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Abstract

Human evolution is an extremely interesting and contentious topic that incorporates

data from a wide variety of disciplines. Molecular studies ale becoming increasingly

important for reconstructing human history, as new techniques allow faster recovery of

results, and genetic tests provide an independent test for colonisation theories that are

usually based on archaeological and linguistic evidence. Mitochondrial DNA (mtDNA)

is an extremely useful genetic marker that is widely used in molecular biology for

establishing phylogenetic links between individuals and populations.

In the current study the 3' Hypervariable Region (3' HVI) of mtDNA from human

populations living in New Zealand (Aotearoa) was analysed. The HVI mtDNA

diversity in the New Zealand Maori population was significantly reduced conipared

with Polynesian and Melanesian populations, with an extremely high frequency (-87Vo)

of the 'Polynesian CGT motif' haplotype. Additionally, the 9-bp deletion, common in

Polynesian populations, has reached fixation (I007o) in the Maori samples. These

results suppol't a settlement scenario with repeated population bottlenecks.

The rntDNA HVI haplotype frequencies in this study, corrbined with those frorn

previous studies, were used in computer simulations to estimate the number of females

required to found the current Maori population. Apploxirnately 56 women, and an

equal or greater number of men, were estimated to have been present in the founding

waka. This estimate is too large to support any settlement models with a small number

of founders and effectively rules out the possibility of 'accidental discovery', instead

supporting a planned settlement of Aotearoa in agreement with traditional knowledge,
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1. Introduction

1,.L Why study Human Evolution?

Historically, questions surounding human origins have fascinated people for centuries,

but over the last 20 years new technologies have been developed which allow

researchers from many different disciplines to explore the evolution and migration of

anatomically modern Homo sapiens in remarkable detail. There are two main

competing hypotheses for the evolution of modern humans. Although both agree that

Honto erectus spread from Africa around 2 million years ago, the 'recsnt African origin'

hypothesis (alternatively known as the 'out of Africa' and the 'replacement model')

holds that anatomically modern humans (Honto sapiens sapiens) originated in Africa

100,000-200,000 years ago and subsequently colonised the rest of the world, replacing

archaic human forms with little or no genetic mixing (McKie and Stringer, 1996). The

alternative, 'multi-regional' hypothesis proposes that the transformation to anatomically

modern humans occurred in different parts of the world, and claims support for this

model via fossil evidence of cultural and morphological continuity between archaic and

modern humans outside Africa (Caspari and Wolpofl 1997). Pioneering work by the

late Allan Wilson and colleagues (e.g. Rebecca Cann) using mitochondrial DNA

(mtDNA), found that all extant human populations trace their mitochondrial ancestry to

an 'African Eve' within the last 100,000-200,000 years (Cann et al., 1987), which is too

recent for the multi-regional hypothesis. Although this research has been criticised and

continues to be controversial (For a review: see Templeton, 2OO2): there is general

agreement for a recent African origin(s), a view which has been supported using revised

analytical techniques, additional mtDNA studies (e.g. Chen et al., 1995; Chu et al.,

1998), and other markers (i.e, Y-chromosomes and autosomal regions). Ingman et al.
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(2000) used the results from analysis of complete mitochondrial DNA sequences from

53 humans to suggest that anatomically modern humans left their postulated homeland

of Africa approximately 50,000 years ago, and from this staging post they started great

journeys of discovery and colonisation across the rest ofthe planet. Since the departure

from Africa -50,000 years ago, the small human population (-50,000 individuals in

Paleolithic distributed in small 'bands': Cavalli-Sforza,2A00) spread to every habitable

place in the world and expanded to a worldwide population today of over 6 billion.

Although it is now widely accepted that Africa is the homeland for all humankind.

questions remain such as: what happened during the years after our exit from Africa?

how did humans develop the diverse range of physical attributes, cultures and languages

that are present today around the globe? and which groups are most closely related?

These long-standing questions about the origins and evolution of humans are being

explored by the combined lesearch effort of diverse disciplines such as Archaeology,

Anthropology, Linguistics, Forensic Science, Medical Science and Molecular

Biology/Genetics. The field of Molecular Biology/Genetics has advanced quickly due

to the development of new diagnostic techniques, which allow the collection of entire or

partial mitochondrial DNA seqllences for phylogenetic comparisons. In the 1960s the

first molecular data on populations was from serological and biochemical

polymorphisms (e.g. by allozyme analysis) and restriction fragment length

polymorphisrns (RFLPs: Papiha and Mastana,1999). In the 1980s DNA sequence data

was produced using mitochondrial DNA (mtDNA) control region (D-loop) sequences

(Di Rienzo and wilson,1991; Ward er al., 1991). Finally, during rhe late 1990s, two

broad categories of markers (Biallelic and Multiallelic) were developed to test for

diversity in the non-recombining region of the Y-chromosome. Biallelic markers have

low mutation rates, so each allele therefore represents unique, or a near unique event in
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human evolution (e.g. including single nucleotide polymoqphisms or SNPs, and AIu

element insertions). Multiallelic markers have :rruch higher mutation rates. Such

markers include microsatellites (average mutation rate -0.2Vo per generation) and

minisatellites (mutation rate 6-IIVo per generation). These biallelic and multiallelic Y-

chromosome markers are scored by sequencing, denaturing high performance liquid

chromatography (DHPLC), or single-strand conformation polymorphism (SSCP)

techniques (Underhill et al., 1997). Mitochondrial DNA and Y-chromosome sequences

are ideal fol elucidating population relationships as they are uni-parentally inherited

(maternally and paternally respectively) and thus do not recombine allowing the

ploduction of uncomplicated phylogenetic trees.

Although all humankind can trace their ultimate origins to Africa, recurrent 'waves' of

migration into nearby Europe and Asia, extensive interbreeding between resident and

incoming groups and -100,000 years of genetic drift and local allelic selection has

meant that underlying relationships between current populations can be difficult to

intetpret, Settlement of Remote Oceania was the concluding chapter of human

migration and colonisation, and included some of the last places on earth to be found

and settled. This final migration occuned relatively recently in evolutionary time,

within the last 6,000 years, so it is still possible to reconstluct relationships among

resident populations. For this reason Oceania is considered to be a particularly good

region to study human evolution and migration. Therefore, the central topic of this

thesis is the settlement of Polynesia. Results are presented from sampling the genetic

variability in the Maori population living in Aotearoa (New Zealand). The following

sections of this introduction include an overview of Pacific Island history and culture,

theories for the settlement: origins and interaction with surrounding Pacific Nation
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populations, and a review of scientific advances: focussing on examples using

mitochondrial DNA and Y-chromosome marker duta from the oceania region.

1.2 Introducing Oceania

The Pacific Ocean is a vast area encompassing one-third of the globe and containing

over 20,000 islands (see Figure 1.1). However, when these islands were 'discovered'

and mapped during the voyages of Captain James Cook between 1768-80, he found

many islands already inhabited by indigenous people, who had reached them using

Neolithic stone-age technology. Other European explorers reaching these isolated

islands in their ships for scientific, commercial, imperial or 'enlightenment' voyages

from the end of the 1500's were also surprised to find that every sizable island in the

vast Pacific Ocean was either currently or had been occupied. Cook in particular was

struck by the similarities of language and culture he perceived among the peoples we

now call Polynesians and outlined a theory of origins:

" Fronx what continent tlrcy originally emigrated, and, by what steps they have

spread tltough so vast a space, those who are curious in disquisitions of this

nature, nny perltaps not find it very dfficult to conjecture. It has been already

observed, that they bear strong marks of ffinity to sonre of the Indian tribes,

tltat inhabit the Ladrones (Marianas) and Caroline Islands: and the same

affinity nny again be traced amongst the Battaks of northern Sunratra und the

Malays. Wen these events happened, it is not so eqsy to ascertain; it was

probably not very lately, as they are extremely populous, and have no tradition

of their own origin, but what is perfectly fabulous; whilst, on the other hand, the

unadulterated state of tlrcir general language, and the simplicity which stilt

prevails in their customs and manners, seenx to indicate that it could not have

been at any very distant period" (Reproduced from Kirch, 2000).
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We now know that the Pacific region was colonised within the last 6,000 years, which is

very recent in evolutionary terms. Because of the isolation of Pacific populations and

limited amount of gene flow between European populations, the pattems and processes

involved in human evolution can be explored. The pattern element of human evolution

in the Pacific refers to the source of the 'proto-Polynesian' people, i.e. where the

people(s) that later became modern Polynesians came from. The process element refers

to the settlement dynamic of the proto-Polynesians, e.g. presence/absence of

intermarriage along the migration route. The human colonisation of the Pacific has left

a 'genetic trail', -an exact record of these voyages preserved in the genes of the modern

day descendants of the original voyagers and it is therefore possible to evaluate pattern

and process elements in the Pacific region (Hill and Serjeantson, 1989).
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1.2.1 Historical deftnition of Oceania

Kirch (2000) notes that Dumont d'Urville (1832) classified the people of the Pacific

Islands into three groups (see Figure 1,1). The first of these were the Polynesian (of

many islands), a generally light-skinned people spread over the islands of the eastern

Pacific, including Tahiti, Hawaii, Easter Island and New Zealand.. However. for the

purpose of the current study the Maori people of New Zealand, are considered separately

to Polynesians (East and West) unless otherwise specified. ln the westem Pacific north

of the equator, on many small atolls lived the Micronesian (of little islands). Finally,

Melanesian (of dark islands), consisting of the generally darker-skinned peoples

inhabiting the large islands of New Guinea, the Solomons, Vanuatu (then the New

Hebrides), New Caledonia and Fiji. This tripartite classification is still used today, yet

maybe misleading if equated to meaningful segments of cultural history (Kirch, 2000).

Only Polynesia has really stood the test of time and increased knowledge, to be

recognised as a category with historical significance. Therefore, Polynesians may be

said to form a meaningful unit for cultural-historical analysis, whereas the labels

Micronesia and most particularly, Melanesia imply no true underlying cultural-historical

unity. In fact, whether looking at language, human biological variation, or culture the

peoples of Melanesia defy categorization, and they are among the most diverse and

heterogenous to be found in any comparably sized geographic space on ear-th. Dumont

d'Urville's three groups, taken together, are generally understood to make up Oceania

and usually exclude the islands of Southeast Asia (the lndonesian and Philippine

archipelagos in particular) and Australia.
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Near Oceania and Far Oceania are terms that wele proposed by Green (1991) in reaction

against the inadequacy of the 'Melanesia'concept (s*: Figure 1.1). Near Oceania

includes the large island of New Guinea, along with the Bismarck Archipelago and as

far east as San Cristobal and Santa Ana. This is not only the region of greatest

biogeographical diversity within Oceania, but also had human occupation beginning in

the late Pleistocene (ca. 40,000 years ago or longer). Within Near Oceania, we find

peoples who speak both Austronesian and Non-Austronesian (Papuan) languages.

Remote Oceania includes all the Pacific islands to the north, east and southeast of Near

Oceania, yet its inhabitants speak exclusively Austronesian languages (see Section

1.4.2). Archaeology confirms that the Remote Oceanic islands were not discovered or

settled by humans until after about 15008.C. Thus, the distinction between Near

Oceania and Remote Oceania is not merely a geographic division, but one that

encapsulates two major epochs in the history of the Pacific islanders.

1.2.2 Oral History of Oceania

Polynesian people have no written history before European contact and oral tradition

was their only means of passing on knowledge, Consequently, much knowledge about

historical relationships between populations has been lost. However, oral tradition does

link many island groups together e.g. Tupaia, a Tahitian priest navigator interviewed by

Cook, named 130 islands for which he claimed to know sailins directions and relative

distances (Kilch, 2000).

The discovery and colonisation of Aotearoa, the last sizable island in the entire Oceanic

region, and indeed the world, is credited by oral history of Polynesia to Kupe who

voyaged deep into the southern ocean in his waka Matahourua. Two accounts known as
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'the legend of Kupe' and 'the tradition of Kupe' are retold in 'The Discovery of

Aotearoa' (Evans, 1998) and the subtle differences in onc account compared with the

other were thought to function as a navigators guide to Aotearoa. These subtle 'clues'

present in the retelling of Kupe's voyages were actually obvious sailing directions to

Aotearoa, hidden for detection only by trained and skilled navigators, although it is

thought that current versions have lost much of this information. Traditional knowledge

dictates that after the discovery of Aotearoa by Kupe, he returned to his homeland

Hawaiki (Tahiti: according to the accounts in Evans, 1998; or Tonga-samoa

archipelagos: Kirch, 2000) to pass on the navigational directions. Over time, an

unspecified number of waka made the long journey to Aotearoa, carrying Polynesians

from their homeland. Aotearoa was found using advice obtained from Kupe pertaining

to directional cues present in the sky (stars and the setting sun) oceans currents and

migrating birds (for a description of these traditional navigational methods see Evans,

1998). The exact number of waka to attempt and successfully complete this journey is

unknown, but the single 7-waka migration fleet theory (agued by Smith, Hale and

Thomson: see Sorrenson 1979) appears to fall short of the true number of canoes. Nga

Waka O Nehera -the first voyaging canoes (Evans, 1997) lists the names and in many

cases the crews of almost 200 waka. However, Sorrenson (1979) states that many of the

'canoe traditions'including the'great fleet','Kupe'and other'traditional' discoverers

of Aotearoa were not based on fact and instead "were essentially the constructs of

European collectors and editors of Maori traditions, not of the Maoris themselves" and

therefore may not reflect the true migration history of the Maori people. Additionally,

Hawaiki is thought to represent a mythical rather than a geographic location, as Hawaiki

is regarded as the source of all mankind (Peter Adds, Te Atiawa, Senior Lecturer in

Maori Studies, Victoria University: pers. comm., 2001). Although it seems unlikely we

will ever know for sure the exact number of canoes to come to Aotearoa, it is probably



safe to discount any models that

Figure 1.2). However, it may be

technology.

t.

2.

a
J.

Theories for the number of Waka to journey to
Aotearoa

Accidental discovery by a small number of waka
(Shaqp, 1956).

A great fleet of waka that travelled to Aotearoa
together (7 waka migration fleet: see Sorrenson,
r979).

Many small colonising fleets, possibly over several
years or decades (Sorrenson, 1979).

Models2and3combined.

Models 2 and 3 combined plus return homeward
journeys.

4.

5.

Figure 1.2 Theories for the number of waka to journey to Aotearoa, camying colonising

Polynesians.

L.3 Small population effects in Pacific People

1.3.1 Founder Effect

A Founder effect is the result of starting a new population with a low number of

individuals (founders), so that their gene pool may not contain the same proportions of

alleles at a particular locus as in the original population. In Pacific populations it is easy

to imagine how such situations may arise. Islands have limited space and resources and

eventually a population will reach the carrying capacity of the land. Therefore, people

may choose to leave to find more resources and space elsewhere, and/or escape possible

Ittlnxhrr:tittn

assume only one canoe or accidental discovery (see

possible to pinpoint e'r island(s) of origin using DNA
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tribal conflict and warfare over scarce resources. The effects of a devastating storm

could collapse delicate tropical ecosystems causing starvation if another suitable island

is not found. Howevet, many islands were not heavily populated at the time of

European contact so scarce resources may not have been a factor. Alternatively, due to

the chiefdom system operating on many islands, ambitious younger sons who will not

inherit the status of their father (this traditionally goes to the eldest son) may choose to

find and rule over another island, taking followers along with them (Evans, 1998).

Regardless of the reason why an island is left, not everyone will leave and consequently

not every allele (or in this study mitochondrial haplotype) will get into the boat to travel

on to the next island. Therefore, the diversity present in the founders on the boat is only

a sub-set of the diversity present in the original population. Some of the mitochondrial

haplotypes have been lost to this new population. Further mitochondrial haplotypes

may be lost due to the process of genetic drift whereby chance fluctuations in the

reproductive output of individuals can lead to the loss or fixation of haplotypes. Due to

the matemal inheritance of mitochondrial DNA, the production of only sons would

result in the extinction of that maternal lineage, as although sons and daughters each

receive their mitochondrial haplotype from their mother only daughters can pass this

genetic rraterial on to the next generation (see Figure 1.3). The loss of rare haplotypes

is most likely with the resulting population characterised by a decrease in the number of

haplotypes. The process of genetic drift and the founder effect combined can alter the

frequencies of the remaining haplotypes so genetically the resulting population may be

very different to the original population.

10
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Figure 1.3 Diagram illustrating the uni-linear maternal inheritance of mitochondrial
DNA (red) and patemal inheritance of Y-chromosomes (blue). Although both males and

females receive a copy of mitochondrial DNA from their mother, only daughters can
pass this marker on to the next generation. Only males receive a copy of the Y-
chromosome, as this is the basis for sex determination.

1.3. 2 Population Bottleneck

A population bottleneck (Flint, 1989) is a period in the history of a population when the

number of individuals is reduced to a low number (founder effect) for a number of

generations (the bottleneck: see Figure 1.4). During the colonisation of the Pacific it is

theorised that as each voyaging group reached a new island, the initial population would

have been relatively small for a few generations and hence represent a founder effect

and genetic bottleneck. In NZ Maori the effects of a bottleneck and small founder

population are reflected in the near fixation (98-100%) of the 9-bp deletion, a marker

present in mtDNA (see Section 1.4.6.5). This increase in the 9-bp deletion is

accompanied by an increase in the frequency of the CGT motif (another mtDNA

marker) from east to west Polynesia (see Section 1.4.6.4.1).

11
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Figure 1.4 A diagram illustrating the concept and consequences of a Founder Effect and

Boffleneck.

1.4 Interdisciplinary view of Polynesians

1.4,1 Archaeologt: Lapita Culture

Archaeology is the study of ancient cultures from their physical remains, a discipline

that enables insights into how our ancient ancestors lived. Recovery and examination of

artefacts at sites associated with ancient human remains can be used to reconstruct how

people lived. Archaeologists can identiff ash fall sites around Oceania that are

associated with the Mount Witori (W-K2) eruption in Papua New Guinea 3,600 years

ago, and have found differences in site distribution patterns and artefact ffis below and

above this stratification marker. Below the tephra obsidian tools are found, with a shift

to lithic technology after the W-K2 eruption. This is accompanied by a change in land

use and settlement pattems with a shift to more localised settlement and substantial

12
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obsidian exchange. Ceramics, which were absent before the W-K2 event appear

suddenly, and have become known as Lapita potter), (Kirch, 2000).

Since the 1950s and 60s 'Lapita' sites have been discovered across Oceania (see Figure

1.5). These Lapita sites have been intensely studied, with several characteristics found

that render these sites wholly different from anything preceding them in Near Oceania.

First, they are good-sized settlements, situated on coastal beach terraces or built out

over the shallow lagoons as clusters of stilt-houses. Second, their occupants made,

traded, and used large quantities of earthenware ceramics, of both plain and decorated

varieties. The plain ware consisted largely of red-slipped globular jars with out-turned

rims, while the decorated pottery varied in size and shape and was covered in finely

executed motifs many representing human faces, made by pressing small toothed

('dentate') stamps into the leather-hard clay before firing (see Figure 1.6). Third, the

economic base of Lapita people had expanded from that of the preceding phase in Near

Oceania, utilizing all of the tree crops that had been domesticated in this region, but also

including pigs, dogs and chickens. Fishing strategies were sophisticated, and they

employed a variety of fishhooks, inch"rding trolling lures for taking tuna and other

pelagic fish on the open ocean. Lapita people were seafarers, venturing beyond coastal

waters to trade sr-rbstantial quantities of pottery, chert, obsidian, oven stones, and other

materials between communities. Their materjal culture exhibits a greater range of tools,

impielnents, and ornaments than any eallier sites in Near Oceania (Kirch, 2000).

13
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Figure 1.5 The distribution of Lapita sites in Near and

has been reproduced from Kirch (2000).

Remote Oceania. This Fieure

Despite some proposals that the Lapita people represent an indigenous, in situ

development, many archaeologists conclude that the Lapita culture was entirely new

and intrusive and invaded along with the potters, from outside Near Oceania. A popular

view shared by many archaeologists is that of Bellwood (1997), who argues that the

archaeological record of the expansion of pottery-using, agricultural peoples out of

Southeast Asia and into the islands of the Pacific, correlates with the spread of the

Austronesian language (see Section L4.2). The first ceramic-making peoples are in

evidence on the large island of Taiwan, at around 3000 8.C., and over the course of the

next 1,500 years, their descendants or closely related peoples expanded south and

southeast. toward Near Oceania. More than 200 radiocarbon dates have been obtained

from Lapita sites ranging geographically from the Bismarck Archipelago to Samoa and

Tonga, providing a firm basis for tracking the chronology and rate of population spread.

The earliest dates for sites with the distinctive Laprta style of dentate-stamped
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decoration range between 1500 and 1400 B.C. For the next two to three centuries, there

was no expansion of Lapita populations beyond the lrnlnediate Near Oceania region.

Then, around 12008.C., a phase of long-distance voyaging and colonisation

commenced with Lapita groups breaking through the invisible boundary of Near

Oceania, which for 30,000 years or more had marked the limit of human existence in

the Pacific. Lapita groups moved in every direction southeast to Santa Cruz group and

south through the Banks Islands and into the main Vanuatu archipelago, in quick

succession to the upraised Makatea islands of the Loyalty group and on to discover New

Caledonia (1200-1i00 B.C.). Lapita people reached Fiji by 1100-900 B.C., and then

went on to Samoa and Tonga. The radiocarbon dates conclude that the Lapita

expansion out of Near Oceania into Remote Oceania, as far south as New Caledonia and

as far east as Tonga and Samoa was accomplished in only two to three centuries (Kirch,

2000),

Debate regarding Eastern Polynesian settlement revolves around what is called the 'long

pause', whereby settlement beyond Tonga/Samoa occurred as much as 1,600 years after

the first Polynesians reached these areas. This pause was followed by a sudden burst of

exploration and discovery that would take people into virtually every other island and

archipelago within a mere four centuries (i.e. by A.D. 1000). Historical linguists such

as Pau'ley (1996) argue for a period of cornmon development in the Western Pclynesian

homelan*J prior to later dispersals in order to explain the many innovations in Proto

Polynesian language, and to allow time for the differentiation of Proto Tongic and Proto

Nuclear Polynesian languages, However, the time required for such language changes

is unknown, and if the pause was very long, as some maintain, then this would leave an

insufficient period of time for similar innovations to arise in Proto Eastern Polynesian

language and culture (see Section 1.4.2).

15
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Figure 1.6 The vadeties of Lapita vessel forms occurring in early Lapita sites in New

Caledonia. This Figure has been reproduced from Kirch (2000). Please refer to this

book tor an extensive guide to the Archaeological and Linguistic History of the Facific.

1.4.2 Linguistics : Austronesian lttnguage

The indigenous people of Oceania all speak related languages, which belong to the well-

defined and geographically widespread Austronesian family. Austronesian is spoken as

I6
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far west as Madagascar, and as far east as Easter Island. It is spoken by most of the

populations of island Southeast Asia (including the Taiwanese Aborigines), and makes

up the majority of languages spoken in Melanesia outside New Guinea, and all the

languages spoken within Micronesia and Polynesia. Whereas in New Guinea, and in a

few scattered locales elsewhere in Near Oceania. such as on New Britain and the

Bougainville Islands, the indigenous languages are Non-Austronesian or Papuan (see

Figure 1.7).
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Figure 1.7 The distribution of Austronesian and Non-Austronesia Languages in

Oceania. The Non-Austronesian languages are situated in the shaded areas, while the

hea'n y lines delineate several major subgroups of Austronesian languages. SHWNG,

South Halmaher-West New Guinea; CMP, Central Malayo-Polynesian. This Figure has

been reproduced from Kirch (2000).
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There are 1,200 or so languages of the Austronesian language family, possibry the

largest rnrong the 6,000 ranguages of the modern worrd (Diamond, 2000). This

language has t0 subgroups of which 9 (containing only 26languages) are spoken only

by the non-Chinese aborigines of the island of Taiwan (Diamond, 2000). The tenth

subgroup encompasses all Austronesian languages outside Taiwan, from Madagascar to

east Polynesia and proves to be of great culture-historical significance due to the

supposed association of this Austronesian language expansion with the Lapita culture.

The archaeological models and dating are remarkably consistent with the intemal

relationships or sub-grouping of the Austronesian Ianguages as worked out through

careful linguistic comparisons (see Figure l.g i.). The Oceanic branch has no deep

history of successive language 'splits' such as would be expected had speakers of these

languages been present for a long period in Near oceania (as were the speakers of the

highly diverse Papauan languages). Rather, the first-order branches or sub-groups of
oceanic form a chainlike linkage (Figure 1.8 ii.). To linguists, this implies rhar rhe

Ptoto oceanic speech community moved rapidly into the area east of Halmahera and as

far as the soromon Isrands, quickry forming a dialect chain, along which

communication conlinued for some time. Differentiation eventually occurred as links in

this chain were severed, leading to the four or five major first-order subgroups of
oceanic language observed in the area today. This model correlates well with

arcliaeological evidence for the rapid intrusion of a new population, coming out of

island southeast Asia around 1500B.c., with trade and exchange as evidenced by

archaeology, to be expected among peoples who spoke related dialects. Links between

Lapita and oceanic language in Remote oceania have support, as prior to Lapita there

is no evidence for any human occupation in these regions, unlike in Near oceania which

had been occupied for -30,000 year-s prior to contact with Lapita peoples. Sub_

18
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grouping within the model for the oceanic languages spoken in Remote oceania closely

mirrors the sequence of island settlement as given by archaeology. polynesian

languages are shown in Figure 1.8 iii., and the branching structure of this tree may also

correlate with successive stages of migration.
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Figure 1'8 Diagram i. shows the subgrouping or 'family tree' for the Austronesian
languages (After Kirch, l9g7), Diagram ii. shows the sub-grouping of the oceanic
languages (After Kirch, rggT) and Diagram iii. shows the subgrouping of the
Polynesian languages (After Marck, 1999). These Figures are all reproduced from
Kirch (2000): the original references are shown in brackets.
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A recent paper by Gray and Jordan (2000) shows support for the Austronesian

expansion via language trees (see Figure 1.9). This study used a parsimony analysis of

a large language data set, to test competing theories (see sections 1.5.1 and 1.5.2) for

the colonisation of the Pacific by Austronesian-speaking peoples.

Figure 1'9 Diagram showing the relationships between the major Austronesian

Language groups of the Pacific. This Figure is reproduced from Gray and Jordon

(2000). Abbreviations are as foilows: wMp, western Marayo-porynesian; cMp,

central Malayo-Pol ynesian; sh./wng, south Halmaher/west New Guinea.
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1.4.3 Anthropology

Anthropology is the study of the variety, distribution, characteristics and culture of

mankind. In the Pacific, studies have often focussed on variability in skull shape, facial

features, skin colour, stature and body form. In short, biological evidence reinforces

the linguistic model of a robust phyletic grouping for the Polynesian populations.

Tonga-Samoa

Fiti

Hawaii

Marquesas

Easter ls.

Chatham ls

Society ls

New Zealand

Tuamotu

Figure L.10 A dendrogram of Polynesian biological populations, based on

anthropometric analysis, mirrors the Westeln-Eastern Polynesian division suggested by

linguistic and cultural comparison, This Figure is reproduced from Pietrusewsky (1996).

