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Abstract

A new generation of material technologies is being produced by tuning the
properties of an existing material through control of the size and shape on
the nanoscale. Zinc oxide is an excellent candidate for such an approach
due to its possession of a plethora of useful properties, both mechanical
and electronic, and a fantastically rich family of morphologies accessible
on the nanoscale.

A more detailed control over the nano-structure of these materials re-
quires a more detailed understanding of the events that control the growth.
We have undertaken computational studies of the electrodeposition of
zinc oxide nano-rod films to open up and improve the understanding of
the pathways, and events that facilitate the controlled selection of desired
structures and therefore properties. We have applied methods that span
vastly different scales to provide insight on the continuum and atomistic
regimes. Specifically, we have developed a macroscopic transport model
to track the evolution of crystallite shape, surrounding concentration dis-
tributions, and electric field variation. The macroscopic view is comple-
mented with a classical description of crystal growth, in which we obtain

the key parameters using quantum mechanical calculations.
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Chapter 1
Introduction

In the context of materials science, nanotechnology is concerned with tun-
ing the the properties of a given material by controlling its size and shape
on the nanoscale. Zinc oxide (ZnO) has an abundance of useful proper-
ties [1), 2], and forms a commensurate variety of shapes at the nanometer
scale [1]. The useful properties include piezoelectricity [3} 4], pyroelectric-
ity [5], and large band-gap semi-conductivity (~ 3.2 eV) [2]. The breadth
of nanostructures formed by ZnO is breathtaking, and includes rods [6],
needles [7, 8], plates [9], flowers [10], belts [1]], and helices [11]. Examples
of reported nanodevices include field emission transistors [12, [13], ultra-
sensitive gas sensors [14], cantilevers [15]], resonators [16,17], transducers
[18], actuators [19], LEDs [20], and lasers [21]. Studies have found the
properties of ZnO crystals to be intricately related to their size and shape
[22]. The importance of size and shape on the material behaviour empha-
sises the importance of the ability to predict growth behaviour, or under-
stand why growth proceeds in a particular way. Our goal is to investigate
ways in which the growth of ZnO nanorod films can be controlled using

computational means.



CHAPTER 1. INTRODUCTION 2

1.1 Background

Only a handful of papers have focused on aspects of simulation and mod-
elling of ZnO crystallite formation. It was found by Viswanatha et al [23]
that solution growth of ZnO proceeded through an intricate balance of dif-
fusion and reaction kinetics. Another group achieved ‘semi-quantitative’
success in predicting ZnO nanorod formation of a patterned surface from a
supersaturated aqueous solution using a 2-dimensional numerical diffusion-
reaction model [24]. The only report pertaining to the influence of surface
energy on ZnO growth and morphology focused on the formation of ZnO
nanobelts [25]. A thermodynamic model, parameterised with quantum
mechanically calculated surface energies, applicable to isolated structures
of size ~ 3 — 100 nm was used. The model assumed growth limited by
the rate of nucleation and the surface energy was used as the nucleation
activation energy. Finally, a leading group in the laboratory study of elec-
trochemical deposition of ZnO, has published work on the simulation of
ZnO-organic hybrid film electrodeposition [26], and work that couples
hydrodynamic, electrochemical, and chemical phenomena with a Monte
Carlo substrate simulation [27]. In both cases the films were amorphous

rather than nanocrystalline.

1.2 Overview of Work

The aim of this work is to develop a prototype model or set of models
that describe a macroscopic sized crystal growth achieved experimentally.
The physics and mathematics required to solve such a system occur over
a variety of time and length scales that require distinct physical descrip-
tions for each scale. The value of simulation methods is two-fold, one can
use a model to make predictions of how a system will behave given a set
of conditions. Such a model can be considered an extrapolation. Alterna-

tively one can use a model to find, or ‘back-out’, details of the system that



CHAPTER 1. INTRODUCTION 3

are too difficult or expensive to do experimentally. This type of work re-
sembles interpolation. The first approach reduces the need for experiment
and is the development of fundamental theory, method two compliments
experiment.

In this work we present the development and results of two differ-
ent models that focus on different aspects of ZnO nano-rod film growth.
The first model is a macroscopic electrolyte transport model that centres
around the solution of a system of non-linear partial differential equations
(PDE). The part of an electrical system in which the charge carriers are
ions, rather than electrons, is called an electrolyte. Thus a model that
seeks to capture the transport, formation, and reaction of charged species
within an electric field must treat electrolytic transport. Determination of
the boundary conditions associated with the crystal growth are used to
make inferences about the mechanisms that produce the experimentally
observed growth dependence on the experimental variables.

The development and results of a second model that focuses on the mi-
croscopic dynamics and energetics of the crystal surfaces is also presented.
This model depends on parameters that we obtain using ab initio quantum
mechanical calculations on models that represent surface features required
for crystal growth. The use of quantum mechanical calculations to predict
the macroscopic growth behaviour of a crystal is very ambitious, but in
our opinion, is necessary for the advancement of materials simulation.

Treatment of both the macroscopic and microscopic aspects of the ZnO
electrodeposition constitutes the first steps of a multi-scale approach. The
development of a fully fledged multi-scale model is a very large undertak-
ing. It requires an understanding not only of many aspects of the specific
system of interest, but also requires expertise in a wide variety of simula-
tion and analysis tools, as well as access to, and ability to use, a variety of
computational resources.

Clearly the project scope on the simulation side is very large, even the

narrowed aims here constitute a very large undertaking. However, it is
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only half of the story. Part of the challenge for large multi-scale projects is
the requirement for, and acquisition of, vast amounts of accurate data. The
data is required to ensure consistency of the model over the scales it spans.
In this context a multiscale approach to a typical laboratory experiment
is truly daunting. However, this is part of the challenge to bring such
techniques to the benchtop, to begin applying simulation and modelling
techniques and approaches not only to highly sophisticated and expensive
long-terms projects but to the “everyday” laboratory situation. Given the
sometimes fuzzy and uncertain nature of laboratory experimentation, it
is potentially a major advantage for the experimenter to have simulation
results to help give direction to experimental investigations.

In this work we endeavour to bring computational modelling, at both
the conventional macroscopic scale, and the more exotic electronic scale to
the typical laboratory benchtop.

1.3 Chapter Overview

The presentation of our work has the following structure.

1.3.1 Chapter 2: Electrochemistry and Zinc Oxide

In this chapter we outline the basic thermodynamic concepts used to de-
scribe electrochemical systems. We also outline the experimental meth-
ods used by our collaborators at Imperial College (London) to obtain film
growth behaviour, and introduce the experimental results which our sim-

ulation will focus upon.

1.3.2 Chapter 3: The Electrochemical Model

Here we discuss the structure of the electrochemical system from a mod-

elling point of view. We discuss the treatment of chemical reactions and
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derive the transport equations that govern concentration and electric field
variation in the electrolyte. We also introduce two simpler approximate
forms of the transport model equations to ease numerical solution. Finally

we perform some simple analytic case studies.

1.3.3 Chapter 4: Numerical Method and Implementation

This chapter outlines the numerical details used to solve the system of
transport and boundary equations that constitute the model described in
Chapter 3. The effect of the system parameters (such as grid size, and
maximum time step), the output variation, and numerical convergence of

the three transport models is also investigated.

1.3.4 Chapter 5: Electrochemical Model Results

Here we make direct comparison between simulated growth behaviour
and experimentally observed behaviour. We use the simulation results to
infer effects of experimental conditions on the way the nanocrystalline film
grows. Our findings include: evidence for OH™ limited crystallite growth,
anisotropic crystallite surface growth rate constants, a growth mode tran-
sition due to electrode coverage, and behaviour that suggests that the oxy-
gen reduction reaction (ORR) occurs at the electrode and the growing crys-

tallites, at a rate dependent on the applied potential.

1.3.5 Chapter 6: DFT: Theory and Method

In this chapter we introduce the basics of electronic Density Functional
Theory (DFT), the method used to perform detailed surface energy calcu-
lations which form the basis of our first principles crystal growth model.
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1.3.6 Chapter 7: A Study of ZnO Using DFT

In the first part of this chapter we describe how total energies are related to
macroscopic thermodynamic variables. We then introduce a basic classi-
cal theory of crystal growth, and propose a way in which key parameters,
step and kink energies, can be parameterised using total energies obtained
from quantum mechanical calculations. The second part demonstrates the
method used to obtain the the step and kink free energies using electronic
density functional theory (DFT) calculations, and the morphological pre-
diction of nanorod formation under conditions of high and low humidity.



Chapter 2
Electrochemistry and Zinc Oxide

In this chapter we introduce the fundamental concepts of electrochemistry,
give an overview of the electrodeposition of ZnO, and present the most rel-

evant experimental results from a modelling and simulation perspective.

2.1 ZnO Electrodeposition

ZnO forms a wide variety of nanostructures that show promise for appli-
cations in optoelectronics [28], sensors [14] and piezoelectronics [29]. Such
promise has led to a tremendous increase in the scientific literature over
the last decade, particularly in the field of nanotechnology, as shown in
Figure As aqueous electrochemical deposition techniques often allow
precise control of the morphology of oxide nanostructures, there is interest
in applying these methods to ZnO [9]. Indeed there is evidence that elec-
trochemical parameters such as the substrate lattice parameter [30], the
electrolyte [31, 32, 33], the amount of oxygen dissolved in the electrolyte
[34], the applied potential across the cell [35], and electrode pre-treatment
[32] can all influence the morphology of electrochemically deposited ZnO
[9, 6]. Electrochemical synthesis is also attractive because it has the scope
for large scale industrial application [36] while being low-cost and readily
accessible to researchers.
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Figure 2.1: Bar graphs showing interest in ZnO and nanoscale ZnO as
indicated by the number of English language articles returned by Web of
Science for the period 1998 - 2008.

In Ref. [9], Illy et al deposited ZnO nanostructured films by applying a
cathodic potential bias to an electrode substrate immersed in an electrolyte
solution at 80° C (see Figure and for image of the experimental
rig). The electrolytic solution was composed of a small amount (5 mM)
of zinc chloride (ZnCl;), 100 mM calcium chloride (CaCl,), and dissolved
molecular oxygen. The concentration of dissolved molecular oxygen un-
der such conditions was determined by Lincot et al [37] to be 0.8 mM.
Typically, the resulting films consisted of an array of columnar hexagonal
prismatic crystallites each with a radius between 80 to 200 nm and length
greater than 1000 nm, depending on the deposition conditions. The crystal

structure of the crystallites was determined as wurtzite [6].
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2.2 Electrochemistry and Oxide Growth

Oxide films can be formed by either oxidation of metal (as in the case of
metallic corrosion), or precipitation of dissolved precursors. Oxidation of
solid metal is limited in that it requires the passage of ions through an
oxide layer. Ionic diffusion through an oxide lattice is very slow (D ~
10~ "em?s™! [38]). Precipitation of dissolved reactants can proceed in one
of two ways. One involves electrochemically oxidising or reducing a dis-
solved metal oxide from a soluble oxidation state to one that is insoluble.
This method requires a soluble metal oxide with multiple oxidation states.
The second way depends on an electrochemical reaction involving oxy-
gen. Cathodic deposition of ZnO is the second type of reaction [39]. Dis-
solved Zn ions react with hydroxide that is generated at the electrode by
reduction of oxygen with water to form the insoluble metal oxide ZnO.

The electrodic production of OH™, the oxygen reduction reaction (ORR),
is defined by

O, + 2H,O + 4¢~ — 40H™  E =04V (NHE). 2.1)

The OH™ then reacts with dissolved Zn ions to form the insoluble oxide
or hydroxide according to,

Zn*" + 20H™ — ZnO + H,0, (2.2)

on the electrode. The overall electrochemical reaction is obtained by adding

reaction 2.1 (multiplied by a half to maintain stoichiometry) and reaction

to yield

Zn** + 10y +2¢” - ZnO  E=0.89V (NHE). (2.3)

The procedure must avoid the deposition of pure zinc metal from solution,

Zn*T +2 —Zn  E=-0.76 V (NHE). (2.4)
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From these electrochemical reactions and their reduction potentials (ob-
tained from standard data tables [40]) we can calculate the potential bound-
aries within which ZnO can be successfully and exclusively deposited.

The thermodynamic quantity of interest is the electrochemical reduc-
tion potential £. Determination of the potential boundaries is demon-
strated by the following argument. The electrochemical reduction poten-
tial I is related to the Gibbs free energy of formation by AG = —nFE,
where n is the number of electrons transfered and F' is Faraday’s constant
(96485 Cmol™'). Here E is the reduction potential. This is obtained when
we split a complete electrochemical reaction into its constituent electron
donating (oxidation or anodic) and electron accepting (reduction or ca-
thodic) reactions (electron transfer reactions):

At 4 yem — ATV reduction half reaction (2.5)
D — DY +ye~ oxidation half reaction. (2.6)

A reduction half reaction is simply the reverse of an oxidation half reaction
and likewise the reduction potential is simply the negative of the oxidation
potential. Any electrochemical half reaction can be expressed as anodic
or cathodic. However, the convention is to use the cathodic (reduction)
reaction. Thus £ > 0 is spontaneous and £ < 0 is not. Like the Gibbs free
energy, the cell potential can be taken as the sum of the basis reactions i,

which by convention are defined in the direction of reduction,

N
Eior = Z ETe. (2.7)

In other words, the total reduction potential (the electrochemical poten-
tial corresponding to the reaction of interest defined in the direction of
reduction) is the sum of the contributing reactions (oxidation and reduc-
tion) expressed in terms of their reduction potentials (i.e. in the direction
of reduction). We include the applied potential by noting that the net elec-
tron transfer represented by equation must be balanced by a charge
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conserving oxidation reaction at another electrode with a known reduc-
tion potenial, a reference electrode. The applied potential, £,,,, set on the
potentiostat is that of the reference electrode, and in the convention used
here, is anodic (oxidation). Thus we subtract its potential from the sum-

mation,
N

B =Y E[* — Eqpp. (2.8)

The condition to ensure spontenaeity of the cathodic reaction is,
N
Bt >0 ie. By <Y E* (2.9)
i
Conversely, the condition for reaction in the anodic direction is
N
Eipp <0 ie. Eup> Y E* (2.10)
i

The two cases above, (2.9) and (2.10), correspond to a cathodic and anodic
working elctrode respectively.

For the ZnO system
Zn** + 10y +2¢e” —ZnO  E=0.89 V (NHE), (2.11)
the condition is written
Eiot = Erea(ZnO) — E,py > 0. (2.12)
Hence for spontaneous ZnO formation

Eopp < 0.89 V (NHE). (2.13)

The applied potential must be less than 0.89 V/NHE, giving us a possible
upper bound to ensure ZnO formation. We must also ensure that forma-

tion of the OH™ precursor is spontaneous,

O, + 2H,0 + 4e — 4OH™  E = 0.4V (NHE) (2.14)
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in which case
Eiot = Erea(O2) — Eqpp > 0, (2.15)
giving
Eqpp(cathode) < 0.4V (NHE), (2.16)

which is our (lowest) upper bound for applied potential. To prohibit Zn
precipitation we require the condition

Eiot = Ered(Zn) — Egpp < 0 (non-spontaneous) (2.17)
which yields
Eopp > —0.76V/NHE (2.18)
and this is our lower bound. The resulting potential boundaries are
—0.76 < B, < +0.4 < +0.89 V (NHE) (2.19)
and using E V (AgCl) = +0.20 V (NHE)
—0.96 < Egpp < +0.20 V (AgCl). (2.20)

Where AgCl denotes the silver chloride reference electrode, which will be
used in the throughout the remainder of this work.

Although we have been able to define a region of applied potential
where ZnO will be thermodynamically preferred, the rate at which the
reaction will proceed has not been considered. Such a consideration is
a kinetic consideration, and involves an understanding of the structure
of the electrode-electrolyte interface, and the transport properties of the
surrounding medium. The kinetics of the ZnO/ORR system have been
investigated by Lincot and co-workers [39], and the ORR was found to
be occurring at the mass transport limited regime under the conditions
(applied potential and concentration) we are interested in. The main focus

in the present work is the transport within the surrounding medium.
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2.2.1 Electrodeposition Results and Observations

Our goal is to model the growth of ZnO nanorod films under conditions
as close as possible to the experiments described in Ref. [41], to predict the
growth rate and morphology of the nanorods as a function of time. The
information produced should then allow interpretation of the observed
growth dependence on the electrochemical conditions and the identifica-
tion of critical parameters that control film morphology.

Here we summarise the key experimental data to aid in model devel-
opment, and conditions that must be met or replicated in order to validate
our modelling. We begin by outlining the fundamental data we wish to
replicate: the growth behaviour represented by X-ray Absorbance Near
Edge Spectroscopy (XANES) intensity change with time. Synchrotron ra-
diation has been used to measure the rate of ZnO deposition in situ under
various electrochemical conditions [41} 9], using the apparatus shown in
Figure The XANES technique measures the amount of Zn in a crys-
talline environment per area. If the deposited film is monolithic, the film
volume per area can be obtained by multiplication by the molar volume
of ZnO. Even though we are not working with monolithic ZnO films, our
preferred measure of nano-rod film growth is that of volume per area of
an equivalent monolithic film, and the unit is used throughout this work.

The variation of the observed growth rates with the cathodic potential,
and Zn?* concentration is shown in Figure These curves are represen-
tative of the growth dependence on the experimental variables, concentra-
tion and applied potential, at values that produce the preferred nano-rod
films. The preferred nano-rod films have high density of nanorods with a
uniform diameter of 100 nm or less, and height on the order of a micron.
The results show a clear difference between the effect of varying the po-
tential and that of varying concentration of zinc ions. A striking feature
of many of the measured growth curves is the presence of two distinct
growth rates. During the early growth stage, which we refer to as ‘mode
one’, there is larger growth rate than the later stage growth, referred to as
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‘mode two’. The transition from the first growth mode to the second is
abrupt.

Two observations can be made about the effect of potential variation.
The first observation is that the mode one growth rates obtained at poten-
tials -670, -770, and -970 mV (Ag/AgCl) are the same, and greater than
that obtained for potential of -370 mV (Ag/AgCl). The reason for this dif-
ference is attributed to the amount of OH™ present. For applied potential
more positive than -420 mV (Ag/AgCl) the ORR reaction proceeds more
slowly, according to the reaction [37, 42} 43],

O; + 2H,0 + 2~ — HyO, + 20H ™. (2.21)

At potentials more negative than -420 mV (Ag/AgCl), the mode one growth
curves have almost identical slope and duration. The effect of the potential
is manifested in the slope of the second growth phase, with more negative
potential resulting in a greater mode two growth rate.

The effect of increasing the Zn?* concentration at a particular applied
potential is shown in Figure Overall the growth is increased, how-
ever, the rate of early growth is decreased by increasing the concentration.
The 10 mM curves also lack the abrupt growth mode transition observed
for the 5 mM curves.

We can supplement the growth behaviour described above with a vari-
ety of auxiliary observations. A relation between the potentiostatic current
measured by the electrochemical equipment, and the growth behaviour,
measured by the in situ X-ray measurements was observed. During the
deposition the current profile, associated with the ORR, exhibits a sharp
rise and decline over a period identical to the duration of the first growth
phase measured by synchrotron radiation (see Figure 2.4a), and then set-
tles to a steady value. Given that the rods are growing in height and to
a lesser extent width, eventually we would expect to see a diminishing
current due to the increasing distance the O, must travel in order for the
ORR to occur solely at the electrode. However, the current settles to a
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steady value, thus it seems likely the ORR is occurring on some or all of
the nano-crystallite film faces.
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Figure 2.4: (a) Current density (black) and X-ray absorption intensity at
9720 eV from repeated scans (red) as a function of time, (b) Repeated Syn-
chrotron XANES across the Zn K-edge. Courtesy of Bl and MR

The crystal environment of the Zn was investigated using synchrotron
X-ray absorption near edge spectroscopy (XANES) of the Zn K-edge. The
data shows (Figure that throughout the deposition, although there
are two growth phases, the Zn bonding environment remains the same.
Thus no significant chemical changes are occurring with growth over the
duration of the deposition.

Scanning Electron Microscope (SEM) images give an impression of the
actual morphology and appearance of the deposited film, and individual
crystallites. The influence of the potential on morphology is shown by
Figures & An applied cathodic potential below —420 mV (AgCl)
(Figure yields larger rod diameter, and a lower rod density per area,
than that obtained from a cathodic potential greater than —420 mV (AgCl)
(Figure 2.5b). Such a result suggests competition between rod growth,
slowed due to diminished OH™ at higher applied potential, and seed nu-
cleation.
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The measured growth curves and final film morphologies for the stan-
dard Zn?* concentration (5 mM) at applied potential of -770 mV and -370
mV (AgCl) are shown in Figure The growth curves indicate that the
same amount of material has been deposited during the mode one growth,
yet the rod diameters and densities are different. It appears that slower
growth produces higher density films, and therefore greater nucleation,
or less coalescence. Conversely, higher nucleation (or less coalescence)
produces slower growth.

(d) (e)

Figure 2.5: SEM images of electrodeposited ZnO films (in all images
the red scale bar represents 100 nm): (a) Cathodic potential of -770 mV
(Ag/AgCl), 5 mM Zn(NOs),, and 0.1 M KCl, (b) cathodic potential -370
mV (Ag/AgCl), otherwise the same as (a). (c) Same as (a) but with 1 mM
Zn(NOs)s,. (d) Profile image under same conditions as (a), aspect ratio ap-
proximately 6. (e) Plan view of sample used in (d) showing tapered tip,
and islands suggestive of layer growth.
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The effect of dramatically decreasing the Zn*" concentration is illus-
trated by comparison of Figures & We see that decreasing the
concentration by a factor of five leads to poorly aligned rods, with small
radii, and an increased density. As with the case of applied potential varia-
tion, the increased density is likely to be a result of slower (lateral) growth,
due to diminished Zn**, thus allowing more time for nucleation of new
rods. Alternatively, it is possible that at higher Zn*" concentration and

growth rates, the small crystals coalesce to form bigger crystals.

(d) The growth curves corresponding to (a) left-top,
cathodic potential of -770 mV (Ag/AgCl), 5 mM
Zn(NOs3)2, and 0.1 M KClI, (b) left-middle, cathodic
potential -370 mV (Ag/AgCl), 5 mM Zn(NOs),, and
0.1 M K(Cl, and (c) left-bottom, same as (a) but with 1
mM Zn(NO3),.

Figure 2.6: Growth behaviour of morphological outcomes.

The growth curves associated with the morphological outcomes shown
in Figure 2.5 are shown in Figure We see that the nano-rods formed
at the lowest Zn?" concentration grow much more slowly, and exhibit a

more subtle transition to the second growth mode after about fifteen min-
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utes. The XANES intensity at the transition is lower than that with equal
applied potential but greater Zn*" concentration. Thus, for cases in which
the growth rates are very different the XANES intensity gives an indica-
tion of the rod packing, however for similar growth rates, a clear distinc-
tion cannot be made.

The above observations indicate that the early rod growth rate depends
on the concentration of Zn?*, and the applied potential through its ef-
fect on OH™ production. We also observe that slower initial growth rate,
due to lower concentration of Zn** or OH, is always accompanied by in-
creased nano-rod density. The effect of variation of applied potential on
mode one growth vanishes for potential less than -420 mV (AgCl), sug-
gesting that the rate of OH™ production has reached a maximum. It also
implies that under conditions in which the applied potential is less than
-420 mV (AgCl), variation of the Zn** concentration has sole influence on
variation of nucleation and mode one growth rate.

The two mode growth behaviour is consistent with unhindered initial
growth until lateral growth is spatially hindered, at which stage the sec-
ond growth stage, dominated by vertical growth dominates. The idea of
lateral growth blocking due to closing of the inter-rod gap is supported
by the results shown in Figure The data was obtained by carrying out
the electrochemical deposition over a variety of times, followed by SEM
observation. We see that the transition between first and second growth
modes is coincident with the closing of the interrod gap.

Our final observation from the SEM images pertains to the growth
mechanism of the ZnO nanorods. Figure shows the top face of three
nanorods. All three faces are covered in coarsely faceted rises (‘steps’) and
islands which are co-oriented with the lateral facets of the nanorod. The
presence of steps and islands strongly suggests the existence of a layer
growth mechanism [44]. The presence of a tapering towards the top of
the rod, and the striation on the lateral faces also suggest layer growth
in which steps formed on the interior of the top facet propagate out to the
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Figure 2.7:  Film morphology
and XANES signal intensity
evolution over time. SEM im-
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ages were acquired at 15, 60,
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edge of the facet [44]. The presence of many islands and the tapered shape
suggests that the multiple layers are growing at the same time. Similar an-
gular island structures have been observed on the (0001) face of ZnO discs
formed using a vapour phase transport (VPT) technique. In this case a

layer growth mechanism was also proposed [45].

2.3 Summary

We wish to emphasise the most important inferences made from the ex-
perimental data. Firstly, under the standard conditions the growth ex-
hibits two growth modes separated by an abrupt transition. The cause
of the transition appears to be due to inhibition of lateral growth due to
crowding. The most abrupt transitions are observed when the first growth
mode is rapid. The films that characterise this behaviour are composed of
nanorods with a diameter around 100 nm and are densely packed.

The magnitude of the mode one growth depends on both the concen-
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tration of Zn?* and the applied potential. The most obvious contribution
of the applied potential on the mode one growth rate is in the production
of OH™. This is demonstrated by the observation of a significantly slower
mode one growth rate at applied potentials that are known to produce
OH™ by a less efficient reaction. Thus the mode one growth depends on
the concentration of both Zn** and OH~. We also note that slower mode
one growth, due to lower Zn?* concentration or less cathodic potential, is
always associated with increased nucleation.

Variation of the potential in the region where the ORR occurs most ef-
ficiently (< —420 mV (AgCl)) has no effect on the mode one growth rate,
but does affect mode two growth rate in a continuous fashion. Thus, at
these potentials, the rate of mode one growth is mediated solely by the
Zn** concentration. Observation of steady mode two growth that is not
diminished by increased rod height suggests the ORR occurs on the grow-
ing crystallite, as otherwise growth retardation would be expected due to
an increasing diffusion length. Although, if OH™ is in significant excess to
Zn**, such growth retardation may not be observed in the twenty minute
duration of the film depositions. The continuous effect of the potential on
second phase growth suggests the potential mediates a growth rate deter-

mining process.



Chapter 3

The Electrochemical Model

In the first part of this chapter we review the phenomena thought to char-
acterise the experimental system, and develop a schematic model. Our
emphasis is on the examination of transport models for the treatment of
our zinc oxide system. We also consider the nature of the solid-electrolyte
interfaces in the context of boundary conditions. We treat transport as the
most important description, the basis, or fundamental model upon which
any other more exotic or fine-grained model must be built. Electrolyte
transport is what connects us to the microscopic aspects of the film growth,
such as chemical reaction and surface dynamics. We present the develop-
ment of the fundamental transport equations for electrolytic systems, and
finally, we investigate the behaviour of a simplified 1-dimensional trans-
port limited model.

3.1 System Composition

The phenomena that dictate the film growth belong to either growth ki-
netics or transport, depicted in Figure The kinetics includes that of
chemical species formation and consumption at an interface (electrodics),
as well as inclusion into the crystal (crystal growth). In Figure[3.1|chemical
reactions are depicted on all three crystallite surfaces. This is because there

23
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is no evidence indicating an epitaxial bonding between the nanorods and
the substrate. In Ref [6] Illy et al emphasise that nanorod film coverage on
the polycrystalline substrate is much greater than the area of a particular
epitaxially oriented grain (~ 1 um?), indicating that epitaxial bonding is
unlikely. Thus it is possible that chemical reactions and growth can oc-
cur at the bottom, side, and top faces of the nano-rods. First we give an
overview of our treatment of the surface kinetics.

BIIT K

Zn?t £ 20H"-

ooy

7Zn?t + 20H~

o g

ELECTRODE

Figure 3.1: Schematic of computational domain in which the transport re-
gion is white, the crystallite is grey, the black line indicates the boundaries
(dotted lines indicate mirror boundaries). the polar (P) surface is the up-
per grey edge, and the non-polar (NP) surface is the lateral grey edge. Also

shown are the reactions considered at various boundaries.

The electrolyte consists of millimolar amounts of Zn?*, O,, OH™, and
molar amounts of ionic buffer (Ca**, C17). With regard to crystal forma-
tion the buffer is regarded as a spectator as it does not directly contribute
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to the film growth. Itis possible that the Ca®* or Cl~ could affect the crystal
growth, a process called “poisoning’. However, depositions performed us-
ing potassium chloride (K* and Cl~), and calcium nitrate (Ca*" and NO3),
exhibited the same behaviour as that obtained using CaCl, [46]. The be-
haviour of the participating species, Zn?*, O,, OH™, is of paramount im-
portance in the description of the film growth.

3.1.1 Essential Reactions

The precise mechanistic details of how the ZnO forms and the solution
composition (Zn,O,H, complexes are known to exist) are still only known
for a few specific conditions [47]. The model transport-reaction scheme is
shown in Figure The scheme depicts fluxes with vertical arrows, elec-
trochemical reactions with horizontal arrows and summarises the paths

that the bulk species must take for ZnO to be formed. The chemical reac-

O2(bulk) Zn2+(bulk)
Jo:
5 i o 7, Transport model
2(el) (el)
-]OH
OH ., + Zn*" .+ ZnO

(rxn) (hkl)

o Surface model

Figure 3.2: The constrained transport-reaction scheme for the species in-
volved in ZnO formation with Zn** /OH™ reaction fixed at the electrode.
Again (bulk) refers to the solution composition at great distance from the
growing film, (el) is the electrode region, (rxn) is the region where Zn*"
and OH™ meet, and (hkl) refers to a particular ZnO crystal facet. Transport
is denoted with horizontal arrows and chemical reactions with horizontal

arrows.
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tions described above lead to crystal growth via
Zn*" +20H" = ZnO + H,0, (3.1)

at the crystal facets, where OH™ is generated by the oxygen reduction re-

action

O, + 2H,0 + 4e~ — 40H™ (3.2)

at both the electrode and the crystal facets. The details of both these reac-

tions can be quite complex.

