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The effects of new entries on economic growth: a story on

advanced and laggard sectors

By Vera Hansen

Abstract

The main goal of this thesis is to construct a theoretical model that

provides an explanation for the relationship between growth and new

entry that is consistent with empirical evidence. The model is a four

sector endogenous growth model in which there is a technologically

advanced and a technologically laggard consumption goods which are

imperfect substitutes. The production of each good requires its own

stock of human capital and physical capital. The accumulation of

physical capital and human capital in each industry is modelled by a

Cobb-Douglas production function. The main result of the model is

that new entries have a positive effect on the fraction of the existing

stock of human capital devoted to the accumulation of human capital

in both the advanced and laggard sectors. However, this effect is

stronger in the advanced sectors than in the laggard sectors. This

result is consistent with empirical evidence.
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1 Introduction

The main question that this thesis seeks to investigate is how new entry of

foreign firms affects an economys growth rate. New entry is widely recognized

as an important influence on economic growth. This paper takes a new look

at this issue. It provides a theoretical analysis to investigate the effects

of foreign firm entry on investment in human and physical capital and the

economic growth rate.

In the existing literature there is no readily available theoretical analysis

on the impact of new entries on the economic growth rate of an economy

that has both laggard and advanced sectors. The contribution of this thesis

therefore is to provide a detailed theoretical explanation of the effects on

economic growth that is consistent with current empirical evidence.

The theoretical explanation is based on a four sector endogenous growth

model with Cobb-Douglas production functions. The model describes a

closed economy with two consumption goods that are imperfect substitutes,

with one technology advanced and the other technology laggard. New entries

affect the optimal levels of human capital devoted to accumulating human

capital for the two goods in a systematically different way depending on the

type of technology of the good.

The main result of the model is that new entries have a positive effect

on the fraction of the existing stock of human capital devoted to the accu-

mulation of human capital in both the advanced and the laggard sectors.

However, under certain conditions, this effect is stronger in the advanced

sectors, leading to a higher growth rate.

This result makes economic sense because, as the advanced good becomes

more competitive, consumers will only demand the advanced good, so the

laggard good becomes obsolete. Because eventually consumers will demand
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only the advanced good, it will be optimal to deplete the capital stocks

specific to the laggard good by consuming more of it and investing less in

future production. Also, advanced firms have a competitive advantage over

laggard firms on a micro level. The advanced firms would want to retain

their rents, and thus they would invest more in productivity to maintain their

advanced position. These results have implications for country by country

comparisons. Economies that start off as advanced will invest more and grow

faster, thus increasing the economic gap between economies with different

initial proportions of advanced or laggard sectors.

To help explain the model, the television industry is given as a relevant

example. In recent years more and more people have been purchasing flat

panel technologies. When it comes to buying flat panel televisions, consumers

have two main choices; liquid crystal display (LCD) or plasma. LCD tele-

visions create images by passing light through molecular structures of liquid

crystals, whereas a plasma television uses a very different technology. It gen-

erates images by passing a high voltage through a low-pressure, electrically

neutral, highly ionized atmosphere using the polarizing properties of light.

LCD technology is more advanced than plasma technology, as reflected

by the lower power consumption of LCD televisions - a strong selling point in

a time of environmentally conscious consumers. LCD technology also offers a

better quality of picture. For these reasons, in this thesis LCDs are assumed

to be the advanced good. Hence, a plasma television is considered to be the

technology laggard good.

In the larger screen sizes of 42-inches and above, plasmas have been dom-

inating the market because of their consistently lower prices; LCDs are ap-

proximately 50 percent more expensive than plasmas in the 50-inch class.

However, billions of dollars have been invested into research and develop-
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ment to make large LCDs more affordable. Sony, Sharp, and Samsung have

also started building new LCD factories capable of mass producing larger

screens. Investments have also been made to improve plasma technology.

Market researcher DisplaySearch in its Quarterly Worldwide FPD Fore-

cast Report estimates that LCD TV display revenues will balloon to $91

billion globally by 2010, while plasma screens will limp along with just under

$16 billion. Thus, the television industry provides a relevant example for this

model. As producers of LCD televisions continue to invest in research and de-

velopment to make production more efficient, they can price LCD televisions

more competitively. If prices of LCDs come down and become comparable

with those of plasmas, consumers will demand LCDs, as they are preferred

and more advanced. This will make plasmas obsolete and LCDs will gain the

entire market share. Therefore one would expect more investment in human

capital specific to LCD than that specific to plasma technologies.

There is considerable empirical literature on the effects of new entry.

Geroski (1995) provides a broad survey of the recent empirical work. One

well known observation is that a high rate of new entry is often associated

with high rates of innovation and increases in efficiency. The effects of entry

may actually be more than just correcting displacements from static equi-

libria; entry may also be responsible for stimulating economic growth and

development in markets. Accdording to Geroski (1995), numerous case stud-

ies have suggested that entry is often used as a vehicle for introducing new

innovations. This is driven by the fact that incumbents are more interested

in protecting existing rents than in seeking out new profit opportunities.

Also, entry often encourages incumbents to drastically cut slack from their

operations.

However, as Aghion et al (2006) highlight, it is not always the case that

5



high entry rates induce high rates of innovation or productivity growth. They

provide micro-data which suggests that there is a consistent heterogeneity

across industries in the effects of foreign entry on average incumbent to-

tal factor productivity growth. There is a very large cross-section variation

in entry, even though differences in entry between industries do not persist

for very long. Rates of entry are rarely high or persistently low over time

in particular industries, but rather entry seems to come in bursts that are

not highly synchronized across sectors. Despite the relatively similar entry

rates between industries, in some sectors entry has a strongly positive ef-

fect on growth, while in others it seems to depress incumbent total factor

productivity growth. Positive effects tend to be found in industries that are

technologically advanced relative to the world technology frontier. They are

weak or even negative in technologically laggard industries. The main theo-

retical results found in this thesis are consistent with these empirical findings.

Increased entry in both advanced and laggard sectors leads to higher invest-

ment in human capital and higher growth. However, this effect is much

stronger in the advanced sectors.

Along with their empirical findings, Aghion et al (2006) also provide

a theoretical model. Their main result is that firms that start off further

behind the world technology frontier invest less in research and development

than those firms closer to the world frontier. Their paper only focuses on

the incentives of individual firms, not on the overall effects on economic

growth. In contrast, this thesis models the empirical heterogeneity between

advanced and laggard sectors in an endogenous growth model. This will

fill the gap in the literature by describing a balanced growth path for the

economys output, consumption and capital growth rates, rather than just

focussing on firms individual incentives to innovate. This model also allows
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for both advanced and laggard firms to operate in the same industry, which

is a realistic description of the televisons industry: investment continues to

be made in plasma televisions even though LCD are more advanced.

Since this thesis uses an endogenous growth model, we will make use of

the vast literature on endogenous growth. In particular, we borrow from the

work of Romer (1986) and Lucas (1988) who analyse models in which the

long-run growth rate is determined endogenously.