1.4.4 Human Population Genetics

Early work by population geneticists was done to discern patterns of historical

population movements, using comparisons from blood groups, serum proteins and

enzymes of a few hundred donors. Although techniques have moved on to incorporate

direct DNA sequence comparisons from tens of thousands of individuals, some of the

early findings by molecular population genetic studies will be reviewed (see Hill and

Serjeantson, 1989).
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1.4.4.1 Blood groups

The ABo blood groups were discovered at the beginning of the 20th century, and have

been subject to numerous studies due to their impoftance for successful blood

transfusions' During world war I, Ludwik and Hanka Hirschfeld, two polish

immunologists, examined several different ethnic groups among the soldiers in the

English and French colonial armies and the world war I prisoners, including

vietnamese, senegalese, and Indians. The Hirschfelds' discover-ed that the proportions

of individuals belonging to the different blood groups were different in every population

(see cavalli-sforza, 2000)' This 'uneven' blood groLlp distribution pattern is now

known to be universal, and each population is different for most other polymoqphisms

as well' In the Pacific region although the frequency of the ABo blood groups varies

widely, some generalizations can be made. The blood group B is absent entirely or met

with only sporadically, and it is possible that the blood group A gene was absent in the

central Pacific before European contact (see Hill and Serjeantson, 19g9). With the

discovery and combined dara of other brood group systems (e.g. RH and MN) it is
possible to identify populations from the 5 continents. However blood groups on their

own are insufficient to provide satisfactory resolution for population relationships

(Cavalli-S forza, 2000).

t.4.4.2 HLA

The class I and rI genes of the Major Histocompatibility complex (MHC) are among

the most variable loci known in many vertebrates, including humans. variation in the

genes of the human MHC, more commonly known as Human Leukocyte Antigens

(HLA) genes have been subject to intense study for many years due to their importance
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in transplants, autoimmune disease and recognition of pathogens. In the pacific region

a stndy using HLA markers was conducted b1, Hagelberg et al. (1999b), who found

reduced overall variability in island Nlelanesia. An 'Asian' DpBl 0501 HLA allele was

found at a high percentage in Chinese (47va),Taiwanese (70vo), the Roro (7lvo) and

samoans (70vo), which was thought to indicate an ultimate Asian origin of these people.

The reduced levels of HLA diversity could be explained by a genetic bottleneck in the

founding of these populations.

1.4.3 Globi,r genes

Flint et al' (1986) studied the frequency of o,-thalassemia in Melanesia and found an

altitude and latitude dependent corelation with malaria endemicity throughout

Melanesia, supporting the hypothesis that protection against this parasitic disease is a

major factor responsible for the high frequencies of various haemoglobinopathies in

many pafis of the world. However, evidence of u-thalassemia at gene frequencies of

-7vo in parts of Polynesia that are historically free of malaria suggest a link between

Melanesia and Polynesia, whereby the a-thalassemia genotype was carried out into

Polynesia from Melanesia.

1.4.5 Minisatellites

A study by Flint et al. (1989) of minisatellite diversity in polynesians showed thar in

comparison to Melanesians the number of alleles at each loci is smaller. However, the

allele distribution and the mutation rates at Polynesian minisatellite loci do not deviate

from those predicted by the neutral mutation/infinite allele model. The low gene

diversity is therefore likely to be a result of the maintenance of small population sizes
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and bottleneck effects during the colonisation of the pacific (Flint et al., 19g9; Hamilton

PhD thesis, 1994)' The interesting point about the studybyFlint et al. (19g9) is that

minisatellites identified a significant loss of heterozygosity (or gene diversity) that was

not noted using more traditional markers, such as the degree of polymorphism in protein

and antigen loci.

1.4.6 Mitochondrial DNA

Mitochondria are small cellular organelles present in cell cytopiasm and responsible for

energy production. In contrast to nuclear DNA (nucDNA), which has only two coples

per diploid cell, with one copy originating from each parent, mitochondria are inherited

matemally and contain mtDNA at a much higher copy number. Mitochondrial DNA

has a high copy number because the cell cytoplasm can have many mitochondria, each

one containing multiple copies of mtDNA, with the overall number of mtDNA copies

ranging from -200-1700 in somatic cells (depending on the tissue type), to more than

100,000 in oocytes. The maternal rnode of transmission of mtDNA is thought to be due

to the small number of mitochondria contained in sperm, in relation to the many

thousands of mitochondria contained in each ovum. Additional experiments have also

shown that paternal mitochondria may be eliminated from the ovum after fertilisation

(Ankel-Simons, 1996). The large number of mtDNA copies in each cell allows a high

likelihood of recovery of rntDNA for genetic tesring (see section r.4.6.9). The special

features of mitochondrial DNA including high copy number and uni-linear maternal

transmission as mentioned, and absence of recombination and high mutational rate,

make mtDNA ideal for phylogenetic studies. consequently, for many years,

mitochondrial DNA has been the marker of choice for evolutionary studies and many

laboratory groups have taken advantage of these features to infer relationships between
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I:lorai et al., 1991; Horai et al., 1993; 'I,ri.toni et al..

Bonatto et al., 1997; Torroni et al., l99g; Helgason et al.,
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population interactions (e.g.

L993a; Tomoni et al., I993b;

2001).

While there is no general dispute regarding the high mutation rate of mtDNA (many

studies illustrate this property: Jazin et al., l99g; Seielstad et al., l99g), the mode of

inheritance and lack of recombination in humans have been recently challenged

(Ashkenan et al., 1997: Howelr et ar., 1997; Awadalra et ar., 1999; Eyre-walker et al.,

1999: Eyre-Walker et al,, 2000). However, these assertions have been emphatically

refuted (Macaulay et al., 1999a; Jorde et al., 2000; Kivisild and Villems, 2000; Kumar

et al', 2000; Parsons and lrwin, 2000). Thus, despite some studies that may show

recombination as a factor in mitochondrial evolution, these views are in the minority

and have yet to achieve widespread support. A recent report (Stoneking, 2000)

indicates that the hypervariable regions (sites that evolve at a much faster than average

rate) present in the non-coding regions of human mtDNA are mutational hotspots, rather

then the result of ancient mutations that have been redistributed among rntDNA lineages

via recombination (Eyre-warker et al., 1999; Hagelberg et al., 1999a). The impact of

solid evidence proving rccombination in human mitochondrial DNA would be

widespread as current mtDNA phylogenetic studies assume that mutations accumulate

at a steady.ate oil rndependent lineages. Recombination wo'rd effectivery .shuffie, this

variati on makin g ph ylogenetic inferences difficult.
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1.4.6. I Mitochondrial genonte structure

Figure 1.1 I shows a diagram of the hurnan mitochondrial genome with an enlarged

view of control region (CR), also called the DJoop (due to the visible displacement

structure formed during mtDNA replication). The CR is about 1,000 bp long

subdivided in two hypervariable regions: HVI and HVII of about 400 bp each, the

length and position of these regions vary slightly depending on the definition used in

various studies. The two hypervariable regions are separated by a more conservative

region (16 365-00 073), and a longel coding region of about 15,000 bp, that contains 37

genes (Anderson et al., 1981). The rntDNA evolves very quickly, up to 5-10 fold faster

than nuclear DNA and the control region of mtDNA has a mutation rate about 10 times

higher than the coding region of mtDNA (Greenberg et al., 1983).

[- Control Resion *--*+l Figure 1.11 Map of the human
mitochondrial genome and
expanded diagram of the non-
coding control region.

Listed are the genes for 125 and 165

ribosomal RNAs, subunits of the NADH
coenzyme a oxidoreductase complex
(ND), cytochrome c oxidase complex
(CO), cytochrome b (cyt b), ATP synthase
(A), and 22tRNAs (labelled with single
letter amino acid code). The light strand
(OJ and heavy strand (Os) origins of
replication, and the light strand (LSP) and

heavy strand (HSP) transcriptional
promoters are shown by arrows. Control
region diagram shows tlanking tRNAs and

location of hypervariable region 1 (HVI)
and 2 (HVII); numbering follows that of
the standard reference sequence of
Anderson et al. (1981).

Figure reproduced from Holland and

Parsons (1999).
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L4.6.2 Variable sites

within the control region of human mtDNA some sites are prone to changes in

nucleotides, but these variable (polymorphic) sites are not evenly distributed. The

number of polymorphic sites in HVI is about double that of HVII, and within both of

these two segments the mutation rate is site dependent. There are some extremely

variable positions and some more conserved sites, with a large bias towards transitional

(T*tC and A+-+G) versus transversional (G++T, G+.+C, A<+T and A+-+C) chanees

(Piercy et al., 1993).

The numbel and distribution of polyrnorphic sites in human mitochondria have some

important implications for mitochondrial DNA studies as a nucleotide change may be

frequent in human popr-rlations for two very different reasons: either they represent an

ancient mutational event and it is present in all the individuals der.ived from any

particular ancestor, or it is a site with an extremely high mutation rate, thus representing

independent rnutational events in different lineages, with no phylogenetic signal (see

Figur'e l'12). Analyses, which do not take into account this effect, giving the same

weight to all the nucleotide changes detected may give poor resolution in the study of

populations at the micro evolutionary level (Francalacci et al., 1999).

Figure 1,12 High rares
changes in nucleotides,
shows two lineages with
occurled independently in

of nucleotide mutation (indicated by *) may give parallel
which can complicate phylogenetic inferencls. piaeram i.
a common ancestor. In Diagram ii. the same mutation has
different lineages and does not indicate a phylogenetic signal,
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1.4.6.3 Restriction analvsis

Restriction enzyme digestion and analysis allows mtDNA lineages to be grouped into

clusters defined by specific endonuclease restriction sites. These clusters are called

haplogroups and are based on high-definition restriction analysis using a defined set of

14 endonucleases' The positions of haplogroup specific restriction sites are shown in

Figure 1'13 following the alphabetic nomenclature initiated by Torroni et al. (see

Francalacci et al., 1999). Figure 1.14 illustrates the resoiving power of phylogenetic

reconstructs behind restdction analysis revealing that haplogroups are largely continent

specific' Recent studies combining both RFLP and control region sequence (Macaulay

et al', 1999b) allow for finer resolution of the haplotypes present in each haplogroup,

and provide distinction between clusters. For example, in the European lineages,

samples may have identical haplotvpes using control region sequence, but when tested

with RFLP may be found to belong to different haploglqup. This is the case for some

haplotypes in the H and U haplogroups.
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F'isur.e 1'13 The position of the haplogroup specific restriction sites in the humanmitochondrial genome. This Figure has been iepioduced from Francalacci et al. (1999).
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Figure 1.14 Map of continent specific haplogroups (Taken from MITOMAP website:

:1/WWW.gen.e

Analyses of mtDNA RFLP results identify haplogroup lineages LI, L2 and L3 as

specific to the African continent. Asian-specific haplogroups are A, B, F and M, with

the M supergroup further split into haplogroups C, D, E and G. Native Americans have

mainly A, B, C and D haplogroup lineages. The European-specific mtDNA haplogroups

are H, I, J, K, T, U, V, W and X; with V the sister group to H.

L4.6.4 Hypervariable I Region (HVI)

1,4.6.4.1 CGT morif

As mentioned previously mtDNA sequencing efforts have largely been concentrated on

the HVI (-16 024 to -16 383) and HVrI (-16 057 to -16 372) regions (numbering after

Anderson et al.' 1981). Within the HVI region there is a set of specific nucleotide

transition substitutions that are frequently found in Polynesian popula tions (-94vo of

29



Ittlruxlttc,lion

mtDNA lineages: Sykes Et al., 1995) and have become known as the polynesian .CGT

motif (Hagelberg and clegg, 1993; Redd et al., 1995; Hagelberg, rggT). The

Polynesian 'CGT motif is located at nucleotide (nt) positions 16 217, 16 247,and 16

261, numbering according to the Cambridge reference sequence (CRS: Anderson et al.,

l98l) with T--C, A---+G and C-'+T transitions at each site respectively (see Figure

l. l5).

T!. 
-aAAACCCCC 

ICCCC
5'Hatf l6lgg 162l? 3'Hatf t6247 t6261

)' ts-r
cu. 

-AAAACCCCCICCCCft ldlse

a)
J

5'

l62t? 16217 t6%l

Figure 1'15 Enlarged view of the mtDNA HVI region showing the CRS (i.) and the

transitions required to form the cGT motif (ii.). The transition at position 16 lgg creates

a homopolymeric cytosine tract (see section 1.4.6.4.2 and Figure 3.5). often the two

adjacent adenines (A) at positions 16 ll2and 16 183 (indicated by red arrows) acquire

A--'C transversions producing the characteristic 12 c-tract (see Figure 3.5). Black

zlrrows indicate the 3'and 5'halves of the HVI region. This study focuses on the 3,

half, as this is the region with greatest mtDNA sequence diversity (see Section 3.5).

1.4.6.4.2 Homopolymeric cytosine tract

In addition to the cGT motif the control region of Pacific Island people often contains a

homopolymeric cytosine tract between nts 16 184 and 16 lg3. This tract is present at a

high frequency in many populations in the Pacific (-l00yo, current study) but is also

found in -15% of Europeans (Bendall and Sykes, 1995), and is thought to occur in
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-20vo of the general population (Holland and Parsons, 1999). This tract is the caused

by a T-'C transition at nt position 16 i89 compared with the CRS, resulting in an

uninterrupted homopolymeric tract (see Figure 1.15). Due to the homopolymeric

cytosine tract, direct nucleotide sequencing of individuals with this trait produces a

characteristically bluned sequence of nucleotides 3' beyond the tract. This difficulty in

characterising the sequence after the c-tract is caused by the low fidelity of the

mitochondrial DNA polymerase system (Holland and Parsons, 1999), as the population

of mtDNA molecules within an individual will differ for the length of the C-tract

(heteroplasmy: see section r.4.6.1; e.g. refer to G2o4 in Figure 3.5). Therefore, during

sequencing the template molecules are out of register with one another. Sequencing

clones from individuals with this tract by Bendall and Sykes (1gg5) revealed that

ambiguous sequences at'e caused by high levels of length heteroplasmy in the

homopolymeric tract coupled with lower levels of length heteroplasmy in the four

adenines proceeding the tract. It is also possible that these blurred sequences are further

complicated by errors during pCR and/or sequencing.

In the HVII region C tractlength heteroplasmy also occurs between nt positions 00 303

-00 315, but in this case there is often an identifiable predominant length variant, which

allows sequencing to proceed nonnally (Holrand and parsons, i999).

L4.6.5 9 base pair (9-bp) deletion (Region V)

Another mtDNA characteristic common in Polynesian populations is the deletion of one

of the two adjacent copies of a 9 base pair (9-bp) direct repeat sequence

(cccccrcrA) in rhe coIytRNALt'intergenic region (also known as region v) of

mitochondrial DNA (Wrischinik et al., 1987). In the ancestral state there are two copies
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of this 9-bp direct repeat, but some populations have lost one copy and therefore have a

^-r'p deletion' This marker has previously been used as a polymorphic anthropological

marker for people of east Asian origin (Wrischinik et al., 19g7; Melton et al., 1995), and

links Asiatic populations with oceania (Hertzberg et al., 19g9; Hagelberg and clegg,

1993; Lum et al., 1994; Redd er al., 1995) and the Americas (ward et al., 1991: ward et

aI', 1993)' This deletion was originally thought to have arisen only once in the

evolution of east Asian populations. It was thus thought of as an important ,Asian

specific' rnutation that could be used to trace the genetic trail out of Asia into oceania

and the New World. However, this mutation has also been found at low frequencies in

Afiican people (soodyall et al., 1996), and in a single spanish caucasian person

(Bamientos et al., 1995) indicating that the 9-bp deletion can originate independently

and could be considered as a recun'ent mutation. Despite the fact that this marker has

been found at low frequencies in other populations, it is still very important for

characterising Asian and Polynesian populations, and can be used as an additional

character for assigning haplotypes (i.e. distinguishing between samples with and

without the 9-bp deletion).

1.4.6.6 Hypervariable II Region (HVII)

Although many studies have found subsrantial variation in both the HVI and HVII

regions of mtDNA in worldwide populations, a previous study in the pacific r-egion

found almost no vadation in HVII renrlering it unsuitable for determining phylogenetic

relationships among oceanic people (Lum et al., Igg4). Despite this, a small number of

samples were sequenced for this study using the HVII region, but results did indeed

show very little variation when compared with the diversity of sequences obtained using

samples from other populations. A study by Lutz et al. (1996) identified a third
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hypervariable region, which they named HVIII between positions 00 440 and 00 560.

This region has not been menfioned in any previous studies conducted on pacific or

worldwide populations to the best of my knowled.ge. The proposed new hypervariable

region was published in a forensic paper and may be well characterised on the forensic

database' However, a review paper by Holland and Parsons (1999) indicated that this

forensic database was highly regulated and contained HVI and HvII regions only.

1.4.6.7 Heteroplasnry

There is usually only one mitochondrial DNA population within an individual, but in

rare cases (2-8vo of the human population) heteroplasmy has been observed (Holland

and Parsons, L999)- Heteroplasmy is the term given to an individual with two or more

mitochondrial DNA populations. Many cases of heteroplasmy occur as point rnutations

in individuals affected with mtDNA diseases, whereby there will be population of

'normal' and 'abnormal': disease causing molecules within the patient,s mitochondrial

DNA population' The proportion of mutant rntDNA transmitted fiom mother to

offspring is variable, and the 'doss' of the mutant abnormal mtDNA received from the

mother may influence the severity of the phenotype in the offspring.

There are a few reports of silent (i.e. non-disease causing) heteroplasmic point

mutations in mtDNA in human populations. A famous example is that of a single

heteroplasmic point mutation found in the remains of Tsar Nicholas II (see Figure 1.16),

which was valuable in subsequent identification (comas et al., 1995). when the

mtDNA sequence from the putative remains of the Tsar (see Figure 1.16 a) was

compared with mtDNA sequence from a known living maternal relative, there was one

difference in the sequence (see Figure 1.16 c). This mtDNA sequence difference was at
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nt position 16 769, correlating to the heteroplasmic position found in the skeietal

remains of the Tsar. Automated sequence analysis of the Tsar''s remains assigned a C to

position 16 169, as although another mtDNA population was present with a T at this

position, C was predominant. A sample taken from the Tsar's brother, Georgij

Romanov also showed heteroplasmy at t6 169 but with a predominance of T (see

Figure 1'16 b). Using sequence databases and considering only a sequence match

between the Tsar and his deceased brother Georgij, a likelihood ratio of 150 was

calculated implying the obselved data was 150 times more likely if the remains were

those of the Tsar as opposed to a random individual. When a sequence match at the

same heteroplasmic position, i.e., 16 169 was taken into consideration the likelihood

ratio jumped to more than 300,000, and when the sequence match between the Tsarina

and her living maternal relative HRH Prince Philip was taken into consideration. the

total rntDNA data gave alikelihood ratio of more than I00,000,000.

Figure 1.16 Automated sequence electropherograms comparing mtDNA sequences atposition 16 169: (a) sequence from Tsar Niiholas II, rhorvlng heteroplasmy with
cytosine predominaring thymine; (b) sequence form Gran Duki ceorgij Romanov,
showing heteroplasrny with thymine predominating over cytosine; (c) 

-sequence 
forliving maternal relative of Tsar Nicholas, separaled uy iive generation;l evenm,

apparently homoplasmic for thymine. Diagram is reprodu""d fro* Holland and parsons
(1999), using information from rhe study by Ivanov it 

^t. eggq.

a) Tsar Nicholas ll

c) Xenia Cherernetetf-Sfiri

I
\ o) Ceorgll Romanov

16169
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A study by Bendall et al. (1996) suggests that heteroplasmic point mutation variants in

Li"ir, control region are rnore widespread than has been repofied. The lack of

heteroplasmy observed in earlier studies is attributed to difficulties of detection by

direct sequencing. A study by Holland and Parsons (1999) using denaturing gradient

gel electrophoresis polymolphism (DGGE), has shown that this merhod has high

sensitivity for detecting mixed DNA sequences compared with direct sequencing (e.g.

using 253 samples, DGGE analysis identified 74vo heteroplasmy compared to rrousing

direct sequencing).

As mentioned previously (see section 1.4.6.4.2), tract-length heteroplasmy occurs

frequently in the HVI and HVII regions of worldwide populations (up to -Z1vo),and is

particularly common in polynesian populations (100vo, prasett study). In these

instances the point mutation occurs within a region of mtDNA that is rich in c,s (see

Figure 1,15 ii). A single point mutation crcates a tract of C's which may lead to a

compromise in the mitochondrial copying fidelity, so that as the mitochondrion makes a

copy of its DNA, slip-strand mispairing is more common, and incorporation of

additional c's can easily occur. This copying euor can result in a copied mtDNA that is

longer (more C's) than the template, and effectively results in two (or more) populations

of mtDNA 'types' within a single individual, leading to sequencing difficulties,

1.4.6.8 Ancient DNA

with the advent of PCR technology and improved methods for the prevention of

contamination, it is now possible to gather authentic mtDNA sequence information from

trace and ancient samples' The majority of mtDNA sequence information is obtained

from bone samples. Recently, mtDNA has even been recovered from the remains of
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two Neanderthal specimens (Krings et al., 1997; Krings et al., 1999; Ovchinnikov et al.,

:4C0). Using HVI and HVII comparisons with contemporary human mtDNA have

shown that the Neanderthal mtDNA variation falls well outside the range present in

modern human populations. These findings suggest that modern humans and

Neanderthals are different species, thereby supporting the 'recent African origin'

hypothesis. However, a study by Wall (2000) determined that sequence data from -50-

l00unlinked nuclear loci is necessary to distinguishbetween the 'recent African origin'

and the 'multilegional' model of modern human evolution. Sufficient evidence to

enable thorough evaluation of these two models is expected to be available within the

next few years (Wall, 2000).

Another study on ancient mtDNA (Adcock et a1.,2001) using ancient (-60,000 years

old) anatornically modern Australian skeletons, places the deepest mtDNA lineage from

an anatomically modern human in Australia, whereas analysis using contemporary

human mtDNA genomes places the deepest branches in east Afijca. This study

challenges current concepts of modern human origins, but is only based on one set of

skeletai remains. Further ancient skeletons from Australia and other regions would be

needed to confirm this asseltion, as although these data imply that the deepest branches

occurred in Australia, the study is highly contentious and is yet to receive widespread

support as other alternative theories could equally well explain this result.

Work done using mtDNA extracted from ancient bone samples of prehistoric Pacific

Islanders (Hagelberg and Clegg, 1993) has shown that patterns present in the rntDNA of

the population presentiy residing in a region are not necessarily reflected in the ancient

DNA. Although there is a high frequency of the 9-bp deletion (indicating an east Asian

origin) in the present Pacific populations, the 9-bp deletion was missing in the oldest
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samples from Fiji, Tonga and Samoa. In contemporary DNA the deletion is present at

frequencies of 82To (Hertzberg er al., rggg), 93vo and ggzo (Sykes et al., lgg5)

respectively' The findings by Hagelberg and Clegg (1993) were therefore unexpected

as many of these samples were taken from 'Lapita sites' (see Section 1.4.1), and the

remains were assumed to be ancestral to modern Polynesians. These results were taken

to suggest that the Lapita culture was originally carried from its Melanesian homeland

into the central Pacific by indigenous inhabitants of island Melanesia, rather than by

Aushonesian-speaking migrants from Southeast Asia who settled the region en-route to

the eastern Pacific. Furthermore, these results would suggest that polynesians may have

descended from both Melanesian and Southeast Asian ancestors, and that the combined

effects of population bottlenecks and genetic drift (see Section 1.3) have led to the

extinction of all but a very few mtDNA lineages during the colonization of the eastem

Pacific (Hagelberg and Clegg, 1993). However, once again these conclusions are based

on a limited number of specimens and even the authors concede that their results should

be taken with a note of caution as discrepancies between their expected and actual

results could have alternative explanations.

L4.6.9 Use of Mitochondrial DNA in Forensic Science

Human mtDNA has proved to be a very powerful tool for forensic identification of

individuals using DNA from very old (see Section 1.4.6.8) ordegraded tissue (Lutz er

aI', 1996), to provide genetic identification criteria that would not often be possible

using nuclear markers. This is due to the fact that mtDNA is present in many copies in

each cell and is more likely than nuclear DNA to be found intact in compromised

samples' Since the advent of PCR only a very small number of mtDNA need to be

recovered, and once amplified the mitochondrial DNA sequence can be used for
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comparison with living maternal relatives of the deceased. This has led to the

identification of many high profile skeletal remains such as those of Tsar Nicholas I_t

(Gill et al., 1994) and of Martin Bormann, the second most powerful man of the Third

Reich (Anslinger er al., 2001).

Currently in New Zealand. a number of cases that have physical matches using

microscopical hair cornparisons are supported using mtDNA sequences, usually for

Caucasian victims only. It is now proposed that mtDNA analysis will be introduced for

hair work, skeletal remains and other decomposing/compromised samples (Saliy-Ann

Harbison, ESR Forensic Team Leader: pers. comm., 2001). Typical examples of

decomposed highly degraded samples include corpses on battlefields, disaster victims.

and skeletal remains of missing people degraded by long-time exposure to weather.

1.4.6.9.1 Disaster victim Identification (DVI)- An Australasian example

At the New South Wales Institute of Forensic Medicine (Australia), Dr Sarah Robinson

is involved in the set-up of processes to identify disaster victims using mitochondrial

DNA analysis (pers' comrn., 2001). INTERPOL regulations curently require at least 2

forms of primary information to successfully and accurately identify a victirn after a

disaster The most commonly used identification methods are medical, dental ancl

fingerprinting recolds, but DNA has become increasingly popular over the last 4 years.

Although nuclear DNA markers provide greatest resolution, the circumstances of many

disasters lead to severe degradation of nuclear DNA, making high copy number mtDNA

a viable alternative target for victim identification. However, strict controls must be

applied to the matching and exclusion standards when using mtDNA, as false positives

could be returned if the mtDNA haplotype was shared among more than one of the
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unidentified victims. This is a particular concern for the Polynesian populations

resident in both Australia and Ne',v Zealand as very few mtDNA haplotypes have yot

been found in these popuiations. However mtDNA results taken together with another

primary identification (id) method could provide a suitable and satisfactory back up, if
none of the other primary id methods were available.

1 .4,8.9 .2 Mi ssing Person Identification (Australia)

To assist in the identification of skeletal remains found by police, Dr Robinson is also

contracted to set-up a Missing Persons Database. The aim of this database is to reduce

stress on the relatives of missing people. Relatives can now donate a blood sample to

determine their mtDNA sequence with their results stored in the Missing person

database' These mtDNA sequences will be compared to each set of unidentified

remains found. Further contact with the police is only necessary when a match has been

found, whereas presently relatives have blood taken each time a new set of unidentified

remains are found. Precautions identical to those taken with DVI wort will need to be

implemented, as there is still the possibility that remains could be returned to the wrong

relatives' In both Missing Person Identification and DVI work, additional information

on different mtDNA haplotype frequencies for people of different cultural backgrounds

is critical so statistical probabilities of a mismatch can be worked out (refer to section D

of the review by Holland and parsons, 1999).

