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Abstract

The focus of this thesis is on the Markov modulated Poisson process (MMPP) and

its extensions, aiming to propose appropriate statistical models for the occurrence

patterns of main New Zealand deep earthquakes. Such an attempt might be beyond

the scope of the MMPP and its extensions, however we hope its main patterns can

be characterized by current models proposed in three parts of the thesis.

The first part of the thesis is concerned with introductions and preliminaries of

discrete time hidden Markov models (HMMs) and MMPP. The flexibility in model

formulation and openness in model framework of HMMs are reviewed in this part,

suggesting also possible extensions of MMPP.

The second part of the thesis is mainly about several extensions of MMPP. One

extension of MMPP is by associating each occurrence of MMPP with a mark. Such

an extension is potentially useful for spatial-temporal modelling or other point pro-

cesses with marks. A special case of this type of extension is by allowing the multiple

observations of MMPP synchronized together under the same Markov chain. This

extension opens the possibility of modelling multiple point process observations with

weak dependence. The third extension is motivated by the attempt to describe small

scale temporal clustering existing in the deep earthquakes via treating the recognized

aftershocks as marks which itself forms a finite point process. The rest of the second

part focuses on some information theoretical aspects of MMPPs such as the entropy

rate of the underlying Markov chain and observed point process respectively and

their mutual information rate. A conjecture on the possible links between mutual
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information rate of MMPP and the Fisher information of the estimated parameters

is suggested. The second part on extensions of MMPP is featured by the derivation

of the likelihood and complete likelihood, parameter estimation via EM algorithm,

state smoothing estimation and model evaluation through systematic applications

of rescaling theory of multivariate point processes and marked point processes.

The third part of the thesis includes the applications of these methods to the deep

earthquakes in New Zealand. We first evaluate the data coverage, catalogue com-

pleteness and explore its descriptive characteristics and empirical properties such as

epicentral distributions, depth distributions and magnitude distributions. Cluster-

ing behavior is studied via the second order moment analysis of point processes in

the chapter 8. We also apply, the stress release models and the ETAS models which

are usually used for shallow earthquakes, to the New Zealand deep earthquakes and

provide tentative explanations of why they are not satisfactory for the deep earth-

quakes. The chapter 9 is on the applications of MMPP and its extensions to the

New Zealand deep earthquakes. Conclusions and future studies are presented in

chapter 10.
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Chapter 1

Objectives and Motivations

Deep Earthquakes, which form a large portion of observations in New Zealand earth-

quake catalogue, are not as well studied as shallow earthquakes, particularly on the

side of its statistical properties. It might be ascribed for several reasons. Firstly,

their occurrence mechanism is not yet clear which complicates the attempt to pro-

pose a physically well-based model from a statistical point of view. Secondly, deep

earthquakes are generally less destructive as shallow earthquakes. Hence, it is less

urgent to call for thorough studies. Thirdly, unlike shallow earthquakes, most deep

earthquakes occur only in subduction zones associated with ocean trenches which

form only part of the seismic active zones around the world. So, they do not evoke

as much attention as shallow earthquakes from geophysicists all over the world.

However, the deep earthquakes are important in that they give indication of the

structure of the earth, the dynamics of the crust and mantle and may have links

with shallow earthquakes and volcano activities, see Frohlich (2006) for a compre-

2
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hensive discussion of deep earthquakes.

Although statistics has a long history in applications to seismology as early as

Omori’s aftershock decay law (1894) and Gutenberg-Richter (1956) magnitude fre-

quency relationship, it is only in recent decades that point process models have been

suggested for the description of the occurrence patterns of earthquakes based on the

catalogue data, see Vere-Jones (1970). The purpose of this thesis is an attempt to

bridge the big gap existing between the catalogue observations of deep earthquakes

and possible point process models. The existing models such as the ETAS model

and the stress release model which are usually used for shallow earthquakes are also

applied to the deep earthquakes. Their lack of fit strongly suggests that the occur-

rence pattern of the deep earthquakes is essentially different from that of the shallow

earthquakes. To propose an appropriate model for deep earthquakes, exploratory

data analysis is essential to understand the characteristics of deep earthquakes. After

that, analytically tractable models are suggested for those characteristics in which

we are interested. The main model we propose is the Markov modulated Poisson

process (MMPP). Even though detailed patterns of deep earthquakes are probably

beyond the scope of MMPP and the extensions given here to model, however, the

present initial study should be sufficient to single out some of the main patterns,

especially its time-varying activity characteristic in a relatively large time scale via

MMPP and its variations.

This thesis is composed of three parts. The first part of the thesis is an intro-

duction to hidden Markov models (HMMs) and their variations. The purpose of

this part is to give a literature review of hidden Markov models and to illustrate
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a variety of ways of associating hidden Markov models with covariates in practice.

However, the literature review is not exhaustive in nature and tends to be brief as

much as possible in the introductory part. Extension of the original HMMs for a

more detailed description or a better fit to the real data is one of the main objectives

of the thesis that author pursues.

Due to its openness and flexibility as one case of continuous time hidden Markov

model, there also exist several different ways to extend the MMPP. This forms the

main focus of the second part. One extension of MMPP is by associating each occur-

rence time of the observed process with a variable which could be spatial coordinate,

magnitude or any other covariate of interest. Another extension is by simultane-

ously accommodating several observed point processes with an identical underlying

Markov chain. Such a synchronization of multiple processes is potentially useful

for modeling a multivariate process with weak dependence. The third extension is

motivated by the attempt to describe small scale temporal clustering existing in

the deep earthquakes by treating the set of recognized aftershocks as a mark which

itself forms a finite point process. In this theoretical part, we also include some

information theoretical aspects of MMPP such as the entropy rate of the underlying

Markov chain, the entropy rate of the observed point process and the mutual infor-

mation rate between them. Tentative remarks on the possible relationship between

the mutual information rate and Fisher information of the parameters in MMPP

are also included.

The third part of this thesis is on applications of these methods to the deep

earthquakes in New Zealand. The motivation to use MMPP for deep earthquake
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modeling is based on the fact that one of the apparent characters of deep seismicity

is that it varies over time, active in one period, quiescent in another. Reasons and

mechanisms behind this variation are not completely well-understood. Such a lack

of interpretability in mechanism for a time-varying evolving system forms one key

justification of applying ”hidden” Markov models. Before suggesting any statistical

models for New Zealand earthquakes, we first evaluate the data coverage, catalogue

completeness and explore descriptive characteristics and empirical properties such

as epicentral distributions, depth distributions and magnitude distributions. Clus-

tering behavior is studied via second order moment analysis of point processes in

the 8th chapter. We also apply the stress release models and ETAS models which

are usually used for shallow earthquakes to the New Zealand deep earthquakes and

provide tentative explanations of why they are not satisfactory for the deep earth-

quakes. The last chapter is on the applications of MMPP and its extensions to

the deep earthquakes, and features applications of likelihood analysis via the EM

algorithm, state smoothing, model selection and rescaling theorems of multivari-

ate point process and marked point process for model evaluation, topics which are

largely neglected in the original MMPP contexts.



Chapter 2

Introduction

2.1 Preliminaries of earthquakes

An earthquake is the result of a sudden release of energy in the Earth’s crust that

creates seismic waves. They are caused mostly by rupture of geological faults which

are large fractures in Earth’s crust, but also by volcanic activity, landslides, mine

blasts, and nuclear experiments. An earthquake’s point of initial rupture is called

its focus or hypocenter. The term epicenter refers to the point at ground level

directly above the hypocenter. After the 1906 San Francisco earthquake, a theory

relating faulting and a tremor was enunciated by Reid’s elastic rebound the-

ory. It states that the crustal stresses, generally resulting from large scale regional

crustal shearing motions, cause strain to accumulate in the immediate vicinity of

faults. When the strain accumulation reaches a threshold imposed by the material

properties of the rock and the fault surface, abrupt frictional sliding occurs, releasing

6



CHAPTER 2. INTRODUCTION 7

the accumulated strain energy.

To study earthquakes, seismometers are deployed to measure and record mo-

tions of the ground, including those of seismic waves generated by earthquakes,

nuclear explosions, and other seismic sources. Almost all seismometers are based

on damped inertial pendulum systems of one form or another. Modern instruments

use electronic sensors, amplifiers, and recording instruments to record earthquake

waves. Most of them are broadband covering a wide range of frequencies. How-

ever, in early postwar period, the seismometers deployed in New Zealand are only

the Wood-Anderson seismometers, or the torsion seismographs which involve

a copper cylinder attached to a vertical suspension wire. Shaking causes the cylin-

der to rotate slightly, moving a minor that reflects a light signal to a photographic

recorder. It is less sensitive and accurate as modern seismometers. Seismologists

have employed a variety of methods to estimate the amount of energy release at the

source of the earthquake. In 1935, Richter developed the magnitude scale by using

seismic records to estimate the relative sizes of earthquakes. The Richter scale is

based on the amplitude of the largest seismic waves (P, S, or surface wave). The

comparative proportion of events number with different magnitude is determined by

Gutenberg-Richter law (1956) which asserts that

log10N(M) ≈ a− bM, N(M) = number of events with magnitude ≥M.

It is often observed that after a major earthquake (main shock), there are many

additional movements formed as the crust around the displaced fault plane adjusts

to the effects of the main shock. The adjustments that follow a major earthquake
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often generate smaller earthquakes called aftershocks. Typically, the frequency

of occurrence of aftershocks decay rapidly. Omori (1894) studied aftershocks in

Japan and developed an empirical formula for the aftershock activity. The modified

Omori’s law suggests that

n =
k

(t+ c)p
,

where n is the frequencies of aftershocks at time t after mainshock and k, c, p are

constants. The constant p called p-value is usually close to 1.0-1.4. If an aftershock

is larger than the main shock, the aftershock is redesignated as the main shock and

the original main shock is redesignated as a foreshock.

The majority of tectonic earthquakes originate in depths not exceeding tens of

kilometers. Earthquakes occurring at a depth of less than 40 km are classified as

’shallow-focus’ earthquakes or shallow earthquakes, while those with a focal-depth

between 40 and 300 km are commonly termed ’mid-focus’ or ’intermediate-depth’

earthquakes. Deep-focus earthquakes may occur at much greater depths, ranging

from 300 up to 700 kilometers. We call both the intermediate-depth and deep-

focus earthquakes the deep earthquakes. Most of the deep earthquakes occur at

boundaries of tectonic plates.

In plate tectonics, a convergent plate boundary is an actively deforming region

where two (or more) tectonic plates or fragments of lithosphere move toward one

another and collide. Subduction is the process that takes place at convergent

boundaries by which one oceanic plate moves under another tectonic plate sinking

into the Earth’s mantle, forming subduction zones. Subduction zones mark sites

of downwelling of the Earth’s lithosphere. It is at subduction zones that the Earth’s
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lithosphere, oceanic crust, sedimentary layers, and some trapped water are recycled

into the deep mantle. In the subduction process, the down-going slab, the leading

edge of the subducting plate, is overridden by leading edge of the other plate. The

slab begins to sink at increasing angle to the surface of the Earth. We call the

deep active seismic area in a subduction zone the Wadati-Benioff zone. The deep

earthquakes along the zone allow seismologists to map the three-dimensional surface

of a subducting slab of oceanic crust and mantle since the angle of dip of the zone

is the same as that of the subducting slab.

Wadati (1928) first convinced the scientific community that the deep earthquake

occurs. Immediately after Wadati’s paper, some research focused on confirming the

existence of deep earthquakes and analyzing their property in other places besides

Japan. Several researchers noticed that the association of deep earthquake, deep

ocean trench and volcanos. As the data cumulated, it allows more thorough studies

of the geometry of Wadati-Benioff zones. An excellent introduction of the deep

earthquake in a global scale is given by Frohlich (2006). More conceptions about

earthquakes at an entrance level are given by Bolt (1993).

The pattern of deep earthquake occurrence in New Zealand is determined by the

tectonic structure, where there are distinct subduction zones. The first of these

stretches along the east coast of the North Island from the Tonga-Kermadec trench,

bends westwards underneath Cook Strait, and terminates approximately around

the latitude of the Chatham Rise. In this zone, the Pacific Plate is subducting

beneath the Australian Plate. In the second zone, however, the Australian Plate is

subducting beneath the Pacific Plate. Both zones are associated with intermediate
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earthquakes, see following Figure 2.1 (Reyners, 1989). In New Zealand map (Figure

2.1), heavy lines denote major faults. BOP and T denote Bay of Plenty and Lake

Taupo, WI denotes White Island. Arrows indicate the velocity, in mm/year, of the

Pacific plate relative to the Australian plate.
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Figure 2.1: Tectonic setting of of New Zealand.
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2.2 Notations and Definitions

Definition 2.1 A stochastic process {X(t), t ∈ T } is a collection of jointly

distributed random variables parameterized by an index t, where the set T is called

an index set.

It is customary to think of the index t as time. If T is a countable set, then the

process is called a discrete-time stochastic process. If T is the whole real line,

the process is called a continuous-time stochastic process. The discrete-time

stochastic process is indexed by Xi=̂X(i), i ∈ Z throughout the thesis, where Z is

the integer set.

Definition 2.2 Let {X(t), t ∈ T } be a stochastic process, then for each t ∈

T , X(t) is called the state of the process at time t and the set of all possible values

of X(t) is called the state space, denoted by S.

If S is a countable set, then the state space of the process is called a discrete

state space. Otherwise, the state space of the process is a continuous state

space.

We call {X(t), t ∈ T } a time-homogeneous stochastic process if P{X(t +

r)|X(r)} = P{X(t)|X(0)}, for all t, r ≥ 0.

Definition 2.3 A discrete-time stochastic process {Xi, i = 0, 1, 2, · · · } with dis-

crete state space S = {1, 2, · · · , r, · · · } is called a discrete-time Markov chain,

if for all l,m ∈ {0, 1, 2, · · · } such that l < m it satisfies the Markov property

P{Xm = j|Xl = i,X l−1
1 } = P{Xm = j|Xl = i}, for all i, j ∈ S,
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where X l−1
1 = (X1, · · · , Xl−1).

Let {Xn, n ≥ 0} be a homogeneous discrete-time Markov chain. We call P = (pij),

pij = P{Xn+1 = j|Xn = i} the transition probability matrix of {Xn}.

Definition 2.4 A continuous-time stochastic process {X(t) : t ≥ 0} with discrete

state space S = {1, 2, · · · , r, · · · } is called a continuous-time Markov chain, if

for all s > 0 and t ≥ 0 it satisfies the Markov property

P{X(t+ s) = j|X(t) = i,X(u), 0 ≤ u < t} = P{X(t+ s) = j|X(t) = i} for all i, j ∈ S.

Let {X(t)} be a homogeneous continuous-time Markov chain with state space

S = {1, 2, · · · }. Define pij(h) = P (X(t + h) = j|X(t) = i). The infinitesimal

generator of {X(t)} is the matrix Q = (qij) such that for i, j ∈ S,

qij=̂ lim
h↓0

pij(h)− δi(j)
h

where δi(j) = 1 if i = j and δi(j) = 0 if i 6= j. These limits exist when P(t) satisfies

lim
t↓0

P(t) = I, where I is the identity matrix, see Cinlar (1975), .

If the state space of a continuous-time or discrete-time Markov chain is finite, we

call it a finite Markov chain.

2.3 Basic conceptions in Point processes

Point process can be viewed as stochastic processes with realizations consisting of

collections of points, in which each of the points has a well specified position. A

point process defined on one-dimensional space R is described in several equivalent
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ways by:

1. a non-decreasing integer-valued step function, indicating the cumulative number

of points from a starting point.

2. sequences of intervals between points.

3. sequences of points.

4. random counting measures (random measures with unit mass at the points of

the process).

For higher dimensional point process, there is no similar descriptions such as 1-3

because of lack of a natural generalization in higher dimensions. Description 4 is

the only natural approach to generalize the definition of point process in higher

dimensions by resorting to the random measure which has non-negative integer

value.

Let N̂S is the space of all boundedly finite integer-valued measures N called

counting measure for short and N̂S×K is the family of all boundedly finite counting

measures defined on the product space S × K, where K is a c.s.m.s. (complete

separable metric space) of marks, subject to the additional requirement that the

ground measure Ng defined by Ng(A)=̂N(A×K) for all A ∈ B(S).

Definition 2.5 A point process N on a c.s.m.s. S is a measurable mapping

from a probability space (Ω, E , P ) into a measure space (N̂S ,B(N̂S)) where B(N̂S)

is the σ-field generated by all events of the form {N ∈ N̂S : N(A) ≤ n} for bounded

A ∈ B(S). A point process N is simple when P{N ∈ N̂S} = 1. A marked

point process on S with marks in K is a point process N on B(S × K) for which
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P{N ∈ N̂S×K} = 1 and its ground process is given by Ng(.)=̂N(.×K).

Definition 2.6 Let N(.) be a point process adapted to the history F , its com-

pensator is the unique F -predictable cumulative process A satisfying

E

{∫
R+

C(t, ω)N(dt, ω)

}
= E

{∫
R+

C(t, ω)A(dt, ω)

}
,

for all nonnegative F -predictable cumulative process C.

Alternatively, the counting process N(t) is a submartingale with respect to {F}t≥0

and compensator can be realized as the predictable cumulative process in the Doob-

Meyer decomposition of N(.) such as N(t) = M(t) +A(t), where {M(t)}t≥0 is a

zero mean F -martingale and A(t) is the unique F -predictable cumulative process.

Definition 2.7 The F -compensator of an marked point process on S with

marks in K is any mark-predictable, cumulative process A(t,K, ω) such that,

for each K ∈ B(K), A(t,K, ω) is the F -compensator for the simple point process

NK(t)=̂N((0, t] × K), where the mark-predictable σ-algebra is the product of the

predictable σ-algebra ΨF with B(K).

Definition 2.8 (a) Let N be a point process adapted to the history F . An F -

intensity for N is any F -adapted process λ(t, ω), measurable with respect to the

product σ-algebra B(R+
0 )× E , and such that a.s. for all t,

A(t, ω) =

∫ t

0

λ(u, ω) du.

(b) Let N be a marked point process, with mark space (K,B(K)) equipped with

a reference measure lK and F -compensator A. An F -intensity for N is any F -
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adapted process λ(t, k, ω), measurable with respect to the three-fold product σ-

algebra B(R+
0 )×K × E , and such that a.s. for all t and K ∈ B(K),

A(t, k, ω) =

∫
(0,t]×K

λ(u, k, ω) du lK(dk).

For one-dimensional point process defined on R+
0 , we denote the number of points

of N(.) in [s, t) by N(s, t) and denote N(0, t) by N(t) for short. The definition

of conditional intensity function suggests its interpretation as the instantaneous

occurrence rate of events at time t conditioned on the history Ft of the point process

N(t) such as λ(t) = lim
∆t→0

E{N(t,t+∆t)}
∆t

or equivalently λ(t) = lim
∆t→0

P{N(t,t+∆t)>0}
∆t

.

Given a realization (t1, t2, · · · , tn) of the point process N(.) on [0, T ] with conditional

intensity function λθ(t), the corresponding likelihood function is written by

L(θ) =
n∏
i=1

λθ(ti) exp

{
−
∫ T

0

λθ(t) dt

}
.

More about the general theory of the point process can be found in Daley and

Vere-Jones (2003, 2008), Karr (1991) and Bremaud (1980).

2.4 Hidden Markov Models in Discrete Time

2.4.1 The Basic Hidden Markov Model

The last couple of decades, have seen an extensive application of hidden Markov

models (HMM) in speech processing, bioscience, finance, hydrology, climatology

and others. It was first introduced by Baum and others through a series of papers
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to exploit related statistical inference procedures and algorithms. Since then, HMM

has evoked significant attention in signal processing and speech recognition. An

excellent introduction to these methods and applications is given by Rabiner (1989).

Boosted by the development of computation technology and statistical computation

methods, particularly the EM algorithm, HMM now receives significant attention

in many fields. Several books have been published on its various extensions and

applications, among them, the books written by MacDonald and Zucchini (1997)

and Elliot et al. (1995) demonstrate different approaches in dealing with HMM

modelling.

Definition and notation Generally speaking, the HMM is a discrete-time stochas-

tic process {(sk, xk)}nk=1 which satisfies several assumptions. It is assumed that {sk}

forms an irreducible homogeneous discrete-time finite Markov chain on the state

space S = {1, · · · , r} with transition probability matrix P = (pij)r×r, pij = P (sk+1 =

j|sk = i) and initial distribution vector π = (π1, · · · , πr). Given the process {sk},

{xk} are conditionally independent random variables whose probability distri-

butions f(xk|sk, θsk) with parameter θsk are dependent only on the current state sk.

Later on, we refer to f(xk|sk, θsk) as state-dependent distribution. Since {sk}

forms an irreducible homogeneous discrete-time finite Markov chain, there exists a

unique, strictly positive, stationary distribution. The initial distribution is usually

taken to be equal to this stationary distribution.

The model assumptions are demonstrated according to the conditional indepen-

dence graph. In such a graph the absence of an edge between two vertices indicates
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Figure 2.2: Conditional independence graph of hidden Markov model.

the two variables are independent given the other variables. Figure 2.2 demonstrates

the conditional independence of {xk} conditioned on {sk} and the conditional inde-

pendence of sk−1 and sk+1 given sk, i.e. the Markov property.

In the HMM context, {sk} is called the state process or Markov regime and the

name HMM is motivated by the assumption that {sk} is not observable, so the

inference is instead based only on the information of {xk}. Once the conditional

distribution of xk given sk is specified parametrically, the observations are gener-

ated according to the state-dependent probability distribution f(xk|sk, θsk) whose

parameters vary according to the underlying Markov chain. Inference of an HMM

is typically likelihood-based as the likelihood can be written as

L(π,P, θ) =
r∑

s1=1

· · ·
r∑

sn=1

πs1f(x1|s1, θs1) · · · psn−1snf(xn|sn, θsn) (2.1)

where θ = (θ1, · · · , θr) and the summation is over nr permutations. It is worth noting

that the number of terms increase exponentially fast with respect to the order r of
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the underlying Markov chain. To avoid such a direct likelihood evaluation, which

tends to be intractable even for a moderate r, a more efficient algorithm is introduced

in the parameter estimation procedures by Baum et al. (1970).

In the standard HMM contexts, e.g. Baum et al. (1970) and Rabiner (1989), the

forward probability αt(i) determines the distribution of the current state st = i

jointly with the observations from time 0 up to t. It can be written by

αt(i) =
∑

s1,··· ,st−1

πs1f(x1|s1, θs1)
t∏

k=2

{
psk−1skf(xk|sk, θsk)

}
1{st = i}, (2.2)

where 1{.} is the indication function. Correspondingly, the backward probability

βt(.) defines the probability of observations from t+ 1 to the end conditional on the

Markov chain sojourn in a given state, i.e. j at t; then it can be written by

βt(j) =
∑

st+1,··· ,sn

1{st = j}
n∏

k=t+1

psk−1skf(xk|sk, θsk). (2.3)

From this device, the likelihood is obviously written by L =
r∑
i=1

αt(i)βt(i). Note

that the forward and backward probabilities can be updated recursively, hence the

likelihood is evaluated in a much more efficient fashion.

Since the log-likelihood function can be evaluated routinely, even for long se-

quences of observations, it is feasible to perform parameter estimation by direct

numerical maximization. Parameter inference through EM algorithm and its varia-

tions, Newton type algorithms or Monte Carlo optimization methods are discussed

in detail by Cappé et al. (2005). Here, we only focus on the Baum-Welch algorithm

(Baum et al., 1970), which is an early version of the EM algorithm (Dempster et al.,

1977). The EM algorithm is an iterative method for obtaining the maximum likeli-

hood estimation in incomplete data problems which has several appealing properties
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in comparison to other methods such as Newton-Raphson or quasi-Newton methods.

It is easily implemented since it only involves two steps in each iteration: 1) taking

expectations of the complete data likelihood with respect to missing data, 2) max-

imizing the conditional expectation which in many cases is in simple closed form,

particularly for the exponential family. Furthermore, it is numerically stable in that

each iteration returns an improved likelihood and convergence is nearly always to a

local maximum.

