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Abstract

Lithospheric deformation is investigated within the Southern Alps oblique collision

zone of the Australian and Pacific plate boundary. Seismological methods and grav-

ity modelling are used to estimate seismic anisotropy, wave-speed anomalies and mass

anomalies in the uppermost mantle. While seismic anisotropy is generally interpreted

to result from Cenozoic mantle shear, wave-speed and mass anomalies can be explained

solely by thermal contraction of mantle rocks that results from the downward deflection

of isotherms during mantle shortening.

Along the eastern Southern Alps foothills and ∼15◦ clockwise from their axis, earth-

quake Pn waves propagate at 8.54 ± 0.20 km/s. This high wave speed is attributed to

a high average Pn speed (8.3 ± 0.3 km/s) and Pn anisotropy (7–13 %) in the mantle lid

beneath central South Island. Two-dimensional ray-tracing suggests that the crustal

thickness is 48 ± 4 km beneath the Southern Alps’ southern extent near Wanaka (west-

ern Otago). Such a thickness represents an 18 ± 4 km thick crustal root that is thicker

than necessary to isostatically sustain the ∼1000 m topographic load of this region.

A mass excess is proposed in the mantle below the region of over-thickened crust to

compensate for the crustal root mass deficit. Assuming that the crustal root represents

a –300 kg/m3 density contrast with the mantle lid, this mantle mass excess requires

a minimum density contrast of 35 ± 5 kg/m3, 110 ± 20 km width and 70 ± 20 km

thickness that will impart a downward pull on the overlying crust.
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Teleseismic P, S and SKS receiver functions are calculated for Geonet stations RPZ,

JCZ, WKZ and EAZ. At Canterbury station RPZ, delay times of conversions and their

free-surface multiples imply a low Vp/Vs ratio of 1.60 for the upper crust. At western

Otago stations EAZ and WKZ, delay times suggest crustal thicknesses of 32 ± 3 km

and 39 ± 4 km, respectively, inconsistent with the gravity and other crustal thick-

ness estimates. Therefore, conversions may be interpreted to arise from a lower crustal

boundary. This interpretation supposes a low seismic contrast at the Moho and possibly

partial eclogitisation in the lower crust. A mantle discontinuity is interpreted 15–30 km

below the Moho from conversions with delay times of 7–9 s that display a move-out

similar to that of direct conversions. Modelling suggests a rotation of the anisotropy

symmetry axis and/or a minimum 0.3 km/s wave speed increase in association with

the discontinuity.

Beneath the central Southern Alps, teleseismic P arrivals display relative travel-time

advances of 0.3–1.8 s relative to those predicted from the Southern Alps crustal struc-

ture alone. The smallest and largest time advances are for rays arriving at azimuths

perpendicular and sub-parallel to the plate boundary, respectively. The average time

advance is consistent with a 0.5–0.6 km/s wave-speed anomaly within the surrounding

mantle that is a body sub-parallel to the plate boundary, sub-vertical, 100–130 km wide

and centred at about 110 km depth. However, smaller and larger wave-speed anoma-

lies of ∼0.3 km/s and ∼1.1 km/s are necessary to explain the smallest and largest

time advances, respectively. The difference is attributed to a minimum ∼8 % seismic

anisotropy in the shortened mantle.
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Chapter 1

Introduction

At convergent active continental margins, oceanic mantle lithosphere is shortened in

the simple and efficient process of subduction. At continental collision zones, however,

the process of mantle shortening and deformation are less well understood. Mantle

shortening is, however, important because it represents a large and deforming mass

anomaly within the earth.

The isostatic gravity anomaly map of New Zealand (Fig. 1.1) is one illustration

of the action of the mantle lithosphere on the crust within an active plate boundary

zone. Isostatic gravity anomalies indicate departure from the Airy isostatic equilib-

rium (Watts, 2001), where topographic loading is imperfectly balanced by the crustal

thickness variations. Positive isostatic anomalies often represent regions of dynamic

support of the lithosphere, while negative isostatic anomalies may represent zones of

lithospheric downwarping. The Southern Alps oblique collision, for instance, is asso-

ciated with a weak –30 mGal isostatic anomaly of regional dimension (Fig. 1.1). This

negative anomaly indicates that the Southern Alps region is not in Airy isostatic equi-

librium, and is consistent with a thickened mantle lithosphere applying a downward

pull on the overlying crust (Scherwath et al., 2006). The origin of this pull is, however,

uncertain.

1
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Figure 1.1: This map shows the New Zealand isostatic gravity anomaly onshore North

and South Island (Reilly et al., 1977) and the free-air gravity anomaly offshore (Seasat,

1999). Coordinates are in meters of New Zealand Map Grid. The Southern Alps oblique

collision is associated with a weak ∼–30 mGal negative isostatic anomaly.
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This research complements previous studies by addressing the following question:

what is the mode of lithospheric deformation beneath the Southern Alps oblique colli-

sion ?

Regional and teleseismic earthquake data are used as well as gravity anomalies to

quantify properties of the lithosphere beneath the Southern Alps. These properties are:

- seismic wave speeds,

- their variations across and along the plate boundary,

- their variations with azimuth, i.e. seismic anisotropy,

- crustal thicknesses,

- mass anomalies.
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1.1 New Zealand’s tectonic setting

North and South Island of New Zealand are the emergent portions of a much greater

New Zealand microcontinent that is bisected by the Australian-Pacific plate boundary

(Fig. 1.2). West of North and South Island, the submerged continental crust is com-

posed of the Challenger Plateau (Fig. 1.2). East of South Island and from north to

south, the submerged crust is composed by the Hikurangi Plateau, the Chatham Rise

and the Campbell Plateau (Fig. 1.2). These are pieces of continental crust that have

been stretched and subsided below sea-level during Gondwana break-up (e.g. Brad-

shaw, 1989; Deckert et al., 2002; Kamp and Hegarty, 1989). The plate boundary is

divided into three distinct tectonic zones. From north to south, these zones are: (1)

the Hikurangi Trench off-shore east of the North Island, where the Pacific oceanic

plate subducts beneath the Australian plate; (2) the Southern Alps oblique collision,

where continental crusts of the Chatham Rise and Campbell Plateau have been juxta-

posed next to and collide with that of the Challenger Plateau; and (3) the Puysegur

Trench, where young Australian oceanic crust (∼45–30 Ma; Wood et al., 1996) subducts

northeastward and below the southwestern South Island. Thus, the plate boundary is

composed of two subduction zones of opposite polarities with a continental collision

zone in between. The two subduction zones are linked by the Alpine Fault continental

transform (Fig. 1.2; e.g. Kearey and Vine, 1996). This link contrasts to the well-known

San Andreas transform, which links two spreading ridges (Atwater and Stock, 1998a).

1.2 Tectonic history

New Zealand’s origins are traced back to the Early Paleozoic (Cambrian-Ordovician).

Metasedimentary sequences in Western Fiordland show a link with the Lachlan and

the older Delamerian fold belts found in Australia and Antarctica (Gibson and Ireland,
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1996), indicating that New Zealand was once part of Gondwana.

In Late Paleozoic, oblique subduction was occurring along the eastern Gondwana

margin, where seafloor was being accreted (Mortimer, 2003). This paleo-subduction

marks the boundary between two provinces of New Zealand’s basement termed the

Western and Eastern Provinces (Fig. 1.3; Bradshaw, 1993). The Western Province

designates a Paleozoic Gondwana fragment that is separated from the Eastern Province

by the Median Tectonic Zone (MTZ in Fig. 1.3). The Eastern Province, in contrast,

is composed of Late Paleozoic and Mesozoic rocks that accreted along the Gondwana

margin. These rocks are mainly greywackes and schists that were accreted in a deep

water trench adjacent to Gondwana.

It is proposed that subduction and collision stalled as the mid-ocean spreading ridge

reached the subduction trench, which is interpreted as the reason for a major change

in the tectonic regime from compressional to extensional at ca. 105 Ma (Bradshaw,

1989). Continental extension from ca. 100 Ma and sea-floor spreading from 85 Ma

to 55 Ma, i.e. from the late Cretaceous into the early Tertiary (Paleocene), followed

subduction and collision. Sea-floor spreading led to the opening of the Tasman Sea and

the separation of the New Zealand fragment from Gondwana (Hayes and Ringis, 1973;

Weissel and Hayes, 1972). As a consequence, the early Tertiary geological history of

New Zealand is dominated by extensional tectonics and subsidence of the landmass.

Since the Cenozoic at 45 Ma, the Australian-Pacific Euler pole has continuously

migrated southward (King, 2000; Walcott, 1998). Rotation around the Euler pole has

led to ca. 850 ± 100 km dextral shear between the Australian and Pacific plates, 460 km

of which have been accommodated by strike-slip on the Alpine Fault (Molnar et al.,

1999; Sutherland, 1999; Wellman, 1952) at an estimated rate of ∼35 mm/yr (Cande

and Stock, 2004; Walcott, 1998) since its inception. It is thought that the inception
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from Bradshaw (1993)

Figure 1.3: Restored pre-late Cenozoic configuration of the Median Tectonic Zone

(MTZ) between the Western Province and the arc Brook Street terrane (BS) and

forearc Muhuriku terrane (Mu) of the Eastern Province (Bradshaw, 1993). The top

right insert represents the current configuration of the Median Tectonic Zone.

of the Alpine Fault at ∼23 Ma was controlled by an Eocene passive margin that sepa-

rated Paleozoic continental lithosphere of the Challenger Plateau from younger Eocene

oceanic lithosphere (Sutherland et al., 2000).

As the Euler pole passed south of South Island, the Australian-Pacific relative dis-

placement evolved from purely translational to transpressional (e.g. Walcott, 1998).

The convergence rate has progressively increased for the past 20 Myr with a possible

speed up at 6.4 Ma (Walcott, 1998). Plate reconstructions estimate the total amount

of convergence between 75 km (Cande and Stock, 2004) and 115 km (Walcott, 1998).
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Cande and Stock (2004) estimated a 75 km total convergence based on convergence

continuously increasing and a rate of 6.5 ± 1.8 mm/yr over the past 6 Myr, consis-

tent with 9.1 ± 1.5 mm/yr (Beavan et al., 2002) determined from contemporary GPS

velocities. Shortening has been accommodated by crustal thickening in southern to

central South Island, giving rise to the Southern Alps (e.g. Wellman, 1979). In con-

trast, subduction was initiated at the southwestern end of South Island (Lebrun et al.,

2003), where progressive translation juxtaposed Australian oceanic crust with Pacific

continental crust.

In conclusion, convergence in South Island is only recent (in the past 45 Myr) and

has been minor compared to translation. As a result, both collision and subduction are

largely oblique in South Island.

1.3 Modes of lithospheric shortening at collision zones

In continental collision zones, how the crust thickens can be observed from reverse

faulting and mountain growth. What is not so obvious is how shortening occurs in

the mantle: as intra-continental subduction (Mattauer, 1986) or continuous thicken-

ing of the entire lithosphere (England and Houseman, 1986; Molnar, 1992). In intra-

continental subduction, the strength of the delaminating uppermost mantle provides

resistance to bending, and deformation by simple shear is localised at the interface with

the subducting plate. In continuous thickening in contrast, the mantle lithosphere is

a continuum, whose strength provides the resistance to deformation. Deformation is

continuously distributed and accommodated as pure shear (called vertical lengthening

by Sanderson and Marchini, 1984).
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Figure 1.4: Down-warp of isotherms for intra-continental subduction of mantle litho-

sphere after 9.6 Myr and 150 km convergence (after Pysklywec et al., 2002, their

model EX3 with lower crust and mantle dry olivine rheology and viscosity parame-

ter A=4.85 x 10−17 Pa−n.s−1, n=3.5). The dashed line denotes detachment of the

lower crust.

Seismic anisotropy, which results from shear strain, should therefore be more lo-

calised in intra-continental subduction than in distributed thickening. Furthermore,

both modes of shortening cause downwarp of isotherms in the upper mantle by push-

ing lithospheric material downward and into the warmer asthenosphere. This isotherm

deflection produces a temperature anomaly in the mantle (Fig. 1.4, 1.5). Thermal con-

traction (Anderson et al., 1992) of the lower temperature material results in a small

density increase and, thus, a zone of faster wave speeds than in the surrounding region.

The geometry of this zone should differ between both modes, being either symmetric

(continuous thickening) or dipping and asymmetric (intra-continental subduction).
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The negative temperature anomaly produces a high wave-speed anomaly (Stern et al.,

2000).

Both modes of lithospheric shortening have been proposed for the transition be-

tween the Hikurangi and Puysegur subduction zones of opposite polarities situated

north and south of South Island, respectively. Early models of convergence suggested

intra-continental subduction of Pacific mantle lithosphere (Fig. 1.4; Beaumont et al.,

1996; Beavan et al., 1999; Waschbusch et al., 1998; Wellman, 1979). More recently,

continuous thickening has been proposed for South Island (Fig. 1.5) based on teleseis-

mic P travel-time delays in the central Southern Alps that suggest the presence of a

”fast” mantle zone with symmetric geometry (Molnar et al., 1999; Stern et al., 2000).
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1.4 Characteristics of the Southern Alps

1.4.1 The crust

Crustal thickness

Crustal thickening is asymmetric and predominantly located east of the Alpine Fault

trace (Scherwath et al., 2003; Van Avendonk et al., 2004). In central South Island,

elevations rapidly increase eastwards from near sea level at the fault trace to a mean

elevation of ∼1,500 m (Koons, 1993) and a maximum elevation of 3,754 m at Mount

Cook (Fig. 1.6). At mantle depth, the presence of a thick crustal root is indicated

by a strong Bouguer gravity minimum of –95 mGal (Fig. 1.6; Reilly, 1962; Reilly and

Whiteford, 1979; Woodward, 1979). The gravity low, however, is ∼70 km offset from

the maximum elevations to the south of Mount Cook and suggests that the thickest

crust is similarly offset from the maximum elevations. Moreover, the gravity anomaly

is oriented ∼15◦ counter-clockwise from the strike of the mountain range. Extrusion of

ductile lower crustal material perpendicular to the relative plate motion vector has been

proposed as an explanation for the offset between the thickest crust and the maximum

elevations (Gerbault et al., 2002).

Maximum crustal thicknesses of ∼37 km (Van Avendonk et al., 2004) and 44 ± 2 km

(Scherwath et al., 2003) were estimated from inversion of reflection-refraction data along

SIGHT (South Island Geophysical Transect) Transect 1 and Transect 2, respectively

(T1 and T2 in Fig. 1.6). These respectively represent ∼10 km and ∼17 km crustal

thickening relative to a 27 km thickness at the coast (Melhuish et al., 2005; Reyners

and Cowan, 1993; Scherwath et al., 2003; Van Avendonk et al., 2004). The 7.8 km/s

wave-speed contours from 3D inversion of earthquake and active source seismic data

(Eberhart-Phillips and Bannister, 2002) suggest a maximum 43 km thickness ca. 50 km

south of Mt Cook, and also at the southern end of the gravity low.
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Figure 1.6: South Island topography and approximate locations of the Otago, Fiordland

and Canterbury regions. Grey shaded regions represent elevations greater than 800 m.

The black outlined vector denotes the Australian-Pacific relative plate motion (DeMets

et al., 1994). Colored contours represent the Bouguer gravity anomaly (Reilly and

Whiteford, 1979) in 40 mGal intervals. The red star indicates the location of Mt Cook.

T1 and T2 denote the SIGHT (South Island Geophysical Transect) Transect 1 and

Transect 2 (Okaya et al., 2002). Double arrows show the central and southern portions

of the Southern Alps and Alpine Fault (thick grey line) as used in the text.
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Elastic strength

Flexural modelling suggests vanishing elastic strength for the central Southern Alps

lithosphere assuming a continuous plate (Stern et al., 2002). Stern et al. interpreted

the low strength to be a result of ductile flow in the mid to lower crust and the upper

mantle, along with upper crustal faulting.

The Alpine Fault

The Alpine Fault is a ∼460 km long dextral continental transform striking N55◦E

(Fig. 1.6; Wellman, 1953). Mylonitic foliations confined to a 1–2 km wide strip in the

hanging wall of the central Alpine Fault (Fig. 1.6) suggest that the Alpine Fault is

dipping at ca. 33◦ to the southeast of the surface trace (Sibson et al., 1979). Seismic

reflections from 20–30 km depth suggest a dip angle of ∼40◦–55◦ when projected onto

the Alpine Fault surface trace (Davey et al., 1995; Kleffmann et al., 1998; Stern et al.,

2007). Away from its central portion (Fig. 1.6), however, the Alpine Fault is inferred

to steepen from decreasing dip-slip rates to the northeast and southwest of this central

portion and shortening being distributed further to the east of the Alpine Fault in

Otago (Fig. 1.6; Norris and Cooper, 2001). Dip-slip reaches a maximum rate of 8–

12 mm/yr (Norris and Cooper, 2001) in the central portion of the Alpine Fault but

decreases to ca. 6 mm/yr to the northeast and ca. 0 mm/yr to the southwest (Norris

and Cooper, 2001), where deformation is more distributed. In contrast, strike-slip

motion is relatively uniform with rates within 27 ± 5mm/yr (Norris and Cooper, 2001)

along the entire fault. The Alpine Fault provides a ramp, along which crustal rocks are

being uplifted (Little et al., 2002a; Wellman, 1953). High metamorphic grade rocks,

the Alpine Schist, are found southeast and within ∼20 km of the Alpine Fault. The

Alpine Schist displays metamophic grades gradually increasing towards the fault up

into the amphibolite facies (Grapes, 1995; Grapes and Watanabe, 1994, 1992).
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Mid-crust

A zone of low seismic wave speeds with Vp ∼ 5.5 km/s, i.e. a speed reduction of 6–10 %,

was inferred for the mid-crust along SIGHT Transect 2 from travel-time delays of wide-

angle reflections and teleseismic P waves (Smith et al., 1995; Stern et al., 2001). This

low-velocity zone (LVZ) was interpreted to result from high pore fluid pressure from

water released during prograde metamorphism of the mid-crustal rocks (Stern et al.,

2001). The low wave speeds are associated with a low Vp/Vs ratio of 1.56 (Pulford,

2002) or 1.65 (Kleffmann, 1999), either of are consistent with the presence of pore fluids

under high pressure (Marquis and Hyndman, 1992). Furthermore, the low wave-speed

zone was linked to the low electric resistivity of mid-crustal rocks detected through

magnetotelluric methods along the SIGHT Transect 1, which suggests the presence of

interconnected pore fluids (Wannamaker et al., 2002).

1.4.2 The mantle lid

Seismicity

The low rate of intermediate-depth seismicity of the Southern Alps region provides a

marked contrast to the well-defined Wadati-Benioff zones of seismicity of the neigh-

bouring Hikurangi and Puysegur subduction zones (Anderson and Webb, 1994). This

contrast points to a first-order difference in rheology and the manner in which relative

plate motion is accommodated in the mantle. Only small ML < 4, 30–97 km deep earth-

quakes have been recorded beneath the Southern Alps (Kohler and Eberhart-Phillips,

2003; Reyners, 1987). These earthquakes are proposed to represent brittle failure of

2 km2 small patches in a viscously deforming mantle lithosphere and correlate with

zones of combined high shear strain gradients and depressed geotherms (Kohler and

Eberhart-Phillips, 2003) derived from strain modelling.
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Figure 1.7: South Island mantle wave speeds. Small bold values and dotted lines denote

Haines’ (1979) Vp estimates and orientations from the measurement of regional earth-

quake travel times between station pairs. Italic values and double arrows represent

Smith and Davey’s (1984) Vp estimates and approximate orientations from travel-time

inversion. The grey shaded zone is their interpreted partition of upper-mantle wave

speeds. Black lines annoted T1, T2, 3W and 4E are SIGHT transects and correspond-

ing wave speeds (Baldock and Stern, 2009, in prep.; Godfrey et al., 2001; Melhuish et al.,

2005; Scherwath et al., 2003; Van Avendonk et al., 2004). The blue ellipse represents

the ∼120 km deep mantle wave-speed anomaly inferred from three teleseisms located

northwest of New Zealand (Stern et al., 2000). Note that the ellipse is a schematic

representation of the wave-speed anomaly, whose extent is not known.
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P-wave speed

The southern half of South Island is characterised by relatively high mantle wave speeds

compared to the worldwide average of ∼8.05 km/s for sub-Moho wave speeds (e.g.

IASP91, Kennett and Engdahl, 1991). Estimates of 8.3 ± 0.1 km/s (Haines, 1979)

and ∼8.4 km/s (Smith and Davey, 1984) were found from regional earthquakes studies

(Fig. 1.7).

Below the Southern Alps, the presence of a ca. 100 km wide high wave-speed body

was inferred by Stern et al. (2000) from the advance of P arrivals relative to predicted

travel times (IASP91, Kennett and Engdahl, 1991) of three teleseisms from the western

Pacific (blue ellipse in Fig. 1.7). These three teleseisms were recorded by the 1996

SIGHT deployment (Okaya et al., 2002) and have back azimuths in the range –60◦ to

–25◦ from north. This analysis showed that a symmetric quasi-vertical high-speed body

with a 0.5–0.6 km/s wave-speed anomaly, i.e. a 7–8 % wave-speed perturbation, offered

a better fit to measured travel-time delays of this event set than an asymmetric (either

west- or east-dipping) body did (Stern et al., 2000). However, the three teleseisms con-

strain this model from the northwest only. Teleseismic delay-time tomography (Kohler

and Eberhart-Phillips, 2002) also indicates high mantle wave speeds of 2–4 % per-

turbations (Kohler and Eberhart-Phillips, 2002) in this region. These correspond to

wave-speed perturbations of 5–10 % if resolution tests, which indicate recovery of 40 %

of the wave-speed perturbation, are taken into account. The tests also show that the

resolution is too low to constrain the dip.

Seismic anisotropy

SKS splitting (Cochran, 1999; Duclos et al., 2005; Klosko et al., 1999) and Pn anisotropy

(Scherwath et al., 2002; Smith and Ekström, 1999) both indicate strong mantle seismic

anisotropy beneath most of the New Zealand region (see Figure 2.4 of Section 2.5 that

further discusses Pn anisotropy). SKS fast polarisations north of central South Island
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are oriented N50◦E and sub-parallel to the plate boundary (Klosko et al., 1999). In

the southern South Island, however, these are rotated counter-clockwise and oriented

ca. N20◦E (Klosko et al., 1999). It is debated whether the general SKS fast polarisation

alignment in New Zealand is due to mantle shear, mantle flow in the absolute plate

motion reference frame, or frozen fabric in the mantle lid of the Pacific plate (Duclos

et al., 2005; Molnar et al., 1999; Savage et al., 2007b).

Mass anomalies

A ∼100 km wide density contrast of 40–50 kg/m3 with respect to the surrounding

mantle was inferred beneath the central Southern Alps (Stern et al., 2000) from com-

parison of the predicted Bouguer gravity anomaly for the SIGHT Transect 2 crustal

structure with the observed one (Reilly and Whiteford, 1979). This density anomaly

has been interpreted to represent continuously thickened lithosphere (Molnar et al.,

1999; Stern et al., 2000). Three-dimensional inversion for this density anomaly, assum-

ing a 40 kg/m3 density contrast in the mantle lid and crustal thicknesses from previous

studies, suggests that this anomaly is widening to the south, and may represent south-

ward mantle creep (Scherwath et al., 2006).

1.5 Thesis outline

This introduction is followed by following chapters.

Chapter 2 reports on an earthquake refraction analysis along the Southern Alps

foothills. The Pn speed and the dip of the Moho are estimated along a temporary de-

ployment from Pn arrivals of regional earthquakes. Comparison with the Pn speed and

crustal thickness along SIGHT Transect 2, enables the calculation of the Pn anisotropy

at the intersection, and an estimate to be made of the maximum crustal thickness along
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the profile line. A minimum density contrast in the mantle lithosphere below is found

from the misfit between the gravity effect predicted for the crustal root thickness with

the Bouguer gravity anomaly.

Chapter 3 investigates the effects of anisotropy and dipping layers on S receiver

functions via synthetics.

Chapter 4 uses freely available broadband data from the Geonet seismic network

to measure conversions from teleseismic phases, so called receiver functions. The re-

ceiver functions are used to derive a lithospheric profile across the southern extent of

the Southern Alps. The structure is estimated by forward modelling of P, S and SKS

receiver functions.

Chapter 5 presents teleseismic P travel-time delays measured across the central

Southern Alps from a wide range of back azimuths. A 3D forward modelling approach

is utilised to constrain the size, amplitude and geometry of the mantle wave-speed

anomaly beneath the Southern Alps.

Chapter 6 includes a summary of this thesis’ findings, and a discussion of litho-

spheric deformation beneath central and southern South Island.

Two papers are included in the appendix, which have been published on the contents

of Chapter 2. These papers are:

1. Crust and mantle thickening beneath the southern portion of the Southern Alps,

New Zealand (2007), Bourguignon, S., Stern, T. A. and Savage, M. K., Geophys.

Jour. Int., Vol. 168, pp. 681-690;
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2. Crustal thickness and Pn anisotropy beneath the Southern Alps oblique collision,

New Zealand (2007), Bourguignon, S., Savage, M. K. and Stern, T. A., in A

Continental Plate Boundary: Tectonics at South Island, New Zealand, D. Okaya,

T. A. Stern and F. J. Davey (eds), Geophysical Monograph Series, Vol. 175,

American Geophysical Union, pp. 115–122.
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Chapter 2

Earthquake refraction

2.1 Abstract

Over-thickened crust and fast, anisotropic mantle material are interpreted beneath

South Island, New Zealand, from an earthquake refraction study along the Southern

Alps foothills. An 8.54 ± 0.20 km/s Pn speed is estimated along the N60◦E striking re-

fraction profile. Comparison with the Pn-speed estimate along the intersecting SIGHT

Transect 2 at the northern end of the profile near Lake Tekapo suggests a high isotropic

(i.e. average) Pn speed and anisotropy arising from finite strain of the mantle lid rocks.

The Pn anisotropy is estimated to be a minimum of 6.5 ± 3.5 %. A maximum Pn

anisotropy of 7–13 % and an isotropic Pn speed of ∼8.3 km/s are predicted by adopt-

ing the fast polarisation orientation from previous SKS splitting measurements at the

profile intersection. The Pn speed of 8.3 km/s is consistent with findings from previous

studies showing high average Pn speeds below the southern half of South Island and

the presence of cold, dense mantle lithosphere.

A maximum crustal thickness of 48 ± 4 km is inferred near Wanaka township,

at the southern end of the profile. The crustal thickness represents an 18 km thick

crustal root relative to a 30 km coastal average. Thus, the root is 2–3 times thicker

than expected for Airy isostatic compensation of the mean ∼1000 m Southern Alps

21
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topographic load. The thick crustal root suggests that the underlying mantle plays

an active role in depressing topography. The mantle load is similar to that beneath

the central Southern Alps, despite the predicted convergence across the Alpine Fault

there being nearly twice that at Wanaka. Gravity modelling of the crustal structure

along a profile through Wanaka suggests that this mantle load has a minimum density

contrast of 35 ± 5 kg/m3 between thickened mantle and asthenosphere, assuming an

across-Moho density contrast of –300 kg/m3.

A model is proposed, in which the nearby subducted Australian plate at the south-

western corner of South Island is the cause of enhanced lithospheric thickening beneath

Wanaka. In this model, the subducted slab is a rigid backstop, onto which Pacific

mantle collides at ∼26 mm/yr, or ca. 3/4 the full plate speed.

2.2 Introduction

Shortly after the MW 7.2 Fiordland earthquake (21st of August 2003), seven three-

component seismographs were deployed along the Southern Alps eastern foothills and

in-line with the RPZ (Rata Peak) Geonet station located northeast of the profile

(Fig. 2.1). The profile line (herein called the Fiordland Cheviot profile) strikes at

N60◦E, i.e. 5◦ clockwise from the strike of the Alpine Fault and ∼20◦ clockwise from

the trends of the Bouguer gravity anomaly and supposed crustal root (see blue contours

in Fig. 2.1). By striking obliquely and through the middle of the supposed crustal root,

the profile minimises potential first arrival refractions off the sides of the crustal root.

The Fiordland earthquake aftershocks and one earthquake off-coast Cheviot (Fig. 2.1,

Tab. A.2) at the northeast end of the Fiordland Cheviot profile allows the analysis of

refraction travel times along the Southern Alps crustal root and to thereby estimate
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Figure 2.1: This map depicts the Fiordland-Cheviot refraction profile, South Island

fault lines (light lines), lake contours (black lines) and the Bouguer gravity anomaly

in 40 mGal intervals (coloured contours; Reilly and Whiteford, 1979). Symbols feature

the Australian-Pacific relative plate motion (open arrow; after DeMets et al., 1994),

deployed seismographs (red triangles), the RPZ Geonet permanent station (black-

contoured red triangle), earthquakes used in this study (red stars), previous SIGHT

seismic lines T1, T2, 3W and 4E (Okaya et al., 2002) and this study’s Fiordland-

Cheviot refraction profile (thin lines).
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Figure 2.2: Top: Arrivals from the Fiordland aftershock are bandpass filtered at

cut-off and corner frequencies of 0.5–1–5–10 Hz. First-break Pn are indicated by

the bottom pair of arrows and single arrows in blow-up on the right. Dashed curves

denote predicted Pg and Pn travel-times (see model Fig. 2.3c). Pn arrivals are followed

ca. 1.5 s later by arrivals (∼1.5-s peg-leg indicated with top pair of arrows) with much

larger amplitude. These second arrivals have the same apparent wave speed as the Pn

and are interpreted as an internal reflection ∼5 km near the source. The Pn-speed

estimate and corresponding 95 % confidence interval (right-hand side of graph) is the

mean of single regression slopes weighted with their respective standard deviations.

Pn arrivals are followed ca. 1.5 s later by arrivals (∼1.5-s peg-leg indicated with top

pair of arrows) with much larger amplitude. These second arrivals have the same

apparent wave speed as the Pn and are interpreted as an internal reflection ∼5 km

near the source. The Pn-speed estimate and corresponding 95 % confidence interval

(right-hand side of graph) is the mean of single regression slopes weighted with their

respective standard deviations.

Bottom: Arrivals from the ML 4.1 off-shore Cheviot event are bandpass filtered at

cut-off and corner frequencies of 0.5–1–3–5 Hz. Note the offset axis is in the opposite

direction to that of the top figure. First-break Pn are indicated by the pair of arrows

and the predicted Pn travel-time curve by a dashed curve (see P-wave speed model of

Fig. 2.3c). The Pn-speed estimate is the result of a single linear regression and is given

with corresponding 95 % confidence interval (right-hand side of graph). In both graphs

the trace of the third station from the left was shifted by 3.5 s to correct a timing error.

However, the pick wasn’t included in Pn-speed calculations because of uncertainty in

the timing error. Note also the two overlapping traces recorded at two close stations

MCV and BAP (Fig. 2.1).
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seismic properties, density and temperature distributions in the mantle lid. The Pn-

wave speed is determined along the profile line. The Pn anisotropy and thickness of

the crustal root are estimated beneath the central Southern Alps and their southern

extent, respectively. The gravity effect of the crustal root is modelled in order to define

how much of the crustal root thickness is due to topographic loading, and how much

can be ascribed to the positive load of a mass excess in the subjacent shortened mantle

lithosphere.

2.3 Refraction analysis

In the two-week deployment period, five Fiordland aftershocks of Mw ≥ 5 occurred at

the southwest end of the profile and one ML 4.1 earthquake occurred off-coast Cheviot

at the northeast end of the profile line (Tab. A.2). Maximum epicentral distances of

490 km enable the picking of Pg and Pn first arrivals and analysis of refraction travel

times along the root of the Southern Alps. Pg and Pn apparent speeds are deter-

mined for single events from the inverse of regression slopes on the first break picks

(Fig. 2.2). A single speed value is obtained by weighting the individual speeds with

their corresponding inverse standard deviations (Bevington, 1969, Appendix A). The

true Pn speed and apparent dip are calculated by assuming a uniform dipping Moho

along the refraction profile (e.g. Stein and Wysession, 2003). Error bars presented are

95 % confidence intervals.

Crustal wave speeds

Crustal phases are seen in the Fiordland aftershock records (top of Fig. 2.2) but not

in the record from Cheviot (bottom of Fig. 2.2). The determined Pg speeds of the

Fiordland records are relatively high and show spatial variations with approximately



2.3. REFRACTION ANALYSIS 27

6.8 km/s for events 1, 4 and 6, and approximately 6.4 km/s for events 2 and 3 (Fig. 2.1).

These speed values and offsets of 100–250 km suggest that the lower crust is being sam-

pled by raypaths. These Pg speeds are slightly smaller, but consistent with values of

6.7–6.9 km/s at 4–8 km depth and 7.1–7.4 km/s from 8 km depth as determined from

seismic refraction profiles in the exhumed Fiordland crustal block (Davey and Broad-

bent, 1980). They are also consistent with 6.25–7.5 km/s from 4 to 62.5 km depth

from 3D inversion of local earthquakes (Eberhart-Phillips and Reyners, 2001). The

6.4–6.8 km/s wave speeds are not representative of the lower 6.0 to 6.2 km/s average

P-wave speed in the Southern Alps mid-crust but with the ∼6.8 km/s in the lower crust

(Eberhart-Phillips and Bannister, 2002; Scherwath et al., 2003; Van Avendonk et al.,

2004).

Pn-wave speed

The apparent Pn speeds determined from the off-shore Cheviot event and the reverse

events in Fiordland are 8.21 ± 0.22 km/s and 8.92 ± 0.18 km/s, respectively (Fig. 2.2).

Taking a 6.0–6.2 km/s mid-crustal wave speed (more representative of the Southern

Alps crustal wave speed than the Fiordland 6.8 km/s), i.e. a 6.1–6.23 km/s average for

the entire crust, results in an average Pn speed of 8.54 ± 0.20 km/s and an apparent

2.5◦ ± 1.3◦ SW dipping Moho. The dip is a conservative value compared to an ap-

parent dip value of 2.6◦–3.1◦ SW for a 6.4–6.8 km/s crustal wave speed, but is also a

much lower value than the apparent ∼8◦ SW dip calculated between where Transect 1

(Van Avendonk et al., 2004) and Transect 2 (Scherwath et al., 2003) intersect with

the Fiordland-Cheviot profile. The inconsistency may result from the assumption of a

uniform dipping Moho.
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Figure 2.3: a) The contour map features the Bouguer gravity anomaly (Reilly and

Whiteford, 1979) in 50 mGal intervals and the locations of Mt Cook (triangle) and

of the main divide (dashed line) and Fiordland-Cheviot (solid line) profiles of the

graph below. b) The thin curve is the mean topography in a 10 km wide swath along

the Fiordland-Cheviot profile; the thick dashed curve is that along the Main Divide;

and the thick curve is the Bouguer anomaly (Reilly and Whiteford, 1979) along the

Fiordland-Cheviot profile (Fig. 2.1). c) 2D velocity model based on results from: Davey

and Broadbent (1980); Eberhart-Phillips and Bannister (2002); Eberhart-Phillips and

Reyners (2001); Reyners and Cowan (1993); Scherwath et al. (2003); Van Avendonk

et al. (2004). Deployment (triangles); intersections with SIGHT previous crustal studies

(T1/T2); ray-tracing for events 5 and 6 (predicted travel-time curves on Fig. 2.2);

constrained portion of the Moho between Wanaka and Tekapo (thick dashed line);

unconstrained interfaces (question marks).
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2.4 Velocity model and crustal thickness

Previous crustal studies in South Island (Tab. A.4) are included to constrain the

crustal structure (Fig. 2.3). The Fiordland-Cheviot profile intersects SIGHT Tran-

sect 2 ∼25 km east of the maximum crustal thickness of 44 ± 1.4 km (Scherwath et al.,

2003). There, the Moho is ∼42 km deep (Scherwath et al., 2003) and accordingly fixed

to 42 km depth. Similarly, the Moho depth is fixed to 33 km at the intersection with

SIGHT Transect 1 (Van Avendonk et al., 2004). South of the crossing with SIGHT

Transect 2, the dip of the Moho is set to 2.5◦ and the upper mantle wave speed is

set to 8.54 km/s, as determined above. Two-dimensional ray-tracing (MacRay Luet-

gert, 1992) is applied to determine the Moho ray coverage. Rays propagating from

both source locations, Fiordland and off-shore Cheviot, indicate that an approximately

150 km Moho portion, extending from Wanaka (southern South Island) to Tekapo (cen-

tral South Island), is constrained. A maximum Moho depth of 48 ± 4 km is estimated

near Wanaka at the southwestern tip of this zone (Fig. 2.3). Hence, the crustal root is

18 ± 4 km thick at Wanaka (relative to average coastal values of 30 km in South Is-

land; Godfrey et al., 2001; Melhuish et al., 2005) and ∼4 km thicker than imaged along

SIGHT Transect 2 near Mount Cook (Scherwath et al., 2003) suggesting thickening of

the crustal root from north to south along the Southern Alps.