Rebelo (1991) studies a two-sector endogenous growth model with two

Cobb-Douglas production functions, for goods and education. This thesis

adapts his setting to include entry of new firms. This thesis also relates to

the model of Lucas (1988), a two-sector endogenous growth model, in which

human capital accumulation involves no physical capital. It serves as the

basis for the special case covered in section 5.

Other relevant literature includes recent theoretical advances that endog-

enize the process of technological improvements through continuing advances

in methods of production and types and qualities of products. In particular,

we need to mention the work of Schumpeter (1934) and Aghion and Howitt

(1992), where progress shows up as quality improvements for an array of

existing kinds of products.

The result that new entry has a stronger positive effect on the fraction of

existing human capital devoted to the accumulation of human capital in the

advanced sectors has direct implications for policy debates. These findings

are relevant to the consideration of the costs and benefits of globalization

and the discussion on entry regulation in different countries and industries.

The analysis suggests that policies aiming at decreasing or removing entry

barriers may foster productivity growth in the economy on average, but the

effects will be stronger in the technologically developed sectors.
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This thesis is structured as follows: Section 2 follows with a description of

the theoretical setting; an endogenous growth model with four Cobb-Douglas

production functions. This is then followed by section 3, which introduces

the full employment constraint. The next section covers a special case of the

main model, where the production of human capital stock does not involve

any physical capital, and therefore has a linear production function. Section

5 then analyzes the steady state values. The next section discusses the main

results of the theoretical models. Section 7 concludes with a summary of the

main results and possible directions of future research.
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2 The Environment

We consider a closed economy with a fixed number of identical, rational

agents. There are also two different consumption goods, CA and CL which are

imperfect substitutes. The consumption good CA is technologically advanced

and the consumption good CL is technologically laggard.

Agents have real, per-capital consumption streams CA(t) and CL(t), t ≥

0, of units of the consumption goods. Their preferences over (per-capita)

consumption streams are given by the constant intertemporal elasticity utility

function

U(cA, cL) =

∫
∞

t=0

e−ρt (c
A + λcL)1−σ − 1

1 − σ
(1)

where the discount rate ρ and the coefficient of (relative) risk aversion

σ are both positive. The parameter λ is assumed to be less than 1 and is

given exogenously. The marginal rate of substitution between CA and CL is

therefore MRSAL = 1
λ
. An agent would be indifferent to giving up 1

λ
(> 1)

units of the laggard good to obtain one additional unit of the advanced good.

The technologically advanced good provides higher utility than the laggard

good. In the example of the LCD and plasma televisions, the LCD television

(the advanced good) is preferred to the plasma television (the laggard good);

one LCD television provides more utility than a plasma television.

Production of each of the two goods is divided into total consumption, CA

and CL, and physical capital accumulation less physical capital depreciation.

Let KA and KL denote the total stock of physical capital for the advanced

and laggard sectors respectively, K̇A and K̇L be the rates of change of Ki(i =

A, L), and δ be the rate of depreciation. Then the total output for the

advanced good is CA + K̇A + δKA and total output for the laggard sector
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is CL + K̇L + δKL. It is assumed that physical capital, KA and KL, are

not transferable between the two production of the goods, that is physical

capital used to produce the consumption good in the advanced sector such as

a factory or machinery cannot be used to produce the laggard consumption

good and vise versa. For example, machinery used to produce LCD screens

cannot be used to make a plasma screen.

This economy also has an cumulative stock of human capital specific to

the production of each good, HA in the advanced sector and HL in the laggard

sector. The stock of human capital reflects the general skill level of the

workers. Individuals in the advanced sector allocate their time in the present

period between producing for current consumption and investing in education

that will affect their productivity, or skill level, in future periods. Workers

in the laggard sector solve a similar problem. The production of advanced

and laggard goods require specific knowledge, therefore human capital stocks,

like physical capital, are not transferable between goods. In our example, the

technology for LCD is very different to that of plasmas, therefore the human

capital stock is very different and not transferable between the two sectors.

Each worker in the advanced sector devotes a fraction, u, of his non-leisure

time to current production, and the remaining fraction 1−u to human capi-

tal accumulation, e.g. time spent attending training sessions and studying to

increase their skills and knowledge. The effort, 1−u, devoted to the accumu-

lation of human capital must be linked to the rate of change in its level, ḢA.

The laggard industry has a similar structure, with workers devoting fraction

v of their non-leisure time to production, and the remainding 1−v to human

capital accumulation. This can be seen clearly in figure 1 on page 14.

Physical capital, Ki (i = A, L), also must be allocated between produc-

tion of goods and human capital accumulation (e.g. providing equipment for
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advanced study such as a library or computers). In the advanced sector, a

fraction s of KA is devoted to production and the remainding (1− s) is used

in human capital accumulation. The laggard industry devotes fraction q of

KL to production and the remainder to human capital accumulation.

Production of goods depends on the levels of both physical and human

capital specific to each industry, as well as on the exogenously given level

of productivity, B(t), according to the following Cobb-Douglas production

functions

Y A = CA + K̇A + δKA = BA(sKA)β(uHA)1−β (2a)

Y L = CL + K̇L + δKL = BL(qKL)θ(vHL)1−θ (2b)

where 0 < β < 1 and 0 < θ < 1. The parameters β and θ are the

output elasticities of physical capital for the advanced and laggard sectors,

respectively. Thus, (1 − β) and (1 − θ) are the output elasticities of human

capital for the advanced and laggard sectors, respectively. These values are

constants determined by the available technology and are exogenous to this

model. Note that both technologies exhibit constant returns to scale. This

means that if H i and Ki each increase by 1%, then Y i (i = A, L) will also

increase by 1%.

In our model output and human capital are generated by different pro-

duction functions. This specification reflects a key aspect of education: it

relies heavily on educated people as an input. The technology that relates the

growth of human capital, ḢA, to the proportion of already attained human

capital and physical capital devoted to acquiring more is a Cobb-Douglas

production function.

However, in this economy the rate of change in the level of human capital
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is also influenced by new entrants into the economy. There are N new entries

to the economy at any given point in time. A fraction α of the new entries

enter the advanced sector, while the remainder 1 > α > 0 joins the laggard

sector. The economy is assumed to start with some initial level of human

capital specific to each of the consumption goods, ie H i(0) > 0 (i = A, L).

This assumption prevents the economy from falling into a poverty trap, where

an economy never produces the advanced good and will never improve the

quality of the consumption good.

Each new entry joins the market with an already established amount of

human capital, ξiH i (i = A, L), where ξi (i = A, L) is the proportion of

the contribution of the new entry, and thus there is an extra contribution

of αξANHA and (1 − α)ξLNHL to each of the human capital pools. The

contribution of the new entry to the human capital pools is illustrated by

figure 1 below.
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Our assumptions imply the rate of change in the levels of the human

capital stocks is

ḢA = [(1 − s)KA]φ[(1 − u)HA]1−φ + αξANHA − δHA (3a)

ḢL = [(1 − q)KL]µ[(1 − v)HL]1−µ + (1 − α)ξLNHL − δHL (3b)

where 0 < φ < 1 and 0 < µ < 1. We also assume that β > φ and θ > µ,

as this reflects the empirically relevant case, because education tends to be

more intensive in human capital than production of goods.