1.4.7 Y-Chrontosome studies

There are many recent publications using the non-recombining region of the y-

chromosome (Hammer and Horai, 1995; Underhill et al., 1996; Underhill et al., I99l:
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Karafet et al., 1999; Hill et al., 2000; Thomson et al., 2000; Kayser et al., 2001) for

pirylogenetic analysis. This regiol may be considered the male equivalent of

mitochondria, due to its inability to form a homologous pair during meiosis and mitosis.

Therefore' it does not undergo recombination and is passed through the paternal lineage,

like a family name. Unfortunately Y-chromosomes are not present in high copy

numbels in cells, and therefore PCR amplification and sequencing is not as

straightforward as it is for mtDNA. Early work on Y-chromosomes using DNA

sequencing found almost no vadation among individuals with different population

backgrounds (Dorit et al., 1995). However perseverance has been rewarde<i as new

markers were found and phylogenies can now be drawn (Underhill et al., 2001b).

Studies using Y-chromosornal polymorphisms to trace patemal lineages in polynesia

have found various levels (-2-27Vo) of European admixture (Hurles et al., 199g; Su et

al'' 2000). Initial work done on Maori Y-Chromosomes indicate a substanti al (-40Vo)

European ancesrry (Hurles et al., 199g; Su et al., 2000; Underhill et al., 2001a), with

lineages representative of East Asia and Melanesia also present. These data, together

with the mitochondrial information, indicate a gender-modulated pattern of differential

gene flow in the history of Polynesia as has been found elsewhere e.g. in Asian (perez-

Lezaun et al., 1999) and Colombian populations (Seielstad et al., 2000: for a review see

Pennisi 2001).

L.5. Models of the oceanic Expansion of people across the pacific

with the considerable wealth of combined interdisciplinary

the populations present in the pacific region, it is obvious

knowledge available about

that some attempts will be
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made to assimilate these ideas into a model that will explain how the population

expansions took place. Although there is some disagreement as to the relative genetic

contributions of males and females, and where the expansion originated, most experts in

all disciplines do not support (Heyerdahl, 1950) idea that American Indians played a

ma-ior role in the settlement of the Pacific, and instead favour settlement from

somewhere in the west, around island southeast Asia. Although many archaeologists

agree that there was a rapid and recent migration of Austronesian speakers into Remote

oceania, what is open to debate is precisely where the Lapita peoples came from and

how rruch they interbred along the way with the indigenous people whose ancestors had

been living in Near oceania for at least 33,000 years. The two leading, and supposedly

most strongly contrasting, models are explained in detail below. A recent news article

(Gibbons, 2001) notes that the polarised views may not necessarily coincide with those

of the authot most closely associated with the model, and geneticists may have made the

situation worse by testing what were seen as 'competing' theories. A third model is also

explained in detail below, as this is the latest attempt at an interdisciplinary rheory. For

a brief description of other models see Section 1.6.

1.5.1 The Express Train Model (Bellwood, Iggl)

The most recent human migration is postulated to have started from a homeland in

China ca" 6,000 years ago and spreading outwards to Taiwan, philippines, eastcrn

Indonesia and Melanesia reaching Fiji by ca.3,500 years ago. The colonisation of the

Pacific concluded with a radiation filling the Polynesian Triangle ca. 1000 years ago

and Aotearoa (New Zealand) within the last 800-1000 years, or maybe even more

recently (McFadgen et al., 1994). This leading historical description of human

expansion across the Pacific was made by archaeologist Peter Bellwood (1991), and has
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become known as the 'Express Train to Polynesia' hypothesis (Diamond, lggg). This

assumes that the Lapita culiure (see Section 1.4.1) arived full-blown in the Bismarcks,

having arisen far to the west in island Southeast Asia and spread rapidly eastwards

(Diamond, 1988). This Express Train model was thought to suggest a very fast

migration out of Taiwan with no integration of indigenous people already along the

colonisation route. However, although the Express Train terminology was quick to

spread, Bellwood himself has expressed concern over the false dichotomy between his

model and Teffell's (see Section L.5.2). tn fact Gibbons (2001) suggests that geneticists

looking to test opposing views have made assumptions about Bellwood's model,

suggestions backed up by quotes "l don't believe in express tr-ains" says Bellwood. ,?r

was a fast moventent out of Taiwan, but it wasn't totally closed ffi Of course there has

been internmrriage. The express train was a kind of jounmlistic statentent,.

1.5.2 Entangled Bank Model (Terrell, IgSg)

The Entangled Bank Model (Terrell, 1988) states that the various pacific people are

thought of as a geoglaphic set of local and island populations, more or less in touch with

each other, who have followed separate but often connected historical pathways of local

adaptation and cultural change. This view argues that the Lapita culture and peoples

at'ose from a diverse Melanesian population that was linked in a complex social and

trade ne[ivr;rk with people from island Southeast Asia over thousands of years. Terrell

claims that describing the events of Polynesian colonisation in terms of a fusion

between two peoples and two cultures is too simple. Tenell uses two metaphors to

describe the interlocking interdependent nature of these populations: a playing field and

an Entangled Bank; the latter has become a well-known metaphor.
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1.5.3 The Slmt Boot Modct eppenhebtar and Nchads, 2MIo,b)

The Slow Boat Model (Oppenheimer and Richards, 200la"b) suggests that polynesians

originated in island Southast Asia, specifically east€rn I:ndonesia (Oppenhimer and

Richards, 2001b). While the idea of an offshore orign for Polynesians is not ncw

(Solheim, 1996; Meacham" 1985), reinterpretation of mtDNA and linguistic wi&nce

may provide renewed support for these theories.

F gure 1.17 lt{ap showing the alternative views for Ausfionesian origins. The oldest

view represented by Meacham (solid tiangle), Tenell and Solheim (intemrptod solid

black line and circle) argues for an island Southeast Asian homeland (>5,000 B.C.).

The 'Express Train' view of a rec€nt rapid migration from Chirra via Taiwan (3,000-

4,000 B'c.), spreading to replace the older populations of Indonesia after 2,000 B.C. is

shown by the red dotted line.
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1.6 Pacific Colonisation

Two levels of complexity:

L Source of original population (pattern)

o Express Train (Mainland China/South China) - Bellwood, 1997: see Fisure

r.n

o Entangled Bank (Melanesia) - Temell, 19gg

o Taiwan - Redd et al., 1995; sykes et al., 1995 and Lum et ar., 1994

r Island south East Asia (Indonesia) - Richards et al., 199g; oppenheimer and

Richards, 2000a, b; solheim , 1996; Meacham, l9g5: see Figure l.17

o South America - Heyer.dahl, 1950

r Micronesia - Hiroa, 1938: see Figure 1.lg

2. Settlement Dynamic (process)

i.e. How did these people settle? Was there intermarriage? Does it really depend

on whether you look at male (y-chrornosome) or female (mtDNA) markers?

o Express Train (Bellwood, 1991; Diamond, 19gg) - Settlement population

spread rapidly through the Pacific without admixture with populations

already present.

o Entan8led Bank (Temell, l9S8) - Contribution from both males and females

from populations already present along the migration route via intermarriage.

r Geneflow (Devlin, 2001) contribution of males only along the

colonisation route.
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Triple-I Model: Intrusion, Innovation and rntegration (Green, 1991) -
lntermarriage between the intrusive Austronesian speakers and the long-

resident populations of Near Oceania.

. slow Boat (oppenheimer and Richards, 2001 a, b) - Melanesian admixture

through intermariage (same as Triple-I?)

Figure 1.18 Diagram illustrating Hiroa's theories for Polynesian origins via Micronesia.

This Figure is reproduced from Kirch (2000).
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1-.7 Research objectives

The objectives of my thesis are as follows:

o To collect a molecular database of at least 50 partial mtDNA sequences from

Maori and Pacific Nation volunteers.

o To search this database for characteristic elements including the 9-bp deletion

and the Polynesian CGT motif.

r To use this database to refine the estimates of Murray-Mclntosh et al. (199g) for

the number of Maori women founders for New Zealand's Maori population.

o To evaluate the 'competing' models of oceanic population expansion, and

attempt to consolidate these theories into the 'synthetic Total Evidence Theorv'.
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2. Materials and Methods

2.1, Source of DNA

The samples used for mitochondrial DNA sequence analysis were obtained from blood,

frozen in plastic vials at -80"C. These samples were obtained from the human DNA

bank, held at the Institute for Molecular Systematics (IIvIS) in the School of Biological

Sciences, Victoria University of Wellington. Permission to use the samples was

obtained from Dr Geoffrey K. Charnbers, the curator of this collection, and from the

Wellington Ethics Committee (wEC). Support from WEC was obtained after

consultation with various Maori and Pacific Nation Health Organisations: such as the

Wellington Maori Health Committee, Maori Health Unit, Pacific Health Research

Centre, Te Putahi-a-Toi and the Eru Pomare Centre. Approval and support for this

project was obtained from these organisations by late December 2000, and WEC

granted ethics approval on the proviso that additional support from a Katiaki group

would be sought, as was advised by the consulted Maori and Pacific Nation Health

groups. A Katiaki group was established in 2001 using members from Toihuarewa, a

group with high Maori representation, established at Victoria University to deal with

Maori academic issues.

The blood samples were collected anonymously with informed consent from volunteers

at the Wellington blood transfusion service. Volunteers were asked to provide a small

blood sample for analysis, state their gender and identify their ethnic origin. The self-

declared ethnic origin was used to randomly select participants for this study. In this

study 61 participants who identified themselves as Maori were used as a representative

sample to survey the genetic variability of the NZ Maori population. A further 24
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individuals who identified their ethnic origin as pacific Island

Rarotonga, cook Island, Samoan, Niue and rokelau) had their

analysed as a comparison for the Maori data.

d'l u t rtri d,r u d M a t hod,s

(Hawaii, Fijian,

DNA sequences

2.2 DNA Extraction Protocol

The DNA samples used in this study were a sub-set of the samples available from the

IMS human DNA bank. The DNA had already been extracted from the blood samples

which were collected by a previous student and have been storcd in the IMS facility

(Hamilton PhD thesis, 1994). However, it was necessary to extract and analyse a

sample of DNA from my own blood to ensure I was not contaminating my work.

2.2.1 Recovery of white blood cells from whole blood

Fresh blood was collected in a 4.5 ml Vacutainer tube. The whole blood was diluted

with 10-20 volumes of cold (4"C) red blood cell lysis solution (RBS: see Appendix

One), in two 30 ml polythene centrifuge tubes, and left on ice until the solution cleared

(-10 minutes). The white blood cells were pelleted using a Heraeus Sepratech

centrifuge at 4,000 qpm for 10 minutes. The pellets were resuspended in 5 ml cold TBS

(see Appendix One) and combined in one graduated 10 ml polypropylene centrifuge

tube. The washed white blood celis were recovered by centrifugation at 3,000 rpm for

15 minutes at 4"C, using a Sorvall RC5 centrifuge, with a SS34 rotor. Cell debris was

remcved from surface of pellet by gentle inversion prior to pouring off the supernatant.

The pellets were stored frozen in the centrifuge tubes at -20"c until required.
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2.2.2 Proteinase K Digestian

The pellets were taken from the freezer and resuspended in 4.5 ml of TE buffer (see

Appendix One) by vortexing and shaking. The following reagents were then added in

the following order: 250 pl of 0.5M EDTA (see Appendix one), 250 pl 10zo sodium

doecyl sulphate (sds) reagent (see Appendix One) and 25 pl of 20 mglml Proteinase K

(Life Technologies). The mixture was divided among five 1.5 ml tubes and incubated at

55'C for 2-3 hours, with mixing by inversion every hour.

2.2. 3 Ph e n ol/ Chl o rofo nn E xtrac tio rt

The contents of the five 1,5 ml tubes were recombined in a single l5 rnl polypropylene

tube and an equal volume of neutral phenol (Life Technologies, Gibco BRL@) was

added, mixing by inversion. The tube was spun for 5 minutes at 10,000 rpm (4'C) using

a SS34 rotor in a Sorvall RC5 centrifuge. The top aqueous layer was transferred to a

clean 1.5 ml plastic microcentrifuge tube. An equal volume of

phenol:chloroform:isomyl (25:24:1) was added to the aqueous solution, mixed gently by

inversion and spun at 10,000 rpm for 5 minutes using a sorvall MC12v

microcentrifuge. The top aqlleous layer containing the DNA was removed, placed in a

clean 1.5 ml tube and an equal .rolume of chloroform:isomyl (24:I) was added. The

final extraction mixture was combined by inversion and spun in a Sorvall MC12V

microcentrifuge for 2 minutes and the top aqueous layer was transferred to a clean 30

ml tube.
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2.2.4 Ethanol Precipitation of Extracted DNA

To precipitate the extracted DNA 100prl of 3M NaCl and 15 rnl of cold erhanot was

added to the 30 rnl tube, and spun at 10,000 rpm, 4oC for 30 minutes. The supernatant

was removed and replaced with 70To ethanol to resuspend and wash the pellet, which

was then and spun for 10 minutes at 10,000 rpm, 4"C. The ethanol was removed and the

newly precipitated DNA was allowed to air dry. The dry pellet was then redissolved in

200 pl of TE buffer, with a 20 pl aliquot taken for immediato use and stored at 4"C and

the rest stored at-20C in a clean 1.5 ml tube.

2.3 Mitochondrial DNA Target Amptification

Three areas of the mitochondrial genome: HVI, HVII and Region V (see Sections

1.4-6.4,I.4'6'5 and 1'4.6.6) were amplified for each sample using the Polymerase Chain

Reaction (PCR)' The expected product size in the HVI rarget region was -44Zbp. In

the HVII region sequences were expected to be -400 bp long. In Region V sequences

were either ll2 or 121 bp long depending on the presence or absence of the deietion

respectively.

2.3.1 Frtmers

Each mtDNA target region amplified using the polymerase chain reaction required

primers complementary to its flanking regions. The primer pair sets used for HVI were

those used by Munay-Mclntosh et al. (199g), H16401 (S'-TGA TTr cAC GGA GGA

TGG TG-3') and L15997 (S'-CAC CAT TAG CAC CCA AAG CT_3'). Due to the

homopolymeric cytosine tract present in many samples, sequencing was difficult (see
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Section L4.6.4.2). Therefore, internal primets as used by Dr Sarah Robinson of the

New South Wales Institute of Forensic Medicine (pers. sofflm., 2001), werc used to

identify ambiguous nucleotides and provide sequence results in both the forward and

reverse orientations (L16209 s'-ccc cAT GCT TAC AAG CAA GT-3' and H16164

S'.GAT GTG GAT TGG GTT T-3').

The HVII region was amplified using primers communicated

comm., 2001: L048 S'-CTC ACG GGA GCT CTC CAT GC_3'

AAA GTG CAT ACC GCC A-3').

by Dr Robinson (pers.

and H408 S'-CTG TTA

Region V (9-bp deletion) was amplified using the primers as described by Wrischnik et

al. (1986: A8316 5'-ATG crA AGT TAG crr rAC AG-3' and B8196 5' ACA GTT

TCA TGC CCA TCG TC-3').

2.3.2 PCR Protocol

The standard 25 pl double stranded pcR reaction contained:

i8.35 pl sterile double distilled warer (sddHzo)

2.5 pl

1.0 pl

10X Qiagen@ PCR Buffer (conraining 15mM MgCl2)

2.5 mM Pharmacia@ dNTps (deoxynucleotide triphosphate mix with

dATP, dTTP, dCTp, dGTp at 2.5 mM each)

1.0 pl Forward (F) Primer (10 pm, Life Technologies)

1.0 pl Reverse (R) Primer (10 pm, Life Technologies)

0.15 pl Qiagen@ Taqpolymerase (5units/pl)

1.0 pl Template DNA (-20 nglpl)
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Before setting up PCR reactions the surfaces and equipment within the pCR set-up

lanfna flow hood were inadiated by Ultra-Violet (UV) ligtrr and cleaned with ethanol.

This process ensures the degradation of any DNA present in the air and on the surfaces

that could contaminate samples. Due to the small amount of Taq required for each

reaction, precision measurements using pipettes are difficult, so a Master Mix was

made. Each Master Mix was made by multiplying the volume of each reagent (listed

above) by the number of samples used for the experiment. A 24 1I aliquot of the

Master Mix was distributed into each 0.5 ml sterile tube. These steps were followed

under sterile conditions, within a dedicated DNA-free laboratory, so the template DNA

was added to the reaction in the main laboratory area. A negative control containing 1

pl ddH2O instead of template DNA was also PCR amplified to check for contamination.

The reaction mixes were overlayed with 20 pl of mineral oil (Sigma) to prevenr

evaporation. The tal'get sequences were amplified in a Perkin Elmer DNA Model 4g0

Thermal Cycler set to the following conditions: 30 cycles of denaturation at 94"C for 30

seconds, primer annealing at 55"C for 30 seconds, extension at 72'C for 60 seconds.

followed by 4'C soak.

2.4 Submarine agarose gel electrophoresis

The purity and quantity of the HVI and HVII PCR producrs were analysed by

electrophoresis on 2Vo SeaKe*@ LE agarose gels (FMC Bioproducts: see Appendix

One). A 5 pl aliquot of the PCR product from each sample plus 0.5 pl of gel loading

buffer (Blue Juice, Life Technologies) was loaded into each well. One or more lanes

were loaded with 3 pl of 123 bp ladder (Life Technologies) size standard to determine

the relative size of the DNA products. The gel was run in Tris Borate Buffer (TBE:
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Appendix One) containing 0.4 pg ml-r ethidium bromide at 90 volrs for 90 nxnutes.

Polaroid@ photographs of the gels were taken under U\r' illumination with a polaroid@

MP 4 Land camera using f5.6 aperture and I second exposure settings.

2.5 Detection of the 9-bp deletion using t4vo Nusieve@gel

A 4vo NuSieve@ agarose gel (see Appendix One) was used to distinguish between

samples with and without the 9-bp deletion using the Region V pCR producrs. Gels

containing 0.6 irg ml-r ethidium bromide were run in Tris Borate (TBE) Buffer

containing 0.4 Fgml-rethidium bromide. The gels were run at 80 Volts for 210 minutes.

Under UV illumination it was possible to detect the presence and absence of the 9-bp

deletion by the position of the band, in relation to a known size standard. To test the

reliability of this method, 5 samples were sequenced. The sequence results matched the

results obtained using the gel, indicating this method is suitable for detecting the 9-bp

deletion.

2.6 Purification of PCR reactions using Low Melting point (LMp) sel

l[ the results from the HVI and HVII PCR reactions were satisfactory, a low melting

point agarose gel was used to purify the PCR products. The remaining pCR product

(-20 pl volume) was loaded on to a i7o NuSieve@ aga.ose gel (see Appendix One) rn,ith

2 1tl of loading buffer. The gel contained 0.6 pg ml-r ethidium bromide and was run rn

Tris Acetate (TAE) Buffer (see Appendix one) containing 0.4 pg ml-r ethidium

bromide. The gel was run at 80 Volts for 45 minutes and the resultant bands of HVI or

HVII DNA were excised under UV illumination.
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2.7 Purification of excised amplified dsDNA products

DNA Purification was performed using various methods as outlined below. The most

successful purifications were done using MinEluterM spin columns, which were used for

all subsequent samples.

2.7.1 Prep-a-Gene

The manufacturer's (Biorad) instructions were followed, using reagents contained in the

Prep-A-Gene kit, Briefly, the excised gel band containing the target DNA was weighed

and 3 times its weight in Binding Buffer' (Biorad) was added. The gel was melted at

50"C for 2-3 minutes. When completely melted 5 pl of vortex mixed matrix (Biorad)

was added, and left to rotate at room temperature for l0 minutes on a slowly turning

wheel' The wheel allows the matrix to bind to the DNA, by repeated inversion. The

DNA and mahjx were spun in a Sorval MC12v microcentrifuge at 10,000 rpm for 30

seconds to produce a pellet. The supernatant was rcmoved and the pellet washed with

125 pl of Binding Buffer- This step was nepeated twice using Wash Buffer (Biorad)

instead of the Binding Buffer. A final spin with no added wash Buffer was done to

ensure that all Wash Buffer had been removed. Finally 10 pl of Elution Buffer (Biorad)

was added to rclease the DNA from the matrix. The tube containing the matrix, DNA

and Elution Buffer was incubated for 5 rninutes at 50'C and then spun at 5,000 rpm for

30 seconds to pellet the matrix. The eluted supernatant containing the DNA was

caretully removed and put in a clean 1.5 ml plastic microcentrifuge tube, with care

taken to avoid contamination from the pelleted matrix. This elution step was repeated

with another 10 pl of Elution Buffer and combined for a total yield of -20 pl of DNA.
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2.7.2 ConcertrM Rapid Gel Extraction

The manufacturer's (Life Technologies, Gibco BRLo) instructions wel€ followed using

reagents contained in the Rapid Gel Extraction Kit. Briefly, 30 pl of Gel Solubilization

Buffer (Ll: Life Technologies, Gibco BRL} was added for every l0 mg of excised gel

and incubated at 50"C for up to 15 minutes, mixing every 3 minutes to ensure complete

gel dissolution. After the gel appeared to be dissolved the solution was incubated for a

ftrrther 5 minutes. Next a spin cartridge (Life Technologies, Gibco BRL@) was placed

into a 2 ml wash tube (Life Technologies, Gibco BRLo) and the dissolved gel solution

was placed into the spin cartridge. This was spun at >12,0009 in a Sorval MCI2V for 1

minute and the flow through discarded. A further 500 pl of Gel Solubilization Buffer

was added and the wash tube was incubated at room temperature for 1 minute, followed

by centrifugation at >12,0009 using a Sorvall MCl2V microcentrifuge, with the flow

through discarded. A furrher wash followed, using 700 pl of wash Buffer (L2: Life

Technologies, Gibco BRL@), incubated for 5 minutes at room temperaturc, centrifuged

at )12,0009 for 1 minute and discarding the flow through. The spin columns were then

spun for a further rninute to remove any residual Wash Buffer. Finally, the columns

were placed in a 1.5 ml recovery tube, and the DNA was eluted with 2O pl of warm

(50"C) TE buffer (see Appendix One) applied to the centre of the spin cartridge. Afrer

incubation at room temperature for 1 minute, the column was spun for 2 minutes eluting

20 pl of DNA.

2.7.3 MinEluterM spin colurnns

Manufacturer's (Qiagen@) instructions were followed using reagents contained in the

MinElute kit. Briefly, the excised DNA band was weighed and 3 pl/mg of eG Buffer
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(Qiagen@) was added (e.g. gel slice = 50 rng then 150 pl of eG Buffer was added). The

samples were incubated for 10 minutes at 55"C uniil rhe slice was completely dissolved.

A check was made to ensure that the solution was yellow, if not then 10 prl of 3M NaAc

was added. Isopropanol was then added (1 pllmg of gel) and mixed gently by inversion

(e'g' gel slice = 50 mg then 50 pl of isopropanol was added). The contents of the 1.5 rnl

plastic microcentrifuge tube were transferred carefully to the MinEluterM columns and

then spun using a Sorvall MC12V microcentrifuge for I minute at 10,000 rpm. The

flow through was discarded and 500 pl of QG Buffer was added. The tubes were

centrifuged for 1 minute at 10,000 rpm and the flow through again discarded. The DNA

bound in the tubes was then washed using 750 pl of pE Buffer (eiagen@), and spun at

10'000 rpm for 1 minute. The flow through was discarded and the tubes were spun for a

further minute to ensure that all traces of the wash buffer were removed. Finally, 10 pl

EB Buffer (Qiagen@) was used to elute the purified DNA. After incubation at room

temperature for 1 minute the DNA was spun at 10,000 rpm into clean plastic 1.5 ml

rnicrocentrifu ge tubes.

2.8 Molecular weight and concentration of purified DNA

The concentration and molecular weight of the purified DNA was determined by

electrophoresis on a lvo seaKem@ LE Agarose gel. Gels containing 0.6 pg ml-l

ethidium bromide were run in TBE Buffer containing 0.4 pg ml-l ethidium bromide.

samples were prepared using 2 p,l of purified dsDNA product, 3 pl of ddH2o and 0.5 pl

of loading buffer' To provide a size and concentration standard 4 pl of Low mass

ladder (Life Technologies) was loaded in one or more lanes, alongside the DNA

samples and run at 90V for 45 minutes.
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For MinEluterM purified dsDNA products, samples were prepared for electrophoresis

using 1 pl DNA, 4 pl of ddHzO and 0.5 pl of loaciing buffer. Samples were run on Ivo

SeaKem@ LE Agarose gels as described above.

After electrophoresis, gels were photographed and. visually compared to the Low Mass

Ladder. From this result, it was possible to estimate the concentration of the purified

DNA and calculate suitable quantities to use for cycle sequencing reactions.

2.9 DNA Cycle Sequencing protocol

The standard 20 pl Cycle Sequencing Reaction contained:

8.0 pl Big Dye Terminator Mix rM (Applied Biosysrems;.

3.211 Primer (diluted to lmM).

? Purified DNA Templare (30-90 ng, see Section 2.7).

? ddH2O (depends on volume of DNA Template added).

20 p'l Total (x for half reactions reduce all volumes bv hatfl.

The reactions were overlayed with 20 pl of mineral oil to prevent evaporation. The

cycling parameters were: 25 cycles of 94"C for 30 seconds, 50.C for 15 seconds and

60"C for 4 minutes.
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2.10 Ethanol Precipitation of DNA

The cycle sequencing products were relnoved from under the mineral oil and 1/ro

volume of 3M NaoAc was added and mixed gently on ice for a few minutes. Twice the

total volume of cold ethanol was added ancl mixed gently by inversion. The samples

were kept at 4oC overnight.

Some later samples were processed using half reactions (see Section 2.9*) and,Big Dye

TerminatorrM Mix version III (as opposed to version II) in the cycle sequencing

reaction' This required a slightly revised ethanol precipitation procedure, using 1.5 pl

of 3M sodium acetate (NaOAc), 3L25 pl of 95Vo Etltanol and 7.25 pl of deionised

water, together with the 10 pl cycle sequence product. This was left to stand for no more

than an hour as any longer allowed unwanted primer to precipitate out of the solution,

producing ambiguous sequences.

2.11 Automated DNA Sequencing Gel

Sequencing plates were prepared by soaking in 3M HCI for 10 minutes. The acid was

thoroughly washed off using cold water and the plates were scrubbed vigorously by

hand using Alconox (A1conox In".t). The detergent was washed off the plates using hot

water, rinsed with ddH2O and left to dry. Once dry, the plates were polished with

ethanol and then assernbled.

Once the plate assembly was set-up the 4vo Polyacrylamide gel was made using a Long

Ranger sequencing gel kit (Biowhittaker Applications: BwA). The manufacfurer,s

(BioWhittaker Applications: BWA) instructions were followed, using the reagents
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supplied in the self-contained pouch. Bliefly, the black clip was removed a1d the

contents of each half of the pouch were mixed thoroughly by hand for i minute. This

pouch was shaken at medium speed (Series 25 Incubator, New Brunswick Scientific)

for 5 rninutes, and then the pouches were again mixed by hand for 1 minute. After

further shaking for 5 minutes the red clip was rcmoved and the contents of this part of

the pouch was mixed in with the lest for 1 minute. Finally, the white clip was removed

and the contents of the pouch were squeezed towards the filter errbedded in the pouch,

and out through this filter into a beaker'. The liquid polyacrylamide was drawn out of the

beaker into a sylinge and dispensed in between the assembled sequencing plates, The

gel was then left to set for at least 2 hours.