The Oxygen Reduction reaction (ORR)

The oxygen reduction reaction is an electrode reaction, and therefore is in-
fluenced by the electrode overpotential. The most appropriate treatment
of this reaction under conditions in which both transport and applied po-
tential can contribute to the rate is the current-overpotential equation [48],

i=1i, %e—pnfn _ @6(1—19)7#77 ) (3.3)
o, Con

The equilibrium exchange current density, i,, represents the rate of the
electrode reaction, the overpotential, 7, is the deviation from the potential
at which current flow is zero. The location of the kinetic barrier is denoted
by the “symmetry factor” p, n is the number of electrons being transfered,
f is Faraday’s number divided by the thermal energy, RT, and the bulk
and electrode concentrations are denoted by C'*° and C respectively.

To simplify the treatment we consider the case in which the second
term is small. Such a case exists when the kinetic barrier is higly assym-
metrical, p — 1, or when the surface overpotenial is increasingly cathodic,

n << 0. Under such conditions we have,

i =i {g—g{ep"f ’7] . (3.4)
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To qualitatively investigate the relationship between applied potential and
the ORR rate we write (3.4) in terms of the O, boundary flux, Jo,,

torr = FnJo,, (3.5)

where, as above, n is the number of electrons transfered, F' is Faraday’s

number, and Jp, is the flux of O, at the boundary. Rearrangement gives,

JOQ = |:(n;06¢82) eXP(_npfn)] 0027 (36)

which is recast as a flux-reaction balance in which the reaction is first or-

der in terms of O, concentration, and the term inside the square brackets

constitutes the rate constant, o,

lo
Jo, = aCop, where a = (nFCBZ) exp(—npfn). (3.7)

We can qualitatively represent variation in applied potential by variation
of a because a cathodic applied potential corresponds to a negative over-
potential, , and therefore « is positive, i.e. F,,, and the ORR rate contant,
«, vary monotonically.

In the ZnO system at the potentials we are investigating the oxygen re-
duction reaction proceeds very close to the mass transport limited regime
[37]. Under the mass transport limited regime, the consumption of O, at
the electrode occurs at a greater rate than it can be delivered by diffusive
transport processes. Thus there is no O, net accumulation, the O, is effec-
tively instantaneously consumed in the diffusion timescale, o >> Jp,. We

implement this scenario with,
Co, =0 (3.8)

as the electrode boundary condition for O,. Clearly, if periods of oxygen
limited growth exist, this scenario will make the system sensitive to the
amount of dissolved oxygen in the system. However, the system is consid-
ered to be O, saturated. The mass transport limited boundary condition is
useful in the search for system parameters because it reduces the degrees
of freedom.
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ZnO Formation and Incorporation into the Crystallite

The reaction and incorporation of ZnO units into the growing crystal is
also a complex process which involves the surface charge of the growing
crystal, the electric double layer, the dynamics of the crystal surface fea-
tures (such as steps and kinks), and the multitude of intermediate steps
between adsorption and inclusion. In this study we use a simple scaling

rate law to describe the formation of ZnO,

Ry = Bur (1 — %) (3.9)

where (3, is the surface specific reaction-inclusion rate constant, () is the
reaction quotient corresponding to the reverse of reaction (3.1)

Q = [Zn*"][OH J*

where square brackets denote concentrations. The magnitude of the rate
coefficients 3, can be estimated to match the experimental growth rates
in Ref. [41]. Note the alternative forward form

1

Y R 1

is problematic if [¢] = 0. Finally K is the equilibrium (dissolution) constant.
It is easy to see that when ) > K = R < 0 the rate of production of
Zn** and OH™ is negative i.e. ZnO is produced. Conversely when @ <
K = R > 0 the rate of production of Zn?* and OH" is positive and ZnO
dissolution is favoured.

The scaling law described above is often used in corrosion science [49,
50,51}152]], in which corrosion processes are considered to proceed isotropi-
cally. In the context of crystal growth we re-cast the scaling law into a form
more familiar to crystal growth theory [53, 44 54, 55| 56],

Ruki = Bhw (1 - %) ; (3.10)
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and rearrange to,

(3.11)

Ruri = Bhw (QO _ Q) :

Qo
The bracketed quantity is easily recognised as the supersaturation of ZnO,
o. Thus,

Ry = Brwo, (3.12)

and from the crystal growth literature we know,
o = (uc — po) /KT = Ap/kT (3.13)

where 1 is the chemical potential of the bulk crystal and 1, is that of the
crystal surface. In Chapter[7|we elaborate on how Equations and
relate to crystal growth mechanisms.

In the Wurtzite structure, ZnO predominantly exhibits two families of
crystal facets: the {0001} (which is polar) and the {0110} (which is non-
polar). The anisotropy of the different crystal surfaces is modelled here
by assigning different values of 5 for each facet. Furthermore, changes
in the applied potential will also alter the reaction rates at the different
crystal facets, an effect we mimic by varying the rate constants (3. The
boundary conditions for the ionic flux, .J;, of species i at the (hkl) crystal

facet are then given by:
Apia g - (Jj + Cﬁhkl) = Ruu (3.14)

where 71,y is the unit normal to the facet, vy, is the velocity of the facet,
Ry is the rate of ZnO formation and Ay, is the facet area.

The model parameters D; and K, the solubility constant, can be found
in the literature. The ZnO solubility constant K was found in the literature
tobe 2.2 x 107" mol®L=3 [57]. The diffusion coefficients (see Table 3.1) of
Zn?t (1.4x 1072 m?s7 ') and OH™ (5.3 x 1072 m?s~!) were obtained from the
reference literature [58] and Do, (2.4 x 107° m?s~!) was obtained from the
electrochemical literature [37]. The magnitude of the 3, parameters were
chosen so that the simulations grew at approximately the rates observed
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in experiments, and were also varied in order to understand their effect on
the growth regimes. We discuss the selection and variation of 3 in Chapter

Table 3.1: Diffusion coefficients [58]37]

Species (i) | Diffusion coefficient (D; / m2s~1)
Zn2+ 1.41 x 1079
02 2.42 x 1079
OH~ 5.27 x 10—9
Ca2t 1.58 x 1079
Cl— 2.03 x 1077

3.1.2 The Electrostatic Potential

The focus of our work is ostensibly on the behaviour of mass: crystal
growth, mass transport. However, an essential part of the electrochemical
system are the forces associated with the electrostatic potential and its spa-
tial variation. The electric force, f, experienced by a test charge, ¢, is used

to introduce the electric field E,
f = qE. (3.15)

In the absence of a changing magnetic field, the curl of the electric field is

Zero,
V xE = 0. (3.16)

Given that the curl of the gradient of a scalar field is zero, the electrostatic

potential ®, is now introduced as,
E=-Vd (3.17)

which satisfies (3.16). The variation on the electric field as a function of a
charge distribution, p., is given by Poisson’s Equation,

V- (eE) = p., (3.18)
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where ¢, the dielectric constant, represents the ability of the field to propa-
gate through the medium. For a medium of uniform dielectric constant, ¢,

Vo = e (3.19)

€

3.1.3 The Thin Double Layer Approximation

Our discussion so far has neglected the microscopic structure of the solid-
electrolyte interface. Before we discuss the development of our transport
based growth model we elaborate on the nature of the electric double
layer. The charge on the electrode (or any surface susceptible to a charg-
ing mechanism) induces structure on the surrounding electrolyte by elec-
trostatic interaction with the charged species. The size (thickness) of the
region is mediated by the balance of the strength of the electrostatic inter-
action (effectively the electrode polarity) against randomisation by ther-
mal jostling. The electric force is greatest near the electrode and becomes
progressively weaker away from the electrode. The result is a fixed layer
of charge near the electrode and a diffuse cloud of charge away from the
electrode. This is called the diffuse interface model [59]. The closeness of
the fixed layer, called the Outer Helmholtz Plane (OHP), is determined by
the size of the charged species, and their associated hydration shells. The
region between the surface and the OHP has fixed charge, and therefore
by (8.19), is a region of linear electric field.

The electrode structure model (illustrated in Figure is called the
Gouy-Chapman-Stern model [48], in which the double charge layer part
is described as a conventional capacitor (called the Stern layer), and the
diffuse part (beyond the OHP) is described by the (independent) work
of Gouy and Chapman. The capacitance of the Stern layer is effectively
independent of electric potential and electrolyte concentration, whereas
the capacitance of the diffuse layer is sensitive to both. In the context of

our bulk transport model, the Stern layer can be considered as part of the
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Figure 3.3: Schematic of the electric double layer.
electrode, however, this is not necessarily the case for the diffuse layer.
To quantify the extent of the diffuse layer Gouy and Chapman com-

bined Poisson’s Equation with Boltzmann’s distribution to yield the Poisson-

Boltzmann equation [59], given here in 1 dimension,

9 q —2q¢
@ = _E Zzipooiexp ( T ) ) (3.20)

where p, is the bulk concentration, z; is the valence of species i, and ¢ is

the elementary charge. Noting that far from the electrode, the potential
and electric field vanish,

$oo =0 and (@> =0, (3.21)
dz )

results in the relation,

2
. (%) Y (322)

between electrostatic potential and charge density in the diffuse layer. For

a 2:1 electrolyte, such as CaCl, the dominant electrolyte in our system, the
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Figure 3.4: Illustration of approximate length scales associated with elec-
trochemical systems.

relation between the surface potential ¢, and ¢ is [60],

V1+2e99/FT — 3\ [ \/1+2e09/FT —3
V1 + 2e49/kT + 3 1+ 2e9o/kT + 3

where ¢, denotes the potential at the OHP, and

eRT 1/2
Mp=(— ) . 3.24
P <F2 Ez Zz‘QCiOO> ( )

where ¢ is the permittivity, RT the proper thermal energy, I’ is Faraday’s

) e Ap' (3.23)

constant, z; is the valence of i, and ¢;, is the bulk equilibrium concentra-
tion of i. At high electrode surface potentials the potential drops rapidly
(plotted in Figure and therefore the diffuse double layer is very com-
pact. The overall electrochemical system has a structure like that shown
in Figure [61], in which the diffuse layer is separated from the bulk
by a diffusion layer with length, L, over which the electrolyte composition
differs from the bulk due to diffusive transport. For low potentials, ¢, <
25mYV, reduces to

¢~ poe™ DT, (3.25)

and the quantity, Ap, known as the Debye length, characterises the decay
length of the potential. According to Equation[3.24]the Debye length of the
ZnO electrochemical system, in which [CaCl,] = 0.1 M, is not greater than
~ 0.6 nm. Thus, any charge separation, or macroscopic deviation from
electroneutrality, is considered as part of the boundary, and does not affect
the bulk electrolytic transport. In dynamic studies it is typical to ignore the
details of the charge distribution and treat the electrode-electrolyte region
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as a sharp interface [62}63]. This is called the thin double layer approxi-
mation and is justified when the diffusion length, L, is much greater than
the Debye length, A\p,ie. \p/L << 1.

1.0

.0 0.2 0.4 .6 = 1.0 1.2
x [nm]

Figure 3.5: Plots of the variation of potential away from the electrode in
0.1 M 2:1 electrolyte (CaCly), calculated using (3.23), with Ap = 0.6 nm.

3.2 Macroscopic Electrolyte Tranport Model

We begin our mathematical description from the macroscopic thermody-
namic potential X. The common thermodynamic potentials are the Helmholtz
potential F, the enthalpy, H, and the Gibbs potential, G [64]. The potential
X depends on a combination of the basic variables, {z} , including en-
tropy, S, temperature, 7', pressure, P, volume, V, and amount, n. The con-
dition for spontaneity and equilibrium of a given thermodynamic poten-
tial X ({x}),is (dX ) <0 [65]. In order to use the condition to model the
process of spontaneous change, local thermodynamic equilibrium (LTE) is
assumed. The LTE treats a non-equilibrium system by dividing it into a set
of sub-regions in which each sub-region is at thermodynamic equilibrium
and therefore the thermodynamic equations hold within each sub-region
[66]. Thermodynamic parameters are now described as fields, f(r,t), in
which each coordinate is in local equilibrium. The assumption is justified
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because the spatial variation of the fields is slow compared to molecu-
lar dimensions and the timescale of molecular motion is so small that the
molecular motions are fully relaxed compared to the temporal variation
of the field. The thermodynamic driving forces are obtained by taking the
partial derivative of the thermodynamic potential with respect to the ex-
tensive (natural) variable of interest - the solute number - whilst the other

(ZX ) - (3.26)
i) wt{n;}

Here, n; is the total amount (in a given sub-region) of solute i and ; is the

variables are fixed,

chemical potential of i,
pi = po + RTIn(a;) (3.27)

where q; is the activity of species i. We use the ideal solution approxima-
tion in which the interaction between ions is assumed to be negligible, in
which case the activity a, is equivalent to the concentration, ¢; [67]. For
low Reynolds number, viscous forces dominate and the solute moves with
a velocity proportional to the applied force

v(r,t) = u; F(r,t) (3.28)

where the proportionality constant , u;, is the mobility of the solute, and F
is the force experienced by that solute. As usual, the force is obtained from
the negative derivative of the potential, in this case, the chemical potential
g

In electrochemical systems an electrostatic potential is present, thus an
additional term [65, 64], ¢;dg;, is included in the internal energy. Here ¢,
is the electrostatic potential of the phase containing ¢, and ¢; is the charge
contribution of i (¢; = ¢;z;). However, the natural variables of the Gibbs (or
other) potential are unchanged. Thus the additional potential possessed

by solutes that have charge is included in the chemical potential. The re-
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sult is the electrochemical potentiall]
/li = ILL(; + RTIH(Cl) + ZZF¢ (329)

where z; is the molecule’s charge, F' is Faraday’s number (the charge of
1 mole of electrons), ¢ is the (external) electrostatic potential, and . is
the standard electrochemical potential of ¢ in a phase with zero electric
potential.

The flux of species i in the system is defined as
Jz'(r?t) = Ci(r7t)vi(r7t)7 (330)

where the velocity, v; = u;F}, is obtained from the electrochemical poten-
tial

F;=—-Vji;, = —RTVIn(¢) — 2z, FV¢ (3.31)
T
Thus the flux is
Ji(r,t) = —u;RTV¢; — ziu Fe,NV o, (3.33)

and using Einstein’s relation, u; = D;/RT, we get the form for the flux
called the Nernst-Planck (NP) flux for ionic migration,

When V¢ = 0 the NP equation reduces to Fick’s constituative relation be-
tween flux and concentration gradient. Equation is the appropriate
flux description for electrochemical systems in which the solute-solute in-
teraction is negligible (‘dilute’ or ‘ideal” systems) and convection is small
or absent.

lwhich is phase independent at equilibrium
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3.3 Time Evolution

A relation for the time evolution of the concentration fields is easily ob-

tained by writing the mass continuity equation,

0 C;
ot

= _V-J+R, (3.35)

where ¢ is time, ¢; is the concentration of species i, J; is the Nernst-Planck
flux of i, and R; is the accumulation of i. In this context, the accumulation

of i is the amount produced or consumed by (homogeneous) chemical re-
action in the medium. Substitution of (3.34) into (3.35) gives,

8ci
ot

in the case of R; = 0. Combination with Poisson’s equation

eVp=F> cizi=p (3.37)

to determine the spatial variation of the potential, ¢, constitutes the Poisson-
Nernst-Planck (PNP) system of equations [68, 69, 70]. The PNP system is
highly non-linear and very difficult to solve numerically. The reason for
the numerical difficulty is an instability that arises because the F'/e factor
is so large (10'* Vm/equivalent) that even very small deviation from elec-
troneutrality results in very large electric forces. Such sensitivity leads to
stiffness, and results in very long numerical convergence times. In order to
make the problem more numerically tractable the same reasoning is used;
any charge separation encounters a massive restoring electric force, thus
any deviation from electroneutrality vanishes. Work by White et al [71] on
a similar system showed the time scale of charge separation to be on the
order of 107" s, which is negligible over the timescales we are interested
in (~ 1 — 10000 s). Thus in our work we make use of the local electroneu-

trality constraint

>z =0. (3.38)

i
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To obtain an expression for the potential under the electroneutrality
constraint we write the charge continuity equation using the definition of

current,
i=FY zl, (3.39)

by modifying the mass continuity equation

V-i:F;ziV~Ji:—F;zi%:—F% (Zcz) (3.40)
We then invoke the electroneutrality condition to give
V-i=0, (3.41)
a divergence free charge density. Expansion gives

F g ZZ'DiVQCi + F? E uiziQV . (cngb) =0, (3.42)
and identification of the conductivity as
2 2 F* 2
K i W; 25 C; R : i%; Ci 3 43)

allows us to write the charge continuity equation for the potential com-

pactly as
V- (kV¢) = —F> 2DV’ (3.44)

Finally, the Nernst-Planck-Electroneutrality (NPEN) system of equations
are collected as follows:
¢
ot

= D;V%c; +uizFV - (;V¢), i=1,..,.M (3.45)

F?
. S DNV 2¢, - 20
V - (kVo) F % 2;D;V*c; where & BT EZ D,z c; (3.46)
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We use this system of equations to track the temporal evolution
of the spatial distribution of the solute concentrations, and electrostatic
potential.

The NPEN is a coupled non-linear system of partial differ-
ential equations in ¢; and ¢, and its solution is non-trivial. The system con-
sists of M mass continuity equations, known as the Nernst-Planck equa-
tions (3.45), and one charge continuity equation that enforces electroneu-
trality (3.46). We use the electroneutrality constraint to eliminate one
species from the mass transport sub-system, and solve only the remaining
M — 1 Nernst-Planck equations.

3.4 The Electroneutrality Constraint

We illustrate the relationship between Poissons’s Equation, electroneutral-
ity and the NP equations, by following the work of Newman [72,[73] and
MacGillivray [70], both of whom used a perturbative approach. We be-
gin by investigating the conditions in which the contribution of concentra-
tion and potential driven transport processes to the flux are comparable.
The respective diffusion and electro-migration driving forces are approx-
imated as Ac/L and A¢/L. Here L is the distance between the electrode
and the bulk, which we take to be the maximum length of inter-crystallite
channel (~ 1000 nm). We are interested in the variation of Ac and A¢
within this region. If the approximate driving forces are comparable over
L, then by equation 3.34

ACi _ _ZZDZF %
L 7 RT L

—D; (3.47)

Here ¢, is the overall electrolyte concentration (effectively the concentra-

tion of the buffer). Thus,
A ~ (RT> ( AC) , (3.48)
ziF Co
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which represents the product of the ratio of thermal to electrical energy
(RT/F), with the magnitude of inhomogeneity (Ac/c,). We know the po-
tential decays to zero, thus,

RT Ac
O~ (zzF> ( - > ) (3.49)

All the variables can now be scaled,

¢ = (fi) (f) ¢ (3.50)
r =Lz (3.51)
Cp = CoCy (3.52)
Ch = CoCp (3.53)
Z= 2% (3.54)
p = Fecozop, (3.55)

where ¢, represents the concentration of the participating ions (Zn**,0OH"),
¢, the concentration of buffer, and p is the charge density. The concentra-
tion scaling constant, ¢, is taken to be of the order of the buffer concentra-
tion, which is significantly larger than the participant concentration. Sub-
stitution into Poisson’s Equation gives,

Ac,eRT ¢
. L2F di?

= Fecozop, (3.56)
p

which can be re-written with parameter, 6,

42

0= =10 57
T2 = (3.57)
where in the case corresponding to a symmetric divalent electrolyte and
using z, = 2,

eRT/F?c.22\ Ac (A} Ac

We recognise the ratio (Ap/L) from our earlier discussion of the double
layer. The quantity ¢ can be made small by either small \3,/L? as we
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saw earlier, or by small Ac/c,, which is achieved by setting ¢, >> ¢,, i.e.
cp >> ¢,. Satisfaction of the two conditions, Ac/c, << 1and \3,/L? << 1,
give appropriate conditions for perturbation analysis. Substitution of an

expansion of powers of the variables,

& = o + 861 + 0%p + %Py + - - - (3.59)
p=potopi+8ps+8ps+-- (3.60)

into Poisson’s Equation gives,
SV (o + 51 + 0pg + ...) = po + Ip1 + Spa + ... (3.61)

Thus for very small §, p, = 0 to leading order in J, demonstrating that
electroneutrality is a consequence of Poisson’s Equation. However, in con-
sidering the leading potential term, ¢, which is first order in §, we see the

potential depends on the first order charge density,
Vp, = pr. (3.62)

Thus, the electroneutrality approximation does not mean that Poisson’s
Equation can be simplified to Laplace’s Equation. It is for this reason
that the the NPEN system (3.45/3.45) is not equivalent to the PNP
under the situation where electroneutrality holds, but is an alterna-
tive description. Electroneutrality and Poisson’s equations are alternative
and complementary descriptions for the potential. Therefore, the applica-
tion of electroneutrality to Poisson’s equation to obtain Laplace’s equation
for the potential, and thus a decoupled system is contradictory. How-
ever, the use of electroneutrality to derive the NP equations is en-
tirely consistent with Poisson’s Equation, and is in fact a consequence of
Poisson’s Equation [70]. Finally we note that both conditions for small
0 are met for large c,, thus the use of large ionic buffer concentration,
[CaCl,] >> [ZnCly], ensures that the Debye length is small, ensuring the
validity of the electroneutrality constraint.
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3.5 Approximate Approaches to Solving NPEN

The NPEN system of transport equations constitute a system of
coupled non-linear equations, and although numerically simpler than the
PNP, obtaining a numerical solution is non-trivial. It is desirable to inves-
tigate and compare the full system with two models obtained by simplify-
ing (8.45{3.46). Simpler models have advantages in terms of convergence
time, and robustness with respect to a broader range of initial conditions.

3.5.1 Similar Diffusivities (NPEN-()

An alternative mathematically soluble, yet physically viable approach is
sought to track the electrochemical transport. One such approach is to
assume negligible difference in the ionic mobilities [74],

Di~ D, ~D. (3.63)

The ionic diffusivities (see Table vary between 1.41 x 107 and 2.03 x
1072 m*s™, except that of OH~ which is 2-3 times as large as the others.
Substitution into (3.44) gives,

(kVo) & Z V2eiz (3.64)

n

FD_,
~ 2mV (Z c,-z,) . (3.65)

i

The RHS vanishes due to electroneutrality, giving
V- (kV¢) = 0. (3.66)

Thus we can write our simplified NPEN system (3.45}{3.46) as,
801‘

5 = DiV%c; +uizFV - (¢;V¢), i=1,...M (3.67)

V- (kV¢) =0 where k= FQDZ 2¢; (3.68)
RVe) = "7 RT &5 '
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As we shall see later (c.f. Section [4.7.3), the numerical convergence be-
haviour of Equations is more efficient than that of Equations
(3.45[3.46), and, under the conditions used for ZnO electrodeposition as-
sumption produces simulation outputs in excellent agreement with

the full NPEN (3.6713.68) model (c.f. Section Figure 4.12).

3.5.2 Nernst-Planck-Laplace (NPEN-v)

A further simplification can be made by assuming negligibly different dif-
fusivities and constant conductivity. Expansion of the NPEN-3 charge
continuity (potential) equation, Equation gives

VeV + V2 =0, (3.69)

from which it is clear that if the spatial variation in conductivity vanishes,

Vi =0, (3.70)

then the charge continuity equation reduces to Laplace’s Equation,
resulting in the Nernst-Planck-Laplace system:
dc;
ot

= D;Vic; + uiz FV - (¢;V ) (3.71)

V2p = 0. (3.72)

In this model the electrostatic potential has been decoupled from the mo-
tion of ions, resulting in a constant electric field. The solution of decou-
pled systems is much faster, and more stable, than coupled systems, thus
requiring fewer computational resources.

The uniform conductivity assumption is valid when V¢; = 0 for all
i. When this is not the case, we must justify it as an approximation. We
consider the system to be in a steady state over the diffusion layer, L, and
approximate Equation with the difference equation,

AkAG A(A)
( 2 )+K< e )_o. (3.73)
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Rearrangement to

K Ao

indicates that the left most term diminishes as Ax/x — 0. The ratio is a

(%) L al9) (3.74)

measure of the relative inhomogeneity of the electrolyte,

Ak Y, Vez?
koooyaE

Noting that the greatest change in concentration is of the order of the par-

(3.75)

ticipating ions, and the conductivity of the system is dominated by the
buffer, we approximate the ratio as,

A
2h L (3.76)
K Cp

where cz, is representative of the maximum change in the ionic concentra-
tions, and ¢, the buffer concentration is characteristic of the net concentra-
tion. Finally, experimental values used by Illy et al [6], cz, =5 x 107* M,
and ¢, = 0.1 M, produce a small ratio of 5 x 107, in support of neglecting
the left most term in Equation 3.69|

The Nernst-Planck-Laplace model can be valid under conditions of
high buffer concentration, or homogeneous conductivity. We shall present
results in Chapter 5| that indicate the ZnO electrodeposition system to sat-
isfy both conditions, high buffer and uniform conductivity.

3.6 Simple Study

Here we construct a simple one dimensional model of growth to under-
stand the essential features of transport limited growth. We consider two
simple cases to investigate transport limited growth. The first case de-
scribes vertical growth with fixed transport channel flow area, and rod
area. The second describes transport limited growth where the rod growth

is in both vertical and horizontal directions. Both models assume simple
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steady state Fickian flow. We simplify the one dimensional Nernst-Planck

X 0 Z;FD; 0¢
C; i i
J; —D,— — _x (3'77)

to Fick’s law
861'

%.
The simplification is justified on the basis that the electrostatic field is

assumed to vary linearly in space due to the high buffer concentration
([buffer] ~ 100 [reactants]), and is therefore very small, due to the large
separation between the working and counter electrode compared to the
length ionic transport is occurring (centimetres versus 100’s of nanome-
tres). Fickian diffusion greatly simplifies the mathematics. We also assume
that transport has reached a steady state.

In the following we consider growth limited by the steady state trans-
port of a single species. Three equivalent scenarios can be described, shown
in Figure all of which ultimately have the same form for the growth
model. The first scenario is that of growth limited by Zn** or O, diffusion
to the electrode (see Figure 3.6(left)). Once at the electrode, it is converted
to ZnO by a reaction described by a first order rate law, and incorporated
into the crystal. The mechanism describes growth from the bottom of the
crystal, at the film-electrode interface. In this situation we apply a flux-
reaction balance at the electrode

JA = —keo, (3.79)

where £k is the rate constant for Zn?t limited ZnO formation, ¢, is the Zn?*
concentration at the electrode, A is the cross-sectional area of the inter-rod

gap, and J is the steady state flux defined by

D
J = _T(Cl — Co), (3.80)
where [ is the rod length (film height), and ¢; is the concentration at the
rod tip, taken to be the same as the bulk concentration. Setting the con-

centration at the rod tip equal to the bulk assumes that the bulk is well
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mixed (the experiment is stirred), and hence the diffusive boundary layer
between the film front and the bulk is negligible. In fluid dynamics such a
situation is described by a large Péclet number. The dimensionless Péclet
number relates the advection of a flow to its rate of diffusion and is written

L
Pep = % = RepSe, (3.81)

where L is a characteristic length, V is the flow velocity, D is the mass
diffusivity, Re;, and Sc are dimensionless numbers known as the Reynolds
and Schmidt numbers respectively. From Equation we also see that
because within the inter-rod gap the mixing is weak, and the characteristic
length small, the Péclet number will be small and diffusive transport will
dominate. The electrode flux balance is written

—keo = —— (¢ — ¢), (3.82)

which can be rearranged to give
C
(1+25)

From (3.83) we identify the dimensionless ratio kl/DA, which represents

Co —

(3.83)

the relative magnitude of the boundary reaction to the diffusive transport
of mass to the boundary (electrode). In the case of kI/DA > 1, then ¢, <<
¢;. The flux-reaction balance (3.79) is written

—/{ZCl
(1+51)
which in the limit kI/DA > 1 (or k — o) becomes J = —Dc¢,;/l. Thus the

flux of material into the crystal is limited by diffusion rather than reaction,

JA = (3.84)

and [ is now the only dynamic variable.

A second scenario is that the growth is limited by OH™ at the top of
the rod, and OH™ is formed at the electrode by conversion of O,, de-
livered by steady state diffusion from the bulk (see Figure 3.6(middle)).
A third scenario with the same form is obtained if growth is limited by
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Zn(OH);(f*m), where Zn(OH)f*x) is formed at the electrode by reaction of
OH™, and Zn?* delivered by steady state diffusion from the bulk (see Fig-
ure[3.6(right)). Both the second and third scenarios constitute a top-growth
mechanism in which material is incorporated into the tip of the growing
rods. For these cases we use flux-reaction balance for consumption of the
limiting species at the top. In the case of OH™ limited growth at the top
we use

JornAy = +korrCoy, (3.85)

where korpr is the first order rate constant for the oxygen reduction reac-
tion, and ¢}, is the OH™ concentration at the rod tip. A flux balance for
the production of limiting species at the electrode is used. For example, in
the case of OH™ limited growth at the top we use

JOH = _2J027 (386)

where Jp, is the steady state flux of O, to the electrode where it is being
converted to OH™ at the mass limit. We find that the flux of OH"into the
material is

2702 ch,, (3.87)

where, as with the first case above, [ is the only dynamic variable.

3.6.1 Case 1: Fixed Flow Area, Free Aspect Ratio

In this model we consider nanorod growth starting from a fixed width,
corresponding to a situation where initial lateral growth occurs very quickly,
and ceases before significant vertical growth begins. This type of growth
resembles the Volmer-Weber mechanism [55] which proceeds by spreading
followed by layer growth. Such a behaviour would be expected if the lat-
eral growth velocity greatly exceeds the normal growth velocity, and a va-
riety of mechanisms could produce such growth anisotropy. If we consider
the growth of a disc shaped seed in which lateral growth dominates dur-

ing immediately and after nucleation, then the disc edges effectively act
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Figure 3.6: Equivalent diffusion limited growth scenarios. (a) Growth lim-
ited by the transport of Zn*+ or OH™ to the substrate (electrode). (b)
Growth limited by the steady state transport of OH™ formed at the elec-
trode by conversion of O,. (c) Growth limited by the steady state transport

of zinc hydroxide species formed at the electrode by reaction of Zn?*.

as material sinks. As the disc grows the edge sinks become close and their
diffusion fields overlap, causing the amount of material fuelling growth
to be greatly diminished about the edges and lateral growth is slowed.
Now the vertical growth begins to dominate, and because it causes both
the lateral surface area to increase, and produces a long channel with a
small mouth, the lateral growth is effectively suppressed. The initial rapid
lateral growth required for this mechanism might be expected if there was
a scarcity of growth material, (low Zn?* or OH") and the crystallising ma-
terial was stabilised by the substrate.

