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Abstract 

The ideal treatments for multiple sclerosis (MS) are ones that specifically target the 

disease causing autoreactive T cells without compromising the immune system’s ability 

to respond to pathogens and infections. However, the current treatments for MS are 

antigen non-specific and there is a need for the development of antigen-specific 

therapies that do not induce global immunosuppression. Thus, this thesis aims to 

investigate the potential of using the body’s own suppressor cells to develop an 

antigen-specific immunotherapy to inhibit experimental autoimmune encephalomyelitis 

(EAE), the murine model for MS. 

 

In our laboratory, there are two versions of mutated superantigens, SMEZ-2-M1 (SM) 

and double mutant SMEZ-2 (DM). SM is defective at its TCR binding site, but retains 

its ability to bind to MHCII molecules. Based on previous findings from our laboratory 

that administration of a SM conjugate with myelin oligodendrocyte glycoprotein 

(MOG35-55) peptide in incomplete Freund's adjuvant (IFA) suppressed EAE in a CD25+ 

regulatory T cell (Treg)-dependent manner, it was hypothesised that the administration 

of SM-MOG35-55/IFA expanded and/or activated MOG35-55 specific Tregs in vivo. In the 

first part of this thesis, I tested this hypothesis. The experimental results showed that 

neither the Foxp3+ nor CD25+ Tregs primed in vivo by SM-MOG35-55/IFA could inhibit 

EAE and surprisingly, treating mice with SM-MOG35-55/IFA did not significantly 

suppress EAE as previously described.  

 

Nevertheless, the administration of SM-MOG35-55 into mice using various methods 

repeatedly showed minor suppression of EAE, suggesting an in vivo suppressive 

capability of SM-MOG35-55. Interestingly, after being injected into mice intravenously, 

SM was captured by a blood MHCII-CD11b+F4/80+Gr-1+ cell population in an 

MHCII-independent manner. Cells expressing the same surface markers have been 

reported in the literature to be myeloid derived suppressor cells (MDSCs), suggesting 

that the SM+MHCII-CD11b+F4/80+Gr-1+ cells may be suppressor cells, i.e. a 

subpopulation of MDSCs, and play a role in SM-MOG35-55 mediated EAE suppression.  

 

In the second part of this thesis, I went on to test the blood MHCII-CD11b+F4/80+Gr-1+ 

cells’ suppressive potential using DM. Unlike SM, DM is defective at both MHCII and 
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TCR binding sites, and possessed an enhanced binding capability to the blood MHCII-

CD11b+F4/80+Gr-1+ cells. The experimental results demonstrated that the blood 

MHCII-CD11b+F4/80+Gr-1+cells are potent suppressors of T cell responses, and were 

subsequently named as blood MDSCs (bMDSCs). bMDSCs suppressed T cell 

proliferation in vitro in a cell contact-dependant manner, and nitric oxide played an 

important role in this suppression. 

 

In the third part of this thesis, I investigated the potential of using DM for EAE 

suppression via bMDSCs. When DM was conjugated to MOG35-55 and administered 

subcutaneously into mice, EAE was suppressed in a MOG35-55-specific manner. 

Moreover, the adoptive transfer of bMDSCs from the DM-MOG35-55 treated mice 

transferred EAE suppression, confirming that bMDSCs play an important role in this 

suppression. 

 

Taken together, these results reveal a previously unknown role of bMDSCs in limiting 

immune responses. Moreover, the use of DM to direct the activity of bMDSC may 

prove to be a unique antigen-specific immunotherapy for EAE, which has great 

potential to be developed into a treatment of MS and other autoimmune diseases. 
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The immune system is composed of two major arms, the innate and adaptive immune 

systems, whose principal function is to eliminate invading pathogens that may cause 

damage to the body. The innate immune system forms the first line of the body’s 

defence against pathogens and responds rapidly to invading organisms, but cannot 

confer immunological memory to the host and is antigen non-specific. In contrast, the 

adaptive immune system reacts more slowly than the innate system, but allows for the 

generation of immunological memory to past infections and is antigen-specific. The 

specificity of the adaptive immune response requires diversity of the T cell repertoire, 

which enables it to recognise a broad range of pathogens. However, this diversity also 

increases the risk of developing autoimmunity, the condition in which the immune 

system reacts against the body’s own cells. To maintain tolerance to self, the immune 

system utilises multiple regulatory mechanisms including central tolerance and 

peripheral tolerance (see Section 1.2.1 and Section 1.2.2). Autoimmunity results when 

one or more of these tolerance mechanisms fail1-3.  

 

The general introduction summarises the two arms of the immune system (the innate 

and adaptive systems) and tolerance mechanisms that prevent autoimmunity, it 

discusses the cause and potential treatments for multiple sclerosis (MS), an autoimmune 

disease of the central nervous system (CNS), and describes the mouse model used to 

study MS, experimental autoimmune encephalomyelitis (EAE). 

 

1.1 The mammalian immune system 

The mammalian immune system is comprised of a complex network of specialised cells 

and soluble mediators that have evolved to protect the host against pathogens. Two 

fundamentally different types of immune responses are present in most mammals—the 

innate and adaptive immune responses1,3-5. The classification of the cells as innate or 

adaptive is primarily based on the nature of the receptors they express. Innate receptors 

are encoded in the genome as separate genes, while adaptive receptors are encoded as 

arrays of gene segments that are randomly recombined into diverse receptors1,3. The 

innate and adaptive immune systems have evolved interactively in concordance with 

mammalian history and environment5 and the interactions between them are essential 

for effective immune function1,3,4. 
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1.1.1 The innate immune system 

A key role of the innate immune system is to provide the first line of defence against 

invading pathogens. As such, innate immune responses are rapid to ensure that the 

invading pathogens are detected and destroyed within minutes to hours after infection2. 

The components of the innate immune system include anatomical barriers (e.g. skin and 

mucosal membranes), soluble proteins (e.g. complement), phagocytic cells that 

scavenge extracellular macromolecules, and inflammation2,6.  

 

An important part of active defence in the innate immune system is the detection of 

pathogen-associated molecular patterns (PAMPs), the molecular motifs commonly 

found in bacteria, fungi, parasites and other micro-organisms. This process is mediated 

by the germline-encoded receptors on innate immune cells that are termed “pattern 

recognition receptors” (PRRs). The PRRs have evolved to recognise the PAMPs and 

have minimal reactivity with self-cells. For example, many of these PRRs recognise 

unique carbohydrate structures associated with the cell walls of bacteria and yeasts that 

are essential for the survival of the micro-organisms2.  

 

1.1.1.1 Toll like receptors 

Toll-like receptors (TLRs) are part of the family of PPRs and have been identified in 

insects, plants and mammals6. Currently, there are at least 13 TLRs described in mice 

and 11 in humans. Each TLR binds to a variety of PAMPs and the specificity of TLRs’ 

has been well defined except TLR10, 12 and 13. For example, TLR3 binds to 

virus-derived double-stranded ribonucleic acid (RNA), TLR4 interacts with 

lipopolysaccharide (LPS) that is a part of the outer membrane of Gram-negative 

bacteria, and TLR9 binds specifically to unmethylated CpG motifs characteristically 

found in bacterial deoxyribonucleic acid (DNA)7.  

 

The binding of TLRs to their ligands triggers two intracellular signalling pathways, 

which ultimately activate NF-κB in the nucleus. With the exception of TLR3, TLRs 

activate cells through the myeloid differentiation primary response gene 88 

(MyD88)-dependent pathway7. In contrast, TLR3 signals in a MyD88-independent 

fashion via interferon (IFN) regulatory factor-3 and other IFN-responsive factors. 

Notably, one TLR, TLR4, signals through both pathways7,8. Following the binding of 

TLRs to their ligands, several reactions can possibly occur. Signalling through TLRs 
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can lead to the synthesis and secretion of pro-inflammatory cytokines and lipid 

mediators, thereby initiating inflammatory responses and inducing appropriate 

responses against pathogens. Alternatively, TLR stimulation can result in the activation 

of antigen presenting cells (APCs) and thereby initiate adaptive immune responses2,6-8.  

Therefore, TLR signalling provides an important link between the innate and adaptive 

immune systems and plays a key role in the effective activation of the antigen-specific 

adaptive immune responses2.  

 

1.1.1.2 Cells of the innate immune system 

Cells of the innate immune system include mast cells, natural killer cells, eosinophils, 

basophils and phagocytic cells. Most innate immune cells cannot divide in the 

periphery, but are produced by pluripotent hematopoietic stem cells in the bone 

marrow9. 

 

Phagocytic cells, including monocytes, macrophages, neutrophils and dendritic cells 

(DCs), are the major effector cells in innate immune responses2,6. These cells express an 

array of PPRs on their surface, including TLRs, C-type lectin, ficolin, integrin 

CD11b/CD18 and scavenger receptors. Macrophages (a type of tissue-associated 

phagocytes) and monocytes (a type of mononuclear phagocytes in the blood) are 

located at sites where they are likely to encounter pathogens. These phagocytes are the 

first line of defence against invading pathogens. Pathogen recognition by phagocytes 

results in both pathogen destruction and recruitment of additional phagocytes to the site 

of pathogen invasion. An important feature of phagocyte activation is the secretion of 

cytokines such as interleukin (IL)-1, IL-6, IL-8 and tumour necrosis factor alpha 

(TNF-α), which are critical to the development and function of both the innate and 

adaptive immune responses. In addition to attacking pathogens directly, some 

phagocytes, such as macrophages and dendritic cells (DCs), also act as APCs and induce 

adaptive immune responses6.  

 

1.1.2 The adaptive immune system 

The adaptive immune system is the second line of the body’s defence and reacts more 

slowly than the innate immune system in response to invading pathogens. However, the 
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adaptive immune system possesses two advantages over the innate immune system: 

specificity and memory. These two features allow the immune system to recognise and 

remember specific pathogens and mount stronger attacks for the second encounter of 

the same pathogen3. 

 

Specificity refers to the fact that each adaptive immune cell recognises only one 

particular antigen. This property is achieved by the generation of a diverse array of cell 

surface recognition receptors by the processes called V(D)J recombination (a genetic 

recombination of antigen receptor gene segments) and somatic hypermutation (a 

process of accelerated somatic mutations). These mechanisms allow a small number of 

genes to generate a vast pool of different antigen receptors, such as T-cell receptors 

(TCRs) and B-cell receptors (BCRs). After maturation, each individual adaptive 

immune cell displays only one receptor from this pool, providing it with a unique 

specificity3. 

 

Memory is defined as the event where previously activated lymphocytes re-encounter 

an antigen and develop a greater and faster response than the first encounter. The 

primary response to an antigen starts with the naïve lymphocytes that have not 

previously encountered antigens. Upon initial pathogen exposure, these cells expand in 

numbers, become effector cells and then a proportion of these lymphocytes persist in a 

resting state (i.e. memory cells), where they remain ready to initiate a secondary 

response upon re-encounter with this antigen. When the same pathogen attacks the 

immune system for the second time, memory cells developed during primary response 

rapidly proliferate and react against this antigen, which results in a faster and stronger 

response (i.e. secondary response)10.  

 

1.1.2.1 Antigen presenting cells  

Antigen presenting cells (APCs) are cells that are able to take up and destroy pathogens. 

Subsequently, they can present the pathogenic antigens on their surface via the major 

histocompatibility complex (MHC) molecules to T cells, which leads to the initiation of 

an adaptive immune response. APCs are divided into two categories—professional 

APCs and non-professional APCs. The APCs that are specialised to initiate or promote 

lymphocyte activation are termed as “professional APCs”. Professional APCs include 

DCs, macrophages and B cells. These cells express MHC class II (MHCII) molecules 
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and have various specialised characteristics, such as the expression of co-stimulatory 

molecules to modulate the activation of responding lymphocytes11. In contrast, the other 

cells do not constitutively express MHCII molecules on their surface but can be 

stimulated to present antigens, and are termed as “non-professional APCs”. 

Non-professional APCs include fibroblasts, thymic epithelial cells, thyroid epithelial 

cells, glial cells, pancreatic beta cells and vascular endothelial cells12. 

 

DCs are the major professional APCs involved in initiating T cell responses11. DCs 

capture and process antigens at the site of exposure in peripheral tissues. Then DCs 

mature and migrate to lymphoid tissues where they present antigens and activate naïve 

lymphocytes in an antigen-specific manner. The induction of an adaptive immune 

response is dependent on the phenotype of the DCs that present antigens, including the 

cytokines they produce and the co-stimulatory molecules they express11.  

 

1.1.2.2 T cells 

T lymphocytes (T cells) are thymus-derived and are key cellular players in adaptive 

immunity. T cells express TCRs, which recognise specific antigens bound to MHC 

class I or II molecules. T cells that express the co-receptor CD8 are cytotoxic T 

lymphocytes (CTLs) and recognise peptides presented on MHCI, whereas T cells that 

express CD4 (T helper cells (Th cells)) recognise peptides presented on MHCII 

molecules13.  

 

The main function of CD8+ CTLs is to kill infected or transformed cells13. There are 

two mechanisms utilised by CTLs for killing target cells. First, CTLs can release the 

cytotoxins perforin and granzymes. Perforin forms pores in the target cell’s plasma 

membrane allowing granzymes to enter the target cells and these enzymes trigger target 

cell apoptosis. The second way to kill target cells is via ligation of FAS by FAS ligand 

(FasL). The binding of FasL on CTLs to Fas molecules on target cells leads to 

caspase-mediated apoptosis of the target cells14. 

 

The principal function of CD4+ Th cells is to direct immune responses. CD4+ Th cells 

control B-cell antibody class switching, support antibody production, promote CTLs 

proliferation, differentiation and activation, and increase macrophages’ bactericidal 

activity. The activation of CD4+ Th cells requires recognition of cognate 



Chapter 1: General Introduction 
 

7 

peptide-MHCII complexes on professional APCs as well as co-stimulation through 

triggering CD28 on CD4+ Th cells by CD80/CD86 on APCs (see Section 1.1.3.4)13. 

Once activated, CD4+ Th cells can differentiate into Th1, Th2 or Th17 cells according 

to their cytokine profile15. The differentiation of CD4+ Th cells will be discussed in 

detail in Section 1.7.1. 

 

1.1.3 MHC-TCR interaction 

1.1.3.1 MHC 

MHC is located on chromosome 6 in humans and chromosome 17 in mice. In humans, 

MHC genes are also called human leukocyte antigen (HLA) genes, whereas in mice, 

they are also known as H-2 genes. These genes are polygenic (multiple genes) and 

polymorphic (multiple alleles). The function of MHC is to bind and display peptides for 

appropriate T cell recognition. It is believed the polygenic and polymorphic nature of 

MHC increase the ability of APCs to present a wide array of immunogenic peptides11,13. 

 

There are two types of MHC molecules that are recognised by TCRs. MHC class I 

(MHCI) and MHCII. MHCI molecules are able to present cytosolic peptides to CD8+ 

CTLs and are ubiquitously expressed on all nucleated cells16. The MHCI molecule is 

composed of a glycosylated heavy α chain, which is non-covalently linked to the 

non-MHC encoded β2 microglobulin. Two of the α chain helices form the 

peptide-binding groove that can bind peptides of 8-10 amino acids16.  

 

MHCII molecules are able to present peptides derived from proteins in the extracellular 

space to CD4+ T cells, and the constitutive expression of MHCII molecule is restricted 

to professional APCs, such as DCs, B cells and macrophages13. MHCII molecule is 

composed of a two-helix α chain and a two-helix β chain. The two helices of the α 

chain are called α1 and α2 and the two helices of the β chain are called β1 and β2. The 

α1 and β1 chains contain polymorphic regions and interact to form the peptide-binding 

grooves, while the α2 and β2 chains contain immunoglobulin domains and form the 

membrane proximal regions. MHCII molecule can present a wide range of peptide 

length to CD4+ T cells. MHCII binding peptides usually vary between 15-20 amino 

acids in length, although shorter or longer lengths have also been identified17,18. 
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1.1.3.2 TCRs 

T-cell receptors (TCRs) belong to the immunoglobulin superfamily and are composed 

of membrane bound α and β chains. The α chain and β chain of TCRs each contains a 

variable region for antigen recognition and a constant region for association with CD3 

components. The variable region of TCRs is formed by splicing and recombination of 

V, D and J genes during T cell development in the thymus. The most variable region of 

TCRs is the complementarily determining region (CDR) 3 domain. CDR3 interacts 

directly with the peptides bound to MHC molecules and is critical in peptide 

recognition19. CDR1 and CDR2 are encoded in the germ line and are therefore much 

less variable. CDR1 and CDR2 are important in determining whether the TCR interacts 

with a MHCI or II molecule13. The CD3 complexes that are noncovalently associated 

with the constant region of TCRs are important for the TCR signal transduction. In most 

T cells, the CD3 complex is made up of four distinct subunits, γ, δ, ε and ζ subunits. 

These subunits are organised into three dimeric transduction modules: γε, δε and ζζ, and 

associate with TCRs to generate a signalling cascade leading to T cell activation20.  

 

1.1.3.3 MHC-TCR interaction 

The activation of antigen-specific T cells requires their TCRs to bind and recognise 

both the antigen and the MHC molecule that presents the antigen. The requirement for 

T cells to recognise a peptide in the context of a particular MHC is called “MHC 

restriction”13.  

 

When a T cell binds to a MHC-peptide complex, it sits in an orientation that allows the 

CDRs of the TCR to interact with both the peptide and MHC molecule21. To trigger the 

TCR signalling pathway, the peptide-MHC complex is not required to bind to TCRs 

with high affinity22. However, sufficient duration of the interaction between 

peptide-MHC complex and TCR is important for the initiation of T cell cycle 

progression and maintenance of gene transcription23. In fact, it is believed that in vivo, a 

few agonistic peptide-MHC complexes engage and trigger a much larger number of 

TCRs in a serial triggering process24,25. Therefore, the most effective peptide-MHC 

complexes are the ones that are able to engage a TCR for a short period, then dissociate 

from the TCR and become available for new interactions with other T cells bearing the 

same TCR24,25.  
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A unique characteristic of T cell activation is that although the specificity of antigen 

recognition is provided by TCR interaction with peptide-MHC complex, the outcome of 

the interaction also depends on the integration of signals arising from the accessory 

molecules engaged at the cellular interface. These accessory molecules include cell 

adhesion molecules, co-stimulatory molecules (discussed in the next section) and 

co-receptors such as CD4 or CD826 that are expressed on T cells and bind to MHC 

molecules to enhance the interaction between TCRs and MHC molecules27. 

 

1.1.3.4 Co-stimulation 

Naïve T cells require two signals to be fully activated. In addition to the first signal 

provided through the interactions between TCRs and peptide-MHC complexes 

described above, a second signal, co-stimulatory signal, is also required. Co-stimulation 

is antigen non-specific and is provided by the interactions between co-stimulatory 

molecules on APCs with their ligands on T cells. The absence of co-stimulation during 

TCR crosslinking of a naïve T cell results in partial activation that promotes T cell 

apoptosis, deletion or anergy (a state of unresponsiveness)25,28. 

 

The best-characterised co-stimulatory molecules are CD80 and CD86. CD80 is the first 

identified co-stimulatory ligand and binds to CD28 on T cells. The interaction of CD80 

and CD28 provides a co-stimulatory signal necessary for T cell priming29. However, the 

finding that blocking CD80 signalling did not significantly inhibit T cell activation led 

to the discovery of a second co-stimulatory molecule, CD86, which has a similar 

structure and function to CD80. Both CD80 and CD86 are expressed on activated APCs 

and the functional differences between the two molecules are yet to be defined30.  

 

A major receptor for CD80 and CD86 on T cells is CD28. The CD28 glycoprotein is 

expressed constitutively on all human CD4+ T cells, ~50% human CD8+ T cells and all 

murine T cells. Stimulation through CD28 in addition to TCR provides a potent 

co-stimulatory signal to T cells for cell activation and production of cytokines31.  

 

Cytotoxic T lymphocyte associated protein 4 (CTLA-4), also known as CD152, is an 

additional receptor for CD80 and CD86 expressed on T cells. CTLA-4 is not 

constitutively expressed, but is up-regulated in low copy numbers by T cells for a short 

time after T cell activation. The up-regulation of CTLA-4 depends upon the ligation of 
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CD28. The binding of CTLA-4 to CD80/CD86 has a ~20-fold higher affinity than 

CD28 and the binding of CTLA-4 transmits an inhibitory signal to T cells. The time 

that CTLA-4 is active overlaps with the time that CD28 signalling is reduced. Thus, 

CTLA-4 acts to limit the extent of the immune responses or to prevent immune 

responses from occurring31.  

 

1.2 Immunological tolerance 

The adaptive immune system generates a vast diversity of different receptors by genetic 

recombination. This process produces many receptors capable of recognising a wide 

array of antigens including self-antigens. To avoid immune responses that target self, 

protective mechanisms are required to eliminate or down-regulate self recognition. The 

term immunological tolerance describes the mechanisms that the immune system uses 

to suppress an immune response32. Using these immunological tolerance mechanisms, 

the immune system is delicately balanced between pathogen-driven immunity and 

self-antigen driven tolerance.  

 

The regulation of self-tolerance of T cell repertoire is at two levels. First, the 

development and selection of T cells in the thymus is strongly biased against 

self-activity (central tolerance)33,34. Second, mature T cells that escape from the thymus 

are subject to a variety of suppressive mechanisms in the periphery (peripheral 

tolerance)35. These two forms of tolerance will be discussed in the following sections.  

 

1.2.1 Central tolerance 

Central tolerance is the primary mechanism responsible for elimination of autoreactive 

T cells. This occurs in the thymus where immature T cells have rearranged their antigen 

receptor genes and encounter peptides presented by thymic APCs. About 98% of the 

thymic T cells die during development by failing either positive selection or negative 

selection (discussed below)32.  

 

Positive selection aims to select for T cells capable of interacting with MHC molecules. 

Failure of a TCR to interact with peptide-MHC ligands is interpreted as a lack of 

self-MHC restriction, which will result in no biological function in the periphery. These 

thymocytes undergo death by neglect. An estimated 90%-95% of apoptotic cell death in 

the thymus is due to positive selection. However, this process does not remove the T 
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cells that may cause autoimmunity. Instead, these potential autoreactive T cells are 

removed by negative selection32.  

 

Negative selection aims to remove the T cells that have too high an affinity for 

self-peptides and thus are potentially autoreactive. These T cells are eliminated by 

clonal deletion. To facilitate the deletion of potentially autoreative T cells for tissue 

antigens, the stromal or bone marrow-derived thymic cells express a wide range of host 

tissue-restricted self-antigens. This phenomenon has been termed promiscuous gene 

expression. Except for the involvement of the autoimmune regulator (Aire), the 

regulation of this gene expression pattern is poorly understood32.     

 

1.2.2 Peripheral tolerance 

Central tolerance eliminates the repertoire of immature lymphocytes with potential 

self-reactivity, however, sometimes central tolerance fails. For example, when an 

antigen synthesised in peripheral non-lymphoid tissues is not presented in high quantity 

in the thymus, some autoreative lymphocytes may escape into the periphery. Peripheral 

tolerance is therefore necessary to control these autoreactive lymphocytes and prevent 

autoimmunity. Peripheral tolerance consists of a variety of mechanisms including 

anergy (discussed below) and immune suppression6,36.  

 

One mechanism of peripheral tolerance is anergy, which describes a state in which 

lymphocytes are functionally unresponsive36. In the case of T cells, the induction of 

anergy is dependent on the signals they receive. During the induction of an 

antigen-specific response, naïve T cells are activated when they receive signals through 

their TCRs and a co-stimulatory molecule. In contrast, if a naïve T cell receives signals 

through the TCR in the absence of co-stimulation, anergy results13,28. The requirement 

for the simultaneous delivery of antigen-specific and co-stimulatory signals by the same 

APC in the activation of naïve T cells means that only the appropriately activated APCs 

can initiate T-cell responses. This is important, because not all the autoreactive T cells 

are deleted in the thymus and self-tolerance could be broken if naïve autoreactive T 

cells recognised self-antigens on tissue cells and are then co-stimulated by a different 

APC. Thus, the requirement that the same cell presents both antigen and co-stimulatory 

signal is important in preventing destructive immune responses to self-tissues. The 

anergy of T cells is an essential mechanism for immune tolerance37 and inducing anergy 
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by antigen recognition in the absence of co-stimulation has been considered for 

therapeutic use to suppress autoimmunity38,39. For example, the anti-CD3 mAb, OKT3, 

that initiates the TCR signalling pathway in the absence of co-stimulatory activity has 

been used clinically for the treatment of organ transplantation rejection and various 

autoimmune diseases40. Trials of oral anti-CD3 are planned for MS41.  

 

A second mechanism of peripheral tolerance is immune suppression, whereby immune 

cells exert immune suppressive effects on other cells. For example, CTLA-4 and 

programmed death 1 (PD-1) are expressed on the surface of CD4+ T cells and the 

binding to these molecules transmits inhibitory signals to CD4+ T cells42,43.  Moreover, 

it is now widely recognised that the peripheral cells specialised for suppression play a 

crucial role in the maintenance of immune suppression44, for example, regulatory T 

cells (Tregs)44 and myeloid derived suppressor cells (MDSCs)45. As such, targeting of 

these cells has great therapeutic potential for treating autoimmunity.  

 

1.3 Regulatory T cells 

The identification of regulatory T cells (Tregs) as an important component of 

self-tolerance has opened a primary area of investigation in immunology. There is 

accumulating evidence that Tregs suppress the activation and expansion of self-reactive 

T cells, thereby preventing autoimmune diseases44. There have been several different 

types of Tregs discovered so far, including naturally arising Foxp3+CD4+CD25+ Tregs 

(nTregs), IL-10-secreting Tr1 cells, TGF-β-secreting Th3 cells, Qa-1-restricted CD8+ T 

cells, CD8+CD28- T cells, CD8+CD122+ T cells and γ/δ T cells44. Among these various 

Treg populations, nTregs have been most intensively studied in humans and mice.  

 

1.3.1 Naturally arising Foxp3+ Tregs 

nTregs are produced by the thymus as a distinct T-cell subpopulation and play an 

indispensable role in self-tolerance. They express TCRs skewed for self-antigen 

recognition, and thus are poised for the prevention of autoimmunity44. The 

identification of the cell surface marker CD25 on nTregs, the IL-2 receptor α (IL-2α), 

has greatly facilitated the study of nTregs46. However, conventional non-regulatory T 

cells up-regulate CD25 during immune activation47. Thus, distinct markers are required 

to differentiate nTregs from other types of T cells. Although a constellation of cell 
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surface proteins, including CD2546, CTLA-448, CD12249,50, Nrp151, CD552, CD10353,54, 

CD45RBlow 52,55, CD12756,57, and the glucocorticoid-induced tumour necrosis factor 

receptor family-related gene (GITR)58, has been used for the identification of certain 

types of nTregs, to date, the best marker for distinguishing nTregs from effector T cells 

is Foxp3. This is a member of the forkhead family of transcription factors59, and the 

Foxp3 gene expression is critical for the cells’ suppressive function 55.  

 

1.3.2 Mechanisms of Foxp3+ nTreg mediated suppression 

Foxp3+ nTregs potently suppress the activation, proliferation and effector functions of 

various cells, including conventional CD4+ and CD8+ T cells, DCs and B cells59. It is 

possible that the Foxp3+ nTregs control a variety of cell responses by implementing 

multiple modes of suppression. The putative mechanisms of nTreg-mediated 

suppression include the inhibition of IL-2 transcription59, IL-10 production, surface 

CTLA-4 expression60, co-stimulatory molecule blockade60, surface TGF-β expression, 

granzyme B and perforin expression61, and inhibitory cytokine IL-35 production62. 

Furthermore, it is believed that the primary mechanism of nTreg suppression is 

cell-contact dependent. Despite great efforts, the molecules involved in the cell-contact 

mediated suppression are yet to be identified59.  

 

1.3.3 Interaction between Tregs and APC 

Although the primary mechanism utilised by Tregs to suppress T cell responses is 

believed to be contact dependent44,63, it is not clear with what cell types Tregs interact. 

There are two possible scenarios by which Tregs carry out their suppressive function. In 

the first scenario, Tregs interact with effector T cells and suppress cell activation or 

induce anergy/cell death directly. In the second scenario, Tregs interact with APCs and 

change the expression of certain surface molecules on the APCs. Such changes are 

necessary for the tolerogenic activity of the APCs, and these tolerogenic APCs in turn 

induce anergy in responder T cells.  

 

Although Tregs may act directly on effector T cells, the following evidence from 

several studies support the idea that Tregs primarily carry out their suppressive function 

via the interaction with APCs. First, in vitro suppressive assays have shown that when 

the ratio of Tregs to effector T cells is 1:1, the proliferation of effector T cells is greatly 

suppressed60,64. However, the ratio between Tregs and effector T cells rarely reaches 1:1 
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in vivo. Therefore, it is more likely that Tregs carry out their suppressive function by 

interacting with APCs. Second, two-photon laser-scanning microscopy data have 

provided direct evidence that Tregs contacted APCs and not effector T cells in vivo65. In 

this study, Tregs were found to directly interact with the DCs bearing a specific antigen. 

In contrast, no detectable stable associations between Tregs and effector T cells were 

observed. Third, a recent in vitro study showed that Tregs contact APCs and have a 

direct effect on these APCs. In the presence of TCR stimulation, Tregs preferentially 

form aggregates on APCs rather than effector T cells66. Such engagement 

down-regulates the expression of CD80 and CD86 on the APCs. Treg/APC aggregates 

are dependent on LFA-1 and the down-regulation of CD80/CD86 is dependent on 

CTLA-460,66. Moreover, Tregs have been shown to induce macrophages to express 

B7-H4 molecules67, indicating that Tregs are able to change cell surface molecule 

expression on different subsets of APCs. Despite these leading studies, the precise 

cell-cell interactions between Tregs and APCs remain unidentified. This uncertainty 

may be due, in part, to the difficulty of defining the precise interactions between diverse 

APC and Treg subsets. 

 

It has been suggested that different APCs, in particular DC subsets, have divergent 

abilities for the induction of tolerance through Tregs. For example, matured 

plasmacytoid DCs (pDCs)68 and immature myeloid DCs (mDCs)69 have the ability to 

induce Treg cells, whereas mature mDCs can induce the proliferation of Tregs in 

vitro70. Therefore, certain types of APCs may preferentially promote Treg 

differentiation and enhance Treg-mediated suppression. A better understanding of the 

rules that govern Treg–APC relationship will enable us to better manage the immune 

response in autoimmunity and other disease settings.  

 

1.4 Myeloid derived suppressor cells 

In recent years, a population of CD11b+Gr-1+ suppressive myeloid cells have been 

described in different diseases71-74 and named “myeloid-derived suppressor cells 

(MDSCs)45,75,76. These cells have been shown to inhibit both innate and adaptive 

immunity and are considered a major contributor in assisting tumours to escape immune 

recognition45,75,76. MDSCs are a heterogeneous immature myeloid cell population 

comprised of DC, macrophage, and /or granulocyte precusors45,76. These cells have 
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been identified in most tumour environments and undergo dramatic expansion during 

tumour development77.  

 

The MDSCs derived from tumours-bearing mice suppress T cell responses by multiple 

mechanisms. In the in vitro setting, MDSCs are able to suppress T cell responses via 

up-regulation of NO production78. NO regulates T cell activation via reversible 

disruption of the Janus kinase (Jak) /signal transducer and activator of transcription 

(STAT) 5 signalling pathway79. MDSCs can also suppress T cells by uptake of arginine, 

a conditionally essential amino acid that is critical for T cell function80-83. Other 

suppressive mechanisms have also been reported. For example, it has been suggested 

that the suppressive activity of MDSC’s is mediated by Tregs 74. These suppressive 

mechanisms have been shown to act in divergent ways in different disease models. 

Even in the same tumour model, the MDSCs have been reported to suppress immune 

responses using different mechanisms71. The reason for the contrasting results may be 

due to the heterogeneity of the suppressive cell subsets within the Gr-1+CD11b+ cell 

population. Identification of the specific suppressor cell subpopulation in different 

pathological conditions would help provide better-targeted therapeutic interventions.  

 

Although tumour-induced MDSCs are potent suppressors of the immune system, the 

question whether MDSCs exist in healthy individuals remains unanswered. Results 

from measuring the in vitro suppressive activity of the Gr-1+CD11b+ cells from 

tumour-free mice are not consistent. Most reports indicate that the Gr-1+CD11b+ cells 

from tumour-free mice are not suppressive71,74,84-86. However, one paper demonstrates 

that the splenic Gr-1+CD11b+ cells from tumour-free mice are able to suppress CD4+ T 

cell response87. Additional studies are clearly needed to clarify whether MDSC exist in 

disease-free individuals and play a role in homeostasis and maintenance of tolerance to 

self-antigens. 