The four production functions are chosen to be Cobb-Douglas, so that

there are constant returns to scale in both human and physical capital. This

would deliver a balanced growth path for the steady state values of Ci, Ki,

and H i.

The resource allocation problem faced by this economy with four sectors

is to choose a time path CA(t) and CL(t) for per-capita consumption, the

fractions u and v of the human capital pools devoted to production, and the

fractions q and s of the physical capital pools devoted to production.

Increasing physical and human capital has a shadow price. To find the

allocation that maximizes the utility function (1) subject to the technologies

(2a) - (3b), we use the current-value Hamiltonian J. It is defined as

J = U(CA, CL)eρt + ηA{BA(sKA)β(uHA)1−β − CA − δKA}

+ ηL{BL(qKL)θ(vHL)1−θ − CA − δKA}

+ ϕA{[(1 − s)KA]φ[(1 − u)HA]1−φ + αξANHA − δHL}

+ ϕL{[(1 − q)KL]µ[(1 − v)HL]1−µ + (1 − α)ξLNHL − δHL} (4)
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It is the sum of current-period utility, the rates of increase of capital for

the advanced and laggard goods, K̇A and K̇L, valued at their shadow prices,

ηA and ηL, and the rates of increase in human capital, ḢA and ḢL, valued

at their shadow prices ϕA and ϕL. An optimal allocation must maximize

expression J at each date t, provided the shadow prices are chosen correctly.

The first order conditions for CA, CL, s, q ,u, and v are;

dU(C)

dCA
= eρtηA (5a)

dU(C)

dCL
= eρtηL (5b)

KA{ηAβBA(sKA)β−1(uHA)1−β − ϕAφ[(1 − s)KA]φ−1[(1 − u)HA]1−φ} = 0

(6a)

KL{ηLθBL(qKL)θ−1(vHA)1−θ−ϕLµ[(1−q)KL]µ−1[(1−v)HL]1−µ} = 0 (6b)

HA{ηA(1−β)BA(sKA)β(uHA)−β−ϕA(1−φ)[(1−s)KA]φ[(1−u)HA]−φ} = 0

(7a)

HL{ηL(1− θ)BL(qKL)θ(vHL)−θ −ϕL(1−µ)[(1− v)KL]µ[(1− v)HL]−µ} = 0

(7b)

The conditions ϕ̇A = − ∂J
∂HA , ϕ̇L = − ∂J

∂HL , ˙ηA = − ∂J
∂KA , and η̇L = − ∂J

∂KL

imply;
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ϕ̇A

ϕA
= −

ηA

ϕA
BA(1 − β)(u)(sKA)β(uHA)−β

− (1 − φ)(1 − u)[(1 − s)KA]φ[(1 − u)HA]−φ − αξAN + δ (8a)

ϕ̇L

ϕL
= −

ηL

ϕL
BL(1 − θ)(v)(qKL)θ(vHL)−θ

− (1 − µ)(1 − v)[(1 − q)KL]µ[(1 − v)HL]−µ − (1 − α)ξLN + δ (8b)

˙ηA

ηA
= −BAβs(sKA)β−1(uHA)1−β+δ−

ϕA

ηA
φ(1−s)[(1−s)KA]φ−1[(1−u)HA]1−φ

(9a)

η̇L

ηL
= −BLθq(qKL)θ−1(vHL)1−θ +δ−

ϕL

ηL
µ(1−q)[(1−q)KL]µ−1[(1−v)HL]1−µ

(9b)

The above first order conditions determine the growth rates of consump-

tion of the two goods. Differentiating (5a) and (5b) with respect to time

gives expressions for ˙ηA and η̇L. Substituting these expressions into (9a) and

(9b) and rearranging yields

ĊA

CA
= [

(CA + λCL)

σCA
][βBA(sKA)β−1(uHA)1−β − δ − ρ] (10a)

ĊL

CL
= [

(CA + λCL)

σλCL
][θBL(qKL)θ−1(vHL)1−θ − δ − ρ] (10b)

Note that the growth rate of consumption is proportional to the marginal

product of physical capital in the production of goods less ρ + δ.

Efficient production decisions are characterized by two conditions. The

first is static: it defines the optimal allocation of the existing stock of physical

16



capital and the available efficiency units of labor across the two activities. In

an efficient allocation, the marginal product of physical and human capital

measured in terms of units of physical capital has to be equated in the two

sectors. Let us define P i ≡ ϕi

ηi , where P i is the relative value of human capital

in terms of physical capital in sector i. Using the first order conditions for s

and u, q and v can be written as;

BAβ(sKA)β−1(uHA)1−β = P Aφ[(1 − s)KA]φ−1[(1 − u)HA]1−φ (11a)

BA(1 − β)(sKA)β(uHA)−β = P A(1 − φ)[(1 − s)KA]φ[(1 − u)HA]−φ (11b)

BLθ(qKL)θ−1(vHL)1−θ = P Lµ[(1 − q)KL]µ−1[(1 − v)HL]1−µ (12a)

BL(1 − θ)(qKL)θ(vHL)−θ = P L(1 − µ)[(1 − q)KL]µ[(1 − v)HL]−µ (12b)

Eliminating P A from (11a) and (11b), and applying the same procedure

to P L in (12a) and (12b) yields the requirement of efficiency in production.

The marginal rate of transformation must be equated in the two sectors:

(
φ

1 − φ
)(

s

1 − s
) = (

β

1 − β
)(

u

1 − u
) (13a)

(
µ

1 − µ
)(

q

1 − q
) = (

θ

1 − θ
)(

v

1 − v
) (13b)

Solving (11a) and (11b) for P A and P L respectively, and then using (13a)

and (13b), we get P A and P L as functions of sKA

uHA and qKL

vHL .
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P A = BA(
β

φ
)φ[

1 − β

1 − φ
]1−φ[

sKA

uHA
]β−φ (14a)

P L = BL(
θ

µ
)µ[

1 − θ

1 − µ
]1−µ[

qKL

vHL
]θ−µ (14b)

The second efficiency condition is dynamic: it refers to the decision of

investing in physical capital versus human capital. Having an extra unit of

physical capital is worth its net marginal product in the production sector

for the advanced and laggard goods, respectively.

rA = BAβ(sKA)β−1(uHA)1−β − δ (15a)

rL = BLθ(qKL)θ−1(vHL)1−θ − δ (15b)

Alternatively, instead of investing in one more unit of capital, we could

accumulate 1
P i units of human capital, which yields a net return expressed

in terms of physical capital

rA∗ = (1 − φ)[(1 − s)KA]φ[(1 − u)HA]−φ + αξAN − δ +
Ṗ A

P A
(16a)

rL∗ = (1 − µ)[(1 − q)KL]µ[(1 − v)HL]−µ + (1 − α)ξLN − δ +
Ṗ L

P L
(16b)

for the advanced and laggard goods, respectively.