The growth of the crystal is proportional to the amount of material
entering the crystal (passing the solution-crystal interface) per unit time,
thus

dl

A o JA, = =DAall, (3.88)

where A, is the fixed cross-sectional rod area, and A, is the fixed flux chan-
nel cross-sectional area. More clearly,

azm*, (3.89)
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where a is a constant. Noting the equivalent form,
di1d
dt — 2dt

substituting = = [?, and using the initial condition, z(0) = 0, permits the

(12) = a, (3.90)

simple solution
z(t) = 2at (3.91)

or
1(t) = bt'/2, (3.92)

For the case of Zn2" reaction at the electrode

2D 705 "Mz, (A
PZnO Ar
and for OH™ reaction at the rod top
4D0,c5 M zno [ A
) _ 400,05 Myuo (_9) , (3.94)
PZnoO A'r

Here Dz, and Do, are the diffusion coefficients for Zn?*" and O, respec-
tively, Mz,0 is the molar mass of ZnO, pz,c is the density of ZnO, cgjl is
the concentration of O, at the rod tip, ¢ is the Zn?* concentration at the
electrode, A, and A, are the cross-sectional area of the flux region and the
rod respectively.

3.6.2 Case 2: Free Flow Area, Fixed Aspect Ratio

In this model we consider growth where the area of the flow channel, and
rod, vary, but are constrained by a fixed aspect ratio. The purpose of this
model is to capture the growth behaviour associated with both the increas-
ing diffusion layer, and the effect of flow area constriction. Unlike the
first case, this is consistent with normal growth greatly exceeding, but not
eclipsing, lateral growth. Normal oriented growth domination is expected
in conditions of excess reactant (high Zn**, and OH~ concentration), and
also facet growth rate anisotropy.
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We treat the fixed aspect ratio by considering the rod volume as the

product,
V(t) = A (t)(1), (3.95)

where A, is the rod cross-sectional area, and [ is its height. Because the
aspect ratio fixes the ratio of height to the width, we may write the area as

a function of length
A(t) = (D) (3.96)

where v is a geometric factor. We imagine the area of an average rod-gap

unit to be
Total Area

~ Number of rods
where Ap is the area associated with a single rod-gap unit, A, is the gap

area, and A, is the nanorod area. Using the fixed aspect ratio relation (3.96)
we can write the flux area as

Ay = A, + A, (3.97)

A, = Ar —Al(t)*. (3.98)
The rod growth equation
dv
i —VinJ Ay, (3.99)

where V}, is the proper volume defined by V,, = Mz.0/pzn0, Mzno and
pzno are the molar mass and density of ZnO respectively, is now expressed

in terms of a single independent variable, [,

d
—(~13) =
dt(v) +

D
YuDer g o2y (3.100)

The left hand side is expanded by the chain rule,

di
3’7[25 - ‘|‘valjcl14Tl_1 - VmDCl’}/lv (3101)

and rearranged to give

dl
3715 = +V,,Dc;Apl™2 — V,, Deyry, (3.102)
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Figure 3.7: The two real branches

of the Lambert W function.
which is the same as

3y d
77%(12) = +V,DeyArl ™ — Vi, Deyy. (3.103)
Substituting = = [?, and written in terms of constants g, and & yields
(fl—f =gz ' —h, (3.104)
where 2V D A 2V, D
g= 2T and p= (2P (3.105)
3y 3
The solution is found to be
(9 g g+ ht?

() = (h)+(h)w[ exp( y )} (3.106)
where IV is the Lambert W function (shown in Figure 3.7). The Lambert
W function is defined as the inverse of the function

f(z) = xe®, (3.107)
i.e. it is the complex valued function that satisfies [75]

= W(z)eV®.

(3.108)
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The Lambert W function can be evaluated by the recurrence relation [75]

wjiei — z

evi (wy + 1) — Ltfluen =)

(3.109)

Wj+1 = Wj —

which computes the principal branch for 2 > —1/e (see Figure[3.7). Back-
substitution of [ = z? into (3.106) gives the length as

I(t) = ((%) + (%) W {—exp (—#)DW. (3.110)

We considered a specific geometric scenario to investigate the growth be-

35
<

154

%7

29
RN
%Y

R
S
228
o,
S5
%%
oot
B
ikt

2\
2
o2

5
o
Sots

(5
£
Jo%es
45
tes
ote?
¢

&

¢

0%
ST
otstesstetstent

Figure 3.8: Ideal rod arrangement used to investigate the free area, fixed
aspect ratio model. The filled hexagons represent the unit rods, and the
white hexagonal shells represent the flow area associated with each unit

rod.

haviour described by (3.110). We considered an ideal geometry in which

the rods are alighed normal to the substrate, with parallel faces, and po-

sitioned on a hexagonal grid (see Figure 3.8). Under such a geometry, the
constants are found to be,

16V, et DAr 2V DefAr

= and h=——

= mAT : 3.111
g 93T 3 ( )
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where I is the arbitrary fixed aspect ratio (length/width) of the crystallite,
Mz,0 = 81.4 g/mol [58]], D is the diffusivity of the limiting species ob-
tained from the reference literature [58], Ar was obtained experimentally,
and ¢ is the bulk concentration of the limiting species.

3.6.3 Results

We investigated the vertical growth only case by using a inter-rod spacing,
fixed at a typical experimentally observed value (50 nm), and varying the
fixed rod width, the results are shown in Figure The case of fixed as-
pect ratio and free gap area was also investigated for an inter-rod spacing

of 50 nm, and the aspect ratio was varied, the results are shown in Figure

B.90l

1200 . . , . 2000
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— 200 — — T=40
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Figure 3.9: Diffusion limited growth behaviour obtained using a rod spac-
ing of 1 per 100 nm: (a) vertical-only growth at a variety of rod widths (w),

and (b) vertical and lateral growth for a variety of aspect ratios (I").

Both growth models exhibit growth rates in the same order of magni-
tude as those experimentally observed, suggesting diffusion limited growth
is likely, and therefore a suitable basis for further simulation. Case 1 some-
what resembles the later stages of growth observed experimentally, how-
ever, it has no resemblance to the early growth behaviour. For large aspect
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ratio, case 2 looks similar to case 1 and the experimental data, suggesting
that the longer growth stage (the second phase) is dominated by vertical
growth. The experimental data exhibit a linear growth curve during the
later growth period. Case 2 also possesses linear later stage behaviour,
whereas Case 1 has a t!/2 dependence. The sharp growth rate change in-
dicating the end of phase one growth is best modelled by case 2 using a
low aspect ratio. Low aspect ratio represents lateral growth domination,
suggesting the possibility of lateral growth domination in the early stage
of growth.

3.6.4 Comments

The results presented here suggest that the geometry of the rod growth
environment makes a significant contribution to the diffusion dominated
growth characteristics of the system. A detailed mathematical description
of the transport, chemical reaction, and surface phenomena, will need to

be treated independently in more than one dimension.

3.7 Summary

In this chapter we have outlined the mathematical details of a model we
used to simulate the electrodeposition of ZnO nanorod films. We de-
scribed the chemical reactions used to drive nanorod growth, discussed
the crystal-electrolyte interface, and derived the Nernst-Planck-Electroneutrality
equations and two simplified versions. We performed two case studies us-
ing simple 1D models, and concluded that investigation of the full model
in two dimensions would be necessary to understand the governing pro-

cesses involved in the deposition.



Chapter 4

Numerical Method and

Implementation

We used a numerical approach to solve the models derived in Chapter
In the first part of this chapter we discuss aspects of numerical meth-
ods such as discretisation, accuracy, iterative method, meshing, data struc-
tures, and code implementation. In the second part we determine the nu-
merical parameters required to produce consistent solutions for the NPEN
(3.45/3.46), NPEN-{ (3.67}{3.68), and NPEN-y models derived in
Section [3.3} |3.5.1, and [3.5.2} respectively. We also compare the numerical
convergence, and the simulation results obtained from the three models,

and investigate the validity of the simplified models under the initial con-

ditions used to emulate the experimentally measured growth behaviour.

4.1 System Geometry

The first approximation we make is to assume that the system can be
adequately described in two dimensions. The development of a com-
puter code, and the resources required to evaluate the code are greatly
reduced for 2D compared with 3D models. The approximation is repre-
sented schematically in Figure We note that as the rods grow and the

55
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film becomes more crowded, the inter-rod space become more planar in

character, thus the 2D approximation improves.

;}U:
est ANSY ‘ .
Ry o

o Bga @

(@) (b) () (d)

Figure 4.1: Schematic showing how 2-dimensional model is derived and
relates to the 3-dimensional system. Images (a) and (b) emphasise the
hexagonal nature of the nanorods. The purple line represents a 2D plane
representative of the interrod 3D space. Image (c) shows the 2D plane in
perspective, and (d) shows the smallest by symmetry 2D plane used to

represent the 2D model domain.

4.2 Discrete Formulation

We used the method of finite differences with a rectangular mesh to solve
the system of equations for the 5 variables: Zn**, O,, OH™, Ca*", ¢ (Cl1~
is omitted using the electroneutrality condition (3.38)). We implemented a
general mixed implicit-explicit algorithm in our solver to approximate the
PDE,

’U,T-L+1 —um

;th = 0(Au)" ' + (1 — 0)(Au)" (4.1)

where v} = u(nAt, jAz), 0 < 0 < 1, j is the space index, n is the time
index, and A is the function (matrix), that, being non-linear depends on w.
All spatial derivatives were discretised as centred differences (see Figure
[.2), thus first derivative finite difference equations (FDE) were written

ou?  ul, —u?
J Jj+1 j—1 n

- . 4.2

Ox 2Ax T (42)
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Figure 4.2: Five point centred
' FD stencil used for spatial
i—1,j derivatives.

where €] represents the truncation error. Similarly, spatial second deriva-

tives were written,

Pu? u, — 22U+ ul
L= I I g (4.3)

or2 Ax? J

The truncation error is obtained by substitution of a Taylor expansion of
the exact solution into the FDE. The limiting case of ¢ = 0 to Equation
yields

n+l u?

a fully explicit, or forward Euler, method [76]. The truncation error of the
fully explicit centred first derivative is determined by,

ou” At 8%’} At? 83u?

n+l _ 7705 20 A
€] T + 5 o + TRIE + O(At) 4.5)
oum Az A"
_ J J 4
v ( o + RIS + O(Az )) (4.6)

= O(At, Az?), (4.7)
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and is first order in time and second order in space. Likewise the centred

second derivative,

ou At 021@? At? 83u§-‘

n+1 __ J i 3
G =5 + 5 o + TR + O(At) (4.8)
A*um Az2 0*u?
_ J J 4
v ( 5 + TR + O(Ax )) 4.9)
= O(At, Az?), (4.10)

is also O(At, Az?). Since our FDE formulation of the NPEN system (3.6
is composed of centred spatial derivatives, the accuracy of the fully
explicit case is O(At, Az?). A von Neumann Fourier stability analysis on
time dependent linearised equations composed of centred first and second
spatial derivatives [76] indicates conditional stability. Conditional stabil-
ity limits the size of our time step and grid resolution, and is therefore
undesirable.

The alternative limiting case of § = 1 yields the fully implicit, or back-
ward Euler, method,

umt —

L = (Au)™t 411
A7 (Au) (4.11)

Implicit equations are those in which the desired variable is a function of

itself. Such equations require iterative solution. The truncation error is

determined by,
ou  AtO*uT A2 OPu?
T e e OB (.12
ou?  Az?dPu?
- ! ! Az 4.1
”(m* 3 O x)) (413)
— O(AL, Ad?) (4.14)

which is first order in time and second order in space. Likewise for the
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centred second derivative,

ou" At 021@ At? 83u§-‘

n+l __ J - 3
G =5 + o + TR + O(At”) (4.15)
ORI Ax? o*um
_ J J 4
v ( 57 TR + O(Ax )) (4.16)
= O(At, Az?). (4.17)

Thus the implicit case has the same accuracy as the explicit case. How-
ever, the stability analysis finds the implicit case to be unconditionally sta-
ble [76], and thus far more useful for the investigation of the length-time
regime of our electrochemical system.

Finally, we note the possibility of using a mixed, 0 < ¢ < 1, formu-
lation. The most well known is that of Crank and Nicolson [77], where
¢ = 1. By assuming the trapezium rule holds, the truncation error for the
half step can be obtained by averageing the forward and backward Euler

methods »
ntij2 _ 6 €
;T

All time dependent terms are taken as n + 3, yielding a truncation error

(4.18)

given by,
ou”r A2 Pu?
it = éhf] + = 83; +O(A) (4.19)
OPu?  Ax? 0'un
—v ( 5 T Bt +O(Ax4)) (4.20)
= O(AL%, Az?), (4.21)

thus the Crank-Nicolson scheme provides second order accuracy in time
and space.

The simple explicit (¢ = 0) finite difference formulation (as illustrated
in Figure is first order accurate in time and second order accurate in
space. However, stability (bounded or diminishing error) is only satisfied
conditionally [76]. The simple implicit stencil, shown in Figure al-

n+1 n+1

though it requires simultaneous solution of three unknowns (uj_l, ui™,
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n+1,j n,j—1 n,j nJj+l
n,j—1 n, j n,j+1 n—1,j
(a) Forward Euler (b) Backward Euler
n+1,j—1 n+1,j ntlj+1
n,j—1 n,j n,j+1

(c) Cranck-Nicolson

Figure 4.3: Finite difference stencils used to march forward in time.

n+1
j+1
a von Neumann stability analysis [76] (linearised in the case of NPEN),

and u’}7), is found to be more favourable in a variety of ways. Firstly,
finds the simple implicit scheme to be unconditionally stable. Further, the
time accuracy can be improved to second-order by prudential selection
of the value of . There are, however, costs associated with the Crank-
Nicolson scheme. If the timestep is too large, long lived oscillations retard
or prevent convergence [78]. Hence, for systems requiring large time step
and high grid resolution, the fully implicit method which is immune to os-
cillations is preferred [78], with the compromise of reduced time accuracy.
The implicit method is also preferred for stiff equations [79]. For the so-
lution of the NPEN system we found the Crank-Nicolson method unable
to converge. However, the fully implicit method, § = 1, yielded reliable

solution convergence.
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4.3 Iterative Method

In the previous section we established the advantage of implicit and semi-
implicit solution schemes. The use of such schemes requires an iterative
method as there exist multiple unknowns in the finite difference equa-
tion [76,78]/80]. The iterative method we have implemented is the Newton-
Raphson method [81} 182], the method most commonly applied to the so-
lution systems of non-linear equations.

Newton’s method is used to find the root of a function by successively
finding the root of the tangent at a succession of guesses [83], illustrated
in Figure Expressed as a recurrence relation it reads,

v = 1 fiﬁz)) (422)

where k denotes the kth iteration.

To determine the solution of a differential equation, the function, f, is
recast as a residual which when minimised with respect to u satisfies the
original equation,

flu) = i Au. (4.23)
Thus, for the solution u*

Fu*) = 0. (4.24)

In the context of a finite difference solution scheme, u is a vector, and a set
of residuals are minimised. The method represents a vector space search
in which the search direction is determined by the first derivative of each
element with respect to all other elements [81], [83]. The set of residuals is
obtained by taking an n-space Taylor expansion [82] about an initial guess

ug,
fi(uy) +§—£(uk)51 +§—£(uk)5z +--- —l—%(uk)én =0
flu) +52w)s +22(w)d +-- +22(w)s, =0

(4.25)

falwe) +22(w)d +22(w)dy 4+ +22(w)d, =0
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F(uy)

F(U—kﬂ)

*
u Wi uy,

Figure 4.4: Schematic representation of convergence using Newton’s
method.

where £k is the iteration index and § = uy;; — u,. Written in matrix form,

Fi§ = —F, (4.26)

where F}, denotes the residual mapping, Fy. = (f1(ug), fo(ur), -+, fu(ug))?,

and F, denotes the Jacobian matrix

oh  0h ... oh
oxr1 Ox2 Oxn

Fj,=|% 0= O (4.27)
B:m a$2 81'11

Each element in the Jacobian denotes the the partial derivative of f; with

respect to the ith variable at u.
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Perhaps the most desirable feature of Newton’s method in regard to
the solution of non-linear equations is that it tends to converge quadrati-
cally [81]. Provided the u; are sufficiently close to the solution, u*, then
quadratic convergence defined by,

1 = 0| < f[u — w’|? (4.28)

holds. Convergence is very rapid when the error at a given iteration is pro-
portional to the square of the error at the previous iteration. In the work
presented here, we have used the following criterion for convergence,
max{[oi]} (4.29)
max{|u;|}
where i denotes the solution variable (i = {cz,, co,, con, cca, ¢}), and €
is a small number. A similar criterion was used by Buoni et al for the
electrochemical transport and deposition of copper [84, 85| 186].

Finally, to ensure convergence, and to maximise efficiency we imple-
mented an automatically varying time step that reduced when solution
convergence was slow, and increased when convergence was fast. If con-
vergence was achieved within three iterations the timestep was doubled,
and if convergence was not achieved within ten iterations the timestep

was halved.

4.4 Calculation Scheme Objects

The discussion of Newton’s method introduced the use of a matrix nota-
tion. In this section we focus on the details of the nature of the algebraic
objects used to seek a solution using Newton’s method: the solution vector

uy, the function mapping Fy, and the Jacobian matrix F..

4.4.1 The Solution Vector, u

The electrochemical model devised earlier is solved in two dimensions,

for the electrostatic potential, ¢, and the concentration of four chemical
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species, Zn**, Oy, OH™, Ca?*. In order to solve the system of equations
represented by Equation#.26|using conventional matrix methods, it is sim-
pler to express the rank-2 (2D) variable array as a vector. The two dimen-

sional variable array,

b1y, Zngry, O2a1), OHury, Cagyy, -+, 1n), Z0(1ny, O2(10), OH (1), Cain)
¢(21),Zn(21), 02(21), OH(21), C‘?1(21)7 T 7¢(1n)7 Zn(2n)7 O2(2n)7 OH(Qn)7 Ca(2n)

(b(ml) ) Zn(ml)a OQ(ml)a OH(m1)> Ca(ml)a T ¢(mn)> Zn(mn)7 O2(mn)> OH(mn)a Ca(mn)7
(4.30)

is transformed, or rastered, into a rank-1 vector,

u= (X} axr), Xy s X mxny) " (4.31)

of size m x 5n, where m, n indicates the grid size and X represents the set
of variables at each node (¢, Zn**,0,, OH™,Ca*" ). Schematically repre-
sented in Figure

From Figure[4.5a)we can identify a computational issue associated with
a solution vector containing points corresponding to the crystal interior.
As the crystal grows the vector elements increasingly become those of the
idle crystal interior, which yield no useful information but consume an in-
creasing amount of computational resource for each solution iteration. In
the later stages, the entire system consists of crystal interior. The problem
is compounded if a higher resolution grid is used in the region immedi-
ately surrounding the crystal. To ensure efficiency we have omitted the
crystal interior from our vector for computation (see Figure and Fig-
ure [4£.6). The cost of omitting the crystal interior is the introduction of
additional complexity to the code implementation.

4.4.2 The Function Vector, F(u)
The model Equations (3.45/3.46), (3.6713.68), and (3.71] , are repre-

sented by the residual mapping, F. The chemical species are evaluated
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(b)

Figure 4.5: (a) Schematic representation of computational domains. As

the crystal (red) grows the solution vector is dominated by the internal

area of the crystal. (b) Schematic representation of compressed computa-

tional domain in which the crystal interior is omitted. As the crystal (red)

grows the solution vector becomes smaller, requiring less computational

resources and allowing the calculation to proceed faster.

13000

12000 H

u
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o
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10000
9000
8000
7000
6000

Elements inuy,

5000
0

Figure 4.6: The compressed
and non-compressed solu-
tion array sizes for a typical

simulation.
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using the mass continuity equation (first line), while the potential is var-
ied using the charge continuity equation (the second line). The full NPEN
system (3.45{3.46)), results in the set of finite difference stencils shown in
Figure [4.7] Our implementation solves the two coupled equations simul-
taneously; the mass continuity equation is applied to all u indices corre-
sponding to a chemical species ((i x j) modulo 5 # 0), whilst the charge
continuity equation (either (3.46)), (3.68), or (3.72)) is applied to all u indices
corresponding to electrostatic potential ((i x j) modulo 5 = 0).

Analogous to the solution vector, the function vector is transformed to
a rank-1 vector. The structure of the finite difference operators is trans-
formed such that the vertical neighbour of a given index, 7 is accessed by
addition of the number of horizontal points (the size) in the 2D domain, 5n.
Thus on our m x 5n grid, the point (4, j) is mapped as (i x j), and the posi-
tive vertical neighbour, (i, j + 1), is mapped as (i x j + 5n), as illustrated in
Figure In the situation where the the solution vector is compressed
by omission of the crystal interior, the mapping is slightly more compli-
cated, and changes as the crystal grows. In the vicinity of the crystal, the
compressed mapping transforms (i, j + 1) to (i X j + 51 — Snerystar) Where
Nerystal 15 the size of the crystal on the computational domain, whilst away
from the crystal the mapping is (i x j + 5n), as shown in Figure

4.4.3 The Jacobian Matrix, F'(u)

The Jacobian matrix holds the first derivatives of each element of F with
respect to each element in u. It has size N2, where N, is the size of u,
and, because our equations are discretised using 5-point centred stencils
(i.e. nearest neighbour interaction) in which the largest operator has only

25 points, it is a sparse diagonal matrix. The mass continuity equation
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¢ & @ @
h—O—H—O—%—O—O—O—O—C ® o 00
e o & 0
(a) ¢ (26 indices): full Equation and half Equa-

tion @]

(b) ¢ (5 indices): decoupled Equation

o H o

(c) Zn2* (10 indices)

(d) Oz (10 indices)

(e) OH™~ (10 indices)

(f) Ca2™ (10 indices)
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Figure 4.7: Finite difference stencils for the each variable. From top to
bottom: ¢, Zn**, O,, OH~, Ca?*, the central index i, j is black, ¢ is red,

and chemical species are coloured blue.
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(a) Nustration of a centred FD stencil on a rank-2 array (upper), and rank-
1 analogue (lower).

5”01‘1[51‘,0,] .
. E 00
O
L
5
on
O 00 @
\
5
5n on — 5”(:7'y.stal

(b) Ilustration of a centred FD stencil on a rank-2 array (upper) in which
some points (representing crystal interior) have been omitted, and rank-
1 analogue (lower).

68

Figure 4.8: Schematic showing relation between the 2-dimensional model

domain, and the 1-dimensional analogue used in the calculational scheme.
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contributes 20 diagonals indicated in parentheses,

Jyeo(-bn —4,-5n — 3,-5n — 2,-5n — 1,-5n,

_47 _37 _27 _17
0, . (4.32)
1,2,3,4,5,

bn —4,5n — 3,5n — 2,5n — 1,5n)
while the charge continuity equation contributes 26,

Joo(-5n,-5n + 1,-5n + 2,-5n + 3,-5n + 4,
-5,-4,-3,-2,-1,
0, . (4.33)
1,2,3,4,5,6,7,8,9, 10,
5n,bn+1,5n +2,5n + 3,5n + 4)

A total of 36 unique diagonals are present in the the full NPEN (3.4513.46))
Jacobian,

Jnpen(-Bn —4,-5bn — 3,-5n — 2,-5n — 1,-5n,
-bn,-5n + 1,-bn + 2,-5n + 3,-5n + 4,
-5,-4,-3,-2,-1,
0, : (4.34)
1,2,3,4,5,6,7,8,9, 10,
5n —4,5n — 3,5n — 2,5n — 1, 5n,
5n,5n 4+ 1,5n + 2,5n + 3,5n + 4)

Additional diagonals arise from the unsymmetric difference stencils
that result from compression. However, the trade-off between number
of diagonals and system size still favours compression. The compressed

Jacobian contains 56 unique diagonals, some of which are not fixed in po-
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sition,

Jz(-bA,, —4,-5A,, — 3,-5A,, — 2,-5A, — 1,-5A,,,
-bA,,-bA, + 1,-bA,, + 2,-5A,, + 3,-bA,, + 4,
-on —4,-5n — 3,-bn — 2,-5n — 1,-5Hn,
-omn,-om + 1,-5n + 2,-bn + 3,-5n + 4,
-5,-4,-3,-2,-1,

0, . (4.35)
1,2,3,4,5,6,7,8,9, 10,

on—4,5n — 3,5n — 2,5n — 1, 5n,

5n,bn 4+ 1,5n + 2,5n + 3,5n + 4)

bA, —4,5A, — 3,5A,, — 2,5A,, — 1,54,

5A,, BA, + 1,5A, +2,5A, + 3,5A,, +4)

where the Z subscript denotes compression, and A,, = n — nx where ny
denotes the crystal width. Four additional diagonals are added by the
boundary equations giving a total of 60 diagonals in the full
and half NPEN models.

Our code provides a variety of ways of solving the system of linear
equations represented by Equation The Jacobian can be built as a
dense array of size N2 and Equation solved using an LU decompo-
sition implemented using the LAPACK dgesv routine [87]. The dense
approach is not very efficient as the Jacobian has size N2, thus a 10 000
element vector has a corresponding Jacobian with 100 million elements.
Alternatively, the Jacobian can be built using a sparse constructor. We
used an implementation of the UMFPACK [88),189] 90, 91] spdiags rou-
tine, which, given a list of diagonal vectors and their diagonal indices,
returns a sparse matrix in compressed sparse column (CSC) format. The
sparse representation of Equation[4.26is then solved using the unsymmet-
ric multifrontal method, and direct sparse LU factorisation routines pro-
vided by UMFPACK and collected into spsolve. An intermediate case
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is also available in which the dense Jacobian is built and the diagonals are
extracted and used to build a CSC using spdiags, and then solved with
spsolve. The solve time of a sparse matrix solver scales as O(/V), whereas
the dense solver is O(N?). The benefits, in terms of speed and memory us-
age, of the sparse implementation are seen in both the time required to
construct the Jacobian, and the solve time of Equation[4.26] As the system
gets bigger, the compression measures described above are useful, both in
terms of building, as searching an array scales as O(N?), and solving the

system of linear equations that arise from the iterative method.

4.5 Meshing

To reduce computational overhead we used a non-uniform mesh away
from the growing crystal (shown in Figure[4.9). The mesh rules used were

)
Ty = (m—1)Az,m < m,
T = Tp1 + 20,1 Az, m > m,

! ' (4.36)
Yo = (n—1)Ay,n < n,

Yn = Yn—1 + 2anflAya n > ne

\
where Az and Ay are the = and y fine grid increments, m. and n. are
the indices after which the grid becomes non-uniform and a,,_; = Z;g ay
and a,,_1 = ZZ:(? ay, are responsible for non-uniformity. In the subsequent
calculations critical indices m. and n. were set to 5 which corresponds to
25 nm of fine mesh surrounding the crystallite. The mesh was updated
when the amount of material having crossed the boundary exceeded the
amount of material encased in one fine mesh increment. The new solution
vector is acquired by linear interpolation (weighted averaging) of the four
bounding points from the previous mesh.
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1000

System Height [nm]

[wu] qapIpm weyshg

(a) (b)

Figure 4.9: (a) Illustration of a non-uniform mesh. Here the outer orange
boundary corresponds to the virtual z+1 and y+1 points used to evalu-
ate Neumann boundary conditions, the blue rectangle is the NP domain
boundary, the black box represents the crystal, and the red lines indicate
the crystal boundaries. The dark gridlines are the present grid, and the
fainter grey lines indicate the grid belonging to the previous interpolant.
(b) An example of a non-uniform finite difference grid used in this work
(c.a. 5 seconds). The crystallite is represented by the bold black rectangle.
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4.6 Boundaries

The system possesses 11 boundaries of varying nature, shown in Figure
There are electrode boundaries, crystal surface boundaries, bulk
boundaries and symmetry boundaries. Each variable (species) behaves
differently at each boundary. We have implemented 3 types of generic
boundary (mirror, Neumann, and Dirichlet) and two specific boundary
functions (one for Zn?*, and another for OH™). The generic boundaries
are, Dirichlet,

w; = b, (4.37)

where b is a constant. For solutes, if b = 0 then transport toward the

boundary occurs at the mass limit. The flux boundary,
Ji =0, (4.38)
where b is a constant. And finally, the mirror boundary,
U1 = Uip1. (4.39)
The specific boundary condition for Zn*" is,
Ji=R; (4.40)

where R; is the reaction and inclusion rate of Zn*" into the crystal as ZnO.
We used a flux sum to describe the behaviour of OH™ on crystal bound-
aries,

Jon = Jzn — Jo,. (4.41)

In all cases we implemented boundaries at index i = a, by setting the
value at a virtual or ghost index ¢ = a — 1, or for upper bound, b, i = b + 1
was used. Thus for mirror-type boundaries

Ug—1 = Ug+1, (442)
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v

VI VII

VIII I

X X

XI

Figure 4.10: Boundary domains: I - electrode directly below rod, II - inter-
rod electrode area, III - inter-rod mirror boundary, IV - bulk boundary, V -
upper central mirror boundary, VI - crystal upper boundary, VII - crystal
upper corner, VIII - crystal lateral boundary, IX - crystal lower corner, X -

crystal lower boundary, XI - lower central mirror boundary.
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we solved

Ja—1 = Uq—1 — Ugy1. (4.43)
The mirror boundary condition is used for symmetrical boundaries (see
Figure , and boundaries where no interaction occurs, thus a mirror
boundary is used to describe the buffer at the crystal boundary. Dirichlet-
type boundaries were implemented indirectly using,

Ug—1 + Ugr1 = 2Uq. (4.44)
Thus u, = b, was implemented as
fa—l = Ug—1 + Ugt1 — 2b. (445)

The indirect method allows evaluation of Dirichlet and Neumann condi-
tions at the index a. Gradient (Neumann) boundary conditions were im-
plemented using a centred finite difference,

du _ Ugy1 — Ug—1

PN = 4.4
dx 2Az b (4.46)
and solved using

fa,1 = Ug+1 — Ug—1 + 2Axbh. (447)

The specific boundary function for Zn reaction (or ZnO dissolution)
was constructed from a flux-reaction balance, in which a scale law (c.f.
Section 3.1} Equation (3.9)) was used to describe the formation and precip-
itation of ZnO,

Mgt * JznA = 3 (1 — %) ) (4.48)
Discretised as,
DZnA o Qa
—m(%ﬂ —Ug—1) = 3 (1 - ?) : (4.49)
and evaluated as
- DZnA Qa
o= P =) 49 (1 ), (450

where
Qu = Uua(Zn)u,(OH)?. (4.51)
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4.7 Model Comparisons

In the following we investigate the effect of variation of system numerical
and grid parameters on the simulated growth curves and determine the
configuration required to produce consistent results. We also compare the
simulated growth curves produced by the three transport models derived
in Chapter 3|in the vicinity of the conditions that produce growth curves
resembling the experimentally measured curves. Finally we present a

comparison of the numerical convergence behaviour of the three models.