Let logLc(θ′|Xn
1 ,Y

m
1 ) denotes the complete data log-likelihood, in which Xn

1 =

(X1, · · · , Xn) and Ym
1 = (Y1, · · · , Ym) are observations and missing data respec-

tively and θ′ is the parameter vector to be estimated. The E-step requires taking

expectation of the complete data log-likelihood given the observations such that

Q(θ′|θ) = Eθ

(
logLc

(
θ′
∣∣Xn

1 ,Y
m
1

)∣∣∣∣Xn
1

)
(2.4)

which gives the best predictor of logLc(θ′|Xn
1 ,Y

m
1 ) from Xn

1 in the sense of mean

square error. The M-step follows by maximizing Q(θ′|θ) with respect to θ′. Then

the iteration steps are repeated until some convergence criterion is met.

Although it is possible to directly maximize the likelihood, it is often preferred to

obtain the parameter estimates via the Baum-Welch algorithm (Baum et al., 1970),

due to some of its appealing properties. Treating the hidden state sequence {sk} as

missing data Ym
1 , the complete likelihood for observations Xn

1 can be written as

Lc(π,P, θ|sn1 , xn1 ) = πs1f(x1|s1, θs1)
n∏
k=2

psk−1skf(xk|sk, θsk). (2.5)

After taking logarithms and executing the EM steps, the parameters are updated
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by

π̂i = γ1(i), (2.6)

p̂ij =

n−1∑
m=1

ξm(i, j)

n−1∑
m=1

γm(i)

, (2.7)

f̂(ωj|i) =

n∑
m=1

γm(i)δωj(xm)

n∑
m=1

γm(i)
, (2.8)

where ξm(i, j) = P (sm = i, sm+1 = j|Xn
1 ), γm(i) =

r∑
j=1

ξm(i, j) and δ is the Kronecker

delta function, see Baum et al. (1970). A comprehensive review of the hidden

Markov process is given by Ephraim and Merhav (2002).

2.4.2 Hidden Markov model with covariates

Due to the flexibility and universality of the framework provided by hidden Markov

models, there exists a variety of extensions adapted to particular applications. One

type of modification for the hidden Markov model is based on variations in the

underlying Markov process. For example, the Markov chain could be treated as a

higher order Markov chain, allowing second order or higher order Markov depen-

dence. Or the underlying Markov process could be a semi-Markov process or Markov

renewal process, see definition 3.2. In this case, each state of the finite Markov chain

is associated with a given sojourn time distribution once the Markov chain enters

that state. Another example of this type of extension is based on relaxation of

some assumptions on the underlying Markov chain. For example, the underlying

Markov chain might be assumed non-stationary or non-homogeneous. Another type
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of extension is based on variations in the state-dependent distribution. We will

mainly illustrate some of the first type of extensions in the following subsections

and illustrations.

Non-homogeneous Hidden Markov model

By dropping the assumption that the Markov chain is homogeneous, a time-dependent

underlying Markov chain opens the possibility of incorporating time trend and sea-

sonality in HMMs. Such an extension of HMMs has potential value for a better

understanding of the underlying state process when the underlying Markov chain

is associated with one or more covariates which pose measurement effects on the

state transition probabilities. Hughes and Guttorp (1999) apply this type of model

in meteorology. In the model, the weather variables ct are treated as covariates and

xt = {x1
t , · · · , xmt } are multivariate observations for the rainfall occurrences at a

network of m sites with observed value xit = 1 if rain occurs on day t at station i

and xit = 0 otherwise. The model assumptions are given such as:

p(xt|st1, xt−1
1 , cn1 ) = p(xt|st), (2.9)

p(st|st−1
1 , cn1 ) = p(st|st−1, ct). (2.10)

The first assumption requires that the distribution of rainfall depends only on cur-

rent atmosphere state, i.e, the rainfall record is conditionally independent given

the underlying Markov states. The second assumption requires that the transi-

tion probability of the current state depends not only on the previous state but

also on the current weather measurements. It is this assumption that allows a
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Figure 2.3: Conditional independence graph of non-homogeneous hidden Markov

model.

non-homogeneous underlying Markov chain whose transition probability varies ac-

cording to the weather measurements. These assumptions can be summarized by a

conditional independence graph (Figure 2.3).

After parameterization of (2.9) and (2.10), the likelihood can be written as

L(xn1 ) =
∑
s1

· · ·
∑
sn

p(s1|c1)
n∏
t=1

p(st|st−1, ct)p(xt|st). (2.11)

Maximum likelihood estimates for the model are obtained typically via EM algo-

rithm by treating sn1 as ’missing data’. However, no explicit M-step is available in

general.

Another similar extension is to assume the state transition probability depends

on the covariates {ct} through logistic regression, see Albert (1991), Wang and
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Puterman (2001). For instance, define a two-state Markov chain by

p(st = 1|st−1 = 1) = p11(ct, β1) = expit(β1ct), (2.12)

p(st = 2|st−1 = 1) = p21(ct, β1) = 1− p11(ct, β1), (2.13)

p(st = 2|st−1 = 2) = p22(ct, β2) = expit(β2ct), (2.14)

p(st = 1|st−1 = 2) = p12(ct, β2) = 1− p22(ct, β2), (2.15)

where expit(βc) = exp{βc}
1+exp{βc} .

The parameter estimation is carried out by numerical maximization of the likeli-

hood or the EM algorithm, though in general without an explicit M-step.

HMM with state-dependent distribution depending on covariates

Similar extensions are obtained by incorporating covariates in the state-dependent

distributions. For a hidden Markov model with Poisson observations, the Pois-

son rate parameter can be associated with covariates by a log-linear model such as

log λi = βic
′
t, where ct is a row vector of covariates. For a hidden Markov model

with binomial or multinomial observations, the binomial probability can be simi-

larly associated with covariates through a logit link function such as logitpi = βic
′
t.

Parameter estimation is implemented by standard EM iteration steps.

2.4.3 Hidden semi-Markov models

By presuming the underlying process is a semi-Markov process, it yields a more gen-

eral model, the so-called hidden semi-Markov model. Briefly speaking, in a hidden
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semi-Markov model, each state of the Markov chain is associated with a holding

time distribution and self-transition in the Markov transition matrix is forbidden,

i.e., all diagonal elements in the transition probability matrix are zeros. Such an

extension is important for a better understanding of different time scale stochastic

behavior of a process and has important applications in meteorology modeling, see

Sansom and Thompson (2001). In this scenario, the missing data include not only

the state sequence {sk} but also the holding times in the states. The complete data

log-likelihood thus can be written as:

log Lc = log πs1 +
n∑
k=2

log p(sk|sk−1) +
n∑
k=1

log p(Dk|sk) +
n∑
k=1

log f(xk|sk), (2.16)

where Dk is the sojourn time of the underlying process in state sk and p(Dk|sk) is

the conditional density of the state holding time. After specifying the parametric

distribution of the holding time and the state-dependent distribution, it is possible

to obtain explicit EM iteration step, particularly for those distributions from the

exponential family.



Chapter 3

Markov Modulated Poisson

Process (MMPP)

3.1 Introduction

MMPP is particularly useful in modeling time-varying intensity rate processes such

as traffic flows of communication networks, internet traffic flows and queuing sys-

tems. A collection of properties of ordinary MMPP is given in Fischer and Meier-

Hellstern (1993). The parameter estimation for MMPP through the EM algorithm

and its comparison with the downhill simplex algorithm is addressed by Rydén

(1996a). Jensen (2005) addresses the likelihood process of MMPP with discrete

type marks.

In this section, we define the Markov modulated Poisson process (MMPP) and

26
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treat it as a Markov renewal process. Then the likelihood of a MMPP is derived.

Definition 3.1 Markov modulated Poisson process (MMPP) is a doubly

stochastic Poisson process whose stochastic intensity rate is given by λX(t) where

X(t) is a r-state irreducible homogeneous Markov process.

For a MMPP, the underlying Markov process X(t) is characterized by the infinitesi-

mal generator matrix Q where its (i, i)th element satisfies −qi=̂qii = −
∑
j:j 6=i

qij, qij >

0 and r is the order of the Markov chain. Given X(t), the observed point process is

a Poisson process with intensity rate λX(t).

Another approach to specify a MMPP is through its inter-arrival times and the

associated states of the underlying Markov chain at arrivals. We use events or

arrivals exchangeably throughout the discussion. It is this specification of MMPP

that we will focus on for the derivation of the likelihood of a MMPP. Before this,

we should review the definition of Markov renewal process.

For each n ∈ N (N being the set of positive integers), define a random variable

Xn taking values in a countable set S and a random variable Yn taking values in

[0,∞) with Y0 = 0.

Definition 3.2 The stochastic process {(Xn, Yn), n ≥ 0} is a Markov renewal

process with state space S provided that Pr{Xn+1 = j, Yn+1 ≤ y|X0, · · · , Xn, Y0, · · · ,

Yn} = Pr{Xn+1 = j, Yn+1 ≤ y|Xn} for all n ∈ N , j ∈ S and y ∈ [0,∞).

Note that the observed point process can be specified equivalently by occurrence

times {ti}ni=1 or inter-event times Yi = ti − ti−1 between arrivals. The sequence

{(Xk, Yk), 0 ≤ k ≤ n, Y0 = 0} combining the embedded Markov chain Xk = X(tk)
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and the corresponding inter-event times Yk forms a Markov renewal process. To

clarify this, we consider the transition probability without arrivals Gij(t)=̂P{X(t) =

j,N(t) = 0|X(0) = i} where N(t) is the counting process of MMPP from 0 up to t.

For a small increment ∆t,

Gij(t+ ∆t) = Gij(t)(1− qj∆t− λj∆t) +
∑
k 6=j

Gik(t)qkj∆t+ o(∆t).

We obtain Chapman-Kolmogorov differential equations such as
G′ij(t) = Gij(t)(−qj − λj) +

∑
k 6=j

Gik(t)qkj

Gij(0) = δij,

which yields G(t) = exp{(Q− Λ)t} according to the definition of the matrix expo-

nential in this chapter appendix, where Λ=̂diag(λ1, · · · , λr). The transition prob-

ability matrix of the sequence {(Xk, Yk), 0 ≤ k ≤ n, Y0 = 0} is then given by

F(y) =
∫ y

0
G(u)Λ du =

∫ y
0

exp{(Q− Λ)u}Λ du, for y > 0. It satisfies

F(y) =

∫ y

0

exp{(Q− Λ)t}Λ dt

= {I − e(Q−Λ)y}(Λ−Q)−1Λ

= {I − e(Q−Λ)y}F(∞), (3.1)

whose (i,j)th element is the probability P{Xk = j, Yk ≤ y|Xk−1 = i}, see Fischer

and Meier-Hellstern (1992) and refer to the properties of matrix exponential in the

chapter appendix. The distribution of the inter-event times depends not only on the

current state that the underlying Markov chain sojourn in but also on the previous

state. Hence, the sequence {(Xk, Yk), 0 ≤ k ≤ n, Y0 = 0} forms a Markov renewal

sequence. The matrix F(∞)=̂(Λ − Q)−1Λ = P{Xk = j|Xk−1 = i} in (3.1) is the
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transition probability matrix of the Markov chain embedded at arrival times. If the

initial distribution is chosen according to the stationary vector of transition matrix

P = F(∞) which satisfies πP = π, then the MMPP starts at an arbitrary arrival

time. In this case, we call the MMPP interval-stationary. There exists another

version of stationary Markov modulated Poisson process in a sense that the counting

process itself is stationary when the initial distribution is selected according to the

stationary vector of the underlying Markov chain satisfying πQ = 0. In this case,

we call the MMPP environment-stationary, see Fischer and Meier-Hellstern (1992).

We characterize a MMPP by its parameters (π,Q,Λ). From the above discussions,

the likelihood of a MMPP is given in the following theorem.

Theorem 3.1 For a MMPP (π,Q,Λ), given the observed arrivals 0 = t0 ≤ t1 ≤

· · · ≤ tn = T or their corresponding inter-event times Yi = ti − ti−1, i = 1, · · · , n,

the likelihood is

L(π,Q,Λ) = π exp{(Q− Λ)Y1}Λ · · · exp{(Q− Λ)Yn}Λ1, (3.2)

where Λ = diag(λ1, · · · , λr), exp{(Q−Λ)t}Λ is the transition density matrix of the

Markov renewal sequence (Xi, Yi), i = 1, · · · , n and 1 is a r × 1 column vector with

all entries being unity.

3.2 Parameter Estimation

Parameter estimation approaches are roughly classified into two categories. One of

them is likelihood-based method and another approach is moment-based. In this
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section, we briefly review the likelihood-based method.

The main restriction of utilizing Newton type algorithms to obtain MLE is that

it requires differentiation with respect to parameters from a product of matrices.

Ramesh (1995) uses the downhill simplex optimization algorithm in MMPP to avoid

the derivatives of the product of matrix exponential. Similar to discrete time hidden

Markov models (HMMs) in which so called Baum-Welch iteration method, an earlier

version of general EM algorithm is applied to obtain the MLE since the parameter

estimation of MMPP is a missing data problem in nature with missing data formed

by the underlying Markov process. Deng and Mark (1993) utilize a discrete Markov

chain and approximate MMPP by a HMM with Poisson observations, assuming the

state transitions occur only at the boundaries of divided time intervals.

As Asmussen et al. (1996) and Rydén (1996a) pointed out, the key point of

utilizing EM algorithm is to consider the whole trajectory of the underlying Markov

chain as missing data. Assume the Markov chain has jumps at 0 < u1 < · · · < um <

T , denote ∆ui = ui−ui−1 where u0 = 0, um+1 = T and let sk = X(uk), the complete

likelihood can then be written by

Lc(π,Q,Λ) = πs1

{
m∏
k=1

qske
−qsk∆uk ×

qsk,sk+1

qsk

}
e−qsm+1∆um+1

×

{
m+1∏
k=1

(λsk∆uk)
zk

zk!
e−λsk∆uk × zk!

(∆uk)zk

}
,

where zk is the number of arrivals within [uk−1, uk]. In this equation, the first term

of the product is the likelihood of the underlying Markov chain and the second term

gives the conditional likelihood of the number of arrivals and their locations which

are uniformly distributed order statistics over [uk−1, uk), i = 1, · · · ,m+1 conditioned
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on the trajectory of the underlying Markov chain. Note that the complete likelihood

is in a form of scalar product which is much easier for numerical evaluation. After

taking logarithms, the complete likelihood is summarized by

logLc(π,Q,Λ) =
r∑
i=1

{
log πi1{X(0) = i} − (qi + λi)Ti +

∑
j:j 6=i

Nij log qij +Ni log λi

}

,where Ti=̂
∫ T

0
1{X(t) = i} dt is the sojourn time of X(t) in state i, Ni,j=̂#{t : 0 <

t ≤ T,X(t−) = i,X(t) = j} is the transition times of X(t) from state i to state j

and Ni=̂
∫ T

0
1{X(t) = i} dN(t) is the arrival times upon X(t) in state i. They form

a group of sufficient statistics of the parameters (Q,Λ). The E-step only requires

the conditional expectations of the sufficient statistics (Ti, Nij, Ni) given the internal

history Ft of the observed point process since the complete likelihood only depends

on the sufficient statistics (Ti, Nij, Ni). To facilitate the evaluation of the likelihood

and other statistics in a MMPP much as in the context of a discrete time HMM,

we introduce the forward and backward probabilities αt(i) = πL1 · · ·LN(t) exp{(Q−

Λ)(t− tN(t))}ei and βt(j) = e′j exp{(Q−Λ)(tN(t)+1− t)}ΛLN(t)+2 · · ·Ln1 where Lk =

exp{(Q − Λ)Yk}Λ. By using the above notations, it turns out that the conditional

expectation of the sufficient statistics (Ni, Nij, Ti) given Ft can be written as

N∗i = E{Ni|FT} =
n∑
k=1

αtk(i)βtk(i)
m∑
j=1

αt(j)βt(j)
, (3.3)

T ∗i = E{Ti|FT} =

∫ T

0

αt(i)βt(i)
m∑
j=1

αt(j)βt(j)
dt, (3.4)

N∗ij = E{Nij|FT} =

∫ T

0

αt(i)qijβt(j)
m∑
j=1

αt(j)βt(j)
dt, (3.5)
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see Asmussen et al. (1996). After an explicit M-step, the parameter are updated by

q̂ij =
N∗ij
T ∗i

(i 6= j), λ̂i =
N∗i
T ∗i

. (3.6)

3.3 Statistical Inference and Model Evaluation

Given a realization of a MMPP, the probability of the underlying process in a par-

ticular state at a specific time P{X(t) = i|FT} is estimated by

p̂t(i)=̂E{1(X(t) = i)|FT} =
αt(i)βt(i)
r∑
j=1

αt(j)βt(j)
, (3.7)

see also equation (3.3) or Asmussen et al. (1996) for the derivation of this equation.

Clearly, p̂t(i) in (3.7) is continuous with respect to t. So by evaluating (3.7) at

many points taken within [0, T ] and joining them together by lines, it is sufficient

to mimic the evolution of the latent Markov process. In order to simulate, evaluate

and forecast based on the model, one needs an estimate of the conditional intensity

rates λX(t) which, as suggested above, is given by

λ̂(t)=̂E{
r∑
i=1

λi1{X(t) = i}|FT} =
r∑
i=1

λi
αt(i)βt(i)
r∑
j=1

αt(j)βt(j)
. (3.8)

Papangelou (1972) points out that by rescaling point process from {ti} to the

compensator {
∫ ti

0
λ(t) dt}, we obtain a stationary Poisson process with unit rate.

The collection of the rescaled points which are supposed to be a unit rate Poisson

process when the proposed model is a real one are so-called residual point process

(Ogata, 1988). By this conception, a deviation of rescaled points from unit rate
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Poisson process may suggest some deficiencies of the proposed model and even il-

luminate some improvements in some cases. Numerical evaluation of the estimated

compensator calls for the integration of matrix exponential which can be imple-

mented by matrix eigenvalue decomposition (Rydén, 1996a), Poisson randomization

(Klemm et al., 2003) or some matrix exponential in higher order (Van Loan, 1978).

Then standard Kolmogorov-Smirnov statistics can be applied to verify whether or

not the cumulative distribution of the transformed occurrence times forms a uniform

distribution.

3.4 Second-Order Moment Properties

Ramesh (1995) studies the moment properties of MMPP. The moment property of

observed point process are studied through that of underlying Markov chain. Note

that the intensity rate process is a Markov process, and when all possible intensity

rates are different, we have

E{λ(0)λ(t)} =
r∑
i=1

P
{
λ(0) = λi

}
λiE

{
λ(t)|λ(0) = λi

}
=

r∑
i=1

πiλi

r∑
j=1

pij(t)λj

= πΛp(t)Λ1 (3.9)
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where p(t) = eQt. From the relationship E{λ(t)} = E{dN(t)
dt
} and E{λ(t1)λ(t2)} =

E{dN(t1)dN(t2)
dt1dt2

} etc., the auto-covariance density of the MMPP is

c(t) = lim
∆t1,∆t2→0+

Cov
{
N(0,∆t1), N(t, t+ ∆t2)

}/
∆t1∆t2

= E
{
λ(0)λ(t)

}
− E

{
λ(0)

}
E
{
λ(t)

}
= πΛp(t)Λ1− πΛ1πΛ1

= πΛ
{
p(t)− 1π

}
Λ1. (3.10)

For a stationary point process, an important second moment associated with the

conditional intensity rate given an arbitrary arrival epoch at origin is the so called

Palm intensity defined as h(t) = lim
∆t1,∆t2→0+

Pr
{
N(t, t + ∆t2) > 0

∣∣N [0,∆t1) >

0
}/

∆t2. The Palm intensity of a MMPP is given by

h(t) = lim
∆t1,∆t2→0+

Pr
{
N(t, t+ ∆t2) > 0

∣∣∣N [0,∆t1) > 0
}/

∆t2

=
πΛp(t)Λ1

πΛ1
. (3.11)

In the theory of stationary time series, it is valuable to consider frequency domain

analysis such as the power spectrum. We therefore consider the spectra correspond-

ing to the analysis of counting properties, see Bartlett (1963, 1964). For a stationary

point process N(t), its counting spectral density is defined by the Fourier trans-

form of the covariance density c(t) of counts such as g(ω) = 1
2π

∫∞
−∞ c(u)e−iωu du.

The counting spectral density of the MMPP is formulated by

g(ω) =
1

π
{πΛ1 + πΛP ∗(iω)Λ1 + πΛP ∗(−iω)Λ1} , ω ≥ 0, (3.12)

where P ∗(t) is the Lapalace transform of the matrix p(t). For a second order MMPP,

the auto-covariance, the Palm intensity and spectral density have the explicit form
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as follows (Ramesh, 1995):

c(t) =
q1q2(λ2 − λ1)2e−(q1+q2)t

(q1 + q2)2
, (3.13)

h(t) =
q1λ2 + q2λ1

q1 + q2

+
q1q2(λ2 − λ1)2e−(q1+q2)t

(q1 + q2)(q1λ2 + q2λ1)
, (3.14)

g(ω) =
πΛ1

2π

{
2q1q2(λ2 − λ1)2

((q1 + q2)2 + ω2)(q1λ2 + q2λ1)

}
. (3.15)

See also the chapter on the multivariate MMPP for the derivation of these second

order moments.

3.5 Relatives of MMPP: MAP, BMAP

The Markov arrival process (MAP) is defined by a background finite Markov chain

X(t) with r states and infinitesimal generator matrix Q. On the time interval where

X(t) = i, the arrivals are Poisson process with rate βi. At the same time, there

is a probability aij that an arrival occurs at a jump from state i to state j. The

point process defined by the epochs of these two kinds of arrivals is a Markov arrival

process, see Neuts (1979) and Rudemo (1973) for the seminal ideas of point process

determined by a Markov chain.

Definition 3.3 Consider a finite Markov process X(t) with infinitesimal generator

Q = C +D, where all the off-diagonal elements of C and all the elements of D are

nonnegative. The transitions associated with D are called type I transitions. A

Markov arrival process (MAP) with parameters (C,D), MAP (C,D), is a point

process where an event occurs when a type I transition occurs in the Markov chain.

Hence, for a MAP (C,D), the infinitesimal generator is decomposed into two
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components in which D gives the intensities of state change with arrivals and C are

associated with those state changes without arrivals. That is

dij =

 βi, i = j

qijaij, i 6= j

, cij =


−
∑
k 6=i

cik −
r∑

k=1

dik i = j

qij(1− aij), i 6= j

.

Note that ”state change with an arrival” allows transitions like i → i. In ad-

dition to the matrices C,D, a complete specification of a MAP also requires the

specification of the initial distribution of X(t). We always stipulate the initial

distribution π is selected according to the stationary distribution which satisfies

πQ = π(C + D) = θ, π1 = 1, where θ is a zero vector and 1 is a vector with all

entries being unity.

By using this notation given above, a Markov modulated Poisson process is a

special case when dij = 0 for i 6= j, i.e. D is a diagonal matrix.

Theorem 3.2 For a MAP with parameter (π,C,D), the joint density at Y1, · · · , Yn

of the n interarrival times is πeCY1DeCY2D · · · eCYnD1.

We omit the derivation of the likelihood of a MAP due to its similarity to MMPP.

See Asmussen (2000) or Asmussen (2003) for a good review of the properties of

MAP.

For good reasons in practical applications, it is natural to allow each arrival to

be a doublet, triplet or multiplet. For this case, there exists a particular type

of state transition associated with group arrivals or multiple rewards. Hence, the

infinitesimal generator Q of X(t) is decomposed into multiple components such as

Q = D(0) + D(1) + · · · + D(m) in which D(k), k = 1, · · · ,m gives the intensities
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of state change with batch arrivals of size k and D(0) are associated with those

state changes without arrivals. The batch Markovian arrival process (BMAP) is

a generalisation of the Markovian arrival process by having arrivals of size greater

than one. The homogeneous case, the rate matrix exists and is given by the matrix

Q in the definition 2.4.

Definition 3.4 Let Q be the infinitesimal generator of a finite Markov chain

satisfying Q = D(0)+D(1)+ · · ·+D(m), where all the off-diagonal elements of D(0)

and all the elements of D(k), k = 1, · · · ,m are nonnegative. We call a transition

associated with D(k), k = 1, · · · ,m an arrival with batch size k. A point process

defined by this type of arrival associated with D(k), k = 1, · · · ,m is called a batch

Markov arrival process (BMAP) with parameters (D(0), D(1), · · · , D(k)).