The rates of return from the activities in each goods must be the same,

so ri = ri∗.

Solving equations (16a) and (16b) for P i

P i and writing (15a) and (15b) in

terms of P i alone gives
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Ṗ A

P A
= (BA)

1−φ
β−φ β

β(1−φ)
β−φ φ

φ(β−1)
β−φ (

1 − φ

1 − β
)

(1−φ)(β−1)
β−φ (pA)

β−1
β−φ

− (BA)
−φ

β−φ (
φ

β
)

φ(φ−1)+β

β−φ (1 − φ)(
1 − φ

1 − β
)

φ(1−β)
β−φ (P A)

φ
β−φ − αξAN (17a)

Ṗ L

P L
= (BL)

1−µ
θ−µ θ

θ(1−µ)
θ−µ µ

µ(θ−1)
θ−µ (

1 − µ

1 − θ
)

(1−µ)(θ−1)
θ−µ (pL)

θ−1
θ−µ

− (BL)
−µ
θ−µ (

µ

θ
)

µ(µ−1)+θ

θ−µ (1 − µ)(
1 − µ

1 − θ
)

µ(1−θ)
θ−µ (P L)

µ
θ−µ − (1 − α)ξLN (17b)
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Therefore, to have interior solutions for P A (or P L), the slope of (rA)∗

(or (rL)∗) must be flatter than that of rA (or rL).
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3 The Full Employment Constraint

We now use a full employment constraint similar to that of Bond et al (1996).

Since we have two sectors, this will enable us to solve for the growth rates.

We define X i as the output of the goods sector (i = A, L) and Y i as the

output of the education sector. Then

XA = uHABA(kA
x )β (18a)

XL = vHLBL(kL
y )θ (18b)

Y A = (1 − u)HA(kA
y )φ (19a)

Y L = (1 − v)HL(kL
y )µ (19b)

where kA
x ≡ sKA

uHA is the physical capital to human capital ratio in the goods

sector and kA
y ≡ (1−s)KA

(1−u)HA is the physical capital to human capital ratio in the

education sector for the advanced good, while kL
x ≡ sKL

uHL and kL
y ≡ (1−s)KL

(1−u)HL

are the corresponding ratios for the laggard good. Next we rewrite the first

order conditions for s, u, q and v, requiring the real rate of return on physical

capital and human capital to be equalized across sectors. The market rental

rate on capital is defined as rA ≡ βBA(kA
x )β−1 in the advanced good and

as rL ≡ BLθ(kL
x )θ−1 in the laggard good. We also define the market wage

expressed in units of goods as wA ≡ BA(kA
x )β(1−β) and wL ≡ BL(kL

x )θ(1−θ)

for the advanced and laggard goods, respectively.

Totally differentiating equations (18a)-(19b) and applying Cramers rule

yields
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dkA
x

dP A
=

kA
x

(kA
y )

[
kA

y

(1 − β)
+

kA
x

β
] (20a)

dkL
x

dP L
=

kL
x

(kL
y )

[
kL

y

(1 − θ)
+

kl
x

θ
] (20b)

dkA
y

dP A
=

BA(kA
x )β

(φ − 1)φ(kA
y )φ−2(kA

y − kA
x )

(21a)

dkL
y

dP L
=

BL(kL
x )θ

(kL
y − kL

x )(µ − 1)µ(kL
y )µ−2

(21b)

drA

dP A
= β(β − 1)BA(kA

x )β−1 (22a)

drL

dP L
= BLθ(θ − 1)(kL

x )θ−2kL
x (P ) (22b)

dwA

dP A
= (kA

x )2(1 − φ)φ(kA
y )φ−2 (23a)

dwL

dP L
= (kL

x )2(1 − µ)µ(kL
y )µ−2kL

x (P ) (23b)

These derivatives can be combined with the full employment condition

to derive the allocation of human capital between sectors and the scaled

output of each sector. Let ki ≡ Ki

Hi (i = A, L) be the aggregate factor

proportion. Full employment requires that ukA
x (P )+ (1−u)kA

y (P ) = kA and

vkL
x (P ) + (1 − v)kL

y (P ) = kL. This implies

u(P A, kA) =
[kA − kA

y ]

[kA
x − kA

y ]
(24a)

v(P L, kL) =
[kL − kL

y ]

[kL
x − kL

y ]
(24b)
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xA(P A, kA) =
BA(kA

y )β[kA − kA
y ]

[kA
x − kA

y ]
(25a)

xL(P L, kL) =
BL(kL

y )θ[kL − kL
y ]

[kL
x − kL

y ]
(25b)

yA(P A, kA) = [1 −
[kA − kA

y ]

[kA
x − kA

y ]
](kA

y )φ (26a)

yL(P L, kL) = [1 −
[kL − kL

y ]

[kL
x − kL

y ]
](kL

y )µ (26b)

where ki
x and ki

y are functions of prices.

Bond et al (1995) prove that existence and uniqueness of a non-degenerated

balanced growth path in which Ci, H i, and Ki all grow at the common rate

γi require three conditions to be met.

The first condition is that the maximal attainable rate of consumption

growth satisfies ρ > (1 − σ) Ċi

Ci max
(i = A, L). This means that σ cannot be

too small.

The second condition is imposed on the technology. It ensure the ex-

istence of an equilibrium in which investment in both types of capital is

profitable. This condition will be satisfied in our model because both sec-

toral production functions are Cobb-Douglas. Therefore, the factor return

differentials are unbounded, and so the condition is met automatically.

The final condition for nondegenerate growth requires; ri∗ − δ > ρ. This

condition ensures that the sectors are sufficiently productive to generate Ċi

Ci >

0 at the price consistent with balanced growth.

Since our model satisfies the above conditions, the balanced growth paths

of the economys advanced and laggard sectors exist and are unique.
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Using equations (10a) and (10b), we obtain the balanced growth path for

each sector.

γA = (
(CA + λCL)

σCA
)[βBA(

P A

BA
(
φ

β
)φ(

1 − φ

1 − β
)1−φ)

β−1
β−φ − δ − ρ] (27a)

γL = (
(CA + λCL)

σλCL
)[θBL(

P L

BL
(
µ

θ
)µ(

1 − µ

1 − θ
)1−µ)

θ−1
θ−µ − δ − ρ] (27b)

These are the rates at which Y i, Ci, Ki, and H i grow in the steady state.

The absolute levels of Ki, H i, and Ci will not influence the growth rates

because the system can be written in terms of ratios.
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4 Special Case

In the extreme case where production of human capital is intensive in the

existing human capital stock and involves no physical capital, the values of

φ and µ will be equal to zero. This setup is similar to that of the Lucas

(1988) model, where the growth of human capital, ḢA is linear in the level

of existing human capital and in education effort.