4.7.1 System Parameter Convergence

We begin our discussion of the numerical investigation by presenting the
convergence results for the basic numerical parameters. The basic numer-
ical parameters, the grid settings and the size of the convergence criterion,
were varied to to produce consistent and efficient simulations. The con-
vergence studies were carried out on the full NPEN set of equations
with the initial conditions: system height 1000 nm, system width 50
nm, seed size 5 x 5 nm?, maximum time step 1 s, fine grid size 2.5 nm,
fine grid span 50 nm, maximum coarse grid size 50 nm, [Zn]=5 mM, [O,]
= 0.8 mM, pH 4, [CaCl;] = 100 mM, and ¢, = -50 mV . Such initial condi-
tions produce a curve similar to the experimentally measured curves for
[Zn] = 5 mM. The key system parameters we converged are shown in Fig-
ure in which the total simulation times are displayed underneath the
simulated growth curves. Finally we note that in order to prevent neigh-
bouring crystallites growing together to produce a monolithic rather than
nano-crystalline film, we enforced a maximum closeness of one grid unit.
Under the initial conditions described above, the cut-off criterion did
not appear to have significant effect on the simulation behaviour, or the to-
tal simulation time, consistent with the rapid quadratic convergence typ-
ical of Newton’s method. When convergence is fast the magnitude of

the maximum allowed timestep can affect the simulated growth curves.
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Figure 4.11: Convergence study of key code numeric parameters.
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Little variation in solution was observed upon increase of this parame-
ter, although the total simulation time halves with doubling of the maxi-
mum time step. Variation of the fine grid resolution resulted in significant
variation in the simulated growth curves, especially in the second growth
phase. The fine grid resolution also has a profound effect on the simula-
tion time. The fine grid span, coarse grid resolution, and system height
all had very little effect on the simulated curves, and increasing the ac-
curacy of these parameters generally resulted in a linear increase in the
total simulation time. Based on the system parameter convergence study,
we concluded that the above system parameter set-up is acceptable, for
further studies, and is hereon referred to as the standard conditions. The

system parameter configuration used in subsequent work is displayed in

Table

Table 4.1: System parameters used in this work.

Parameter Value
Fine grid spacing 2.5nm
Fine grid span 50 nm
Maximum coarse grid spacing | 50 nm
Initial timestep 107%s
Maximum timestep 2s
Convergence tolerance 1073

4.7.2 Output Comparison

The validity of the three models derived in Sections 3.3 [3.5.1} and [3.5.2]
was investigated under conditions in the vicinity of those that produce

growth curves similar to the measured curves. The growth curves, shown
in Figure find most variation between the models under conditions
of small growth rate constant, and large potential. The fully decoupled
model has greater deviation from NPEN than the
NPEN-3 model.

Interestingly, the fully decoupled and NPEN-£
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Figure 4.12: Comparison of the three models NPEN (3.45/{3.46), NPEN-
B (3.6713.68), and NPEN-vy (3.7113.72)), over a range of isotropic rate con-

stants, 3, and surface potentials, ¢,.
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models deviate from the full NPEN in opposite directions; NPEN-
v produces more rapid growth, whereas NPEN-3 (3.67/3.68)has
marginally slower growth. The deviation is most prevalent when the re-
action rate is small, and the surface potential is large. Under these con-
ditions the field dependent migration term of equation is the domi-
nates driving force for transport. We see that the system under-
estimates the effect of the electric field whilst the (3.71}{3.72) system (the
Laplacian) overestimates the electric field contribution to transport.

The lack of significant deviation between the models under conditions
that best reproduce the experimental observations (see Figure 4.12b), sug-
gests that the difference between diffusion coefficients can be considered
negligible, and that the spatial variation of the conductivity is also negligi-
ble. Thus, under the conditions of growth, both simplifications are valid.
In Chapter 5 we find that the concentration gradients are indeed minimal.

4.7.3 Numerical Convergence

The three transport models, a highly non-linear coupled system, a less
complicated non-linear coupled system, and a less complicated decoupled
system, exhibit numerical convergence behaviour commensurate with their
level of complexity. Here we present some key aspects of the numerical be-
haviour of the three models. The convergence behaviour, in terms of the

magnitude of the J vector, over the duration of a simulation is shown for
the NPEN (3.45{3.46), NPEN-5 (3.6713.68), and NPEN-v (3.71}{3.72) mod-

els in Figures [4.13a}-c. The NPEN (3.45[3.46) exhibits the greatest § magni-
tudes, followed by the NPEN-3 (3.6743.68), and finally the NPEN-+. The

convergence responses to an updated grid are shown in Figures #.13dH.
The NPEN-y exhibits a simple spike followed by rapid decay,
the NPEN-/ and NPEN exhibit slightly more com-
plicated behaviour. The full model has a large response followed by a

gradual decrease and then smooth decay, giving it broad appearance. The
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NPEN-£3 has a sharp response and a clearly resolved secondary
response, again, followed by smooth convergence. After the response set-
tles, the convergence is very rapid, and quadratic convergence (sequential
halving of error) is achieved. This is illustrated in Figure .13g}{4.13i|which
show for each model, a set of overlaid convergence patterns for three con-
secutive sets of five iterates (the legend indicates the scale of each seg-
ment). Again we see the most rapid convergence for the decoupled model,
moderate convergence rate for the NPEN-/ model (3.67]3.68), and slowest
(but still rapid) convergence for the full NPEN model (3.45[(3.46).

The Jacobian build, and solve times are shown in Figure We see
that the NPEN-3 and NPEN-y have very similar be-
haviour with respect to building and solving, whereas the full NPEN
has many fluctuations, indicative of both more complicated mathe-

matics and code implication.

4.8 Summary

In this chapter we have outlined the discretisation, and implementation
into code of our numerical solver to simulate the growth model devel-
oped in Chapter [3l We have outlined our numerical method, performed
convergence studies, and compared the three models derived in Chapter
The two simpler models are valid under the conditions used to simu-
late the electrochemical deposition of nanorod films in the way reported
by Illy et al [9)16,41]. The fully decoupled Nernst-Planck-Laplace model
(3.7143.72), appears to be valid due to minimal variation in ionic diffu-
sivities, and small variation in concentration, and therefore conductivities
over the course of the depositions. The implementation of the solver for
the full NPEN and NPEN-{3 was much more difficult
than the NPEN-v (3.71]{3.72), and possess poorer convergence, yet similar

overall solutions.
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Chapter 5

Electrochemical Model Results

In this chapter we investigate the behaviour of the electrochemical model
outlined in Chapters 3and 4] The aim of this chapter is to elucidate some
of the microscopic details that characterise the electrochemical formation
of ZnO nano-rod films [6} 9 92]. Of particular interest are the effects of
variation of concentration and applied potential. We focus on conditions
that produce growth curves that resemble the experimentally observed

curves.

5.1 Experimental Results

Film Thickness Measure

We begin by introducing the way in which the experimental and simula-
tion results are presented. The XANES measurements provide the amount

of Zn** per area (mol/m?),
f
n
=2 5.1
e G1)
where I is the XANES intensity, n},, is the amount of Zn** detected, and
Ay is the area sampled by the X-ray beam. The amount of Zn*" in the film

84
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can be related to the volume of the film, V7, by

v
nh, = —F, (5.2)

where VWJ;, is the molar volume of the film. The molar volume of the film
can be related to the molar volume of crystalline ZnO, V,Z "0 "and the film
porosity, 8, by

VI=0VZ"© where 6> 1. 5.3)

Here, 6§ = 1 represents crystalline ZnO, and increased ¢ corresponds to

increased film porosity. The XANES intensity is now written,

\4
= — A4
which is rearranged into a more meaningful form in terms of film deposi-
tion,
VI
— = 0IVZ"O, (5.5)
Ax

All data provided by Illy et al [6,9,192] is expressed as V/ /Ay for 6 = 1.

In this work we also present our simulated growth curves in terms of
V/A. The film volume is calculated as the product of the height, width and
arbitrary depth. Likewise the area per rod is taken as the product of the
simulation width with arbitrary depth.

Plots of depositions performed using applied potential of -770 mV (Ag/AgCl)
at varying concentration are shown in Figure [6, 9, 92]. The general
trend is that of increased deposition rate with increased Zn?* concentra-
tion. However, the early growth behaviour is not so straight-forward. The
lack of a clear trend is illustrated by noting that the [Zn?*] = 20 mM, and
[Zn?T] = 5 mM, have similar growth rate, however the [Zn?**] = 10 mM
curve has a lower rate.

In order to clarify the data, and select a behaviour to focus the nu-
merical investigation, we looked at the data obtained for [Zn*"] = 5, and
10 mM, with applied potential E = -670, -770, and -970 (Ag/AgCl). The
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Figure 5.1: (a) The effect of concentration variation on deposition with an
applied potential of -770 mV (Ag/AgCl). (b) A plot emphasising the sim-
ilarity of early growth in [Zn*"]=5 mM, and [Zn*"] = 20 mM depositions.
(c) Emphasis of early growth behaviour of [Zn?*]=5 mM, and [Zn?**] = 20
mM.
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[Zn*'] = 20 mM data was not available over this applied potential range.
The data is presented in Figure The growth curves obtained at [Zn?*]
= 5 mM (Figure all possess very similar early growth rates and ex-
hibit a sharp transition in growth rate after approximately 2 minutes. The
rate of the second growth phase increases with increased applied poten-
tial. Upon increasing the Zn*" concentration to 10 mM (Figure the
growth curves show an increased overall growth rate and dissappearance
of the shared early stage growth rate.

The effect of increasing the Zn** concentration at a particular applied
potential is shown by the right hand column of Figure Surprisingly,
the rate of early growth is decreased by increasing the Zn** concentration.
The effect is greatest at the least cathodic applied potential, moderate at
-770 mV, and vanishes at -970 mV.

5.2 System Behaviour and Electrolyte Dynamics

In this section we investigate the key unknown simulation variables that
influence the rate of growth of the crystallite films: the electrode surface
potential, ¢2, (c.f. Section8.1.3), and the crystallite growth rate constant 3,
(3.9). The remaining variables were set using the reported experimental
configuration and findings [6, 9, 92]. To make the parameter search more
tractable we have made extensive of the mass limited boundary for O,
transport (c.f. (3.8). The most comprehensive data set was obtained using
a Zn?* concentration of 5 mM, a Ca?* concentration of 100 mM, with O,
bubbled through the electrochemical cell. Lincot et al [39] determined the
O, concentration under such conditions to be 0.8 mM. The experimental
deposition was performed under acidic conditions, making the OH™ con-
centration of order 10~ mM, which we took as zero. Finally, we used the
experimentally measured inter-crystallite spacing (the crystallite density)

of 100 nm in our standard set-up.
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Figure 5.2: The effect of concentration on deposition at E = -670,-770,-970
mV is illustrated by (a) [Zn*"] =5 mM, and (c) [Zn*"] = 10 mM. The effect
of increased Zn?*concentration on the deposition at a given potential is
shown in (b) E =-670 mV, (d) E =-770 mV, and (e) E =-970 mV.



CHAPTER 5. ELECTROCHEMICAL MODEL RESULTS 89

5.2.1 Coarse Parameter Search

The growth curves obtained from the coarse 3 — ¢° parameter scan are
shown in Figure[5.3} The configuration (8, ¢°) = 0.25x107*! mols™, —=50mV
(Figure shows strong resemblance to the experimentally measured
curves: fast initial growth, followed by slower sublinear growth, divided
by an abrupt transition. The magnitude of the electrode surface potential
(-50 mV) is typical of that found in electrochemical systems [48]. Other
noteworthy curves that exhibit two mode growth like that observed in ex-
periment include those shown in Figures (same rate constant, lower

electrode surface potential, ¢, = —20 mV) and (lower rate constant,
B = 0.25 x 107* mols™!, and larger electrode surface potential, ¢° =

—100mV). We used the (3,¢°) = 0.25 x 1073 mols™', —50mV configu-
ration (Figure as a basis for further studies because it lies between the
other two possible configurations (Figures and [5.3n). For the remain-
der of this Chapter we refer to the ‘standard” conditions as those used to

produce Figure listed in Table

Table 5.1: Standard configuration. The oo subscript denotes the upper
boundary, the el subscript denotes the electrode, and the P, and NP sub-

scripts denote the crystallite polar and non-polar surfaces respectively.

Parameter ‘ Setting

ZNoo 5mM

0g° 0.8 mM

OHg 0mM

Caso 100 mM

$oo 0mV

Crystallite density | 0.01 nm~!

Gel -50 mV

¢pP,NP Mirror

Bp,NP 0.25 x 103! mols—!
Qel,P,NP Mass transport limit
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5.2.2 The Standard Case

To investigate the changes in electrolyte composition, during a simulation
of the system under standard conditions we looked at the profile of each
variable from the electrode to the bulk boundary at the flux channel mirror
boundary. The results for simulations using Zn*"= 5 mM and, to enhance
the expected Zn2+deficiency, Zn**= 0.5 mM, are shown in Figures and
respectively. In these plots the large red squares indicate the crystallite
height, and four characteristic times are highlighted: the middle of mode
one (¢ ~ 0.8 min), the transition (¢t ~ 1.45 min), shortly after the transition
(t ~ 5 min), and mode two (¢ ~ 10 min).

The plots show that the potential decays more rapidly within the inter-
rod gap than in the bulk electrolyte, the O, is completely consumed at
the crystallite front, and there is an excess of both Zn** and OH™ sur-
rounding the growing crystallite polar and non-polar surfaces. In fact, due
to the negative electric field emanating from the electrode, the positively
charged Zn?* is drawn towards the electrode, and for much of the simula-
tion the concentration of Zn®* near the growing crystallite is greater than
the bulk. An additional simulation in which a bulk Zn?* concentration
of 0.5 mM was used (ten times smaller than the standard conditions), re-
sulted in a local concentration barely lower than the bulk (Figure[5.5). The
cases in which Zn*" was diminished near the crystal (large § and small
¢) produced curves with no resemblance to the experimentally measured
curves.

The stoichiometric ratio of Zn** to OH™ in the ZnO formation reaction
is 1:2, and the ratio of Zn** to OH™~ surrounding the crystallite during
the simulations is approximately 2:1. Thus under the standard conditions
that best resemble the experiment, the crystallite growth is limited by the
amount of OH, which is produced by the mass-limited, or near to mass
limited, transport of O..
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Figure 5.4: The growth curve obtained using the standard conditions
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5.2.3 The Oxygen Reduction Reaction (ORR) and Electrolyte

Dynamics

The ORR is an essential part of the system - without it there would be no
deposition. In the previous section we found the growth of the crystallite
rods to be limited by the amount of OH™ surrounding the crystallite. The
ORR is most likely occurring on the electrode, however, it is not obvious
if, or how effectively, it occurs on the facets of the growing crystallites.
In this section we investigate the standard case, and contrast the cases in
which the ORR occurs (i) exclusively at the electrode, ORR(el), (ii) at the
electrode and the polar crystallite surface, ORR(el,P), (iii) at the electrode
and the non-polar crystallite surface, ORR(el, NP), and (iv) at the electrode,
polar, and non-polar crystallite surfaces, ORR(el, >,NP).

The growth curves obtained using otherwise standard conditions are
shown in Figure Using the ORR(el,PNP) case as a basis for compari-
son we notice some unexpected results. We see that within the time period
of interest, growth is significantly enhanced if the ORR(P) is suppressed.
The enhanced growth curve has a greater negative curvature indicating
that in the longer term, the ORR(P) cases will ultimately yield greater
growth rates.

The result was unexpected as generation of OH™ on all surfaces should
produce more OH™ and therefore drive the ZnO formation reaction faster.
However, the effect we observed was that a proportion of the OH™ gener-
ated on the polar surfaces was transported away from the growing crystal
to the upper boundary, therefore much of the O, was simply returned to
the bulk electrolyte as OH™ rather than participating in ZnO formation.
Thus within the simulations, the ZnO formation reaction is limited by a
balance between the O, transport limited production of OH™, and the sub-
sequent transport of OH™ away from the crystallite toward the bulk. At
the higher electrode surface potentials, the effect is also present if the ORR
is permitted on the non-polar crystallite surface, albeit to a far lesser de-
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Figure 5.6: Simulated growth curves obtained using the standard condi-
tions with the ORR occurring at the electrode, ORR(el), the electrode and
polar facet, ORR(el,P), the electrode and the non-polar facet, ORR(el, NP),
and all surfaces, ORR(el,PNP).

gree. This is because the larger electric field drives the negatively charged
OH™, generated at the non-polar surface, to the upper boundary more
rapidly. The behaviour is reproduced at electrode surface potentials -10,-
20,-40,-60, and -100 mV.

The reason for the difference in growth behaviour for differing ORR lo-
cations is illustrated clearly by comparing the electrode-to-boundary pro-
file of the variables. The profiles of the slower growing simulations ob-
tained when ORR(P) was permitted are shown in the left column of Fig-
ure and those in which ORR(P) was not permitted are shown in the
right column of Figure The difference in terms of the distributions of
Zn, O,, and OH, is remarkable. At a glance we see that when the ORR(P)
is suppressed, the three participating chemical species accumulate in the
inter-rod space. The species concentrations and ratio of Zn*" to OH™ at
the crystal height (at the red squares) at the four characteristic times are
collected in Table At all timesteps there is a greater relative deficiency
of OH™ to Zn?* for the cases in which the ORR is allowed to proceed at

the upper crystallite surface. This explains the slower simulated growth
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curves when the ORR was permitted on the polar surface.

Table 5.2: ZnO formation stoichiometry about the crystallite front.
Time (s) | Variable | ORR(el,P) [mM] | ORR(el) [nM] [ [Zn**]/[OH 1(eLP) | [Zn>*]/[OH" ](el)

[Zn2t] 5.048 5.045

43 [02] 0 0 1.1 1.0
[OH™] 45 49
[Zn2t] 5.045 5.040

73 [02] 0 0.25 1.4 1.1
[OH] 3.6 46
[Zn2t] 5.042 5.025

303 [0-] 0 0.45 1.9 1.5
[OH] 27 34
[Zn2t] 5.032 5.018

603 [O2] 0 0.55 2.1 1.8
[OH™] 2.4 2.8

The efficiency of the ORR’s contribution to crystallite growth was as-
sessed by comparing the net flux of OH™ into the electrolyte due to the
ORR, with the flux of OH™ out of the electrolyte due to crystallite forma-
tion. In Figure 5.8l we plot the ratio of the net OH™ flux into the polar sur-
face, J3 p, with the net flux of OH™ produced by the ORR, J§F% + J§f%,
for the ORR configurations: electrode only, ORR(el), and electrode and po-
lar surface, ORR(el,P). We see that during mode one growth (¢ < 100 s),
the OH™ efficiencies of the two ORR configurations are the same. How-
ever, for most of the mode two growth, the ORR(el) is twice as efficient
as the ORR(el,P). This behaviour is a reflection of the growth curves, in
which the mode one growth rate is the same, but the mode two growth
rate is much larger for the ORR(el) configuration (see Figure [5.6). In the
later stages of mode two growth the OH™ efficiency of the ORR(el,P) case
flattens out, whereas the OH™ efficiency of the ORR(el) case remains in
steady decline. Thus, as with the growth curves, we expect the ORR(el,P)
to be more efficient in the long term.

Further demonstration of the diminished efficiency of the ORR growth
contribution is seen by comparing the OH~ production, J3,;, at the elec-
trode for ORR(el), and the crystal tip for ORR(el,P), with the OH™ exiting
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Figure 5.7: Profiles of the key variables [Zn*"], [O,], and [OH]. The left
column was obtained using standard conditions (¢, = —50 mV, [Zn*"]
=5mM, § = 0.25 x 107*! mols™!) with the ORR occurring on the electrode
and the polar crystallite surface, ORR(el,P), and the right column was ob-
tained with the ORR occurring on the electrode only, ORR(el). The large
red squares indicate the crystal height.
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Figure 5.8: Plots showing the efficiency of OH™ contribution to growth un-
der the characteristic ORR regimes: electrode only (green), and electrode
and crystallite polar surface (blue line). The kinks are an artefact of the
grid update an interpolation procedure and require further development.
the system, Jgi:. The proportion of OH™ escaping to the bulk, Jgi /J5Y,, is
shown in Figure We see that throughout the entire duration of the sim-
ulation, the proportion of OH™ lost to the bulk is greater when the ORR
occurs on the crystallite.

5.3 Basic Variation of System Parameters

Our model possesses a variety of parameters that can be varied to pro-
duce a large set of growth curves. The way in which a given growth curve
changes upon variation of a specific parameter gives insight into the sys-
tem. The approach of this section is to vary these parameters to gain in-
sight into the processes that determine the growth behaviour. We are par-
ticularly interested in the effect of variation of applied potential and Zn*"
concentration as these are the main experimental variables.

In the following, we discuss our investigations into the growth be-

haviour under various ORR configurations, 7Zn>* concentrations, the crys-
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Figure 5.9: Plots showing the efficiency of OH™ contribution to growth in
terms of the amount of OH™ exiting the system, under the characteristic
ORR regimes: electrode only (green), and electrode and crystallite polar
surface (blue line). Again, the kinks in the flux ratios are numerical arte-
facts.

tallite densities (centre to centre distance), the porosity (the minimum gap
between adjacent crystallite faces), anisotropy in the ZnO rate constants,

and surface potential.

5.3.1 Zn?' Concentration

The first variation we present is that of Zn?* concentration, as it is one of
the important experimental variables. Increasing the concentration pro-
duced the rather predictable result of increasing growth of the crystallite.
This is in very clear contrast to the experimental result in which increased
concentration decreases the mode one growth rate. In the simulated re-
sults the mode one - mode two transition occurs earlier (Figure [5.10), and
early mode two growth is also much greater at higher concentration. In
fact, in the case of rapid growth obtained when ORR is permitted at the
electrode only, the transition is barely evident due to the large vertical

growth. This absence of an abrupt transition is closer to the experimen-
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tal result, especially those in which the applied potential is -770 mV and
-670 mV.

Also of interest is the contrast between the curves obtained with and
without the ORR on the crystallite. In case of electrode-only ORR, we
see that despite the large Zn?" concentration, and associated growth in-
crease, the higher concentration curve exhibits a large negative curvature
and then the rate of growth flattens out to that of the lower concentration,
indicative of the OH™ limited regime discussed above in Section[5.2.3]

5.3.2 Crystallite Density

It is possible that the dominant effect of Zn?* concentration increase is
not directly associated with transport and reaction, but the nucleation of
seeds. Itis conceivable that increasing the concentration may affect the fre-
quency of seed formation to a greater extent than it increases the growth
rate of existing seeds. The higher seed density in turn would result in
much earlier crowding and onset of the second, and lower, growth rate,
yielding a more 1-dimensional scenario. The alternative scenario is that
higher concentration favours growth over nucleation, resulting in a less
dense surface. The process in which larger crystals grow at the expense
of smaller crystal is known as Ostwald ripening [93]. The SEM images
and growth curves presented in Chapter 2| favour the latter explanation as
larger diameter rods are prevalent under conditions that produce rapid
growth. Rapid growth at low seed density could lead to delayed and
smoothed growth mode transition.

Simulations were performed with a rod density of one crystallite per
100 nm to 20 nm, using both 5 and 10 mM 7Zn*t concentrations. The
effect of higher crystallite density on a Zn?* concentration of 10 mM is
shown in Figure We see that increased density produces a greater
growth rate in the very early stages, and a much lower overall rate. This

behaviour resembles the experimentally observed effect of concentration
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Figure 5.10: Plots illustrating the effect of Zn** concentration variation on
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increase, and indicates that the concentration variation does not simply
affect the transport-reaction dynamics. Comparison of curves obtained
at low crystallite density and low concentration with that obtained using
high concentration and high density (corresponding to the first scenario
above) are shown in Figure The effect of higher density as a proxy
for the effect of concentration actually reduces overall the growth, in stark
contrast to the experimental case in which only the initial growth is hin-
dered while the latter growth is increased. The remaining scenario of high
concentration-low crystallite density with low concentration-high crystal-
lite density is shown in Figure It has the same character as the first
case in which the rod density for a single concentration was varied.

A subtle, but interesting feature associated with increasing the density
is not just that the mode transition occurs earlier, but that the mode one
growth is greater. The reason for this is due to the efficiency of OH™ con-
sumption described in Section More OH™ escapes to the bulk when
the crystallites are further apart, resulting in slower growth than when
the crystallites are closer together. The simulation results suggest that if
increasing the Zn** concentration influences nucleation, it does so by de-
creasing the crystallite density, perhaps by the process of Ostwald ripening

mentioned above.

5.3.3 The Surface Potential

Up to this point we have been using a mirror boundary condition for the
surface potential of the crystallite (see Table 5.1I). The mirror boundary
condition yields crystal surface potentials that decay with distance from
the electrode resembling the behaviour of an ohmically resisting crystal,
or a polarisable surface upon which the electric field does not significantly
decay. The resulting curves (see for example Figure produce growth
curves with mode two growth shape much like that of the experimentally

measured shape. However, in this section we discuss our investigation of
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an alternative situation in which the crystallite possesses a fixed surface
potential. The scenario corresponds to the situation in which the crystal-
lites behave as if they are part of the electrode, which is, in the data pro-
vided by Illy et al [92], also ZnO. The magnitude of the electrode surface
potential is related to the applied potential through the capacitance of the
electrode surface [48].

In this search, the surface potentials were set anisotropically over a
range of isotropic rate constants. In general the results were uninterest-
ing, except those in which the non-polar surface potential was fixed at -50
mV (the same as the electrode), and the polar surface was varied. These re-
sults behaved in a similar way to the experimental dependence of growth
on applied potential for the [Zn?*] = 5 mM case.

Table 5.3: Surface potential variation sets.
¢ mV) | ¢p mV) [ onp (mV)

-50 X Y
-50 X 50
-50 -10 X
-50 -20 X

The two mode growth behaviour is produced, and the independence
of mode one and dependence of mode two on the surface potential (Figure
is analogous to the experimental response to change in applied po-
tential (Figure [5.2a). However, the linearity of the second mode is unlike
the experimental data which has a negative curvature.

The fixed potential reproduces the shared mode one rates, and the sur-
face potential is obviously related to the applied potential. However the
shape of the fixed potential simulation curves does not bear a strong re-
semblance to the experimentally measured curves. The mirror surface po-
tential boundary condition produces more realistic curves but, upon varia-
tion of the electrode surface potential, does not reproduce the shared mode
one growth rate observed experimentally. Both models are consistent with

the cause of the termination of the first growth mode being due to abrupt
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Figure 5.12: Simulated growth curves obtained using standard conditions
(c.f. Table with varied ¢% and ¢, and ¢%,p fixed at -50 mV.

cessation of the lateral growth mode due to coverage of the electrode sur-
face. The successes associated with anisotropic surface potentials and the
resulting anisotropic growth rates suggest that the use of anisotropic rate
constants with the mirror potential boundary condition could yield a good
reproduction of the experimental data.

5.3.4 Growth Rate Anisotropy

In the previous section, surface growth rate anisotropy, mediated through
crystallite surface potential, was successful in reproducing some aspects of
the effect of applied potential variation on the measured growth curves. In
this section we present our findings relating to the effect of surface growth

rate anisotropy mediated by variation in the surface growth rate constants.

In Sections 5.3.1/and [5.3.2| we saw that decreasing rod density and increas-

ing concentration caused earlier occurrence of the transition point. It ap-
pears that the abrupt transition is associated with a rapid cessation of lat-
eral growth, due to the closing of the inter-crystallite gap. Thus the rate of
closure of the inter-rod gap is to a large extent determined by the rate of



CHAPTER 5. ELECTROCHEMICAL MODEL RESULTS 106

lateral growth. As we are satisfied with the transition time obtained under
the standard conditions we kept Byp = 0.25 x 10~3'mols ™' and varied 8p
only.

The effect of an order of magnitude increase in the polar growth rate
constant is illustrated by Figure The first observation is that the
amount of material (volume per area) is much closer to that of the mea-
sured data, suggesting 3p ~ 10 x Byp. Comparison of the effect of the ORR
configuration under anisotropic rate conditions with that of isotropic rate
conditions (see Figure[5.13a) shows a distinctive difference, and highlights
the importance of the ORR reaction, and where it occurs.

Considering only mode one growth we see that the simulations in
which the ORR is allowed to occur on the crystal (polar or non-polar sur-
face) all exhibit the same mode one growth rate. A growth rate which is
slower than that obtained when the ORR occurs exclusively on the elec-
trode. The reason for the reduced growth rate was investigated in Section
and is due to loss of OH™ to the bulk electrolyte.

The differences in mode two growth are manifested between those in
which the ORR is permitted on the polar surface and those in which it is
not. This is because mode two growth is dominated by vertical growth.
The ORR(el,P) and ORR(el,PbNP) simulations exhibit a steady mode two
growth whereas the growth rate of the ORR(el), and ORR(NP) simulations
diminishes with time. Thus two cases are evident; that in which vertical
growth is limited by the transport of OH™ from the electrode to the tip
of the growing crystallite, and that in which it is not. Late stage growth
is consistent with the ‘Case 1’ (fixed flow area free aspect ratio) model

described in section

5.3.5 The ORR Rate,

Throughout the preceding sections the mass limited O, transport bound-
ary condition has been effective in the determination of the system pa-
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rameters that produce growth curves with the same charactistics as the
experimental results. However, in considering the effect of permitting the
mass limited ORR at the polar crystallite surface (ORR(P)), an increase in
mode two growth rate, we saw a resemblance to the effect of decreasing
the applied potential (more cathodic) in the experiment. It suggests that
the effect of potential might be to mediate the rate of OH™ formation on
the surface boundaries. Although the O, mass transport limit is effective
in reproducing the experimentally observed growth features such as curve
shape and mode transition, it is not an optimal condition for reproduction
of the behaviour associated with change in the applied potential, for which
a potential dependent rate expression is more appropriate.