Given a sequence of arrival times ti with batch size bi, the likelihood for the

observations (ti, bi) is given by

L(θ) = π
n∏
i=1

{eD(0)∆tkD(bi)}1 (3.16)

where π is the initial distribution of X(t) and ∆tk = tk − tk−1.

There are merits in obtaining parameter estimates via the EM algorithm, much the

same as in the MMPP context, since an explicit iteration solution is obtainable for

BMAP once the whole trajectory of the Markov chain is treated as missing data and

hence the complete likelihood or its logarithm can be written down. After utilizing

several sufficient statistics such as the sojourn time in each state, the transition

times of the Markov chain from one state to another and the number of arrivals with

batch size m to summarize the likelihood, the E-step requires only the evaluation
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of the conditional expectation of those sufficient statistics given the observations,

which can be written up neatly in terms of forward and backward equations as in

the context of general hidden Markov model. Then an explicit M-step follows, see

Rydén (1996a) and Klemm et al. (2003) for a detailed description of the algorithm.

3.6 Chapter Appendix

The matrix exponential eAt can be defined through the convergent power series

eAt =
∞∑
k=1

(At)k

k!
. It is the solution to the matrix differential equation dX

dt
= AX

with initial condition X(0) = I. Using the series expansion for eAt, the following

properties can be derived:

(1) eA(s+t) = eAseAt; (3.17)

(2) e(A+B)t = eAseBt if and only if AB = BA; (3.18)

(3)
deAt

dt
= AeAt = eAtA. (3.19)

Methods for computing eAt can be found in Moler and Van Loan (2003).
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Chapter 4

Markov Modulated Poisson

Process with Marks

4.1 Introduction

The topic of the current chapter is a type of Markov Modulated Poisson Process

(MMPP), in which the occurrence times of the point process are attached to marks.

More accurately, it is a marked doubly stochastic point process for which the stochas-

tic intensity of the ground process and the mark distribution are determined by

an underlying continuous time finite Markov chain. Such an extension of MMPP

has potential applications in modeling spatial-temporal point patterns, multivariate

point processes or other point processes with attached marks, see Figure 4.1 for an

example.

40
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Figure 4.1: An example of a switching Poisson model (second order MMPP) asso-

ciated with non-negative marks, where {ti, zi} are the arrival times and associated

marks, the brackets at {ui} are the transition times of the underlying Markov chain

X(t).

Definition 4.1 Markov modulated Poisson process with state-dependent

marks is a marked doubly stochastic Poisson process with the conditional intensity

λX(t)fX(t)(z) where X(t) is a r-state irreducible Markov process, λX(t) is the arrival

rate of the ground process and fX(t)(z) is the probability density of the mark with

respect to a reference measure µ on mark space Z conditional on the current state

of X(t).

In this chapter, we obtain an extension for the likelihood of MMPP with marks and

outline a procedure for parameter estimation by the EM algorithm. We pay special

attention to the case when the marks come from an exponential family distribution.

Then we discuss the statistical inference of the state process and estimation of the

intensity rate of the observed point process. A method of assessing the goodness-

of-fit for MMPP with marks based on the residual point process is also suggested.
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Then we present some simulations to show the effects of the additional marks on the

estimation efficiency of MLE for the infinitesimal generator of the underlying Markov

chain and the intensity rates of observed point process. The effect is demonstrated

by comparing the bootstrap variances of the estimates for a MMPP and a MMPP

with marks whose infinitesimal generator and intensity rates are assumed identical

to the former so that both are comparable to each other in accuracy of the estimates.

4.2 The Likelihood

We denote the infinitesimal generator matrix of the underlying Markov chain X(t)

by Q with its (i, i)-th element qii=̂−qi satisfying qi =
∑
j:j 6=i

qij, i = 1, · · · , r and qij > 0

for i 6= j. The observed marked point process is specified by the conditional intensity

rate λX(t)fX(t)(z), where λX(t) is the conditional intensity rate of the ground process

N(t) and fX(t)(z) is the probability density of the mark with respect to a reference

measure µ on mark space Z conditional on the current state of X(t). The initial

distribution π of the Markov chain is chosen according to the stationary vector which

satisfies πQ = 0 and π1 = 1, where 1 is a column vector with unit entries. The

internal history generated by this process is denoted by F = {Ft : 0 ≤ t}. Given the

observations (ti, zi), i = 0, 1, · · · , n over [0, T ] and assuming t0 = 0 without losing

generality, the likelihood is obtained as below.

Let Xk = X(tk) and Yk = tk − tk−1. The sequence {(Xi, Yi, zi)}ni=1 which forms a

Markov sequence is equivalent to the sequence {(Xi, ti, zi)}ni=1. For any y > 0 and
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Borel set B ∈ B(Z), the transition probability for this sequence is

P {Xk = j, Yk ≤ y, Zk ∈ B|Xk−1 = i} (4.1)

= P {Xk = j, Yk ≤ y|Xk−1 = i}P{Zk ∈ B|Xk = j} (4.2)

=

∫ y

0

∫
B

e′i exp{(Q− Λ)t}ΛΥ(z)ejµ(dz)dt, (4.3)

where ei is a unit column vector with unit entry in the ith element, Λ = diag(λ1, · · · , λr)

and Υ(z) = diag(f1(z), · · · , fr(z)). The first term of (4.2) is derived according to a

result of Meier-Hellstern (1987) which gives the transition probability of the Markov

renewal sequence (Xi, Yi)
n
i=1, see also equation (3.1) in the previous chapter for the

derivation of the likelihood of MMPP. According to the transition probability den-

sity of Markov sequence formed by the observations (Xi, Yi, zi) given in (4.3), the

likelihood of the observations is obviously given in the following Theorem 4.1.

Theorem 4.1 Given that the initial distribution is stationary vector π and the

transition density matrix Q, the likelihood for the inter-event times and associated

marks (Yi, zi)
n
i=1 is

L(π,Q,Λ, θ) = π exp{(Q− Λ)Y1}ΛΥ(z1) · · · exp{(Q− Λ)Yn}ΛΥ(zn)1, (4.4)

where θ is the parameters in mark distributions.

To facilitate the evaluation of likelihood and other statistics involved in MMPP

with marks, we introduce the forward and backward probabilities as in the con-

text of discrete time hidden Markov models. The forward and backward proba-

bility densities are defined by αt(i)=̂Pr{ points occurrences up to t with X(t) = i}

and βt(j)=̂Pr{ points occurrences from t up to T given X(t)=j} respectively. De-

note Lk = exp{(Q − Λ)Yk}ΛΥ(zk). For 0 < t < T , the forward and backward
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probabilities are written by αt(i) = πL1 · · ·LN(t) exp{(Q − Λ)(t − tN(t))}ei and

βt(j) = e′j exp{(Q − Λ)(tN(t)+1 − t)}ΛΥ(zN(t)+1)LN(t)+2 · · ·Ln1, respectively. The

likelihood of the observations in terms of this device is obviously L =
r∑
i=1

αt(i)βt(i).

The likelihood is invariant under the permutation of the states. But it is still possi-

ble that seemingly different MMPPs may have the same laws. The question of under

what conditions the MMPPs are equivalent is the so-called identifiability problem.

For the MMPP with marks, two point processes N(t, z) and N(t, z) are equivalent if

and only if their conditional intensity rates λX(t)fX(t)(z) and λX(t)fX(t)(z) have the

same laws. The question can be translated into the identifiability of discrete time

Markov chains by Poisson randomization of the continuous time Markov chain X(t)

and utilizing results of Ito et al. (1992) on identifiability of discrete Markov chain,

see also Rydén (1996b) for the methods.

Poisson randomization (uniformization) is implemented by defining a Pois-

son process NP (t) with intensity rate q ≥ ||Q||=̂ max
i
qi (assuming all diagonal ele-

ments of Q are uniformally bounded) and let {Yn, n = 0, 1, · · · } be a discrete time

Markov chain with transition probability matrix P = 1
q
Q + I which itself is inde-

pendent of NP (t). Then it is well-known that {YN(t)} and X(t) have same finite

dimensional distributions, hence probabilistically identical, see Cinlar (1975).
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4.3 Parameter Estimation of MMPP with Expo-

nential Family Marks

4.3.1 Parameter estimation through EM algorithm

The key point for obtaining explicit E-steps and M-steps within the EM algorithm,

as Asmussen et al. (1996) and Rydén (1996a) point out, is taking the whole trajec-

tory of the Markov chain X(t) as missing data. When this is done, much the same

as Rydén (1996a) except for the conditional likelihood of the marks given the un-

derlying Markov process, the complete data log-likelihood of this extended MMPP

can be summarized in the form:

logLC(π,Q,Λ, θ) =
r∑
i=1

{
log πi1X(0)=i − (qi + λi)Ti +

∑
j:j 6=i

Nij log qij +Ni log λi

}

+
n∑
k=1

log fXk(zk) (4.5)

= logLC1(π,Q,Λ) + logLC2(θ), (4.6)

in which Ti=̂
∫ T

0
1{X(t) = i}dt is the sojourn time of X(t) in state i, Ni,j=̂#{t : 0 <

t ≤ T,X(t−) = i,X(t) = j} is the number of transition times of X(t) from i to j and

Ni=̂
∫ T

0
1{X(t) = i}dN(t) is the number of observations occurred in state i, leaving

the mark densities unspecified temporally. See Rydén (1996a) for the derivation of

the complete likelihood of MMPP in logLC1 . We limit our attention to those marks

whose distributions have no common parameters with logLC1 . Such a simplification

is sufficient for most practical problems of interest at this stage. Therefore, logLC1

and logLC2 can be maximized separately within the M-step after taking expectation
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conditional on the overall observations (the arrival times and associated marks).

Note that the expectation value of logLC1 conditional on the history FT in the

E-step depends only on the expectation of the sufficient statistics (Ti, Nij, Ni) for

parameters Q and λ′s. They can be written as E{Ni|FT} =
n∑
k=1

αtk(i)βtk(i)/L,

E{Ti|FT} =
∫ T

0
αt(i)βt(i)dt/L and E{Nij|FT} =

∫ T
0
αt(i)qijβt(j)dt/L which are

denoted respectively by N∗i , T ∗i and N∗ij throughout later discussion and L =
r∑
i=1

αt(i)βt(i). After an explicit M-step, the parameters in logLC1(π,Q,Λ) are updated

by

q̂ij =
N∗ij
T ∗i

, λ̂i =
N∗i
T ∗i

, i 6= j, 1 ≤ i, j ≤ r. (4.7)

Note that equation (4.7) is nothing different from (3.6) except that extra infor-

mation of the marks is incorporated into the group of sufficient statistics. Now

suppose the mark distribution fXi(z) comes from an Exponential family distri-

bution in its canonical form f(z) = h(z) exp{θT t(z)}/c(θ), where the sufficient

statistic t(z) and parameter vector θ are d dimensional vectors, h(z) and c(θ) are

scalar functions. The parameter space Ω is a d-dimensional convex set such that

Ω = {θ :
∫
h(z) exp{θT t(z)}dz < ∞}. Taking conditional expectation value of

logLC2 given the history of the observed process and ignoring terms without θ, we

have

Q2(θ) =̂ E
{

logLC2(θ)|FT
}

=
r∑

k=1

E

{
θTk

(
n∑
i=1

t(zi)1(Xi = k)

)
−Nk log c(θk)

∣∣∣∣FT
}

+
n∑
i=1

log h(zi)

=
r∑

k=1

{
θTk

(
n∑
i=1

αti(k)βti(k)

L
t(zi)

)
−N∗k log c(θk)

}
+

n∑
i=1

log h(zi).



CHAPTER 4. MARKOV MODULATED POISSON PROCESS WITH MARKS47

On differentiation of Q2(θ) with respect to θ in Ω, it follows that

∂Q2(θ)

∂θk
=

n∑
i=1

αti(k)βti(k)

L
t(zi)−

N∗k
c(θk)

∂c(θk)

∂θk
.

Note that in exponential family Eθ{t(z)} =
∂ log c(θ)

∂θ
, the M-step requires θ to be

chosen by solving the equation

Eθk(t(z)) =
1

N∗k

n∑
i=1

αti(k)βti(k)

L
t(zi). (4.8)

If the above equation can be solved in Ω, then it is uniquely solvable due to the

convexity property of minus the log likelihood of the regular exponential family.

Such a procedure is not automatically applicable for those marks from non-

exponential family distribution. For instance, the t-distribution does not belong to

the exponential family, but it has many applications in applied statistics. Assume

the mark variable Z comes from the multivariate t-distribution tp(µ,Σ, ν) with loca-

tion parameter µ, positive definite inner matrix Σ and ν degrees of freedom. Given

weight u, Z|u ∼ N(µ,Σ/u), where the random variable U corresponding weight u

is distributed as Γ(1
2
ν, 1

2
ν). Hence, the multivariate t distribution is defined as the

marginal distribution of the bivariate exponential family (U,Z) in Z. We omit the

definition of multivariate t according to its probability density and instead treat

it as a derivation distribution from the bivariate exponential family (U,Z) in the

discussion of parameter estimation via EM algorithms. For known ν, a closed form

EM step can be obtained on the T-type mark since Z|u and u are from exponential

family distribution. We treat not only the whole trajectory of the Markov chain but

also the mark Z as missing data. Then the second part logLC2 of the complete-data
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log likelihood can be written by

logLC2(θ) = c−
n∑
i=1

r∑
k=1

Nk

2
log
∣∣Σk

∣∣1{Xi = k} −
n∑
i=1

r∑
k=1

ui
2
µ′kΣ

−1
k µk1{Xi = k}

−
n∑
i=1

r∑
k=1

ui
2

(
Z ′iΣ

−1
k Zi − 2µ′kΣ

−1
k Zi

)
1{Xi = k}+

n∑
i=1

f(ui), (4.9)

where c and f(ui) are items without unknown parameters. In the E-step, the

conditional expectation will be taken both over (ZiZ
′
i, Zi)1(Xi = k) and ui given

the observed marked point process and current value of parameters. It turns out

that the conditional distribution of Ui is distributed as Ui
∣∣Zi ∼ Γ(m1,m2), where

m1 = 1
2
(ν+p) and m2 =

1

2
(ν + (Zi − µ)′Σ−1(Zi − µ)) , see page 63-68 in McLachlan

and Krishnan(1997) for a detailed description. So we have

U∗i =̂E(Ui
∣∣Zi) =

ν + p

ν + (Zi − µ)′Σ−1(Zi − µ)
. After the execution of an explicit E-step,

each Ui is replaced by U∗i and if we denote
αti(k)βti(k)

L
by pti(k), the M-step yields

by: 
µ̂k =

n∑
i=1

U∗i Zipti(k)
n∑
i=1

U∗i pti(k)
;

Σ̂k =
n∑
i=1

U∗i (ZiZ
′
i − 2µ̂kZ

′
i + µ̂kµ̂k

′)pti(k)

N∗k
.

(4.10)

4.3.2 Examples

Example 1: Assume each attached mark is an indicator of the class to which the

point belongs, then such a MMPP with discrete marks forms a multivariate MMPP

with intensity rate λX(t)

∏
j

(p
(j)
X(t))

1(z=j), where
∑
j

p
(j)
k = 1, p

(j)
k > 0, 1 ≤ j ≤ M, 1 ≤

k ≤ r. Rewrite the mark distribution in its canonical form fk(z) = exp{
∑
j

1(z =

j) log p
(j)
k } and note that sufficient statistic 1(z = j) satisfies Eθk{1(z = j)} = p

(j)
k ,
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One obtains

p̂
(j)
k =

1

N∗k

n∑
i=1

αti(k)βti(k)

L
1(zi = j). (4.11)

Example 2: When the mark variable of the MMPP is exponentially distributed

with probability density f(z) = θ exp{−θz}1{z > 0}, the expectation value of the

sufficient statistic z given θ = θk is Eθk(z) =
1

θk
. The explicit EM solution is given

by

θ̂k = N∗k

(
n∑
i=1

αti(k)βti(k)

L
zi

)−1

. (4.12)

Example 3: Suppose the mark variable comes from p-variate normal distribution

Np(µ,Σ) with canonical probability density exp
{
−1

2
(V(zz′)V(Σ−1)− 2µ′Σ−1z)

}
1

c(µ,Σ)
,

where V is the vectorization of a matrix and c(µ,Σ) = (2π)p/2|Σ|1/2 exp{1
2
µ′Σ−1µ}.

Then the expectation of the sufficient statistics (z, zz′) for parameter (µ,Σ) are Eθk(z) = µk;

Eθk(zz
′) = Σk + µkµ

′
k.

Thus, in terms of the equation (4.8), the closed form of EM iteration step is given

by
µ̂k = 1

N∗k

n∑
i=1

αti(k)βti(k)

L
zi;

σ̂k =
n∑
i=1

αti(k)βti(k)

LN∗k
ziz
′
i −
(

n∑
i=1

αti(k)βti(k)

LN∗k
zi

)(
n∑
i=1

αti(k)βti(k)

LN∗k
z′i

)
.

(4.13)
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4.4 Inference on State Process and Observed Point

Process

4.4.1 Estimate hidden state and intensity rate of observed

point process

There exist state smoothers for MMPP such as those given by Elliott and Mal-

colm (2005). Much the same as in the context of discrete time hidden Markov

models, a computationally efficient algorithm, fixed point smoothing, is available

to estimate the probability of the underlying Markov chain in a given state at a

specific time conditioned on all available observations, which only involves the for-

ward and backward probabilities, see MacDonald and Zucchini (1997, pp 85). Let

p̂t(i) = P{X(t) = i|FT}. After taking conditional expectation of 1{X(t) = i}

conditioned on observations, one obtains p̂t(i) =
αt(i)βt(i)
r∑
j=1

αt(j)βt(j)
. The fixed point

smoothing estimate pt(i) is obviously continuous with respect to t. Therefore, the

fixed point smoothing estimates obtained at many grid points and connected by

lines should be sufficient to mimic the evolution of the underlying process.

For the purpose of simulation, model evaluation and prediction (Daley and Vere-

Jones, 2003, chapter 7.5) based on the intensity rate of MMPP, we use the con-

ditional expectation of λX(t)fX(t)(z) =
r∑
i=1

λifi(z)1{X(t) = i} conditioned on the

observations (the arrival times and associated marks) as the estimate of the inten-
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sity rate of the observed point process, say,

λ̂(t, z)=̂
r∑
i=1

λifi(z)pt(i) =
r∑
i=1

λifi(z)
αt(i)βt(i)∑
αt(i)βt(i)

. (4.14)

It is a weighted summation of all possible intensity rates λi(t, z) which suggests an

interpretation of MMPP as a mixing process with Markov dependence. Then the

estimated ground intensity is given by λ̂(t) =
r∑
i=1

λi
αt(i)βt(i)

L
and the conditional

mark density is given by f̂(t, z) =
r∑
i=1

fi(z)
αt(i)βt(i)λi∑
αt(k)βt(k)λk

.

To predict the occurrence of at least an event in a small time interval [t, t+ ∆t] in

terms of the intensity rate λ(t, z|H(t)), one has to resort to point process simulation

algorithms such as the inversion method or thinning method (Ogata, 1981) since the

required prediction probability is rarely analytically obtainable. After the estimates

of parameters are obtained, one can simulate an arrival time t + τ and a mark z

according to λ(t, z|H(t)) and add the new event to the history H(t). Then update

λ(t, z|H(t)) to λ(t+ τ, z|H(t)). Repeat the above procedures until the time t+∆t is

exceeded. We repeat the above steps many times until the required quantities can

be approximated by the simulation results satisfactorily. The incidence of at least

one event occurring in [t, t + ∆t] may be taken as the estimate of the forecasting

probability. See Daley and Vere-Jones (2003) in chapter 7.5 or Vere-Jones (1999)

for the discussion of point process prediction.

4.4.2 Assessing the goodness-of-fit

Rescaling a multivariate or marked point process (Schoenberg, 1999; Vere-Jones and

Schoenberg, 2004) technique is particularly useful for statistical model evaluation.
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The detection of deviations of the rescaled residual point process (Ogata, 1988)

from the standard process, a homogeneous unit rate Poisson process with stationary

mark density in the circumstance of a marked point process, forms a key tool to

suggest deficiencies and even illuminate possible improvements or alternatives of the

current model. Vere-Jones and Schoenberg (2004) show that under quite general

conditions by changing each point from (tk, zk) to (
∫ tk
t0
λ(t, zk)dt, zk), the collection

of these rescaled ones forms a stationary compound Poisson process with unit ground

intensity and stationary mark distribution on the rescaled space. Especially when

the mark admits a continuous univariate cumulative distribution function Fπ(z)

with respect to a reference probability measure π, the doubly transformed points

(
∫ tk
t0
λ(t, zk)dt, Fπ(zk)) form a planar Poisson process with unit rate over R× [0, 1],

see also Daley and Vere-Jones (2008) for a proof. To numerically evaluate

Λ(tk, zk)=̂

∫ tk

t0

1

L

r∑
i=1

λifi(zk)αt(i)βt(i)dt, (4.15)

we use the computational methods of the integral of the matrix exponential involved

in MMPP with marks, a numerical technique which can be implemented through

matrix eigenvalue decomposition (Rydén, 1996a), Poisson randomization (Klemm et

al., 2003) or a certain matrix exponential in higher order (Van Loan, 1978). Then the

usual tests for Poisson processes such as the K-functions, L-functions and nearest

neighbor tests etc. can be applied to evaluate the goodness-of-fit of the proposed

hidden Markov models, see Cressie (1991). For instance, the estimated K-functions

K(d) which indicates the proportion of paired points per unit area within a specified

distance d is a powerful test to detect clustering or regularity appearing in the spatial

point pattern.
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4.5 Simulation study

For MMPP without marks, it is noted that the better the intensity rates are sep-

arated, the better the estimates are close to the true values for certain length of

observations, given that Q is fixed. Intuitively, the estimates of MMPP attached

by state-dependent marks should be better than that of MMPP without marks in

accuracies and efficiencies when the infinitesimal generator Q and the intensity rates

λi remain fixed, due to an increase of the mutual information between the observed

point process and the underlying Markov chain brought by the additional marks.

To conform this, we illustrate several simulations to compare the accuracies and effi-

ciencies of the estimates for several types of MMPPs, one of them is MMPP without

marks, others are MMPP associated with several different types of state-dependent

marks whose Q matrix and intensity rates λi are identical. We also demonstrate

that among MMPP with marks whose Q matrix and λis are same, the better the

mark distributions are separated , the better the estimates are close to the true val-

ues of the model parameters even for different types of marks. How well the mark

distributions are separated is measured by the Kullback-Leibler divergence.

To appraise how the accuracies and efficiencies of estimates vary according to

different types of marks attached to MMPP, It is preferred to evaluate the observed

Fisher information of the estimates as the MLE is consistent, asymptotic normal

under mild conditions, see Bickel et al. (1998), see also section 7.5. However,

evaluating the Fisher information or the observed Fisher information which requires

the derivatives of matrix exponential and its products is numerically complicated.
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Existing Monte Carlo methods or approximation methods are questioned by whether

their accuracies are sufficient to the level to enable a delicate comparison for MMPP

attached by different marks. We turn to the bootstrap methods.

Assume all types of MMPPs with or without marks in the simulation have identical

infinitesimal generator Q =

 −1 1

0.5 −0.5

 and intensity rates Λ = diag(5, 1). We

attach 4 pairs of marks to MMPP observations, e.g. (N(0, 1), N(1, 1)), (N(0, 1), N(1, 0.52)),

(exp(2.5), exp(3)) and (exp(1), exp(10)) which are denoted by MMPP(1), MMPP(2),

MMPP(3) and MMPP(4) respectively throughout later discussions. The Kullback-

Leibler divergences d(., .) of these 4 pairs of marks comparatively satisfies d(exp(2.5),

exp(3)) < d(N(0, 1), N(1, 1)) < d(N(0, 1), N(1, 0.52)) < d(exp(1), exp(10)). Then

we generate many series of observations in same length (1000 observations) from

MMPP and MMPP with the 4 pairs of marks, each one of them repeats 1000 times.

The histograms of the estimates for each type of MMPP attached by marks and

MMPP without marks clearly indicate the effects of different marks on the estima-

tion error, see Figure 4.2 and Figure 4.3.

