourceClient resClient;

try {

resClient = new ClientHoneypotWrapperResultResourceClient(

resReference.getEndpointReference());

} catch (RemoteException e) {

throw new RuntimeException(

"Initialization of Context Service client", e);

} catch (URI.MalformedURIException e) {

throw new IllegalArgumentException("Malformed URL: ", e);

}

try{

String[] outFilenames = resClient.getFileList(resReference);

for (int i=0; i<outFilenames.length; i++) {

byte [] outputData = resClient.getSingleFileSOAP(resReference,

outFilenames[i]);

if (outputData !=null) {

ClientHoneypotWrapperClient.decode(outputData, localDir,

outFilenames[i]);

}

}

}catch (Exception e) {

System.out.println("Error getting file " + e);

throw new RuntimeException("Requesting file: ", e);

}

}

}

Bibliography

[1] Akram, A., Meredith, D., and Allan, R. Evaluation of BPEL

to Scientific Workflows. In Cluster Computing and the Grid, 2006. CC-

GRID 06. Sixth IEEE International Symposium on (2006).

[2] Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Lim-

ing, L., and Tuecke, S. GridFTP: Protocol extensions to FTP for

the Grid. Global Grid ForumGFD-RP 20 (2003).

[3] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher,

B., and Mock, S. Kepler: An extensible system for design and execu-

tion of scientific workflows. In Scientific and Statistical Database Man-

agement, 2004. Proceedings. 16th International Conference on (2004).

[4] Amnuaykanjanasin, P., and Nupairoj, N. The BPEL Orchestrat-

ing Framework for Secured Grid Services. In International Conference

on Information Technology: Coding and Computing (ITCC’05) (2005).

[5] Atkinson, I., du Boulay, D., Chee, C., Chiu, K., Codding-

ton, P., Gerson, A., King, T., McMullen, D., Quilici, R.,

Turner, P., et al. Developing CIMA-Based Cyberinfrastructure for

Remote Access to Scientific Instruments and Collaborative e-Research.

Australasian Symposium on Grid Computing and Research (AusGrid),

Ballarat, Australia Conferences in Research and Practice in Information

Technology, Vol. 6 (2007).

98

BIBLIOGRAPHY 99

[6] Bagnasco, A., Poggi, A., and Scapolla, A. A Grid-Based Ar-

chitecture for the Composition and the Execution of Remote Interactive

Measurements. e-Science and Grid Computing, 2006. e-Science ’06.

Second IEEE International Conference on (Dec. 2006).

[7] Chard, K., Onyuksel, C., Tan, W., Sulakhe, D., Madduri, R.,

and Foster, I. Build Grid Enabled Scientific Workflows using gRAVI

and Taverna. SWBES08: Challenging Issues in Workflow Applications

Workshop, Indianapolis, USA (2008).

[8] Cherbakov, L., Galambos, G., Harishankar, R., Kalyana, S.,

and Rackham, G. Impact of service orientation at the business level.

IBM Syst. J., vol. 44, pp. 653-668 (2005).

[9] D. F. McMullen, T. D. Integrating Instruments and Sensors into

the Grid with CIMA Web Services. Proceedings of the Third APAC

Conference on Advanced Computing, Grid Applications and e-Research

(APAC05), Gold Coast, Australia (2005).

[10] Dornemann, T., Friese, T., Herdt, S., Juhnke, E., and

Freisleben, B. Grid Workflow Modelling Using Grid-Specific BPEL

Extensions. In German e-Science Conference (2007).

[11] Erwin, D., and Snelling, D. UNICORE-a Grid computing envi-

ronment. Concurrency and Computation: Practice and Experience 14

(2002).

[12] Feller, M., Foster, I., and Martin, S. GT4 GRAM: A function-

ality and performance study. In TeraGrid Conference (2007).

[13] Foster, I. What is the Grid? a three point checklist. GRID today 1,

6 (2002).

[14] Foster, I. Globus toolkit version 4: Software for service-oriented sys-

tems. Journal of Computer Science and Technology 21, 4 (2006).