The production functions from (2)-(5) can be simplified to;

ḢA = [(1 − u) + αξAN ]HA − δHA (28a)

ḢL = [(1 − v) + (1 − α)ξLN ]HL − δHL (28b)

Y A = CA + K̇A + δKA = BA(KA)β(uHA)1−β (29a)

Y L = CL + K̇L + δKL = BL(KL)θ(vHL)1−θ (29b)

According to (28a) and (28b), if no effort is devoted to human capital

accumulation [u(t) = 1] and [v(t) = 1], then only new entries will contribute

to new human capital H i (i = A, L). If all effort is devoted to this purpose

[u(t) = 0] and [v(t) = 0], HA and HL grow at the maximum rates. In between

these extremes, there are no diminishing returns to the stock through effort

devoted to human capital accumulation; a given percentage increase in either

HA or HL requires the same effort, no matter what level of HA and HL has

already been attained.

The modified current-value Hamiltonian is
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J = U(CA, CL)e−ρt + ηA{BA(KA)β(uHA)1−β − CA − δKA}

+ ηL{BL(KL)θ(vHL)1−θ − CL − δKL}

+ ϕA{[(1 − u) + αξAN ]HA − δHA}

+ ϕL{[(1 − v) + (1 − α)ξLN ]HL − δHL} (30)

It is convenient to define the following ratios: ωA ≡ KA

HA , ωL ≡ KL

HL

, χA ≡ CA

KA , χL ≡ CL

KL Using these definitions, we get expressions for the

growth rates of KA, KL, HA, and HL.

K̇A

KA
= BAu1−β(ωA)β−1 − χA − δ (31a)

K̇L

KL
= BLv1−θ(ωL)θ−1 − χL − δ (31b)

ḢA

HA
= (1 − u) + αξAN − δ (32a)

ḢL

HL
= (1 − v) + (1 − α)ξLN − δ (32b)

Hence, the growth rates of ωA and ωL are given by

ω̇A

ωA
=

K̇A

KA
−

ḢA

HA
= BAu1−β(ωA)β−1 − χA − (1 − u) − αξAN (33a)

ω̇L

ωL
=

K̇L

KL
−

ḢL

HL
= BLv1−θ(ωL)θ−1 −χL − (1− v)− (1−α)ξLN (33b)

From eqation (30), the first order conditions for CA, CL, v, and u can be

25



used to give the following;

ηAeρt =
dU(CA + λCL)

dCA
(34a)

ηLeρt =
dU(CA + λCL)

dCL
(34b)

ηA

ϕA
=

uβ(ωA)−β

(1 − β)BA
(35a)

ηL

ϕL
=

vθ(ωL)−θ

(1 − θ)BL
(35b)

The other relevant conditions; ϕ̇A = − ∂J
∂HA ,ϕ̇L = − ∂J

∂HL , ˙ηA = − ∂J
∂KA ,

and η̇L = − ∂J
∂HL imply that;

ϕ̇A

ϕA
= −(

ηA

ϕA
)BA(ωA)β(1 − β)u1−β − [1 − u + αξAN ] + δ (36a)

ϕ̇L

ϕL
= −

ηL

ϕL
(1 − θ)BLv1−θ(ωL)θ − (1 − v) − (1 − α)ξLN + δ (36b)

˙ηA

ηA
= −BAβ(ωA)β−1u1−β + δ (37a)

η̇L

ηL
= −θBLv1−θ(ωL)θ−1 + δ (37b)

The above conditions can be used to obtain the growth rates of consump-

tion for the two goods. Differentiating equations (34a) and (34b) with respect

to time gives expressions for ˙ηA and η̇L. If we substitute these expressions for

(37a) and (37b), with some rearranging we get condition for the consumption

growth rates:

ĊA

CA
=

(CA + λCL)

σCA
[βBAu1−β(ωA)−(1−β) − δ − ρ] (38a)

26



ĊL

CL
=

(CA + λCL)

σλCL
[θBLv1−θ(ωL)−(1−θ) − δ − ρ] (38b)

The growth rates of χA and χL follow from equations (31a), (31b) (38a)

and (38b).

χ̇A

χA
=

ĊA

CA
−

K̇A

KA

=
(CA + λCL)

σCA
[βBAu1−β(ωA)−(1−β) − δ − ρ] + χA + δ − BAu1−β(ωA)β−1

(39a)

χ̇L

χL
=

ċL

cL
−

K̇ l

KL

=
(cA + λcL)

σλcL
[θBLv1−θ(ωL)−(1−θ) − δ − ρ] + χL + δ − BLv1−θ(ωL)θ−1

(39b)

If we differentiate equations (35a) and (35b) with respect to time, substi-

tute ˙ηA and η̇L from equations (37a) and (37b), ϕ̇A and ϕ̇L from equations

(36a) and (36b), and ω̇A

ωA and ω̇L

ωL from (33a) and (33b), after simplifying we

get

u̇

u
=

[1 + αξAN ]

β
− χA − [(1 − u) + αξAN ] (40a)

v̇

v
=

[1 + (1 − α)ξLN ]

θ
− χL − [(1 − v) + (1 − α)ξLN ] (40b)

The variables ϕA and ϕL represent the values of an unit of human capital,

ηA and ηL represent the values of an incremental unit of physical capital. The

term P i ≡ ϕi

ηi is the relative price of human capital in terms of goods. Then

using equations (36a)-(37b) we can find ˙P A

P A and Ṗ L

P L :
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Ṗ A

P A
≡

ϕ̇A

ϕA
−

˙ηA

ηA
= −[1 + αξAN ] + BAβ(ωA)β−1u1−β (41a)

Ṗ L

P L
≡

η̇L

ηL
−

ϕ̇L

ϕL
= −[1 + (1 − α)ξLN ] + θBLv1−θ(ωL)θ−1 (41b)

Equations (41a) and (41b) deliver the growth rates of P A and P L respec-

tively.
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5 Steady State Analysis

Conditions (33a), (33b), (39a), (39b), (40a), and (40b) form a system of six

differential equations in the variables ωA, ωL, χA, χL, u, and, v. Assume

that the initial values of the state variables ωA and ωL are ωA(0) and ωL(0).

The steady state of this system can be characterised by setting the six time

derivatives to zero. This yields

(χA)∗ =
(1 + αξAN)(πA − 1)

β
+ πA(δ + ρ) − δ (42a)

(χL)∗ =
(1 + (1 − α)ξLN)(πL − 1)

θ
+ πL(δ + ρ) − δ (42b)

u∗ =
−[1 + αξAN ]

β
[β + πA] + πA(δ + ρ) − δ (43a)

v∗ =
−[1 + (1 − α)ξLN ]

θ
[θ + πL] + πL(δ + ρ) − δ (43b)

(ωA)∗ = [
−(1 + αξAN)

βBA
]

1
β−1 [

[1 + αξAN ]

β
[β + πA] + πA(δ + ρ) − δ] (44a)

(ωL)∗ = [
−(1 + (1 − α)ξLN)

θBL
]

1
θ−1 [

[1 + (1 − α)ξLN ]

θ
[θ + πL] + πL(δ + ρ) − δ]

(44b)

where πA ≡ cA+λcL

σcA and πL ≡ cA+λcL

σλcL

The economy has two rental rates; rA and rL. They must equal the net

marginal product of physical capital in the production of goods for that par-

ticular industry and the net marginal product of H in the relevant education

sector. A key property of Cobb-Douglas production functions is the behavior
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of income shares. In a competitive economy, capital and labour are each paid

their marginal products; that is, the marginal product of capital equals the

rental rate, and the marginal product of labour equals the wage rate. In a

competitive setting, the factor income shares are constant. This implies

(rA)∗ = 1 +
αξAN

β
− δ (45a)

(rL)∗ = 1 +
(1 − α)ξLN

θ
− δ (45b)

The wage rate in each industry, wA and wL, equals the marginal product

of the human capital, uHA (or vHL) employed in the production of goods.