The DNA samples were precipitated out of solution (see SectionZ.g),and prepared for

loading onto the polyacrylarnide gel, by spinning at 10,000 rpm using a Jouann

MRl8i2 centrifuge (4"C) for'30 minutes. The supernatant was removed ald 100 prl of

Tavo ethanol was added, After a further spin for 10-15 minutes the supernatant was

again removed and the samples were allowed to air dry for 30-60 ninutes. Once the

DNA pellet was dry, loading buffer was prepared (see Appendix One) and 6 pl of the

loading buffer was added to the pellet (3 pl for a half leaction). The sarnples were

vortexed vigorously to ensuLe the DNA pellet was fully dissolved in the loadilg buffer,

and then spun briefly to ensure enough sample was available to load onto the

polyauylamide gei.

The ABI Prism Sequencer 377 was prepared for the sequencing run by loading the gel,

filling the appropriate tanks with 1X TBE (see Appendix One), and srarting rhe

computer to ntn a plate check and pre-run. When the gel had reach 4i-4p,C the samples

were prepared for loading. The dsDNA sampies were heated to 95"C for 2 rninutes. to
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denatule the DNA to single strands, and then placed on ice to keep their denatured state.

The sarnples were loaded into alternate wells using a duck billed tipped pipetre. While

these samples were run into the gel, the second batch of samples were heated to 95.C

for 2 minutes and kept on ice. These samples were loaded into the remaining alternate

wells, and run into the gel for 2 minutes. Once all the samples were loaded, the pre-run

was stopped and the sequencing run was comfiienced. The run lasted for 6 hours atZ.4

kv.

Z,LZ Data analysis

2.12.1 Deterntining suttable parameters for analysis of the data ttsed in the founding

populatiort s irnulatiorts

Before simulations to estirnate the nurnber of female founders for the cllrrent Maori

population could occur, a number of decisions had to be made regarding the treatment

of the data. Below is a summary of the parameters that were used to select the most

appropriate datasets fol this simulation. The pararneters selected for use in the

sirnuiations are in bold and the justifications for each selection are mentioled brieflv in

italics, these decisions will be discussed mole fully later (see sectio n 4.4.r\.

A. What region(s) of the mitochondrial sequence should be included in the
simulation dataset?

- Long DNA Sequences (Whole HVI and HVII if available)

- Short sequences (3' section of HVI, from nt position 16 199 onwards)

Maximises santple nuntbers in dataset
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B. which dataset should be used for.the Maori founder.analysis?

- Dataset from cunent study (Aw02) only; to be used as a cornparison
with the Munay-Mclntosh et al, 199g (MMgg) dataset

- AW02 and MM98 datasers combined

- AII available data combined (i.e. including those omitted from
MM98 dataset)

Maxindses size of dataset

C' Which Eastem Polynesian (EP) Hapiotypes should be used for the frequency
comparison?

- Only EP (as used in MMgg)

- EP+ (all haplotypes found across all studies i.e. including those
omitted from MM98)

Best dataset, includes all possible canrparable datn

D' Is a dataset constructed to decisions A-C above cun'ently suitable for analysis?
Answer: No it istt't as sofiIe haplotypes that are for-rnd in the Maor.i samples are
not found in the EP sarnples, therefore what are the options?

- do norhing (this option is rejected as no simulation is possible)

- Assume new Maori Haplotypes have arisen by mutation post settlement
of Aotearoa

- add missing EP haplotypes (Discovery curve assumption)

Mininnl assmnption'ut'ith respect to strucfut'e of EP clatctset ancl recluir-es tto
specr.il,ative estinrcttes af nmtation ro.tes

E. What Population Growth Model should be used?

- Exponential (as used in MM98)

- Sigmoid (3 types of population growth):
i. Early expansion
ii. Middle expansion
iii. Late expansion

Signrcid ntodel is ntore plausible popu.latiort growtlz ntod,el
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2. I 2.2 Haplotyp e identificatio n,

The mitochondrial haplotype for each of the 85 samples used in this study was

determined by examining the nucleotide sequence in the HVI region and presence or

absence of the 9-bp deletion in Region V of the mtDNA. The haplotype for each

sample was compiled into a database, and these results (see Table 3.1) were used fol

further analyses. A table containing the combined haplotype data from this study and

the str-rdy by Mulray-Mclntosh et al, (1998) was also cornpiled (see Table 3.2) as a

resollrce for filtule tesearch. HoweveL, for the population growth modelling simulations

this combined table is not appropriate, as the different studies summarised in the MMgg

table focus on diffelent legions of tlie mtDNA (i.e. some studies obtained haplotypes by

sequencing the entire HVI and/or HVII legion(s), while others only focused on the 3'

HVI legion from nt position 16 189 onwards). The MM98 table had also omitted some

of the Group III haplotypes found in previous studies. Consequently, a third table was

compiled (see Appendix Five), using the sequence infonnation from all of the studies

that have been conducted on Oceanic populations. From this table, a new summary

table (see Table 3.3) was cornpiled rnaking sure that the same region of the rntDNA was

used in each study (i.e. the 3'HVI region from nt position 16 189 onwards, see Figure

1.15), to ensure that the data were comparable across studies. This revised cornbined

data shown in Table 3.3, is used in the computel simulations. Mitochondrial HVII

sequences were obtained from a total of 29 samples and were not used in the

simulations.

Mitochondrial DNA sequence data was obtained for the HVI region using an ABI

Model 377 Prism automated DNA sequencer, in conjunction with Perkin-Eliner Big

Dyeru Technology. The results of the sequencing tun were automatically compiled by
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the ABI software (DNAStar hrc.), and were available as a file of nucleotide sequences

for each sample. An electropherogram (see Figule 3.5) was also generated for each

sample and was used to assist with manual editing of DNA sequence files, specifically,

to identify arnbiguous or eroneous machine assignment of nucleotides and exclude

areas of seqllence at the start and end of each run that were particularlv subiect to

reading/assignment elrol's. Tlie sequences were edited manually using the

electropherogram and the EditseqrM facility in the Lasergene 99 DNAStar. Inc, paekage.

Each edited sequence was aligned with the CRS using the SeqManrM facility within the

DNAStal Inc. Lasergene 99 package. Aligned sequences were exarnined to identify

nucleotide positions that diffeled from the reference sequence (Anderson et al., 1981).

Each sequellce was assigned a haplotype # based on its nucleotide sequence, cornpiled

into a table (see Table 3,1) and used for further analysis in the computer sirnulatiops

(see Sectiott 2.12.3). Although mtDNA haplogroups are defined (see Figure 1.13)

there is no universal nomenclature fol the naming of rntDNA haplolypgg. This means in

nlost cases that haplotype numbering is not equivalent across studies, Haplotypes found

in the plesent str-rdy have tlie prefix AW (see Tabte 3.1), wlier-eas those fould by

Murray-Mclntosh et al. (1998) have had the prefix MM added. Adding a prefix ensures

that haplotypes ale identified by the haplotype number and rhe study i.e, AW6 is

haplotype 6 in the cutrent study, this is distinguished from MM6, haplotype 6 in the

study by MIVI98, these mtDNA sequences are not equivalent, instead AW6=MM 12 (see

Table 3.2). The haplotypes in the cornbined AW02 and MM98 dataser have the prefix

AWMM (see Table 3.2), wheleas the complete cornbined dataset haplotypes have the

prefix CD (see Appendix Five).

Some seqllences frorn the cltn'ent study were excluded from the computer sirnulation as

the samples were of Western Polynesian, Melanesian, or unspecified origin. Other
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samples were excluded if they had additional sequence variation in the 5' HVI region,

to ensure that same region of rntDNA was being examined across all studies.

2.12.3 Estintate of the nuntber of Maori fenrules required to found New Zealand's

(Ao t e ar o a) M ao ri p op ulatio n.

The number of Maod females required to found the cuuent Maori population was

estirnated based on the apprnach developed by Murray-Mclntosh et al. (1998). Bliefly,

a tlu'ee-step sirnulation was done based on the observed (or estimated) haplotypes

frequencies in Eastem Polynesia (see Table 3.3) and in New Zealand. On Table 3.3, the

combined data show there are a total of 2L haplotypes in the Maori and Eastern

Polynesian sarnples, Some of these haplotypes are found in both Ma and EP samples,

others are found only in tlre Ma ol only in the EP samples. However, for the purpose of

tiris simulation it is assumed that all haplotypes found in the Ma population are also to

be for,rnd in the EP population, but that they are not present on the table as they ale rare

and haven't been discovered in the EP populations yet (Discovery Curve Asstrrnption).

All such undiscovered EP haplotypes are given an estimated occurence of 1. The first

step of the sirnulation selected a maternal founding population of between 2 to 1000

people randomly with replacemeut, fi'orn the frequencies of the 21 haplotypes observed

in eastern Polynesia (see Table 3.3), Therefore the initial fi-equencies of the 2t

Iraplotypes based on Table 3.3 is: 77,13, t, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1' 1, I

(see Appendix Tluee). The second step of the simulation allowed this rnaternal

founding population to expand using one of three different sigmoid (logistic) growth

models (see Appendix Two) over 30 generations to reach 50,000 females

(conesponding to an overall population of -100,000) and thus to give the haplotypes

expected to be present in New Zealand Maori at the time of Eulopean settlernent. The
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thild step of the sirnulation randornly selected 107 people from this expanded pre-

European population. This enabled a cornpadson between the nuurber of haplotypes

observed in the siraulations versus the number of haplotypes seen in the current Maori

population (107 people, 8 Haplotypes: see Table 3.3).

The number and frequency ot'haplotypes was recorded at all three stages, the founding

population, the estimated present population, and the final sample of 107 individuals.

The sirnr-rlations were repeated 20,000 times and performed by Dr Stephen Marshall

(University Teaching Development Centre, Victoria University). For aclditiogal

information or to reqltest a copy of the program code please refel to the 'Founder'

website:
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3. Results

3.1 DNA extraction

Total genomic DNA was successfully extracted flom whole blood provided by this

investigatoL, and was of sufficient concentration and quality to allow PCR amplification

and sequencing of the rntDNA HVI region. The seqllence obtained was of European

origin and differed frorn the Cambridge Reference sequence at 5 positions, of which two

nucleotide transitions at positions 16 051 (G-+A) and 16 189 (T-+C), were also found

in the Maori (Ma) and Pacific Nation (PN) sarnples (see Appendix Thlee, Sample 87).

Tlre other transitions (16 092, T-rC and 16 362 A+G) and a single transversion

srrbstitution (16 129, G-+C) were only found in the investigator's sample so

contamination of results with sequences sourced from this DNA is considered r-rnlikelv.

3.2 Mitochondrial DNA 9-bp deletion Target Amplification

The 9-bp deletion target region (see Section 1.4.6.5) was PCR arnplified from a total of

85 banked DNA samples, The products of each PCR reaction were assessed by 4Vo

NuSieveo agarose gel electrophoresis (see Section 2.5). Figule 3.1 shows results

obtained from analysis of 9-bp deletion PCR products. The expected sizes of the PCR

products are either 1 12 or 121 base pairs (bp) depending on the presence or absence of

the 9-bp deletion respectively. The migration distances of the PCR products

con'espond to fragment sizes of either -115 or' -126bp, as calculated using the 123 bp

DNA standard ladder calibration curve (see Figure 3.2), and were consideled to
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represent the expected product sizes of 112 or 121 bp. Direct DNA sequencing of 5

amplified 9-bp deletion PCR products confirmed that tlie sequences were in fact either

112 or I2I bp long and these were in agreement with published results (see Section

4.2)' Therefore, for all subsequent samples, assignment of the 9-bp deletion was based

only on direct comparison results of 4vo agarose gel electropholesis.

Presence or Absence of the 9-bp deletion as visualised using a 47o NuSieve@
Agarose Gel

Direction of
Migration

Flq----+

Figure 3.1 Results show 5 pl aliquots of representative 9-bp deletion PCR products

amplified from 13 samples and visualised on a 47o NuSieve@ agarose gel,

Lane: 1. 123 bp DNA standard ladder

2. Negative reagent control (no template DNA)

3. sample #273, positive control for 121 bp (i.e. without 9-bp deletion)

4,7 and 15. Sarnples without the 9-bp deletion; #42I, 471,604

5, 6 , 8 and 9. Sarnples with the 9-bp deletion #451. ,469,6A8,609

10. sample #610, positive conrrol for rrzbp (i.e. with 9-bp deletion)

11-14. Sarnples with the 9-bp delerion #61i, 612,616,617
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Calibration Curve for 9.bp deletion

25 30

Migration Distance (mm)

Figure 3.2 Calibration curve of log (size, base pairs) versus migration distance (mm) of
the fragments that make up the 123 bp DNA standard ladder, shown in Figure 3.1.

The migration distance of PCR products was measured and their corresponding sizes

estimated from calibration curves such as this one. The actual examples marked on this

curve are the products in lanes 4 and 5 of Figure 3.1. From their migration rdistances of
41.5 mm and 44 mm respectively product sizes of -176bp and -115 bp were estimated.

These sizes approximate their expected sizes of l2l and I 12 bp (see text). The

calibration curve was constructed using Microsoft Excel 2000.

3.3 Mitochondrial DNA HVI Target Amplification

The mitochondrial HVI target region was PCR amplified, from a total of 85 samples (61

Ma and 24 PN) using the primers and PCR protocol as outlined in methods (see Section

2.3). The products from each PCR reaction were assessed by agarose gel

electrophoresis, which revealed varying degrees of success. A successful PCR product

2.9

2.7

2.5

*'tz
N

u0t1
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appeared as a single, shary band, of the expected size (-44A bp), on the agarose gel.

Figure 3.3 shows an agarose gel electrophoresis of eleven HVI region PCR products. In

this irnage there is a single bright band representing the major products and slight

smearing below these bands, representing a mixture of minor lower molecular weight

contaminants,

The migration distances of the PCR ploducts correspond to a maximurn DNA fragment

size of -492 bp (rnajol band) and a minimum of -407 bp (including the 'smear')

estirnated fi'om the 123 bp DNA standard ladder calibration curve (see Figure 3.4).

These maximum and minirnum values bracket the expected size of -442 bp and were

considered to indicate that the PCR reactions were successful in targeting the HVI

region of intelest. When sequenced all of the 1 1 PCR products seen in Figule 3.3 wele

-442 bp long, and were slrccessfully aligned with the Andelson reference seqllence

(data not shown). The alignrnents were used to ploduce a table of rcsults that will be

presented latel (see Section 3.5.2).

The high intensities of the rnajor bands in Figure 3.3 reflect high DNA yields of the

PCR product (>50 ng/ptl, estirnated). The rnajor band in lane 6 is thinner and not as

bdght as the other bands, which may represent slightly lower DNA product yield. The

negative control (Lane 3) contained no ternplate DNA and the absence of a band in this

lane reflects the absence of a PCR product, indicating there was no DNA contamination

of the rcagents used in these reactions.
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IIVI target region PCR products as visualised using aLVo SeaKem@ Agarose Gel

Direction of
Migration Lanes

| 2 3 4 5 6 7 I 9 1011121314 15

+

Figure 3.3 Results above show 5 pl of PCR products from the HVI legion of hr;man

rntDNA, amplified from I 1 samples, visualised on a l7o agarose gel.

Lane: i. No Sarnple

2. I23 bp DNA standard ladder

3. Negative reagent control (no ternplate DNA)

4- 1 4. Samples #4 I 8, 420, 472, 426, 433, 436, 47 9, 480, 484, 500, 50 1

15. No sample

l0
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HVI Calibration Curve

2.7

2.9

2.5

e 2.3
()
N
o
oo 4.1

'1.9

t.c

50 60

Migration Distance (mm)

Figure 3.4 Calibration curve of log (size, base pairs) versus migration distance (mm) of

the fragments that make up the I23bp DNA standard ladder, seen in Figure 3.3,Lane2.

The examples seen on this curve are for the maximum (major band) and minimum

('smear') size products seen in lane 14 of Figure 3.3. The migration distances of 45 mm

and 48 mm respectively infers a maximum size of -492 bp and a minimum of -407 bp

respectively. These values bracket the expected size of 442 bp. The calibration curve

was constructed on Microsoft Excel 2000.

3.4 Mitochondrial DNA HVII Target Amplification

The mitochondrial HVtr region was PCR amplified, from a total of 38 samples (26 Ma

and 12 PN), and the products were assessed for quality and quantity using LVo agarose

gel electrophoresis (results not shown: see Appendix Four). Each sample produced a
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single PCR product approximate to the expected size for HVII (-400 bp) as assessed

using caliblation curves (resuits not shown: see Appendix Four). Therefore, these pCR

products were considered appropriate for sequencing (see section 3.5.3).

3.5 Mitochondrial DNA Sequencing

Uncontaminated, appropriately sized PCR products were obtained from the HVI and 9-

bp deletion target rcgions for ail 85 sarnples, The exact sizes and sequences of all 85

PCR arnplified sarnples wele deterrnined for the HVI region using an ABIrM prism 377

Automatic DNA Sequencer (Perkin-Elmer), and the presence or absence status of the 9-

bp deletion was inferred from the results of a 4Vo gel electrophoresis (see Section 3.2).

The HVII target legion was arnplified and sequenced from a toral of thir.ty-eight

individLtals to examine nucleotide transitions and transversions in this less well studied

region of the mitochondrial genorne, The sequence rcsults from successful experiments

will be added to GenBanlt, for access by the scientific comrnunity, after work has been

submitted for publication in a peer-reviewed international journal.

The sequencing protocol r:sed in this expedment produced an electropherograrn (see

Figure 3'5), which rcvealed the nucleotide sequence for each sample. All samples with

the 'Polynesian CGT tnotif', also had a T---C tlansition at nucleotide position 16 189.

T'his tlansition results in a hornopolymeric C-tract (see Section I.4.6.4.2) followed by a

characteristicaliy blumed sequence from this point onwards (see Figure 3.5, B).

Consequently, a decision was made for this project to focus on acquiring HVI sequences

from the 3' HVI region (nucleotide position 16 189 onwards, up until 16 360). This

decision was made in order to encompass the region of greatest sequences diversity
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within the HVI region including the 'Polynesian CTG motif', and to bypass the need to

figule out complicated arnbiguous sequence data ploduced by DNA polymerase stutters

on the C-tract (see Section 4.3.2). Thelefore, fol most samples, only primer H16401

was used in the DNA Cycle Sequencing Protocol (see Section 2,9). However, 17

samples were also sequenced in the opposite direction using primer LI5996, to see if

there was any extra valiation in the 5' HVI target region (see Figure 1.15).

Altliough the prirnary reason for the unrcadable sequences befole nucleotide position 16

189 was due to stlltters caused by the homopolymeric C-tract, additiorial tract-length

variation was created by transversions (A-+C) at nt positions 16 182 and 16183 (i,e.

directly preceding the tract). After careful examination of numerous electropherograms

and comparing the results of samples that had been sequenced in both dilections, it was

concluded that rnost Polvnesian subjects have two A--+C transversions 5'befole the

tract (at nt positions 16 182 and 16183), meaning that in most cases the tract was

estimated to consist of 12 C's in succession (see Table 3.1). Sarnple 601 appeared to

have only 11 C's after H strand sequencing (i.e. does not have the A---rC transversion at

nt 16 182) and additional sequence information using the L strand supported this idea,

althottgh it is impossible without cloning to know for sure whether this is an accurate

result or an artefact of the sequencing process. Other samples that revealed rale arid/or

novel haplotypes, wele re-seqlrenced using either internal prirner L16209 or Hi6164 to

provide forward and reverse sequence fol the unique HVI target area. Thus, novel

sequences were exatnined at least once in forward and reverse odentations.

73



Ilesults

A A A C C C A A T C C A C A T C A A A A C C C C C T C C C C A T G C T TA CAAGCAAGTACA
G204

A AAC C CAATC CAC AT CA AC C CCC CC CC CCCNT TTTT TNAA GG GilG G GC

tt G204= Mix of lZC -4U/o
l3C -4V/o
l4C -2oo/o

A

rRACr rengrh di"*",u. 
'fffiH,,.::"i],,'*"]" "l;f,J* il:#'l

The blue arrows indicate that the heteroplasmy appears to occur due to a mix ofC-fact insertions (see Sectim 4.3.2)

Figure 3.5 Electropherograms showing the results from samples with (A) and without

(B) the homopolymeric C-tract, In B, the presence of the T + C transition at position

16 189 and A -+ C transitions at nt positions 16 182 and 16183 (indicated by red

arrows) leads to heteroplasmy and results in diffrcult nucleotide assignment from this

region onwards. Nucleotide G204 (blue arrows) illustrates the stuttering effect of

heteroplasmy whereby a mixture of sequences with a varying number of Cytosines in

the C-tract causes 'unreadable' sequences.

3.5.1 Presence or Absence of the 9-bp Deletion

Out of 85 banked DNA samples, 76 have the 9-bp deletion (see Appendix Three),

indicative of Polynesian ancestry. Samples lacking the 9-bp deletion were inferred to

have been sourced from volunteers with part-European ancestry. This conclusion was

tested by HVI region sequencing, which revealed that these individuals also lack the

characteristic Polynesian CGT motif at positions 16 217 (C+T), 16 247 (A-+G) and 16

+
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261 (C+T) and instead have haplotypes coruesponding with those that ale found in

European populations (Macaulay et al., 1999b).

3.5.2 Mitochondrial DNA HVI Sequence

As with previous studies using DNA samples obtained frorn individuals living in

Polynesia (Murray-Mclntosh et al., 1998; Sykes et al., i995; Lum et al., 1994; Redd et

al., 1995), very low haplotype diversity was found in both the Maori (Ma) and Pacific

Nation (PN) sarnples. In total, only 13 haplotypes containing the 'CGT' rnotif were

ideltified in this set of Maoli and Pacific Nation samples (see Table 3.1), Out of the 61

Maori samples 8 CGT motif haplotypes were found, with an additional 7 haplotypes

ruled out due to plobable European ancestry (see above and Table 3.1), leaving a dataset

of 54 Maoli sequences for ftrrthel analysis. Of tlie rernaining 54 Maori sequences, 44

were identical (see Table 3.1, ht #AWl), and have been found in previous studies of

Maori populations (Murray-Mclntosh et al., 1998, ht MM1; Sykes et a1., 1995, ht

Sykesll; see Appendix Five). An additional 6 sarnples contained pleviously reported

haplotypes: ht #AW2, AW3 and AW6 found 4, 1 and 1 tirne(s) respectively (see Table

3.1). This leaves 4 Maori samples that exhibit haplotypes that have not been found in

previous str,rdies (Haplotype #AW4, Sanple 441; ht #AW5, Sample 468; ht #AW7,

Sample 484: ht #AW8, Sarnple 510). Each of these unique haplotypes is rare,

occurring only once each. Of these four unique haplotypes only 3 are used for further

analysis, the 4tr' (ht #AW8, Sample 510) has been included as a subclass of haplotype

CD2 (see Appendix Five), and was not used in the computer simulations. Leaving out

this haplotype ensures that all samples included in the sirnulation have been scoled

across comparable nucleotides from position 16 189 onwards (3' HVI region). Thus
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although haplotype #AW8 is similar to haplotype #AW2 frorn position 16189 onwards,

L strand sequencing shows haplotype #AW8 has additional vatiation in the 5'HVI

region before 16 189 (at nucleotide position 16 051). It might bias the results to lump

these sequences together into the single #AW2 category. This is an impofiant

consideration and illustrates the need for care in the trcatment of data. In the MM98

study, rntDNA liaplotype diversity may have been underestimated as solne samples that

had nucleotide transitions or transversions (compared witli the leference sequence) in

the 5'HVI region were grouped togethel with sequences without these changes simply

because they have the same nucleotide seqLrences in the 3' HVI region (i.e, identical

sequences fiorn position l6 i89 onwards). The consequence is a table with more people

represented by fewer haplotypes.

Anrong the 24 Pacific Nation (PN) samples, a total of t haplotypes were found (see

Table 3.1), of which 2 can be excluded due to probable European ancestry (ht #AW16

and AW21). Of the remaining 7 haplotypes (22 samples), one type is common and

occllrs in 13 samples (ht #AWl), this is the same conrmon type as found in the Maori

samples, and has also been reported in previous stlrdies using PN subjects (Sykes et al.,

1995; Redd et al., 1995; Lurir et al., 1994). The othel colrunon haplotype (ht #AW 2)

occltrs 3 times, and was also found in previous studies. The remaining 5 haplotypes are

all unique to the present study and ale all rare, with one haplotype occut'ring twice (ht

#AW9, Samples 602 and 616) and the other four only once each (ht #AW10,613; ht

#AW1 1,624: ht #AW12, 611; and ht #AW13, 601). Only one of these samples (616) is

of Eastern Polynesian origin and hence able to be included in later analysis- The other

haplotypes are from samples scored from Western Polynesia (613,611), Melanesia

(601, 602), or of unspecified Polynesian origins (624). Although these have been

excluded from the dataset used in later computer simulations run in the crurent study,
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they have been included on tlie combined DNA sequence tabie (see Table 3.2) using the

geographic categodes of Muruay-Mclntosh et al. (1998), or excluded altogether due to

lack of information 62q.

3.5.3 Mitochondrial DNA HVII Sequence

Of the 38 DNA samples that were consideled to have yielded adequate HVII PCR

products sr-ritable fol sequencing, only 29 of thern could be sequenced successfr.rlly, Of

these the full sequence data for the HVII region of interest (-00 060-00 280) were

obtained frorn just 13 sarnples (7 Ma and 6 PN), while the other 16 samples (1 1 Ma and

5 PN) yielded partial sequences. Previous studies have indicated that the HVII region is

very hornogeneous fol Polynesian populations (Lurn et al., 1994). A previous study by

R.edd et al. (1995) using the HVII region found a set of specific nucleotide changes that

wel'e very colrllrlolt in Maori and Pacific Nation populations. These were transitions at

nucleotides 00 073 A--+G, 00 146 T-.'C and 00 263 A-+G. Out of the 13 full HVII

sequences available (see Appendix Three) oniy 4 differ fi'om this expected haplotype,

and 3 out of the 4 sarnples had suspected European ancestry irnplied using HVI data.

The remaining sarnple (507) had the CGT rnotif in the HVI target rcgion, but did not

have the expected HVII motif, as it was rnissirig the transition at nucleotide position 00

146. Due to the small amount of HVII data available in this study and previous studies,

no further analysis was done using this sequence information. The 13 fuI1 HVII

sequences (see Appendix Three) will be deposited in GenBank for access by the

scientific community.
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Table 3.1 A summary of HVI haplotypes found in this study.

