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Abstract

The original intention of this study was to exploit the specificity of circularisable

ligation probes (CLiPs) in a unique approach of in situ genotyping the mu-opioid

receptor (MOR) splice variants. CLiPs were designed to target a PCR generated

MOR-l template in vivo. The ligation results were consistent with circularised CLiPs,

however due to the inherent limitations of this method the more conventional

technique of fluorescent in silu hybridisation (FISH) was substituted for CLiPs to

analyse to distribution of MOR splice variants in rat brain.

Utilising FISH, the aim was to produce RNA probes (riboprobes) approximately the

same size as the target specific region of CLiPs (-60-70 nt) to analyse the distribution

patterns of MOR splice variants in rat brain.

Five short (10-222 nt) riboprobes were generated to exons I, 3, 4 and 9, and the 5'

UTR + exon I of the Rattus norvegicus MOR gene (Oprm) to be utilised in FISH.

The exon I, 4 and 5' UTR + exon 1 riboprobes were shown to localise to MOR

mRNA in brain structures previously reported to express MORs. These riboprobes

also localised to mRNA within the Purkinje cells of the adult rat cerebellum, where it

is generally accepted that only DOR is expressed in the rat cerebellum. MOR mRNA

was visualised in many structures in the rat brain, including the dendate gyrus,

inferior olive and spinal trigeminal nucleus. Riboprobes generated to the 5' UTR +

exon I and exon 4 showed differential distribution patterns, the functional

significance of this discovery is unknown, however these results implicate a role for

FISH in tracking the distribution patterns of untranslated and translated mRNA.

The use of novel new short riboprobes represents a technically difficult yet feasible

technique for mapping MOR mRNA distribution in adult rat brain.
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Chapter 1

The Opioid Svstem

The opioid receptors are the primary targets of opiates and endogenous opioid

peptides. The opium poppy papaver somniftrum has been used extensively

throughout history to relieve pain. In 1803, a crystalline sample of the principle

alkaloid, morphine, was isolated from papaver somnifurum. Later this was shown to

be almost entirely responsible for the analgesic activity of unprocessed opium

(Corbett et al.).

A key side effect of morphine use is respiratory depression , in 1942 the first opiate

antagonist, nalorphine, was produced. This antagonist was capable of reversing the

respiratory depression caused by morphine administration (Weiljlard and Erikson

1942). Even though nalorphine could counter the actions of morphine, it could still

be used as an analgesic agent, meaning that this drug was a mixed agonist-antagonist

(Brownstein 1993). An explanation of how mixed agonists and antagonists might

work, led to the general consensus of multiple opioid receptors. Radiolabelled drugs

were used to try and characterise the multiple opioid receptors (Goldstein et al.

I9lL). These binding experiments showed that in the central nervous system there

were stereospecific opiate binding sites (Pert and Snyder 1973, Simon et al. 1973,

Terenius 1973\.



The first endogenous opioid ligands to be successfully isolated were from porcine

brain. These were the two pentapeptides Tyr-Gly-Gly-Phe-Leu (Leu-enkephalin)

and Tyr-Gly-Gly-Phe-Met (Met-enkephalin) (Hughes et al. 1975). Later it was

observed that the N-terminus of another molecule, p-endorphin, shared the same

Met-enkephalin sequence and also had a high affinity for brain opioid receptors (van

Ree et aL 1976). In 1981 the dynorphins were discovered due to their structural

similarity to enkephalins (Goldstein et al. 1981). Three different precursor proteins

give rise to the enkephalins, endorphins and dynorphins. These precursors are

known as pro-enkephalin (Noda et al. 1982), pro-opiomelanocortin (POMC)

(Nakanishi et al. 1979) and pro-dynorphin (Kakidani et al. 1982), respectively. Two

new classes of endogenous opioid peptides called endomorphins (Zadina et al. 1997)

and nociceptin/orphanin FQ (Butour et al. 1997) have been recently discovered.

These peptides are generated from proteolysis of the precursor proteins pro-

endomorphin and pro-nociceptin/OFQ, respectively (Table 1.0).

Precursor Protein Endogenous Opioid Peptide

Pro-ooiomelanocortin B-endorphin

Pro-enkephalin IMet]enkephalin

ILeu]enkephalin

Pro-dynorphin Dynorphin A

Dynorphin A(l-8)

Dynorphin B

o-neoendorphin

p-neoendorphin

Pro-nociceptin/OFQ Nociceptin

Pro-endomorphin Endomorphin-l

Endomorphin-2

Table 1.0 Mammalian endogenous opioid
proteins.

peptides and their precursor



Opioid receptors and endogenous opioid peptides are distributed widely throughout

the mammalian central, peripheral and autonomic nervous systems, as well as in

most endocrine tissues and organs (Kornblum et al. 1987, Mansour et al. 1987,

Smith et al. 1993). They have a wide range of pharmacological and physiological

effects including: tolerance and dependence; cardiovascular responses; respiration

and thermoregulation; gastrointestinal, renal, and hepatic function; mental illness and

mood; learning, memory and reward; seizures and other neurological disorders

(Vaccarino et al. 1999).

L.1 Opioid Receptors

Three classes of opioid receptors have been identified. The first convincing

evidence of multiple opioid receptors came from studies using congeners of

morphine to produce three different syndromes in the nondependent chronic spinal

dog (Martin et al. 1916). These syndromes were attributed to the presence of three

distinct receptors: the morphine (p) opioid receptor (MOR), ketocyclazocine (rc)

opioid receptor (KOR) and the SKF-10,047 (o) opioid receptor. The sigma receptor

is generally considered not to be an opioid receptor.

After the enkephalins were discovered, research began into which receptors these

opioid peptides interact with. One of the studies involved inducing contractions of

guinea pig ileum using electrical currents (Lord et al. 1977). It was noted that

moqphine was more effective than enkephalins in inhibiting contractions in the

ileum, but surprisingly that enkephalins were more active in inhibiting contractions

in the vas deferens. Furthermore, naloxone (a potent opiate antagonist) had little

effect on the action of enkephalins at the vas deferens. It was based on these findings



that a fourth receptor called the delta (6) opioid receptor (DOR) was postulated to be

present in the vas deferens (Lord etal. 1977).

It is currently accepted that the three main classes of opioid receptors (p, 6 and r)

can be further subdivided. Based on clinical observations and pharmacological

studies opioid receptor splice variants have been identified for MOR (Wolozin and

Pasternak 1981, Pasternak and Wood 1986), DOR (Jiang et al. 1991, Mattia et al.

l99lb, Mattia etal.l99la. Sofuoglu etal.l99l) and KOR (Zukin et al. 1988, Cheng

et al. 1992) mRNAs. There is also research to support the existence of two other

opioid receptors namely the zeta receptor (Zagon et al. 1991) and more recently the

opioid receptorJike receptor (ORL-1) (Butour et al. 1997).

The three most well defined receptors are MOR, KOR and DOR. Using expression

cloning in mammalian cells the first cDNA encoding murine DOR (mDOR) was

isolated in 1992 (Evans et al. 1992, Kieffer et al. 1992). The MOR and KOR

cDNAs were identified by homology cloning (Gaveriaux et al. 1995, Kieffer 1995).

Hydrophobic analyses of mDOR cDNA revealed that this receptor had seven

putative transmembrane helices which is a trait of the guanine nucleotide binding

(G)-protein-coupled receptor family (Kenakin 1996).

Overall, MOR, DOR and KOR are 6O7o identical to each other. The transmembrane

regions share the greatest homology with 73-76Vo identity. The extracellular and

intracellular regions differ significantly, sharing only 34-40Vo identity (Satoh and

Minami 1995). The most divergent of these regions are the second and third

extracellular loops, as well as the N- and C-termini (Jordan et al. 2000) (Figure 1.0).



Selective binding of DAMGO,
DSLET and DPDPE

MOR DAMGO binding site

MORmorphine and
DAMGO linding site

INTRACNLLUIIIR

MOR and DOR morphine
binding Calmodulin regulation

KEY
PM Palmitoylationsites
G Glycosylation sites
P Phosphorylation sites
E Exhacellular loop
I Intracellular loop
T Transmembrane domains

Figure {.0 Schematic ruprcsentation of opioid roeptor rtructur€, ligand
binding sites and regulation sites, adapted from Kivell. 2003.

The opioid receptors (ORs) are accepted as being G-protein coupled receptors,

belonging to the rhodopsin receptor superfamily. The opioid receptors are not

coupled directly with stimulatory G-proteins, Gs or Go (Corbett et al.), but as

members of the rhodopsin superfamily they are coupled to the inhibitory G-protein

Gcri. This protein inhibits the activation of adenylate cyclase therefore blocking the



production of the secondary messenger cyclic AMP (cAMP). Stimulation of the

opioid receptors also activates inwardly rectifying K' channels and decreases the

conductance of voltage operated Ca2* channels (North et al. 1987).

Cellular responses to opiate stimulation are mediated by receptor phosphorylation,

either by endogenous specific G-protein coupled receptor kinases (GRKs) or non-

specific protein kinases (protein kinase A or C, and Ca2+lcalmodulin-dependent

protein kinase II). Currently there are six known isoenzymes of the GRKs (GRKI-

6) that transfer phosphate groups onto the serine or threonine residues of the C-

terminus of the ORs.

Receptor desensitisation is defined as "a rapid loss of receptor function upon

sustained exposure to an agonist" (Higgins 1998), and it has been postulated that

modulation of the GRKs may be one of the molecular mechanisms involved in

receptor desensitisation (Mestek et al. 1995). Other molecular mechanisms have also

been proposed to explain receptor desensitisation, for example opioid receptor

dimerisation. Studies have shown that DOR exists as a dimer when expressed in

heterologous cells (Cvejic and Devi 1997), and that KOR also exists as a dimer that

is stable in sodium dodecyl sulphate (SDS) (Jordan et al. 2000). It has also been

shown that kappa receptors can heterodimerise with delta, but not mu receptors

(Jordan et al. 2000). This may represent a novel regulatory mechanism that could

either restrict or enhance phosphorylation and desensitization of the G protein-

coupled opioid receptors (Pfeiffer et al. 2002).

6



ORs are widely distributed throughout the mammalian central and peripheral

nervous systems (CNS and PNS respectively), and have long been implicated in the

control of various physiological functions (Atweh and Kuhar 1983). Although the

elucidation of OR function is far from complete, they are known to play a role in

many biological activities such as: long term potentiation, locomotion, pain

perception (nociception), respiration, immunity, stress response and many other

biological behaviours (Vaccarino et al. 1999).

The transient appearance of ORs and their endogenous peptides (Bayon et al. 1979)

in certain brain and spinal regions during development has led to the hypothesis that

endogenous opioids may serve a functional role in development that is quite distinct

from their role in the adult.

ORs appear early in the ontogeny of the CNS with each receptor type having unique

developmental expression patterns. Radioligand binding assays, autoradiography

and in sira hybridisation (ISH) experiments have shown that MOR and KOR

expression is first detectable within the embryonic rat brain by the twelfth to

fourteenth day (E12-E14) of gestation (Attali and Vogel 1990, Georges et al. 1998,

Tong et al. 2000). DOR is almost undetectable in embryonic rat brain, but has been

shown to appear at, or shortly after birth (Georges et al. 1998).

MOR densities are pafticularly high throughout development in regions of the brain

involved in respiratory function, such as the nucleus tractus solitarius (NTS) and the

nucleus ambiguous (Xia and Haddad 1991). MOR expression levels continue to rise



until two weeks after birth, when they reach their peak and decrease to adult levels

(Tong et al. 2000). The exact role of the opioid receptors during development is not

known, however from recent OR knockout studies it has been noted that these

receptors play vital roles in haematopoiesis, reproductive physiology (Tian et al.

1997) and modulating locomotion (Kieffer and Gaveriaux-Ruff 2002). Table 1.1

shows brain structures involved in specific physiological effects, characterised by the

ORs present.

Table 1.1 Structures in the brain involved in producing a physiotogical state
via the opioid receptors.

1.2.1 Analgesia/f.{ociception

One important function of the opioid system is the role it plays in modulating

nociception. Exogenous p, K and 6 opioid agonists have been used throughout

history to produce analgesia. The neurotransmitter substance P (SP) and endogenous

opioid ligands are intimately involved in the regulation of acute and chronic pain

transmission (Go and Yaksh 1981, Kar and Quirion 1995, Minami et al. 1995).

Double in situ hybridisation studies and northern blot analyses have been used to

show that the precursor protein to SP and the mRNA of MoRs and KoRs, co-

Pharmacological or
Phvsioloeical Function

Region of Brain

Nociceptiony'Analgesia Ponfine parabrachial nucleus (PB), Periaqueductal grey
matter (PAG), the rostral ventromedial medulla, the
dorsal hom of the spinal cord and trigeminal ganglion
sensory neurons, spinal trigeminal nucleus, cuneate,
gracile nuclei, and thalamus regions

Motivation/Rewaril
Reinforcement

Ventral tegmental area (VTA)
Nucleus accumbens (NAc)

Respiration/Ilypoxia/
Hypothermia

Preoptic area
Morphine-controlled respiration: Nucleus of solitary
tract, nucleus ambiguous. parabrachial nucleus

Addiction Nucleus accumbens
Sedation Mesencephalic reticular formation

Nausea/Vomitine Neurons of the postrema



localise at the superficial laminae of the dorsal horn and in dorsal root ganglia of rat

spinal cord (Kar and Quirion 7995, Minami et al. 1995). The superficial lamina of

the dorsal horn is an important site of functional integration and transmission of

nociceptive inputs. It has been strongly suggested from pharmacological data that SP

released in the dorsal horn plays an important role in antinociception by regulating

opioid analgesic activity and maintaining opioid responsiveness (Kream et al. 1993,

Foran et al. 2000).

The dorsal horn receives nociceptive input from the PNS and these signals are then

sent to the pontine parabrachial nucleus (PB) in the brain. The PB is a major

recipient of fibres from nociceptive spinal and trigeminal dorsal horn neurons. The

ventrolateral periaqueductal gray (PAG) plays an important role in antinociception.

Endogenous opioids or excitatory amino acids such as N-methyl D-aspartate

(NMDA) can activate their respective receptors to dampen pain transmission in the

PAG (Commons et al. 1999). The PAG also contains a high density of MORs,

which are involved in antinociception.

The analysis of MOR-, KOR- and DOR-deficient mice has demonstrated the

importance of the opioid system in pain perception and has given positive results

regarding targets for the treatment of pain. In models of acute pain the opioid

recaptor or peptide knockout mice generally showed an increased sensitivity to acute

noxious stimuli, these results are in keeping with the pharmacology of the opioid

system (Kieffer and Gaveriaux-Ruff 2A0D.
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1.2.2 Tolerance

Tolerance to a drug is defined as the failure of a steady dose of the drug over time to

sustain the desired pharmacological effect (i.e. the need to increase the drug dosage

to maintain the original pharmacological effect). Tolerance can occur with a wide

variety of drugs, including opioids. There are three main regulatory mechanisms

thought to contribute to opioid tolerance. These are receptor desensitisation

(Borgland 200I, Alvarez et al. 2002), receptor internalisation (Gastard 2000,

Eisinger et al. 2002), and alterations in second messenger systems (Sharma et al.

l975,Ferguson 2001).

Morphine is well known to produce tolerance, even though morphine administration

does not promote rapid desensitisation or receptor endocytosis when studied in

heterologous expression systems (Keith et al. 1996, Sternini et al. 1996).

Comparatively, the endogenous opioids (e.g. endomorphins and etorphine) all seem

to cause both rapid desensitisation and receptor internalisation. It has been reported

that the ability of various agonists to differentially regulate MOR internalisation and

desensitisation, is based on their capacity to promote G protein-coupled receptor

kinase (GRK)-dependent MOR phosphoryl ation (Zhang et al. 1998b).

B-arrestins come from a family of regulatory scaffold proteins that function in signal

transduction at phosphorylated G protein-coupled receptors, including ORs. As 0-

arrestins form large complexes on the intracellular C-termini of the receptors, they

prevent G-proteins and other downstream activators from interacting with these

receptors, resulting in desensitisation (Ferguson 2001). These receptor complexes

are endocytosed at clathrin-coated pits and gradually recycled. Even though both

10



etorphine and morphine activate MORs, only etorphine elicits robust MOR

phosphorylation, followed by plasma membrane translocation of p-arrestin and

receptor internalisation. In contrast, morphine is unable to elicit MOR

phosphorylation or to stimulate B-anestin translocation (Fan et al. 2003).

Therefore, the differing ability of agonists to produce receptor desensitisation and

internalisation may provide the molecular basis underlying differences between the

analgesic properties of various opioid agonists. Further investigations into this area

may allow for the discovery of opioid analgesics that do not cause tolerance or cross_

tolerance. This would be of great benefit to patients with acute persistent pain e.g.

terminal cancer patients.

1.2.3 Respiration

One major side effect of exogenously administered opioid analgesics is respiratory

depression. Respiratory depression is produced by opiate agonists of the p, rc and 6

ORs and is mainly due to the inhibition of bulbar respiratory neurons (Morin-Surun

et al. 1984a). Activation of MOR and DOR decreases the firing of these neurons

with a subsequent reduction in respiratory rhythm and tidal volume (Morin-Surun et

al' 1984b). one mechanism proposed to cause respiratory depression has been

outlined in a recent study. Immunohistochemical techniques have revealed the

presence of MOR splice variants in the pre-B6tzinger complex, a region of the brain

hypothesised to generate respiratory rhythm (Gray et al. 1999). Agonists of MoR

and KOR have also been shown to cause a reduction in final motor outputs, by both

pre- and postsynaptic inhibition of the medullary inspiratory neural networks

(Takeda et al. 2001). Research in this field is currenrly focusing on rhe addition of
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new reagents (e.g. NMDA receptor antagonists) to diminish the side effect

respiratory depression that is encountered using opioid analgesics such

anaesthetic.

When an organism is faced with low levels of oxygen, hypoxia is the result.

Hypoxia causes hypothermia in most mammals due to excessive heat loss. The

opioid system is believed to be involved in adaptive responses that occur during

hypoxia to facilitate survival. Many experiments have been able to show a

significant increase of endogenous opioids in animal models of hypoxia (Gonzalez-

Guerrero et al. 1993, Kraczkowski and Semczuk 2000). Activation of DORs has

been demonstrated to protect cortical neurons from glutamate-induced injury during

hypoxia. Because glutamate mediates the hypoxic injury in neurons, it has been

suggested that DORs play a crucial role in neuroprotection during hypoxia (Zhang et

al.2002).

1.3 Important Sites in the CNS Supporting the Opioid System

The opioid receptors are spread throughout the entire CNS and many studies have

been undertaken to elucidate the precise location of the MOR, DOR and KOR splice

variants. Techniques such as immunohistochemistry, autoradiography,

microinjection mapping studies and in sirz hybridisation studies have been applied to

discrete brain regions, in order to identify sites and structures involved in the

biological effects of the ORs. These studies have revealed a number of sites that

appear to be very important for OR actions, such as analgesia, motivation and

reward.

of

AS
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Periaqueductal Groy and Rostral Ventromedial Medulla

The two most studied areas of the brain in relation to the opioid system and analgesia

are the periaqueductal gray (PAG) and the rostral ventromedial medulla (RVM)

(Mayer and Price 1976, Yaksh 1988). The PAG and RVM are the two main central

nociceptive modulatory networks, they receive input from the dorsal horn

nociceptive processes of the spinal cord and each area contains within it the neural

machinery to induce analgesia (Stein 1999). Only the RVM send substantial

descending projections to the dorsal hom. The PAG does not project to the dorsal

hom, instead its sends large projections to the RVM. Figure l.l represents a model

of descending nociceptive pathways.

Descending Pain Control Pathwavs

Figure 1.1 An overview of the role endogenous opioids and their receptors
play in nociception. The periaqueductal grey (PAG) and the nucleus raphe
magnus flocated within the rostral ventromedial medulla (RVM)I are depicted above.
Figure 1.1 shows the antinociceptive pathway going from an atferent dorsal root
ganglion neuron to the PAG and RVM of the brain. This image is courtesy of the
Roxane Pain Institute used with permission http://pain.roxane.com/sitemap.html
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ventrol regmentol Area, Nucreus Accumbens and prefrontal cortex

The ventral tegmental area (VTA), the nucleus accumbens and the prefrontal cortex

are three major structures thought to play an important role in reinforcement and

reward pathways (Koob and Bloom 1988). The VTA is connected to both the

nucleus accumbens and the prefrontal cortex and it sends information to these

structures (Figure 1.2) via its neurons. When neurons of the VTA are activated by a

stimulus, endogenous opioids are released in the nucleus accumbens and in the

prefrontal cortex (You et al. 1998, Zangenand Shalev 2003). It has been shown that

drug abuse causes a down-regulation of the inhibitory G-proteins (G;al and G;c2) in

the nucleus accumbens. Mcleman et al found,that these G-proteins were reduced by

32-49% in heroin and methamphetamine users (Mcleman et al. 2000). This selective

response suggests that the nucleus accumbens may also have a special role in drug

reinforcement and drug dependent states such as tolerance, which are likelv to be

related to the inhibition of Gia-linked receptor activity.

Figure 1.2 Schematic representation of the three major brain structures
involved in the reward pathway. The image shows a human brain that has been
cut in the sagittal plan. lmage courtesy of ruioR (http://www.nida.nih.eov/).
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Cerebellum and Inferior Olivary Nucleus (Inferior Olive)

The cerebellum is an integral part of the body's motor system because it regulates

posture' gait and voluntary movements. It coordinates the action of a series of

participating muscle groups in order to achieve a specific movement by sending

excitatory inputs to the cerebral cortex via the thalamus. The basal ganglia works

opposite to the cerebellum, sending inhibitory signals via the thalamus to the cerebral

cortex (Hendelman 1994). AII climbing fibres, which are motor afferents coming

from the spinal cord, must cross the midline of the inferior olive, before travelling

onto the cerebellum. The inferior olive is located laterul to the pyramidal tract on the

medulla and receives sensory and motor information, via numerous tracts (e.g. pAG),

about the movements the cerebellum has just performed. This information is

processed by the nuclear olive and sent back to the cerebellum via the inferior

cerebellar peduncle to inform the cerebellum how well the movement was performed

(Hendelman 1994).

Traditional opioid analgesics, such as morphine, exert their effects via MORs. The

discovery of MOR splice variants has enabled scientists to better understand the

complex pharmacology of mu opioid analgesics. The functional significance of the

unique regional distribution and pharmacology of the MOR splice variants is not yet

known' However, the differential expression of MOR splice variants in specific

tissues could be a mechanism of control, which may explain such events as

incomplete cross-tolerance.

l5



1.4.1 Pharmacological characterisation of MORs

ln 1964 several types of oRs were postulated after the observation that

did not antagonise different narcotic analgesics to the same degree

Weinstock I964,Yeatch et al. I96q.

nalorphine

(Cox and

Radiolabelled drugs were initially used to characterise these ORs (Goldsrein et al.

l97I). The first definitive studies to prove the existence of the postulated three types

of ORs (p, rc and 6) were based on the pharmacological actions of various opioid

alkaloids and their derivatives (Martin et al. 1976). Each type of oR exhibits

distinct yet overlapping ligand-binding properties and functional characteristics. for

example MoR and DoR bind enkephalins and endorphins, while KoR binds

dynorphins. The invention of opioid receptor-specific antagonists has aided the

pharmacological understanding of each recepror rype.

DAMGO (Tyr-D-Ala-Gly-MePhe-NH(CH2)2OH) (Kosterlitz and paterson lggl) is

a highly selective MoR ligand and studies have shown that it is the first extracellular

loop of the MoR that is critical for DAMGO binding (Sunatt et al. 1994. Onogi er

al' 1995) (Figure 1.0). MOR and DOR only differ in this region by seven amino acid

residues, yet DOR has a very low affinity for DAMGO (Ki = >1000 nM) (Satoh and

Minami 1995).

The DoR selecrive ligand is DpDpE ([D-pen2, D-pen5]-enkephalin) (Mosberg et al.

1983) and the KOR selective ligand is U-50,488 (trans-3,4-dichloro-N-methyl-N-[2-
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(1-pyrrolidinyl)cyclohexyll-benzeneacetamide (von Voigtlander et al. 1983). These

agonists have been used along with OR antagonists (e.g. naloxone and nalorphine) to

characterise the pharmacological properties of the oRs (Table 1.2). There is a

degree of cross-reactivity between the agonists and antagonists for all the ORs, due

to their high levels of homology.

Receptor
Type

MOR DOR KOR ORL{
Selective
Agonists

*DAMGO

xEndomorphin-1

xEndomorphin-2

XDADLE

*DPDPE

xJp_Ata2l_

deltorphin I

x1p-Ala2J_

deltorphin II

*DADLE

*u-50 488

*u-69 593

*Enadoline

*Dynorphin
(r-17)

xNociceptin/Orphanin

FQ

Selective
Antagonists

*Naloxone
*CTAP

*Naltrindole
xTIPP-y

*Norbinaltorphimine
*Naloxone

*JTC-801

Table 1.2 Opioid receptor
the highest selectivity for each

The possibility of multiple MORs was considered

(using J3H]-tabelled pr-ligands) displayed biphasic

and Pasternak 1981).

selective agonists and antagonists. Ligands with
receptor type are represented in bold type.

after radioligand binding assays

binding characteristics (Wolozin

Furthermore, several observations showed that analogues of morphine with

substitutions at position 6 [e.g. morphine-6p-glucuronide (M6G) and heroin] cause

potent antinociception in the p-receptor deficient CXBX strain of mice, which is
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insensitive to morphine. It was determined that the 6-substituted morphine

analogues do not act through DOR or KOR, as K- or D-receptor selective antagonists

do not block the antinociception (Rossi et al. 1996, Brown et al. 1997).

After the discovery of the mu opioid receptor gene (oprm) (Chen et al. 1993, wang

et al. 1993), MoR-l knockout mice were engineered by disrupting the oprm gene

in exon 1. Interestingly, M6G and heroin were still able to produce antinociception

in these mice, where morphine had no effect. It was therefore concluded that the

antinociceptive actions of M6G and heroin must be mediated through a MOR, which

was produced by alternative transcription of the Oprm, and differed from the MOR-I

gene product in the region ofexon l.

I.4.2 MOR Gene Structure and Sptice Variants

Early clinical and subsequent molecular studies supported the existence of two MoR

isoforms with differing pharmacological properties (Pasternak and Snyder 1975,

Pasternak et al. 1980a, b). Shortly after the croning of MoR-l cDNA (chen et ar.