Therefore, the two wage rates are

(wA)∗ = BA(1 − β)[
1 + αξAN

βBA
]

1
β−1 (46a)

(wL)∗ = BL(1 − θ)[
1 + (1 − α)ξLN

θBL
]

1
θ−1 (46b)

If we plug the steady state values of the rental rates into equations (38a)

and (38b), we get the corresponding steady state growth rates. The steady

state growth rate of Y A, CA, KA, HA is given by (47a):

γA = πA[1 +
αξAN

β
− δ − ρ] (47a)

The steady state growth rate of Y L, CL, KL, HL is given by (47b):

γL = πL[1 +
(1 − α)ξLN

θ
− δ − ρ] (47b)
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6 Transitional Dynamics

Equations (33a), (33b), (39a), (39b), (40a), and (40b) define a dynamic system

for the variables ωi (i = A, L), χi (i = A, L), u, and v. It is convenient,

however, to work with transformed variables that are constant in the steady

state. Thus, ωi (i = A, L) is replaced by the gross average product of physical

capital in the production of goods, denoted by zi (i = A, L).

zA ≡ BA(ωA)β−1u1−β =
Y A

KA
(48a)

zL ≡ BL(ωL)θ−1v1−θ =
Y L

KL
(48b)

Unlike physical capital, Ki (i = A, L), and consumption, Ci (i = A, L),

the gross average product of physical capital, zi (i = A, L), and the ratio of

consumption to capital stock, χi (i = A, L), both approach constants in the

steady state.

Equations (33a), (33b), (39a), (39b), (40a), and (40b) can be re-written

in terms of the new variable, zi, to give a new system of equations

˙zA

zA
= −(1 − β)[zA − (zA)∗] (49a)

żL

zL
= −(1 − θ)[zL − (zL)∗] (49b)

χ̇A

χA
= [zA − (zA)∗](πAβ − 1) + [χA − (χA)∗] (50a)

χ̇L

χL
= [zL − (zL)∗](πLθ − 1) + [χL − (χL)∗] (50b)

u̇

u
= (u − u∗) − [χA − (χA)∗] (51a)

v̇

v
= (v − v∗) − [χL − (χL)∗] (51b)
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where zi∗ is the steady-state value of zi (i = A, L).

Using ωA∗, ωL∗, χA∗, χL∗, u∗, and v∗ as found earlier, along with the

definitions of zA and zL, we obtain the steady state values of zA and zL:

zA∗ =
1

β
[1 + αξAN ] (52a)

zL∗ =
1

θ
[1 + (1 − α)ξLN ] (52b)

Next we investigate the dynamics of the average product of physical cap-

ital, the rate of return, and the wage rate. The one-variable differential

equations (49a) and (49b) determine the time paths of zA and zL, respec-

tively. These paths are linear. The equations can be solved in closed form.

Integrating gives

zA − (zA)∗

zA
= [

zA(0) − (zA)∗

zA(0)
]e−(1−β)(zA)∗t (53a)

zL − (zL)∗

zL
= [

zL(0) − (zL)∗

zL(0)
]e−(1−θ)(zL)∗t (53b)

where zi(0) (i = A, L) is the initial value of the gross average product of

physical capital. These equations can be solved for zi (i = A, L):

zA =
(zA)∗zA(0)

(zA)∗e−(1−β)(zA)∗t + zA(0)[1 − e−(1−β)(zA)∗t]
(54a)

zL =
(zL)∗zL(0)

(zL)∗e−(1−θ)(zL)∗t + zL(0)[1 − e−(1−θ)(zL)∗t]
(54b)

Equations (54a) and (54b) imply that zA and zL will adjust monotonically

over time from zA(0) and zL(0), the initial values, to their steady state values,
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(zi)∗ (i = A, L). When zi < (zi)∗, the growth rate of zi is positive, and zi

increases toward its steady-state value. When zi > (zi)∗, the growth rate of

zi is negative, and zi decreases toward its steady-state value. As t → ∞,

zA → (zA)∗ and zL → (zL)∗ if the steady-state value zi∗ is stable. The figure

below provides a graphical representation of this stability property.
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The rates of return for both the advanced and laggard sectors can also

be re-written in terms of the gross average product of physical capital in the

production of the goods. They become rA = βzA−δ and rL = θzL−δ for the

advanced and laggard industries, respectively. Thus, zi (i = A, L) determines

ri (i = A, L). If zi(0) < (zi)∗ (i = A, L) then ri(0) < (ri)∗ (i = A, L), but if

zi(0) > (zi)∗ (i = A, L) then ri(0) > (ri)∗ (i = A, L). As discussed earlier zi

(i = A, L) will rise (or fall) monotonically over time toward its steady-state

value, which means that ri (i = A, L) will also rise (or fall) monotonically

towards its steady-state value.

The wage rate in each sector, as mentioned earlier is equal to the marginal

product of the human capital employed in the production of goods, uHA in

the advanced sector, and vHL in the laggard sector. The wages rates can be

re-written in terms of zi (i = A, L) to get;

wA = BA(1 − β)u−β(ωA)β = (BA)
1

1−β (1 − β)(zA)
−β
1−β (55a)

wL = BL(1 − θ)v−θ(ωL)θ = (BL)
1

1−θ (1 − θ)(zL)
−θ
1−θ (55b)

Therefore, if zi(0) < (zi)∗ (i = A, L) and wi(0) > (wi)∗ (i = A, L),

wi (i = A, L) will follow zi (i = A, L) and fall monotonically over time

towards the steady-state value. If zi(0) > (zi)∗ (i = A, L) and wi(0) < (wi)∗

(i = A, L), wi (i = A, L) will rise monotonically over time towards the

steady-state.

Next we discuss the dynamics of χA and χL. According to equations

(50a) and (50b), the dynamics of χA and χL are dependent of the parameters

πA, πL, β, and θ. The variables u and v do not appear in equations (50a)

and (50b), so a two-dimensional phase diagram can be constructed in (zA, χA)

space for the advanced sector, and (zL, χL) space for the laggard sector. Two
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cases need to be considered for both the advanced and laggard sectors. The

first case is if πAβ < 1 for the advanced good and πLθ < 1 for the laggard

sector. The second case is the reverse, ie πAβ > 1 and πLθ > 1.