 

1.5 Autoimmune disease 

As discussed above, the body utilises a variety of mechanisms to protect its cells against 

its own immune responses. However, if one or more of these tolerance mechanisms fail, 

autoimmunity can result. The diseases that result from an autoimmune response are 

termed as an autoimmune disease. Autoimmune diseases include more than 70 different 

disorders and are widely variable in terms of targeted tissues, age of onset, and nature of 
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the autoimmune responses. Prominent examples include MS, type 1 diabetes, systemic 

lupus erythematosus (SLE) and rheumatoid arthritis (RA)35,88-90.  

 

The risk factors for the development of autoimmune diseases are still largely 

unknown90. It is believed that autoimmune diseases result from multiple factors, which 

either determine the disease susceptibility (e.g. genetic factors such as certain human 

MHCII molecules91,92) or trigger autoimmune responses (e.g. environmental 

factors88,90). Among the environmental factors that trigger autoimmunity, infections 

have drawn most attention and a variety of hypotheses have been put forward to explain 

the role of infections in the onset of autoimmunity. The possible mechanisms by which 

infectious agents may provoke autoimmunity are diverse. These mechanisms include 

antigenic cross-reactivity between the micro-organisms and the host tissues (i.e. 

molecular mimicry)93; the infection of microbial superantigens that stimulate T 

lymphocytes (some of which could be autoreactive and participate in the development 

of autoimmune diseases)94; direct infection of immune cells (for example, infecting 

microglial cells with Theiler's murine encephalomyelitis virus can up-regulate the cells’ 

expression of MHC and co-stimulatory molecules and result in the enhancement of 

these cells’ ability to function as APCs)95; and deviation of the balance between Th 

subsets96. Other environmental factors implicated include trauma, smoking and 

nutritional factors, all of which tend to impair the immune system35,97,98. 

 

1.6 Multiple sclerosis 

MS is a chronic inflammatory autoimmune disease, in which the immune response is 

directed against the myelin sheath that surrounds the nerve axons in the CNS. The 

disease usually starts between 20 to 40 years of age for humans and leads to substantial 

disability through deficits of motor sensory and cognitive nerve function. The 

socioeconomic importance of MS is second only to trauma in young adults88,98. In New 

Zealand, more than 4,000 patients have MS and approximately 200 people are 

diagnosed with the disease every year99. 

 

MS is characterised as degenerative and inflammatory changes within the brain and 

spinal cord, which are associated with the formation of sclerotic plaques due, at least in 

part, to abnormal hardening and fibrosis of the neuronal myelin sheath88. The symptoms 

of MS are diverse and include fatigue, depression, cognitive dysfunction, tremor, 
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disturbance in speech and vision, and loss of bowel or bladder control88. Although the 

clinical course is highly variable, within 15 years of onset of symptoms, more than 80% 

of MS patients are moderately disabled to totally paralysed99,100.  

 

There are two major forms of MS, relapsing-remitting form (RRMS) and primary 

progressive form of MS (PPMS). Approximately 85-90% of MS patients develop 

RRMS. People with RRMS have unpredictable relapses, but during the remission 

between the relapses, return to normal. After around 15 years, most of the RRMS 

patents will progress to secondary progressive MS (SPMS). The remaining 10-15% of 

the patients have PPMS that is characterised by a steady progression from its onset 

without relapse or remission98. It is unclear which factors are responsible for the 

different disease courses. 

 

1.6.1 Etiology of MS 

It is believed that MS develops in genetically susceptible individuals but requires 

additional environmental triggers98. Strong evidence for potential genetic contributions 

comes from familial studies as MS risk increases with the degree of shared genetic 

background101. Several studies indicate that many different genes contribute to the risk 

of developing MS. However, all of these genes are MHCII alleles and the specific genes 

that confer risks are HLA-DR102 and HLA–DQ91. Haplotypes DQA1*0102, 

DQB1*0602, DRB1*1501 and DRB5*0101 have been mapped with high risks103. 

However, non-twin siblings of affected individuals have a concordance of only 1-2% 

for developing MS, dizygotic twins 2-3% and monozygotic twins 20-35%101. This 

relatively low concordance rate indicates an important role of non-genetic factors in MS 

etiology.  

 

The geographical distribution of MS disease prevalence increases with latitude, and the 

highest is at 40° in both hemispheres100. Prevalence and migration studies provide 

evidence for the involvement of pollution, diet, smoking habits, UV light exposure and 

virus infections in MS development88,98,100,104. Among the putative environmental 

factors, both lifestyle and infectious agents have been proposed to contribute to MS. 

Moreover, hormonal variables are suggested as potential risk factors since twice as 

many women are affected by MS98 and a large body of evidence indicates the 

therapeutic potential of estrogens in treating MS105. 
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1.6.2 Immunology of MS 

MS is a typical organ-specific autoimmune disease98,100 but questions remain about the 

nature of the immune attack on the CNS. It is believed that the invasion of autoreactive 

myelin-specific T lymphocytes into the CNS plays a central role both in the disease 

initiation and progression88,98,106. Additionally, the strongest known genetic association 

with MS is the HLA-DR2 molecule (DRB1*1501)103,107, which implicates the 

importance of the MHCII restricted CD4+ T cells in MS pathogenesis. In some MS 

patients, myelin basic protein peptides (MBP) are presented by the HLA-DR2 

molecules at sites of demyelination108 and T cells with TCRs specific for MBP have 

been found in MS brain lesions109.  

 

Extrapolating from a large body of research, it appears that the immune attack in MS 

can be divided into five phases (induction, migration, reactivation, tissue injury and 

resolution)88,97,98,100,110-114. The first phase involves the activation of myelin-specific T 

cells to become pro-inflammatory effector T cells outside the CNS. The exact 

mechanism by which these autoreactive T cells become sensitised to myelin remains 

unclear. One hypothesis involves molecular mimicry and suggests that autoreactive 

T-cell clones are activated by foreign antigens, such as viruses resembling the antigenic 

structure of myelin proteins93,115.  

 

The second and third phases involve the transmigration of autoreactive T lymphocytes 

across the blood-brain barrier (BBB) (the second phase) and the reactivation of these 

autoreactive T cells upon encountering myelin proteins in the CNS (the third phase). 

Although it is believed that a small number of immune cells might periodically cross 

the BBB100, brain parenchyma does not typically include a large number of immune 

cells. Upon encountering myelin proteins, the autoreactive T cells start producing 

inflammatory cytokines that induce local effects and activate the endothelial cells in the 

postcapillary venules so that a second wave of immune cells can be recruited from the 

blood to the CNS.  

 

The fourth phase of immune attack is characterised by tissue injury in the CNS 

manifesting as macrophage infiltration, myelin disruption and axonal damage. Although 

myelin and/or oligodendrocytes themselves disappear from the MS plaque, the exact 

mechanism of the myelin damage remains unknown. It is likely that oxygen radicals, 
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complement cascade, CD4+ cells, CD8+ cells, macrophages, antibodies and activation of 

local glial cells all play a role in this injury process98. In the fifth phase, the 

inflammatory process gradually resolves, ultimately leaving behind scars characterised 

by the absence of myelin, partial losses of axons in some cases and dense astrocytic 

scars.  

 

1.6.3 Tregs and MS 

In healthy individuals, Tregs suppress the activation and expansion of self-reactive T 

cells, thereby preventing autoimmune diseases44. However, Tregs from the peripheral 

blood of MS patients are found to have a significant deficiency in their suppressive 

function compared with healthy donors116. It is proposed that this functional deficiency 

of Tregs leads to uncontrolled self-reactive T cell responses in vivo, which result in 

MS116,117. Therefore, a method that restores the inhibitory function of Tregs in patients 

with MS has the potential to be used clinically to prevent and treat MS.  

 

1.6.4 Current medication of MS 

There is no cure for MS. Currently there are six disease-modifying treatments available 

for MS in different countries. Three of them are IFNs, two formulations of IFN beta-1a 

(Avonex and Rebif) and one of IFN beta-1b (Betaferon). The remaining three are 

glatiramer acetate (Copaxone), mitoxantrone and natalizumab (Tysabri)118.  

 

In New Zealand, only Betaferon, Avonex and Copaxone are fully subsidised by the 

government119. Betaferon and Avonex help prevent relapses but are only able to reduce 

disease exacerbations in 30% of cases and have a less certain effect on progressive 

disability. The side effects such as flu-like symptoms and the frequency of 

subcutaneous injection deter some patients from the treatment41,100,120. Copaxone has 

been shown to have similar effects to IFN-beta in reducing MS attacks, but has a more 

favourable side effect profile. Copaxone is a random copolymer of the four amino acids 

Ala, Lys, Glu and Thy with various lengths at fixed molar ratios at 4.5: 3.6: 1.5:1, 

respectively98. The initial purpose of synthesising Copaxone was to mimic myelin basic 

protein (MBP), a major encephalitogen in MS pathogenesis, for the induction of EAE. 

However, Copaxone was found to suppress EAE instead121 and was developed as a 

treatment for MS. The mechanism by which Copaxone inhibits MS remains unresolved. 

Mechanisms such as Th2 response induction122-124, competition with self-antigen for the 
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MHCII binding125,126, Treg induction127,128, demyelination arrest and remyelination129 

have all been suggested. All the above three medical treatments are expensive, must be 

given by regular injections and require life-long use to remain effective. Moreover, 

clinical studies have revealed progressive disability in patients with these three 

treatments41,130.  

 

1.7 EAE mouse model 

Due to limited availability of human samples during active stages of MS, much of the 

present knowledge about the disease is from studies in animal models. EAE is the best 

defined murine experimental model for MS that resembles the immunopathology of 

human MS131. EAE has been utilised extensively to study the cause and investigate the 

potential treatments of MS132. The majority of the current therapies being planned for 

phase II and III trials of MS were first examined in EAE113,133.  

 

EAE is routinely induced in laboratories by injecting naïve susceptible mice with 

defined protein components of the myelin sheath together with adjuvant. MBP, myelin 

oligodendrocyte glycoprotein (MOG), proteolipoprotein (PLP), myelin associated 

glycoprotein (MAG) and S-100 protein are the major known CNS antigens and elicit 

EAE in mice98. In this thesis, EAE was induced by injecting the synthetic peptide 

comprising amino acids 35-55 of MOG (MOG35-55) emulsified in complete Freund’s 

adjuvant (CFA) to C57BL/6J mice bearing H-2b. This is a chronic progressive form of 

EAE and the disease is non-remitting134. 

 

1.7.1 Pathogenic CD4+ T cells in EAE 

EAE is a CD4+ T cell-mediated autoimmune disease of the CNS112. This conclusion is 

based on the observation that EAE could be transferred by in vitro reactivated 

myelin-specific CD4+ T cells, but could not be transferred by either antibodies or other 

cells135. In the past, a widely accepted theory was that the activation of autoreactive 

CD4+ T cells specific for myelin antigens and the differentiation to Th1 lineage were 

crucial for the development of EAE. However, this theory has been reconsidered upon 

the recent discovery of Th17 cells and their involvement in EAE15,136,137. 

 

Originally CD4+ Th cells were divided into Th1 and Th2 cells. Th1 cells are most 

important for clearance of intracellular pathogens whereas Th2 cells play a major role in 
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defending the body against helminths and some extracellular pathogens. As shown in 

Figure 1.1, Th1 cells produce pro-inflammatory cytokines, such as IFN-γ. These 

cytokines augment the cytotoxicity of macrophages and proliferation of CTLs. 

Differentiation of Th1 cells is driven by IL-12, a cytokine produced by APCs such as 

macrophages and DCs. Th2 cells produce numerous cytokines such as IL-4, IL-5 and 

IL-13. These Th2 cytokines are crucial for humoral immunity by stimulating B cell 

proliferation, antibody class switching, and increasing antibody production. Many of the 

Th2 cytokines also act as part of regulatory mechanisms by counterbalancing Th1 

responses13,138,139. 

 

Originally Th1 cells were believed to mediate EAE, but EAE was exacerbated in IFN-γ 

deficient and IFN-γ receptor deficient mice140,141. This raised the question that another 

subset of T cells different from Th1 cells might be required for the development of 

EAE. Recently, an additional CD4+ Th cell subset was discovered and defined by the 

production of IL-17—Th17 cells15. The master transcription factor for Th17 cells is 

RORγt142 and the primary function of Th17 cells appears to be the clearance of 

pathogens that cannot be effectively dealt with by Th1 or Th2 cells15,143. Th17 cells and 

their cytokines have been recognised to play a crucial role in EAE disease 

development137, because the absence of IL-17 in IL-17 deficient mice144 and in mice 

treated with IL-17 neutralising antibody145 results in considerable amelioration of EAE 

symptoms. Additionally, in adoptive transfer experiments, IL-17 producing CD4+ T 

cells induce EAE whereas the ones that only produced IFN-γ cannot146, indicating that 

Th17 cells are the pathogenic cells of EAE. However, recent evidence also indicates 

that Th1 cells also play a pathogenic role in EAE, in that Th1 cells preferentially 

infiltrate into the non-inflamed CNS to initiate inflammation and facilitate the 

recruitment of Th17 cells147. Therefore, both Th1 and Th17 cell populations are 

involved in EAE development. 

 

As shown in Figure 1.1, a mixture of cytokines that includes IL-6, TGF-β and IL-23 

have been found to be important for Th17 cell development and differentiation148,149. 

IL-6, produced mainly by macrophages and DCs, is an obligatory differentiation factor 

for Th17 cells and is important for EAE development 150,151. IL-6 deficient mice do not 

generate Th17 cells and are resistant to EAE152,153. In addition, TGF-β is also necessary 
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for in vivo Th17 differentiation. Mice defective in TGF-β signalling do not develop 

Th17 cells or succumb to EAE150. Moreover, TGF-β induces the differentiation of 

Tregs in the absence of IL-6146, while the combination of IL-6 with TGF-β favours 

Th17 development and inhibits Foxp3 expression152,154. Therefore, the interplay 

between Tregs and Th17 cells extends beyond their functions, as their development is 

mutually antagonistic. 

 

IL-23, produced by DCs and other APCs, is required for full and sustained 

differentiation of Th17 cells155, although the specific mechanism of IL-23 signalling in 

T cells remains elusive. Recent studies show that the enhanced up-regulation of RORγt 

in activated T cells is dependent on STAT3 induction by IL-23156,157 and IL-23 

signalling is required for Th17 cells pathogenic capacity158. Selective deficiency of 

IL-23 in mice resulted in fewer Th17 cells and these mice developed attenuated EAE155.  

 

 
Figure 1.1 Differentiation of CD4+ T cell lineages 
Naïve CD4+ T cells differentiate into Tregs and three subsets of effector T cells—Th1, Th2 and Th17. 
The differentiation of the CD4+ T cell subsets is dependent on the cytokine milieu (This graph is adapted 
and adjusted from Bettelli et al 2007159). 
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1.7.2 Tregs in EAE 

Tregs are believed to play a key role in the disease regulation in EAE. Adoptive transfer 

of polyclonal naïve CD25+ T cells limits the severity of EAE160,161 and injecting mice 

with anti-CD25 monoclonal antibody accelerated EAE development162. Taken together, 

these experiments clearly illustrate that Tregs profoundly suppress EAE development. 

 

It is believed that autoantigen-specific Tregs are superior over polyclonal Tregs for 

treating autoimmune diseases. This belief is based on the observation that the Tregs 

specific for a pancreatic islet antigen are more potent compared to polyclonal Tregs in 

controlling diabetes in NOD mice163,164. There are two approaches by which 

autoantigen-specific Tregs could be used therapeutically. The first would be by 

expanding the autoantigen-specific Treg numbers in vitro and reintroducing them into 

mice, with the aim of increasing the frequency of Tregs for suppressing the disease. 

Adoptive transfer of in vitro expanded islet-reactive Tregs has been shown to greatly 

inhibit type 1 diabetes in NOD mice164, indicating the potential for in vitro expanded 

myelin-specific Tregs to suppress EAE. The second approach would be the 

administration of an appropriate therapeutic agent that enhances the suppressive effects 

of autoantigen-specific Tregs, by increasing their frequency or suppressive function in 

vivo. Although several recent reports have demonstrated that activating Tregs in vivo 

using a variety of drugs promote the protection of mice against EAE165-167, to my 

knowledge, the evidence for antigen-specific Treg in vivo expansion is limited. 

Nevertheless, a study carried out in our laboratory demonstrated that treating mice with 

a compound consisting of a modified superantigen (mSAg) and MOG35-55 could 

suppress EAE in a MOG35-55 specific manner and the mechanism is hypothesised to be 

expansion or activation of MOG35-55 specific Tregs in vivo168. These studies highlight 

the potential of Treg-based therapies with antigen-specific properties for treating MS 

and other autoimmune diseases. 

 

1.7.3 Suppressive myeloid cells in EAE 

Despite a number of reports on the suppressive myeloid cells such as MDSCs in 

tumours, these cells have been poorly studied in other diseases. To my knowledge, there 

has only been one report describing a suppressive myeloid cell population in 

autoimmune diseases. Zhu et al169 have described a splenic CD11b+Ly6C+ myeloid 

suppressor cell population in the EAE model. These splenic CD11b+Ly6C+ cells from 
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Balb/c mice induced with EAE profoundly suppress the proliferation and cytokine 

production of CD4+ cells pre-activated with anti-CD3/anti-CD28. The suppression of 

CD4+ T cell response is due to apoptosis in the proliferating CD4+ T cells. Both 

inducible nitric oxide synthase (iNOS) expression in the splenic CD11b+Ly6C+ cells 

and IFN-γ production of T cells are essential for this CD11b+Ly6C+ cell-mediated T cell 

suppression169. This study highlights the potential of myeloid suppressor cell-based 

therapy for treating autoimmune diseases.  

 

It remains unclear if the splenic CD11b+Ly6C+ cells from naïve mice have a 

suppressive capability. Zhu et al found that after EAE induction, the CD11b+Ly6C+ 

cells accumulate in the bone marrow, blood, spleen, and CNS. This increase is not 

MOG35-55 specific, because immunisation with CFA/pertussis toxin  (PTxn) alone could 

induce a similar expansion of this cell population169. This finding is contradictory, 

because the accumulation of the suppressive CD11b+Ly6C+ cells corresponds with the 

progression of EAE. Further studies are required to understand what role these cells 

play in the pathogenesis of EAE and their therapeutic value for actively inhibiting EAE. 

 

EAE is a CD4+ T cell mediated disease112 and the myeloid suppressor cells have been 

found to suppress CD4+ T cell proliferation and cytokine production169, therefore, a 

therapy targeting myeloid suppressor cell populations might help to induce or restore 

immunosuppression during EAE. While the existence of myeloid suppressor cells in 

mice and humans is accepted170, much remains to be learnt about the suppressive 

mechanisms of these cells and whether their potential can be exploited as an 

immunotherapy for treating human MS and other autoimmune diseases.   

 

1.8 Superantigen 

Bacterial superantigens are a family of structurally related protein toxins produced 

exclusively by three pathogenic species, Staphylococcus aureus, Streptococcus 

pyogenes and Streptococcus equi. In contrast to the traditional peptide antigens, 

superantigens bind to MHCII molecules outside the peptide binding grooves and to all 

TCRs bearing a particular Vβ chain171. Moreover, superantigens require no or little 

intracellular processing within the APCs in order to associate with MHCII on the cell 

surface172. The simultaneous binding of superantigen to MHCII and TCR stimulates a 

large number of T cells. Conventional antigens presented by MHCII activate 1 in 
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105-106 T cells whereas superantigens stimulate between 2-20% of all T cells173. The 

over-activation of T cells leads to high systemic level of cytokine production such as 

TNF-α and IL-1β and other T cell mediators such like IL-2 and IFN-γ. The 

over-production of these cytokines results in indiscriminate inflammation characteristic 

of fever and toxic shock171-175. The most potent superantigen discovered so far171 is 

Streptococcal mitogenic exotoxin Z variant 2 (SMEZ-2), which is secreted by the Gram 

positive bacterium Streptococcus pyogenes T1174 and has been implicated in 

Streptococcus-mediated disease171.  
 

As superantigens are able to activate a large number of T cells, superantigens are 

suggested to play a role in activating auto-reactive T cells and initiating autoimmune 

diseases176. It has been demonstrated that some superantigens, e.g. Staphylococcal 

enterotoxin A (SEA) and Staphylococcal enterotoxin B (SEB) are able to exacerbate 

EAE177. Paradoxically, it is also reported that the administration of superantigens can 

suppress EAE. For example, pre-treatment with SEB blocks MBP induced EAE178, and 

the administration of high doses of Staphylococcal enterotoxin E (SEE) also suppresses 

EAE. The mechanism for the superantigen-mediated EAE suppression is proposed to be 

the deletion or anergy of auto-reactive T cells caused by the prolonged exposure to 

superantigens179-181. A study168 carried out in our laboratory showed that the 

administration of a modified version of SMEZ-2 superantigen conjugate with the 

MOG35-55 peptide (SM-MOG35-55) into mice suppressed EAE in a MOG35-55 specific 

manner. Hence, the modified superantigen (mSAg) provides a potential tool for 

developing an immunotherapy for EAE and human MS.  

 

1.9 Aims and hypotheses 

The overall goal of this thesis is to explore the potential of immunosuppressive cells to 

prevent/suppress EAE, the murine model for MS, with the ultimate goal of developing a 

potential immunotherapy for MS. There are three specific aims in this thesis: 

 
1. To identify the cells involved in the mSAg-MOG35-55 mediated suppression of EAE 

and to understand the cellular and molecular changes during the mSAg-MOG35-55 

mediated immune suppression in vivo.  

2. To investigate the potential for targeting of suppressor cells by mSAg-MOG35-55 for 

enhanced EAE suppression  



Chapter 1: General Introduction 
 

26 

3. To evaluate the therapeutic potential of mSAg-MOG35-55 in EAE. 

 

In considering these three aims, I put forward the following alternative hypotheses: 

 

Hypothesis 1: SM-MOG35-55 expands and/or activates a population of MOG35-55-specific 

Tregs in vivo, which inhibit the self-reactive disease-causing CD4+ T cells. 

 

Hypothesis 2: SM-MOG35-55 activates non-Treg suppressor cells in vivo, which inhibit 

the self-reactive disease-causing CD4+ T cells. 

 



 

 

 
Chapter 2:  

 

Materials and Methods 
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2.1 Mice 

2.1.1 Maintenance and ethical approvals 

All mice were bred and maintained on standard laboratory food and water ad libitum in 

the Biomedical Research Unit of the Malaghan Institute of Medical Research. All 

animal studies were approved by the Victoria University of Wellington Animal Ethics 

Committee and performed in accordance with the guidelines of the Victoria University 

of Wellington Animal Ethics Committee, New Zealand (Ethics approval numbers 

2007-R8M and 2006-R19).  

 

2.1.2 Mouse strains 

C57BL/6J mice bearing H-2b were originally purchased from the Jackson Laboratory 

(Bar Harbour, ME, USA) and were maintained by inbreeding.  

 

Foxp3-GFP mice harbouring a GFP-Foxp3 fusion protein reporter knock-in allele 

(B6×129, Foxp3-GFP-g2) were imported from the University of Washington (Seattle, 

WA, USA), and have been described by Fontenot et al182.  The Foxp3-GFP transgenic 

mice utilised in this study had been backcrossed to C57BL/6J for more than ten 

generations and were maintained by breeding C57BL/6J males with Foxp3-GFP 

transgenic females. 

 

2D2 mice expressing transgenic TCRs specific for the MOG35-55 peptide 

(MEVGWYRSPFSRVVHLYRNGK) presented by IAb were obtained from Harvard 

Medical School (Boston, MA, USA). The 2D2 mice were derived by microinjection of 

cDNA encoding a TCR with reactivity to MOG35-55 peptide expressing the Vα3.2 and 

Vβ11 TCR chains into oocytes of C57BL/6J mice183. The transgenic mice were 

maintained by breeding C57BL/6J males with 2D2 TCR transgenic females. 

 

OTII mice expressing the Vα2 and Vβ5.2 chain TCRs specific for OVA323-339 peptide 

(ISQAVHAAHAEINEAGR) presented by IAb were originally obtained from Professor 

Frank Carbone, Melbourne University (Melbourne, Victoria, Australia). The OTII mice 

were generated using a combination of cDNA- and genomic DNA- based construct184. 

The OTII transgenic mice utilised in this study have been backcrossed to C57BL/6J for 

more than eight generations and were maintained by inbreeding. 
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B6.SJL-PtprcaPep3b/BoyJARC mice were created by backcrossing the inbred strain 

SJL expressing the Ptprca gene (CD45.1) onto the C57BL/6J background. This strain 

was obtained from the Animal Resources Centre (Canning Vale, WA, Australia) as 

CD45 congenic pairs for CD45.2+ C57BL/6J mice, and maintained by inbreeding. 

 

B6AaO/AaO MHC class II deficient (MHCII-/-) mice185 were created by targeted 
mutation of MHC class II gene Aa in embryonic stem cells derived from C57BL/6J 

mice. This strain was provided by Dr. H. Bluethmann (Hoffmann-La Roche, 

Switzerland) and was maintained by inbreeding. 

 

Indoleamine-2,3-dioxygenase deficient (IDO-/-) mice are deficient in the enzyme IDO, 

which is a tryptophan degrading enzyme186. IDO-/- mice were generated by replacing 

exons 3-5 with a targeting vector containing beta-galactosidase and neomycin resistance 

genes. Exon 2 was also disrupted with a TAG stop codon. The breeding pairs were 

imported from The University of Sydney (Sydney, NSW, Australia) and were 

maintained by inbreeding. 

 

The IFN-γ deficient (IFNγ-/-) strain was generated by targeted disruption of the IFN-γ 

gene. The breeding pairs were imported from the Walter and Eliza Hall Institute of 

Medical Research (Melbourne, Victoria, Australia) and have been described by Dalton 

et al187. The IFNγ-/- mice utilised in this study were maintained by inbreeding. 

 

The Foxp3-GFP×2D2 strain was generated by crossing female 2D2 mice with male 

Foxp3-GFP mice. This strain was maintained by inbreeding. 

 

2.2 Peptides  

The MOG35-55C peptide (H-CMEVGWYRSPFSRVVHLYRNGK-OH) is an IAb binding 

peptide derived from the mouse MOG sequence and corresponds to amino acids 35-55 

with an additional cysteine at the N-terminus. This peptide was synthesised by 

Mimotopes (Victoria, Australia) with a purity of  >97%. 

 

The OVA323-339C peptide (H-CISQAVHAAHAEINEAGR-OH) is an IAb binding 

peptide derived from the OVA sequence and corresponds to amino acids 323-339 with 



Chapter 2: Materials and Methods 
 

30 

an additional cysteine at the N-terminus. This peptide was synthesised by Mimotopes 

(Victoria, Australia) with a purity of  >97%. 

 

2.3 Conjugation of peptides to mSAg 

The modified SMEZ-2 (mSAgs) were provided by Professor John Fraser (The 

University of Auckland, New Zealand) at 0.2 mM in 20 mM phosphate buffer 

(pH=6.0). These mSAgs are the mutated toxoid form of the wild type SMEZ-2 isolated 

from S. pyogenes strain 2035173. SMEZ-2-M1 (SM) has no TCR binding ability and 

contains three alternations in the TCR binding site: W75L, K182Q, and D42C, whereas 

SMEZ-2-DM (DM) is defective in both TCR and MHCII binding and contains the 

mutations Y18A, D42C, H202A and D204A. The D42C mutation introduces an 

exposed cysteine into the former TCR binding site for direct conjugation of peptides. 

 

2.3.1 Conjugation of the MOG35-55c peptide to mSAg 

mSAg was incubated with 10-fold molar excess of MOG35-55c (2 mM in 0.1% acetic 

acid) at room temperature overnight. The MOG35-55c peptide and mSAg were 

conjugated through the disulphide bond formed by the cysteine residue. The uncoupled 

MOG35-55c peptide was removed by spinning through a 10 KDa cut-off vivaspin column 

500 (Sartorius, Germany). The conjugation of the mSAg with peptide was subsequently 

examined by a NuPage gel (Invitrogen, Carlsbad, CA, USA) under non-reducing 

conditions. Experimental procedures were carried out in accordance with the 

manufacturer’s protocols. Following spinning through a Spin-X polypropylene 

microcentrifuge tube containing a cellulose acetate membrane filter (0.22 µm pore size) 

(Corning Inc., Lowell, MA, USA) to remove bacteria and particles, the mSAg-peptide 

conjugates were stored at 4°C. 

 

2.3.2 Conjugation of the OVA323-339c peptide to mSAg 

Different from the MOG35-55c peptide conjugation protocol described above, the mSAg 

used for the conjugation with OVA323-339c was first reduced by incubation with 0.5 mM 

Tris-(2-carboxyethyl)phosphine, hydrochloride (TCEP-HCl) (Thermo scientific, 

Worcester, MA, USA) at room temperature for 30 minutes. Subsequently, TCEP-HCl 

was removed by spinning the mSAg-TCEP solution through a 10 KDa cut-off vivaspin 

column 500 (Sartorius, Germany). The reduced mSAg was then concentrated to 0.2 mM 

in 20 mM phosphate buffer (pH=6.0) (Appendix 3) and incubated with 10-fold molar 
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excess of OVA323-339c (2 mM in 0.1% acetic acid) at room temperature overnight. The 

OVA323-339c peptide and mSAg were coupled through the disulphide bond formed by the 

cysteine residues. The uncoupled OVA323-339c was removed by spinning through a 

10 KDa cut-off vivaspin column 500 (Sartorius, Germany). The conjugation of the 

mSAg with OVA323-339c was subsequently examined by a NuPage gel (Invitrogen, USA) 

under non-reducing conditions. Experimental procedures were carried out in accordance 

with the manufacturer’s protocols. After spinning through a Spin-X polypropylene 

microcentrifuge tube containing a cellulose acetate membrane filter (0.22 µm pore size) 

(Corning Inc., USA) to remove bacteria and particles, the mSAg-peptide conjugates 

were stored at 4°C. 

 

2.4 Immunisations for EAE suppression 

2.4.1 EAE induction and clinical evaluation 

EAE was induced in 8-12 week old C57BL/6J mice by subcutaneous (s.c.) 

immunisation into hind limb flanks with 0.2 ml of an emulsion containing 50 µg 

MOG35-55 peptide (Mimotopes, Australia) in CFA (Difco Laboratories, Sparks, MD, 

USA), supplemented with 500 µg heat-killed Mycobacterium tuberculosis strain 

H37RA (Difco Laboratories). The injected mice also received 250 ng pertussis toxin 

(PTxn) (List Biological, Campbell, CA, USA) in 200 µl PTxn buffer (Appendix 3) on 

day 1. 

 

Mice were closely monitored every day after immunisation and during the course of 

EAE development. Paralysed mice were afforded easier access to food and water. Mice 

were scored according to the following scale: 0, unaffected; 1, loss of tail tonicity; 2, 

flaccid tail; 3, flaccid tail and affected hind leg or legs; 4, paralysed hind legs (both); 5, 

hind body paresis, moribund state. Moribund mice were sacrificed. Mice usually 

developed clinical signs of acute EAE 12-14 days after immunisation. The incidence of 

EAE was between 60-100% in both females and males.  

 

2.4.2 EAE suppression 

Two versions of mSAg-MOG35-55 were administered to mice with different routes and 

doses to suppress EAE. 
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2.4.2.1 Subcutaneous treatment 

Different doses of mSAg-peptide (MOG35-55 or OVA323-339) were mixed with 

incomplete Freund’s adjuvant (IFA) (Difco Laboratories), CFA or PBS and injected s.c. 

into the necks of C57BL/6J mice at different times. In the co-immunisation scheme, 

DM-MOG35-55 or SM-MOG35-55 was added to the EAE inducing emulsion, emulsified 

and administered to mice on day zero. 

 

2.4.2.2 Epicutaneous treatment  

Mice were anaesthetised by intraperitoneal (i.p.) injection of ketamine/xylazine 

anaesthetic (Appendix 3) at a volume of 200 µl containing 20 mg ketamine (Phoenix 

Pharm Distributors Ltd, New Zealand) and 0.6 mg xylazine (Phoenix Pharm 

Distributors Ltd, New Zealand) per mouse. The ear skin on the dorsal side was 

tape-stripped 12 times to disrupt the epidermal barrier. On the second day, the 

tape-stripped mice were anaesthetised by i.p injection of 1.6% pentobarbitone 

anaesthetic (National Veterinary Supplies Ltd, New Zealand) (Appendix 3) at a dose of 

200 µl per mouse. An emulsion that consisted of the same volume of PBS and cream 

plus SM-MOG35-55 was applied to the mouse ears with 20 µl per ear. In this treatment, 

each mouse received 100 ng SM-MOG35-55.  

 

2.4.2.3 Adoptive transfer of cells 

In this study, the purified CD25+ lymphocytes, F4/80+ splenocytes or the blood 

CD11b+Ly6G- cells were adoptively transferred to mice to test if any of these cells 

could transfer the suppressive effect of EAE by mSAg-MOG35-55. The cells from either 

naïve mice or mice that had been injected s.c. with mSAg-MOG35-55 five days earlier 

were purified using appropriate cell purification method described in Section 2.7. 