From the histograms, it is evident that the estimates are more and more central-

ized about the true values of the parameters upon the paired marks are more and

more separated in terms of the Kullback-Leibler divergence, see also the standard

deviations and means of estimates as listed in Table 4.1. Note that for MMPP(3),

the leverage effect of the paired marks (exp(2.5), exp(3)) exerting on the estimates

is very weak comparing with that of MMPP without marks. The simulation study

for MMPP(3) is a similar to the real situation in applications of chapter 9.2 which
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Figure 4.2: The left column of the plot gives the histograms of 1000 bootstrap

replicates of estimated transition rates q1. The right column of the plot gives the

histograms of 1000 bootstrap replicates of estimated intensity rates λ1.
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Figure 4.3: The left column of the plot gives the histograms of 1000 bootstrap

replicates of estimated transition rates q1. The right column of the plot gives the

histograms of 1000 bootstrap replicates of estimated intensity rates λ1.
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Dev. MMPP MMPP(1) MMPP(2) MMPP(3) MMPP(4)

q1 −1.024± 0.242 −1.018± 0.198 −1.020± 0.174 −1.022± 0.240 −1.023± 0.152

q2 −0.509± 0.123 −0.512± 0.102 −0.508± 0.076 −0.508± 0.122 −0.507± 0.067

λ1 5.04± 0.368 5.01± 0.314 5.01± 0.276 5.04± 0.366 −0.504± 0.265

λ2 1.00± 0.123 1.00± 0.096 1.00± 0.075 1.00± 0.122 1.00± 0.068

Table 4.1: Standard deviation and mean of estimates for Q and Λ according to 1000

bootstrap replicates obtained from simulated series of events with 1000 observations.

Std. Dev. q1 q2 λ1 λ2

MMPP 0.1004 0.0525 0.1612 0.0558

MMPP(3) 0.0997 0.0521 0.1605 0.0554

Table 4.2: Standard deviation of estimates for Q and Λ according to 1000 bootstrap

replicates obtained from simulated series of events with 5000 observations.

gives an indication of how much leverage effect the magnitude distribution can have

on the estimates. The estimates are roughly convergent to the true values of the

parameters at the rate of 1/
√
n, see the histograms of estimates in Figure 4.4 and

the standard deviations in Table 4.2 when the data sizes are increased to 5000 for

MMPP and MMPP(3). When comparing MMPP and MMPP(3), It is more clear

that the leverage effects from the marks (exp(2.5), exp(3)) exerting on the estimation

are weakened with the increase of the data sizes..
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Figure 4.4: The left column of the plot gives the histograms of 1000 bootstrap

replicates of estimated transition rates q1. The right column of the plot gives the

histograms of 1000 bootstrap replicates of estimated intensity rates λ1.



Chapter 5

Multivariate MMPP

5.1 Introduction

This chapter is on a special case of MMPP with state-dependent marks, in which

the mark indicate the class to which the point belongs. We focus on a detailed

discussion of this type of MMPP including the second order moment analysis such as

cross covariance density, cross intensity function etc. to characterize the correlation

structure among component processes of a multivariate MMPP.

When two or more point processes evolve simultaneously, it is essential to de-

scribe not only the evolution of each marginal process individually but also the

interplay of all processes, see Milne (1971). Much the same as the discrete time

hidden Markov models, for Markov Modulated Poisson Process, it is natural to in-

troduce the multivariate Markov Modulated Poisson Process, in which each marginal

process is controlled by a common underlying continuous time finite state Markov

59
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chain. The correlations among component processes are brought by the underlying

Markov chain. To specify a multivariate point process exactly, we need some basic

definitions.

Definition 5.1 In a univariate point process N(t), the regularity is defined by

requiring that P{N(t, t+ δ) > 1} = o(δ), for all t ∈ R as δ → 0 + .

Definition 5.2 For a multivariate point process, the process is marginally regu-

lar if its marginal processes are all regular. It is regular if the process of superposed

marginal events is regular.

Other alternatives of the word regular are simple or orderliness. To specify

a multivariate point process which is marginally simple by intensity rates of the

process, it is necessary to specify not only the intensity rates of individual component

process but also the simultaneous occurrence rate among marginal processes. One

needs the following definition.

Definition 5.3 Denote the history of the process at time t by Ht. The com-

plete intensity functions (Cox and Lewis, 1972) of a bivariate point process

(N (1)(t), N (2)(t)) are given by the conditional intensity rates of the marginal pro-

cesses and the simultaneous occurrence rate among component processes such as

λ(1)(t|Ht) = lim
∆t→0+

P{N (1)(t, t+ ∆t) ≥ 1|Ht}
∆t

, (5.1)

λ(2)(t|Ht) = lim
∆t→0+

P{N (2)(t, t+ ∆t) ≥ 1|Ht}
∆t

, (5.2)

and λ(12)(t|Ht) = lim
∆t→0+

P{N (1)(t, t+ ∆t)N (2)(t, t+ ∆t) ≥ 1|Ht}
∆t

. (5.3)

However, in the case of a simple bivariate point process, it is sufficient to specify
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only the conditional intensity rates of the marginal processes.

As a case in point, a bivariate MMPP N(t) = (N (1)(t), N (2)(t)) can be specified by

the intensity functions of two marginal processes such as Λ(t) = (Λ(1)(t),Λ(2)(t)) =

(λ
(1)
X(t), λ

(2)
X(t)), in which X(t) is a continuous time rth order Markov chain with the in-

finitesimal generator Q and λ
(1)
X(t), λ

(2)
X(t) are independent with each other conditioned

on X(t). Note that we use notations Λ(i)(t) and λ(i)(t) exchangably throughout the

discussion. The simultaneous occurrence rate of the two components is obviously

zero. Hence, a bivariate MMPP is a simple bivariate point process, which makes it

sufficient to specify a bivariate MMPP only by the intensity rates of the marginal

processes. It is also possible to specify the multivariate MMPP via counts, inter-

event times or univariate point process associated with marks which indicate the

class that it belongs to. The stationarity of a bivariate MMPP is studied through

that of the underlying Markov chain. Particularly, when the underlying Markov

process starts from stationary distribution π which satisfies πQ = 0 and π1 = 1,

then correspondingly, the observed multivariate point process is stationary.

Definition 5.4 A bivariate MMPP is a simple bivariate doubly stochastic

point process whose stochastic intensity rates for the marginal point process are

given by Λ(t) = (λ
(1)
X(t), λ

(2)
X(t)) where X(t) is a r-state irreducible Markov chain.

Such an extension of MMPP is potentially useful for multivariate point process

with Markov dependence, see Ramesh (1995). To fully exploit this device, it is

necessary to derive its likelihood.
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5.2 The Likelihood

We denote the internal history generated from the observed process by F = {Ft : t ≥

0}. Given the occurrence time tk and the associated class zk to which it belongs, the

likelihood of the observations (Yk, zk), k = 1, · · · , n can be obtained as follows. Let

Xk = X(tk) and Yk = tk − tk−1. Then the sequence (Xk, Yk, zk)
n
1 which is equivalent

to (Xk, tk, zk)
n
1 , forms a Markov sequence. For any y > 0, the transition probability

for this sequence is

P {Xk = j, Yk ≤ y, Zk = zk|Xk−1 = i}

=

∫ y

0

e′i exp{(Q− Λ(1) − Λ(2))t}Λ(zk)ejdt,

where ei is a unit column vector with unit entry in the ith element and Λ(i) =

diag(λ
(i)
1 , · · · , λ

(i)
r ). The derivation of the transition probability density is similar as

(3.1) and (4.3). Hence, the likelihood of a bivariate MMPP is given by following

theorem.

Theorem 5.1 (Ramesh, 1995) Given that the initial distribution is stationary

vector π and the transition density matrix Q of Markov chain X(t), the likelihood

for the observations (Yi, zi)
n
i=1 is written by

L(π,Q,Λ) = π exp{(Q− Λ(1) − Λ(2))Y1}Λ(z1) · · · exp{(Q− Λ(1) − Λ(2))Yn}Λ(zn)1.(5.4)

The evaluation of the likelihood and other statistics involved in the estimation

and inference procedure is facilitated by introducing the forward and backward

probabilities as in the previous context. Denote Lk = exp{(Q−Λ(1)−Λ(2))Yk}Λ(zk).

Respectively, for 0 < t < T , the forward and backward probabilities are defined
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by αt(i) = πL1 · · ·LN(t) exp{(Q− Λ(1) − Λ(2))(t− tN(t))}ei and βt(j) = e′j exp{(Q−

Λ(1)−Λ(2))(tN(t)+1−t)}Λ(zN(t)+1)LN(t)+2 · · ·Ln1. The likelihood of the observations in

terms of this device is L =
r∑
i=1

αt(i)βt(i). Note that when the two marginal processes

are superposed, it forms a MMPP with parameters (Q,Λ), where Λ = Λ(1) + Λ(2),

see equation (5.4) and (3.2).

5.3 Parameter Estimation through EM Algorithm

As discussed previously, the key point for applying the EM algorithm in this scenario

is treating the whole trajectory of the underlying Markov chain as missing data.

Then the complete data log-likelihood of the bivariate MMPP will be summarized

by

logLC(π,Q,Λ) =
r∑
i=1

{
log πi1{X(0) = i} − qiTi +

∑
j:j 6=i

Nij log qij

}

+
r∑
i=1

{
−(λ

(1)
i + λ

(2)
i )Ti +N

(1)
i log λ

(1)
i +N

(2)
i log λ

(2)
i

}
, (5.5)

in which Ti=̂
∫ T

0
1{X(t) = i}dt is the sojourn time of X(t) in state i, Ni,j=̂#{t :

0 < t ≤ T,X(t−) = i,X(t) = j} is the number of transition times of X(t) from

i to j and N
(j)
i =̂

∫ T
0

1{X(t) = i}dN (j)(t) is the number of type j arrivals upon

X(t) in state i. Note that the expectation value of logLC(π,Q,Λ) conditional

on the history FT in the E-step depends only on the expectations of the suffi-

cient statistics (Ti, Nij, N
(1)
i , N

(2)
i ) for parameters Q and λ′s. They can be written

as E{N (j)
i |FT} =

n∑
k=1

αtk(i)βtk(i)1(zk = j)/L, E{Ti|FT} =
∫ T

0
αt(i)βt(i)dt/L and

E{Nij|FT} =
∫ T

0
αt(i)qijβt(j)dt/L which are denoted respectively by N

(j)∗
i , T ∗i and



CHAPTER 5. MULTIVARIATE MMPP 64

N∗ij throughout later discussion. After replacing N
(j)
i , Ti and Nij in (5.5) by N

(j)∗
i , T ∗i

and N∗ij respectively and executing an explicit M-step, the parameters in logLC are

updated by

q̂ij =
N∗ij
T ∗i

, λ̂
(k)
i =

N
(k)∗
i

T ∗i
, i 6= j, 1 ≤ i, j ≤ r, k = 1, 2. (5.6)

5.4 Second Order Moment Analysis

One important second order moment of multivariate point process is the second order

cross intensity function which gives the occurrence rate of paired points from differ-

ent component processes, assuming one of them at the origin. For instance, the cross

intensity function of a bivariate MMPP is defined by λ
(1)
2 (t) = lim

∆t→0+
Pr{N (1)(t, t+

∆t) ≥ 1|a type 2 event occurs at 0} which is more easily computed in terms of in-

tensity rates of the point process. Hence the equations relating the moment densities

of the counting process and the moments of λ(t) such as E{λ(i)(t)} = E
{
dN(i)(t)

dt

}
,

E{λ(i)(t1)λ(i)(t2)} = E
{
dN(i)(t1)dN(i)(t2)

dt1dt2

}
, E{λ(i)(t1)λ(j)(t2)} = E

{
dN(i)(t1)dN(j)(t2)

dt1dt2

}
,

i 6= j, i, j = 1, 2 are essential for obtaining these second order moments in terms of

Λ(t). These equations can be derived from the characteristic functionals of N(t) de-

fined as E

{
exp

2∑
k=1

∫ T
0
iθk(t)dN

(k)(t)

}
where θk(t) is any bounded complex-valued

Borel measurable functions, see Daley and Vere-Jones (2003, 2008) in chapter 5.5

and 9.4.

The equation relating the characteristic functional of a simple bivariate doubly

stochastic point process and its complete intensity function Λ(t) = (Λ(1)(t),Λ(2)(t))
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is given as

E

{
exp

(∫ T

0

iθ1(t)dN (1)(t) +

∫ T

0

iθ2(t)dN (2)(t)

)}
= EΛ(t)

{
exp

(∫ T

0

(
λ(1)(t)[eiθ1(t) − 1] + λ(2)(t)[eiθ2(t) − 1]

)
dt

)}
. (5.7)

From this equation, complete relation between N(t) and Λ(t) such as identities

relating the moment density function of the counting process and the moments of

Λ(t) illustrated above holds for simple bivariate doubly stochastic Poisson process.

This equation can be derived by following arguments.

E

{
exp

(∫ T

0

iθ1(t) dN (1)(t) +

∫ T

0

iθ2(t) dN (2)(t)

)}
= EΛ(t)

{
E

{
exp

(∫ T

0

iθ1(t) dN (1)(t) +

∫ T

0

iθ2(t) dN (2)(t)

) ∣∣∣∣Λ(t)

}}

= EΛ(t)


∑

M=0,1,·,m,···
N=0,1,··· ,n,···

(
∫ T

0
λ(1)(t) dt)M

M !
e−

R T
0 λ(1)(t) dt (

∫ T
0
λ(2)(t) dt)N

N !
e−

R T
0 λ(2)(t) dt

∏
m=1,·,M
n=1,··· ,N

∫ T

0

∫ T

0

eiθ1(tm)+iθ2(tn)λ(1)(tm)λ(2)(tn)∫ T
0
λ(1)(t) dt

∫ T
0
λ(2)(t) dt

dtm dtn


= EΛ(t)

{
∞∑

M=1

∞∑
N=1

e−
R T
0 (λ(1)(t)+λ(2)(t)) dt

( ∫ T
0
eiθ1(t)λ(1)(t) dt

)M
M !

( ∫ T
0
eiθ2(t)λ(2)(t) dt

)N
N !

}

= EΛ(t)

{
exp

∫ T

0

(
λ(1)(t)[eiθ1(t) − 1] + λ(2)(t)[eiθ2(t) − 1]

)
dt

}
.

The characteristic functional contains the information of all moments. For example,

putting θ1(t) = θ1 between t1 and t1 +h, and 0 otherwise, θ2(t) = θ2 between t2 and
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t2 + h, and 0 otherwise, expansions of θ gives that

E

{
exp

(∫ T

0

iθ1(t)dN (1)(t) +

∫ T

0

iθ2(t)dN (2)(t)

)}
= 1 + iθ1E{N (1)(t1, t1 + h)} − θ2

1

2
E{N (1)(t1, t1 + h)2}+ · · ·

+iθ2E{N (2)(t2, t2 + h)} − θ2
2

2
E{N (2)(t2, t2 + h)2}+ · · · . (5.8)

Similar expansion ofEΛ(t)

{
exp

(∫ T
0

(
λ(1)(t)[eiθ1(t) − 1] + λ(2)(t)[eiθ2(t) − 1]

)
dt
)}

de-

rives that E{λ(i)(t)} = E
{
dN(i)(t)

dt

}
, i = 1, 2.

Based on a similar discussion of the expansions of the character functional, it also

can be derived that

E{λ(i)(t1)λ(j)(t2)} = E

{
dN (i)(t1)dN (j)(t2)

dt1dt2

}
, i, j = 1, 2. (5.9)

Now we use these equations to derive the cross covariance density, the cross

intensity function and the cross spectral of a bivariate MMPP. Note that the

intensity rate of the marginal MMPP itself is a Markov chain when all the intensity

rates are different from each other. So we have the following equations:

E{Λ(1)(0)Λ(2)(t)} =
r∑
i=1

P
{

Λ(1)(0) = λ
(1)
i

}
λ

(1)
i E

{
Λ(2)(t)|Λ(1)(0) = λ

(1)
i

}
=

r∑
i=1

πiλ
(1)
i

r∑
j=1

pij(t)λ
(2)
j

= πΛ(1)p(t)Λ(2)1, (5.10)

where p(t) = eQt.
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The cross covariance density of the bivariate MMPP is

γ
(2)
1 (t) = lim

∆t1,∆t2→0+
Cov

{
N (1)(0,∆t1), N (2)(t, t+ ∆t2)

}/
∆t1∆t2

= E
{

Λ(1)(0)Λ(2)(t)
}
− E

{
Λ(1)(0)

}
E
{

Λ(2)(t)
}

= πΛ(1)p(t)Λ(2)1− πΛ(1)1πΛ(2)1

= πΛ(1)
{
p(t)− 1π

}
Λ(2)1. (5.11)

Also the cross-intensity function of the bivariate MMPP is

h
(2)
1 (t) = lim

∆t1,∆t2→0+
Pr
{
N (2)(t, t+ ∆t2) > 0

∣∣∣N (1)[0,∆t1) > 0
}/

∆t2

=
πΛ(1)p(t)Λ(2)1

πΛ(1)1
. (5.12)

The cross-spectral of counts of the bivariate MMPP is defined by

g
(2)
1 (ω) =

1

2π

∫ ∞
−∞

e−iωtγ
(2)
1 (t)dt. (5.13)

For a bivariate MMPP with infinitesimal generator Q =

 −q1 q1

q2 −q2

 , note the

stationary distribution is π = ( q2
q1+q2

, q1
q1+q2

) and the transition probability of the

Markov chain X(t) equals

p(t) =

 q2
q1+q2

+ q1 exp{−(q1+q2)t}
q1+q2

q1
q1+q2

− q1 exp{−(q1+q2)t}
q1+q2

q2
q1+q2

+ −q2 exp{−(q1+q2)t}
q1+q2

q1
q1+q2

+ q2 exp{−(q1+q2)t}
q1+q2

 ,

the cross-covariance, cross-intensity and the cross-spectrum are exactly given as
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follows (Ramesh, 1995):

γ
(2)
1 (t) =

q1q2(λ
(1)
2 − λ

(1)
1 )(λ

(2)
2 − λ

(2)
1 )e−(q1+q2)t

(q1 + q2)2
, (5.14)

h
(2)
1 (t) =

q1λ
(2)
2 + q2λ

(2)
1

q1 + q2

+
q1q2(λ

(1)
2 − λ

(1)
1 )(λ

(2)
2 − λ

(2)
1 )e−(q1+q2)t

(q1 + q2)(q1λ
(1)
2 + q2λ

(1)
1 )

, (5.15)

g
(2)
1 (ω) =

πΛ(1)1

2π

{
2q1q2(λ

(1)
2 − λ

(1)
1 )(λ

(2)
2 − λ

(2)
1 )

((q1 + q2)2 + ω2)(q1λ
(1)
2 + q2λ

(1)
1 )

}
. (5.16)

5.5 Inference on State Process and Hidden Pro-

cess, Model Evaluation

The probability of the underlying Markov chain in a given state at a specific time

is estimated by the fixed point smoothing algorithm which requires only the for-

ward and backward probabilities numerically as shown previously. Denote p̂t(i) =

P{X(t) = i|FT}, then

p̂t(i) =
αt(i)βt(i)
r∑
i=1

αt(i)βt(i)
. (5.17)

The state process then can be visualized by using a grid-based fixed point smoothing

algorithm as portrayed in chapter 3.3 and 4.4.

The estimated intensity rates of the observed point process are similarly given by

λ̂(k)(t) =
r∑
i=1

λ̂
(k)
i

αt(i)βt(i)∑
αt(j)βt(j)

, k = 1, 2. (5.18)

The estimated intensity rates allow the simulation of a multivariate MMPP and

model evaluation directly in terms of the estimated intensity rates.
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Meyer (1971) states that if a multivariate point process (N1, N2, · · · , Nk) is formed

from times {tij, i = 1, · · · , k} with continuous compensator (Λ1,Λ2, · · · ,Λk) such

that Λi(∞) = ∞ for each i = 1, · · · , k, then the multivariate point process forms

from {Λ(tij), i = 1, · · · , t} are independent Poisson process with unit rate. See

Brown and Nair (1988) for a simplified proof of the theorem.

By rescaling points of each component process from its original time to its es-

timated compensator
∫ t

0

r∑
i=1

λ
(k)
i αt(i)βt(i) dt/L according to the estimated intensity

rates of each component process, we obtain a rescaled process called ’a residual

point process’ by Ogata (1988). If the proposed model fits the pattern well, each

transformed component process should be a Poisson process with unit rate. Any

deviation from it suggests some deficiencies of the proposed model for the real data.



Chapter 6

MMPP with a subsidiary

Neyman-Scott type Process

6.1 Introduction

As discussed in later chapters, deep earthquakes rarely have plenty of aftershocks

which decay according to Omori’s law (Omori, 1894), see chapter 8. Nevertheless,

some deep earthquakes do have a small portion of aftershocks, the abundance of

which may vary from time to time over depth. In some cases, the deep clustering

forms as multiplets, triplets or doublets. To better understand the clustering be-

havior of deep earthquakes, we develop more sophisticated model to accommodate

this small scale clustering behavior and at the same time reserve the characteristic

of relatively large scale time-varying activity appearing in deep earthquakes within

the framework of Markov modulated Poisson process.

70
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The method behind this idea is to treat the mainshock as a baseline MMPP

process and simultaneously associate each mainshock with a subsidiary clustering

process following after the main shock. Thus various clustering properties such as

spatial or(and) temporal clustering, along with magnitude will be treated as the

mark of Markov modulated Poisson process. We will use the same notations as

those in chapter 4 throughout this chapter.

6.2 MMPP with compounding marks

The simplest example allowing clustering is assuming the baseline process is MMPP

and each arrival is associated with a Poisson variable representing multiple occur-

rences. Here the distribution of the Poisson variable might also be dependent on the

underlying Markov process. We explain this multiple occurrences as the number of

following aftershocks. In this case, the model is nothing other than a MMPP with

Poisson marks.

Using the notations appeared in the chapter 4 on MMPP with marks and denot-

ing the mark distribution by f(z) = βz

z!
e−β or in its canonical form ez log β

z!
e−β, the

explicit iteration solution of β is given by β̂k =
n∑
i=1

αti (k)βti (k)

L
zi
/
N∗k according to an

application of the resulting equation (4.8) in the chapter of MMPP with marks.
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6.3 MMPP with a Subsidiary Neyman-Scott clus-

ter process

The Neyman-Scott model (Neyman and Scott, 1958) is a cluster model proposed for

the distribution of galaxies and ecological applications. In this model, the process

of cluster centers is supposed stationary, Poissonian and the cluster members are

independently identically distributed about the cluster centers with some common

distribution function once the size of each cluster is specified.

More generally, we assume the cluster centers form a baseline MMPP and each

cluster center is associated with a finite point process which can be regarded as

a mark. We suppose further that each cluster size is governed by a Poisson dis-

tribution whose intensity parameter is also dependent on the underlying Markov

chain. For instance, we assume the (earthquake) magnitudes in each cluster are ex-

ponentially distributed i.i.d variables so that the distribution of such a finite point

process is f(z,m1, · · · ,mz)=̂
βz

z!
e−β

z∏
j=1

αe−αmj , where z is the size of the cluster and

(m1, · · · ,mz) are the magnitudes of the cluster members. Note that z and
z∑
j=1

mj are

sufficient statistics of parameters β and α, and that E(z) = β and E(
z∑
j=1

mj) = z/α,

then the explicit EM iteration solution can be written by β̂k =
n∑
i=1

αti (k)βti (k)

L
Zi
/
N∗k

and α̂k = N∗k

/
n∑
i=1

αti (k)βti (k)

L
mi where mi is the average magnitude of cluster mem-

bers within the ith cluster.

For a clustering model, it is natural to specify not only the distribution of the clus-

ter size but also the time delay distribution of the cluster member from the cluster
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center. For instance, we may assume that the time delays of the cluster members,

given the cluster size, are i.i.d. exponential variables, which therefore forms a finite

point process with distribution f(z, τ1, · · · , τz). Leaving aside the magnitude for

simplicity, the distribution f(z, τ1, · · · , τz) can be written by βz

z!
e−β

z∏
j=1

αe−ατj . The

explicit EM iteration solution is given as those similar to aforementioned. A more

appropriate selection of the time distribution for the aftershock is Omori’s law, i.e.

the aftershocks decay in terms of the inverse power law f(τ) = (p− 1)cp−1/(τ + c)p.