This table shows all the haplotypes found in the cunent study (AW02: for the haplotype

of each individual sample please see Appendix Three). The numbering and reference

sequence follow the CRS (Anderson et al., 1981). Dots indicate that the DNA sequence

found in a haplotype is identical to the reference sequence at that nucleotide position,

tlansition and transversion substitutions are shown as a changed nucleotide. Each

haplotype has a number (#) assigned to allow easy reference e.g. ht #AW1 has

transversions at nucleotide positions 16 182 (A-+C) and 16 183 (A-+C), and transitiotts

at positions 16 189 (T-+C), 16 211 (T+C), 16 241 (A+G) and 16 261 (C-+T), it is

also the most common haplotype occurring in 44154 Maori and 13122 Pacific Nation

samples. The TRACT column refers to the presence of the homopolyrneric tract, with

the number referdng to the length of the tlact (either 11 or'12 C's). The plesence or

absence of the 9-bp deletion is indicated by a tick or a cross respectively.
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Table 3.2 Haplotype data summary incorporating information contained in Table

1 (Murray-Mclntosh et al., 1998), and Table 3.1 (AW02).

This table combines information from Table One in the study by Murray-Mclntosh et al.

1998 (MM98), with the information from Table 3.1 of the current study (excluding

sequences with suspected European Ancestry and unknown PN island of origin). The

numbering and the reference sequence follow Anderson et al. (1981). The numbers in

the AW02 REF and the MM98 REF columns refer to the reference number of these

haplotypes in the original AW02 or MM98 tables for easy reference to the original data.

Table 1 from MM98 includes data from; Murray-Mclntosh et al. 1998 and selected data

from Sykes et al., 1995; Lum et al., 1994; Redd et al., 1995.
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Re-examination of the source data used in the MM stttdy re,realed that some seqlrences

were combined in the MM table even though sequencing of the HVII region and/or

before position 16 189 in the 5' HVI region had meant that these sequences were

plobably distinct haplotypes. Fol example, see Appendix Five: haplotypes CD1 , CDla,

CD1b, CDlc, CDid were combined into a single haplotype category (MM1) in Table

One of the study by MM98, even though these haplotypes have clear sequence

differences in either the HVII region, ot in the 5' HVI region. Other sequences (mainly

Gloup III) appear to have beeri left off the MM table entirely. The fr"rll combined data

set for all studies conducted using samples from Maori, Eastern Polynesian and Western

Polynesian sarnples with references to the original sources are shown in Appendix Five

and these data have been summalised in Figure 3.3 (below) and were used for further'

analysis in the cornputer simulations.

83



llcsu/l,r

Table 3.3 Total number of Haplotypes found in full combined dataset (i.e. MM98+)

and AW02 data from the 3' HVI region (16 189 onwards).

Haplotype Number
(see Appendix 5)

Group I

MM98+ AW02

Ma EP Ma EP
CD1 A'l 69 44 3

CD2 5 t2 A
I

CD3 I 1 I
CD7 1 I

CD8 I

CD12 I

CD17 I

CD18 I

CD19 I

CD2O I

Group II
CD22 I

Group III
cD30 I

CD3I I

CD32 I

CD33 I

CD34 1

CD36
CD37 I

CD41 I

CD43 I

CD44 I

Totals (samples)
(haplotypes)

54
4

95
I6

53 5
a
J

Table 3.3 combines all the sequence data from Polynesia (see Appendix Five), but omits

sub-haplotype data e.g. CD1a, b etc. The omission of sub-haplotype data ensures that

the data is homogenous, with each haplotype covering the same nucleotide positions

(i.e. 3' HVI region). This table adds in some data that was left off the MM98 table (all

the Group III sequences), and leaves out some data that was put on the MM98 table (i.e.

haplotypes CD22a,23a,27 and 28, see Appendix Five).

Appendix Six contains a further summary of all the mtDNA haplotype data from

Polynesia. This table is based on the table in the study by MM98, whereby some
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sequences have been combined into a single category and other sequences (Group III)

have been excluded from analysis. Comparison of Appendix Six with the Table 3.3,

give different total numbers of haplotypes, and illustrates the importance of the data

classification system. Table 3.3 has been used for the computer simulations as the 3'

HVI region has been consistently used in all studies, and is therefore comparable data

across studies.

3.6 Population Simulation Data Analysis

3.6. 1 Capture-Recapture Estimates

The data summarised on Table 3.3 were used by Shirley Pledger (Senior Lecturer,

School of Mathematical and Computing Science, Victoria University) to estimate the

true haplotype abundance within Maori (Ma) and Eastern Polynesian (EP) populations,

using capture-recapture estimates of species abundance. Using the information

summarised on Table 3.3, i.e. EP: 15 haplotypes observed once, t ht obselved 13 times

and t ht observed 72 times (17 different hapiotypes observed in total); Ma: 5 haplotypes

observed once, t ht observed 2 times, t ht observed 9 times, t ht observed 91 times (8

different haplotypes observed in total); using Burnham and Overton's (1979) first-order

jack-knife it was estimated that there arc -32 haplotypes in the EP population and -13

in the Maori population. This indicates that there are further rare haplotypes still to be

found within these populations and suggests maximum haplotype values which might

be used in a population growth simulation to estimate the size of the Maori founding

population.
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3.6.2 Popalation growth simulation to estimate the

population

Ilasu lt ,s

of the Maori founding

The data summarised in Table 3.3 were used to estimate the number of female founders

required to establish the current Maori population, using the computer simulation

rnethods outlined in section 2.12.3. The exponential growth pattem used in the original

MM98 study was considered inappropriate for the current study, as Brewis (1990)

suggests that sigmoid curves are a more appropriate model for population growth.

Therefore, three different sigmoid (logistic) population growth models were tested to

see which model if any would be best to apply to this dataset. The first two sigmoid

population growth models with early and middle expansion curves (see Appendix Two,

Model A and B) gave good founder estimates, whereas the third (Model C) gave an

estimate that was very high and considered inappropriate. For comparison a simulation

using an exponential growth curve was also run (see Appendix Two, Model D)'

The results shown in Figure 3.6 were produced using a sigmoid early population

expansion model (Appendix Two, Model A). Inspection of the plot predicts that

approximately 47 women (between 25 and 115) would have been necessary for the

initial founding population to provide sufficient genetic input to account for the

observed genetic diversity among mitochondrial haplotypes seen in the current Maori

population (a combined total of 8 haplotypes in 107 people: see Table 3.3).

size
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Figure 3.6 The results of a computer simulation using a sigmoid early population

growth model (see Appendix Two, Model A) to predict that a median number of

approximately 47 Maori female founders would have been required to found the current

Maori population. The minimum, median" and maximum values are marked with black

arTows.

The results shown in Figure 3.7 were produced using a sigmoid middle population

expansion model (see Appendix Two, Model B). This model predicts that

approximately 260 women (between 115 and 670) were required for the initial

founding population to provide sufficient genetic input to account for the observed

genetic diversity among the mitochondrial haplotypes in the curent Maori population (a

total of 8 haplotypes in 107 people, see Table 3.3). This number is larger than the

estimate obtained using the early sigmoid population gowth model, but is consistent
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with some previous studies suggesting a maximum founding population of -250 women

(McGlone et al., 1994).
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Figure 3.7 The results of the simulations using the sigmoid middle population growth

model (see Appendix Two, Model B) predict that a median number of approximately

260 Maori female founders would have been required to found the current Maori

population.

Finally, the results shown in Figure 3.8 were produced using the sigmoid late population

expansion model (Appendix Two, Model C). This model predicts that approximately

510 women (between 230 and >1000) were required for the initial founding population

to provide suffrcient genetic input to account for the observed genetic diversity .rmong

mitochondrial haplotypes in the current Maori population (a total of 8 haplotypes in 107

people). This number is significantly larger than either estimate obained using the

Sigmoid middle population growth
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early or middle sigmoid population gfowth model. It is also outside the maximum

number of settlers considered likely for this population. Therefore, this model is

considered inappropriate for modelling the Maori population expansion.
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Founding population size

Figure 3.8 The results of the simulations using the late sigmoid population growth

model (see Appendix Two, Model C) to predict that a median number of approximately

510 Maori female founders would have been required to found the current Maori

population.

Sigmoid late population growth
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4. Discussion

4.1 DNA Extraction

The SDS/Proteinase K and phenol/chloroform extraction was successful in isolating

DNA from the blood provided by this investigator. The sequence analysis results of this

DNA extraction were used as a comparison against each of the other samples, to ensure

that DNA from the investigator was not contaminating these results. The mitochondrial

DNA sequence of the investigator was of Caucasian origin and differed at 5 nucleotide

positions relative to the Anderson reference sequence (16 051, 16 092, L6 129, 16 189

and 76 362: see Appendix Two). The transition at nucleotide position 16 051 was only

found in one other sample (510), but in conjunction with the CGT motif. It is unlikely

for contamination to influence only a single nucleotide position i.e. 16 051, and if this

result was due to contamination and was indeed derived investigator sequence or a

mixture, then it is expected that all the other transitions (i.e. at positions 16 O92, L6 189

and 16 362) and the transversion (16 129) would have also been present. This was not

the case and implies that the observed transition at position 16 051 in sample 510 was

not the result of contamination. and instead was an authentic result.

Another transition at position 16 189 was present in the mtDNA sequence of the

investigator and was very common in this study, found in -9OVo of samples, or IOIVo

excluding those with suspected European ancestry. However, the high incidence of this

transition has already been noted in previous studies of mtDNA HVI regions (Munay-

Mclntosh et a1., 1998; Sykes et al., 1995; Lum et al., 1994; Redd et al., 1995) and was

therefore expected. In all cases the Maori and Pacific Nation samples used in this study
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which have the 16 189 transition also had the CGT motif and the 9-bp deletion

indicating authentic Polynesian ancestry.

Additionally, contamination was rendered unlikely by the use of a negative control for

each new PCR Master Mix and consequent set of PCR reactions. Each negative control

contained the same Master Mix as the samples but with no DNA added, so a negative

control would only produce a band if DNA contaminated the sample to provide a

template. All negative controls used in this study did not show any DNA amplification

and were therefore considered to be free of contamination.

4.ZMitachondrial 9-bp, HVI and HVII Amplification

Successful PCR amplification of the target HVI and 9-bp deletion regions were

achieved in all 85 samples. The HVII target region was successfully amplified tn 29

samples. The -20 ng/pl concentration of template DNA added to tubes for PCR

reactions proved sufficient to allow for high yield amplification of the target mtDNA

regions. The selected primer pairs (see Section 2.3.1) werc effective in amplifying the

DNA targets, and were specific, generating fragment sizes within the expected ranges.

The size of the PCR products was estimated using the 123 bp DNA standard ladder

(Life Technologies) run in Lane I of the agarose gel during electrophoresis. Using the

migration distances of the PCR products and a calibration curve constructed using the

123 bp ladder, it was possible to estimate the approximate sizes of the PCR products,

providing a useful tool for assessing whether the corect region of DNA had been

amplified.

I
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In some cases, PCR product bands show different migration distances across lanes,

producing the well known 'smile effect' (data not shown). This result might be taken to

suggest that the products in the higher and lower numbered lanes are of a lower

molecular weight than those products run in the middle of the gel, when in fact

sequencing analysis shows them to be of identical size. This effect may have occurred

because the direction of product rnigration in the gel may not have been parallel to the

wells, probably due to the gel not being placed perpendicular to the electric current

during electrophoresis. Uneven migration can also occur when a gel is not of

homogenous density. HoweveL, the most likely explanation for the 'smile effect' is an

electrophoresis voltage that is too high causing the centre of the agarose to melt slightly.

A more accurate assessment of size during agarose gel electrophoresis could be

achieved by running a I23 bp DNA standard ladder in both the centre and the extreme

left and right lanes. The complication of migration direction in establishing the size of

the PCR products was not a significant problem in this project as the purpose of the 123

bp DNA standard laddel was to provide an estimate, not an exact, assessment of

fragment size. However, for the assignment of the 9-bp deletion haplotype it was more

important to have the samples running evenly across the gel, as if the samples were not

running straight, a single sample without the deletion may be difficult to identify.

However, samples without the deletion (positive controls) were run in the middle and in

the extreme left and right lanes of gels so scoring and 9-bp haplotype assignment was

unambisuous.

The PCR amplification products from the HVI target region were visualised on a 1%

agarose gel as distinct bright bands, with slight smearing after this band that probably

represents lower weight molecular contaminants (see Figure 3.3). These lower weight

products are -407 bp and may have been caused by unspecific primer annealing, or they

92



] ) is t:Lr..s,s itlt

may represent an overabundance of HVI target PCR products. Reducing the number of

amplifications cycles, reducing the concentration of the template or a combination of

both, may be ways to avoid this problem. However, corrective measures were not

required as the small amount of smearing did not affect the sequencing reactions and all

amplification products were successfully sequenced.

4.3 Sequence Analysis

The ABIrM Prism 377 Automatic DNA Sequencer (Perkin-Elmer) provided a reliable

and efficient procedure for obtaining the exact sequences of the HVI, HVII and 9-bp

deletion target sequences. Sequences obtained from the automated sequencer were

edited and aligned with the Anderson reference sequence. For the HVI and HVII target

regions complications in sequence assignment arose due to the presence of

homopolymeric tracts.

4.3.1 9-bp deletion assignment

The assignment of the 9-bp deletion was successfully determined using 4% NuSieve@

agarose electrophoresis. In all cases electrophoresis gave fragments that were only one

of two possible sizes. The smaller fragments were taken to represent the deleted 112 bp

fragment and the larger the undeleted I2l bp fragment. In each run a positive control

known to have the 9-bp deletion and another without the 9-bp deletion were run with

the unknown samples to allow comparison. Product bands were consistently separated

well enough to allow 9-bp deletion assignment.
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In all cases, samples without the 9-bp deletion also lacked the CTG motif, and had

control region haplotypes that were common in European populations, This observation

provides further evidence for the reliability of the electrophoresis results, as Europeans

are unlikely to have the 9-bp deletion. Additionally, the assignment of the presence or

absence of the 9-bp deletion was done before sequencing of the HVI region was

complete, so interpretation of the electrophoresis results were not biased by expectation.

Although the electrophoresis results were adequate to distinguish between the larger and

smaller sized fragments, intermediate fragments, or slightly larger fragments may have

been missed. A triplication of the 9-bp repeat has been observed in some populations

(Chuckchi from Siberia: Shields et al,, 1992 and Tharu from Nepal: Passarino et al.,

1993 referenced in Redd et al., 1995). However, it is easy to identify the difference

between samples with and without the deletion, even though the difference is only 9-bp,

therefore, it is expected that samples with a triplication would be equally easy to

identify. There was no evidence of triplication in any samples used for this study.

4.3.2 Mitochondrial HVI sequence

In the HVI region a homopolymeric C-tract occurs between nucleotide positions 16 182

and 16 193. In all cases, the presence of the homopolymeric tract within the HVI rcgion

results in a characteristically 'blurred' sequence that was unable to be interpreted by the

automated sequencer. Manual sequence assignment based on the results of the

electropherogram also proved difficult and all attempts to use these ambiguous data

were abandoned. Instead, the results include the HVI region from nt -16 I82 onwards,

as this 3' HVI region (see Figure 1.15) is more variable and the sequence can be easily

interpreted.
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However, concentrating on only the most variable 3' HVI region means that potentially

valuable information from the 5' HVI has not been extensively studied or evaluated in

Polynesian populations (including Maori). Although some studies have suggested that

this region is very homogeneous in Ma and PN populations (Lum et al., 1994) a small

number of samples were surveyed using primer L15996, to see whether any variation

could be found. A total of 17 samples were sequenced using both primers H16401 and

LI5996 (see Section 2.3.1), together providing the entire HVI sequence for these

samples (see Appendix Three). Samples with inferred European ancestry did not have

the homopolymeric C-tract and therefore amplification and sequencing using primer

H16401 alone was sufficient to read through this region and provide sequence

information for both 5' and 3' HVI regions. Therefore, there are a total of 24 samples

with sequence information for the entire HVI target region (5' and 3' HVI: see Figure

1.15), of which 15 were from Ma and PN samples and 9 are from samples with inferred

European ancestry. Out of the 9 European samples, 3 had variation in the 5' HVI region

before nucleotide position 16 189, compared with only 1 sarnple out of 15 for the Ma

and PN sampies. Despite the very small sample sizes, the comparative results above do

indeed indicate that Maori and Pacific Nation populations may have a small amount of

variation in the 5' HVI resion when compared with the variation seen in Caucasian

populations.

However, the same reduction in haplotype diversity between Polynesian and Caucasian

samples also holds for the 3' HVI region. In the 3' HVI region there are only 11

different haplotypes observed out of a total of 74 samples (see Table 3.1). Whereas out

of the 9 samples with inferred European ancestry there are 8 different haplotypes.

Therefore, the question becomes "Would sequencing the 5' HVI region reveal further

variation sufficient to warrant the extra time and money that would need to be spent on
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this endeavour?" Ideally sequence information from the entire HVI target region would

be required to ensure that the database is complete and more easily comparable with

data from other populations worldwide that report sequence data from the entire HVI

(i.e. both 5' and 3') region.

The rare Maori haplotypes found in the curent study (Haplotype #AW4, AW5, AW7

and AW8: see Table 3.1) were compared with other populations worldwide, using the

mtDNA haplotype database http://db.eva.mpq.delhvrbase/. Although no exact matches

were made, some similarities could be found between Haplotypes #AW4 and #AW8

and South American haplotypes (HISP_98 and CHI 32, 48 and 53: see Horai et al.,

1993). A previous study by Sykes et al. (1995) found a very small number (<0.02%) of

mtDNA haplotypes among Polynesians that exactly matched haplotypes described for

Soutlr American populations (Haplotypes #45 and 47: see Sykes et al., 1995).

Therefore, although Heyerdahl's (1950) theory for a substantial input from South

America is not supported by most researchers, evidence from the study by Sykes et al.

(1995) provides slight support for a tiny amount of geneflow. Some contact between

Polynesian and South American populations is necessary to explain the presence of

kumara within Polynesia, but it is unknown when this 'contact' occurred, or how

substantially these populations interacted. Present genetic evidence is ambiguous

because both populations share some features that are probably attributable to their

common Asian ancestry, e.g. the 9-bp deletion is relatively common in South American

populations, as is the first transition required to create the Polynesian motif (T+C

16217: seeFigure 4.4). The rarehaplotypesfoundinthecurrentstudyhaveeitherthe

CGT motif, or the intermediate ancestor (CAT: see Figure 4.4) plus the unique

transition that distinguishes the haplotype i.e. haplotype #AW4 has the CTG motif, p/us
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a unique transition at nt 16207 whereas haplotype #AW8 has a CAT motif, plus a

unique transition at nt 16051. The four rare haplotypes were searched for within the

database using their unique transition and the T-+C transition at nt t62I7, resulting in

partial matches reported above, Closer examination of these partial matches revealed

that none of the South American haplotypes had any additional CGT motif transitions.

Thereforc, although the rare Maori haplotypes in the current study do have potential

links to South America, due to the 9-bp deletion and T-+C transition at nt 16217, it is

likely that these similarities are due to directly shared ancestry between the South

American and Polynesian populations, rather than more recent contact. It is probable

that the shared unique transitions are simply parallel changes that have occurred

independently within the South American and Maori lineages since diverging from the

parental Asian population (see Figure 1.12).

4.3.3 Mitochondrial HVII s equerxce

In the HVII region a homopolymeric C-tract occurs between nucleotide positions 00

303 and 00 315 which leads to ambiguous nucleotide assignment and incomplete

sequences. The incomplete sequences were unsuitable for further analysis and are not

reported in this thesis, whereas the 13 ftrll HVII sequences that were obtained (see

Appendix Two) will been deposited in GenBank for access by the scientific community.

Of these 13 complete HVII sequences 10 were from Maori and PN samples, whereas 3

were from samples with suspected European ancestry. Out of the Maori and PN

samples t had identical HVII region sequences which conformed to the expected

haplotype (00 073 A--G, 00 146 T-*G, 00 263 A--G, compared with the Cambridge
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Reference Sequence: Anderson et al., 1981), whereas one sample was missing the

expected T---+G transition at nt 00 146 and had the same sequence as 2 of the samples

with suspected Caucasian ancestry. The third Caucasian sample had the same haplotype

as the other Caucasians (00 073 A--*G, 00 263 A-*G), and an additional transition at

nucleotide position 00 219 T--+C. In the study by Redd et al. (i995), out of a total of

24 Samoan samples only 3 had HVII region sequences that differed from the expected

sequence. So the question once again is "Would sequencing the HVII region reveal

further significant variation to wamant the extra time and money that would need to be

spent?"

4.4 Number of Maori female founders to settle New Zealand

(Aotearoa)

Before commencing simulations to estimate the number of female founders to settle

New Zealand, decisions were required to identify the appropriate treatment of sequence

information that would provide the best set of data for this analysis and also ensure

accurate estimates for the number of female founders to settle Aotearoa. A summary of

the parameters used to identify the appropriate dataset, the decision process outcomes,

and brief explanations were summarised in section 2.12.I. The following section

explores in depth the reason behind each decision.
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4.4.1 Determining suitable parameters for analysis of the data used in the founding

p op ulati o n s imulatio n s

A. What region(s) of the mitochondrial sequence should be included in the

simulation dataset?

- Long sequence (Whole of HVI and HVII if available)

- Short Sequence (3' HVI, from nt position 16 189 onwards only)

It was decided that for the purpose of these simulations it would be best to focus on

short 3' HVI sequences (see Figure 1.15). Focusing on the 3' HVI region avoids the

sequencing complications arising due to artefacts in the polymeric cytosine tract that

starts around nt position 16 189. The 3' HVI region includes the CGT motif, and has

been used in many previous studies as it has much more variation than the 5' HVI

region. Therefore, using the short 3' HVI sequence allows comparison of the largest

possible set of data from previous studies. It is clear that this treatment of data does

underestimate haplotype diversity slightly e.g. for the Maori samples there is a decrease

from 10 to 8 haplotypes (see Appendix Five versus Table 3.3). However, it is better to

exclude data that are not comparable rather than to try to combine different haplotypes

into a single category as was done in the MM98 study (i.e. see Appendix Five, CDla,

CDlb etc were combined into MMl). Not only does the MM treatment of data lead to

an underestimate of haplotype diversity, but there is also an apparent increase in the

frequencies of the remaining haplotype categories, because more samples are

represented by fewer haplotypes.
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B. Which dataset should be used for the Maori founder analysis?

AW02 only (to be used as a comparison to the MM98 data)

AW02 and MM98 data combined

All available data combined (i.e. including data omitted from
MM98)

To use the data from the current study alone in comparison against the MM data, would

require the use of some Pacific Nation (PN) haplotype frequencies from other studies, as

in the cunent study only 5 samples from EP were sequenced. The MM study did not

sequence any PN samples, but instead relied on PN data compiled from other studies.

Therefore, it was impossible to keep the simulations for the current study totally

separate from the MM98 study and other studies, as the PN data would have been taken

from the same sources. So if a combination of data must be used for the EP data it is

sensible to use all the available Ma 3'HVI sequence data for analysis too.

C. Which Eastern Polynesian (EP) Haplotypes should be used for the
frequency comparison?

- EP (as used by MM)

- EP+ (all haplotypes found in all studies)

When MM98 compiled the EP data from other previous studies, a total of 11 EP

haplotypes were identified. Reanalysis of these data found many more EP haplotypes,

as many Group III sequences seem to have been left out of the MM table entirely and

some sub-haplotypes may have been combined into a single haplotype category.

Consequently, a new table was compiled (see Appendix Five) and it was decided that

these revised total haplotype data (see Table 3.3) should be used for analysis.
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D. Is the dataset based on decisions A-C suitable for analysis (see Table 3.3)?

No it isn't as some of the hts that are found in the Ma samples are not found in
the EP samples. What are the options?

- do nothing (this option is rejected as no simulation is possible)

- Mutation accounts for the extra Maori haplotypes

- add missing EP haplotypes (Discovery Curve Assumption)

In this study and the previous study conducted by Munay-Mclntosh et al. (1998), the

expectation is that the settlement of Aotearoa occurred as one or a series of founder

events and bottlenecks, probably rnodified by immigration and emigration over several

generations leading to the low mtDNA haplotype diversity encountered in the present

New Zealand Maori population (see Section 1.3). Under this model, Maori are

expected to contain a subset of the genetic variability to be found in central Eastern

Polynesia, which in turn is expected to be a subset of the diversity found across the

whole of Remote Oceania. The 3 new rare Maori haplotypes found in the present study

and the one found by Sykes et al. (1995) are included in the simulations, and have not,

to the best of my knowledge, been found and reported in any other Polynesian or

Oceanic population. This means that these haplotypes are unique to Maori and

therefore do not fit directly into the expected founder scenario outlined above. There

are two explanations that could explain the presence of these haplotypes in the Maori

population and/or their unexpected absence in Eastern Polynesian. Firstly, it is possible

that these unique haplotypes are present in the Eastern Polynesian populations but have

not yet been observed (Discovery Curve Assumption). This was the first assumption

tested during the computer simulations. Secondly, it is possible that these unique

haplotypes are the result of mutations that have occurred in the Maori population since

the original founders left their parent population. To do the computer simulations using

the simulation format as used in the original MM98 study, requires an estimate to be
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made of the probable frequency of the unobserved rare haplotypes in the Eastern

Polynesian population. For the purpose of this simuiation the rare haplotypes were each

given a frequency of I in the total Eastern Polynesian population dataset. However, as

will be shown below, a more accurate estimate of the true frequency is difficult, as there

may be conflict between the apparent and actual frequencies due to the discovery curve

phenomenon.

. New Mutations

It is possible that the 4 new unique haplotypes found in Maori are not present in the

Eastern Polynesian population at all as they could have occurred as new mutations in

the Maori population since the original founders left their parent population. The

reported mutation rate of mtDNA has an extremely wide variation. The highest rate

ever slrggested is -1.5-2.5lsite/Myr (-1133 generations: Parsons et al., 1997). This

mutation rate was found by studying intergenerational substitution rates and is highly

contentious, drawing criticism (e.g. Jazin et al., 1998) as it is -20-fold higher than

estimates from phylogenetic analysis. The mutation rate is higher for the hypervariable

regions, HVI = 10.3 x 10-8 /site per year, HVII = 7.39 x 10-8 /site per year (Horai 1995).

A range of mutation rates could be applied to see which, if any, could give the

haplotype distribution seen in the present study. However, the possible effect of

mutations on the simulations was considered beyond the scope of the present study due

to the above uncertainties and has not been attempted. This could be an important

aspect for analysis in future investigations.
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. The Discovery Curve Assumption

All population databases of mtDNA HVI sequences studied previously show a similar

frequency distribution of haplotypes, with many rare haplotypes and fewer common

haplotypes (Holland and Parsons, 1999). As the number of samples surveyed increases,

there will be an increase in the total number of mtDNA haplotypes found, and a

simultaneous increase in the number of unique haplotypes found. When any new

sequences are added to an established database, the great majority of sequences that

were unique in the smaller database remain unique in the expanded database, with a

concomitant decrease in their apparent frequency (see example using Caucasian

population data: Figure 4.1). Therefore, since the total overall number of haplotypes in

the Caucasian population in Figure 4.1 has not yet been closely approached (udging by

the shape of the graph), then the number of rare haplotypes in the population can only

be an estimate or the 'apparent frequency' (1/n, where n is the database size) and is

likely to be an overestimate of the true frequency.