30 CHAPTER 2. EARTHQUAKE REFRACTION

2.5 Pn anisotropy

2.5.1 Method

In a weakly anisotropic mantle, small perturbations of the isotropic Pn-wave speed, α0,

can be approximated with a fourth-degree trigonometric polynomial in ϕ, the Pn-wave

propagation azimuth. The Fourier series of this polynomial is (Backus, 1965):

α2(ϕ) − α2
0 = A + Ccos(2ϕ) + Dsin(2ϕ) + Ecos(4ϕ) + Fsin(4ϕ), (2.1)

where α(ϕ) is the Pn speed for the propagation azimuth ϕ. A minimum of five wave-

speed measurements along non-colinear profiles is necessary to solve for the five pa-

rameters A to F (Backus, 1965). Based on the 2ϕ dependence displayed by real wave-

speed measurements, however, Smith and Ekström (1999) proposed an approximation

of Equation (2.1):

α(ϕ) = α0 + Ccos(2ϕ) + Dsin(2ϕ), (2.2)

Solving for the three unknown parameters, α0, the isotropic Pn speed, and both con-

stants, C and D of Equation (2.2), requires only three known wave speeds along inter-

secting profiles. This study’s and the intersecting SIGHT Transect 2’s (Scherwath et al.,

2003) Pn-speed estimates, α1 and α2, respectively, provide two equations. A third equa-

tion, dα(ϕ)
dϕ

|ϕ=Φ = 0, is found by assuming α(ϕ) is maximum for the fast propagation

azimuth, Φ, from a nearby SKS-splitting fast polarisation orientation. The resulting

system of three equations is:

α1 = α0 + Ccos(2ϕ1) + Dsin(2ϕ1)

α2 = α0 + Ccos(2ϕ2) + Dsin(2ϕ2) (2.3)

0 = Csin(2Φ) − Dcos(2Φ)
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with solutions:

α0 = α1 − Ccos(2ϕ1) − Dsin(ϕ1)

C =
α1 − α2

G
cos(2Φ) (2.4)

D =
α1 − α2

G
sin(2Φ)

where

G = cos(2Φ) [cos(2ϕ1) − cos(2ϕ2)] + sin(2Φ) [sin(2ϕ1) − sin(2ϕ2)] .

2.5.2 Pn anisotropy at the intersection with SIGHT Transect 2

Taking this study’s Pn speed of 8.54 ± 0.20 km/s and that of 8.0 ± 0.2 km/s on

the nearly perpendicular profile SIGHT Transect 2 (Scherwath et al., 2003), implies

6.5 ± 3.5 % apparent anisotropy (T in Fig. 2.4). A maximum possible anisotropy can

be estimated using a nearby SKS fast polarisation measurement and Equations (2.5). A

nearby SKS fast polarisation orientation (Klosko et al., 1999) is, however, located at the

transition between two domains of anisotropy approximately coinciding with SIGHT

Transect 2: 1) a central South Island domain, where SKS fast polarisation orientations,

Φ, are sub-parallel to the Alpine Fault; 2) a southern South Island domain, where these

are consistently ∼35◦ counter-clockwise from the Alpine fault, i.e. the orientation of

simple shear in the mantle deforming in a ductile fashion (Fig. 2.4; Klosko et al., 1999;

Molnar et al., 1999). This Pn anisotropy measurement may, thus, be an average result-

ing from the overlap of Fresnel zones over the two domains. Therefore, two possible fast

orientations need to be considered. SKS fast polarisation orientations in the central and

southern South Island (Fig. 2.4; Klosko et al., 1999) respectively average to 56◦ ± 2◦

and Φ of 21◦ ± 1◦. Taking the central South Island Φ of 56◦ ± 2◦ implies a maximum
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Figure 2.4: This map summarises anisotropy measurements in South Island. Thin

lines denote previous SIGHT seismic profiles T1, T2, 3W and 4E (Okaya et al., 2002)

and this study’s Fiordland-Cheviot refraction profile. The open arrow indicates the

Australian-Pacific relative plate motion (after DeMets et al., 1994). Existing anisotropy

measurements include SKS-splitting (orange bars with lengths proportional to delay

times and orientations parallel to fast polarisation orientations; Duclos et al., 2005;

Klosko et al., 1999) and Pn anisotropy (double arrows; apparent values in italic and

absolute values are in lower right corner). E1, E2 (in green) are absolute Pn anisotropy

measurements from a global earthquake study (Smith and Ekström, 1999). The double

arrows are orientated along the fast propagation orientation.
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Pn anisotropy δP of 7 ± 3.5 % and an isotropic Pn speed α0 of 8.25 ± 0.22 km/s, while

taking southern South Island mean Φ of 21◦ ± 1◦ implies a δP of 13.3 ± 3.5 % and

an α0 of 8.42 ± 0.22 km/s (Tab. 2.1). A mean α0 of 8.3 ± 0.3 km/s fits both results

and is consistent with Haines’ (1979) average 8.3 ± 0.1 km/s for southern South Island

and wave-speed perturbations of ∼2 % relative to a world-wide average of 8.1 km/s

(IASP91; Kennett and Engdahl, 1991) imaged by inversion of teleseismic travel times

(Kohler and Eberhart-Phillips, 2002). The 8.3 km/s Pn speed is 2–3 % more than

8.1 km/s and suggests cold and dense upper mantle material.

If the 7 % or 13 % anisotropy at the intersection with SIGHT Transect 2 is constant

throughout the mantle lid, then an anisotropic layer of about 100 km or 50 km thick-

ness, respectively, would account for the observed SKS-delay time of 1.76 s (Klosko

et al., 1999), assuming a P- to S-anisotropy ratio of 1.4 and a 4.7 km/s average S-wave

speed in the uppermost mantle (Ben Ismael and Mainprice, 1998).

Dynamic slip alone can not explain in situ anisotropy greater than a theoretical

maximum of 10 % (Ribe, 1992) as calculated for southern South Island, but requires

additional dynamic recrystallization by subgrain rotation and grain-boundary migra-

tion (Karato, 1988; Nicolas et al., 1973), additional pure shear or infinite strain. All

these processes have the effect of rotating fast propagation orientations parallel to the

shear orientation, i.e. reducing the obliquity of fast orientations to that of shear. How-

Figure 2.4 continued: S (Scherwath et al., 2002), B1 and B2 (in blue) (Baldock and

Stern, 2009, in prep.) and T (this study as crossing red arrows with outline) are

apparent anisotropy measurements at intersecting profiles. Intersecting double arrows

indicate the apparent fast and slow propagation orientations. The arrow length in the

fast orientation is scaled to the percentage of anisotropy.
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ever, SKS fast polarisations of southern South Island are ∼28◦ oblique to the Alpine

Fault and the shear orientation, suggesting that olivine a-axes haven’t aligned with the

shear orientation yet, and that anisotropy should be less than the theoretical maximum

of ∼10 %. Hence, a ∼13 % Pn anisotropy as calculated for the southern South Island

fast orientation seems incompatible with the obliquity of fast polarisation orientations.

Conversely, for central South Island, where fast polarisations are oriented parallel to

the shear orientation and suggest infinite strain, pure shear and/or dynamic recrystalli-

sation, the Pn anisotropy may be expected to be greater than 10 % and to be more

than the 7 % calculated in this study. An amount of anisotropy intermediate to 7 %

and 13 % or rotation of material independent of strain would resolve this paradox.

2.5.3 Comparison with previous Pn anisotropy measurements

Three other Pn anisotropy measurements have been made on crossing refraction lines

(Baldock and Stern, 2009, in prep.; Scherwath et al., 2002). The Pn anisotropy is

11.5 ± 2.0 % on the Australian side, 30 km west of the surface trace of the Alpine

Fault (S in Fig. 1; Scherwath et al., 2002). If the dip of the Alpine Fault is taken as

40◦ SE (Kleffmann et al., 1998), then at the Moho, the measurement on the Australian

side is at a similar distance to the Alpine Fault as this study’s measurement of 7–13 %

anisotropy on the Pacific side. Offshore and 230 km east of the Alpine Fault, two null

Pn anisotropy measurements on crossing lines SIGHT Transect 1 and Transect 3 and

SIGHT Transect 2 and Transect 3 (B1 and B2 in Fig. 2.4) show that upper mantle

anisotropy does not extend 50 km east of South Island (Baldock and Stern, 2009, in

prep.). The Pn speed is 8.1 ± 0.1 km/s in both transect azimuths and can be as-

sumed as the isotropic Pn speed. Beneath the Canterbury plains (east of the Southern

Alps) into the offshore, however, northwest-southeast raypaths define a broad region of

7.8 ± 0.1 km/s Pn speed (Baldock, 2004a). Assuming 7.8 km/s and 8.1 km/s are the
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minimum and isotropic Pn speeds, respectively, the Pn anisotropy beneath the Can-

terbury plains is 7.5 ± 3.0 % (Baldock and Stern, 2009, in prep.).

These measurements suggest that the Pn anisotropy is strong up to a 70–80 km

distance from the Alpine Fault at depth. Scherwath et al. (2002) noted that the

11.5 ± 2.0 % Pn anisotropy (S in Fig. 2.4) is slightly greater than the theoretical max-

imum of ∼10 % for strain-induced anisotropy (Ribe, 1992). They suggested dynamic

recrystallization, a pure shear component and/or infinite strain as possible mechanisms

to explain the high observed anisotropy. In the east of South Island, the Pn anisotropy

is less strong, and possibly extends as far as the east coast, about 150 km east from

the Alpine Fault at Moho depth.

Table 2.1: Pn anisotropy and parameters α0, C and D of Equation (2.2) are estimated

at the intersection of the Fiordland-Cheviot refraction profile with SIGHT lines T1 and

T2. The Pn speed is 7.9 ± 0.2 km/s and 8.0 ± 0.2 km/s along SIGHT T1 and T2,

respectively (Scherwath et al., 2003; Van Avendonk et al., 2004). Expressions for σα0
,

σC and σD are detailed in Appendix B.

⊥ Φ α0 σα0
C σC D σD δP σ(δP )

(◦) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (%) (%)

T2 56 8.25 0.22 –0.11 0.05 0.27 0.12 7.0 3.5

T2 21 8.42 0.22 0.42 0.19 0.38 0.17 13.3 3.5

T1 56 8.21 0.24 –0.12 0.07 0.31 0.15 8.1 3.5
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2.6 Gravity modelling

Intra-continental subduction and continuous thickening both involve displacement of as-

thenosphere with colder mantle lithosphere and, therefore, a downwarp of the isotherms.

Thus, in both models, the negative temperature contrasts and resultant thermal con-

traction within the upper mantle produce positive density contrasts, which in turn

produce positive gravity anomalies.

The Southern Alps region exhibits a negative Bouguer gravity anomaly (Fig. 2.5b),

as is usually observed above crustal roots that sustain the load of mountain ranges

(Airy isostasy). However, a closer look at the Southern Alps shows that the topogra-

phy (Fig. 2.5a) and the Bouguer anomaly (Fig. 2.5b) do not correlate well (Woodward,

1979) and trend at different angles with a ∼15◦ difference. Moreover, the mean el-

evations of ca. 1000 m, as seen in the Wanaka region (Fig. 2.3), should only require

the support of a ca. 6–9 km thick crustal root beneath, if Airy load compensation (e.g.

Watts, 2001) and a –300 to –400 kg/m3 density contrast between crustal root and man-

tle are assumed. However, as discussed in Section 2.4 the crustal root is 18 ± 4 km at

Wanaka (relative to a 30 km coastal average in South Island). Therefore, at Wanaka

the crustal root is at least two times thicker than needed to support the topography.

The anomalous gravity effect of the over-thickened crust, i.e. the deviation from Airy

load compensation, is visible in the negative isostatic anomaly of the Southern Alps

region (Fig. 2.5c). Below, a mass excess is assumed to exist in the mantle that main-

tains isostatic equilibrium by balancing part of the mass deficit of the crustal root and

pulls the crustal root down. The positive gravity effect of such a mantle body, herein

called the mantle residual anomaly, is obscured by the large negative anomaly of the

crustal root. As a result, the observed Bouguer anomaly low is –80 mGal near Wanaka

township (Fig. 2.3, 2.5b; Reilly and Whiteford, 1979) and less than that expected for

an 18 km thick crustal root alone.
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200

Figure 2.5: a) Topography of South Island, SIGHT T2 and Jackson Bay-Dunedin profile

(JB-D). Highest elevations (Mt Cook region) appear in yellow. b) Bouguer gravity

anomaly (adapted from Scherwath, 2002). Rectangles: domain and axes of the gravity

model used in 2
3

4 D modelling and extent of model cross-sections taken along SIGHT

T2 and profile JB-D (Fig. 2.6a); hatched rectangle: mantle body (model 1 of Tab. 2.2).

c) The isostatic gravity anomaly onshore (DSIR; Reilly et al., 1977) is superposed on

the free air anomaly offshore (Seasat data, 1999).
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The present modelling aims at defining the minimum density contrast and the

lateral and vertical extent of the mantle body that fits the Bouguer gravity onshore

(Fig. 2.5b). Although available offshore, the free-air gravity isn’t included, because the

edge effect of the continental shelf there is predominant over the long wavelength effect

of the putative mantle body (Fig. 2.5c).

2.6.1 Model domain

The mantle residual anomaly is estimated along a profile crossing the South Island at

Wanaka, herein called Jackson Bay-Dunedin profile (JB-D in Fig. 2.5b and 5). A 2
3

4 D

gravity modelling software (GM-SYSTM ) is used that allows bodies of finite extent and

non-orthogonal strike in the dimension perpendicular (Y-axis) to the calculated grav-

ity profile (X-axis, Fig. 2.5b–c). The chosen gravity model is ca. 400 km long in the

orientation parallel to the JB-D interpretation profile (X-axis in Fig. 2.5b) and extends

200 km northeast and 100 km southwest from profile JB-D (Y-axis in Fig. 2.5b). The

JB-D line is well to the north of the Australian slab subducting beneath Fiordland.

The gravity effect of the subducting slab is, therefore, neglected in the modelling that

follows.

2.6.2 Crustal model

Modelling is done relative to a reference crust of 30 km thickness (Godfrey et al.,

2001; Melhuish et al., 2005) above a mantle of 3300 kg/m3 density. An average den-

sity contrast of –300 kg/m3 is adopted for the crustal root. This value is less than

the –450 kg/m3 (Stern et al., 2000) density contrast estimated at SIGHT Transect 2.

As discussed below, using a density contrast of –450 kg/m3 in this study results in
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Figure 2.6: Cross-sections through gravity model 1 (Tab. 2.2). The thin oceanic crust,

the crustal root and the mantle body are represented with their density contrasts deter-

mined relative to a reference crust of 30 km thickness and an average mid-lower crustal

density of 3000 kg/m3 above a mantle of 3300 kg/m3 density. a) Mean topography

in a 10 km wide band, Bouguer gravity anomaly (Reilly and Whiteford, 1979) and

X-cross section (Y=0 km) are taken along the Jackson Bay-Dunedin profile (JB-D). b)

The Y-cross section (X=100 km in Fig. 2.5b–c) is taken perpendicular to profile JB-D.

JB-D and T2 denote the intersections with crossing profiles.
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an unreasonably large density contrast within the upper mantle. The SIGHT Tran-

sect 2 mostly traverses greywacke, apart from a ∼60 km wide strip of Alpine Schist

directly south east of the Alpine Fault. In the mid and lower crust, rocks are inferred

to be greywacke/schist (Scherwath et al., 2003) and oceanic crust (Kleffmann, 1999),

respectively. In contrast, the JB-D line is substantially within the Otago Haast Schist

(greenschist facies). These schists represent the deeply exhumed part of a Mesozoic

accretionary prism on the margins of Gondwana (e.g. Mortimer, 2004). The JB-D

line strikes parallel to the axis of an antiform that corresponds to the largest amount

of exhumation within the Otago Schist possibly reaching as much as 10–25 km. Thus,

it is possible that along the line JB-D rocks at a present depth of 30 km were once

possibly ∼50 km deep. At these depths and temperatures, continental crust starts to

transform to eclogite (e.g. Wyllie, 1992) of ∼3550 kg/m3 density (Hacker and Abers,

2004). If the lower crust were to be partially transformed to eclogite, the across-Moho

density contrast would be low or even absent (see also Section 4.3 on Otago Schists).

The crustal root is 14 km thick at SIGHT Transect 2 (Y=–140 km) and thickens

to 18 km ∼30 km along strike to the southwest of SIGHT Transect 2 (Y=–100 km

in Fig. 2.6b). The crustal structure along profile JB-D is not known in detail and is

constrained by only three points of known crustal thickness. The crustal thickness is

ca. 30 km off-shore Jackson Bay (Melhuish et al., 2005), 48 ± 4 km thick near Wanaka

(this study) and ranges between 27 and 33 km off-shore from Dunedin (Godfrey et al.,

2001). In between these three points the shape of the crustal root and the location of

its deepest point are not well constrained. The simplest hypothesis is that the crustal

root is asymmetric as imaged along SIGHT Transect 1 (Van Avendonk et al., 2004)

and T2 (Scherwath et al., 2003). However, geodetic strain-rates (Henderson, 2003)

and Holocene reverse faulting show that contraction occurs as far as eastern Otago

(Fig. 2.5a) in southern South Island, and is here more distributed than in central
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South Island (Norris and Cooper, 2001). Three-dimensional crustal structure obtained

from simultaneous inversion of earthquake and shot arrival times and gravity data in-

cluded below 20 km (Eberhart-Phillips and Bannister, 2002, their Fig. 12) also suggests

a wider crustal root in south than in north. Hence, the crustal root may be distributed

further south east from the Alpine Fault along profile JB-D than it is in the north

(SIGHT Transect 2). The crustal root is therefore assumed symmetric with respect to

the gravity minimum.

The maximum crustal thickness is fixed to 48 km at the intersection with the

Fiordland-Cheviot profile (X=100 km of profile JB-D) and the crustal root is sym-

metric with respect to the gravity minimum (X = 123 km in Fig. 2.5b and 5a).

Due to the strong trade-off between shape of the crustal root and symmetry of the

mantle body, the mantle residual anomaly, i.e. the difference between the Bouguer

anomaly and the modelled crustal root gravity effect, is symmetric (Fig. 2.7) and re-

quires the presence of a symmetric positive mantle mass excess. In contrast, an asym-

metric crustal root would require an asymmetric, i.e. dipping, mantle body. In other

words, reasonable constraints can be placed on the mass excess of the mantle body, but

not its shape.

2.6.3 Models for the mantle body

Assuming the mantle mass excess is a cylindrical-type source, a first-order maximum

depth of 90–100 km is estimated for the centre of mass from the half-maximum of

the mantle gravity anomaly (Nettleton, 1976). The mass per unit length of strike of

the mantle body is ca. 2.7 x 1011 kg/m as determined by the mass balance between

topography and crustal root.
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Figure 2.7: Bouguer gravity anomaly (Reilly and Whiteford, 1979) and gravity anoma-

lies calculated for model 1 (Tab. 2.2, Fig. 2.6) using GM-SYSTM , a 2
3

4 D gravity mod-

elling software. The curves represent: the anomaly for a symmetric crustal root alone;

the anomaly for the entire model (crustal root + mantle body); the mantle residual

anomaly (Bouguer – crustal root); and the total misfit (Bouguer anomaly – entire

model).

Thus, although the density contrast, width and depth extent of the mantle body are

free parameters, the mass excess is required to attain the above mass per unit length

of 2.7 x 1011 kg/m3 within 10 % (Tab. 2.2). In addition, the Moho depth, i.e. the

minimum depth that the top of the mass excess can reach, and the first-order depth

estimate of the centre of mass, provide bounds to the vertical extent of the mantle

body. A minimum density contrast is found, for which the body’s vertical dimension

is maximum but contained within the vertical bounds mentioned above, and the re-

sulting gravity effect satisfies the amplitude and wavelength of the Bouguer anomaly.
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For density contrasts smaller than this minimum, vertical stretch of the mantle body

is necessary in order to fit the maximum amplitude of the gravity anomaly. However,

because the gravity effect is proportional to r−2, deeper mass is less effective in pro-

ducing a gravity effect and more mass needs to be added than required to attain mass

balance. Hence, there is no body found with density contrast below this minimum that

can fulfill the mass balance requirement as well.

A minimum density contrast, ∆ρ, of 35 ± 5 kg/m3 is required for a mantle body

centred at 90–100 km depth in order to satisfy the mass balance and the wavelength

of the gravity anomaly with a misfit of the order of 10 mGal west of kilometer 230

(Fig. 2.7; model 1 of Tab. 2.2 and Fig. 2.6). The misfit increases east from kilometer

230, possibly where the edge effect of the continental shelf starts to be seen. The lateral

and vertical dimensions of this body are 110 ± 20 km and 70 ± 20 km respectively. The

minimum density contrast (∆ρ) is 20 ± 5 kg/m3 for an across-Moho density contrast of

–250 kg/m3 (model 2 of Tab. 2.2) or 55 ± 5 kg/m3 for the across-Moho density contrast

of –350 kg/m3 (model 3 of Tab. 2.2). The minimum density contrast is even larger,

∆ρ ∼ 120 kg/m3, for an across-Moho contrast of –450 kg/m3, as assumed under SIGHT

Transect 2 (Stern et al., 2000). However, such a density contrast is far beyond the av-

erage of 60 kg/m3 (e.g. Houseman et al., 2000) for an approximate 500◦C temperature

contrast and a ∼60 km vertical deflection of isotherms alone that can be considered

as a reasonable maximum for South Island (Fig. 1.5). Further chemical heterogeneity

between mantle lithosphere and asthenosphere or the presence of eclogitic rocks would

be required within the mantle if the density contrast were to be that large.

In summary, the mantle body is wider and less thick than previously inferred along

the SIGHT Transect 2 line (model 0, Tab. 2.2; Stern et al., 2000), but provides a similar

mass excess in the case of a crustal root with –300 kg/m3 density contrast.
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Table 2.2: Gravity models are derived for an 18 km thick crustal root below a 30 km deep Moho, symmetric to X=123 km and

maximum between X=100 and X= 146km of profile JB-D (Fig. 2.5b-c and 5a). The crustal root is thickened at Y=–100 km from

14 km at SIGHT Transect 2 to 18 km at JB-D (Fig. 2.6b). A crustal density of 2700 kg/m3 is adopted for the topography. Density

contrasts, ∆ρ, in the range –250 to –350 kg/m3 are adopted for the crustal root. The minimum density contrast and dimensions of

a mantle anomaly are varied with the requirement to fit the Bouguer anomaly (Reilly and Whiteford, 1979)[; Fig. 2.7] and to attain

the mass balance between topography, crustal root and mantle body within 10 %: δm(mantle) +δm(topography) ≈ −δm(crustal

root). X1 − X2 is the lateral extent of the mantle body, Z1 − Z2, the depth range (Fig. 2.6a), A = (X2 − X1)(Z2 − Z1), the

cross-section and δm = A ·∆ρ, the linear mass excess of the mantle body. The temperature contrast, ∆T , is calculated by assuming

that the density contrast ∆ρ is solely due to thermal contrast and taking ∆ρ = −ρα∆T with α = 3.5 x 10−5 (Anderson et al.,

1992) the coefficient of thermal expansion and ρ = 3300 kg/m3 the uppermost mantle density.

model topography root mantle body

δm ∆ρ δm ∆ρ X1m − X2m Z1 − Z2 A δm ∆T

(kg/m) (kg/m3) (kg/m) (kg/m3) (km) (km) (m2) (kg/m) (◦C)

1 2.4 x 1011 –300 –5.1 x 1011 +35 60–175 60–130 8.0 x 109 2.8 x 1011 305

2 2.4 x 1011 –250 –4.1 x 1011 +20 50–200 75–125 7.5 x 109 1.5 x 1011 170

3 2.4 x 1011 –350 –5.9 x 1011 +55 60–170 60–125 7.1 x 109 3.9 x 1011 480

mantle body derived at SIGHT Transect 2 (Stern et al., 2000)

0 3.4 x 1011 –450 –5.5 x 1011 +30 70–160 70–170 9.0 x 109 2.7 x 1011 260
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2.7 Discussion

The 8.54 ± 0.20 km/s Pn speed estimated at 5◦ clockwise from the strike of the Alpine

Fault is interpreted to be the result of seismic anisotropy (Scherwath, 2002) and a high

average wave speed in the mantle lid. Seismic anisotropy is recognised to be mostly

the product of 850 km shear between the Pacific and the Australian plates in the past

45 Myr (Baldock and Stern, 2009, in prep.; Little et al., 2002b; Molnar et al., 1999;

Savage et al., 2004). Pn speeds higher than the worldwide average upper mantle wave

speed of 8.1 km/s (IASP91; Kennett and Engdahl, 1991) are indicative of shortened

and cold mantle beneath the Southern Alps after 20 Myr of convergence (Cande and

Stock, 2004; Walcott, 1998), as discussed below.

The average Pn speed of ∼8.3 km/s is a 2–3 % perturbation relative to the upper

mantle wave speed of 8.1 km/s (Kennett and Engdahl, 1991). Taking δVP /δT = 5 x 10−4 km/s/◦C

(Anderson and Isaak, 1995), the relationship between lateral wave speed variation and

temperature, this wave-speed perturbation could be explained by a ∼400 ◦C negative

temperature contrast with the surrounding mantle. Similarly, the temperature con-

trast, ∆T , caused by the deflection of isotherms can be estimated from the density

contrast, ∆ρ, with ∆ρ = −ρα∆T . Taking α = 3.5 x 10−5 (Anderson et al., 1992) as

the coefficient of thermal expansion and ρ = 3300 kg/m3 for the uppermost mantle

density, the equivalent average temperature contrast ranges from –170 ◦C to –480 ◦C

in the case of a 20–55 kg/m3 density contrast in the mantle lid, as suggested by the

gravity modelling described above.

The bulk of the inferred mantle body (Fig. 2.6) compares well with a zone of fast

wave speed below the Southern Alps imaged by 3D inversion of teleseismic travel-time

residuals (Kohler and Eberhart-Phillips, 2002, their Fig. 7). Along profile JB-D, their
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inversion results display a zone of anomalous mantle with P-wave speed perturbations

of 1.5–3 % relative to 8.1 km/s existing in a ca. 100 km wide zone located ca. 50 km

offset east of the Alpine Fault. Similar to the results of their 3D inversion, the present

modelling suggests that the anomalous mantle extends deeper north (Mt Cook region)

than south (Wanaka region) (compare models 1 and 0 of Tab. 2.2).

Crustal roots of 14 ± 2 km thickness in central South Island (Scherwath et al.,

2003) and 18 ± 4 km thickness in southern South Island (relative to a coastal average

of 30 km) as well as mantle mass of similar excess beneath both regions seem, at first,

counter-intuitive with the total convergence across the Alpine Fault being ca. 40 km

less (Cande and Stock, 2004) and elevations ca. 500 m less across southern than central

South Island. Lower crustal extrusion (Bird, 1991) in an oblique convergent setting has

been suggested as a possible mechanism for maximum crustal thickening south east of

the Southern Alps topographic maximum and at ca. 15◦ counter-clockwise from the

Alpine Fault (Gerbault et al., 2002). Although lower crustal extrusion is a possible ex-

planation for the large crustal thickness beneath Wanaka, a further process is required

that thickens the mantle lithosphere and provides the mass excess to fit the gravity

anomaly beneath the Wanaka region.

Two observations suggest that the nearby Puysegur margin may contribute to thick-

ening of the Pacific lithosphere of the southwestern South Island. First, hypocentres

image north-eastward steepening of the Benioff zone in the Australian slab beneath

Fiordland (white line in Fig. 2.8 after Reyners et al., 2002; Smith and Davey, 1984).

Smith and Davey (1984) proposed a model, in which steepening of the slab results

from the northeast section of the Australian slab breaking while being obliquely sub-

ducted beneath the Pacific lithosphere. In this model, the broken section has rotated

about a horizontal axis into a more upward position and now resembles a ploughshare.
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Figure 2.8: Green arrows represent the projections of the 34 mm/yr Australian-Pacific

relative plate motion vector (blue arrows) perpendicular to the top of the Australian

slab (white line as interpreted by Reyners et al., 2002) and the Alpine Fault. These

overlay a 100 km depth slice of P-wave speeds beneath Fiordland (Eberhart-Phillips and

Reyners, 2001, their Fig. 6d). The black line denotes the Fiordland Cheviot refraction

profile.

The raised top edge of the rotated slab section provides the explanation for the dy-

namic uplift of the overriding Fiordland block. Second, 3D inversion of local-earthquake

data (Eberhart-Phillips and Reyners, 2001) indicates a zone of high mantle VP (VP >

8.5 km/s, i.e. to 2–3 % faster VP than the surrounding) beneath Fiordland that is east

of and adjacent to the Australian slab (Fig. 2.8). This high VP zone shallows from

90 km depth beneath Fiordland to 60 km depth beneath the Southern Alps (Eberhart-

Phillips and Reyners, 2001), while the eastern extent is unresolved. This zone of high

wave speed could, thus, represent the southernmost expression of the thickened Pacific
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Figure 2.9: Interpretative figure of the lithospheric structure along the Fiordland-

Cheviot profile. Top: The thin curve is the mean topography in a 10 km wide swath

along the Fiordland-Cheviot profile; and the thick curve is the Bouguer anomaly (Reilly

and Whiteford, 1979) (Fig. 2.1). Bottom: real scale 2D model of the Fiordland-Cheviot

profile, seismicity within a 10 km wide swath and interpretation.

mantle lithosphere within the South Island plate boundary. Here, the Australian slab

may act as a rigid backstop, called a buttress by Malservisi et al. (2003), which con-

tributes to thickening of the Pacific mantle lithosphere from the southwest. Projecting

the ∼34 mm/yr relative plate motion at the latitude of Fiordland (DeMets et al., 1994)

onto the Australian slab (Reyners et al., 2002) results in a convergence rate as large

as ∼26 mm/yr, i.e. 6 times greater than the convergence rate perpendicular to the

Alpine Fault at Jackson Bay (compare blue arrows in Fig. 2.8; also Fig. 2.9). Alterna-

tively, Malservisi et al. (2003) interpret a backstop wider than the slab inferred from

seismicity (Reyners et al., 2002) onto which the Pacific mantle collides at the almost

full plate speed of ∼34 mm/yr. Assuming that the Pacific mantle has been converging

for 10–20 Myr at a rate of ∼26 mm/yr onto the Australian slab, then the total short-
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ening across the margin would be as large as 250–480 km. The length of the Australian

slab Benioff zone implies that at least 150 km of the total shortening must have been

accommodated as subduction, while the 100–330 km remainder may have been accom-

modated by thickening of the Pacific mantle lithosphere. Hence, in the southern South

Island, shortening of the mantle may occur both at a slow convergence rate oriented

perpendicular to the Alpine Fault that resulted in ∼40 km of total convergence (Cande

and Stock, 2004), but also at a faster rate oriented perpendicular to the Australian

slab. As a result, the thickened mantle lithosphere is an effective load that pulls down

and thickens the overlying crust.

2.8 Conclusions

This earthquake refraction study offers new constraints on the uppermost mantle prop-

erties beneath the Southern Alps, in a direction almost parallel to the Australian-Pacific

plate boundary and perpendicular to former crustal studies across the Southern Alps.

1) The average Pn speed along the N60◦E profile is 8.54 ± 0.20 km/s and the Moho

is dipping at an apparent angle of 2.5◦ ± 1.3◦ SW. A 48 ± 4 km crustal thickness

is estimated near Wanaka. At 80 km east of the Alpine Fault but 40–55 km east

at Moho depth, the Pn anisotropy is in the range 7–13 % and the isotropic Pn

speed is 8.3 ± 0.3 km/s.

2) The Southern Alps crustal root near Wanaka is 18 ± 4 km thick (relative to a

coastal average of 30 km in South Island) and is twice that required by Airy

isostasy for a crustal root of –300 kg/m3 density contrast.

3) Mass balance predicts the presence of a mantle mass excess per unit strike length

of 2.7 x 1011 kg/m beneath the southern Southern Alps (Jackson Bay-Dunedin

profile), for an 18 km thick crustal root of assumed –300 kg/m3 density contrast
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with the lithospheric mantle. This mantle mass excess is approximately the same

across central South Island (SIGHT T2; Stern et al., 2000). The contrast would,

however, be greater for larger across-Moho density contrasts, e.g. 40 % greater

for a crustal root of –350 kg/m3.

4) The mantle body has a positive density contrast of 35 ± 5 kg/m3 minimum with

110 ± 20 km width and 70 ± 20 km thickness for an across-Moho density contrast

of –300 kg/m3.

5) For crustal roots with density contrasts of –400 kg/m3 and more, the minimum

density contrast required for the mantle body is larger than can be explained by

the downwarp of isotherms alone.

6) The Puysegur margin, located southwest of the Southern Alps collision zone, may

contribute to thickening of the Pacific mantle lithosphere beneath southern South

Island by its subducted slab acting as a rigid backstop. This thickened mantle

lithosphere is an effective load that pulls down the overlying crust.

7) The present gravity modelling is limited by the lack of constraints on the crustal

structure of southern South Island. Here crustal and mantle investigations are

needed in order to model the gravity effect of the crustal root more precisely, and

constrain the bulk and geometry of the mantle body.



Chapter 3

Synthetic P and S receiver

functions

3.1 Introduction

While in P receiver functions crustal reverberations can provide a constraint on crustal

thickness and the Vp/Vs ratio, they present the disadvantage of interfering with direct

Ps conversions. These reverberations may be strong, especially in tectonically active

regions such as the Southern Alps. Reverberations can, thus, render the interpretation

of P receiver functions difficult. Such interference, in contrast, does not occur in S

and SKS receiver functions. Advantage can be taken of this property to discriminate

reverberations from direct conversions within the P receiver functions. S and SKS

receiver functions are directly comparable with P receiver functions in the case of flat

isotropic layers. However, in the presence of dipping layers and anisotropy, especially,

polarities of S and P receiver functions differ. Effects on S receiver functions of dipping

and shallow or deep anisotropic layers with fast or slow symmetry axis are examined

using synthetic receiver functions.

51
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3.1.1 P receiver functions

Receiver functions produce an image of the subsurface in terms of P-to-S conversions.

They appear as a series of pulses, whose delay times increase with increasing conver-

sion depth, and whose amplitudes and polarities depend on the conversion from P to

S phases at the corresponding boundaries.

As the incidence of a teleseismic P wave is sub-vertical beneath a station, nearly

all P particle motion is contained in the vertical component, Z. In contrast, the par-

ticle motion of the P-to-S (Ps) converted energy is mainly horizontal. Hence, the Z

component, sZ(ri, t), can be approximated as the convolution of the earthquake source

function, S(r0, t), with the instrument response, R(ri, t). The horizontal component

sH(ri, t), in addition, contains all conversion information. Thus, sH(ri, t) is defined as

the convolution of S(r0, t) with R(ri, t) and the Green’s function, G(ro, ri, t), i.e. the

Earth’s response to an impulse:

sH(ri, t) = S(r0, t) ∗ G(ro, ri, t) ∗ R(ri, t)

The Earth’s response is isolated by deconvolving S(r0, t) and R(ri, t), i.e. sZ(ri, t),

from sH(ri, t). The remainder is a series of transmission and reflection coefficients that

characterise discontinuities encountered by the P phase along the raypath.