1993, Wang et al. 1993), two groups reported that the 3'-end of exon 3 is involved in

alternative splicing. The structure of the Oprm gene was originally determined by

analysis of a genomic Pl phage clone and the putative promoter region was revealed

using RNase protection.

Because the ORs are members of the G-protein coupled receptor (GPCR) family, the

discovery that their genes were alternatively spliced did not come as a surprise, as
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alternative splicing has been observed for a number of other GpCRs, including

prostaglandin EP3 (Namba et al. 1993) and dopamine D2 (Guiramand er al. 1995).

PCR cloning and 5' rapid amplification of cDNA ends (5' RACE) were used to

identify previously unknown exons upstream from exon 1 (pan et al. 2001). There

are currently 14 known exons of the Opnn gene, spanning 250 kb and generating l5

MOR splice variants (Figure 1.3). Exons 11 and 12 are spliced onto the S'-terminus

of Oprm (Pan et al. 2001), and are therefore upstream of exon 1. Exons 13 and 14

are situated between exons I and 2 and, all splice variants contain exons 2 and 3

(Figure 1.3). MoR-l - MoR-lF all contain exon 1, MoR-lA lacks exon 4 and

MOR-18 is alternatively spliced to exon 5, instead of exon 4 as with MOR-I (Bare

et al. 1994, Zimprich er al. 1995).

In 2001 Pan et al. identifred a previously unknown promoter 10 kb upstream from

exon I that controls exon 11, meaning the three splice variants MoR-lH, MoR-lI

and MOR-IJ contain two potential translational start points (Figure 1.3). The exon I

stafr point generates three proteins that are indistinguishable from the original MOR-

I protein.

Therefore MOR-I can be generated from four different alternative splicing events of

Oprm, under the control of two distinct promoters (Pan et al. 2001). The splice

variants under the control of the exon ll promoter (MoR-lG - MoR-lN) are all

truncated proteins, but still show unique regional distribution throughout a rat brain.
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MOR-II
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Figure 1.3 schematic representation ot MoR-1 gene (oprml and spticevariants. A. Coding exons are represented by black bo-xes and b' ttant<ing regionsby blank boxes. The arows depict physically distinct promoters of op'rm. Theexons are numbered, in the order they were discovered (adapted trom (Fan et at.
39-01) B: Depicts the exon composition of all 1s MOR-! sptice varianis, the * in
MOR-11 depicts the transcription start site, as this rpii"" variant contains bothpromoters but is regulated by the promoter in exon 1.
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1.4.3 MOR Splice Variant Distribution

MOR splice variants are localised both pre- and post-synaptically but are expressed

almost exclusively on GABAergic interneurons (Ding et al. 1996 and are widely

distributed throughout the mammalian adult central and peripheral nervous systems

(CNS and PNS, respectively). Table 1.3 demonstrates the vast distribution of MOR

splice variants. This table was compiled from multiple sources and many different

localisation techniques, therefore is best used as a general guide to distribution

patterns.

Table _1.3 Comparison of M
central nervous system. These results have all been obtained using different
localisation techniques. NB. Currently there is no data about thd regional
distribution of MOR-1A and MOR-1F splice variants.

Splice
Variant

Region of Brain

MOR-I Perikaryaofmitralcellsanddistinctjuxtagtom-
median raphe nuclei and periaqueductal grey matter (pAG) (schulz ,t a. tols;. Brain stem,
hypothalamus and thalamus (Pan et al. 2001). Presubiculum and parasubiculum, amygdaloij
nuclei, hippocampal formation, thalamic nuclei, and nucleus ambiguous (Abbadie ei al.
2000a). Subcallosal streak in the striatum, medial habenular nucleis, medial terminal
nucleus of the accessory optic tract, interpeduncular nucleus, parabrachial nuclei, locus
coeruleus' nucleus of the solitary tract, and laminae I and II oi the medullary and spinal
dorsal horns (Ding et al. 1996).

MOR-IB Subcallosal streak in the striatum, media
accessory optic tract, interpeduncular nucleus, median raphe nucleus, parabrachial nuclei,
locus coeruleus, ambiguous nucleus, nucleus of the solitary tract, and iaminae I and II of the
medullary and spinal dorsal horns (Ding et al. 1996). External plexiform layer of the main
olfactory bulb localized to a dense plexus of dendrites mostly originating from mitral cells

. 1998).
MOR-IC Lateralparabrachialnucleus'theperiaqueductalgr

trigeminal nuclei and the spinal cord. Lateral septum, and most hypothalamic nuclei such as
the median eminence, periventricular, suprachiasmatic, supraoptic,-arcuate, paraventricular,
ventromedial, and dorsomedial nuclei (Abbadie et al. 2000a).

MOR-ID ucuuare gyrus ancl ln (ne mossy ilbres ot the hlppocampal formation, the nucleus of the
solitary tract and the area postrema, the inferiorolivary nucleus, the nucleus ambiguous, the
spinal trigeminal nucleus and the spinal cord (Abbadie et al. 2000b)

MOR E

PAG, spinal cord, hypothalamus and cortexTpan et al. 20oiiMOR-IG
MOR H Thalamus and striatum (Pan et at. ZOOn
MOR-1I Hypothalamus and sninal cord (Pan et aL 2O0t I
MOR-IJ
MOR- K PAG, spinal cord. hypothalamus (Pan 

"t 
,tfffCrr r

MOR- L Spinal cord ( Pan et al. 200 I )

MOR- M Spinal cord (Pan et al. 2001)
MOR- N Spinal cord (Pan er al. 2001).

21



32P-labellecl probes were generated by PCR to specific MOR exons and used in

northern blot analysis on total mRNA from mouse brain. This technique determined

the lengths ofthe transcripts encoding each new variant discovered (pan et al. L999,

Pan et al' 2001). Rudimentary experiments were initially used to examine the

general distribution of MOR splice variant mRNA. Experiments such as reverse-

transcription polymerase chain reaction (RT-PCR), were used on total RNA isolated

from different regions of mouse brain (pan et al. 1999, pan et al. 2001). using

primers designed from the sequences of MoR exons 3, 4, g and 11, it was possible to

obtain data relating to the general distribution of 13 MOR splice variants (pan et al.

1999, Pan et al. 2001).

Radioligand binding studies (Mansour et al. 1987). immunohistochemistry (Mansour

et al. 1995) and in situ hybidisation (ISH) (Mansour et al. 1994) techniques have

been used to analyse MOR splice variant protein and mRNA distribution throughout

the CNS and peripheral tissues. Comparing results obtained from these various

techniques, it has been noted that there is a good correlation between protein and

mRNA expression patterns, with only slight differences being observed. These

differences can be accounted for by the inherent advantages and disadvantages of

each technique, which are discussed in more detail in section 1.5.

A vast array of techniques has been

Radiolabelled drugs were initially used

after the discovery of the endogenous

used to detect and characterise the ORs.

to identify these hypothesised receptors and

opioids, radiolabelled bindine studies were
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used to elucidate the pharmacology and molecular biology of the ORs. Localisation

studies began shortly after the discovery of the ORs.

Northern blot analysis is commonly used to identify the presence of ORs and their

expression patterns in specific brain structures. This is one method that does not

involve ISH, but has been frequently used to determine MOR splice variant

distribution' Here total RNA is extracted from a specified brain region and a

complementary labelled probe is allowed to hybridise. Sizes and relative abundance

of mRNA transcripts can be determined by northern blot analysis. However the

relative abundance of a specific RNA does not normally represent the actual amount

of mRNA transcripts, as the probe is unable to distinguish between transcripts

destined for degradation or translation. Another disadvantage of northern blot

analysis is that specific morphological localisation data cannot be obtained, as total

RNA is extracted from brain regions and analysed, without the benefits of ISH.

ISH methods were developed due to the need to identify nucleic acid sequences

within morphologically preserved cells, chromosomes or tissue sections. ISH

techniques have been significantly refined since their introduction in the late 1960s

(Gall and Pardue 1969b, John et al. 1969). They now give investigarors rhe ability to

define which cells within a mixed population express the mRNA or contain the gene

of interest. ISH allows the relation of gene expression to the topology of the sample,

(e'g. expression patterns of MORs within brain tissue). The requirements for ISH are

adequate probe labelling and specificity, with ISH techniques mainly varying by the

type of label used (e.g. isotopic, non-isotopic fluorescent or non-fluorescent). ISH is

currently the technique of choice in a wide range of molecular biological fields, e.g.

23



cell-cell interactions, RNA/DNA viruses or cellular localisations of endogenous

receptors' due to the resolution of signal provided by the new probe labelling

molecules and the topological data one can receive using this technique.

L.5.1 Radiolabelled Binding studies and Autoradiography

In vitro studies used radioactive isotopes, such as 3H, to label OR-selective ligands in

order to confirm the existence of multiple ORs. -This method allowed the distribution

patterns of ORs in brain sections to be examined (Mansour et al. 1987), with

radiolabelled ligand procedures producing more pharmacologically relevant data

than ISH. Radiolabelled binding methods are not an in situ hybridisation (ISH)

technique, as the ligands do not complementarily hybridise to nucleic acid, rather this

technique exploits binding affinities of ligands to identify receptor distribution.

Therefore some topological data can be obtained, however there is an increased

probability of ligands binding non-specifically to other receptors, especially the other

opioid receptor subtypes, as they have such a high percentage ofsequence identity.

Autoradiographic ISH is a technique whereby a DNA or cRNA probe is used for

hybridisation and is labelled with a radioactive isotope. An advantage of

autoradiography is the possibility of quantitation by grain counting (Lewis et al.

1989). Radioactive labels have significant disadvantages, such as high cost, safety

considerations, poor probe stability (".g. "p has a very short half-life of 14 days),

long exposures being required (e.g. longer than I month), poor resolution due to

grain size and no double labelling being possible. However radiolabelled probes are

still frequently used because of their high sensitivity, which is necessary for detecting

low copy number mRNA transcripts. Autoradiography has largely been superseded
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by safer non-isotopic labelling methods, that use haptens such as biotin and

digoxigenin (DIG) to label DNA or RNA probes for ISH experiments.

A new technique called 'functional autoradiography' has been successfully combined

with other in vitro assays, like receptor autoradiography and in sira hybridization

histochemistry to localise ligand-binding sites. It is a novel method unifying the

advantages of receptor-autoradiography and 13ss1 GTpgammaS binding. Agonist

binding and subsequent G-protein coupled receptor activation are detected

simultaneously giving the exact location of the activated receptor (Sovago et al.

2001). This method still has the disadvantages associated with radioactivity.

1.5.2 fmmunohistochemistry

Immunohistochemistry (IHC) and immunocytochemistry (ICC) both utilise

antibodies to localise proteins. The only difference being that IHC localises proteins

in whole tissue sections (e.g. MOR distribution in specific brain structures), whereas

ICC pinpoints intracellular proteins (e.g. MORs at axon terminals) typically in

cultured cells.

The primary antibody can be directly labelled with an enzyme (such as horseradish

peroxidase, HRP), an isotope or a fluorophore (such as fluorescein isothiocyaniate,

FITC) or remain unlabelled, with detection via a labelled secondary antibody. If a

secondary antibody is used it must be generated against the immunoglobulins (IgGs)

of the primary antibody source. There are several different methods used to detect

bound antibodies, but the method of choice is mainly determined by whether the

antibody is labelled with an enzyme or a fluorophore. Labelled primary antibodies
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enable direct signal detection, whereas unlabelled primary antibodies require labelled

secondary antibodies and a signal amplification cascade. Therefore indirect signal

detection methods can create problems in the interpretation of results, as non-specific

signals are amplified and may give a high ratio of false positives.

Immunohistochemistry has, to date, provided the majority of data about the regional

distribution of the ORs and their splice variants. Many studies have examined the

differential distribution of MOR splice variants using antibodies directed to unique

amino acid sequences within each splice variant, typically the N- or C-terminus

(Mansour et al. 1995, Abbadie et al. 2000a). Advantages of immunohistochemistry

include the wide availability of reagents and equipment required (e.g. light

microscope) and the comparative rapidity of the procedure.

The MOR splice variant protein distribution results obtained using

immunohistochemistry are directly comparable to results obtained using

autoradiography, RT-PCR, ISH and FISH. One consideration is that the MOR splice

variant specific antibodies also bind degraded and inactive receptors, thus giving an

indication only of the total amount of MoR splice variant protein present. This

technique gives no indications about the specific activity of the receptors.

There are many disadvantages associated with immunohistochemistry. There is no

standard scoring system with which one can quantitatively compare results, even

when standard quantitative microscopy methods are used. There is no uniformly

accepted intensity threshold, so a scale involving the intensity of immunoreactivity

(e.g. high, moderate, low or negative) is typically used. The generation and
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purification of either monoclonal or polyclonal antibodies to the specific nrget

protein is time consuming and can be very expensive.

A major disadvantage is the specificity and cross-reactivity of the antisera used,

especially when trying to identify regional distribution patterns of MOR splice

variants, which have high levels of similarity at the amino acid level. Specific

antisera have been produced to MOR splice variants, however time consuming

assays (e'g. antisense treatment) must be performed in order to confirm their

specificity and selectivity, before they can be used to produce raw data.

1'5.3 Reverse Transcriptase-Polymerase chain Reaction (RT-PCR)

PCR was formulated to mimic the features of naturally occurring DNA replication

(Mullis and Faloona 1987) such as the use of DNA polymerases that synthesise new

complementary strands under the direction of two deoxyoligonucleotide primers.

These primers largely govern the specificity for PCR and their sequences flank the

DNA segment of interest. PCR involves the use of a thermostable DNA polymerase

in a thermal cycle of heating and cooling, which controls DNA strand dissociation,

hybridisation and replication.

Sensitive methods are required for the detection and analysis of low copy number

mRNA transcripts, therefore amplification of mRNA is sometimes necessary, which

is where the PCR methodology has been adapted to incorporate RNA. As RNA

itself cannot act as a template in PCR it is first reverse transcribed to cDNA, using a
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reverse transcriptase, and then PCR-amplified. These two procedures have been

united into one technique known as RT-pcR (Israeli et al. 1994).

RT-PCR has also been used to determine the distribution patterns of MOR splice

variants in rat brain (Zimprich et al. 1995) and lymphoid tissue (pampusch et al.

1998). Primers are designed to unique sequences within each splice variant and RT-

PCR is performed on isolated sections of total RNA (e.g. RNA isolated and extracted

from the frontal cortex or cerebellum etc). This technique is unable to provide

morphological localisation data and does not entirely represent the amount of mRNA

to be transcribed to the active protein.

RT-PCR has been used to identify variant mRNA isoforms of human KOR (hKOR)

and murine DoR (mDoR). The RT-pcR products generated from the KoR and

DoR mRNAs were of a larger size than was expected, thus prompting DNA

sequencing of the RT-PCR products, revealing new putative splice variants of hKOR

and mDOR (Gaveriaux-Ruff et al. 1997 t.

The main advantages of RT-PCR are the efficiency and speed with which one can

achieve results. Primers are designed specifically to the sequence of interest and are

thus very specific. RT-PCR is a sensitive technique that is capable of amplifying

rare and low frequency mRNA transcripts.

The major disadvantage of RT-PCR is non-specific amplification, which occurs as a

result of either mispriming or amplification from partially digested or undigested

genomic DNA (Komminoth et al. 1994). Modifications have been made to trv and
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overcome these problems, such as hot-start PCR and DNase pre-treatment of the

sample (Nuovo 1994) but these new applications have failed to completely overcome

the non-specific amplification produced by RT,pCR.

RT-PCR has been used to identify mRNA distribution patterns in situ, where RT-

PCR is performed followed by a separate ISH step (Ertsey and Scavo 1998), which

has the disadvantage of being extremely time consuming.

More recently a direct in situ RT-PCR (IS-RT-PCR) method has been described with

an enhanced sensitivity, which boasts all the benefits of RT-pCR with new methods

to overcome the disadvantages (Kher and Bacallao 2001). By using fluorescently

labelled primers in the in situ PCR mix one is able to directly detect the cellular

localisation of the mRNA of interest, thus eliminating the lengthy ISH step. A

specific restriction enzyme (designed to cut genomic DNA and not primer sequencei

is used in conjunction with the DNase digestion step before RT-PCR to reduce the

amount of non-specific amplification. One disadvantage of this technique has been

the inefficiency of signal amplification and therefore low level mRNA detection

(Mee et al.1997.

1.5.4 Fluoresc ent in sitz Hybridisation (FISH)

In situ hybridisations were initially performed using radioactive labelled probes and

therefore autoradiography to detect the localisation of the hybrids. The transition to

using fluorescently labelled probes has vastly increased the variety of applications of

ISH technology' The use of these fluorescently labelled probes for in situ

hybridisation is termed FISH. The use of FISH is growing rapidly in genomics,
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cytogenetlcs, gene mapping and biomedical research. This technique has major

advantages over the aforementioned methods, including increased spatial resolution,

reduced turn around time for results, and the capability of simultaneous detection of

multiple transcripts using differentially labelled probes. To date there are no

publications reporting the use of FISH to determine the distribution patterns of the

MOR splice variants. FISH was the main technique used in the present study and is

therefore covered in more detail in Chapter 3.

1.6 Aims of Thesis

The initial aim of the present study was to exploit the robustness and specificity of

circularisable ligation probes (CLiPs) in a unique approach of in situ genotyping the

MOR splice variants (refer Chapter 2). CLiPs were designed to target the exon

boundaries of MOR splice variants. They were labelled with the fluorophore

Fluorescein-duTP (F-dUTP) in order to enable direct visualisation of the

morphological localisation of MOR splice variants in rat brain, using ISH.

Ultimately it was hoped that CLiPs would be able ro be utilised for genoryping MOR

splice variant mRNA in situ.

However, CLiPs were moved away from in this project due to time restraints and

inherent limitations (discussed in Chapter 2). A more conventional technique

fluorescent in situ hybridisation (FISH) was used to analyse MOR splice variant

distribution, as FISH was an established technique in the laboratory. The use of

FISH to determine MOR splice variant distribution, not only set up an alternative

experimental approach, but also enabled one to test whether the levels of MOR

mRNA were sufficient for visualisation. If FISH was successful and the
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hybridisation conditions for short labelled-riboprobes could be elucidated, then it was

considered feasible for CLiPs to be able to hybridise and Iigate to MOR splice

variants in situ.

Therefore the aim became to produce RNA probes (riboprobes) approximately the

same size as the target specific region of clips (-60-70 nt) to analyse the

distribution patterns of MOR splice variants in rat brain. Four short (-70-95 nt)

riboprobes were generated to exons r, j,4 and 9, and the 5' urR + exon I of the

Rattus norvegicus Oprm gene. The short length of each riboprobe represented a

unique parameter for this project and is discussed in detail in Chapter 3. The

riboprobes were directly labelled with fluorescent-NTPs to allow for the direct

visualisation of MOR splice variants in rat brain tissue sections using FISH.
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Chapter 2

2.0Introduction

Circularisable Ligation Probes (CLiPs), also known as Padlock probes (Wu and

Wallace 1989, Nilsson etal.l994,Nilsson etal.1997,Baner et al. 1998) or C-probes

(Zhmg et al. 1998a) are single-shanded oligodeoxyribonucleotides (oligos) that

contain target specific regions of 15-30 nucleotides (nQ at both ends, separated by a

non-homologous linker region of >50 nts. Once a CLiP is bound to its target, the 5,

and 3' ends are juxtaposed forming a nick that may be ligated by the action of DNA

ligase, causing the cLiP to become topologically locked (Figure 2.0).

Non-homologous
linker region

.<- Flubrescently
labelled dNTPs

Region of CLiP complementrry
Terget DNA strand

Ligation junctionto target strand

Figurc 2.0 Schematic rcprcsentation of CL|P structurp hybridised and ready
lor.ligation (adapted ftom Landegren ef a/. 1996). Due to the helical nature of DM
CLiPs are wound arou.nd the target strand causing them to be topologically locked to
their target via catenation. The inoorporation of fluorescently latiettei Ottips allows
for direct visualisation.

Circularisable Lisation Probes (Cl,ips\

32



Traditionally CLiP production has been achieved using chemical synthesis

techniques. One of the many limitations of chemical synthesis is the difficulty faced

in generating CLiPs of >l00nts. This is due to the proportion of incorrect

nucleotides incorporated with increasing length. Recently a PCR-based approach has

been utilised for enzymatic CLiP synthesis (Myer and Day 2001).

ln 1994 Newton et al. showed that any short sequence of DNA could be incorporated

into a PCR product by the addition of this sequence as a 'tail' to the 5' end of a

primer. As the additional sequence has little effect on specificity or effrciency of

hybridisation, it is merely incorporated into the product and amplified by PCR

(Newton and Graham 1994). This technique has been exploited in cloning

technologies, whereby a primer is tailed with restriction endonuclease sites to allow

for digestion, producing 'sticky ends' which increase the effrciency of cloning

(Scharfet al. 1986).

CLiPs were produced in this project using enzymatic CLiP synthesis, whereby the

primers used contained a 5' tail complementary to the target gene (Figure 2.1).

Sequence complementary
to MOR-I target

Figure 2.1 Schematic representation of the primer structure designed for
GLiP synthesis. The 5' end of the primer (grey) is complementary to the MOR-I
target sequence while the 3' end (black) is complementary to the non-homologous
pBSSK DNA used to form the linker region. During PCR the 5'target sequence is
incorporated into the PCR products.
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The primer itself (i.e. minus the tail) amplifies off a non-homologous template to

form the linker region of the CLiP. The frst round PCR results in a product that

contains both the primer sequence and the sequence of the 5' 'tail' (Figure 2.2).

t'\---*

-

>1.
\\
\; r.

cloning site (MCS) of I pitrt round pCR - 5'

A.

B.

Multiple
plasmid amplification producing a

ds CLiP template

Figure 2.2 Schematic representation of ds GLIP template synthesis. A"
Primers containing the 5' MOR-1 target sequence tail are used to ampliff off a
linearised plasmid generating the non-homologous region of the CL|P. B. The
resulting product incorporates both primers and their complementary sequences
(represented by dashed orange line).

This product (hereafter referred to as ds CLiP template) is purified and used in the

second round CliP-forming PCR. CLiPs require a 5' phosphorylated end at the nick

junction in order for ligation to occur, this is achieved by phosphorylation of the

forward primer that is used in second round PCR.

In this project ss CLiPs were captured from the second round PCR product using

streptavidin-coated paramagnetic beads (SA-beads). Atrnity capture using SA-

beads requires the addition of a biotin molecule to one strand of the PCR product.

This was achieved by 5' biotinylation of the revene primer, which was used in
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second round PCR. After PCR amplification the resultant products contained both a

'top' S'phosphorylated sfrand and a 'bottom' 5' biotinylated stand hereafter this

product is referred to as a ds CLip @igure 2.3).

^L

The ds CLiP is immobilised on SA-beads
via the S'-biotin and the complementary
strand is released by alkali elution.

Figure 2.3 Schematic reprcsentations of en4matic CL|P synthesis and ss
cLiP purilication Tlng_{fility capture. A. Two primers are us6d to amplify a ds
C-LiP templatg by PCR. The 5' phosphorylated (P) f6rward primer defines the b' end
of the ss CL|P. The reverce primer is 5' biotipylated (B) for afrnity capture. B. The
!s PCR product is labelled with F-dUTPs (f), this prbdua is immobilised on SA-
beads via the S'-biotin. C. The complementary strand forming the ss CLip is
released by denaturation with NaOH.

Exponential amplification of ds
cLiP by PCR with F-duTPs

SA-beads
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The second round PCR is performed in the presence of fluorophore-labelled dNTPs.

Fluorescein-modified dUTP (F-dUTP) was used in this experiment, as this

fluorophore is capable of being directly detected by an automated DNA sequencer

and a fluorescent microscope using the correct filter set.

CLiPs are typically 70-100 nt in length and are therefore expensive to produce using

chemical synthesis. Producing larger (>100 nt) CLiPs using chemical synthesis

results in the production of many truncated sequences, which are difficult to purify

from the full-length oligonucleotides (Antson et al. 2000).

The method af enzymatic CLiP synthesis used in this project has several advantages

over chemical synthesis. CLiPs larger than 100 nt can be enzymatically synthesised

with the well-defined 5' and 3' ends needed for ligation (Myer and Day 2001).

Enzymatic CLiP synthesis also allows for the construction of more densely labelled

CLiPs at a greatly reduced cost to its chemical counterpart.

Biologically, DNA ligases play an important role in DNA replication, repair and

recombination in both prokaryotes and eukaryotes. There are two classes of DNA

ligases: NAD*-dependent DNA ligases (found in bacteria), and ATP-dependent

ligases (found in eukaryotes, viruses and bacteriophages). Early studies showed that

two adjacent synthetic oligos could be joined by the action of a DNA ligase, if

guided by a complementary sequence (Wu and Wallace 1989).
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DNA ligation is strongly inhibited by single bp mismatches at either side of the

ligation junction (Wu and Wallace 1989) and due to DNA ligases' requirement for

perfect hybridisation, CLiPs are able to distinguish target sequence variants, such as

single nucleotide polymorphisms (SNPs). SNPs are the most widely distributed

genetic markers in the human genome; a polymorphism is defined as a variation of

the minor allele at greater than ZVo in any given population

(http://www. stats.ox.ac.uk).

In this project ligation was performed using the NAD--dependent thermostable

Thermus thermophilus (Tth) DNA ligase. The mechanism of T/1, DNA ligation

occurs in three steps: adenylation of the DNA ligase in the presence of NAD*,

transfer of the adenylate moiety to the 5'-phosphate of the nicked DNA strand, and

attack on the adenylate-DNA bond by the 3'OH of the nicked DNA, sealing the

phosphate backbone by the formation of a phosphodiester bond (Luo and Barany

L996). Interestingly, experiments have shown that the error of mismatch ligation

increases when the mismatch occurs at the 3' side of the ligation junction (Wu and

Wallace 1989, Luo et al. 1996), this factor was taken into account when designing

the CLiPs used in this project.

CLiPs become circularised once they hybridise to their target and if there are no

mismatches at the nick junction, CLiPs become topologically "locked" to their target

by catenation after ligation.
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The in situ application of CLiPs provides many unique advantages over other

localisation techniques currently used (e.g. IHC and FISH). Common problems with

these techniques are probe specificity and high signal to noise ratios.

CLiPs have the unique advantage of being topologically locked to their targets,

enabling high stringency denaturing washes and exonuclease digestions to be

applied, lowering the signal to noise ratio. Exonuclease digestion does not remove

ligated CLiPs as they are circularised leaving no free 5' and 3' ends for the

exonuclease to digest.