600
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100

0
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Figure 4.1 Discovery curve for Caucasian population data
Graph showing the effect of database size on the total number of mtDNA types that are
unique in the database. Databases increasing in size by increments of 100 were
obtained by random sub-sampling of a lage database of Caucasian sequences. This
Figure has been reproduced from Holland and Parsons (1999).
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The discovery curves for the Maori and Eastem Polynesian data are very flat by

comparison to Caucasian populations (see Figure 4.2). This indicates a much lower

overall number of haplotypes in these Pacific populations, and may indicate that most, if

not all, mtDNA haplotypes present in these populations have already been sampled.

These discovery curves provide additional evidence for the impact of recurrent founder

effects and bottlenecks; the severe reduction of the number of haplotypes as shown by

comparison of the decreased haplotype diversity in Eastern Polynesia versus Europeans

and the further reduction in haplotype numbers in Maori versus Eastern Polynesian

populations. However, this decrease in diversity from East Polynesia to New Zealand is

expected under the model of settlement outlined in the first paragraph of this section.

Although it may be more appropriate to compare the Polynesian population discovery

curves to similar data from Melanesian and Asian populations, this information is not

readily available. However, the Asian population is expected to have a similar

haplotype diversity to Caucasian populations, and Asians may even have slightly higher

diversity (Holland and Parsons, 1999). Therefore this Caucasian comparison is adequate

to illustrate the much lower overall diversity in Polynesians and to show the decreased

slope of the discovery curve.
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The power of the simulation for this project is limited by the size of the current

database, as the total number of haplotypes and their true frequencies in Maori and

Eastern Polynesian populations is still unknown. Howevet, for the purpose of this

simulation the rare Maori haplotypes are assumed also to be rare in the Eastern

Polynesian population too (hence the reason why they haven't been discovered yet), and

have each been given frequencies of 1. Further analysis would need to be done to

determine how changing these assumed frequencies (probably a slight underestimate)

mieht influence the results of the simulation'

In the current study, various capture-recapture calculations were performed on the data

to estimate the most likely number of haplotypes present overall in the total Maori and

Easteln Polynesian populations. Using the Burnham and Overton (1919), first order

jack knife, the total number of haplotypes expected was found to be -32 for Eastern

Polynesians and -13 for the Maori population. In future these estimates could be used

in computer simulations to calculate the maximum number of founders for the Maori

population. These capture-recapture estimates may fit in with the maximum number of

haplotypes estimated by extrapolating the Ma and EP discovery curves (see Appendix

Seven).

Currently, there is no way to determine whether these rare haplotypes are actually

present in Eastern Polynesia without doing more sampling. However, if these newly

discovered rare haplotypes are also present in Eastem Polynesia or elsewhere in

Oceania it may even be possible to trace them to a single island or island group, thus

providing evidence for a Maori homeland.
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E. What Population Growth Model should be used?

Exponential (as used by MM98)

Sigmoid (3 types of population growth):
i. Early expansion
ii. Middle expansion
iii. Late expansion

In the study by Murray-Mclntosh et al. (1998), an exponential growth curve was used to

model the population expansion. In the current study 8 haplotypes were identified, and

preliminary trials using exponential growth curve with the current data predicted an

exceptionally large founding population of -185 females (range between '75 and 475:

see Appendix Two, Exponential population growth). These results suggest that an

exponential population growth model may be inappropriate. A study by Brewis (1990)

modelling the Maori prehistoric population expansion suggests that a sigmoid

expansion would be a more appropriate model as it fits in well with the alchaeological

record, whereby pa fortifications were built for defence as competition for scarce

resources increased. Maori colonised Aotearoa -1000 years ago, with the first evidence

of pa building -700 years ago. However, Kirch (2000) suggests that the majority of pa

were built approximately 200-350 years ago (A.D. 1650-1800), during the time the

Maori population may have reached the canying capacity of the land (see Figure 4.3).

Three different sigmoid population growth curves were used in the current study to

model the prehistoric expansion of the Maori population. A range of early, middle and

late expansion sigmoid curves were used to model the population growth scenarios as it

is currently unknown which growth pattern is most appropriate.
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acc
Yeors A D

Figure 4.3 A probable population growth curve for the Maori, as reconstructed by Janet

Davidson (1984). Diagram is reproduced from Kirch (2000).

4.4.2 The simulatiott

In the Murray-Mclntosh et al. (1998) study, founder simulations indicated that -70

woman (between 50 and 100) were required to found the haplotype diversity present in

the culrent Maori population. However, this study was based on an exponential growth

curve, which may not be the best fit fol the population expansion (see above). The

current study has used more realistic sigmoid growth curves. Success of these models

varied. The late sigmoid population expansion model for example was considered

inappropriate because it predicts an extremely large number (-510) of female founders

(between 230 and >1000), a model that is not supported by other evidence (see above).

The early and middle expansions give female founder estimates of -47 (between 25 and

115) or -260 (between 1 15 and 670) respectively, both of which are considered to better

match the maximum number of female founders (250) suggested (McGlone et al.,

1994). However, a sigmoid expansion curve intermediate between the early and middle

curves, may give the best answer. It is curently unknown exactly how the Maori

population in Aotearoa expanded, and for this reason a range of values (early, middle

Increased
pa building
activity
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and late curves) was examined to see if any would give values consistent with the

population estimates defined by archaeological evidence.

Although the exact demography of the prehistoric Maori population is unknown, some

records are available from around the 18th century, at the time of first European

settlement (Anderson, 1990), a time that corresponds with the end of the simulations

(NB: The simulations follow MM98 and run for 30 generations at 2O years per

generation over 600 years from 1200 A.D. to 1800 A.D., i.e. to the time of first

European settlernent). It would be possible to use these records to establish an estimate

of birth and death rates at the time of settlement and to use these derivative figures to

check whether the answers given using sigmoid growth curves are appropriate. Given

that there may have been relatively few infectious diseases present in Aotearoa prior to

increased outside contact and an abundance of resources for the original founders, an

extremely rapid population growth scenario is reasonable (Professor David Penny,

Institute of Molecular Biosciences, Massey University: pers. corlm., 2oo2).

The frequency distribution of the haplotypes found in the Ma and EP populations is

'unequal': i.e. a few common and many rare haplotypes. This 'unequal' distribution is

taken in to consideration by matching simulation data (roughly) to the modern

distribution. This was done by looking for sets of results where one haplotype was

present 50 or more times in the sample of 107, and 5 other haplotypes were represented

by less than 5 individuals, leaving 2 haplotypes of between 5 and 50 individuals. Using

these criteria it was found that the overall shape of the curves did not change but the

founder estimates were affected, slightly increasing the number of founders required to

give the curent haplotype frequency distribution (see Appendix Eight). For the early

population growth pattern the number of founders increases from -47 (between 25 and,
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115) to -56 (between 34 and 120), whereas for the middle population growth the

number of founders increases from -260 (between 115 and 670) to -320 (between 155

and 695). The late growth pattern was considered inappropriate (see Appendix Eight).

In the previous study by Murray-Mclntosh et al. (1998) various reasons were suggested

for the very 'unequal' haplotype frequencies found, including one or more factors such

as chance, continuing migration, and genetic and/or cultural selection (for a complete

description see MM98). The cunent study supports these as possible explanations and

offers an additional idea. The original study (MM) allowed the maternal founding

population to expand to 50,000 females (100,000 total population) over a period of

-600 years, from 1200 A.D. to 1800 A.D. The graphs shown in Figures 3.6,3.7 and 3.8

illustrate the effect of the founding maternal population size on the expected number of

haplotypes for the New Zealand Maori sample. The size of the founding population

from Eastern Polynesia is indicated on the x axis; the y axis shows the frequency of

20,000 simulations that the indicated number of haplotypes (between I-2I) are present

in a sample of 107 sequences after the founding population has expanded to 50,000

females. Using the early and middle sigmoid expansion, the estimated founding

population size (using the mid-point values) is -47-260 Maori females to give the 8

haplotypes observed in the present day population. But this simulation stopped in the

1800's (i.e. at the time of first European settlement), there was an additional -10

generations for the female population to expand to its present size (268,797:200I NZ

census). Would the present-day number of haplotypes and their frequencies be expected

to be the same as they were back in the 1800's? Additional time has been available for

the frequencies and the number of haplotypes to change since European settlement. It

might also be that the impact of European settlement itself has led to the current

'unequal' haplotype distribution in the Maori population. Obviously, it would be
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difficult to extend the simulations to the present day (i.e. allowing for admixture etc.),

but it is also hard to interpolate the curent gene pool back to what was present 200

years ago. Despite this problem the estimates given in the current study for the number

of Maori female founders is considered to be a very close approximation to those

suggested by archaeology and oral history.

4.5 Source of Maori female founders to settle Aotearoa

4.5.1 Theories for the colonisation of Aotearoa

There are -5 major competing theories for the settlement of Aotearoa (see Figure 1.2),

but these can be amalgamated into 2 major theories representing opposite ends of a

continuum. The most widely accepted theory is a planned settlement, with multiple

voyages over time bringing people, animals, plants, and cultural artefacts. This fits in

with the current understanding of Maori oral traditions (elaborated by lgth century

ethnologists) describing epic voyages requiring great navigational skills with sailing

directions obtained from Kupe the legendary discoverer of Aotearoa. Long sea voyages

by Polynesians to Aotearoa are supported by experience of canoe voyages using only

traditional navigation knowledge; these voyages have supported the oral tradition on

such matters as seasonal timing, the setting of courses, and pohutukawa trees in bloom

on arrival. Traditional stories of return voyages from New Zealand to eastern Polynesia

are supported by the discovery of New Zealand obsidian in the Kermadec Islands.

McClone et al. (1994) propose that a maximum of 500 settlers arriving over several

generations around 800 years before present would have provided both the necessary

numbers to occupy the early coastal sites found throughout the country and the
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necessary skills, traditions, and knowledge for successful colonisation. This initial

colonising population would have provided the necessary basis for a high population

growth expected in an environment previously uninhabited and extremely rich in seals,

large birds (including moa), fish, and shellfish.

At the other end of the spectrum is the theory originally suggested by Sharp (1956),

stating that Aotearoa was settled accidentally as opposed to planned voyages (see

above). These random voyages were thought to have been made by one canoe with

perhaps 10-20 people (or at the most a few canoes), drifting before the wind or cunents,

or by people forced to leave their home island, blindly searching for a new island on

which to settle. However, throughout the colonisation of Oceania the voyaging people

have always brought a large variety of domesticated plants and animals with them to

every new island. It is this portable man-made environment, a virtual ark full of biotic

resources, that is the foundation for the conquest of the Pacific, as the number of

naturally occurring edible species declines rapidly outside of Near Oceania. It is for this

reason that accidental voyage and discovery by, for example, a fishing boat blown off

course, is thought unlikely. The presence of a few food crops that were successfully

transported to New Zealand including: taro, yam (Dioscorea batatas), bottle gourds,

paper mulberry, Ti Tree (Cordyline fruticosa) and the staple crop sweet potato or

Kumara (Ipomoea batatas) imply that the journey was planned. To ensure successful

transportation of these crops to a new island they would have to be carefully packed,

and it would be unusual for food prepared for a day fishing trip to include important

sprouting planting shoots, or for that matter enough women to found a new population.

The previous section (4.4) estimates that absolute minimum number of women founders

for the Maori population would be -34 which is already too high to support models that

stipulate a small number of waka and/or surviving founders. The waka would also
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contain at least an equal or greater number of males. However, the number of original

canoes suggested by oral tradition may actually include later subsidiary voyages within

Aotearoa, a scenatio that has not been accounted for in the founder simulations.

4.5.2 Source of the Maorifounders

The 3' HVI mtDNA haplotype data obtained in the current study has been used to

successfully estimate how many women were in the waka that journeyed to colonise

Aotearoa and effectively rules out all models assuming a small number of founders.

However the same data may also be able to answer some fundamental questions about

Polynesian origins; where did these canoes originate from and is it possible to pinpoint

proximal and distal 'homelands' for New Zealand Maori? Throughout the 19th century

and the first half of the 20th century researchers sought to resolve the "problem of

Polynesian origins" by searching for some external homeland, usually in Asia. Te

Rangi Hiroa (1932) believed the Polynesian "Vikings of the Sunrise" had migrated in

substantial fleets out from an Asiatic homeland passing though Micronesia to enter the

Polynesian triangle via Samoa and on to the Society Islands. Most scholars followed

some version of Hiroa's theories. Around the 1950's and 60's, Jack Golson, Roger

Green and students excavated in Samoa and Tonga where they uncovered evidence that

distinctly Polynesian cultural traits had emerged within these archipelagos more than

1000 years ago. Green (1991) summarised this new understanding of Polynesian

origins:

"Thus there never was a Polynesian migration from elsewhere, becoming

Polynesian took place in Polynesia itself as the archaeology of Tonga and

Samoa over the last 3000 years readily attests. One begins with Eastern Lapita

and ends with Polvnesian".

\/!f,rf 1-i a l.ll'.rlVi.iS)TY 0F U,|ILLINGTON
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Therefore, archaeology positions the primary geographic homeland of the ancestral

Polynesian population in the Tonga-Samoa archipelagos and their smaller neighbours

including Futuna, Uvea and Niuatoputapa (Kirch, 2000). Bellwood (1989) suggests the

Cook Islands whereas an account by Evans (1998), places the homeland in Tahiti. It is

thought that it is one or a combination of these regions that later Polynesian people

would call in their myths and traditions, Havaiki (or Hawaiki), the Polynesian

'homeland'. The archaeological data not only specify a probable homeland, it also

estimates the emergence time for the ancestral culture out of Early Eastern Lapita as the

middle of the first millennium B.C. (Kirch, 2000).

If the present populations in these 'homeland' regions should prove to have any of the

rare haplotypes found in the Maori population in this study, it would be compelling

evidence for their particular role as participants in the settlement scenario outlined

above, whereby current Eastern Polynesian and Maori populations are derived from a

parental population that resided on one or a few closely associated islands in the Tonga-

Samoa archipelagos. All Polynesian populations are very similar genetically and

general links can already be found amongst many islands (i.e. shown by the high

frequency of the CGT rnotif and the 9-bp deletion haplotypes). Cunently, we do not

have data from enough samples collected in any of these homeland regions to be able to

conclude whether or not a specific genetic link could be established between the Maori

people of Aotearoa and a single parental Eastern Polynesian population. It is perhaps

rare mtDNA haplotypes that might lead to identification of a specific parent population.

It is not certain that further sampling would actually discover these new rare haplotypes

in the Samoa-Tonga archipelagos, as they may have occurred once only by mutation in

Aotearoa and would therefore not ever be found elsewhere, even with extensive

sampiing. Comparisons of mtDNA haplotypes with South American populations have
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indicated some 'contact' with Maori and/or proto-Polynesians may have occurred.

However, additional evidence would be required to fully support this scenario, as the

similarities could well be due to common ancestry (see Section 4.3.2).

But even if one or more of these rare Maori population haplotypes were to be found in a

supposed 'homeland' region or island, then on its own this 'genetic trail' would not

prove that this is the actual parental population, or that one had found the mythical

Havaiki. Since the population split, chance changes in haplotype diversity could lead to

parallel changes in nucleotides, with no phylogenetic signal for reconstruction of

population relationships (see Figure l.l2). Reciprocally, even if these rare haplotypes

cannot be found in the Tonga-Samoa region today, it does not mean that settlement of

New Zealand and other Eastern Polynesian Islands did not occur from these

archipelagos. Just as these haplotypes are curently rare in the Maori population, they

may also have been rare in the original parental population, time has passed and chance

events may have eliminated them from the parent population since leaving the island of

origin. However, positive genetic associations considered alongside the Archaeological

and Linguistic evidence may ultimately prove capable of providing once and for all a

definitive homeland for Maori.

4.6 Origin of Austronesian-speaking Oceanic Populations: Introducing

the 'synthetic Total Evidence Theory'

The previous section traced the origins of the Maori people back to a probable

homeland within Eastern Polynesia, but where did these eastern Polynesian people
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come from? Looking back further in the past, is it possible to identify the source of all

the speakers of Austronesian languages?

In the introduction to this thesis (see Section 1.5), three'competing'colonisation

models were outlined, the 'Express Train Model' (Bellwood, 1991, 1997, 1998), the

'Entangled Bank Model' (Terrell, 1988), and the 'Slow Boat Model' (Oppenheimer and

Richards, 2001). Briefly, the 'Express Train' argues for a Taiwanese origin, and links

the expansion of Austronesian-speaking people with the colonisation of Polynesia,

whereas the 'Entangled Bank' and 'Slow boat' decouple Austronesian language and

Polynesian origins stating that:

"the origins of the Polynesian dispersals nxay not follow on directly from the

earlier history of the bulk of the Austronesian speakers in island Southeast

Asia" (Oppenheimer and Richards, 200Ia: emphasis added).

Furthermore, the 'decoupled' theories place the Austronesian language expansion

somewhere in the region where these languages are currently spoken, within island

Southeast Asia and/or Melanesia. The 'Entangled Bank' is more closely associated

with an indigenous Melanesian origin and the 'Slow Boat' is associated with an island

Southeast Asian origin for Polynesians. This thesis contends that these 'competing'

hypotheses can in fact be incorporated into an inclusive 'Synthetic Total Evidence

Theory' that encapsulates aspects of each model.

Currently, most theories of Pacific settlement concentrate on only one of the two aspects

that are important in understanding Pacific colonisation, i.e. either a pattern or process

element. Additionally, models may only focus on expansions occurring over one part of

116



I) is't:rt.s,siutt

the genetic trail e.g. concentrating on island Southeast Asia, without explaining the

patterns and processes occurring over the whole migration route i.e. including

information before and after the island Southeast Asia expansion. Therefore, present

theories are incomplete and thus unsatisfactory for explaining the complicated migration

history of the entire Oceania region, from the proposed proto-Austronesian homeland,

right through to the final migration to Aotearoa. Additionally, results from

interdisciplinary studies are often misinterpreted by non-specialists, and there are some

who contend that when archaeological and linguistic lines of evidence are combined,

they become mutually self-supporting to the extent of circularity (Oppenheimer and

Richards, 2OOI). Now, perhaps for the first time, it is possible to look at the

interdisciplinary evidence in its entirety, combining data from archaeology, linguistics,

anthropology and genetic studies to explore both pattern and process elements to create

a more complete picture of Pacific settlement, and from consideration present a total

evidence account of this amazing human expansion. The timing of this thesis fits in to a

period where many pieces of this complicated puzzle have been found, and researchers

can now fit them all together to make sense of these voyages. The 'Synthetic Total

Evidence Theory' (plus diagrammatic representation) introduced in the following

section will show how 'competing' theories have a lot in common and present

arguments showing that a consensus view using information from different disciplines

may finally be in sight.

4.6.1 The Synth.etic Total Evidence Theorv

The colonisation of the Pacific region can be broken down into three phases each with

associated pattern and process elements. The first phase is the initial expansion of

people into Near Oceania, which occurred at least 33,000 years ago. These populations

rt7



I ) i,s't:tt,t.t itt t t

would have probably originated in Asia (pattern). However, consequent differentiation

of genes, languages and cultures (processes) within Asia and Near Oceania since the

original expansion, would have created unique markers for each population. The

distinction between ancient Near Oceanic populations and migrant populations is

important for the second phase of the expansion, as both populations have a shared

history with Asia, which must be taken into consideration. The second phase is the

expansion of a proto-Austronesian populati on (migrant) into Near Oceania. This phase

of population expansion is contentious as it involves locating an oriein for the

Austronesian expansion (pattern element). Proposed centres of expansion include

specific regions, e.g. Taiwan, lndonesia, and South America, or more general areas e.g.

island Southeast Asia, Melanesia or Micronesia. Further complications arise due to the

unknown interactions (process elements) between the ancient Papuan-speaking residents

of Near Oceania (Phase One) and the incoming migrant population(s), The third phase

involves the expansion of the Austronesian-speaking populations (Phase Two) out into

the previously unoccupied Remote Oceanic region. The third phase is less complicated,

as the origin (pattern) of the expansion can be more reliably traced using archaeological

dates and there were no previous populations to obscure relationships with the parental

population. Debate in this third phase centres on the 'long pause' (process), whereby

there was a pause of up to 1,600 years before the settlement of islands beyond

Tonga/Samoa (see Section 1.4.1). Phases Two and Three are discussed in detail, as

they are most relevant to the Synthetic Total Evidence Theory, and because it is these

phases which are causing problems for consensus models, Phase One appears in

sufirmarv form only.
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. Phase One: Initial settlement of Near Oceania

Hunter-gatherer Papuan-speaking populations migrated over small water gaps and land

bridges to colonise Sahul (the combined Australia-New Guinea landmass) >50,000-

60,000 years ago, and Near Oceania (see Figure 1.1) between 30,000-40,000 years ago.

There is good multi-disciplinary evidence to support the antiquity of these populations,

using archaeology to date the earliest occupation sites, and linguistics and genetics to

measure the diversity of languages and genes respectively. Changes in sea levels

meant that much of the continental shelf was above water for long periods (see Figure

l.Il), making water crossings easier as only deep-water channels persisted. These

ancient populations would most likely have originated from somewhere on the Asian

mainland, and reached Australia, PNG and the Bismarck Archipelago (today ancient

populations persist in the PNG Highlands and Australia). As there is general agreement

on events occurring in this region, no further discussion of phase one is necessary as

part of the Synthetic Total Evidence Theory.

' Phase Two: Neolithic expansion into Near Oceania

Neolithic proto-Austronesian speakers expanded from central and south China to

colonise Taiwan between 8000-6000 years ago (Melton et al., 1998). This expansion

may have been driven by the development of agriculture, the consequent spread of rice

cultivation and the increase in population associated with increased food production

(Bellwood, 1998). The contrast between the big differences to be found among

Taiwanese Austronesian languages and much more modest differences among extra-

Taiwanese Austronesian languages suggests there was a 'long pause' between the
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colonisation of Taiwan and the expansion of Austronesian speakers out of Taiwan

(Diamond, 2000). Archaeology supports the long pause scenario suggesting there was a

1,000-year gap (from about 4300 to 3300 B.C.) between farmers' colonisation of

Taiwan and their subsequent colonisation of the Philippines. Blust suggests that the

pause was due to the time required to develop sufficiently good boat technology

(perhaps outrigger canoes?) to enable them to cross the 375-km sea gap separating

Taiwan from the Philippines (Diamond, 2000). Therefore, -6,000 years ago the proto-

Austronesian population began to spread outwards from Taiwan to colonise the

Philippines, eastern Indonesia and Melanesia (Bellwood, 1997). Lapita culture (see

Section I.4.I) arose -3,500 years ago around the Bismarck archipelago and provides a

firm basis for tracking the chronology and rate of population spread (see later, Section

4.6.3.2). Linguistic evidence points to Taiwan as the source fol the Austronesian

languages, and phylogenetic analysis of the language branching structure supports the

'Taiwanese Homeland' component of the 'Express Train' theory (Gray and Jordan,

2000). Additionally, mtDNA data (Melton et al., 1995) and some Y-chromosome

evidence (Capelli, 2001) connects the Taiwanese population to Polynesians' As

previously mentioned, Phase One evidence indicates that Near Oceania (Philippines,

eastern Indonesia and Melanesia) had human occupants beginning in the late

Pleistocene (ca. 40,000 years). Consequently, the Austronesian-speaking Proto-

Polynesian migrants would have had to compete and interact with human populations

already present in these areas, and intermarriage, mediated by force or otherwise, is

likely to have occurred. However, comparisons between mtDNA and Y chromosome

data, suggest differential geneflow, with greater Melanesian male than Melanesian

female contribution to the proto-Polynesian gene pool (e.g. Kayser et a1., 2000).
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. Phase Three: Remote Oceania

Based on archaeological evidence, the proto-Polynesian population reached Fiji by

3,500 years ago, spread into the Polynesian triangle by ca. 1000 years ago, and

concluded the migration with the colonisation of Aotearoa within the last 800-1000

years. Remote Oceania was not colonised prior to the arrival of the Polynesians,

therefore there are no underlying population interactions with older residents to take

into consideration (as is the case for Near Oceania). Consequently, descriptions of the

final phase of this population expansion are in general agreement across most

disciplines. However, there is still some debate regarding the Eastern Polynesian

settlement possibly arising from a second 'long pause'. Further archaeological work is

required to determine whether this pause is real, or an artefact due to insufficient

excavations in these areas. Pawley (1996) argues that a period of common development

in the Western Polynesian region is required prior to later dispersals in order to explain

the many innovations in proto-Polynesian languages. Currently, archaeology confirms

the linguistically deduced long pause, from about 1200 to 200 B.C. (Diamond, 2000).

Therefore, it is likely that the pause is real, and may have been caused by the increasing

inter-island distances past the Samoan-Tongan region, coinciding with the development

of double-hulled platform sailing canoes (Diamond, 2000).

Micronesia is often ignored when prehistory and human diversity in the Pacific are

discussed (Intoh, 2001). However, any 'synthetic Total Evidence Theory' would not be

complete without some discussion of the colonisation of this area. Archaeological

evidence suggests relatively long habitation of westem Micronesia, with sites dating to

>3,500 years in the Mariana's archipelago and Palau, and dates -3,300 years old from

Yap, suggesting that western Micronesia was colonised about the same tirne or even
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before the Lapita making Austronesian-speaking people reached the Admiralty Islands

(Intoh, 2001). Despite the long habitation history of Western Micronesia the rest of

Micronesia was not settled until -2,000 years ago. All Micronesian peoples speak

Austronesian languages, but not all of these belong to the Oceanic subgroup, a clue to

their diverse origins (Kirch, 2000). Studies of Oceanic languages suggest that the late

Micronesian colonisation (eastcrn Micronesia) originated in the Solomon-Vanuatu

region, which is close to the date of dispersal from Samoa to East Polynesia (Intoh,

lgg7). However, some westefn Micronesian islanders speak western Malayo-

polynesian languages and linguistics links have been made with the Philippines,

Indonesia and possibly Taiwan (Kirch, 2000). ln contrast to Polynesia, Micronesia

does not form a 'monophyletic' cultural group, although its history is shallower and less

complex than that of Near Oceania (Kirch, 2000). Despite biological similarities

between Polynesian and Micronesian populations, according to Intoh (2001) the

influence of Polynesian-speaking populations in the history of Micronesia is late and

minimal compared with that of the Nuclear-Micronesian-speaking population coming

from Melanesia. Genetic studies have shown some evidence of mixing between eastern

Micronesia and Melanesia (Lum and Cann, 1998; Lum et al., 1998)'
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4.6.2 New mtDNA data supportfor the Synthetic Total Evidence Theory

Researchers have found that 90-95Vo of Polynesians have inherited the 9-bp deletion

seen in Southeast Asians including the Taiwanese, but it is largely absent in

Melanesians (Melton et al., 1995). The mtDNA CGT motif pattern is also found at a

high frequency in Poll'nesian people and the ultimate origin for this motif is likely to be

in Taiwan (Melton, 1995). These patterns fit in with Bellwood's idea of a Taiwanese

homeland and rapid expansion with limited intermixing (Gibbons, 2001). This idea

does not support Terrell's idea for an exclusive Melanesian origin of these populations,

but could support the 'Slow Boat' model for an island Southeast Asian origin proposed

by Oppenheimer and Richards (2001a). The conclusions drawn from mtDNA data

depend on the way the mtDNA tree is rooted.