To explore the effect of a potential mediated ORR rate the the first order
reaction-flux boundary condition (c.f. Section[3.1.1)),

Jo, = aCo, where a= (nF%g’;) exp(—npfn). (5.6)

was evaluated at the polar crystallite boundary using an arbitrary range
of a’s. A greater rate constant, , is obtained from a more negative over-
potential, 7, which corresponds to a more cathodic applied potential, E,,,,.

The simulation results are shown in Figure and comparison with
Figure indicates that increasing the rate of the ORR on the surface is
qualitatively consistent with decreasing the applied potential to a more
cathodic value. Thus it appears that the ORR is occurring on the growing
crystallite, and exhibiting a dependence on the applied potential. How-
ever, because the divergence occurs sometime after the transition point,
we suspect that not only is the ORR occurring not only at the crystallite
surface with a dependence on the applied potential, but at the electrode
too. Evaluation of the above boundary condition exclusively on the elec-
trode yielded the growth curves presented in Figure As with exper-
iment the curves begin to diverge at the same point, but show a clear lim-
iting behaviour stronger than that observed experimentally (Figure [5.2a).
Application of the the flux-reaction boundary condition to both the
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crystallite and the electrode produces the shared mode one growth and di-
vergence of mode two growth from the same point. The mode two growth
exhibits a very moderate downward curvature similar to that seen exper-
imentally. The results strongly suggest that the ORR occurs on both the

crystallite and elecotrode with a rate dependent on the applied potential.

5.3.6 Minimum Inter-Crystallite Gap

The minimum inter-crystallite gap, or maximum closeness, was investi-
gated using anisotropic rate settings. Along with rod density it contributes
to the porosity of the crystallite film. Investigation of the precise reasons as
to why the nano-crystallite rods do not fuse together to produce a mono-
lithic film are beyond the scope of this study. However, there are a vari-
ety of factors that could contribute to the experimentally observed spac-
ing between crystallites such as epitaxial mismatch, or electrostatic repul-
sion. Epitaxial mismatch is energetically unfavourable, and occurs when
facets come together with poor alignment due to a lack of alignment of
the hexagonal faces of the growing crystallites. The increased energy at
the mismatched contact areas would then drive dissolution, ensuring an
inter-crystallite gap. Alternatively, the like nature of the crystallite chemi-
cal surface composition could lead to long-range Coulombic or low-range
Van der Waals repulsion to ensure a finite inter-crystallite space. We also
note that if the crystallite surfaces come close enough for their Debye lay-
ers to overlap then the electroneutrality constraint breaks down and the
Nernst-Planck-Electroneutrality model is not valid in such re-
gions. Under such conditions the Poisson-Nernst-Planck model
would be more appropriate and might account for the spacing through
transport effects. Thus, some environments may favour thinner crystal-
lites, and others thicker. The scaling law we have used in this model does
not account for such preference, so we have investigated a range of inter-

crystallite spacings by enforcing a range of maximum crystallite widths.
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The results are particularly enlightening with regard to the nature of
the mode transition point. What we see is that the distinctness of the
mode transition point is determined not by the abruptness of the lateral
growth cessation, or the relative growth rates of the surfaces, but the tim-
ing at which lateral growth stops. If lateral growth ceases when vertical
growth is rapid, then the transition appears smooth as in the case when
the maximum closeness is 25 nm (Figure [5.15). However, if this lateral
growth ceases when the vertical growth rate has slowed then the transi-
tion appears very distinctly, as in the case of maximum closeness of 2.5
nm in Figure The effect is diminished in the cases in which the ORR
proceeds at the top because the vertical growth is not limited and the tran-

sition is always relatively abrupt.

54 Summary

Although the work presented here does not explain or replicate the ex-
perimental system in full, it does provide an impression of a variety of
underlying effects that contribute to the growth behaviour. We found the
growth to be limited not by Zn?* , but by OH™~ concentration. Such a re-
sult is consistent with the expectation from steady state one-dimensional
transport models due to the lower concentration of O, compared to Zn?*.
The limiting effect of OH™ is exacerbated by the polarity of the electrode,
in that it attracts Zn?* and repels OH™. Thus the OH™ limited regime is
supported by two effects. First, the transport of Zn** towards the elec-
trode is greatly accelerated by the electric field, resulting in an excess of
Zn* near the electrode. The accumulation of Zn?* between the growing
film and the bulk, as well as its consumption by the growing rod is cap-
tured in Figure Secondly, the OHis both repelled from the electrode
and neutralised at the upper boundary. It is particularly interesting that
excessive conversion of Oy to OH™ can result in reduced growth.

Our findings with regard to the relation between the applied potential,
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Figure 5.15: Plots of the simulated volume (a), length (b), and width (c),

obtained for a range of enforced crystallite maximum widths. The mini-
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Figure 5.16: Zn*"concentration map at the mode one - mode two transi-
tion, obtained using ORR(el, P NP).

the ORR, and the growth curve structure is also interesting. We found two
possible mechanisms for growth rate mediation through applied potential.
One was that the surface potential of the crystallite varied with variation
in applied potential. The increased negative potential drew more Zn*" to-
ward the crystallite surface and increased the rate of growth. However,
this mechanism produced curves with a greater linearity than the experi-
mentally observed curves. An alternative mechanism in which the applied
potential drives the ORR on the crystal surfaces as well as the electrode
produced growth curves that strongly resembled (see Figure the ex-
perimentally measured curves, and their dependence on the applied po-
tential. The results also suggest that the ORR is not proceeding at the mass
transport limit but has a clear dependence on the applied potential.

Our attempts to elucidate information about the effect of concentration
increase were less compelling, although two key experimentally observed
features were reproduced. As with the experimental data, association
of greater concentration with lower density produced an overall greater
growth rate in the simulations, and lower concentration-higher density
yielded a greater early growth rate. However, the simulated and exper-
imental curves bear minimal resemblance. We believe a more detailed
treatment of nucleation and very early growth phenomena would benefit
our understanding of the effect of concentration.

Another aspect of the model that would benefit from a more detailed
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treatment is the processes involved in ensuring the crystallites do not co-
alesce: crystallite-crystallite interaction. The work presented here con-
strained the crystal shape to be rectangular, with an aspect ratio dependent
only on the reaction and migration of the electrolyte. The investigation of
the minimum inter-crystallite gap emphasised the need for a treatment of
the nature of the crystal surface during growth.

Finally, it seems that the structure of the growth curve is the follow-
ing: rapid early growth driven by an abundance of OH™ due to an initial
abundance of O,, followed by a transition from 2-dimensional growth to
1-dimensional growth due to lateral crowding. The sharpness of this tran-
sition depends on the rate of the vertical rather than lateral growth rate.
The 1-dimensional growth proceeds more slowly than the 2-dimensional
growth due to a shortage of OH™, a shortage that can be alleviated if the
ORR occurs on the crystallite.



Chapter 6

DFT: Theory and Method

In this chapter we give an overview of the development of electronic den-
sity functional theory (DFT). Our presentation will differ from the conven-
tional development in which improvement of the Hartree model leads to
the Hartree Fock model which defines an important quantity known as
the correlation energy, E..., which in turn helps define the basic terms of
DFT [94,95]. Our development will focus on the the key mathematical ap-
proach that facilitates the solution of real quantum mechanical problems:
the calculus of variations. Knowledge of the calculus of variations is es-
sential to understanding the most basic concepts and methods required
for the application of quantum mechanics, and density functional theory,
to the non-trivial problems of interest to us. For this reason we begin with

a brief overview of variational calculus.

6.1 The Calculus of Variations

The mathematical physics reference literature describes a variety of differ-
ent approaches to explain variational methods at differing levels of com-
plexity and application. The calculus of variations was formalised by La-
grange in his 1788 work Mécanique Analytique [96]. It is concerned with
finding the stationary values or extrema of definite integrals called func-

115



CHAPTER 6. DFT: THEORY AND METHOD 116

tionals. The term functional refers to a quantity that depends on a set of
functions (a function space) rather than a finite set of independent variables
(scalars). A functional maps functions to the real number line, and is there-

fore likened to a ‘function of functions’. Functionals take the general form

n

b
d

I:/ F(y,y', 9%, ...,y", x)dx where y" = d—y (6.1)

a l/I:n

with

y(a) =a and y(b) =p. (6.2)

Here F is a function (not a functional) of the function y and its derivatives
y", and z is the independent variable upon which we define our interval.
In solving a variational problem we seek to find the unknown function
y = y(z) that minimises (or maximises) / on the interval = € [a, b]. Such a
function is called an extremal. As in ordinary calculus of functions the task

is to find the stationary value of the functional.

6.1.1 The Stationary Value of a Functional

The stationary value of a functional can be defined in a variety of ways.
The following development is based on that of Courant & Hilbert [97] and
Gelfand & Fomin [98]. First we imagine that our integral / is made sta-
tionary by some unknown function y = y(z). We introduce a family of
test functions of the form y(z) = y(z) + en(x) where 7(x) is an arbitrary
function that conforms to the same requirements as y(x) (continuous, dif-
ferentiable, and has the same fixed endpoints), and ¢ is an arbitrarily small
variable parameter that ensures the test functions (y(z)) lie within an arbi-
trarily small neighbourhood of the extremal y(z).

The variation of y is now defined as

5y = y(@) — y(z) = en(x)} (6.3)

I This expressed more generally as {y(z, €)}—o.
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At sufficiently small ¢, the functional / can be regarded as a function of
¢, i.e. the function y(z) is static on such a scale and we have I[y + Jy] =
I[y(z)] = ¢(¢). We know that ¢(¢) must have a minimum at ¢ = 0 and that
¢'(e) at this point must equal zero, thus ¢'(0) = 0. Writing out ¢(¢) for the
simplest variational problem, I = fab F(z,y,y)dz,

b
o) = / Fla,y+eny +enf)de (6.4)

and taking the derivative with respect to € yields

de
/b i Py +eny' +en) = Fla,yy)
- e—0 xT.

€

b d
&' (€) :/ —F(x,y+en,y +en)de (6.5)

(6.6)

When expressed as a Taylor seriesf]

#e) = tim /ab { B_j _ % <g_5)1 0+ 0(6)} dz 6.7)

it is clear that

. "TOF d (OF
¢'(0) = /a [a—y - (87/)] n(z)de. (6.8)
According to a fundamental lemma of variational calculus E| ¢'(0) = 0if
and only if
OF d (OF
T <8_y’) = 0. (6.9)

ZHere partial integration was used to change multiplication of the second bracketed

term by 7’ into the sum of a boundary term which is dropped on account of fixed bound-

ary and a term multiplied by 7 i.e. [ SEn/de = [§5n)5 - [P (aF,) ndx where due to

a a W
fixed endpoints 85—5?) = agiy(/b) =0.
S1f fab E(z)n(z)dz = 0 for every continous function n(z) that vanishes on the bound-

aries a and b then E(x) = 0.
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This ordinary differential equation is known as the Euler-Lagrange equa-
tion, to which solutions yield stationary values of the functional /. In anal-
ogy to our definition of the variation of y, 0y = en, we can define the vari-
ation of our functional 47 as

51 = €¢/(0) (6.10)

where ¢/(0) is the left hand side of the differential equation - Equation [6.9-
obtained above. This is the indirect approach of Euler and Lagrange which
has facilitated the development of the variational formalism used in math-
ematical analysis. The direct method consists of converting the variational
problem into an approximate finite sum which can be treated in the same
way as ordinary functions, by taking the limit Az — 0. The result is a ‘min-
imising series” [97], of which the convergence must be investigated inde-
pendently. Finally, analogous to ordinary calculus the functional derivative
g—i is defined

b
ol

ol = / —oydzx. (6.11)
a 0y

From Equations and above it can be seen that the functional

derivative is the left hand side of the Euler-Langrage equation,

oI OF d (OF

5= a0 () 12
and therefore, as with the ordinary search for extrema, yields a stationary
point when 6/ /0y = 0. Gelfand and Fomin’s [98, p. 14] method of identify-
ing a part of the difference AI[dy] = I[y] — I[y] that varies linearly with oy
is also valuable, in that it emphasises the linearity of the definition, which
provides a concise goal with which to obtain the Euler-Lagrange equation.
The derivation of Lanczos is worth noting for its originality. Lanczos first
identifies the commutation of the variational operator with the integral in
the following way

5T =6 / ’ Pla)de / () — Fla))de = / P)dr. (613)
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Implicit in the last rearrangement is the statement F'(z) — F(z) = 6F(z),
which presumes that the linear part of the difference is taken, to wit, J is
linear. Such is the case for very small variation (very small €), and thus
consistent with the above.

Finally, the solution to the general case

b
Iy] = / F(z, g,y y", ...,y"™)dz, wherey™ = g Y (6.14)
a ks

is found to be [98) p. 42]
OF d (OF > (OF L dr [ OF
v~ o) i (o)~ 0 () -0 69

6.1.2 Variational Calculus with Constraints

Itis possible to apply more constraints than simple boundary conditions as
in the previous section (Section[6.T). Restrictions can be applied to the al-
lowed set of curves that satisfy the variational problem. When confronted
with such constraints there are two methods of solution. Firstly, one might
try to eliminate variables. For example, if there are m constraints and n
variables one could eliminate the m variables leaving m — n degrees of
freedom. The drawback of this method of elimination is that it can be te-
dious to perform the elimination, and, more importantly, it may introduce
unphysical restrictions on the system symmetry. The method of Lagrange
overcomes such difficulties. The method is based on the reasoning that if
we wish our functional /, subject to constraints J, to be stationary then we
require both the variation of I, 61, and the constraint §.J to be zero. There-
fore addition of 4./ to 01 does not modity it.

To illustrate the method of Lagrange consider a function F' = F(uy, ..., uy,)
constrained by G = G(uy, ...,u,) = ¢, where c is a constant. We require

both functions to be stationary at the extremum,

dF = S_qu’“ =0 and dG=)_ g—Gduk = 0. (6.16)

u u
=1 =k =1 'k
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Because I is constrained duy, is not arbitrary and the condition 5_12 =0 for
k =1, ...,nis not sufficient. However, since dG = 0 is satisfied everywhere

(because c is constant) the equation
dF 4+ \dG =0 (6.17)

is true. Where X is a Langrange undetermined multiplier. The ingenious
method of Lagrange is to ‘eliminate’ the dependence on, for example, u,,

indirectly by setting A such that
dF, + \dG,, = 0. (6.18)

Here oF 5
dF, = —du,, and dG, = —du,. (6.19)
8Un aun

Now the system consists of n 4 1 equations

and
G=c (6.21)

The variational problem has retained n dependent variables u;, all of which
can be chosen arbitrarily (and are therefore still free), but we also have 1
extra degree of freedom A. The concept is easily generalised to many con-
straints and results in a free variational problem of n 4+ m degrees of free-
dom. Instead of solving JF' = 0, the procedure is to solve the equivalent
0F* = 0 where F* = F' + \f. It is not necessary but often the Lagrange
multiplier A has physical meaning.

The use of Lagrange multipliers is demonstrated with the simplest sys-

tem of a constrained functional,

b
1= [ Flay.y)is, (622)
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with constraints on possible solution curves y

b
yla)=a, yb)=p0, J :/ G(x,y,y )dx. (6.23)

We can apply a constant A such that the curve y = y(x) yields a stationary
point of the functional,

b b
= [ Fapy)aesn [ Gy (6.24)

because (using commutation of the variation with the integral)

b
/ (6F(2,4,4/) + NGz, y,y)dz) = 0, (6.25)

that is to say, using the general solution (Equation|6.15])

oF d [O0F oG d [(0G
{a—y%(a—y/>+%—y‘@(a—y)”—°' (626

Such problems with auxiliary constraints that are definite integrals are
called isoperimetric problems [99, chap. 4] and are the most commonly

encountered in quantum mechanics.

6.2 Quantum Mechanics

The calculus of variations have found wide use across many areas, in
many regards the calculus of variations is a “unifying mathematics” [96].
As we shall see, the field of quantum mechanics has benefited greatly from
the developments in the calculus of variations.

6.2.1 Schrodinger’s Wave Equation

We start our discussion of quantum mechanics with the famous Schrodinger
equation
HV = BV (6.27)
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where
N 1 N 1 N 7
_ 2 . o a
H = i:E 1 (—§VZ) + iéj E + ;:1 U(I‘i) Wlth U(I’i) = Z (628)

is the total energy operator, the Hamiltonian for the electronic system, and
U = U(x1,Xa, ..., XN) is the wave function on account of it being a solution
to a second order linear wave equation (an equation of the form Ju/0t =

0*u/02*), and F is the electronic energy. More concisely,

H=T+U+V (6.29)
where
|
=35V (6.30)

Uv=>" L (6.31)

V=>% v (6.32)

is the electron-nucleus potential energy function (usually referred to as
the ‘external potential’). Here, and throughout this Chapter we have used

atomic units to describe the Hamiltonian systernlﬂ

6.2.2 The Variational Principle of Quantum Mechanics

The most prevalent physical result used in conjunction with the methods
of variation described above is the Variational Principle of quantum me-

chanics. It establishes a lower bound on the energy - a result that will be

4Specifically, we have used Hartree atomic units in which the mass of an electron, the
charge of an electron, the Bohr radius, and the unit of atomic energy (au) are all nor-
malised to 1.
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used many times in the following work and therefore treated here. From
the elementary theorem of linear differential equations [100, chapter 3, p
85] that the general solution of an linear differential equation may be writ-
ten as a linear combination of the complete set of all particular solutions
- “the superposition of solutions” , thus the total wave function may be

written

U= cuth, (6.33)

where each v, is a solution (eigenstate) to Equation and for nor-
malised wavefunction

D e =1. (6.34)
The expection value is now re—v:ritten
(H) = (Y| H) (6.35)
Z Contm | H| Z Cathn) (6.36)
Z CUm| Z o Hiy) (6.37)

= <Z Cmtml| Z CnEnibn) (6.38)
= Z Z o Crn o (Y[ (6.39)
using orthonormality (¢,,|¥n) = 0
= lel’En (6.40)
If the eigenvalue E,, is replaced bynthe ground state eigenvalue E,, the

H) > [eal’Eo = Eo > _|eal® (6.41)

is produced. Finally, using normalisation [101]

inequality

H) > |ea/E, = E.. (6.42)
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In other words,
E, < / Y Hdr (6.43)
Equation defines a lower limit for the energy, and any trial wavefunc-

tion can itself be used as the upper bound. Thus a variational search can
be undertaken by varying the wavefunction ) until we reach a minimum
energy. This result would be more aptly named the minimum energy prin-
ciple.

6.2.3 A First Application of Calculus of Variations

The power of the calculus of variations described in the previous sec-
tions is first illustrated by finding the curves (in this case wavefunctions)
that correspond to the minimum ground state energy of a quantum me-
chanical system described by Equation with Hamiltonian Equation
The functional quantity we seek to minimise is the expectation value,
E = ()|H[1), from elementary quantum mechanics. We must constrain
our solutions (wavefunctions) to be to be linearly independent to correctly
satisfy superposition [100], and for convenience we use normalised solu-
tions (especially useful in the statistical interpretation of a wavefunction
where [ |¢|?dr = 1). These two constraints are collected by the equation,
F = (Ym|thn) = 6pn, where 6,,,, = 0 and 6, = 0y = 1.

The problem is clearly isoperimetric and is treated as follows. We de-

fine a constrained energy functional / = F + AF

1) = (W) + Mom|tn) (6.44)
and apply a variation to the wavefunction conjugate *
I[(4 +60)7) = (W + S H W) + My + 5¢[0) (6.45)

which when expanded gives

I[(% + 60)] = (I H[®) + Mbm|thn) + (V[ H|Y) + MoUm|tn)  (6.46)
= I[Y*] + (SU|H ) + MW |thn). (6.47)
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Using d1[0¢*] = I[yp + dv)*] — I[¢*] we have

S1[69°] = (FWIH[Y) + M&m|tn) (6.48)
= / S H + NSy dr (6.49)
= / (Hip + M)dp*dr. (6.50)
Finally, using the definition of a functional derivative (6.11) we obtain,
6of -
S0 Hi + \ip. (6.51)

Recalling that the functional derivative vanishes at extrema we arrive at
the Schrodinger equation Hy = —\¢) where —\ = E, thus we can com-
pactly write the Schrodinger equation as 6/ = 0. Each A corresponds to
an eigenstate of the system and by the minimum-energy principle [102,
p.6], the curve that yields the minimum Lagrange multiplier is the ground
state wavefunction and the Lagrange multiplier itself is the negative of the
ground state energy. Thus, Equation for a given number of electrons
N and external potential v(r), provides a way of obtaining the ground-
state wavefunction ¥, from an initial guess W. The accuracy of the final
solution is limited by the span of the function space from which the trial
curves are selected - a larger set of trial wavefunctions will give better con-
vergence to the true ground state wavefunction.

Asking how the trial wave function looks and how to vary it leads us
to a brief discussion of the wave function methods, often referred to as
Hartree /Hartree Fock (H/HF) methods.

6.2.4 The Wave Function Method(s)

The Hartree Fock method has been developed to very high level of com-
plexity, however the basic concepts of the H/HF method is useful to un-
derstand as they introduce some of the general methodology, and also the
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concept of correlation energy (E.,). In following sections the wavefunc-
tion coordinates are denoted x; = (rj, s;) where r; is the spatial coordinate
in 3 dimensions and s; is the spin coordinate which spans only two states,
“spin-up” (a) and “spin-down” (3). The corresponding wavefunctions
known as molecular spin orbitals [103] are assumed to be separable

U(x;) = U(ri, 5;) = o(ri)o(si). (6.52)

The H/HF method aims to solve the many-body Hamiltonian by treating
the electron-electron repulsion in a mean field fashion. It extends the ele-
mentary treatment of an independent electron to that of N independent
electrons interacting with each other through only the average of elec-
tric fields produced by the other electrons. The distinction between the
Hartree and the Hartree-Fock method is the latter’s fulfilment of the anti-

symmetry requirement
U(X1, .0, Xiy ooy Xjy o XN) = — V(X1 .00y X5, oo, X, - XN) (6.53)

of wavefunctions (the Pauli Principle [104, Chapter 17, p.332]) by exploit-
ing the properties of a determinant to change sign if any two columns are
interchanged, and to vanish if any two columns are the same. The result-
ing wavefunction is the anti-symmetrised product of the molecular spin
orbitals. The drawback here is that an NV x N matrix is required to hold
the wavefunction.

The energy of the system composed of HF wavefunctions is obtained

by taking the expectation value [102} p.7],[105, p.30],

N N
R 1
Eyp = (Yyp|H|Vyhr) = ZH’“ 3 Z(Jij — Kij) (6.54)
k=1 i,7=1
electron—nules elictron—electr(m

where

H, = / dx () (V2 + v(ox1) i (1) (6.55)
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describes independent electron interaction with the external field (gener-
ally due to the nuclei), and the Coulomb integrals

1
Jij = /dX1dX2r—12|¢¢(X1>|Z|¢j(xl)|2 (6.56)

describe the electron-electron repulsion that results from the mean field
treatment. Finally the exchange integrals

K = /Xmdxzi%(xl)*%(ﬁ)%(Xz)*%’(Xz) (6.57)
12

result from the antisymmetric nature of the Slater determinant. That is,
they represent the cost of bringing electrons of parallel spin together. Ap-
plication of the variational calculus to Equation[6.54] proceeds as described
for the simple case with a few minor additional requirements such as the
summation over all electrons. The variation of the unconstrained expecta-
tion integral Ep is written [103] ﬂ

5E:§:/6@/};*

The summation of the orthonormality constraints times the Lagrange mul-

H;+ % Z(Jj - Kj)zpi] dx. (6.58)

tiplier is
N
>Ny / 80¢; 0. (6.59)
ij
Now the variation of the sum of the two functionals is

51:2/5¢:

from which it is clear that the stationarity condition 6/ = 0 is satisfied if

1
H; + 3 Z(Jj — Kj)i — Z %Uj/\z‘j] dx, (6.60)

J

1
H; + 5 Z(Jj — K = Z%‘)\ji- (6.61)

5As the electronic systems become more complex a more powerful formulation using
density martrices is used (see [102, Chapter 2]).
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This set of Euler-Lagrange equations are known as the Fock differential
equations and are usually written

J
where F' is the Fock operator (and ¢;; = \;;)

F=H+ % Z(Jj ~ K;). (6.63)

The Fock differential equations require iterative solution since the op-
erator, I, itself contains the wavefunctions ¢; and ;. The iterative method
proceeds first by proposing a starting wavefunction that is used to calcu-
late the electron interaction terms required to construct the Fock operator.
The Fock differential equations are then diagonalised and solved. The re-
sulting wavefunctions are used to update the Fock operator and solve the
Fock equations until the wavefunctions cease to change. In this way self-
consistency is reached.

The Hartree-Fock method captures exchange and Coulombic correla-
tion, but due to the mean field approximation, error arises due to sponta-
neous interaction between electrons. This neglected correlation is called
the correlation energy and can now be defined with respect to the HF en-

ergy
Ecorr = EHF - Eexact (664)

where E,,,, is the correlation energy, Eyr is the Hartree energy, and E. .

is the exact (unknown) electronic energy.

6.3 Electronic Density Functional Theory (DFT)

The density functional theory approach replaces the many variable wave-
function ¥ (x4, X2, ..., Xxn) Where x; = (rj, s;) as the basic quantity with the 3

variable quantity, the electron density p(r), and an associated calculational
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scheme. The idea of using density was not new at the time of the first DFT
breakthrough: the 1964 paper of Pierre Hohenberg and Walter Kohn. In a
1927 paper Llewellyn Thomas wrote [102, p. 47],[106]

“Electrons are distributed uniformly in the six-dimensional
phase space for the motion of an electron at the rate of two per
h? of volume” and that there is an effective potential field that
“is itself determined by the nuclear charge and the distribution

of electrons”

This contains the most essential principle of DFT, that the electron density
and external potential determine the electronic system. Thomas and Fermi
established the following system to calculate the ground state energy of
the electronic system [102]:

ETF[p]:C’F/ p(r)?3dr — / —dr + = // |r1_r2‘ d 1dry  (6.65)

where Cr ~ 2.871

— T4V, +U.. (6.66)

Here the first term is the kinetic energy functional written explicitly in
terms of the density, the second term is a classical form for the electron-
nuclear attraction, and the third term approximates the electron-electron
repulsion. The minimum energy variation is contrained by the number of

electrons with,
F = /p(r)dr—N, (6.67)

which ensures the electron density is consistent with the number of elec-

5 {ETF _ (/ p(r)dr — N)} — 0 (6.68)

which yields the Euler-Lagrange equation

5E
pirp + — = 0. (6.69)
op(r)

trons. Now,
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Because each term in the Thomas-Fermi energy functional Erp is written
explicitly in terms of the density, using the functional derivative definition
(Equation and its linearity (Equation[6.13), we can write the station-
arity condition explicitly

1
e = p(r) 4 T - / pr) 0o (6.70)

r r—1T9

or where v(r) is the electrostatic interaction associated with all electrons

and nuclei,

Urp = gp(r)z/?’ + v(r). (6.71)

The formulation of Thomas and Fermi is drastically simplified and results
in irreconcilable shortcomings such as an inability to describe chemical
bonding [107] or to reproduce the density fluctuations about a nucleus
due to electron shells [95]. The greatest amount of error comes from the
approximate form of the kinetic energy functional, followed by the neglect
of electron correlation and exchange.

Hohenberg and Kohn showed that the Thomas-Fermi functional is an
approximation to an exact functional of an exact theory in which density
is valid as the basic quantity. They did so using proof by reductio ad absur-
dum to show a one to one correspondence between the external potential
v(r) and the ground state density p(r) [94]. Such a correspondence is suf-
ficient because the number of electrons, N (a simple functional of the den-
sity), and the external potential v(r) completely determine the electronic
Hamiltonian and therefore the groundstate wavefunction ¥ (by the vari-
ational principle). Using the 1:1 correspondence, referred to as the first
Hohenberg-Kohn Theorem (HK1), they recast the Thomas-Fermi energy

functional into an exact form, illustrated by the following

Elp] =TIp] + Ulp] + Vp| (6.72)
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or
Elpl = [ ple)olw)dr + 1o + Ul (6.73)
- / p(r)o(r)dr + Fuglp] (6.74)

where
Fuklp] =Tp] + Ulp] (6.75)

is the Hohenberg-Kohn energy functional in which U = J[p| plus an un-
known non-classical term. All error has been collected in the universal
functional (depends only on p) Fik|p|, and we see that the Thomas-Fermi
approximates this functional as Frrlp] = Trrlp] + Urr[p]. Next, what is
called the second Hohenberg-Kohn Theorem (HK2) is simply the state-
ment of the variational principle for the density (rather than the wave-

function)

Bl = [ plw)o(x)ds + Filol = Elp (6.76)

with the stationarity condition

5 {EHK[/)] +u (/ plr) — N) } =0 (6.77)

yields the Euler-Lagrange equation

_ 0Enklpl _ 0Fuxk|p]
dp(r) dp(r)

Not surprisingly there is strong resemblance to the form for the Thomas-

+ o(r). (6.78)

Fermi variational condition except all inaccuracy has been moved to the
HK functional Fyr.

The seminal work of HK had two limitations to its general employ-
ment. The first issue surrounded degeneracy of ground state wavefunc-
tions - if they were degenerate the reductio ad absurdum proof (HK1) fails.
The other limitation was associated with the variational scheme (HK2)
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and was concerned with v-representability. A density is v-representable if
it is associated with the groundstate anti-symmetric wavefunction of the
Hamiltonian H =T + U + V with an external potential v(r) [102]. Such a
condition is difficult to meet for a variational trial density. Both these lim-
itations are overcome using Levy’s constrained search method [108, [109].