Varied numbers of the purified cells were subsequently transferred to naïve C57BL/6J 

or CD45.1 congenic mice by injecting 200 µl cells in Hank's buffered salt solution 

(HBSS) (Invitrogen, USA) into the lateral tail vein. The recipient mice were induced 

with EAE either before or after the adoptive transfers. 

 

2.4.3 Statistical analysis for EAE suppression 

Unless stated, analysis of statistical significance of the EAE treatment between groups 

was performed using a one tailed Mann Whitney U test and the statistical programme 
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Prism (GraphPad Software Inc., San Diego, CA, USA). A p-value of less than 0.05 was 

considered significant. 

 

2.5 Histology 

Mice were sacrificed by asphyxiation with carbon dioxide (CO2) and the spinal cords 

were removed by flushing the spinal column with sterile phosphate buffered saline 

(PBS) (Invitrogen, USA).  The spinal cords were fixed in immunohistochemistry zinc 

fixative (BD Biosciences, Sparks, MD, USA), embedded in paraffin and sectioned 

longitudinally. Three serial 6 µm thick sections were mounted on slides and stained 

with hematoxylin and eosin (H&E) by the Pathology Department at the Wellington 

School of Medicine (University of Otago, New Zealand). The H&E stained slides were 

analysed with an Olympus BX51 microscope and Olympus DP70 digital camera and 

analysis software (Olympus, Center Valley, PA, USA). 

 

2.6 Ex vivo techniques 

2.6.1 Preparation of single cell suspension from lymphoid tissue 

Mice were sacrificed by CO2 asphyxiation followed by cervical dislocation. The lymph 

nodes, spleens and thymi were removed and placed in complete Iscoves modified 

Dulbecco’s medium (cIMDM) (Invitrogen, USA) containing 5% fetal calf serum (FCS) 

on ice (Appendix 3). A single cell suspension was prepared by dissociating tissues 

through a 100 µm cell strainer (BD Biosciences, USA) and washing into a 50 ml Falcon 

tube in cIMDM. In experiments where the spleen was processed, red blood cells were 

lysed by resuspending splenocytes in 5 ml of red blood cell lysis buffer (Appendix 3) 

per spleen. The cells were subsequently washed twice in cIMDM by centrifuging at 600 

g for three minutes in a Megafuge 2.0R centrifuge (Heraeus Instruments, Germany). 

The number of live cells was determined using a Beckman coulter Z2 cell and particle 

counter (Beckman Coulter Inc, Miami, FL, USA), or alternatively, by trypan blue 

exclusion (trypan blue stain 0.4%, Invitrogen, USA) using a haemocytometer (Boeco, 

Germany). 

 

2.6.2 Preparation of single cell suspension from the blood  

Mouse blood was harvested by cardiac puncture and the blood from each mouse was 

mixed with 700 µl of anticoagulant Alservers solution (Appendix 3) and stored on ice. 

Eppendorf tubes containing this blood and Alservers solution were subsequently spun in 
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a microlitre centrifuge Biofuge Fresco (Heraeus Instruments, Germany) for 10 

minutes at 1400 g. The supernatant containing plasma and Alsevers solution was 

removed and discarded after the spin. The cells were then resuspended in an appropriate 

solution dependent upon experimental requirements.  

 

2.6.3 Preparation of single cell suspension from the CNS 

Mice were sacrificed by asphyxiation with CO2 before the removal of the spinal cords 

and brains. The spinal cords and brains were removed and transferred to a Petri dish and 

were cut into small pieces using a sterile blade. The small pieces of tissue were 

resuspended in 5 ml PBS containing 2.4 mg/ml collagenase type II (Invitrogen, USA). 

After a 30-minute incubation at 37 °C, the tissue was passed through an 18-gauge 

needle to break up clumps and subsequently filtered through a 100 µm cell strainer. 

After washing twice with FACS buffer, the cells were resuspended in 10 ml 37% 

Percoll density gradient (Appendix 3) (Pharmacia Biotech, Sweden) and spun at 600 g 

for 30 minutes in a Megafuge 2.0R centrifuge (Heraeus Instruments, Germany) with the 

brake disengaged. This gradient separation produced a surface layer of approximately 

5 ml of volume, which contained myelin and Percoll. This layer was taken off without 

disturbing the cell pellet. The cell pellet together with the remaining buffer was then 

washed twice in cIMDM to remove traces of Percoll and resuspended in an appropriate 

solution dependent upon experimental requirements. 

 

2.6.4 Preparation of single cell suspension from the peritoneal cavity 

Mice were sacrificed by CO2 exposure. A 3 ml solution of PBS containing 25 U/ml 

heparin (Hospira Australia Pty Ltd, Australia) (Appendix 3) was injected into the 

peritoneum near the inguinal fat pads. The inflated peritoneum was then massaged for 

30 seconds. Following this massage step, the fluid was withdrawn using a syringe 

needle and transferred to a 50 ml Falcon tube and kept on ice. The cells were 

subsequently washed and resuspended in an appropriate solution dependent upon 

experimental requirements. 

 

2.6.5 Preparation of single cell suspension from the liver 

Mice were sacrificed by CO2 exposure and perfused with 10 ml PBS by intracardiac 

infusion. Livers were then removed and cut into small pieces and incubated at 37°C for 
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one hour in 10 ml Iscoves modified Dulbecco’s medium (IMDM) containing 2.4 mg/ml 

collagenase type I (Invitrogen, USA) and 10 µg/ml DNase I (Roche Applied Science, 

USA). Cells were then forced through an 18-gauge needle and passed through a 100 µm 

cell strainer to obtain single cell suspension. After being spun at 600 g for three 

minutes, the cells were resuspended in 25 ml of room temperature pre-warmed IMDM. 

A 10 ml solution of 60% Percoll was placed under the layer of cells in IMDM using a 

glass Pasteur pipette. After centrifugation at 600 g for 20 minutes at room temperature 

with the brake disengaged, lymphocytes located in the gradient interface were collected 

and diluted in IMDM. After being washed twice in IMDM to remove traces of Percoll, 

the cells were then resuspended in an appropriate solution dependent upon experimental 

requirements. 

 

2.7 Cell purification 

2.7.1 Magnetic cell separation  

Single cell suspension was prepared as described in Section 2.6. Before the separation 

step, cells were filtered through a nylon gauze filter to remove cell clumps. Flow 

cytometric analysis was performed after the purification step to determine cell purity. 

  

2.7.1.1 MACS purification of CD4+ and CD8+ T cells 

Spleens and lymph nodes were used as a source for CD4+ and CD8+ cells. Single cell 

suspension was prepared from spleens and lymph nodes as described in Section 2.6.1. 

Non-specific binding cells were depleted from the suspension by passing through an 

AutoMACS separator (Myltenyi Biotec, Germany) containing an AutoMACS 

magnetised column (Myltenyi Biotec, Germany), to which the cells non-specifically 

bind. The unbound fraction was then resuspended at 5x108 cells/ml in AutoMACS 

running buffer (Appendix 3). For every 5x107 cells, 10 µl CD4 or CD8 beads (Miltenyi 

Biotec, Germany) were added. After 30 minutes incubation on a spinning wheel at 4°C, 

the cells were washed twice with AutoMACS running buffer. CD4+ or CD8+ cells were 

then positively selected by passing through the AutoMACS column. To achieve high 

purity, the cells from the positive fraction were passed through the AutoMACS column 

again and the positive fraction was collected. After passing the positive fraction through 

the column for the second time, the purity could reach >99%.  
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2.7.1.2 MACS purification of CD4+CD25+ T cells and CD4+CD25- T cells 

Mice used as a source for CD4+CD25+ cells were injected with 150 µg of CD8 antibody 

(Clone 2.43) i.p. to deplete the CD8+ cell population. One day after the CD8 antibody 

administration, mice were sacrificed and the lymph nodes were collected. Single cell 

suspension of lymphocytes was prepared as described in Section 2.6.1. The subsequent 

purification of the two subpopulations of T cells (CD25+CD4+ and CD25-CD4+) from 

the lymphocytic cell suspension was performed using a three-step procedure. Firstly, 

non-specifically binding cells were depleted by passing the single cell suspension 

through an AutoMACS column. The unbound fraction was collected and resuspended at 

5x108 cells/ml in AutoMACS running buffer. Secondly, 0.5 µg CD25-PE antibody 

(Clone PC61, BD biosciences, USA) was added to each 800 µl cell suspension. After 15 

minutes incubation on ice, the cells were washed twice in 50 ml AutoMACS running 

buffer and then resuspended at 5x108 cells/ml in AutoMACS running buffer. For every 

5x107 cells, 5 µl PE-beads (Miltenyi Biotec, Germany) were added. After 30 minutes 

incubation on a spinning wheel at 4°C, the cells were washed twice with AutoMACS 

running buffer. After passing through the AutoMACS column, CD25+ cells were 

positively selected, leaving CD25- and other cells in the negative fraction. Thirdly, the 

CD4+ cells were positively selected from the CD25- cell fraction as described in 

Section 2.7.1.1.  

 

2.7.1.3 Two step purification of the blood CD11b+Ly6G- cells 

A unique two-step purification method was established in this study to isolate the blood 

CD11b+Ly6G- cells. The blood was isolated from mice via cardiac puncture and the 

cells were processed as described in Section 2.6.2.  

 

In the first step of cell purification, a density gradient was applied to eliminate the 

Ly6G+ neutrophils. The cells gained from every 700 µl blood were resuspended in 

1.4 ml PBS and transferred to a 15 ml Falcon tube. The same volume of 

Lympholyte-Mammal cell separation medium (Cedarlane Laboratories Limited, 

Canada) was added to the bottom of the Falcon tubes using a glass Pasteur pipette. The 

tubes were then spun in a Megafuge 2.0R centrifuge (Heraeus Instruments, Germany) at 

800 g at room temperature for 20 minutes with the brake on. After centrifugation, the 

interface containing blood CD11b+Ly6G- cells was carefully removed and transferred to 

a new tube containing 10 ml cIMDM. Subsequently, the cells were re-spun at 800 g for 
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10 minutes to pellet leukocytes and the cells were resuspended at 1x106 cells/ml in 

AutoMACS running buffer. 

 

In the second step, a combination of antibodies with magnetic beads was utilised for 

CD11b+Ly6G- cell purification. Before this step, the cells were passed through an 

AutoMACS column to get rid of non-specifically binding and dead cells. The cells were 

then resuspended at 5x108 cells/ml in AutoMACS buffer. For every 800 µl cell 

suspension, 1 µl CD11b-PE antibody was added. After incubation on ice for 15 

minutes, the cells were washed twice to get rid of any excess CD11b-PE antibody. The 

cells were then resuspended at 5x108 cells/ml in AutoMACS buffer. For every 5x107 

cells, 10 µl anti-PE beads (Miltenyi Biotec, Germany) were added. After a 30-minute 

incubation while on a spinning wheel at 4°C, cells were washed twice in AutoMACS 

buffer. CD11b+ cells were positively selected by passing through a MACS column. The 

level of purity achieved for the CD11b+Ly6G- cells enrichment typically exceeded 70%. 

 

2.7.1.4 Depletion of MHCII+ cells using BioMag beads 

Single cell suspension was prepared as described in section 2.6.1. Cells were then 

resuspended at 1x109 cells/ml in FACS buffer (Appendix 3). Antibody against MHCII  

(Clone M5/114) was added to the cells at 10 µg/ml. After incubation on ice for 15 

minutes, the cells were washed twice to get rid of excess antibody and resuspended at 

5x108 cells/ml in FACS buffer. The BioMag beads (Bangs Laboratories Inc., Fishers, 

IN, USA) were subsequently added to the cell suspension at a ratio of beads:cells = 3:1. 

After a 30-minute incubation on the spinning wheel at 4°C, cells were washed twice 

with FACS buffer. The tube containing the cells was placed on DynaMag-15 magnet 

(Invitrogen, USA) for 30 seconds and the supernatant containing the MHCII- cells was 

collected.  

 

2.7.1.5 Purification of CD4+ cells using Dynabeads 

CD4+ cells were purified using the Dynabeads FlowComp Mouse CD4+ kit (Invitrogen, 

USA) and DynaMag-15 magnet (Invitrogen, USA). Experimental procedures were 

carried out in accordance with the manufacturer’s protocols. 
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2.7.1.6 Purification of CD11c+ cells from the spleen 

Spleens were collected from mice and placed in cold IMDM before processing. For 

every spleen, 2 ml IMDM containing 1 mg/ml collagenase type II (Invitrogen, USA) 

and 0.2 mg/ml DNase I (Roche Applied Science, USA) was injected into the spleen. 

After 30 minutes incubation at 37°C, the spleens were passed through an 18-gauge 

needle to break up clumps and were filtered through a 100 µm cell strainer. After being 

washed with FACS buffer twice, the cells were resuspended in 400 µl Automacs buffer 

per 108 cells.  For every 108 cells, 25 µl CD11c microbeads (Miltenyi Biotec, Germany) 

was added. After 30 minutes incubation on a spinning wheel at 4°C, cells were washed 

twice with AutoMACS buffer. CD11c+ cells were positively selected by passing 

through a MACS column. The level of purity achieved for the CD11c+ cells typically 

exceeded 90%. 

 

2.7.2 FACS sorting 

For Foxp3-GFP+ T cell purification, Foxp3-GFP+ cells were enriched prior to FACS 

sorting by depleting MHCII+ cells from total lymph node cell suspension using BioMag 

beads (Section 2.7.1.4). For blood DM+ cell purification, the cells were enriched by the 

two-step purification prior to FACS sorting (Section 2.7.1.3). Cells were then washed 

twice and resuspended at 1x108 cells/ml in FACS buffer. Cell sorting was performed 

using the FACSDiVa cell sorter (Beckton Dickinson, USA). Unlabelled samples and 

single labelled controls for each fluorochrome were included for setting voltage and 

compensation parameters. 

 

2.8 Bone marrow dendritic cell culture 

Mouse bone marrow was flushed out of each femur and tibial shaft with 2 ml cIMDM 

using a syringe. Clumps were broken up by resuspending with a pipette and passed 

through a 100 µm cell strainer to remove particles. After washing the bone marrow cells 

twice with cIMDM, the viable cells were adjusted to a concentration of 4×105 cells/ml 

in cIMDM containing 4% granulocyte-macrophage colony-stimulating factor 

(GM-CSF, provided by Professor Franca Ronchese, Malaghan Institute, New Zealand) 

and 0.2% IL-4 (provided by Professor Franca Ronchese). The single cell suspension 

was plated at 5 ml/well in a six-well plate. Cells were fed every two days from day 

three, each time by replacing 2 ml old medium with 2 ml fresh complete IMDM 



Chapter 2: Materials and Methods 
 

39 

containing 10% GM-CSF and 0.5% IL-4. On day six, 100 ng/ml LPS (Sigma-Aldrich, 

St. Louis, MO, USA) was added to induce cell activation/maturation. Non-adherent 

cells were collected on day seven (routinely containing 70-80% CD11c+ cells). 

 
2.9 Cytokine detection 

Cytokine levels from serum and culture supernatant were assayed using the Bio-Plex 

cytokine detection system (Bio-Rad, Hercules, CA, USA). L-filter plates (Linco 

Research In., St. Charles, MO, USA) were used for the assay. The wells were pre-wet 

with 100 µl assay buffer (Appendix 3) before use. The sample buffer (the same buffer 

used in the culture supernatant) containing 0.65 µl cytokine beads was added to each 

well. After washing the wells containing the beads twice, 50 µl samples or Bio-Plex 

standards (Bio-Rad, USA) were added to the wells. After incubation on an 

IKA-Schüttler MTS plate shaker (IKA Labortechnik, Germany) at 300 rpm for 30 

minutes at room temperature, the plate was washed three times with assay buffer. A 

25 µl volume of detection antibody mix made up of antibodies that had been diluted 300 

times was added to each well. After a 30-minute incubation at room temperature while 

on a shaker at 300 rpm, the wells were washed twice with assay buffer. The secondary 

antibody streptavidin-PE (BD Biosciences, USA) diluted 1000 times was then added to 

the wells at 50 µl per well. After a further 10-minute incubation at room temperature, 

the samples were rinsed and resuspended in 125 µl assay buffer. The Bio-Plex Array 

Reader, Microplate plateform, and Bio-Plex Manager software (Bio-Rad, USA) were 

utilised for the reading of experimental results and data analysis.  

 

2.10 Fluorescent labelling of cells and analysis by flow cytometry 

2.10.1 Detection of surface markers 

Single cell suspension was prepared and washed once with FACS buffer containing 

0.1% sodium azide and 5% FCS (Appendix 3) and resuspended at 0.2-1 x 106 cells/ml. 

The cell suspension was distributed to the wells of a 96-well plate in 200 µl aliquots. 

The fluorophore conjugated antibodies that target against cell surface markers were 

diluted at an appropriate dilution dependent upon experimental requirements. Fc 

receptor blocking antibodies were added to this antibody mix at a concentration of 

10 µg/ml (Clone 2.4G2). This antibody mix was added to each well containing cells at a 

volume of 50 µl per well and incubated at room temperature for 10 minutes. 
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Isotype-matched antibodies were used as experimental controls. Following incubation, 

the cells were washed twice with 200 µl FACS buffer. In experiments where cells were 

labelled using biotinylated antibodies, the cells were incubated for a further 10 minutes 

at room temperature with a streptavidin-conjugated fluorochrome after this wash step. 

Cells were resuspended in 200 µl FACS buffer for analysis by flow cytometry. Stained 

cells were gated according to forward- and side- scatter characteristics, and analysed 

using a FACSCalibur flow cytometer (BD Biosciences, USA). Samples with 

isotype-matched antibody were used as negative controls to determine proper region or 

window setting. Fluorescence data were analysed with FlowJo 8.8.3 (Tree Star Inc., 

Ashland, OR, USA) after subtraction of background isotype-matched values. 

 

2.10.2 Foxp3 intracellular staining  

Foxp3 intracellular staining was performed using a Foxp3 staining kit (eBioscience Inc., 

San Diego, CA, USA). After staining for cell surface antigens as described in 

Section 2.10.1, the cells were washed with cold PBS instead of FACS buffer to 

minimise protein binding. After this wash step, the cells were resuspended in 200 µl 

freshly prepared fix/perm working solution provided in the kit, and incubated at room 

temperature for 20 minutes. After the incubation, the cells were washed once with 

permeabilisation buffer. The diluted anti-mouse/rat Foxp3-APC antibody (diluted 200× 

in permeabilisation buffer) was added to the cells and incubated at room temperature for 

a further 15 minutes. After incubation and being washed twice with permeabilisation 

buffer, the cells were resuspended in FACS buffer and analysed by flow cytometry. 

 

2.10.3 CFSE labelling of cells 

Carboxyfluorescein diacetate succinimidyl ester (CFSE) labelling has been used as a 

routine procedure for the analysis of cell division both in vivo and in vitro188. This 

method relies on the labelling of long-lived intracellular molecules with 

carboxyfluorescein. Following each cell division, the equal distribution of these 

fluorescent molecules between daughter cells allows cell proliferation to be tracked188. 

  

Single cell suspension was prepared as described in Section 2.6.1. Cells were 

resuspended in 20 ml HBSS containing 2 mM ethylenediaminetetraacetic acid (EDTA) 

(Invitrogen, USA). The cell numbers in each tube did not exceed 4x108 cells. Cells were 
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subsequently labelled with 200 nM CFSE (Invitrogen, USA). After approximately a 

seven-minute incubation at room temperature, the tube was filled up with cIMDM 

containing 5% FCS and spun at 800 g for five minutes. After being washed twice, the 

cells were then resuspended in an appropriate solution dependent upon experimental 

requirements. The labelling of cells by CFSE was analysed by flow cytometry. 

 

2.10.4 Detecting apoptotic and necrotic cells 

Annexin V-FITC (an early apoptotic marker) (BD Biosciences, USA) in combination 

with the vital dye propidium iodidie (PI) (Sigma-Aldrich, USA) was used to identify 

viable cells. Annexin V is a calcium dependent phospholipid binding protein that has a 

high affinity for phosphatidylserine189. Externalisation of phosphatidylserine from the 

inner leaflet of the plasma membrane to the outer leaflet is associated with cellular 

apoptosis189. PI binds to DNA in the nucleus when the cell membrane has lost its 

integrity and become permeable. Double negative populations indicate viable cells, while 

annexin-V single positives indicate early apoptotic cells. PI single positives are necrotic 

cells while annexin-V/PI double positives are late stage dying and dead cells.  

 

The cells were washed twice with excess chilled Annexin V buffer (Appendix 3) and 

incubated in the dark at 4°C for 15 minutes with 1 µl Annexin V-FITC antibody (BD 

Biosciences, USA) diluted with 100 µl Annexin V buffer. After incubation, these cells 

were washed twice with Annexin V buffer. Just prior to FACS analysis, PI was diluted 

1:8000 times and added to the samples.  

 

2.10.5 Intracellular cytokine staining 

Prior to intracellular labelling of cytokines, cells were resuspended in 24-well plates at 

1-5×106 cells/ml in cIMDM and stimulated with stimuli e.g. phorbol 12-myristate 

13-acetate (PMA) (Invitrogen, USA) and ionomycine (Sigma-Aldrich, USA). Monensin 

(Calbiochem, San Diego, CA, USA) was added to the cells from the beginning of the cell 

culture at 2 µM to block intracellular protein transport. Cells were incubated at 37°C for 

five hours.  

 

After in vitro stimulation, these cells were labelled with antibodies for cell surface 
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markers as described in Section 2.11.1. Subsequently, the cells were fixed and 

permeabilised using a BD Cytofix/Cytoperm Kit (BD Biosciences, USA). Briefly, the 

cells were washed with FACS buffer and fixed for 20 minutes by incubating with 200 µl 

BD Cytofix/Cytoperm solution at room temperature. The cells were then washed twice 

with BD Perm/Wash buffer. Antibodies for cytokines or the respective isotype control 

were added to 50 µl FACS buffer and incubated with the cells for 30 minutes on ice. 

Following the incubation, the cells were washed twice more with cold BD Perm/Wash 

buffer and subsequently resuspended in 200 µl FACS buffer and kept at 4°C before 

analysis by flow cytometry 

 

2.11 In vitro cell functional assays 

2.11.1 Proliferation assay 

Cells were plated in triplicates in a 96-well plate at 2x105 to 1x106 cells/ml plus 

appropriate peptides or antibodies in 200 µl cIMDM dependent on the individual 

experiment. For plate-bound anti-CD3/anti-CD28 proliferation assays, the 96-well 

plates were coated with anti-CD3 and anti-CD28 antibodies (concentration is indicated 

in individual experiment) in PBS overnight at 37°C. Before adding cells, the plate was 

washed three times using PBS. Cells were incubated in the plate for 72 hours. After 72 

hours, 0.25 µCi [3H]-thymidine (GE Healthcare, UK) was added to each well for 

additional 8-16 hours. The cells were harvested to filtermats (PerkinElmer life sciences, 

Finland) using an automated cell harvester (Tomtec Inc., Hamden, CT. USA) and read 

on a Topcount Microplate scintillation counter (Wallac, Woodbridge, ON, USA).  

 

2.11.2 Suppression assay 

The suppression of T cell proliferation by suppressor cells was evaluated using either 

[3H]-thymidine uptake or CFSE dilution based assay. 

 

2.11.2.1 [3H]-thymidine uptake based suppression assay 

Purified suppressor cells such as the blood CD11b+Ly6G- cells or Tregs were plated in 

triplicates in a 96-well round-bottom plate. The suppressor and responder cells were 

cultured together at ratios of 1:1, 1:2, 1:4 and 1:8 with the same numbers of responder 

cells in each well. Cells were stimulated by different stimuli and incubated at 37°C for 

different time periods dependent upon experimental requirements. The total volume of 
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medium in each well was adjusted to 175 µl, and 0.25 µCi of [3H]-thymidine (GE 

Healthcare, UK) was added to each well and incubated for an additional 8-16 hours. 

The cells were harvested to filtermats (PerkinElmer Life Sciences, Finland) using an 

automated cell harvester (Tomtec Inc., USA) and read on a Topcount Microplate 

scintillation counter (Wallac, USA).  

 

Suppression was calculated using the following formula: 

  

[1-cpm(target cells with suppressor cells)/cpm(target cells alone)]×100%190 

 

2.11.2.2 CFSE dilution based suppression assay  

The responder cells were labelled with CFSE as described in Section 2.10.3. The 

mixture of CFSE labelled responder cells and suppressor cells were plated in triplicates 

in a 96-well round-bottom plate. The suppressor and responder cells were cultured 

together at ratios of 1:1, 1:2, 1:4 and 1:8 with the same number of responder cells in 

each well. Cells were stimulated using different stimuli according to experimental 

requirements. The total volume of medium in each well was adjusted to 175 µl. Cells 

were incubated at 37°C for 72 hours, and the cell proliferation was measured by CFSE 

dilution using flow cytometry. 

 

2.11.3 Statistical analysis for cell proliferation and suppression             

Unless stated, analysis of statistical significance of cell proliferation and suppression 

was performed using One-way analysis of variance (ANOVA) followed by Bonferroni 

tests and the statistical program Prism (GraphPad Software Inc., USA). A p-value of 

less than 0.05 was considered significant. 

 

2.12 Morphological stain for cells 

Cells were spun onto a slide (LabServ, Australia) with a Shandon Cytospin 4 

cytocentrifuge (Thermo Fisher Scientific, USA) at 800 g for five minutes and then were 

allowed to air dry. A Diff-Quik stain set (Dade behring Inc, Deerfield, IL. USA) was 

used to visualise cell morphology. Slides were fixed for five seconds in Diff-Quik 

fixative (1.8 mg/l Triarylmethane dye methyl alcohol), stained for 10 seconds in 

Diff-Quik Solution I (1 g/l Xanthine dye) and further stained for seven seconds using 
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Diff-Quik Solution II (0.625 g/l Azure A, 0.625 g/l methylene blue). Excess dye was 

then washed off with water. Slides were viewed using light microscopy (Olympus, 

Japan).  

 

2.13 Confocal microscopy 
Cells on a slide were visualised using a Leica TCS SP2 confocal microscope (Leica 
Microsystems, Germany). Images were acquired at room temperature using a 
photomultiplier tube and Leica Confocal software. The acquired images were then 
processed using NIH ImageJ image manipulation software (NIH, Maryland, USA). 
Figures were generated using Adobe Photoshop software (Adobe, San Jose, CA, USA). 
 

2.14 Biochemistry 

2.14.1 Gel electrophoresis 

Non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) 

was used to determine protein sizes and evaluate the efficiency of peptides coupling to 

mSAgs. Aliquots containing proteins or peptides were mixed with NuPAGE LDS 

sample buffer (Invitrogen, USA) and added to the stacking wells of a NuPAGE Novex 

Bis-Tris 10-well gel (Invitrogen, USA). A Precision Plus Protein prestained standard 

(Bio-Rad) was added to one well of the gel for approximate molecular weight 

determination. The gels were run using an XCell SureLockTM Mini-Cell (Invitrogen, 

USA) and a PowerPac 3000 power supply (Bio-Rad, USA) at a constant voltage of 

200V for 40 minutes in NuPAGE MES SDS running buffer (Invitrogen, USA). The gels 

were subsequently stained with Coomassie blue solution (Appendix 3) for one hour 

with constant shaking and incubated in the destain solution (Appendix 3) at room 

temperature overnight. Gel pictures were taken by a Molecular Imager Gel Doc XR 

documentation system (BioRad, USA), and analysed by the Quantity One version 4.6.5 

software (BioRad, USA). 

 

2.14.2 Bradford Assay 

The Bradford assay was used to determine protein concentrations. The protein was 

diluted to an estimated concentration of 1-20 mg/ml. Standards containing a range of 

1-20 µl protein e.g. IgG were prepared to a volume of 200 µl in the same buffer. 

Samples (100 µl) were incubated with 100 µl Bradford reagent (Appendix 3) at room 
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temperature for five minutes. The absorbance was measured at 595 nm using a BioRad 

Benchmark microplate reader (Bio-Rad, USA). A standard curve was drawn for the 

protein standard to allow the calculation of the protein concentration in the samples.  

 

2.14.3 Labelling proteins by using fluorophore or biotin  

The protein for labelling was concentrated in 0.1 M sodium bicarbonate buffer to 

0.1 mM by using a 10 KDa cut-off vivaspin 500 (Sartorius, Germany). EZ-Link 

NHS-Chromogenic-Biotin (Pierce, USA), Alexa 488 or Alexa 647 dye (Invitrogen, 

USA) were stored in DMSO (Sigma-Aldrich, USA) at 10 mg/ml at -80°C. For every 

4 nmol protein, 10 µg biotin or Alexa dye was added to the protein solution while 

vortexing. After 10 minutes incubation at room temperature, the excess dye was 

removed by spinning the protein solution through a 10 KDa cut-off vivaspin column. 

The labelled protein was tested by FACS staining and stored in PBS containing 0.1% 

sodium azide. 

 

2.14.4 Griess reaction 

A Griess reaction was used to detect NO2- for measuring NO formation. The 

supernatant (50 µl) for testing was plated in a flat bottom 96-well plate. NaNO2 

(Promega Corporation, Madison, WI, USA) was titrated to perform a standard curve 

(starting from 500 µM). Equally mixed Griess solutions A and B (Appendix 3) of 50 µl 

were added to each well.  After incubation at room temperature for 20 minutes, the plate 

was read using an absorbance of 570 nm on a VersaMax Tunable Microplate Reader 

(Molecular Devices Pty Ltd, Australia). A standard curve was constructed for the 

NaNO2 standard to allow calculation of the NO2- concentration in the samples.  
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3.1 Introduction 

Bacterial superantigens are a family of structurally related protein toxins considered to 

be the most powerful T cell mitogens discovered to date191. Traditional peptide antigens 

presented via MHCII activate 0.001-0.0001% of the total T cell repertoire192. In 

contrast, superantigens can activate 5-20% of the T cell repertoire by binding 

simultaneously to MHCII on APCs and TCRs on T cells, which leads to a massive 

immune response and serious human pathologies such as toxic shock syndrome173.  

 

SMEZ-2-M1 (SM) provided by Professor John Fraser (the University of Auckland, 

New Zealand) is a mutant form of superantigen SMEZ-2 and lacks TCR binding ability. 

SM contains three alterations in the TCR binding site, W75L, K182Q and D42C. The 

mutations W75L and K182Q prevent the binding of SM to TCRs, and D42C mutation 

introduces an exposed cysteine for direct conjugation of antigens193. The deficit of SM’s 

binding to TCR eliminates SM’s toxicity and therefore, SM can be used as a potential 

non-toxic antigen-delivery vehicle for targeting MHCII+ APCs.  

 

A previous study in our laboratory showed that when C57BL/6J mice were treated with 

1 µg of the SM conjugate with the MOG35-55 peptide (SM-MOG35-55) in IFA s.c. five to 

seven days after EAE induction, the disease was abrogated168. Experimental evidence 

suggested that MOG35-55-specific Tregs played a role in SM-MOG35-55-mediated EAE 

suppression. However, the precise mechanism involved was not determined. Based on 

these findings, I hypothesised that SM-MOG35-55 expanded and/or activated a 

population of MOG35-55-specific Tregs in vivo, which inhibited the self-reactive 

MOG35-55-specific CD4+ T cell response in mice induced with EAE.  

 

3.2 Aims 

The overall aim of this chapter was to investigate the role of MOG35-55 specific Tregs in 

the SM-MOG35-55 mediated suppression of EAE and to understand the cellular and 

molecular changes during the SM-MOG35-55 mediated immune suppression in vivo.  

 
The specific aims were as follows: 

• To optimise the conjugation of peptides to SM  

• To understand which subpopulation of Tregs was important for the 

SM-MOG35-55 mediated EAE suppression, i.e. Foxp3+ nTregs 
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• To optimise the SM-MOG35-55 treatment of EAE by optimising the 

administration route, dose, adjuvant and time of SM-MOG35-55 injection 

• To investigate whether there was any other suppressive cell population involved 

in the SM-MOG35-55 mediated EAE suppression 

 
3.3 Results 

3.3.1 Conjugation of peptides to SM  

To investigate the effect of SM-MOG35-55 on EAE, it was first necessary to prepare the 

SM-MOG35-55 conjugate. Although a previous study in our laboratory established a 

protocol for the conjugation of peptides to SM168, pilot conjugate experiments in the 

current study showed that the efficiency of the conjugation was poor. Therefore, a 

variety of experimental conditions were tested in order to optimise the conjugation of 

peptides to SM. 
 
3.3.1.1 Peptides could be efficiently conjugated to SM 

A summary of the experimental conditions tested to improve the efficiency of 

SM-peptide conjugation is presented in Table 3.1. As shown in Figure 3.1, the 

MOG35-55c and OVA323-339c peptides could be efficiently conjugated to SM and the 

excess peptides could be removed from the conjugates. The detailed optimised 

conjugation protocols for both SM-MOG35-55 and SM-OVA323-339 are described in 

Section 2.3.1 and Section 2.3.2. 
 