According to Redd et al. (i995) rhe 9-bp deletion first arose approximately 58,000 years

ago somewhere in Asia (probably in China or Southeast Asia). The deletion was

quickly followed by the transition at nt position 16 277, and mtDNAs with these

markers spread extensively throughout Southeast Asia (Melton, 1995: see Figure 4.4).

The change at nt 16 26L occurred next, probably in Taiwan, and people bearing these

haplotypes spread outwards beginning -8,000 years ago throughout the Philippines and

Indonesia (Melton, 1995). Finally, between 900 and 23,000 years ago the substitution

at position 16 247 occurred creating the Polynesian motif. This final substitution

probably occurred in lndonesia and there was a subsequent expansion -5,500 years ago

of early proto-Polynesians from Indonesia eastward (Redd, 1995). Figure 4.4 shows the

most likely order for the occurrence of the transitions required to produce the

Polynesian motif, in association with 9-bp deletion based on the mitochondrial evidence

acquired from previous studies e.g. Redd et al., 1995.
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Figure 4.5 Most likely

produce the Polynesian

Dist:u,s,tion

order for the occurrence of the transitions required to

Motif haplotype

Order of
occurTence

Nucleotide
Position

Transition
/Deletion

Haplotype
(16 2r7,247 ,261)

First Intergenic 9-bp del TAC (CRS plus 9-bp deletion)
Second 16 2t7 T---C CAC (ancestral)

Third 16 261 C-+T CAT (intermediate)

Fourth 16 241 A--+G CGT Golv Motifl
** 'l'l t6 189 T ---+ C

*+ This substitution also occurs at high frequencies in control region sequences with

and without the 9-bp deletion and very likely predates the 9-bp deletion

Richards et al. (1998) and Oppenheimer and Richards (2001a,b) argue for an east

Indonesian origin (somewhere between Wallace's line and the island of New Guinea)

for Polynesian populations, as the control region diversity among Polynesian motif

mtDNAs is highest in Indonesia, and they suggest that it is therefore likely that the

Polynesian motif originated there (Redd et al., 1995). However, as illustrated in Figure

4.5 there are 3 patterns of nucleotide substitution CAC ---+ CAT -- CGT. The

intermediate motif 'CAT' is useful for population origins, as it predates that of the CGT

pattern. The 'CAT' pattern occurs at high frequency in 3 aboriginal groups of Taiwan.

Furthermore, the mtDNA diversity of the 'CAT motif is highest in Taiwan and together

these results suggest that the intermediate CAT motif arose in Taiwan and spread south

through the Philippines and Indonesia (Melton, 1995). Therefore, although it is likely

that the final element of the Polynesian motif arose in Indonesia, closer examination of

the intermediate motif suggests an earlier link between these populations and Taiwan.
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Using a molecular clock to estimate divergence times based on observed haplotype

diversity accumulated around the Polynesian motif, Richards et al. (1998) were able to

estimate the age of the CGT motif as roughly i7,000 years before present (95Vo

Confidence Interval: 5,500-34,000 years). Because archaeology argues for a tightly

constrained arrival and departure of the express train from Wallacea -4,000 years ago

(Bellwood, IggT), Oppenheimer and Richards claim that the molecular clock evidence

suggests the CGT motif originated before an express train carrying Taiwanese farmers

could have arrived in Wallacea. However genetic evidence should be based on many

loci, integrated with other evidence and the extremely wide confidence limits for the

calculations of marker ages should be viewed with caution (Diamond, 2001). Therefore

overall, the mtDNA diversity could be taken to suggest either an Indonesian/island

Southeast Asian origin, or a Taiwanese origin, depending on whether focusing on the

diversity of the CAT or CGT motifs. An exclusive Melanesian origin (Terrell, 1988) is

not supported as the mtDNA evidence suggests a relatively minor genetic (<5Vo)

contribution from Melanesian females to the current Polynesian gene pool (Sykes et al.,

1995). However minor, this mtDNA input hints at intermarriage between migrant and

ancientpopulations, a link that is strongly supported by some other markers, suggesting

that Terrell's Melanesian origin theory contains some elements that are correct'

Additionally, there is some evidence of South American input into Polynesian

popularion s (<0.02Vo), suggesting that the largely discounted claim of Thor Hyerdahl

(1950) is also at least partially supported by mtDNA evidence (Sykes et al., 1995)'
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4.6.i Archaeology

4.6.3. 1 Agricultural evidence

Peter Bellwood is the archaeologist most often associated with the predominant view for

Polynesian ancestry, popularly known as the 'Express Train to Polynesia' (Diamond,

1988). Bellwood (1998) came up with many reasons to explain the underlying causes

and motivation behind Austronesian dispersals including those outlined below:

(a) dependence on agriculture with its potential for population growth

(especially in the early stages in China and Taiwan)

(b) dependence on maritime resources with consequent development of a

voyaging technology

(c) social processes which have been termed founder-focused rank enhancement

Agricultural motivation alone (a) has long been associated with the Austronesian

expansion out from the China/Taiwan region, but Oceanic populations show no

evidence, past or present, of growing rice (except in the Marianas) and instead cultivate

the same root crops as Melanesians (Oppenheimer and Richards, 2001a). Also until

about 4,000 years ago island Southeast Asia was entirely inhabited by non-Austronesian

speaking 'Australoid' foragers and now almost every language in island Southeast Asia

is Austronesian implying there was a near complete linguistic and ethnic replacement

(Oppenheimer and Richards, 2001a). The cultural and technological superiority of the

incoming migrant farming population is the reason usually given to account for this

dramatic replacement. But this idea is modelled on the spread of the more thoroughly

documented European Neolithic, and there are now some serious doubts about the total
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replacement of the indigenous foraging population by the advancing Indo-European

farmers (Cavalli-Sforza, 2000). Additionally, some archaeologists are beginning to

think that a Neolithic-type revolution was not even required to get people moving

around the Pacific at the end of the Pleistocene. By 6,000 yeals ago the world's sea

levels had finally stabilised to within a few metres of their modern position. coastal

lagoon systems would therefore have reached a higher natural resource productivity that

would have led to higher human population growth' There are two ways to view the

spread of agriculture in the Oceanic region; the agriculturalists spread through their own

demographic impetus, in most cases intermarrying, but mostly dominating the

indigenous hunter-gatherers; or eady agriculture was the result of enterprising adoptions

by pre-existing foraging people. Debate continues, therefore agriculture alone does not

appear to provide a sufficient positive link between the ChineselTaiwanese expansion

and the spread of Austronesian-speaking people'

Maritime foraging and boat skills (b) are motivations that appear to have been important

throughout island Southeast Asia, and Polynesia, so an origin for the voyaging Neolithic

is very hard to pinpoint. The possible social reasons (c) as motivation for colonisation

journeys were outlined briefly in section 1.3.1, but the desire to be a high ranking chief

and to rule one'S own land could be recognised as a strong feature of any culture'

Therefore, overall, agriculture currently provides weak evidence for the Taiwanese

origin, as the technology could equally plausibly have arisen within island Southeast

Asia or Melanesia'
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4.6.3.2 Lapita Culture

According to Bellwood (1997) and other archaeologists (e.g. Kirch, 1997) Lapita sites

within the Bismarck Archipelago and Solomon Islands are correlated with the spread of

the Austronesian language (see Section 1.4.1). The archaeologically well documented

spread of Lapita culture, throughout Near Oceania and into Remote Oceania provide the

basis for tracking the chronology and rate of population spread (see Figure 1.5).

However, Oppenheimer and Richards (2001a) state that archaeology can reconstruct

material culture to date it. but the absence of written text or skeletal remains means less

success in identifying the origins of the ntanufacturers. Therefore, they 'decouple' the

spread of Lapita culture, from the spread of Austronesian languages and the

colonisation of Polynesia.

Although agreeing that the Austronesian languages and Lapita culture are linked,

Patrick Kirch has some problems with the archaeological record in Taiwan stating:

"I don't think there's any question tltat the Austronesian expansion comes out of

island Southeast Asia", "The danger is getting too specific about Taiwan when

we don't know enough archaeologically about the coastal China area, Taiwan

or the Philippines" (Gibbons, 2001).

Therefore, although Lapita culture is a reliable marker within Melanesia and Western

Polynesia, links before and after these regions are more contentious and many sites

require further excavation.
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4.6.4 Linguistics

Large language families (e.g. Austronesian, lndo-European, Afro-Asiatic, Bantu, Sino-

Tibetan, Uto-Aztecan) owe their very existences to the geographical expansions of

speakers of proto-languages within these families, consequent initially upon the regional

beginnings of agriculture with its stimulus to rapid demographic growth (Bellwood,

l99g). Bellwood further concludes that major language families on this scale did not

spread by simple cultural contact alone, but that population movement would have been

required.

Blust concludes that Malayo-Polynesian languages all descend from the same ancestof'

a proto-Austronesian language spoken "in or near Taiwan" (Gibbons, 2001: see Figure

4.4, Model I). However, Oppenheimer and Richards (2001a) disagree, suggesting that

the linguistic phenomenon of 'levelling' may have occurred' Levelling refers to the

phenomenon whereby the expansion of one or several closely related languages erases

the previously existing diversity (see Figure 4.4, Model tr)' Therefore, if Taiwan had

simply been an Austronesian backwater (Meacham, 1985), earlier levels of diversity

may well have survived. Deeper diversity would have persisted more as a result of

isolation than of greater antiquity; whilst in island Southeast Asia the language groups

may have been levelled as a result of contact and the demographic and cultural

expansions of Neolithic peoples (oppenheimer and Richards, 2001). Model I requires

the extinction of one proto-Austronesian subgroup in Taiwan, whereas model II requires

the extinction of an unspecified number of proto-Austronesian languages outside of

Taiwan. Which scenario is most likely? In addition to the extinction of the proto-

Malayo-polynesian sub-group in Taiwan, Model I also requires the extinction of the

languages that were spoken originally by the ancient populations that entered Near
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Oceania during Phase One of Pacific colonisation. Cunently most languages in Near

Oceania are Austronesian, implying a complete linguistic sweep, usually explained by

the demographic advantage of the migrant population. Alternatively Model II softens

the sweep, by infening that the populations in these regions already spoke related

languages turning complete replacement into an emergence of a dominant sub-type. It

is unknown how many proto-Austronesian language subtypes were present in the Near

Oceanic region, but they must all have become extinct when the Malyo-Polynesian

language became dominant (except in Taiwan).

4.6.5 Y Chromosome markers

Polynesian men have exceptionally low Y chromosome haplotype diversity, indicating a

small number of male founders (Capelli et al., 200I, Kayser et a1., 2000), in agreement

with bottlenecks inferred from using mtDNA and other genetic evidence. However, in

contrast to the mtDNA studies, there is strong evidence for a substantial input of

Melanesian Y chromosomes (Kayser et al., 2000) and in some cases extensive European

admixture (Hurles et al., 1998) in Polynesian populations. Interpretations of Y

chromosome data seem to vary depending on which markers are chosen for study, with

some studies supporting, and others rejecting possible Taiwanese origins.

First, a study by Su et al. (2000) using biallelic markers, found very few Taiwanese

haplotypes in Micronesia and Polynesia, and a complete absence of a Melanesia-

specific haplotype among Polynesians. Therefore, this study concluded that Southeast

Asia provided the genetic source for two independent migrations: one toward Taiwan

and the other toward Polynesia through island Southeast Asia. It also concluded that
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Melanesian Y chromosomal contribution to the Polynesian expansion was very low or

negligible!

A later study by Kayser et at. (2000) using single nucleotide polymorphisms (SNPs) and

short tandem repeat (sTR) loci, found that all Polynesians belonged to just three Y

chromosome haplotypes, of which the major type (82Vo) was restricted to eastern

Indonesia and Melanesia, where it likely arose. The other two Polynesian Y haplotypes

were widespread in Asia, but are also found in Melanesia, thereby not providing a

diagnostic feature for the influence of Asian populations on Polynesia' Additionally,

this paper claims to introduce the'slow-boat model', although Oppenheimer and

Richards are more generally credited with being the first to propose this type of rnodel

(Gibbons,2001).

A more recent study by capelli et al. (2001) found 2 major haplogroups (c and L),

which together account for over 95Vo of the Y chromosome diversity in Polynesian

populations. Haplogroup C chromosomes are probably indigenous to Southeast Asia

and Melanesia as this is where the highest diversity occurs. Back migration may explain

the small frequency of Haplogroup C in Taiwan (ZVo) and Southern China (4Vo), as

presumably it did not originate in these areas. Polynesians are most strongly associated

with Melanesian haplogroup C clusters, indicating that most (-64Vo) Polynesian Y

chromosomes are derived from Melanesian populations. This evidence supports

Terrell's Melanesian theory, at least regarding male input' Conversely, the frequency

and diversity of haplotype L is highest in one of the Taiwanese aboriginal populations

(Ami), where it probably arose. Therefore, Haplogroup L links most of the other

polynesian y chromos omes (32Vo) with southern China and Taiwan, supporting at least

partially Bellwood's Express Train theory. However, despite admitting that there is a
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clear increase of southern Chinese and Taiwanese L haplogroups in Polynesia relative to

Melanesia, Capelli et al. (2001) dismiss this link stating thal "the extensive genetic drift

in polynesia makes it dfficult to draw any strong inferences based on this difference".

A study focusing specifically on the New Zealand Maori population (Underhill et al.,

2001), using Y chromosome binary marker analysis, found that approximately 40Vo of

the samples had haplotypes of unequivocal European origin. Another -40Vo of samples

had single binary haplotypes that are also observed in Indonesia and New Guinea,

indicative of common indigenous Melanesian ancestry. The remaining haplotypes had

either typical East Asian signatures or altemative compositions consistent with their

affinity to Melanesia or New Guinea. Therefore this study does not provide any direct

Iinks with Taiwan and consequently does not Support the 'Express Train' scenario for

male lineages.

The most recent study by Hurles et al. (2002) does not support the 'Express Train'

theory either and instead suggests:

,omost Micronesian and Polynesian Y chromosonxes appear to originate from

different source populations within Melanesia and Eastern Indonesia".

This evidence is based on MSYI, binary markers and microsatellites.

Overall the Y chromosome evidence appears to vary depending on what markers are

used for analysis. Although most studies agree on some Melanesian input into

polynesian populations, disagreements centre on the relative contributions of

Melanesian versus Southeast Asian populations. Additionally, there is disagreement

over whether Taiwan was involved in the Polynesia expansion.
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4.6.6 ADH andALDH data

A study on Alcohol and Aldehyde Dehydrogenase metabolism (Chambers et al., 2002)

supports a link between Polynesians (including Maori) and Taiwanese hill tribes. The

frequency of ALDH 2*2 tn Polynesians was found to be 0.00, in contrast with the high

fiequency (0.24) commonly reported for Orientals. However, the frequency of ALDH

2*2 was found to be particularly low in the Taiwanese aborigine tribes specifically, Ami

(0.02) and Paiwan (0.05), suggesting that Taiwan may have been an early staging post

during migration in line with the ideas discussed by Diamond (1988)'
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5. Summary and Conclusions

5.1- Synopsis of Major findings

The major findings of this thesis are summarised below in relation to the research aims

(italicised) from section 1.7:

c To collect a molecular database of at least 50 partial mtDNA sequences Jrom

Mctori and Pacific Nation volunteers'

In this study, approximately 98 partial mitochondrial DNA sequences were obtained

from 85 Maori and Polynesian banked DNA samples using PCR amplification and

automated sequencing, The resulting molecular database consists of 61 Maori and 24

pacific Nation 3' HVI mtDNA sequences, and 7 Maori and 6 Pacific Nation HVII

grtDNA sequences. AdditionallY, each of the 85 DNA samples was typed for the

presence or absence of the 9-bp deletion. The mtDNA sequence and associated 9-bp

deletion status of each sample will be deposited in GenBank' for access by the scientific

community, after this thesis is submitted.
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o To search this database for characteristic elements including the 9-bp deletion

and the PolYnesian CGT motif'

The 9-bp deletion and the Polynesian CGT motif were present at extremely high

frequencies (-87Vo and I007o respectively) in the mtDNA haplotype database compiled

for the cutrent study. This pattern strongly supports the theory of repeated bottlenecks

during the journey across Far Oceania to colonise Aotearoa'

o To use this database to refine the estimates of Murray-Mclntosh et al. (1998) for

the number of Maori womenfounders for New Zealand's Maori population'

After taking into account the number of haplotypes found AND their frequencies' the

current study suggests that -56 women (between 34 and 120) were necessary to found

the current New Zealand Maori population, wheress the previous study by Munay-

Mclntosh et al (1998) estimated 70 woman (between 50 and 100) were required' Both

studies reject models that support a small number of founders, or accidental settlement

by just a single waka. Instead, the large number of female founders needed to account

for the present Maori diversity, support oral history whereby an unknown number of

waka deliberately made the journey from Eastern Polynesia to Aotearoa (New Zealand)'

The current study is superior to the MM98 study in the following 3 ways:

l. uses larger Ma and EP mtDNA haplotype database (Aw02 new data + all

old data)

2. more accurate collection of data for comparison (3' regions compared across

all studies)

3. computer simulations use more appropriate sigmoid population growth

cufves
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o To evaluate the 'competing' models of Oceanic population expansion' and

attenxpt to consolidate these theories into the Synthetic Total Evidence Theory'

All current oceanic colonisation theories have elements in common that allow them to

be incorporated into the 'synthetic Total Evidence Theory'' The Synthetic Total

Evidence Theory introrluced in this thesis is a first attempt at consolidating 'competing'

theories using interdisciplinary evidence'

5.2 Conclusions

The research presented in this thesis clearly demonstrates the ability of mtDNA to

elucidate the patterns and processes involved in the evolution and migration of

anatomically modern Honto sapiens within the Oceania region' The mtDNA HVI and

9-bp deletion evidence strongly links rogether the populations resident in the islands of

Remote oceania, and provides evidence for recurring bottlenecks in the settlement

history of this region. The haplotype frequencies identified in this study, were used in

conjunction with frequencies described in previous studies, to estimate the number of

Maori women required to found the curtent Maori population.

ln Near Oceania, the relationships between populations are more difficult to trace due to

admixture between ancient and migrant populations. However, combining

interdisciplinary evidence from archaeology, anthropology and linguistics, has allowed

Some conclusions regarding the settlement of near Oceania to be made (see Synthetic

Total Evidence TheorY, 4'6.1).
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Future Investigations

There is still a considerable amount of future work that could be done using human

molecular population genetics to elucidate the history of oceanic people, and to provide

additional answers to the long-standing questions about human evolution' Possible

future directions will be outlined briefly below:

Mitochondri.al DNA

As mentioned previously, the homopolymeric cytosine tlact may be a good model

substrate for looking at DNA polymerase enor rates' Using a variety of primer

templates incorporating a variety of C-tracts lengths, e.g. CCCCCTCCCC;

ccccccTCCC; CCCCCCCTCC it should be possible to determine when the

sequencing becomes difficult to read, and how these errors occur. once the underlying

mechanisms behind the production of the 'blurred' sequence are understood, a system

for correcting this error could be devised thereby creating a more effective system for

sequencing the entire HVI region.

Increased Sampling

It might even be possible for a Maori scholar to trace the ancestry of the rare mtDNA

haplotypes back to a specific waka. On the molecular side this would be straight

forward, but in reality this endeavour would require a very full knowledge of oral

history and to cope with an enoffnous amount of tea drinking! Additionally (as

mentioned previously), it may be possible to trace these rare haplotypes back to a
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specific island or group of islands, providing evidence for one or possibly more Maori

'homeland(s)'. To achieve this objective, more extensive sampling in the suspected

homeland regions of Tonga-Samoa and Tahiti would need to occur' To this end

collaboratron may bc possible with Professor David Penny at the Massey Institute of

Molecular BioSciences, who is planning further research into the characterisation of

Hepatitis B virus from Melanesian and Polynesian individuals (pers. coITIIn', 2002)'

This project requires the cooperation of the Fiji School of Medicine, and samples may

be shared with the IMS facility at Victoria University'

Additio nal C o mp ut e r s imulatio rt s

There are numerous additional population growth simulations that could be carried out

using the new enhanced dataset. First, more work could be done to ensure that the

underlying population growth model is appropriate for the population expansion of the

prehistoric Maori people. Preliminary work done during this study, suggests that an

exponential growth curve might not be appropriate, and that sigmoid growth curves give

improved founder estimates. However, the most appropriate sigmoid curve to describe

the population growth of the Maori people is currently unknown. The early and middle

sigmoid curves used in the cunent study, both give founding population values that are

within the accepted range, but an intermediate value for where the curve starts

expanding from (parameter b: see Appendix Two) may give the best results' However'

one must be careful in this situation, aS there could be a tendency to change the

underlying model to give results within the 'expected' range thereby manipulating the

results to unjustly favour an 'intermediate' model over the others. Before using an

intermediate model additional research would be required to substantiate the claim that

this model 'best' fits the archaeological data. Second, simulations could be done using
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mutations to account for the extra haplotypes that have been found in the Maori

population. Some additional sirnulations using the mutation rates discussed in Section

4,4 (see New Mutations) are planned, before submitting the results of this thesis to a

peer-reviewed journal. Thirdly, the haplotype frequencies in the New Zealand Maori

population had an unusual skewed distribution. It was found using additional computer

analyses that to produce the 'unequal' haplotype frequencies present in the cuffent

population requires an increase the founding population. Additional simulations could

be done to refine these calculations. Finally, as Y chromosome information becomes

available an identical simulation could be done to estimate the number of Maori male

founders required for the present Maori population'

The 'synthetic Total Bvidence Theory'

It is anticipated that the introduction of this theory in a peer-reviewed journal will

stimulate further discussion and debate. Throughout the years attempts have been made

by noted authors such as Peter Bellwood to make sense and consolidate the wide-

ranging interdisciplinary data that has been collected in the Oceanic region over the past

20-30 years. The 'synthetic Total Evidence Theory' may provide the necessary

framework to allow experts from interdisciplinary fields to cooperate together to refine

aspects of a single model. By focusing only on their area of expertise, collaboration

with other experts in other disciplines would be encouraged, which would remove some

of the opportunities for misinterpreted data and lead to the first truly interdisciplinary

model.
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Appendices

Appendix One: Solutions

0.sM EDTA (pH 8.0)

93.05 g disodium ethylenediaminetetraac etate.2HzO (EDTA, GibcoBRL@) in

400 ml ddHzO.
Stir vigoriously on magnetic stirrer to dissolve'

Adjust pH to 8.0 using NaOH pellets (approximately 10 g)'

Uatce up volume to 500 ml with ddHzO and autoclave before use.

5x Tris Borate (TBE) Buffer

108g of Tris Base.
55g of Boric Acid'
40ml of 0.5 EDTA PH 8.0.

Make up to 2 L with ddHzO.

lx TBE Buffer

1:5 ddHzO dilution of stock solution made up as needed'

50x Tris Acetate (TAE) Buffer

4849 Tris base.

114.2 ml Glacial acetic acid.

200 ml of 0.5 EDTA (PH 8.0).

Make up volume to 2L with ddHzO.

lx TAE Buffer

1:50 ddHzO dilution of stock solution made up as needed'

Red Blood Cell Lysis Solution (10x)

16.049 of NH+CI (1'5M)'
29 of KHCO3

0.4 ml of EDTA (0'5M).
Dissolve in 180 ml of ddHzO.

Make up volume to 200 ml with ddHzO.

Autoclave and store at 4'C'

Dilute solution to 1x before using.
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TBS

169 of NaCl
0.769 of KCI
6.069 Tris-HCl base

Dissolve in 180 ml of ddHzO.

Adjust to pH 7.4 using concentrated HCI

Make up volume to 200 ml with ddH2O'

Autoclave and store at 4"C.

Dilute solution to lx before using.

107o SDS

10 g Sodium DodecYl SulPhate.

100 rnl ddH2O.

Dissolve bY inversion

Sequencing Loading Buffer

200 pl formamide
40 pl blue dextran

Agarose Gel Protocols

17o Agarose Gel

0,6 g SeaKem LE@ agarose (FMC BioProducts)'
60 ml 1X TBE buffer'

Microwave for 1 minute, rnix by swirling. Microwave for another 15 seconds until all

the agarose has dissolved. Add 2 pl ethidium bromide (10 mg/rnl). Allow solution to

cool io approximately 50"C. Pour into taped minigel plate/comb apparatus. Leave to set

for 30 minutes at room temperature. Geliontains 0.6 pgd-r ethidium bromide, used for

DNA visualisation

27o Agarose Gel

1.2 g SeaKem LE@ agarose (FMC BioProducts).

60 ml iX TBE buffer'

Follow directions as shown for IVo Agarose Gel'
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Appendix Two: Population Growth Models used for estimating the

number of Femalelounders for the current Maori population

Model A : Early population expansion

Parameter Value

number of initial haPlotYPes 21

initial frequencies

model

a

b

initial population

final population

generations

final sample

number of runs

J 2,13,I J,I, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

sigmoid (logistic)

5

-0.7

2-1000

50000

30

t07

20000

c
L

s

z

Population growth followed the following curve:

50000

40000

30000

20000

?101316192225
Number of generations

NB: Parameter 'a' controls where in the x axis the curve Starts growing from
parameter 'b' controls the slope of the midpoint of the curve (how steep or shallow

it is)
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Model B: Middle population expansion

Parameter value

number of initial haPlotYPes 21

initial frequencies

model

a

b

initial population

final population

generations

final sample

number of runs

7 2,r3,1,!,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

sigmoid (logistic)

10

-0.7

2-1000

50000

30

r07

20000

?1013'|619?22528
Number of generations

Population growth followed the following curve:

.9)

r

z

50000

40000

30000

20000
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Model C: Late PoPulation expansion

Parameter value

number of initial haPlotYPes 21

initial frequencies

model

a

b

initial population

final population

generations

final sample

number of runs

'7 2,13,1,1,!, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, I

sigmoid (logistic)

15

-0.1

2-1000

50000

30

rc]
20000

Population growth followed the following curve:

?101316192225
Number of generations
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Model D: Erponential population erpension

s

m

?6

g6@
a

trm
o
b.otr
c)3mg
frr

2m

l@

0

6m

rre

{@

t@

2m

r@

o

u-
G

'5
Ec
c
b3
E

z

f4?loll16r9X2?Jfr

-t'||ttt'a
-2rl|.t,t.
-f 

xr|lrt
-ilhrF
-3lhlrtt 

l

-?l|rtF
-al{d.g?..tHffi..

----lllbL$.r

-t2tQ|{F
-ttrdrQt.