If, having established a 1:1 correspondence between p, and v(r), we
wish to obtain V¥, from p,, another more robust and powerful justification
for density as basic variable (the HK theorems) can be devised. Firstly, it
is trivial to obtain p, from ¥, by quadrature

,0:/|\I/|2d7“. (6.79)

However, the reverse is certainly non-trivial because an infinite number
of (non-ground state) wavefunctions could be combined to produce the
ground state density. The Levy constrained search uses the minimum
energy (variational) principle by noting that any wavefunction obtained
from the ground state density must, like the density, conform to the varia-

tional principle,
Enklps) = (U, [H|V,.) > (Vo |H|V,) = E,. (6.80)

The external potential can be separated and disposed because it is a simple
functional of the density yielding

(U, T+ UW,,) > (W,|T + U, (6.81)

Thus, of the set of wavefunctions that give the ground state density p,(r),
the ground state wavefunction is that which minimises (7" + U). From
Equation[6.75| we see that Levy devised a variational definition to acquire
the Hohenberg-Kohn functional

Floo] = (@, |T + UW,.) = man (U|T + U|¥) = Firclo]. (6.82)

This new density-wavefunction search is written

E, = min [F[p] + / U(r)p(r)dr} (6.83)

p
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in which there is an inner minimisation to obtain F' as shown in Equation
and an outer one to obtain the ground state energy. The outer minimi-
sation only need be done on N-representable densities, which need only
be obtainable from an anti-symmetric wavefunction (c.f. v-representation
requires association with the Hamiltonian and external potential also).
Thus, a one to one mapping between the ground state wavefunction v,
and the ground state density p, is achieved by selecting the wavefunc-
tion that delivers the energy minimising density by Equation The v-
representability condition is satisfied because the density is obtained from
an anti-symmetric wavefunction, and the degeneracy problem is over-
come as the variational method selects the wavefunction that yields the
energy-minimising density.

The re-introduction of the wavefunction foreshadows the second great
advance in the theory: the DFT of Kohn-Sham (KS) non-interacting or-
bitals. At the time of the Levy constrained search publication, the use of
wave functions was well established in the KS DFT.

It is worth noting that the universal functional is universal because it
is system independent. The system dependence arises exclusively from
the external potential [ p(r)v(r)dr. The precise form of the functional is
non-trivial and remains the most challenging aspect of the development
of the theory - perhaps not surprisingly as it can be thought to contain all
the complexity associated with going from an N-variable problem to a 3

variable problem. More detail regarding the universal functional is given

in Section

6.3.1 Kohn-Sham DFT

Unfortunately, the DFT thus far has very little practical use as the form of
the HK functional is unknown. In particular the form of the kinetic en-
ergy functional is still unknown. The celebrated work of Kohn and Sham

overcame this limitation ingeniously and paved the way for DFT to be-
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come a highly competitive quantum mechanics method when both accu-
racy and computational cost are at a premium. That the three most cited
papers[95, 94, 110] in the Physical Review journal family are the DFT pa-
pers is testament to the importance of DFT. Like the HK theorems, the
basis is surprisingly simple. The total energy functional is further decom-
posed in the following way

E=T,+J+ E,.+ /p(r)v(r)dr (6.84)

where 7T is the kinetic energy operator for N non-interacting electrons, J
is the electron-electron Coulombic repulsion (the fully classical Coulomb
integral, Equation defined earlier in the Hartree-Fock treatment), and

E,. is the error or remainder of the two approximations:
Epe=T T, +U —J. (6.85)

Where T'—Tj is the correlation and U — J is the exchange. Such a decomposi-
tion helps to clarify the critical importance of the validity of the exchange
correlation functional | Seeking the minimum of this new total energy

functional delivers an Euler-Lagrange equation in the now very familiar

form 5T,
= Ueff<r) + 5p(r) : (686)
where
! 5Eazc
veff(r) = U(I‘) + / |rp(_rr)./|dr, + ngp] (687)

Kohn and Sham recognised that this is precisely the Euler-Lagrange equa-
tion expected for a system of N independent electrons acting in a potential
verf(r) rather than the single electron potential v,(r). As such, Equation
is satisfied by solving the single electron Hamiltonian

[ 3V + e (1) = €ty (6.88)

®However, in systems that are not highly correlated (e.g. non-magnetic systems) the

influence of the E,.. is small.
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for the NV lowest energy eigenstates and evaluating the density from

plr) =3 D lir,s)l" (6.89)

Because v.¢(r) depends on the density through the exchange correlation
term in equation the system must be solved self-consistently. Equa-
tions [6.87] [6.88|and [6.89| are the Kohn-Sham orbital equations. The system

closely resembles the Hartree-Fock system, but is computationally far less

demanding (only N equations need to be solved) and is, in principle, ex-

act.

6.3.2 The Exchange-Correlation Functional(s)

The approach of the last two sections - the HK and KS methods - has been
to subtract out the easily computed terms and collect the remaining com-
plexity in the exchange-correlation energy functional. We now address
this aspect of the theory. In their 1965 paper, Kohn and Sham used what is
now known as the local density approximation (LDA). The approximation
is local in the sense that it uses a function to approximate the functional lo-
cally (at the coordinate of functional evaluation), in analogy to the Slater
approximation to the difficult to compute non-local exchange functional:
(Vf)(r) — V(r)f(r). Thus the KS-LDA functional is

ELPA[) = / p(F)ere(p)dr (6.90)

which is entered into the KS scheme (Equation [6.88) by setting v,. = vipa
from Equation , where

SELPA 0€ze
VrpA = (;Jc = (ﬁrc(p) + p%) : (6.91)
P P/ p=(p(r))

Here exchange-correlation function ¢,.(p) used was that of the homoge-
neous electron gas [94]. The approach has been successful in practice
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(especially for solids) despite treating exchange-correlation as if the den-
sity dependence is the same as for a homogeneous electron gas. The rea-
son for this unexpected success is associated with a cancelling of error
associated with exchange and correlation - the exchange-correlation hole
due to Pauli’s antisymmetry [102, 111]. Improvements to the treatment
of molecules were found [112] by including a dependence on the density

gradients also:
ESM) = [ pl)eac(p, V) (6.92)

These (still local) functionals are called generalised gradient functionals
(GGA) [110} 113, 114] and are now the most commonly used function-
als. The GGA functionals are constructed by constraint satisfaction of the
electron-hole exchange description [110],[113],[114], and the level of con-
straint applied to derive the function usually translates to greater compu-
tational cost and accuracy. The GGA constrain the density gradient, the
meta-GGA [112] constrain the curvature, and higher level functionals use
non-local approximations [112} 111]. The best results in terms of accuracy
and computational efficiency require careful selection of an exchange cor-
relation functional best suited to the problem of interest.

Finally, the most cutting edge work includes the development of fully
ab initio, highly accurate orbital dependent random phase approximations
(RPA) functionals [111] that capture long range Van der Wals interaction.
However the computational cost due to the enormous basis sets (see Sec-
tion [6.4.1)) make such functionals impractical for present general use [112].

6.4 DFT Techniques

The previous section described the key theoretical concepts and quantities
of DFT. In this section we introduce quantities that arise from an applied

or computational focus.
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6.4.1 Plane Waves

The first calculational development addresses the representation of the
Kohn-Sham non-interacting orbitals from which the non-interacting wave-
function is constructed. DFT has been successfully applied - although is
not limited to - solid or condensed systems. Solution of such problems re-
quires resolution of the issues surrounding an infinite number of electrons
extending over the entire system, and hence an infinite wavefunction basis
set. These difficulties are overcome by applying Bloch’s Theorem to peri-
odic boundary conditions to yield wavefunctions defined by a discrete set
of plane waves (PW),

u(r, k) = ae™”. (6.93)

So successful is this method that DFT is now synonymous with the use of
plane waves - the “Plane Wave Methods”.

Bloch’s theorem states [104] that the eigenstates of a one electron Hamil-
tonian, such as the KS Hamiltonian H g, where the external potential is
periodic V(r + R) = V(r) for all R in a Bravais lattice can be expressed as
the product of a plane wave and a function, f(r), possessing the periodic-
ity of the Bravais lattice,

2bmk = eik.rfmk(r)- (694)

Here the subscript m denotes the particular eigenstate, the wavevector k
the position in reciprocal space, and r the real space coordinate.
Application of Bloch’s theorem to the Born-Von Karman boundary con-

dition [104] for 3-dimensional periodicity

Y(r+R)=y(r), (6.95)
gives
Unic(r + R) = ™ Rpe(r). (6.96)

Here
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a; are the primitive cell lattice vectors and N; are integers. Equation
provides the conditiorf} e’*® = 1, that determines the set of reciprocal
lattice vectors {G} from the Bravais lattice vectors R. The condition is
satisfied when G - R = 2mn for integer n.

Because f,x(r) is periodic it can be expanded as a set of plane waves
frk(r) = Z Cmxrce S" (6.98)
G

The discrete nature is conferred to the wavefunction 1,k (r) by substitut-
ing Equation [6.98into Equation [6.94]

Vmk(T) = Z Cm,k+G6i(k+G)'r- (6.99)
G

An infinite number of electrons is represented by an infinite number of k-
points with finite wavefunction occupation. Thus Bloch’s theorem changes
the problem from one of calculating an infinite number of wavefunctions
to that of calculating a finite number of wavefunctions over an infinite
number of points. An infinite number of plane wave basis functions is
required to exactly represent the true wavefunction, however, it turns out
[115] that the coefficients ¢,k for the plane waves with low kinetic en-
ergy 1|k + GJ|? are more important than those for high kinetic energy. The
discrete nature of the plane wave wavefunction means that truncation of
the high kinetic energy plane waves yields a finite basis set. Thus Bloch’s
theorem allows accurate representation of wavefunctions using a finite ba-
sis set. Finally, certain sets of k-points within the Brillouin zone make a
greater contribution to the wavefunction and special schemes [116} 115]
have been developed to identify such sets | The kinetic energy cut-off,
usually referred to simply as the energy cut-off must, along with the num-
ber of k-points (k-point grid), be converged with respect to the quantity of

interest (e.g. the ground state energy).

7Using R to denote the set of N;a; where {a;} constitute the Bravais lattice.
8The choice of scheme generally requires prior knowledge of electronic behaviour of

the material.
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Now, like the single electron Schrodinger equation in Bloch form, the
KS equation takes the simple form called a secular equation

Z {%’k‘ + G|2(5GG’ + VKs(G — G/)} Cm,k+G’ = Cm,k-i—GGz' (6100)
G/

where Vis(G — G') is the Fourier transform of the Kohn-Sham effective
potential Equation 6.87]

The exposition of the KS-DFT provided in the previous sections de-
scribed an indirect minimisation of the total energy functional using
SCF iterative diagonalisation methods. The use of a plane wave basis
for the wavefunction permits a direct minimisation of the Kohn-Sham en-
ergy functional by variation of the plane wave coefficients ¢,, y1¢. The
direct minimisation of the KS total energy functional has improved stabil-
ity [115] because, unlike the system Hamiltonian, it usually has a single
well-defined minimum. The Hamiltonian problem of multiple minima in-
creases with system size.

Having established the ability to overcome the issues surrounding in-
finite system size, we can note other advantages of the plane wave basis
set over a localised basis set (such as Slater or Gaussian functions): (i) the
same basis set can be used for all atomic species, (ii) convergence is eas-
ily tested, and (iii) plane waves are independent of nuclear positions and
hence need not be corrected for force calculation (see Section 6.4.3). There
is however, a major drawback to the use of a plane wave basis set to rep-
resent the electronic wavefunctions; a plane wave basis set must be very
large to accurately represent the fluctuations of the core shell electrons.
This problem can be ameliorated by the use of pseudopotentials.

6.4.2 Pseudopotentials

The oscillations of core electrons require a large plane wave basis set to be
represented accurately, yet play little role in chemical bonding and solid
state properties. The pseudopotential approximation alleviates the cost as-

sociated with the core by replacing the strong ionic potential with a weak



CHAPTER 6. DFT: THEORY AND METHOD 140

pseudopotential and the core electrons with a smoothly varying pseudo-
wavefunction as shown in Figure

71‘5“‘)[)5(%71(70

NV

V})seudo

(e

Figure 6.1: Schematic of the pseudo wavefunction (upper), and the pseu-

dopotential (lower).

A suitable pseudopotential must [117] yield the same energy as the all
electron KS-DFT result, and the pseudopotential wavefunction must be
identical, within acceptable error, to the all-electron wavefunction above
the core radius. Finally, the pseudo charge and the true core charge must
be the same - a condition known as norm-conservation. Pseudopotentials
are usually constructed so that the scattering properties of the pseudo
wavefunctions are the same as the ion and the core part of the true va-
lence wavefunction, yet also have no radial nodes within the core region.

The ultrasoft-pseudopotential [115] and projector augmented wave (PAW)
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[115] methods are related methods.

6.4.3 Structure Optimisation

One of the most fundamental applications of DFT is to find an optimised
(lowest energy) structure for a solid, molecule, or surface. To find opti-
mal structure a method of moving the ions must be used. It is a problem
of finding a minimum on a 3N dimensional space. The method of con-
jugate gradients and the method of direct inversion of iterative subspace
(DIIS) are the most robust [115] [102] methods. Structure optimisation us-
ing forces is less likely to find the global minimum compared to energy
[117]. However, in our experience, the success and speed of the structure
optimisation is often greater. To move the ions we consider the forces that
arise from the derivative of the total energy with respect to the ion posi-
tions - these are the Hellmann-Feyman forces. The motion of the ions is
separable from that of the electrons according to the Born-Oppenheimer
principle, thus the electronic and atomic relaxations are alternated until

the Hellmann-Feynman forces vanish.

6.4.4 Supercells

The supercell method was devised for simulation of surfaces, defects, and
molecules or finite solids. The use of plane waves is ideally suited to mate-
rials that possess periodic structure such as crystals, however, the benefits
are not limited to structures with implicit periodicity. By setting up the
structure of the unit cell the advantages of a plane wave basis set can be
applied to non-periodic or finite structures such as surfaces, melts, crystal
defects, and even molecules which possess no periodicity. The method is
to build the structure of interest as a supercell (see Figure[6.2).

When using supercells we must ensure that the artificial periodicity is
not influencing the result - we must ensure that the quantity of interest
is converged with respect to the non-periodic parameters. For example
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in the case of a surface (see Figure [6.2a), the supercell is constructed by
repetition of the bulk unit cell and addition of an empty space adjacent to
the surface of interest. The size of the empty space must be great enough
to minimise the interaction between the periodic images of the truncated
surface, and the thickness of the slab must be great enough that the core
experiences a bulk like environment.

There is some efficiency cost associated with evaluating the wavefunc-
tion in the empty space, however such cost can be minimised by using
minimal k-points in the aperiodic region, and is usually outweighed by

the effecincy gains of the plane wave method.

6.4.5 VASP DFT Code

Throughout this work we have used the Vienna Ab initio Simulation Pack-
age (VASP) [118, [119] 120, 121] with ultrasoft pseudo potentials [122], as
supplied by G. Kresse and J. Hafner [123] to perform quantum mechanical
calculations using the DFT formalism.

6.4.6 Computing

Execution of DFT calculations is almost always done using parallel com-
putation. The reason being that a single computer has insufficient memory
and processor speed to solve the KS equations of a system in a reasonable
time. Parallelisation require the calculation to be decomposed into smaller
parts (e.g. bands of planes waves) which are passed out to individual com-
puters (nodes). Each node works on its part and communicates its results,
either directly or through a central node, to the others via a message pass-
ing protocol.

A very common platform is the Beowulf cluster in which standard per-
sonal computers using a UNIX based operating system are connected to
a central master computer. The performance of the cluster depends on

the computer specifications (CPU and memory), and the communication
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Figure 6.2: Aperiodic structures can be expressed as a ‘crystal” of super-

cells containing empty space in the aperiodic directions.
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speed (ethernet speed). Much of the work presented here was performed
on this kind on machine.

Some of our calculations were also carried out on an IBM BlueGene
(BG/L) machine. The BlueGene series of machines are said to represent
a new paradigm in supercomputing. BlueGene machines are ‘massively
parallel’, they consist of a central control node, and thousands of astonish-
ingly low-specification work nodes. By low spec we mean dualcore 700
MHz PowerPC processors, and 512 MB/2cpu in memory, compared with
a generic office desktop machine in early 2008 with dual-core 3.06 GHz
processors, and 2 GB/2cpu in memory. The use of low specification nodes
is balanced by the use of incredibly fast communication. The BG/L uses
a high performance, low latency bi-directional serial computer-bus inter-
connect called ‘Infiniband” which provides a theoretical maximum data
rate of nearly 10 times that of GigaBit ethernet.

6.5 Summary

The material described in the preceding sections is sufficient to understand
the key methods and quantities of DFT, and provides a satisfactory basis to
begin using DFT. Variational techniques feature very strongly in all aspects
of the development of the theory and also in the techniques used to opti-
mise the application of the theory. The use of DFT is especially widespread
in the scientific literature due to its superior speed in tackling large sys-
tems. DFT is interesting in that it has the potential to be exact, however,
devising or discovering the exact exchange-correlation functional is very
difficult.



Chapter 7

A Study of ZnO Using DFT

7.1 Introduction

In this chapter we investigate the nature of the crystal faces that make up
the hexagonal nanorods which compose the electrochemically grown ZnO
films using quantum mechanical calculations. This work represents a first
treatment of the very difficult problem of predicting macroscopic mate-
rials behaviour from first principles, on a very complicated experimental
electrochemical system. Nonetheless, we have developed a method that
uses total energies calculated using DFT to parameterise both equilibrium
and kinetic crystal growth models, to predict growth trends as a function
of constituent chemical potentials. We first develop the model, then illus-
trate how the surface free energies are obtained, and finally use the model
to predict the dependence of the growth morphology of ZnO crystals on
the chemical environment, from these calculations.

The DFT-thermodynamic formalism and crystal growth theory are ex-
pounded in Sections|7.3|and respectively. The key crystal growth pa-
rameters and their relation to a the kink free energy and DFT-thermodynamic
formalism is discussed in the later part of Section The remaining
sections contain the calculations and procedures required to paramterise
the DFT-thermodynamic-crystal growth formulation. The bulk unit cell

145
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is converged and studied in Section The bare polar and non-polar
surface energies are studied in Section and the hydrated surfaces in
Section [/.7|culminates in a series of surface stability, and equilibrium
growth shape analyses, using the DFI-thermodynamic formalism intro-
duced in Section Finally, the DFT calculations, and thermodynamic
analyses are extended to kinetic growth shapes in Section [7.8|

7.2 Zinc Oxide

Zinc oxide (ZnO) has a hexagonal crystal structure and belongs to the
P6;mc (B4, #186) point group]| commonly called wurtzite. X-ray measure-
ments confirm that the ZnO nano-rod crystallites grown electrochemically
possess the wurtzite crystal structure [6]. The ZnO wurtzite cell is charac-
terised by the primitive cell vectors

i = tai — Lag (7.1)
dy = ad + \/75(1@ (7.2)
Gy = 2 (7.3)

where a = 3.250 A, ¢ = 5.207 A[124]. The primitive cell contains two ZnO

units with atomic positions

Zn(1), Zn(2) (1/3,2/3,0),(2/3,1/3,1/2) z=0 (7.4)
O(1),0(2) (1/3,2/3,u),(2/3,1/3,u+1/2) where u =0.3825 (7.5)

as shown in Figure The key parameters when discussing hexagonal
crystals are a, ¢, and u. A useful way to view the wurtzite structure is to ob-
serve its layered arrangement along the c-axis. When viewed this way we

see that the structure consists of alternating layers of four-fold coordinated

IPearson m: monoclinic, ¢: cubic, denotation indicates a screw axis with 6 nodes and 3-
fold symmetry. Rotation by 30° followed by translation to next layer yields an equivalent

position.
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7Zn*t and O?~. The inter-layer distance also alternates with R, = 0.61 A
and R, = 1.99 A as shown in Figure Ball and stick models, shown in

v = 120°

azsr\ |/ O O
3= 90°

® ‘ ””””” * B
38 3
_ T
TN /3 ‘
‘ Y i
13 23 ‘

(@) (b)

Figure 7.1: Schematics showing the typical parameters used to charac-
terise the ZnO wurtzite crystal structure. (a) ZnO wurtzite unit cell in
terms of fractional coordinates and angles «,3,7. Red - oxygen, blue - zinc.
(b) ZnO wurtzite unit cell showing R; and R..

Figure give a clearer view of the geometric arrangement of the atoms
in the two lowest index facets of ZnO wurtzite.

Crystal growth shape depends on which crystal facets control growth
and which predominate in the final crystallite. In the case of electrochem-
ically formed ZnO crystallites [6, 9] only hexagonal prismatic (hexagonal
columns) crystallites with sharp edges are formed. The two extreme cases
of very large aspect ratio and very small aspect ratio have been observed as
shown in Figure With such a morphology it is trivial to determine the
identity of the crystallite facets exposed by the electrochemically formed
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(@) (d)

Figure 7.2: Ball and stick representations of the wurtzite low index facets
(here the small red circles represent O and the larger blue circles represent
Zn): (a) Top view where dashed line indicates the unit cell, (b) perspective
view illustrating the hexagonal prism structure, (c) profile view of a lateral
facet, (d) planar view of a lateral facet, (e) perspective of lateral facet (here

the dashed line is used to emphasise perspective).
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(b) (@)

Figure 7.3: Morphological difference observed in electrochemical deposi-
tion: (a) An SEM image showing the two extreme morphologies (b) the

large aspect ratio, and (c) the small aspect ratio.

crystallites. The lateral planes of the hexagonal nano-rods are identified
as the {1010} facet} The non-polar nature and symmetrical equivalence
can be seen by looking at the arrangement of atoms on the surface of a
unit hexagonal prism shown in Figure It can also be seen from Fig-
ure 7.4 that the basal planes (the top and bottom planes) are polar and not
chemically equivalent.

Cleavage of ZnO wurtzite normal to the c axis exposes the two chem-
ically and physically distinct surfaces [125, p. 146]). A positively charged
(0001) — Zn surface is exposed on one side, and a negatively charged
(0001) — O on the other. Thus ZnO wurtzite is referred to as a polar crystal.
The finite truncated crystal consists of a repeated stack of layers with non-
zero dipole parallel to the surface normal. Such a surface is often called a
Tasker type 3 surface [126]. The stacking of dipole layers in type 3 surfaces
leads to a non-zero electric fieldﬁ and the electrostatic potential increases

ZHexagonal crystals are usually denoted using 4 indices, (h, k, —(h+ k), ). Equivalent

facets are denoted with curly braces "{}’
Sthe mean electric field is & = 270, where o is the layer charge density.
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(a) (b)

Figure 7.4: Schematic representations of atom arrangement in ZnO
wurtzite. Zn - blue, O - red. (a) illustrates the atom arrangement in terms
of the hexagonal prism, (b) emphasises high index polar planes (b) indi-
cates the polar nature of the basal planes.

monotonically with increasing slab thicknessﬂ [127]. In the absence of any
charge compensation the electrostatic energy that contributes to the sur-
face energy,

Equrface = 210’ Ry N, (7.6)

where o is the layer charge density, diverges to infinity in the macroscopic
limit. The concept of a surface Madelung constant is not applicable as the
electrostatic potential varies from layer to layer for all layers [128]. How-
ever, polar surfaces are abundant in nature, and hence some stabilisation
process is at play. Electrostatic arguments [127] show that the formation
of a counter-field can stabilise the surfaces by cancellation of the macro-
scopic dipole. The counter-field is producedﬂ if the Zn-terminated surface
is less positive and the O-terminated surface is less negative by a factor of
Ry/(Ry + Ry) ~ 0.75 or Ry /(Ry + R,) ~ 0.25, illustrated in Figure[7.5

4V =dnp = 4dnoRy, thus V = dro RN
>Total dipole moment M = NoR;, and the condition for cancellation of macroscopic

dipole 377" 0 = — =5 [<—1>’“ - ﬁzzﬁﬂ, ie o' =0oRi/(Ri+ Ry)
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Figure 7.5: Schematic showing layered structure and surface charge mod-

ification required to cancel macroscopic dipole. Here ¢’ = 0.250.

There are three main classes of charge compensation identified in the
surface science literature [127], [129]: charge transfer from the negative
to the positive surface, surface reconstruction (including vacancy forma-
tion by desorption of surface atoms), and chemical interaction with adsor-
bates. The predominant stabilisation mechanism depends strongly on the

physical-chemical environment of the crystal [129].

7.3 DFT and Thermodynamics

In 2001 Scheffler and Reuter published a seminal paper [130] outlining
a method to relate thermodynamics to DFT total-energy calculations and
coined the phrase ‘First Principle Statistical Mechanics’. It is this method
we have adopted to our analysis of the ZnO surfaces. The approach was
described for RuO, in an oxygen atmosphere, but is easily generalised to
any M, O, in a heterogeneous vapour environment.

The surface free energy is defined

Ykt (T, p) = % (T, p,{Ni}) ZN/JZ (T',p) (7.7)

where G(T, p, {N;}) is the Gibbs free energy of a truncated crystal at pres-

sure p, the second term is the stoichiometric sum of the chemical potentials
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per atom of the elements that make up the truncated crystal, or ‘slab’, at
their given partial pressures (i.e. V; is the number of atom i in the slab),
and A is the area of the truncated face. Throughout this work we define
the chemical potential, j;, per atom rather than per mole. The Gibbs free
energy of the slab is defined as the sum of the internal energy, an entropy
term, and a pressure-volume term.

G(T,p,AN:}) = EQNi}) =TS +pV (7.8)

The internal energy , E({N;}), is easily calculated using DFT as a total en-
ergy calculation, and is equal to the Gibbs free energy at zero temperature
and pressure. For low temperatures the entropy S can be estimated by
calculating the phonon spectrum and using the quasi-harmonic approxi-
mation for the free energy [131]. Scheffler et al [130] did exactly that and
found the —7'S and pV terms to be very small (O(meV/ A2)) compared to
the difference between surface reconstructions (> meV/ AQ).

Having established the validity of the internal energy as a represen-
tation of the Gibbs free energy it is possible to use DFT total energies in a
thermodynamic equilibrium description of the crystal surface. For the case
of hydrated ZnO we expand the summation in Equation[/.7|and write the
surface free energy of the hydrated surface as

Yokt = Esiab(Nzn, Noy, Ng) — Nznpizn — Nopo — Nupim. (7.9)

Under this approximation, the slab structure that minimises the surface
free energy for the given constituent chemical potentials (1z,, po and pgy
is the most stable configuration, and in this way a phase diagram can be
constructed from first principles calculations. Equilibrium constraints are
applied to reduce the degrees of freedom. For a large enough slab the

oxide acts as a reservoir, thus

HZn + Ho = gbZ%g(Ta P) = EZnO' (710)

This allows Equation [7.9] to be written in terms of the experimental vari-
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ables py and o or iz,

Yokt = Esiab(Nzns No, Nu) — NznEzno — (No — Nzn)po + Nupm, (7.11)

which in the absence of H, and when Ny, = Np, is simply
Yokt = Esiae(Nzn, No) = NznEzno. (7.12)

If the slab is not permitted to relax structurally, then v,y is the cleavage
energy.

The chemical potential of O and H are related to the macroscopic ex-
perimental variables of the molecular gases by,

[ = SHHy 1O = 3H0,- (7.13)

We are interested in the aqueous system and ensure the presence of water
by applying the equilibrium relation,

M, + %/’LOZ = KH>0; - (714)

Thus, the vapour consists of molecular hydrogen, oxygen, and water, in
equilibrium with one another. The equilibrium (7.14) is used to eliminate
the O dependence in Equation (7.11)) giving,

72]2:7({]\[2}’ HH50, ,uH) = Eslab - NZnEZnO + (NZn - NO)/’LHQO (7 15)

Equation describes the surface free energy in a heterogeneous gas en-
vironment containing Hy, O, and H,O.

Construction of a valid phase diagram (here in terms of jy and 115,0)
requires application of some thermodynamic constraints. We restrict our-
selves to the chemical potentials where the surface is stable, thus, we in-
vestigate the chemical potentials below that of the ideal gases using

A,uH = Uug — %E’H2 where A/JH < 0, (716)
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and

Apmo = pao — En,o  where  Apy,o <0, (7.17)

to map the phase diagram domain. In this work the chemical potential
of the ideal gases are represented by the internal energy calculated using
DFT.

Finally, we note some features of the surface free energy defined by
Equation (7.15). The situation in which Nz, — No = 0 and Ny # 0, cor-
responds to a protonated surface. In our studies we have only permitted
such surfaces to be made by protonation of the terminal O atoms. Neutral
surfaces are those in which the net charge represented by 2Np —2N,, — Ny
Flis zero. The free energy of such surfaces depends only on the water chem-

ical potential through,

/Yf}Lngld({NZ}v ,uH) = FEgap — NZnEZnO + (NZn - NO),UHQO- (718)

Surfaces in which 2Ny — 2Ny, — Ny # 0 are charged. Those with 2N, —
2Nz, — Ny > 0 possess a net positive charge, that in the context of our
tri-vapour system correspond to protonated surfaces. Conversely, slabs in
which 2Ny — 2Ny, — Ny < 0 correspond to negatively charged surfaces
resulting from hydroxylation.

Given that our greatest interest lies in the aqueous system, we make
inferences to the aqueous system thoughout our analysis of the vapour
system. In the aqueous system water is condensed on the surface, thus the
region of our vapour system where the resemblance to the aqueous system
is greatest is when py,0 = En,0, i.e. 0 = 0. Taking the surface H atoms
to be effectively protons, HY, and using uy = pj; + 55pH to describe
the chemical potential, allows construction of a relation between pH and

surface free energy,
Y AN}, pH) = Egap — NznEzno + (Nzn — No)Emo
+(2No — 2Nz, — Npg) (2L spH).
(7.19)

b e. >, #iN;, where z; is the valence of species i
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Further connections to the electrochemical system responsible for our
interest in the ZnO-aqueous interface are made by considering the electro-
chemical potential i; = yi; + 2F'¢, where ¢ = Vi, — Vs, in place of y,. Thus
for the dependence on pH, and ¢ we have,

Y ANY, s ) = Faab—NznEzn0 + (Nzn — No) Emo
+ (2No — 2Nz, — Np)jin

- slab_NZnEZnO + (NZn - NO)EHQO (720)
+ (2No — 2Nz, — Ny)(52=pH)

—+ (ZNO — 2NZn — NH)ZHF¢,

where ¢ = Vi,.p — Voo, 2 is the valence of aqueous H*, usually taken as
+1, and F'is Faraday’s number. The corresponding surface energy depen-
dence on Zn?*, pH, ¢ is written,

’VZ;??({NJ, con2+,DH, 0) = Eqawo—Nznptzn—No Em,o+(2No—Np)fig. (7.21)

Alternatively, the free energy of hydration, or more commonly, the
binding energy,

AGh (N, ti0) = B — Nyare Epy® — Nyoptmo (7.22)

may be calculated. The binding energy is more computationally intensive
as it involves the calculation of two slab structures: one to represent the
bare surface and another to represent the hydrated surface. The depen-
dence of both the hydration energy and the hydrated surface energy on
the chemical environment (e.g. pH) can be investigated using the method
outlined above for the surface free energy.