BIBLIOGRAPHY 100

[15] Foster, I., Kesselman, C., Nick, J. M., and Tuecke, S. The

Physiology of the Grid. Tech. rep., Globus Project, Dec 2004.

[16] Foster, I., Kesselman, C., and Tuecke, S. The anatomy of the

grid: Enabling scalable virtual organizations. Int. J. High Perform.

Comput. Appl. 15, 3 (2001).

[17] Frizziero, E., Gulmini, M., Lelli, F., Maron, G., Oh, A., Or-

lando, S., Petrucci, A., Squizzato, S., and Traldi, S. Instru-

ment Element: A New Grid component that Enables the Control of

Remote Instrumentation. CCGgrid 2 (2006).

[18] Glatard, T., and Montagnat, J. Implementation of Turing ma-

chines with the Scufl data-flow language. In 8th IEEE International

Symposium on Cluster Computing and the Grid, 2008. CCGRID’08

(2008).

[19] Hastings, S., Oster, S., Langella, S., Ervin, D., Kurc, T.,

and Saltz, J. Introduce: an open source toolkit for rapid development

of strongly typed Grid services. Journal of Grid Computing 5, 4 (2007).

[20] InternetNZ (Internet New Zealand Inc). Honeypot Project

Website. http://www.internetnz.net.nz/workstreams/honeypot [Ac-

cessed 31 March 2009].

[21] Komisarczuk, P., and Koudrin, A. Effect of Rerouting on NGN

VoIP Quality. In ATNAC 2007, the Australasian Telecommunication

Networks and Applications Conference (2007).

[22] Komisarczuk, P., Seifert, C., Pemberton, D., and Welch, I.

Grid Enabled Internet Instruments. In IEEE Global Telecommunications

Conference, 2007. GLOBECOM’07 (2007).

[23] Laure, E., Fisher, S., Frohner, A., Grandi, C., Kunszt, P.,

Krenek, A., Mulmo, O., Pacini, F., Prelz, F., White, J.,

BIBLIOGRAPHY 101

et al. Programming the Grid with gLite. Computational Methods

in Science and Technology 12, 1 (2006).

[24] McGough, A., and Colling, D. The GRIDCC Project the GRIDCC

Collaboration. Communication System Software and Middleware, 2006.

Comsware 2006. First International Conference on (2006).

[25] Moestl, T., and Rombouts, P. The pdnsd Website.

http://www.phys.uu.nl/∼rombouts/pdnsd.html [Accessed 31 March

2009].

[26] Moore, D., Shannon, C., Voelker, G., and Savage, S. Network

telescopes: Technical report. CAIDA, April (2004).

[27] OASIS (Organization for the Advancement of Struc-

tured Information Standards). Web Services Business Pro-

cess Execution Language Version 2.0 specification. http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html [Accessed 31 March

2009].

[28] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M.,

Greenwood, M., Carver, T., Glover, K., Pocock, M., Wipat,

A., et al. Taverna: a tool for the composition and enactment of bioin-

formatics workflows, 2004.

[29] Pemberton, D., Komisarczuk, P., and Welch, I. Internet Back-

ground Radiation Arrival Density and Network Telescope Sampling

Strategies. In ATNAC 2007, the Australasian Telecommunication Net-

works and Applications Conference (2007).

[30] Provos, N. Honeyd-a virtual honeypot daemon. In 10th DFN-CERT

Workshop, Hamburg, Germany (2003), vol. 2.

[31] Rajasekar, A., Wan, M., Moore, R., Schroeder, W.,

Kremenek, G., Jagatheesan, A., Cowart, C., Zhu, B., Chen,

BIBLIOGRAPHY 102

S., and Olschanowsky, R. Storage resource broker-managing dis-

tributed data in a grid. Computer Society of India Journal, special issue

on SAN 33, 4 (2003).