Several other methods are currently used for SNP detection, for example Allele

Specific PCR (ASPCR) (Wu et al. 1989) and Ligation Detection Reactions (LDRs)

(Barany 1991). CLiPs can be used to genotype SNPs and the requirement for both

hybridisation and ligation gives better discrimination of alleles over such techniques

as ASPCR. CLiPs can also be utilised for highly multiplex in situ analyses of total

genomic DNA or RNA molecules (Landegren and Nilsson lggi).

2.1 Experimental Design

The aim of this experiment was to design CLiPs to target exon 1 and2 boundaries of

MOR splice variants (Appendix C, Figure C5). These CLiPs were labelled with the

fluorophore F-dUTP in order to enable direct visualisation of the morphological

Iocalisation of the MOR splice variant MOR-1 in rat brain, using ISH.

After CLiP production several intermediate experiments were performed, to aid the

success of ISH and ligation using CLiPs. Firstly, the CLiPs were ligated in solution
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with a PCR produced MOR-I template. CLiPs are ss DNA sequences that ligate

more efficiently to DNA than mRNA. Therefore the MOR-I mRNA was to be

reverse transcribed to cDNA, to determine whether short (CliP-length) DNA probes

designed to MOR-I could hybridise in situ. Yet reverse transcription of the MOR-I

mRNA required increased tissue permeability by proteinase K digestion, resulting in

degradation of tissue morphology. consequently, short DNA probes were to be

designed directly to MOR-I mRNA.

However, because RNA/RNA hybrids are more stable than DNA/RNA hybrids and

FISH using riboprobes was an established technique in the laboratory, short

fluorescently labelled riboprobes were designed to MOR splice variant sequences to

subsrirute CLiPs.

The use of FISH to determine MOR splice variant distribution, not only set up an

alternative experimental approach, but also enabled one to test whether the levels of

MOR mRNA were sufficient for visualisation. If FISH was successful and the

hybridisation conditions for short labelled-riboprobes could be elucidated, then it was

considered feasible for CLiPs to be able to hybridise and ligate to MOR splice

variants in situ. Figure 2.4 represents an overview of the experimental design.

Ultimately it was hoped that CLiPs would be able to be utilised for genotyping MOR

splice variant mRNA in situ. However, due to time restraints and the inherenr

limitations of using CLiPs, the more conventional method of FISH was chosen to

analyse MOR splice variant distribution.
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Experimental CLiP Design

Figure 2.4 Flowchart depicting experimental design of labelled ss CLips and
the eventual progression to FISH using smalt riboprobes. Red bars illustrate
where experiment was halted due to time cpnstraint.

Enzymatic CL iP Synthesis

Asymmetric PCR Affinity capture using sfieptavidin-
coated paramagnetic beads (SA-beads)

Ligation of CLiPs in solution

In situ reverse hanscription of MOR
mRNA to cDNA in rat brain tissue
sections

Synthesise small riboprobes
designed to MOR splice
variants

Use small riboprobes in FISH

Elucidate FISH hybridisation
conditions for small riboprobes

In situ hybridisation and ligation of
MOR splice variant specific Clips

Use these conditions to
hybridise and ligate CLiPs

A. Primary Aim

Intermediate Experiments



2.2 CLiP Desien

This section presents the design of a CLiP complementary to the Rattus norvegicus

MOR-I splice variant cDNA using two PCR-based methods of ss CLiP synthesis. In

designing these CLiPs many factors had to be taken into account. The most critical

parameter for successful CLiP synthesis was the design of the primers used to

generate CLiPs by the PCR-based method. Several variables were taken into account

for primer design, these were: primer length, melting temperature (Tr), 3,-end

sequence, GC content and secondary structure formation.

In general oligonucleotides between 18 and 24 bases are extremely sequence

specific, provided that the annealing temperature is optimal. The primers used in the

cliP-forming (second round) pCR were both 23 bases in leneth.

The goal annealing temperature in primer design should be at least 50'C, as reduced

T* generally results in extremely low efficiency, increasing the event of mispriming.

In this study the MoR.Fwd primer had a Tn of 6g.3"C, and the MoR.Rev primer had

a T. of 69.1"C.

It is well established that the 3' terminal position in PCR primers controls the extent

of mispriming experienced during pcR (Kwok et al. 1990). Therefore, 3'-end

specificity plays an important role in PCR success. In this project it was essential

that the 3'-end nucleic acid of the primer was not an adenosine (A), as this would

have resulted in the incorporation of a fluorescein-labelled dUTp. F-dUTp is large

in size, therefore if it were incorporated on the 3'-end of the CLip it would have

resulted in a large decrease in ligation efficiency due to steric hindrance.
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The recommended base composition of primers is 45o/o-50o/o GC, and a GC content

of >50%o typically results in the formation of stable secondary structures.

Additionally a GC content of - S|o/oputs the T, in an optimal range of around 56'C-

62"C @ieffenbach et al. 1995). In this study the GC content was 50% allowing for

50% AT content, which is sufiicient for a significant proportion of the final pCR

product (CLiP) to be fluorescently labelled for visualisation. For ease of analysis the

forward and reverse primer sequences were combined to form a 46-mer and analysed

for T. and GC composition. Figure 2.5 summarises the parameters used in CLip

design. The target region of MOR-I was chosen for two main reasons, firstly the GC

composition was 50o/o and secondly the sequence lies across the boundary of exons I

and2 (see Appendix C formRNA sequence of MOR-I).

A.
MOR-f target sequence: r
5' AAATCGTCAACGTCTGCAACTGqATCCTCTCTTCTGCCATCGGTCT 3'

9om_plementary CliP sequence: ILR.TTTAGCAGTTGCAGACGTTGACC 51 8'TAGGAGAGAAGACGGTAGCCAGA.LR

B.
Base Number and Percenttee e/ol

A 14 (30.4)
C 8 07.4)
G rs (32.6)
T 9 (19.6)

A+T 23 (50.0)
G+C 23 (50.0)

C.
Ta :93.3"C (nearest neighbour method)
T, :87.3"C (%GC method)

ligyre _2.5 Al lysis of GLip taryet sequence to region of MoR-l gene. A.
Depicts the MOR-1 sequence and the complementary C[iP sequence. Ti'e vertical
bar shows where the two ends of the CL|P meet to form the nick junction. LR =linker region. B. This table shows the base composition data of th-e MOR-1 CLip,
including the %GC. G. Represents the two optimal temperatures produced by two
varying methods. The computer software programme OLIGOG (Mobcular Bfulogy
Insights, Inc.) generated data from B and C.
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As the CLiP target gene was mammalian (eukaryotic) in origin (rat Oprm) the first

round PCR primers (containing the 5' MOR-I target sequence tail) amplified off a

Iinearised plasmid (prokaryotic), to form the non-homologous linker region of the

CLiP (Figure 2.2)' The length of the linker region was varied generating two

different sized CLiPs (139nt and352 nt); this was achieved by the use of different

forward primers. The linker region sequence of each different sized CLip was

analysed for GC content and stable secondary structures (e.g. hairpin formation), to

increase the specificity of the clips for the MoR-1 target template.

For experiments requiring DNA:DNA hybridisation ss probes are more efficient than

ds probes as in solution, probes with complementary sequences (ds probes) are

capable of reannealing to themselves. This phenomenon is thermodynamically more

favourable than the hybridisation of a CLiP to its target, as the majority of a CLip

(the non-homologous linker region) shares little sequence homology with the target.

Therefore attempts to synthesise ss CLiPs were made using primer extension and

affinity capture techniques.

2.3.1Primer Extension

Primer extension reactions are the basis of numerous DNA sequencing protocols

(Gyllensten and Erlich 1983) and ss probe synthesis techniques (Liu et al. 19g6,

Konat 1996, Millican and Bird 1997). Primer extension is almost identical to a

standard PCR, except the primers are not present in equimolar amounts, the presence

of essentially one primer generates the PCR product in a linear rather than

exponential fashion.
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The template used for the second round primer extension PCR is depicted in Figure

2.2,8. In the primer extension PCR a 100:l molar ratio of the forward: reverse

primer was used, which resulted predominantly in the amplification of the CLiP

forming top sfrand (Figure 2.6). The small molar amount of the reverse primer was

achieved by dilution of the template and therefore carryover into the primer

extension reaction. The phosphorylated forward primer (MOR.Bl.Fwd, refer Table

2.0) hybridised to the template and extension was achieved using a DNA polymerase

and thermal cycling (Figure 2.6).

<-

Figure 2.6 Schematic representation of primer extension. Large arrow depicts
the molar excess of the phosphorylated (P) forward primer and the small arrow
depicts the carry-over of reverse primer with the template from first round PCR. The
solid and dashed orange lines depict incorporation of the MOR-1 target sequen@
and its complementary sequence respectively.

The amount of PCR product produced by primer extension is reliant mainly on the

number of cycles and the amount of template used. Ss CLiPs were generated using

35 thermal cycles and approximately 4 ng of the CLiP template (refer Experimental

Procedures). The approximate final yield per reaction was 50 ng (l n/pl). While

ss CLiPs were successfully produced by this method, ligation attempts in solution

were unsuccessful. This experiment was run briefly and in conjunction with the

more successful affrnity capture technique.
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2.3.2 Affinity Capture

Affinity capture is a technique frequently used for the production of ss DNA, which

can be used in DNA sequencing (Hultman et al. 19g9). This method typically

exploits the strong interactions between streptavidin and biotin (Chaiet and Wolf

1964). Streptavidin is a biotin-binding protein found in the culture broth of

Streptomyces avidinii. Streptavidin binds 4 molecules of biotin per tetrameric

protein molecule wirh extremely high affinity (Kd-10 t5).

In this project, the reverse primer used in second round PCR was biotinylated. pCR

amplification using the biotinylated reverse primer resulted in a ds pCR product (ds

CLiP) with one strand end-labelled with biotin (Figure 2.3). Purification of this

product was necessary prior to affinity capture with the streptavidin-coated

paramagnetic beads (SA-beads), as an excess of unincorporated biotin-labelled

primers increases SA-bead saturation.

The ds CLiPs were purified by gel excision after agarose gel electrophoresis, to

remove the unincorporated primers as well as other spurious bands. The ds CLip

product of correct size was gel excised and solubilised with the oxidising agenr

sodium perchlorate and added directly into washed SA-beads (refer Experimental

Procedures, Section 4.4.1). The purified ds CLiPs were immobilised using SA-beads

via the 5'-biotin and the complementary strand (ss CLiP) was released by alkali

elution (Figure 2.3),
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2.4 Lieation of CLiP

Ligation of MOR-I specific CLiPs

MOR-I target template in solution.

the MOR-1 gene generated by PCR

was achieved by hybridisation and ligation to a

This target template was a 794 bp fragment of

(refer Experimental Procedures).

CLiP ligation was achieved by thermal cycling with 40 Units of ftft DNA ligase,

where each ligation reaction contained approximately 8 ng of the labelled CLiP and

0.5 pmol of the MOR-1 target.

The ligation reactions were analysed using 4Vo polyacrylamide gel electrophoresis

(PAGE) on an ABI PRISM@ 377 DNA Sequencer using GeneScan@ Analysis

Software. Ligated products were differentiated from linear unligated probes due to

the altered mobilitv of circularised CLiPs.

2.5 Results and Discussion

Generation and ligation of ss CLiPs using primer extension

Primer extension reactions were used to produce ss CLiPs. Figure 2.7 shows 2 bands

representing the ds CLiP templates used in the primer extension reactions. The two

ds CLiP templates are shown in Figure 2.J,lane 1 (139 bp) and lane2 (352 bp).

An approximate final yield per reaction tube was l-2 1tg (20-40 ng/pL); the amount

of PCR product was estimated from a known standard using agarose gel

electrophoresis (Figur e 2.7 ).
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Figure 2.7 Synthesis of ds GL|P template. Varying forward primers were used to
generate different size linker regions with the same MOR-1 target sequence on both
products. 1. Shows the ds CL|P product that is 139 bp in size. 2. Shows the ds
CL|P product that is 352 bp in size. Faint lower band is unincorporated primers.
1kb+ ladder (lnvitrogeflrM rrfe technorog,"") was included alongside samples to allow size
determination and product yield estimation. Amplifications were performed as
detailed in Chapter 4, Experimental Procedures. Analysis of products was
performed by agarose gel electrophoresis using a 2.5o/o aedrose gel. Visualisation
was achieved using a UV transilluminator after staining the product with 320 ng/ml
ethidium bromide (Chapter 4, Experimental Procedures).

PCR products generated from first round PCR (Figurc 2.7) were purified by gel

extraction (refer Experimental Procedures). The approximate yield of each purified

PCR product was 500 ng (10 ng/pl-); these products were used as template for ss

CLiP synthesis by primer extension.

Primer extension PCRs were set up using two different concentrations of the

phosphorylated forward primer (200 nM and 400 nM) to determine if various

concentrations could produce more ss CLiPs (Figure 2.8).
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product
products

Figure 2.8 Synthesis of ss CLiPs using primer extension PCR. Primer
extension was carried out using -10 ng of the correct purified ds CL|P template (i.e.
ds CL|P 139 bp or ds CL|P 352 bp) and varying concentrations of the forward
primer. 1. 200 nM MOR.B1 .Fwd + ds CL|P template 139. 2. 200 nM MOR.B1 .Fwd
+ ds CLiP template 352. 3. 400 nM MOR.BI.Fwd + ds CL|P template 139. 4. 400
nM MOR.BI.Fwd + ds CLiP template 352. 1kb+ ladder (lnvitrogenrMriretechnorosl"") was
included in the far left lane to allow size determination in bp. Amplifications were
performed as detailed in Chapter 4. Analysis of PCR products was performed by
agarose gel electrophoresis using a 2.5"/o agarose gel. Visualisation was achieved
using a UV transilluminator after staining the product with 320 ng/mL ethidium
bromide (Chapter 4, Experimental Procedures).

Figure 2.8 shows the production of two bands following primer extension and that

varying the forward primer concentrations had little effect on the amount of product

produced. It was determined that the smallest bands were the ss CLiP products of

interest, as ss DNA is smaller (e.g. 139 nts instead of 139 bp). The largest bands

however could have been a number of different products. It is most likely that these

bands were the template used in the primer extension reactions, however the largest

bands could have been new ds CLiP products caused by a large carryover of the reverse

primer with the template. This is unlikely as the template (shown in Figure 2.7) was gel

excised, in order to rid the template of unincorporated primers and dNTPs (seen as faint

bands at the bottom of the gel,Figure 2.7).

An experiment was set up to determine the origin of the top band. Assuming it was

calryover of the template, the PCR was set up with and without the DNA polymerase
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Platinum@ Iaq. This PCR experiment also investigated varying the amounts of dNTps

(using either 50 prM or 200 pM dNTPs in each PCR) to investigare whether altering the

amount of nucleotides would increase the amount of ss CLiP produced (Figure 2.9).

Lane

1.
)
3.
4.
5.
6.

+P.Taq,SO pM dNTPs
+P.Taq,SO pM dNTPs
-P.Taq,50 pM dNTPs
-P.Taq,50 pM dNTPs
+P.Taq,200 pM dNTPs
-P.Taq,200 pM dNTPs

Figure 2.9 Optimising Primer extension PCR. This involved the presence (+) or
absence (-) of Platinums/ Iag (P.Taq) DNA polymerase and varying amounts of dNTps
(see text box). Lanes 1 and 3 represent the smaller 139 nt Cliit anO lanes 2,4,5 and 6
representthe larger 352 nt CLiP. 1kb+ ladder (lnvitrogeflrMri,"rechnorosies) was included in
the far left lane to allow size determination in bp. 

-Anatyiis 
oi i;Cn products was

performed by agarose gel electrophoresis using a 2.57o agarose gel. Visualisation was
achieved using a UV transilluminator after staining the product with 320 ng/ml ethidium
bromide (refer Experimental procedures).

The primer extension PCRs set up without pratinum@ Taq (Figure 2.9,lanes 3, 4 and

6) reveal the presence of a single band, that corresponds in size and amount to that of

the original template added (10 ng of purified ds cl-ip template). The primer

extension PCRs set up with Platinum@ Taq (Figure 2.9, lanes 1,2 and 5) reveal the

presence of two bands. Comparison of these two experiments led to the conclusion

that the bottom most band was the expected ss CLiPs. As there appeared to be no

real difference in the amount of ss cl-ip produced using either 50 pM or 200 pM

dNTPs, the lesser amount of 50 pM was used in all following primer extension

PCRs.
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As the primer extension PCR succeeded in producing ss CLiPs, the experiment was

repeated with the incorporation of the fluorophore F-dUTP to enable direct

visualisation of the ss CLiPs (Figure z.I0). A labelling ratio of l:10 F-

dUTPs:dTTPs was used in the primer extension PCR, as this had previously been

determined as a labelling ratio that provided sufficient sensitivity and produced a

high yield of labelled PCR producrs (Myer 2001).

The primer extension reaction for the larger 352 nt CLiP produced more product

than the 139 nt CLiP, and as the ss 352 nt CLiP was easier to distinguish on a 2.5 7o

agarose gel (Figure 2.9 Lanes 2 and 5) the labelled primer extension PCR reactions

were set up solely for the 352 nt CLip (Figure 2.10).

Figure 2.10 shows one product at the size expected for the ds CLip template (352

bps), however upon gel inspection using a UV transilluminator, a faint green band

could be seen running at the same size as the band visible in Figure 2.10. This

represents the successful production of labelled ss CLiPs. The incorporation of large

F-dUTPs results in the ss CLiPs appearing green under UV luminescence and

running at a much larger size than would be expected (Figure 2.10).
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Figure 2.10 Labelled primer extension PCR, producing F-dUTp tabeiled ss
CLiPs. 1- The product generated is estimated io be 352 bp in size [estimation
made using the 1Kb+ ladder (lnvitrogeot, rir" technorosies) loaded in the far left tane of
the gell. The lower bright band represents unincorpoiated F-dUTps. Amplifications
were performed as detailed in Chapter 4, Experimental Procedures. Analysis of
PCR products was performed by agarose gel electrophoresis using a 25% agarosegel' Visualisation was achieved using a UV transilluminator Jfter stainiig the
product with 320 ng/mL ethidium bromide (refer Experimental procedures).

The ss CLiPs produced by primer extension (above) were purified by gel excision

and used in a ligation reaction in solution (refer Experimental Procedures). The

ligation reactions were analysed on an ABI PRISM@ 377 DNA sequencer using

GeneScan@ Analysis Software. Ligated products were differentiated from linear

unligated probes due to the altered mobility of circularised clips.

Unfortunately the ss CLiPs produced in this project using primer extension pCR,

were never successfully ligated to the MOR-I target template in solution. By

analysing the GeneScan* Chromatograms it was possible to see a peak only at 352

nt, representing the linear unligated CLiP. As ligated Clips show retarded mobility

when analysed by denaturing PAGE, they are easily differentiated from unligated
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CLiPs (Nilsson et al. 1994, Kwiatkowski et al. 1996). When CLiPs were produced

using primer extension PCR, two peaks were not visible on the Genescan@

chromatograms.

This led to the conclusion that the CLiPs produced by primer extension were unable

to ligate to their target template. One possible explanation is that the Platinum@ Iaq

DNA polymerase (used during the first round ds CLiP template PCR) caused the

addition of non-templated nucleotides and therefore the alteration of the rarser

specific sequence of the CLiPs. It is more likely that the forward primer became

dephosphorylated, causing the Tth ligase to be unable to ligate the nick junction,

preventing CLiP circularisation and ligation.

Generation and ligation of ss CLips using afftnity capture

Affinity capture was used to produce ss CLiPs, as this approach had been successful

in our laboratory in the past (Myer and Day z00l). Again 139 bp and35z bp ds

CLiPs were produced, shown in Figure 2.Il in Lanes I and 2, respectively (refer

Experimental Procedures).

The ds CLiP PCR was set up without labelled F-dUTPs first, to ensure the pCR

conditions produced at least 20-50 ng of ds CLiPs. This PCR was repeated including

F-dUTPs (with a labelling ratio of l:10 F-dUTPs:dTTPs) to produce labelled ds

CLiPs (Figure 2.ll).
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Figure 2.11 second round pcR producing tabelted ds cLips.
A. PCR-generated J\4oR-1 target template. 1kb+ ladder (lnvitrogeflrM rif" technorosies)
was included in the far left lane to allow size determination in bp. 1. Smlii ta0"bi;
labelled ds CLiP. L. .Lgqer 352 bp labelled ds CLIP. Both ds CLiP products 'gtow'
brightly due to F.'q[/TP incorporation. The lower bright band represents
unincorporated F-dUTPs, Amplifications were performed as 

-detailed 
in Chapter 4,

Experimental Procedures_. Analysis of PCR products was performed by agarose gel
electrophoresis using a ?.?% agarose gel. Visualisation was achieveO u6ing a UV
transilluminator after staining the product with 320 ng/ml ethidium bromid; (refer
Experimental Procedures).

The ds CLiP products shown in Figure 2.I1 were purified to remove excess

unincorporated primers and dNTPs. PCR product purification was achieved by

either gel excision or PCR purification, depending on what the purified products

were to be used for (refer Experimental Procedures). Gel excision was the method

commonly used. The band of the correct size was excised from the agarose gel, and

solubilised using sodium perchlorate, then the ds CLiP was bound to SA-beads to

trap the product. The SA-beads initially failed to capture the ds CLip product, as no

ss CLiP could be recovered by NaOH elution. One possible reason the SA-beads

failed to capture the biotinylated strand could have been potential SA-bead

contamination with a biotin-containing substance, blocking the available binding

sites.

53



New SA beads were bought and used in parallel experiments with the old SA beads,

to deduce if the old SA beads being used were no longer suitable (i.e. contaminated).

Previous experiments showed that agarose gel solubilisation with the oxidising agent

sodium perchlorate was preferential over other purification techniques such as

phenol/chloroform extractions, as the ss CLiPs could be captured directly from the

solubilised mixture, saving time (Myer 2001).

As no ss CLiPs were being eluted, supernatants from the affinity capture were run on

an agarose gel to determine where the ds CLiPs were being lost (refer Experimental

Procedures). This required a different purification technique as gel excision and

solubilisation results in high levels of sodium perchlorate being present in the

supernatants, making the sample unable to be examined by agarose gel

electrophoresis, because the presence of sodium perchlorate in the supernatant

solubilises the gel. Therefore the ds CLiPs were purified using a pCR purification

kit (refer Experimental Procedures). The supernatants and eluate were run on aZ.5Vo

agarose gel, this revealed that the ds CLiPs were present in the supernatants of both

the old and new beads and that no products could be seen in the eluate lanes.

In this case, the most likely reason for ds CLiPs not binding the SA-beads was a

poorly synthesised biotin-labelled primer. Primer synthesis could have been checked

using MALDI-TOF MS, to determine the percentage of biotin coupling on the

primer, however this method is time consuming and expensive, therefore the cheaper

option was to order a new biotinylated primer.
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The new biotinylated primer was used to produce F-dUTP- labelled ds CLiPs. These

ds CLiPs were purified by gel excision and used in affinity capture. This time the

beads captured the biotinylated strand and ss CLiPs were eluted. An aliquot of the

eluate was run on a 2.57o agarose gel shown below. Figure 2.12 shows the two

different sized ss CLiP products (139 nt Lane 1 and 352ntLaneZ), as with Figure

2'10 these bands appear to be running at a much larger size than would be expected

for ss CLiP products. During agarose gel inspection using a UV transilluminator

both products faintly fluoresced due to the incorporation of large F-dUTps, causing

the ss cliPs to appear larger than would be expected (Figure 2.12).

lKb- ladder

Figure 2j2 Eluate from affinity capture containing ss clips. 5 pL out of a
total volume of 25 pL was loaded per lane on this gel. 1-. Small 1gg nt ss CLips. 2.
Large 352 nt ss CLiPs. Analysis of PCR producti was performed by agarose gel
electrophoresis using a .2.5% agarose gel. Visualisation was achieveo uiing a Uv
transilluminator after staining the product with 320-ng/ml ethidium bromidd (refer
Experimental Procedures). An approximate finalyietd-of the 199 nt ss Clips was 2
ng and the 352 nt ss CLiPs was 4 ng, the amount of ss CLiP product was estimated
from a known standard using agarose get electrophoresis.

Ss CLiPs were quantified with a Molecular Devices SpectraMAX Gemini using the

fluorescent dye SYBR Green II (refer Experimental Procedures) for single stranded

products. The eluate containing ss CLiPs was used either directly in a ligation

reaction or desalted then dried in a vacuum centrifuge. Use of the vacuum dried

CLiPs was achieved by resuspension in TE buffer (refer Expedmental procedures).
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The template for ligation was generated by PCR from a linearised plasmid

containing a cloned excerpt of the MOR-I gene (courtesy of Bronwyn Kivell). The

ligation reaction was set up using 8 ng of the labelled ss CLiP and 0.5 pmol of the

PCR-generated MOR-I target template (Figure 2.11, A). The ligation reactions werc

analysed on the ABI PRISIP lll DNA Sequencer using GeneScano Analysis

Software (Figure 2.13).

Figure 2.13 Anatysis of ligation rcactions on the ABt pRlsno gzz orl
Sequencer using Genescano Analysis Softrrare vepion 3.7. The size of the
cLiPs were determined by comparison to the Genescann -2000 RoX size
standard represented by small red peaks. The fluorescence signal intensity is
represented on the y-axis and the mobilig is represented of the x-axis. The blue
qeals at 379 nt represent the linear 352 nt CLiPs (running at a slightly larger size
9!9 to the incorporation of large F-dUTPs and it is assumel that thJpeak s-hown at
554 nt is the circularised Clips.

Figure 2.13 represents two ligation reactions analysed using the GeneScan software.

Circularised CLiPs exhibit a higher mobility when analysed on a denaturing PAGE

gel. An uncircularised CLiP is expected to produce one peak at the corresponding

size (e.g. 352 nt), whereas circularised CLiPs are expected to produce two peaks, one

at the actual size of the CLiP (:352 nt) and another between 500-600 nt

(circularised). The results shown in Figure 2.13 are consistent with a circularised

CLiP.
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Therefore it is likely that CLiPs designed in this project were specific to the MOR-I

template. As much difficulty was experienced trying to synthesise and ligate Clips

to the MOR-1 splice variant target template, the more conventional method of FISH

was used to analyse MoR splice variant distribution in rat brain.