The amount of transmission and conversion of a phase at a discontinuity is directly

dependent on the phase incidence angle, the contrast in seismic properties across the

discontinuity, called the impedance contrast (Zoeppritz, 1919), and the velocity gradi-

ent. In P receiver functions, the Ps pulse is typically positive as the incident P phase

is transmitted from a faster to a slower medium, i.e. wave speed increasing with depth

(Fig. 3.1).



3.1. INTRODUCTION 53

In the case of flat isotropic layers, all P-to-SV converted energy remains in the

source-receiver plane and is seen in the radial receiver function. In the presence of

an interface dipping away from the source-receiver plane, however, energy is deflected

away and onto the transverse component (Cassidy, 1992; Savage, 1998). Similarly, in

the presence of anisotropy the P particle motion is converted into a quasi-P with linear

particle motion not quite parallel to the propagation direction and the S wave splits

into a quasi-S1 and a quasi-S2 with particle motions parallel and perpendicular to the

fast polarisation orientation for the propagation direction in question (Savage, 1998).

As a result, each quasi-S particle motion has a radial as well as a transverse component

that produce pulses on both radial and transverse components of the receiver functions.

3.1.2 S receiver functions

Similar to P waves converting to S waves, S and SKS phases experience conversions

into P. In contrast to P and Ps, the S and Sp particle motions are mostly horizontal

and vertical, respectively. Hence, Sp conversions and information on the subsurface can

be isolated by deconvolving horizontal components from the vertical (Bock and Kind,

1991; Faber and Mueller, 1980; Farra and Vinnik, 2000). Similar to a direct P, the SKS

phase is polarised in the source-receiver plane and energy on the transverse SKS receiver

function results from anisotropy and dipping layers. In contrast, the polarisation of the

direct S wave depends on the focal mechanism and has variable proportions of radial

and transverse components. Hence, the resulting receiver function will vary from earth-

quake to earthquake. As a result, S receiver functions appear less coherent, and energy

on the transverse component can not be attributed to anisotropy or dipping layers only.

Free-surface multiples of the direct S, like those of the P, arrive after the direct

S (see Figure 3.2). In contrast to Ps conversions that follow the direct P however,
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Figure 3.1: Top: Amplitude (solid curve) and phase (dashed curve) of transmitted

P and SV in the case of an incident P (left) or SV (right) propagating from a fast

into a slower medium (see model below). Amplitude and phase are calculated using

Zoeppritz’s equations (Zoeppritz, 1919). iPr and iPt are the reflected P and transmitted

P critical angles for an incident SV, respectively. At incidence angles below the reflected

P critical angle, iinc < iPr, the transmitted P is delayed by 180◦. It is advanced by 180◦

for iPr < iinc < iPt. The P transmission coefficient is, hence, negative for SV incidence

angles smaller than the transmitted P critical angle, iinc < iPt. The transmission

coefficient equals zero for iinc > iPt. Bottom: Vp and Vs model used to calculate

above P and SV transmission coefficients. P and S slownesses of 8 s/◦ and 12 s/◦ are

typical of epicentral distances of ∼45◦ and ∼65◦.
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Sp conversions precede the direct S wave. This difference is a clear advantage of S

receiver functions relative to P receiver functions as multiples do not interfere with Sp

conversions.

0
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p
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(k
m

)

4 6 8

V (km/s)

S P

Figure 3.2: Synthetic P and S receiver functions (right) for an isotropic 30-km thick

crust (left). Note that polarities of the S receiver function are shown reversed from the

true ones to make them resemble P receiver functions. Annotations P and S indicate the

direct wave pulses. Ps and Sp denote conversions from the Moho. PpPs, PsPs+PpSs,

SpPp and SsPp are the Moho free-surface multiples.

On the other hand, S receiver functions are noisier than P receiver functions be-

cause of interference with the P coda. Furthermore, interference of S and SKS phases

within epicentral distances of 85◦–90◦, restricts the use of S and SKS receiver functions

to ∆ < 85◦ and 90◦ < ∆ < 210◦, respectively (Yuan et al., 2006). Corresponding S and

SKS slownesses are within 10–15.5 s/◦ and 5–6.5 s/◦, respectively. P slownesses range

from 5 s/◦ to 9 s/◦ and, thus, overlap with the slowness range of SKS waves. Because

of the larger S slowness, Sp conversions of S receiver functions have greater move-outs
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and amplitudes (Fig. 3.1) than conversions in P and SKS receiver functions (Fig. 3.3).

Finally, S and SKS are lower frequency than P phases and, thus, provide less resolution

than P receiver functions. The resolution is half a wavelength in transmission.

As illustrated in Figure 3.1, the Sp phase has a phase shift of –180◦ at incidence

angles less than the reflected P critical angle, iinc < iPr. This phase shift is 180◦ at

incidence angles within the reflected and transmitted P critical angles, iPr < iinc < iPt,

where there is no reflected P phase. Finally, at incidence greater than iPt, there is no

transmission as a P phase. As a result, the Sp transmission coefficient is negative at

incidence angles less than the transmitted P critical angle, iinc < iPt, and zero above.

Thus, polarities of S receiver functions are opposite to those of P receiver functions.

In order to enable comparison of time delays, τ , and polarities of S receiver func-

tions with those of P receiver functions, S and SKS receiver functions of the present

chapter are displayed with amplitude and time scales reverse. Pulse polarities will be

presented as shown in figures, i.e. reversed to the real polarity. Direct comparison of

Ps and Sp polarities is possible in the case of flat isotropic layers only as shown in

Figure 3.3. The effects of dipping layers and anisotropy are explored in Section 3.3.

3.2 Method

Synthetic SV and SH receiver functions are produced in two steps. Firstly, three-

component synthetic seismograms are computed with a code of Frederiksen and Bo-

stock (2000) code for an incident SV or SH phase and a 2 s pulse. This code allows one

to specify models with dipping layers and anisotropy with hexagonal symmetry and a

plunging symmetry axis. Secondly, the synthetic seismograms are used as input for a

program of Park and Levin (2000) that computes the receiver functions. The receiver
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Figure 3.3: Left : Vp and Vs distribution with depth for a standard lithosphere (Ken-

nett and Engdahl, 1991). Right : corresponding synthetic SKS, P and S radial receiver

functions as a function of slowness. Annotations C, M and L denote conversions from

the top of the lower crust, the Moho and the lithosphere-asthenosphere boundary, re-

spectively. Arrows on the right-hand side indicate the slowness range of the incident

SKS, P and S waves. Positive (blue) and negative (red) pulses in the time and slow-

ness range of 8–16 s and 6.5–9 s/◦ are C and M lower crust and Moho free-surface

multiples PpPs (positive) and PsPs+PpSs (negative). Note the increasing move-out

with increasing slowness and increasing depth to the discontinuity. Interference oc-

curs in the P receiver functions between the negatively polarised lower crust multiples

PsPs+PpSs and lithosphere-asthenosphere conversion (L). Low amplitude peaks in the

S receiver functions at large slowness and at twice the C and M delay times correspond

to numerical ringing.



58 CHAPTER 3. SYNTHETIC P AND S RECEIVER FUNCTIONS

functions are compiled in the ZRT reference frame with radial (R) and transverse (T)

components in the right-handed convention, in which the transverse lags the radial by

90◦.

Park and Levin’s 2000 code implements the multiple-taper spectral correlation

method (Kuo et al., 1990; Vernon et al., 1991) before calculating the deconvolution.

Seismograms are multiplied with a set of orthogonal slepian tapers (Fig. 3.4) then

Fourier transformed into so called spectral estimates.

Slepian tapers are designed to minimise spectral leakage, that is to maximise the

ratio of spectral amplitudes between the central lobe and the sidelobes (Walden et al.,

1995, e.g.). The width of the central lobe can be estimated from the minimum distance

between two uncorrelated spectral elements (Walden et al., 1995, e.g.). It is defined by

two times the so-called bandwidth, W. The bandwidth is therefore a measure of the

spectral resolution, e.g. the smaller the bandwidth the higher the spectral resolution.

In slepian tapers, however, spectral resolution trades off with energy maximisation, e.g.

the higher the spectral resolution the lower the energy maximisation and the stronger

the spectral leakage. Such effect can be compensated by increasing the length, T, of the

time series, which yields lower spectral leakage than the shorter time series. The value

of the time-bandwidth product, p=TW, determines the spectral resolution and energy

maximisation that can be achieved for a certain combination of T and W. For Slepian

tapers, the length of the selected time window, T, and the time-bandwidth product,

p, also determine the time, t=T/2p, to which a signal (e.g. Ps conversion) energy is

retrieved effectively. Finally, the time-bandwidth product determines the maximum

taper order beyond which maximisation of energy doesn’t hold. For slepian tapers, K

= 2p – 1 tapers of orders 0,.. 2p – 2 should be used at the most (e.g. Walden et al., 1995).

The code estimates the receiver functions in the frequency domain from the sum
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of the cross-correlations of the horizontal and vertical component spectral estimates,

normalised by the sum of the auto-correlations of the vertical component spectral esti-

mates and a pre-event noise spectrum estimate for frequency-dependent damping (Eq. 3

in Park and Levin, 2000). Such multi-taper correlation has the advantage of avoiding

numerical instabilities that result from zero division in the spectral domain (Ammon
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Figure 3.4: Top: synthetic waveform (blue) and slepian tapers (red) used in the multi-

taper correlation (MTC) with time-bandwidth product p=2.5 and number of windows

K=3. Bottom: tapered waveform before Fourier transformation.
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et al., 1990). In addition, the code is supplemented by an uncertainty estimate for the

frequency-domain multi-taper receiver function (Park and Levin, 2000) that is used to

weight the single receiver functions for stacking. This weighted stacking renders the

code insensitive to single noisy receiver functions.

Finally, spectra are low-pass filtered within the code up to a user-defined cut-off

frequency, fc, with a cosine-squared function, cos2(πf/2fc) (Park and Levin, 2000), to

further minimise ringing in the spectrum.

Park and Levin’s 2000 code was modified here for the purpose of calculating S

receiver functions and stacking receiver functions as a function of slowness (herein ex-

pressed as ray parameter, p).

In the following synthetic examples, a time-bandwidth product p=2.5 and K=3

tapers have been adopted as recommended by Park and Levin (2000). Pre-event and

post-event windows are 100 s and 20 s long, respectively, in order to retrieve energy up

to 20 s. A cut-off frequency of 0.5 Hz is used that effectively allows energy up to 0.33 Hz.

Single receiver functions are stacked in back azimuth and epicentral distance bins of

10◦ with increments of 5◦, so that each receiver function participates in two neighbour-

ing bins. Rays are incident from north in the epicentral distance stacks. Rays have a

slowness of 13.9 s/◦, equivalent to an epicentral distance of 50◦ or an incidence angle

of ∼35◦, in the back azimuth stacks.

3.3 Synthetic SV/SH receiver functions

Effects of dipping layers and anisotropy on P receiver functions have been compared

in detail by Cassidy (1992) and Savage (1998). Below, such effects are investigated for

SV and SH receiver functions.
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3.3.1 Effect of a dipping layer

Continuity of the incident SV or SH particle displacement at the boundary but a new

propagation direction will result in the transmitted S polarisation having both radial

and transverse components. The radial component of particle motion allows conversion

of S energy into P.

Figure 3.5: Model DIP8 (Tab. 3.1) represents an in-

terface dipping 8◦ to the north. The dipping inter-

face has the effect of deflecting the incident energy

away from the original propagation plane, the verti-

cal plane passing through source and receiver.
Vp = 8.0 km/s

V = 4.6 km/ss

Vp = 6.8 km/s

V = 3.9 km/ss

N S
DIP8

SV and SH receiver functions of Figure 3.6 and 3.7, respectively, are described below:

(a) SV-to-P conversions are absent where the angle between dipping plane and inci-

dent S is greater than the transmitted P critical angle iinc > iPt (Fig. 3.1; ∆ < 45◦

in top of Figure 3.6-3.7 and back azimuths within ±20◦ of the dip direction in the

bottom of Figure 3.6-3.7). The absence of a direct S is interpreted as a numerical

problem in Park and Levin’s 2000 computer code;

(b) energy at 0 s delay time of the component perpendicular to the incident polar-

isation – transverse component for an incident SV and radial component for an

incident SH – results from the incident S energy being deflected away from the

original propagation plane;

(c) Sp energy is apparent on the component of the incident polarisation only – radial

(or transverse) in the case of an incident SV (or SH);
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Figure 3.6: Effect on SV receiver functions of a layer dipping 8◦ to the north (model

DIP8 of Tab. 3.1) as a function of epicentral distance (top) and back azimuth (bottom).

Top: rays’ azimuth is north. Bottom: rays’ slowness is 13.9 s/◦, which is equivalent to

an S wave incidence angle of 35◦ at the Moho and an epicentral distance of ∼50◦. A

0.5 Hz low-pass filter is applied. Amplitudes and time scale are reversed as discussed

in the text to make S receiver functions polarities and delay times comparable to P

receiver functions.
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Figure 3.7: Same as Figure 3.6 for and incident SH wave.
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(d) SV waves travelling updip produce Sp conversions with the largest amplitudes and

delay times. Those travelling downdip produce Sp with the smallest amplitudes

and shortest delay times;

(e) SH waves travelling updip produce Sp conversions with the smallest amplitudes

and largest delay times. Those travelling downdip produce Sp with the largest

amplitudes and shortest delay times;

(f) polarities of the radial component are all positive (or all negative) in the case of

an incident SV (or SH);

(g) polarities of the transverse are anti-symmetric about the dip direction, i.e. they

reverse at 0◦ and 180◦ from this direction. As a result, the initial S pulse on the

transverse is always negative for back azimuths east of the dip direction;

(h) a third arrival at delay times twice those of the Sp conversions is an artifact

produced by numerical ringing and is enhanced for waves travelling updip;

Similarities with P receiver functions:

(a) Deflection of the incident wave energy towards the transverse plane results in

pulses with 0 s delay time on both components (Cassidy, 1992);

(b) Sp delay times in both SV and SH receiver functions are the largest for waves

propagating updip (Cassidy, 1992);

(c) Sp amplitudes in the SV receiver functions are the largest for waves propagating

updip (Cassidy, 1992) but the smallest in the SH receiver functions;

(d) polarities of the transverse component are anti-symmetric about the dip direction

(Cassidy, 1992; Savage, 1998);

(e) similar to P receiver functions (Savage et al., 2007a), the direct S pulse has

negative polarity for updip-travelling waves with SKS incidence impinging on
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θ

θ>α

S

Figure 3.8: Schematic representation of the polarity reversal of the direct S pulse in

the radial SV receiver function that can occur in the case of an updip-travelling SKS

but not of a shallow incident S (modified from Savage et al., 2007a, for an incident P).

a steeply-dipping interface with a strong contrast at the top (not shown in the

synthetic receiver functions but in Figure 3.8).

Differences with P receiver functions:

(a) absence of conversions where iinc > iPt;

(b) an Sp pulse exists for the component that contains the incident S polarisation,

only. In contrast, the Ps pulse exists for both components of the P receiver

functions (Cassidy, 1992; Savage, 1998).

3.3.2 Effect of crustal anisotropy

Primary causes of crustal anisotropy are rock foliation and aligned cracks (Babuska and

Cara, 1991; Crampin, 1978). These are typically modelled with hexagonal symmetry

and a symmetry axis along the slow propagation orientation.
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Figure 3.9: Model ANISO1 (Tab 3.1) consists of

a top anisotropic layer overlying an isotropic half-

space. The anisotropy is defined by a slow symme-

try axis dipping to the north, that is the wave speed

is 5 % lower in the axis direction than in the plane

perpendicular to it.

Vp = 8.0 km/s

V = 4.6 km/ss

Vp = 6.8 km/s

V = 3.9 km/ss

N S
ANISO1

dP = -5 %
dS = -5 %

As the incident SV or SH enters the anisotropic layer, this is split into two quasi-S

waves, qS1 and qS2, whose polarisations have variable amounts of radial and transverse

components. This, in particular, allows conversion of an incident transversely polarised

SH into qP. Both SV-to-qP and SH-to-qP conversions will be referred as Sqp in the

following text and figures.

Characteristics of the SV and SH receiver functions (Fig. 3.10 and 3.11) in the presence

of a shallow anisotropic layer are described below:

(a) S wave splitting into qS1 and qS2 is apparent as a pulse at τ = 0 s of the radial

receiver function, but a pulse at τ < 0 s on the transverse (Note that in the

current representation of times a negative delay represents a delayed pulse). The

negative delay on the transverse varies with back azimuth;

(b) conversion of the qS1 and qS2 particle motions into qP is observed on both radial

and transverse receiver functions. However, the amplitude ratio Sqp/S is larger

on the radial than on the transverse;

(c) S and Sqp polarities of the transverse receiver function are anti-symmetric about

the direction of the symmetry axis. They reverse at 0◦ and 90◦ (or less) and 180◦

from this direction in the case of an horizontal (or dipping) axis. The polarity

reversal is at ±60◦ in the case of an axis of symmetry plunging 45◦ to the north.

In addition, in the case of an incident SH (Fig. 3.11):
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Figure 3.10: Effect of anisotropy with slow axis of symmetry (model ANISO1 of

Tab. 3.1) on SV receiver functions as a function of epicentral distance at 0◦ from north

(top) and back azimuth at 50◦ epicentral distance, i.e. slowness of 13.9 s/◦ (bottom).

Anisotropy is –5 %, has hexagonal symmetry and a slow axis plunging at 45◦ to the

north (Fig. 3.9). A 0.5 Hz low-pass filter was applied. Ray parameters are same as in

Figure 3.6. Amplitude and time scales are reversed as discussed in text.
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Figure 3.11: Same as Figure 3.10 for an incident SH wave.
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(a) the initial qS1/qS2 and corresponding conversions into qP appear as two short

pulses with opposite polarities on the transverse component;

(b) Sqp delay time variations as a function of back azimuth are smooth in the case

of a horizontal axis of symmetry (not shown) but occur as an abrupt phase shift

on the radial component in the case of a dipping axis of symmetry. Phase shifts

and amplitudes of the Sqp on the radial receiver function are symmetric about

the symmetry axis.

Similarities with P receiver functions:

(a) Splitting of the incoming S is apparent in the presence of energy on the receiver

function component perpendicular to the incoming S polarisation (Savage, 1998).

This includes pulses for the qS and corresponding Sqp conversion,

(b) polarities of the transverse receiver function are anti-symmetric about the azimuth

of the symmetry axis and reverse at 0◦ and ≤90◦ from the axis direction (Savage,

1998).

Differences with P receiver functions:

(a) The S pulse on the transverse S receiver function, displays a phase shift that does

not exist in P receiver functions;

(b) in the case of an incident SH, the direct S and conversions consist of two short

pulses with opposite polarities;

(c) the SH-to-qP conversion displays sudden phase shifts on the radial receiver func-

tion that are symmetric about the symmetry axis.
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3.3.3 Effect of mantle anisotropy

Lattice Preferred Orientation of olivine minerals is the primary cause of mantle anisotropy.

In models ANISO2a–d (figure below; Tab. 3.1), the anisotropic mantle is a half-space

with fast propagation along the symmetry axis. The anisotropic mantle is overlain by

an isotropic crust. Models ANISO2a–c have symmetry axes that are horizontal, dip-

ping 45◦ N and vertical, respectively. Finally in model ANISO3 (Tab. 3.1), the fast

axis of model ANISO2a is replaced by a slow one.

Vp = 8.0 km/s

V = 4.6 km/ss

Vp = 6.8 km/s

V = 3.9 km/ss

N S
ANISO2

δP = 6 %
δS = 4 %

Vp = 6.8 km/s

V = 3.9 km/ss

N S
ANISO2b

Vp = 6.8 km/s

V = 3.9 km/ss

N S
ANISO2c

Figure 3.12: Models ANISO2a–c of Table 3.1

Figure 3.13: Model ANISO2d (Tab. 3.1) is sim-

ilar to model ANISO2a but has a lower wave-

speed contrast at the top of the anisotropic half-

space than model ANISO2a has.

Vp = 6.8 km/s

V = 3.9 km/ss

N S
ANISO2d

Vp = 7.5 km/s

V = 4.3 km/ss

δP = 6 %
δS = 4 %

The incident SV or SH is split in the anisotropic half-space into quasi-S waves, qS1

and qS2. Both qS1 and qS2 are converted into S waves (i.e. S1 and S2) at the top of

the anisotropic medium and propagate independently up to the surface. In addition,

the portion of the qS particle motion that is parallel to the propagation direction is
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Figure 3.14: Effect of anisotropy with horizontal fast axis of symmetry on SV receiver

functions (model ANISO2a of Tab. 3.1) as a function of epicentral distance at 0◦ back

azimuth (top) and back azimuth at 50◦ epicentral distance, i.e. slowness of 13.9 s/◦

(bottom). The anisotropy is of δP = 6 % and δS = 4 % and has hexagonal symmetry.

The symmetry axis is horizontal and oriented north.
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Figure 3.15: Effect of a plunging symmetry axis on the direct S pulse polarity (compare

with top of Figure 3.14). Synthetic SV receiver functions are presented as a function of

epicentral distance at 0◦ back azimuth. These are for model ANISO2b with a symmetry

axis plunging 45◦ to the north (top) and model ANISO2c with a vertical symmetry axis

(bottom). Other model parameters are same as in model ANISO2a (Tab. 3.1).
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Figure 3.16: Effect of the velocity contrast at the top of the anisotropic half-space on

the direct S pulse polarity. Synthetic SV receiver functions are presented as a function

of epicentral distance at 0◦ back azimuth. These are calculated for model ANISO2a

with a 10 % Vp increase with depth from 6.8 km/s (top) and model ANISO2d (Tab. 3.1)

with 18 % Vp increase (bottom).
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converted into P at the top of the half space. In the case of overlying isotropic layers

only, S1 and S2 polarisations are conserved up to the surface. In the other case, their

polarisations are altered.

The anisotropy has the following effects on SV receiver functions (Fig. 3.14-3.16):

(a) shear-wave splitting of the incident SV or SH is apparent as a pulse at 0 s time

delay on both radial and transverse components (no phase shift on the transverse

receiver function as in contrast to shallow anisotropy);

(b) the polarity of the initial S pulse of both radial and transverse periodically

switches with the back azimuth and the epicentral distance (Fig. 3.14). On the

radial and for close epicentral distance of ∼30◦ (S incident angle iinc ∼ 40◦;

not shown), the direct SV pulse polarity is negative at all back azimuths. At

epicentral distances up to 45◦ (iinc ≥ 35◦), however, the SV pulse polarity is neg-

ative for back azimuths within 45◦ of the fast polarisation orientation (bottom

of Figure 3.14). The critical epicentral distance, up to which a polarity reversal

occurs, decreases as the symmetry axis steepens (compare top of Figure 3.14 and

3.15; models ANISO2a–c) or as the velocity contrast at the top of the anisotropic

medium decreases (Fig. 3.16; model ANISO3);

(c) on the transverse, the initial S pulse polarity reverses every 45◦ from the symmetry

axis (Fig. 3.14; model ANISO2a);

(d) Sp conversions exist on the radial receiver function and are positive where the

initial S pulse is positive but are absent where the initial S pulse is negative;

(e) Conversely, Sp conversions are strong on the transverse component where the

initial S pulse is absent on the radial.
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Figure 3.17: Same as Figure 3.14 for an incident SH wave.
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SH receiver functions (Fig. 3.17) display similar characteristics to the SV receiver func-

tions (Fig. 3.14) with a few exceptions:

(a) the negatively polarised S pulse occurs on the transverse only, that is the S pulse

is always positive on the radial but is negative on the transverse for back azimuths

within 45◦ east of the symmetry axis and of the perpendicular direction;

(b) the Sp conversion on the transverse receiver function has same polarity as the

direct S-wave pulse.

Figure 3.18: In model ANISO3 (Tab. 3.1), the fast axis

of symmetry of model ANISO2a has been replaced by

a slow axis. Although receiver functions (Fig. 3.19)

present characteristics similar to receiver functions of

model ANISO2a (Fig. 3.14), polarity switches of the ini-

tial S pulse occur more often, circa every 30◦ on the

radial.

Vp = 8.0 km/s

V = 4.6 km/ss

Vp = 6.8 km/s

V = 3.9 km/ss

N S
ANISO3

dP = -6 %
dS = -4 %

Similarities with P receiver functions:

Anisotropy produces receiver functions with a strong transverse component (Levin

et al., 2002; Savage, 1998).

Differences with P receiver functions:

(a) The split S results in energy at τ = 0 s on both radial and transverse receiver

functions. This is a major difference with P receiver functions, where in the case

of deep anisotropy, there is no direct P pulse on the transverse receiver function

(Savage, 1998);
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Figure 3.19: Effect of deep anisotropy with horizontal slow axis of symmetry on SV

receiver functions (model ANISO3 of Tab. 3.1) as a function of epicentral distance at

0◦ back azimuth (top) and back azimuth at 50◦ epicentral distance, i.e. slowness of

13.9 s/◦ (bottom). The anisotropy is of δP = –6 % and δS = –4 % and has hexagonal

symmetry. The symmetry axis is oriented north.
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(b) at large S incidence angles (large slowness) and large impedance contrasts at the

top of the anisotropic medium, the initial S pulse has negative polarity. This

is interpreted as the result of the elliptical particle motion that arises from the

interference between the incident S wave and its free surface Sp conversion, which

occurs at S wave incidence angles greater than the S critical angle, i.e. incidence

angles greater than allowed by the shear wave window (Booth and Crampin,

1985). A possible explanation for the unusually large S wave incidence at the free

surface is given by the anomalous refraction angle, which occurs when a phase

is converted at an interface separating an anisotropic medium from an isotropic

one (e.g. Slawinski et al., 2000).
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3.4 Conclusions

In the case of flat isotropic layers SV receiver functions are directly comparable with P

receiver functions. In the presence of dipping layers or anisotropy, however, polarities

in the S and P receiver functions differ appreciably. These differences are inherent to

the S and P wave particle motions.

For instance, in P receiver functions, the presence of energy at τ ∼ 0 s on the

transverse component can be attributed entirely to a dipping layer or shallow crustal

anisotropy (Savage, 1998). In S receiver functions, in contrast, energy at τ ∼ 0 s is no

longer a criterion as such energy is present in most cases: dipping boundary, shallow

and deep anisotropy.

Furthermore with P receiver functions, dipping boundaries produce Ps conversions

that appear on both radial and transverse receiver functions. In the case of an incident

S wave, however, the Sp conversion from a dipping boundary appears on the receiver

function component parallel to the polarity of the incident S only, i.e. on the radial

receiver function for an incident SV but on the transverse receiver function for an in-

cident SH.

Polarity reversals on the transverse receiver function may be a further criterion to

distinguish between a dipping boundary, and shallow or deep anisotropy. In the case of

a dipping boundary, polarity reversals on the transverse component are similar to those

of P receiver functions – they occur at 180◦ back azimuth intervals (Savage, 1998). In

the case of shallow anisotropy, the polarity reversals occur at ≤90◦ intervals as in P

receiver functions (Savage, 1998) but, unlike in that case, they occur more frequently

in the presence of deep anisotropy. However, these polarity reversals may be difficult
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Table 3.1: Models of synthetic SV and SH receiver functions of Figure 3.6–3.17.

model H ρ VP VS δP δS trend plunge strike dip VP /VS

(km) (kg/m3) (m/s) (m/s) (%) (%) (◦) (◦) (◦) (◦)

DIP8 40 2700 6800 3885 - - - - - - 1.75

20 3300 8000 4571 - - - - –90 8 1.75

ANISO1 5 2700 6800 3885 - - - - - - 1.75

35 2700 6800 3885 –5 –5 0 45 - - 1.75

20 3300 8000 4571 - - - - - - 1.75

ANISO2a 40 2700 6800 3885 - - - - - - 1.75

20 3300 8000 4571 6 4 0 0 - - 1.75

ANISO2b 40 2700 6800 3885 - - - - - - 1.75

20 3300 8000 4571 6 4 0 45 - - 1.75

ANISO2c 40 2700 6800 3885 - - - - - - 1.75

20 3300 8000 4571 6 4 0 90 - - 1.75

ANISO2d 40 2700 6800 3885 - - - - - - 1.75

20 3300 7500 4286 6 4 0 0 - - 1.75

ANISO3 40 2700 6800 3885 - - - - - - 1.75

20 3300 8000 4571 –6 –4 0 0 - - 1.75
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to distinguish in the presence of complex crustal structure where dipping boundaries

and anisotropy are both present.

Shear-wave splitting of an incident S wave in the presence of anisotropy is one rea-

son for differences between P and S receiver functions. In the case of an incident P

wave traversing an anisotropic medium, the particle motion is slightly rotated away

from the propagation direction into a quasi-P. The quasi-P particle motion, however,

is reset to a true radially polarised P in a subsequent isotropic layer. Thus, later Ps

conversions of P receiver functions are unaffected by a deep anisotropic layer.

In contrast, the incident S wave is split while traversing the anisotropic medium, and

remains split in subsequent isotropic layers (or is split further in overlying anisotropic

layers). Hence, the polarity of an Sp conversion at a particular interface depends on the

splitting of the S wave, which occurred in previously traversed and deeper anisotropic

layers below the converting interface. Conversely, the quasi-P particle motion of the

Sp conversion traversing an anisotropic layer above that interface will be reset to a

true radially polarised P particle motion in a subsequent isotropic layer. Thus, in the

presence of multiple anisotropic layers, Sp conversions from deeper interfaces should

present fewer polarity reversals with back azimuth and stack more constructively than

Sp conversions from shallow interfaces.

A direct S pulse with negative polarity on the radial receiver function occurs in two

distinct cases: 1) an SKS phase incident onto a dipping boundary with strong velocity

contrast at the top; and 2) an S phase traversing an anisotropic layer with a strong

impedance contrast at the top.

1) At SKS incidence, similar to incident P (Savage et al., 2007a), such a reverse

polarity occurs in the case of a dipping interface with a strong velocity contrast at the
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top, and when the transmission angle θ of the updip-propagating S is smaller than the

dip α of the interface, i.e. θ < α (Fig. 3.8).

2) For the shallow incident S, however, an anisotropic layer with strong velocity

contrast at the top is necessary in order to reverse the polarity of the direct S pulse.

The polarity reversal depends on the angle between the incident S and the symmetry

axis of the anisotropic medium, and therefore, depends on both back azimuth and epi-

central distance. On the radial receiver function and at epicentral distances of ∼30◦,

the polarity reversal occurs at all back azimuths. In the case of anisotropy with a

horizontal fast symmetry axis, the reversal persists at epicentral distances up to 45◦

for back azimuths within 45◦ of the symmetry axis. The maximum epicentral distance

to which the reversal persists, i.e. the critical epicentral distance, decreases with de-

creasing velocity contrast and increasing dip of the symmetry axis. Such a velocity

contrast may be encountered at the Moho or the top of the lower crust. However, this

explanation is non unique. A combination of dipping boundaries and/or anisotropic

layers can sufficiently alter the S polarisation to produce a negative initial S pulse from

elsewhere in the lithosphere.

These synthetic receiver functions have sampled only a few idealised cases. The

lithosphere contains more complexity than in the one-layer models tested here, and

modelling is probably needed for each special case.



Chapter 4

P and S receiver function analysis

4.1 Abstract

The lithospheric structure is investigated beneath four South Island locations using

teleseismic receiver functions compiled from three-component seismograms recorded at

Geonet broad-band stations: RPZ (Rata Peak), JCZ (Jackson Bay), WKZ (Wanaka)

and EAZ (Earnscleugh). Crustal thickness, Vp, Vs, anisotropy and dipping layers of

the subsurface are estimated by matching the radial and transverse components of

P, S and SKS receiver functions with synthetic receiver functions. S and SKS receiver

functions can help to discriminate crustal reverberations from direct conversions within

the P receiver functions as discussed in the previous chapter.

Receiver functions at station RPZ imply a low Vp/Vs ratio of ∼1.60 for the crust

of central South Island, consistent with earlier studies of (Kleffmann, 1999; Pulford,

2002).

Across the southern South Island, receiver functions reveal the deepening of a dis-

continuity from 34 ± 5 km (JCZ) and 32 ± 3 km (EAZ) on either side of the Southern

Alps to 39 ± 4 km depth beneath the highest topography (ca. 50 km NW of WKZ) as-

suming Vp/Vs ratios of 1.65–1.75. The interpretation of this discontinuity as the Moho

is inconsistent with Bouguer and isostatic gravity anomalies of –80 mGal and –10 mGal

83
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at station WKZ. Such Moho depths are also inconsistent with crustal thickness esti-

mates of 43–45 km and 48 ± 4 km from 3D inversion of travel times (Eberhart-Phillips

and Bannister, 2002) and earthquake refraction (Section 2.4, p. 29), respectively. A

low crustal Vp/Vs ratio of 1.55 is necessary to reconcile conversion delay times with

a ∼48 km deep Moho. Alternatively, the discontinuity may represent a lower crustal

boundary, implying a weak contrast at the Moho.

A mantle discontinuity is interpreted to exist at 50–70 km depth, i.e. 15–30 km

below the presumed Moho. This discontinuity may represent a rotation of the fast

symmetry axis azimuth and/or an additional Vp increase of ∼0.3 km/s respectively

suggested by S and P receiver functions. The Vp increase may be interpreted as the

result of a phase change such as partial eclogitisation or the transition from spinel to

garnet peridotite, called Hales discontinuity (Hales, 1969). A rotation of the anisotropy

fast axis of symmetry could be explained by mechanical decoupling or transitional

plasticity allowed by the volume change associated with phase transition (e.g. Bostock,

1997; Levin and Park, 2000; Sammis and Dein, 1974).

4.2 Introduction

While central South Island has in the past decade been the focus of extensive geo-

physical studies notably SIGHT, less attention has been paid to the southern South

Island and western Otago. This chapter applies the receiver function method to Geonet

data to provide further information on the crustal structure across this region. Geonet

Canterbury station RPZ (Fig. 4.1) is selected where the crustal structure is known

(Van Avendonk et al., 2004) and provides comparison with crustal models derived with

the present method. Three Geonet stations JCZ (Jackson Bay), WKZ (Wanaka) and

EAZ (Earnscleugh) are selected that align perpendicular to the Alpine Fault (Fig. 4.1)

and approximately parallel to the Jackson-Dunedin gravity profile of Section 2.6 of
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Figure 4.1: Haast Schist textural zones of the southern South Island. Chlorite zones

II, III and IV are known as the Otago Schist. The higher metamorphic grades of the

biotite and garnet zones are known as Alpine Schist. Red triangles denote Geonet

stations RPZ, JCZ, WKZ and EAZ used in this study. Thick dark lines represent

metamorphic boundaries; thin lines are coast and lake shores.
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Chapter 2.

Crustal thickness estimates for the southern South Island exist from this study’s

earthquake refraction (Section 2.4) with a 48 ±4 km near the Wanaka township , and

from the joint-inversion for hypocentres, Vp and Vp/Vs models from active and passive

source travel times (Eberhart-Phillips and Bannister, 2002). The 7.8 km/s isovel sug-

gests an average crustal thickness of 43 km in western Otago with a maximum of 45 km

directly southwest of Wanaka (Eberhart-Phillips and Bannister, 2002). Although the

inverted wave speeds are well resolved where most hypocentres lie, i.e. above 25–30 km

depth and up to 100 km from the Alpine Fault in the east, the resolution is less at

Moho depth.

4.3 Otago and Alpine Schists

Stations JCZ, WKZ and EAZ are located on the Alpine and Otago Schists, both part

of the Haast Schist group (Fig. 4.1; e.g. Suggate, 1961). The Otago Schist represents

an accretionary prism that formed in Late Paleozoic–Mesozoic during subduction along

the south Gondwana margin (Mortimer, 2000). Late Cretaceous extension on low-angle

shear zones (Deckert et al., 2002), erosion and possibly isostatic uplift as a consequence

of underplating (Grapes and Watanabe, 1994) have combined to exhume the schist

from deep within the accretionary prism. The Schist forms a ca. 150 km wide two-

sided metamorphic arch (Mortimer, 2000) with its axis oriented northwest-southeast,

perpendicular to the present plate boundary. The Alpine Schist (Fig. 4.1), which is the

highest grade schist, has been further exhumed by rapid Cenozoic uplift and erosion

along the Alpine Fault. Thus, the Alpine Schist exhibits rocks with recent Cenozoic

metamorphism and a deeper metamorphic record than the Otago Schist. As a result,

the metamorphic grade not only increases towards the Otago Schist axis but also to-
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wards the Alpine Fault.