Table 3.1 Optimisation of the SM-peptide conjugation  
 Modified superantigen Peptides 

Reducing agent 5 mM TCEP (Pierce, USA) 
0.01 M DTT (Sigma, USA) 

5 mM TCEP (Pierce, USA) 
0.01 M DTT (Sigma, USA) 

Columns for removing 
the reducing agent 

Vivaspin 500 
Polyethersulfone 10 KDa cut-
off (Sartorius, Germany) 

D-Salt Polyacrylamide 
Desalting column, 1.8 KDa 
cut-off  (Pierce, USA) 

Conditions for cysteine-
cysteine binding 

1:3, 1:5, 1:10 and 1:20 (molar SM:peptides) 
±coupling buffer at pH=6, 7, 8, 9 and 10 

Other linkers tested GMBS (Pierce, USA), MTFB and S-C6-HyNic (SoluLink, 
USA) 

Columns for the 
Purification of 

conjugates 

Vivaspin 500 Polyethersulfone 10 KDa cut-off (Sartorius, 
Germany), Sephacryl S-200 column (Sigma, USA), Zeba 
Desalt Spin Column (Pierce, USA), AutoMACS separator 
and autoMACS columns, LS columns and VarioMACS 
separator (Miltenyi Biotec, Germany) 
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Figure 3.1 The MOG35-55c and OVA323-339c peptides could be efficiently conjugated 
to SM 
A, SM-MOG35-55 conjugation. Lane 1, molecular weight marker; lane 2, MOG35-55c was conjugated to SM 
and lane 3, the excess MOG35-55c peptide was removed from the SM-MOG35-55 conjugate; lane 4, 
uncoupled SM. B, SM-OVA323-339 conjugation. The samples on different lanes were from different 
conjugation condition. Lane 5, purified SM-OVA323-339 obtained from the optimised conjugation protocol 
that was used in this study. The rest of the lanes on B are the conjugates derived from other 
non-optimised conjugation condition. 
 

 

3.3.1.2 Conjugation of peptide to SM improved efficiency of the peptide 

presentation to CD4+ T cells in vitro 

Next I tested whether the newly conjugated SM-peptides could efficiently deliver 

peptides to APCs and enhance the peptide-specific CD4+ T cell proliferation. 

Splenocytes were isolated from TCR transgenic mice specific for either MOG35-55 (2D2 

mice) or OVA323-339 (OTII mice) and incubated with either SM-peptide conjugates or 

the free peptides. As shown in Figure 3.2, SM-peptide conjugates were 100-1,000 times 

more potent than the unconjugated peptides at activating TCR transgenic splenocyte 

proliferation. In contrast, the unconjugated SM did not induce splenocyte proliferation, 

indicating that the proliferative effect of SM-peptides was dependent on the peptides 

conjugated to SM. OT-II T cells were repeatedly observed to respond more potently to 

both peptide and the SM-peptide conjugates than 2D2 T cells. This difference may be 

explained by the inherent difference between the two mouse strains.  
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Figure 3.2 The peptides conjugated to SM were efficiently presented to CD4+ T 
cells in vitro 
The splenocytes (1×106cells/well) from either 2D2 or OTII transgenic mice were incubated with the 
indicated concentrations of antigens. Cell proliferation was assayed by measuring the incorporation of 
[3H]-thymidine over the last 16 hours of a 72-hour culture period. Results are shown as the means±SEM 
of triplicate wells. Results are representative of more than three separate experiments.  
 

3.3.1.3 Conjugation of peptide to SM improved efficiency of the peptide 

presentation to CD4+ T cells in vivo 

I then investigated whether the conjugation of peptides to SM would improve peptide 

presentation and proliferation of CD4+ T cells in vivo. First, CFSE labelled OTII or 2D2 

splenocytes (CD45.2+) were adoptively transferred into congenic CD45.1+ recipients 

(5x106 cells per mouse). One day later, SM-peptides or 10 times molar equivalent of the 

unconjugated peptides were injected i.v. into the recipient mice. Cells from the spleens 

and lymph nodes of the recipients were isolated at day five and analysed by flow 

cytometry to identify CFSE+CD45.2+ TCR-specific donor cells. Proliferation of 

CD45.2+CD4+ T cells is represented by progressive halving of cellular CFSE 

fluorescence with every cell division completed. As shown in Figure 3.3, the 

proliferation of the peptide-specific CD4+ T cells was only induced following the 

administration of SM-peptides, indicating that peptides conjugated to SM were 

presented more efficiently to CD4+ T cells in vivo compared to the unconjugated 

peptides. 

 

Consistent with the in vitro data shown in Figure 3.2 and experiments done in our 

laboratory, OT-II T cells responded much more potently to the SM-peptide conjugate 

than 2D2 T cells in vivo. Given that MOG, but not OVA is a self-antigen, it is expected 
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that OVA323-339-specific T cells would express a TCR with a higher affinity and 

therefore, respond to a lower concentration of peptide.  

 

 
 

Figure 3.3 The peptides conjugated to SM were efficiently presented to CD4+ T 
cells in vivo 
CFSE labelled OTII or 2D2 splenocytes were respectively transferred into congenic CD45.1+ recipient as 
indicated (5x106 cells per mouse). On day one, the recipient mice were injected i.v. with one of the 
following: A, 2 µg of SM-MOG35-55, 2 µg of MOG35-55 (~10 times excess molar dose of MOG35-55) or 
PBS. B, 2 µg of SM-OVA323-339, 2 µg of OVA323-339 (~10 times excess molar dose of OVA323-339) or PBS. 
Proliferation of the CFSE-labelled CD4+ T cells was assessed by flow cytometry of lymph node on day 
five. Cells were gated on CD45.2+CD4+ cells. 
 

3.3.2 SM-MOG35-55 /IFA treatment did not suppress EAE 

After confirming that the newly conjugated SM-MOG35-55 was able to induce T cell 

proliferation both in vitro and in vivo, I set out to determine whether this SM-MOG35-55 

could suppress EAE via the CD25+ Tregs as reported in the previous study168.  

 

3.3.2.1 SM-MOG35-55/IFA treatment did not suppress EAE via Foxp3+ Tregs 

To determine whether SM-MOG35-55/IFA treatment suppressed EAE via Foxp3+ nTregs, 

I performed an adoptive transfer experiment using the Foxp3-GFP knock-in (KI) mice. 

The Foxp3-GFP KI mice harbour a GFP-Foxp3 fusion protein reporter knock-in 
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allele182 and therefore, the Foxp3+ Tregs can be identified by their GFP expression. As 

SM-MOG35-55 was 100 times more potent than MOG35-55 to elicit T cell expansion in 

vitro (Figure 3.2), Foxp3-GFP KI mice were treated with either 20 µg of MOG35-55/IFA 

or 2 µg of SM-MOG35-55/IFA (the doses elicit equivalent T cell expansion in vitro). On 

day five, the Foxp3-GFP+ cells were purified by FACS sorting from either MOG35-55 or 

SM-MOG35-55 treated mouse draining lymph nodes (DLNs) and adoptively transferred 

into littermate recipient mice (2x105 Foxp3+ cells per mouse). Six days after the 

adoptive transfer, EAE was induced in the recipient mice. This experimental set-up was 

similar to the previous study, except that the previous study transferred CD25+ T cells 

into C57BL/6J mice.  

 

As shown in Figure 3.4, adoptive transfer of the Foxp3+ cells from both SM-MOG35-55 

and MOG35-55 treated mice failed to protect the recipient mice from EAE. This raised 

the question of whether the lack of EAE suppression was associated with the inability 

of SM-MOG35-55 to inhibit EAE in Foxp3-GFP KI transgenic mice. The Foxp3-GFP KI 

transgenic mice utilised in this study had been backcrossed with C57BL/6J mice for 

more than 10 generations. However, it was possible that genetic material remnant of the 

original Foxp3-GFP KI mouse strain could be responsible for the failure of the 

SM-MOG35-55/IFA treatment. 

 

 

 
Figure 3.4 Adoptive transfer of the Foxp3+ cells from SM-MOG35-55 /IFA treated 
mice did not suppress EAE in the recipient mice 
The Foxp3-GFP KI mice were treated with either 20 µg of MOG35-55/IFA or 2 µg of SM-MOG35-55/IFA. 
On day five, 2x105 purified Foxp3+ cells isolated from the DLNs of the treated mice were adoptively 
transferred into littermate recipient mice. Age- and sex- matched Foxp3-GFP KI mice were injected with 
200 µl PBS i.v. as the experimental controls. Six days after the adoptive transfer, the recipient mice were 
induced with EAE. The MOG35-55 group contained four mice and the other two groups contained five 
mice each. Left graph, mean clinical scores. Right graph, % sick mice. Arrows indicate the day of 
Foxp3-GFP+ cell adoptive transfer. 
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3.3.2.2 SM-MOG35-55/IFA treatment did not suppress EAE in Foxp3-GFP KI mice 

To address the question whether the SM-MOG35-55/IFA treatment could suppress EAE 

in Foxp3-GFP KI mice, I induced EAE in Foxp3-GFP KI mice. On day five, these mice 

were treated with 1 µg of SM-MOG35-55/IFA s.c., the same administration method as 

used in the previous study168. The Foxp3-GFP KI mice treated with SM-OVA323-339/IFA 

were used as the experimental controls. As shown in Figure 3.5, the mice treated with 

SM-MOG35-55 developed more severe disease than SM-OVA323-339 treated mice. The 

reason for the more severe disease may be due to experimental variability. 

Nevertheless, the treatment using SM-MOG35-55/IFA did not protect Foxp3-GFP KI 

mice from EAE. Therefore, the failure of EAE suppression by adoptive transfer of 

SM-MOG35-55/IFA primed Foxp3+ T cells is likely to be due to the failure of 

SM-MOG35-55/IFA to suppress EAE in Foxp3-GFP KI mice. 

 

 

 
Figure 3.5 SM-MOG35-55/IFA treatment did not suppress EAE in Foxp3-GFP KI 
mice 
Foxp3-GFP KI mice were induced with EAE. Five days after EAE induction, these mice were treated 
with either 1µg SM-MOG35-55 or 1µg SM-OVA323-339 in IFA s.c.  Each group contained five mice. Left 
graph, mean EAE scores. Right graph, % sick mice. Arrows indicate the day of SM-MOG35-55 or 
SM-OVA323-339 injection. 
 

3.3.2.3 SM-MOG35-55/IFA treatment did not suppress EAE in C57BL/6J mice 

To determine whether the lack of EAE suppression by SM-MOG35-55/IFA was specific 

to the Foxp3-GFP KI mouse strain or failure of the conjugate treatment, I tested if the 

SM-MOG35-55/IFA treatment could suppress EAE in C57BL/6J mice. To address this 

question, I treated C57BL/6J mice with 1 µg of SM-MOG35-55/IFA s.c. five days after 

EAE induction.  Age- and sex-matched C57BL/6J mice left untreated were used as the 

experimental controls. As shown in Figure 3.6, the SM-MOG35-55/IFA treatment did not 

significantly suppress EAE in C57BL/6J mice. This lack of EAE suppression by 
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SM-MOG35-55/IFA was not simply due to the dose, because doses up to 10 µg of 

SM-MOG35-55 also failed to suppress EAE (Spittle, E., unpublished data and Table 3.2). 

Therefore, the SM-MOG35-55/IFA treatment failed to suppress EAE in contrast to the 

results reported previously168. This was due to the failure of the conjugate treatment and 

not due to differences between mouse strains. 

 

 
Figure 3.6 SM-MOG35-55/IFA treatment did not suppress EAE in C57BL/6J mice 
Five days after EAE induction, the C57BL/6J mice were treated with either 1µg of SM-MOG35-55 in IFA 
s.c. or left untreated as the experimental controls.  Each group contained five mice. Left graph, mean 
clinical scores. Right graph, % sick mice. Significant differences are indicated, ns, not significant 
(p>0.05). Analysis of statistical significance was performed using a one tailed Mann Whitney U test. 
Results are representative of more than three separate experiments. Arrows indicate the day of 
SM-MOG35-55/IFA administration. 
 

3.3.2.4 Adoptive transfer of CD25+ cells or crude DLN cells from the 

SM-MOG35-55/IFA treated C57BL/6J mice did not suppress EAE  

To understand why the SM-MOG35-55/IFA treatment did not significantly suppress 

EAE, I decided to investigate whether adoptive transfer of the CD25+ cells from 

SM-MOG35-55/IFA treated mice could suppress EAE. I purified CD25+ cells from the 

DLNs of SM-MOG35-55/IFA treated mice and adoptively transferred these cells into 

recipient mice (2×105 cells per mouse). Age- and sex-matched C57BL/6J mice without 

cell transfer were used as the experimental controls. Two days after adoptive transfer of 

CD25+ T cells, the control and recipient mice were induced with EAE. As shown in 

Figure 3.7A, the adoptive transfer of CD25+ cells from the SM-MOG35-55/IFA treated 

mice did not protect the recipient mice from EAE. On day 15, all the recipient mice of 

CD25+ cells developed severe EAE and the experiment was terminated. Adoptive 

transfer of up to 2×107 crude DLN cells from the SM-MOG35-55/IFA treated mice also 

failed to suppress EAE (Figure 3.7B). Together, the results from these EAE 

experiments suggest that the SM-MOG35-55/IFA treatment could not suppress EAE via 

Tregs as reported previously168. Further studies need to be done to re-establish the 
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SM-MOG35-55 mediated in vivo suppression of EAE before the protective cells that 

mediated this suppression can be identified. 

 
Figure 3.7 Adoptive transfer of neither CD25+ cells nor crude DLN cells from 
SM-MOG35-55/IFA treated mice conferred EAE suppression 
C57BL/6J mice were treated with 1 µg of SM-MOG35-55/IFA s.c. On day five, 2x105 purified CD25+ cells 
(A) or crude cells (2×106 or 1×107 cells per mouse) from the DLNs (B) were adoptively transferred to the 
recipient mice. On day two, the recipient mice were induced with EAE. Age- and sex-matched mice were 
i.v. injected with 200 µl PBS as the experimental controls. Left graph, mean clinical scores. Right 
graph, % sick mice. Each group contained four (A) or five mice (B).  Arrows indicate the days of cell 
adoptive transfer. 
 

3.3.3 Validation of the SM-MOG35-55 treatment for EAE  

Because the effect of the original SM-MOG35-55/IFA treatment of EAE could not be 

repeated, and the SM-MOG35-55 conjugate used in the previous study was not available 

in our laboratory any longer, a range of experiments were carried out to try to 

re-establish the immunosuppressive activity of SM-MOG35-55. Although SM-MOG35-55 

slightly suppressed EAE when it was mixed into the EAE inducing emulsion and 

administered to mice on day zero s.c. (Figure 3.8), in general, none of the 

administration protocols (Table 3.2) could suppress EAE to the same extent as had been 

observed in the previous study168.  However, minor suppression was observed in a 

variety of administration routes, suggesting the suppressive activity by SM-MOG35-55 in 

vivo. 
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Table 3.2 Variables for the optimisation of the SM-MOG35-55 treatment for EAE  
Dose of SM-MOG35-55 100 ng, 200 ng, 500 ng, 1 µg, 2 µg, 5 µg 

Adjuvant α-galactosyl ceramide (αGalCer), Pam3Cys 

Administration route i.p. in CFA or IFA; s.c. in CFA or IFA; i.v; 
epicutaneous injection 

Administration time (days 
post EAE induction) 

-5, -2, 0, 2, 5, 7 

PTxn administration 
Single injection of 250 ng PTxn per mouse at day one 
Two injections of 200 ng PTxn each time each mouse 
at days 0 and two 

Others Using SM-MOGprotein to treat either MOG35-55 or the 
MOG protein induced EAE 

 
 
 

 
 
Figure 3.8 The addition of SM-MOG35-55 to the EAE inducing emulsion caused a 
slight suppression of EAE  
C57BL/6J mice were immunised with 50 µg of MOG35-55 emulsified in CFA plus 2 µg of SM-MOG35-55. 
Mice immunised with 50 µg of MOG35-55 emulsified in CFA were employed as the experimental controls. 
On day one, all the mice were treated with 250 ng PTxn i.p. Left graph, mean clinical scores. Right 
graph, % sick mice. The control group contained four mice and SM-MOG35-55 group contained five 
mice. One of the mice from the SM-MOG35-55 group was culled on day 30 due to peritonitis. Significant 
differences are indicated, *p<0.05, **p<0.01. Analysis of statistical significance was performed using a 
one tailed Mann Whitney U test.  
 

3.3.4 Identification of the SM targeting cells 

Despite the apparent weaker effect of the new SM-MOG35-55 compared to the previous 

study168, suppression of EAE was still observed. As adoptive transfer of neither CD25+ 

nor Foxp3+ cells conferred EAE suppression (Section 3.3.2), I hypothesised that other 

cell types may be responsible for the minor suppression of EAE mediated by the 

administration of SM-MOG35-55. In order to identify the cellular source of the 

SM-MOG35-55 mediated in vivo suppression of EAE, I labelled SM with Alexa 488 to 

distinguish the SM-associating cells. The labelling of SM is described in detail in 

Section 2.14.3.  
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3.3.4.1 SM bound to MHCII+ cells in vitro and in vivo 

The staining of SM-Alexa 488 was first examined on the splenocytes from C57BL/6J 

mice in vitro. As shown in Figure 3.9, when SM-Alexa 488 was incubated with the 

spleen or lymph node cells (LN cells) at room temperature for 10 minutes, extensive 

staining of SM-Alexa 488 was observed on MHCII+Thy1.2- cells.   

 

 
 

Figure 3.9 SM-Alexa 488 was captured by the MHCII+ Thy1.2- splenocytes in vitro 
The C57BL/6J mouse splenocytes were incubated with SM-Alexa 488 at room temperature for 10 
minutes and analysed by flow cytometry. The SM+ cells were (A) MHCII+, and (B) Thy1.2-. Numbers 
indicate percent of total cells in each quadrant. Results are representative of more than two separate 
experiments. 
 
 
To confirm that the same population was targeted by SM-MOG35-55 in vivo, 

SM-Alexa 488 was injected into mice i.v. to positively identify the SM-associating 

cells. Age- and sex-matched mice injected with the same molar dose of 

OVA-Alexa 488 or PBS were used as the experimental controls. Extensive Alexa 488 

fluorescence was observed on MHCII+Thy1.2- cells in the spleens (Figure 3.10), lymph 

nodes (data not shown) and blood (data not shown) of the C57BL/6J mice injected with 

SM-Alexa 488. The Alexa 488 fluorescence was significantly reduced in the MHCII 

deficient (MHCII-/-) mice injected with SM-Alexa 488, indicating the 

MHCII-dependent uptake of SM. Minimal staining was observed on MHCII+ cells 

when OVA-Alexa 488 or PBS was used.  



Chapter 3: SM-MOG35-55 Mediated EAE suppression 
 

58 

 

 
Figure 3.10 SM was captured by MHCII+ cells in vivo 
SM or OVA proteins were labelled with Alexa 488 dye and injected into either C57BL/6J or MHCII-/- 
mice i.v. (50 µg of SM-Alexa 488 per mouse and 75 µg of OVA-Alexa 488). Three hours after the 
injections, splenocytes from the injected mice were collected and analysed by flow cytometry for the 
indicated proteins. Numbers indicate percent of total cells in each quadrant. Results are representative of 
more than three separate experiments. 
 
 
As shown in Figure 3.11, the MHCII+ cells targeted by SM-Alexa 488 included B cells 

(B220+CD11c-), macrophages (F4/80+CD11c-), DCs (CD11c+) and Langerin+ cells 

(data not shown), indicating SM does not preferentially bind to a particular APC 

population.  Significant SM-Alexa 488 staining was observed on all major splenic DC 

subsets (CD4+CD8-DC, CD4-CD8+DC and CD4-CD8-DC). Expression of CD40, CD80 

and CD86 was unchanged on the DCs targeted by SM-Alexa 488 (Figure 3.12), 

suggesting the interaction of SM with MHCII does not induce the maturation of SM+ 

DCs during this period. Interestingly, injection of SM-Alexa 488 also resulted in weak 

fluorescence on an MHCII- cell population in the blood (will be discussed in the next 

section). This fluorescence was not observed in mice injected with PBS and only 

marginal fluorescence was observed in mice injected with OVA-Alexa 488. These 

results reveal an MHC-independent uptake mechanism of SM by these cells.  
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Figure 3.11 SM targeted all the major MHCII+ cells in the spleen 
SM-Alexa 488 or OVA-Alexa 488 was injected into C57BL/6J mice i.v. (50 µg of SM-Alexa 488 or 
75 µg of OVA-Alexa 488 per mouse). Three hours after the injections, the splenocytes from injected mice 
were collected and analysed by flow cytometry. Cellular fluorescence was assessed on splenic B cells 
(B220+), T cells (Thy1.2+), macrophages (F4/80+), and the major splenic DC subtypes (CD11c+CD4+, 
CD11c+CD8+ CD11c+CD4-CD8-). Grey profiles are from mice injected with PBS only. Results are 
representative of more than two separate experiments. 
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Figure 3.12 SM binding to DCs did not change the cells’ maturation markers  
SM-Alexa 488 or OVA-Alexa 488 was injected into C57BL/6J mice i.v. (50 µg of SM-Alexa 488 or 
75 µg of OVA-Alexa 488 per mouse). Three hours after the injections, the splenocytes from injected mice 
were collected and analysed by flow cytometry. Expression of maturation markers CD40, CD80 and 
CD86, and MHCII was assessed on gated splenic DC (CD11c+ cells) from mice treated with the 
fluorescent molecules. Grey profiles are from mice injected with PBS only. Results are representative of 
more than two separate experiments. 
 

3.3.4.2 SM was captured by an MHCII- cell population in the blood 

To further confirm whether an MHCII-independent mechanism existed for uptake of 

SM, I looked at the uptake of SM-Alexa 488 in MHCII-/- mice compared to the wild 

type mice.  As shown in Figure 3.13, a distinct MHCII- cell population in the blood of 

both MHCII-/-  and wild type mice i.v. injected with SM-Alexa 488 showed positive 

staining of SM-Alexa 488. The staining of SM-Alexa 488 in MHCII-/- cells indicates 

an MHC-independent uptake mechanism for SM. The marginal staining observed in the 

mice injected with OVA-Alexa 488 excludes the possibility of SM uptake via 

antigen-non-specific phagocytosis. Weak SM-Alexa 488 staining was also observed on 

MHCII- cells in the spleens (Figure 3.10) but not in the lymph nodes (data not shown).  

 

The SM+MHCII- cells in the blood demonstrated a high level of CD11b and 

intermediate levels of F4/80 and Gr-1 staining (Figure 3.14) and did not express any T 

cell, B cell or DC markers including Thy1.2, B220 and CD11c (data not shown). The 

binding of SM to this blood MHCII- cell population raised the possibility that these 

SM+MHCII- cells may play a role in the SM-MOG35-55 mediated suppression of EAE. 

Further investigations around the phenotype and function of this SM+MHCII- blood 

population are presented in Chapter 4.  
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Figure 3.13 A blood-borne MHCII- cell population captured SM-Alexa 488  
SM-Alexa 488, OVA-Alexa 488 or PBS were injected into either C57BL/6J or MHCII-/- mice i.v. (50 µg 
of SM-Alexa 488 or 75 µg of OVA-Alexa 488 per mouse). Three hours after the injections, blood cells 
from the injected mice were collected and analysed by flow cytometry for the staining of the indicated 
proteins. Numbers indicate percent of total cells in each quadrant. Results are representative of more than 
three separate experiments. 
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Figure 3.14 SM+MHCII- cells in the blood express F4/80, Gr-1 and CD11b 
SM-Alexa 488 was injected into MHCII-/- mice i.v. (50 µg of SM-Alexa 488 per mouse). Three hours 
after the injections, blood cells from the injected mice were collected and analysed by flow cytometry for 
the staining of SM-Alexa 488. Numbers indicate percent of total cells in each quadrant. Data shown are 
representative from more than three separate experiments. 
 

3.4 Discussion 

The aim of the experiments presented in this chapter was to understand the cellular and 

molecular changes involved in the SM-MOG35-55/IFA mediated immune suppression of 

EAE, with the focus on the role of MOG35-55 specific Tregs in this process. However, 

treating mice with SM-MOG35-55/IFA or adoptive transfer of either the Foxp3+ Tregs or 

CD25+ Tregs from SM-MOG35-55/IFA treated mice did not suppress EAE as expected. 

 

In a previous study168, SM-MOG35-55 was shown to be ~100 times more potent than 

MOG35-55 alone at activating 2D2 T cell response in vitro. However, SM-MOG35-55 

failed to induce EAE in the MOG35-55 specific TCR transgenic 2D2 mice, leading to the 

hypothesis that SM-MOG35-55 might activate suppressive mechanisms in vivo (e.g. 

MOG35-55 specific Tregs) and eventually the finding that SM-MOG35-55/IFA 
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administration markedly suppressed EAE. In this study, SM-MOG35-55 showed similar 

characteristics as described in the previous study, including the high-potency activation 

of 2D2 T cell response in vitro (Figure 3.2) and the failure to induce EAE in 2D2 mice 

(Spittle E., unpublished data). However, the SM-MOG35-55/IFA administration to mice 

did not significantly suppress EAE in C57BL/6J mice as previously reported.  

 

Although a large number of experiments were carried out in our laboratory, the reason 

for the failure of EAE suppression by SM-MOG35-55/IFA remains elusive. The failure of 

the SM-MOG35-55/IFA treatment to suppress EAE was not due to the dose or timing of 

administration (Table 3.2). Other possibilities for the lack of suppression include the 

unknown differences between the SM in this study and the one made for the previous 

study (from the University of Auckland), or difference in disease induction between the 

animal facilities where the initial study was done (at the University of Otago, 

Wellington School of Medicine and Health Sciences) compared to the institute’s new 

facility (at Malaghan Institute of Medical Research). 

 

In various experimental conditions for the optimisation of treating EAE using 

SM-MOG35-55, minor suppression was observed. Because adoptive transfer of either 

CD25+ or Foxp3+ Tregs from the SM-MOG35-55 treated mice did not confer protection 

to recipient mice, I hypothesised other cell types were responsible for this minor 

suppression of EAE mediated by SM-MOG35-55. This hypothesis was also supported by 

the experimental data from the previous study showing that depleting of Tregs prior to 

SM-MOG35-55 treatment did not totally reverse the SM-MOG35-55 mediated suppression 

of EAE168. 

 

In order to identify what cells might mediate the suppression of EAE by SM-MOG35-55, 

I injected SM-Alexa 488 into mice to fluorescently label the cells capturing SM. As 

shown in Figure 3.11, after i.v. injection, SM was captured by all the major APCs and 

the binding of SM to these APCs did not change the cells’ maturation status during this 

period (Figure 3.12). Interestingly, an MHCII- cell population in the blood showed the 

staining of SM. The blood cells from mice injected with OVA-Alexa 488 only showed 

marginal fluorescence, indicating the uptake of SM was not due to antigen-non-specific 

phagocytosis. The uptake of superantigen by these blood MHCII- cells has not been 

reported before. The SM staining was also observed in the MHCII-/- mice injected i.v. 
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with SM-Alexa 488, indicating an MHCII independent uptake mechanism by SM. The 

uptake of SM by these blood MHCII- cells was investigated further in Chapter 4.  

 

The SM+MHCII- cells were shown to express F4/80, Gr-1 and CD11b in this chapter. In 

the literature, these cell surface antigens have been reported to be expressed by tumour 

myeloid-derived suppressor cells (MDSCs) that are potent suppressors of immune 

responses45,75,76. However, MDSCs have not been identified in naïve mouse blood. It is 

possible that these blood SM+MHCII- cells are suppressor cells of the immune 

responses, i.e. a subpopulation of MDSCs that has not been described before and that 

the binding of SM-MOG35-55 to these cells enhanced their suppressive activity in vivo. 

This possibility was investigated in Chapter 4.  

 

3.5 Conclusions 

Treating mice with SM-MOG35-55/IFA or adoptive transfer of either the Foxp3+ or 

CD25+ Tregs from SM-MOG35-55/IFA treated mice did not significantly suppress EAE. 

However, the administration of SM-MOG35-55 to mice using various methods repeatedly 

showed minor suppressive effect of EAE, suggesting the in vivo suppressive feature of 

SM-MOG35-55. After being injected into mice i.v., SM was captured by a blood MHCII-

CD11b+F4/80+Gr-1+ cell population. Cells expressing the same phenotype have been 

reported to be suppressor cells MDSCs in mice with tumours. This raised the possibility 

that the SM+ MHCII-CD11b+F4/80+Gr-1+ cells are suppressor cells and are important in 

the minor suppression of EAE observed in the SM-MOG35-55 treated mice. This 

possibility was investigated in Chapter 4 and Chapter 5. 



 

 

 

Chapter 4:  

 

 DM Binds to Blood Myeloid-Derived 

Suppressor Cells 
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4.1 Introduction 

Myeloid-derived suppressor cells (MDSCs) are a population of Gr-1+CD11b+ 

suppressive myeloid cells that have been described in different diseases and in 

particular, have been extensively studied in tumours45,71-76. As suggested by their name, 

MDSCs are potent suppressors of immune responses and are considered critical in 

assisting tumours to escape immune recognition45,75,76. MDSCs are a heterogenous 

population of myeloid cells, which include immature macrophages, monocytes, 

neutrophils and DCs45,76 and have been identified in most patients and mice bearing 

tumours76.  

 

Various mechanisms have been reported to be utilised by MDSCs to suppress T cell 

responses. For example, in mice, MDSCs have been shown to suppress T cell activation 

via up-regulation of NO production78,79 and/or arginase 1 induction80-83,194. NO inhibits 

T cell activation via reversible disruption of the Jak/STAT5 signalling pathway79; 

whereas arginase 1 suppresses T cell activation by depleting extracellular L-arginine, a 

conditionally essential amino acid that is critical for T cell function80-83. It has also been 

reported that the suppressive activity of MDSCs is mediated by Tregs74. The reason for 

the diverse suppressive mechanisms of MDSCs is likely due to the suppression 

performed by different cells within the heterogenous MDSC population, e.g. 

mononuclear MDSCs vs. granulocytic MDSCs.  

 

The lack of precision in identifying the suppressive population(s) within the 

heterogenous MDSCs has been problematic. In mice, MDSCs are defined by the 

co-expression of CD11b and Gr-1, however, both mononuclear cells and granulocytes 

express these two markers. The mononuclear MDSCs and granulocytic MDSCs are 

functionally different and use distinct mechanisms to suppress immune responses. For 

example, in the EG7 lymphoma model, mononuclear MDSCs preferentially suppress T 

cell responses via up-regulation of NO production, whereas granulocytic MDSCs utilise 

arginase 171. The identification and characterisation of discrete MDSC populations is 

therefore key in improving our understanding of MDSC function and targeting their use 

for immunotherapy. 

 

In the previous chapter, I identified a small population of MHCII- cells in blood that 

stained positive for SM following i.v. injection of SM-Alexa 488. These SM+ blood 
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cells express CD11b, Gr-1 and F4/80, the markers that have previously been reported to 

be expressed by the MDSCs in tumours45,75,76. I therefore hypothesised that these 

MHCII-SM+ blood cells were a population of MDSCs residing in the blood and that 

these cells played a role in SM-MOG35-55 mediated suppression of EAE.  

 

However, SM predominantly bound to MHCII+ APCs and only a small proportion of 

SM bound to the blood MHCII-CD11b+F4/80+Gr-1+ cells, the possible suppressor cells. 

To improve targeting SM to the blood MHCII-CD11b+F4/80+Gr-1+ cells, it would 

therefore be necessary to prevent SM-MHCII binding. Professor John Fraser from 

Auckland University kindly provided another mSAg, double mutant SMEZ-2 (DM), for 

this purpose. DM is a mutant toxoid of the wild-type SMEZ-2 isolated from 

S. pyogenes strain 2035, the same strain from which SM is derived. In contrast to SM, 

DM is defective at both the MHCII and TCR binding sites. In the absence of MHCII 

binding capability, it was hypothesised that DM would possess an enhanced binding 

capability to these blood MHCII-CD11b+F4/80+Gr-1+ cells.  This feature would allow 

the identification and potential targeted manipulation of these proposed suppressor 

cells.  

 

4.2 Aims 

The overall aim of this chapter was to determine whether the MHCII-

CD11b+F4/80+Gr-1+ blood cells were functional suppressor cells and to investigate the 

potential of the mSAg (SM and DM), to be used for targeted manipulation of these 

cells.  

 

The specific aims were as follows: 

• To confirm whether the MHCII binding capacity of DM was abrogated 

• To investigate whether DM was able to bind to the MHCII-CD11b+F4/80+Gr-1+ 

blood cells in vivo 

• To characterise the phenotype of the MHCII-CD11b+F4/80+Gr-1+ blood cells 

• To determine whether the MHCII-CD11b+F4/80+Gr-1+ blood cells were able to 

suppress T cell proliferation 

• To investigate the mechanisms involved in the MHCII-CD11b+F4/80+Gr-1+ 

blood cell-dependent immune suppression  
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• To test the potential of mSAg DM for targeted manipulation of the MHCII-

CD11b+F4/80+Gr-1+ blood cells. 