2.6 Conclusions

To determine if CLiPs generated in this project ligated to their target, more

experimentation would be required. Control experiments should be set up

simultaneously with each ligation reaction, such as performing the ligation reactions

with no target DNA or an incorrect but similar target(e.g. DoR cDNA).

To confirm that the CLiPs utilised in the project did circularise, an exonuclease

digestion of the ligation reaction should be performed. Circular DNA molecules are

resistant to exonuclease digestion, due to the absence of free 5' and 3' ends.

Therefore if the secondary peak shown if Figure 2.13 were to disappear after an

exonuclease digestion. this would suggest that these CLiPs had not circularised.

Future possibilities for this technique would be to ligate Clips in situ to reverse

transcribed MOR-I cDNA in rat brain. One method could be to hybridise Clips to

their reverse transcribed cDNA target at the correct stringency, using a hybridisation

buffer containing deionised formamide. This buffer could be washed off and Clips

ligated to their target in a ligation buffer. Alternatively Clips could be hybridised in

ligation buffer so both reactions could take place at the same time. Ultimately this

technique is feasible yet technically difficult.
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Chapter 3

Analvsis of MoR splice variant Distribution usins

3.0Introduction

In situ hybridisation (ISH)

ISH was introduced in 1969 (Gall and pardue r969a, John et al. 1969), it is a

technique used for the morphological localisation of genetic sequences. ISH exploits

the fundamental properties of nucleic acids to anneal to one another a phenomenon

called hybridisation. Hybridisation is the reaction whereby two ss nucleic acid

molecules can recognise one another by the formation of a hydrogen bond between

two complementary base pairs (Henderson 1996). This is not only true for DNA-

DNA duplexes, but also for DNA-RNA and RNA-RNA combinations. Labelled

RNA probes can be designed to hybridise to a complementary sequence of mRNA

within a tissue section (e.g. brain). Probes designed to mRNA in particular can be

used to determine information about gene expression, for example the gene

expression patterns (distribution) as ISH can provide semi-quantitative data about

gene activation or suppression, for example, by following the changes in mRNA

expression levels during development (Buono and Lang tggg).

Single-stranded RNA probes used in ISH experiments must be labelled to allow for

detection of the nucleic acid sequence of interest. The most recent advances in this

field have been due to the development of new probe labelling molecules [e.g.

fluorescein isothiocyanare-urp (FITC-urp) or digoxygenin-urp (DIG-urp)l that

have replaced radioactively labelled ribonucleotides.
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3.1 Fluorescent in silu hvbridisation (FISH)

FISH entails the labelling of the DNA or RNA probes with reporter molecules. FISH

was initially introduced as a method of gene mapping (Cheung et al. 1977) and has

had profound effects on efforts to detect, map and characterise human disease genes

such as acute myeloid leukaemia (AML) (Gozzetti and Le Beau 2000). FISH has

also had a major impact in the research fields of early human development (Delhanty

et al. 1997), animal cytogenetics (Sebastian et al. 1997) and comparative genomic

mapping between species (Frengen et al.1997).

The advantages of using FISH to map the MOR splice variants over the other

techniques described in Chapter l, Section 4 are listed below. FISH is a highly

specific technique that can be performed very rapidly, allowing larger numbers of

cells to be scored simultaneously. The efficiency of hybridisation and signal

detection for a carefully designed probe using FISH is very high, enabling the direct

correlation of morphological features within a tissue section to expression patterns of

the DNA, mRNA or protein of interest. Furthermore, by combining differentially

labelled probes designed to discriminate between various regions of mRNA (e.g.

different exons of a gene) one is able to obtain a multitude of data from one

experiment. For example experiments could be performed to determine whether

MOR splice variants are co-localised within the same cell.

Probe Types

The disadvantages of FISH vary depending mainly on probe selection. Several

different types of probes can be used, each with their own advantages and

disadvantages (summarised in Table 3.0). The probe types are ds DNA, ss DNA, ss
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RNA and oligonucleotides. Single-stranded RNA probes are also called

complementary RNA (cRNA) probes or in this project riboprobes. It should be

noted that riboprobe@ is a registered trademark of the promega Corporation.

Table 3.0 A list of the main advantages an rryil6
each probe type. Reproduced from Feldman et al. 1997.

Probe Type Advantages Disadvantages

Double-stranded DNA High specific activity

Subcloning unnecessary

Possibility of signal amplification

Easy to use

Being ds DNA probes can reanneal
to one another (decreasing probe
availability)

Probe denaturation is required

DNA-DNA hybrids are less stable
than RNA-RNA hybrids

Single-stranded DNA No probe denaturation needed

No reannealing during
hybridisation

Technically complex

Subcloning generally required

Hybrids less stable than riboprobes
Riboprobe Stable RNA-RNA hybrids

High specific activity

No probe denaturation needed

No reannealing during
hybridisation

Unhybridised riboprobes can be
enzymatically destroyed
(RNases), sparing hybrids

Good tissue penetration if made a
small size

Subcloning generally required (nol
necessary)

Difficult to work with as

riboprobes are very sensitive to
RNases (ubiquitous RNA
degrading enzymes)

Oligonucleotide No cloning required

Stable

Good tissue penetration if made a
small size

No self-hybridisation

Limited labelling merhods

Lower specific activity, therefore
less sensitive

Less stable hybrids than riboprobes
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Probe Labels and Labelling Methods

Radiolabelled probes are generated by the incorporation of radioactive isotopes (e.g.

"P, "S or 3H; into the nucleic acid sequence of the probe. Radiolabelled probes are

sensitive and can detect low-level transcripts present in small amounts.

Radiolabelled probes used in ISH reactions can be detected using autoradiography,

this method of detection allows for signal quantification using silver grain counting

techniques. However, radiolabelled probes are less popular today than they have

been in the past due to the issue of safety when using radioactive isotopes, and due to

recent advances in non-radiolabelled reporter molecules.

The use of non-radiolabelled probes allowed for the development of FISH. Signal

detection methods vary depending on which reporter molecule a riboprobe is labelled

with. Direct detection is possible when a flurophore such as Cyanine3-UTp (Cy3-

UTP) is incorporated during riboprobe synthesis, such that after probe hybridisation

and post-hybridisation washes have been applied, the probe can be immediately

visualised under the fluorescence microscope.

Indirect procedures require the labelled riboprobe to be detected using

immunocytochemical techniques. A riboprobe can be labelled with molecules such

as biotinylated-UTPs and detected indirectly using the fluorescein-avidin - anti-

avidin system. Indirect labelling systems have the disadvantage of requiring signal

amplification cascades and therefore are more time consuming. Also amplification

steps result in an increase in signal intensity that is not directly proportional to the

relative abundance of the target mRNA.

6r



There are five main methods of labelling nucleic acid probes, namely: Nick

translation, primer extension, end tibelting (e.g. terminal deoxynucleotidyl

transferase), direct labelling or the use of RNA polymerases.

T7 RNA polymerase is a highly specific DNA-dependent RNA polymerase from the

E. coli bacteriophageTT. This polymerase has an extremely high specificity forT:.

promoter sequences. T7 RNA polymerase was used to generate all the riboprobes

used in this project. The DNA templates used to make each riboprobe were

generated using different methods discussed in more detail in Section 3.2.

In this project riboprobes were designed to the exons 1,3,4,9 and the 5' urR +

exon 1 of the MOR gene (Oprm), and were utilised to determine MOR splice vaiant

distribution in rat brain using FISH. All riboprobes were directly labelled with the

fluorescent-NTPs (FITC-UTP or Cy3-UTp) and synrhesised using T7 RNA

polymerase. As FISH was cuffently being used in our laboratory all the equipment

necessary for this technique was present and the laboratory was RNase-free.

RNase-free Environment

RNase is a ubiquitous RNA degrading enzyme produced by micro-organisms in the

environment and are found on the surface of skin. This enzyme rapidly breaks down

mRNAs and riboprobes. An RNase-free environment is very important for the

success of FISH experiments. Gloves must be worn at all times to prevent

contamination of materials by RNases found on the skin. Solutions must be treated

with an RNase inhibitor such as diethylpyrocarbonate (DEPC) and then sterilised by

autoclaving. Chemicals that cannot be ffeated with DEPC (e.g. Tris-HCl) have to be
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handled with baked spatulas and made up in DEPC-treated water. Glassware is

rendered RNase free by baking at 200"C for 8 hours or more and plasticware (e.g.

eppendorf tubes, barrier tips) are bought RNase free.

Tissue Preparation and Treatment

To preserve tissue morphology in this project the rat was perfus ed with 4Vo

paraformaldehyde. The brain was removed, post-fixed in paraformaldehyde then

cryo-protected (refer Experimental Procedures) and sectioned on a cryostat r. These

sections were floated onto glass microscope slides and used in FISH experiments.

Tissue fixation results in the cross-linking of proteins, as the target mRNA is

surrounded by proteins, tissue pre-treatments such as permeabilisation are necessary

before riboprobe hybridisation. Two common reagents used in tissue

permeabilisation are detergents (e.g. Triton@ x-100 or sDS) and the enzyme

Proteinase K. Lipids were extracted from the tissue section membrane by the

addition of Triton@ X-100. Proteinase K is an endopeptidase that non-specifically

hydrolyses peptide bonds. This enzyme is used to remove proteins that surround the

target mRNA. Paraformaldehyde fixed samples typically require longer digestion

periods with Proteinase K.

Another important tissue pre-treatment when using riboprobes is acetylation with

acetic anhydride in triethanolamine (TEA). This pre-treatment creates a uniform

' Whole brain perfusion has recently been replaced by a "fresh-frozen-fix" method in this laborarory,
whereby whole brain samples are frozen immediately at -80"C, sectioned using a cryostat and fixed
for 5 minutes in paraformaldehyde. This new technique has the advantages of: saving time, increasing
sensitivity, maintaining tissue morphology (due to no proteinase K digestion) and producing greater
slsnat.
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negative charge across the tissue, which decreases background signals by reducing

the amount of non-specific binding. Tissue acetylation also appears to aid RNase

inactivation, which may help to produce stronger signals.

Stringency

Stringency can be defined as: "The conditions of hybridisation that increase the

specificity of binding between two single-stranded portions of nucleic acid"

(http://users.wmin.ac.uW-redwayVlectures/probes.htm). The composition of the

hybridisation buffer is critical in controlling the efficiency of the hybridisation

reaction. Hybridisation depends on the ability of the ss riboprobe to anneal to the

target mRNA just below its melting temperature (T'n). The degree and specificity of

binding between two nucleic acid sequences depends on hydrogen bonding between

bases on opposite strands and is affected by four parameters:

x Temperature

*pH

* Monovalent cation concentration

E Presence oforganic solvents (denaturants)

The probe length generally determines the temperature used in FISH. In this project

temperatures greater than 40'C resulted in loss of signal, due to the short length of

the riboprobes being used (-70-90 nt).
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Buffers frequently have a pH of between 6.5-7.5, but the rate of renaturation is fairly

independent of pH. However a higher pH can be used to increase the stringency of

the hybridisation reaction.

Monovalent cations are added typically in the form of NaCl + sodium citrate (SSC).

Free monovalent cations interact electrostatically with the phosphate groups of the

nucleic acids decreasing the electrostatic repulsion between the two strands, resulting

in an increase in hybrid stabilitv.

The organic solvent used in the hybridisation buffer was formamide, which reduces

the thermal stability of duplex sequences allowing hybridisation to be carried out at a

lower temperature. In practice the hybridisation is performed at a lower stringency

than the posthybridisation washes, this is to allow for hybrid formation during

hybridisation. Higher stringency posthybridisation washes are important for

removing any non-specifically hybridised riboprobes and leaving only the target

specific riboprobes bound.

Controls

Positive and negative control experiments are extremely important in FISH

experiments. Controls create internal guidelines to standardise the evaluation process

and empirically establish baselines for data interpretation. Adequate controls must

be set up simultaneously with regular FISH experiments, using all the same

chemicals and conditions, to ensure that observed labelling is specific to the target

sequence (Lewis and Baldino 1990). Controls should include positive and negative

samples as well as technical controls to identify false positive and negative results
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(Herrington and McGee 1992). An example of a technical positive control

experiment used in this project was the design of a probe to the abundant

"housekeeping" gene actin. This experiment tested the quality of the reagents being

used and the tissue mRNA.

In this project negative control experiments were set up with each FISH. Examples

of the negative control experiments used are listed below:

Hybridisation without any riboprobe and RNase digestion of the mRNA prior to

riboprobe hybridisation. RNase digestion of the tissue mRNA is a very common

negative control. Once the mRNA is digested and a hybridisation is performed, if

the riboprobe does not bind, it can be determined that the probe is specific for

mRNA. RNases are notoriously difficult to inactivate and for this reason, it could be

argued that the addition of RNase not only digests the mRNA but also the riboprobe,

giving a negative result.

In this project, the tissue mRNA was also digested by alkaline hydrolysis using 0.2

M NaOH (Figure 3.0). This experiment should give the same results as RNase

digestion but was determined to be more credible, as NaOH is easier to inactivate

than RNase.
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Figure 3.0 Negative control experiment using NaOH-hydrolysed tissue in a
FISH. Fluorescent photomicrographs of a sagittal section through the cerebellum.
The tissue was NaOH-treated to destroy all RNA before this FISH was performed
using a CY3 labelled exon 4 riboprobe confirmed to hybridise specifically (refer
section 3.4.10). lmages were captured under the CY3 filter set (A), the FITC filter
set (B) and the DAPI filter set (C). Panel C shows the nuclei of the cerebellum.
Scale bar = 200 Um.

Figure 3.0 represents the results of a FISH performed on NaOH-hydrolysed tissue

using an exon 4 riboprobe that has been confirmed to be specific for exon 4 of the

oprm. The DNA was not degraded during the NaoH hydrolysis, as the DApI

nuclear stain is positive for nuclear DNA (Figure 3.0, panel C). Another control

experiment is performing the hybridisation with differentially labelled riboprobes to

different parts of the same mRNA. This experiment should result in the

colocalisation of the riboprobes.

67



Guideline for FISH

An outline of FISH experiments performed in this project is outlined below, for exact

guidelines refer to Chapter 4, Experimental Procedures:

The fixed, sectioned rat brain tissue was placed on polylysine-coated microscopic

slides, dried and pre-treated to allow for tissue permeabilisation and delipidation etc.

The dye SYBR Green II (Molecular Probes) was used in a semiquantitative assay to

determine the concentration of each riboprobe (refer Experimental Procedures).

Based on this assay 6 ng of riboprobe was added to each hybridisation reaction. The

hybridisation buffer and 6 ng of riboprobe was added to a special hybridisation

chamber (formed by an adhesive "in situ frame") and left to hybridise to their targets

overnight at a set and constant temperature, typically the overnight hybridisation

temperature was 40"C.

The in situ frame was removed and posthybridisation washes were applied with

increasing stringency to remove any non-specific hybrids. The sections were

washed for 2x 15 minutes at 37"C in 2x SSC and then for 2x 15 minutes at 37"C rn

lx SSC. Subsequently slides were washed for 20 minutes at 37'C in 2x SSC

containing 4O7o (v/v) deionised formamide. Nuclei were stained by a 20 minute

wash at 40'C in 0.5x SSC containing 5 ng/ml DAPI. An antifading reagent was

added to each slide to reduce the amount of photobleaching experienced during

fluorescent microscopy. The slides were viewed using a fluorescent microscope

fitted with the appropriate narrow band filters specific for each fluorophore used,

allowing for direct visualisation of riboprobes and nuclei (if a fluorescent nuclear

stain was used).
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3.2 Experimental Design

This section presents the design, synthesis and purification methods used to generate

four short (-70-95 nt) riboprobes to exons I, 3, 4 and 9, and the 5' UTR + exon 1 of

the Rattus norvegicus Oprm gene. The short length of each riboprobe represented a

unique parameter for this project and is discussed in detail below. The riboprobes

were directly labelled with fluorescent-NTPs to allow for the direct visualisation of

MOR splice variants in rat brain tissue sections using FISH. All primer sequences

used to generate these riboprobes are given in Table 4.0.

3,2.1 Riboprobe Design and Synthesis

Each riboprobe was designed based on a critical set of parameters for oligonucleotide

probes (Erdtmann-Vourliotis et al. 1999) (Table 3.1). The computer software

programme OLIGO6 (Molecular Biology Insights, Inc.) was used to design the PCR

primers used to generate each riboprobe.

Table 3.1 The critical parameters used to design PCR primers for riboprobe
synthesis, adapted from Erdtmann-Vourliotis et al. 1999.

Riboprobe length is a very important parameter in probe design. Large riboprobes,

gleater than 300-500 nt in length, are more tolerant to mismatches than short

riboprobes (e.g. a short riboprobe with 2 mismatches is less likely to hybridise to its

target than a long riboprobe with 2 mismatches). Riboprobes too large in size tend to

have poor tissue penetration. However the amount of label that each large riboprobe

molecule can calry is increased, therefore increasing signal. Long riboprobe

Parameter Range

GC content 48-62Vo
Lensth 42-54 nucleotides
Haimin 0 to - 4.7 kcal
Leneth of runs Upto5
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production is more efficient than short riboprobe production, for this reason, long

riboprobes are frequently generated and subsequently hydrolysed into shorter

fragments.

One aim of this project was to produce riboprobes approximately the same size as the

target specific region of CLiPs (-60-70 nt). Short riboprobe (70-100 nt) have the

advantages of being more stable with time (i.e. longer shelf life), easier and cheaper

to make, and they hybridise more rapidly than longer riboprobes. The addition of 1-

3 fluorescently labelled nucleotides is sufficient for probe visualisation under a

fluorescent microscope. This is proven by the success of the terminal

deoxynucleotidyl transferase end labelling method. A disadvantage of using short

riboprobes can be a decrease in sensitivity due to the limited amount of labelled

nucleotides incorporated.

Exon 3 riboprobe

Exon 3 of the Oprm is present in all the MOR splice variants (Figure 1.3). To

generate the ds DNA template required for exon 3 riboprobe synthesis, a mammalian

expression vector (refer Chapter 4, Experimental Procedures) was obtained

containing the MOR-I gene (courtesy of Bronwyn Kivell). This plasmid was

purified and linearised by restriction digestion to be used as template in a PCR. The

primers for this PCR were designed to exon 3 using the parameters shown in Table

3.1. The T7 promoter sequence was added to the reverse primer sequence, allowing

forTT promoter sequence incorporation into the PCR product (Figure 3.1). This PCR

product was then used for the T7 RNA polymerase-catalysed synthesis of exon 3

riboprobes.
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c.
Riboprobe to exon 3

Figure 3.1 Schematic overview of exon 3 riboprobe synthesis (not drawn to
scale). A. Depicts a linearised plasmid (black) containing the MOR-1 gene (red).
The MOR-1 gene is inserted into the multiple cloning site of the plasmid. Green
arows represent the exon 3 primers, the reverse primer contains the T7 promoter
sequence. The orange box at the beginning of exon 1 represents the 5'
untranslated region (UTR). B. Represents the DNA template of exon 3 after PCR
the green blocks depict the incorporation of the T7-tail sequen@ and the
complementary sequen@ on the top strand. Once this product is purified, ripoprobe
synthesis is initiated using T7 RNA polymerase (plus labelled-UTPs l). C.
Represents labelled exon 3 riboprobe 100 nt in length.

Exon 4 riboprobe

Exon 4 of the Oprm is present in 7 of the 15 MOR splice variants, namely: MOR-I,

MOR-IG, MOR-IH, MOR-II, MOR-IJ, MOR-IK and MOR-IL. However, MOR-

lG - MOR-IL are under the control of the exon ll promoter and forrr truncated

(possible six transmembrane) MOR receptors (Pan et al. 2001).

Overlapping oligonucleotides (oligos) were used to generate the ds DNA template

for exon 4 riboprobe synthesis. These oligos were designed to exon 4 using the
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parameters shown in Table 3.1. Based on the T* of each oligo an overlap of 18 nt

was determined to be long enough to generate a ds DNA product 73 nt in length.

The reverse oligo was T7-tailed to allow the incorporation of the T7 promoter

sequence into the ds DNA template.

Klenow fill-in and PCR were trialed simultaneously to determine which method

produced the largest amount of correctly sized product. The Klenow fragment is an

enzyme from E.coli that exhibits the 5'=>3' polymerase activity of DNA polymerase

I (pol I), but lacks the 5'=>3' exonuclease activity of intact DNA pol I. The Klenow

fragment catalyses the 5'=>3' addition of nucleotides and was used to "fill-in" the

overlapping oligos designed to exon 4. Klenow fill-in produced less ds DNA

template than PCR; therefore PCR was used in this project to generate the ds DNA

template required for exon 4 riboprobe synthesis (Figure 3.2).

Following PCR the ds DNA template was purified by gel excision after agarose gel

electrophoresis. A second round PCR was performed with the exon 4 forward and

reverse oligos and the purified template. This PCR was carried out to increase the

amount of ds DNA template, as T7 RNA polymerase requires at least 100 ng of

DNA template to generate riboprobes. Platinum@ Taq DNA Polymerase

(InvitrogenrMlif" t"chnoloeies) was the enzyme used in PCR. This enzyme adds non-

templated adenines onto the S'-ends of PCR products during amplification.

Therefore, before riboprobe synthesis, T4 DNA polymerase was used to polish the

ends of the ds DNA template to remove any single-stranded overhangs (Figure 3.2).
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B.

A.
5'GAGGCTGCCATCTACTTGGAA

+ Labelled UTPs

Riboprobe to exon 4
73 nt in length

Figure 3.2 Schematic overview of exon 4 riboprobe synthesis (not drawn to
scale). A. The 'top' sequence represents the fonrard oligo and the 'bottom' strand
represents the reverse oligo with the T7-tail (Green nt). The red box shows where
the two sequences overlap by 18 nt. The ds product produced by PGR is purified
and used in a second round PCR (not shown in figure). B. Represents the ds DNA
template of exon 4 after PCR, the green blocks depict the incorporation of the T7-tail
sequen@ and its complementary sequence on the top strand. This product is
polished using T4 DNA polymerase. C. The polished ds DNA template, once this
product is purifpd riboprobe synthesis is initiated using T7 RNA polymerase (plus
labelled-UTPs* ). D. Labelled riboprobe to exon 4.

c.

D.

.TATCACTCAGCATAAT 5'

18 nt overlap between the folvard exon 4
oligo and the T7-tailed reverse oligo
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Exon 9 riboprobe

Exon 9 of the Oprm is present in 6 of the 15 MOR splice variants, namely: MOR-

lC, MOR-lD, MOR-lE, MOR-lF, MOR-1M and MOR-lN' The ds DNA template

for exon 9 riboprobe synthesis was generated by PCR using overlapping oligos'

Table 3.1 shows the optimal length of an oligo is 42-54 nt, oligos larger than 55 nt

result in a higher proportion of inconect nucleotides being incorporated

(Kwiatkowski et al. 1996). To generate the 95 bp ds DNA template for exon 9

riboprobe synthesis, four overlapping oligos (ranging in size from 36-38 nt) were

designed (using the parameters shown in Table 3.1) to aregion of the Oprm exon 9

gene.

As with the exon 4 riboprobe, PCR was used to fill-in the overlapping oligos (Figure

3.2). PCR was performed and the correctly sized product was purified by gel

excision after agarose gel electrophoresis. This product was then used in a second

round PCR with two end forming oligos (Figure 3.24, Oligos A and D) to generate a

large quantity of product. The oligo labelled 'D' in Figure 3.2 was T7 -talled to allow

for the promoter sequence to be incorporated into the ds DNA template for riboprobe

synthesis.

The ends of the ds DNA product were polished using T4 DNA polymerase to remove

any single-stranded overhangs, as T7 RNA polymerase requires ds DNA to initiate

transcription. This product was used for the T7 RNA polymerase-catalysed synthesis

of exon 9 riboprobes (Figure 3.3).
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B.

c""{

+ Labelled UTPs

D.
Ribop'robe to exon 9

Figure 3.3 Schematic overview of exon 9 riboprobe synthesis (not drawn to
scale). A. Shows the four overlapping oligos labelled A - D. The T7-promoter
sequence has been attached to the S'-end of the oligo labelled 'D' (shown as green
line). The grey boxes represent the 18 nt overlap. The ds product produced by
PCR is purifted and used in a second round PCR (not shown in figure). B.
Represents the ds DNA template of exon 9 after PCR, the green blocks depict the
incorporation of the T7-tail sequence and its complementary sequen@ on the top
strand. This product is polished using T4 DNA polymerase. G. The polished ds
DNA template, once this product is pufified riboprobe synthesis is initiated using T7
RNA polymerase (plus labelled-UTPsf,) D. Labelled riboprobe to exon 9.

Exon 1 riboprobe and the S'UTR + Exon I riboprobe

Exon I is present in l0 of the 15 MOR splice variants (namely: MOR-I - MOR-IF

and MOR-IH - MORI- MOR-IJ) of the Oprn. As there are two putative promoters

T4 DNA polymerase

T7 RNA polymerase
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of the Oprm, there are two 5' untranslated regions (UTRs). The 5' UTR targeted in

this experiment was that of exon I not exon 11. The exon 1 ds DNA template was

generated by PCR using a forward primer designed to the 5' UTR (Yoshikawa et al.

1999) and a T7-tailed reverse primer complementary to exon 1 (designed by Eli

Mrkusich). The template for the PCR was a linearised mammalian expression vector

containing the MOR-I gene (courtesy of Bronwyn Kivell). The PCR product was

287 bp in length, as one primary aim of this project was to use small riboprobes (<

100 nt) for FISH, the PCR product was subjected to restriction digestion to produce

smaller fragments for riboprobe synthesis (Figure 3.4).

A restriction map was made for the 287 bp fragment using MapDrawrM from

Lasergene (DNASTAR Inc.). The 287 bp fragment was cut with two restriction

enzymes: Hae III (Boehringer Mannheim) and Pvu lI (InvitrogenrMlir" t"chnoloei"s) to

produce a 117 bp T7-tailed fragment and a 237 bp T7-tailed fragment, respectively.

The Pvu II digested fragment contained the partial sequence of the 5' UTR and exon

1 (Figure 3.4). For ease these riboprobes are named: exon 1 riboprobe (Hae III

digested 287 fragment), Pvu 11 riboprobe (partial 5' UTR + entire exon 1) and the

MOR 287 fragment riboprobe (entire 5' UTR + exon 1) throughout the remainder of

this thesis.

These riboprobes were trialed briefly before the completion of this project, therefore

have been placed last in this section. Amplification of the desired product was

achieved by PCR. Deep Ventn@ (exo-) DNA Polymerase was used in PCR, for the

generation of the ds DNA template required for T7-catalysed riboprobe synthesis.