Two groups [132, [129] have performed calculations on a variety of su-
percells with O and OH terminations in order to calculate the phase dia-
gram in the vapour environment. However, neither group considers the
implications for the aqueous situation. The situation is more complex in
the aqueous situation as many more factors influence the surface state.



CHAPTER 7. A STUDY OF ZNO USING DFT 156

The studies of Meyer [133, 129, 134] and Kresse [135, 132] provide valu-
able insight into the ZnO surface despite having a different focus to our
work. The focus of our work differs not only because we are most inter-
ested in the aqueous system, but also in that we are interested in structures
thought to facilitate crystal growth.

7.4 DFT and Crystal Growth

The preceding section described how total energy calculations can be ap-
plied to realistic treatment of oxide surfaces in a chemical (vapour) envi-
ronment. In this section we outline our motives with regard to the use of
DFT to aid our modelling of ZnO crystal growth. As mentioned earlier,
there are two features of our work that are not treated in the literature:
the effect of bulk water on the zinc oxide surfaces, and energies associated
with the surface features that are required for crystal growth. Due to the
shortcomings of DFT in treating Van der Waals interaction [136} 137, 138]
and therefore aqueous systems, we focused on the investigation of surface
features that are required for crystal growth, rather than direct investiga-
tion using ZnO/H,0 supercells, due to limited computing power. As a
compromise we have investigated the effect of surface hydration of fea-
tures required for crystal growth, to give an indication of the effect of the
aqueous environment. Here we give an overview of the fundamentals
of crystal growth and propose a method through which DFT calculations
can be used to determine parameters upon which crystal growth theory
depends.

7.4.1 The Equilibrium Shape

The most fundamental idea of crystal shape and growth prediction is that
of the Wulff shape. The Wulff shape can be thought to arise from the no-

tion that at equilibrium the most stable crystal shape is that which min-
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imises its total surface free energy for a given volume, V [55, p. 45],
v+ AV) =0, (7.23)

where v is the surface free energy and ) is a Lagrange multiplier. The
solution of Equation for a faceted crystal is commonly expressed as,

Vi = v;4;, (7.24)

where A is the facet area, and the subscripts denote different crystal faces.

7.4.2 The Kinetic Models

The kinetic models are based on the development of a detailed mechanistic
description of the structures and processes that exist at the crystal surface
and surrounding medium. Here we briefly review the basics of kinetic
growth models.

Supersaturation

We first review the notion of supersaturation, Ay, the driving force for
crystal growth, and introduce the relative supersaturation. The relative
supersaturation o is defined by

og=""% (7.25)

Co

where c is the concentration of the crystal growth unit, and ¢, is the equi-
librium concentration of the crystal growth unit. The equilibrium con-
centration is the concentration at which the surface growth units have
the same chemical potential as the solution growth units, and is there-
fore sometimes called the saturation concentration. The concentration can
be expanded using Gibb’s equation, ¢, = exp(+u./kT) [55], and since
Ap = — p, we can write in terms of the equilibrium concentration
and the difference in chemical potential (the supersaturation), using

c = coexp(Au/kT). (7.26)
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Now the relative supersaturation is written,

coexp(Ap/kT) — ¢,

o= (7.27)
Co
= exp(Ap/kT) — 1. (7.28)
Provided Ap < 1 holds, we have
o= — Ap/kT, (7.29)

(e]

a linear relation between the relative supersaturation and the excess chem-
ical potential Ay (the supersaturation).

Normal Growth

The simplest kinetic growth model is that of normal growth. Such growth
occurs on rough, highly kinked surfaces, upon which attachment can oc-
cur anywhere on the surface. The kinetic model is developed by consider-
ing the free energy profile of the solid-medium system.

Sk R

(a) (b)

Figure 7.6: A two dimensional depiction of surface (red blocks) growth by
incorporation of growth unit (blue) into a kink site on a (a) rough surface,
and a (b) Smooth surface.

The rate of crystal growth from solution is limited by the incorporation
of growth material into the surface at kink sites [44], shown schematically
in Figure[7.6] The rate of normal growth is simply the probability a growth
unit approaching the surface encountering an entrance site (a kink), times

the net flux into the kink, times the distance propagated due to inclusion
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of a growth unit [44) 53]],
R =a(a/Ak)*(j+ — j-)- (7.30)

Here a is the dimension of a growth unit (ZnO in our case) and \g is the
mean inter-kink distance, thus (a/\r)? is the (geometric) probability of a
growth unit encountering a kink on the surface, i.e. the likelihood of a
lattice site being kinked. The flux into the kink is j, and the flux outis j_,
and the net flux per kink site is the difference (j. — j_).

The kinetic barrier to kink entrance, associated with monomer rear-
rangement (especially for large molecules), and de-solvation, is additively
collected as E, which is considered to be essentially isotropic between sur-
faces. The kink entrance flux is derived from simple transition state theory
(Arrhenius kinetics) and is taken as [44]

jir = Xa’vexp(—E/kT), (7.31)

where v is the attempt frequency (assumed equal for lattice and interface),
X is the interfacial concentration of monomer, and Xa? is therefore the
probability a growth unit occupying an interfacial site. This expression is
valid when the attachment is single stepped and each occurrence is statis-
tically independent. The dissolution flux is

j- = (1 - Xa*)vexp(—(AH + E)/KT), (7.32)

where (1 — X a?) represents the probability of a vacant solute (growth unit)
shell occurring at an interfacial site, and AH is the enthalpy of dissolution.
At equilibrium the growth rate is zero, and the fluxes are balanced,

j+ = j_,and thus

X.a?
1—X.a3
where X, is the equilibrium concentration of monomer. We now write the

exp(—AH/KT) = (7.33)

growth rate

X,a?
R = a(a/\)*vexp(—E/kT) | Xa* — (1 — Xa?) (1_—Xa3)] . (7.34)
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which under dilute conditions, X,a® < 1, is
R = a(a/\)*vexp(—E/kT) [a*(X — X,)] . (7.35)
The term outside the square brackets is the kinetic factor,
B = ala/\g)*vexp(—E/kT). (7.36)

Finally the normal growth for a given facet, hkl, can be written succinctly

in terms of the relative supersaturation,
Ry = Puwaa® X2 opgy = Buraa® XP¥ Apupa /KT, (7.37)

Here all the anisotropic terms are denoted with the subscript hkl, however,
the kinetic factor is regarded as the principal anisotropic parameter [139].

Equation exhibits a linear dependence on supersaturation. It is
the kind of growth we might expect of an amorphous or rough surface,
and closely resembles the type of equation we used to treat ZnO formation

deposition (c.f. (3.9)),
Q

R=3 (1 - E) . (7.38)

Here () is a reaction quotient (equivalent to X above) and K is the equilib-

rium reaction quotient ((),), i.e.

Qo - Q
R = 7.39
/8 ( QO > Y ( )
or more concisely
R = fo = pBAu/kT. (7.40)

Finally we note that this description can be used to model two kinds of
rough growth: growth onto a ‘thermodynamically” rough surface as used
in this derivation, or alternatively we may think of the surface as being “ki-
netically’ rough. A kinetically rough surface arises when the rate of island
nucleation is so great that the surface is considered to be effectively rough
and thus growth possesses the linear dependence on supersaturation as
above. However, rudimentary crystal growth theory shows that an acti-
vation barrier of order 7?/Ayu must be overcome, and thus such growth
only occurs under conditions of large supersaturation.
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tR facet

Figure 7.7: Schematics depicting

Uste,
—hﬁ g facet growth by propagation of
g | steps
Layer Growth

The alternative to rough growth is layer growth, which produces less de-
fective crystals, and in fact, our experimental data (see Figure sug-
gests the presence of layer growth (at least during the final stages of growth).
Solution growth usually proceeds by a layerwise mechanism [44]; normal
growth from solution is rare [44, p. 108]. This is because solubility is low
(K5 ~ 107'7), and therefore interfacial energy is high [44], which (espe-
cially at moderate temperature) yields low density of kinks on steps. Lay-
erwise growth involves the formation and propagation, or flow, of steps as
shown in Figure requires the presence of steps on a flat surface, and
proceeds by incorporation of material into the step front.

The flow of steps determines the overall facet growth rate (see Figure

according to
R= (ﬁ) X (7.41)

As
where \g is the mean distance between steps, h is the step height, and v is
the step velocity. The step velocity term takes the same form as the growth
rate described above for normal growth. Thus,

vs = a(a/Ax)(js — j-) (7.42)
= Bga®X,0. (7.43)
Aside from the geometric factor, i/ \g, the only difference is that the monomer

incorporation is occurring along a line (step edge) rather than at a surface.

The kinetic factor for layer growth is,

Bstep = a (%) vexp (_kET) : (7.44)
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Finally, we have for layer growth

[ a [ a Ap
R = ()\_S) 6SG3XOO' == ()\_S) 6G3Xo (l{j—T) . (745)

The key quantities in (7.45) and (7.44) are the activation barrier, E, the
mean inter-step distance, \g, and the mean interkink distance, \g.

The Terrace Length, \g

Burton, Cabrera and Frank [140] (BCF) realised that screw dislocations
provide a perpetual step source, thus bypassing the need to overcome a
critical supersaturation for layer growth. Layer growth can occur at low
supersaturations and can therefore be modelled without needing to con-
sider complex cooperative effects associated with high adatom densityf]
BCF [140] found an approximate relation between the critical radius, r.,
the radius above which it is favourable for a disc shaped seed to grow,
and the distance between concentric rings of a growth spiral, Ag. The rela-
tion is [44]

Ag ~ 19r.. (7.46)

The critical radius arises from consideration of the free energy of formation

of a circular disc and is expressed,

Vo

— 7.47
A 7.47)

Te =

where V' is the growth unit volume, o is the surface energy of the circular
disc face (the step face), and Ay represents the supersaturation.
Utilisation of the layer growth kinetic model relies on being able to
estimate the anisotropic parameters, g, the mean inter-step distance, and
Ak, the mean inter-kink distance. It has been shown [141)}, [142]] that both

parameters are strongly related to the average kink free energy, ¢

’Today many numerical and atomistic simulations focus on the dynamics of coopera-
tive entities such as small islands (dimers, trimers, etc).
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(a) (b)

Figure 7.8: Schematic showing how a kink can be formed from a step.
(a) Shows a step with energy ¢ per characteristic area (yellow), while (b)
shows a kink forms by extrusion of part of the step with energy 2¢x ~
b5 + ¢% (red). At the kink two differently oriented step fronts meet.

The Kink Energy

Here we look more closely at what the kink energy means in the context of
circular step propagation. The step energy, v2* is the work per unit length,
a, to form a step on a flat surface. Likewise, the kink energy is the work
required, per unit length, to form a step on an existing step, illustrated in
Figure The case illustrated in Figure |7.8|illustrates the formation of a
kink (with energy ¢;/), by formation of a y-oriented step on an z-oriented
step. The energy of the construction per unit length can be decomposed

into steps (S) and edges (E)

207 = ¢S + 9% + OF + ¢ (7.48)

where ¢7 is the step with front facing toward the x-direction, ¢% is the step
with front facing toward the x-direction, ¢}, is the convex edge, and ¢
is the concave edge. The contribution of edges per unit length is small
compared to the step faces, and are therefore neglected, giving

20K = G + Py = Z G Where T = {Z,7}. (7.49)
iel
Spiral growth requires the formation and transit of kinks around the entire

circumference of the spiral, which allows us to consider the average kink
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energy of a crystal facet, $"*'. Repetition of the operation of step formation

on an existing step over a single revolution yields,

n@it =" ¢y, whereT = {fiyera}, —T <0 <7, (7.50)

i€l

and 7y is the step front normal at angle 0. In other words, the average kink

energy equals the average step energy, o' = ¢lH = ¢,

Key Parameters: \g, A, QE

Having defined the average kink energy, and its relation to the step energy
we investigate how it relates to the anisotropic kinetic parameters, \g, and
K.

First we consider the inter-step distance g, which, under spiral growth
is proportional to the critical seed radius, Equation (7.46). In turn, the crit-
ical radius is really an effective critical radius that depends on the average
free energy of the step front per unit area, ¢/a?. Thus from

a*p  ag
= = — 7.51
and, _
19a¢
~ . 7.52
As AL (7.52)

The critical radius, and hence the interstep distance, is proportional to the
average kink energy.

Next, we consider the inter-kink distance \?*. The average distance
between kinks on a step is [140],[44, p. 24]

Ak =a {1 + 1exp (%)1 : (7.53)

which in the limit A\ > a reduces to

a/ Ak = 2exp (_l;iT) . (7.54)
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The probability of a kink along a step is the Gibbs function for the average
kink energy.
Substitution of and into the surface growth rate equation for

layer growth (7.45) gives,

3 2
_ @ X.6Ap° (7.55)
9.5kT ¢
where _
Bk = avexp (——¢ ;TE) : (7.56)

Thus layer growth exhibits a quadratic dependence on supersaturation.

Acquisition of the average step energy is crucial to parameterise the
step velocity equations ((7.55) and (7.56)). The aim of this study is to at-
tempt, for the first time, to acquire them directly using DFT total energy
calculations using supercell models (c.f. Section[6.4.4). Due to the compu-
tational expense of quantum mechanical calculations, although DFT is rel-
atively cheap, we use the minimum possible number of step orientations
to calculate the average kink (step) energy. The steps used to approximate
the kink energy are constructed solely from the low index facets and are
illustrated in Figure

Despite investigating the minimum set of steps, this study requires a
great deal of calculation and analysis before step energies can be obtained.
Analysis requires calculation of both bare and hydrated surfaces, both flat
and stepped. The surfaces must be converged with respect to the param-
eters used for a typical surface: the slab thickness, large enough planar
area, but also the lower and upper step length, and the length of the step
rise (the step face), as well as conventional parameters such as k-points

and energy cut-offs.

7.5 ZnO Bulk Structure Convergence

For consistency we must represent the ground state bulk energy as best we

can within the bounds of our calculational set-up. The first step in doing
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e o

(a) (b) (©)

(d) (e) ()

Figure 7.9: (a) Illustration of the symmetrically independent faces required
to describe a coarse average kink energy on hexagonal columnar ZnO.
The beige face is the only symmetrically independent step on the {0001}
faces, whilst the {1010} require three steps due to the polar nature of ZnO
in the ¢ direction. The green step points in the [1010] direction, red in
the [0001], and purple in the [0001] direction. Sections of the unique steps
considered in our studies to calculate the average kink energy from the
lowest index step orientations are represented in (b)-(f), in which the first
indice is denotes the facet whilst the second denotes the step rise direction.
The basal steps (b) (0001) — (1010), and (c) (0001) — (1010), and the lateral
steps (d) (1010) — (0001), (e) (1010) — (0001), and (f) (1010) — (1010).
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DEFT calculations is to ensure that the quantity of interest (in our case the
energy) is invariant with the k-point grid [115, 143]. Using a converged
energy cut off (396.0 eV) we found energy-k-point convergence (Figure
was reached using an automatically generated gamma centred mesh
with a density of 11 x 11 x 11 which corresponds to 216 k-points in the first
Brillouin zone.

The convergence procedure for the bulk cell dimensions is very impor-
tant for the calculation of surface energies. The importance can be illus-
trated using the relation used for calculating the surface energy o using
slab models,

Esurf
2A

g =

where Esurf = Eslab — NEbulk- (757)

We see that the error associated with the bulk calculation is multiplied by
the slab size N, and because the surface total energy is a small number ob-
tained from two large numbers, the absolute error is large. Also, in cases
where the cell dimensions do not greatly influence the total energies (shal-
low energy volume surface), significant uncertainty in the surface free en-
ergy can result from small variations in the cell dimensions that define the



CHAPTER 7. A STUDY OF ZNO USING DFT 168

surface area. It is therefore very important that the bulk cell dimensions
are as accurate and consistent as possible. The type of functional used also
makes a difference, as shown in Figure We see that the LDA underes-
timates the lattice constant @ by c.a. 1.5 % whereas the GGA overestimates
it by a similar amount. However, in most cases we are interested in quan-
tities obtained from the differences between two or more calculations, so

the discrepancy between functionals is much more subtle.

0.040

— GGA
— LDA ||
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0.06 |- -
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E(Zn0) — E

o002 L i

001 |- -

0,00
3.15 3.20 325 3.0 345

Figure 7.11: Isotropic volume scan with structural relaxation at each vol-
ume using LDA (Ceperley-Alder [144]), and GGA functionals (Perdew-
Wang 91 [145]). The curves are offset by their respective minimum total
energies: E,,;,(Zn0O), -10.63 eV for the LDA, and -9.087 eV for the GGA.

The conventional way to converge the bulk cell dimensions is to isotrop-
ically vary the bulk cell volume, and relax the wavefunction only [143].
The cell corresponding to the volume-energy minimum is then structurally
relaxed to obtain the converged bulk structure. Alternatively, provided

the unit cell is not prohibitively large, the structural relaxation may be per-
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formed at each volume. Figure[7.1T|was produced using the latter method.

For calculations on hexagonal cells, Pulay stress, stress arising from
anisotropic change in the cut-off energy due to change in cell volume, can
be problematic. The problem is avoided if the unit cell volume is kept
fixed, but change in the atom positions and cell shape are permitted. The
minimum energy structure is found by performing a set of fixed volume
relaxations. Because of the cell anisotropy (a # c) it is necessary to con-
verge the energy with respect to the (a, c) coordinate rather than simply
the a parameter with fixed ratio, c/a.

We performed relaxations over a range of ¢ and a values. The conven-
tional procedure is to vary the structural parameter, then relax the wave-
function only, to find the minimum energy cell parameters [143]. Once this
is done an accurate full relaxation is performed to determine the ground
state structure and properties. We compared the conventional procedure
with a more rigorous convergence strategy in which the full relaxation
was performed at each coordinate. Indeed, the need for such care is sup-
ported by recent work on hexagonal Zn metal in which three minima were
found on the c-a surface [146]. We performed the calculations using the
atom positions found in the literature, as well as those determined from
the isotropic minimisation mentioned earlier (Figure [7.11).

The electron-only relaxations of the literature cell suggested a struc-
ture with relatively large ¢/a ratio (Figure[7.12a). However, we found that
when full relaxation was performed at each (a,c) coordinate, instead of
mapping an energy well, an energy valley was obtained, shown in Fig-
ure The valley topology is accompanied by significant compression
along the c-axis. Replication of the conventional c-a convergence using
the energy-volume minimised structure (see Figure with electron-
only relaxation suggested a moderate to low c/a ratio, as shown in Figure
However, as with the previous case, full relaxation resulted in a
valley energy-cell vector topology, and c-axis compression (Figure [7.12d).

Given that the volume at each coordinate is fixed, and there is little
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Figure 7.12: Contour plots (in eV) showing the various (c, a) convergence

tests performed using either electron-only relaxation or fixed volume,

free shape atom position, structural relaxation (ISIF=4) at each (c,a). (a)

Electron-only using literature cell. (b) Structural relaxation of literature

cell (c) Electron-only relaxation of the unit cell obtained using the conven-

tional isotropic energy-volume convergence, and (c) Structural relaxation

executed at each (c, a).
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change in the magnitude of the @ vector, the only way volume can be con-
served is if the angle ~, which subtends @ and b, varies. Thus we expected
a unique vy for each c-a structure. Indeed this was found to be the case, as
shown in Figure which shows increasing c¢/a ratio accompanied by
an increased -, which produces a diminished basal area.
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Figure 7.13: (a) Contour map of /4 — 7o, the v angle in the relaxed struc-
ture versus the un-relaxed cell. (b) A plot of V,ciax — 7o, the v angle in the
relaxed structure versus the un-relaxed cell, against the cell anisotropy for

a specific |al.

Ultimately, for use in further studies of surface energies, we chose
the structure obtained from full relaxation of the minimum determined
by Figure which yielded, a = 3.283 A, ¢ = 5309 A, u = 0.379 A,
and Ez,,0, = —18.17eV (-9.087 eV per formula unit). Table shows
our structural results to be consistent with the latest published results
[132, 133]. We can calculate the free energy (heat) of formation of ZnO
using

AG = E}.o = Ezmo — Ezm — L Eo,. (7.58)

After performing structural relaxations on both hexagonal Zn ( eV) and
face centred cubic Zn ( eV), and a supercell relaxation on O, ( eV), we
calculate the free energy of formation to be -3.06214 eV (-295.412 k] /mol),
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which compares well with the result of Kresse et al [132] (-3.04 eV) and
reasonably well with the experimental value of 318 k] /mol [40] (7 % error).

Table 7.1: ZnO data found in the literature. The percent deviation from

experiment [124] is bracketed.

Author Data Type a(A) c(A) u (A) lc|/]al tot. err. (%)
Cooke LDA [147] 32(15) | 51609 | — 1.612507) | —
Meyer LDA [133] 3.193(1.8) | 5.163(0.8) | 0.3783(1.1) | 1.617(0.9) 4.6
PBE [133] 3.282(1.0) | 5.291(1.6) | 0.3792(0.9) | 1.612(0.6) | 5.2
Kresse PW91 [135] 3.282(1.0) | 5.3092.0) | 0.378(1.2) | 1.618(1.0) | 5.2
PW91 [132] 3.250(0.0) | 5.207(0.0) | 0.375(2.0) | 1.602(0.0) | 2.0
PW91 [148] 3.270(0.6) | 5.218(02) | 0.3822(0.1) | 1.596(0.4) | 2.2
Claeyssons
EXPT [148] 3.253(0.1) | 5.213(0.1) | 0.3820(0.1) | 1.603(0.1) 0.3
Mackay PWI1 3.283(1.0) | 5.309(2.0) | 0.379(1.2) 1.617(1.0) 5.2
LDA 32(15) | 5.16(09) | 0378(1.2) | 1.61250.7) | 4.3
Abrahams | Measured [124] | 3.250(0.0) | 5.207(0.0) | 0.3825(0.0) | 1.602(0.0) 0.0

7.6 Surface Energy calculations

Surface energy calculations are particularly challenging due to the large
cell size required to emulate bulk material and surface structures. High
accuracy is required to minimise the error associated with calculating sur-
face energy, a small quantity, from summation of large quantities, bulk and
supercell energies. Before we can begin to look at, and compare, the en-
ergies of surface structures necessary for growth, such as kinks and steps,
we must determine the supercell dimensions suitable to use as a basis for
further calculations. The surface must be converged with respect to the
vacuum spacing and the slab thickness. In the case of polar surfaces, full
convergence using standard techniques (without customised pseudopo-
tentialg’) requires larger supercells than we can reasonably calculate with

8Pseudopotential customisation is an involved process as much validation work must
be done before the pseudopotential can be used. The widely used pseudopotentials have
a reliability and consistency due to their widespread use.
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our computational resources. We consider an acceptable criterion for sur-
face energy convergence to be a variation of less than approximately 10%
from our most accurate calculation of a given surface energy.

Flat surfaces are the simplest type of surface, and provide a good basis
to look at surface energies and surface stabilisation effects. In the follow-
ing sections we present our investigation of the surface energies of the
lowest index polar and non-polar surfaces in the bare and hydrated states.
Much of the work involves finding the minimum acceptable supercell di-
mensions. Unlike the calculations for the bulk, it is essential to relax the
ionic positions at each (Neeu, Nygewum) coordinate. The reason for this is
that when considering the polar surfaces the surface rearrangement can
play a large part in the surface stabilisation [133| 131], and thus if relax-
ation is permitted smaller supercells can satisfy the convergence criteria.

Investigation of more complex surface reconstructions such as those
that include vacancy or island formation requires very large supercells to
model [132]. However, under conditions of abundant H and O it was
found that the flat hydrated surface was more stable [132]. Given that
we are interested in such a system (the aqueous system) we need not in-
vestigate the effect of massive surface reconstruction. The flat supercell
convergence calculations were repeated with H and OH, attached to the
terminal (0001)-O, and terminal (0001)-Zn respectively.

7.6.1 Bare Non-Polar Surfaces

We begin with the simplest case of a bare, non-polar ZnO surface (Fig-
ure [7.14). We found the non-polar (1010) surface to be insensitive to the
changes in N..; and Nycuum- The convergence behaviour shown in Figure
exhibits variation of 1.8 % (55.1 - 56.1 meV /A2, 0.883 - 0.899 J/m?)
from the largest supercell (Figure with thickness of 10 unit cells
and vacuum spacing equivalent to 8 unit cells, to the smallest supercell
(Figure with thickness four and vacuum spacing of only four cell
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(b) The smallest non-polar super-
cell, (N, = 4, N, = 4)

Figure 7.14: The largest and smallest supercells used to investigate con-
vergence of supercell parameters for the non-polar (1010) surface.

equivalents. The results compare well with other work, using the GGA
functional [133, [149].

The surface is completely unresponsive to changes in the vacuum spac-
ing, as expected, due to the surface possessing no dipole and net zero
charge (Tasker type 1) and thus the surface periodic images do not inter-
act. The surface displays a very small dependence on supercell thickness,
because as the slab thickens the inner core atoms become more fixed in the
bulk-like geometry which limits their ability to contribute to stabilising the

under-coordinated surface.

7.6.2 Bare Polar Surfaces

The polar surface calculations proved more interesting than the non-polar
surfaces, as one might expect given that polar surfaces are commonly used
as catalysts and sensors, and have greater reactivity than non-polar sur-
faces [127]. By looking at the supercell convergence behaviour and com-
paring electron-only (wavefunction) relaxations to electron and atomic (struc-
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tural) relaxations, effects arising from the polar nature of the surface are
encountered.

In the electron-only relaxations, we found the surface energy to be sig-
nificantly stabilised by low vacuum spacing (2-4 bilayer equivalents) for
all supercell thicknesses (Figure [7.16)). This indicates that at low vacuum
spacing, through space charge transfer is the dominant relaxation mech-
anism. At larger vacuum spacing (>4 bilayer equivalents) the vacuum
spacing dependence is diminished and a linear dependence on slab thick-
ness is observed. The larger supercells experienced a steeper and pro-
longed energy destabilisation associated with increased vacuum spacing.
This is most probably due to a reduced ability to compensate the diver-
gent electric field by transfer of charge through the core in the thicker su-
percells. In other words, for larger slabs, through-vacuum stabilisation
plays a greater role than for small slabs in which through core stabilisa-
tion is facile. The surface energy deviation from the largest supercell to
the smallest is 5.5 %, and about 2 % if the close (N, < 4) supercells are
neglected.

The full structural relaxation (electronic and atomic relaxation) conver-
gence (Figure results in a reversal in behaviour and the slab thickness
dominates the energy variation. The vacuum spacing has little influence
on the surface energy, suggestive of stabilisation dominated by atomic re-

arrangement rather than through core or space mechanisms. Structural
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relaxation clearly allows more effective dipole cancellation. At large slab
thickness there is some effect at very small vacuum spacing, similar to the
electron-only relaxation. Thus even with very large cells some through
core relaxation occurs. In other words, because energy increases when vac-
uum spacing increases some through space must have been occurring, al-
though it is very small vacuum - only 2-3 layers. The surface energy varies
12.5% from the largest cell, twice that of the electron only case, however
the absolute energy is lower, in agreement with improved stabilisation il-
lustrated by diminished vacuum dependence above. The larger variation
is associated with the smaller slabs being able to rearrange to a greater ex-
tent than the larger cells in which the core atoms experience a more rigid
bulk-like environment, demonstrated in terms of the small layer spacing
(c.f. Figure[7.5), Ry, in Figure

The contribution of core atoms to the (N.,/N,) convergence was inves-
tigated by comparison of convergence surfaces using (9,5) slabs with core
atom movement forbidden. Three illustrative scenarios are shown in Fig-
ure slabs with all atoms fixed, the outer 2 layers free (fixed core),
and all atoms free. The fixed core free surface exhibits convergence be-
haviour intermediate to the totally fixed and totally free. For investigation
of surfaces, in which surface reconstruction only effects the outermost lay-
ers, fixed core slabs better mimic the experimentally observed behaviour

than the all free case, which is better suited to finite or molecular sized
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crystals. In the macroscopic limit the core atoms have very limited ability
to rearrange, thus the greatest error arises from the electronic interaction
between the two surfaces.
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Figure 7.19: (N,, N,) convergence surfaces (in eV/A?) for (a) fixed atoms
(cleavage), (b) fixed core, free outer two layers, and (c) all atoms free to

move.

The relaxation energy AFE,.;, defined by
EsurfAsurf = Ega — N Epyi, + AErel (759)

where E,, is the total energy of the unrelaxed truncated crystal, shows
how structural modification contributes to surface stabilisation. Figure
shows the relaxation energy for three supercells: full relaxation, outer
three layer relaxation, and outer two layer relaxation. The relaxation sur-
faces are insensitive to vacuum thickness, justified above by more effective
dipole compensation and hence less through space interaction. Secondly,
they show that the smaller slabs benefit the most from the allowance of
atomic rearrangement.

Fixing the core atoms and relaxing the outer two layers yielded slightly
higher surface energy than the full relaxation. However, the fixed atom
case is probably more realistic because in the macroscopic limit the bulk
is rigid and unable to contribute to surface relaxation. The validity of re-
laxing only the outer two layers is supported by the confluence of all the
surface energies at higher (N, or N,) (shown in Figure [7.2I). Although
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it is possible that the fixed core may introduce some artificial effects not
present in the real system, e.g. elastic strain.