In this case, the joint distribution of this finite point process can be written as

f(z, τ1, · · · , τz) = βz

z!
e−β

z∏
j=1

(p − 1)cp−1/(τj + c)p. At this stage, we first assume the

time scaling parameter c is given, then the joint distribution in its canonical form is

f(z, τ1, · · · , τz) = exp{z log β− log z!−β+z log(p−1)+z(p−1) log c−p log(
z∏
j=1

(τj +

c))}. Note z and log(
z∏
j=1

(τj + c)) are sufficient statistics of parameters β and p, after

some trivial integrations, we obtain E{
z∑
j=1

log(τj + c)} = z(log c + 1
p−1

). From the

estimation procedure aforementioned in chapter on MMPP with marks (equation

(4.8)), the estimation is given by solving the following equation

n∑
i=1

αti(k)βti(k)

L

1

zi
log

( zi∏
j=1

(
τ

(j)
i + c

))/
N∗k = log c+

1

pk − 1
(6.1)

where τ
(j)
i is the jth cluster member in the ith cluster and zi is the number of cluster

members in the ith cluster. Denoting the left side of the equation by A, then the

estimated pk is given by p̂k = 1
A−log c

+ 1.

When c is also an unknown parameter, the distribution of the clustering process

forming in the mark obviously does not belong to the exponential family. The

estimation procedure set out in the previous chapter is not automatically applicable



CHAPTER 6. MMPP WITH A SUBSIDIARY NEYMAN-SCOTT TYPE PROCESS74

for this case. We suggest one extension of the EM algorithm, the ECM (Meng and

Rubin, 1993) for the parameter estimation since explicit EM iteration steps for p

depend on c which itself is also unknown.

Using the same notation as in the chapter on MMPP with marks, the complete

data likelihood can be written by

logLc =
r∑

k=1

{
log πk1(X(0) = k)− qkTk +

∑
j:j 6=k

Nkj log qkj + λkTk +Nk log λk

}

+
r∑

k=1

{
log βk

( n∑
i=1

zi1(Xi = k)

)
−

n∑
i=1

log zi!−Nkβk

}

+
r∑

k=1

{
log(pk − 1)

( n∑
i=1

zi1(Xi = k)

)
+ (pk − 1) log c

( n∑
i=1

zi1(Xi = k)

)

− pk

( n∑
i=1

log
( zi∏
j=1

τ
(i)
j + c

)
1(Xi = k)

)}
= logLc1 + logLc2 + logLc3, (6.2)

where the three summations over terms within the large braces are denoted by

logLc1, logLc2, logLc3 respectively.

Note that the complete data log-likelihood is decomposed into three terms in

large brackets, they can be maximized separately since they do not have common

parameters. The maximization of first two terms within ECM algorithm has already

been suggested beforehand. We focus on the maximization of the third term.

The ECM algorithm is a subclass of the GEM algorithm. Briefly speaking, the M-

step in EM algorithm is executed by several conditional maximization steps, each

of which utilizes the updated results in last conditional maximization step. The

preferred properties such as monotonicity and convergence of EM still hold for the
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ECM. In this case the conditional maximization step is executed by first maximizing

logLc3 with respect to c given p fixed in last M-step, then maximizing logLc3 with

respect to p conditioned on c updated from the last conditional maximization step.

However, no explicit iteration solution is obtainable for c, a direct maximization of

logLc3 such as Newton-Raphson etc. should be evoked here. After that, an explicit

conditional maximization step for parameter p is applicable as above mentioned.

More generally, the parameter c might be also dependent on the current state of

the underlying Markov chain. Evidently, the difference between the two scenarios

of parameterization, in which c either remains constant or also varies according to

the underlying Markov chain is trivial when evoking the ECM algorithm.



Chapter 7

Information Theoretical Aspects

of MMPP

7.1 Introduction

The purpose of this chapter is to address the statistical inference problem involved in

MMPP from the point of view of information theory. Simulation studies show that

the better the intensity rates of the observed point process are separated, the better

the estimation is close to the true values of the parameters for certain length of

simulated observations. Here, we suggest the accuracy and efficiency of the MLE is

controlled by the mutual information rate between the underlying Markov chain and

the observed point process when the infinitesimal generator is given. We validate

this supposition via simulation studies since at this stage any explicit relationship

between the mutual information rate and the Fisher information of the estimated
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parameters will be avoided at least in this study. In later sections, we will review

the entropy rate of a continuous time finite state Markov chain and that of Markov

Modulated Poisson process by so called intrinsic conditional intensity of a sta-

tionary point process, see Papangelou (1978), Daley and Vere-Jones (2004). Then

the mutual information rate and the conditional entropy rate of the observed point

process given the whole trajectory of the underlying Markov chain are obtained in

section 4. After that, a supporting simulation study is presented to validate this

conjecture.

First, we recall some basic conceptions of Shannon entropy. The Shannon entropy

of a finite measure which is absolutely continuous with respect to a measure µ

with Radon-Nikodym derivative f is defined as Hf = −
∫
f(x) log f(x) dµ(x). For a

discrete measure µ, it is Hµ = −
∑
i

µi log µi.

The definition is also similarly extended to a stochastic process. For example,

the entropy of a discrete time stochastic process Xn
1 = (x1, · · · , xn) is defined as

the entropy of the corresponding n dimension distribution of Xn
1 , namely H(Xn

1 ) =

E{− log f(x1, · · · , xn)}, where f(x1, · · · , xn) is the probability function of Xn
1 with

respect to some reference measure. Particularly, when the limit of the entropy at

time n divided by n exists, it is called the entropy rate of the process. It is first

defined by Shannon for an ergodic Markov chain with r dimensional finite state space

as summation of the entropies of the transition probability P = (pij) weighted by

the stationary probability vector π = (π1, · · · , πr), i.e., R(X) = −
∑
i

πi
∑
j

pij log pij.

For a continuous-time process Xt, the entropy at time T is given by H(XT
0 ) =

−E(log f(XT
0 )), where f(XT

0 ) is the likelihood of the process Xt with respect to some
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reference measure. We shall use XT
0 to denote the stochastic process {X(t), 0 ≤

t ≤ T} for short through this chapter. The entropy rate for a continuous time

process is similarly defined as that of discrete time process except n replaced by T .

A comprehensive introduction of the information theory was given by Billingsley

(1965), Cover and Thomas (1991).

7.2 The Entropy of the Underlying Markov Chain

In this section, we review a version of the Shannon-McMillan-Breiman theorem for

an irreducible finite Markov chain. Given the state transition times 0 = u0 < u1 <

· · · < um < um+1 = T and X(uk) denoted by sk, the likelihood of the underlying

Markov chain XT
0 with initial probability vector π = (π1, · · · , πr) and infinitesimal

generator Q = (qij)r×r can be written as

L(XT
0 ) = πs1

{
m∏
k=1

qske
−qsk∆uk ×

qsk,sk+1

qsk

}
e−qsm+1∆um+1 ,

where ∆uk = uk − uk−1. After taking logarithm, the Log-likelihood is summarized

as

logL(XT
0 ) =

r∑
i=1

{
log πi1{X(0) = i} − qiTi +

∑
j:j 6=i

Nij log qij

}
, (7.1)

where Ti=̂
∫ T

0
1{X(t) = i} dt and Nij=̂#{t : 0 < t ≤ T,X(t−) = i,X(t) = j} are

the total sojourn time of X(t) in state i and the transition times of X(t) from state

i to state j respectively. They form a group of sufficient statistics of the parameters.

The entropy of the Markov chain X(t) is nonetheless the expectation of the neg-

ative log-likelihood and its time average 1
T
E{− logL(XT

0 )} gives average entropy
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increment per unit time. If the limit of such a time average exists as T approaches

to infinity, it is the entropy rate of the Markov chain X(t). Note that the log-

likelihood is linear with respect to the sufficient statistics Ti and Nij, it requires the

first moment of the sufficient statistics Ti, Nij and the limitations 1
T
E{Ti}, 1

T
E{Nij}

for obtaining the entropy of XT
0 .

Lemma 7.1 E(Ti) =
∫ T

0
Pi(t) dt, where Pi(t) = πeQtei.

Proof : From Fubini’s theorem, we have

E(Ti) = E

{∫ T

0

1
{
X(t) = i

}
dt

}
=

∫ T

0

E

{
1
{
X(t) = i

}}
dt.

Lemma 7.2 (Albert,1962) For i 6= j, 1 ≤ i, j ≤ r, E(Nij) = qij
∫ T

0
Pi(t) dt.

Proof : see the chapter appendix.

Lemma 7.3 (Geometric convergence rate of Markov chain) Let X(t) be an ir-

reducible finite Markov chain. Then lim
t→∞

Pjk(t) = πk is independent of j for all

k. Moreover, there exist non-negative numbers α and ρ such that |Pjk(t) − πk| ≤

αρt, t > 0.

Lemma 7.4 The matrix A =
∫∞

0
{P (t) − π} dt = (

∫∞
0
{pjk(t) − πk} dt)jk of an

irreducible Markov chain has finite elements.

Proof: This is a straightforward consequence of the geometric rate of convergence

of P (t) to its limits π as t→∞.

Proposition 7.1 The entropy rate of an irreducible finite state Markov chain

X(t) is
r∑
i=1

{
πiqi −

∑
j:i 6=j

πiqij log qij

}
.
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Proof : From lemma 7.4, we have lim
t→∞

1
T

∫ T
0
Pi(t) dt = πi. After taking the negative

expectation of the log-likelihood, it follows that the entropy rate RX = lim
t→∞

H(Xt
0)

t
=

lim
t→∞

−E(logL(Xt
0))

t
of the Markov chain X(t) is given by

r∑
i=1

{
πiqi −

∑
j:i 6=j

πiqij log qij

}
.

7.3 The Entropy Rate of MMPP

7.3.1 The Entropy of Point Process

Generally speaking, the realization of a point process is specified by the count N

and the location (x1, · · · , xN). Given the probability distribution controlling count

N and location (x1, · · · , xN) conditional on N , the likelihood of such a realization

of point process can be written in terms of Jannossy density as

L = jn(x1, · · · , xN) = pNN !πsymN (x1, · · · , xN),

where πsymk (x1, · · · , xN) is a symmetric probability density for the locations of N

unordered points, see i.e. Daley and Vere-Jones (2003) in chapter 5.3. The entropy

of a point process defined as the expectation of the negative log likelihood then can

be partitioned as

H = −
∞∑
k=0

pk log pk −
∞∑
k=1

pk

∫
πsymk (x1, · · · , xk) log[k!πsymk (x1, · · · , xk)] dx1 · · · dxk

= H(N) + E{H(x1, · · · , xN)|N}, (7.2)

in which the H(N) is the numerical entropy associated with the count of events

and E{H(x1, · · · , xN)|N} is the location entropy related to the location of events,
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see McFadden (1965).

This representation of point process entropy can be further simplified when the

corresponding conditional intensity function λ(t) exists. In this case, the log-likelihood

of point process is given by

logL =

N(T )∑
i=1

log λ(ti)−
∫ T

0

λ(t) dt

=

∫ T

0

{log λ(t) dN(t)− λ(t) dt} ,

where {ti}ni=1 are the occurrence times of points over interval [0, T ].

By taking expectation of the negative log likelihood, the entropy of the point

process in terms of the conditional intensity function is written as

H = −E
{∫ T

0

λ(t) log λ(t) dt

}
+

∫ T

0

m(t) dt, (7.3)

where m(t) = E[λ(t)] = E[dN(t)/dt].

For a Marked point process with conditional intensity function λ(t, k), the entropy

can be written as (Daley and Vere-Jones, 2003)

H = −E
{∫ T

0

∫
K

log λ(t, k) dN(t, k)−
∫ T

0

∫
K
λ(t, k)l(dk)dt

}
= −E

{∫ T

0

∫
K
λ(t, k) log λ(t, k) l(dk)dt−

∫ T

0

∫
K
λ(t, k)l(dk)dt

}
= −E

{∫ T

0

λg(t) log λg(t) dt

}
+

∫ T

0

mg(t) dt

− E

{∫ T

0

[

∫
K
f(k|t) log f(k|t) l(dk)]λg(t) dt

}
, (7.4)

where λg(t) is the ground intensity function and f(k|t) is the conditional mark

density satisfying λ(t, k) = λg(t)f(k|t) with reference probability measure l(k).
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7.3.2 The Entropy of Stationary Point Process and Marked

Point Process

When the point process or the marked point process is stationary, the above formulas

can be further simplified by considering so-called intrinsic conditional intensity

λ†(t) conditioned on some initial σ−algebra, which in this case is taken by the

infinite past history of the point process. Note that for a stationary marked point

process

E[λ†(t, k)] = E[λ†(0, k)] = mgE[f †(k|0)]

with mg = E[λ†g(0)] denoting the overall mean rate. Therefore, the entropy of a

marked point process can be written as

H = −T
{
E
{∫
K
λ†(0, k) log λ†(0, k) l(dk)

}
−mg

}
. (7.5)

The entropy rate of a stationary marked point process is given by

R =
H

T
= −E[λ†g(0) log λ†g(0)] +mg − E[λ†g(0)

∫
K
f †(k|0) log f †(k|0) l(dk)]. (7.6)

Following a similar argument, the entropy rate of a stationary point process is then

reduced to

R = −E[λ†(0) log λ†(0)] +m (7.7)

with m = E[λ†(0)]. See Daley and Vere-Jones (2003, 2008) in the chapter 7.6 and

14.8.
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7.3.3 The Entropy Rate of MMPP

From the above arguments, it is obvious that the stationarity of point process N(t)

is inherited from the stationarity of underlying Markov chain X(t) of a MMPP with

time-varying intensity rate λX(t). In this case, the intrinsic conditional intensity

of MMPP conditioned on an initial σ−algebra generated from the infinite past

history of the point process is given by λ†(0) =
r∑

i=1

πiλi when the underlying finite

Markov chain is irreducible, hence ergodic. According to equation (7.7), we obtain

the entropy rate of a Markov modulated Poisson process.

Theorem 7.1 The entropy rate of a Markov modulated Poisson process when

the underlying Markov chain is finite and irreducible is given by

RN = −(
r∑
i=1

πiλi)(log(
r∑
i=1

πiλi)− 1).

Proposition 7.2 The entropy rate of a Markov modulated Poisson process as-

sociated with marks when the underlying Markov chain is finite and irreducible is

given by

RN = −(
r∑
i=1

πiλi)(log(
r∑
i=1

πiλi)−1)−(
r∑
i=1

πiλi)

∫
K

(
∑

πifi(k) log(
∑

πifi(k)))l( dk).

7.4 The Mutual Information Rate of the MMPPs

It is suggested in the previous chapter that the complete data log likelihood can be

summarized by sufficient statistics as

logLC =
r∑
i=1

{
log πi1X(0)=i − qiTi +

∑
j:j 6=i

Nij log qij

}
+

r∑
i=1

{
− λiTi +Ni log λi

}
,
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which can be decomposed into the log-likelihood of the underlying Markov chain

and the conditional log-likelihood of the observed point process conditioned on the

underlying Markov chain. Thus the joint entropy of the underlying Markov chain

X(t) and the observed point process N(t) can be written by

H(XT
0 , N

T
0 ) = H(XT

0 ) +H(NT
0 |XT

0 ), (7.8)

i.e., the entropy of the Markov chain X(t) and the conditional entropy of N(t)

given the history of X(t).

Also note that

E{Ni} = E

{∫ T

0

1(X(t) = i) dN(t)

}
= E

{∫ T

0

1(X(t) = i)λ(t) dt

}
= E

{∫ T

0

1(X(t) = i)λi dt

}
= λiETi, (7.9)

we obtain the conditional entropy rate of N(t) conditional on X(t) according to

Lemma 7.4.

Proposition 7.3 The conditional entropy rate of a MMPP conditioned on the

underlying irreducible finite state Markov chain is given by RN |X = lim
T→∞

H(NT
0 |XT

0 )

T
=

r∑
i=1

{πiλi − πiλi log λi}.

According to the properties of mutual information H(X t
0 : N t

0) = H(N t
0) −

H(N t
0|X t

0), we obtain following theorem for the mutual information rate between

the observed point process and the underlying irreducible finite Markov chain.

Theorem 7.2 The mutual information rate RX:N of the underlying irreducible

finite Markov chain X(t) and the observed point process of a MMPP is given by
r∑
i=1

{πiλi log λi} − (
r∑
i=1

πiλi) log(
r∑
i=1

πiλi). It equals zero if and only if all the intensity
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rates of the point process equal almost surely.

Proof : The first statement is the direct result of the previous discussion. We

assume Z a random variable with probability distribution P{Z = λi} = πi, i =

1, · · · , r. To prove the inequality, it is equivalent to prove E{Z log Z
EZ
} ≥ 0 or

E{ Z
EZ

log Z
EZ
} ≥ 0. note that x log x is a convex function, by Jessen inequality, we

have E{( Z
EZ

) log( Z
EZ

)} ≥ E( Z
EZ

) log(E{ Z
EZ
}) = 0, the equality holds if and only if

P{Z = λ} = 1.

lemma 7.5 For a MMPP associated with marks, we have

E

{
n∑
i=1

log fXi(Zi)

}
=

r∑
j=1

E(Nj)

∫
K
fj(z) log fj(z)l(d z). (7.10)

Proof :

E

{
n∑
i=1

log fXi(Zi)

}
= E

{
E

( n∑
i=1

log fXi(Zi)

∣∣∣∣X1, X2, · · · , Xn

)}

= E

{
r∑
j=1

Nj

∫
K
fj(z) log fj(z)l(d z)

}

=
r∑
j=1

E(Nj)

∫
K
fj(z) log fj(z)l(d z).

Proposition 7.4 The joint entropy rate of the underlying irreducible finite Markov

chain X(t) and the observed marked point process of a Markov modulated Poisson

process with stationary distribution π = (π1, · · · , πr), infinitesimal generator Q and

intensity rate λX(t) is

r∑
i=1

(πiqi −
∑
j:i 6=j

πiqij log qij) +
r∑
i=1

(πiλi − πiλi log λi − πiλi
∫
K
fi(z) log fi(z)l(d z)).
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Proof: This is a direct conclusion of lemma 7.4 and lim
t→∞

E(Ti)
t

= πi.

The first summation is the entropy rate of the underlying Markov chain and

the second summation is the conditional entropy rate of the marked point process

conditioned on the state process X(t).

From proposition 7.2 and 7.4, we obtain the following theorem.

Theorem 7.3 The mutual information rate between the underlying Markov chain

X(t) and the marked point process of a MMPP associated with state-dependent

marks defined as aforementioned is

r∑
i=1

(πiλi log λi)− (
r∑
i=1

πiλi) log(
r∑
i=1

πiλi) +
r∑
i=1

∫
K
πiλifi(z) log fi(z) l(dz)

−(
r∑
i=1

πiλi)

∫
K

r∑
i=1

πifi(z) log(
r∑
i=1

πifi(z)) l(dz). (7.11)

The latter term is the gain of the mutual information rate due to the additional

marks associated with MMPP arrivals. It is zero when all distributions of the mark

are identical.

The following sections are based on a conjecture that the accuracy or efficiency of

the estimation for MMPPs with identical infinitesimal generator of the underlying

Markov chain varies according to how well the intensity rates are separated with

each other in terms of the mutual information rate. In other words, for the MMPPs

with identical infinitesimal generator of the underlying Markov chain, the greater

the mutual information rate is, the better the estimates are in terms of Fisher

information matrix.
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7.5 Fisher Information and Observed Fisher In-

formation

It is well-known that under Cramér type regularity conditions, the maximum likeli-

hood estimate is consistent and asymptotically normal, the inverse of the asymptotic

variance matrix is the Fisher information matrix which is defined as the covariance

matrix of the score vector. Although for general hidden Markov models includ-

ing Markov modulated Poisson processes the observations are not independent and

identically distributed, under similar regularity conditions and other mild condi-

tions, the MLE θ̂ is still consistent, asymptotic normal and the asymptotic variance

equals to the inverse of the Fisher information matrix Iθ , see literatures by Bickel

et al. (1998), Douc and Matias (2001). In practice, the traditional approximations

to Fisher information are Iθ̂, i.e. the Fisher information matrix at the value when

real parameters are replaced by the estimated ones and the observed information

I(θ), i.e. minus the second derivative of the log likelihood function at θ̂ given the

observations. Efron and Hinkley (1978) suggest a justification for preferring I(θ) to

Iθ̂. It is suggested that 1/I(θ) is a better approximation to the variance than Iθ̂ by

a higher order for a translation family. Another reason for preferring the estimated

Fisher information is that Iθ̂ is not so easily tractable in some circumstances such

as hidden Markov models.

Although the EM algorithm is criticized for that it does not automatically produce

an estimate of the covariance matrix of the maximum estimate as Newton-Raphson

algorithm, Louis (1982) made an notable contribution by introducing the EM algo-



CHAPTER 7. INFORMATION THEORETICAL ASPECTS OF MMPP 88

rithm to obtain the observed Fisher information. It is suggested that

I(θ0) = −∂
2 logL(θ0)

∂θ2
= −Eθ0

{
∂2 logLC(θ0)

∂θ2

∣∣∣∣FNT
0

}
− Eθ0

{(
∂ logLC(θ0)

∂θ

)(
∂ logLC(θ0)

∂θ

)T ∣∣∣∣FNT
0

}

+

(
∂ logL(θ0)

∂θ

)(
∂ logL(θ0)

∂θ

)T
, (7.12)

where FNT
0

is the internal history generated by the observed point process N(t).

The first term in the right side of the equation is the conditional expectation of the

complete data observed Fisher information, while the last two terms form minus

the expected information for the conditional distribution of the underlying Markov

process given the trajectory of the observed point process which in a heuristic form

can be written as

I(θ) = IC(θ)− IXT
0 |NT

0 (θ) (7.13)

according to an application of the missing information principle. In other words,

the observed Fisher information is the complete information minus the missing in-

formation. The third term in equation (7.10) can be obtained by noting that

∂ logL(θ0)

∂θ
= Eθ0

{
∂ logLC(θ0)

∂θ

∣∣∣∣FNT
0

}
=

∂Q(θ)

∂θ

∣∣∣∣
θ=θ0

, (7.14)

where Q is the conditional expectation given the observed point process which is im-

plemented through EM steps. Similarly, the observed complete information matrix
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is given by

IC(θ0) = Eθ0

{
∂2 logLC(θ0)

∂θ2

∣∣∣∣FNT
0

}
=

∂2Q(θ)

∂2θ

∣∣∣∣
θ=θ0

. (7.15)

The above two equalities are readily computed via EM algorithm as implemented

in previous chapter. However evaluating the middle term of the right side of the

equation (7.10) requires calculating the second order conditional moments such as

E{TiTj|NT
0 } which is not in an computationally efficient way, see Rydén (1996a).

Oakes (1999) provides an explicit formula of the matrix of second derivatives of

the observed data log-likelihood in terms of EM algorithm. Following Dempster

et al. (1977), the observed data y with likelihood L(θ, y) depending on the pa-

rameter vector θ maybe expressed as a many-to-one map of complete data with

log-likelihood L0(θ, x). The maximum likelihood estimation is achieved by consid-

ering Q(θ′|θ) = EX|Y ;θL0(θ′, x). Under the usual interchangeable condition of the

operations of expectation with respect to x and differentiation in θ, it can be shown

that

∂2L(θ, y)

∂θ2
=

{
∂2Q(θ′|θ)
∂θ′2

+
∂2Q(θ′|θ)
∂θ′∂θ

}
θ′=θ

. (7.16)

Although the formula looks ready to implement, it generally requires an explicit

M-step before differentiating with respect to parameters which hence requires the

derivatives of the forward and backward equations of MMPPs.

Lystig and Hughes (2002) describes an iteration algorithm to directly implement

the observed Fisher information without using the EM algorithm. For the Markov
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modulated Poisson process, it turns out the iterated computation which again re-

quires the derivatives of matrix exponential is not comuptationally tractable and

also it involves lengthy code work.