Deep Vent (exo-) has been engineered to eliminate the 3'=>5' exonuclease activity;
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C.
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- 

ll7 bp fragment produced by
rxon r 

- 

Haellldigestion

fit" ?f ii*Hnt 
Produced bY

Riboprobe to exon I
(HaelII digest)

Riboprobe to 5' UTR +
exon I (Pvundigest)

FigUre 3.4 Schematic overview of the 5'UTR + exon 1, and exon I riboprobe
synthesis. A. Depicts a tinearised plasmid (black) containing the MOR-1 gene
(ied). The MOR-1 gene is inserted into the multiple cloning site of the plasmid.

ihe orange box at the beginning of exon 1 represents the 5' untranslated region
(UTR). Green arrows represent the primers; the fonrard primer is complementary to
the 5; UTR and the exon 1 reverse primer contains the T7 promoter sequence. B.
Shows the MOR 287 tragment, with the restriction sites of Hae lll and fuu ll
mapped onto the PCR product. C. Represents the two different sized produc'ts

generated by restriction diges^tion and riboprobe synthesis initiated by using T7 RNA
polymerase (labelled-UTPs *) D. Depicts the Hae l// generated exon 1 riboprobe
and the Pvu ttgenerated riboprobe to exon 1 + 5' UTR. Not drawn to scale. NB
The MOR 287 riboprobe is generated by T7 RNA transcription of the MOR 287
fragment before restriction digestion.

Or

D.

therefore polishing of the PCR product was not required, as non-templated

adenosines were not added during PCR.

.-fl
*{

B.

Pvull restriction site
Restriction dieestion

Hael\l resfiiction site

MOR 287
fragment
generated by PCR

T7 RNA polymerase
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Purification of the small ds DNA PCR products for riboprobe synthesis and

purification of the small riboprobes themselves represented a unique challenge in this

project. Purification of both these products was essential for removing any

unincorporated nucleotides. Typically PCR products are purified using: gel

extraction kits (e.g. CONCERTTM Rapid Gel Extraction System), PCR purification

kits (e.g. CONCERTTM Rapid PCR Purification System), or sephadex spin columns

(e.g. Sigma Aldrich @ Sephadex G-25 Spin Columns).

However, the small size of the PCR products (73 bp - 95 bp) and riboprobes (73 nt -

95 nt) resulted in a dramatic loss of product by using any of the aforementioned

purification techniques. This is because the spin cartridges provided in purification

kits contain silica-based membranes that are unable to absorb short nucleic acid

sequences (i.e. < 100 bp), resulting in a complete or partial loss of these products.

Sephadex G-25 Spin Columns used in this project should have been able to purify

these small products, but for unknown reasons this technique was met with large

losses in product amount. This may have been due to RNase contamination or

incorrect calibration of the spin columns (personal communication Dr Darren Duy).

In this study, the most successful technique applied to purify PCR products and

riboprobes was ethanol precipitation with linear polyacrylamide as a neutral carrier

(Gaillard and Strauss 1990) (refer Experimental Procedures). Linear polyacrylamide

is an inert substance that acts as a co-precipitant to improve yields of nucleic acids in

the precipitation step of purification protocols. 3 M Sodium Acetate (NaOAc) was
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the counter ion used to purify these products by ethanol precipitation; this technique

resulted in adequate purification and recovery of each product.

3.4 Results and Discussion

3.4.1 Riboprobe synthesis

As discussed in section 3.2 Experimental Design all riboprobe templates in this study

were generated by PCR using aT7-tailed reverse primer. This PCR product was

purified and transcribed to cRNA (riboprobe) using T7 RNA polymerase. As the

technique for riboprobe synthesis was analogous for each of the riboprobes, only the

synthesis of the exon 4, exon 1, MOR 287 fragment and Pvu II riboprobes are

represented in this section.

Exon 4 riboprobe synthesis

The template for exon 4 riboprobe synthesis was generated by PCR, an aliquot of the

product was run on a2.5%o agarose gel to check that the correctly sized template had

been generated (Figure 3.5). The purified PCR product was used as template in a

second round PCR to generate enough product for riboprobe synthesis.
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200 bn*

r00 bn--|
73 bp

Figure 3.5 Synthesis of the T7-tailed exon 4 riboprobe template by PCR. The
PCR was set up with 200 nM each of the MOR exon 4 overlapping oligos (refer
section 3.2.1). The reverse oligo was T7-tailed to allow the incorporation of the T7
promoter sequence into the ds DNA template during PCR. The 1 Kb" ladder is
loaded in the left lane to allow for size determination. Lane t had an annealing
temperature of 55'C and lane 2 had an annealing temperature of 60'C. Analysis of
PCR products was performed by agarose gel electrophoresis using a 2.5o/o dSilosa
gel. Visualisation was achieved using a UV transilluminator after staining the
product with 320 ng/mL ethidium bromide.

Exon 4 riboprobes were synthesised by T7-RNA transcription of the purified PCR

product represented in Figure 3.5, this reaction was DNase I treated to digest any

remaining DNA template and an aliquot of this reaction was run to check riboprobe

synthesis (Figure 3.6).

73 nt MOR specific
exon 4 riboprobes

Unincorporated fl uorescently
labelled UTPs

Figure 3.6 tn vivo T|-RNA transcription of exon 4 riboprobes. The 1 Kb*
ladder is loaded in the left lane to allow for size determination. Lane 1 shows a
"smear" that represents the labelled exon 4 riboprobes; the smeared appearance of
the band is most likely due to the riboprobes running with altered mobility due to the
varying conformations of non-denatured cRNA. The unincorporated F|TC-labelled
UTPs can be seen as a bright band below the exon 4 riboprobe. Analysis of
riboprobes was performed by agarose gel electrophoresis using a 2,5o/o dearose gel.
Visualisation was achieved using a UV transilluminator after staining the product
with 320 ng/mL ethidium bromide.
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287 fragment riboprobe synthesis

The 287 bp fragment was generated by PCR using a forward primer designed to the

5' UTR and aTl-tailed reverse primer designed to a region of exon I (Figure 3.7).

Figure 3.7 Synthesis of the MOR 287 tragment by PCR, including unlabelled
exon 4 and exon 9 riboprobes. The 1 Kb* ladder is loaded in the left lane to allow
for size determination. Lanes 1 and 2 show the synthesis of unlabelled exon 4 and
9 riboprobes, respectively. These samples were not heat denatured and the
different conformations of the riboprobe are visible as two distinct bands. Lane 3

represents the 287 bp PCR product used to generate the exon 1 and Pvu ll
riboprobes. Analysis of products was performed by agarose gel electrophoresis
using a 2.5"/" agarose gel, Visualisation was achieved using a UV transilluminator
after staining the product with 320 ng/mL ethidium bromide.

The287 bp fragment spans from the 5' UTR into exon 1 of the Oprm. Digesting the

287 fragment with Hae III generated the 117 bp exon 1 riboprobe template (Figure

3.8). The Pvu II riboprobe (Figure 3.8) was generated by restriction digestion of the

287 frasment with Pvu II.

222bp

ll7 bp

Figure 3.8 Restriction digestion of the MOR 287 bp fragment to generate the
exon 1 and Pvu tl riboprobe templates. The 1 Kb* ladder is loaded in the left
lane to allow for size determination. Lane 1 represents the Pvu // digest, two bands
can be seen the T7-tailed 222 bp fragment and a 75 bp fragment. Lane 2
represents the Hae /// digest, with two bands running at approximately the same
size: a T7-tailed 1 17 bp fragment and a 170 bp f ragment. Analysis of the digested
products was performed by agarose gel electrophoresis using a 2.5"/" agarose gel.
Visualisation was achieved using a UV transilluminator after staining the product
with 320 ng/mL ethidium bromide.
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After restriction digestion the enzymes were heat inactivated and the reactions were

purified and used as template in the generation of riboprobes. The riboprobe

synthesis reactions were run on a 2.5Vo agarose gel to check transcription efficiency

(Figure 3.9).

I Ul;r*'o"rated 
FIr c -labell ed

300
200

100

Figure 3.9 Labelled riboprobes synthesised to exon 1 and the 5' UTR + exon 1

(Pvu ll digest). The 1 Kb* ladder is loaded in the left lane to allow for size
determination. Lane 1 shows the 117 nt exon 1 riboprobes. Lane2 represents the
222 nt Pvu llriboprobes. Two bands are visible in each lane due to the alternative
conformations of cRNA. Analysis of the riboprobes was performed by agarose gel
electrophoresis using a 2.5o/" agarose gel. Visualisation was achieved using a UV
transilluminator after staining the product with 320 ng/mL ethidium bromide.

3.4.2 Analysis of synthesised riboprobes

Newly synthesised riboprobes were analysed for size, sequence, yield, integrity and

quality before being used in FISH experiments. Two methods were used to

determine the actual size of the riboprobe. The first method is an estimation of size

based on agarose gel electrophoresis (see Figure 3.9), however as mentioned,

riboprobes tend to run in two conformations unless heat denatured.

The second, more accurate method is to perform a GeneScan analysis of a diluted

aliquot of the riboprobe (refer Experimental Procedures, 4.16.2). Due to the small
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size of the riboprobes in this project a GeneScanrM-350 ROX size standard (Applied

Biosystems) was used to determine the actual size of the riboprobe (Appendix A).

Samples of each riboprobe were analysed on the ABI PRISMo 377 DNA sequencer.

These samples were heated and then snap chilled before being loaded onto the gel to

ensure the cRNA remained single stranded. The results generated were analysed

using GeneScan@ Analysis Software and riboprobe size was determined by

comparison to the ROX-350 size standard loaded with each sample (Figure 3.10).

Figure 3.10 Size determination of a FITC-labelled exon 9 riboprobe. The exon
9 riboprobe was diluted 1000-fold before being loaded onto the 4o/o PAGE This
histogram was generated using GeneScan Analysis Software version 3.7. The size
of the riboprobe is determined by comparison to the GeneScanrM -350 ROX size
standard represented by red peaks. The large blue peak represents the exon 9
riboprobe with an expected size of 95 bp.

GeneScan analysis of riboprobes is an excellent tool, not only for size calling but

also for detennining the yield and quality of riboprobe synthesis. Another important

experiment to perform to check riboprobe synthesis is to sequence the ds DNA

template used for cRNA hanscription (refer Experimental Procedures,4.16.l).
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Riboprobes were sequenced to ensure they were designed and made to target specific

regions of the Oprm (refer Appendix B, for the chromatogram produced by

sequencing the ds DNA template used to synthesise exon 3 riboprobes).

Approximately only 68 nt out of 100 nt (including the forward and reverse

sequences) were able to be base called for exon 3 and the resulting sequence was

compared to sequences on the NCBI database using BLAST.

BLAST results showed that the exon 3 riboprobes made in this project shared a93%o

identity with Mus musculus MOR mRNA (Appendix Figure B3). Whereas

approximately 6l nt out of 73 nt of the exon 4 riboprobe were able to be base called

with confidence (Appendix, Figure 84) and the BLAST results showed that the exon

4 riboprobe template shared a l00o/o identity with the Mus musculzs MOR exon 4

and MOR-IG mRNA (Figure 3.1l).

Figurc 3.11 Top two BLAST search lesults using exon 4 sequenoe (rcfer
Appendix Figure B4). These results show that there is 100o/o identity of the exon 4
riboprobe template sequence to the Mus musculus exon 4 gene and the MOR-IG
splice variant that contains exon 4.

>@ E nu .uetw N olrt'ol.d r.c.lrcor (fOI) gu. aroo a, 8d cqrlc.
cdt

L6gtb - 166

gcor. r 85.7 lri,er (a3), lrD.ct . a.-Ig
fd.ret'tt'.r - a3lr3 (tOOl ,
SGred-Dlu/tllnt

qr.ry: 9 acu.ccecg.c.g€mceBg|.tgccrgts.gffgggfc.gccgc 5l
ilIllII||||||iltttIIil||||1tIllllll||||Illl

abJce : 12" .cGcccg.c.ec.rceEgl.ccccr't.geg!|c.gcctc 85

>.c1@ Etrl a.r Nrolu mt-Ic rII , co{t.l.s. c&
L.ngch . le39

Scor. - 85.7 lrlCr (t31, lrp.ce r tr-Is
ld.!B''c,'.r - 43,/a3 (lootl
8€r&d-Dls/llj.aut

84



The yield of each riboprobe was determined by performing a SYBR Green II assay

(refer Experimental Procedures 4.16.2). Denaturing PAGE and agarose gel

electrophoresis confirmed the integrity and quality of the riboprobes. If a distinct

bright band was present at the expected size it was presumed that the riboprobe was

not degraded. The integrity of each "batch" of riboprobe was checked before the

commencement of FISH experiments.

3.4.3 Interpreting FISH Results

This section presents the results and discussion of FISH experiments using

riboprobes designed to exon 3, 4, 9, 1, including the Pvu 11 riboprobe and the MOR

287 fragment. Initially many FISH experiments were performed in order to find the

most stringent conditions under which the small riboprobes in this project would

hybridise (refer Section 4.18).

When examining FISH results, certain factors have to be taken into account before

one can draw the conclusion that the signal being visualised represents specific

hybridisation of the riboprobe to its cognate mRNA target.

High background signals and quenching are two phenomena that can hinder image

analysis. As riboprobes designed to different splice variants were utilised in this

project to map splice variant distribution, they had to be differentially labelled. The

chance of high background signals and quenching increased due to the use of two

different fluorophores, therefore prior to riboprobe synthesis certain factors to

decrease these phenomena, were taken into account. It was assumed from the

specific activity of each riboprobe and the labelling ratio used that fluorescently
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labelled UTPs were incorporated into the riboprobe approximately 10 nts apart to

prevent quenching and high background signals. Also the two fluorophores used in

this project (CY3-UTPs and fluoroscein-12-UTPs) were chosen for double labelling

experiments due to the spectral separation of the two fluorescent emissions (560 nm

and 495 nm respectively). Maximising the spectral separation of multiple

fluorescent emissions facilitates signal isolation and image analysis.

Stringent positive controls must be performed simultaneously with each FISH to aid

the interpretation of each result. One important positive control experiment is the

design and use of sense strand riboprobes. Sense riboprobes are the same sequence

as the target mRNA. A common method for in virro RNA synthesis is the use of

cloning vectors. Multipurpose cloning vectors contain a multiple cloning site (MCS)

into which the gene of interest is inserted. The MCS is flanked on either side by

promoter sequences for different polymerases (e.g. T7 promoter sequence required

for T7 RNA polymerase transcription). This allows the synthesis of either sense or

antisense riboprobes from the sequence cloned into the MCS.

Sense riboprobes should not remain bound after stringent posthybridisation washes

are applied. However this experiment does have limitations, because any nucleic

acids added to FISH will bind non-specifically and it is possible that a sense

riboprobe could hybridise to a GC-rich nucleic acid sequences and remain bound

after the posthybridisation washes.

One important limitation of this study is that sense riboprobes were not generated for

any of the riboprobes used, due to time constraints. This must be taken into account
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when analysing the images presented in this project. One must also consider the

issue of tissue autofluorescence; this can severely compromise the fluorescent

detection sensitivity by increasing background signals. Autofluorescence may

originate from endogenous sample constituents such as lipofuscin. Lipofuscin is a

fluorescent pigment that accumulates with age in the cytoplasm of CNS cells.

To determine whether the signals visualised in this project were due to

autofluorescence images were captured under a different narrow band filter set, to

that of the fluorophore the riboprobe was labelled with. For example images of a

CY3-labelled riboprobe would be captured under the CY3 filter set and the FITC

filter set. As tissue autofluorescence typically exhibits broad excitation and emission

spectra, one would expect to see the same signal intensities and localisations under

both filter sets if it were autofluorescence (Schnell et al. 1999).

Another consideration is signal intensity, all the images in this project were analysed

using Adobe Photoshop version 5.5 to determine the intensity of the signal over the

background. These data are represented in Table 3.2, where the difference in the

median values between the signal and the background has been converted to a

percentage that represents how much greater than the background the signal for each

FISH experiment was. These percentages (Table 3.2) represent a value of

confidence, whereby signals greater than 40Vo over the background infer one can be

confident that the signal visualised represents fluorescence detection above

background fluorescence and autofluorescence. The raw data can be located in

Appendix E, with a sample calculation.
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Figure Riboprobe Percentage signal is
above background (7o,

2 s.d.)

Confidence in signal

3.14 CY3-Ex3 20.39

3.15, A FITC-Ex4 ML = 55.13
GL=24.36

3.15,C FITC-Ex4 40.85

3.15, E FITC-Ex4 54.26

3.16, A FITC-Ex9 26.92

3.16, C CY3-Ex9 39.40

3.17, A FITC-Exl ML=52.44
GL= 12.20

3.17.D FITC-Exl 47.62

3.18, A FITC-Pvu2 76.06

3.18, C FITC-Pvu2 76.83

3.18, E FITC-Pvu2 ML=66.67
GL = 42.53

3.19a, A FITC*Exl ML = 56.60
GL=22.33

3.19a, B CY3-Ex4 ML=36.29
GL=20.16

3.19a, D FITC-Pvu2 ML = 68.33
GL=39.17

3. l9a, E CY3-Ex4 ML = 30.00
GL = 14.00

3.19b, A FITC-287 ML = 58.02
GL=28.40

3.19b, B CY3-Ex4 ML = 31.36
GL = 10.17

3.19b, D FITC-287 ML= 54.6'7

GL = 28.00

3.19b, E CY3-Ex4 ML=31.20
GL = 20.00

3.20a, A FITC-Exl 58.59

3.20a,8 CY3-Ex4 46.15

3.20a,D FITC-Pvu2 69.44

3,20a,E CY3-Ex4 23.t4
3.20b, A FITC-287 62.35

3.20b, B CY3-Ex4 34.t3
3.21, A FITC-Exl 29.73

3.21.8 CY3-Ex4 32.t4
3.21,D FITC-287 65.83

3.2t,8 CY3-Ex4 49,60

Table 3.2 Table of confidence for signal intensities. The above table gives the
percentage value for fluorescent detection over the background fluorescence and
autofluorescence. ,/,/./ (>4Oo/") = confident signal represents fluorescent
detection, ,/,/ (20-40o/o) = probable signal represents fluorescent detection, / (0-
2O'/") = unable to determine is signal represents fluorescent detection as signal is
too close to the background value. NB. ML = molecular layer of the cerebellum, GL
= granular layer of the cerebellum, where the density of neurons is very high,
therefore increasing the intensity of the background relative to the signal.
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Structures were identified with reference to a rat brain atlas (Kruger et al. 1995) to

determine where staining was visualised. Figure 3.12 outlines the important

structures referred to in this project.

1 0 -t -2 -3 -4 -5 -6 -? -8 -9 -r0 -tl -12 -13 -14 -15 -16 -17 -18 -9 -m -21
tlrlllllllllllllllllll

Earbq 0

Sagittal 1.2 ! 16 l' I i -lo -1, -!' -! -lo -l' eaw

Figure 3.12 Sagittal section 1.2 of adult rat brain near midline. The major
structures of the brain discussed in this thesis are highlighted above. A. lnferior
olive. B. Spinal trigeminal nucleus. C. Cerebellum. D. Dendate gyrus. E. Central
nucleus inferior colliculus. F. Interposed (intermediate or interpositus) cerebellar
nucleus. The arrow indicates area the nucleus ambiguus is located in sagittal
section 2.4. lmage taken from Photographic Atlas of the Rat Brain, Plate 106
(Kruger et al. 1995).

3.4.4Image Adjustment

All images were adjusted using Adobe Photoshop version 5.5 software, Figure 3.12

represents an adjusted and an unadjusted image and the histograms for each image

before and after the manipulation. Typically, the grey scale levels were adjusted to

enhance the signal of the fluorophore of interest, e.g. CY3 riboprobe images were

maximised for red and the output levels for blue and green were reduced to zero.

Location of nucleus ambiguus in
sagittal section 2.4
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Figure 3.13 exemplifies the adjustments made to images in this project and also

shows how a fluorescent signal can be optimised (Figure 3.13, panels C and D).
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Figure 3.13 lmage manipulataon. Panels-A and B are the same image of an exon
4 F|TC-labelled riboprobe hybridising to the Purkinje cells in the cerebellum. Panels
C and D represent the levels of green for images A and B respectively. Before the
image is adjusted the input and output grey levels were 0-255 and after
manipulation the input and output grey levels were 26-83, respectively. Scale bar =
200 pm.

3.4.5 Exon 3 riboprobe

Exon 3 riboprobes showed staining in the middle cerebellar peduncle (Figure 3.14 A

and B). The hybridisation of this probe only to the middle cerebellar peduncle,

suggests that the exon 3 riboprobe was not binding specifically, as exon 3 is present
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in all 15 of the MOR splice variants. It would be expected that the exon 3 riboprobe

would hybridise to all brain structures known to express MOR.

Figure 3.14 CY3-labelled exon 3 riboprobes. Fluorescent photomicrographs of a
sagittal section through the middle cerebellar peduncle (A and B). The exon 3
riboprobe appears to have localised to axonal processes (A). The arrows in panel B
represent regions where the exon 3 riboprobe has localised to axonal processes
containing a nucleus (blue DAPI stain). Scale bar = 50 pm (A and B).

Figure 3.14 shows that the exon 3 riboprobe clearly has not stained message in the

cytoplasm of the neurons in the middle cerebellar peduncle, as no cytoplasmic

staining is visible (panel A). It appears that the exon 3 riboprobes have stained

axonal processes, because when the image is overlaid with the DAPI nuclear stain

(panel B), only some areas of hybridisation show the presence of a central nucleus

(represented by arrows in panel B).

Many different experimental conditions (such as altered hybridisation temperatures

and stringencies) were trialed for the exon 3 riboprobe and Figure 3.14 represents the

only FISH experiment to have produced staining. However, this result could not be

duplicated in any further experiments with the same riboprobe, suggesting that the

results shown in Figure 3.14 are artifactual.
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As mentioned, due to the fact that the exon 3 riboprobes did not hybridise to other

structures of the brain known to express MOR, and as rigorous positive and negative

controls were not performed simultaneously with these FISH, it is likely that the

staining seen in Figure 3.14 does not represent specific localisation of the exon 3

riboprobe to mRNA. The exon 3 riboprobe was sequenced and was shown to share

93Vo identity (68 nt out of 100 nt) with the mu-opioid receptor (refer Appendix B),

suggesting that the riboprobe was correctly designed.

The possible reasons for the lack of significant and reproducible results using the

riboprobe designed to exon 3 are numerous. It is possible that the preparation or use

of the exon 3 riboprobes in FISH experiments resulted in the degradation of the

cRNA by RNase contamination. cRNA degradation would cause the absence of

signal experienced in the majority of experiments using exon 3 riboprobes.

It is also possible that the exon 3 riboprobe was designed to a region of the Oprm

mRNA that is difficult to access. To examine the accessibility of the target region a

computer programme such as mfold (http://www.bioinfo.rpi.edu/-zukerm/rna/) could

be used, this programme is also able to predict stable secondary structure

conformations of DNA or RNA sequences.

Conceivably the incorrect sequence may have been amplified by PCR. The 100 bp

ds DNA template was sequenced, however due to the small size of the template, only

50-70%o of each sequence could be base called with any confidence. It is certain that

the correct exon 3 primers were incorporated, as they can be located in the

chromatogram of the exon 3 sequence (Appendix B) but the primers may have
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misprimed off the template and incorporated a sequence other than that of exon 3. If

this were so, then only 40 nts of the 100 nt riboprobe would be specific for exon 3

(incorporated primer sequence), this would result in the riboprobe not hybridising to

its target under the stringent conditions used in these FISH experiments. Cloning the

exon 3 riboprobe would resolve the above issue.

Synthesising an exon 3 riboprobe template using overlapping oligos would guarantee

that the sequence was correct (as the oligos are manufactured by reputable

companies, such as Invitrogen'u tif" technologies)r therefore eliminating the possibility of a

mispriming event during PCR. This represents a future possibility for the design and

synthesis of a riboprobe template for exon 3 of the Oprm.

Due to the difficulty experienced with the exon 3 riboprobe, FISH experiments were

performed using the exons I, 4, Pvu II generated 5'UTR + exon 1 and MOR 287

fragment riboprobes, as these probes appeared to produce more consistent staining.

3.4.6 Exon 4 riboprobe

Exon 4 is present in 7 of the 15 MOR splice variants and the riboprobe designed in

this project specific to exon 4 was observed to stain the majority of brain structures

where high levels of MOR have previously been reported (Abbadie et al. 2000b).

The exon 4 riboprobe showed staining in the inferior olive (Figure 3.20a and Figure

3.20b), spinal trigeminal nucleus (Figure 3.2I), dendate gyrus (Appendix D),

interposed cerebellar nucleus (Figure 3.15, panel E), lateral reticular nucleus (Figure

3.15, panel C) and the cerebellum (Figure 3.15, panel A).
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The localisation of the exon 4 riboprobe to MOR mRNA in the rat cerebellum is a

significant result, as prior to recent research completed at Victoria University of

Wellington it was generally accepted that DOR and not MOR were expressed in the

rat cerebellum (Ableitner 1994, Abeyta et al. 2002). Data presented in this

manuscript confirms the presence of MOR mRNA within the Purkinje cells of the

adult rat cerebellum (Mrkusich et al. 2003).

Previously ligand-binding studies had provided some evidence for the existence of

MORs in the rat cerebellum during development (Barg and Simantov 1989). RT-

PCR has been utilised to show the presence of MOR mRNA in the rat cerebellum

(Wittert et al. 1996), however it is generally accepted that only DOR is expressed in

the cerebellum.

The results from this project support the current hypothesis that MOR, and in

particular MOR-I mRNA is present in the rat cerebellum. All exon 4 riboprobes

synthesised during this project appear to have hybridised specifically. Control

experiments performed demonstrated the specificity of the exon 4 riboprobes to

hybridise to MOR mRNA, including an RNase digestion to remove any RNA

present in the tissue sections. The FISH executed on RNA digested tissue using an

exon 4 riboprobe resulted in the abolition of signal, suggesting that the exon 4

riboprobes used were hybridising to RNA. However, as RNases are notoriously

difficult to inactivate, one could also conclude that the RNase was not completely

inactivated or removed, therefore resulting in exon 4 riboprobe degradation.
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Further experimentation was carried out in order to determine whether or not the

exon 4 riboprobes were hybridising to RNA, A NaOH hydrolysis of the tissue was

performed before riboprobe hybridisation, using an exon 4 riboprobe that was known

to have localised to specific brain structures that express MORs (Figure 3.15, panel

A).