 

4.3 Results 

4.3.1 The MHCII binding capacity of DM is abrogated  

To confirm that DM is defective in its MHCII binding, two methods were used to 

examine the DM binding capacity to MHCII. First, DM was labelled with Alexa 488 

dye and the DM-Alexa 488 staining was examined on MHCII+ cells by flow cytometry. 

Second, peptides known to bind to MHCII (IAb), MOG35-55 and OVA323-339, were 

conjugated to DM and the efficiency of the peptide presentation to CD4+ T cells was 

measured.  

 

4.3.1.1 MHCII + cells do not stain with DM in vitro or in vivo 

To verify whether the MHCII binding capacity of DM was abrogated, the staining of 

DM-Alexa 488 was examined on MHCII+ cells both in vitro and in vivo. Wild type 

SMEZ-M2 (WT)-Alexa 488, SM-Alexa 488, OVA-Alexa 488 and PBS were used as 

experimental controls. 

 

The Alexa 488 labelled proteins were incubated with C57BL/6J splenocytes in vitro at 

room temperature for 30 minutes. As shown in Figure 4.1A, the staining of DM and the 

control protein OVA was not observed on MHCII+ cells. In contrast, MHCII+ cells 

showed the staining of both WT and SM. The negative staining of DM on MHCII+ cells 

indicated that the MHCII binding capacity of DM was abrogated.  

 

Consistent with in vitro data, MHCII+ cells only showed minor staining of DM in vivo. 

The Alexa 488 labelled proteins were injected into either C57BL/6J or MHCII-/- mice 

i.v. Three hours after the injection, splenocytes from these mice were collected and 

analysed by flow cytometry. As shown in Figure 4.1B, in the C57BL/6J mice injected 

with Alexa 488 labelled DM or OVA, the MHCII+ cells only showed marginal 

fluorescence. In contrast, the MHCII+ splenocytes showed extensive staining of SM. 

WT-Alexa 488 was not tested in vivo due to ethical consideration of its toxicity. Taken 

together, DM did not bind to MHCII+ cells both in vitro and in vivo. 
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Interestingly, the fluorescence detected on splenocytes from the C57BL/6J mouse 

injected with DM-Alexa 488 was greater than that observed after injecting with 

OVA-Alexa 488 or PBS. This weak DM staining was also observed in the MHCII-/- 

mouse that received DM-Alexa 488, indicating an MHCII-independent uptake 

mechanism for DM. The staining of DM on the MHCII- cells will be further discussed 

in Section 4.3.2. 
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Figure 4.1 MHCII+ cells did not stain with DM both in vitro and in vivo 
WT, SM, DM or OVA proteins were labelled with Alexa 488 dye. A, In vitro, MHCII+ cells did not stain 
with DM. The Alexa 488 labelled proteins or PBS as indicated were incubated with C57BL/6J mouse 
splenocytes at room temperature for 30 minutes (0.02 mg/ml mSAg-Alexa 488 and 0.03 mg/ml 
OVA-Alexa 488). After incubation, the cells were analysed by flow cytometry for the staining of the 
indicated proteins. B, In vivo, MHCII+ cells did not stain with DM. The Alexa 488 labelled proteins or 
PBS as indicated were injected into either C57BL/6J or MHCII-/- mice i.v. (50 µg of mSAg-Alexa 488 
per animal and 75 µg of OVA-Alexa 488). Three hours after the injections, the splenocytes from the 
injected mice were collected and analysed by flow cytometry for the staining of the indicated proteins. 
Results are representative of more than three separate experiments. 
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4.3.1.2 Conjugation of DM to peptide did not enhance the peptide presentation to 

CD4+ cells  

As shown in the previous chapter, the conjugation of SM to the peptide known to be 

presented by MHCII greatly enhanced peptide presentation to CD4+ T cells. To 

determine whether DM has lost this enhanced peptide presentation to CD4+ T cells due 

to a lack of MHCII binding, I conjugated DM with the peptides MOG35-55c and 

OVA323-339c (Figure 4.2A) and compared DM-peptide and SM-peptide in peptide 

presentation to CD4+ T cells. 

 

In vitro T cell proliferation assays were performed to assess the mSAg-peptide’s 

efficiency for the induction of CD4+ T cell proliferation. Different concentrations of 

conjugated or unconjugated peptides were incubated with splenocytes from either 2D2 

or OTII transgenic mice. As shown in Figure 4.2B, approximately 100-1,000 fold less 

SM-peptide was required to achieve the levels of the CD4+ T cell proliferation observed 

with DM-peptide or non-conjugated peptide. This result provided further evidence that 

DM did not enhance peptide presentation to CD4+ T cells and that DM did not bind to 

MHCII.  In summary, DM was unable to bind to MHCII and the conjugation of DM to 

peptides did not enhance the presentation of these peptides to CD4+ T cells.  
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Figure 4.2 The peptide conjugated to DM and SM were differently presented to 
CD4+ T cells in vitro 
A, DM was conjugated with either the MOG35-55c or OVA323-339c peptide and the conjugation was assessed 
by a NuPage gel under a non-reducing condition. MWM: molecular weight marker. B, in vitro 
proliferation assay with the splenocytes from either 2D2 or OTII transgenic mice. The splenocytes were 
incubated with the indicated concentrations of antigens at 1x106 cells per well. Cell proliferation was 
assayed by measuring the incorporation of [3H]-thymidine over the last 16 hours of a 72-hour culture 
period. Due to limited availability of SM and DM, the doses of mSAg-peptides were used up to 0.1 µM. 
Results are shown as the mean±SEM of triplicate wells. Results are representative of more than three 
separate experiments. 
 

4.3.2 DM bound to the MHCII-CD11b+F4/80+Gr-1+blood cells in vivo 

In order to verify whether DM also bound to the same SM+MHCII- blood cells as 

described in Chapter 3, Alexa 488 labelled DM was injected i.v. into C57BL/6J mice. 

SM-Alexa 488, OVA-Alexa 488 or PBS was injected into mice in parallel. Three hours 

after the injection, cells from the lymph nodes, spleens and blood of these mice were 

collected and analysed by flow cytometry. As shown in Figure 4.3A, DM staining was 

observed on a MHCII- cell population in the blood and this population was larger than 
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the SM+MHCII- population. This result was consistent with the fact that SM 

preferentially binds to MHCII molecules and thus most SM binds to MHCII+ cells in 

vivo.  

 

DM and SM also stained on this blood cell population in MHCII deficient (MHCII-/-) 

mice, indicating that the uptake of the mSAgs by these blood cells was independent of 

MHCII molecules. This uptake was not a result of antigen-non-specific phagocytosis, as 

in the mice injected with the same molar dose of OVA-Alexa 488 only marginal 

staining was observed. This observation reveals a possible unique MHCII-independent 

uptake mechanism for superantigen strain SMEZ-2. 

 

DM-Alexa 488 staining was present but marginal in the spleens and absent in other 

tissues, such as the lymph node, spinal cord and liver e.g. Figure 4.3B. No staining was 

observed when DM-Alexa 488 was injected into mice s.c. (in IFA, CFA or PBS) or i.p. 

(in IFA or CFA). 
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Figure 4.3 A blood-borne cell population stained with SM- and DM-Alexa 488 
C57BL/6J and MHCII-/- mice were injected i.v. with 50 µg SM-Alexa 488, DM-Alexa 488, 75 µg 
OVA-Alexa 488 or PBS respectively. Three hours after the injections, cells from the blood, spleens and 
lymph nodes were collected and analysed. A, Alexa 488 staining on the blood cells from the mice 
injected with the indicated Alexa 488 labelled proteins. B, Alexa 488 staining on the blood cells, lymph 
node cells and splenocytes derived from the DM-Alexa 488 injected mice. Numbers indicate percent of 
total cells in each quadrant. Results are representative of more than three separate experiments. 
 

4.3.3 The binding to the blood MHCII- cells was not specific to superantigen 

In order to understand whether the MHCII independent uptake of superantigens was 

specific for the strain SMEZ-2, I injected C57BL/6J mice i.v. with another strain of 

superantigen, streptococcal pyrogenic exotoxin C (SPEC). The primary target for SPEC 

is the I-E molecule195. C57BL/6J mice lack expression of the I-Eβ chain173, so SPEC is 

unable to interact with MHCII in these mice. Like DM, SPEC was also taken up by the 

blood MHCII- cell population in vivo (Figure 4.4A). In contrast, only marginal staining 

was observed in the mice injected with the Alexa 488 labelled control proteins, OVA 

(Figure 4.3A) or MOG (Figure 4.4B). These results indicate that the 
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MHCII-independent protein uptake by the blood cells is not specific for the 

superantigen SMEZ-2 strain.  

 

To exclude the possibility that protein size was important for the observed difference in 

uptake of superantigens (25 KDa), OVA (40 KDa) and MOG (12 KDa), an unrelated 

protein trypsinogen (Sigma-Aldrich, USA) that had a similar molecular weight to DM 

of ~25 KD was labelled with Alexa 488 and injected into mice. As shown in Figure 

4.4C, trypsinogen was also taken up by the MHCII- blood cells. Therefore, the uptake 

of the proteins by these MHCII- blood cells is not superantigen-specific. Based on this 

finding, a separate project in our laboratory was carried out to investigate the potential 

mechanisms of the association between the above proteins and the blood cells 

(Mirmoeini S., unpublished data).  

 

 
Figure 4.4 The binding to the blood MHCII- cells was not specific to superantigen 
C57BL/6J mice were injected i.v. with 50 µg SPEC, MOG protein, trypsinogen or DM labelled with 
Alexa 488. Three hours after the injections, cells from the blood were collected and analysed by flow 
cytometry. Results are representative of two separate experiments. 
 

4.3.4 The DM+ cells were myeloid cells  

The blood cells that bound to DM made up 5-20% of all the leukocytes and ~1-2% of 

the splenocytes in mice. The blood DM+ cells demonstrated strong staining of CD11b, 

CD11a, CD45, CD49d and intermediate levels of Gr-1, F4/80 and CD80 staining (Table 

4.1), whereas no CD86, MHCII, PDCA-1 or any classic B or T cell markers were 

detected on them. These DM+ blood cells were heterogenous in their Ly6C expression, 

ranging from negative to high, but were negative for Ly6G expression, indicating that 

these cells were not neutrophils71,196,197. The expression of the classic myeloid cell 

surface markers such as F4/80 and CD11b on these DM+ cells indicated their myeloid 

lineage. The DM+ cells also present a myeloid-like morphology with a large, ovoid or 
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kidney-shaped nucleus (Figure 4.5A), and DM was taken into cytoplasm rapidly after 

i.v. injection (within 20 minutes) (Figure 4.5B). Together with the fact that this uptake 

was not dependent on MHCII, it suggests the existence of a unique receptor for 

SMEZ-2 on these blood-borne cells. 

 

              Table 4.1 The surface staining of DM+ CD11b+ cells in the blood 
 

Myeloid lineage markers  
F4/80 + 
Monocyte subset markers  
Ly6C -,+,++ 
Ly6G - 
Gr-1 + 
Adhesion molecules  
CD11a (LFA-1) ++ 
CD11b (MAC-1) ++ 
CD44 ++ 
CD54 (ICAM-1) - 
CD49d (VLA-4) ++ 
Antigen presentation/costimulatory markers  
MHCII - 
CD80 -,+ 
CD86 - 
CD40 -,+ 
Miscellaneous  
CD90.2 (Thy1.2) - 
CD4 - 
CD8 - 
CD45 ++ 
CD45R (B220) - 
CD62L -,+ 
CD69 - 
24G2 ++ 
CD11c - 
PDCA-1 - 
CD1d - 

 
Data have been assigned arbitrary symbols that represent “-” no staining and increasing amount of 
staining “+, ++”. 
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Figure 4.5 DM was taken into the cytoplasm of a myeloid cell population in the 
blood 
C57BL/6J mice were injected with DM-Alexa 488 i.v. (50 µg per mouse). Twenty minutes after 
injection, the blood cells were isolated.  A, DM-Alexa 488+ blood cells presented a myeloid-like 
morphology with a large, ovoid or kidney-shaped nucleus. Left image, DM-Alexa 488+ cells were 
viewed by microscopy under a 400 times magnification and right image, 1000 times magnification. 
100% pure DM-Alexa 488+ cells were sorted by FACS sorting and stained by using a Diff-Quik stain set. 
B, Confocal microscopy image of the blood cells collected 20 minutes after i.v. injection of Alexa 488 
labelled DM. The co-staining of CD11b (surface marker) and DAPI (intracellular marker) indicated that 
DM was located in the cytoplasm. 
 
 
4.3.5 The blood MHCII-CD11b+F4/80+Gr-1+ cells were potent suppressors of T cell 

response 

The DM+ cells identified in the blood expressed several features common to the MDSC 

phenotypes, including their monocytic morphology and co-expression of Gr-1, CD11b 

and F4/8045, thereby raising the question whether these blood cells also exhibited a 

suppressor function.  
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4.3.5.1 DM+ bound to the CD11b+Ly6G-SSClow cells in the blood 

In the mice injected with DM-Alexa 488, all the DM+ cells in the blood had a 

phenotype of CD11b+Ly6G- (Figure 4.6A Left) and made up ~70% of all the 

CD11b+Ly6G- cells in the blood (Figure 4.6A Right). The CD11b+Ly6G- cells were 

present in the naïve mouse blood with a similar percentage (Figure 4.6B) and expressed 

a similar pattern of surface markers as listed in Table 4.1. It is noteworthy that the 

CD11b+Ly6G- cells in the mouse blood were located in the low side-scatter gate 

whereas the CD11b+Ly6G+ neutrophils were located in the high side scatter gate 

(Figure 4.7). This result indicated that the CD11b+Ly6G- cells had lower cellular 

granularity than neutrophils, and this finding is consistent with the morphological 

characteristics shown in Figure 4.5B. 

 

 
 

Figure 4.6 The DM+ cells were CD11b+Ly6G- 
DM-Alexa 488 was injected i.v. into a C57BL/6J mouse with a dose of 50 µg. Thirty minutes after 
injection, the blood cells were collected and analysed. An age- and sex-matched mouse was injected with 
PBS as the experimental control. A, the blood cells from the mouse injected with DM-Alexa 488. Left, 
the DM+ cells showed a CD11b+Ly6G- phenotype (G1) and the majority of the remaining CD11b+ cells 
were Ly6G+Ly6C+ (G2). Right, 70% of the CD11b+Ly6G- blood cells were DM+. B, the blood cells from 
the control mouse. The numbers indicate the percentages of gated cells. 
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Figure 4.7 The CD11b+Ly6G- cells had a low side scatter intensity profile 
Left graph, the blood cells from naïve mice were analysed by flow cytometry. G1 and G2 were gated on 
side-scatter high and low cells. Right graph, CD11b+ cells located in G1 and G2 were analysed for the 
expression of Ly6C and Ly6G. The cells of the right graph were gated on CD11b+ cells. 
 

4.3.5.2 CD11b+Ly6G- cell purification from the blood 

In order to obtain pure cell populations for functional assays, different cell purification 

methods were tested. The traditional method for cell purification is to use antibodies in 

combination with magnetic beads to positively select out the desired cell population. 

However, this approach was not possible for the CD11b+Ly6G- cell population as the 

markers expressed by the DM+ cells such as CD11b, Gr-1 and Ly6C were also 

expressed on other cells including the Ly6G+ neutrophils. As a result, the Ly6G+ 

neutrophils were required to be removed before enrichment of CD11b+ cells.   

 

Because the CD11b+Ly6G- cells have different granularity (Figure 4.7), a density 

gradient was used to eliminate the Ly6G+ neutrophil population. Three density 

gradients were trialed, Percoll (Amersham Biosciences, Sweden), Histopaque 1083 

(Sigma-Aldrich, USA) and Lympholyte-M (Cedarlane Ltd., USA). Of these three, 

Lympholyte-M provided the best performance for eliminating Ly6G+ neutrophils (from 

12% to <1%) (Figure 4.8) and high recovery of the CD11b+Ly6G- cells.  

 

After removal of Ly6G+ neutrophils, a combination of CD11b+ antibody with magnetic 

beads was used to positively select the CD11b+Ly6G- cells. I compared the 

combinations of the CD11b antibody with three different magnetic cell separation 

systems including MACS (Miltenyi Biotec, Germany), Dynal (Invitrogen, USA) and 

Biomag (Bangs Laboratories Inc., USA). The MACS system exhibited the best 

performance with the CD11b+Ly6C- cells being enriched to 80-90%. This cell 

purification procedure is described in detail in Section 2.7.1.3. In conclusion, by using 
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this two-step purification method, Lympholyte-M followed by CD11b antibody and 

MACS beads, the CD11b+Ly6G- blood cells were enriched from 5-25% to >80%.  

 

The purification method above was then used to determine the %purified CD11b+Ly6G- 

cells that were DM+ cells in the blood of DM-Alexa 488 injected mice.  Approximately 

70% of the purified cells were DM+ cells (Figure 4.9). This number was consistent with 

the fact that ~70% of CD11b+Ly6G- blood cells bound to DM after the DM-Alexa 488 

i.v. injection (Figure 4.6). Therefore, this two-step purification is an efficient method to 

purify the CD11b+Ly6G- cells from the blood.  

 

 
Figure 4.8 Two-step purification of CD11b+ Ly6G- cells from the blood 
A two-step purification method was established for the blood CD11b+Ly6G- cell enrichment. In the first 
step, whole blood cell suspension was centrifuged with Lympholyte-M density gradient to eliminate the 
Ly6G+ neutrophils. In the second step, CD11b+Ly6G- cells were positively selected by CD11b antibody 
in combination with MACS beads through an Automacs separator. The numbers indicate the percentages 
of the gated cells. The numbers in red indicate the percentages of target CD11b+Ly6G- blood cells in the 
cell suspension. 
 

 
Figure 4.9 Purification of the DM+ cells via the two-step purification procedure 
DM-Alexa 488 was injected i.v. into a C57BL/6J mouse with a dose of 50 µg. Blood cells were isolated 
from the mouse three hours after the injection. Left, the original blood population; Right, after the 
two-step purification, >70% of the final cell population were DM+ cells. 
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4.3.5.3. Validation of a suppression assay for measuring the blood CD11b+Ly6G- 

cells-mediated suppressive effect  

To determine whether the blood CD11b+Ly6G- cells expressed a suppressive 

phenotype, the purified blood CD11b+Ly6G- cells were tested for their ability to 

suppress T cell proliferation in vitro using a traditional T cell suppression assay 

(described in Section 2.11.2.1). The assay involved stimulating the responder T cells in 

the presence of the proposed suppressor blood CD11b+Ly6G- cells. [3H]-thymidine was 

added to the cell culture and incubated with the cells for a further 8-16 hours before the 

termination of the assay. The suppression of T cell proliferation was measured by the 

inhibition of thymidine incorporation. 

 

Surprisingly, in many experiments, the suppression of cell proliferation was evident 

under a microscope (Figure 4.10A), but this suppression could not be detected by 

thymidine incorporation (Figure 4.10B). In order to investigate the reason for the 

conflicting results measured by microscopy and thymidine incorporation, and develop a 

reliable assay to evaluate the suppressive effect of the blood CD11b+Ly6G- cells, I 

assessed T cell proliferation by CFSE dilution assay. In contrast to microscopy and 

thymidine incorporation, CFSE dilution captures difference in cell divisions from time 

point zero to the end of the assay188. As shown in Figure 4.10C, using the same 

conditions described in Figure 4.10A and Figure 4.10B, the suppression of responder 

cell division was evident by measuring CFSE dilution. The suppression measured by 

CFSE dilution was in a clear dose-dependent manner, which was consistent with the 

effect when observed by microscopy (Figure 4.10A).  
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Figure 4.10 Comparison of thymidine incorporation and CFSE dilution based 
suppression assays 
CFSE labelled 2D2 transgenic splenocytes were used as the responder cells and pre-incubated with 
10 µg/ml MOG35-55 for 24 hours. Purified blood CD11b+Ly6G- cells were added to the cell culture at the 
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indicated ratios to the responder cells and incubated for a further 40 hours. A, Microscopy pictures taken 
at 64 hours after the initiation of the cell culture. The suppression of the splenocyte proliferation by the 
blood CD11b+Ly6G- cells was evident under a microscope and this suppression was dose dependent. 
Arrows indicate the proliferating cells formed clusters. The numbers indicate the ratios of 
suppressor:responder cells. B, The cells of graph A were tested for thymidine uptake. C top, CFSE 
dilution on overall responder cells. C bottom, CFSE dilution on gated CD4+ cells. Eight to 16 hours 
before the termination of the assay, [3H]-thymidine was added to the cell culture. When the thymidine 
plate was harvested (B), the duplicate plate was analysed for CFSE dilution. Note in C, the 
dose-dependent suppression was obvious but did not show in B. 
  
 

As the CFSE and thymidine based assays presented different readouts of the blood 

CD11b+Ly6G- cells’ suppressive activity (Figure 4.10), I hypothesised that the 

suppression of T cell proliferation by the blood CD11b+Ly6G- cells only lasted for a 

short period of time. Based on this theory, it was possible that before thymidine was 

added to the cell co-culture, this suppressive activity had already diminished. In 

contrast, CFSE dilution detected the suppression of cell division from time zero to the 

end of the assay, and therefore, was able to detect any difference in T cell proliferation 

before the addition of thymidine. 

 

To test whether timing was important for the thymidine incorporation assay in detecting 

the blood CD11b+Ly6G- cell mediated suppression, I set up the blood CD11b+Ly6G- 

cell and CD4+ cell co-cultures and performed the thymidine incorporation assays at 

different time points. As shown in Figure 4.11, the blood CD11b+Ly6G- cells’ 

suppressive activity was maximal on day one and was absent by day three, indicating 

that the cell proliferation was suppressed only during the early phase of T cells 

expansion. This finding supports the above hypothesis. 

 

Thymidine incorporation can give a picture of the DNA synthesis over the 8-16 hours 

pulse period, while CFSE dilution demonstrates the cell division from time point zero to 

the end of the assay. Thus, the two assays complement each other and both assays were 

used in subsequent experiments to test different aspects of blood CD11b+Ly6G- cells’ 

suppressive mechanisms. 
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Figure 4.11 The blood CD11b+Ly6G- cells mediated suppression of CD4+ T cells 
was temporary 
Purified CD4+ cells (50,000 cells/well) and blood CD11b+Ly6G- cells were either cultured alone or mixed 
at different ratios in the presence of expander beads in a 96-well round bottom plate. The numbers 
indicate the period starting from the time thymidine was added to the wells to when the assays were 
terminated. The percentages indicate the percentages of suppression. One-way ANOVA followed by 
Bonferroni tests was used to analyse statistical significance, ***p < 0.001;  **p<0.01.  
 

4.3.5.4 Naïve blood CD11b+Ly6G- cells suppressed T cell proliferation and thus 

express MDSC phenotype 

To further confirm the blood CD11b+Ly6G- cells express an MDSC suppressor 

phenotype, the purified blood CD11b+Ly6G- cells were tested for their ability to 

suppress T cell proliferation in vitro in response to both antigen-non-specific and 

antigen-specific stimuli.  

 

As shown in Figure 4.12A, purified blood CD11b+Ly6G- cells showed a 

dose-dependent suppressive activity on the proliferation of splenocytes in response to 

the expander beads (Invitrogen, USA). Expander beads are polymer beads coated with 

an optimised mixture of monoclonal antibodies against the mouse CD3 and CD28 cell 

surface antigens, mimicking the stimulation by APCs198. The suppression of T cell 

proliferation by the blood CD11b+Ly6G- cells was confirmed by both thymidine uptake 

(Figure 4.12A) and CFSE dilution of the responder cells (Figure 4.12B). The CFSE 

dilution assay showed that both CD4+ and CD8+ T cell proliferation was suppressed 

(Figure 4.12B). The blood CD11b+Ly6G- cells were also potent suppressors of the 2D2 

transgenic lymph node cell (LN cell) proliferation in response to the MOG35-55 peptide 

(Figure 4.13). In summary, the blood CD11b+Ly6G- cells appear to be potent 

suppressors of both antigen-non-specific and antigen-specific T cell responses. 
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Figure 4.12 The blood CD11b+ Ly6G- cells suppressed an antigen-non-specific T 
cell response 
CFSE labelled 2D2 mouse splenocytes (50,000 cells/well) were either cultured alone or co-cultured with 
different numbers of the CD11b+Ly6G- blood cells isolated from naïve mouse blood in a round-bottom 
96-well plate. A, Cell proliferation was measured by thymidine uptake. [3H]-thymidine was added to the 
cell culture at 24 hours, and the cells were incubated for an additional 16 hours. The numbers indicate the 
percentages of suppression. B, Cell proliferation was measured by CFSE dilution 72 hours after the 
initiation of the cell culture. CD4+ and CD8+ cell proliferation was also analysed by gating on the CD4+ 
or CD8+ cell populations separately. In the cell co-culture, splenocytes and the blood CD11b+Ly6G- were 
mixed at the ratio of 1:1. One-way ANOVA followed by Bonferroni tests was used to analyse statistical 
significance, **p<0.01. Results are representative of more than three separate experiments. 
 
 

 
Figure 4.13 Blood CD11b+Ly6G- cells suppressed an antigen-specific response 
CFSE labelled 2D2 transgenic LN cells (50,000 cells/well) were pre-activated by 3 µg/ml MOG35-55 
peptide. Twenty-four hours after the incubation, purified blood CD11b+Ly6G- cells (50,000 cells/well) 
from naïve mice were added to the culture. Cell proliferation was measured by CFSE dilution 48 hours 
after setting up the cell co-culture. Results are representative of more than three separate experiments. 
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Bead engulfment was observed in the cell culture containing both blood CD11b+Ly6G- 

cells and splenocytes. In order to exclude the possibility that the observed suppression 

by the blood CD11b+Ly6G- cells was simply due to the removal of the bead stimulus 

from the responder cells, the responder cells were cultured in the plate coated with 

anti-CD3 (Clone 145-2c11) and anti-CD28 (Clone 37.51) antibodies. As shown in 

Figure 4.14, the blood CD11b+Ly6G- cells also suppressed the responder cell 

proliferation in this condition in a dose-dependent manner, confirming that the blood 

CD11b+Ly6G- cells expressed a true suppressor phenotype. Therefore, based on the 

surface and functional suppressor phenotype, these blood CD11b+Ly6G- cells were 

named blood MDSC (bMDSC). 

 

 
Figure 4.14 The blood CD11b+Ly6G- cells suppressed the plate-bound anti-CD3 
and anti-CD28 induced T cell response 
CFSE labelled lymph node (LN) cells (50,000 cells/well) were cultured with either expander beads 
(25,000 beads/well) or plate bound anti-CD3 (2 µg/ml) and anti-CD28 (3 µg/ml) antibodies. Purified 
blood CD11b+Ly6G- cells were added at different ratios to LN cells to the plates as indicated. A, 
[3H]-thymidine was added to the plate 16 hours after initiation of the assay and the plate was harvested at 
24 hours. The numbers equate to the percentage of suppression. B, CFSE dilution was measured 40 hours 
after the initiation of the assay. The purple line showed CFSE dilution of the LN cells incubated with the 
blood CD11b+Ly6G- cells at 1:1 ratio. Cells were gated on CD4+ cells. One-way ANOVA followed by 
Bonferroni tests was used to analyse statistical significance,  **p<0.01. Results are representative of more 
than three separate experiments. 
 

4.3.6 Mechanisms for bMDSC-mediated suppression of CD4+ T cell proliferation 

The following section provides detailed results of the investigations undertaken to 

understand the cellular and molecular mechanisms utilised by naïve bMDSCs to 

suppress CD4+ T cell proliferation. 
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4.3.6.1 CD4+ cells were direct targets of the bMDSC-mediated suppression 

I posed the question whether the bMDSC-mediated suppression of CD4+ T cell 

proliferation acted directly on CD4+ T cells or indirectly by impairing APC’s antigen 

presentation. To exclude APCs’ involvement in the suppressive process, purified CD4+ 

cells (>95% pure) were used as the responder cells and the expander beads were used as 

the stimuli for the suppression assay. The bMDSCs showed a robust dose-dependent 

suppressive activity of the purified CD4+ cells in vitro (Figure 4.15), indicating that the 

bMDSCs suppress CD4+ cells directly and this suppression is not dependent on APCs. 

 

 
Figure 4.15 bMDSCs suppressed the proliferation of purified CD4+ T cells 
Purified CD4+ cells (50,000 cells/well) and bMDSCs from naïve C57BL/6J mice were either cultured 
alone or co-cultured at different ratios in the presence of expander beads in a 96-well round bottom plate. 
[3H]-thymidine was added to the wells at 24 hours and incubated for additional 16 hours. The numbers 
indicate the percentages of suppression. One-way ANOVA followed by Bonferroni tests was used to 
analyse statistical significance,  ***p < 0.001;  **p<0.01. Results are representative of more than three 
separate experiments. 
 

4.3.6.2 bMDSCs suppressed CD4+ T cell proliferation in a cell-contact dependant 

manner 

In order to determine whether cell contact was important for the bMDSCs’ suppression 

of T cell proliferation, a transwell experiment was performed. Purified CD4+ cells or 

unfractioned splenocytes from naïve C57BL/6J mice were incubated with the bMDSCs 

in the same or separate chambers of a transwell system (3 µm pore size, Corning, USA). 

The suppression of T cell proliferation by bMDSCs was abolished when the bMDSCs 

and responder cells were in different chambers (Figure 4.16). This result indicates that 

the bMDSC-mediated suppression of T cell proliferation is cell contact dependent. 
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To investigate the possible molecules involved in the cell-contact suppression, blocking 

antibodies targeting the co-stimulatory molecules CD40 (Clone 1C10), CD80 (Clone 

16-10A1) and CD86 (Clone PO3.1), and the Fcγ receptors II and III (Clone 24G2) were 

added to the cell co-culture. However, none of these antibodies blocked the ability of 

bMDSCs to suppress T cell proliferation (data not shown). 

 

 
Figure 4.16 The bMDSC-mediated suppression was cell contact dependent 
Unfractioned splenocytes from naïve C57BL/6J mouse were used as the responder cells (50,000 
cells/well) and were incubated with purified bMDSCs at the ratio of 1:1 in the presence of expander 
beads. [3H]-thymidine was added to the wells at 24 hours and incubated for an additional 16 hours. The 
bMDSCs and the responder cells were cultured either in the same chamber or in separate chambers in a 
transwell plate (3 µm pore size) (bMDSCs were placed in the upper chamber and responder cells were in 
the lower chamber).  One-way ANOVA followed by Bonferroni tests was used to analyse statistical 
significance,  **p<0.01; ns, not significant. Results are representative of more than two separate 
experiments. 
 

4.3.6.3 NOS but not arginase 1 was involved in the bMDSCs’ suppression of T cell 

proliferation  

The majority of published evidence on the MDSCs isolated from tumour-bearing mice 

points to a fundamental role of nitric oxide synthase (NOS) and arginase 1 in the 

MDSCs’ mediated suppression of T cell proliferation71,73. To investigate the possible 

role of NOS and arginase 1 in mediating the suppression of T cell proliferation by the 

bMDSCs, the inhibitor of NOS, NG-monomethyl-L-arginine (L-NMMA) 

(Sigma-Aldrich, USA) and the inhibitor of arginase 1, Nω-hydroxy-nor-L-arginine 

(nor-NOHA) (Calbiochem, Germany) were added to the suppression assay at 500 µM, 

the concentration previously reported to completely block NOS and arginase 171,199,200.  
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The addition of NOS inhibitor L-NMMA partially blocked the bMDSCs’ suppression of 

T cell proliferation (Figure 4.17), indicating a nitric oxide (NO)-dependent mechanism. 

The failure of L-NMMA to completely reverse the suppression indicated the existence 

of an additional NO-independent suppressive mechanism. In contrast, arginase 1 

inhibitor nor-NOHA failed to reduce the bMDSCs’ suppression. Thus, arginase 1 

activity did not contribute to the bMDSCs’ suppression of T cell proliferation. In 

addition, adding nor-NOHA to the cell co-culture containing L-NMMA did not further 

reduce the bMDSCs’ suppressive activity indicating that there was no synergistic effect 

of NOS and arginase 1 in this bMDSC-dependent suppression. In conclusion, NOS but 

not arginase 1 plays a role in bMDSC-mediated suppression of T cell proliferation. 

 

 
Figure 4.17 The bMDSCs’ suppression of T cell proliferation was mediated by 
NOS but not arginase 1 
C57BL/6J splenocytes and purified bMDSCs were co-cultured at 1:1 ratio with expander beads. 
L-NMMA or nor-NOHA were supplemented to the cell culture as indicated. [3H]-thymidine was added to 
the plate 24 hours after the initiation of the assay and the plate was harvested after another 16 hours. 
One-way ANOVA followed by Bonferroni tests was used to analyse statistical significance,  *p<0.05. 
 