-ttthrtri--ta||tttt t

-trtr'|.trs

-tllur

lO2O&rmtDaS?SUm

Founding poPulation size
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Appendix Three: cornplete g-BP/HVI (16 024-16 400) haplotype

clescription for each samPle

NB Iclentifying tr.ansitiols are inclicatecl in bolcl. This iclentif ies the l'are haplotyPes,

l'ouncl ori Table 3.l.

l. 273- No 9p Deletion, caucasian (Not on slrown on Table 3. I )

Control for 9-bP cleletion
16 210 C--*T 16304 T+C

2, 418- Deletion, Maori (Ht #AW I on Table 3' t)
I 6 I 89 T---C 16 211 T--C | 6 241 A-'G 16 26l C-*T
Tract =l2c's, confilnrecl by L strancl lrt, therel'ore l6 182 A+C l6 183 A+C

3. 420- No 9bp Deletion, European Haplotype H, Maoli (Flt #AW l4 on Tirl'rle 3.1)

l6 147 C---T 16304 T---C No Tract

4. 421- No 9bp Deletion, European l-laplotype T, Maori (Ht #AW l5 on Table 3' I )

16 292 C-*T 16 294 C=-T 16 126 G---C No Tract

5. 422- Deletion, Maori 100%' (Ht #AW I on Table 3' l )

16 189 T--C 16 217 T---C 16 241 A_+G 16 261 C---T
Tlact =l2C's (est) so 16 182 A---C l6 183 A---C

6. 426- Deleticrn, Maori l00o/o (Ht #AW I on Table 3' I )

l6 189 T--'C 16 217 T-'C 16 241 A---G 16 261 C---T

Tract =l2C's. Conl'ir-nlecl by L strancl lrt, therefot'e l6 182 A--+C l6 183 A--C

7 . 427 - Deletictn, Maot'i (Ht #AW I on Table 3. I )

l6 189 T--'C 16 217 T---C 16 217 A---'G 16 261 C-'T
Tr[ct =l2C's, Confir.nrecl by L s[r'ancl hl, theretore l6 182 A--+C I6 183 A--'C

8. 429- Deletion, Maori (Ht #AW I on Table 3. I )

I (r 189 T---C l(t 211 T---C 16 247 A---G 16 261 C--'T
Tract =l2C's (est) so l6 182 A--*C l6 183 A-'C

9. 432- Deletion. Maot'i (Ht #AW I on Table 3.1 )

l6 189 T---C l62l1T-'C 16247 A--G 16261C--*T
Tlact =l2C's, Confilmecl [ry L strancl lrt, therefore l6 182 A---C I6 183 A---C

10. 433- Deletiorr, Maori (Ht #AWl on Table 3.1)

16 189 T--'C 16 217 T-'C 16 ?41 A--G 16 261 C--'T
Tract =l2C's (est) so 16 182 A--C l6 183 A---+C

I l. 436- Deletion, Maon l00% (Ht #AW 1 on Table 3.1)

16 189 T---C 16 217 T---C 16 247 A---G 16 261 C--T
Tlact =llC's (est) so l6 182 A---C 16 183 A--C
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12.441- Deletion, Maori (Ht #AW4 on Table 3' l)
16l89T--,C162117A--+G162l1T--C16247A---G16261C--'T
Tract =l2C's (est) so I6 182 A-*C I 6 I 83 A---C

13.449- Deletiori. Maori (Ht #AWl on Table 3'l)
l6 189 T---C l6 217 T---C l6 247 A--G 16 261 C---T

Tract =12C's (est) so l6 182 A-+C l6 183 A---C

14. 45 t- Deletion, Maori (FIt #AWl on Table 3.1)

16 I 89 T---C | 6 211 T---rC 16 241 A--G 16 761 C-'T
Tlact =l2C's (est) so 16 I82 A---C l6 183 A---C

15.452- Deletion, Maoli (Ht #AW2 on Table 3.1)

l6 I 89 T---+C 16 ?17 T--*C 76 247 sanre as ref seq 16 261 C-'T
Tract =l2C's (est) so 16 182 A.-C l6 183 A-'C

16. 4-53- Deletion, Maoli (Ht #AW I on Table 3.1 )

l6 189 T--+C 16 21'7 T---*C 16 217 A--tG 16 261 C---T

Tract =l2C's (est) so 16 182 A--C l6 183 A---C

17 . 454- Deletion. Maoli (Ht #AW I on Table 3. I )

16 189 T---C 16 217 T--*C 16 241 A----'G 16 261 C---T

Tract =l2C's (est) so 16 182 A--C l6 183 A--C

18. 455- ELu-opean Haplotype U, Maori (Ht #AW l6 on Table 3. I )

16 256 C-'T 16 270 C--T

19. 4-56- Deletion, Maori 100%, (Ht #AW I on Talrle 3.1)

16 l89T---C 16217 T-*C 162-41A---G 16261C---T
Tract =l2C's (est) so l6 182 A--C l6 183 A---C

20. 457 - Deletion. Maori l007o (Ht #AW I on Table 3. I )

16 189 T---C 16 Zl7 T---+C 16 247 A--*G 16 261 C--*T

Tlitct =l2C's (est) so 16 t82 A---C 16 183 A---C

21 . 4-58- No 9bp Deletron, Ertropeln Haplotype H. Maoli/Etrro 50% (Ht #AW l7 on

Talrle 3.1) I 6 162 A---G 16 209 T---C

22. 459- DeleLion, Maori/ELn'o 50o/r, (HL #AWl on Table 3' l )

l6 189 T=-C 16 217 T---C 16 247 A-*C 16 261 C-+T

Tract =l2C's (est) so 16 182 A--C l6 183 A---C

23. 460- Deletion, Mlori,50%, (Ht #AWl on Table 3. I )

l6 189 T---,C 16 217 T-'C 16 247 A-*G 16 261 C---T

Tract=l2C's,ConfitnreclbyLstranclht,tlret'efot'e l6 l82A--'C l6 l83A----C

24. 462-Deletion, Maori l00%o (Ht #AWl on Table 3. I )

16 I 89 T-'C 16 217 T---+C 16 24'7 A--G 16 261 C--T
Tract =l2C's (est) so l6 182 A---*C I6 183 A-'C
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25. 464- Deletion. Maoli l00To (Ht #AW I on Table 3' I )

l6 189 T-'C 16 217 T-'C 16 247 A--G 16 261C-'T
Tract =l2C's (est) so l6 182 A--C l6 183 A---C

26. 466- Deletion, Maori l00Vo (Ht #AWl on Table 3' 1)

16 189 T--'C 16 211 T--C 16 247 A---G 16 261 C--'T
Trirct =l2C's (est) so 16 182 A---C l6 183 A---C

21 . 468- Deletion. Maori l00Vo (Ht #AW5 on Table 3' I )

16 189 T---C 16 2l'7 T---C 16 742 C---T 16 241 A---G

16 261C----nT Tract :l2C's, Confirurecl by L strand lrt, therefore so l6 182

A--'C 16 I 83 A---C

28.469- Dcletion. Maori 100%, (Ht #AW I on Table 3' l )

l6 189 T--C 16 211 T--'C 16 741 A--G 16 261 C---T

Tt'itct =l2C's (est) so 16 182 A--C l6 183 A---C

29. 470- Deletron, Maori 100%' (Ht #AW I on Table 3' I )

l6 189 T---C 16 211 T---C 16 241 A--'G 16 261 C--'T
Tract =l2C's (est) so l6 t82 A---C l6 183 A---C

30.411- No 9bp Deletion, ELu'opean Haplotype H, Maoli/ELu'o 507o (Ht

Table 3.1) Sanre rs t'el'el'ence sequence

3l.472- No 9bp Deletion, Europeatt Haplotype U, Maoli/Eurro -5070 (FIl

Table 3.1) I 6 224 T-+C l6 3l I T---C

32.474- Deletion. Maori 100% (Ht #AWl on Table 3' l)
l6 189 T--C 16 7ll T--C 16 241 A=-G 16 261 C--T
Tt'itct =l2C's (est) so l6 182 A--'C l6 183 A---C

#AW l8 on

#AW20 on

33. 476- Deletrolt, Maori
16 189 T---C 16217
Trirct =l2C's (est) so

411- Deletion. Maotj
l6 189 T-*C 16 211

Tr;.rct = I 2C's (est) stt

1007o GIt #AW6 on Table 3.1)

T---C l6 247 A---G 16 261 C---T
16 182 A--'C 16 183 A--'C 16291C--T

(Ht #AW I on Table 3.1 )

T---C 16 247 A---G 16 261 C--'T
16 182 A---C 16 183 A-'C

34.

3-s

36.

479- Deletion, Maot'i l00To (FIt #AWl on Table 3.1 )

l6 189 T---C 16 217 T---C l6 247 A---G l6 261 C---T
Tlact =l2C's (est) so 16 182 A--+C l6 183 A--'C
480- Deletion, Maori 100%, (Ht #AWl on Table 3.1)

16 189 T--C 16 711 T--C 16 247 A--'G 16 761 C---T
Tract =l2C's (est) so l6 182 A---C 16 183 A--C

37.484- Deletion, Maorr l00%r, (Ht #AW7 on Table 3.1)

16 271'l'---C l6 189 T---C l6 211 T---C 16 247 A---G l6 261 C--T
Tract =l2C's (est) so l6 182 A---C l6 183 A---C

t-50



38. 488- No 9bp Deletion, European Haplotype U, Maori (Ht #AW l9 on Ttble 3' l )

l6 356 T-'C

39. 500- Deletiorr, Maori 1007o (Ht #AW I on Table 3' I )

16 189 T.-C 16 217 T---C 16 247 A--*G 16 261 C---T

TLact =l2C's (est) so 16 182 A---C l6 183 A---C

40. 501- Deletion, Maori l00%o (Ht #AW2 on Table 3' l )

16 189 T--+C | 6 217 T---C 16 247 sanre as ref seq 16 261 C---T

Tract =l2C's (est) so 16 182 A--'C l6 183 A-*C

4l . 502- Deletion, Maori 100% (Ht #AW I on Table 3' l )

l6 189 T-'C 16 211 T---C 16 241 A--*G 16 261 C--'T
Tract =l2C's (est) so l6 182 A---C l6 183 A-'C

42. -503- Deletion, Maoli I007o (Ht #AW I on Table 3' l )

16 189 T'--+C 16 211 T-'C 16 247 A--G 16 261 C---T

Tract =l2C's (est) so l6 182 A--C 16 183 A-'C

43. 50-l- Deletion, Maori
l6 189 T---C 16 2l'7
Tract =l2C's (est) so

44. -505- Deletiort, Maoli
l6 189 T-'C 16 211

Tract =l2C's (est) so

1007o (Ht #AW2 on Table 3.1)

T--*C 16 247 same as ref seq 16 261 C----nT

16 182 A--*C 16 183 A--C

1007o (Ht #AW I on Table 3' I )

T--'C 16 241 A---'G 16 261 C-'*T
16 182 A---C 16 I 83 A--C

4-5. 506- Deletion, Maori lo0o/r, (Ht #AW I on Table 3.1)

l6 189 T--*C 16 21'7 T--C 16 241 A--G 16 261 C---T

Tt'itct =l2C's (est) so l6 182 A--C l6 183 A---C

46. 501- Deletion, Maoli 1007o (Ht #AW I on Table 3. I )

16 189 T--C 16 217 T---C 16 241 A---G 16 261 C-'T
Tretct =l2C's (est) so 16 182 A---C l6 183 A--*C

47. 508- Deletion, Maori 75%, (Ht #AW I on Table 3.l)
l6 189 T_.C 16 211 T-'C 16 241 A-'G 16 261 C---T

Tract =l2C's (est) so 16 182 A--*C l6 183 A-*C

509- Deletion. Maot'i 100q,' (Ht #AW2 on Table 3. l)
16 189 T---C l6 217 T--'C 76 247 sanre as ref seq 16 261C---T

Tract =l2C's (est) so 16 182 A---C 16 183 A--C

510- Deletion. Maoli 100% (Ht #AW8 on Table 3.1)

16 189 T--*C 16 217 T--*C 16 247 sanre as ref seq 16 261 C---T

Tract =l2C's Conl'irnreclby L strancll.rt. tlrerefot'e l6 182 A--+C 16 183 A=-C

16 051 A--'G

5l I - Deletion. Maori l007o (Ht #AW I on Table 3.1)

l6 189 T--C 16 2l'7 T-+C 16 247 A---G 16 261 C----nT

Tract =l2C's Conl'ilmecl by L striincl ht, therefot'e l6 182 A--*C I 6 I 83 A-'C

46.

49.

-s0.
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5l . 5 t2- Deletion, Maori fi\Vo (Ht #AW3 on Table 3' I )

l6 189 T-*C 16 217 T---C l6 247 A--'G 16 261same as ref seq)

Tlact =l2C's (est) so l6 182 A-+C l6 183 A--C

52.514- Deletion, Maori l007o (Ht#AWl on Table 3'l)
16 189 T---+C 16 217 T--.C 16 247 A-"G 16 261 C--T
Tt'act =l2C's (est) so l6 182 A--'C 16 183 A-'C

53. 516- Deletion, Maori
16 189 T--'C 16 217

Tract =l2C's (est) so

54. 517- Deletion, Maot'i
l6 189 T--'C 16 211

Tlact =l2C's (est) scl

-57. 520- Deletion, Maori
16 189 T---rC 16 217
Tract =l2C's (est) so

58. 52I- Deletion, Maoli
l6 189 T---C 16211
Tract =l2C's (est) so

1007o (Ht #AW I on Table 3' I ;

T--C 16 241 A---C 16 261 C--'T
16 182 A---C 16 183 A---'C

100%, (FIt #AW I on Table 3' l)
T-'C 16 24T A--*G l6 261 C--*T
16 182 A-'C 16 i83 A_,C

1007o (Ht #AW I on Table 3. l)
T---C l6 247 A--'G l6 261 C=-T
16 182 A---C 16 183 A-'C

lO0%, (Ht #AWl on Table 3.l)
T--.+C 16 241 A-'G l6 261 C---T
16 182 A---C l6 183 A--'C

55. 518- Deletion, Maori l5%, (H:#AWl on Table 3' l)
16 189 T--C 16 217 T---'C 16 247 A--G 16 261 C--T
Tract =l2C's (est) so l6 182 A----C l6 183 A--C

-56.519- Deletion, Maoli I00Vo (HI#AWl on Table 3.1)

16 189 T--'C 16 211 T---C 16 241 A-'G 16 261 C---T

Tract =l2C's (est) so 16 182 A---C l6 183 A--C

-s9. 523- Deletiort. Maori 1007o (Ht #AW I on Table 3. I )

16 189 T--'C 16 717 T--+C t6 247 A-'C 16 261 C---T
Trrct =l2C's (est) so l6 182 A---C l6 183 A---rC

60. 524- Deletion, Maori 100%, (ljt #AW I on Table 3.1)

16 189 T---C 16 217 T---C 16 247 A--G 16 261 C---T
Tract =l2C's (est) so l6 182 A--rC l6 183 A--.C

61. 525- Deletion. Maori l00o/o (Ht#AWl ori Table 3'l)
l6 189 T-'C 16 217 T---C 16 247 A-'G 16 261 C-*T
Tract =l2C's (est) so l6 182 A--'C 16 183 A-'C

62.534- Deletion, Maorr 100%, (Ht #AWl on Table 3.1)

t6 189 T-tC 16 211 T---+C 16 247 A_*G 16 261 C--T
Tt'act =l2C's (est) so l6 182 A---C l6 183 A-'C

(r3. 600- European Haplotype H, Maor"i/Hawaiian/Erlro 50%, (Ht #AW2l on Table

3.1) 16 231 T--'C l6 304T---C l6 311 T--'C
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64, 601- Deletion, Polynesian Fiiian/ELp'o 50%, (Ht #AW t 3 on Table 3' I )

16 189 T-'C l6 ?i1 T--C 16 247 same as ref seq 16 267 same as ref seq

Tract =lIC's, confirnrecl by L strancl? so 16 782 sanle as ref seq l6 I 83

A-'C

65.602- Delet,ion, Polyrresian Fiiian 100%, (Ht #AW9 on Table 3.1)

16 189 T---C 16 217 T---C 16 247 A---*G 16 261 C--'T
Tlact=12C's (est) so l6 182 A---C I6 I83 A--'C 16360 C-*T

66. 603- Deletiott, Polynesian (Ht #AW2 on Table 3' l )

l6 189 T-+C 16 217 T-'C 16 247 sanle as ref seq 16 261 C--T
Tract =l2C's (est) so l6 182 A---C l6 183 A-'C

67 . 604- No Deletion, Eut'opean l-Ialllotype U, Polynesiitn Rat'otonga (Ht #AW l6 on

Table 3,l) I 6 256 C--T l6 270 C---T

68. 605- Deletion, Polylesian Cool< lslan cl 50Vo (Ht #AW I on Table 3' I )

I 6 I 89 T---C | 6 217 T---C | 6 24'/ A-,G 16 261 C---T

Tt'itct =l2C's (est) so l6 182 A---C l6 183 A---C

69.606- Deleric-rn, Polynesian Samoan (Ht#AWl on Talrle 3.1)

16 189 T-'C 16 217 T---C 16 241 A--+G 16 261 C---T
Tract =l2C's, Conl'it'mecl by L stl'ancl ht, tlrerefole l6 182 A---C 16 183 A---C

10.607- Delel"ron. Polynesian Sanroan (Ht #AW2 on Table 3' l)
l6 189 T---C l6 217 T-'C 16 247 same as ref set; 16 261 C--'T
Trtct =l2C's (est) so 16 182 A'--C l6 183 A---C

71. 608- Deletion, Polynesian W. Santoan (Ht #AWl on Table 3.1)

l6 189 T--C 16 217 T---+C 16 247 A---G 16 261 C---T
Tract =l2C's (est) so 16 182 A-'C 16 183 A-'C

12.609- Deletion, Polynesian w. Samoan (Ht #AWl on Table 3.1)

l6 189 T---C l6 211 T---C 16 241 A--G 16 261 C---T

Tract =l2C's, Conf ilmecl by L strancl ltt, thet'elbt'e I6 182 A--*C l6 183 A---C

73. 610- Deletion, Polynesian Tongii (Ht #AW I on Table 3' I )

16 189 T---C 16 217 T---C 16 247 A--'G 16 Z(tl C--'T
Tract =l2C's, Confilntecl by L strancl ht, therefot'e l6 182 A--C l6 183 A---C

14.61l- Deletion, Polynesian Tonqa (Ht #AW12 on Table 3.1)

l6 189 T--*C 16 217 T--*C 16 247 A--'G 16 261 C--*T 16 311 '[---C

Tract =l2C's, Confilnlecl try L strancl lrt, tlret'efore l6 182 A+C l6 183 A+C

15. 612- Deletion, Polynesian Rarotongi/Scot/Gerrrr/EngiMaori 50Vo (Ht #AW I on

Table 3.1) 16 189 T---C 16 211 T---C 16 241 A-'-G 16 261 C-'T
Tract =l2C's (est) so t6 182 A--'C l6 183 A---C

76.613- Deletion, Polynesian NiLre (Ht #AWl0 on Table 3'l)
16 189 T-tC 16 2l1T---C 16 241 A--G 16 261 C---T 16 181 A--*G

Tract =l2C's, Conf it'nlecl by L strancl lrt, thelefot'e l6 182 A.*C 16 183 A-'C
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17 . 614- Deletion, Polynesian Sarnoan/Gernr 507o (Ht #AW I on Table 3' l)

l6 I 89 T---C 16 211 T---C 16 247 A-'G 16 261 C-'T
Tract =l2C's (est) so l6 182 A--'C l6 183 A--C

78. 615- Deletion, Polynesian (Ht #AW I on Table 3' I)
16 189 T--C 16 217 T-"C 16 741 A--'G 16 261 C---T

Tt'itct =l2C's (est) so l6 182 A-'C 16 183 A--nC

19. 616- Deletion. Polynesian Tol<elau (Ht #AW9 on Table 3' I )

l6 189 T---C 16 217 T--C 16 247 A--G 16 261 C-'T
Tract =l2C's (est) so l6 182 A---C l6 I 83 A-'C 16 360 C'-'T

80. 617- Deletion, Polynesian cook/ Maoli/Scol50%, (Ht #AWl on Table 3'l)
16 189 T---'C l(t 717 T-*C 16 24'7 A---G 16 261 C-*T
Tract = l2C's (est) so 16 I 82 A--'C l6 183 A---C

8l . 618- Deletrol, Polylesian Cool< Islalcl (Ht #AW2 on Tlble 3.1)

l6 189 T--,C 16 2l'/ T---'C 16 247 sanre as ref secl 16 261 C-'T
Tritct =l2C's (est) so l6 182 A-'C l6 183 A--'C

82.621- Deletion, Polynesian Tongl/Nuie 507o (Ht #AW I on Table 3.1)

16 189 T--C 16 211 T--'C 16 241 A--'G 16 261 C--*T

Tlact =l2C's (est) so l6 182 A--+C l6 183 A--C

83.622- Deletion, Polynesian (FIt #AWl on Table 3.1)

16 189 T--'C 16 217 T--+C 16 247 A--G 16 261 C---T

Tlitct = I 2C's (esL) so l6 I 82 A---C I 6 I 83 A--C

84. 623- Deletion, Polynesian (Ht #AW I on Table 3.1)

16 189 T---'C 16 217 T-'C 16 247 A---G 16 261 C---T

Tract =l2C's (est) so l6 182 A---C I6 183 A---C

85. (t24- Deletion, Polynesian (Ht #AW I I on Table 3.1)

l6 189 T-*C 16 211 T--'C 16 234 C--'T 16 247 A--C l6 261 C--*T

Trirct =l2C's (est) so 16 182 A--*C l6 183 A---C

86. 625- Deletion, Polynesian (Ht #AW I on Table 3' l )

l6 189 T--+C 16 2ll T---C 16 241 A--G 16 261 C---T
Tlact =l2C's, Conf irntecl by L strancl ht, thet'efore l6 182 A--'C l6 183 A---C

87. A- Autlror, Maori on fathers side, EuroPean on Mothers side, Euro;rean

Haplotype U (Not on shown on Table 3'l)
16051 G-'A 160g2T--C 16129 G-'C l6l89T-'C 16362 A-'G

88. N- Philippine santple, usecl as a control make sure DNA extraction protocol

was working (Not on shown on Table 3.1)

16 223 C---T l6 295 C--'T
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HVII (16 024-16 400) haplotype for selected samples

l. 44g - Maori, 00 073 A--*G, 00 146 T---G, 00 263 A---G

2. 45,5 - Matotj, Euro U, 00 073 A--G, 00 146 sanre as ref seq' 00 263 A--'G

3. 458 - Maori. Euro H, 00 073 A---G. 00 146 same as ref seq, 00 263 A--G

4. 460 - Maoli ,507n, 00 073 A--'G, 00 146 T--'G, 00 263 A--G

5. 166 - Maori l00o/r,,00 073 A---+G, 00 146 T--G, 00 263 A---G

(t. 472 - Maoli/Euro 50%, Euro U, 00 073 A--G' 00 146 same as ref secl' 00

263 A---+G,00279 T-'C

7. -507 - Maori 100%,, cG'f Motif, 00 073 A_*G, 00 146 sanle as ref seq,00

2(r3 A--+G

8. 612 - Polynesian Ralotonga/Scot/GenniEnglish/Maol'i -507n, 00 073 A---G, 00

l.16 T--*G. 00 263 A-'G

g. 614 - Polynesian sanroan/Gernr -50%,,00 073 A--'C, 00 146 T--'G, 00 263

A---G

10. 6 I 5 - Polynesitn' 00 073 A---G' 00 146 T--G, 00 263 A-*G

I I . (r l7 - Polyne sian Coolt/Maori/Scot -507o. 00 073 A---'G, 00 146 T--*G. 00 263

A---+C

12.618 - Polynesian cook Islancl, 00 073 A---G, 00 t46 T---G, 00 263 A---G

13. 623 - Polynesian' 00 073 A--*G, 00 146 T=-G, 00 263 A---G
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Appenclix Four: Electrophoresis of HVII agarose gel and HVII
Calibration Curve

Lanes
t2

Direction of
Migratiott

-400 bp

A;rpcndix Four: Resr.rlts show 5 prl aliqLrots ol'representative HVII PCR proclucts

anrpliiiecl tlom 6 sanlples ancl visualised ott it 27o SeaKemc'itgarose gel'

Lane: l. 123 b1t DNA standarcl ladder'

2. Negative reltgent control (no tenrplitte DNA)

3-8. Samples # 449, 4-55' 4-58, 4(t0.466,412

+

t-56



HVII Calibration Curve

N
a
b!

2.9

2..7

2.-s

2.3

2.r

1.9

l7

1.5

I

r 
+ Calibrattc.rrt Culve I

Migration Distances (mm)

Appenclix Four: Calibration curve ol'log (size, base pairs) vcl'sLls mig|ilLion clistilnce

(riipi) oi'1he l'ragrnents that ntal<e Lrp the 123 bp DNA stanclard laclcler, sl-towtt alrove'

The r'igr.ation clistatrce ol' pCR ptoclLrcts wils meilsulecl ancl tlteit' cor|csponcling sizes

estimatecl ll.on caliblatlol cLlrves suclr as this one. Flom tlre mr-9t'ation clistance of 28

1111 1 lr.ag1nelt size ol'-400 bp was estimatecl. This size is approxin-)ate the expectecl

size. Tlre calibtation cul've was constt'uctecl using Microsoft Excel 2000'
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Appenclix Six: Total nurnber of Haplotypes founcl in combinecl MM98

and AWOZ clatacombining haplotypes that differ before position 16

189.

Group I MM (ref) AW (ref)

Ma EP Ma EP

CDI 41 (t) 69 (l 4-s (r,l0) 3 (l)
CD2 -s (l-s) l2 (l-s) ,,|- (2) | (2)

CD3 l (11) (lr) r(3)
CD7 ( l2) I (6)

CD8 (13)

CDI2 ( le)
CD 17 l (5)

CDI8 I (4)

CDI9 I (7)

CD20 I (e)

Group [I
CD22 1(23)
CD22tt 3 (24)

CD23a l (2-5) t6 (25)

Group III
CD27 2 (37)

CD28 I (38)

Totals (people)
(lraplotypes)

54
/-

r08
ll

.,7

8

-5

3

The 6aplotype numbering on this trble l-ollows lhat usecl in Appenclix Five. This table

is compilecl treating the clata in tlre sante nlilnner as enrployecl in the str"rcly by Mutl'ay-

Mclntosh et al 1998. In the MM98 colurnn there are I I EP haplotypes as was foirnd in

Table One ol'their stucly. The main lxoblem with tlre MMg8 study is Llte lailtrre to use

the Grourp III EP seqLtences on their table, as this r-rnclel'estinlales the nunlbel' o1'

haplotypes itr the EP popLrlation. Also, the MM tleatmettt o1'data inclr'rdes seqLlences

that hlve clil'l'erences in tlreir seqLleltce in tlre -5' HVI legion (before nucleotide position

l6 189) into t.he same haplotype categoly. Insleacl of itcltnowledging that sonte of'tltese

seqLtences u'e cltl'lelent they were lunrpecl together in MM98 as the sequences wel'e

ictentical ll'or-n l6 lSgonwtrcls. Thrsconcelngre:ttel'1'ortheWPanclMNclata.

r6r



Appentlices

Appendix Seven: Discovery curves for the Maori and Eastern
Polynesian data

Comblned Maorl and Eastem Polynealan Dlecovery Gurucs

*-Disclvery Curve (EP)

*Rare Haplotypes (EP)

r Discovery Curve (Ma)

-+(- Rare tlaplotypee (Ma)

20 '10 60 80 100 120

Database size (Number of sampler bstod)

Appendix Eight: Comparison of total data (blue) with 'unequal'
distribution of haplotypes seen in the modern data (pink).

NB The peaks stay in the same place, but the number of founders required increases
slightly.
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Appendix Nine: Maps to illustrate the 'synthetic Total Evidence

Theory'
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