NaOH hydrolysis of the brain tissue resulted in all RNA being destroyed and unlike

RNase digestion, performing multiple rinses using decreasing concentrations of SSC

removed all remaining NaOH (refer Experimental Procedures). Specificity of the

exon 4 riboprobe for RNA was confirmed by an absence of signal when performing

a FISH on NaOH-treated tissue (refer 3.1, controls, Figure 3.0). This result suggests

that under the stringent conditions used for each FISH the exon 4 riboprobe did not

exhibit non-specific binding to any other cellular constituents e.g. DNA. The

abolition of probe hybridisation signal when using increasingly higher temperatures

and more stringent hybridisation washes, also suggests that this riboprobe was

specific for its cognate mRNA sequence, but this is not strong evidence that the

riboprobe was specific for its target, as all interactions (specific or non-specific) can

be washed off under high temperatures and stringencies. Sequencing of the exon 4

riboprobe template showed that it shared a I00Vo identity to that of the Oprm exon 4

(Appendix B4). Taken together these data suggest the exon 4 riboprobe was most

likely specific for MOR mRNA.
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Figure 3.15 F|TG-labelled exon 4 riboprobes. Fluorescent photomicrographs of
sagittal sections through the cerebellum (A and B), the lateral reticular nucleus (G
and D) and the interposed cerebellar nucleus, including part of the paramedian
lobule located in the upper left corner (E and F). The white arrows indicate
individual neurons within the Purkinje layer stained lor Oprm exon 4 mRNA (A and
E), some stellate and basket cells can also be seen in the molecular layer of the
cerebellum (E). NB The large cluster of neurons to the right-hand side of Panel E
represents the interposed cerebellar nuclei. Scale bar = 200 pm.
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Figure 3.15 represents selected images exhibiting FlTC-labelled exon 4 riboprobe

localisation to large cells of the Purkinje layer of the cerebellum (panel A), the

lateral reticular nucleus (panel C) and the interposed cerebellar nucleus (panel E).

Panels B, D and F represent images of the same structures taken under the CY-3

filter set respectively, these images show that the signal visualised under the FITC

filter set is not tissue autofluorescence.

It has been assumed that the riboprobe to exon 4 is detecting mainly the MOR-I

splice variant due to the relative abundance of this splice variant in comparison to

the other less known splice variants that contain exon 4 (MOR-IG - MOR-lL).

However, it is possible that the exon 4 riboprobes used in this project are detecting

these other splice variants.

One experiment would be to design a riboprobe to exon 11 of the Oprm. A FISH

utilising exon 11 and exon 4 riboprobes labelled with different fluorophores could be

performed, and the riboprobe distribution patterns compared. This would determine

if the exon 4 riboprobe was localising only to MOR-I or whether it was also

localising to the MOR-IG - MOR-IL splice variants as well.

MOR-I 6RNA was readily detected within the Purkinje layer (panels A and E) of

the adult rat cerebellum, the exon 4 riboprobe also localised to a sub-population of

stellate and basket cells within the molecular layer of the cerebellum. The functional

implications of locating MOR-1 mRNA in the cerebellum remains to be determined.

The cerebellum is known to play a role in the learning, planning and execution of

complex motor patterns, such as regulating postural balance and eye movement, as
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well as regulating body and limb movements. Recently the opioid receptors have

been studied by opioid receptor gene inactivation in mice (Gaveriaux-Ruff and

Kieffer 2002). MOR-knockout mice show strongly reduced or abolished locomotive

abilities, implicating a role for MORs in the cerebellar functioning. The

modification of locomotive ability in the MOR-knockout mice may also represent a

unique function for the MORs in the development of the cerebellum.

3.4.7 Exon 9 riboprobe

The majority of FISH experiments performed using the exon 9 riboprobe resulted in

what appeared to be non-specific staining (panel A), with no cytoplasmic staining

visible. Weak stainins of three structures within the adult rat brain was seen, the

lateral reticular nu.r.rj, (Figure 3.16, panel A), the central nucleus of the inferior

colliculus (Figure 3.16, panel C) and the parvocellular lateral reticular nucleus

(Appendix D). As with the exon 3 riboprobe, the exon 9 riboprobe would have been

expected to localise to all the structures known to express the abundant MOR-lC and

MOR- 1D splice variants.

Only one batch of exon 9 riboprobes resulted in cytoplasmic staining (panel C) in a

structure of the brain known to express the MOR-IC splice variant (Abbadie et al.

2000a). However the posthybridisation conditions were less stringent than the

standard FISH conditions determined to give the highest stringency without loss of

signal. In this case the third posthybridisation wash was performed for 15 minutes at

37'C in 2x SSC containing 40Vo deionised formamide, instead of for 20 minutes at

40"C, the reduced stringency may account for the presence of signal (panel C).
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Figure 3.16 Exon 9 riboprobe localisation in adult rat brain. Fluorescent
photomicrographs of sagittal sections through the lateral reticular nucleus (A and B)
and the central nucleus of the inferior colliculus (C and D). Scale bar = 200 pm.

There also appears to be some tissue autofluorescence in the form of cytoplasmic

staining (panel D), which could explain the intensity of the apparent exon 9

riboprobe localisation to the central nucleus of the inferior colliculus (panel C).

Reduced stringency typically results in an increase in non-specific interactions.

Even though the signal in panel C appears to be localised to the cytoplasm, the fact

that this riboprobe did not localise to the other structures in the brain known to

express the MORs containing exon 9, suggests that the apparent localisation is most

probably artifactual.
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The intention of this project was to elucidate the conditions under which all the

riboprobes, including the exon 9 riboprobe, would specifically hybridise and then

continue experimentations with suitable positive and negative controls to confirm

specific localisation.

The exon 9 riboprobe was designed and synthesised toward the completion of this

project and due to time constraints sufficient control experiments were not

performed simultaneously with any of the exon 9 FISH experiments. Without

rigorous control experiments it is difficult to have confidence that the staining

visualised using this riboprobe, is specific for the targeted exon.

The exon 9 riboprobe was synthesised using 4 overlapping oligos, which may

account for the lack of success experienced with this probe. The probability of

mispriming and incorrect sequence incorporation is greatly increased by using more

oligos to produce a riboprobe of 95 nts. An improved design for exon 9 riboprobe

synthesis may produce more significant results than was experienced in this project.

One design proposal could be to clone the MOR-lC splice variant into a plasmid and

create a forward and T7-tailed reverse primer specific to exon 9. Therefore the ds

template required for riboprobe synthesis would be generated by PCR, a method that

has been successful in this project. Due to time constraints this option was not

pursued.
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3.4.8 Hae III generated Exon 1 riboprobe

Exon I is present in 10 of the 15 MOR splice variants, 3 of which contain two

potential translational start points in either exon 1 or exon 11 (MOR-IH - MOR1-J),

(Pan et al. 2001).

This riboprobe was I 17 nts in length and as previously described it was generated by

Hae III restriction digestion of the 287 bp MOR fragment (that ranges from the 5'

UTR of exon I to the end of exon 1). The exon I riboprobe showed staining to all

structures within the brain known to contain MORs. Staining with this riboprobe

occasionally appeared "cloudy" which is typical of non-specific interactions; this

may have been due to the small size of the exon 1 riboprobe, poor riboprobe

synthesis (refer Experimental Procedures) or poor tissue preparation. The Hae III

exon 1 riboprobe appeared to be specific as increasing temperatures and more

stringent hybridisation conditions abolished the probe hybridisation signal.

Figure 3.17 represents FISH experiments where the FlTC-labelled exon l riboprobe

has stained the cerebellum (panels A and C) and the dendate gyrus (panel D). In this

project the granular layer of the cerebellum always appeared to show high

background staining under all filter sets, this can be seen clearly in panel C which is

a magnification of the image represented in panel A. The high background staining

in the granular layer is probably due to the large cell density in this structure

compared with other brain regions.
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Figure 3.17 FITC-labelled exon I riboprobes. Fluorescent photomicrographs of
sagittal sections through the cerebellum (A, B and C) and the dendate gyrus (D and
E). The white arrows represent tissue autofluorescence (B and C); the blue arrows
show individual neurons within the Purkinje layer stained for exon 1 mRNA (C).
Scale bar = 200 pm (A, B, D and E), 50 pm (C).
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A unique characteristic of the Hae III generated exon 1 riboprobe is that it was

designed to a region of the Oprm (exon 1) that has very high sequence homology to

the 6 and r opioid receptors.

Further experiments would have to be designed to determine whether the exon I

riboprobe was hybridising solely to MOR mRNA or to mRNA of the other opioid

receptor subtypes. A competitive hybridisation experiment could be performed to

determine if the Hae III generated exon 1 riboprobe was binding to the other

receptor subtypes. An unlabelled exon 1 riboprobe could be designed and

synthesised to DOR and utilised in a FISH with labelled Hae III exon I riboprobes

specific to MOR. If the DOR displaced the staining visualised using the MOR exon

1 riboprobe, then one could determine that the Hae III generated exon I riboprobe

was not specific for MOR. Conversely a labelled DOR exon 1 riboprobe and an

unlabelled MOR Hae III exon I riboprobe could be used to determine the specificity

of the riboprobe used in this project.

3.4.9 Pvu II riboprobes

The design of this 222 nt riboprobe complementary the 5' UTR + exon I ensured this

riboprobe would hybridise preferentially to the MOR splice variants and not to the

other receptor subtypes, as the 5' UTR is a unique region of the Oprm. Abolition of

probe hybridisation signal using increasingly higher temperatures and more stringent

hybridisation washes suggested that the Pvu lI generated riboprobe was interacting

specifically. Photomicrographs were also captured under the opposite filter set to

that which the probe was labelled with, these images demonstrated no signal,
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confirming that the signal being visualised is not tissue autofluorescence (Figure 3.18

panels B, D and F).

Staining with the Pvu II riboprobes was consistent with other reports in the literature,

they were shown to hybridise to the spinal trigeminal nucleus (Figure 3.18, panel A),

areas 1 and 2 of the frontal cortex (Figure 3.18, panel C), anterior and posterior

interposed cerebellar nucleus (Appendix D), dorsal endopiriform nucleus (Appendix

D) and inferior olive (Figure3.20a, panels D, E and F). In addition staining of the

cerebellum was also seen (Figure 3.18, panel E) providing strong evidence for

specificity of interaction for this riboprobe.

The opioid system has a well-defined role in nociception. In this project the

localisation of riboprobes generated to exons 1, 4, including Pvu 11 riboprobes and

the 287 fragment to the spinal trigeminal nucleus (panel A) was in concordance with

published data. The spinal trigeminal nucleus is the start point in the ascending

trigeminal pathway and is involved in the mediation of facial pain and temperature.

The exon 4, MOR 287 and the Pvu II generated riboprobes were the only probes to

localise to the facial nucleus in this project (results not shown); the significance of

this is still to be determined.

Like the exon 4 riboprobes, the Pvu II generated riboprobes also localised to

individual neurons within the Purkinje and molecular layers of the cerebellum, as

well as to a sub-population of stellate and basket cells within the molecular layer

(panel E).
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Figure 3.18 F|Tc-labelled Pvu ll generated riboprobes. Fluorescent
photomicrographs of sagittal sections through the spinal trigeminal nucleus (A and
B), frontal cortex area 1 (C and D) and the cerebellum (E and F). Scale bar = 200
pm.
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3.4.10 Differential Distribution

A secondary intention of this project was to try and map any differential distribution

of the MOR splice variants using the exons 1,3, 4 and 9 riboprobes. However, as

only the exons l, 4, Pvu 11 and MOR 287 fragment riboprobes produced what

appeared to be specific staining, only these riboprobes were used to study the

distribution of MOR mRNA in this project.

Differential staining of exon 4 mRNA and the Pvu II generated fragment and the

MOR 287 fuagment mRNA was observed in the cerebellum (Figure 3.19a and Figure

3.19b), frontal cortex area 2, inferior olive (Figure 3'20a and Figure 3.20b)'

interposed cerebellar nucleus, spinal trigeminal nucleus (Figure 3.21), rhinal fissure,

and the dendate gyrus.

Cerebellum

Figure 3.19a and 3.19b show staining with various riboprobes to the Purkinje and

molecular layers of the cerebellum. Unique to these images is the appearance of two

layers of Purkinje cells within the Purkinje layer of the cerebellum (Figure 3-l9a

panel F, represented by white arrows), historically only one layer has ever been

reported. It is possible that this other layer does exist, and interestingly it was only

observed when utilising the exon 4 riboprobe, which was probably hybridising to

MOR-I mRNA (over the less abundant MOR-IG - MOR-IL splice variants).
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Figure 3.19a Differential staining of GY3-labelled exon 4 riboprobes and FITC-
labelled riboprobes. Fluorescent photomicrographs of sagittal sections through the
cerebellum. The exon 1 (A) riboprobes and the exon 4 (B) riboprobes appear
yellow where they colocalise (C, depicted by white arrows). Whereas the Pvu ll
generated riboprobes (D) and the exon 4 riboprobes (E) appear to show differential
staining (F). The white arrows depicted in panel F represent the outer and inner
layers of Purkinje cells recognised by the exon 4 and Pvu llgenerated riboprobes,
respectively. Scale bar = 200 pm (A, B, D and E), 150 pm (C), 100 pm (F).
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F'rgqt€ g.tgU Differential staining of GY3-labelled exon 4 riboprobes and
f liC-laletled 287 fragment riboprobes. Sagittal sections through the cerebellum.
The F|TC-labelled 287 fragment riboprobes have localised to Purkinje cells and

stellate or basket cells within the molecular layer (A and D). The CY3-labelled exon

4 riboprobes have localised mainly to the Purkinje cells and can be seen to
hybridise to some cells within the granular layer (B and E). Panels C and F are the
enlarged overlaid images, where one can cleady see differential distribution of the

two riboprobes. The white arrows show perfect tissue/image alignment (F). Scale

bar = 200 Um (A, B, D and E), 100 Ltm (C and F).
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However as no other study reports the presence of two layers of Purkinje cells, this

double layer could perhaps be explained as an artefact of the tissue preparation. The

tissue was cut 12 pm thick, although it is possible that the tissue sections were

thicker than was intended, due to cutting technique or the orientation of the tissue on

the cryostat chuck. This could give the appearance of a double layer, if signal from

riboprobes hybridised deep to superficial layer Purkinje cells penetrated through the

tissue, giving the appearance of an outermost layer.

Initial examination of the overlaid images revealed what appeared (Figure 3.19a and

3.19b panels C and F) to be tissue or image misalignment. Upon closer inspection

one is able to see perfect alignment around a tear in the tissue (Figure 3.19b panel F,

represented by white arrows). So the differences seen in riboprobe distribution are

unlikely to be due to tissue or image misalignment.

The signal detected is not likely to be fluorescence quenching as this phenomenon

relies on high loading concentrations or high labelling densities of the probes being

used (Gregory 1996). Approximately 6 ng of riboprobe was added to each

hybridisation reaction, which is not a high loading concentration and the labelling

densities of each riboprobe, regardless of the labelling ratio used, was very low due

to the short length of all the riboprobes in this project.

Another factor that influences fluorescence quenching is the proximity of the excited

fluorophore to the acceptor molecule. It is generally accepted that in order for the

energy transfer to occur the acceptor molecule must reside physically close

(generally in large clusters) to the excited fluorophore (Abramowitz et al. 2003).
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Figure 3.19a, panel F represents distinct distribution of the two riboprobes, where

one can clearly see that the Purkinje cells are neither in clusters nor molecularly

physically close to one another.

Areas where both probes have colocalised to the same neuron appear yellow once the

images are overlaid (Figure 3.19a, panel C). Interestingly the only experiments

where the exon 4 riboprobe appears to always colocalise to the same neuron are

those performed with the Hae III generuted exon I riboprobe.

Inferior Olive

The inferior olive (also known as inferior olivary nucleus) is located lateral to the

pyramidal tract on the medulla and receives sensory and motor information, via

numerous tracts about the movements the cerebellum has just performed. This

information is processed by the inferior olive and sent back to the cerebellum via the

inferior cerebellar peduncle to inform the cerebellum how well the movement was

performed (Hendelman 1994).

All four riboprobes used in the differential distribution experiments localised to the

inferior olive (Figures 3.20a and 3.20b). Localisation of the exon 4 riboprobe to this

region may suggest that the MOR-lG - MOR-lL splice variants are also expressed

here. However, further experimentation would be required to support this

supposition.

110



Figure 3.20a FISH images of CY3-labelled exon 4 riboprobes and FITC-
fabef fed exon I (Panels A, B, C) and Pvu ll generated riboprobes (Panels D, E,
F). Fluorescent photomicrographs of sagittal sections through the inferior olive. The
Hae lll generated F|TC-labelled exon 1 riboprobe (A) appears to colocalise to all
neurons expressing exon 4 (B) within the inferior olive (G). Whereas the Pvu ll
generated riboprobes (D) appears to be differentially expressed to the CY3-labelled
exon 4 riboprobes (E) in the neurons of the inferior olive (F). Scale bar = 200 pm
(A, B, D and E), 150 pM (C), 175 pm (F).
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Figure 3.20b Differential staining of CY3-labelled exon 4 riboprobes and
F;TG-labelled MOR 287 fragment riboprobes in the inferior olive. These images
were captured under the 10x objective. Both the MOR 287 fragment riboprobes (A)

and exon 4 riboprobes (B) are dispersed throughout the inferior olive (G). At higher
magnification (D) it is possible to see differential distribution of these two riboprobes.
The arrows in panel D represent neurons stained only for exon 4 and blue arrows
represent neurons stained only for the MOR 287 fragment mRNA. Scale bar = 400

Um (A, B and C), 200 pm (D).

Figures 3.20a, panel F and Figure 3.20b panels C and D show differential staining of

the riboprobes, where there is clear cytoplasmic staining in both cases. The exon 4

riboprobe appears to be expressed in certain neurons of the inferior olive where the

MOR 287 fragment riboprobes are not (white alrows, Figure 3.20b, panel D) and

vice versa (blue anows, Figure 3.20b, panel D). One very important consideration

that is highlighted by Figures 3.20a, panels B and E, is signal intensity. The short

length of the riboprobes utilised in this project produced many technical difficulties,

not only in purification but also in discrimination between artefacts and valid signal.
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To generate a CY3-labelled exon 4 riboprobe, a labelling ratio of 1:5, CY3-

UTP:UTP was used; this resulted in 5Vo of the exon 4 riboprobe being labelled with

CY3-UTP. Because these short riboprobes are not densely labelled the signal

visualised can be very close to the limits for signal detection, due to the signal being

so close to the baseline or backsround noise levels.

This phenomenon is also illustrated by the MOR 287 fragment riboprobe; the

reduction in signal intensity is evident as this fragment is digested to form smaller

riboprobes. The 222 nt Pvu II riboprobe produces signals at almost an equal

intensity to the MOR 287 fragment riboprobe, whereas the Hae III genented exon I

riboprobe (which is ll7nt in length) produces a marked reduction in signal intensity

(Figure 3.21, panels C and F). The reduction in signal intensity is most probably due

to the decrease in T. and specific content, as well as the decrease in specific activity

due to the short length of these riboprobes.

Spinal Trigeminal Nucleus

In this project the exon 4 riboprobe and the MOR 287 fragment riboprobe localised

to different neurons in the spinal trigeminal nucleus (Figure 3.21, panel F). But

again the exon 1 riboprobe colocalised with the exon 4 riboprobe (Figure 3.21, panel

c).

The only difference between the Pvu 11 generated riboprobe and the Hae III

generated exon 1 riboprobe is the absence of the 5' UTR. The 5' UTR was cleaved

off the MOR 287 fragment by restriction digestion using Hae III, and without the 5'

UTR the exon I riboprobe exhibits colocalisation. There are several explanations for
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this phenomenon, it is possible that as mentioned in section 3.4.8, the exon I

riboprobe is localising to the 6 and r opioid receptors, competitive hybridisation

experiments using riboprobes to exon 1 of DOR and KOR would determine if the

MOR exon 1 riboprobe was binding to these other opioid receptor subtypes.

An essential part of spatial control of gene expression is mRNA localisation; a

general model for mRNA localisation by active transport involves mRNA

recognition, followed by association of a core ribonucleoprotein complex containing

motor proteins for deliverance of the mRNA to the destination site. mRNAs can be

localized by local protection from degradation, diffusion to a localised anchor, and

by active transport (Palacios and St Johnston 2001). mRNA localisation typically

requires specific cls-acting signals that are generally found in the 3' UTR, however

recent examples indicate that these cis-acting signals can also be located in the 5'

UTR (Jansen 2001).

It is therefore possible that the differential staining visualised using riboprobes to

exon 4 and the MOR 287 fragment is due to the hybridisation of the MOR 287 and

Pvu II riboprobes to mRNA destined for localisation in the Purkinje cell layer of the

cerebellum. To test this hypothesis one could differentially label one riboprobe to

the 5' UTR and the other to exon 1. The results of this FISH should prove whether

the riboprobes in this project were hybridising to mRNA destined for the Purkinje

cell layer and the translated mRNA of the Purkinje cells. As differential expression

of a 5' UTR riboprobe and exon 1 riboprobe would indicate the difference between

untranslated mRNA (possibly prior to localisation) and translated mRNA minus the

5'UTR.
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Figure 3.21 Ditterential staining of CY3-labelled exon 4 riboprobe and FITC-
labeffed exon 1 and MOR 287 tragment riboprobes in the spinal trigeminal
nucleus. The exon 4 (A) and exon 1 (B) riboprobe colocalised to neurons and
axonal processes in the spinal trigeminal (C). Whereas the exon 4 (D) and MOR
287 fragment (E) riboprobe appears to be differentially distributed in the neurons of
the spinal trigeminal nucleus (F). Scale bar = 200 pm (A, B, D and E), 100 pm (C
and F).
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3.5 Conclusions

Without further experimentation it is impossible to support the hypothesis that the

exon 4, Pvu II generated and MOR 287 fragment riboprobes are localising to

different MOR splice variants, such as MOR-1G and MOR-1, respectively.

As mentioned MOR-IG - MOR-IL splice variant distribution has only been

examined using RT-PCR, a sensitive technique that involves the amplification of the

target. These splice variants have been reported to be present in very low amounts

and as such, ir is highly unlikely that the riboprobes utilised in this project were

detecting these less abundant splice variants'

The results of this project also suggest that FISH could be used to track the

distribution patterns of untranslated and translated mRNA, however further

experimentation would be required to determine if these results could be repeated

usins fresh frozen tissue.

The identification of MOR mRNA in the cerebellum is in concordance with previous

experiments conducted by Eli Mrkusich in the same laboratory (Mrkusich et al'

2003). The exon l, Pvu 11, MOR 287 fragment and exon 4 riboprobes designed and

synthesised in this project, all localised to Purkinje cells in the Purkinje layer, basket

cells and stellate cells in the molecular layer of the cerebellum.

The presence of two layers of Purkinje cells in the Purkinje layer of the cerebellum

has not been reported before and may be due to the presence of untranslated mRNA

destined for the Purkinje cell layer. This data was reproduced in three separate
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experiments using two different rat brains, but could only be considered significant if

these results could be reproduced using fresh frozen tissue, as the background and

amount of artefacts encountered are greatly reduced using this tissue.

Overall I believe the use of these new novel short riboprobes is a feasible' but

technically difficult approach for studying the distribution patterns of the MOR

splice variants. The problems encountered using short riboprobes were numerous;

including low specific content, difficulty in purification, reduced labelling density

and difficulty designing positive controls. However short riboprobes are still more

effective than short oligos, as the hybrids produced using oligos are less stable than

riboprobe hybrids, oligos have limited labelling methods and have a much lower

specific activity than riboprobes (Feldman et al. 1997).

3.6 Future work

Future work on the analysis of MOR splice variant distribution should include the

design and synthesis of a sense riboprobe to each of the riboprobes used in this

project. The utilisation of a sense riboprobe in FISH experiments should result in the

absence of signal, this result would confirm the specificity of each riboprobe for its

target.

Further research utilising the riboprobes designed in the present study is required,

before any conclusions can be made about the possible significance of the

differential distribution discovered. As the specific roles of each splice variant

remains unknown, one could only hypothesise that the differential distribution may,

as in other cases (Forlano et al. 2000), have a functional role in development. All
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things considered, the identification of differential distribution by FISH using small

fluorescently labelled riboprobes designed to exons of the Oprm, provides support to

the current hypotheses that the splice variants of the opioid system are differentially

distributed and have unique, if not overlapping, functions (Abbadie et al. 2001)'

My future recommendation for this project would be to produce riboprobes specific

to exons of the Oprrn that are approximately 150 nt in length, by PCR off a plasmid

containing the target sequence of interest. Approximately 257o of a 150 nt riboprobe

would be labelled using a 1:5 labelling ratio. This would result in a higher signal to

background ratio aiding in the interpretation of localisation data.

This projecr highlights the limitations of using FISH as a quantitative method,

because short riboprobes produce signal very close to background levels. More

information could be obtained about mRNA transcript levels if FISH were combined

with a signal amplification method (such as antibodies or TSA). Even though this

would result in the loss of quantitative data produced by FISH, much better

localisation signals could be obtained aiding the in siru analysis of MOR splice

variant distribution in rat brain.
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Chapter 4

Experimental Procedures

4.0 Primer svnthesis

All primers and overlapping oligonucleotides were synthesised by Invitrog.n'u ,,r"

technologres, the scale of synthesis was 50 nmole and purification was achieved by

desalting. Table 4.1 gives the sequences of primers used to generate the MOR-I

specific CLiP and MOR-1 target template.

Table 4.0 Primer sequences used to generate GLiPs and MOR'I target
template. CL|P primer sequences are shown in black type. Nucleotides
complimentary to pBSSK- are shown in bold type and the MOR-1 target specific 'tail'
is represented by normal black type. The primers used to generate the MOR-1

target for CL|P ligation in solution, are named MOR.794 forward or reverse. The
'794' denotes the size of the product in base pairs. NB The phosphorylated primer

is MOR.B1.Fwd.