4.3.6.4 The role of IFN-γ  in the bMDSC-mediated suppression of T cell 

proliferation 

A number of studies have shown that IFN-γ plays an important role in the 

MDSC-mediated suppression of T cell responses71,169,201. It is therefore possible that 

IFN-γ also plays a role in naïve bMDSC-dependent suppression of T cell proliferation. 

To determine whether IFN-γ is required for bMDSCs to suppress T cell proliferation, 

and if it is required, the cellular source of IFN-γ, IFN-γ deficient (IFNγ-/-) cells and the 

IFN-γ neutralising antibody (Clone An-18) were tested in the suppression assay. As 
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shown in Figure 4.18, the bMDSCs derived from IFNγ-/- mice suppressed both wild 

type and IFNγ-/- responder cells at levels comparable to that of the wild type bMDSCs. 

Importantly, the IFNγ-/- bMDSCs strongly suppressed the IFNγ-/- responder cells. 

IFN-γ was absent in this condition, indicating that bMDSCs suppress T cells in an 

IFN-γ independent manner.  

 

Although the difference in suppression between IFNγ-/- and wild type bMDSCs was not 

significant, there was a trend towards reduced suppression in the IFNγ-/- MDSCs. The 

observed difference in suppression may be due to the anti-proliferative effects of IFN-γ 

in the co-culture187,202-205, or a result of the inherent differences in two distinctly 

different populations i.e. the bMDSCs derived from a wild type environment versus 

bMDSCs derived from an IFN-γ devoid environment. To understand whether this 

marginal difference was due to IFN-γ in the cell co-culture, IFN-γ neutralising antibody 

was added to block IFN-γ-mediated responses. The addition of the IFN-γ antibody 

slightly reversed the suppression by the bMDSCs (Figure 4.18B). Again, the difference 

in suppression between the cell cultures was not statistically significant, indicating that 

although IFN-γ maybe involved to a small degree, IFN-γ is not the key mediator in the 

suppressive activity of naïve bMDSCs on T cell proliferation. 

 

 
Figure 4.18 The involvement of IFN-γ  in the bMDSCs’ suppression of T cell 
proliferation 
A, Splenocytes derived from either C57BL/6J or IFN-/- mice were incubated with purified bMDSCs from 
either C57BL/6J or IFNγ-/- mice at 1:1 ratio in the presence of expander beads. B, C57BL/6J splenocytes 
were incubated with the bMDSCs purified from C57BL/6J mice at 1:1 ratio in the presence of 
neutralising IFN-γ antibody at 10 µg/ml. %suppression = (1-proliferation with the bMDSCs in the 
presence of anti-IFN-γ/proliferation without the bMDSCs in the presence of anti-IFN-γ)×100%. 
[3H]-thymidine was added to the plate 24 hours after the initiation of the assay and the plate was 
harvested after another 16 hours. WT, wild type. 
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4.3.6.5 bMDSCs’ suppression of T cell proliferation was not dependent on IDO 

Indoleamine-2,3-dioxygenase (IDO) is an enzyme that degrades the essential amino 

acid L-tryptophan186,206-210, and this degradation halts growth of T cells208. IDO has 

been reported to be induced in macrophages208 and DCs209,210 after exposure to IFN-γ. 

Since the observed suppression by the bMDSCs was partially mediated by IFN-γ, it was 

possible that IDO played a role in the bMDSC-mediated suppression. Therefore, the 

bMDSCs from IDO deficient mice (IDO-/-) were tested for their suppressive effect. The 

bMDSCs purified from wild type and IDO-/- mice exhibited comparable suppressive 

activity of T cell proliferation and the IDO-/- bMDSCs strongly suppressed the IDO-/- 

responder cells (Figure 4.19). Therefore, the bMDSC-mediated suppression was not 

IDO dependent.  
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Figure 4.19 IDO was not involved in the bMDSC-mediated suppression of T cell 
proliferation 
Splenocytes derived from either C57BL/6J or IDO-/- mice were incubated with the expander beads in the 
presence of purified bMDSCs from either C57BL/6J or IDO-/- mice at 1:1 ratio. [3H]-thymidine was 
added to the plate 24 hours after the initiation of the assay and the plate was harvested after another 16 
hours. Results are representative of more than two separate experiments. WT, wild type. 
 

4.3.6.6 The bMDSCs did not enhance responder cell apoptosis 

To determine whether the bMDSC-mediated suppression of T cell proliferation could 

be due to the induction of apoptosis on the responder cells, bMDSCs were cultured with 

CFSE labelled splenocytes for 48 hours and the apoptotic marker Annexin V was 

analysed on the splenocytes at 4, 8, 16, 32 and 48 hours. As shown in Figure 4.20, the 

addition of bMDSCs did not tend to increase the responder cell apoptosis. In contrast, in 

the presence of bMDSCs, the splenocytes had a reduced percentage of Annexin V+ cells 
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e.g. at 48 hours (Figure 4.20). The higher percentage of Annexin V+ cells in the cell 

culture that did not contain bMDSCs can be explained by over-activation related 

apoptosis of the responder T cells211. Because the splenocytes cultured with the 

bMDSCs did not proliferate as much, over-activation related apoptosis might not have 

occurred. In conclusion, bMDSCs did not enhance apoptosis in the responder cells. 

 

 
Figure 4.20 The addition of the bMDSCs did not enhance the splenocyte apoptosis 
Splenocytes derived from C57BL/6J mice (50,000 cells/well) were labelled with CFSE and incubated 
with expander beads in the presence of purified bMDSCs at 1:1 ratio. At 4,8,16,32 and 48 hours, the cells 
were stained with Annexin V and analysed by flow cytometry. Cells were gated on the CFSE+ responder 
cells. The numbers indicate the percentages of Annexin V+ cells of the CFSE+ cells. 
 
 
4.3.6.7 The bMDSC-mediated suppression of T cell proliferation was not 

dependent on Tregs  

It has been reported that the MDSCs derived from tumour-bearing mice could induce 

the expansion of Foxp3+ Tregs73. It was therefore possible that bMDSCs-mediated 

suppression of T cell proliferation was an indirect result of the expansion of Tregs from 

responder cell population. To assess whether Tregs were important in the bMDSCs’ 

suppressive activity, Foxp3-GFP KI male mice were injected with anti-CD25 antibody 

(Clone PC61) two days prior to the isolation of responder cells. PC61 antibody has been 

reported to partially neutralise Tregs and functionally inactivate the remaining Tregs in 

vivo162. The neutralising of Tregs in PC61-treated mice was confirmed by analysing 

surface CD25 (Clone 7D4) and Foxp3-GFP expression on CD4+ cells. As shown in 

Figure 4.21A, PC61 administration resulted in the neutralisation of CD25+ cells (from 

6-7% to 1-2%), and a significant decrease in Foxp3+ cells (from 9-10% to 4-6%).   
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CD4+ cells were purified from either PC61 treated mice as described above or naïve 

mice and co-incubated with bMDSCs derived from naïve mice. As shown in Figure 

4.21B, the CD4+ cells from PC61 treated mice were equally suppressed by bMDSCs as 

the CD4+ cells derived from naïve mice, indicating that bMDSCs do not depend on 

nTregs to suppress CD4+ T cell proliferation. 

 

 
Figure 4.21 bMDSCs-mediated suppression of CD4+ T cell proliferation did not 
depend on Tregs 
Foxp3-GFP KI male mice were injected i.p. once with anti-CD25 antibody (Clone PC61) at a dose of 
200 µg or left untreated as the experimental controls. CD4+ cells were purified from the lymph nodes two 
days after the injections. The purified CD4+ cells were analysed by flow cytometry for CD4, Foxp3 and 
CD25 expression. A, Staining of the purified CD4+ cells analysed for CD4, CD25 (Clone 7D4) and 
Foxp3-GFP expression. Numbers indicate percent of total cells in each quadrant. B, The purified CD4+ 
cells were co-cultured with bMDSCs at a ratio of 1:1 in the presence of expander beads for 24 hours. 
[3H]-thymidine was added to the cell culture and incubated for a further 16 hours. The numbers indicate 
the percentages of suppression by bMDSCs. Results are representative of more than two separate 
experiments. 
 

4.3.7 Binding of DM with bMDSCs in vivo enhanced the bMDSCs’ suppression of 

T cell proliferation in vitro 

After confirming bMDSCs’ suppressive phenotype, I next investigated whether the 

uptake of DM by bMDSCs altered the cells’ suppressive activity. Three hours after i.v. 

injection of DM-Alexa 488, bMDSCs were isolated from the injected mice for an in 

vitro suppression assay. The uptake of DM by bMDSCs was confirmed by flow 

cytometric analysis (Figure 4.3). As shown in Figure 4.22A, compared with the naïve 

bMDSCs, the DM+ bMDSCs exhibited enhanced suppressive activity in vitro and 

retained this suppressive activity for longer (Figure 4.22B). The enhanced suppressor 

function of the bMDSCs loaded with DM highlights the potential for DM to be utilised 

as an immunosuppressive therapy for autoimmune diseases by targeted manipulation of 

bMDSCs in vivo.  
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Figure 4.22 The binding of DM with bMDSCs in vivo enhanced the 
bMDSC-mediated suppression of T cell proliferation in vitro 
DM-Alexa 488 (50 µg) was injected into C57BL/6J mice i.v. Three hours after the injection, the binding 
of DM to bMDSCs was verified by flow cytometry analysis on the blood cells. Purified bMDSCs were 
co-cultured with the splenocytes derived from naïve C57BL/6J mice at 1:1 ratio in the presence of 
plate-bound anti-CD3 (2 µg/ml) and anti-CD28 (3 µg/ml) antibodies in a 96-well plate. The bMDSCs 
purified from naïve mice were used as the experimental control. The suppression of T cell proliferation 
was measured at A, 16-24 hours; B, 24-40 hours after the initiation of the assay by thymidine 
incorporation. The numbers on the graph indicate %suppression. One-way ANOVA followed by 
Bonferroni tests was used to analyse statistical significance, ***p<0.0001. Results are representative of 
more than two separate experiments. 
 

4.3.8 DM did not bind to bMDSCs in vitro 

As demonstrated in the previous section, the binding of DM with bMDSCs in vivo 

strongly enhanced the bMDSCs’ ability to suppress T cell proliferation. Given this and 

that experimental procedures are easier in an in vitro set-up, I attempted to load 

bMDSCs with DM in vitro. Surprisingly, isolated bMDSCs did not bind to the 

bMDSCs in vitro regardless of the culture environment (Table 4.2). The inability of the 

isolated bMDSCs to bind to DM points towards the involvement of a yet unknown in 

vivo mechanism for DM uptake by bMDSCs. 
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Table 4.2 Methods utilised to investigate binding of DM-Alexa 488 to bMDSCs in 
vitro 
Cells types isolated • Un-fractioned blood from either naïve or DM injected 

mice 
• Enriched leukocytes by Lympholyte-M gradient from 

either naïve or DM injected mice 
• Purified bMDSCs from either naïve or DM injected 

mice  
• Un-fractioned splenocytes from either naïve or DM 

injected mice 
• Bone marrow cells 
• Bone marrow cells cultured with IL-4 and GM-CSF for 

7 days 
Anti-aggregation methods • Heparin 

• Alsevers solution 
Staining buffer  • cIMDM 

• IMDM 
• IMDM containing mouse blood serum 
• IMDM containing the blood serum extracted from DM 

injected mice 
• Naïve mouse blood serum 
• Mouse blood serum extracted from DM injected mice 
• HBSS 
• PBS 
• FACS buffer 
• PBS containing 0.2 mM ZnCl2 
• PBS containing 0.2, 1 or 5 mM MgSO4 
• PBS containing 0.02, 0.1 or 0.5 mM MnCl2 
• PBS containing 1 mM MgSO4 and 0.1 mM MnCl2 
• PBS containing 0.2 mM MgSO4 and 0.02 mM MnCl2 
• PBS containing 5 mM MgSO4 and 0.5 mM MnCl2 

Stimulation • LPS 
• Pam3Cys 
• PMA/ionomycin 
• Anti-CD3 antibody (Clone 145-2c11) 

 
 
4.4 Discussion 

The overall aim of the experiments presented in this chapter was to investigate whether 

the blood cells that DM binds to in vivo are able to suppress immune responses and if 

so, to investigate the cellular and molecular mechanisms these cells utilised in this 

process. In this chapter, I found that the DM+ blood cells are mononuclear in 

morphology and have a phenotype of CD11b+Ly6G-. The CD11b+Ly6G- cells from 

both naïve mice and DM-injected mice expressed the common surface markers for 

MDSCs such as CD11b, F4/80 and Gr-1 (Table 4.1) and potently suppressed T cell 
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proliferation in vitro. Based on their myeloid phenotype and highly suppressive nature, 

I have classified these cells as “bMDSCs”. 

 

In recent years, the Gr-1+CD11b+ MDSCs have been extensively studied in tumour 

models and are considered critical in assisting tumours to escape immune 

recognition45,75,76. In tumour models, MDSCs aberrantly expand during the process of 

tumour growth71 and tumour environment greatly influences MDSCs’ 

characteristics71,212. For example, the splenic MDSCs isolated from tumour-bearing 

mice exhibit a marked reduction in interferon regulatory factor-8 (IRF) expression 

compared to the Gr-1+CD11b+ splenocytes derived from naïve mice. IRF-8 plays an 

integral role in the regulation of cell death and the reduction of IRF-8 leads to increased 

MDSC survival213. Although it is known that the Gr-1+CD11b+ MDSCs from 

tumour-bearing mice are potent suppressors of immune responses, and the 

Gr-1+CD11b+ cells also exist in naïve mice71,169, there had been no evidence that freshly 

isolated Gr-1+CD11b+ cells from the naïve mouse blood were able to suppress a T cell 

response before this study.  

 

The bMDSCs described in this thesis are different from the Gr-1+CD11b+ splenic 

MDSCs accumulated in tumour models in that bMDSCs were isolated from the blood 

of naïve mice. Although cells sharing the same cell surface markers (CD11b+Ly6G-

F4/80+) were also present in the spleens of naïve mice, and these cells could also bind to 

DM, it remains unclear if the CD11b+Ly6G- splenocytes possess a suppressor 

phenotype. In the literature, results of measuring the in vitro suppressive activity of the 

Gr-1+CD11b+ splenocytes from tumour-free mice are not consistent. Most reports 

indicate that the Gr-1+CD11b+ splenocytes are not suppressive71,74,84-86, except that one 

paper shows that these cells are able to suppress CD4+ T cell responses87.  However, the 

Gr-1+CD11b+ splenocytes used in that study express very high level of Gr-1, and are 

likely to be Ly6G+ neutrophilic cells. In contrast, this thesis focused on the Ly6G- 

mononuclear bMDSCs freshly isolated from the blood of naïve mice. The existence of 

the bMDSC population in a natural disease-free condition suggests that bMDSCs are a 

suppressive mechanism that has evolved to maintain immune homeostasis and limit 

uncontrolled immune responses. 
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The bMDSCs described in this thesis are also different from the Gr-1+CD11b+ bone 

marrow suppressor cells reported in other studies214-216. It is shown that after the 

Gr-1+CD11b+ and other non-adherent bone marrow cells are cultured with different 

cytokines such as IFN-γ, GM-CSF and IL-3, these cells are able to suppress T cell 

responses214-216. The plasticity of myeloid cells has been well documented217 and thus, it 

is likely that the in vitro stimulation by the above cytokines results in the differentiation 

of these myeloid cells and endows them a suppressive capability. In contrast, bMDSCs 

are derived from the blood and are able to suppress T cell proliferation without any 

additional stimulation. Therefore, bMDSCs are different from the reported bone 

marrow suppressor cells.    

 

Two reported suppressor cell populations have many features similar to the bMDSCs 

described in this thesis71,169. In the first study, Zhu et al reported a population of 

inflammatory monocytes (IMC) in EAE mouse spleens that exhibit many features in 

common with the bMDSCs described in this chapter, e.g. monocytic morphology169. 

However, IMCs are different from bMDSCs in their functional phenotype. Zhu et al 

observed a strong induced apoptosis in proliferating CD4+ T cells co-cultured with 

IMCs, and the IMC derived from IFNγ-/- mice could not suppress T cell proliferation. 

In contrast, bMDSCs did not induce T cell apoptosis and the IFNγ-/- bMDSCs were 

almost equally suppressive as the wild type ones. In the second study, the mononuclear 

MDSCs (MO-MDSCs) described by Movahedi et al71 in tumours also suppress T cell 

responses in a NOS-dependent manner. However, MO-MDSCs vary in their abilities to 

suppress T cell activation depending on which tumours they are derived from, 

indicating that tumour microenvironments have changed these cells’ suppressive 

function. It remains unclear if these MO-MDSCs and the bMDSCs described in this 

chapter arise from the same progenitors. It is noteworthy that bMDSCs are derived from 

naïve mouse blood and MO-MDSCs are from the spleens of tumour-bearing mice.  

 

It is of interest that the in vivo “loading” of DM to bMDSCs enhanced the cells’ 

suppressive activity, in aspects of both potency and duration. Since naïve bMDSCs used 

NO to suppress T cell proliferation, it was possible that the observed increase of 

suppression was associated with an enhanced NO secretion by bMDSCs. However, no 

significant difference in NO level was observed in the supernatant of the cell cultures 
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containing DM-loaded or empty bMDSCs (data not shown). It was likely that the 

observed enhancement of bMDSCs’ suppression by DM loading was caused by other 

mechanisms rather than the increased NO secretion. Further studies need to be done to 

understand the mechanisms DM utilised to enhance bMDSCs’ suppression. This 

enhanced suppression reveals DM’s inhibitory ability and highlights its potential to be 

utilised as an immunosuppressive agent targeting bMDSCs in vivo.  

 

Although great effort has been made, the binding of DM and bMDSCs has not been 

achieved in vitro. Further studies are required to understand possible explanations for 

the failure of the binding between DM and bMDSCs in vitro. 

 

The findings from this chapter underscore a previously unknown role of bMDSCs in 

limiting CD4+ T cell responses and highlight the potential for developing an 

immunosuppressive therapy through the manipulation of bMDSCs. The description of 

bMDSCs in naïve mice provides a mechanistic insight into the body’s immunological 

tolerance. Moreover, CD4+ T cells are the pathogenic cells in EAE model111,113,137,144, 

and the understanding of bMDSCs’ suppression of CD4+ cell proliferation may be 

important for developing potential immunotherapies for EAE, and hence MS. 

Nevertheless, the finding that the binding of DM to bMDSCs greatly enhanced these 

cells’ suppressive activity identifies the potential for DM to be utilised as an 

immunosuppressive agent targeting bMDSCs in vivo. 

 

4.5 Conclusions 

In this chapter, I discovered and defined a specific suppressor cell population residing 

in the blood and named them “bMDSCs”. These cells are potent suppressors of T cell 

responses in vitro. The existence of this bMDSC population in naïve mice suggests that 

these cells are part of the body’s regulatory mechanism and may have evolved to 

maintain immune homeostasis and limit immune responses. In addition, the binding of 

DM to bMDSCs strongly enhances these cells’ suppression of T cell proliferation. This 

enhanced suppression caused by the DM-bMDSCs binding highlights the potential for 

using DM as an immunosuppressive agent targeting bMDSCs in vivo. The therapeutic 

potential of DM was investigated in Chapter 5 using the mouse EAE model. 



 

 

 

Chapter 5:  

 

DM-MOG35-55 Suppresses EAE in a 

MOG35-55 Specific Manner 
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5.1 Introduction 

Theoretically, autoimmune diseases such as MS could be inhibited using therapies that 

specifically suppress the activation of auto-reactive responses. However, there has been 

limited success in developing highly specific treatments to suppress autoimmune 

responses without impairing the body’s global immunity. In Chapter 3, I showed that 

adding SM-MOG35-55 to the EAE inducing emulsion brought about a slight suppression 

of the disease. However, it was unclear whether SM-MOG35-55 mediated EAE 

suppression was MOG35-55 specific. Additionally, SM-MOG35-55 did not activate or 

expand Tregs as hypothesised, but instead, SM bound to a suppressive subset of cells, 

which were described and termed as bMDSCs in Chapter 4. This raised the possibility 

that the bMDSCs played a role in SM-MOG35-55 mediated EAE suppression.  

 

In Chapter 4, I also showed that DM possessed an enhanced binding capability to 

bMDSCs compared to SM. Surprisingly, the in vivo binding of DM to bMDSCs 

improved the bMDSCs’ suppression of T cell proliferation in vitro. Given the enhanced 

binding of DM to bMDSCs compared to SM and the ability of DM to augment 

bMDSC-mediated T cell suppression, I hypothesised that DM-MOG35-55 could suppress 

EAE, and that bMDSCs play a key role in DM-MOG35-55 mediated suppression of EAE.  

 

5.2 Aims 

The experiments described in this chapter aimed to test the above hypothesis and 

develop a successful immunotherapy for EAE as a potential treatment for MS. 

 

The specific aims were as follows: 

• To determine if the conjugate DM-MOG35-55 could protect mice from developing 

EAE 

• To investigate if the MOG35-55 peptide conjugated to DM was necessary for 

DM-MOG35-55 mediated EAE suppression   

• To examine if DM-MOG35-55 mediated EAE suppression was MOG35-55 specific 

• To determine the role of bMDSCs in DM-MOG35-55 mediated EAE suppression 

• To optimise DM-MOG35-55 treatment delivery 
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5.3 Results 

5.3.1 DM-MOG35-55 suppressed MOG35-55 induced EAE in C57BL/6J mice 

In order to examine whether the administration of DM-MOG35-55 could suppress EAE, 

DM-MOG35-55 was added to the EAE inducing emulsion and injected into mice s.c. On 

day one, the recipient mice were injected with PTxn at a dose of 250 ng per mouse i.p. 

(this is subject to a similar administration regime as SM-MOG35-55 used in Figure 3.8). 

As shown in Figure 5.1, DM-MOG35-55 treatment suppressed EAE in a dose-dependent 

manner. A low dose (1 µg) of DM-MOG35-55 only reduced the severity of EAE during 

the early stage. However, higher doses (2 µg and 5 µg) reduced both the disease 

severity and incidence. 

 

From Figure 5.1, it can be seen that doses using 2 and 5 µg of DM-MOG35-55 resulted in 

similar levels of EAE suppression. Therefore, I used 2 µg to treat mice in subsequent 

studies for the investigation of DM-MOG35-55 mediated EAE suppression mechanisms. 

Hereafter, the term “DM-MOG35-55 treatment” will refer to “2 µg of DM-MOG35-55 

added to the EAE inducing emulsion and delivered s.c. into mice on day zero”. 

 

As shown in Table 5.1, the DM-MOG35-55 treatment greatly reduced the incidence of 

EAE in the recipient mice. Mice treated with DM-MOG35-55 had a 20-50% EAE 

incidence in comparison with 100% disease incidence in the control mice (50-80% 

protection). Although the DM-MOG35-55 treatment did not protect all the recipient mice 

from EAE, as shown in Table 5.2, the mortality was markedly reduced in the treated 

mice that developed EAE. The DM-MOG35-55 treatment may have also slightly delayed 

the onset and reduced the maximum severity of EAE in the DM-MOG35-55 treated sick 

mice (although not statistically significant).  
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Figure 5.1 DM-MOG35-55 suppressed EAE in a dose-dependent manner 
Left graph, mean EAE scores of the C57BL/6J mice immunised with MOG35-55 emulsified in CFA plus 
1, 2 or 5 µg of DM-MOG35-55. Mice immunised without the addition of DM-MOG35-55 were employed as 
the experimental controls. Right graph, %sick mice. Significant differences are indicated, ***p<0.0001. 
ns, not significant. Analysis of statistical significance was performed using a one tailed Mann Whitney U 
test. Each group contained five mice. Arrows indicate the days of DM-MOG35-55 administration. 
 

 

Table 5.1 Reproducibility of the treatment using DM-MOG35-55 
C57BL/6J mice were treated with EAE inducing emulsion plus 2 µg of DM-MOG35-55. Age- and 
sex-matched mice left untreated were employed as the experimental controls. 
Experimental 

Number 
Treated mice 
(Sick/total) 

% Sick of 
treated mice 

Control mice 
(Sick/total) 

% Sick of  
control mice 

1 2/4 50% 5/5 100% 
2 2/5 40% 5/5 100% 
3 1/5 20% 5/5 100% 

Total 5/14 35.71% 15/15 100% 
 

 

Table 5.2 DM-MOG35-55 treatment suppressed EAE 
C57BL/6J mice were treated with EAE inducing emulsion plus 2 µg of DM-MOG35-55. Age- and 
sex-matched mice left untreated were employed as the experimental controls. The incidence of EAE, 
mortality, mean maximum score of each group± SD and mean day of onset± SD are shown. Significant 
differences are indicated, ns, not significant (p>0.05). Analysis of statistical significance was performed 
using a student t test. 

Treatment 
Incidence of 

EAE (%) 
Mortality 

(%) 

Mean maximum 
severity of sick 

mice 

Mean day of 
onset of sick 

mice 
Control 15/15 (100%) 5/15 (33.33%) 4.04±0.74 16.57±6.03 

DM-MOG35-55 5/14 (35.71%) 0/14 (0%) 3.25±0.61ns 18.33±6.56 ns 
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5.3.2 DM-MOG35-55 treatment reduced cell infiltration into the CNS 

Next I investigated whether the DM-MOG35-55 treatment prevented EAE by decreasing 

cellular infiltration into the CNS or by suppressing the disease after the cell entry into 

the CNS. 

 

To assess CNS cellular infiltration, 40 days after EAE induction, the spinal cords of 

mice were sectioned and H&E stained. As shown in Figure 5.2, DM-MOG35-55 

treatment greatly reduced cell infiltration into the CNS. The spinal cords isolated from 

control mice showed massive cell infiltration in foci around the edges of the spinal 

cords (Figure 5.2B). In comparison, there was no obvious cellular infiltration into the 

spinal cords from DM-MOG35-55 treated mice (Figure 5.2D). Thus, DM-MOG35-55 

treatment prevented cell infiltration and/or accumulation into the CNS. 

 

 
Figure 5.2 DM-MOG35-55 treatment reduced cell infiltration into the CNS 
H&E stained spinal cord sections from untreated healthy mouse (naïve mouse), control sick mouse, 
DM-MOG35-55 treated (non-sick and sick) on day 40. One representative slide from each group is shown 
(A=5, B=5, C=9, D=5). Arrows indicate the infiltrating lymphocytes. On the day of spinal cord removal, 
EAE scores of all the mice in the control group’s were four, and that of DM-MOG35-55 treated sick mice 
were between 1-2.  
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5.3.3 The MOG35-55 peptide conjugated to DM was necessary for EAE suppression 

Although DM-MOG35-55 exhibited a suppressive effect on EAE, it was not clear 

whether the MOG35-55 peptide conjugated to DM was necessary for this EAE 

suppression. To address this question, unconjugated DM was added to the EAE 

inducing emulsion and injected into mice s.c. on day zero. As shown in Figure 5.3, the 

administration of unconjugated DM did not suppress EAE, indicating the MOG35-55 

peptide conjugated to DM was required for EAE suppression.  

 

Furthermore, at a dose of 2 µg, DM-MOG35-55 contains approximately 0.15 µg of 

MOG35-55 peptide conjugated to DM. Mixing this dose of the MOG35-55 peptide to the 

EAE inducing emulsion that contained 50 µg of MOG35-55 peptide did not alter either 

EAE scores or incidence in the recipient mice (data not shown) indicating that it was 

not the additional MOG35-55 peptide that induced disease suppression. Therefore, the 

conjugation of DM to the MOG35-55 peptide was required for the suppression of EAE. 

 

 
Figure 5.3 MOG35-55 peptide conjugated to DM was necessary for EAE suppression  
Left graph, mean clinical scores of C57BL/6J mice immunised with MOG35-55 emulsified in CFA plus 
2 µg of DM or DM-MOG35-55. Right graph, %sick mice. The development of clinical signs of EAE was 
monitored daily. Significant differences are indicated, ***p<0.0001; ns, not significant. Analysis of 
statistical significance was performed using a one tailed Mann Whitney U test. The DM and 
DM-MOG35-55 groups contained five mice and the control group contained four mice. SM-MOG35-55 
treatment as shown in Figure 5.10 was also included in this experiment. However, results are not 
indicated here for clarity. Arrows indicate the days of DM-MOG35-55 or DM administration. 
 

5.3.4 DM-MOG35-55 mediated suppression of EAE was MOG35-55 specific  

To determine whether DM-MOG35-55 mediated suppression of EAE was MOG35-55 

specific, 40 days after DM-MOG35-55 treatment, draining lymph node (DLN) cells of the 

treated mice were pooled and restimulated in vitro with different stimuli including 

MOG35-55. The cells’ proliferative responses (Section 5.3.4.1) and cytokine production 

(Section 5.3.4.2) were measured. In order to investigate why DM-MOG35-55 treatment 

protected some mice, but not others, the DM-MOG35-55 treated mice were further 
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divided into sick and non-sick groups according to their disease status. DLN cells from 

the untreated immunised mice, all of which demonstrated EAE symptom, were used as 

the experimental controls. 

 
5.3.4.1 DM-MOG35-55 treatment specifically reduced DLN cells’ proliferation in 

response to MOG35-55 restimulation in vitro 

As shown in Figure 5.4, DLN cells from the DM-MOG35-55 treated mice exhibited 

reduced proliferation in response to MOG35-55 restimulation in vitro compared to that 

from the control mice. In particular, DLN cells from the DM-MOG35-55 treated non-sick 

mice showed a marked reduction in cell proliferation in response to MOG35-55.  In 

contrast, the proliferative responses to anti-CD3 antibody (Clone 145-2c11) and 

mycobacterium-derived purified protein derivative (PPD), which was contained in 

CFA, were similar for all the mice. None of the DLN cells responded to the irrelevant 

control peptide OVA323-339.   

 

 
Figure 5.4 DM-MOG35-55 treatment specifically reduced DLN cells’ proliferation in 
response to MOG35-55 restimulation in vitro 
DLNs (inguinal lymph nodes) were collected 40 days after EAE induction. The DM-MOG35-55 treated 
mice were divided into sick and non-sick groups. Untreated immunised mice were employed as the 
experimental controls. Cells were pooled and restimulated with either MOG35-55, 2c11, PPD or OVA323-339 
for 72 hours. [3H]-thymidine was added to the culture and incubated for a further 16 hours. Significant 
differences are indicated, **p<0.01. Analysis of statistical significance was performed using a one tailed 
Mann Whitney U test. Results are representative of two independent experiments. 
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5.3.4.2 DM-MOG35-55 treatment reduced DLN cells’ production of IL-17 and IFN-γ 

in response to MOG35-55 restimulation in vitro  

Supernatant from the cell cultures described in Figure 5.4 were collected and the 

cytokine levels were assessed. As shown in Figure 5.5, DLN cells from the 

DM-MOG35-55 treated mice showed reduced production of the cytokines IFN-γ and 

IL-17 in response to MOG35-55 restimulation in vitro, compared to that from the control 

mice. In particular, DLN cells from the DM-MOG35-55 treated non-sick mice showed a 

marked reduction in the production of IFN-γ and IL-17 in response to MOG35-55. The 

production of these two cytokines in response to PPD and anti-CD3 antibody was 

similar in all the mice. The levels of TNF-α, IL-4 and IL-10 were low in all the samples 

and there was no difference observed between groups (Figure 5.6). The specific 

impairment of DLN cells’ effector function in response to MOG35-55 but not to anti-CD3 

or PPD indicated that the DM-MOG35-55 treatment induced an in vivo MOG35-55-specific 

suppression of T cell response and this antigen-specific suppression did not compromise 

the immune system to respond to other stimuli. 
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Figure 5.5 DM-MOG35-55 treatment reduced the DLN cells’ production of IL-17 
and IFN-γ in response to MOG35-55 restimulation in vitro 
From the cell cultures as shown in Figure 5.4, supernatant was collected at 72 hours, and the levels of 
IL-17 and IFN-γ were measured. Results are shown as the mean of triplicate wells ± SEM. Significant 
differences are indicated, **p<0.01. Analysis of statistical significance was performed using a one tailed 
Mann Whitney U test. Results are representative of two independent experiments. 
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Figure 5.6 DM-MOG35-55 treatment did not alter IL-10, IL-4 or TNF-α  production 
by DLN cells in response to the MOG35-55 restimulation in vitro 
From the cell culture as shown in Figure 5.4, supernatant was collected at 72 hours, and the levels of 
IL-10, IL-4 and TNF-α were measured. Results are shown as the mean of triplicate wells ± SEM. Results 
are representative of two independent experiments. 
 
5.3.5 bMDSCs played a key role in DM-MOG35-55-mediated suppression of EAE 

Although DM-MOG35-55 treatment endowed a MOG35-55 specific suppression of T cell 

responses in vivo, the mechanisms for DM-MOG35-55 mediated EAE suppression 

remained to be determined. Because DM bound to the blood suppressor cells bMDSCs 

in vivo, I hypothesised that bMDSCs play an important role in DM-MOG35-55 mediated 

EAE suppression. 