Thermobarometry (Grapes, 1995; Grapes and Watanabe, 1994, 1992) has con-

strained maximum pressures and temperatures experienced by the schists. Two meta-

morphic events “D1” and “D2” define a P/T path interpreted as prograde metamor-

phism in a low-heat flow, subduction setting (D1), followed by retrograde metamor-

phism during warming back to normal crustal temperatures (D2; Grapes and Watan-

abe, 1992). The first event “D1” is mainly preserved in chlorite and biotite-albite zone

rocks (Otago Schist) that are characterised by high P/T ratios and maximum pressures

of 430–750 MPa, which scale to 15–25 km depth. The later event “D2” is preserved

in the garnet and oligoclase zones (Alpine Schist) and is characterised by a lower P/T

ratio but higher maximum pressures of 520–920 MPa (equivalent to 20–32 km depth)

than the first event (Grapes and Watanabe, 1992).

The maximum pressures recorded in “D1” suggest that schists at the surface were

once buried at 15–25 km depth, and that rocks once buried to depths greater than

35 km would have been within the eclogite stability field. Eclogitic xenoliths found

80 km north of Dunedin (southeast South Island) and estimated to originate from

60 km depth (Mason, 1968) provide evidence for partial eclogitisation directly north-

east of Otago. Such rocks could exist beneath Otago at a similar depth in the mantle

or even shallower, i.e. in the lower crust, where exhumation was largest.

4.4 Data set

P, S and SKS (SKSac branch) phases are extracted from three-component seismograms

from the Geonet broad-band sites RPZ, JCZ, WKZ and EAZ (Tab. 4.1) for teleseisms
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Figure 4.2: Geonet network (grey triangles) and estimated Ps, Sp and SKSp piercing

points beneath stations RPZ, JCZ, WKZ and EAZ (Tab. 4.1) for an assumed conversion

depth of 30 km and crustal Vp and Vs of 6.2 km/s and 3.54 km/s, respectively. Blue

lines are Bouguer gravity anomaly contours at 30 mGal intervals (Reilly and Whiteford,

1979). Dark lines are geophysical transects SIGHT T1 and T2 (Okaya et al., 2002) and

the southwest-northeast Fiordland-Cheviot earthquake refraction profile of Chapter 2.
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produced by earthquakes of MW ≥ 6.5 and epicentral distances of 20◦–100◦, 30◦–

85◦ and 90◦–130◦, respectively. Approximately 60, 30 and 25 good P-, S and SKS

receiver functions, respectively, are derived for stations JCZ, WKZ and EAZ and 74,

41 and 33 for the longer operating RPZ station (Tab. 4.1). While most P and S phases

arise from earthquakes in the western Pacific, half of the SKS phases originate in the

southeastern Pacific with back azimuths of 100◦–140◦ (Fig. 4.2, 4.3). The uneven

earthquake distribution is expected to produce a trade-off between back azimuth and

epicentral distance.
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Figure 4.3: Earthquake distribution for SKS, P and S phases recorded at station RPZ

as a function of back azimuth and epicentral distance. These earthquake distributions

are representative of those at stations JCZ, WKZ and EAZ.
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Table 4.1: Geonet broad-band stations Earnscleugh (EAZ), Jackson Bay (JCZ), Rata

Peak (RPZ) and Wanaka (WKZ) locations, installation dates and number of selected

P, S and SKS phases.

station latitude longitude height available number of events

(◦) (◦) (m) since P S SKS

EAZ -45.23268 169.3082 350 Nov. 2004 55 30 26

JCZ -44.07487 168.7854 1062 Jun. 2004 61 32 26

RPZ -43.71627 171.0538 453 Jun. 2001 74 39 33

WKZ -44.82866 169.0175 558 Jun. 2004 62 32 27
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4.5 Method

4.5.1 Receiver function preparation

P, S and SKS receiver functions are compiled from three-component seismograms in the

Z-R-T domain, i.e. north and east components are rotated into radial and transverse

directions in the right-handed convention. After rotation, seismograms are input into

Park and Levin’s code (2000) to compute P receiver functions, and into its modified

version to compute S and SKS receiver functions (Section 3.2). The selected pre-event

and post-event windows are 20 s and 150 s long for P receiver functions, and enable the

retrieval of Ps conversions of up to 30 s. These windows are 110 s and 40 s long for the

S receiver functions in order to retrieve Sp conversions up to 22 s (Section 3.2, p. 58).

In both P and S receiver functions, the pre-event noise window is taken 10 s before the

P onset. Low-pass cut-off frequencies of 0.5 Hz or 1 Hz are used, effectively allowing

energy beneath 0.33 Hz and 0.65 Hz, respectively. Single receiver functions are stacked

in slowness bins of 0.4 s/◦ and back azimuth and epicentral distance bins of 10◦ with

increments of 0.2 s/◦ and 5◦, respectively, so that each receiver function contributes in

two neighbouring bins.

4.5.2 Forward modelling

In a first stage, the layer thickness, H, and the Vp/Vs ratio are estimated by fitting

Ps-Sp conversion and free-surface multiple move-outs and delay times, τPs, τPpPs and

τPpSs+PsPs, from the slowness stack of radial receiver functions. The thickness is given

by:

H =
τPs

√
1

V 2
s
− p2 −

√
1

V 2
p
− p2

,

with p, the ray-parameter of the incident wave (herein called slowness). H is highly

dependent on the Vp/Vs ratio, and a change in Vp/Vs ratio of 0.1 yields a change of
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4 km in H (Zhu and Kanamori, 2000). P receiver function free-surface multiples PpPs,

PsPs and PpSs can help to considerably reduce the error in H and Vp/Vs (Zhu and

Kanamori, 2000) through:

H =
τPpPs

√
1

V 2
s
− p2 +

√
1

V 2
p
− p2

, H =
τPpSs+PsPs

2
√

1
V 2

s
− p2

. (4.1)

The change from subtraction to addition in the denominator of the above equations

yields opposite trends between delay times of direct conversions and multiples. For di-

rect conversions, delay times increase with increasing slowness or decreasing distance.

This relationship is called positive move-out. In contrast for multiples, delay times

decrease with increasing slowness. The move-out is referred to be negative. This char-

acteristic is used to identify and discriminate multiples from direct conversions in the

P receiver functions. In the presence of anisotropy, and dipping layers especially, the

move-out may appear anomalous relative to that predicted for a flat layer, in particular

when looking at receiver function stacks for a restricted back azimuth range. This will

lead to errors in the parameter estimates. Therefore, these estimates are only used as

starting parameters in forward modelling.

Models are found by matching synthetic receiver functions with the back azimuth

and epicentral distance stacks of receiver functions, and by visually assessing the match.

Frederiksen and Bostock’s code (2000) is used to produce synthetics as described in

Section 3.2. This code allows for dipping layers and anisotropy with hexagonal sym-

metry and a plunging symmetry axis, which is advantageous in modelling the highly

anisotropic and complex lithospheric structure of South Island. A 1 s pulse is used to

fit 1 Hz low-pass filtered receiver functions and a 2 s pulse for 0.5 Hz low-pass filtered

data. Trial and error is used in most cases. In some instances, however, a neighbour-

hood algorithm (Sambridge, 1999) is used to invert for some parameters (these will be

indicated with an asterix in parameter Table 4.6). Because of the noise level in the real
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receiver functions, the inversion will tend to match pulses associated with both noise

and conversions. Thus, thicknesses and wave speeds are fixed to match the time delay

of a particular conversion and only strike/dip of dipping layers and trend/plunge of

anisotropy symmetry axes are computed at one time. When inverting for anisotropy, a

maximum of two layers should be inverted for (Scherrington et al., 2004), because the

resulting parameters will depend directly on the anisotropy in the surrounding layers.

4.6 Analysis

Conversion pulses at 2–3 s and 4–5 s of the receiver functions coincide with typical

delay times from the top of the lower crust (C) and the Moho (M), respectively, and

are labelled as such (Fig. 3.3). Additional mantle conversions with 5 s < τ < 11 s

are labelled X. Unless otherwise stated, models are derived by trial and error, and

uncertainties on model parameter are estimated from the range of matching models.

Both 0.5 Hz and 1 Hz low-pass filters are used to interpret the receiver functions, but

the match of synthetic receiver functions to real data is displayed with a 0.5 Hz low-pass

filter in order to match major features in the receiver functions.

4.6.1 Rata Peak station (RPZ)

Lithospheric models derived from RPZ P-, S and SKS receiver functions are compared

with the crustal structure known from the SIGHT Transects 1 and 2 (Scherwath et al.,

2003; Van Avendonk et al., 2004) in order to assess the potential of the present P-, S

and SKS receiver functions.

Observations

Crustal conversions are most distinct if low-pass filtered below 1 Hz. Slowness and

epicentral distance stacks are compiled from receiver functions in the back azimuth
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Figure 4.4: Station RPZ slowness stack of SKS (p < 6.6 s/◦), P (6.8 s/◦ ≤ p ≤ 9 s/◦

) and S (10 s/◦ < p < 16 s/◦) radial receiver functions for back azimuths in the

range 270◦–0◦. A 1 Hz low-pass filter was used. Blue and red wiggles denote positive

and negative amplitudes, respectively, i.e wave speed increasing (blue) and decreasing

(red) with depth. Color-coded curves describe Ps-Sp (solid) and free-surface multiple

(dashed) delay times predicted for assumed average Vp, Vp/Vs and conversion depth

of: 6.1 km/s, 1.60 and 23 km (C); 6.3 km/s, 1.65 and 34 km (M); and 6.8 km/s, 1.70

and 62 km (X). Grey bars on the right-hand side denote the number of events per

slowness bin of 0.4 s/◦.

range 270◦–0◦, within which receiver functions sum up constructively (Fig. 4.4).

Below, pulses of the direct P-, S- and SKS-waves and conversions C, M and X are

discussed in order of appearance:
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96 CHAPTER 4. P AND S RECEIVER FUNCTION ANALYSIS

(a) The direct P-wave pulse is delayed up to ∼0.5 s towards northern back azimuths

(see slowness stack of Fig. 4.4, also Fig. 4.5), indicating a shallow low velocity

layer.

(b) The Ps crustal conversion at τ ∼ 2 s (labelled C in Fig. 4.4) is sharp and is the

strongest conversion in the P receiver functions. Maximum C delay times on the

radial P receiver functions are observed at ca. –30◦ back azimuth (Fig. 4.5). A

simultaneous polarity switch at τ ∼ 2 s of the transverse receiver functions from

negative at back azimuths of –120◦ to –30◦ to positive from –30◦ to 150◦ suggests

that the crustal discontinuity is dipping to the northwest. A positive pulse with

negative move-out at τ ∼ 9–10 s of the P receiver functions is interpreted as a

PpPs free-surface multiple of C (Fig. 4.4).

(c) In contrast to C, Ps conversions at τ ∼ 3–4 s (M in Fig. 4.4) have a clear Sp

continuation within the SKS receiver functions.

(d) A pulse with apparent positive move-out at τ ∼ 6–7 s (X in Fig. 4.4) is interpreted

as a mantle conversion. Such an Sp conversion is unclear in the SKS receiver

functions, but could have a continuation in the S receiver functions (Fig. 4.4).

(e) Initial pulses of S radial receiver functions at τ ∼ 0 s are negative for slowness

p ≥ 13 s/◦ (Fig. 4.4) or epicentral distances ∆ ≤ 45◦ (Fig. 4.6).

(f) Initial pulses of SKS receiver functions are weak or negative in the northwest

quadrant (Fig. 4.4).

(g) A negative pulse at τ = 14–16 s and slowness ≥ 13 s/◦ of the S receiver functions

is interpreted as numerical ringing (Fig. 4.4).
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model RS1M synthetic SV receiver functions (black curves; Tab. 4.2).
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P receiver function synthetics

Minimum and maximum crustal thicknesses of models RP1m/-M (Fig. 4.7; Tab. 4.2)

are found by trial and error and using SIGHT Transect 1 and Transect 2 minimum Vp

of 6 km/s and maximum Vp of 6.2 km/s (Scherwath et al., 2003; Van Avendonk et al.,

2004) in combination with maximum and minimum Vp/Vs ratios of 1.75 and 1.60,

respectively. Indeed, a low Vp/Vs ratio of 1.60 yields a smaller delay time between

the direct P wave and its Ps conversion than a high Vp/Vs ratio of 1.75. Thus, a low

Vp/Vs ratio of 1.60 requires larger crustal thicknesses to match Ps conversion delay

times than a large Vp/Vs ratio of 1.75. The low Vp/Vs ratio therefore yields thickness

upper bounds, the high Vp/Vs ratio yields lower bounds.

A low upper crustal Vp/Vs ratio is suggested by a ∼1.60 estimated from the C

conversion and corresponding free-surface multiples PpPs and PsPs/PpSs delay times

(Fig. 4.4). The low value is consistent with a low average crustal Vp/Vs ratio of 1.65

(Kleffmann, 1999) in the central Southern Alps. The maximum Vp/Vs ratio of 1.75 is

based on maximum crustal averages for intermediate crustal compositions (Zandt and

Ammon, 1995).

In model RP1m/-M synthetic receiver functions (Fig. 4.5), the delayed P arrival

(see Observations section a) is matched with a ca. 2 km thick top layer, assuming a Vp

of 4 km/s.

The crustal conversion C (see b) is modelled with a 17–20 km deep discontinuity.

The sharp and strong amplitudes at northwestern back azimuths, the maximum de-

lay times on the radial component and the anti-symmetric polarities on the transverse

component both with respect to ∼–30◦ (see b) are reproduced with a northwest-dipping

interface (strike/dip of 200–240◦/20◦–40◦) that is interpreted as the top of the lower
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crust (Fig. 4.7).

The Moho conversion, M (see c), is matched with a 30–36 km deep interface dip-

ping southwest (strike/dip of ca. 150◦/10–15◦). Note that a low Vp/Vs ratio of 1.60

for the crust but a Vp/Vs of 1.75 for the mantle reduces the contrast between mantle

Vp and crustal Vs at the Moho and, hence, the Moho conversion amplitudes relative

to conversion amplitudes in the data (model RP1M synthetics of Fig. 4.5).

Delay times of the mantle conversion X (see d) are matched by an interface ca. 30 km

below the Moho, i.e. ca. 60–66 km depth, assuming a Vp/Vs ratio of 1.75 in the mantle

lid.
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Figure 4.7: Crust and mantle structure interpretation below station RPZ from S and P

receiver functions (models RS1m/-M and RP1m/-M of Tab. 4.2, respectively). Note,

the width of the models and the distance between them is not to scale.

S and SKS receiver function synthetics

Models RP1m and RP1M display a gross fit (not shown) to S and SKS receiver func-

tions of Figures 4.6 and 4.8 with the exception of the steeply dipping lower crust and
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Moho, which preclude the Sp conversion for the updip-travelling S wave. A maximum

dip of ca. 10◦ W is allowed for the lower crustal boundary instead of 20◦–40◦ modelled

from the P receiver functions (Fig. 4.6; model RS1m of Tab. 4.2). Using the same

minimum and maximum Vp and Vp/Vs combinations as for P synthetic receiver func-

tions, depths to the lower crust and the Moho are 15–24 km and 30–43 km, respectively

(Fig. 4.7). The Moho conversion is, however, only a weak pulse in the S receiver func-

tions so that the depth is only weakly constrained. The Moho depth estimated from

the SKS receiver functions is an approximate 31 km, for a Vp/Vs ratio of 1.70 (Fig. 4.8;

model RSKS of Tab. 4.5).
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The negative polarities corresponding to the direct S-wave pulse (see e) are repro-

duced with mantle anisotropy below the Moho (see Section 3.3.3, p. 70). A fast azimuth

of ∼50◦ is assumed from SKS fast polarisations (Klosko et al., 1999), which offers a

good match to most polarities of the direct S-wave pulse (Fig. 4.6).

Polarities of X at 7–8 s of the S receiver functions (Fig. 4.6) are modelled with a

50◦ counter-clockwise rotation of the fast symmetry axis at 55-73 km depth. However,

reversing the order of the symmetry axes, i.e. a 50◦ anti-clockwise rotation of the sym-

metry axes, offers a similar match to the S-wave direct pulse polarities. Therefore, in

the presence of multiple anisotropic layers, the combination of symmetry axes can’t be

constrained from the S-wave direct pulse polarity alone.

Negative polarities of the direct SKS-wave pulse of SKS receiver functions (see f)

are matched with a shallow 50◦ NE-dipping interface (Fig. 4.8; see Section 3.3.1).

Note that where the direct S-wave pulse has negative polarity on the radial re-

ceiver function, synthetic SV receiver functions predict no Sp conversion on the radial

component. This is inconsistent with the data, in which converted energy exists after

the initial SV. The difference may be explained by some amount of SH energy in the

receiver functions. A weighted sum of SH and SV synthetic receiver functions based on

single event focal mechanisms was also calculated. The resulting stack did not improve

the fit to the data. Alternatively, rotation of seismograms into S parallel and S per-

pendicular particle motion directions as predicted by focal mechanisms was also tried.

This rotation resulted in destructive stacking, however.
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functions (Tab. 4.2).

Comparison with SIGHT Transect 1

A top shallow dipping layer is interpreted as a ca. 2 km thick layer of moraine/till cov-

ering rhyolite and greywacke basement (Gair, 1967). The modelled crustal thickness is

30–36 km from P receiver functions and ca. 31 km from SKS receiver functions, which

is consistent with 32 km estimated from inversion of wide-angle reflection/refraction

data (Fig. 4.9; Van Avendonk et al., 2004).

The crustal thickness estimated from S receiver functions is 30–43 km, i.e a 4 km

greater thickness and a 4 km greater range than from P receiver functions. The differ-

ence in thickness may be attributed to the uneven back azimuth distribution of events

in combination with crustal structure lateral variations between Ps and Sp piercing

points (Fig. 4.2). Figure 4.9 indeed suggests that the majority of Sp phases cross-cut

the Moho, where the crustal root is 3–5 km thicker, than where Ps and SKSp phases do.
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The lack of constraint on the lower crust and Moho depth estimates is a consequence

of the noise in the S receiver functions, which could result from structural complexities

associated with the crustal root.

Estimated upper and lower crustal thicknesses of 17–20 km and 15–16 km from P

receiver functions and 15–24 km and 15–19 km from S receiver functions (Tab. 4.2) are

respectively thinner and thicker than 27 km and 5 km modelled at SIGHT Transect 1

(Van Avendonk et al., 2004). A reason could be high and low average Vp/Vs ratios

used for the upper and lower crust, respectively, compared to true values.

P receiver functions suggest that the Moho is dipping 10◦–15◦ SW, which is what

may be expected from apparent crustal thickening between SIGHT Transects 1 and 2

models (Scherwath et al., 2003; Van Avendonk et al., 2004) and an increase in the bulk

of the negative Bouguer anomaly to the southwest (Fig. 4.2). Similarly, a lower crust

dipping 20◦–40◦ W may be expected from a thinner lower crust at SIGHT Transect 1

than at Transect 2.

Model parameters uncertainties and trade-offs

The range of models obtained suggests a minimum 4 km uncertainty on the Moho

depth, and uncertainties of 30◦ on strikes and 10◦ on dips of the lower crustal boundary

and the Moho. The uncertainty on the trend of the anisotropy axis of symmetry is a

minimum of 10◦, the spacing between two bins in a back azimuth stack, and as large as

30◦. Uncertainties are related to the noise level in the receiver functions, to the uneven

distribution of events, which affects strike and trend estimates, and also to trade-

offs with the overlying structure such as dipping boundaries, wave-speed structures
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(Ammon et al., 1990) and, hence, anisotropy. Below is a short description of how

model parameters trade-off:

1) small Vp/Vs ratios yield large conversion depths. The smaller the initially as-

sumed Vp/Vs ratio, the smaller the resulting conversion delay time and the larger

the modelled conversion depth that is necessary to match conversion delay times

in the data;

2) small P-wave speeds yield large conversion depths;

3) seismic anisotropy yields either large or small conversion depths depending on

the difference between P and S anisotropy percentages and ray azimuths relative

to the symmetry axis of the anisotropy;

4) large dips yield large conversion depths for updip-travelling rays and small con-

version depths for downdip-travelling rays;

5) large contrasts yield shallow dips;

6) seismic anisotropy yields either large or small contrasts depending on the ray

azimuth relative to the symmetry axis of the anisotropy.
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4.6.2 Earnscleugh station (EAZ)

Station EAZ is situated near the structural axis of the Otago Schist metamorphic

antiform (Fig. 4.1).
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Figure 4.10: Earthquake distribution for P and S phases recorded at station EAZ as a

function of back azimuth and epicentral distance.

Observations

Slowness and epicentral distance stacks (Fig. 4.12) are compiled for back azimuths in

the range 270◦–0◦, within which most data lie (Fig. 4.10) and receiver functions sum up

constructively. SKS receiver functions at station EAZ display similar characteristics

with those of station WKZ (Fig. 4.22 of Section 4.6.4) and to a lesser extent with

those of station RPZ. The similarity suggests that the lithosphere is homogeneous at

SKS wavelengths. Stations EAZ and WKZ SKS receiver functions will, therefore, be

discussed together in a separate section below (123). P- and S receiver functions are

analysed below:

(a) The direct P-wave pulse is delayed by ∼0.5 s time of the 0.5 Hz low-pass filtered

P receiver functions (Fig. 4.11), suggesting a shallow low velocity layer. On the
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Figure 4.11: Station EAZ 0.5 Hz low-pass filtered P receiver functions (coloured wiggles)

and model EP1M synthetic P receiver functions (black curves; Tab. 4.3).
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transverse P receiver functions (Fig. 4.11), the polarity of the direct P-wave pulse

switches from negative at back azimuths of –90◦ to –10◦ to positive east of –10◦.

(b) Crustal and Moho conversions are interpreted at τ ∼ 2 s and τ ∼ 3–4 s (C and

M in Fig. 4.12).

(c) The Moho conversion at τ ∼ 4 s of the P receiver functions has a corresponding

transverse component at τ ∼ 3–4 s of the transverse P receiver functions, whose

polarities switch from negative to positive at –10◦ (Fig. 4.11). In addition, a

strong negative pulse with large negative move-out at τ ∼ 16–17 s of the P

receiver functions is interpreted as the Moho PsSs free-surface multiple. Energy

on the transverse receiver functions and a strong PsSs multiple suggest a dipping

Moho.

(d) A strong and coherent positive pulse at τ ∼ 19–20 s of the P receiver functions

(Fig. 4.12) that has a large, negative move-out is interpreted as the PpPs/PpSs

multiple of a mantle conversion at τ ∼ 5–6 s (labelled X in Fig. 4.12).

(e) The direct S-wave pulse is negative at slowness p > 12.5 s/◦ (Fig. 4.12) or epi-

central distances ∆ ≤ 60◦ and back azimuths east of –30◦ (Fig. 4.13), indicating

the presence of an anisotropic layer with sufficiently large velocity contrast at the

top (see Section 3.3.3, p. 70).

Synthetic P receiver functions

Synthetics are fitted to 0.5 Hz low-pass filtered data of Figure 4.11. A minimum crustal

thickness is found by using SIGHT Transect 2’s minimum wave speeds of 6 km/s and

6.8 km/s for the upper and lower crust, respectively (Scherwath et al., 2003), in com-

bination with a Vp/Vs ratio of 1.75. A maximum crustal thickness is derived by using

a low Vp/Vs ratio of 1.65 in combination with a Vp average of 6.3 km/s measured on
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Figure 4.12: Station EAZ slowness stack of P (6.8 s/◦ ≤ p ≤ 9 s/◦ ) and S (10 s/◦

< p < 16 s/◦) radial receiver functions for back azimuths in the range 270◦–0◦. A

1 Hz low-pass filter was applied. Blue and red wiggles denote positive and negative

amplitudes, respectively. Color-coded curves are Ps-Sp (solid) and free-surface multiple

(dashed) delay times predicted for assumed average Vp, Vp/Vs and conversion depth

H of: 6.2 km/s, 1.70 and 20 km, respectively (C); 6.3 km/s, 1.70 and 32 km (M); and

6.9 km/s, 1.70 and 53 km (X). Bars on the right-hand side denote the number of events

per bin of 0.4 s/◦.

Haast Schist rock samples (Godfrey et al., 2000, Chlorite zone IV) for the upper crust

and taking 7.0 km/s for the lower crust, assuming that the lower crust may be partially

eclogitised (e.g. Schulte-Pelkum et al., 2005, for Tibet). Note that the same parameters
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Figure 4.13: Station EAZ 0.5 Hz low-pass filtered S receiver functions (coloured wiggles)

and model ES1M synthetic SV receiver functions (black curves; Tab. 4.3).
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Figure 4.14: Crust and mantle structure interpretation below station EAZ from S and

P receiver functions (models ES1m/-M and EP1m/-P of Tab. 4.3, respectively).

will be used for stations WKZ and JCZ.

The derived crustal thickness is 29–35 km and includes a 6–10 km thick lower crust

(Fig. 4.14; models EP1m/-M of Tab. 4.3). A Moho dipping ∼5◦–10◦ W (strike of

170◦–220◦) is modelled in order to match the polarities of the direct P-wave pulse and

those of the 4 s pulse of the transverse P receiver functions that switch from positive

to negative at the back azimuth of –10◦ (see Observations sections a and c). A dipping

Moho also contributes to reproduce the strong PsSs multiple at τ ∼ 16–17 s of the

radial P receiver functions (see c; Fig. 4.11).

Crustal anisotropy with sub-vertical slow axis of symmetry (trend/plunge of ∼150◦/80◦)

improves the match to polarities of the transverse direct P-wave pulse (see a), and en-

hances the conversion amplitudes of C and M on the transverse P receiver functions

(see c; Levin et al., 2002). The modelled anisotropy, however, is imperfect as it tends

to decrease the match to polarities of the crustal and Moho conversions on the radial

receiver functions.
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The mantle discontinuity (X) at τ ∼ 6 s in (Fig. 4.12) is modelled as a minimum

0.3 km/s velocity contrast at ca. 20 km below the Moho (50–55 km depth) assuming a

Vp/Vs ratio of 1.75 in the mantle lid.

Synthetic S receiver functions

A crustal thickness of 30–38 km is derived from S receiver functions (Fig. 4.13; models

ES1m/-M of Fig. 4.14, Tab. 4.3). In contrast to P receiver functions, a dipping Moho

is not necessary to match S receiver functions.

An anisotropic layer with a high impedance contrast at the top is required to repro-

duce initial S pulses with negative polarity for ∆ ≤ 60◦ (Fig. 4.13; see e). The X pulse

at τ ∼ 8 s of the S receiver functions is modelled as a 45–58 km deep discontinuity.

The pulse changing polarities with back azimuth and epicentral distance (τ ∼ 6–8 s in

Fig. 4.13) could represent a rotation of the fast polarisation azimuth. A rotation from

–20◦ below the Moho to 20◦ at the X discontinuity provides a reasonable match to the

initial S pulse polarities.

However, similar to modelling of station RPZ S receiver functions, the symmetry

axis combination is relatively unconstrained as the inverted combination offers a rea-

sonable match to the S-wave pulse polarities too.

Interpretation

Crustal thicknesses of 29–35 km and 30–38 km are estimated beneath station EAZ

from P and S receiver functions, respectively. P receiver functions suggest a Moho

dipping at 5◦–10◦ to the west (strike of 170◦–220◦) that represents a 4–9 km depth
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difference between P and S piercing points. A ∼5◦ west-dipping Moho is what may be

expected from the Bouguer gravity anomaly being more negative towards the northwest

(Fig. 4.2). Moreover, a west-dipping Moho has the effect of increasing the apparent

move-out of the Moho conversion for arrivals from the west and may be the reason

for the mismatch with the predicted move-out for an assumed flat discontinuity in the

slowness stack of Figure 4.12. Other viable explanations for the mismatch include: 1)

a higher crustal Vp but slight thinner crust; or 2) a thicker crust but a lower Vp/Vs

ratio than modelled.

Crustal and mantle anisotropy are inferred from P- and S receiver functions, re-

spectively. P receiver functions suggest crustal anisotropy with a sub-vertical and slow

symmetry axis that is interpreted as the sub-horizontal foliations of the Otago Schist.

More crustal complexity than modelled is suggested by the lack of coherence of the

C and M pulses of the radial P receiver functions.

Both P and S receiver functions suggest presence of a discontinuity 15–20 km below

the Moho. While P receiver functions suggest a Vp increase of 0.3 km/s at 50–55 km

depth, S receiver functions suggest that this could represent a rotation of the anisotropy

fast symmetry axis at 45–58 km depth.
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4.6.3 Wanaka station (WKZ)

Similar to station EAZ, station WKZ is located near the structural axis of the Otago

Schist metamorphic arch (Fig. 4.1). It is sited on the west flank of the Cardrona Valley,

a structural basin bounded by two reverse faults with some dextral shear component:

the northwest-dipping NW Cardrona Fault and the secondary southeast-dipping SE

Cardrona Fault (Beanland and Barrow-Hurlbert, 1988).
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Figure 4.15: Station WKZ 1 Hz low-pass filtered P receiver functions as a function of

back azimuth.

Observations

Slowness and epicentral distance stacks are compiled for back azimuths in the range

270◦–0◦, within which receiver functions sum up constructively.
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The shallow structure of the Cardrona Fault has strong effects on station WKZ P re-

ceiver functions, which differ notably from those at stations EAZ and RPZ. In contrast,

S and SKS receiver functions, whose wavelengths are greater and, in which multiples do

not interfere with conversions, display many similarities with those at station EAZ and

even RPZ (SKS receiver functions are discussed separately in Section 4.6.4). Following

features are noted:

(a) The direct P-wave pulse of the P receiver functions is negative for back azimuths

west of –30◦ on the radial and at back azimuths from –90◦ to 50◦ on the transverse

(see back azimuth stack of Fig. 4.15). In addition, the first Ps/Sp conversions (la-

belled C1 in Fig. 4.16) experience maximum delays of ∼1 s at ca. –70◦ from north

(Fig. 4.15). These two features are compatible with a shallow and low velocity

layer dipping steeply to the west (Savage et al., 2007a). Note that calculated de-

lay times of C1 free surface multiples predict interference with conversions from

the lower crust in the P receiver functions (Fig. 4.16).

(b) A second crustal conversion (labelled C2 in Fig. 4.16), is apparent in S receiver

functions as a weak pulse but not in P receiver functions. The reason for this

may be interference of the conversion C2 with C1 multiples. A positive pulse

with negative move-out and delay times of 10–11 s of the P receiver functions is

a possible C2 PpPs free-surface multiple (Fig. 4.16).

(c) Ps/Sp conversions at τ = 3–5 s (M in Fig. 4.16) have corresponding energy on the

transverse P receiver functions (Fig. 4.15). A positive pulse with negative move-

out at 14–15 s of the P receiver functions coincides with M’s PpPs free-surface

multiple for an assumed Vp/Vs ratio of 1.70 (Fig. 4.16).

(d) The conversion at τ ∼ 6–8 s (X in Fig. 4.16) displays a similar move-out in

the S receiver functions to that identified in station EAZ S receiver functions

(Fig. 4.12). In the P receiver functions for WKZ, however, X delay times coincide
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Figure 4.16: Station WKZ slowness stack of P (6.8 s/◦ ≤ p ≤ 9 s/◦ ) and S (10 s/◦

< p < 16 s/◦) radial receiver functions for back azimuths in the range 270◦–0◦. A

1 Hz low-pass filter was applied. Blue and red wiggles denote positive and negative

amplitudes, respectively. Color-coded curves are Ps-Sp (solid) and free-surface multiple

(dashed) delay times predicted for assumed average Vp, Vp/Vs and conversion depth H

of 4.5 km/s, 1.85 and 4 km, respectively (C1), 6.2 km/s, 1.60 and 26 km (C2), 6.3 km/s,

1.70 and 36 km (M) and 6.9 km/s, 1.75 and 55 km (X). Bars on the right-hand side

denote the number of events per bin of 0.4 s/◦.

with a negative pulse for the northwest quadrant and a positive pulse for back

azimuths from –20◦ to 40◦ (Fig. 4.15). Thus, it is unclear if the negative pulse is

a crustal multiple or represents a direct conversion.
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(e) Three consecutive pulses at 7–10 s of the P receiver functions (X’ in Fig. 4.15)

have polarities rapidly alternating with back azimuth (Fig. 4.15), suggesting that

these pulses may represent some crustal reverberations. On the other hand, these

pulses’ strong amplitudes could be explained by a direct conversion and corre-

sponding reverberations at the top structure. Note that the three pulses interfere

into a broad single pulse in the 0.5 Hz low-pass filtered data of Figure 4.17.

(f) The direct S-wave pulse is negative at slowness p > 14 s/◦ (Fig. 4.16) or epicentral

distances ∆ ≤ 45◦ and back azimuths east of –30◦ (Fig. 4.19), indicating the

presence of an anisotropic layer with sufficiently large velocity contrast at the

top.
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Figure 4.18: Crust and mantle structure interpretation below station WKZ from S and

P receiver functions (models WS1m/-M and WP1m/-P of Table 4.4, respectively.

P receiver function synthetics

The discussed models are derived by trial and error. Direct P negative polarities west

of –30◦ on the radial component and Ps maximum observed delay times at ∼–70◦ (see
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Observations section a) are reproduced with a steeply west-dipping interface of strike

190◦ ± 10◦ overlain by low velocity material (models WP1m/-M of Fig. 4.18, synthet-

ics of Fig. 4.17). A dip of 40◦ ± 10◦ W and a 5–7 km thickness are found for a Vp

of 4–5 km/s. The uncertainty on the dip results from the trade-off between dip and

impedance contrast: large contrasts yield shallow dips, small contrasts yield strong dips.

Moho delay times (see c) are reproduced with a 33–41 km thick crust, assuming

an average Vp of 6.2–6.5 km/s for the entire crust in association with Vp/Vs ratio of

1.75–1.65 (models WP1m/-M of Tab. 4.4; Fig. 4.17).

Strong crustal anisotropy is suggested by large amplitudes at τ ∼ 4 s of the trans-

verse receiver function (see c) and is modelled by a sub-vertical and slow symmetry

axis that is, however, weakly constrained (Fig. 4.18).

X and X’ delay times are matched by 48–56 km and 68–76 km deep boundaries 15 km

and 35 km below the Moho, respectively (models WP1m/-M of Fig. 4.18; Tab. 4.4).

The succession of positive, negative and positive polarities for interpreted conversions

M, X and X’ in the northwest quadrant (see d, e and bottom of Fig. 4.17) is matched

with a succession of three anisotropic layers with fast axes approximately perpendicular

one to the other (synthetics of Fig. 4.17; Tab. 4.4). It is however uncertain if these

symmetry axis rotations represent real structures as crustal reverberations for X and X’

can not entirely be rejected. Discontinuity X’ won’t therefore be further commented on.

S receiver functions synthetics

A crustal thickness of 35–42 km is found assuming upper and lower crustal Vp of 6.0–

6.3 km/s and 6.8–7.0 km/s in combination with a Vp/Vs ratio of 1.75–1.65 (models
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gles) and model WS1M synthetic SV receiver functions (black curves; Tab. 4.4).
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WS1m/-M of Tab. 4.4, Fig. 4.19).

A shallow and steeply dipping layer (see a) as modelled from the P receiver func-

tions poses a problem in the S receiver functions, as this precludes transmission of S

energy into P for iinc > iPt, which does not occur in this data set.

Similar to station EAZ S receiver functions, an anisotropic layer with strong con-

trast at the top is required to produce direct S-wave pulses with negative polarity at

∆ ≤ 45◦ (see f).