119

Name of Product Product Sequence
MOR.Al.Rev 5' BIOTIN CCA GTT GCA GAC GTT GAC GAT TT 3'

MOR.A2.Rev 5' CCA GTT GCA GAC GTT GAC GAT TTC GTT

GTC AGA AGT AAG TTG 3'

MOR.B l.Fwd 5' ATC CTC TCT TCT GCC ATC GGT CT 3'

MOR.82.Fwd 5' ATC CTC TCT TCT GCC ATC GGT CTA CGG

ATG GCA TGA CAG T 3'

MOR.B3.Fwd 5' ATC CTC TCT TCT GCC ATC GGT CTA CGA

GTG GGT TAC ATC GA 3'

MOR.794.Fwd 5' CCT GCC GCT CTT CTC TGG TTC 3'

MOR.794.Rev 5' CCT GCC TGT ATT TTG TGG TTG 3'



Table 4.1 shows the primer sequences used to generated riboprobes to exons 3,4 and

9 of the Oprm gene. The MOR 287 fragment was generated by PCR using the

MOR.794.Fwd primer (Table 4.0) and the MOR.287.T7'Rev primer (Table 4.1).

Table 4.1 Sequences used to generate riboprobes to specific exons of MOR
(e.g. Ex3, exon 3). Nucleotides complimentary to the T7 RNA promoter sequence
are shown in bold. The incorporation of this sequence allows for the synthesis of

single-stranded riboprobes using the DNA-dependent T7 RNA polymerase

(lnvitrggen'" 1;y" technorosies). 
* DenOteS primerS and # denOteS Overlapping

oligonucleotides. MOR .287.T7.Rev is an internal reverse primer located within exon

1 of the Oprm gene.

4.L Phosphorvlation of primers

Primers were phosphorylated as previously described (Day et al. 1995). Briefly, 1

nmole of primer was incubated for 45 minutes at 37"C with 10 Units of T4

polynucleotide kinase (Invitrogen'" lir" ,""hnologi".), in 70 mM Tris-HCl pH 7 .6 Forward

Reaction Buffer, containing 10 mM MgCl2, 100 mM KCl, 1 mM 2-mercaptoethanol

Name of Product Product Sequence
*MOR.Ex3.primer.Fwd 5' CCT TCA TCA TGC CGG TCC T 3'

xMOR.Ex3.TT.primer.Rev S' TIA TAC GAC TCA CTA TAG GGT GCG

GAC ACT CTT GAG TCG T 3'

#MOR.Ex4.Fwd.2 Y CAC GCT GCC ATC TAC TTG GAA TCA GGT

TGC TGT CAG GGT TTG TGG 3'

#MOR.Ex4.T7.Rev.2 5' TAA TAC GAC TCA CTA TAG GGA
CCT CCC ACA AAC CCT GAC AGC A 3'

GCG

#MOR.Ex9.A.Fwd 5' TTC ACT CAT AAA GGT TAG GAG TTG TAA
GTG TAA TGT C 3'

#MOR.Ex9.B.Fwd 5' ATG TAT TGT CTG GTT TGC CGT AAT GCG

TGT TTT CAT CC 3'

#MOR.Ex9.C.Rev 5' GCA AAC CAG ACA ATA CAT TAG ACA TTA
CAC TTA CAA CT 3'

#MOR.Ex9.D.Rev 5' TAA TAC GAC TCA CTA TAG GGA TGA
AAA CAC GCA ATA 3'

MOR.287.T7.Rev 5' TAA TAC GAC TCA CTA TAG GGC GCA
TGG ATC GGA CTG GTG 3'
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and 500 pM ATP in a final volume of 50 pL. The T4 polynucleotide kinase was heat

inactivated at 95'C for 10 minutes; these primers could then be used in a PCR for

CLiP svnthesis.

4.2.1 Restriction digestion of pBSSK' containing the 5' UTR and

exon I of Oprm

pBluescript@ SK-(pBSSK-) phagemid (Stratagene) is a 2958 bp plasmid that confers

ampicillin resistance and has a multiple cloning site flanked by T3 and T7 RNA

polymerase promoters. E.coli cells transformed with pBSSK- plasmids containing

the 5' UTR and exon 1 of the Oprm gene were kindly gifted by Eli Mrkusich. This

plasmid was linearised by restriction digestion to be used as template for the first

round PCR to produce the ds CLiP template (4.2.2). I Pg of pBSSK was digested

with 15 Units of Hind III (10 U/pL, Roche Diagnostics) in l0 mM Tris-HCl pH 7.5

containing 10 mM MgCl2, 50 mM NaCl, 1 mM l,4-Dithioerythritol (DTE) for 4

hours at 3J'C. After the digestion heating the sample to 65"C for 15 minutes

inactivated the restriction endonuclease.

4.2.2 PCR synthesis of CLiP template

Various size CLiPs were synthesised by PCR amplification using differing primer

pairs (Table 4.1) to the linearised pBSSK-, Each 50 pL CLiP template PCR

contained 400 nM each forward and reverse primers and 5 ng of the linearised

plasmid. The reaction buffer was 20 mM Tris-HCl (pH 8.4) containing 50 mM KCl,

1.5 mM MgCl2, 200 pM dNTPs and 0.5 Units Platinu-@ Taq DNA Polymerase

(Invitrogen"rif" ,""hnolog,"r). After an initial denaturation at 94'C for 4 minutes,
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amplification was achieved by 30 cycles of 94"C for 30 seconds, 55"C for 30 seconds

and,i2"C for 1.5 minutes, after which there was an extension time of 72'C for 7

minutes.

4.2.3 PCR synthesis of CLiPs

Each 50 pL reaction contained 400 nM of the phosphorylated forward primer and

400 nM of the biotinylated reverse primer as well as 5 ng of PCR amplified CLiP

template. The ThermoPol reaction buffer (New England Biolabs@) contained 20 mM

Tris-HCl pH 8.8 at25"C with 10 mM KCl, 10 mM (NH+)zSOa,2n7NIMgSOa,,0.l7o

Triton X-100, 6.25 pM modified Fluorescein-12-dUTP (Roche Diagnostics),43.75

pM dTTP, 50 pM each dATP, dGTP, dCTP (giving a final labelling ratio of 1:8) and

2 units of Deep Ventn@ (exo-) DNA Polymerase (New England Biolabs).

Denaturation and amplification was achieved by 25 cycles of 95"C for 30 seconds

and 65"C for 1 minute, extension was achieved by 72"C for 3 minutes. Products

were then analysed by electrophoresis using a2.5Vo agarose gel.

Double-stranded PCR products were analysed by electrophoresis using 2.5Vo asarose

gels containing 320 ng/ml ethidium bromide, buffered with TAE buffer (40 mM

Tris-acetate containing 2 mM Na2EDTA). Samples were loaded in buffer

containing, O.25Vo bromophenol blue and 30%o glycerol, subjected to gel

electrophoresis (typically l24Y for 30 minutes), and visualised using an ultra violet

transilluminator.
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4.4 Purification of PCR products

4.4.1 Agarose gel extraction

PCR products were extracted from a 2.5Vo agarose gel after electrophoresis and

purified using the CONCERT'" Rapid Gel Extraction System (Gibco BRL@), as per

the manufacturers instructions. Briefly, the correct band was excised from the gel

and weighed, 60 pL of the Gel Solubilisation Buffer [(L1), containing sodium

perchlorate, sodium acetate and TBE-solubiliser] was added for every l0 mg of gel

and incubated at 50'C for 15 minutes or until gel was dissolved. The agarose gel and

Ll mixture was added to a spin cartridge and centrifuged at 12 000 x g for I minute,

and the flow-through discarded. To this spin cartndge a further 500 pL of Ll buffer

was added, then incubated at room temperature for I minute before being centrifuged

at 12 000 x g for 1 minute and the flow-through again being discarded. 700 pL of

the Wash Buffer [(L2) containing NaCl, Na2EDTA and Tris-HCl] was added to the

spin canridge and incubated at room temperature for 5 minutes before being

centrifuged at 12 000 x g for I minute. The flow-through was discarded and the spin

cartridge was centrifuged again at 12 000 x g for a further minute to remove residual

L2. The spin cartridge was transferred to a new collection tube and 50 pL of

preheated TE buffer (70'C) was added before being incubated at room temperature

for 1 minute. The purified PCR product was then eluted by centrifugation at 12 000 x

gfor 2 minutes.

4.4.2 PCR purification kit

PCR products were purified using the CONCERTTM Rapid PCR purification System

(Gibco BRL), as per manufacturers instructions. Briefly, an aliquot of TE buffer

(containing l0 mM Tris-HCl pH 8.0 and I mM Na2.EDTA) was preheated at10"C
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before beginning. 400 pL of Binding Solution (containing guanidine hydrochloride,

Na2.EDTA, Tris-HCl and isopropanol) was added to the amplification reaction and

mixed thoroughly. This was then added to a spin cartridge that was placed inside a 2

mL wash tube and centrifuged for 1 min at maximum speed. The flow-through was

discarded and 700 pL of wash buffer (containing NaCl, Na2.EDTA, Tris-HCL and

ethanol) was added into the spin cartridge. This was centrifuged for 1 minute, the

flow-through was discarded and the tube was centrifuged for a further minute to

remove all residual wash buffer. The spin cartridge was transferred to a fresh 1.5 mL

recovery tube, and 50 pL of the preheated TE buffer was added to elute the DNA

from the spin cartridge. This was incubated at room temperature for 1 minute,

followed by a2 minute centrifugation at maximum speed.

4.5 Sinele-stranded CLiP svnthesis

4.5.1Primer extension

Single-stranded CLiPs were prepared by amplifying from ds CLiP template using the

phosphorylated forward primer (Table 4.0). Each 50 pL primer extension

amplification contained 400 nM of phosphorylated MOR.Bl.Fwd and 4 ng of the ds

CLiP template. The reaction buffer was 20 mM Tris-HCl pH 8.8 containing 10 mM

KCl, 10 mM (NH+)zSO+, 2 mM MgSOa and 0.lVo Titon-X-lO0, 50 pM dNTPs, 5

pM Fluoroscein-12-dUTP (Roche Diagnostics) (giving a labelling ratio of I:5) and 2

Units of Deep Ventp@ lexo-) DNA Polymerase (New England Biolabs). Linear

amplification was achieved with 35 cycles of 95"C for 30 seconds and 65'C for 1

minute, then7?"C for 3 minutes.
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4.5.2 Affinity capture

The ds CLiPs were purified by electrophoresis on a2.5%o agarose gel and the correct

size product was excised. The gel slab was solubilised at 50"C in 3 volumes of the

Gel Solubilisation Buffer [(L1), containing sodium perchlorate, sodium acetate and

TBE-solubiliser, from the QQNCERT" Rapid Gel Extraction system (Gibco

BRL9I, until the agarose was dissolved. 100 pL of DEPC-H2O was added to 50 pL

of l0 mg/ml streptavidin-coated paramagnetic beads (Roche Diagnostics), which

had been washed previously in 1 mL of TNE buffer (10 mM Tris-HCl pH 8'4

containing 500 mM NaCl and 5 mM Na2EDTA), and mixed by vortexing. The beads

and dd-HzO were then added to the solubilised agarose gel slab and mixed for 10

minutes to allow the biotin labelled CLiP to bind. A magnet was used to capture the

CLiP and the dd-HzO was pipetted off, the beads were then washed twice with 1 mL

TNE buffer (as above) and once with 1 mL dd-HzO, all traces of ddH2O were

removed. Incubating rn 25 pL of fresh 25 mM NaOH, for 1 minute at room

temperature, eluted the ss CLiP (top strand). The ss CLiP was then desalted into

water using a sephadex G-25 spin column (Sigma Aldrich, Section 10), dried in a

vacuum centrifuge and resuspended in TE buffer (10mM Tris-HCl pH 8.0 containing

I mM Na2EDTA) to prevent CLiP degradation.

4.6 PCR amplification of tareet for CLiP lieation

MOR-1 target was prepared by amplifying from Pvu II digested pBCKS* containing

MOR-I, using the appropriate forward and reverse primers (Table 4.0). Each 50 pL

reaction contained 400 nM of each primer and approximately 5 ng of linearised

plasmid clone. The reaction buffer was 20 mM Tris-HCl pH 8.4 containing 50 mM

KCl, 200 pM dNTPs, 1.5 mM MgCl2 and 0.5 Units of Platinum@ Taq DNA
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Polymerase (Invitrogen'"r,f" ,".hnotog,"r). After an initial denaturation of 94"C for 3

minutes, 30 thermal cycles of 94'C for 30 seconds, 60'C for 30 seconds and72"C for

1 minute were performed, followed by a final extension of 72'C for 7 minutes.

4.7 CLLP lisation asins. Thermus thermonhilus (Tth\ liease

PCR amplified MOR-I was used as the target for CLiP ligation. Each ligation

reaction contained approximately 8 ng of the labelled CLiP (4 VL of the NaOH

eluate) and 0.5 pmol of the target in a 20 pL volume. The reaction buffer was 50

mM Tris-HCl pH 8.5 containing 10 mM MgClz, 50 mM KCl, 10 mM DTT, I mM

NAD* and 40 Units of Tthligase. After an initial denaturation of 94'C for 5 minutes,

hybridisation/ligation was achieved by 10 thermal cycles of 94'C for 30 seconds and

55"C for 10 minutes.

4.8 Analvsis of labelled ucts and
PRISM- 377 DNA sequencer

Fluorescently labelled PCR products and CLiPs were separated using an ABI

PRISM@ 377 DNA sequencer utilising a denaturing (urea) 4Vo polyacrylamide gel

with a 12 cm "well-to-read" distance. Electrophoresis was performed at 750 volts

for 3 hours in 1 x TBE buffer (90 nM Tris-borate, 2 mM Naz.EDTA). 1 pL of

sample was loaded in 2 pL of loading buffer containing 12: 2: 1 deionised

formamide: 50 mg/ml blue dextran/ 25 mM Na2.EDTA: GENESCAN@-350

(TAMRA) size standard or -2500 (ROX) size standard (PE Applied Biosystems).

All samples were denatured for 2 minutes at 95'C, before being snap chilled prior to

loading. The resulting file was analysed using GeneScan@ Analysis Software version

3.7.
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Genomic DNA was quantified by measuring the absorbance in a spectrophotometer

at 260 nm (Azoo x 50 = PglmL). DNA was also quantified using a SYBR Green II

assay (refer section 4.16,2). Using dilutions of an oligonucleotide with a known

concentration produced the standard curve for this assay.

4.10 Bacterial cultures

4.l0.L Maintenance of bacterial cultures

50 mL of sterilised LB broth (Gibco BRL) containing either 75 pglmL of ampicillin

or 30 pglml of chloramphenicol was inoculated with a loop of frozen stock colonies

and grown overnight in a shaking incubator at 37"C and 230 rpm to produce large

quantities of the transformed colonies to be isolated using a miniprep (see 4.10'2).

l07o agar plates were produced by making 500 mL of LB broth with 59 of agar that

was sterilised by autoclaving. The antibiotic of choice was added before pouring

plates and blue-white selection was used to determine which colonies contained the

MOR-I gene insert. 40 pL of 20 mg/mL 5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside (Xgal) and 8 pL of 25 mglrrl- isopropyl thiogalactoside (IPTG)

was mixed and spread aseptically onto each l0%o agar plate, this was allowed to dry

before the plate was streaked with an inoculated loop of colonies. Blue colonies will

form when there are no transformed bacteria (as the p-galactosidase gene is

expressed) and white colonies will form when the bacteria are transformed (0-

galactosidase gene is inactivated by inserted gene). The plate was incubated at 37'C

overnight and white colonies were selected.
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4.10.2 Purification of plasmids using miniprep

A single colony was used to inoculate 3 ml of LB broth (Gibco BRL), containing a

final concentration of 75 ttglmL ampicillin. The inoculated broth was glown

overnight in a shaking incubator at 37"C and 230 tpn. 3mL of cells were

centrifuged at 15300 x g for 30 seconds at room temperature, the supernatant was

discarded and the tubes were inverted to remove all traces of growth broth. The

pellet was resuspended in 200 pL of 10mM Tris-HCl pH 8.0 containing 10 mM

Na2EDTA and 25 p$ml, RNase A, then vortexed for 2 minutes to ensure thorough

resuspension. 200 y:,L of 0.2 M NaOH containing l%o wlv SDS was added and the

tube was gently inverted several times to lyse bacterial cell wall, before being

incubated for 5 minutes at room temperature. 200 pL of 3 M potassium acetate pH

6.0 was added to precipitate the genomic DNA, the tube was then inverted and

centrifuged at room temperature for 5 minutes at 15300 x g. The supernatant was

removed and 0.7 volumes of isopropanol was added, mixed and left to incubate at

room temperature for 5 minutes. The DNA was pelleted by centrifugation at 15300 x

g for 10 minutes and the isopropanol supernatant was removed. 200 prl- of ice-cold

jy7oEIOH was then added to remove any remaining salts, the tube was centrifuged

for 3 minutes at 12 000 rpm then inverted to decant excess EtOH, pellet was allowed

to air dry before being resuspended in 100 pL of TE buffer (10 mM Tris-HCl pH 8.0

containing 1 mM Na2EDTA).

Further purification is required if the DNA is to be of a suitable quality for DNA

sequencing or probe synthesis, this was achieved by phenol chloroform extraction.

Briefly, an equal volume of phenol/chloroform was added then vortexed until an

emulsion formed, the tube was centrifuged at 15300 x g for 5 minutes at room
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temperature and the aqueous phase was retained' To remove any traces of proteins'

equal volumes of chloroform/isoamyl alcohol (24:I) were added and the tube mixed

briefly before being centrifuged at 15300 x g for 5 minutes. The upper aqueous

phase was removed and the amount estimated, to this 0'1 volumes of 3 M NaAc pH

5.0 and 2.75 volumes of ice-cold l\OVo EIOH were added and incubated at -20"C for

30 minutes. The DNA was pelleted by centrifugation at 4'C for 10 minutes at 15300

x g and the pellet washed with 200 pL of ice-cold 707o EIOH and centrifuged as

before for 5 minutes. The tube was inverted and air-dried to remove all traces of

EIOH, the pellet was resuspended by vortexing vigorously in 50 pL of TE buffer (10

mM Tris-HCl pH 8.0 containing I mM Na2EDTA).

4.10.3 Stocking and restoring plasmids

A final concentration of L5Vo steile glycerol was added to the cloned plasmid vector

giving a final volume of 1 mL, this was frozen down in cryotubes at -80"C'

Plasmids were restored by scraping an inoculation loop over the top of the frozen

stock without allowing sample to thaw. The loop was then spread over an agar plate

and incubated at 37'C overnight.

4.l"L Sephadex G-25 spin columns

Sephadex G-25 (Sigma Aldrich@) spin columns were used for the removal of salts

and purification of ss CLiPs and sequencing reaction. A general purpose spin

column was placed in a 1.5 mL microcentrifuge tube and prepared by adding 700 pL

of sephadex G-25 resin resuspended in destilled, deionised-HzO (dd-H2O), and

centrifuged at 420 x g for I minute. 50pL of ddHzO was added to the spin column

and centrifuged again at 420 x g for 1 minute, the sephadex G-25 spin column was
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then transferred to a new 1.5 mL microcentrifuge tube, before the addition of no

more than 50 pL of the sample to be purified. This was centrifuged at 420 x g for 1

minute and the desalted product, if required, was spun in a vacuum centrifuge at

45'C until dried.

4.12.1Generation of ds DNA template for exon 4 and 9 riboprobe
synthesis using overlapping oligos

Overlapping oligonucleotides were used to generate a riboprobe template by PCR

fill-in. Each 50.0 prl- PCR amplification contained 1 pM of each oligonucleotide.

The reaction buffer was 20 mM Tris-HCl (pH 8.4) containing 50 mM KCl, 2'5 mM

MgCl2, 200 pM dNTPs and 2Units Platinum@ Taq DNA Polymerase (Invitrogen-u1iL

technorogres). An initial denaturation and amplification was achieved with 5 cycles of

95.C for 30 seconds and 60"C for 10 seconds. A secondary denaturation, then

extension was achieved by 20 cycles of 95'C for 30 seconds and72"C for 5 seconds.

4.12.2 Generation of exon 4 and 9 riboprobe templates using second

round PCR fill-in

Templates for riboprobe synthesis were prepared by second round PCR off the exon

template (see above). Each 50 pL PCR amplification contained 200 nM of

appropriate forward and reverse primer pairs and I ng of PCR generated exon

template. The reaction buffer was 20 mM Tris-HCl (pH 8.4) containing 50 mM KCl,

2.5 mM MgCl2, 200 pM dNTPs and, 2 units Platinum@ zaq DNA Polymerase

(Invitrogen'u l,f. r."hnotogi.r). The ds DNA template for exon 4 riboprobe synthesis was
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generated by 30 cycles of g4oCfor 30 seconds and 55'C for l5 seconds. The exon 9

ds DNA template was generated by 5 cycles of 95'C for 30 seconds and 55'C for 10

seconds, followed by 20 cycles of 95'c for 30 seconds and 72'C for 5 seconds.

4.12.3 Generation of ds DNA template for riboprobe synthesis using

the Klenow fragment

Overlapping oligonucleotides were used to generate a riboprobe template using the

Klenow enzymq which is the large fragment of DNA polymerase I that has been

treated with subtilisin to inactivate DNA polymerase I 5'=>3'exonuclease activity.

Each 30.0 pL amplification contained 5 pM of each oligonucleotide. The reaction

buffer was 20 mM Tris-HCl (pH 8.4) containing 50 mM KCl, 10 mM MgCl2,2A0

pM dNTPs and 2 Units of Klenow enzyme (Invitrogen life technologirr). After an initial

denaturation of 95"C for 2 minutes, there was a slow ramp down to 37"C over 10

minutes, at 3l"C 2 Units of the Klenow enzyme was added and this was held at 37'C

for 30 minutes for extension and then 72'C for 2 minutes before being snap chilled

on ice.

4,12,4 Polishing of 3'-ends using T4 DNA polymerase

T4 DNA polymerase (Roche Diagnostics) was used to remove any non-templated

adenines added to PCR products by the action of PLATINUM@ Taq DNA

polymerase (Invitrogen'u l,f" t".hnotogi"r). After PCR amplification each sample was

heared to 99'C for l0 minutes to inactivate the PLATINUM@ Iaq DNA polymerase.

The samples were cooled to room temperature before 0.5 Units af T4 DNA

polymerase was added. The samples were then heated to 37'C for 5 minutes before
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being heated to 75'C for l0 minutes to inactivate the T4 DNA polymerase' This

removed any single-stranded overhangs before riboprobe synthesis.

4.13 Generation of riboprobe temnlate usine PCR and restriction

dieestion

4.L3.LRestriction digestion of the mammalian GATEWAY
pDESTTM 12.2 vector containing MOR-L

E.coli cells transformed with the mammalian GATEWAY pDEST'"12.2 vector

(Invitrogen'u lif" t""hnologi".) contain\ng MOR-1 was kindly gifted by Bronwyn Kivell. I

pg of rhe rhis vecror was digested with 15 Units of Hind III (10 U/!tL, Roche

Diagnostics) in 10 mM Tris-HCl pH 7.5 containing 10 mM MgClz, 50 mM NaCl, I

mM l,4-Dithioerythritol (DTE) for 4 hours at 37"C. Heating to 65'C for 15 minutes

inactivated the restriction endonuclease.

4.13.2 PCR synthesis of exon 3 riboprobe template

Template for the exon 3 riboprobe was prepared by PCR amplification with the

correct forward and reverse primers to the MOR-I gene cloned into the Mammalian

GATEWAY pDEST'"12.2 vector. A 50 pL PCR amplification contained

approximately 5 ng of the linearised GATEWAY vector with 200 nM each of

MOR.Ex3.primer.Fwd and MOR.Ex3.T7.primer.Rev. The reaction buffer was 20

mM Tris-HCl (pH 8.4) containing 50 mM KCl, 1.5 mM MgCl2,200 pM dNTPs and

2 Units Platinum@ Taq DNA Polymerase (Invitrogen tife technologies). After an initial

denaturation at94"C for 4 minutes, amplification was achieved by 30 cycles of 95'C

for 30 seconds, 50"C for 30 seconds and12"C for I minute and 30 seconds. This was

followed by a final extension at72'C for 7 minutes and a 4'C hold.
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4.13.3 PCR synthesis of MOR 287 bp fragment

A 50 pL PCR amplification contained approximately 5 ng of the linearised

GATEWAY vector (4.13.1), with 400 nM each of the MOR.794.Fwd (Table 4'0) and

MOR.287.T7.Rev primers (Table 4.1). The reaction buffer was 20 mM Tris-HCl

(pH 8.a) containing 50 mM KCl, 2.5 mM MgC12,200 pM dNTPs and 4 units

Platinum@ Taq DNA Polymerase (Invitrogen'ulif" ,""hnolog,..). An initial denaturation

was achieved by heating to 95'C for 5 minutes. Further denaturation and

amplification was achieved with 25 cycles of 94"C for 30 seconds, 55"C for 30

seconds and7}'C for 30 seconds, followed by 72'C for 7 minutes.

4.13.4 Restriction digestion of MOR 287 bp PCR product to
generate the template for exon L and Pvu II riboprobe synthesis

The MOR 287 bp PCR product (4.13.3) was restriction digested either wrth Pvu II

(Invitrogen'ulif" r."hnologt"*) to generate a 222 bp T/-tailed fragment and a 75 bp

fragment or with Hae III (Boehringer Mannheim) to generate a ll7 bp T7-tailed

fragment and a 170 bp fragment. The Pvu II generated222 bp fragment was used to

synthesise the riboprobe to the 5' UTR + exon I of Oprm and the Hae III generate

117 bp fragment was used to produce the exon 1 riboprobe (refer 4.I4). The MOR

287 PCR product was purified by ethanol precipitation (refer 4.15) and resuspended

in2xT3lT7 transcription buffer (80 mM Tris-HCl pH 8.0 containing 16 mM MgCl2,

4 mM spermidine-(Hc1; and 50 mM NaCl, Invitrogen'lire technologies)' Both

digestions contained approximately 2 pg of the purified PCR product with 10 Units

of the restriction enzyme in 0.8x T3n& transcription buffer (32 mM Tris-HCl pH

8.0 containing 6.4 mM MgCl2, 1.6 mM spermidine-(Hcl)3 and 20 mM NaCl,
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Invitrogen' life technologier). The restriction digestion was incubated at 37'C for 2 hours,

thereafter adding a final concentration of 10 mM Na2.EDTA inactivated both

restriction enzymes.