7.6 Simulation Studies

In this section, we will compare the accuracies and efficiencies of the EM estimates

for two MMPPs with identical infinitesimal generator Q =

 −1 1

0.5 −0.5

 and

the intensity rates λ = (1, 3) and λ = (1, 5), which are denoted by MMPP(1) and

MMPP(2) respectively within this chapter. The mutual information rate for the two

MMPPs are about 0.22 and 0.60 respectively. Although several numerical methods

are available for obtaining the observed Fisher information matrix, some of them are

not numerically efficient since they require the derivatives of the matrix exponential

and its products. Louis’s method also requires some Monte Carlo simulations to

evaluate the higher order conditional moments of the score statistic of the complete

likelihood conditional on the history of the observed process which is not accurate

to the degree that satisfying conclusions can be drawn in this study. We turn to

apply the bootstrap method to compare the variance or the standard error of the

EM estimates of the two simulated MMPPs with certain length of observations. We

simulate two types of MMPPs each more than 10000 times with 5000 arrivals in every

sequence. For each sequence of simulated MMPP observations, the EM iteration

procedure is repeated until the convergence criterion for the likelihood meets. Then

we list the bootstrap estimates of the standard deviation of all parameters in two



CHAPTER 7. INFORMATION THEORETICAL ASPECTS OF MMPP 91

Std. Dev. q1 q2 λ1 λ2

MMPP(1) 0.2676 0.1626 0.2078 0.1462

MMPP(2) 0.1319 0.0796 0.1309 0.1345

Table 7.1: Standard deviation of estimations.

MMPPs, see Table 7.1. The histograms of the estimated parameters in two MMPP

are also followed, see Figure 7.1 and 7.2.

The histograms for the estimated parameters indicate that for given length of

observations, the more the mutual information rate between the observed point pro-

cess and the underlying Markov chain, the better the estimations are for MMPPs

with given infinitesimal generator of the underlying Markov chain. In other words,

the better the intensity rates are separated with each other, the better the EM

estimations are for MMPP with identical infinitesimal generator and how well the

intensities are separated with each other somehow is dependent on the mutual infor-

mation rate between the underlying Markov process and the observed point process.

Such a supposition is strengthened by the simulation results given here.

7.7 Chapter Appendix

Proposition 7.4 (Albert, 1962) Let n(t) be the total number of jumps of the finite

irreducible Markov process in [0, T ]. Then exist non-negative constants α and β,
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Figure 7.1: Histograms of estimated parameters for simulated data from MMPP(1).
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Figure 7.2: Histograms of estimated parameters for simulated data from MMPP(2).
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β > 0, such that for all h ∈ (0, 1), n ≥ 1,

P r {n(h) ≥ n} ≤ β

∫ h

0

un−1eαu

1− u
du.

Corollary 7.1

∞∑
n=2

Pr {n(h) ≥ n} ≤ β

∫ t

0

ueαu

(1− u)2
du = o(h).

Lemma 7.2 (Albert, 1962) For i 6= j, 1 ≤ i, j ≤ r, E(Nij) = qij
∫ T

0
Pi(t) dt.

Proof: Let [(k−1)h, kh), k = 1, · · · , s be a partition of the interval [0, T ) and nk(i, j)

denotes the number of direct transitions from state i to state j, i 6= j, during the

interval [(k − 1)h, kh), k = 1, · · · , s, where h = t/s. It is easy to see that

Nij =
s∑

k=1

nk(i, j).

If s is large enough that h < 1, it implies that

Pr {nk(i, j) ≥ 2} = o(h)

and
∑
n≥2

Pr {nk(i, j) ≥ n} = o(h).

Observe further that for l 6= j and r 6= i,

Pr {nk(i, j) = 1, X(kh) = l, X((k − 1)h) = r}

= {qrih+ o(h)}{qijh+ o(h)}{qjlh+ o(h)}+ o(h)

= o(h).

It follows, therefore, that

Pr{nk(i, j) = 1} = Pr{X((k − 1)h) = i}qijh+ o(h),

which is Riemann sum approximation of the integral qij
∫ T

0
Pi(u) du.
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Chapter 8

Exploratory Data Analysis for

Deep Earthquakes

8.1 Introduction

A review of New Zealand deep earthquakes in 1964-87 by Reyners (1989) describes

the setting of the subduction zones and the geometry of the Wadati-Beinioff zone

and other aspects of deep earthquakes in New Zealand. After the up-gradation of the

national seismograph network in the late 1980s, a further review of deep seismicity

between 1990-93 by Anderson and Webb (1994) shows similar patterns for smaller

events recognized by Reyners (1989). The catalogue quality is also evaluated in

terms of accuracies of epicentres, depths and magnitudes. A comparison of the

catalogue coverage between the PDE (Preliminary Determination of Epicenters)

and New Zealand local earthquakes by Harte and Vere-Jones (1999) indicates that a

96
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lot of events with magnitude greater than 5 in New Zealand catalouge are missing in

PDE catalogue, probably due to sparse network coverage. It is also pointed out that

the New Zealand catalogue misses many events with magnitude greater than 4.5 in

the PDE catalogue occurring to the northeast of New Zealand. The difference of

the epicentres, depths and magnitudes between two catalogues is also demonstrated

in the study.

In earlier studies, Adams (1963) describes two cases of doublets located beneath

the North Island at depth of about 230km and 600km. Gibowicz (1974) gives a

description of the geometry of the Wadati-Beinioff zone in North Island. In the

study the b-value (see 8.2.3) variations with depth are tabulated and associated

with the maximum stress along the dipping slab. Vere-Jones et al. (1964) analyses

the time trend of the seismicity in 1942-61. In that study, it is noted that an

apparent increase in deep seismicity and a slight decrease in shallow seismicity.

In the following study by Vere-Jones and Davies (1965), several statistical models

are proposed for the clustering patterns appearing in the earthquakes and second

moment properties such as variance time function, spectrum analysis are carried out

for both shallow and deep earthquakes.

The seismograph network coverage has changed, from relatively sparse station

coverage in the early postwar period to much improved coverage by digital seismo-

graph after late 1980s. Within this period, there are two major upgrades of the

national seismograph network respectively in 1960s and late 1980s , the latter of

which is completed in mid 1990s, see Reyners (1989), page 308, Anderson and Webb

(1994), page 477. The most recent seismograph network in operation is able to be
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found at IGNS homepage (http://www.gns.cri.nz/). The coverage of the national

seismograph network during 1987 can be found in Reyners (1989), page 308. The

coverage information about the seismograph network in 1970s can be found in Adams

and Ware (1977) in page 61. However, those in operation in early 1940s are only

Wood-Anderson seismometers or torsion seismometer (see chapter 2.1) and teleseis-

mic instruments with very sparse coverage around New Zealand, see Vere-Jones et

al. (1964), page 723-725.

The purpose of this chapter is on the exploratory data analysis of the main New

Zealand deep earthquakes around the North Island and north of the South Island.

We first evaluate the catalogue coverage and completeness according to early lit-

erature, then confirm it by using internal statistical evidence. The epicentral or

hypocentral distribution of these deep events and the characteristics of the Wadati-

Benioff zones geometry is recognized again as in the early literature. Variations in

depth distribution over time and variations in magnitude distribution over depth are

pointed out in this study. We also explore the clustering properties of deep seismicity

via a certain of statistical second order moment function. Then we give a tentative

explanation why the stress release model and ETAS model are not satisfying in the

situation of deep earthquakes.

To be safe in any pre-analysis of the catalogue data, we restrict our studies of

New Zealand data at least from 1945 onwards within the confines determined in the

Figure 8.4. Afterwards, the catalogue consistency, catalogue coverage and catalogue

completeness are still subjected to evaluation due to the up-gradation of the National

Seismograph Network in the 1960s and late 1980s, see the next section.
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8.2 Descriptive Features and Empirical Proper-

ties

8.2.1 Data coverage and completeness

Fortunately, the great bulk of deep earthquakes in the region studied occur under

land areas, mainly the center of the North Island and the North-East of the South

Island. Relatively speaking, therefore, the deeper events are well situated for good

coverage with dry land based seismometers. However, this is offset by two key fea-

tures. First, the three-dimensional distances between source and recording stations

are commonly of the order of several hundred kilometers, which severely limits the

detectability of smaller events, particularly in the early periods when the network

was sparse and the instruments less sensitive. The second feature relates to the

difficulty of establishing a reliable velocity model for seismic waves which traverse

the regions beneath the volcanic zone. The result is that hypocentres and depths for

the deeper events may be significantly in error. This problem is particularly acute

for events in the region North-East of the North Island, where further complications

arise from changing network coverage and instruments over the decades.

For the 1940s and 1960s an appraisal of the network coverage for deep earthquakes

is given in Vere-Jones, et al. (1964). From that study it would appear that the

coverage at depth 50km would be incomplete for magnitude below 5. For the period

1970s and late 1980s a reasonable lower threshold might be 4.5, and for the later

periods a threshold of 4 or even 3.5.
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Then we turn to the internal statistical evidence for the catalogue completeness.

Here we use the technique of reverse cusum analysis. In essence, this means setting

a reference level x for either occurrence frequencies or mean magnitudes from the

recent period when the data is assumed to be complete, and comparing the results

from earlier periods with this. The cusum (cumulative sum) defined by
∑
i

(xi − x)

compares the slopes of the cumulative curves. Where a change of slope occurs, there

should be some underlying change in the mean frequency or mean magnitude. Thus

it is not the levels which are important, but the change in slope.

Unfortunately, one characteristic of the deep earthquakes over the last few decades

is that there have been gross fluctuations in occurrence frequencies which can hardly

be attributed to network effects. The fluctuations are not restricted to one geograph-

ical region or to one magnitude class, but appear to affect occurrence rates across

the whole region. This means that recent occurrence rates are no guide to occur-

rence rates in earlier periods, and therefore cannot be made a meaningful reference

point for cusum analysis.

The mean magnitude
∑
i

(mi − m), however, has been much more stable, and it

is reasonable to assume that an increase in mean magnitude as we go backwards in

time is mainly to be attributed to incomplete coverage of the smaller events. By

carrying out such studies for different magnitude classes, we can obtain a reasonable

impression of the threshold magnitude level for reliable event detection in earlier

periods.

For events with magnitude greater than 4 in the first data set referred in Fig-
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ure 8.1, the increasing trend of yearly counts displayed in the left top of Figure

8.1 indicates uncertainties of probable contributing factors for the seismicity esca-

lation, a real change or simply catalogue incompleteness. The most probable factor

of contributing this is a combination of both factors at different degrees in different

periods. The right top plot gives the magnitude-frequency relationship. The cumu-

lative plots in the bottom should be read in a reverse direction since the specified

training period, from where an average seismicity either monthly mean frequency or

magnitude in high quality data set is taken as a reference value x and the cumulative

deviation
∑

(xi − x) is drawn from recent to the past. In the bottom of Figure 8.1,

the dropping slope of cumulative frequency and the ascending cumulative magnitude

strongly suggest the incompleteness of the catalogue at this magnitude threshold.

Only after 1970, does the catalogue completeness look convincing. Note that the

right bottom plot is based on event by event scale, hence the dash lines delimiting

the calendar years are separated apart in different degrees due to fluctuations in

occurrence frequencies.

When the magnitude cutoff comes to 4.5, the evidence of catalogue completeness

is indicated through yearly occurrence number, magnitude frequency and the cu-

mulative plots of Figure 8.2 which suggests a relatively quiet period in historical

seismicity in New Zealand from 1960s to late 1980s (Reyners, 1989). However, the

abruptly ascending slope appearing in the cusum magnitude in the earliest period,

approximately from 1945 to 1950, suggests that the catalogue may be still incom-

plete at some seismic active zones in this early postwar period. Similar analysis in

Figure 8.3 shows that after 1988, probably 1989, the catalogue is relatively homo-
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geneous at magnitude threshold level m0 = 3.5. These figures are easily produced

by using SSLib package in R, see Statistical Research Associates Limited referred in

the reference list. This is an optimistic viewpoint, and it is likely that some events

are missing even within the periods indicated. However, such omissions are unlikely

to be on a large enough scale to affect the broad conclusions made in the present

study.

8.2.2 Epicentral and depth distributions

The non-seismic corridor at the northern part of the South Island marks the termi-

nation of deep seismicity of the Wadati-Beinioff zone, see Figure 8.4. The southwest-

northeast depth section plot (Figure 8.5) of deep seismicity at section azimuth 45◦

indicates that the dipping seismicity progressively deepens north-easterly. A further

northwest-southeast depth section plot (Figure 8.6) at section azimuth 135◦ indicate

a bending Wadati-Beinioff zone which is nearly perpendicular at the greater depth.

Additional section plot (Figure 8.7) also shows a more diffusing seismic zone at

northeastern side of the North Island. Such patterns are well recognized by Reyners

(1989), Anderson and Webb (1994) and others.

Epicenter distribution displays intensive spatial grouping characteristic by using

a smoothing procedure, see Figure 8.8 and Figure 8.9. The smoothing estimation

is obtained by using many windows centered at pre-selected grid points. They are

partially superposed with surrounding windows. Then we count the number of

events in each window and take the average values of the numbers over superposed
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Frequency, Magnitude and Cusum Statistics
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Figure 8.1: Events are selected from New Zealand catalogue within the confines

defined in the Figure 8.4 and depth greater than 45km from Jan1 1950 up to Jan1

2007 with magnitude greater than 4. The solid lines mark the beginning of the

reference period. Vertical lines mark the years.
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Frequency, Magnitude and Cusum Statistics
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Figure 8.2: Events are selected from New Zealand catalogue within the confines

defined in the Figure 8.4 and depth greater than 45km from Jan1 1950 up to Jan1

2007 with magnitude greater than 4.5. Vertical lines mark the years.
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Frequency, Magnitude and Cusum Statistics
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Figure 8.3: Events are selected from New Zealand catalogue within the confines

defined in the Figure 8.4 and depth greater than 45km from Jan1 1987 up to Jan1

2007 with magnitude greater than 3.5. Vertical lines mark the years.
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surrounding windows. These average values are assigned for each window. Among

these groupings, the largest deep earthquake grouping extends from Taupo to the

northeast of Bay of Plenty (BOP) with depth mainly ranging from 130km to 210km.

Another conspicuous grouping is around the Taranaki region with depth between

200km and 250km. Other concentrations of deep seismicity are found at Cook

Strait, south of Taranaki and elsewhere also, see Figure 8.4-5, left bottom of Figure

8.9 and 8.11. Readers who are unfamiliar with New Zealand geography can refer to

Figure 2.1. Further exploratory data analysis shows that these deep groupings are

subjected no obvious spatial migration and persist over time. However, temporally

they vary from time to time at different levels over depth. For example, the frequency

distribution of deep events shows an apparent increase in 1990-2007 at depth 40-

170(km) and 170-230(km) mainly in the two largest groupings, Taupo-BOP grouping

and Taranaki grouping, comparing the deep seismicity in 1970-1990, see Figure 8.8.

Figure 8.9 shows that the frequency distribution of very deep earthquake with depth

greater than 350km does not change very much over this two periods. One notable

isolated group is beneath the Taranaki at great depth about 600km. However, for

this very deep isolated group there still exist unsettled debates about whether the

slab is continuous or it is a detached slab which separates from the frontier of the

convergent plate and submerged into the mantel, see Figure 8.5.

At most subduction zones, the occurrence rates of deep earthquakes fall off

roughly exponentially with depth until a small hump from nearly 500km to its

deepest part which marks the termination of deep seismicity at this great depth.

The scenario in New Zealand is a bit different for the apparent disproportionate in
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intermediate depth seismicity which gradually comes to the culmination at nearly

170km and falls off abruptly at about 230km before 1980s. Afterwards, an active

period of deep seismicity with depth less than 100km appears, see Figure 8.10. This

trait also remains at the northeastern side of the North Island. However, the depth

distribution of deep earthquakes in main groupings keeps constant, see Figure 8.11.

8.2.3 Magnitude distributions

The events number with varied magnitude is governed by the ubiquitous law, the

Gutenberg-Richter (1956) frequency-magnitude relationship which asserts that the

log number of earthquakes with magnitude greater than M is linear with respect to

M, usually written as log10N = a− bM , where b is the so-called b-value.

Such a frequency magnitude log-linear relation sometimes deviates at certain mag-

nitude ranges. For instance, it might fall off downwardly for relatively small events

mainly due to the sparse monitoring station and limited detect-ability for small

events in early period. Similar deviation often occurs for large events presumably

due to some geophysical restrictions, such as finite fault width. A rectification of

the magnitude-frequency relation at the tail via truncated Pareto-type distribution

(Evans et al., 2000) gives more reasonable approximation to this deviation. Occa-

sionally, a deviation from the frequency magnitude linear relation for large events

with reverse hump appears in some local regions. This abnormal might be ascribed

mainly for the sub-setting effect both temporally and spatially.

The comparative proportion of events with different magnitude is determined
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Epicenter Distribution of main deep earthquakes

in the North Island
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Figure 8.4: Epicenter distribution of deep earthquakes from 01Jan 1950 to 01Jan

2007 with magnitude greater than 4.5 around north of the South Island and the

North Island. Events encircled by dashed line and map boundary are considered

in good coverage. A, B and C denote Cook Strait deep grouping, Taranaki deep

grouping and Taupo-BOP deep grouping respectively.



CHAPTER 8. EXPLORATORY DATA ANALYSIS FOR DEEP EARTHQUAKES109

Section plot of Deep Earthquakes
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Figure 8.5: A southwest-northeast depth section plot of earthquakes deeper than

40km from 01Jan 1945 to 01Jan 2007 with magnitude greater than 4.5 around north

of the South Island and the North Island. The section azimuth is 45◦.
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Section plot of Deep Earthquakes
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Figure 8.6: A Northwest-southeast depth section plot of deep events from 01Jan

1945 to 01Jan 2007 with magnitude greater than 4.5 around north of the South

Island and the North Island. The section azimuth is 135◦.
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Section plot of Deep Earthquakes
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Figure 8.7: A Northwest-southeast depth section plot of deep events from 01Jan

1945 to 01Jan 2007 with magnitude greater than 4.5 and latitude greater than -37◦.

The section azimuth is 135◦.
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Smoothed Estimation of Events Frequencies
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Figure 8.8: Smoothed estimation of event frequencies (total events number) for two

periods 1970-1990, 1990-2007 with depth between [45, 170](km), [170,230](km) and

magnitude greater than 4.5.
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Smoothed Estimation of Events Frequencies

Depth:230~Inf(km), Year:1970−1990

 50 
 100 

 1
50

 

Depth:230~Inf(km), Year:1990−2007

 50 
 100 

 1
50

 

 1
00

 

 100 

 2
00

 

 3
00

 

Depth:40−Inf(km), Year:1970−2007

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
50
100
150
200
250
300
350
400
450
500

Figure 8.9: Smoothed estimation of event frequencies (total events number) for two

periods 1970-1990, 1990-2007 with depth greater than 230km and magnitude greater

than 4.5 in first row. The bottom plots show overall estimation of event frequencies

and the palette.
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Figure 8.10: Kernel density estimation of the depth distribution of deep events with

magnitude greater than 4.5 and latitude ranged in [-43,-37]. Normal kernel function

is used in the smoothing procedure. The bandwidth used in the kernel function is

h = 1.06σn−
1
5 , where σ is the standard error and n is the data size.
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Histogram of the depth in main groupings
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Figure 8.11: Depth distribution of deep events in three groupings in different periods.
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by the b-value statistics in the Gutenberg-Richter law. The systematic variations

of b-value over different regions and its relationship with the thermal parameter

(the product of age of the subducted lithosphere and the vertical component of

convergence rate of the plate) of the slab is given by the Frohlich (1989). The local

variations of b-value with respect to depth in the North Island has been tabulated

by Gibowicz (1974) for 50 km depth intervals, in steps of 25 km during 1955-1967

with magnitude greater than 3.9. The b-value tends to vary from 1 for shallow

events to the culmination at about 100km and falls off gradually below 1 at greater

depth. Such a trend of b-value variation over depth has also been found in other

places outside of New Zealand. Studies over b-value anomaly at about 100 km depth

on the upper surface of Wadati-Benioff zone and its association with volcanism is

addressed by Wiemer and Benoit (1996). They also suggest an explanation of this b-

value increasing by the slab dehydration and its associated effect, such as increasing

pore pressure and lowering effective stress.

We tabulate the b-value variations over depth for deep events from 1989 to 2006

with magnitude greater than 3.5 in three groupings, roughly Cook Strait grouping,

Taranaki grouping and Taupo-BOP grouping defined in Figure 8.4, see Table 8.1.

The b-value tends to decrease over depth systematically. We also list the 95 percent

error bound of estimated b-values according to Aki’s (1995) method by utilizing the

standard asymptotic normal theory of the maximum likelihood estimates for the

b-value. Actual error bounds might be greater due to other errors such as rounding

error, measurement error and even instrumental effect, see following Figure 8.12.

The slope of cumulative magnitude is steeper than before at late 1960s and 1980s
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b-value Cook Strait Taranaki Taupo-BOP

40–100(km) 1.52± 0.22 NA 1.49± 0.23

100-170(km) 1.17± 0.1 1.34± 0.16 1.22± 0.05

170–230(km) 1.10± 0.09 0.97± 0.07 1.09± 0.05

230–350(km) 1.11± 0.27 1.03± 0.15 0.88± 0.09

Table 8.1: The b-values of earthquakes (M ≥ 3.5) in individual groupings between

[1989, 2006] with 95 percent confidence bounds. The b-values change with respect

to depth systematically.

right at the upgradation periods of monitoring networks.

Generally speaking, the largest deep earthquakes are smaller than the largest

shallow earthquake and there is no obvious indication that the size of the largest

earthquakes varies over depth, see Frohlich (2006). However, the number of the very

large deep earthquakes with magnitude greater than 7 in New Zealand catalogue is

much more than that of the shallow earthquakes, an apparently disproportionate in

contrast to the relatively small earthquakes. Nearly all of them are located beneath

the surface at least 150 km. For instance, among 20 earthquakes with magnitude

greater than 7, only 3 events are shallow earthquakes.
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Figure 8.12: Cusum magnitude plot for deep events around the North Island from

01Jan 1945.
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8.2.4 Clustering properties

It is well-known that the deep earthquakes are generally lack of fully developed af-

tershocks which decay in terms of Omori’s law. Furthermore, It is more restrictive

to effectively analyze aftershock clustering due to lack of statistical models for the

deep earthquake clustering. Fortunately, a number of techniques are available to

analyze the clustering properties of deep earthquakes through variance-time func-

tion, spectrum et al.. Among these second order moments, the two-point correlation

function which is defined as the local intensity function at y given a point occurring

at x such as h(y|x)dy=̂E{N(dy)|N(dx) = 1} is very useful. When the two-point

correlation function h(y|x) is divided by the unconditional intensity m(y), it yields

the relative conditional intensity p(x, y)=̂ 1
m(y)

h(y|x) = 1 + c(x,y)
m(x)m(y)

, where c(x, y) is

the covariance density of the counting process N(x). It equals unity for a Poisson

process. The clustering or regular pattern is characterized by the deviations from

unity, either greater than 1 or less than 1 respectively, see Vere-Jones (1978).

Let N(I) denote the number of earthquakes with magnitude in category I and

N(I, J,K, L,M) denote the number of paired events with magnitude of reference

events in category I and magnitude of related post events in category J within

Kth time delay category, Lth distance category and Mth depth category. Also

let A(K,L,M) and A denote the volume of (K,L,M)th cell and the total volume

respectively. Then, a discrete version of the relative conditional intensity when

assuming the seismicity is stationary in time and homogeneous in space is given by

p(mI ,mJ , tK , rL, hM) =
N(I, J,K, L,M)

N(I)N(J)
× A

A(K,L,M)
,
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where N(I,J,K,L,M)
N(I)A(K,L,M)

gives the average number of post-events with magnitude in cate-

gory J per unit volume in (K,L,M)th cell from a reference event with magnitude in

category I and N(J)
A

gives the average number of events per unit volume in general.

The range of magnitude and time delay from a reference event are partitioned

into (4, 4.4, 4.8, 5.2, 6, Infinity) and (0, 15, 30, 90, 180, 360, 1080, 1826)(days)

respectively. Similarly, the spherical distance obtained from Haversine formula and

the distance in depth h from a reference event both are categorized into (0, 15, 45,

90, 120)(km) in two directions, upwards and downwards.