X delay times of 8–10 s (see d) are matched with a 52–62 km deep layer. Similar to

modelled for station EAZ, the negative polarities on the radial component of the direct

S pulse and conversion X for back azimuths of –90◦ to 0◦ are matched with a rotation

of the anisotropy symmetry axis from –20◦ to 20◦ (models WS1m/-M synthetics of

Fig. 4.19).

Interpretation and discussion

The shallow west-dipping interface is identified as the deep structure of the NW Cardrona

Fault, whose surface trace is located < 1 km east from station WKZ. The strike of

190◦ ± 10◦ agrees with the NW Cardrona Fault orientation at the surface (Beanland

and Barrow-Hurlbert, 1988). The modelled dip of 40◦ ± 10◦ is close to 30◦ as typically

expected for an optimally oriented reverse fault. However, the depth inferred from the

receiver functions is much larger than predicted from the less than 1 km distant fault

trace, possibly as a result of lower wave speeds and a higher Vp/Vs ratio than used in

the models or the Cardrona Fault zone extending deeper than expected.
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Figure 4.20: Same as Fig. 4.16 for the assumed Vp, Vp/Vs and conversion depth of

6.2 km/s, 1.55 and 28 km (C2), 6.3 km/s, 1.55 and 49 km (M) and 6.9 km/s, 1.70

and 55 km (X). Note how the move-out of discontinuity M is better matched at large

slowness than with a Vp/Vs ratio of 1.70. In addition, the large positive pulse at

τ ∼ 14–15 s coincides with M’s multiple PpPp delay times. However, there is no

obvious pulse that coincides with PpPs delay times. Moreover, the move-out of the

PpPp multiple predicted for a 48 km deep interface is stronger than that of the 14–15 s

pulse, suggesting that the interface is shallower than 48 km.
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Crustal thicknesses of 33–41 km and 35–42 km are estimated from P and S receiver

functions, respectively. This crustal thickness is inconsistent with a –80 mGal Bouguer

gravity anomaly and crustal thicknesses of 43–45 km and 48 ± 4 km estimated from

3D inversion (Eberhart-Phillips and Bannister, 2002) and earthquake refraction (Sec-

tion 2.4), respectively. Although the minimum crustal thickness estimate of 33 km is a

reasonable value for a crust, this represents 3 km crustal thickening relative to a 30 km

crustal thickness at the coast, and is inconsistent with the –80 mGal Bouguer anomaly

at WKZ (Fig. 4.2). A 41 km crustal thickness, i.e. 11 km crustal thickening, produces

a gravity anomaly that can match the observed Bouguer anomaly assuming an across-

Moho density contrast of –450 kg/m3 (Stern et al., 2000). The 41 km crustal thickness

is, however, insufficient for likely across-Moho density contrasts of –400 kg/m3 or less

(see Section 2.6).

A low Vp/Vs ratio of 1.60 or 1.55 would be necessary to reconcile delay times of the

discontinuity M with a 43–45 km or 48 km crustal thickness, respectively (Fig. 4.20).

Such a low Vp/Vs ratio could possibly result from anisotropy in the Otago Schist

(Godfrey et al., 2000). Figure 4.20 however suggests that Vp/Vs ratios ≤ 1.60 imply

that the 14–15 s pulse corresponds with the discontinuity M PpPp multiple instead of

the PpPs multiple, and that the PpPs multiple has no obvious corresponding pulse.

Such a low Vp/Vs ratio therefore appears unlikely for the crust below station WKZ.
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4.6.4 SKS receiver functions at stations EAZ and WKZ

SKS receiver functions of stations EAZ and WKZ share the same features, and are

presented in a common stack (Fig. 4.22). They are also similar to RPZ’s SKS receiver

functions, but with a relative ∼20◦ counter-clockwise rotation of the polarity switches.

0˚

9
0
˚

180˚

2
7
0
˚ 0o

120 o

EAZ_WKZ

SKS

Figure 4.21: Earthquake distribution for SKS phases

recorded at stations EAZ and WKZ.

(a) Polarities of the direct SKS-wave pulse are anti-symmetric with respect to a back

azimuth of about ∼30◦ on the radial receiver functions, suggesting the presence

of a steeply-dipping interface (see Section 3.3.1, p. 61);

(b) Pulses up to ∼8 s delay time are anti-symmetric with respect to ∼60◦ from

north and suggest that the cause of the polarity switches (dipping layer and/or

anisotropy) could be deep seated;

(c) Pulses at 1–2 s and 4–5 s are interpreted as crustal and Moho conversions, re-

spectively.
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Figure 4.22: Stations EAZ and WKZ 1 Hz low-pass filtered SKS receiver functions and

model EWSKS (Tab. 4.5) SV receiver functions.

Synthetics

Model EWSKS (Fig. 4.22; Tab. 4.5) is derived by trial and error and assuming an

average Vp/Vs ratio of 1.70 for the crust. Polarities of the direct SKS-wave pulse on

the radial and transverse components (see Observations section a) are matched with

a ca. 30◦ E dipping and ∼5 km deep interface. Crustal and Moho conversions are

modelled with 22 km and 37 km deep boundaries, respectively. Positive pulses for

the crustal and Moho conversions at back azimuths west of 60◦, but negative in the

southeast quadrant (see b), are reproduced with a Moho dipping 10◦–15◦ to the west.

Although, the dipping Moho provides the strong move-out of Moho conversions between

–80◦ and 10◦ from north, the dip may be an overestimate. Thus, additional anisotropy
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may be necessary to match the move-out.

Interpretation

The 37 km crustal thickness derived from stations WKZ and EAZ SKS receiver func-

tions represents an intermediate value between 29–35 km and 33–41 km derived from

P receiver functions at EAZ and WKZ. A shallow east-dipping layer is a pervasive fea-

ture in SKS receiver functions models for stations RPZ, WKZ and EAZ. This feature

was modelled to reproduce the negative polarities of the direct SKS-wave pulse. An

east-dipping layer is, however, inconsistent with other models derived from P receiver

functions. It seems unlikely that the different station locations RPZ, WKZ and EAZ are

all sited on a shallow and east-dipping layer, when P receiver functions unequivocally

indicate a west-dipping structure (at station WKZ for instance). Thus, the source to

the common negative polarity of the direct SKS-wave pulse in SKS receiver functions

could represent a more complex combination of dipping layer and anisotropy than has

been explored in the synthetic tests of Chapter 3.
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4.6.5 Jackson Bay (JCZ)

JCZ is located on the Alpine Schist, ∼30 km south of the Haast river and ∼4 km

southeast of the Alpine Fault surface trace (Fig. 4.1). At the Haast river and south,

the Alpine Fault is characterised by a small degree of fault segmentation, small up-

lift rates ≤2.5 mm/yr, 26 ± 7 mm/yr strike-slip (Cooper and Norris, 1995; Hull and

Berryman, 1986; Sutherland and Norris, 1995) and localised deformation (Sutherland

and Norris, 1995). The Alpine Fault is, hence, described as sub-vertical with mainly

strike-slip movement. Furthermore, the surface trace trends at N59◦E (Wellman, 1953).

Seismic rays incoming from azimuths between –120◦ and 60◦ are, therefore, expected

to cross the Alpine Fault zone.

Observations

JCZ P receiver functions from τ ≥ 5 s are dominated by reverberations (Fig. 4.23),

which indicate the presence of one or more steeply dipping structures. These structures

and seismic anisotropy are possibly reason for no coherent pulses in the SKS receiver

functions (not shown) and polarity reversals of conversion pulses in the S receiver

functions. The modelling of S and SKS receiver functions is, therefore, not attempted.

Slowness and epicentral distance stacks are compiled for back azimuths within 270◦

and 0◦.

(a) The direct P-wave pulse experiences delays up to 0.5 s, suggesting low wave-speeds

near the surface (Fig. 4.23).

(b) Energy at τ ∼ 0 s on the transverse P receiver functions with negative polarities

within –130◦ and 40◦ from north, i.e. an azimuth range of 170◦, suggests that

polarities are anti-symmetric about an azimuth of ∼60◦ as well as the presence of

a west- to northwest-dipping discontinuity (see back azimuth stack of Fig. 4.24).
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Figure 4.23: Station JCZ slowness stack of P (p ≤ 9 s/◦ ) and S (10 s/◦ < p < 16 s/◦)

radial receiver functions for back azimuths in the range 270◦–0◦. A 1 Hz low-pass filter

was applied. Blue and red wiggles denote positive and negative amplitudes, respectively.

Color-coded curves are Ps-Sp (solid) and free-surface multiple (dashed) delay times

predicted for assumed average Vp, Vp/Vs and conversion depth H of 6.1 km/s, 1.70

and 20 km, respectively (C) and 6.2 km/s, 1.75 and 35 km (M). Bars on the right-hand

side denote the number of events per bin of 0.4 s/◦.

(c) a Ps conversion at 2–3 s of the P receiver functions (labelled C in Fig. 4.23)

has: (1) an anomalous move-out with maximum delay times for northwest back

azimuths; (2) polarities reversing at ∼–100◦ and ∼20◦ on the radial component;

and (3) anti-symmetric polarities with respect to ∼–30◦ on the transverse com-
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Figure 4.24: Station JCZ 1 Hz low-pass filtered P receiver functions and model JP1m

synthetic P receiver functions (Tab. 4.6).
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ponent, which all suggest a northwest-dipping layer (see P receiver function stack

of Fig. 4.24). Positive pulses at 6–7 s and 8–9 s coincide with predicted τPpPp

and τPpPs for C, respectively. The dipping layer may be the reason for the strong

PpPp multiple.

(d) A pulse at 3–4 s of the P receiver functions (M in Fig. 4.23) has same move-

out, amplitudes and polarities as the C conversion, suggesting that this is not a

multiple. Positive pulses at 10–11 s and 15–16 s, that display move-outs opposite

to that of the M pulse correspond to PpPp and PpPs predicted delay times,

respectively.

(e) Similar to S receiver functions compiled for RPZ, EAZ and WKZ, the direct S-

wave pulse is negative at slowness > 13 s/◦ in the chosen back azimuth range of

–90◦ to 0◦, and suggests an anisotropic layer with strong impedance contrast at

the top.

Synthetic P receiver functions

Models JP1m–JP2M (Fig. 4.25; Tab. 4.6) are derived by trial and error and also inver-

sion with same parameters used for stations EAZ and WKZ receiver function modelling.

The direct P-wave pulse delays are modelled with a ∼3 km thick layer assuming

Vp ∼ 4 km/s (see Observations section a).

Inversion suggests that C amplitudes and move-out (see c) and those of M are

produced by an 18–23 km deep discontinuity dipping west at 40◦–50◦ (strike/dip of

∼170◦/40◦) overlying a southeast-dipping structure (strike/dip of ∼50◦/45◦; Fig. 4.25).

Although the west-dipping discontinuity best matches C move-out, this does not repro-

duce the negative polarities outside the northwest quadrant and epicentral distances
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Figure 4.25: Crust and mantle structure interpretation below station JCZ from P

receiver functions (model JP1-2M; Tab. 4.6). The structure is projected onto the range

of geometric raypaths of Ps Moho conversions from the northwest assuming a flat Moho.

The thin dashed curves represent the extent of the Fresnel zone. The thick and vertical

dashed line is the depth projection of a vertical Alpine Fault.

≤ 25◦ (see c). More complex structures than modelled may be required. Crustal

anisotropy of 7–10 % with slow symmetry axis steeply plunging to the northwest pro-

vides a fit to changing polarities at 1–2 s of the transverse receiver function (see b).

Two different models are derived by inversion, which well fit the negative polarities

at ∼3 s that follow the C pulse and the positive polarities of the M conversion. In

model JP1m (Tab. 4.6), the sequence of polarities is produced by anisotropic material

overlying a ∼28 km deep and southeast ∼45◦-dipping discontinuity. In model JP2M

(Tab. 4.6), polarities are produced by the anisotropic material being underlain by an

anisotropic layer with fast axis of symmetry dipping at ∼50◦ ca. 20◦ NW. The combi-

nation of a dipping discontinuity and anisotropy provides a good match to the receiver

functions (synthetics of Fig. 4.26), and is the preferred model shown in Figure 4.25.

The crustal thickness derived from models JP1m and JP2M is 30–39 km assuming

upper and lower crustal wave speeds of 6.1–6.3 km/s and 6.8–7.1 km/s in combination
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Figure 4.26: Station JCZ 1 Hz low-pass filtered P receiver functions (coloured wiggles)

and model JP1-2M synthetic P receiver functions (black curves; Tab. 4.6). Model

JP1-2M is the combination of models JP1 and JP2M
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with Vp/Vs ratios of 1.75 and 1.65, respectively.

Note that the presence of steeply dipping layers weakens the amplitudes of rever-

berations in the synthetic receiver functions as the reverberations are refracted away

from the station. This is contrary to the strong reverberations observed in the receiver

functions (Fig. 4.24). Conversely, the presence of the top west-dipping fault is neces-

sary in order to refract conversions from the steeply east-dipping fault back towards

the station. Otherwise, the conversion is refracted away from the station, and is absent

in the synthetic receiver functions.

Interpretation and discussion

Anisotropic material with a slow symmetry axis plunging to the northwest is inter-

preted to represent the southeast-dipping foliations of the Alpine Schist.

A ∼40◦ W dipping structure at 18–23 km depth coincides with the depth projec-

tion of the Alpine Fault (Fig. 4.25), but is inconsistent with the Alpine Fault being

near vertical and striking northeast (Section 1.4.1 13). Anisotropic material below the

west-dipping structure may be associated with the Alpine Fault zone. A ∼45◦ SE dip-

ping discontinuity at ∼28 km depth could represent a lower crustal boundary or be

associated with the Alpine Fault.

Inconsistencies between modelled dips of boundaries and a near-vertical Alpine

Fault may result from modelling in one dimension a structure, which is both laterally

offset and near vertical.
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Table 4.2: Station RPZ forward models derived from P- and S receiver functions. Numbers in bold are Moho depths. Note that

mantle fast symmetry axes orientations are mostly unconstrained.

model label depth H ρ VP VS δP δS trend plunge strike dip VP /VS

(km) (km) (kg/m3) (m/s) (m/s) (%) (%) (◦) (◦) (◦ ) (◦)

RP1m 0 2 2600 4000 2286 - - - - - - 1.75

2 15 2700 6000 3429 - - - - 235 10 1.75

C 17 13 3000 6800 3886 - - - - 200 20 1.75

M 30 30 3300 7800 4457 - - - - 150 15 1.75

X 60 50 3300 8300 4743 - - - - - - 1.75

RP1M 0 20 2700 6200 3875 - - - - - - 1.60

C 20 16 3000 7000 4375 - - - - 200 40 1.60

M 36 30 3300 8100 4629 - - - - 150 10 1.75

X 66 50 3300 8400 4800 - - - - - - 1.75

RS1m 0 15 2700 6000 3529 - - - - - - 1.70

C 15 15 2900 6800 4000 - - - - 190 10 1.70

M 30 25 3300 7800 4457 7 5 50 0 - - 1.75

X 55 65 3300 8300 4743 7 5 -20 0 - - 1.75

RS1M 0 24 2700 6200 3875 - - - - - - 1.60

C 24 19 2900 7000 4375 - - - - 190 10 1.60

M 43 30 3300 8300 4743 7 5 50 0 - - 1.75

X 73 65 3300 8300 4743 7 5 0 0 - - 1.75
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Table 4.3: Station EAZ forward models derived from P- and S receiver functions.

model label depth H ρ VP VS δP δS trend plunge strike dip VP /VS

(km) (km) (kg/m3) (m/s) (m/s) (%) (%) (◦) (◦) (◦ ) (◦)

EP1m 0 10 2700 6000 3429 - - - - - - 1.75

10 13 2700 6000 3429 –10 –10 150 80 - - 1.75

C 23 6 3000 6800 3886 - - - - - - 1.75

M 29 20 3300 7800 4457 - - - - 190 5 1.75

X 50 - 3600 8300 4743 - - - - - - 1.75

EP1M 0 10 2700 6300 3818 - - - - - - 1.65

10 15 2700 6300 3818 –10 –10 150 80 - - 1.65

C 25 10 3000 7000 4243 - - - - - - 1.65

M 35 20 3000 8300 4743 - - - - 190 10 1.75

X 54 - 3300 8600 4914 - - - - - - 1.75

ES1m 0 17 2700 6000 3429 - - - - - - 1.75

C 17 13 3000 6800 3886 - - - - - - 1.75

M 30 15 3300 8300 4743 7 5 –20 0 - - 1.75

X 45 - 3300 8300 4743 7 5 20 0 - - 1.75

ES1M 0 23 2700 6300 3818 - - - - - - 1.65

C 23 15 3000 7000 4243 - - - - - - 1.65

M 38 20 3300 8300 4743 7 5 –20 0 - - 1.75

X 58 - 3300 8600 4914 7 5 20 0 - - 1.75
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Table 4.4: Station WKZ forward models derived from P- and S receiver functions.

model label depth H ρ VP VS δP δS trend plunge strike dip VP /VS

(km) (km) (kg/m3) (m/s) (m/s) (%) (%) (◦) (◦) (◦ ) (◦)

WP1m 0 5 2600 4000 2286 - - - - - - 1.75

C1 5 28 2600 6200 3543 –10 –10 –90 70 200 50 1.75

M 33 15 3300 7800 4628 7 5 –40 0 - - 1.75

X 48 20 3300 7800 4628 7 5 20 0 - - 1.75

X’ 68 - 3300 8300 4743 7 5 –30 0 - - 1.75

WP1M 0 7 2600 4500 2727 - - - - - - 1.65

C1 7 34 2800 6500 3939 - - - - 190 30 1.65

M 41 15 3300 8300 4743 7 5 –40 20 - - 1.75

X 56 20 3300 8300 4743 7 5 20 0 - - 1.75

X’ 76 - 3300 8600 4914 7 5 –30 0 - - 1.75

WS1m 0 20 2700 6000 3429 - - - - - - 1.75

C2 20 15 3000 6800 3886 - - - - - - 1.75

M 35 17 3300 7800 4628 7 5 –20 0 - - 1.75

X 52 - 3300 8300 4743 7 5 20 0 - - 1.75

WS1M 0 25 2700 6300 3818 - - - - - - 1.65

C2 25 17 3000 7000 4242 - - - - - - 1.65

M 42 20 3300 8300 4743 7 5 –20 0 - - 1.75

X 62 - 3300 8300 4743 7 5 20 0 - - 1.75
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Table 4.5: Stations EAZ and WKZ combined forward model derived from SKS receiver functions.

model label depth H ρ VP VS δP δS trend plunge strike dip VP /VS

(km) (km) (kg/m3) (m/s) (m/s) (%) (%) (◦) (◦) (◦ ) (◦)

RSKS 0 2 2600. 4000. 2424. - - - - - - 1.65

2 15 2700. 6000. 3429. - - - - 330. 50. 1.65

C 17 14 2900. 6800. 3886. - - - - 190. 10. 1.65

M 31 - 3300. 8300. 4629. 7 5 40. 0 170. 20 1.75

EWSKS 0 5 2600 4000 2286 - - - - - - 1.70

5 17 2700 6200 3647 - - - - 0 30 1.70

C 22 15 2900 7000 4000 - - - - - - 1.70

M 37 20 3300 8300 4629 7 5 0 0 190 15 1.75

X 57 20 3300 8600 4914 7 5 40 0 - - 1.75
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Table 4.6: Station JCZ forward models derived from P- and S receiver functions.

model label depth H ρ VP VS δP δS trend plunge strike dip VP /VS

(km) (km) (kg/m3) (m/s) (m/s) (%) (%) (◦) (◦) (◦ ) (◦)

JP1m 0 3 2600 4000 2286 - - - - - - 1.75

3 5 2700 6100 3526 - - - - - - 1.75

8 10 2700 6100 3526 –10 –10 –30 70 - - 1.75

C 18 10 3000 6800 3886 –7 –7 –140 70 170 40 1.75

28 2 3300 6800 3886 - - - - 51* 43* 1.75

M 30 - 3300 8300 4743 7.0 5.0 20 0 - - 1.75

JP2M 0 3 2600 4000 2286 - - - - - - 1.65

3 8 2700 6300 3818 - - - - - - 1.65

11 12 2700 6300 3818 –10 –10 –30 70 - - 1.65

C 23 16 3000 7100 4303 –7 –7 –140 70 170 50 1.65

M 39 - 3300 8300 4743 7 5 19* 53* - - 1.75

JP1-2M 0 3 2600 4000 2286 - - - - - - 1.65

3 8 2700 6300 3818 - - - - - - 1.65

11 12 2700 6300 3818 –10 –10 –30 70 - - 1.65

C 23 12 3000 7100 4303 –7 –7 –140 70 170 50 1.65

35 4 3300 6800 3886 - - - - 51* 43* 1.75

M 39 - 3300 8300 4743 7 5 19* 53* - - 1.75
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4.7 Discussion

The lithosphere beneath the South Island stations RPZ (Canterbury), EAZ and WKZ

(western Otago) appears fairly uniform when imaged by S and SKS waves, but rela-

tively heterogeneous in the light of P waves and crustal reverberations.

Beneath station RPZ, the top of the lower crust (C) is a seismic impedance bound-

ary stronger than the Moho. A low Vp/Vs ratio of ∼ 1.60 for the crust down to the

top of the lower crust is suggested from crustal reverberation delay times. This Vp/Vs

ratio is consistent with the value of 1.56 estimated for the upper crust from 2D mod-

elling (Pulford, 2002) along SIGHT Transect 2 and average crustal Vp/Vs ratios of

1.65 from reflection data (Kleffmann et al., 1998) and 1.67 from P receiver functions on

wide-angle reflections (Galve et al., 2002). Such a low Vp/Vs ratio was interpreted by

Stern et al. (2001) as the indication of high-pore fluid pressure in the mid to lower crust.

A discontinuity is imaged at 34 ± 5 km (JCZ) and 32 ± 3 km (EAZ) on either side

of the Southern Alps and at a depth of 39 ± 4 km beneath the highest topography

of the southern South Island (northwest from station WKZ). SKS receiver function

modelling for stations EAZ and WKZ suggest a similar depth of ∼37 km for the dis-

continuity. The nature of the discontinuity is uncertain. The Moho interpretation is

inconsistent with the –80 mGal Bouguer and the –10 mGal isostatic anomalies as well

as previous crustal thickness estimates of 43–45 km (Eberhart-Phillips and Bannister,

2002) and 48 ± 4 km (Section 2.4) near station WKZ. Low Vp/Vs ratios of 1.60 and

1.55 are necessary to reconcile the observed delay times with the crustal thickness es-

timates of 43–45 km and 48 km, respectively (black dashed line in Fig. 4.27). Delay

times of free-surface multiples and inversion of travel-time data (Eberhart-Phillips and

Bannister, 2002), however, both suggest a minimum Vp/Vs ratio of 1.65 for this region
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Figure 4.27: Otago cross section through stations JCZ, WKZ and EAZ (Fig. 4.2). Top:

mean elevations in a 10 km wide swath and Geonet stations as triangles. Bottom: error

bars denote depth ranges of major discontinuities as inferred from P- (thick bars) and S

receiver functions (thin bars) at Geonet stations JCZ, WKZ and EAZ assuming crustal

Vp/Vs ratios of 1.65–1.75 (Tab. 4.7). Error bar positions are mean conversion depth

locations projected onto the profile. Blue bars represent crustal discontinuities (C), red

bars the Moho or a lower crustal boundary (M) and green bars a mantle discontinuity

(X) (Tab. 4.7). The black bar denotes the Moho depth range inferred from earthquake

refraction (Section 2.4). The dashed line represents the Moho estimate for a Vp/Vs

ratio of 1.55. The grey curve represents the Moho profile after Eberhart-Phillips and

Bannister (2002). The arrow labelled “centre of gravity low” points to the Bouguer

gravity anomaly minimum.
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rendering such a low Vp/Vs ratio unlikely. Assuming that the discontinuity is located

in the lower crust implies a weak or gradual contrast at the Moho. The hypothesis of

a gradational Moho was tested by comparing conversion amplitudes using filters with

varied low-pass corner frequencies (Owens and Zandt, 1985), but proved negative. Par-

tial eclogitisation in the lower crust can weaken the velocity contrast at the Moho.

Conversions on S and P receiver functions suggest the presence of a mantle discon-

tinuity (X) at 15–30 km below the discontinuity M of western Otago (green bars in

Fig. 4.27). Such a discontinuity is also seen in station RPZ receiver functions, and is

modelled as a 60–66 km deep boundary located 25–30 km below the Moho. A similar

45–70 km deep mantle discontinuity has been interpreted from positively polarised Ps

conversions on P receiver functions in various locations of the eastern and southeast-

ern South Island (Spasojevic and Clayton, 2008). A minimum wave-speed contrast of

0.3 km/s and/or rotation of the mantle anisotropy fast symmetry axis may be associ-

ated with the discontinuity. More events and a more complete back azimuth coverage

are necessary to interpret this mantle discontinuity and to determine if the mantle

discontinuities inferred to exist beneath western Otago and station RPZ are the same

feature.

Mantle discontinuities in the depth range of 60–90 km have been attributed to par-

tial eclogitisation of subducted crust (Bostock, 1998) and more often to the transition

from spinel to garnet peridotite (e.g. Bostock, 1997; Hales et al., 1968, 1975; Levin and

Park, 2000), the so called Hales discontinuity (Hales, 1969). The Hales discontinuity

has been interpreted in varied geotectonic environments in both oceanic and continen-

tal settings (e.g Levin and Park, 2000). The discontinuity is generally characterised

by a ∼0.3 km/s increase in P-wave speed over a 10–20 km transition at 60–90 km

depth and possibly most of the time by changes in seismic anisotropy. The change in
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rheology and volume associated with a phase transition has been proposed as a mech-

anism for “transitional plasticity” (Sammis and Dein, 1974) and the development of

an anisotropic layer in the mantle (Bostock, 1997; Levin and Park, 2000). Such an

anisotropic layer could allow mechanical decoupling that would result in a change in

the symmetry axis of the anisotropy.

Table 4.7: Depths (in km) to discontinuities C, the top of the lower crust, M, the Moho,

X and X’ upper mantle discontinuities as derived from P- and S receiver functions

(Tab. 4.2-4.6).

Discontinuity RPZ JCZ WKZ EAZ

P S P S P S P S

C 17–20 15–24 18–23 - - 20–25 23–25 17–23

M 30–36 30–43 30–39 - 33–41 35–42 29–35 30–38

X 60–66 55–73 - - 48–56 52–62 50–54 45–58

X’ - - - - 68–76 - - -
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4.8 Conclusions

1) The top of the lower crust beneath Geonet station RPZ (eastern central Southern

Alps) represents a seismic impedance contrast stronger than the Moho.

2) A low upper-crust Vp/Vs ratio of ∼1.60 beneath RPZ corroborates previous low

Vp/Vs ratio estimates (Galve et al., 2002; Kleffmann et al., 1998; Pulford, 2002)

interpreted as the effect of high-pore fluid pressure released in the mid-crust

during prograde metamorphism.

3) A discontinuity is imaged at 34 ± 5 km (JCZ) and 32 ± 3 km (EAZ) depth on

either sides of the Southern Alps and reaches 39 ± 4 km depth (ca. 50 km north-

west of WKZ) beneath the highest topography, assuming crustal Vp/Vs ratios of

1.65–1.75. The interpretation of this discontinuity is uncertain. A Moho depth

of 39 ± 4 km is inconsistent with crustal thickness estimates of 48 ± 4 km from

earthquake refraction (Section 2.4) and ∼45 km from 3D inversion of travel-time

data (Eberhart-Phillips and Bannister, 2002) and a –80 mGal Bouguer anomaly

at WKZ. A crustal Vp/Vs ratio of 1.55 would be necessary to reconcile the Moho

interpretation with the gravity and previous crustal thickness estimates. A lower

crustal boundary may represent an alternative interpretation for this discontinu-

ity that, however, implies a low wave-speed contrast at the Moho.

4) A mantle discontinuity at 50–70 km depth (15–30 km below the lower crustal

discontinuity or the Moho) is suggested by S and P receiver functions. This

discontinuity could represent a change in seismic fast propagation orientation

and possibly an additional Vp increase of ∼0.3 km/s that may be interpreted as

mechanical decoupling, or partial eclogitisation or the Hales discontinuity, respec-

tively.

5) The modelling of P receiver functions of Geonet station WKZ (south of Wanaka)
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suggests the presence of a 40◦ ± 10◦ west-dipping and ∼6 km deep discontinuity

striking at 190◦ ± 10◦ from north that is consistent with the NW Cardrona Fault.

6) The restricted number of events and back azimuth range in the Geonet data in

combination with the presence of complex structures and anisotropy in the crust

represents a strong limitation in interpreting the receiver functions. A few more

years of data will be beneficial for the interpretation of receiver functions and for

constraining the extent and nature of the mantle discontinuity in this region.
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Chapter 5

P-wave travel-time delay analysis

5.1 Abstract

The geometry and wave-speed anomaly of an upper mantle high-speed body centred

beneath the Southern Alps are tested with P travel-time delays from a wide range of

back azimuths. This body possibly represents thickened (Molnar, 1992) or subducted

lithosphere (Mattauer, 1986).

Two portable arrays, COOK and WCOAST, which combined into a ∼80 km long

profile, were deployed along the western portion of the previous SIGHT Transect 2.

This chapter presents P travel-time delays measured from 35 teleseisms recorded along

these two consecutive deployments. These events, along with four 1996 teleseisms

recorded along SIGHT Transect 2, are used to investigate the geometry and amplitude

of the mantle wave-speed anomaly.

Travel times are calculated through a three-dimensional velocity grid, based on

Scherwath et al.’s (2003) two-dimensional crustal model for SIGHT Transect 2 extrap-

olated in the third dimension at the azimuth of the South Island plate boundary.

Depending on the ray azimuths and incidence angles, travel times show arrivals

0.3 s to 1.8 s earlier than predicted for the presence of the Southern Alps crustal

structure alone. The travel-time advance appears to increase as teleseismic rays have

145
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large incidence angles at the Moho and raypaths which are close to being sub-parallel

to the azimuth of the Australian-Pacific plate boundary. The negative delays and

variations with back azimuth are consistent with the presence of a high-speed anomaly

in the lithospheric mantle that has a horizontal cylindrical shape, whose axis is sub-

parallel to the plate boundary. A sub-vertical, 100–130 km wide and 0.5–0.6 km/s P

wave-speed anomaly centred at 100–110 km depth is a best average fitting model for

the mantle body for most back azimuths.

This model, however, is insufficient to explain large travel-time advances from events

located to the north with shallow and ∼50◦ incident rays. These delays can not be ex-

plained by a crustal root thinning to the northeast alone, but require a mantle body

with a minimum wave-speed anomaly of ca. 1.1 km/s. In contrast, time delays for back

azimuths of –50◦ to –60◦ from north have smaller amplitudes and require a wave-speed

anomaly of ca. 0.3 km/s only. Mantle anisotropy is therefore proposed as a possible

explanation for the discrepancy.

5.2 Introduction

Lithospheric shortening by intra-continental subduction (Mattauer, 1986) or uniform

thickening (Molnar et al., 1999) causes a down-warp of isotherms in the mantle litho-

sphere. The resulting temperature anomaly produces a positive wave-speed anomaly

(see Section 1.3, p. 8). As teleseismic arrivals propagate through such a wave-speed

anomaly, they accumulate time advances (negative travel-time delays) relative to ar-

rivals that do not propagate through the anomaly. These time delays can be observed

on station arrays located at the Earth’s surface. Their variations with location can

help to constrain the extent, amplitude and geometry of the wave-speed anomaly.
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Two studies have imaged a high wave-speed anomaly beneath the Southern Alps

(Kohler and Eberhart-Phillips, 2002; Stern et al., 2000). Using forward modelling of

teleseismic P travel-time delays, Stern et al. (2000) found a sub-vertical, ∼100 km wide

and ∼120 km deep wave-speed anomaly of 0.5–0.6 km/s beneath the central Southern

Alps. The time delays were measured along the SIGHT Transects 1 and 2 with 2–5 km

station spacing, and stemmed from three teleseisms located northwest of New Zealand

only. Kohler and Eberhart-Phillips (2002) imaged a 0.2–0.4 km/s wave-speed anomaly

using 3D inversion of teleseismic travel-time delays. Time delays were measured on the

larger but sparser SAPSE array than SIGHT. The SAPSE station spacing was ∼50 km,

which is approximately half the width of the putative wave-speed anomaly. Although

the number of teleseisms and the resulting back azimuth range were both larger in the

SAPSE than in the SIGHT study, most teleseisms stemmed from the northwest as well.

Forward modelling on a densely spaced SIGHT array (Stern et al., 2000) could possibly

resolve the full amplitude of the wave-speed anomaly for northwest back azimuths. In

contrast, resolution tests showed that 3D inversion using the SAPSE array could resolve

only 40 % of the anomaly (Kohler and Eberhart-Phillips, 2002). Moreover, both exper-

iments suffered from a lack of earthquakes from the southeast, so that they could not

constrain the dip of the high wave-speed mantle body. For example, the 3D inversion

resolution tests showed that the uneven distribution of teleseisms resulted in a bias of

∼20◦ NW on the dip of the wave-speed anomaly (Kohler and Eberhart-Phillips, 2002).

This chapter complements these two studies by analysing teleseismic travel-time

delays measured on a densely spaced array from a wider range of back azimuths than

used by Stern et al. (2000).
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5.3 Data

5.3.1 COOK and WCOAST deployments

The whole experiment consisted of two consecutive seismograph deployments (Fig. 5.1).

During the COOK phase, six three-component short-period seismometers were deployed

for a period of four months along a profile extending from Mt Cook Village (MCV)

located east of the Main Divide, to Braemar station (BRM) on the east shore of Lake

Pukaki. For the WCOAST phase that followed the COOK deployment, all stations

but MCV were transferred to the west of the Main Divide and re-deployed for five

months. An additional broad-band instrument was used, which increased the number

of sites to seven. The six new sites were located between Gillespie’s Beach (GIL) at the

west coast and the upper Copland Valley (UCV). The seventh site at MCV was kept in

both deployments in order to provide continuity between P travel-time delays measured

from the COOK and WCOAST deployments. The COOK and WCOAST deployments,

combined, represented a ca. 80 km long profile extending along the previous SIGHT

Transect 2 and approximately perpendicular to the Southern Alps axis. The array was

composed of Reftek 130 data acquisition systems connected to 1 Hz short-period L4

Mark seismometers as well as one broad-band Guralp-40T at the Karangarua Quarry

(KAQ) site of the WCOAST array.

5.3.2 Selected phases

Selected phases include not only first arrival P phases but also Pn, prominent pP and

sP and PcP, PKP, PKiKP phases. The proximity of rivers, coast and the distance

to hard rock basement render data collected at the WCOAST sites of generally lower

quality than those from the COOK deployment.
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Figure 5.1: Topographic map of the region of study (black rectangle on top left insert).

Red triangles: WCOAST/COOK recording sites; black triangles: SIGHT Transect 2

deployment. Coordinates are in meters from the New Zealand Map Grid.
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Figure 5.2: Distribution of recorded teleseisms; red triangle: array; colored circles:

selected COOK and WCOAST hypocentres; colored stars: SIGHT hypocentres.

Travel-time measurements are attributed qualities from a scale of A to D estimated

visually. Qualities from A to D denote measurements, which:

- are unequivocal and have a signal-to-noise ratio appreciated to be greater than 10

(A);

- are still unequivocal but have a signal-to-noise ratio estimated in the range 3–10 (B);

- are of similar quality to B and have one arrival pick that is ambiguous (C);

- have two or more arrival picks that are ambiguous and have a signal-to-noise ratio

less than 2 (D).
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Due to the short three to four months deployment period for each array, both deploy-

ments failed to record quality-A and -C phases from the southeast, i.e. off the South

American coast. Nevertheless, selected events (Fig. 5.2, Tab. C.3) cover a wide range

of back azimuths from –80◦ to 40◦ from north and from the western Pacific. Moment

magnitudes are MW > 5.5 and epicentral distances are in the range 10◦–95◦. Seventeen

phases (+ two additional Pn phases) and eighteen phases (+ one Pn phase) were se-

lected respectively for the COOK and WCOAST deployments. These include quality-A

and -C measurements as well as two quality-D measurements for the two best phases

from the southeast (events 30, 35 of Tab. C.3).