Each 30 pL riboprobe reaction contained approximately 50 ng of purified PCR

template (a.5 pL of pellet resuspended in 2x T3n'7 Buffer), 0.5 mM each of CTP'

GTP and ATP, 0.4 mM UTP, 0.1 mM Cy3-UTP (Amersham Pharmacia Biotech -

giving a final labelling ratio of 1:5), 5 pM DTT, 40 Units RNaseOUT Recombinant

Ribonuclease Inhibitor (Invitrogen'" lif. technologies), 100 units T7 RNA Polymerase

(Invitrogen'" tir" r""hnotoeie,) and additional 5x T3lTl Buffer (0.2 M Tris*HCl pH 8.0

containing 40 mM MgCl2, 10 mM spermidine-(Hcl)3 and 125 mM NaCl) to give a

final lx concentration. Each tube was incubated at 37oC for at least 4 hours and

briefly centrifuged every 30 minutes to reduce condensation, 124.5 Units of DNase I

was then added to each tube and then incubated for a further 15 minutes at37"C-

Fluorescein -lz-IJTP -labelled riboprobes were synthesised using 0.5 mM each CTP,

GTp, TTP, 0.222mM UTP and0.278 mM Fluorescein-l2-UTP (Roche Diagnostics)

giving a final labelling ratio of 1:1.8. 
2

2 NB: Fluorescein-12-UTP-labelled riboprobes are refened to as FlTC-labelled riboprobes

throughout this proj ect.
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Riboprobes were desalted and PCR products were purified using ethanol

precipitation with linear poly-acrylamide as the neutral carrier (Gaillard and Strauss

1990). Briefly, the excess nucleic acids and primers were removed by the addition of

0.1 volumes of 3M NaOAc pH 5.2, lpg linear acrylamide and2j5 volumes of l00Vo

ethanol. The tube was inverted several times and incubated at 80'C for 30 minutes,

the DNA was pelleted by centrifugation at 15300 x g for 10 minutes at 4'C in a

Sorvall centrifuge and the supernatant was discarded. The pellet was washed with

200 1tL of 707o ethanol and centrifuged as before for 5 minutes, the supernatant was

discarded and the pellet left to air-dry. This pellet was then resuspended in 20 pL of

2x T3lT7 Buffer t0.2 M Tris-HCl pH 8.0 containing 40 mM MgCl2, 10 mM

spermidine- (HCl)3 and 125 mM NaCl, Invitrogen'ulif.,..hnolog,"rJ'

4.L6 Product analysis

4.L6.L Sequencing

Products for sequencing were purified using ethanol precipitation with linear

acrylamide a neutral carrier (refer 4.15) and resuspended in TE buffer (containing 10

mM Tris-HCl pH 8.0 and I mM Naz.EDTA). Sequencing reactions were performed

using a ABI pRISM@ BigDyetM Terminator v3.0 Ready Reaction Cycle Sequencing

Kit (PE Applied Biosystems). Approximately 25 ng of ds template was added to 4

pL of Terminator Ready Reaction mix with 3.2 pmol of primer in a final volume of

l0 pL. 25 cycles of 96"C for 10 seconds, 50'C for 5 seconds and 60"C for 4 minutes

were performed and the resulting mix was purified by ethanol precipitation (refer

4.15). The purified pellet was resuspended in a 5:1 ratio of deionised formamide: 50
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mg/ml blue dextran/ 25 mM Na2.EDTA. Sequenced product was analysed using a

47o polyacrylamide gel electrophoresis (PAGE) 48 cm well-to-read plate on the ABI

pRISM@ 377 DNA Sequencer. The resulting file was analysed using Genescan@

Analvsis Software version 3.7.

4.16.2 Size and quality analysis of fluorescently tabelled riboprobes

The size, yield and quality of fluorescently labelled riboprobes were determined

using an ABI PRISM@ 377 DNA sequencer. These products were separated utilising

a denaturing (urea) 4%o polyacrylamide gel with a 12 cm "well-to-read" distance'

Products were purified by ethanol precipitation and diluted according to which

fluorophore they were labelled with (e.g. FlTC-labelled riboprobes were diluted

1000-fold and CY3-labelled riboprobes were diluted 50 - 100-fold)' I pL of

riboprobe was added to 0.5 pL of GenescanrM-350 ROX size standard (Applied

Biosystems) and 2 pL of the loading buffer, containing a 1:6 ratio of 50 mg/ml blue

dexrran/ 25 mM Na2.EDTA: 1007o deionised formamide. Samples were heated to

95'C for 2 minutes and then snap chilled before being loaded. The resulting file was

analysed using GeneScan@ Analysis software version 3.7'

4.L6.3 Product quantification using a SYBR Green II assay

Labelled CLiPs and riboprobes were quantified with a Molecular Devices

SpectraMAX Gemini using 1.1x SYBR Green II (Molecular Probes) as the

fluorescent dye for the analysis of single-stranded products. For DNA analysis

(C1-ips) a diluted oligonucleotide was used as the standards for single-stranded

quantification (diluted from 50 ng/pl to 50 pglpl-). For RNA analysis (riboprobes)

diluted yeast I-RNA was used as the standards for single-stranded product
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quantification (diluted from 50 ngl4Lto 100 pgl!L). In each case the products were

diluted by serial dilution in a Nunc black 36 well microtitre plate (Nunc) using a

volume of 200 pL for each sample. Typically l0-, 50-, 100-, and 200-fold dilutions

were performed for each sample and blanks were included. Excitation was set at 497

nm and emission at 520 nm, with a cut-off of 515 nm, and 30 reads per well'

Readings from the standard samples are used to generate a standard curve. This

standard curve is used to estimate product concentration.
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approximately corresponds to a concentration of 120 ngper 20 pL of sample used in

this assay. Therefore the concentration of the CY-3 labelled exon 3 riboprobe was 6

nglp,L.

Figure 4.0b Microtitre plate chart. This chart corresponds to Figure 4.0a and
shows which sample was added to each lane. STD is the standard; yeast I-RNA
was diluted as above to generate the standard curve. Ex3, Ex4, Ex9 represent
riboprobes produced to the exons 3, 4 and 9 of the Oprm, respectively. These
riboprobes were labelled with Cyanine 3 (CY3) or fluorescein isothiocyanate (FITC).
The 287 riboprobe was generated to the 5' UTR and exon 1 of the Oprm. NB "Neat"
refers to an undiluted sample.
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Figure 4.1 Standard curve from a SYBR Grcen ll assay generated by diluting
yeast I-RNA. The standard curve was used to estimate the concentrations of each
riboprobe to ensure approximately 6 ng of riboprobe was added to each FISH
experiment. The arrow depicts the concentration extrapolation of the undiluted CY3-
fabelled exon 3 riboprobe, a mean value of 199.23 gives an approximate
concentration of 120 ng.

4.17 Tissue prenaration

4.17.1Perfusion protocol and tissue fixation

Sprague-Dawley rats were given a lethal dose with an intraperitoneal injection of

sodium pentobarbital (100 m/kg). Animals were perfused by insertion of a needle

into the left ventricle and an incision made into ttre right atrium to allow buffers to

circulate [all buffers used on rat brain were RNase free and diethyl pyrocarbonate

(DEPC)-treatedl. 400 mL of cold 0.1 M PBS, pH 7.4 was perfused through the

animal, followed by 500 mL of fresh 4%oparaformaldehyde in 0.1 M PBS at a rate of

I I ml/min. Brains were removed from skull and post-fixed for 1.5 hours in 100 mL

of 4Yo paraformaldehyde in 0.1 M PBS, pH 7.4 at 4"C. After post-fxation, brains
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were cyroprotected by leaving for I .5 days in 0.1 M PBS containing 30Vo sucfose, at

4'C. Brains were then frozen at -80'c until ready for sectioning.

4.17.2 Cutting and mounting sections

Frozen brain was attached in appropriate orientation to cryostat chuck and sections

were cut between 10-20 pm. These sections were placed in 0.1 M PBS and later

floated onto superfrosted, positively charged microscope slides (BDH).

4.18 Fluorescent in si/z hvbEi4is3fion (FISH)

4.Ls.L Prehybridisation

The protocol used was a modification of the Nonradioactive In Situ Hybidisation

Application Manual (Roche Molecular Biochemicals 1996). Briefly, mounted

sections were removed from the -80"C freezer and dried-out at 40'C for 2 hours

before the adhesion of a 65 pL Gene Frame@ lAduunced Biotechnologies Ltd).

Sections were incubated for 2x 5 minutes in 0.1 M PBS (pH 7.4), then for 2x 5

minutes in 0.1 M PBS containing 100 mM glycine. These were then treated for 15

minutes with 0.1 M PBS containing 0.3Vo Tntont X-100 and subsequently washed

for 2x 5 minutes in 0.1 M PBS. Tissue sections were perneabilised for 20 minutes at

37'C with TE buffer (10 mM Tris-HCl pH 8.0 and I mM Naz.EDTA) containing I

pg/mL RNase-free Proteinase K, then post-fixed for 5 minutes at 4"C with 0.1 M

PBS containing 47o paraformaldehyde. Sections were washed for 2x 5 minutes in

0.1 M PBS then acetylated on a rocking platform by incubation for 2x 5 minutes with

0.1 M triethanolamine (TEA) buffer, pH 8.0 containing 0.257o (v/v) acetic anhydride

140



(added immediately before incubation). Finally sections were incubated for 30

minutes at3J'C in prehybridisation buffer.

4.18.2 In situ hybridisation

prehybridisation buffer was drained from the slides and each section was overlaid

with 65 pL of hybridisation buffer [5x SSC containing 4AVo (v/v) deionised

formamide, l0 mM 1,4-Dithiothreitol Threo-1,4-dimercapto-2,3-butanediol (DTT)' 1

mg/ml denatured sheared salmon spenn DNAI and - 6 ng of labelled riboprobe.

Samples were covered with Gene Frame@ coverslips and incubated overnight at

40'C in a water bath.

4. 18.3 Posthybridisation

Gene Frames @ and coverslips were removed and the sections were washed for 2x 15

minutes at 37"C rn 2x SSC and then for 2x 15 minutes at 37'C in lx SSC'

Subsequently slides were washed for 20 minutes at37'C in 2x SSC containing40To

(v/v) deionised formamide. Nuclei were stained by a 15 minute wash in 0.lx SSC

c ontainin g 5 n gl mL DAPI (4',6 -Diamidine-2' -phenylindole dih ydrochl ori de), fi nally

slides were rinsed for 5 minutes in 0.1 M PBS. Slides were dried and 10 pL of

VECTASHIELD@ Mounting Medium (Vector Laboratories) was added to prevent

the rapid loss of fluorescence during microscopic examinatron;22 x 22mm, number

0 glass coverslips were placed on sections and sealed with nail varnish.
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4.1.9 Analvsis of FISH experiments

4.19.1 Fluorescent microscopy

Slides were viewed with an Olympus AX70 photomicroscope fitted with the

appropriate narrow band filters specific to DAPI, fluorescein and CY3. These filters

work by shutting out the wavelengths of light that a particular fluorophore does not

fluoresce under. Therefore allowins a tissue section to be labelled with more than

one probe.

4.19.2 FISH Images

Images were captured using a Nikon Coolpix 995 digital camera. The settings used

to capture the results of FISH experiments were as follows: Aperture of F5.6,

maximum zoom, I second exposure time and unless otherwise stated all images were

captured under the 20x objective. These images were overlayed to produce dual

colour and/or mosaic images using Adobe Photoshop version 5.0 software.
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Appendix A

Size standards and markers

Figure Al . l Kb+ DNA t adder size standard (lnvitrogen" ,* n""nno,*lc). 900 ng of

OJOf.fA was loaded into this lane and run on a0.9o/o agarose gel by electrophoresis-

An aliquot of the 1Kb* DNA ladder was run with all samples in this project and was

used to estimate the size and amount of product present'

r:gcenescanil €50 RoX gize standa]d. The

GeneScanil 3S0 ROX size standards are sets of fluorescent-labelled DNA

fragments of known sizes (shown above) used for determining the size of

fludrescently labelled products run on ABI PRIS[\,|@ DNA sequen@rs'
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Appendix B

Chromatogram of sequenced MOR exon 3 riboOrobe
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Figure Bla. Basecaller-377 version 3.7 analysie (Applied Biosystems) of ds

OlTl t"rplate for exon 3 riboprobe synthesis using. the exon 3 forward primer

io, 
""qu"ncing. 

The forward exon 3 primer was used in this sequencing reaction;

"pprorir"tef 
70 bases were su@essfully called.. The N depicts bases that were

,nbbte to be called; these bases were called manually by alalygis of the

chromatogram. The complimentary sequence to the MoR exon 3 T7-tailed reverse

primer is underlined above.

5' ACGAACTCAAGGAGTGTCCGCACCCTATAGGGAG 3'
3'TGC TGAGTT CTCACAGGCGTGGGATATCACTC5'

Figure Btb. Comparison of exon 3 sequence generated using the exon 3

tofoarU primer (above) and the exon 3 nevelEe primer aequenoe' The

""qr"n""'shown 
in red iUove is the underlined sequenoe shown in Figure Bla'

The blue bases represent miscalled peaks using the Basecaller softtrare version

3.7. The black sequence is that of the exon 3 reverse primer, it is possible to see

that the reverse prir"r sequen@ has been incorporated into the template, this

suggests that the ds exon 3 template has been synthesised correctly'
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GCGC IICCCCCTOITNC N CNNttGrt tC LTNTCCCCCGGTA tCAcleAe r€
10203010,5060

Figure 82. Basecaller877 vercion 3.7 analysis (Applied Biosystems) of ds
DNA template for exon 3 riboprobe synthesis. The reverse exon 3 primer was
used in this sequencing reaction; approximately 34 bases were successfully called.
The N depicts bases that were unable to be called; these bases were called
manually by analysis of the chromatogram. The complimentary sequence to the
MOR exon 3 foruard primer can be identified above.

Firet BLAST alignment for the sequence of the ds DNA template
used in exon 3 riboprobe synthesis. These results show a93o/o identity of the
sequence exon 3 riboprobe template to MOR mRNA.

Figurc 84 Basecatler€77 version 3.7 analysis (Applied Bioeysbms) of ds
DNA templab for exon 4 riboprcbe synthesis. The revense exon 4 primer was
used in this sequencing reaction; approximately 51 bases were suc@ssfully called.
The N depicts bases that were unable to be called; these bases were called
manually by analysis of the chromatogram. The actual sequence to the MOR exon
4 forward primer can be identifted above in bold type.

I\B. Refer Figure 3.1I for the top two BLAST search results with the sequence base

called for exon 4, shown above Figure 84.
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Figure Ci Exon 3 riboprobe designed to tllOR-l mRNA. The nucleotides

sn6wn in bold represent the fonrard anO tZ-Aited reverse primer sequences. The

exon 3 riboprobe was designed to the Mus musculus mu opioid receptor (MOR)

1 tccttccagg gtccatagat tOcaqg$a cgttctctca tcccacatgg tactgggaga

61 acctgctcaa aatctgtgtc ttcatcttcg ccttcatcat gccggtcctc atcatcactg

1 21 tgtgttatgg ac'tgatgatc ttacgactca agagrtgtccg Eg-Wq.ggctccaaag

1 81 aaaaggacag gaacctgcgc aggatcaccc ggatggtgct ggtggtcgtg gctgtattta

241 ftgtctgc.tg gacccccatc cacatctatg tcatcatcaa agcactgatc acgattccag

301 aaaccacttt ccagactgtt tcctggcact tctgcattgc cttgggttac acaaacagct

gene, accession number: U10560.

1 ftctttcagc tagaaaatct ggaagcagaa actgc'tccat tgccctaac't gggtcccacg

+
61 ccatccagac cctcgctaaa ctiagaggc't gccatctact tggaatcagg t@gpgg.

1 21 osrtttstsso 
"ngP$gglTf,ssaaa 

ascatctsat cctsc

igned to exon 4 of MOR-I nRNA'
The area underlined irired represents the region that the forward and T7-tailed

oligonucleotides (represented in bold type) overlap. The. overlapping oligos were

aeJignea to the Mus-musculas MOR-I gene' accession number: Ul056l'

1 atcagacgct cagacgttcc cttctgcc{g ccgctcttct cfggttccac tagggc'tggt

61 ccatgtaaga atctgacgga gcctagggca gc'tgtgagag gaagaggc'tg gggcgcgtgg

12'l aaqaaaa gtctgagtgc tctcagttac agcctaccta gtccgcagca ggccttcagc

1 81 accatggaca gcagcaccgg cccagggaac accagcgact gctcagaccc c'ttagctcag

241 gcaagttgct ccccagcacc tggctcctgg ctcaacttgt cccacgttga tggcaaccag

eO r tccOatccat4$S$$f a ccgcaccg g g cttggcg g ga acga cagcct gtgccctcag

361 accggcagcc cttccatggt cacagccatt accatcatgg ccctctactc tatcgtgtgt

figu* C3a UOR 287 fragment designed to t9R-1 mRNA. The forward and

T7-tailed reverse primers are shown in bold type. The foryvard primer-begins in the

5' UTR of exon 1 and the reverse primer begins at the end of exon 1 (Yoshikawa et

al. 1999). The accession number for the MOR-1 mRNA is NM-013071'

Appendix G

Desien of MoR nrimers for riboprobe svnthesis
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For.n'ard primer sequence: 5'CCT GCC GCT CTT CTC GGT C 3'

Reverse primer sequence: 5' TAA TAC GAC TCA CTA TAG GGC GCA TGG AT C GGA

Figure C3b Primer soquences used to generate the_ ilOR 287 fragment
Fo-rward primer was designed by Yoshikawi et al. 1999 and the reverse T7-tailed

primer (shown in green piing was designed by Eli Mrkusich, 2001.

1 gggaa"acc" ctccacggct aatacagtgg atcgaactaa ccaccagagg aatgggaac

61 cttcttcc'tg atgatggccc aagacaggaa tccggggaag gccagcttgg caggtgaatg

1 21 tcatccgaac acagggatga gctggrtgagc agtgtggagg tgcaggctc't gc'tagaagac

1 gl agcgagaggg aagatg..ofi*."a aggttaggag ttgtaagtgt aatgtctaat

24 1 stattgtc'tg gtttgccgta ttgcgtgttt t*$4p_gSOgcaa tgtagagaca

301 gcctgttaaa catggcaatg tggc.ttctgt ggacaccgct ctcatgctac tgtgtgcaaa

361 taaacaaggg acttccttag gagcagccta gccaccttac atgaagagtt tcctaatgtc

421 aagaagagg aacgaaagcc agtatttgtt atgacactgt ttcttctaaa taatgtaatt

81 aataaaalaa agaaaaacat ggacctcgaa aaaaaaaan aaaaaaaaaa aaaaa

901 ccgaaatgcc aaaattgitca atgtctgcaa aOO 
latcctc 

tcttctgcca ttggt€fgcc

961 cgtaatgttc atggcaacca caaaatacag gcaggggtcc atagattgca ccctcacgtt

1 021 ctctcatccc acatggtact gggagaacct gctcaaaatc tgtgtcttca tcttcgccft

1 081 catcatgccg grtcctcatca tcactgtgtg ttatggactg atgatcttac gactcaagag

1 141 tgtccgcatg ctgtcgggct ccaaagaaaa ggacaggaac ctgcgcagga tcacccggat

Figure G4 The 3'RACE sequence of iloR-lc mRNA used to design the exon 9

ovirlapping oligonucleotides. The sequence shown in bold type.represents the

entire sequence used to generated 4 overlapping oligonucleotides that overlapped

by 18 nts. ttre last oligon-ucleotide (called D) wa9 fl-^tailed, shown in green above'

T'he accession numberfor this sequence is: AF062752'

Figure G5 Target region of GLiP designed to llfus musculus MOR-I mRNA'

mi ten shownJn botd is the MOR-1 target sequence for the CLiPs designed and

utilised in this project. The blue verticalline represelts the ligation junction. The

accession numbeifor the Mus musculus MOR-1 mRNA is AF400248'
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Appendix D

Staining of different structures in adult rat brain usins
riboprobes

Figure D1. F|TC-labelled exon 4 riboprobes staining the dendate gyrus (DG).
Fluorescent photomicrograph showing exon 4 riboprobes localising to the dense
granular layer of the DG and to single neurons inside the DG. Scale bar = 200 pm.

Figure D2. FITC-labelled Pvu ll generated riboprobes. Fluorescent
photomicrographs of a sagittal section through the dorsal endopiriform nucleus in
adult rat brain. This riboprobe generated to the 5' UTR and exon 1 of the MOR,
appears to have localised to the cytoplasm of the dorsal endopiriform nuclei. Scale
bar = 200 Um.
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FigureD3@llgeneratedriboprobesstainingtheanterior
an-cl posterior interposed cerebellar nuclei. These riboprobes appear to be

localised to individuai neurons and some dendritic staining appears to be present

(arrows). Scale bar = 200 Pm.

FigureD4@-tainingintheparvoce||u|ar|atera|reticular
nuit"us. The appearance of the staining above is typical of non-specific binding, as

no clear cytoplasmic staining is visible. Scale bar = 200 pm'
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Appendix E

Raw data of sisnal and backsround intensities

Figure Riboprobe Mean std
dev.

Median Difference (signal to
background using

median value)

Signal 3.t4 CY3-Ex3 r03.08 8.5s 103

Backsround 3 r+ CY3-Ex3 8r.47 2.81 82 2l

Sienal J 5.A FITC-Ex4 11 A1 2.60 78

Background
GL

3.15, A FITC-Ex4 35.30
58.77

2.30
3.44

35
59

1J
t9

Signal 3 5.C FITC-Ex4 68.81 5.66 1A

Backsround J 5,C FITC-Ex4 4r.r3 2.49 4l 29

Sisnal J 5.8 FITC-Ex4 92.11 7.9s 94

Backeround 3.15, E FITC-Ex4 A"' 1'7 2.08 43 5l

Sisnal J 6,A FITC-Ex9 78.1 8 4.41 78

Backsround J 6,A FITC-Ex9 57.31 t.67 )l 2l

Sienal J 6,C CY3-Ex9 99.09 12.89 99

Backsround J 6,C CY3-Ex9 60.05 4.03 60 39

Sienal 7.A FITC-Exl 83.62 7.85 9.)

Background
GL

3.t7, A FITC-Exl 38.95
72.06

1.68

2.45
39
72

+J
l0

Sienal 3.1't,D FITC-Exl 63.t9 5.65 63

Backsround 3.t7,D FITC-Exl 32.98 2.40 JJ 30

Sisnal 3.18. A FITCPvu2 71.50 6.04 71

Backsround 3.18, A FITCPvu2 17.38 1.83 l7 54

Signal 3.r8, C FITCPvu2 79.57 t5.73 82

Backsround 3. 8.C FITCPvu2 18.95 2.39 l9 63

Sienal 3.18, E FITCPvu2 86.r2 6. l3 87

Background
GL

3.18, E FITCPvu2 28.57
50.01

L87
4.05

29
50

58
tt

Sisnal 3.19a, A FITC-Exl r04.37 7.29 r06

Background
GL

3. l9a, A FITC-Exl 45.96
82.51

2.73
4.16

46
83

60

Sisnal 3.19a, B CY3-Ex4 t20.o4 9.98 t24
Background
GL

3.19a, B CY3-Ex4 '79.53

99.02
3.53
7.90

79
99

45

25

Sienal 3.19a. D FITCPvu2 l18.58 t2.06 r20
Background
GL

3.19a, D FITCPvu2 38.23
72.74

2.82
3.52

38
IJ

82
47

Sienal 3.19a, E CY3-Ex4 99.03 4.15 t00

Background
GL

3.19a, E CY3-Ex4 70.34
86.83

2.66
4.35

70
86

30
t4

Signal 3.19b, A FITC-287 8t.14 3.96 8l
Background
GL

3.19b, A FITC-287 34.t4
58.45

1.66
3.r2

5+
)6

47
z3

Sienal 3.19b, B CY3-Ex4 116.89 5.56 ll8
Background
GL

3.19b, B CY3-Ex4 81.25
106.46

t.99
J.JJ

8l
106

37
t2

Sienal 3.19b, D FITC-287 74.66 4.94 75

Background
GL

3.19b, D FITC-287 53.36
34.05

3.58
2.15

54
J+

4l
2l
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Figure Riboprobe Mean std
dev.

Median Difference (signal to
background using
median value)

Sisnal 3.19b, E CY3-Ex4 126.16 4.5r t25

Background
GL

3.19b, E CY3-Ex4 86.09
99.64

3.10
2.79

86
100

39
25

Sienal 3.20a, A FITC-Exl 98.8 r 6,75 99

Backsround 3.20a, A FITC-Exl 40.82 1.85 4l 58

Sienal 3.20a. B CY3-Ex4 r30.70 7.54 130

Backsround 3.20a, B CY3-Ex4 70.88 3.18 't0 60

Sienal 3.20a,D FITCPvu2 t'tj.58 t2.46 180

Backsround 3.20a,D FITCPvu2 55.31 3.66 55 r25

Sienal 3.20a,8 CY3-Ex4 r21.04 5.59 t2l
Backsround 3.20a.E CY3-Ex4 93.68 4.44 93 28

Sisnal 3.20b, A FITC-287 84.09 8.18 85

Background 3.20b, A FITC-287 3t.7 4 2.23 )z 53

Sienal 3.20b, B CY3-Ex4 126.70 5.7'l 126

Backsround 3.20b, B CY3-Ex4 82.53 3.r3 83 +)

Sisnal 3.2 A FITC-Exl 72.98 6.87 1A

Backsround 3.2 A FITC-Exl 5l.90 2.26 52 22

Sienal 3.2 B CY3-Ex4 r39.77 8.r2 140

Backsround 3.2 B CY3-Ex4 98.00 3.78 95 45

Sienal D FITC-287 116.00 r6.56 t20

Backsround J.Z D FITC-287 39.97 3.64 4l 79

Sienal 3.2 E CY3-Ex4 r22.88 10.22 t23

Background E CY3-Ex4 62.71 3.17 62 6l

Figure El. Pixel intensity data obtained from histogram analysis using

nO-oOe photoshop version 5.5. Unmodified images were enlarged and one

stained neuron was analysed for its intensity, the background was then analysed for

intensity using the identi-cal size area as the neuron and the same filter set' GL =
represents th6 densely packed neurons of the granular layer. NB. The background

iniensity for the cerebellum was taken in the molecular layer.

Example calculation of 7o signal is greater than background

Figure 3.14 gives a signal of 103 pixels for the CY3-labelled exon 3 riboprobe, the

median value for the background was determined to be 82 pixels. This means the

signal is 21 pixels greater than the background. To express this as a percentage, the

difference of 21 is divided by the signal and multiplied by 100, e.g.

2t/IO3 x 100 =20.397o

This value implies that the signal seen for the exon 3 riboprobe is only 207o higher

than the background and, as this is a low value, not much confidence was placed in

this result.
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