We apply the methods to the deep events around the North of the South Island

and most of the North Island. The general characteristic indicated in this analysis

is lack of post-event effect (clustering effect) comparing that of the shallow earth-

quakes at the same period. A search for the post-event effect occurring among the

cells indicates that the deep events do have small portion of aftershocks in the cell

where the reference event magnitude is greater than 6 and the post-event magnitude

is between 4.4 and 4.8 within 15 days time delay and 15km spherical distance, sug-

gesting rather weak post-event effects comparing that of shallow earthquakes, see

Table 8.2. A similar analysis for the same reference events but smaller post-events

with magnitude between 4-4.4 shows no significant clustering effect appearing, see

Table 8.3. Also, similar analysis for deep events in an extended period from 1970 to

2007 suggests that even such a small scale clustering effect is not time homogeneous,

probably only limited in some individual hot spots after 1990, see Table 8.4. Such a

clustering effect in deep events is also magnitude dependent for the smaller reference

events with magnitude less than 6, the estimated relative conditional intensities in
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time distance 0-15(km) 15-45(km) 45-90(km) 90-120(km)

0–15(days) 3.85 0.00 0.00 0.64

15-30(days) 0.00 0.00 0.00 0.00

30–90(days) 0.00 0.16 0.11 0.00

90–180(days) 0.21 0.21 0.14 0.00

180–360(days) 0.00 0.05 0.14 0.00

360–1080(days) 0.13 0.07 0.08 0.07

Table 8.2: Estimated p(mI ,mJ , tK , rL, hM) for mI ≥ 6, 4.4 ≤ mJ ≤ 4.8 and 0 < h <

15(km), where h is the distance in depth. The event selected are from 01Jan1991 to

01Jan2007 with latitude between [-44,-36] and depth greater than 45km.

nearly all cells are less than 1, see Table 8.5. In other cells, no obvious clustering

effect is presented.

Occasionally, some deep earthquake clusterings form as multiplets, triplets or

doublets. For instance, intermediate large deep doublets are found beneath Taranaki

and elsewhere in 23th and 27th March 1960 (Adams et al., 1963), 12th January, 1950

and 5th May, 1968. Among these intermediate or large doublets, the inter-occurrence

time ranges from only seconds to a couple of minutes with very small magnitude

difference and spatial distance.
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time distance 0-15(km) 15-45(km) 45-90(km) 90-120(km)

0–15(days) 0.42 0.11 0.00 0.11

15-30(days) 0.21 0.21 0.21 0.00

30–90(days) 0.11 0.11 0.12 0.03

90–180(days) 0.04 0.18 0.07 0.05

180–360(days) 0.12 0.08 0.10 0.07

360–1080(days) 0.08 0.11 0.08 0.06

Table 8.3: Estimated p(mI ,mJ , tK , rL, hM) for mI ≥ 6, 4 ≤ mJ ≤ 4.4 and −15 <

h < 15(km), where h is the distance in depth. The event selected are from 01Jan1991

to 01Jan2007 with latitude between [-44,-36] and depth greater than 45km.

time distance 0-15(km) 15-45(km) 45-90(km) 90-120(km)

0–15(days) 1.22 0.00 0.00 0.20

15-30(days) 0.00 0.00 0.00 0.00

30–90(days) 0.00 0.10 0.03 0.00

90–180(days) 0.07 0.07 0.05 0.00

180–360(days) 0.07 0.05 0.08 0.00

360–1080(days) 0.05 0.04 0.04 0.03

Table 8.4: Estimated p(mI ,mJ , tK , rL, hM) for mI ≥ 6, 4.4 ≤ mJ ≤ 4.8 and 0 <

h < 15(km) in an extended time period. The event selected are from 01Jan1970 to

01Jan2007 with latitude between [-44,-36] and depth greater than 45km.
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time distance 0-15(km) 15-45(km) 45-90(km) 90-120(km)

0–15(days) 0.032 0.039 0.038 0.041

15-30(days) 0.021 0.039 0.037 0.036

30–90(days) 0.017 0.038 0.037 0.036

90–180(days) 0.017 0.035 0.039 0.038

180–360(days) 0.017 0.035 0.037 0.038

360–1080(days) 0.016 0.034 0.037 0.037

Table 8.5: Estimated p(mI ,mJ , tK , rL, hM) for mI ≥ 5.2, 4 ≤ mJ ≤ 5.2 and −90 <

h < 90(km), where h is the distance in depth. The event selected are from 01Jan1970

to 01Jan2007 with latitude between [-44,-36] and depth greater than 45km.

8.3 Models and model-fitting

We assume the deep seismicity is stationary throughout the discussion, i.e., the

stochastic laws do not change for an arbitrary time translation.

8.3.1 Poisson, stress release and simple ETAS models

It is worth to apply Poisson model to the deep earthquakes, the simplest model for

sequential occurrence events which is usually treated as a null hypothesis compared

with some alternatives according to their forecasting performance or goodness-of-fit

test etc. However, the occurrence frequency plots in previous section shows that the

yearly counts of deep seismicity varies from time to time which should not be able
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to be characterized by Poisson process. Later analysis will confirm this viewpoint.

The stress release model (Xiaogu and Vere-jones, 1991) is a stochastic version of

elastic rebound model which utilizes a notational regional stress level Z(t) at time

t as a state variable to describe the time-varying risk of earthquake occurrence, i.e.,

the conditional intensity function λ(t) in the context of point process. In a more

detailed description, the controlling role in stress release model is a process which

indicate the regional stress level. The evolution of the process is controlled by two

components. The deterministic component is given by the loading stress which is

supposed to be linear over time for lack of prior information in the stress field, i.e.

Z(t) = Z(0) + ρt and ρ is the loading rate of the tectonic stress. The stochastic

component is given by the accumulative stress release through large earthquakes

given by S(t) =
∑
i:ti≤t

Si, where ti is the occurrence time of the ith earthquake and Si

is the amount of released stress through the ith earthquake. The stochastic behavior

of the observed occurrences is determined by the conditional intensity function of

the point process which is assumed to be exponential with respect to the underlying

stress process, i.e. λ(t) = exp{Z(0) + ρt−
∑
i:ti<t

Si}. Such a statistical simplification

of elastic rebound model is useful for evaluating the long term or middle term risks

of large shallow earthquake occurrence.

However, the interpretation of stress release model is complicated by some occa-

sionally large doublets, triplets or multiplets when it is applied to the deep events.

In other words, the occurrence pattern and underlying geophysical process of large

deep doublets, triplets and multiplets is hard to interpret by original Stress Release

model since it generally requires relatively long time to accumulate enough tectonic
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stress energy to trigger a large shallow earthquake. It also remains doubtful that

by looking only at large events the dynamics of main stress field and deep seismic-

ity on the slab can be effectively described by the stress release model, since the

great mass of small and medium size deep events are not apparent aftershocks of

large deep earthquakes in the sense of the shallow earthquakes. More importantly,

it is unlikely that the main factor of deep earthquake occurrence is only stress state

rather than other factors such as temperature, age, composition of the slab and

convergence rate of the tectonic plates etc..

ETAS (Epidemic Type Aftershock Sequence) model (Ogata, 1988, 1998) is a self-

exciting point process model based on the classical aftershock statistics and several

simple model assumptions. It assumes that total seismicity is classified into two

types, the background activity and aftershock activity. The background seismicity

is a stationary Poisson process with intensity rate µ and the triggering intensity of

the aftershocks in the model is parameterized according to Omori’s law (1894) with

the assumption that every earthquake, whether a main shock or an aftershock, has

same triggering power to trigger aftershocks. Hence, the triggering intensity rate

of the model is parameterized by
∑
i:ti<t

Aeαmi
(t−ti+c)p , where ti and mi are the occurrence

time and magnitude of the ith earthquake respectively, c and p are time-delaying

constant and the decaying rate in the Omori’s law respectively. A is a constant.

Hence, the intensity rate of the ETAS model is written by λ(t) = µ+
∑
i:ti<t

Aeαmi
(t−ti+c)p .

However, one of the prominent characteristics of the deep earthquakes is that

they seldom have a great number of small aftershocks which decay according to the

Omori’s law. The deep earthquakes which have more than one aftershock are not so
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common as a rule and the abundance of aftershocks of the deep earthquakes tends

to vary over depth, see (2006). Also, another typical clustering behavior reported in

the deep earthquakes is multiplets, mostly doublets rather than aftershock clusters.

Such factors do not reasonably justify the utilization of ETAS model to describe the

temporal and spatial clustering properties of the deep earthquakes.

When we apply the ETAS model to the deep earthquakes in several main group-

ings such as Taupo-BOP grouping and Taranaki grouping or as a whole in a longer

time period or a shorter time period with smaller magnitude cutoff, in many cases,

no satisfying convergence results can be obtained for the parameters of the sim-

ple ETAS model when utilizing numerical optimization methods to maximize the

likelihood. When the numerical optimization procedure converges, some estimated

parameters are not in reasonable domains. For example, in most cases, the esti-

mated p values associated with Omori’s law are less than 1 which strongly suggests

the lack of aftershocks in the sense of Omori’s law.

All in all, the lack-of-fit of the models usually used for the shallow earthquakes

strongly suggests that the occurrence patterns of the deep earthquakes are essentially

different from that of the shallow earthquakes.



Chapter 9

Deep Earthquakes Modeling

9.1 Application of MMPP to the Deep Earth-

quakes

From chapter 8, it is suggested that the widely used models for the shallow earth-

quakes such as the ETAS models (Ogata, 1988, 1998) and the stress release models

(Zheng and Vere-Jones, 1991) fit the occurrence patterns of the deep earthquakes

unsatisfactorily. The lack of fit of these models is partly due to the fact that the

deep earthquakes rarely have a following sequence with numerous small aftershocks.

Some deep earthquakes even do not have aftershocks at all. It is hard to say whether

the time-decaying behavior of the aftershocks in the deep events conforms to Omori’s

law as the shallow earthquakes do. Instead, the main evolution feature of the deep

earthquakes is that the deep seismicity varies from time to time, active in one period,

127
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relatively quiescent in another. We suggest a switching Poisson model (the second

order MMPP) to characterize the time-varying behavior of the deep earthquakes.

The two levels of the deep seismicity are designated as the seismic active state and

the seismic quiescent state respectively in terms of two levels of Poisson rates in a

MMPP.

The data used in this study starts from 1 Jan 1945 to 1 Jan 2007 covering main

deep groupings such as Taupo-BOP grouping, Taranaki grouping and Cook Strait

grouping as defined in Figure 9.1 with focal depth greater than 40km and magnitude

greater than 4.5. Generally, The catalogue data used in this analysis are in good

coverage by the monitoring networks, see exploratory data analysis of the deep

earthquakes in the section 8.2.

In this section, the main groupings of the deep earthquakes as a whole around

the North Island is fitted by a switching Poisson process (the second order MMPP).

When the deep seismicity is active or relatively quiescent is indicated by using a

smoothing procedure for the inference of the state process of the MMPP. Keep in

mind that when the deep seismicity is in a seismic active state, the second state in

this model, at least one deep grouping must be in seismic active state. Otherwise,

the deep seismicity in most deep groupings should be in seismic quiescent state

(the first state). Then, a detailed analysis is carried out to investigate where and

when the seismicity changes in each grouping. Here, we will not analyze the events

in region D (Bay of Plenty grouping) through MMPP because the data might be

incomplete and the magnitudes are generally inaccurate in the early period.
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Main Groupings of Deep Earthquakes
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Figure 9.1: Partitions of main deep groupings. A, B, C and D represent Cook Strait

grouping, Taranaki grouping, Taupo grouping and BOP (Bay of Plenty) grouping

respectively.

The initial values used in the EM iteration procedure set out in chapter 3 should

be selected carefully. A natural approach is to approximate the continuous time

process by time discretization, see Deng and Mark (1993). In this procedure, the

time interval is divided into small bins and the number of arrivals in each bin is

counted. By assuming the state transitions occur only at bin boundaries, the model

can be treated as a discrete-time hidden Markov model with Poisson observations.

Then, the transition rates qij and the intensity rates λi can be straightly converted
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from the discrete-time hidden Markov model, i.e. qij = pij/h and λi = bi/h, where

pij is the state transition probability of the discrete-time Markov chain, bi is the

Poisson parameter of the discrete-time hidden Markov model and h is the bin width.

In the procedure, the EM iterations terminate when the increments of the likelihood

is less than 10−8. We also use different initial values in the EM iteration steps to

validate the convergence results. Generally speaking, the initial values have no

significant influence on the convergence results and the iteration solutions begin to

converge within hundreds steps. The execution of the algorithm dependents on CPU

and the codes, usually taking several minutes for a personal computer.

The probabilities of the underlying Markov chain in the second state (the seismic

active state) are obtained by using the so-called fixed point smoothing algorithm

which gives the conditional probabilities of X(t) in state 2 at time t conditioned on

all available observations, see section 3.3 for the derivation of the algorithm. These

probabilities are evaluated at many pre-selected grid points and are connected by

straight lines. Since the smoothing estimation of the probabilities of X(t) in a

specific state is continuous with respect to t, this approach is sufficient to demon-

strate the evolution of X(t). The magnitudes versus occurrence times, the estimated

probabilities of X(t) in state 2 and the estimated intensity rates for events from all

groupings by using equation (3.8) are demonstrated in Figure 9.2. The top part

of Figure 9.2 shows the occurrence times and magnitudes of the deep earthquakes.

The middle part indicates when the seismicity is active or relatively quiescent. The

bottom of the figure gives the estimated occurrence rates of the series of events ap-

pearing in the top of the figure. The deep seismicity demonstrates greater variability
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before 10,000 days since Jan 01, 1945 in comparision to the seismicity in the later

period. The deep seismicity after late 1980s shows an unusual active period without

ending signs. Similar pictorial representation of the deep seismicity in individual

groupings A, B, C is presented in Figure 9.3-9.5. From Figure 9.3-9.5, it is clear

that the deep seismicity shows similar trends in individual groupings after 5000 days

since 01 Jan, 1945, see the estimated probabilities of the underlying Markov chain in

state 2 (seismic active state) and the estimated intensity rates of the observed point

processes for the three individual groupings. The deep seismicity around 10,000 days

and after 15,000 days since Jan 01, 1945 is relatively active in all the three groupings.

The deep seismicity in grouping B (Taranaki grouping) shows less variations than

the other two groupings. The deep seismicity in grouping C (Taupo grouping) varies

a bit more frequently than the other two groupings, see also Table 9.2. Note that

according to equation (3.8), the estimated intensity rate is λ̂(t) = λ̂1p̂t(1) + λ̂2p̂t(2).

It is equal to (λ̂2− λ̂1)p̂t(2)+λ1 since p̂t(1)+ p̂t(2) = 1. If we raise the horizontal axis

to λ1 and rescale λ̂2 − λ̂1 to 1, the estimated intensity rate λ̂(t) should look exactly

same as p̂t(2). So, the last two figures in Figure 9.2 and others seem identical.

The estimated Q and Λ are listed in Table 9.1. The time scale in the estimation

is approximately one year (365 days). From Table 9.1, it is suggested that the deep

seismicity in grouping C (Taupo-BOP region) varies most frequently among the

three groupings as the estimated transition rates in Q matrix are the largest ones,

which is also indicated in Figure 9.5. Seismicity in grouping B (Taranaki region) has

the lowest variability among the three groupings as the estimated transition rates

in Q matrix are the smallest ones, which is also suggested by Figure 9.4.
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Deep Earthquakes Fitted through MMPP
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Figure 9.2: Magnitude versus time plot, estimated probabilities of X(t) in state 2

and estimated intensity rate for the events with magnitude greater than 5 from all

four main deep groupings in region A, B, C and D defined in Figure 9.1.
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Deep Events in Cook Strait Grouping Fitted through MMPP
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Figure 9.3: Magnitude versus time plot, estimated probabilities of X(t) in state 2

and estimated intensity rate for the events from Cook Strait grouping in region A

defined in Figure 9.1.
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Deep Events in Taranaki Grouping Fitted through MMPP
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Figure 9.4: Magnitude versus time plot, estimated probabilities of X(t) in state

2 and estimated intensity rate for the events from Taranaki grouping in region B

defined in Figure 9.1.
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Deep Events in Taupo-BOP Grouping Fitted through MMPP
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Figure 9.5: Magnitude versus time plot, estimated probabilities of X(t) in state 2

and estimated intensity rate for the events from Taupo-BOP grouping in region C

defined in Figure 9.1.
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Grouping q1 q2 λ1 λ2 LogL

No grouping 0.403 0.206 4.78 9.59 520.23

Grouping A 0.307 0.0686 1.95 4.41 86.605

Grouping B 0.078 0.058 2.54 5.86 115.13

Grouping C 0.356 0.104 1.17 3.88 41.05

Table 9.1: Estimated parameters of MMPPs for deep earthquakes around the North

Island and individual groupings A, B and C defined in Figure 9.1.

Grouping MMPP-AIC Poisson-AIC MMPP-BIC Poisson-BIC

No grouping -1032.45 -1018.55 -1015.73 -1014.37

Grouping A -165.21 -161.97 -151.32 -158.50

Grouping B -222.27 -194.83 -208.19 -191.31

Grouping C -74.11 -63.87 -60.94 -60.558

Table 9.2: Model selection between MMPP and Poisson model for deep earthquakes

around the North Island and individual groupings A, B and C defined in Figure 9.1.

There are four parameters in a second order MMPP.

Table 9.2 suggests that either by AIC or BIC, the second order MMPP outper-

forms Poisson model for all cases except for grouping A (Cook Strait grouping). For

grouping A, which model is preferred is not conclusive as the conclusion depends on

which model selection criterion is referred here. In this case, neither the switching
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Poisson model nor the Poisson model outperforms one another. We also determine

the order of the model by comparing AIC or BIC between a second order MMPP

and a third order MMPP for events from all main groupings, denoted by MMPP2nd

and MMPP3rd respectively. It turns out that a second order MMPP is sufficient

to characterize the time-varying behaviour of the deep earthquakes, see Table 9.3.

Higher order models will not be considered here due to limited available amount of

data.

MMPP2nd-AIC MMPP3rd-AIC MMPP2nd-BIC MMPP3rd-BIC

-1032.45 -1026.61 -1015.73 -988.97

Table 9.3: Model selection between the second order MMPP and the third order

MMPP. There are 9 parameters in a third order MMPP.

Next, we will test whether our model provide a good fit for the time-varying

behavior of the deep earthquakes. As suggested in section 3.3, we will consider using

the rescaling theory of the point process for the goodness-of-test in this situation.

By rescaling point process from {ti} to the compensator {
∫ ti

0
λ(t) dt}, we obtain

so-called residual point process which is a stationary Poisson process with unit rate

when the proposed model is a real one. Kolmogorov-Smirnov goodness-of-fit statistic

(e.g. the textbook of Stuart et al., 1999) is used to test whether the cumulative

distribution of the transformed points is uniformly distributed as supposed if the

suggested model fits the real pattern well, see section 3.3. In Figure 9.6, the dotted

lines and dash lines give 99 and 95 percent confidence bands for the cumulative
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number of arrivals by a unit rate Poisson process, the solid straight lines give the

expected values of the cumulative numbers of a unit rate Poisson process. Although

the intensity rates are slightly over-estimated at some periods, in all cases, the

cumulative number of occurrences are within the 95 percent confidence bands.

The estimation errors of Q and λ’s are estimated by parametric bootstrap meth-

ods. First, 1000 series of events with the same length of observations as the real data

are simulated according to the estimated parameters listed in Table 9.1. Then the

parameters are estimated via the EM algorithm for each series of simulated data.

From 1000 bootstrap replications, we obtain the standard errors of the estimated

parameters, see Table 9.4. From Table 9.4, it suggests that the estimates are rela-

tively unstable for these small data sets, particularly for the transition rates in the

Q matrix.

Std. error q1 q2 λ1 λ2

No grouping 1.07 1.12 1.22 1.08

Grouping A 1.56 3.32 0.87 1.13

Grouping B 0.48 0.37 0.58 0.96

Grouping C 1.23 0.65 0.97 0.89

Table 9.4: Standard error of estimates for Q and λ’s corresponding to Table 9.1.

Considering that the estimates of parameters in MMPP in section 9.1 and MMPP

with marks in section 9.2 are quite similar to each other and the marks can only exert

very small leverage effects on the estimation for this small data sets, we will discuss

the estimation errors of MMPP and MMPP with marks in a general approach, see
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section 4 in this chapter.
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K-S Tests for the Cumulative Rescaled Occurrence Times
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Figure 9.6: Kolmogorov-Smirnov test for the cumulative distribution of rescaled

residual point process with 95 and 99 percent confidence bands by dash lines and

dotted lines respectively for the deep earthquakes around the North Island and

individual groupings defined in Figure 9.1.
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9.2 Application of MMPP with Marks to Deep

Earthquakes

The ”b-values” (see section 8.2.3) governing the relative proportion of large and

small events often varies over time and depth at many seismic active zones. Table

8.1 demonstrates that the b-value tends to decrease systematically with depth, sug-

gesting the increasing possibilities for large tremors at greater depth. The b-value

also tends to vary with the type of earthquake sequence. Generally speaking, the af-

tershock sequence tends to have a relatively high b-value as most of the earthquakes

in the sequence are small aftershocks. The main-shock tends to have the lowest

b-value. Some researchers suggest the b-value is associated with faulting types and

its corresponding stress levels (Schorlemmer et al., 2005).

In previous section, we suggest the main evolution patterns of the deep seismicity

are well characterized by a switching Poisson model. However, whether the mag-

nitude distributions are also correlated with different levels of the deep seismicity

occurrence rate is still unclear at this stage. The properties associated with the mag-

nitude distribution when the deep seismicity comes to different levels merit further

exploration. Motivated by a better understanding of the time-varying deep seis-

micity, we propose MMPP with events size taken as state-dependent marks which

are exponentially distributed in terms of Gutenberg-Richter law. As done in previ-

ous section, we first apply a switching Poisson model with state-dependent marks to

those groupings as a whole. Then a detailed analysis is carried out for each grouping.

The estimated Q matrix and intensity rates are listed in Table 9.5. The time scale in
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the estimation is approximately one year (365 days). The b-value b and the decaying

parameter α of the magnitude distribution are related by b = α/log(10). The initial

values used in the EM iteration steps for Q and λ’s is determined as mentioned

in section 9.1. The initial values used in the EM iteration steps for the decaying

parameters of the magnitude distributions are selected by the following method.

We first carry out the standard EM procedure for the discrete time MMPP without

marks, a discrete-time hidden Markov model with Poisson observations as discussed

in section 9.1. Then the Viterbi algorithm will yield the most likely state sequence

for the underlying process at arrival times. So, the initial values of the parameters in

the mark distributions can be obtained by standard MLE according to the Viterbi

sequence which specifies the distribution of each mark.

Grouping q1 q2 λ1 λ2 α1 α2 LogL

Overall 0.400 0.199 4.72 9.58 3.13 2.58 514.92

Grouping A 0.275 0.052 1.98 4.34 2.02 2.61 69.43

Grouping B 0.080 0.044 2.40 5.65 1.77 2.53 71.56

Grouping C 0.322 0.10 1.25 3.89 3.78 3.00 64.34

Table 9.5: Estimated parameters of MMPP with state-dependent marks for deep

earthquakes around the North Island and individual groupings.

The transition rates of Q matrix and intensity rates of the observed point process

in Table 9.5 are very close to those in Table 9.1. From the simulation study in chapter

4.5, this similarity is most likely ascribed for that the mark distributions can only
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exert very small leverage effects on the estimates. Note that in Table 9.5 the b-values

of earthquakes in grouping A (Cook Strait grouping) and grouping B (Taranaki

grouping) are less than or greater than unity as X(t) in the seismic quiescent state

(the first state) or the seismic active state (the second state) respectively. However,

the b-values of earthquakes in the geothermal and volcanic active region C ( Taupo-

BOP region) are greater than unity as X(t) is in both states. Furthermore, the

b-values of deep earthquakes in region C show a reverse trend in comparison with

that in region A and B, i.e. the smaller b-value is associated with the seismic active

state (the second state) and the larger one is associated with the seismic quiescent

state (the first state). These features need more geophysical insights to interpret.

Grouping MMPP(1) AIC MMPP(2) AIC MMPP(1) BIC MMPP(2) BIC

Overall -1017.85 -1017.91 -992.75 -996.999

Grouping A -126.86 -128.47 -106.27 -111.11

Grouping B -131.12 -126.74 -109.99 -109.13

Grouping C -116.69 -118.05 -96.93 -101.58

Table 9.6: Model selection between MMPP with state-dependent marks (MMPP(1))

and MMPP with state-independent marks (MMPP(2)). There are 5 parameters for

a second order MMPP associated with state-independent marks.