 

5.3.5.1 Adoptive transfer of the bMDSCs from DM-MOG35-55 treated mice 

suppressed EAE 

A direct way to verify whether bMDSCs were important for DM-MOG35-55 mediated 

EAE suppression was to examine whether adoptive transfer of the bMDSCs from 

DM-MOG35-55 treated mice could suppress the disease in the recipient mice. As shown 

in Figure 5.7, adoptive transfer of bMDSCs from DM-MOG35-55 treated mice conferred 

protection to the recipients. In contrast, the bMDSCs from naïve mice or the mice 
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treated with DM did not transfer EAE protection. Together, these results confirmed that 

bMDSCs played a key role in DM-MOG35-55 mediated EAE suppression. 

 

 

 
Figure 5.7 Adoptive transfer of the bMDSCs from DM-MOG35-55 treated mice 
suppressed EAE 
Mice were either treated with 2 µg of DM-MOG35-55 or 2 µg of DM mixed in EAE inducing emulsion, or 
left untreated. On day five, bMDSCs were purified from these treated mice (DM-MOG35-55 MDSC or DM 
MDSC) or naïve mice (Naïve MDSC), and adoptively transferred into the mice induced with EAE five 
days earlier (2x105 bMDSCs per mouse).  As the experimental control, mice were injected with PBS i.v. 
on day five after EAE induction (No bMDSC). Left graph, clinical scores. Right graph, %sick mice. 
The adoptive transfer of the bMDSCs from DM-MOG35-55 treated or naïve mice for EAE suppression 
have been done twice and that from DM has been done once. Arrows indicate the days of bMDSC 
adoptive transfer. 
 

5.3.5.2 bMDSCs depletion methods 

The traditional way to examine whether a treatment is dependent on a population of 

cells is to deplete the cells prior to the treatment. I considered three methods for 

bMDSC depletion: the administration of cytochrome c, neutralising antibodies 

(including CD11b, Gr-1 and Ly6C) or liposome-encapsulated dichloromethylene 

disphosphonate (clodronate liposome). 

 

Cytochrome c is a soluble mitochondrial protein and is capable of recycling through the 

cytosol and killing cells by apoptotic protease-activating factor 1 (Apaf-1)-dependent 

apoptosis218. Once released into the cytosol, cytochrome c binds to its partner protein 

Apaf-1 to form an apoptosome and causes a series of downstream effector caspases, 

eventually resulting in cell death218. Injecting mice with 1.67, 5 or 15 mg horse 

cytochrome c i.v. (Sigma-Aldrich, USA) resulted in a decrease in CD8+DCs and 

inhibition of cross-presentation as observed previously218. However, bMDSCs were not 

depleted (unpublished data, Dickgreber N.), indicating that the bMDSC population is 

different from CD8+DCs for antigen cytosolic transfer. 
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I also considered depleting bMDSCs using antibodies. However, as bMDSCs and 

neutrophils have many common surface markers, using neutralising antibodies such as 

anti-CD11b, anti-Gr-1 or anti-Ly6C as the bMDSC depleting agent may be confounded 

by the unintended depletion of neutrophils. As described in Chapter 4, neutrophils 

express high levels of all the above three antigens. Using any of these antibodies would 

lead to a depletion of neutrophils, which are critical for EAE development219-222. 

Although anti-Gr-1 antibody has been used to deplete splenic MDSCs in a tumour 

model72, it is inappropriate to apply this method to the current study, as bMDSCs 

express much lower levels of Gr-1 than the MDSCs described in tumour 

models71,72,223,224. Therefore, depleting bMDSCs by using antibodies was not pursued.  

 

Intravenous injection of clodronate, an intracellular toxin, using liposome as vehicles 

has been widely used to deplete phagocytotic cells such as macrophages in vivo225-229. 

Once taken up by phagocytes, the liposomal membranes are digested by phospholipases 

in the lysosomes and clodronate is released triggering cell death225. As shown in Figure 

5.8, 18 hours after i.v. administration of clodronate liposomes, the majority of the 

bMDSCs (defined as SSClowCD11b+F4/80+) were depleted from the blood whereas the 

neutrophil numbers (defined as SSChiCD11b+) were unchanged.  
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Figure 5.8 Depletion of the bMDSCs by i.v. injection of clodronate liposomes 
Clodronate liposomes were i.v. injected into C57BL/6J mice. Before and 18 hours after the clodronate 
liposomes injection, tail blood cells from the mice were analysed by flow cytometry. A, blood cell 
profiles of forward and side scatter. Neutrophils were located in G1. bMDSCs and other leukocytes such 
as T cells are located in G2. B, CD11b and F4/80 profiles of the cells gated in G2. The bMDSCs were 
shown as the CD11b+F4/80+ cells indicated in the gates. The numbers indicate the percentages of gated 
cells. 
 

After confirming depletion of bMDSCs by clodronate liposomes, I investigated whether 

the depletion of bMDSCs enhanced the MOG35-55 specific CD4+ T cell response in vivo. 

CFSE labelled 2D2 transgenic lymph node cells were adoptively transferred into 

CD45.1 congenic recipients with or without clodronate liposome treatment. One day 

after the lymph node cell transfer, the recipient mice were injected with the MOG35-55 

peptide. Proliferation of the transferred 2D2 CD4+ T cells was assessed by flow 

cytometry on day five. As shown in Figure 5.9, unexpectedly, in mice treated with 

clodronate liposomes, CD4+ T cells proliferation was markedly reduced. This indicates 

that the injection of clodronate liposomes may also deplete APCs as observed 
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previously225,226 or have T cell toxicity, which downregulated CD4+ lymphocyte 

responses in vivo.  

 

In conclusion, although the administration of clodronate liposomes depleted bMDSCs, 

this administration also markedly reduced CD4+ T cell responses in vivo, which is key 

for EAE development112. Therefore, using clodronate liposomes to investigate the role 

of bMDSCs in DM-MOG35-55 mediated EAE suppression was abandoned.  

 

 
Figure 5.9 The administration of clodronate liposomes diminished 2D2 CD4+ cell 
proliferation to MOG35-55 in vivo 
CFSE labelled 2D2 transgenic lymph node cells were adoptively transferred into congenic CD45.1 
recipients (5x106 cells per mouse). Clodronate liposomes or PBS were i.v. injected into the other side of 
the tail vein of the recipient mice. Eighteen hours after cell transfer, the recipient mice were injected with 
1 or 5 µg of MOG35-55 as indicated. Proliferation of the CFSE labelled CD4+ T cells was assessed by flow 
cytometry five days after the initiation of the experiment. Cells were gated on CD4+CD45.2+ cells. 
 

5.3.5.3 DM-MOG35-55 was more potent than SM-MOG35-55 to suppress EAE 

On the basis that DM demonstrated an enhanced binding capability to bMDSCs 

compared to SM (see Chapter 4), if both SM-MOG35-55 and DM-MOG35-55 suppressed 

EAE via bMDSCs, DM-MOG35-55 would be expected to be more potent than 

SM-MOG35-55 for EAE suppression. To test this, age- and sex-matched mice were 

induced with EAE and administered with either DM-MOG35-55 or SM-MOG35-55 in 

parallel. As shown in Figure 5.10, DM-MOG35-55 exhibited enhanced EAE suppression 

compared to SM-MOG35-55. This also provided evidence for the role of bMDSCs in 

mSAg-MOG35-55 mediated EAE suppression.  
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Figure 5.10 DM-MOG35-55 was more potent than SM-MOG35-55 to suppress 
MOG35-55 induced EAE in C57BL/6J mice 
C57BL/6J mice were immunised with 50 µg of MOG35-55 emulsified in CFA plus 2 µg of DM-MOG35-55 
or 2 µg of SM-MOG35-55. Mice immunised with 50 µg of MOG35-55 emulsified in CFA were employed as 
the experimental controls. On day one, all the mice were treated with 250 ng PTxn i.p. Left graph, mean 
clinical scores. Right graph, % sick mice. Significant differences are indicated, ***p<0.0001, **p<0.01. 
Analysis of statistical significance was performed using a one tailed Mann Whitney U test. The 
SM-MOG35-55 and DM-MOG35-55 groups contained five mice, and the control group contained four mice. 
One of the mice from the SM-MOG35-55 group was culled on day 30 due to peritonitis. DM treatment as 
shown in Figure 5.3 was also included in this experiment; however, results are not indicated here for 
clarity. Arrows indicate the days for DM-MOG35-55 or SM-MOG35-55 administration. 
 

 

5.3.5.4 DM-MOG35-55 treatment restored bMDSCs’ in vitro suppressive capability 

To test whether DM-MOG35-55 treatment had a direct effect on bMDSCs’ suppressive 

capability, I immunised mice with either the EAE inducing emulsion plus 2 µg of 

DM-MOG35-55 or EAE inducing emulsion alone. Five days after the immunisation, 

bMDSCs were purified and a T cell suppression assay was set up to compare the 

bMDSCs’ suppressive capability. As shown in Figure 5.11, surprisingly, the bMDSCs 

from mice immunised with EAE inducing emulsion showed a reduced in vitro 

suppression of T cell proliferation compared to the bMDSCs derived from naïve mice. 

In contrast, the addition of DM-MOG35-55 to the EAE inducing emulsion restored this 

suppression. This result confirmed that DM-MOG35-55 treatment had a direct effect on 

bMDSCs’ suppressive capability. 
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Figure 5.11 DM-MOG35-55 treatment restored the bMDSCs’ in vitro suppressive 
capability 
Mice were treated with either EAE inducing emulsion only (EAE), emulsion plus 2 µg of DM-MOG35-55 
(DM-MOG35-55/treatment) or left untreated (Naïve). On day one, 250 ng PTxn was injected into mice i.p.  
On day five, bMDSCs were purified to set up a T cell suppression assay. Fifty thousand lymph node cells 
from naïve mice were incubated with or without bMDSCs from the three groups (at a 1:1 ratio) in the 
presence of 25,000 expander beads in a 96-well round-bottom plate. Twenty-four hours later, 
[3H]-thymidine was added to the cell culture and incubated for a further 16 hours. Results are shown as 
the average of triplicate wells ± SEM. Significant differences are indicated, ** p<0.01. ns, not significant. 
Analysis of statistical significance was performed using a one tailed Mann Whitney U test. 
 

5.3.6 Optimisation of DM-MOG35-55 treatment delivery  

In order to optimise therapeutic outcomes in EAE by the DM-MOG35-55 treatment, 

different combinations of routes, doses and timing for the delivery of DM-MOG35-55 

were examined. 

 

5.3.6.1 i.v. injection of DM-MOG35-55 did not suppress EAE  

Because i.v. administration of DM enhanced the in vitro suppressive performance of the 

bMDSCs  (Figure 4.22), it brought the hope that DM-MOG35-55 i.v. treatment might 

suppress EAE. However, as shown in Figure 5.12, i.v. injection of 5 µg of 

DM-MOG35-55 one day before EAE induction did not protect mice against the disease.  

 

Next, I trialed different administration regimes (timing, dosage, administrative route 

and adjuvant) as listed in Appendix 2. From these trials, I determined that s.c. delivery 

of DM-MOG35-55 with EAE inducing emulsion was the most efficient administration 

route. 
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Figure 5.12 i.v. injection of DM-MOG35-55 did not suppress EAE  
C57BL/6J mice were either i.v. injected with 5 µg of DM-MOG35-55 or left untreated (control group) one 
day before EAE induction. Left graph, mean scores of EAE. Right graph, %sick mice. Each group 
contained five mice. Significant difference is indicated, ns, not significant. Analysis of statistical 
significance was performed using a one tailed Mann Whitney U test. 
 

5.3.6.2 s.c. injection of DM-MOG35-55 in CFA or IFA on the neck protected mice 

against EAE 

As optimal treatment with DM-MOG35-55 required s.c. administration at the site of 

initial immunisation, it was possible that the DM-MOG35-55 treatment affected the 

priming of encephalitogenic T cells directly. In order to develop a clinically relevant 

therapy and investigate whether the DM-MOG35-55 treatment affected the priming of 

encephalitogenic T cells, mice were treated with 2 µg of DM-MOG35-55 emulsified in 

CFA on the back of the neck. As shown in Figure 5.13, s.c. injection of 2 µg of 

DM-MOG35-55 emulsified in CFA on the back of the neck suppressed EAE in the 

recipient mice, indicating that the suppression mediated by DM-MOG35-55 was 

systemic. However, the suppression of EAE by this administration route was not as 

marked as the coimmunisation delivery system, suggesting the involvement of localised 

effects. 

 

 
Figure 5.13 s.c. injection of DM-MOG35-55 in CFA on the neck protected mice 
against EAE 
C57BL/6J were immunised with 2 µg of DM-MOG35-55 in CFA on the neck at day zero. As experimental 
control, mice were immunised with EAE inducing emulsion emulsified with (coimmunisation) or without 
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(control) 2 µg of DM-MOG35-55. Left graph, mean EAE scores. Right graph, %sick mice. Significant 
differences are indicated, **p<0.01, ***p<0.001. Analysis of statistical significance was performed using 
a one tailed Mann Whitney U test. Each group contained five mice. DM-MOG35-55/IFA treatment as 
shown in Figure 5.14 was also included in this experiment. However, results are not indicated here for 
clarity. 
 

 

To enhance therapeutic outcomes and reduce adverse effects of the DM-MOG35-55 

treatment, DM-MOG35-55 was also tested in an IFA emulsion. Unlike CFA, IFA does 

not contain heat killed mycobacterium and was shown previously to perform better with 

SM-MOG35-55 for EAE suppression in mice168. As shown in Figure 5.14, DM-MOG35-55 

mixed in IFA also protected mice against EAE. Although it has been widely accepted 

that the heat-killed mycobacterium contained in CFA is an effective means of 

potentiating cellular response to the injected immunogens230, it did not affect the 

suppressive effect mediated by the DM-MOG35-55 treatment compared with IFA. The 

equal suppressive effect of CFA and IFA suggests that both of the adjuvants might 

work simply as slow release depot. In conclusion, s.c. injection of DM-MOG35-55 in 

CFA or IFA on the neck, which is remote from the site of EAE induction (at both 

flanks), protected mice against EAE. 

 

 

 

 
Figure 5.14 s.c. injection of DM-MOG35-55 in IFA on the neck protected mice 
against EAE 
C57BL/6J were immunised with 2 µg of DM-MOG35-55 in IFA on the neck at day zero. As experimental 
control, mice were immunised with EAE inducing emulsion mixed with (coimmunisation) or without 
(control) 2 µg of DM-MOG35-55. Left graph, mean EAE scores. Right graph, %sick mice. Significant 
differences are indicated, ns, not significant. Analysis of statistical significance was performed using a 
one tailed Mann Whitney U test. Each group contained five mice. Arrows indicate the days of 
DM-MOG35-55 administration. 
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5.3.6.3 s.c. injection of DM-MOG35-55 in PBS on the neck protected mice against 

EAE 

Although s.c. treatment with DM-MOG35-55 in CFA or IFA protected the recipient mice 

against EAE, these preparations are not ideal for treating humans due to the side effects 

caused by Freund's adjuvant, such as pain and tissue damage. Therefore, I looked to 

develop a more clinically acceptable administration regime. Based on the idea that slow 

release may be required for DM-MOG35-55 mediated EAE suppression, mice were 

treated on the neck with DM-MOG35-55 in PBS s.c. each day continuously for seven 

days before EAE induction. As shown in Figure 5.15, daily treatment with 

DM-MOG35-55 but not DM greatly suppressed EAE, supporting the proposal that 

continuous release is required for DM-MOG35-55 mediated EAE suppression.  

 

 
Figure 5.15 Multiple s.c. injection of DM-MOG35-55 in PBS suppressed EAE 
Mice were treated with 1 µg of DM or DM-MOG35-55 in PBS on the neck continuously for seven days 
before EAE induction (days -7 to -1).  Mice treated with PBS on the neck continuously for seven days 
were used as the experimental controls. On day zero, EAE was induced in all the groups of mice. Left 
graph, mean clinical scores. Right graph, %sick mice. Significant differences are indicated, **p<0.01. 
Analysis of statistical significance was performed using a one tailed Mann Whitney U test. Each group 
contained five mice. Arrows indicate the days of DM or DM-MOG35-55 injections. 
 

5.3.7 i.v. injection of DM did not suppress EAE  

As shown in Chapter 4, the binding of DM to bMDSCs greatly enhanced the 

bMDSC-dependent suppression of T cell proliferation in vitro (see Figure 4.22). 

Therefore, it was possible that the administration of DM could suppress EAE by 

enhancing bMDSC-dependent suppression of T cell proliferation in vivo.  

 

To test the above hypothesis, up to 5 µg of DM was i.v. injected into mice one day 

before EAE induction. However, as shown in Figure 5.16, the administration of DM i.v. 

did not protect mice against EAE. This lack of suppression may have been due to the 
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dose of DM in the experiment. However, due to limited availability of DM, higher 

doses of DM could not be tested. 

 

 
Figure 5.16 i.v. injection of DM did not suppress EAE  
DM at the dose of 1 µg or 5 µg was injected into C57BL/6J mice one day before EAE induction. Age- 
and sex-matched mice were i.v. injected with 200 µl PBS as the experimental controls. Left graph, mean 
clinical scores. Right graph, %sick mice. Each group contained five mice. Arrows indicate the days for 
DM i.v. injection. 
 

5.4 Discussion 

The ideal treatments for MS and other autoimmune diseases are ones that target the 

disease-causing auto-antigen specific responses without compromising the ability of the 

immune system to respond to infections. However, most of the treatments for MS and 

other autoimmune diseases available today are antigen non-specific and have toxic side 

effects41,114,120. In this chapter, I have shown that s.c. administration of DM-MOG35-55 

resulted in effective suppression of EAE in mice via a unique MOG35-55 specific 

mechanism. This treatment has great potential to treat MS. 

 

In Chapter 3, I showed that adding SM-MOG35-55 to EAE inducing emulsion slightly 

reduced the disease scores of the recipient mice, and SM bound to bMDSCs in vivo 

when administered i.v.. This raised the possibility that bMDSCs played an important 

role in SM-MOG35-55 mediated EAE suppression. Given that DM possessed an 

enhanced binding capability to bMDSCs compared to SM, I hypothesised that 

DM-MOG35-55 could suppress EAE more potently than SM-MOG35-55. As hypothesised, 

the experimental results showed that the addition of DM-MOG35-55 to the EAE inducing 

emulsion greatly suppressed EAE in the recipient mice, and this suppression was even 

stronger than the one mediated by SM-MOG35-55.  
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Importantly, DM-MOG35-55 treatment targeted the disease-causing MOG35-55 specific 

response and did not compromise the immune responses to other antigens. This 

conclusion was drawn from the following evidence. The DLNs isolated from mice 

treated with DM-MOG35-55 showed an impaired response to MOG35-55 restimulation in 

vitro, and this impairment was particularly strong for the DM-MOG35-55 treated mice 

that did not develop EAE. The impaired response was reflected by the reduced cell 

proliferation and cytokine production, i.e. the production of the two key cytokines for 

EAE, IL-17 and IFN-γ137,144,146,148,149,231, were reduced. Importantly, T cell proliferation 

and cytokine production were not impaired when the DLN cells were restimulated in 

vitro with anti-CD3 antibody and PPD (the mycobacterium protein derivative contained 

in CFA), indicating that this suppression of T cell responses was MOG35-55 specific.  

 

bMDSCs play a major role in DM-MOG35-55 mediated suppression of EAE, because  

the bMDSCs from mice treated with DM-MOG35-55 could transfer EAE suppression. 

Moreover, the bMDSCs from mice induced with EAE exhibited a reduced suppressive 

capability in vitro, and the DM-MOG35-55 treatment restored the cells’ in vitro 

suppression. Together, these results provide further evidence that bMDSCs play a key 

role in DM-MOG35-55 mediated EAE suppression.  

 

Although it is clear that bMDSCs are involved in DM-MOG35-55 mediated EAE 

suppression, at this stage, the exact mechanisms involved are unclear. The following 

evidence indicates that besides bMDSC-medicated direct suppression of T cells, other 

suppressive mechanisms may be involved in DM-MOG35-55 mediated EAE suppression. 

First, although the bMDSCs from naïve mice demonstrated similar suppressive 

capability in vitro to the bMDSCs from DM-MOG35-55 treated mice, transferring naïve 

bMDSCs did not suppress EAE. The lack of EAE suppression following adoptive 

transfer of naïve bMDSCs indicates the involvement of additional suppressive 

mechanisms to the bMDSC-dependent direct T cell suppression alone. Second, 

DM-MOG35-55 but not DM suppressed EAE, indicating the involvement of MHCII 

presentation in the suppressive system. However, as shown in Chapter 4, most of the 

bMDSCs did not express MHCII on the surface at the time of isolation. The MHCII 

presentation involved in this suppression may be from host APCs. Alternatively, 

MHCII may be induced at later time points following DM-MOG35-55 exposure. Third, 

current experimental results could not exclude the involvement of other suppressor cells 
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including Tregs. MDSCs have been reported to induce Tregs in vivo74 and thus, further 

studies are required to elucidate the involvement of Tregs in this system. The 

hypothesised mechanisms for DM-MOG35-55 and bMDSCs mediated suppression in the 

EAE model are shown in Figure 5.17. 

 

 
Figure 5.17 Hypothesised mechanisms for DM-MOG35-55 and bMDSCs mediated 
suppression of EAE 
When EAE is induced in mice, the APCs reside in DLNs processed and presented MOG35-55 to the 
MOG35-55 specific autoreactive CD4+ T cells. Once activated, these autoreactive CD4+ T cells migrate to 
the periphery and encounter the suppressive bMDSCs. There may be a few different mechanisms 
involved in bMDSCs mediated suppression of T cell responses in vivo. Firstly, bMDSCs could suppress 
T cells in an antigen-non-specific manner using NO as described in Chapter 4. The binding of DM to 
bMDSCs could enhance this suppressive effect. Secondly, the MOG35-55 peptide attached to DM is 
delivered to bMDSCs, and this may transform the bMDSCs, which are known as progenitors of APCs 
and have great plasticity, to tolerogenic APCs232. These tolerogenic APCs in turn suppress T cells via a 
MOG35-55 specific manner. This antigen-specific suppression could also be carried out directly or 
indirectly via the MOG35-55-specific Tregs. Alternatively, bMDSCs may transfer MOG35-55 to the host 
tolerogenic APCs, which could suppress T cells in a MOG35-55-specific manner. Thirdly, bMDSCs 
possibly activated or expanded Tregs, and these Tregs could suppress the autoreactive CD4+ T cells in 
either an antigen-specific or a non-specific manner. 
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The location where EAE suppression takes place still remains to be identified. It has 

been reported that superantigens attract mononuclear cell infiltration233,234. 

Intramuscular injection of recombinant SEA, SEB and toxic shock syndrome toxin 

(TSST) induced marked mononuclear cell infiltration in muscle tissues233, and 

intracutaneous injection of SEB induced localised cutaneous inflammatory responses 

and cell infiltration234. Importantly, CD11b+ cells were found to be abundant in 

superantigen-induced inflammatory foci233. Although bMDSCs were never detected in 

the DLNs of the DM or DM-MOG35-55 injection sites, the possibility that bMDSCs 

were attracted to the tissues such as skin cannot be excluded. When mice were treated 

with DM-MOG35-55 at a remote site, the suppression of EAE was still effective, but not 

as strong as the suppression caused by coimmunisation. This suggests that both global 

and local suppression took place in the model. Further studies are required to elucidate 

this phenomenon. 

 

In this chapter, I also attempted to develop a more clinically relevant therapy by 

injecting the DM-MOG35-55 conjugate with CFA away from the disease inducing site 

and the results were encouraging. However, due to the side effects of CFA such as pain 

and tissue damage, the DM-MOG35-55/CFA formulation was considered unsuitable for 

human use230. Therefore, I replaced CFA using IFA, which did not contain heat-killed 

mycobacterium. The treatment of DM-MOG35-55/IFA also gave protection of EAE to 

the recipient mice. Both CFA and IFA provided similar levels of EAE suppression, 

suggesting that they might function as a slow release depot in this treatment regime. 

This possibility was supported by suppression of EAE following daily s.c. injection 

with DM-MOG35-55 in PBS. Future studies are required to compare different adjuvant 

and drug carriers to achieve maximal suppression with minimum detrimental side 

effects. Furthermore, once this goal is achieved, the next step would be to test this 

therapy on mice at different stages of EAE. 

 

In summary, in this chapter I demonstrated that the DM-MOG35-55 treatment targeted 

the suppressor cell population, bMDSCs, and suppressed EAE in a MOG35-55 specific 

manner. This finding highlights the potential of the treatments targeting 

immunosuppressive cells to prevent autoimmune diseases or reduce their severity. In 

light of this study, there are still many questions to be answered in order to determine 
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how the DM-MOG35-55 and bMDSCs can be used most effectively in the treatment of 

MS or other autoimmune diseases. 

 

5.5 Conclusions 

I have developed a treatment for EAE by using DM-MOG35-55. When DM-MOG35-55 

was administered s.c. into the mice immunised with EAE, the disease was inhibited. 

The bMDSCs primed in vivo using DM-MOG35-55 inhibited the disease in an adoptive 

transfer model of EAE, indicating that bMDSCs play an important role in this EAE 

suppression. Moreover, this DM-MOG35-55 treatment specifically targeted the 

MOG35-55 specific response but did not inhibit the immune responses to other stimuli. 

Thus, this antigen-specific therapy has great potential for the treatment of human MS.  



 

 

 

 

Chapter 6: 
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6.1 Overview 

MS is an autoimmune disease of the CNS that causes a variety of symptoms including 

cognitive dysfunction, abnormal sensations, impairment of motor function, and severe 

paralysis88,98. The ideal treatments for MS and other autoimmune diseases are ones that 

specifically target the disease-causing autoimmune responses without inhibiting the 

immune system’s ability to respond to pathogens and infections. However, most of the 

treatments for MS and other autoimmune diseases available today are antigen 

non-specific41,100,120,130. Thus, this thesis was carried out aiming to develop an 

antigen-specific immunotherapy for EAE, with the ultimate goal of taking this research 

forward to develop a treatment for MS. 

 

Based on the previous finding that the injection of SM-MOG35-55/IFA s.c. into mice 

suppressed EAE in a MOG35-55-specific manner, and Tregs were the key players in this 

EAE suppression168, I hypothesised that the administration of SM-MOG35-55/IFA 

expanded and/or activated a population of MOG35-55-specific Tregs in vivo, which 

inhibited EAE. Thus, the overall aim of Chapter 3 was to test this hypothesis and 

understand the cellular and molecular changes during the SM-MOG35-55/IFA mediated 

EAE suppression in vivo.  

 

Surprisingly, the experimental results from Chapter 3 showed that treating mice with 

SM-MOG35-55/IFA did not significantly suppress EAE as described previously168 and 

adoptive transfer of neither the Foxp3+ nor CD25+ Tregs from SM-MOG35-55/IFA 

treated mice protected recipient mice against EAE. Although a large number of 

experiments have been carried out in our laboratory, the reason for the failure of EAE 

suppression by SM-MOG35-55/IFA is so far unclear. One possibility for the different 

outcomes of this and the previous study lies in the difference in experimental conditions 

between the animal facilities where the initial study was done (at the University of 

Otago, Wellington School of Medicine and Health Sciences) compared to the institute’s 

new facility (at Malaghan Institute of Medical Research). It has long been recognised 

that different animal facility environments often result in varying autoimmune disease 

susceptibility133,235,236. In fact, the EAE incidence and severity observed in the current 

study was higher than that reported in the previous study, and the varying 

environmental conditions may have also played a role in the effectiveness of the 

SM-MOG35-55/IFA treatment. With greater EAE severity and incidence, it may be 
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harder to induce an equivalent immune suppression response. The other possibility is 

the unknown differences between the SM in this study and the one prepared for the 

previous study (from the University of Auckland). Because the SM used in the previous 

study was no longer available, this possibility could not be tested. 

 

Although a fully suppressive effect of SM-MOG35-55/IFA treatment could not be 

repeated, the administration of SM-MOG35-55 to mice using various methods repeatedly 

showed a minor suppressive effect on EAE, suggesting an in vivo suppressive feature of 

SM-MOG35-55. Interestingly, after being injected into mice i.v., SM was captured by a 

blood MHCII-CD11b+F4/80+Gr-1+ cell population. Cells expressing the same surface 

markers have been reported to be suppressor cells called MDSCs in tumours45,75,76. This 

finding raised the possibility that the SM+MHCII-CD11b+F4/80+Gr-1+ cells were 

suppressor cells e.g. a subpopulation of MDSCs, and were important in the minor 

suppression of EAE mediated by SM-MOG35-55. This possibility was investigated in 

Chapter 4 and Chapter 5. 

 

Because SM predominantly bound to MHCII+ APCs and only a small proportion of SM 

bound to the blood MHCII-CD11b+F4/80+Gr-1+ cells, it was necessary to prevent 

SM-MHCII binding for the study of the blood MHCII-CD11b+F4/80+Gr-1+ cells using 

SM. To achieve this purpose, I used DM. In contrast to SM, DM is defective at both 

MHCII and TCR binding sites. It was hypothesised in Chapter 4 that in the absence of 

MHCII binding, DM would possess an enhanced binding capability to the blood 

MHCII-CD11b+F4/80+Gr-1+ cells, which were suppressor cells. The overall aim of 

Chapter 4 was to determine whether the MHCII-CD11b+F4/80+Gr-1+ blood cells were 

functional suppressor cells and to investigate the potential of DM to be used for targeted 

manipulation of these cells.  

 

The experimental results from Chapter 4 showed that the blood MHCII-

CD11b+F4/80+Gr-1+ cells are potent suppressors of T cell responses in vitro, and thus, I 

named them the “bMDSCs”. bMDSCs are different from MDSCs reported by others in 

three aspects. First, MDSCs are in the spleens, bone marrow and within primary and 

metastatic solid tumours from diseased mice71-73,77,199,212,237-241, whereas bMDSCs were 

identified in the blood of naïve mice. Second, MDSCs are a heterogenous cell 

population consisting of neutrophilic cells and mononuclear cells45,71, whereas bMDSCs 
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exclusively showed a monocytic morphology. Although one report demonstrated that 

the mononuclear cells within MDSC population (MO-MDSCs) are functional 

suppressor cells71, these MO-MDSCs are different from bMDSCs in various cell 

surface antigens. For example, MO-MDSCs express a high level of Ly6C and 

intermediate level of CD1d, whereas bMDSCs are heterogenous in Ly6C expression, 

ranging from negative to high, and do not have CD1d on their surface. Third, MDSCs 

suppress T cell proliferation in vitro using a variety of mechanisms, including 

up-regulation of NO production78,79 and arginase 1 induction80-83,194, depending on what 

tumours they are derived from71. In contrast, bMDSCs suppress T cell response in a 

NOS-dependent but arginase-independent pathway. These results reveal that bMDSCs 

are a unique cell population different from MDSCs in tumour models. The existence of 

the bMDSC population in a natural disease-free condition suggests that these cells 

constitute a suppressive mechanism that has evolved to maintain immune homeostasis 

and limit uncontrolled immune responses. 

 

Interestingly, the binding of DM to bMDSCs strongly enhanced the cells’ suppressive 

activity in vitro. This enhancement has not been reported before and it highlighted the 

potential for utilising DM to develop an immunosuppressive treatment that targets 

bMDSCs. The enhanced suppressive activity of bMDSCs caused by the binding of 

mSAg raised the possibility that bMDSCs played a role in SM-MOG35-55 mediated EAE 

suppression. This possibility and the therapeutic potential of DM for treating EAE were 

investigated in Chapter 5.  

 

Because DM showed an enhanced binding over SM to the suppressor cells bMDSCs, 

and SM-MOG35-55 suppressed EAE, in Chapter 5, I hypothesised that DM-MOG35-55 

could suppress EAE, and bMDSCs played a key role in this EAE suppression. The 

overall aim of Chapter 5 was to test the above hypothesis and develop a successful 

immunotherapy for EAE as a potential treatment for MS. The experimental results from 

Chapter 5 showed that when DM-MOG35-55 was administered s.c. into the mice 

immunised with EAE, the disease was inhibited. Importantly, this DM-MOG35-55 

treatment specifically targeted the MOG35-55 specific response but did not inhibit the 

immune responses to other stimuli. Thus, this antigen-specific therapy has great 

potential be be developed as the treatment for human MS.  
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Currently there are six treatments available for MS, and three of them are fully 

subsidised by the New Zealand government (see Section 1.6.4)119. However, all of these 

treatments are antigen non-specific and their efficacy and side effect profile leaves 

ample room for improvement41. Although some antigen-specific therapies have been 

shown to successfully inhibit EAE, none of them have demonstrated clinical benefit for 

MS. For example, oral administration of MBP can suppress EAE in different species of 

animals242, however, the phase III trial using oral MBP did not show clinical benefit243. 