5.3.3 SIGHT Transect 2

Four teleseisms of the 1996 SIGHT Transect 2 deployment (Stern et al., 2000) are

presented to supplement the WCOAST and COOK deployments. Three are from the

northwest Pacific, and one is from off the Chilean coast (Fig. 5.2, Tab. C.1). These

events were recorded with ∼100 Mark-L22 2 Hz short-period instruments. Measured

travel-time delays span along a 100–160 km distance across the central Southern Alps

in comparison to the only 80 km long WCOAST/COOK array. They provide neces-

sary travel-time information east of the COOK array and have the advantage that rays

sample the entire width of the Southern Alps lithospheric mantle. Some gaps exist in

the data that correspond to the end of the deployment period.
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5.4 Method

5.4.1 Instrument response correction

Because the majority of seismometers on the WCOAST/COOK array were Mark-L4C

1 Hz short-period instruments with a single Guralp-40T broad-band instrument (KAQ)

and because of the proximity of the coast with associated microseismic sea noise below

0.5 Hz, the Guralp’s response was converted into an L4C’s response. This has the ad-

vantage of avoiding the enhancement of long-period noise in the corrected short-period

records. For a few events with dominant long periods in the signal, the L4C’s response

was converted into a Guralp’s response.

5.4.2 Adaptive stacking

Travel-time delays were measured by an automatic correlation method, called adap-

tive stacking (Rawlinson and Kennett, 2004). The initial alignment of a chosen phase

across the individual traces is achieved prior to correlation by correcting for the move-

out shift as determined from the ak135 (Kennett et al., 1995) travel-time predictions

(top of Fig. 5.3–5.4).

The traces are stacked into a reference trace, the “linear stack”, and its square,

the “quadratic stack”, in a user-specified window (the top two traces labelled zscp and

zssl in Fig. 5.3–5.4). This reference trace is correlated with each individual trace in

order to determine the relative time shift. Each individual trace is corrected for its

respective time shift before new linear and quadratic stacks are computed. Successive

iterations through the comparison of the reference trace with each individual trace and

minimization of the quadratic stack result in a sharpening of the stacked waveform
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Figure 5.3: Quality-A event: Mw 6.2 earthquake from the Philippines that was recorded

at stations MCV to BRM (event 9 of Tab. C.3). Top: initial alignment of the P phase

after move-out correction. Bottom: final alignment after adaptive stacking. Traces

from top to bottom represent the squared stack of single traces in a 1 s stacking window

(zscp), the linear stack of single traces in the stacking window (zssl) and single traces

(MCV to BRM).
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Figure 5.4: Quality-B event: Mw 7.1 earthquake from the Loyalty Islands region that

was recorded at stations GIL to MCV (event 21 of Tab. C.3). Top: initial alignment

of the pP phase after move-out correction. Bottom: final alignment after adaptive

stacking. The stacking window is 1 s long.
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(compare top and bottom of Fig. 5.3 or 5.4).

The user determines the beginning and the length of the stacking window, and a

maximum allowed number of iterations. A window length of 1–2 s, half to a full period,

proved the best for alignment. Stability of the solution, i.e. that of the alignment and

constant time shifts, is dependent upon the similarity of the waveform across the array.

In the case of good-quality measurements, stability is reached after three iterations.

Relatively good alignment but a non stable solution usually results from the waveform

varying across the array.

Cycle skipping may occur when the travel-time delay of a single trace relative to

the reference trace approaches the signal period because the adaptive-stacking method

tends to correlate the most impulsive features between single traces. This often leads

to a stable solution after a low number of iterations but a wrong alignment. In such a

case, manual picking was used instead.

5.4.3 Static corrections for the WCOAST and COOK data

Travel-time corrections, so called statics (Tab. C.5), were applied to account for eleva-

tion differences and variable geology across the array. Elevations were reduced to an

elevation of 0 m using SIGHT Transect 2 shallow structure information (Kleffmann,

1999, p. 145). The static corrections were then calculated relative to that at station

MCV, i.e. the static correction at MCV was subtracted.
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5.4.4 Processing of SIGHT Transect 2 data

SIGHT Transect 2 data were processed with the Claritas seismic package (Ravens,

2008). The first arrival or a later prominent phase that could be better correlated

through the entire array was picked. Elevation statics and move-out corrections were

applied using a reducing wave speed of 5.0 km/s and ak135 predicted travel times (Ken-

nett et al., 1995), respectively.

5.4.5 Forward modelling

The resolution of wave-speed anomalies through tomographic inversion not only relies

on the number of rays that cross-cut the model cells, but also on the back azimuth

distribution of events. Uneven distributions will bias the model by distributing the

wave-speed anomalies to cells where most of the ray-paths lie. New Zealand’s situa-

tion is for this reason relatively inappropriate for tomographic inversions because most

events that can be used are located along the western Pacific. Only a few events lo-

cated east and southeast of New Zealand can be used. With a larger data set than used

here, Kohler and Eberhart-Phillips (2002) showed that 3D inversion can only partially

resolve the dip and amplitude of wave-speed anomalies. For this reason, forward mod-

elling was preferred for this study.

The Southern Alps crustal structure is assumed to be two dimensional; i.e. uniform

along the plate boundary. However, comparison of the crustal structures derived along

the SIGHT Transect 1 (Van Avendonk et al., 2004) and Transect 2 (Scherwath et al.,

2003) suggests that the Moho is shallowing at a ∼6◦ angle along-strike and to the north-

east, based on maximum reported crustal thicknesses of 37 km and 44 km on Transect 1

and Transect 2, respectively. Below, the maximum error in calculated travel times is

estimated that results from assuming a uniform crustal thickness along-strike. Rays
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of the closest earthquakes, which arrive from the northeast, will cross-cut the Moho

at a maximum distance of 25 km from the profile line. Assuming a Moho shallowing

at a ∼6◦ angle to the northeast, these rays are expected to sample a ∼3 km thinner

crust than rays arriving along the profile. Assuming vertical raypaths and that mantle

rocks of vM ∼8.1 km/s replace lower crustal material with vLC ∼6.8 km/s where the

crust is thinner, the error amounts to ∆h(v−1
LC − v−1

M ) = 0.07 s. i.e. less than 0.1 s.

Thus, assuming a non-dipping Moho along-strike can lead to maximum possible error

of < 0.1 s on calculated delay times, assuming that mantle rocks replace lower crustal

material where the crust is thinner. Thus, the 2D assumption appears reasonable.

Forward modelling in two dimensions is sufficient as long as rays are arriving sub-

parallel to the profile orientation, that is sub-perpendicular to the strike of the plate

boundary. For rays arriving at a 20◦ angle from this azimuth, small differences in travel-

times are noticed. Beyond a ca. 45◦ angle to the profile orientation, i.e. in the case of

rays arriving from an orientation sub-parallel to the strike of the Southern Alps, ray fo-

cussing and de-focussing through three-dimensional structures have major effects. For

instance, because rays preferentially sample faster material, high wave-speed anomalies

that stretch along the mountain axis will cause major refraction effects. Those rays,

which are refracted through the wave-speed anomaly, will accumulate larger time ad-

vances than rays that propagate from the perpendicular direction. Modelling such time

advances in a 2D depth section will result in mapping the wave-speed anomaly into a

stronger anomaly than the real one. Moreover, the refraction angle of a phase arriving

sub-perpendicular to the profile line and the 2D depth section will map into a refraction

angle that is steeper (smaller) than in reality. As a consequence, the calculated raypath

and travel time will be shorter than the true ones. This will result in inconsistencies

between models that are derived from different event back azimuths. Because of the

almost non-existent ray coverage from the southwest and southeast, 2D structures are
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modelled only. However, given the wide range of ray azimuths relative to the array, 3D

forward modelling was use to model these 2D structures.

A 3D finite difference modelling code that implements the fast marching method (or

FMM Rawlinson and Sambridge, 2005) is used to calculate synthetic travel-time delays

(also called residuals) relative to ak135 predicted travel times (Kennett et al., 1995).

The travel-time field is first calculated at the base of the model grid (Tab. 5.1) using

the ak135 predicted travel times. The field is then calculated for the entire grid using

the fast marching scheme to propagate the first-arrival wavefront. In the fast marching

method, the wavefront is a narrow, one-node wide, band of grid points that separates

”alive” grid points (points, through which the wavefront has already propagated) from

”far” grid points (points, which are not alive yet). The FMM calculates trial travel

times for all points within the narrow band, and uses a heap-sort algorithm to sort

these travel times and to find the grid point with minimum travel time. The grid point

with minimum travel time is made alive and is replaced by the next far point in the

narrow band, allowing the narrow band to propagate a further step. This process is

repeated until all grid points have become alive. Speed and stability are strengths of

the method (Rawlinson et al., 2006). One limitation of the program version that is used

is that teleseismic rays must enter the grid through the bottom. Thus, the grid has

to be made large enough to include all rays, and Moho refractions (Pn) are excluded

(events 36–38 of Tab. C.3).

The three-dimensional wave-speed models are derived by rasterising the SIGHT

Transect 2 model (Scherwath et al., 2003; Stern et al., 2000) and extrapolating this

at a chosen azimuth (Fig. 5.5 and 5.6). The crustal structure is kept the same, but

the mantle body is modelled by various horizontal cylindrical shapes that represent

the high wave-speed anomaly caused by mantle shortening and the resulting downwarp
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Figure 5.5: 3D velocity model Sed0-3km (Tab. 5.1) of the top 2.5 km of the crust taken

from Kleffmann (1999) and extrapolated at an azimuth of N45◦E. Top: map view at

0.5 km depth. Bottom: Depth section along the SIGHT Transect 2 with azimuth

of N135◦E. Distances are relative to station MCV location. Red and green triangles

represent SIGHT T2 and COOK/WCOAST recording sites, respectively.
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Figure 5.6: 3D velocity model SUBE (Tab. 5.2). The crust is taken from Scherwath et

al. (2003) and the mantle wave-speed anomaly is modelled by a horizontal cylindrical

shape. Both are extrapolated at an azimuth of N55◦E. Top: map view at 110 km

depth. Bottom: depth section at an azimuth of 135◦. Distances are relative to station

MCV location. azN represents the cylinder azimuth from north, aV is the inclination

from the vertical (i.e. 90◦ from the dip), H is the height, z is the depth of the centre,

W is the width and F is a factor between 0 and 1 that represents the fraction of the

cylinder radius, to which Vp is constant. Beyond the radius fraction to the edge of the

cylinder Vp decreases linearly down to that of the surrounding mantle (1=body with

constant Vp+δVp, 0=body with constant Vp gradient).
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of mantle isotherms (e.g. Fig. 1.5). Symmetric bodies simulate distributed thickening

(Molnar et al., 1999; Stern et al., 2000), while dipping bodies simulate intra-continental

subduction (Mattauer, 1986, Fig. 5.6). The cylindrical shapes are defined by a centre

(latitude, longitude and depth), a height H, a width W , a dip, an azimuth from north

azN , a wave-speed anomaly δV p, and a factor F between 0 and 1, that represents the

fraction of the cylinder radius, to which V p is constant. Beyond the radius fraction to

the edge of the cylinder, Vp decreases linearly down to that of the surrounding mantle

(1=body with constant V p + δV p, 0=body with constant V p gradient).

In order to save computing time and space and to retain the fine structure of the

top sedimentary basins, modelling is done in two stages. (1) Travel-time delays are

calculated through the top 2.5 km of the crust (Fig. 5.5) using a grid of 0.3 km and

0.5 km node spacing with depth and latitude/longitude, respectively (Tab. 5.1). The

velocity structure is taken from Kleffmann (1999), and is slightly modified for the west-

ern stations of the WCOAST/COOK array in order to account for different basement

rocks. (2) Travel-time delays are then calculated through the crust (Scherwath et al.,

Table 5.1: Velocity grid origin (oz, olat, olon), spacing (dz, dlat, dlon) and number of

vertices (nz, nlat, nlon) used in the FMM (Rawlinson and Sambridge, 2005) to model

the crustal root (Fig. 5.5) and the mantle body (Fig. 5.6). Note that depths in the

program are negative below sea level. Thus, oz positive means that the grid origin is

located above sea level.

oz (km) olat (◦) olat (◦) dz (km) dlat (◦) dlon (◦) nz nlat nlon

top 2.5 km of the crust

0.5 –43.2 169.5 0.3 0.009000 0.012405 10 165 160

crust-mantle grid

1.5 –41.9 167.8 2 0.018013 0.0.024811 109 176 176
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2003) and a range of mantle wave-speed anomalies using a grid with 2 km node spac-

ing (Fig. 5.6; Tab. 5.1). Both sets of synthetic time delays are summed to produce

the total travel-time delays. Comparison between ray-tracing and the FMM predicted

travel-time delays calculated in two stages as explained above shows good agreement

(Fig. 5.7) and suggests that the node spacing is sufficient.
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Figure 5.7: Comparison between MacRay (black dashes) and FMM (blue dashes) pre-

dicted travel-time delays for SIGHT Transect 2 crustal structure (Scherwath et al.,

2003) and picks from Stern et al. (2000) (blue error bars) and this study (orange error

bars). FMM predicted travel-time delays are the sum of two sets of time delays: 1)

those calculated through a fine velocity grid representing the top 2.5 km of the crust

and 2) those calculated through a coarser grid than the first one that represents the

entire crust.
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5.5 Relative P travel-time delays

Travel-time delays were measured along the WCOAST/COOK array relative to station

MCV at the centre of the array, and along SIGHT Transect 2. These delays consistently

show positive values near station MCV (kilometer 0 in Fig. 5.8a–d) and the Southern

Alps highest elevations (Fig. 5.1). This is expected from the presence of a crustal root

beneath the Southern Alps, through which rays are delayed.

However, as observed by Stern et al. (2000) for rays arriving from the northwest,

travel-time delays decrease to the southeast of the array more rapidly than predicted

from the presence of the crustal root. This discrepancy is apparent in Figure 5.8 for

three teleseisms from the northwest (already presented by Stern et al., 2000) and one

teleseism from the southeast. A difference of 0.3 s (Fig. 5.8a) to 0.6 s (Fig. 5.8c)

and possibly as much as 1 s (Fig. 5.8b) exists ∼60 km east of MCV between the

observations and the predicted effect of the crust. The mismatch is also apparent for

measured travel-time delays of the events recorded on the WCOAST and COOK arrays

(Fig. 5.9a–f).

A small set of COOK and WCOAST travel-time delays are selected and presented

in groups of similar back azimuth and incidence angle, ic (Fig. 5.9a-f):

1) steeply incident PKPdf and PKiKP phases from the northwest (events 31 and

33);

2) P and pP phases from the northwest (events 5, 9, 18 and 19) that are comparable

to rays from the Banda Sea earthquake recorded along the SIGHT Transect 2;

3) steeply incident ScP and PcP phases from the north northwest (events 1 and 28)

that have a similar back-azimuth with that of the Honshu event but a 5◦ steeper

incidence angle;
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Figure 5.8: Orange circles and error bars represent travel-time delays from the Banda

(a), Irian Jaya (b), Honshu (also shown in Fig. 5.7)(c) and Chile (d) earthquakes

recorded along SIGHT Transect 2 (Fig. C.1-C.4). Blue dashes are calculated delay

times for SIGHT Transect 2 crustal structure (Scherwath et al., 2003) only. These are

time shifted to align with picks of the western (a–c) or eastern (d) stations. Note the

uncertainty in the alignment in (b) as a result of noise in traces west of kilometer 0

(10–40 km in Fig. C.3). Observed delay times are corrected for elevation assuming a

reducing wave speed of 5 km/s and are displayed relative to the average. Distances are

relative to site MCV. The Alpine Fault surface trace passes at kilometer –25 (see a).
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4) sP and pP phases from the north and shallow incident (events 17 and 21);

5) shallow incident P and sP phases from the northeast (events 22 and 32);

6) P and pP phases from the east and southeast (event 34 and 35) that have back

azimuths within 20◦ and incidence angles within 8◦ of that of the Off-coast Chile

event.

Effect of the crustal root orientation

Minimum and maximum possible strike directions for the crustal root of N45◦E and

N55◦E are assumed from the orientations of the Bouguer gravity anomaly and the

Alpine Fault, respectively. The closest events with north and northeast back azimuths,

which are close to but not exactly the crustal root orientation, and which have the

longest raypaths in the crustal root, appear as the most sensitive to the selected crustal

root azimuth. For these particular events predicted travel-time delays show variations

of up to 0.3 s between crustal root azimuths of N45◦E to N55◦E (events 17, 21 and 22,

32 of Fig. 5.9d-e).

Figure 5.9: Next page, left : travel-time delays and corresponding standard deviations

of a few events recorded on the COOK and WCOAST stations (circles and error bars)

are presented along with calculated time delays for SIGHT Transect 2 crustal model

extrapolated into 3D (Fig. 5.5) and two possible crustal root azimuths of N45◦E (red

curves) and N55◦E (blue curves). Time delays are shown relative to delays at sta-

tion MCV and to the ak135 Earth model (Kennett et al., 1995). They are presented

in groups of similar back azimuth and incidence angles, and are ordered with back

azimuths from west to east and small to large incidence angles.
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Earthquakes from the northwest

Observed travel-time delays and predictions from the SIGHT Transect 2 crustal model

(Kleffmann, 1999; Scherwath et al., 2003) show good agreement for distances up to

20 km (Fig. 5.8a) or 0 km (Fig. 5.8b–c) east of Mount Cook Village (MCV) and dis-

tances greater than ∼80 km east of MCV (Fig. 5.8c). For stations west of kilometer –25

and continuing westerly (Fig. 5.8c), positive and increasingly large residuals are pro-

duced by surface gravels and Tertiary sediments (Kleffmann, 1999), while near 0 km,

peak time delays result from of the Southern Alps crustal root low crustal wave speeds

relative to the faster wave speeds of the surrounding mantle (Fig. 5.8a–c).

However, east of ∼20 km (Banda earthquake, Fig. 5.8a) or 0 km (Honshu earth-

quake, Fig. 5.8c) observed arrivals are consistently earlier than predicted. This dis-

crepancy is about –0.3 s for the Banda Sea earthquake with rays arriving from a –60◦

azimuth (Fig. 5.8a) but as large as ∼–0.7 s for the more distant Honshu earthquake

with rays arriving from a –25◦ azimuth (Fig. 5.8c). The discrepancy is possibly even

greater with ca. –0.9 s for the Irian Jaya earthquake that is inline with the profile and

has rays arriving from –45◦ from north (Fig. 5.8b). The discrepancy could be –0.6 s,

i.e. less than indicated above, because of the uncertainty of the alignment between

the calculated travel-time delays and the picks (distances ¡ 0 km of Figure 5.8b) Time

delays of the Irian Jaya and Banda events appear inconsistent with each others as they

show large variations for a back azimuth difference of 15◦ only.

Similar travel-time anomalies are seen in the COOK/WCOAST events of Figure 5.9.

Note that the WCOAST/COOK array, which covers the western half of Transect 2

only, samples only the left flank of the postulated travel-time anomaly of Figure 5.8.

The travel-time advance relative to delay times calculated for the crustal root alone is

ca. 0.3 s for P/pP phases from the Philippines and Täıwan that are almost in line with
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the profile (events 5, 9, 18 and 19 of Fig. 5.9b). In contrast, the travel-time advance is

large and ca. 1.8 s for pP/sP phases from the north and the close Vanuatu and Loyalty

Islands (events 17 and 21 of Fig. 5.9d). Finally, the travel-time advance is moderate

for earthquakes from the Fiji and Tonga Islands located northeast of New Zealand and

aligned with the plate boundary (events 22 and 32 of Fig. 5.9e).

The time advance variation with back azimuth is similar to that observed from the

Banda Sea and Honshu earthquakes (Fig. 5.8). The travel-time advance is largest for

earthquakes located to the north (events 17 and 21), whose rays graze the plate bound-

ary but the advance is small for rays propagating perpendicular to (Banda Sea, Chile,

events 5, 9, 18 and 19) or along the plate boundary (events 22 and 32).

Earthquakes from the southeast

Travel-time delays from an earthquake located on the north coast of Chile with a back

azimuth of N135◦E (Fig. C.4, Tab. C.1) inline with the profile display a small mis-

match west of the main divide, of only –0.2 s to –0.4 s, with predicted residuals from

the crustal root model only (distances < –10 km of Fig. 5.8b).

Travel-time delays from the Chilean coast event (back azimuths of N135◦E) that

were recorded by the WCOAST array presents a contrasting difference of 0.2 s to 0.4 s

with time delays predicted for a crustal root alone. These delays disagree with time de-

lays measured from the SIGHT Chile event (compare Fig. 5.8g and Fig. 5.9f). Reasons

for the discrepancy could be the low quality of this particular WCOAST measurement

(quality C) or altered raypaths predicted by the crustal model only.
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The explanation for discrepancies greater than 0.2 s between observed travel-time

delays and predictions for the SIGHT Transect 2 crustal structure (Scherwath et al.,

2003) is assumed to lie within the mantle. The overall travel-time advance and the

varying amplitude of this advance with back azimuth appears consistent with a high

wave-speed body centred beneath the Southern Alps (Stern et al., 2000) that is elon-

gated in a southwest-northeast direction approximately parallel to the plate boundary.

z = 110 km

168˚ 170˚ 172˚

−44˚

−42˚

7 8 9

(km/s)

0 50 100

km

Figure 5.10: This map view illustrates the high-speed mantle body beneath central

South Island (see Fig. 5.6 for a cross-section). Blue, green and red raypaths are shown

for events 1 and 28 from the northwest, events 17 and 21 from the north and events 22

and 32 from the northeast, respectively.
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The model of Stern et al. provided a good fit to arrivals along a narrow range of az-

imuths from the northwest. The intent of the present study is to provide a wider range

of azimuths for teleseismic waves in an attempt to further define both geometry and

velocity structure.

Rays travelling along the plate boundary (red raypaths in Fig. 5.10) will propagate

a long way through the mantle body and also have similar path lengths through it.

The travel-time advance will therefore be uniform across the WCOAST/ COOK array

as all rays will have experienced similar time advances. In contrast, for earthquakes

from the north with back azimuths slightly off from the mantle body orientation (green

raypaths), path lengths through the mantle body will vary the most. As a result, the

travel-time advance will appear as the largest. Finally, rays propagating perpendicular

to the mantle anomaly (blue raypaths) will also have variable path lengths through the

mantle body. These will, however, be in general shorter than those of rays arriving

from the north and the time advance will therefore be moderate.
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5.6 Modelling of the mantle wave-speed anomaly

Stern et al.’s (2000) vertical mantle body provides a good fit to most arrivals arriving

sub-parallel to the profile line, i.e. perpendicular to the plate boundary (model VERT

as a red curve in Fig. 5.11a–d, Fig. 5.12a–f). The fit however degrades for arrivals from

the north that have shallow incidence angles (Fig. 5.12d).

The mantle wave-speed anomaly is modelled with a series of horizontal cylindrical

shapes (Tab. 5.2) that aim at investigating the mantle body’s parameters: dip, width,

wave-speed anomaly and azimuth. Stern et al.’s (2000) mantle body is taken as initial

model. The centre of the mantle body is fixed. The position of the centre of mass along

the profile line is constrained to where the mantle residual gravity anomaly, i.e. the

difference between the Bouguer anomaly and the gravity effect of the crustal root, is

maximum (Stern et al., 2000). The depth of the centre of mass is set to ∼110 km, es-

timated by Stern et al. (2000) from the half-maximum of the mantle residual anomaly.

In some models (e.g. models W130, W160 of Tab 5.2), however, a larger width will

increase the mass of the mantle body and therefore the wavelength and amplitude of

the gravity effect of such a body. This is compensated by thinning the body from the

bottom, which results in shallowing the body centre. In contrast, to the centre of the

mantle body, the other parameters height H, width W , dip, wave-speed anomaly δV p,

and azimuth from north azN , are varied independently (see Fig. 5.6 for a representa-

tion of the parameters).



1
7
2

C
H

A
P

T
E

R
5
.

P
-W

A
V

E
T

R
A
V

E
L
-T

IM
E

D
E

L
A

Y
A

N
A

L
Y

S
IS

Table 5.2: Models for the mantle high-speed body. Models are defined by a centre (with a lateral position indicated by a longitude

for a fixed latitude of –43.73◦ or a distance X from MCV along the profile and a depth z), a height H, a width W , an inclination

from the vertical aV (i.e. 90◦ from the dip), an azimuth from north azN , a wave-speed anomaly δV p, and a factor F between

0 and 1, that represents the fraction of the cylinder radius, to which V p is constant. See Figure 5.6 for a representation of these

parameters.

model Longitude (◦) z (km) H (km) W (km) aV (◦) Dip (◦) azN (◦) δV p (km/s) F

VERT (or W100,

Az45, δVp0.6)

170.0 110 125 100 - - 45 0.6 0.2

W130 170.0 100 110 130 - - 45 0.6 0.2

W160 170.0 90 90 160 - - 45 0.6 0.2

SUBE 170.0 110 110 100 –40 50◦ SE 45 0.6 0.2

SUBW 170.0 110 110 100 40 50◦ NW 45 0.6 0.2

Az30 170.0 110 125 100 - - 30 0.6 0.2

Az60 170.0 110 125 100 - - 60 0.6 0.2

δVp0.5 170.0 110 125 100 - - 45 0.5 0.2

δVp0.7 170.0 110 125 100 - - 45 0.7 0.2

Az30W100δVp1 170.0 110 125 100 - - 30 1.0 0.2

Az60W160δVp1.2 170.0 90 90 160 - - 60 1.2 0.2

δVp0.2 170.0 110 125 100 - - 45 0.2 0.2

δVp0.3 170.0 110 125 100 - - 55 0.3 0.2



5.6
.

M
O

D
E

L
L
IN

G
O

F
T

H
E

M
A

N
T

L
E

W
A
V

E
-S

P
E

E
D

A
N

O
M

A
L
Y

173

Table 5.2: continued

model Distance (km) Depth (km) H (km) W (km) aV (◦) Dip (◦) azN (◦) δV p (km/s) F

Stern et al. (2000) 12 km east 110 125 100 - - 45 0.6 ∼0.2

Az45δVp1.1 12 km east 110 125 100 - - 45 1.1 ∼0.2
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Dip

The vertical body (model VERT of Tab. 5.2) offers a better fit to most events from the

northwest (Honshu, Irian Jaya events of Fig. 5.11b–c and events 1 and 28 of Fig. 5.12c)

than the dipping bodies do (models SUBW, SUBE of Tab. 5.2). In contrast, events

that show smaller travel-time advances (Banda event and events 5, 9, 18 and 19 of

Figures 5.11a, 5.12b) yield a better fit with the east-dipping body (SUBE) because

this has the effect of smoothing the travel-time anomaly for rays arriving from the

northwest. Events 31 and 33, which have steep rays, are insensitive to the mantle body

dip (Fig. 5.12a) because the time advance across the three models is similar for these

nearly vertical raypaths. Finally, none of the three models offer a close fit to events 17

and 21 (Fig. 5.12d).

Width

The Honshu, Irian Jaya and most of the WCOAST/COOK events except for events

5, 9, 18, 19 and 17, 21 obtain a good fit with a 100–130 km wide body with vertical

dip (models VERT, W130 of Tab. 5.2, Fig. 5.13–5.14). Time delays of the Banda

earthquake and events 5, 9, 18 and 19, in contrast, are better matched by a wider

(160 km) body (Fig. 5.14b). This is because the wider but thinner body decreases the

lateral wave-speed gradient within the body, which is a similar effect to lowering the

wave-speed anomaly δV p. Similarly, events 17 and 21 time delays (WCOAST side) are

better matched by a 130–160 km wide body, i.e. a wave-speed anomaly that extends

slightly further to the northwest. The discrepancy with observed travel-time delays of

events 17 and 21, however, remains large with ∼0.7 s for the WCOAST side.
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Figure 5.11: (above) SIGHT events and predicted travel-time delays for models SUBW,

VERT (red curve) and SUBE (Tab. 5.2) that have mantle bodies dipping 50◦ NW,

vertical and dipping 50◦ SE, respectively. Note that time delays are shown relative to

the mean value.

Figure 5.12: (Right) WCOAST/COOK events and predicted travel-time delays for

models SUBW, VERT (red curve) and SUBE (Tab. 5.2) that have mantle bodies dip-

ping 50◦ NW, vertical and dipping 50◦ SE, respectively. Time delays are shown relative

to delays at station MCV. Note the major misfit for events 17 and 21 (d) with back

azimuths of –2◦ to 5◦.
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Figure 5.13: Same as Figure 5.11 for models VERT (W100; red curve), W130 and W160

(Tab. 5.2), which mantle bodies are 100 km, 130 km and 160 km wide, respectively.
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Figure 5.14: Same as Figure 5.13 for WCOAST/COOK events.
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Figure 5.15: Same as Figure 5.11 for models δVp0.5, VERT (δVp0.6; red curve) and

δVp0.7 (Tab. 5.2) with maximum wave-speed anomalies of 0.5 km/s, 0.6 km/s and

0.7 km/s, respectively.
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Figure 5.16: Same as Figure 5.15 for WCOAST/COOK events.
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Figure 5.17: WCOAST/COOK events and predicted travel-time delays for models az30,

VERT (az45; red curve) and az60 (Tab. 5.2)
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Figure 5.18: Rays of the COOK events have been projected onto cross-sections of model

VERT (Tab. 5.2) oriented at N135◦E along SIGHT T2 (top) and N50◦E (middle).

SIGHT events have been projected onto a cross-section oriented N135◦E (bottom). Red

triangles represent recording stations. Cross-sections are not to scale.
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Amplitude of the wave-speed anomaly

A wave-speed anomaly, δV p, of 0.5–0.6 km/s offers a reasonable match to most travel-

time residuals, which is similar to the wave-speed anomaly deduced by Stern et al.

(2000). However, a smaller δV p is required for the Banda event, the Chile event and

events 5, 9, 18 and 19 (Fig. 5.15a,d and Fig. 5.16b) and a larger one for events 17 and

21 (Fig. 5.16d). Figure 5.16d also suggests that raypaths from events 17 and 21 to the

stations located northwest of station MCV are unaffected by the wave-speed anomaly.

The smaller and larger wave-speed anomalies are not compatible with models by either

Stern et al. (2000) or Kohler and Eberhart-Phillips (2002).

Azimuth

Rays arriving from the northwest or the southeast, i.e. nearly perpendicular to the

mantle body azimuth, show little sensitivity to the mantle body’s azimuth. These in-

clude all SIGHT events and some WCOAST/COOK events. In contrast, rays from

the north are sensitive to the western extent of the mantle high-speed zone and, thus,

its azimuth. For instance, events 17, 21 and 22, 32 show the strongest variations of

travel-time residuals across the array. Travel-time delays of events 17 and 21 find a

slightly better match with a body oriented N30◦E than with a N60◦E one (Fig. 5.17d)

or, with different model parameters. Similarly, events 22 and 32 suggest an azimuth of

30◦–45◦ (Fig. 5.17e). As seen in the top of Figure 5.18, the raypaths of neither event

groups sample the entire width of the mantle body but only the western half, which is

the reason for the trade-off between azimuth and the width of the wave-speed anomaly.
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Events 17 and 21 from the north

None of the above presented models offers a close match to travel-time residuals from

events 17 and 21, with all predicting an insufficient travel-time advance across the array.
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Figure 5.19: Top: Travel-time delays of events 17 and 21, and the fit provided by a set of

models that illustrate the trade-off between width, azimuth and wave-speed anomaly.

Bottom: events 17 and 21 rays superposed on a north-oriented slice through model

Az45δVp1.1. The light-purple mantle region represents the entirely unconstrained do-

main.
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Rays from events 17 and 21 arrive from the north at a shallow incidence of 41◦–52◦.

These rays graze the plate boundary and are, thus, most sensitive to the top northwest-

ern extent of the mantle body and the lateral wave-speed gradient there in particular.

Figures 5.14d and 5.17d suggest that bodies that are wider and/or have a more north-

ward orientation (N30◦E) improve the fit to the WCOAST side (west of MCV) of the

residuals but degrades it on the COOK side (east of MCV). The fit to the COOK side,

in contrast, is improved by a stronger wave-speed anomaly or a west-subducting body,

which contribute to increasing the variation in the raypath integrated time advance

(Fig. 5.12d, 5.16d).

Figure 5.19 illustrates the fit provided by (a) a 100 km wide wave-speed anomaly

of 1 km/s with a more northward azimuth of N30◦E than the N55◦E plate boundary

orientation (model Az30W130δVp1.0 of Tab. 5.2), (b) an up to 160 km wide body with

a N60◦E azimuth and a 1.2 km/s wave-speed anomaly (model Az60W160δVp1.2). An

alternative model (Az45δVp1.1 of Tab. 5.2; bottom of Fig. 5.19) is presented that is

about 100 km wide, is oriented at N45◦E, has a δVp of 1.1 km/s and a northwestern

corner that is wider than in the original model of Stern et al. (2000). Note that this is

a possible model for the zone sampled by these rays only, i.e. the top northwestern cor-

ner of the mantle wave-speed anomaly. Although these models are poorly constrained,

they all require a minimum wave-speed anomaly δV p of 1.0 km/s and a high-speed

zone extending slightly further to the top or northwest than the initial mantle model

VERT.

Models for the Banda event and events 5, 9, 18 and 19

In contrast to the high wave-speed anomalies required for events 17 and 21 with rays

arriving from the north, a lower wave-speed anomaly of ∼0.3 km/s only is required to
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match time residuals of the Banda earthquake and events 5, 9, 18 and 19 with rays

arriving from the northwestwest and also time residuals of the offshore Chile event with

rays arriving from the southeast (Fig. 5.20).
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Figure 5.20: Travel-time delays of the Banda event (top left), events 5, 9, 18 and 19

(top right), Chile event (lower left) and models δVp0.3 and δVp0.2 (Tab. 5.2) that have

mantle bodies with azimuth and wave-speed anomalies of N55◦E, 0.3 km/s and N45◦E,

0.2 km/s, respectively.
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5.6.1 Models’ misfits

Model residual distributions are presented in box-and-whisker plots (Fig. 5.21). For

the SIGHT events (Fig. 5.21a), the boxplots indicate skewed distributions for models

SUBW and δVp0.7 of Table 5.2 and the largest interquartile range and number of out-

liers for models SUBE and W160, respectively.

Other models (VERT, W130, δVp0.5 of Tab. 5.2), in contrast, present relatively

symmetric distributions, smaller interquartile ranges and reasonable numbers of out-

liers. The mantle body is, therefore, best represented by a subvertical and 100–130 km

wide body with an average δVp of 0.5–0.6 km/s. Models Az30 and Az60 distributions

are not taken into account because the SIGHT events are not sensitive to the mantle

body azimuth. Similar plots for the WCOAST/COOK events (Fig. 5.21b) do not show

much distinction between models because of the small number of residuals per event

and the limited horizontal range. The northwest-dipping body (model SUBW) only

stands out as least viable with the largest interquartile range.

Model misfits are presented as the weighted Root Mean Square (L2-norm) (Fig. 5.22).

For a single event the L2-norm is defined by

L2normj =
1

Nj

√
√
√
√

∑

i=1,Nj

((xi − x̄) − (yi − ȳ))2

σ2
i

(5.1)

where Nj is the number of travel-time delays for the jth event, xi represent single

travel-time delays with average x̄, σi are error bars, yi represent calculated travel-time

delays and their average ȳ. Values for the whole event ensemble are given by

L2normtot =

√
√
√
√

∑

j=1,M

∑

i=1,Nj

((xij − x̄j) − (yij − ȳj))2

σ2
i

/
∑

j=1,M

Nj

with M , the number of events.
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Figure 5.21: Box-and-whisker plots of model residuals with (a) SIGHT and (b)

WCOAST/COOK travel-time delays. Boxes represent the interquartile range, which

includes 50 % of the data. The red middle bar is the median model residual. Whiskers

are minimum and maximum values, which include 100 % of the data in the absence

of outliers (crosses). Outliers are those residuals that are greater than 1.5 times the

quartile value.
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Models generally have L2-norms that are twice as large for the WCOAST/COOK

data set than for the SIGHT one. This is a consequence of the smaller error bars (σi in

the denominator of equations 5.1 attributed by the adaptive stacking, which was used

on the WCOAST/COOK data set, than the errors attributed by picking on the SIGHT

data set. The total L2-norms show little variation between models, suggesting that the

data are not well suited to discriminate between the various mantle body geometries.