Table 9.6 lists both the AIC and BIC values of the two nested models, namely

MMPP with state-dependent marks and MMPP with state-independent marks, de-

noted by MMPP(1) and MMPP(2) respectively in the table. No obvious justifi-
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cation has been established for preference of MMPP with state-dependent marks

rather than MMPP with state-independent marks or vice versa in terms of AIC

or BIC. However, the table shows that the b-values of the magnitude distribution

associated with two states in grouping A (Cook Strait grouping) and grouping B

(Taranaki grouping) vary between two values, less than unity when X(t) in the

first state and greater than unity when X(t) in the second state. The difference of

the estimated parameters of the magnitude distribution associated with two states

might be significant. The largest grouping, Taupo-BOP which is a volcanic active

zone, indicates rather high b-values in both states.

The probabilities of the underlying Markov chain in the second state (the seismic

active state) are implemented by using the fixed point smoothing algorithm which

gives the conditional probabilities of the underlying Markov chain in a state at

a specific time conditioned on all available observations including the marks, see

section 4.4.1. Since the smoothing estimation of the probabilities of X(t) in a state

is continuous with respect to t, the probabilities evaluated at many grid points

and connected by straight lines can mimic the evolution of the underlying Markov

chain well. Similar procedure is applied to demonstrate the evolution of the ground

process of the observed marked point process according to equation (4.14). The

magnitudes versus occurrence times, estimated probabilities of the hidden Markov

process in the second state and the estimated ground intensity rates for events from

all groupings are given in Figure 9.7. Considering the marks can only exert very

small effects on the estimates of the transition rate matrix Q and the intensity

rates λ’s even when the magnitude distributions are truly varying according to the
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underlying Markov chain, the estimated probabilities of X(t) in the second state and

the estimated intensity rates of the observed point process should be very similar

to those of MMPP without marks. Hence, Figure 9.7 seems very similar to Figure

9.2. Again, the deep seismicity shows greater variability before 10,000 days since

Jan 01, 1945 in comparison to the later period and an unusual seismic active period

persists since late l980s with no ending signs. Similar pictorial representation of

the deep seismicity in individual groupings such as A, B, C defined in Figure 9.1 is

presented in Figure 9.8-9.10. From Figure 9.8-9.10, the deep seismicity still shows

similar trends in each grouping after 5000 days since Jan 01, 1945. Again, the deep

seismicity around 10,000 days and after 15,000 days since Jan 01, 1945 is relatively

active in all three groupings.
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Deep Earthquakes Fitted through MMPP with Marks
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Figure 9.7: Magnitude versus time plot, estimated probabilities of X(t) in the state

2 and estimated intensity rate for the events from all four main groupings in region

A, B, C and D defined in Figure 9.1.
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Deep Events in Cook Strait Grouping Fitted through MMPP with

Marks
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Figure 9.8: Magnitude versus time plot, estimated probabilities of X(t) in the state

2 and estimated intensity rate for the events from Cook Strait grouping in region A

defined in Figure 9.1.
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Deep Events in Taranaki Grouping Fitted through MMPP with Marks
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Figure 9.9: Magnitude versus time plot, estimated probabilities of X(t) in the state

2 and estimated intensity rate for the events from Taranaki grouping in region B

defined in Figure 9.1.
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Taupo-BOP Deep Grouping Fitted through MMPP with Marks
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Figure 9.10: Magnitude versus time plot, estimated probabilities of X(t) in the state

2 and estimated intensity rate for the events from Taupo-BOP grouping in region

C defined in Figure 9.1.
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Note that to avoid the overflow or underflow problem in computation, we need

scale the forward and backward probabilities by normalizing them to obtain the

probabilities of the underlying Markov chain X(t) in a specific state and the esti-

mated intensity rates of the marked MMPP. Similar numerical procedures should

be applied in the EM iterations by using the scaling factors determined by the order

of the matrix exponential to update the Q matrix.

MMPP(1)-AIC MMPP(3)-AIC MMPP(1)-BIC MMPP(3)-BIC

-1017.43 -1012.32 -992.33 -962.136

Table 9.7: Model selection between the second order MMPP with state-dependent

marks (MMPP(1)) and the third order MMPP with state-dependent marks

(MMPP(3)). There are 12 parameters in a full third order MMPP associated with

state-dependent marks.

Table 9.7 suggests that a third order MMPP with state-dependent marks (MMPP(3))

is not better than a second order MMPP with state-dependent marks for the data

from all main deep groupings. Higher order MMPP would not be considered due to

limited data size.

The doubly rescaled marked point patterns based on a switching Poisson process

with state-dependent magnitude distribution for events from all deep groupings as

a whole and individual groupings are given in 4 plots of Figure 9.11. It is worth

noting that there are some regular patterns at the left bottom of the doubly rescaled

events in each plot of Figure 9.11 which obviously suggests the magnitude records
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have rounding errors in early period for small events. We use estimated K-function

K(d) which indicates the proportion of paired points per unit area within a specified

distance d to detect deviations of the proposed model from a unit rate planar Poisson

process, see Cressie (1993). After performing K-test via Ripley’s correction for the

boundary effect over the doubly rescaled marked point process which is supposed

to be Poissonian in the specified window if the proposed model fits the real pattern

well, no obvious clustering or regularity pattern can be detected in the transformed

process. Plots in Figure 9.12 show the estimated K-functions for the doubly rescaled

process by solid lines and theoretical values of K-functions of Poisson processes by

dash lines which is a quadratic function of the distance d. It suggests that the K-

functions of the doubly rescaled MMPP with marks coincide with that of a Poisson

process in all cases very well. In other words, the estimated intensity rates for the

marked point process should be very close to the true values. However, considering

K-function doesn’t provide detail information of where the fit is unsatisfactory and

there is no significance levels set out in the sense of a standard statistical test, it

doesn’t mean the model fits the pattern perfectly well.
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Doubly Rescaled MMPP with Marks
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Figure 9.11: Doubly rescaled marked point process based on a switching Poisson pro-

cess with state-dependent magnitude distribution for events from all deep groupings

as a whole and Cook Strait grouping, Taranaki grouping, Taupo-BOP grouping.
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K-test for the Doubly Rescaled MMPP with Marks
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Figure 9.12: K-tests via Ripley’s correction for the boundary effect over the doubly

rescaled marked point process for all four deep groupings as a whole and Cook Strait

grouping, Taranaki grouping, Taupo-BOP grouping. The solid lines are estimated

K-functions. The dash lines show the expected values of the K-function of a Poisson

process.
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9.3 Application of Multivariate MMPP to Deep

Earthquakes

From previous analysis in section 9.1, it is suggested that the deep seismicity in all

three individual groupings show similar time-varying behavior after 5000 days since

1 Jan 1945, see the estimated probabilities of the underlying process X(t) in the

second state and the estimated intensity rates in Figure 9.2-9.5. It is reasonable to

speculate that the seismicity in individual groupings might be driven by a ’common’

geophysical process associated with the subduction of the oceanic plate. We also

speculate that the similar time-varying behaviors in seismicity might be associated

with the time-varying behavior of the thermal parameters of the subduction zone

which is defined as the products of the age of the slab and the vertical component

of convergence rate of the subducted plate.

To validate the speculation that the occurrence patterns of the deep earthquakes in

individual groupings might be associated with a common underlying process, we ap-

ply a bivariate MMPP to two conspicuous deep groupings, namely the Taupo-BOP

grouping and the Taranaki grouping which are adjacent with each other geophysi-

cally. Then by comparing the bivariate MMPP with the individual MMPPs through

the model selection criteria such as AIC or(and) BIC, whether the two individual

MMPPs can be synchronized together under a common underlying process is con-

cluded. Here, AIC= −2 ∗ logL+ 2k and BIC= −2 ∗ logL+ k ∗ log(n) respectively.

In the definition, k is the number of the parameters and logL is the log-likelihood

of the model.
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The data used in this analysis are selected from New Zealand catalogue from 1950

to 2007 with depth greater than 40. The magnitude thresholds are respectively 4.5

and 5 in Richter scale for Taranaki grouping and Taupo-BOP grouping respectively.

The two states of the bivariate MMPP are associated with the seismic quiescent state

(the first state) and the seismic active state (the second state) respectively. We also

apply the method to two other combinations of deep groupings, i.e. Cook Strait

grouping and Taranaki grouping, Cook Strait grouping and Taupo-BOP grouping.

Table 9.8 suggests that a bivariate MMPP outperforms two independent MMPPs for

the Taranaki grouping and Taupo-BOP grouping. Either by AIC or BIC, it confirms

that two individual MMPPs are positively correlated with each other through an

underlying Markov process rather than independent. In other words, the synchro-

nization of two MMPPs through a common underlying process fits the occurrence

patterns of the two deep groupings much better than two independent MMPPs.

However, for the other two combinations of the deep groupings, i.e. Cook Strait

grouping and Taranaki grouping, Cook Strait grouping and Taupo-BOP grouping,

whether a bivariate MMPP outperforms two independent MMPPs or vis versa are

not conclusive. So, further synchronization of all three deep groupings via a three

variate MMPP will not be considered here since Cook Strait grouping obviously

does not evolve simultaneously with others.

Figure 9.13 shows the probabilities of the baseline process X(t) of the bivariate

MMPP in the second state. In both deep groupings (The Taupo-BOP grouping and

Taranaki grouping), the seismicity is relatively active since late 1980s without ending

signs. The probabilities of X(t) in the state 2 are evaluated at many pre-selected grid
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Independent MMPPs Bivariate MMPP

Tara-BOP AIC -291.73 -306.31

Tara-BOP BIC -264.99 -282.01

Cook-Tara AIC -405.63 -407.46

Cook-BOP AIC -229.10 -230.25

Table 9.8: Model selection between bivariate MMPP and independent MMPPs for

3 deep groupings. There are 6 parameters in a bivariate MMPP.

points according to equation (5.17) in section 5.5 and connected together by straight

lines. Note that to avoid the overflow or underflow problem in computation, we need

to scale the forward and backward probabilities by normalizing them to obtain the

probabilities of the underlying Markov chain X(t) in a specific state. Similar scaling

procedure should also be deployed to evaluate other quantities as shown in following

figures.

Figure 9.14 and 9.15 demonstrate the estimated intensity rates of the marginal

processes of a bivariate MMPP and perform K-S tests for the marginal processes.

From these two figures, it is evident that two marginal processes are positively

correlated since the intensity rates of the marginal processes are both high or low

at the same periods. In the bottom of these two figures, the dot lines give 95 and

99 percent confidence bands of the K-S tests. The solid lines are the cumulative

number of arrivals in the marginal process which is rescaled to form a unit rate

Poisson process if the proposed model fits the real pattern well and the dash lines
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Hidden State Probabilities of Bivariate MMPP
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Figure 9.13: The estimated probabilities of X(t) in the state 2 of a bivariate MMPP.

are the expected cumulative numbers of a unit rate Poisson process. The K-S tests

suggest the bivariate MMPP fits the occurrence patterns of Taupo-BOP grouping

and Taranaki grouping well.

Figure 9.16 gives the estimated cross-intensity, cross-variance and cross-spectrum

h
(2)
1 (t), γ

(2)
1 (t) and g

(2)
1 (ω). Both the cross intensity h

(2)
1 (t) and the cross variance

γ
(2)
1 (t) indicate that the two marginal processes are positively correlated. The pos-

itive correlation reaches highest amount at the beginning and decreases slowly to

nearly zero after 20 years, see the middle of the Figure 9.16 of the cross variance.

There is no periodic effect existing between the marginal processes according to the

cross spectrum g
(2)
1 (ω).

The conclusions are subjected to the influence from the estimation errors of the

parameters since the estimation errors of the parameters are not negligible, partic-

ularly for the parameters of the transition rates in Q matrix, see section 9.4.
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Taupo-BOP Grouping Fitted via a Bivariate MMPP
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Figure 9.14: Taupo-BOP grouping fitted via a bivariate MMPP. The top of the fig-

ure is the estimated intensity rates of the marginal process for Taupo-BOP grouping.

The quantities are evaluated at many pre-selected grid points according to equation

(5.18) in chapter 5.5 and connected together by straight lines. The bottom of the fig-

ure performs the Kolmogorov-Smirnov test for the empirical cumulative distribution

of the rescaled process.
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Taranaki Grouping Fitted via a Bivariate MMPP
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Figure 9.15: Taranaki grouping fitted via a bivariate MMPP. The top of the figure

is the estimated intensity rates of the marginal process for Taranaki grouping. The

quantities are evaluated at many pre-selected grid points according to equation

(5.18) in section 5.5 and connected together by straight lines. The bottom of the

figure depicts the result of the Kolmogorov-Smirnov test for the empirical cumulative

distribution of the rescaled process.



CHAPTER 9. DEEP EARTHQUAKES MODELING 160

Second Moments of the Bivariate MMPP
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Figure 9.16: Second moments of the bivariate MMPP. The figures demonstrate the

estimated cross intensity rate in the top, the estimated cross variance in the middle

and the cross spectrum in the bottom. These quantities are defined in section 5.4.

These figures suggest the marginal point processes are positively correlated.
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9.4 Evaluations of Estimation Errors

In this section, we evaluate the estimation errors of the model parameters appearing

in the Table 9.1 and 9.5. From the simulation studies in section 4.5, it is clear that

the exponential type of marks with decaying parameters (b-values) can only exert

very small effect on the estimation, see Table 4.1, 4.2 and Figure 4.4. The estimates

in Table 9.1 and 9.5 are very close to each other. The model comparison between

MMPP with state-dependent marks and state-independent marks suggests that the

model preference is not conclusive for this small data sets. Due to these factors, we

focus only on the estimation errors appearing in the Table 9.5.

The estimation errors are estimated by parametric bootstrap methods. We sim-

ulate 1000 series of events with the same length of observations as the real data

according to the estimated parameters in Table 9.5. Then the parameters are es-

timated via the EM algorithm for each series of simulated data. From the 1000

bootstrap replicates, we obtain the 95 percent bootstrap percentile confidence in-

tervals given in Table 9.9 and the bootstrap estimate of the covariance matrix for

overall grouping as listed in Table 9.10. Histograms of bootstrap replicates for all

parameters appearing in the Table 9.5 are listed in the Figure 9.17-9.20.

It is observed that the estimates are unstable for this small data set, particularly

for the transition rate q1 in Q matrix and α1 in the magnitude distribution.
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Histograms of the Bootstrap Replicates (Overall)
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Figure 9.17: Histograms of the estimates for 1000 simulated MMPP series with

given parameters for overall deep events. The tick marks T in the histograms give

the true values of the parameters.
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Histograms of the Bootstrap Replicates (Cook Strait)
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Figure 9.18: Histograms of the estimates for 1000 simulated MMPP series with given

parameters for Cook Strait grouping. The tick marks T in the histograms give the

true values of the parameters.
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Histograms of the Bootstrap Replicates (Taranaki)
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Figure 9.19: Histograms of the estimates for 1000 simulated MMPP series with

given parameters for Taranaki grouping. The tick marks T in the histograms give

the true values of the parameters.
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Histograms of the Bootstrap Replicates (Taupo-BOP)
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Figure 9.20: Histograms of the estimates for 1000 simulated MMPP series with given

parameters for Taupo-BOP grouping. The tick marks T in the histograms give the

true values of the parameters.
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Grouping q1 q2 λ1 λ2 α1 α2

Overall [0.093,3.07] [6e-05 2.00] [1.81,7.17] [8.34,12.61] [2.10,5.70] [2.30,2.92]

Grouping A [0.041,3.63] [4e-08 1.00] [8e-06,5.18] [3.67, 5.73] [0.83,8.71] [2.23,3.30]

Grouping B [0.018,0.85] [2e-08,0.40] [1.29,3.62] [4.69,7.03] [1.18,3.11] [2.15,3.03]

Grouping C [1e-05 3.62] [0.02,2.19] [1e-3,3.53] [3.27,6.37] [0.69,14.7] [2.43,3.71]

Table 9.9: 95 percent bootstrap confidence intervals for parameters in Table 9.5.

Covariance q1 q2 λ1 λ2 α1 α2

q1 1.31 0.44 -0.32 0.05 0.23 0.0039

q2 0.44 0.395 -0.0075 0.389 0.005 -0.0027

λ1 -0.32 -0.0075 2.55 0.46 -0.294 -0.032

λ2 0.05 0.389 0.46 1.30 -0.175 -0.0115

α1 0.23 0.005 -0.294 -0.175 1.428 -0.0118

α2 0.0039 -0.0027 -0.032 -0.0115 -0.0118 0.0249

Table 9.10: Bootstrap estimation of the covariance matrix of the MMPP parameters

for overall grouping in the first row of the Table 9.5.



Chapter 10

Concluding Remarks and Further

Studies

10.1 Concluding Remarks

Among many differences between the deep earthquakes and the shallow earthquakes,

one well-known fact is that the deep earthquakes rarely have plenty of aftershocks

which decay in terms of Omori’s law. A second order moment analysis carried

out for the spatial and temporal clustering of the New Zealand deep earthquakes

suggests that the deep earthquakes do have very small scale clustering, presumably

only limited in some hot spots, along with occasional large doublets. Partly because

of these factors, those models widely used for the occurrence patterns of the shallow

earthquakes fit the main deep earthquakes in New Zealand poorly, see section 8.3.

The main occurrence pattern of the New Zealand deep earthquakes, in a relatively

167
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large time scale, is the time-varying seismic activities, active in one period, relatively

quiescent in another, see Figure 8.1 and 8.2. The mechanisms and reasons behind

this time-varying behavior are still not well understood. Hence, we suggest a hidden

Markov model, in this case a second order MMPP or a switching Poisson model,

to characterize the time-varying occurrence rates. The two states are designated to

stand as two levels of seismicity, namely the seismic active state and the seismic

quiescent state.

We apply a second order MMPP to the deep earthquakes as a whole. How and

when the deep seismicity is changed is indicated through a smoothing procedure

giving the probabilities of the underlying process in a specific state. Then, a detailed

analysis is carried out to investigate where and when the deep seismicity is changed

among the three deep groupings, namely Taupo-BOP grouping, Taranaki grouping

and Cook Strait grouping. The estimated occurrence rates in individual groupings

show similar patterns after 6000 days since 01 Jan 1945. We conjecture that the

co-seismic features appearing among individual groupings are most likely driven by

a ’common’ process, which forms the motivation of suggesting a bivariate MMPP to

synchronize the evolution of the seismicity in individual groupings under a common

underlying process. There exists strong statistical evidence that the deep seimicity

in individual groupings are positively correlated, particularly for the two largest

groupings, Taupo-BOP grouping and Taranaki grouping, see the model comparison

between the bivariate MMPP and independent MMPPs in Table 9.8. Goodness-of-fit

tests based on the rescaling theory show that the estimation of the occurrence rates

or the conditional intensity rates are well consistent with the true values. However,
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these conclusions are partly offset by relatively large estimation errors, particularly

for the transition rates in the Q matrix.

Another statistically interesting, geophysically important question is whether the

magnitude distributions also vary simultaneously with the occurrence rates of the

deep seismicity. Motivated by this question, we propose an extension of MMPP,

in which each arrival is attached by additional variables or marks. However, any

conclusion of whether the magnitude distributions vary simultaneously with the

arrival rates is offset by two factors. Firstly, available quality data set is relatively

small. Secondly, the simulation studies in chapter 4.5 suggest that the effects posed

by the exponential type of marks with b-values taken in the usual range is rather

small, which makes it difficult to draw a conclusion even when the b-values truly vary

simultaneously with the occurrence rates, see Table 4.2 and Figure 4.4. Generally

speaking, except for Taranaki grouping, the results of whether the b-values vary with

the occurrence rates is not conclusive, either for all deep grouping together or for

individual groupings. This is clearly demonstrated in Table 9.6. It is worth noting

that the b-values vary either greater than 1 or less than 1 in different states for two

groupings, i.e. Taranaki grouping and Cook Strait grouping. Another important

fact found not only for New Zealand deep earthquake but also for those occurred

in other subduction zones is that the b-values tend to decrease systematically with

depth within individual groupings or altogether. What all this means and what is the

geophysical importance need more interpretations from point of view of geophysics.

Schorlemmer et al. (2005) suggest the b-values are associated with faulting types

and its corresponding stress levels.
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In all these analysis, we suggest a second order MMPP is sufficient to characterize

the time-varying activities of deep seismicity. However, we don’t rule out the possi-

bility that the deep seismicity might be able to be characterized by a higher order

MMPP when quality data with smaller events included in the catalogue accumulate

to a longer period and a detailed analysis can be carried out for lower magnitude

threshold.

Theoretically, we suggest that in a hidden Markov environment, e.g. MMPPs, the

Fisher information has links with the mutual information rate between the observed

process and the underlying Markov process. We conjecture that for given length of

observations, the better the intensity rates are separated or the better the marks

distributions are separated, the better the estimates will be close to the true values

of the parameters when the transition rate matrix Q keeps intact. How well the

intensity rates or the mark distributions are separated are measured by the mutual

information rate between the observed (marked) point process and the underlying

Markov process. The explicit formulas of the mutual information rates for MMPP

or MMPP with marks are obtained, see Theorem 7.2 and 7.3. The conjectures are

validated through simulation studies in 7.6 and 4.5.

10.2 Questions and Future Studies

We conclude that in a relatively large time scale, the main occurrence patterns of

New Zealand deep seismicity are the time-varying behavior of the occurrence fre-

quencies. However, detailed features such as the spatial, temporal clustering and
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occasional occurrences of large doublets, which are also crucial for understanding

the differences of the mechanisms between the shallow earthquakes and deep earth-

quakes, are beyond the current framework of MMPP to accommodate.

To enable a more detailed description of the occurrence pattern of the deep earth-

quakes and at the same time reserve the feature of relatively large time scale time-

varying behavior in occurrence rate within the framework of MMPP, the model

framework of original MMPP needs to be extended on its own right. Toward this

direction, we suggest an extension of MMPP by treating the set of interested vari-

ables, e.g. the temporal and(or) spatial clustering distributions as a mark which

itself forms a subsidiary point process as illustrated in chapter 6. To apply this

model characterizing the clustering properties of the deep earthquakes, it is neces-

sary to classify the events into two categories, the mainshocks and the aftershocks,

and designate the event which triggers a specific aftershock. The shortcoming of

this method is that it might evoke controversial argument due to that there always

exist the possibilities that an event is wrongly designated as an aftershock or an

event is falsely designated as an aftershock from a specific event rather than another

by any deterministic declustering approach. Another possible approach allowing

both large scale time-varying seismic activities and simultaneously together with

detailed temporal and spatial clustering is by treating the mainshocks and after-

shocks as a mixing process. However, this approach poses a challenge on whether

the model is analytically tractable. Recent developments in dealing with parameter

estimation problem involved in MMPP through point process martingale, measure

change and Clark’s transformations by Elliott and Malcolm (2008) is an interesting
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extension in methodology. Nevertheless, before any clustering model for the deep

aftershocks is proposed, far more than current studies of clustering properties by

the second order moment analysis of point process are needed to characterize the

decaying properties and the abundance of the deep aftershocks. Again, the abun-

dance of the deep aftershocks may range from totally devoid of any clear following

aftershocks to occasionally fully developed aftershock sequence decaying according

to Omori’s law. The spatial clustering properties are generally not homogeneous and

isotropic. These factors complicate those attempts to propose a parametric model

for the spatial-temporal clustering of the deep earthquakes.

There are also problems on the possible links between the deep earthquakes and

other geological hazards near the surface such as the shallow earthquakes and vol-

canic activities. Since earthquakes near trenches are expression of plates motion and

regional stress release, it is plausible that the occurrence of a large shallow quake

might produce significant stress changes both in the outer rise and downdip portions

of a plate, thus causing seismic activity there. Mogi (1973) concludes that seismicity

tends to migrate downward in the years following, and sometimes proceeding, large

subduction zone earthquakes. Lay et al. (1989) and others review the occurrence of

relatively large intermediate quakes in the year prior to great shallow earthquakes.

However, none of them actually apply any statistical tests to assess the relationship

between the shallow and deep activities, see Frohlich (2006).

At last, as we suggested in the previous chapter, the estimation errors for the

parameters in the model are not negligible, particularly for the transition rates in

the Q matrix. More robust methods are required in this situation.
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