The other example is using the strategy called altered peptide ligands (APLs), the 

peptides that have an altered ability to bind to TCR or MHC, and result in T cell anergy 

in vivo. The MBP-derived APL has been shown to prevent and suppress the 

development of EAE244,245, but the development of MBP-derived APL for treatment of 

MS has been suspended owing to unexpected disease exacerbation and hypersensitivity 

reactions246,247. The DM-MOG35-55 treatment described in this thesis provides an 

alternative potential antigen-specific therapy for MS (see further discussion in Section 

6.2). In addition, no obvious side effects were observed in the DM-MOG35-55 treated 

mice.  

 

Because adoptive transfer of the bMDSCs from DM-MOG35-55 treated mice could 

transfer EAE suppression, bMDSCs are confirmed to be the key players in this 

DM-MOG35-55 mediated EAE suppression. The hypothesised mechanisms for 

DM-MOG35-55 and bMDSCs mediated suppression of EAE are described in Figure 5.17. 

Although the exact mechanisms DM-MOG35-55 used to suppress EAE via bMDSCs are 

unclear, bMDSCs undoubtedly have great potential to be utilised in developing a 

therapy for the induction of antigen-specific suppression in patients with autoimmunity. 

This study provides evidence for the first time that bMDSCs could be used 

therapeutically to deactivate immune responses and induce immune tolerance in an 

animal model of autoimmune disease. 

 

In summary, the results from this thesis underscore a previously unknown role of 

bMDSCs in limiting immune responses and indicate that harnessing bMDSCs in vivo 

could suppress autoimmune diseases. The findings of this thesis highlight the potential 

for targeting bMDSCs to develop an antigen-specific therapy for human MS and 

potentially other autoimmune diseases. 
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6.2 Clinical applications 

In this thesis, it was shown that the administration of DM-MOG35-55 suppressed 

MOG35-55 induced EAE in a MOG35-55 specific manner. This DM-based antigen-specific 

treatment is certainly not solely restricted to the highly immunogenic MOG35-55 peptide. 

As in MS, the immune responses are not only against one, but a heterogenous group of 

CNS peptide antigens, the use of DM with a mixture of CNS peptides or proteins, may 

provide a broader and more biologically relevant effect. Moreover, this work also raised 

the possibility that the DM-autoantigen conjugates could also be applied and adapted to 

treat other autoimmune diseases. 

  

The high affinity of DM to bind to bMDSCs and the internalisation of DM into the cells 

also raised a possibility that DM can be used to deplete bMDSCs by toxin delivery. For 

example, cytochrome c or diphtheria toxin could be conjugated with DM and delivered 

to bMDSCs to eliminate them in vivo. The application of DM-toxin conjugation has 

potential to be used as a therapeutic strategy to subvert the tumour-MDSC induced 

tolerogenic microenvironment and used in fundamental research on bMDSCs. 

 

Moreover, DM-peptide or DM-protein can be used in combination with adjuvants to 

induce bMDSC differentiation into functional APCs. This could be an effective strategy 

for developing antigen-specific tumour therapies. The differentiation of bMDSCs will 

not only remove their suppressive effect, but also evoke an immune response against 

the antigen conjugated to DM. A variety of chemicals and proteins have been shown to 

alter myeloid cell or tumour MDSC differentiation and thus, have potential to be used 

as the adjuvants in this strategy. For example, the administration of all-trans-retinoic 

acid differentiated immature myeloid cells in vivo into mature DCs, macrophages and 

granulocytes248, and the injection of IFN-γ plus TNF-α altered MDSC differentiation 

into mature macrophages249.  

  

In summary, with ongoing research into this field (see Section 6.3), it is expected that 

further advances towards effective clinical treatments for MS, other autoimmune 

diseases and cancer will be developed. 
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6.3 Implications for future research 

The work in this thesis conclusively demonstrated the involvement of bMDSCs in 

DM-MOG35-55-mediated suppression of EAE, but also raised questions on the precise 

mechanisms of action. The following two questions remain to be addressed. First, is the 

DM-MOG35-55 mediated suppression of MOG35-55 specific response caused by deletion 

or anergy of the MOG35-55 specific T cells? One potential solution is to investigate 

changes in the numbers, activation markers and apoptotic markers of the MOG35-55 

specific CD4+ T cells after DM-MOG35-55 treatment. However, it would be potentially 

difficult to develop the MOG35-55 tetramers for the detection of MOG35-55 specific T 

cells ex vivo. One way to overcome this problem is to use an adoptive transfer system in 

which CFSE labelled 2D2 CD45.2+CD4+ T cells are transferred into CD45.1 congenic 

mice. After treating the recipient mice with the DM-MOG35-55 treatment, the 2D2 

CD45.2+CD4+ T cells could be isolated at various time points and analysed for the 

above features. Second, are bMDSCs the only suppressor mechanism in the 

DM-MOG35-55 mediated EAE suppression? The direct way to answer this question is to 

deplete bMDSCs from mice prior to the DM-MOG35-55 treatment. Although attempts 

were made to establish a method to deplete bMDSCs, unfortunately, none of them were 

feasible as these depletion methods also depleted or reduced the responses of other cell 

types important for EAE development. However, if this bMDSC depletion issue can be 

remedied, it would be of great interest to determine whether DM-MOG35-55 treatment 

also activate or induce other suppressor mechanisms in this EAE suppression. 

 

It has not been determined by this work whether DM-MOG35-55 treatment could induce 

bystander suppression, a process whereby the administration of one antigen can be used 

to prevent the development of disease with another antigen250. Bystander suppression is 

an important property because it would allow treatment of autoimmune diseases where 

the initiating antigen is unknown and where epitope spreading plays a pathological role. 

Epitope spreading refers to the process where an immune response to the epitope on a 

self-antigen triggers immune responses to neighbouring epitopes on the same antigen or 

other epitopes on nearby molecules251,252. However, the EAE model used in this thesis 

does not allow for the study of bystander suppression as the C57BL/6J mice are only 

susceptible to EAE induced by the MOG35-55 peptide134. F1 crosses of mice or mice that 

are susceptible to the induction of EAE with more than one peptide could be used to 

study this mechanism.  
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Furthermore, the EAE model used in this study is an induced disease, in that mice did 

not develop the disease spontaneously. It is therefore necessary to test this 

DM-autoantigen treatment in a spontaneous disease model system such as the 

autoimmune diabetes in non-obese diabetic (NOD) mice. 

 

Further studies could be undertaken to determine the molecules involved in 

DM-bMDSC’s binding and the mechanisms DM utilised to enhance bMDSCs’ 

suppression. Because DM was taken into the cytoplasm of bMDSCs quickly after being 

injected into mice (within 20 minutes), it is likely that the DM uptake by bMDSCs is 

receptor-mediated. To characterise this receptor for DM, bMDSC lysate containing DM 

could be prepared, and a western blot analysis in combination with proteomics 

techniques could be applied to identify the protein to which DM binds. The 

identification of the receptor for DM would also help answer the question why DM did 

not bind to bMDSCs in vitro and understand the mechanisms utilised by DM to enhance 

the bMDSCs’ in vitro suppressive activity.  

 

It is also of interest, although beyond the scope of autoimmune diseases, whether 

tumour-MDSCs described by others, in particular, the MO-MDSCs71 are generated 

from bMDSCs. Further studies could be undertaken to determine the relationship 

between the tumour-MDSCs and bMDSCs. This may provide insight into the 

mechanisms tumours use to escape immune recognition. 

 

Future studies are also required to compare different adjuvants and drug carriers to 

achieve maximal suppression with minimum detrimental side effect. Once this goal is 

achieved, the next step would be to test this therapy on mice at different stages of EAE. 

The long-term goal will be to improve the efficacy of the treatment without increasing 

the risks of side effects. This DM-MOG35-55 treatment holds great promise to one day 

effectively treat MS and other autoimmune diseases with fewer side effects than current 

drugs.  
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Appendix 1: Antibodies Used for Flow Cytometry 

Antigen Clone Source Isotype Fluorophore 

CD4 GK1.5 Pharmingen Rat IgG2b, κ Alexa 647, PE, PerCP 

CD8 2.43 homemade Rat IgG2b, κ Alexa 647, PE 

CD11b M1/70 Pharmingen Rat IgG2b, κ PE, Alexa 647 

CD18 M18/2 eBioscience Rat IgG2a, κ Alexa 647 

IAb M5/114 Pharmingen Rat IgG2b, κ PE, Alexa 647 

IAq KH116 Pharmingen Mouse IgG2b, κ Biotin 

CD11c N418 homemade Armenian 

hamster IgG 

Biotin 

F4/80 BM8 eBioscience Rat IgG2a, κ Biotin, Alexa 488 

Gr-1 RB6-8C5 Pharmingen Rat IgG2b, κ PE, Alexa 647 

B220 RA3-6B2 homemade Rat IgG2a, κ Alexa 647, Alexa 488 

CD19 eBio1D3 eBioscience Rat IgG2a, κ Biotin, Alexa 647 

PDCA-1 JF05-1C2. Miltenyi Rat IgG2b, κ APC 

CD40 3/23 Pharmingen Rat IgG2a, κ PE 

CD25 PC61 

7D4 

Pharmingen 

Pharmingen 

Rat IgG1, λ 

Rat IgG1, λ 

PE, Alexa 488 

PE 

Foxp3 FJK-16s eBioscience Rat IgG2a, κ PE, APC, Alexa 488 

Ly6C AL-21 BD Rat IgM, κ Biotin 

Ly6G 1A8 BD Rat IgG2a, κ Alexa 647, Biotin 

CD80 16-10A1 homemade Armenian 

hamster IgG 

Biotin 

CD86 PO3.1 eBioscience Rat IgG2b, κ Alexa 647 

CD45.2 104 eBioscience Mouse IgG2a, κ PE 

CD16/CD32 2.4G2 homemade Rat IgG2b, κ Alexa 647 

VLA-4 R1-2 eBioscience Rat IgG2b, κ FITC 

Thy1.2 53-2.1 homemade Rat IgG2a,, 3κ Biotin, Alexa 647 

CD45 30-F11 Pharmingen Rat IgG2b, κ PerCP 

CD62L MEL-14 eBioscience Rat IgG2a, κ PE, Alexa 647 
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CD69 H1.2F3 eBioscience Armenian 

hamster IgG 

PE, Alexa 647 

CD1d 1B1 Pharmingen Rat IgG2b, κ PE 
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Appendix 2: Validation of DM-MOG35-55 Treatment for EAE 

 
Subcutaneous treatment 

Exp. 
No Treatment Carrier Injection 

sites 
Injection 

time (days) Dose Incidence% Mean day of 
onset±SD 

Mean max. 
severity±SD Mortality 

PBS - - - - (5/5) 100% 21±8.75 3.5±0.35 (0/5) 0% 
DM-MOG35-55 CFA Flanks 0 2µg (1/5) 20% 15 4 (0/5) 0% 
DM-MOG35-55 CFA Neck 0 2µg (3/5) 60% 21±6.56 3.17±0.76 (0/5) 0% 1 

DM-MOG35-55 IFA Neck 0 2µg (3/5) 60% 16.67±1.15 3.67±0.58 (0/5) 0% 
PBS - - - - (5/5) 100% 14±2.83 4.6±0.41 (2/5) 40% 
DM-MOG35-55 CFA Flanks 0 1µg (4/5) 80% 19±7.16 4.625±0.48 (2/5) 40% 
DM-MOG35-55 CFA Flanks 0 2µg (3/5) 60% 14.67±0.58 3.17±0.29 (0/5) 0% 2 

DM-MOG35-55 CFA Flanks 0 5µg (3/5) 60% 17.67±6.35 3.17±1.04 (0/5) 0% 
DM-OVA323-339 CFA Flanks 0 1µg (3/4) 75% 13.33±2.08 4.33±0.58 (1/4) 25% 
PBS - Flanks - - (5/5) 100% 12.6±3.13 4.6±0.55 (3/5) 60% 3 
DM-MOG35-55 CFA Flanks 0 0.5µg (5/5) 100% 14.4±2.70 4.6±0.65 (3/5) 60% 
PBS - - - - (4/4) 100% 14.25±2.5 4.24±0.96 (2/4) 50% 
DM-MOG35-55 CFA Flanks 0 2µg (2/4) 50% 25.5±7.78 2.75±0.35 (0.4) 50% 4 
DM  CFA Flanks 0 2µg (5/5) 100% 13.8±0.84 5±0 (5/5) 

100% 
PBS PBS Neck -7~-1 - (5/5) 100% 14.4±2.07 4.7±0.27 (3/5) 60% 
DM-MOG35-55 PBS Neck -7~-1 1µg/day (4/5) 80% 20.25±4.78 4±0 (0/5) 0% 5 
DM  PBS Neck -7~-1 1µg/day (5/5) 100% 12.6±0.89 4.8±0.27 (3/5) 60% 
PBS - - - - (4/5) 80% 20±1.41 4.25±0.65 (1/5) 20% 6 DM-MOG1-117 IFA Neck 5 2µg (5/5) 100% 22.2±4.71 4.1±0.65 (0/5) 0% 
IgG IFA Neck 5 - (4/5) 80% 25±6.98 4±0 (0/5) 0% 7 
IgG+DM-MOG35-55 IFA Neck 5 1µg (4/5) 80% 23.6±1.95 4.25±0.65 (1/5) 20% 
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Exp. 
No Treatment Carrier Injection 

sites 
Injection 

time (days) Dose Incidence% Mean day of 
onset±SD 

Mean max. 
severity±SD Mortality 

PC61 IFA Neck 5 - (3/3) 100% 21±6.28 4.33±0.58 (1/3) 
33.33% 

 

PC61+DM-MOG35-55 IFA Neck 5 1µg (5/5) 100% 17.33±2.89 4.80±0.27 (3/5) 60% 
PBS - Neck - - (4/5) 80% 17±8.12 4.13±0.25 (0/5) 0% 
DM-MOG35-55 IFA Neck -1 100ng (3/5) 60% 15.67±3.06 3.33±1.15 (0/5) 0% 
DM-MOG35-55 IFA Neck 1 100ng (5/5) 100% 18.25±9.46 4.38±0.48 (1/5) 20% 8 

DM-MOG35-55 IFA Neck 5 100ng (3/5) 60% 16±6.73 4±0 (0/5) 0% 
PBS - - - - (5/5) 100% 24±10.15 4±0.71 (1/5) 20% 
DM-MOG35-55 IFA Neck 5 1µg (5/5) 100% 15.2±2.49 3.7±0.91 (0/5) 0% 
PC61 IFA - - - (5/5) 100% 16.6±2.41 4.6±0.55 (3/5) 60% 9 

PC61+ DM-MOG35-55 IFA Neck 5 1µg (4/5) 80% 17.25±2.06 4.5±1.00 (3/5) 60% 
PBS - - - - (5/5) 100% 13.8±1.64 4.2±0.45 (1/5) 20% 
DM-MOG35-55 IFA Neck 5 200ng (5/5) 100% 14.2±0.84 4.1±1.02 (2/5) 40% 
DM-MOG35-55 IFA Neck 5 1µg (5/5) 100% 12.2±0.45 4.2±0.45 (1/5) 20% 10 

DM-MOG35-55 IFA Neck 5 5µg (4/5) 80% 13.75±2.21 4.25±0.50 (1/5) 20% 
PBS - - - - (5/5) 100% 16.4±5.03 4±1.00 (2/5) 40% 
DM-MOG35-55 IFA Neck 5 100ng (5/5) 100% 24.8±6.57 3.3±1.30 (0/5) 0% 11 
DM-MOG35-55 IFA Neck 5 1µg (5/5) 100% 17.6±2.30 3.5±0.50 (0/5) 0% 
PBS - - - - (5/5) 100% 13.8±2.77 4.1±1.02 (2/5) 40% 
PC61+ DM-MOG35-55 IFA Neck 5 1µg (5/5) 100% 13±2 4.8±0.45 (4/5) 80% 12 
IgG+DM-MOG35-55 IFA Neck 5 1µg (5/5) 100% 14.4±0.89 4.2±0.45 (1/5) 20% 
PBS - - - - (5/5) 100% 12.6±0.55 4.6±0.55 (3/5) 60% 13 DM-MOG35-55 IFA Neck 5 1µg (3/5) 60% 16.33±4.04 2.67±0.58 (0/5) 0% 
PBS - - - - (5/5) 100% 18.4±8.44 3.6+0.96 (0/5) 0% 
DM-MOG35-55 IFA Neck 5 1µg (5/5) 100% 17.2±4.76 2.8±1.60 (0/5) 0% 
IgG+DM-MOG35-55 IFA Neck 5 1µg (5/5) 100% 17.8±2.68 3.2±0.76 (0/5) 0% 

14 

2.43 - - - - (4/5) 80% 17±0 2.38±1.60 (0/5) 0% 
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Exp. 
No Treatment Carrier Injection 

sites 
Injection 

time (days) Dose Incidence% Mean day of 
onset±SD 

Mean max. 
severity±SD Mortality 

 2.43+DM-MOG35-55 IFA Neck 5 1µg (5/5) 100% 20.4±6.66 2.8±1.20 (0/5) 0% 
PBS - - - - (5/5) 100% 16±3 3.9±0.42 (0/5) 0% 15 DM-MOG35-55 IFA Neck 5 1µg (4/5) 80% 19.5±6.76 3.13±1.44 (0/5) 0% 

 
 
 
 

Intravenous treatment 
Exp. 
No Treatment Injection 

time (days) Dose Incidence% Mean day of onset 
±SD 

Mean Max. 
severity±SD Mortality% 

PBS - - (5/5) 100% 16.4±5.03 4±1.00 (2/5) 40% 
DM-MOG35-55 -1 100ng (5/5) 100% 14±2.74 4.1±0.55 (1/5) 20% 1 
DM-MOG35-55 -1 5µg (5/5) 100% 17±5.74 3.6±0.89 (1/5) 20% 

 
 
 
 
 
Intraperitoneal treatment 

Exp. 
No Treatment Injection 

time (days) Dose Incidence% Mean day of onset 
±SD 

Mean Max. 
severity±SD Mortality% 

PBS - - (5/5) 100% 22.2±11.23 2.6±0.96 (0/5) 0% 1 
DM-MOG35-55 4 100ng (5/5) 100% 15.2±1.64 4±0.50 (0/5) 0% 
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 Cell Adoptive transfer post DM-MOG35-55 immunisation 

Exp. 
No Cell type Doses on 

the host 

Cell 
purification 
from host 

(days) 

Adoptive 
transfer post 

EAE induction 
(days) 

Cell 
NO. Incidence% Mean day of 

onset± SD 
Mean max. 
severity±SD Mortality% 

PBS - 5 5 - (4/5) 80% 26±11.75 3.75±1.5 (2/5) 40% 
DM-MOG35-55 
CD11b+ cells 

2µg 5 5 2x105 (1/4) 25% 12 4 (0/4) 0% 1 

Naïve CD11b+ - 5 5 2x105 (3/5) 60% 16.33±2.31 4.16±0.76 (1/5) 20% 
PBS - - -1 - (3/3) 100% 12±1.73 4.5±0.5 (1/3) 33.3% 
DM-MOG35-55 
DLN cells 

2µg 5 -1 1x107 (3/3) 100% 13.33±2.52 4.33±0.29 (0/3) 0% 
2 

DM-OVA323-339 
DLN cells 

2µg 5 -1 1x107 (3/3) 100% 14.33±1.15 4.5±0 (0/3) 0% 

PBS - - - - (2/3) 66% 15.50±0.71 3.75±1.06 (0/3) 100% 
DM-MOG35-55 
CD25+ cells 

1µg 5 -2 2.5x105 (3/3) 100% 20±7.81 3.83±1.26 (1/3) 33.3% 

DM-MOG35-55 
CD11b+ cells 

1µg 5 -2 2.5x105 (3/3) 100% 16.67±4.04 5±0 (3/3) 100% 3 

DM-MOG35-55 
CD25+ cells 
CD11b+ cells 

1µg 5 -2 2.5x105 
each 

(3/3) 100% 16±3 3.5±0.5 (0/3) 100% 

PBS - - - - (1/2) 50% 13 5 (1/2) 50% 
DM-MOG35-55 
F4/80+ cells 

1µg 5 -2 2.5x104 (2/2) 100% 13.5±0.71 5±0.00 (2/2) 100% 

DM-MOG35-55 
CD25+ cells 

1µg 5 -2 2.5x104 (2/2) 100% 15.5±3.54 4±1.41 (1/2) 50% 4 

DM-MOG35-55 
CD25+ cells 
F4/80+ cells 

1µg 5 -2 2.5x104 
each 

(2/2) 100% 11.5±0.71 4.25±1.06 (1/2) 50% 
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Appendix 3: Buffers and Reagents 
 
1 Common buffers  

1.1 PBS (PH 7.2) 

Item Volume Supplier 
PBS 10X powder 1 pack Invitrogen, USA 
DH2O 1 L  
Adjust PH to 7.2 by using NaOH or HCl. The PBS was filter sterilised (SteritopTM, 
Millipore, Billerica, Ma, USA) to allow long-term storage. Store at 4°C. 
 
1.2 0.5 M EDTA (PH 7.4) 

Item Volume Supplier 
EDTA 14.61 g (MW=292.24) Invitrogen, USA 
DH2O 100 ml  
Adjust PH to 7.4 by using NaOH or HCl. The buffer was filter sterilised (SteritopTM, 
Millipore) to allow long-term storage. Store at room temperature. 
 
1.3 0.5 M Tris-HCl (PH 6.8) 

Item Volume Supplier 
Tris base 60.57 g (MW=121.14) Invitrogen, USA 
DH2O 1 L  
Adjust PH to 6.8 by HCl. The buffer was filter sterilised (SteritopTM, Millipore) to allow 
long-term storage. Store at room temperature. 
 
1.4 2 M Tris-HCl (PH 7.4) 

Item Volume Supplier 

Tris base 242.28 g 
(MW=121.14) Invitrogen, USA 

DH2O 1 L  
Adjust PH to 7.4 by using HCl. The buffer was filter sterilised (SteritopTM, Millipore) to 
allow long-term storage. Store at room temperature. 
 

2 Buffers for tissue processing 

2.1 Alsevers solution for blood processing 

Item Volume Supplier 
D-glucose 20.5 g (MW=180.16) AppliChem, Germany 
Sodium citrate⋅2H2O 7.9 g Sigma-Aldrich, USA 
NaCl 4.2 g BDH Laboratory supplies, UK 
DH2O 1 L  
Adjust PH to 6.1 by using 1 M citric acid. Store at 4°C. 
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2.2 Red blood cell lysis buffer 

Item Volume Supplier 
NH4Cl 3.74 g (MW=53.49) BDH Laboratory supplies, UK 
2M Tris HCl (PH 7.4) 4.25 ml Invitrogen, USA 
DH2O 500 ml  
The buffer was filter sterilised (SteritopTM, Millipore) and stored at room temperature. 
 

2.3 1.8% NaCl buffer for red blood cell lyse 

Item Volume Supplier 
NaCl 90 g (MW=58.44) BDH Laboratory supplies, UK 
DH2O 500 ml  
The diluent was filter sterilised (SteritopTM, Millipore) and stored at room temperature. 
 
2.4 Complete IMDM 

Item Volume Supplier 
FCS 50 ml Invitrogen, USA 
Glutamine 2 mM Invitrogen, USA 
Penicillin G 100 U/ml Invitrogen, USA 
Streptomycin sulphate 100 µg/ml Invitrogen, USA 
2-mercaptoethanol 5x10-5 M Invitrogen, USA 
IMDM 1 L Invitrogen, USA 
Store at 4°C. 
 

2.5 Heparin solution for peritoneal wash 

Item Volume Supplier 
Heparin sodium (porcine 
mucous) 

50 µl (5000 IU in 0.2 
ml ampoule) 

Hospira Australia Pty Ltd, 
Australia 

PBS 50 ml As described in 1.1 
0.5 M EDTA (PH 7.4) 300 µl As described in 1.2 
Mix well and store at 4°C. 
 

2.6 Hanks solution for cell processing 

Item Volume Supplier 
Hanks’ balanced salt 
solution 50 ml Invitrogen, USA 

0.5 M EDTA (PH 7.4) 200 µl As described in 1.2 
Store at room temperature 
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2.7 Cell freezing medium 

Item Volume Supplier 
FCS 90 ml Invitrogen, USA 
Sterile DMSO 10 ml Sigma-Aldrich, USA 
Mix well and store at -20°C. 
 

2.8 Percoll diluent for cell isolation from spinal cord 

Item Volume Supplier 
10X sterile PBS 45 ml Invitrogen, USA 
3 ml 0.6 M HCl 3 ml Invitrogen, USA 
DH2O 132 ml  
The diluent was filter sterilised (SteritopTM, Millipore) and stored at 4°C. 
 

3 Buffers for FACS staining 

3.1 FACS buffer 

Item Volume Supplier 
Sodium azide 0.1% Invitrogen, USA 
FCS 2% Invitrogen, USA 
EDTA 2 mM As described in 1.2 
PBS 1 L As described in 1.1 
Store at room temperature. 
 

3.2 ZnCl2 buffer for superantigen staining 

Item Volume Supplier 
PBS  1 L As described in 1.1 
FCS 1% Invitrogen, USA 

ZnCl2 
0.2 mM, 
(MW=136.28) Sigma-Aldrich, USA 

Sodium azide 0.1% Invitrogen, USA 
The buffer was filter sterilised (SteritopTM, Millipore) and stored at room temperature. 
 

3.3 100X stock solution for DM staining 

Item Volume Supplier 

MgSO4⋅6H2O 100 mM, 
(MW=223.46) 

Merk, Whitehouse Station, NJ. 
USA 

MnCl2⋅4H2O 10 mM, (MW=197.9) Malinchrodt Chemicals, USA 
DH2O 50 ml  
The buffer was filter sterilised (SteritopTM, Millipore) and stored at room temperature. 
The stock solution was diluted 100X in cIMDM to make working solution. 
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3.4 Fixation/Permeabilization buffer for Foxp3 intracellular staining 

Item Volume Supplier 
Fixation/ 
Permeabilization 
concentrate 

3 ml eBioscience, US 

Fixation/ 
Permeabilization diluent 9 ml eBioscience, US 

This buffer was made fresh and was not stored for more than one day. 
 

3.5 Permeabilization buffer for Foxp3 intracellular staining 

Item Volume Supplier 
Permeabilization buffer 
(10X)  1 ml eBioscience, US 

DH2O 9 ml  
This buffer was made fresh and was not stored for more than one day. 
 

3.6 Annexin V binding buffer  

Item Volume Supplier 
HEPES  10 mM Invitrogen, USA 

NaCl 140 mM BDH Laboratory supplies, UK 
DH2O 200 ml  
Adjust pH to 7.4 and store at  4°C. This buffer was not stored for more than one month. 
 

4 Buffers for superantigen coupling 

4.1 Coupling buffer 

Item Volume Supplier 
Tris-HCl (PH 8.0) 0.2 M Invitrogen, USA 
CuSO4⋅5H2O 20 µM AJAX Chemicals, Australia 
DH2O 100 ml  
Adjust PH to 8.0 by using NaOH or HCl. The buffer was filter sterilised with 0.22 µm 
filter (Sartorius, Global Science and Technology Ltd, Germany) and stored at room 
temperature. 
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4.2 20 mM sodium phosphate buffer for superantigen storage 

Item Volume Supplier 
Na2HPO4 10 mM BDH Laboratory supplies, UK 
NaH2PO4 10 mM BDH Laboratory supplies, UK 
DH2O 100 ml  
Adjust PH to 6.0 by using NaOH or HCl. The buffer was filter sterilised with 0.22 µm 
filter (Sartorius, Global Science and Technology Ltd, Germany) and stored at room 
temperature. 
 
4.3 0.1% Acetic acid for peptide storage 

Item Volume Supplier 
Acetic acid (99.5% pure) 0.1 ml AJAX Chemicals, Australia 
DH2O 100 ml  
Store at room temperature. 
 
5 Buffers for NuPAGE® gel 

5.1 Coomassie Blue 

Item Volume Supplier 
0.1% Coomassie blue 0.5 g Bio-Rad, USA 
10% acetic acid 50 ml AJAX Chemicals, Australia 
45% methanol 225 ml BDH Laboratory supplies, UK 
DH2O 225 ml  
Store at room temperature. 
 
5.2 Destain solution 

Item Volume Supplier 
10% acetic acid 75 ml AJAX Chemicals, Australia 
45% methanol 50 ml BDH Laboratory supplies, UK 
DH2O 875 ml  
Store at room temperature. 
 
6 Buffers and solutions for injection 

6.1 PTxn buffer 

Item Volume Supplier 
NaCl 0.5 M  BDH Laboratory supplies, UK 
Tris HCl (PH 7.4) 15 mM Invitrogen, USA 
Triton-X-100 0.017% Sigma-Aldrich, USA 
DH2O 1 L  
The buffer was filter sterilised (SteritopTM, Millipore) and stored at room temperature. 
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6.2 Ketamine/Xylazine anaethetic 

Item Volume Supplier 

Ketamine (100mg/ml) 10 ml Phoenix Pharm 
Distributors Ltd, New Zealand 

Xylazine (20mg/ml) 1.5 ml Phoenix Pharm 
Distributors Ltd, New Zealand 

PBS 103 ml As described in 1.1 
The ketamine/xylazine were mixed to make a 10X stock of anaesthetic. The stock 
solution was stored at room temperature and diluted 10 fold prior to use.  
 
6.3 Pentobarbitone anaethetic 

Item Volume Supplier 

Pentobarbitone 80 µl National Veterinary Supplies 
Ltd, New Zealand 

PBS 5 ml As described in 1.1 
The stock of pentobarbitone was stored at room temperature and diluted prior to use. 
 
7 Buffers for cell separation 

7.1 Automacs running buffer 

Item Volume Supplier 
FCS 1% Invitrogen,  USA 
EDTA 2 mM As described in 1.2 
PBS 1 L As described in 1.1 
The buffer was filter sterilised (SteritopTM, Millipore) and stored at 4°C. 
 
7.2 Automacs rinse buffer 

Item Volume Supplier 
EDTA 2 mM As described in 1.2 
PBS 1 L As described in 1.1 
The buffer was filter sterilised (SteritopTM, Millipore) and stored at 4°C. 
 

7.3 Dynal beads separation buffer 

Item Volume Supplier 
FCS 1% (1 ml) Invitrogen, USA 
Sodium Citrate 0.6% (0.6 g) Sigma-Aldrich, USA 
HBSS 100 ml Invitrogen, USA 
The buffer was filter sterilised (SteritopTM, Millipore) and stored at 4°C. 
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7.4 Dynalbeads FlowCompTM isolation buffer 

Item Volume Supplier 
BSA 0.1% (0.5 g)  
EDTA 2 mM (2 ml of 0.5 M) As described in 1.2 
HBSS 100 ml Invitrogen, USA 
BSA was filter sterilised (SteritopTM, Millipore) and stored at 4°C. 
 
8 Buffers for protein labelling 

8.1 0.1 M Sodium bicarbonate buffer 

Item Volume Supplier 
Sodium bicarbonate 0.42 g (MW=84.08) Sigma-Aldrich, USA 
DH2O 50 mL  
The buffer was made fresh just before use and filter sterilised with 0.22 µm filter 
(Sartorius, Global Science and Technology Ltd, Germany). 
 
9 Buffers for protein concentration detection 

9.1 Bradford reagent 

Item Volume Supplier 
Coomassie Brilliant Blue 
G 50 mg Sigma-Aldrich, USA 

Ethanol (95% pure) 25 ml BDH Laboratory supplies, UK 
Phosphoric acid (85% 
pure) 50 ml Sigma-Aldrich, USA 

DH2O 375 ml  
The buffer is a light brown in colour. The buffer is filtered via a 0.22 µm filter 
(Sartorius, Global Science and Technology Ltd, Germany) to remove the reagent of 
blue components before use. 
 

10 Buffers for cytokine detection 

10.1 Bioplex assay buffer 

Item Volume Supplier 
PBS 500 ml As described in 1.1 
BSA 0.1% Pierce, USA 
Tween20  0.05% Sigma-Aldrich, USA 
Sodium azide 0.005% Invitrogen, USA 
EDTA 2.5mM As described in 1.2 
The buffer was stored at 4°C and brought to room temperature 30 minutes before use. 
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11 Solutions for Griess reaction 

11.1 Griess solution A 

Item Volume Supplier 
Sulfanilamide 1% BDH Laboratory supplies, UK 
Phosphoric acid 2.5% BDH Laboratory supplies, UK 
Stored at room temperature protected from light. 
 
11.2 Griess solution B 

Item Volume Supplier 
N-(1-naphthyl) 
ethylenediamine 0.1% ABCR GmbH, Germany 

Phosphoric acid 2.5% BDH Laboratory supplies, UK 
Stored at room temperature protected from light. 
 

11.3 Nitrite standard 

Item Volume Supplier 
Sodium nitrite 0.1 M BDH Laboratory supplies, UK 
DH2O 1 ml  
The buffer was filter sterilised (SteritopTM, Millipore) and stored at room temperature. 
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