[32] Seifert, C., Delwadia, V., Komisarczuk, P., Stirling, D., and

Welch, I. Measurement Study on Malicious Web Serversin the .nz Do-

main. In Accepted to the 14th Australasian Conference on Information

Security and Privacy. ACISP 2009 (2009).

[33] Seifert, C., Endicott-Popovsky, B., Frincke, D., and Komis-

arczuk, P. Justifying the Need for Forensically Ready Protocols: A

Case Study of Identifying Malicious Web Servers Using Client Honey-

pots. In 4th Annual IFIP WG 11.9 International Conference on Digital

Forensics, Kyoto, Japan (2008).

[34] Seifert, C., Komisarczuk, P., and Welch, I. Identification of

Malicious Web Pages with Static Heuristics. Austalasian Telecommuni-

cation Networks and Applications Conference, Adelaide (2008).

[35] Seifert, C., and Steenson, R. Capture-HPC Website.

https://projects.honeynet.org/capture-hpc/ [Accessed 31 March 2009].

[36] Seifert, C., Steenson, R., Holz, T., Yuan, B., and Davis,

M. A. Know Your Enemy: Malicious Web Servers. Tech. rep., The

Honeynet Project, August 2007.

[37] Seifert, C., Welch, I., and Komisarczuk, P. HoneyC - The

Low-Interaction Client Honeypot. Proceedings of the 2007 NZCSRCS,

Waikato University, Hamilton, New Zealand (2007).

[38] Seifert, C., Welch, I., and Komisarczuk, P. Application of

divide-and-conquer algorithm paradigm to improve the detection speed

of high interaction client honeypots. In The 23rd Annual ACM Sympo-

sium on Applied Computing, Brazil (2008).

BIBLIOGRAPHY 103

[39] Slominski, A., and von Laszewski, G. Scientific workflows survey,

October 2005. http://www.extreme.indiana.edu/swf-survey/ [Accessed

31 March 2009].

[40] Slomiski, A. On using BPEL extensibility to implement OGSI and

WSRF Grid workflows. Concurr. Comput. : Pract. Exper. 18, 10 (2006).

[41] Stirling, D., Welch, I., and Komisarczuk, P. Designing Work-

flows for Grid Enabled Internet Instruments. In 8th IEEE International

Symposium on Cluster Computing and the Grid, 2008. CCGRID’08

(2008).

[42] Stirling, D., Welch, I., Komisarczuk, P., and Seifert, C. In

Accepted to the 9th IEEE International Symposium on Cluster Comput-

ing and the Grid, 2009. CCGRID’09.

[43] Tieman, B. Experiences with gRAVI. In NSF Expedition Workshop.

The Role of Cyberinfrastructure in Scientific Knowledge: Emergence,

Validation, and Peer Review (2008).

[44] Wang, K. MITRE Honeyclient Project Website.

http://www.honeyclient.org/ [Accessed 31 March 2009].

[45] Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski,

C., Chen, S., and Kin, S. Automated Web Patrol with Strider Hon-

eyMonkeys: Finding Web Sites That Exploit Browser Vulnerabilities. In

Proceedings of the 13th Annual Network and Distributed System Security

Symposium (NDSS’06) (2006).

[46] Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Cza-

jkowski, K., Gawor, J., Kesselman, C., Meder, S., Pearlman,

L., and Tuecke, S. Security for Grid Services. In 12th IEEE Interna-

tional Symposium on High Performance Distributed Computing, 2003.

Proceedings (2003).

BIBLIOGRAPHY 104

[47] Wessels, D., Rousskov, A., Nordstrom, H., and Chadd, A.

Squid Web proxy cache Website. http://www.squid-cache.org/ [Ac-

cessed 31 March 2009].

[48] World Wide Web Consortium (W3C). SOAP Version 1.2 specifi-

cation. http://www.w3.org/TR/soap12-part1 [Accessed 31 March 2009].

[49] Yu, J., and Buyya, R. A Taxonomy of Workflow Management Sys-

tems for Grid Computing. Journal of Grid Computing 3, 3 (2005).