Case one: advanced sector πAβ < 1 and laggard sector πLθ < 1;
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If χi ≤ (χi)∗ (i = A, L) then χ̇i < 0 (i = A, L). Thus, χi (i = A, L) would

diverge from (χi)∗ (i = A, L) and reach zero. The stable path therefore has

χi > (χi)∗ (i = A, L). If χ̇i ≥ 0 (i = A, L) for some t, then χ̇i > 0 for

all subsequent t. The negative term (πAβ − 1)[zA − (zA)∗] for the advanced

sector and (πLθ − 1)[zL − (zL)∗] for the laggard sector decreases in size over

time. The variable χi (i = A, L) would diverge from (χi)∗ (i = A, L) and
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approach ∞. The stable path is therefore χ̇i < 0 for all t.

Case two: advanced sector πAβ > 1 and laggard sector πLθ > 1;

The first terms in both equation (50a) and (50b) become positive.
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If χi ≥ (χi)∗ (i = A, L) then χ̇i > 0 (i = A, L). Thus, χi (i = A, L) would

diverge from (χi)∗ (i = A, L) and approach ∞. The stable path therefore

has χi < (χi)∗ (i = A, L). If χ̇i ≤ 0 (i = A, L) for some t, then χ̇i < 0 for

all subsequent t. The positive term (πAβ − 1)[zA − (zA)∗] for the advanced

sector and (πLθ − 1)[zL − (zL)∗] for the laggard sector decrease in size over

time. The variable χi (i = A, L) would diverge from (χi)∗ (i = A, L) and

approach zero. The stable path is therefore χ̇i > 0 for all t.
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The dynamics of u and v, the fractions of human capital used in produc-

tion in the advanced and laggard sectors respectively are given by equations

(51a) and (51b). The u̇ = 0 and v̇ = 0 loci are given by;

u = u∗ + [χA − (χA)∗] (56a)

v = v∗ + [χL − (χL)∗] (56b)

Case one:

The locus is linear and upward sloping in (u, χA) space for the advanced

sector [or (v, χL) space for the laggard sector] as shown below. In figure 5,

u(χA) [or v(χL)] shows the stable saddle paths.

If zi(0) > (zi)∗ (i = A, L), then χi > (χi)∗ (i = A, L), and χ̇i < 0

(i = A, L) as determined earlier. If for some t, u ≤ u∗ (or v ≤ u∗ for the

laggard sector) then u̇ < 0 (or v̇ < 0) for all subsequent t. Therefore, u (or v)

moves from u∗ (or v∗) and approaches zero. Thus the stable path is u > u∗

(or v > v∗).

If u̇ ≥ 0 (or v̇ ≥ 0 for the laggard sector) for some t, then u̇ > 0 (or

v̇ > 0) for all subsequent t, because −[χi − (χi)∗] (i = A, L) is negative and

decreasing in size. Therefore u̇ < 0 (or v̇ < 0) and u > u∗ (or v > v∗) holds

for all t.
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Case two:

If zi(0) (i = A, L), then χi < (χi)∗, χ̇i > 0. If for some t, u ≥ u∗ (or

v ≥ u∗ for the laggard sector) then u̇ > 0 (or v̇ > 0) for all subsequent t.

Therefore, u (or v) moves from u∗ (or v∗) and approaches ∞. Thus the stable

path is u < u∗ (or v < v∗).

If u̇ ≤ 0 (or v̇ ≤ 0 for the laggard sector) for some t, then u̇ < 0 (or

v̇ < 0) for all subsequent t, because −[χi − (χi)∗] (i = A, L) is positive and

decreasing in size. Therefore u̇ > 0 (or v̇ > 0) and u < u∗ (or v < v∗) holds

for all t.
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It is also important to consider the relationship between zi (i = A, L), the

gross average product of physical capital, and the state variable ωi (i = A, L).

The dynamics of ωA and ωL can be described by the following equations

written in terms of zi (i = A, L);

ω̇A

ωA
= zA − χA − (1 − u) − αξAN

= [zA − (zA)∗] − [χA − (χA)∗] + (u − u∗) + 1 − αξAN (57a)

ω̇L

ωL
= zL − χL − (1 − v) − (1 − α)ξLN

[zL − (zL)∗] − [χL − (χL)∗] + (v − v∗) + −αξLN (57b)

If we then use equations (51a) and (51b) to substitute in for [χi − (χi)∗]

(i = A, L) we get;

ω̇A

ωA
= πAβ[zA − (zA)∗] − γχA + (u − u∗) + (1 − αξAN) (58a)

ω̇L

ωL
= πLθ[zL − (zL)∗] − γχL + (v − v∗) + −αξLN (58b)

If for case one zi(0) > (zi)∗ (i = A, L) then the conditions; zi − (zi)∗ > 0

(i = A, L), χ̇i ≤ 0 (i = A, L), and u−u∗ ≥0 (or v−v∗ ≥0 for laggard sector)

imply that ω̇A

ωA > 0 (or ω̇L

ωL > 0). Hence, the system can only be on a stable

path if ωi(0) < (ωA)∗. Then ωi will rise monotonically from ωi(0) towards

(ωi)∗.

If for case one zi(0) < (zi)∗ (i = A, L) then the conditions; zi − (zi)∗ < 0

(i = A, L), χ̇i ≥ 0 (i = A, L), and u − u∗ ≤ 0 (or v − v∗ ≤0 for laggard

sector) imply that ω̇A

ωA < 0. Hence, the system can only be on a stable path

if ωi(0) > (ωA)∗. Then ωi will fall monotonically from ωi(0) towards (ωi)∗.
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Thus, zi and ωi (i = A, L) are inversely related, with zi(0) R (zi)∗ as

ωi(0) ⋚ (ωi)∗. A lower starting value of the state variable ωi (i = A, L) is

associated with a higher initial value of zi(0).

If we use equations (57a) and (57b) again, and use (50a) and (50b) to

plug in an expression for (u − u∗). we get;

ω̇A

ωA
= (zA − (zA)∗) + γu + (1 − αξAN) (59a)

ω̇L

ωL
= (zL − (zL)∗) + γv + (−αξLN) (59b)

For case two, if zi(0) > (zi)∗ (for i = A, L) then: u̇ > 0 and ˙zA < 0. This

implies that ω̇A

ωA > 0. However, if zi(0) < (zi)∗, then u̇ < 0 and ˙zA < 0. This

implies ω̇A

ωA < 0. Therefore ωi (for i = A, L) is always inversely related to zi.

When case one holds, the policy functions for χA and u for the advanced

sector are both downward sloping functions of ωA. Similarly, for the laggard

sector both χL and v are downward sloping functions of ωL. This is illustrated

by figures 7 and 8 below.
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If an economy is in an initial state with a relative scarcity of human

capital, ie ωi(0) > (ωi)∗, then ωi will fall over time, whilst χi and u and

v will rise. This means that in the beginning the economy will allocate

a relatively small proportion of its resources to consumption, ie χi is low.