They show a larger misfit for events from the southeast.

Nevertheless, similar to suggested by the box-and-whisker plots of Figure 5.21, L2-
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Figure 5.22: L2-norm of model residuals for single SIGHT (left) and WCOAST/COOK

(right) events. The L2-norm for the whole set of events is given for each model on the

right of the legend. Red lines indicate a model best fits for a L2-norm value of one.



190 CHAPTER 5. P-WAVE TRAVEL-TIME DELAY ANALYSIS

norms indicate a greater misfit for models SUBW, SUBE, δVp0.7 and W160 than for

models VERT, W130 and δVp0.5. For instance, models SUBW and SUBE (northwest-

/southeast-dipping bodies) L2-norms for single events show the most variability with

back azimuth from all the models. Their total L2-norms class them as the worst models

for the SIGHT and WCOAST/COOK data sets, respectively.

In contrast, model δVp0.5 displays the smallest L2-norm for the SIGHT data set

and a smaller misfit than the initial VERT model with a δVp of 0.6 km/s for the

WCOAST/COOK data set. L2-norms of models Az30 and Az60 for the SIGHT events

show little or no variation from those of model VERT, reflecting the lack of sensitivity

of those events to the mantle body azimuth.

Models Az30 and Az60 misfit values for the SIGHT events have little significance

as these events are inline with the profile and insensitive to variations in the mantle

body’s azimuth. For the WCOAST set of events, the L2-norm suggests that model

Az30 azimuth is a better azimuth for the mantle body than the 45◦ from north of

model VERT is. This, however, is the contribution of the event 21 large misfit to

the L2-norm, whose rays sample the western portion of the mantle body only, and sug-

gests that model VERT underestimates the extent of the mantle body to the northwest.

5.6.2 Contribution of anisotropy to the wave-speed anomaly

A Moho shallowing at a 10◦ angle along-strike and to the northeast can account for a

∼0.1 s error on travel-time delays for northern back azimuths (see p. 156), but not a

ca. 1.2 s delay, the difference between measured travel-time residuals of events 17, 21

and corresponding synthetic residuals of tested models (VERT to δVp0.7 of Tab. 5.2

with time delays shown in (d) of Fig. 5.12–5.17). Figure 5.19 suggests that the mantle
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wave-speed anomaly is ca. 1.1 km/s for this particular back azimuth and an incidence

angle of ∼50◦.

Both large SKS splitting (Klosko et al., 1999) and Pn anisotropy (Scherwath et al.,

2002) have been reported beneath, west and east of the Southern Alps. SKS fast po-

larisation orientations (and delay times) are 26◦ ± 7.5◦ (1.6 ± 0.24 s) and 29◦ ± 9◦

(1.7 ± 0.27 s) at stations GLAA (West Coast) and MTCA (Mount Cook Village)

(Klosko et al., 1999) both located near SIGHT Transect 2. An apparent Pn anisotropy

of 11.5 ± 2.5 % (Scherwath et al., 2002) was estimated from Pn-wave speed measure-

ments along the mutually perpendicular NW-SE Transect 2 and NE-SW line 3W of

SIGHT. Apparent and maximum Pn anisotropy of 6.5 ± 3.5 % and 7–13 %, respec-

tively, were estimated at the crossing SIGHT Transect 2 and Fiordland-Cheviot profile

(Section 2.5).

Assuming simple shear and/or pure shear (Sanderson and Marchini, 1984) in the

mantle with horizontal orientation of the shear axis, then shallow incident rays arriving

from north are ca. 30◦ from the fast propagation azimuth and 40◦ from the horizon-

tal plane. In contrast, rays arriving from a –60◦ from north at an incidence angle of

23◦–31◦ sample the slow propagation orientation, while vertically incident rays may

sample an intermediate wave speed (assuming minimal vertical shear). The apparent

wave-speed anomaly is ca. 0.3 km/s and 1.1 km/s for back azimuths of ca. –60◦ and

0◦ from north respectively, i.e. wave speeds of 8.4 km/s and 9.1 km/s assuming an

isotropic mantle with background wave speed of 8.1 km/s. These two values suggest

an apparent anisotropy of 8 ± 3 %. This anisotropy estimate is a minimum because

propagation paths for these two event groups are neither mutually perpendicular nor

contained in the horizontal plane, where wave-speed variations should be the largest if

the anisotropy has orthorombic symmetry. The true amount of anisotropy in the centre
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of the mantle body may be even larger if the surrounding mantle has a background

anisotropy both west and east of the mantle body as suggested by SKS splitting and

Pn anisotropy studies (see Section 2.5.2). Such high anisotropy could reflect mantle

shear increasing laterally towards the central vertical axis of the mantle body.
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5.7 Conclusions

P travel-time delays were measured from a set of 35 events recorded along two consec-

utive deployments COOK and WCOAST that combine into one profile. Travel-time

delays were also measured on four teleseisms recorded along Transect 2 during the

1996 SIGHT project. Three-dimensional forward modelling is used to calculate syn-

thetic time delays for the large range of back azimuths recorded and to test possible

geometries for a mantle high-speed anomaly beneath the Southern Alps.

Travel-time delays display large variations with back azimuth and incidence angle.

These show time advances up to 1.8 s for events from the north relative to predicted

travel-time delays from the SIGHT Transect 2 crustal structure (Scherwath et al., 2003)

but time advances of only 0.3 s for back azimuths of –50◦ to –60◦ from north. Travel-

time advances are consistent with the presence of a mantle high-speed body beneath

the Southern Alps (Stern et al., 2000). Variations with most but not all back azimuths

are explained by a horizontal cylindrical mantle body that stretches along the plate

boundary. A sub-vertical, 100–130 km wide mantle body with a 0.5–0.6 km/s wave-

speed anomaly similar to Stern et al. (2000) model offers a best match to northwestern

back azimuths. The available data are insufficient to constrain the mantle body az-

imuth, which is assumed to lie in the range 30◦–60◦ from north.

This model, however, underestimates and overestimates mantle wave-speed anoma-

lies for back azimuths of about 0◦ and –60◦, respectively. Wave-speed anomalies of

∼1.1 km/s and ∼0.3 km/s are respectively required for the back azimuths of ∼0◦ and

–60◦ from north with epicentral distances of 21◦–28◦ and 54◦–81◦ (i.e. incidence angles

of ∼50◦ and ∼30◦). The difference in the modelled wave-speed anomalies for both

azimuths is larger than can be attributed to neglecting thinning of the crustal root to
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the northeast and/or a 10◦ error in the chosen crustal root azimuth. Both crustal root

thinning and uncertainty of the azimuth may account for a 0.1 s and a 0.2 s difference,

respectively, i.e. a total of 0.3 s, which is less than the 1 s difference between back

azimuths.

Anisotropy is proposed as a possible explanation for the discrepancy with the fast

wave-speed axis aligned with the shear direction and the low wave-speed axis being in

the horizontal plane and perpendicular to the fast axis. The apparent anisotropy esti-

mated from the modelled wave-speed anomalies from northern and northwestern back

azimuths is a minimum of 8 ± 3 % (Section 5.6.2). Note that this interpretation relies

on data that present almost nonexistent ray coverage from the east to the southwest

(Fig. 5.18, p. 182).

Future suggested work: More travel-time delays need to be measured on phases ar-

riving from the north and northeast in order to confirm the observed travel-time delays

dependence on the back azimuth and incidence angle, and to constrain the width and

azimuth of the wave-speed anomaly. This could be done by repeating this study’s exper-

iment with a profile extending further southeast than the combined WCOAST/COOK

array and east of lake Tekapo. Furthermore, a profile extending up to 100 km off-shore

and for a minimum of six months is necessary to record earthquakes from the southern

Chilean Coast and to constrain the dip of the wave-speed anomaly. A ≤15 km station

spacing would allow sampling the gradient of the travel-time anomaly with respect to

distance. Finally, including Pn phases from the northeast and southwest will help to

constrain the wave-speed along the fast wave-speed axis and its orientation. Further

analysis on this study data set would benefit from exploring the trade-offs between

model parameters, especially those between width and azimuth or wave-speed anomaly

and gradient of the mantle body
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The dependence of the wave-speed anomaly on the back azimuth and the incidence

angle suggests that inversions incorporating anisotropy will help to recover the full

wave-speed anomaly in the mantle lid.
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Chapter 6

Discussion and conclusions

6.1 Overview

Four independent analyses have been used to characterise variations in crustal thickness

and mantle lithosphere properties in a region of oblique continent-continent collision.

The analyses used teleseismic P-wave delays, earthquake refraction, modelling of grav-

ity anomalies and teleseismic receiver functions.

Earthquake refraction

Pn speed is 8.54 ± 0.20 km/s along the Southern Alps foothills on a profile ca. 5◦

clockwise from the plate boundary orientation (Section 2.3). The high Pn speed is

shown to result from 7–13 % seismic anisotropy with a fast orientation sub-parallel to

the plate boundary, as well as a relatively high isotropic wave speed of 8.3 ± 0.3 km/s

in the mantle lid (Section 2.5). A maximum crustal thickness of 48 ± 4 km is esti-

mated along the refraction profile near Wanaka and beneath the southern portion of

the Southern Alps, which represents a ca. 18 km thick crustal root relative to a 30 km

crustal thickness at the coasts (Section 2.4). This crustal root is thicker than predicted

by Airy isostasy to sustain the topographic load of the 1000 m mean elevation. The

197
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gravity effect of the over-thickened crust is apparent as a negative isostatic anomaly of

–20 mGal at Wanaka (Section 2.6). For an assumed –300 kg/m3 across-Moho density

contrast (Section 2.6.2), a positive mass anomaly is deduced in the mantle lid beneath

the region of over-thickened crust that has a minimum 35 ± 5 kg/m3 density anomaly

with the surrounding mantle material (Section 2.6.3). The mass anomaly has a mini-

mum width of 110 ± 20 km and a minimum thickness of 70 ± 20 km. Assuming thermal

contraction of mantle rocks, the density anomaly can be interpreted as a 200–400
◦

C

negative temperature anomaly with the surrounding mantle that results from the down-

warp of isotherms (Section 2.7, p. 45). Such a mass anomaly is interpreted to represent

a dynamic pull on the overlying crust, and to cause enhanced crustal thickening. The

Australian oceanic slab of the nearby Puysegur subduction zone located southwest of

the Southern Alps region is proposed to act as a rigid backstop that contributes to

the thickening of Pacific mantle lithosphere at the southwestern corner of the Southern

Alps (p. 46).

Receiver functions

Forward modelling of P, S and SKS receiver functions at Geonet stations JCZ, WKZ

and EAZ are used to produce a profile of crustal thicknesses across Otago and the

southern portion of the Southern Alps. A model was also derived at station RPZ that

provides a comparison with the crustal structure from SIGHT Transect 1 (Van Aven-

donk et al., 2004).

Effects of dipping boundaries and anisotropy on S receiver functions have been ex-

plored with synthetics from simple one-layer models. The synthetics show that for SKS

receiver functions, a steeply-dipping layer with strong impedance contrast at the top,

causes a negatively polarised direct SKS-wave pulse at 0 s delay time of the receiver
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functions for the updip-travelling SKS wave (Section 3.3.1, p. 65). The synthetics also

show that for the shallower incident and updip-travelling S wave a steeply-dipping

layer inhibits Sp conversions, when incidence angles are greater than the P-wave trans-

mission critical angle at the dipping interface (Section 3.3.1, p. 61). Furthermore, an

anisotropic layer with a strong impedance contrast at the top causes a negative direct

S-wave pulse at epicentral distances less than ∼45◦ and back azimuths within 45◦ from

the symmetry axis (Section 3.3.3). The negative pulse is interpreted to result from the

elliptical particle motion that arises from the interference between the incident S wave

and its free surface Sp conversion at incidence greater than the S-wave critical angle

(Booth and Crampin, 1985). The back azimuth dependence of the initial pulse polarity

suggests that the modified incidence angle is a function of the angle between the ray

and the anisotropy symmetry axis, and results from the anomalous refraction angle

that occurs at the interface between anisotropic and isotropic media (e.g. Slawinski

et al., 2000).

A Vp/Vs ratio of 1.60 is estimated from station RPZ P receiver functions for the

upper and mid crust (Section 4.6.1, p. 98). This low value corroborates previous low

Vp/Vs ratio estimates of 1.56 (Pulford, 2002) for the mid crust and 1.65 as a crustal

average (Kleffmann, 1999) for the central Southern Alps. Stern et al. (2001) interpreted

the low Vp/Vs ratio to result from high pore fluid pressure released during prograde

metamorphism.

Combined P and S receiver functions image deepening of a discontinuity across

western Otago from 34 ± 5 km (JCZ) and 32 ± 3 km (EAZ) on either side of the

Southern Alps to 39 ± 4 km depth beneath the highest topography (ca. 50 km NW

of WKZ) assuming Vp/Vs ratios of 1.65–1.75 (Section 4.7). The interpretation of this

discontinuity as the Moho is inconsistent with a –80 mGal Bouguer gravity anomaly
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and previous crustal thickness estimates of 43–45 km from 3D inversion of travel-time

data (Eberhart-Phillips and Bannister, 2002) and 48 ± 4 km from earthquake refrac-

tion. Low Vp/Vs ratios of 1.55–1.60 for the crust in western Otago could reconcile P

and S receiver function delay times with the gravity and these previous crustal esti-

mates. Alternatively, the discontinuity may be interpreted as a lower crustal boundary

implying a relatively low wave-speed contrast at the Moho.

Receiver functions suggest the presence of a 50–70 km deep upper mantle disconti-

nuity 15 km to 30 km below the Moho. S-wave receiver functions suggest that the dis-

continuity could represent a rotation of the anisotropy fast symmetry axis (Section 4.7,

p. 140). P-wave receiver functions suggest an additional Vp increase of ∼0.3 km/s

within the mantle, possibly associated with the same discontinuity. The rotation of the

fast axis may be interpreted as mechanical decoupling, while partial eclogitisation or

the Hales discontinuity represent viable explanations for the Vp increase.

Teleseismic P travel-time delays

Travel-time delays were measured across the central Southern Alps along a ∼80 km

long profile extending from the West Coast to east of Lake Pukaki. Depending on the

ray azimuths and incidence angles, travel times show arrivals 0.3 s to 1.8 s earlier than

those predicted for the presence of the Southern Alps crustal root alone, assuming a

2D model for the crust extrapolated into the third dimension at an azimuth of N50◦E

(Section 5.5). These early arrivals are consistent with the presence of a previously

hypothesised mantle body (Stern et al., 2000), which is a high wave-speed anomaly,

relative to a regular mantle wave speed of 8.1 km/s. The smallest advances are observed

for event back azimuths of –60◦ to –50◦. The largest advances are observed for events

located close to (epicentral distances of 21◦–27◦) and north from New Zealand, whose
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arrivals have incidence angles of 40◦–52◦.

Three-dimensional forward modelling suggests that the mantle body is sub-vertical,

100–130 km wide and is centered at ca. 110 km depth (Section 5.6). The average wave-

speed anomaly required is 0.5–0.6 km/s for most events, the majority of which are

located northwest of New Zealand. For the smallest and largest time advances of 0.3 s

and 1.8 s, however, weaker (∼0.3 km/s) and stronger (∼1.1 km/s) wave-speed anoma-

lies, respectively, are required (Section 5.6, p. 184–185). The difference is attributed

to seismic anisotropy in the mantle lid (Section 5.6.2) and represents a ∼8 % appar-

ent minimum anisotropy in the mantle, consistent with the anisotropy estimate from

earthquake refraction. It is proposed that the thickened mantle lid is being deformed

in both horizontal and vertical planes.

6.2 Patterns of lithospheric deformation

Variations in lithospheric deformation within the South Island and south of the Hiku-

rangi subduction zone are divided into three zones: (1) The central South Island, where

convergence is greatest; (2) A zone between SIGHT Transect 2 and Otago, where defor-

mation is possibly affected by lateral extrusion of the lower crust and mantle (Gerbault

et al., 2002; Scherwath et al., 2006) as a result of the obliquity of the relative plate mo-

tion vector with the plate boundary; (3) Otago and further south, where the Southern

Alps oblique collision and the Puysegur oblique subduction both contribute to thicken

the mantle lithosphere.
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Central South Island

The region between SIGHT Transect 1 and Transect 2 is characterised by maximum

convergence and contraction (Beavan et al., 2007; Henderson, 2003). Crustal thickening

is important and expressed in maximum average elevations of 1,500 m (Mt Cook region)

and the presence of a crustal root with maximum thickness increasing to the southwest

from ∼7 km at SIGHT Transect 1 (Van Avendonk et al., 2004) to ∼14 km at Transect 2

(Scherwath et al., 2003, relative to a 30 km crustal thickness at the coasts). Mantle

shortening is apparent in a high wave-speed (Chapter 5) and a high density anomaly

beneath the Southern Alps that can be explained by the downwarp of isotherms alone

(Stern et al., 2000). The density anomaly is a positive mass anomaly that is a pull on

the overlying crust and is the reason for the enhanced crustal thickness and a –20 mGal

isostatic anomaly (Reilly et al., 1977).

Teleseismic P travel-time delays indicate that: (1) anisotropy is pervasive through-

out the zone of mantle shortening (Section 5.6.2); and (2) mantle shortening is 100–

130 km wide (Section 5.6) and more confined than the minimum 160 km wide zone

of mantle simple shear inferred from seismic anisotropy measurements (Fig. 6.1; Sec-

tion 2.5; Baldock and Stern, 2009, in prep.; Duclos et al., 2005; Klosko et al., 1999;

Scherwath et al., 2002).

Modelling of GPS velocities suggests that the width of present active mantle defor-

mation could be 100 km wide only (Beavan et al., 2007; Ellis et al., 2006a). An Eocene

passive margin was proposed to represent a lithospheric-scale heterogeneity that con-

trolled the development of the Alpine Fault continental transform ca. 23 Myr ago

(Sutherland et al., 2000), and could represent a lithospheric heterogeneity that could

contribute to localise deformation. Modelling (Houseman and Billen, 2002) shows that

shear weakening can also contribute to localise deformation and shortening.
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Strain modelling (Savage et al., 2007c) predicts that shortened mantle lithosphere

stiffens as it thickens and, thus, inhibits further strain to build up in the lithospheric

root. Hence, pervasive anisotropy in the shortened mantle suggests that strong anisotropy

was acquired before the onset of mantle shortening. Thus, the presence of a high

anisotropy in the lithospheric root is consistent with plate reconstructions that deter-
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Figure 6.1: Schematic representation of the widths of mantle deformation through

shortening and simple shear as deduced from teleseismic P travel-time delays (elliptical

cross-section) and seismic anisotropy (light coloured region), respectively. LAB denotes

the lithosphere-asthenosphere boundary. Vectors perpendicular to the cross-section

denote the relative plate motion. The vertical exageration is 1:1 (after Baldock and

Stern, 2004b).
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mine the onset of rapid convergence ca. 35 Myr after the creation of a transcurrent

plate boundary (Cande and Stock, 2004; Walcott, 1998).

The difference between the 100–130 km wide zone of mantle shortening inferred

from teleseismic travel-time delays (Section 5.6) and the ≥160 km wide zone of man-

tle simple shear inferred from seismic anisotropy measurements poses the following

unanswered questions: Is the ≥160 km wide zone of mantle deformation inferred from

seismic anisotropy actively deforming? Is active deformation, instead, confined to the

100–130 km wide deformation zone defined by teleseismic travel-time delays? Thus,

has seismic anisotropy been frozen at the edges of the mantle deformation zone? Has

deformation become more localised through time by a pre-existing mantle heterogene-

ity or strain weakening?

Between SIGHT Transect 2 and Otago

About 40 km south of SIGHT Transect 2, and about 70 km south of the region of

maximum elevations, greater crustal root thicknesses are suggested by a 20 mGal more

negative Bouguer anomaly (Reilly and Whiteford, 1979) than along SIGHT Transect 2.

Inversion of travel-time data (Eberhart-Phillips and Bannister, 2002) also indicates a

∼3 km thicker crustal root there than along SIGHT Transect 2. Finite-element mod-

elling (Gerbault et al., 2002) predicts that the offset between maximum crustal thick-

nesses and maximum elevations can be due to lithospheric buckling perpendicular to the

direction of oblique convergence and lateral extrusion of lower crustal material perpen-

dicular to the direction of maximum horizontal stress (Bird, 1991). Three-dimensional

inversion of gravity data (Scherwath et al., 2006) suggests that the region of greater

crustal thicknesses correlates with a greater positive mass anomaly in the mantle. Scher-

wath et al. (2006) argue that mantle extrusion by creep (Meissner et al., 2002) could
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be the reason for the greater mantle mass anomaly south of the maximum topography.

The mantle mass anomaly appears to increase south into western Otago.

Otago and further south

Under Wanaka (Fig. 2.1), approximately 100 km southwest of the gravity minimum,

∼50 km and ∼100 km northeast of Fiordland and the subducting Australian slab

(Fig. 1.6), the crustal root is up to ∼4 km thicker than along SIGHT Transect 2 (Sec-

tion 2.4) but the thickness of the high wave speed and dense upper mantle body is

approximately similar (Section 2.6.3). As pointed out in Section 2.7, the similar or

greater crustal root thickness beneath the southern portion of the Southern Alps, rela-

tive to that beneath the central portion, is counter-intuitive from observations of: mean

elevations, which are ∼500 m less in the south; compression decreasing south (Plate

1 of Beavan et al., 2007); and the total shortening being 30–40 km less (Cande and

Stock, 2004; Walcott, 1998). Furthermore, GPS velocity vectors in Fiordland, Otago

and Southland (relative to a fixed point on the east coast) indicate more northerly

directions than in the regions located to the north (Henderson, 2003), suggesting a

transition in the style of motion perhaps reflecting a change in the nature of the plate

boundary. This rotation could possibly indicate the transition from the Southern Alps

oblique collision to the Puysegur oblique subduction. Wanaka is directly located in-

board of the transition’s northern limit shown by GPS vectors. Thus, it is possible that

the enhanced crustal and mantle thickening of the Wanaka region (Eberhart-Phillips

and Bannister, 2002; Kohler and Eberhart-Phillips, 2002; Scherwath et al., 2006, and

this study’s Chapter 2) could result from the contribution to thickening of the nearby

converging Fiordland block and Puysegur subduction zone. The Australian slab located

southwest of the Southern Alps may represent a rigid backstop (Malservisi et al., 2003)

that converges with the Pacific lithosphere at ca. 3/4 of the Australian-Pacific relative
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plate motion (Section 2.7, p. 46). While possibly as much as half of the convergence

is taken through subduction at the Puysegur margin, the rest may be accommodated

through tearing or twisting of the Australian slab (Reyners et al., 2002; Smith and

Davey, 1984) and thickening of the Pacific lithosphere.

6.3 Summary

The following points summarise this thesis’ main findings:

• The Pn speed is 8.54 ± 0.20 km/s at N60◦E along the Southern Alps eastern

foothills.

• The isotropic Pn speed is 8.3 ± 0.3 km/s and the maximum Pn anisotropy is

7–13 % beneath the central Southern Alps (lake Tekapo).

• A maximum crustal thickness of 48 ± 4 km is estimated beneath the southern

extent of the Southern Alps near Wanaka (western Otago).

• A 48 ± 4 km crustal thickness represents an 18 ± 4 km thick crustal root relative

to a 30 km crustal thickness at the coasts that is twice or three times greater

than necessary to isostatically sustain a ∼1000 m topographic load.

• A mass excess is proposed in the mantle below western Otago to compensate

for the crustal root mass deficit. Assuming an across-Moho density contrast of

–300 kg/m3, the mass excess is an minimum density contrast of 35 ± 5 kg/m3,

110 ± 20 km width and 70 ± 20 km thickness in the mantle.

• At central South Island station RPZ, teleseismic receiver functions corroborate a

low Vp/Vs ratio of 1.60 for the upper and mid crust interpreted to result from

high-pore fluid pressure released during prograde metamorphism.
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• P and S teleseismic receiver functions at the western Otago stations EAZ and

WKZ respectively suggest Moho depths of 32 ± 3 km and 39 ± 4 km that are

inconsistent with the –80 mGal Bouguer gravity anomaly and crustal estimates

from other seismic measurements of 48 ± 4 km and 43–45 km near station WKZ.

• A mantle discontinuity is interpreted at 15–30 km below the interpreted Moho

that could be associated with a minimum 0.3 km/s wave speed increase and/or

a rotation of the anisotropy symmetry axis.

• Teleseismic P arrivals in the central Southern Alps display relative travel-time

advances of 0.3 s to 1.8 s relative to those predicted from the crustal structure

alone. Largest time advances are for shallow incident rays arriving sub-parallel

to the plate boundary.

• The average time advance is consistent with a 0.5–0.6 km/s wave-speed anomaly

with the surrounding mantle that is a body sub-parallel to the plate boundary,

sub-vertical, 100–130 km wide and centred at about 110 km depth beneath the

Southern Alps.

• Wave-speed anomalies of ∼0.3 km/s and ∼1.1 km/s are necessary to explain

the smallest and largest travel-time advances of 0.3 s and 1.8 s, respectively. The

difference is attributed to a minimum ∼8 % seismic anisotropy with the horizontal

fast axis along the shortened mantle body.
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Appendix A

Earthquake refraction

Weighted-mean wave speed

In the case of individual speed measurements, vi, with standard errors, σi, the mean

wave speed may be calculated by averaging over the individual speed measurements

weighted with the inverses of their respective squared standard deviations, 1
σ2

i

(Beving-

ton, 1969). The herein so called 1
σ2 -weighted mean is defined as

v̄ =

∑n
i=1

vi

σ2

i
∑n

i=1
1
σ2

i

. (A.1)

and has corresponding common variance, σ̄2, and mean standard deviation, σ̄ are

σ̄2 =
1

(n − 1) 1
Pn

i=1

1

σ2
i

n∑

i=1

(
vi − v̄

σi

)2

(A.2)

σ̄ =
√

σ̄2. (A.3)

Timing error correction

A three- to four-second timing error was identified in station HAW data. Cross-

correlation on three teleseisms that were recorded during the two-week deployment

209
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period is used to discriminate between a 3 s or a 4 s error (top left of Fig. A.1–A.3).

The three teleseisms are located north and northeast of New Zealand and approx-

imately in line with the profile. Their arrival times are, thus expected to increase

linearly along the array. For each event, waveforms of stations MCV, OHA and WWS

are cross-correlated with that of station HAW in order to estimate the corresponding

arrival delay times relative to station HAW (top right of Fig. A.1–A.3). A regression

line is fitted to stations MCV, OHA and WWS delay times to approximate a relative

travel-time curve through the array. The timing error is estimated by interpolating

the regression line at station HAW epicentral distance (bottom left Fig. A.1–A.3). The

single timing error estimates and mean do not allow to discriminate between a 3 s or

a 4 s (Tab. A.1). Station HAW picks were, therefore, not included in the wave-speed

analysis. The cause to the large errors may be attributed to variations of the crustal

thickness along the array of stations.

Event ID δt predicted σ

Loyalty Is. 3.55 4.31

Tonga 3.97 79.17

Vanuatu Is. 3.42 22.24

weighted mean 3.55 0.24

Table A.1: Timing errors, δt, represent the time difference predicted for station HAW.

The time difference is estimated from the regression line on stations MCV, OHA and

WWS time shifts that are estimated by cross-correlation (bottom left of Fig. A.1–A.3).

Standard deviations, σ, are used to weight single timing errors when calculating the

mean. Note that the Tonga and Vanuatu events contribute little to the weighted mean

due to the large error bars on the estimated time shifts.
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Figure A.1: Top left: single seismograms after instrument response

correction and band-pass filtering with corner frequencies of 1 Hz

and 3 Hz. Top right: station HAW cross-correlated seismograms

for an 8 s correlation window. Bottom left: linear regression (green

line) on cross-correlation delay times of stations MCV, OHA and

WWS (blue crosses). The red star denotes the predicted time

delay at station HAW.



2
1
2

A
P

P
E

N
D

IX
A

.
E

A
R
T

H
Q

U
A

K
E

R
E

F
R

A
C

T
IO

N

31.5 32 32.5 33 33.5
−12

−10

−8

−6

−4

−2

0

2
Tonga: cross−correlation delay times

Epicentral distance

T
im

e
 d

e
la

y
 (

s
)

regression line
cross−correlation
interpolation

HAW

OHA

MCV

WWS

Figure A.2: Same as figure A.1 for a Tonga teleseismic event.



213

28.6 28.8 29 29.2 29.4 29.6 29.8 30
−10

−8

−6

−4

−2

0

2

Epicentral distance

Vanuatu : cross−correlation delay times

regression line
cross−correlation
interpolation

MCV

OHA

HAW

WWS

Figure A.3: Same as figure A.1 for a Vanuatu teleseismic event.



214 APPENDIX A. EARTHQUAKE REFRACTION

Table A.2: Events 1–4 and 6 are the Fiordland aftershocks re-located by Martin Reyners

(GNS Science) using a temporary seismograph deployment and Eberhart-Phillips &

Reyners’ 1D model for Fiordland (2001). Event 5 is the off-shore Cheviot event located

by GeoNet using the standard 1D model for New Zealand Maunder (2001).

Event Origin time Location Magnitude

nb ID Date Time Lat. Long. Depth (km) ML

1 2105255 2003/08/25 03:36:30.26 -45.111 166.964 20.5 5.0

2 2106280 2003/08/26 23:56:26.57 -45.486 166.596 19.7 5.5

3 2106314 2003/08/27 01:29:40.41 -45.442 166.716 22.7 5.1

4 2106319 2003/08/27 01:42:54.12 -45.314 166.945 24.4 5.6

5 2106361 2003/08/27 03:39:37.23 -42.802 173.758 35 4.1

6 2110611 2003/09/04 08:40:44.25 -45.224 166.921 22.7 6.1
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Table A.3: Crustal (Pg) and mantle phase (Pn) wave speeds are estimated through chi-

square fitting of a regression line (Press et al., 1992) to the arrival picks. Regression

coefficients are Ti, the time intercept, and v−1
P , the slope, that have standard deviations,

∆Ti and ∆v−1
P , respectively. vP and ∆vP are the P-wave speed and its uncertainty.

The last column indicates the 95 % confidence interval on the wave-speed estimate. A

1
σ2 -weighted mean wave speed is calculated from the single wave-speed estimates and

error bars. A pooled regression is computed for comparison with the weighted mean.

In some cases a static shift has been applied to groups of picks for individual events in

order to reduce the scatter between events.

Fiordland events / linear regression results:

crustal phase

event id Ti v−1
P ∆Ti ∆v−1

P vP ∆vP 95 %

(s) (s/km) (s) (s/km) (km/s) (km/s) (km/s)

1 1.55 0.146 3.40 0.021 6.85 0.08 0.97

2 -0.90 0.156 1.59 0.008 6.41 0.03 0.31

3 -0.54 0.155 2.24 0.011 6.45 0.04 0.47

4 0.10 0.148 6.82 0.039 6.76 0.14 1.78

6 1.16 0.143 6.52 0.038 7.00 0.15 1.85

weighted mean velocity: 6.44 0.07 0.18

pooled regression: 0.32 0.150 1.25 0.007 6.64 0.14 0.30
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Table A.3: continued

mantle phase

event id Ti v−1
P ∆Ti ∆v−1

P vP ∆vP 95 %

(s) (s/km) (s) (s/km) (km/s) (km/s) (km/s)

1 9.86 0.110 1.70 0.005 9.06 0.42 5.34

2 10.01 0.114 1.04 0.003 8.81 0.23 0.99

3 9.34 0.113 1.01 0.003 8.89 0.23 1.00

4 9.00 0.110 0.95 0.003 9.09 0.24 1.05

7 8.25 0.113 1.88 0.006 8.87 0.46 2.00

weighted mean velocity: 8.92 0.07 0.21

pooled regression: 9.51 0.112 1.71 0.005 8.89 0.20 0.42

pooled regression after correcting for time offsets:

(applied corrections are –0.1 s, –0.6 s , –0.2 s, 0.8 s, –0.5 s)

9.50 0.111 0.48 0.001 9.00 0.06 0.12

Off-shore Cheviot event:

mantle phase

event id Ti v−1
P ∆Ti ∆v−1

P vP ∆vP 95 %

(s) (s/km) (s) (s/km) (km/s) (km/s) (km/s)

5 4.34 0.122 0.55 0.001 8.21 0.10 0.27
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Table A.4: Previous studies are used to constrain the crustal structure of a 2D velocity model along the Southern Alps (SA) region

(Fig. 2.3). LVZ: low-velocity zone within approximately 85 km east of the inferred Alpine Fault location. This LVZ is induced

by high-pore fluid pressure in the mid-crust of the Southern Alps due to the release of fluids during prograde and strain-induced

metamorphism (Stern et al., 2001).

reference study location upper crust middle crust lower crust

z (km) vP (km/s) z (km) vP (km/s) z (km) vP (km/s)

(Davey & Broadbent, 1980) Fiordland 0–3 5.3 3–8 6.5–6.8 > 8 7.3

(Eberhart-Phillips & Reyners,

2001)

Fiordland 0–4 5.5 4–62.5 6.25–7.5

(Scherwath et al., 2003) SIGHT Transect 2 0–5 5.5 5–32 6.0 (LVZ)–6.2 32–42 7.0

(Van Avendonk et al., 2003) SIGHT Transect 1 0–5 5.5 5–30 6.0 (LVZ)–6.2 30–35 6.8

(Reyners et al., 1993) north Canterbury 2–11 5.7 11–20 6.24 20–27 7.1

This study 2D model Fiordland 0–5 5.5 5–10 6 10 6.8

central SA (T2) 0–5 5.5 5–32 6 32–42 6.8

southern SA (Wanaka) 0–5 5.5 5–38 6 38–48 6.8

East Coast 0–5 5.5 5–20 6 20–27 6.8
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Appendix B

P-wave anisotropy

This appendix is a summary of the general P anisotropy (Cerveny, 2001; Farra and

Psencik, 2003; Zheng, 2004; Zheng and Psencik, 2002) and Pn anisotropy (Backus, 1965)

derivation from the Christoffel equation. Also included is a derivation of the equations

for the specific cases of orthorombic and hexagonal symmetries with horizontal fast

axes and their application to the teleseismic travel-time delays of Chapter 5.

B.1 Christoffel equation and small perturbations of the

medium

The Christoffel equation is the basis for the calculation of wave speeds and polarisation

vectors of plane waves in homogeneous isotropic, anisotropic and also dissipative media

(Cerveny, 2001). The Christoffel equation derives from the wave equation and is given

by

(Γil − Gmδil)P
(m)
i = 0 (m = 1, 2, 3) (B.1)

where Γil = aijklnjnk is the Christoffel matrix, aijkl is the density-normalised elastic

tensor, nj is a unit vector in the direction of the wavefront normal. Gm and P
(m)
i

(m=1, 2, 3) are the three eigenvalues and eigenvectors of the Christoffel matrix, which

219
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respectively equal the squares of the wave speeds, v2
m, and the mutually orthogonal

polarisation vectors of the three plane wave solutions.

In isotropic media, the P and S wave polarisation vectors are coincident with the

dynamic axes formed by the propagation vector and wavefront, respectively. The two S

wave solutions are degenerate, which means that the S wave polarisation vectors can be

in any orthogonal transverse directions (e.g. Keith and Crampin, 1977). In anisotropic

media, in contrast, the three eigenvalues are non-degenerate. The Christoffel equation

has three solutions corresponding to the qP, qS1 and qS2 phases with distinct wave

speeds, vm, and mutually orthogonal and fixed polarisation vectors, P(m).