As a compromise between accuracy and computational time, we chose
the 9-5 supercell (9 ZnO bilayers and 5 bilayer equivalents of empty space),
with the outer two layers fixed, as the basis for further, and more com-
plicated surface structures. The cleavage energy is 222.0 meV/A? (3.56
J/m?), the relaxation energy is -23.6 meV/A? (-0.38 J/m?), and the sur-
face free energy is 199.2 meV/A? (3.30 ] /m?, which varies by 1 % from the
largest supercell investigated (11-7)). The result compares very well with
recent studies using GGA functional [133], which found a cleavage energy
of 212.0 meV/A? (3.4]/m?), with a relaxation energy of -17 meV /A2 (-0.25
J/m?).
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Structural Analysis

From the energy convergence study in the previous section we concluded
that the (9, 5) slab is a suitable basis for the construction of hydration and
step models. Now we take a closer look at the geometric changes asso-
ciated with relaxation, using the (9,5) as the representative case. Struc-
tural relaxation of the supercell models resulted in a decrease in the bi-
layer thickness (R; decrease) and an increase in the bilayer spacing (R,
increase). The structural relaxation is essentially a ‘graphitisation’, and
works to decrease the layer dipole (rearrangement to a Tasker type 1 sur-
face).

It is clear from Figure that most of the relaxation occurs in the
outer two layers. Figure shows that the behaviour of the outer two
layers where most relaxation occurs is very similar irrespective of whether
the core is fixed or free. The extent of relaxation in the outer layers is
comparable regardless of slab size. In other words, the outer two layers
behave the same regardless of slab size for given number of free surface
layers (Figure[7.23).

The structural analysis indicates that the structural variation of the
(9,5)-slab is sufficiently converged, and that fixing the core atoms pro-

duces more realistic results.

7.7 Hydrated Surfaces

Having determined the bare supercell dimensions required for consistent
results, we turn our attention to the energetics of the low index surfaces
in a chemical environment. We investigate the effect of hydration from a

thermodynamic perspective on the non-polar and polar surfaces using the
Equations (7.15)) (7.19) and (7.22) derived in Section
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Figure 7.22: Bar plots showing the deviation from bulk structure upon
relaxation of the (9,5)-slab, in terms of R; and R; (a), and atom position
(b). Full, all atoms realxations are coloured blue, outer 3 layer relaxations

are red, and outer 2 layer relaxations are coloured green.

7.7.1 Hydrated Non-Polar Surfaces

Our interest in the aqueous growth of ZnO crystallites encouraged us to
look at the effect of hydration on the ZnO surfaces. The ZnO non-polar
(1010) surfaces were hydrated by replacement of a terminal Zn with H
and the complementary O with OH (see Figure [7.24). The attachment of
cleaved water onto the (1010)-ZnO surface, has been observed under hu-
mid vapour conditions using STM, and recently found to be more stable
using DFT [134].

The convergence study was done by performing relaxations on super-
cells constructed from repetition of four to seven unit cells in the @ direc-
tion, each with a vacuum spacing equivalent to two, three, four, and five
unit cell equivalents of empty space, a total of sixteen relaxations. The
variation of the surface free energy, calculated using Equation at
L0 = Em,0, was 6.4 % (-12.7 to -11.9 meV /A2, -0.204 to -0.190 ] /m?). A

second kind of hydration in which a single water molecule is split between
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Figure 7.23: N, = 5 series, (6, 5)-slab (red), (7, 5)-slab (green), (8,5)-slab
(blue), (9, 5)-slab (purple), (10, 5)-slab (black), (11, 5)-slab (cyan). The left
column (a, ¢, e) shows the movement of the individual atoms (Zn = filled,

O = non-filled), and the right column shows the change in the layer dis-
tance (R; = filled, and R, = non-filled).
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(a)

(b)

Figure 7.24: Ball and stick models of the (1010) supercells where Zn is
blue, O is red, and H is white. (a) The bare supercell, and (b) the hydrated
supercell created by replacement of a terminal Zn with H and the comple-
mentary O with OH.

the two surfaces, resulting in partially hydrated surfaces, as shown in Fig-
ure was also investigated. The typical surface free energy (again us-
ing 1,0 = Ew,0) was found to be 106.5 meV /A2 (1.75 ] /m?), significantly
different to the fully hydrated case.

The surface free energy dependence of the two apparently very dif-
ferent hydrations on the chemical potential of the water containing phase
is shown in Figure We see that the less hydrated surface becomes
more favourable at more negative Ajiy,0, where water molecules prefer
the vapour to the surface. Conversely, at higher vapour potential, the more
hydrated surface is preferred. At some point of high vapour chemical po-
tential, the surface free energy becomes negative, which would drive hy-
droxide formation. Investigation of the ‘dissolution” of the surface would
require a bulk hydroxide model, rather than the surface hydroxylated sur-
faces used in this study, to accurately represent the energetics. The be-
haviour is repeated in the plot of binding energy against water chemical
potential Figure which shows movement towards negative binding
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(a)

(b)

Figure 7.25: Ball and stick models of the (1010) supercells where Zn is
blue, O is red, and H is white. (a) The bare supercell, and (b) the hydrated
supercell created by addition of H on one face and OH on the other.

energy free energy at higher chemical potential.

7.7.2 Hydrated Polar Surfaces

In this section we look at the effect of surface hydration on the polar Sur-
faces. To investigate partial coverages we used (9,5) basis slabs with a 2 x 2
surface. First we compare the effect of surface hydration such that the sum
of standard reference valancies is zero. The stoichiometry of such struc-
tures (shown in Figures is constrained by 2Np — 2Nz, — Ny =
0, and according to Equation (7.15), the free energies of these model struc-
tures are independent of ;1. We call such surfaces 'neutral” surfaces. We
also look at the surface free energy as a function of ;1 and (1,0, for all sur-
face types, to map out a stability diagram. Finally, we look at the pH de-
pendence of both the positively and negatively charged surfaces in which
2No — 2Nz, — Ny # 0 using Equation Examples of charged and
neutral polar surfaces are shown in in Figure
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Figure 7.26: (a) The surface free energy and, (b) the water binding energy,
of singly (blue) and doubly (green) hydrated non-polar slabs in the vicinity
of the ideal gas state of H,O.

Neutrally Hydrated Polar Surfaces

We begin our discussion by commenting on the convergence of the slab
models. The full relaxation over N.:6-11, N,: 3-7, has variation of 1.5 %
(-10.8--10.9 eV/A?), and the fixed core convergence has 1.8 % (-10.7--10.5
eV /A?), thus, we continued using the (9,5)-slab as our standard reference
structure.

As with neutrally hydrated non-polar surfaces we consider the surface
free energy as a function of the water chemical potential in the vicinity of
the ideal gas environment. The free energy plot (Figure [7.28a), shows a
preference for sparsely hydrated surfaces at lower water chemical poten-
tial, and indicates an eventual preference for denser hydration at higher
potentials. Unlike the non-polar case, the plots show a preference for the
50% coverage surface over the 25% surface coverage at higher water chem-
ical potential. The behaviour is repeated if we consider the binding energy
described by Equation and shown in Figure Negative binding
energy indicates a preference for water attachment. The preference for 50
% hydration can be understood by recalling that the surface is polar, and

particular reconstructions or chemical reactions are optimum for cancella-
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(b) (©

Figure 7.27: Ball and stick (Zn=blue, O=red, H=white) models of the su-
percells used to study the energetic influence of surface hydration. (a)
Full hydration, (b) 50% hydration, (c) 25% hydration, (d) 50% hydration
on (0001)-Zn and full hydration of (0001)-O, (e) 50% hydration on (0001)-
O and full hydration of (0001)-Zn, and (f) full protonation of (0001)-O and
75% protonation of the oxylated (0001)-Zn surface. Slabs (a)-(c) are neutral
and (d)-(f) are charged.
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tion of surface charge. Each terminal Zn possesses a net positive charge
of 0.5¢, therefore a (2 x 2) surface possesses a net charge corresponding
to 2 electrons, 2e. Attachment of two OH groups is sufficient to neutralise
the excess charge and hence stabilise the surface. An equivalent argument
can be made for the terminal O atoms, and their interaction with two H

groups.
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Figure 7.28: (a) Surface free energy, and (b) water binding energy, of the
neutrally hydrated polar surface.

Comparison of the free energy of the hydrated polar and neutral sur-
faces is shown in Figure The plot indicates a preference for the min-
imally hydrated polar surface at low water potential, however, as the wa-
ter potential increases, the non-polar surface has greatest stability. From
the greater stability of the non-polar surfaces in the more hydrous envi-
ronment we infer greater stability in the aqueous environment, which is
consistent with the formation of rods, which maximise the area of the non-
polar faces.

Consideration of the equilibrium Wulff shape, characterised by,

vpAp = ynpPANP (7.60)

where v is the surface free energy, A is the area, and the subscripts P and
NP denote the polar and non-polar surfaces respectively, quantifies the
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prediction of large aspect ratio. Using Equation we can calculate the

aspect ratio,
[

:§7

of a hexagonal prism as a function of the water chemical potential. Setting

(7.61)

Qy

the 6 lateral planes to be non-polar,
Anp = 6rl, (7.62)
and the 2 basal planes to be polar,
Ap = 3V3r?, (7.63)

permits the aspect ratio of the equilibrium Wulff shape to be calculated as
a function of water chemical potential by,

_ V3 P

were [ is the rod height, and r is the hexagonal 'radius’ (the distance from
the hexagonal centre to a vertex). Figure shows the dependence of
the aspect ratio (a, = [/2r) on water chemical potential, of a hexagonal
prism with non-polar lateral faces and polar hydrated basal faces. With
increasing water chemical potential the high aspect ratio shape is domi-
nant. We observe that excess water favours the exhibition of non-polar
faces, and thus infer that in the aqueous environment acicular crystals are
the preferred equilibrium shape.

However, it is more likely that the observed growth shape behaviour
is determined by the growth kinetics not the equilibrium Wulff shape [44].
The kinetic growth shape depends on the parameters outlined in Section
the determination of which are the goal of this study. As yet we have
not mentioned the effect of other ions, or even impurity, on the surface en-
ergetics, and therefore growth. Effects of impurity are known to influence
both electrode reactions [48]], and crystal growth [44]. Impurities usually

inhibit electrode reactions and crystal growth by forming stable surface
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Figure 7.29: (a) Surface free energy, plotted against the deviation from the
chemical potential of the ideal gas state of water, of the hydrated non-
polar surface (red), and the hydrated polar surface (blue). (b) The expected
aspect ratio of a hexagonal prism shape rod based on the minimum surface
free energies of the non-polar and polar surface models. The vertical red

lines indicate changes in minimum energy surface termination.

structures or chemical species. Although it would be possible, and inter-
esting, to consider the effect of other growth units (e.g. impurity, or buffer
ions) on the surface, step, and kink energies used in our model, it is be-

yond the scope of this study.

Polar Surface Stability Diagrams

The free energy surface diagrams for the polar surfaces exposed to an en-
vironment containing H,, O, and H,O were calculated for a set of 25
different H/OH surface terminations. Of these, 4 were neutral, 6 were
‘positively charged” (3 x (™!),2 x (™2),1 x (™)), and 21 were negative
G x (TH,5x (72,5 x (7*),3x (71),2 x (7°),1 x (79)). The charged slabs
were constructed in two ways. The first method (‘method 1°), begins with
the neutral bare slab and involved protonation of the (0001)-O surface,
and hydroxylation of the (0001)-Zn surface (‘water splitting”). Surfaces

constructed this way can have terminal Zn exposed to the vapour envi-
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ronment (see Figure for an example). We investigated charge from
+3 to -3 using this method. The alternative method (‘method 2’) begins
with a slab in which the (0001)-Zn face is “oxylated’ by attaching O to each
terminal Zn, resulting in a negatively charged (-8) basis slab. The O ter-
minated surfaces are protonated stoichiometrically, and can have charge
from -8 to 0 (See Figure for an example). In the following discus-
sion each model surface is denoted by a tag of the form nXXXX_sXXXX.
The 'n” denotes the (0001)-O face, and the ‘s’ denotes the (0001)-Zn face.
Each of the four X’s refer to whether a particular quarter of the surface is
hydrated: a "1’ is hydrated, and a ‘0" is bare. Additionally, the method 1
models have an "a’ suffix, method 2 have a ‘b’ suffix, and neutral have a
‘0" suffix. Because the tag counts the amount of H/OH on the basis slab
it can be used to calculate the net charge of each model. The 6 models
shown in Figures [7.27a-f are denoted as: [n1111_s11110], [n1010_s10100],
[n0001_s00010], [n1010_s1111a] 2, and [n1111_s1101b]~*.

’n1000_s1010a’
’n1000_s1110a’ --------
’'n1000_s111la’
'n1010_s1000a’ - - -- -
'n1010_s1110a'
y 'n1010_s111la’
~’'n1110_s1000a’
© ~n1110_s1010a’

-30

15
d muy,o [eV]

d muy [eV]

Figure 7.30: Surface free energy against 11,0 and p g of method 1 hydra-

tion of the polar surface.

The thermodynamic stability surfaces obtained from the model surface
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constructed by the first method are shown in Figure The minimum
energy surface is represented in Figure[7.31a} in which three surface termi-
nations are represented. The coloured squares denote the slab model, and
the surface free energy is indicated by the free energy surface upon which
the coloured squares are projected. The minimum energy surface con-
sists of contributions from 2 negatively charged surfaces [n1000_s1010a] *,
[n1000_s1111a]?, and 1 positively charged surface, [n1010_s1000a] ™!, which
dominates at high ;. The lowest energy surface is that of the fully hy-
droxylated (0001)-Zn surface. The surfaces with a negative free energy
represent surfaces in which formation of the bulk hydroxide may be prefer-
able. However, investigation of such species in beyond the scope of this
study. Omission of the negative surface energy models results in the sta-
bility map shown in Figure|7.31b

The modified stability map consists of contributions from 7 surface ter-
minations, only one of which bears a positive charge. The lowest surface
free energy region is that of higher water chemical potential, and lower hy-
drogen chemical potential. The terminations in this region are dominated
by a high degree of (0001)-Zn hydroxylation, indicating that the hydration
of Zn makes a significant contribution to stability. Conversely, coordina-
tively unsaturated Zn on the surface is energetically unfavourable.

The thermodynamic stability maps obtained by protonating the fully
oxylated basis slab (method 2) are shown in Figure from which we
can see that all terminations have negative surface free energy in much
of the ip,0, pty, domain. The lowest energy surface has the greatest neg-
ative charge ([n1000_s1000b]~°%) whilst the highest has the least negative
charge ([n1010_s1111b]~?) and exists only at high py. Clearly, the nega-
tively charged surface provide the greatest stability.

Finally, we collect the method 1 and 2 stability maps together in Figure
The minimum energy surface consists mostly of the minimally pro-
tonated surface ([n1000_s1000b]~°), and the neutral surface ([n1000_s10000]),
with the positive (n1010_s1000a"") surface prevailing only at high .57. The
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Figure 7.31: The minimum surface free energy against p,0 and py of
method 1 hydration of the polar surface: (a) The complete method 1 set,
and (b) only the positive surfaces.
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stability map constructed by restricting the surface energy to positive-only
values is highly varied (Figure [7.34), and consists of 19 different surface
terminations, of which the majority are derived from the oxylate basis slab
(11). The greatest single contributer is the neutral slab, [n1000_s10000]
which possesses the second highest free energy after the only positively
charged termination, [n1010_s1000a]*! which occupies the high /15y bound-
ary. The neutral surface with 50 % coverage ([n1010_s10100]), makes an
appearance, due to the extra stability associated with dipole cancellation,
at high p1p20. It is difficult to resolve any clear trends about the state of
protonation, although, as with above analyses, the lowest energy surfaces
are those in which terminal Zn exposure is minimised. All surface termi-
nations are within 0.4 eV/A? of one another, and the negatively charged
terminations are all within 0.12 eV /A? of one another.
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Figure 7.34: The minimum positive surface free energy against 11,0 and

i, of method 1 & 2 hydration of the polar surface.
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pH Stability Plots

We have used Equation to calculate the dependence on a given sur-
face model on the pH, shown in Figure from which we can see that
there are more stable structures at basic pH. It is interesting to note that
ZnO has a basic isoelectric point (9.5) which indicates greatest ZnO stabil-
ity (insolubility) at basic pH. The result cannot be directly related to the
formal charge possessed by the surface model, as when the magnitude of
the charge is limited to 3 or less (Figures and [7.35d), the negatively
charged models still yield lower surface free energies on the pH domain.

- [V /A7)
- [eV/ AZ]

(a) Positively charged slabs (2Nz, + (b) All slabs with charges: neutral
Ny — 2No > 0) are colored black, and  (black), |1| (blue), |2| (cyan), |3| (green),
negatively charged slabs (2Nz,, + Ng — |4| (magenta), |5| (red), |6] (yellow).
2No < 0) are coloured red.

- [V /A7
- [eV/ AZ]

© ol < 3. (d) |pl < 3, blue: |p| =1, green: |p| =2,
red: |p| = 3.

Figure 7.35: Surface free energy, v versus pH for the surface hydration
states.
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7.7.3 Summary of Hydrated Polar and Non-Polar Surface
Studies

We have performed a detailed thermodynamic analysis on a comprehen-
sive set of surface terminations. We found that generally the most signif-
icant stabilisation occurred when the Zn surface was either oxylated or
hydroxylated. Comparison of the neutrally hydrated polar surfaces with
the neutrally hydrated non-polar surfaces suggested that high aspect ratio
rods are the favoured equilibrium shape at high water chemical potential,
and therefore we infer that rods will be preferred in the aqueous envi-
ronment. Investigation of charged polar slabs found the surface stability
to favour negatively charged slabs, and such slabs were found to be pre-
dominant at basic pH, consistent with the basic isoelectric point of ZnO. A
detailed study of the effect of surface charging on the equilibrium shape
was not undertaken, nor was the effect of other ions considered. How-
ever, the pH plots suggest that the polar surface is more stable at higher
pH, and therefore rod growth might be less favourable than plate growth

in such conditions.

7.8 Stepped Surfaces

In the preceding sections we determined the dimensions of the slabs used
to build steps that we expect to give consistent results, and studied the
thermodynamic stability of the hydrooxylated surfaces. We found that
chemical modification of terminal Zn produced the most stable structures.
Due to the size of the step models (up to 224 atoms and 3504 electrons),
it is beyond current computational capabilities to perform detailed con-
vergence studies on such large structures. It is also impractical to investi-
gate all surface terminations, so in the study of steps we consider only the
neutral hydration produced by full coverage of (0001)-Zn with OH, and
(0001)-O with H. Note that this is the very beginning of a step analysis in
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which there are many hydrations and defects that could be investigated,
however, similarly to the hydration of the flat surfaces, they will probably
be very close in energy. We present the results of thermodynamic analysis
on the structures that are the ultimate goal of this work due to their impor-
tance with regard to crystal growth. We performed structural relaxations
on slab models representing the five steps types illustrated in Figure
in bare and fully hydrated states.

Due to the inequivalence of the {0001} surfaces, the steps depicted by
Figures and were treated by a single step model, giving the av-
erage values, as was done for the flat surface analogues. Also due to the
inequivalence of the {0001} surfaces it is not possible to resolve the steps
depicted in Figures [7.9d] and [7.9¢| The three bare and hydrated surface
steps used to estimate the steps energies are shown in Figure

Table 7.2: Table summarising step free energies at py,0 = En,o.

Surface Free Energy eV /A?
Step Orientation Bare Hydrated
ba 71.2396 -0.00171
be 69.6378 -0.00303
ca 105.5656 0.0809

The free energy of the step models, calculated using equation at
Lm0 = Eu,o0,1s displayed in Table We can also now perform analysis
of morphology, in terms of aspect ratio (as earlier for flat surfaces), associ-
ated with layer growth whose parameters are determined by the step free
energies of the facets involved. More precisely we look at the ratio of the
surface growth rates described by Equation[7.55/and Figure[7.7]. Using the
same constraints used to obtain Equation we define the rate ‘aspect’

V3 [ Rp
r=— =1 7.65
Ty (RNP> (7.65)
Using Equation we expand as,

_\/3 anp X3 AILNP ? Qf;P QEP_QENP
=3 () () (B) () e () o

ratio as
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(e)

Figure 7.36: The step models used to model the the lowest-index steps
on the polar and non-polar surfaces illustrated in Figure (a) (1010) —
(1010) and (b) hydrated, (c) The average of (1010) — (0001) and (1010) —
(0001), and (d) hydrated, (e) the average of (0001) — (1010) and (0001) —

(1010), and (f) hydrated.
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Figure 7.37: (a) Step free energy, plotted against the deviation from the
chemical potential of the ideal gas state of water, of the hydrated non-
polar surface (red), and the hydrated polar surface (blue). (b) The ratio of

non-polar to polar growth rates based on a layer growth mechanism.

Now if we consider the ZnO growth units to be more or less symmetric,
the equilibrium surface concentrations to be similar, and the driving force
for deposition to all be similar, then we can write,

o \/g Q_SP ggP - Q_SNP

from which we see the effect of the layer growth mechanism on the aspect
ratio is to add an exponential dependence on the difference in step free
energies of the surfaces. The aspect ratio as a function of ;15,0 is shown
in Figure It shows a behaviour similar to Figure obtained us-
ing the equilibrium Wulff structure, except the extent of the preference for
high aspect ratio towards the more hydrous environment is much greater.

7.9 Summary

In this chapter we have used DFT calculations to look at the macroscopic

phenomena associated with ZnO crystallites. We proposed two ways in
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which the preferred shape of a hexagonal ZnO crystal might be approxi-
mated using DFT, based on surface energies (Wulff) or step energies (ki-
netic). The surface energies of the prevalent faces were calculated and
their dependence on the chemical environment was investigated. The sur-
face free energy dependence on the chemical environment was used to
predict the equilibrium crystal shape as a function of the water chemical
potential, the humidity. It was predicted that a high aspect ratio would
be preferred, consistent with rod formation. A comprehensive set of po-
lar surface hydration states was investigated, and their dependence on the
environment studied. A up, pp,o stability diagram was constructed from
which we concluded that the exposed terminal Zn was particularly unsta-
ble, and that generally the negatively charged slabs were more stable. The
stability of the negatively charged slabs was demonstrated again in the
context of ‘pH’ studies, which found that the basic (negatively charged)
surfaces dominate at high pH and are most stable overall. Next in terms
of pH-stability the acidic (positively charged) structures which are pre-
dominant at low pH, and finally the neutral slabs, which prevail around
pH?7 are found to be the overall least stable. Thus, we expect the needle-
like growth to be tempered at basic pH, exacerbated at neutral, and to be
moderate at acidic pH. Encouragingly, our prediction is consistent with ex-
perimental results obtained under aqueous conditions [150} 151] in which
rod- and needle-like crystals are formed at neutral rather than basic pH
conditions.

We calculated the step free energies for the low index faces, and used
the results with our thermodynamic treatment and a model of crystal growth
kinetics to predict the shape dependence, in terms of a hexagonal prism
aspect ratio, on the water chemical potential. The result was a far greater
preference, exponential in fact, for the high aspect shape in a more hy-
drous environment. Thus in the non-equilibrium growth regime we pre-
dict a preference for rod growth. However, layer growth usually occurs at
lower supersaturation (of growth unit, ZnO), and is therefore more likely
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in the later stages of growth when concentration gradients have settled.

To perform these analyses, we had to carry out convergence tests on the
ZnO bulk unit cell, the non-polar (1010), and polar {0001} surface models
in both the bare and hydrated states. The stability diagrams and plots
required calculation of numerous different surface terminations, and the
steps required coercing very large and initially unstable supercells to con-
verge without exceeding the code’s ability to reach a finite and reasonable
result.

We have developed a model to predict the morphological behaviour of
hexagonal prismatic crystals as a function of the multi-component chem-
ical environment, from first principles. However, the work could be re-
fined both in terms of the DFT calculations, and the details of the crystal
growth model. The accuracy of the morphological predictions could be
improved by performing calculations on a larger set of step orientations,
and by using step models with larger terrace length, and slab width. The
model was demonstrated using only two unique facets, and a fixed crys-
tal shape (hexagonal prism), however, consideration of more facets could
allow prediction of and evolution of the crystal shape.

From a crystal growth theory perspective, the trend in crystal growth
theory is away from the sharp interface models, such as that used here,
to diffuse interface models [152} [153] known as phase field models. Phase
field models implicitly include corrections for surface curvature (via the
Gibbs Thomson equation), anisotropy and departures from local equilib-
rium (interface kinetics) within the diffuse interface [153]. Such methods
are advantageous in that the coupling between regimes, such as macro-
scopic transport, and surface processes are treated implicitly. The treat-
ment of complicated surface features such as islands, small surface en-
sembles, vacancies, and the various modes of interaction between these
features is also studied using simulation with kinetic Monte Carlo, and
molecular dynamics methods. The coupling of such atomistic simulations

with larger scale continuum models - multiscale models - permits the for-
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mulation of continuum scale models with atomic level accuracy.



Chapter 8
Conclusions

Our results fall into two main categories: macroscopic transport mod-
elling, and microscopic crystal growth. The macroscopic transport model,
electrolytic transport in combination with surface chemistry boundary con-
ditions, was successful in qualitatively replicating the experimentally mea-
sured dependence on applied potential. The transport modelling pro-
duced a number of interesting results. The growth is limited by OH™ con-
centration, not Zn?*. Rapid OH™ production results in lower growth rates
due to less efficient use of O, stemming from loss of OH™ to the upper
boundary. The ORR reaction appears to proceed on both the electrode and
the crystallite, with an applied potential rate dependence in both cases. It
is likely the crystallite and electrode possess varying dependence on po-
tential. In this work, the abrupt growth transition is attributed to the cessa-
tion of lateral growth, and the sharpness of the transition depends on the
rate of vertical growth at transition time. The notion that increased concen-
tration results in lower density is supported, albeit weakly, by our simula-
tions, rather than the converse in which increased concentration produces
an increase in seed density. An analysis of the nucleation and early growth
would benefit our understanding of this aspect of the crystallite growth.
The microscopic crystal growth model, based on quantum mechani-
cal calculations of the total energies of the low index surfaces and surface

203
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features, predicted a preference for nanorod over nanoplate growth. For
growth close to equilibrium (where the crystal maintains its Wulff shape),
at low humidity an aspect ratio less than one is energetically preferred,
however, at higher humidity, very large aspect ratio is preferred. Thus, the
model to some extent predicts the presence of nanorods and nanoplates,
both of which are observed experimentally. The preference for high aspect
ratio was exacerbated for the kinetic growth model. We interpret higher
humidity to be more like the aqueous case, however, this is not necessarily
the case and the model would benefit from a more detailed treatment of
the effect of bulk water at the surface.

The results of our computational study of the ZnO nanorod film elec-
trodeposition system are promising in that both the macroscopic electrolytic
transport based, and the microscopic DFT based approaches yielded re-
sults consistent with the experimental observations. The transport re-
sults are particularly gratifying in that we were able to qualitatively repli-
cate the experimental dependence on concentration and applied potential
within the ranges that produce the preferred nanorod films. The outcome
of the DFT results was also very rewarding, given the clearly ambitious
nature of extrapolation from the electronic regime to the macroscopic one.

The work presented here represents the first steps of a multi-scale ap-
proach to electrochemical crystal formation, and much work is still re-
quired to produce a consistent robust system. However, we have made
significant inroads in terms of both methodology, and code implemen-
tation. Our code has many desirable characteristics, not least due to its
object-oriented structure, and features implemented to maximise efficiency
such as system compression and sparse solving. One of the most diffi-
cult parts of modelling is the development and testing of a computational
problem solving environment. Our code was devised with the extension
by incorporation of detailed boundary models that feed parameters di-
rectly to the transport model in mind.

The transport model did little to accommodate the growth shape of the
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ZnO crystals. Throughout the simulations the aspect ratio of the crystallite
was free to change but its shape was constrained to be rectangular. In other
words, we neglected to treat the effect of surface inhomogeneity, such as
roughness, and curvature within the boundaries of the electrolytic trans-
port model. In the context of a multi-scale system, the work presented
here lacks an investigation of a linking regime, a hand-shake” model. The
Kinetic Monte Carlo approach has been successful for a similar system,
the electrodeposition of copper [85] 84, 50], and thus we suggest future
development along a similar vein.

In terms of the work presented here, there is much room for improve-
ment, especially in the treatment of the the solid-electrolyte boundaries.
Two improvements would greatly improve the validity of the inferences
made in this work. First is associated with the determination of a relation-
ship between applied potential, surface coverage, and crystal size. Effec-
tively a way to capture the way charge and polarisation are distributed
in the system. On this front, a relation between the applied potential and
the surface capacitance of both the electrode, and the crystal surfaces that
are moving away from the electrode, would be useful. Also, inclusion of
more detailed electrode treatment, such as the relation between the ORR
current, overpotential and Zn?* concentration, and possibly even the ZnO
formation and inclusion processes could benefit our understanding of the
system.

Within the transport region there is a complicated solution chemistry
[47] involving many different zinc hydroxylates ([Zn,,(OH),,]™ ™). The
presence and effect on the local solution electrolytic environment could
influence the growth or nucleation of new crystals. The validity of the elec-
trolytic transport equations also could be improved by using corrections
for the Debye interactions between ions, neglected in this work though the
use of the ideal solution assumption.

The use of two dimensions instead of three, and therefore crystallite
planes instead of columns could also affect the model results. For exam-
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ple, a three dimensional system could capture effects associated with non-
uniform orientration of the crystals, which as well as its potential influence
on transport, would produce a more natural treatment of the film porosity.

Further work could also be done on the microscopic model. In this
work the crystal was constrained to be hexagonal columnar, investigation
of more surfaces could provide a way in which the actual shape is pre-
dicted from first principles. Likewise calculation of more step orientations
would give a truer indication of the step and kink energies of the respec-
tive surfaces. As computing becomes more powerful, the direct investi-
gation of kink structures and even their interaction with water molecules
could be investigated.

Computational studies which aim to replicate and simulate physical
processes on a multitude of scales simultaneously is not only ambitious,
but very interesting and gratifying for the researcher, as it gives, indeed
requires, interest in a wide range of ideas: mathematical, physical and
computational. Further work is required in model development, physical
description, and computational manifestation.
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