However, the economy will spend a large proportion of its time on educating,

ie (1 − u) or (1 − v) is high.

If case two holds, then both policy functions will be upward sloping, as

seen in figures 9 and 10.
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The transitional dynamics of the growth rates of consumption, human

capital, physical capital, u and v will depend on the initial values of ωA and

ωL. If the economy begins with ωi < (ωi)∗ (i = A, L), the rates of return ri, as

mentioned earlier, will decline monotonically toward (ri)∗. Using equations

(38a) and (38b) we see that this fall in ri implies a decline in ċi

ci . If ωi > (ωi)∗

then ri will increase monotonically toward (ri)∗. This rise implies an increase

in ċi

ci . This relationship is illustrated graphically in figure 11.
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The growth rates of the stocks of physical capital are obtained by substi-

tuting ċi

ci (i = A, L) from equations (38a) and (38b).

K̇A

KA
=

ĊA

CA
−

χ̇A

χA
= πA[βzA − δ − ρ] −

χ̇A

χA
(60a)

K̇L

KL
=

ĊL

CL
−

χ̇L

χL
= πL[θzL − δ − ρ] −

χ̇L

χL
(60b)

Equations (57a) and (57b) then are used to substitute for χ̇i

χi (i = A, L).

Finally, using equations (51a) and (51b), we get;

K̇A

KA
= (γA)∗ + [zA − (zA)∗] − [χA − (χA)∗] (61a)

K̇L

KL
= (γL)∗ + [zL − (zL)∗] − [χL − (χL)∗] (61b)

where (γA)∗ ≡ πA[β(zA)∗ − δ − ρ] and (γL)∗ ≡ πL[θ(zL)∗ − δ − ρ]

Equations (61a) and (61b) tell us that the growth rates of the physical

capitals, under case one, move ambiguously with respect to ωi. If zi > (zi)∗

then the second terms in the equations are positive, but the last terms are

negative.

However, if case two holds and zi > (zi)∗, then the second terms in the

equations will be positive and the last terms will also be positive. Thus, K̇i

Ki

will be increasing in ωi.
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The growth rates of the stocks of human capital are given by;

ḢA

HA
=

K̇A

KA
−

ω̇A

ωA
(62a)

ḢL

HL
=

K̇L

KL
−

ω̇L

ωL
(62b)

If we use equations (61a), (61b), (59a), (59b), (51a), and (51b) we get;

ḢA

HA
= (γA)∗ − (u − u∗) + (1 − αξAN) (63a)

ḢL

HL
= (γL)∗ − (v − v∗) + (1 − (1 − α)ξLN) (63b)

If case one holds, then equations (63a) and (63b) imply that Ḣi

Hi (i = A, L)

is increasing in ωi because, as figure 8 shows, (u−u∗) and (v−v∗) are declining

in ωi.
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Figure 13 shows the positive relationship between the growth rate of H i

and ωi.
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However, if case two holds, Ḣi

Hi (i = A, L) is decreasing in ωi because, as

figure 10 shows, (u − u∗) and (v − v∗) are increasing in ωi.
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Simulation

The more general case is discussed in section 3. In the special case is if

there is no new entries (ie N = 0), then our model will be similar to that

of the generalized Uzawa-Lucas model. Barro (2004) carried out some simu-

lations for the generalized Uzawa-Lucas model with two sectors. We adopt

his parameter values β = θ = 0.4, while the parameters φ and µ are varied

between 0 and 0.4. As a representative case; δ = 0.05, ρ = 0.02, and σ = 3.

For φ = µ = 0 and Bi normalized to one, Barro found that the steady state

interest rate is 0.08 and the steady-state growth rate is 0.02.

In our simulation with new entries, we use Barros parameter values. The

number of new entries is normalized to one: N = 1. The human capital

contributions in each sector is set equal: ξA = ξL = 0.9.

Half of the new entries go to the advanced sector: α = 0.5. This is a realistic

representation of the television industry, as there is a similar number of new

entries in both plasma and LCD markets. Finally, CL = 0.8 and CA = 0.2.

This also reflects the television market, as the sale of plasmas are significantly

greater than the sale of LCDs in the larger screen sizes.

We obtained the following results. The steady state interest rates are rA =

rL = 0.12711902. The steady state growth rate for the advanced sector is

γA = 0.0856 and for the laggard sector is γL = 0.04686. These steady state

growth rates are much higher than the 0.02 found in the standard model

with no new entries. Our results are consistent with the empirical evidence

that growth rates increase with new entries, as established in our model.

If there are no new entries (N=0) then the results are the same as in

Lucas (1993). If N > 0, the fraction of human capital devoted to human

capital accumulation is increasing with new entries. That is, (1 − u) and

(1 − v) are positively related to new entries.
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We assume that both ξA and ξL are less than one. When α is set to

0.5, both markets have the same number of new entries. The contribution

of new entries into the advanced market (ξA) is assumed to be the same as

that in the laggard market (ξL). Also, the parameters θ and β are set equal,

so production in the advanced and laggard sectors is equally intensive in

physical and human capital. Then, for the fraction of human capital devoted

to human capital accumulation in the advanced good, 1 − u, to be greater

than that of the laggard good, 1 − v, πA must be greater than πL.

Because λ is less than one, the value of CL needs to be sufficiently larger

than CA. For the case of the flat screen televisions; plasma and LCDs are

relatively close substitutes, so λ will be closer to one. Currently, plasma

televisions dominate the market of the larger screens because of their lower

prices, so CL > CA. This implies that u < v, which is consistent with

the empirical evidence of hetrogenity between laggard and advanced firms

presented in Aghion (2006).

The intuition for this result is that the advanced sector will invest more

into education and knowledge when the threat of new entries is increased.

It is similar to the escape entry effect in Aghion et al, where the advanced

incumbents invest to protect their market share. The effect of increased entry

on the laggard sectors will still be positive, but much weaker than that in

the advanced sector.

If πA is larger than πL and the other parameters are as described above,

ωA will be larger than ωL. This means that the proportion of physical to

human capital used to produce advanced goods is larger than that for the

laggard good. πA > πL also implies that χA will be greater than χL. This

means that the growth rate in the advanced sector will be higher than that

in the laggard sector.
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7 Conclusion

This thesis investigates the effects of new entry on growth in an economy

with advanced and laggard sectors. The theoretical model has four sectors

with four Cobb-Douglas production functions.

The main result of the model is that new entries have a positive effect on

the fraction of human capital devoted to the accumulation of human capital

in both the advanced and laggard sectors. However, under certain conditions,

this effect is much stronger in the advanced sector than in the laggard sector.

Thus, new entries have a larger impact on growth in the advanced sector than

in the laggard sector.

However, one weakness of this model that is shared by the bulk of the

existing literature is that we study a closed economy. This is not a accurate

reflection of the real world. One possible direction for future research would

be to have an open economy allowing for imports and exports. Another

possible extension is to include leisure in the utility function, similar to the

extension in Lucas (1988).
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