In weakly anisotropic media, perturbations of the medium are small, and can thus

be approximated by the first-order terms of their power series. Second- and higher-order

terms are neglected. The perturbed elastic parameters aijkl are, therefore, expressed

as

aijkl = a0
ijkl + ∆aijkl (B.2)

where a0
ijkl is the reference value in the isotropic case and ∆aijkl is its perturbation

in the anisotropic medium. Similarly, other parameters of the Christoffel equation Γil,

Gm and P
(m)
i can be expressed as sums of their isotropic values with their respective

perturbations:

Γil = Γ0
il + ∆Γil (B.3)

Gm = G0
m + ∆Gm (B.4)

P
(m)
i = P

(m)0
i + ∆P

(m)
i (B.5)

The eigenvalues G0
m are solutions of the Christoffel equation in the isotropic medium.

The eigenvalues are c2
P , the square of the P wave speed, and c2

S , the square of the S wave

speed, i.e. the two degenerate eigenvalues of the isotropic case. ∆Γil, the perturbation
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of the Christoffel matrix, is due to perturbations in the elastic parameters, ∆aijkl, and

in the normal to the wavefront, ∆nj . ∆Γil is thus:

∆Γil = ∆aijklnjnl + a0
ijkl(nj∆nl + nl∆nj). (B.6)

Substituting the expressions of Gm, Γil and P
(m)
i in the Christoffel equation (B.1)

and keeping first-order terms yields

(Γ0
il − G0

mδil)P
(m)0
l

︸ ︷︷ ︸

0

+(Γ0
il − G0

mδil)∆P
(m)
l + (∆Γil − ∆Gmδil)P

(m)0
l = 0. (B.7)

B.2 General solution for the P phase

The P phase index is arbitrarily taken as m = 1. Substituting m in Equation (B.7)

results in

(Γ0
il − G0

1δil)∆P
(1)
l + (∆Γil − ∆G1δil)P

(1)0
l = 0. (B.8)

From the requirement of P
(m)
i to be unit vectors, the perturbation ∆P

(1)
i is perpen-

dicular to the polarisation vector P
(1)0
i of the isotropic case. ∆P

(1)
i can therefore be

expressed as a linear combination of vectors P
(2)0
i and P

(3)0
i

∆P
(1)
i = c2P

(2)0
i + c3P

(3)0
i = 0 (B.9)

and

P
(1)0
i ∆P

(1)
i = 0. (B.10)

The above condition (B.10) can be used to simplify equation (B.8) by multiplying it

with P
(1)0
i :

(∆Γil − ∆G1δil)P
(1)0
l P

(1)0
i = 0. (B.11)
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∆G1 is the perturbation of the square of the P wave speed, v2
1 − c2

P , also note that

∆G1 = B11, (B.12)

where B11 is an element of the so called weak anisotropy matrix with elements Bmn.

Because the P polarisation vector P
(1)0
i of the isotropic case is taken as a unit vector

and parallel to the vector ni, B11 can be rewritten as

B11 = ∆aijklninjnknl. (B.13)

B.3 P anisotropy in the horizontal plane (Backus equa-

tion)

For the P headwave propagating in the horizontal plane, the propagation vector has

two non-zero components

(n1, n2, n3) = (cos(ϕ), sin(ϕ), 0)

with ϕ the P wave propagation azimuth. The weak-anisotropy element B11 is a trigono-

metric polynomial of degree 4 in ϕ, whose expression in the case of general anisotropy

is (Backus, 1965):

B11 =∆a1111cos
4(ϕ)

+ 4∆a1112cos
3(ϕ)sin(ϕ)

+ (2∆a1122 + 4∆a1212)cos
2(ϕ)sin2(ϕ)

+ 4∆a1222cos(ϕ)sin3(ϕ) + ∆a2222sin
4(ϕ). (B.14)

This polynomial’s Fourier expansion results in a more well-known formula (Backus,

1965)

α2(ϕ) − α2
0 =A + Ccos(2ϕ) + Dsin(2ϕ) + Ecos(4ϕ) + Fsin(4ϕ), (B.15)
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with α(ϕ), the P-wave speed for azimuth ϕ, and

8A = 3∆a1111 + 2∆a1122 + 4∆a1212 + 3∆a2222

2C = ∆a1111 − ∆a2222

D = ∆a1112 + ∆a1222 (B.16)

8E = ∆a1111 − 2∆a1122 − 4∆a1212 + ∆a2222

2F = ∆a1112 − ∆a1222.

A minimum of five wave speeds measured along non-colinear profiles is necessary

to solve for the five parameters A to F. A minimum of seven wave speeds is necessary

in the case of a dipping Moho (Backus, 1965).

Based on the 2ϕ dependence displayed by real wave-speed measurements, Smith

and Ekström (1999) proposed following approximation for Equation B.15:

α(ϕ) = α0 + Ccos(2ϕ) + Dsin(2ϕ), (B.17)

Solving for the three unknown parameters, α0, the average Pn speed, and both con-

stants, C and D of Equation (B.17), requires only three known wave speeds measured

along intersecting profiles. If only two Pn-speed estimates, α1 and α2, are known along

two intersecting profiles, a third equation is needed to solve for the three unknowns

α0, C and D. A third equation, dα(ϕ)
dϕ

|ϕ=Φ = 0, is found by assuming α(ϕ) is maxi-

mum for the fast propagation azimuth, Φ, from a nearby SKS-splitting fast polarisation

orientation. The resulting system of three equations is

α1 = α0 + Ccos(2ϕ1) + Dsin(2ϕ1)

α2 = α0 + Ccos(2ϕ2) + Dsin(2ϕ2) (B.18)

0 = Csin(2Φ) − Dcos(2Φ),

where α1 and α2 are the Pn-speed estimates along two intersecting profiles with az-

imuths ϕ1 and ϕ2, respectively, and Φ is the fast propagation orientation assumed from
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a nearby SKS fast polarization azimuth. The three unknowns α0, C and D represent

the isotropic wave speed, i.e. the average wave speed, and the two anisotropy constants

of Equation (B.17). The solutions are:

C =
α1 − α2

G
cos(2Φ)

D =
α1 − α2

G
sin(2Φ) (B.19)

α0 = α1 − Ccos(2ϕ1) − Dsin(ϕ1)

with G = cos(2Φ) [cos(2ϕ1) − cos(2ϕ2)] + sin(2Φ) [sin(2ϕ1) − sin(2ϕ2)]

Standard deviations, σC and σD, depend on the uncertainties in wave speeds and

the fast azimuth, σα1
, σα2

and σΦ, which propagate into the solutions of C and D.

Uncertainties σα1
, σα2

and σΦ being uncorrelated, variances σ2
C and σ2

D are as following:

σ2
C =

[
cos(2Φ)

G

]2

(σ2
α1

+ σ2
α2

) (B.20)

+

[
α1 − α2

G

(

−2sin(2Φ) − cos(2Φ)

G

∂G

∂Φ

)]2

σ2
Φ

σ2
D =

[
sin(2Φ)

G

]2

(σα1
2 + σ2

α2
) (B.21)

+

[
α1 − α2

G

(

2cos(2Φ) − sin(2Φ)

G

∂G

∂Φ

)]2

σ2
Φ

with

∂G

∂Φ
= −2cos(2Φ) [sin(2ϕ1) + 2sin(2ϕ2)] − 2sin(2Φ) [cos(2ϕ1) − cos(2ϕ2)] .

and σ2
α0

, the variance of the isotropic wave speed, is:

σ2
α0

= σ2
α1

+ cos2(2ϕ1)σ
2
C + sin2(2ϕ1)σ

2
D + 2cos(2ϕ1)sin(2ϕ1)σ

2
CD (B.22)

Note that in the case where the fast orientation, Φ, is averaged over a whole region,

the error, σΦ, is small as is the contribution of the second term of Equations (B.20)

and (B.21) to uncertainties in C and D.
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B.4 P anisotropy for orthorombic and hexagonal symme-

tries with horizontal fast axis

Expressions of the Bmn elements of the weak anisotropy matrix have been given in the

case of general anisotropy and for P and S waves propagating in a three-dimensional

space (Farra and Psencik, 2003; Zheng, 2004; Zheng and Psencik, 2002). B11 depends

on 15 independent parameters, which requires a minimum of 15 observations. In the

following, two expressions are derived to calculate the three-dimensional anisotropy

by taking Equation (B.17) as derived by Smith and Ekström (1999) and assuming

anisotropy with orthorombic and hexagonal symmetries with horizontal fast propaga-

tion axes of azimuth Φ.

As described in the former paragraph, from the requirement that the P-wave speed

is maximum along the fast propagation azimuth, Φ, follows

Csin(2Φ) − Dcos(2Φ) = 0

and

2Φ = arctan

(
D

C

)

.

The above expression for Φ is substituted in the Equation (B.17) that, using trigono-

metric identities, is reshaped as:

α(ϕ) = α0 +
√

C2 + D2 cos(2ϕ). (B.23)

with

√

C2 + D2 = (αmax − αmin)/2,

where αmax and αmin are the maximum and minimum wave speeds. Thus, by fixing

a fast propagation azimuth, the number of unknowns in Equation (B.17) is reduced to
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the parameters α0 and M =
√

C2 + D2.

In the first stage, orthorombic symmetry is assumed for the anisotropy from the

alignment of olivine minerals under simple shear with a horizontal axis and small pure

shear in the vertical plane. The minimum and maximum wave speeds are therefore

contained in the horizontal plane, and the isotropic wave speed, i.e. the average wave

speed, is assumed along the vertical direction. Taking Equation (B.17) for the azimuth-

dependent wave speed, α(ϕ), in the horizontal plane, the variation of the wave speed

with the incidence angle, θ, is:

α(ϕ, θ) = α0 +
M

2
cos(2ϕ − 2Φ) [1 − cos(2θ)] . (B.24)

Second, hexagonal symmetry with a horizontal axis is assumed for the anisotropy

from the alignment of olivine minerals under simple shear along a horizontal axis. The

wave speed is, therefore, maximum for propagation parallel to the symmetry axis of

azimuth, Φ, while the wave speed is minimum for propagation in the perpendicular

plane. The wave speed may be expressed as:

α(ϕ, θ) = α0 +
M

2
cos(2ϕ − 2Φ) [1 − cos(2θ)]

− M

2
[1 + cos(2θ)] . (B.25)

B.4.1 Estimate of the maximum anisotropy using Chapter 5 wave-

speed anomaly estimates

As described in Section B.3, the fast propagation azimuth is constrained to the fast

polarisation azimuth, Φ, of a nearby SKS-splitting measurement. The fast azimuth

is taken to be Φ ∼ 29◦ (Klosko et al., 1999, station MTCA), and eight wave-speed

anomaly estimates are used (Tab. B.1), which are assumed to be relative to a wave-

speed of 8.1 km/s (IASP91; Kennett and Engdahl, 1991). These estimates define a

system of linear equations that are solved through least-squares techniques (Bevington,
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1969).

Assuming anisotropy with orthorombic symmetry, the isotropic wave speed and

the maximum anisotropy are ∼8.6 km/s and ∼11 %, respectively; the model misfit

is 0.25 km/s (RMS in Tab. B.2). Assuming hexagonal symmetry, results in a lower

anisotropy of ∼9 % than in the orthorombic case and a larger isotropic wave speed of

∼8.9 km/s (Tab. B.2). The misfit is 0.22 km/s and, thus, is similar in value to that of

the orthorombic case.

Both orthorombic and hexagonal symmetries suggest P anisotropy that is consistent

with Pn anisotropy estimates for the central Southern Alps: 11 ± 2 % at the inter-

section of SIGHT Transect 2 with Transect 3 (Scherwath et al., 2002); and 7–13 % at

the intersection of SIGHT Transect 2 with the Fiordland-Cheviot profile (Chapter 2).

The isotropic wave speed of ∼8.9 km/s calculated for the hexagonal symmetry, in con-

trast, appears unreasonably large if it were to be explained by thermal contraction of

mantle rocks produced by the downwarp of isotherms and mantle shortening alone. A

∼8.6 km/s calculated for the orthorombic symmetry may represent a better estimate

for the isotropic wave speed.

Event Honshu Banda Irian Jaya 5,9,18,19 17,21 31,33 22,32 1,28

δvP (km/s) 0.5 0.3 0.6 0.3 1.1 0.5 0.5 0.5

θ (◦) 23 30 23.6 32.5 52 8 40 17.5

ϕ (◦) –26 –61 –52 –45 –2 –66 27 –30

Table B.1: Wave-speed anomaly estimates (δvP ) that are included in the calculation

of the maximum anisotropy. θ is the incidence angle, and ϕ is the azimuth from north.
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symmetry α0 σα0
M σM δP σδP RMS

(km/s) (km/s) (km/s) (km/s) (%) (%) (km/s)

orthorombic 8.6 0.09 0.4719 0.3874 10.9 9.0 0.25

hexagonal 8.93 0.18 0.3961 0.2133 8.9 4.6 0.22

Table B.2: Calculation of the maximum anisotropy from wave-speed estimates of Ta-

ble B.1 for both orthorombic and hexagonal symmetries with a horizontal fast propa-

gation orientation fixed to the assumed azimuth of Φ = 29◦ (station MTCA; Klosko

et al., 1999). Parameters are the isotropic wave speed, α0, the anisotropy parameter

M , the maximum anisotropy, δP , their respective standard deviations and the model

misfit given as the RMS (Root Mean Square).
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P-wave travel-time delays
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Figure C.1: Honshu Island earthquake and picks. Picked is not the first arrival but

the more prominent and more continuous phase across the array. A band-pass filter is

used that is acausal and has cut-off and corner frequencies of 0.1-0.5-1.5-2.5 Hz. The

reduced wave-speed is based on ak135-predicted move-out across SIGHT Transect 2.
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Figure C.2: Banda Sea earthquake and picked first arrivals. Traces are band-pass

filtered at cut-off and corner frequencies of 0.1-0.5-1.5-2.5 Hz.
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Figure C.3: Irian Jaya earthquake and picks. Traces are band-pass filtered at cut-off

and corner frequencies 0.01-0.03-1.0-2.0 Hz.
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Figure C.4: Off coast Chile earthquake and picks. Traces are band-pass filtered at

cut-off and corner frequencies 0.05-0.1-1.0-2.0 Hz.
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Table C.1: Teleseisms recorded during SIGHT (Fig. C.1–C.4) and used by Stern et al’s study 2000.

Origin time Hypocentre Epicentral Back

Event Date Julian day Time Latitude (◦) Longitude (◦) z (km) distance (◦) azimuth (◦)

Honshu Island 1996/02/14 45 21:26:57.33 29.2395 140.6366 151.5 77.2 – 78.5 -27.0 – -25.9

Banda Sea 1996/02/17 48 10:18:04.00 -6.9767 125.2151 549.9 53.9 – 54.7 –61.0 – -60.2

Irian Jaya 1996/02/17 48 20:17:46.90 -0.8884 136.106 9.4 52.0 – 53.4 -45.7 – -44.7

Off coast Chile 1996/02/19 50 07:10:07.00 -42.038 -75.2682 7.6 75.3 – 76.7 135.1 – 136.1

Table C.2: Phase parameters of the SIGHT events based on ak135 Earth model Kennett et al. (1995). ic is the incidence angle at

the Moho assuming a mantle wave speed of 8.1 km/s.

Event Epicentral Back Phase dT/d∆ ic Move-out ic projected onto

distance (◦) azimuth (◦) (s/◦) (◦) (km/s) SIGHT T2 (◦)

Honshu Island 77.2 – 78.5 333.0 – 334.1 P 5.5 23.52 – 23.95 21.63 21.99

Banda Sea 53.3 – 54.7 299.0 – 299.8 P 7.0 30.62 – 31.08 16.17 30.06

Irian Jaya 52 – 53.4 314.3 – 315.33 P 7.3 32.37 – 32.87 14.98 32.73

Irian Jaya 52 – 53.4 314.3 – 315.33 sP 7.4 32.48 – 32.98 15.00 32.69

Off coast Chile 75.3 – 76.7 135.1 – 136.1 P 5.6 24.29 – 24.77 -19.45 24.61
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Table C.3: Teleseisms recorded during COOK (events 1–17) and WCOAST (events 18–35) deployments.

Event Origin time Hypocentre Epicentral Back

ID Date Julian day Time Latitude (◦) Longitude (◦) Depth (km) distance (◦) azimuth (◦)

1 2003 231 08:46:59.00 -5.8703 146.9950 77.0 42.9 – 43.1 325.0 – 325.1

2 2003 232 16:42:40.00 -11.4389 166.2160 55.9 32.4 – 32.6 352.7 – 352.9

3 2003 234 21:35:34.14 -13.3700 167.1400 159.2 30.4 – 30.6 354.0 – 354.3

4 2003 235 02:45:59.00 -0.8340 133.7510 32.1 53.6 – 53.8 312.5 – 312.6

5 2003 257 18:45:53.00 18.7207 121.0290 52.4 76.6 – 76.9 312.5 – 312.6

6 2003 264 18:16:12.00 19.8741 95.6346 4.5 92.9 – 93.1 294.7 – 294.9

7 2003 265 22:59:04.00 -5.0283 153.8590 112.4 41.2 – 41.4 334.8 – 334.9

8 2003 279 18:29:37.00 -10.7772 164.4550 30.7 33.2 – 33.5 349.6 – 349.8

9 2003 282 22:19:15.00 13.7255 119.9830 51.6 73.2 – 73.5 308.7 – 308.8

10 2003 290 10:19:09.00 -5.5037 154.1790 150.2 40.6 – 40.9 335.1 – 335.2

11 2003 291 22:27:15.00 0.4920 126.1060 51.0 58.9 – 59.1 305.7 – 305.9

12 2003 295 11:45:30.00 -6.0661 147.7630 45.6 42.4 – 42.6 325.8 – 325.9

13 2003 297 01:26:58.00 -3.4996 145.5050 33.0 45.7 – 45.9 324.3 – 324.4

14 2003 310 08:15:00.00 2.0057 127.0190 28.2 59.6 – 59.9 307.7 – 307.8
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Table C.3 continued

Event Origin time Hypocentre Epicentral Back

ID Date Julian day Time Latitude (◦) Longitude (◦) Depth (km) distance (◦) azimuth (◦)

15 2003 310 10:38:05.00 -19.2786 168.8900 119.7 24.4 – 24.7 357.0 – 357.3

16 2003 316 08:26:43.00 33.2416 137.0520 381.8 82.3 – 82.5 332.4 – 332.5

17 2003 318 04:28:32.00 -16.6373 172.3080 2.6 27 – 27.2 4.4 – 4.7

18 2003 344 04:38:14.00 23.0988 121.3840 27.6 79.7 – 80.1 315.4–315.6

19 2003 345 00:01:45.91 22.72 121.52 10.0 79.4 – 79.7 315.3–315.5

20 2003 360 08:18:32.00 -17.5018 -178.8230 548.5 27.6 – 27.8 23.2 – 24.0

21 2004 003 16:23:17.00 -22.3037 169.6600 9.4 21.1 – 21.4 358.9 – 359.7

22 2004 011 08:07:3.00 -16.3484 -176.1010 366.0 29.5 – 29.7 27.5 – 28.3

23 2004 011 08:07:3.00 -16.3484 -176.1010 366.0 29.5 – 29.7 27.5 – 28.3

24 2004 011 09:29:7.00 -20.2041 -179.1340 661.8 24.9 – 25.1 24.4 – 25.3

25 2004 051 05:58:43.00 -11.6435 166.3890 76.6 31.8 – 32.1 353.1 – 353.7

26 2004 053 06:46:26.00 -1.5802 100.4130 51.3 74.0 – 74.3 283.1 – 283.4

27 2004 053 23:17:16.00 18.4743 145.6270 215.3 65.5 – 65.8 334.5 – 334.7

28 2004 053 23:17:16.00 18.4743 145.6270 215.3 65.5 – 65.8 334.4 – 334.8
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Table C.3 continued

Event Origin time Hypocentre Epicentral Back

ID Date Julian day Time Latitude (◦) Longitude (◦) Depth (km) distance (◦) azimuth (◦)

29 2004 056 16:52:30.00 -20.7756 -174.9790 55.4 25.9 – 26.1 33.3 – 34.2

30 2004 058 06:14:31.00 -34.0944 -112.4920 10.0 59 – 59.3 109.1 – 109.4

31 2004 072 22:45:16.00 36.4092 70.7435 207.4 119.8 – 120.1 293.0 – 293.3

32 2004 074 16:30:40.00 -17.2749 -172.2640 12.0 30.2 – 30.3 35.0 – 35.8

33 2004 096 21:24:0.00 36.5576 71.0033 168.5 119.7 – 120.0 293.3 – 293.6

34 2004 114 01:50:30.00 -9.5471 122.7330 88.1 53.0 – 53.3 295.1 – 295.3

35 2004 124 04:36:50.00 -37.6950 -73.4060 21.0 80.6 – 81.0 133.9 – 134.2

Events with Pn phases

36 2003 233 12:12:47.0 -45.0874 167.0890 6.8 2.54 236.1–241.9

37 2003 315 15:39:33.0 -30.6140 -179.1360 30.4 15.5–15.7 35.2–36.1

38 2004 057 22:58:39.0 -53.0830 159.7420 10.0 11.5–11.7 211.2–212.6
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Table C.4: Picked phases for COOK teleseismic events and related parameters based

on ak135 Earth model Kennett et al. (1995). ic is the incidence angle at the Moho

assuming a mantle wave speed of 8.1 km/s.

Event Epicentral Back Phase dT/d∆ ic Quality

ID distance (◦) azimuth (◦) (s/◦) (◦)

1 42.9 – 43.1 -35.0 ScP 4.04 17.10 – 17.15 B

2 32.4 – 32.6 –7.2 P 8.76 39.62 – 39.68 A

3 30.4 – 30.6 –5.8 P 8.80 39.85 – 39.89 B

4 53.6 – 53.8 –47.4 P 7.32 32.19 – 32.27 B

5 76.6 – 76.9 –47.4 P 5.63 24.18 – 24.26 A

6 92.9 – 93.1 –65.2 pP 4.61 19.63 – 19.64 B

7 41.2 – 41.4 –25.1 P 8.18 36.54 – 36.63 A

8 33.2 – 33.5 –10.3 P 8.72 39.38 – 39.46 A

9 73.2 – 73.5 –51.2 P 5.89 25.38 – 25.46 A

10 40.6 – 40.9 –24.9 P 8.20 36.64 – 36.73 A

11 58.9 – 59.1 –54.2 P 6.93 30.29 – 30.36 A

12 42.4 – 42.6 –34.2 P 8.12 36.21 – 36.30 A

13 45.7 – 45.9 –35.7 pP 7.89 35.05 – 35.14 B

14 59.6 – 59.9 –52.3 pP 6.89 30.08 – 30.16 B

15 24.4 – 24.7 –2.9 P 9.08 41.40 – 41.46 A

16 82.3 – 82.5 –27.5 PcP 4.39 18.65 – 18.66 A

17 27.0 – 27.2 4.6 sP 9.00 40.93 – 41.01 A

18 79.7 – 80.1 –44.5 pP 5.42 23.20 – 23.33 B

19 79.4 – 79.7 –44.6 pP 5.45 23.31 – 23.44 B

20 27.6 – 27.8 23.6 P 8.74 39.52 – 39.57 C

21 21.1 – 21.4 –0.7 pP 10.79 51.70 – 51.93 B
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Table C.4 continued

Event Epicentral Back Phase dT/d∆ ic Quality

ID distance (◦) azimuth (◦) (s/◦) (◦)

22 29.5 – 29.7 27.9 P 8.76 39.64 – 39.68 B

23 29.5 – 29.7 27.9 PcP 2.60 10.91 – 10.96 C

24 24.9 – 25.1 24.8 P 8.77 39.67 – 39.71 B

25 31.8 – 32.1 –6.6 P 8.77 39.66 – 39.74 A

26 74.0 – 74.3 –76.7 P 5.82 25.06 – 25.15 A

27 65.5 – 65.8 –25.4 P 6.38 27.66 – 27.79 B

28 65.5 – 65.8 –25.4 PcP 4.15 17.59 – 17.62 B

29 25.9 – 26.1 33.7 P 9.04 41.17 – 41.21 B

30 59.0 – 59.3 109.2 P 6.93 30.27 – 30.38 D

31 119.8 – 120.1 –66.8 PKPdf 1.92 8.05 – 8.05 A

32 30.2 – 30.3 35.4 sP 8.84 40.10 – 40.12 C

33 119.7 – 120.0 –66.6 PKiKP 1.96 8.19 – 8.20 B

34 53.0 – 53.3 –64.8 P 7.34 32.27 – 32.38 C

35 80.6 – 81.0 134.1 P 5.34 22.85 – 22.97 D

36 2.54 –123.9 – –118.1 pPn 13.75 90.0 C

37 15.5–15.7 35.2–36.1 pPn 13.14–13.18 73.24–73.77 A

38 11.5–11.7 –148.8 – –147.4 sPn 13.68 85.16–85.28 C
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Table C.5: Static corrections for sites of the COOK and WCOAST deployments are calculated for a reference elevation of 0 m and

are based on Kleffman’s (1999) velocity model for SIGHT Transect 2 shallow structure. Indices 1–3 denote surface gravels, Tertiary

sediments and basement, respectively. The differences of the station static corrections ttot with those of the MCV station are the

corrections applied to the travel-time delays. The error terr is dependent on the velocity uncertainty.

site h1 (m) Vp1 (km/s) h2 (m) Vp2 (km/s) h3 (m) Vp3 (km/s) ttot (s) ttot-tmcv (s) terr (s)

GIL 24 1.6 0 0 0 0 -0.014 0.141 0.050

KAQ 0 0 61 3.7 0 0 -0.016 0.139 0.004

MAI 33 1.6 34 3.7 0 0 -0.030 0.125 0.100

KCJ 73 1.6 0 0 0 0 -0.046 0.109 0.010

WEL 0 0 0 0 467 5.4 -0.086 0.069 0.004

UCV 0 0 0 0 1175 5.4 -0.218 0.063 0.004

MCV 0 0 0 0 840 5.4 -0.155 0. 0.004



239

Table C.5 continued

site h1 (m) Vp1 (km/s) h2 (m) Vp2 (km/s) h3 (m) Vp3 (km/s) ttot (s) ttot-tmcv (s) terr (s)

UWN 0 0 0 0 635 5.4 -0.118 0.037 0.004

BIR 0 0 0 0 718 5.4 -0.133 0.022 0.004

BAP 57 1.37 229 3 311 5.5 -0.174 -0.019 0.01

MIP 171 1.37 286 3 158 5.5 -0.174 -0.019 0.01

BRM 171 2.00 286 3 246 5.5 -0.226 -0.071 0.05
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−43˚30' −43˚30'

0.5s delay

−0.5s advance

Figure C.5: Map view of delay times measured at the COOK and WCOAST arrays

relative to ak135-predicted travel times (Kennett et al., 1995) and to the average de-

lay time at Maimai Creek (third triangle from the left). Triangles denote COOK and

WCOAST stations. Positive (red circles, delay) and negative (green crosses, advance)

travel-time delays are corrected for statics. Delays are projected near the station to-

wards the direction of the incoming rays, with the distance to the station proportionnal

to the incidence angle of the arrival and the symbol size proportional to the delay time.
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Figure C.6: COOK events 1–6 and and predicted travel-time delays for models SUBW,

VERT (red curve) and SUBE of Table 5.2 that have mantle bodies dipping 50◦ NW,

vertical and dipping 50◦ SE, respectively. Time delays are presented relative to delays

at station MCV and to the ak135 Earth model (Kennett et al., 1995).
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Figure C.7: Same as Figure C.6 for COOK events 7–12.
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Figure C.8: Same as Figure C.6 for COOK and WCOAST events 13–18.
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Figure C.9: Same as Figure C.6 for WCOAST events 19–26.
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Figure C.10: Same as Figure C.6 for WCOAST events 27–32.
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Figure C.11: Same as Figure C.6 for WCOAST events 33–35.
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S U M M A R Y

An 8.54 ± 0.20 km s−1 Pn speed is estimated on a line oriented ca. N5◦E from the Alpine

Fault beneath the Southern Alps of South Island based on a refraction experiment that uses

the Fiordland earthquake of August 2003 as a source. This high Pn speed results from both

strong anisotropy in the mantle lid of 7–13 per cent and a high Pn speed average of 8.3 ±

0.3 km s−1. A maximum crustal thickness of 48 ± 4 km is calculated for the southern South

Island near the town of Wanaka. This represents a crustal root of about 18 km, compared

to measured crustal thicknesses at the east and west coasts of the South Island. The average

topography in the southern Southern Alps is of the order of ∼1000 m, which is less than half

that predicted by Airy isostasy for an 18 km crustal root. As recently proposed for the central

South Island ∼120 km to the north, we propose that thickened cold, and therefore more dense,

mantle lithosphere exists beneath southern South Island, and that this excess of mass is an

effective load that pulls down the overlying crust. The load is similar to that beneath the central

Southern Alps, despite the predicted convergence across the Alpine Fault there being nearly

twice that at Wanaka. Gravity modelling of crustal structure along a profile through Wanaka

suggests that this mass excess has a minimum density contrast of 35 ± 5 kg m−3 between

thickened mantle and asthenosphere, assuming an across-Moho density contrast of −300 kg

m−3. We speculate that the reason for the enhanced thickening beneath Wanaka is that the

subducted Australian Plate at the southwestern corner of the South Island acts like a backstop

onto which Pacific mantle collides at ∼26 mm yr−1, ca. 3/4 the full plate speed.

Key words: earthquake refraction, gravity modelling, lithospheric deformation, New

Zealand, Pn anisotropy, oblique collision.

1 I N T RO D U C T I O N

In continental collision zones, we can readily observe how the crust

thickens by reverse faulting and mountain growth. What is not so

obvious is how shortening occurs in the mantle: as intracontinental

subduction (Mattauer 1986) or continuous thickening of the en-

tire lithosphere (England & Houseman 1986; Molnar 1992). In

intracontinental subduction the elastic strength of the delaminat-

ing uppermost mantle provides resistance to bending and defor-

mation is localized at the interface with the subducting plate. In

contrast, in continuous thickening the mantle lithosphere is a con-

tinuum whose strength provides the resistance to deformation. De-

formation is continuously distributed and accommodated in a ductile

manner. Direct imaging of the mantle lithosphere beneath orogens

and measurements of seismic anisotropy should provide an insight

into mantle deformation. Both modes of shortening cause down-

warp of isotherms in the mantle and, hence, produce a zone of wave

speeds faster than the surrounding region. However, the geometry

of the shortened mantle lid should differ between both modes, being

either symmetric (continuous thickening) or asymmetric (intracon-

tinental subduction). Similarly, if shortening is taking place along

a narrow fault in the mantle (intracontinental subduction), seismic

anisotropy should be more localized than if shortening is occurring

as continuous thickening.

At the Australian–Pacific Plate boundary of the central South Is-

land of New Zealand, the component of convergence has increased

for the past 20 Myr (Cande & Stock 2004) and produced a moun-

tain range, called the Southern Alps, along a pre-existing continental

transform, the Alpine Fault. Here too it is debated how the conti-

nental mantle lithosphere accommodates shortening. Some consider

that the transition between two subduction zones of opposite polari-

ties, north and south of South Island, occurs as intracontinental sub-

duction (Wellman 1979; Beaumont et al. 1996; Waschbusch et al.

1998; Beavan et al. 1999), while others prefer continuous thick-

ening (Molnar et al. 1999; Stern et al. 2000). A further question

is what is the reason for the absence of intermediate depth seis-

micity beneath the South Island collision zone (Anderson & Webb

1994).

The M W 7.2 Fiordland earthquake (2003 August 21) and after-

shocks (Table 1, Fig. 1) enable us to analyse refraction traveltimes

along the Southern Alps crustal root to measure properties of the

mantle lid along the Southern Alps and perpendicular to the former
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Table 1. Events 1–4 and 6 are the Fiordland aftershocks re-located by Martin Reyners (GNS Science) using a temporary seismograph

deployment and Eberhart-Phillips & Reyners’ 1-D model for Fiordland (2001). Event 5 is the off-shore Cheviot event located by GeoNet

using the standard 1-D model for New Zealand (Maunder 2001).

Event Origin time Location
Magnitude

Number ID Date Time Lat. Long. Depth (km) ML

1 2105255 2003/08/25 03:36:30.26 −45.111 166.964 20.5 5.0

2 2106280 2003/08/26 23:56:26.57 −45.486 166.596 19.7 5.5

3 2106314 2003/08/27 01:29:40.41 −45.442 166.716 22.7 5.1

4 2106319 2003/08/27 01:42:54.12 −45.314 166.945 24.4 5.6

5 2106361 2003/08/27 03:39:37.23 −42.802 173.758 35 4.1

6 2110611 2003/09/04 08:40:44.25 −45.224 166.921 22.7 6.1

Figure 1. Triangles: deployed seismographs. Stars: earthquakes used in

this study. Solid lines: previous SIGHT seismic profiles T1, T2, 3W and

4E (Okaya et al. 2002), and this study as the Fiordland–Cheviot refraction

profile. Bars: SKS-splitting measurements (Klosko et al. 1999; Duclos et al.

2005). Lengths are proportional to delay times, while azimuths indicate fast-

polarisation orientations. Black circles with 4 arrows: apparent values of Pn

anisotropy at profile intersections T2/T3W (Scherwath et al. 2002), T1/T4E

and T2/T4E (Baldock & Stern 2005), and this study’s estimates of maximum

Pn anisotropy.

South Island GeopHysical Transect (SIGHT) seismic experiment

(Okaya et al. 2002). We determine the wave speed and infer the

corresponding Pn anisotropy beneath the Southern Alps. We also

estimate the crustal root thickness and model its gravity effect in

order to define how much of the root is due to topographic loading

and how much can be ascribed to the positive load of the subjacent

shortened mantle lithosphere.

2 E A RT H Q UA K E R E F R A C T I O N

A N A LY S I S

We deployed an eight-seismograph linear array in the eastern section

of the Southern Alps, 5◦ clockwise from the strike of the range

(Fig. 1). The array recorded five Fiordland aftershocks of M L ≥ 5

Figure 2. Top: M L 6.1 Fiordland aftershock (event 6 of Table 1). Traces

are bandpass filtered between 1 and 10 Hz. Pair of arrows indicate Pn first

arrivals and ∼1.5 s peg-leg. The uncertainty in Pn speed is given by its

95 per cent confidence interval. (Note that the third station from the left

was not included in the regressions because of a timing error of the record-

ing instrument). Dashed curves: predicted Pg and Pn traveltime curves for

2-D model (Fig. 3). Blow-up of the Pn first arrivals is in the top right cor-

ner. Bottom: same as in top figure for the M L 4.1 off-shore Cheviot event.

Traces are bandpass filtered between 1.5 and 5 Hz. The Pn speed estimate is

the result of a single regression. Note that the 2nd trace (from the left) was

despiked, and one pick (3rd from the left) was not included in the regression.

at the SW-end and one ML 4.1 earthquake off-coast Cheviot, at the

NE-end of the profile line (Table 1). Maximum epicentral distances

of 490 km enabled us to pick Pg and Pn first arrivals and to analyse

refraction traveltimes along the root of the Southern Alps. Pg and Pn

apparent speeds were determined for single events, from the inverse

of regression slopes on the first break picks (Fig. 2). We obtained

a single speed value by weighting the individual speeds with their

corresponding inverse standard deviations. The Pn speed of 8.54 ±

0.20 km s−1 and the apparent dip of 2.5 ± 1.3◦ SW were determined

by assuming a uniform dipping Moho along the refraction profile

(e.g. Stein & Wysession 2003). Error bars presented are 95 per cent

confidence intervals.

Crustal phases are seen in the Fiordland aftershock records (top

of Fig. 2) but not in the record from Cheviot (bottom of Fig. 2).
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The determined Pg speeds of the Fiordland records are relatively

high and show spatial variations with approximately 6.8 km s−1 for

events 1, 4 and 6, and approximately 6.4 km s−1 for events 2 and

3 (Fig. 1). These wave speeds are slightly smaller, but consistent

with values of 6.7–6.9 km s−1 at 4–8 km depth and 7.1–7.4 km

s−1 from 8 km depth as determined from seismic refraction profiles

(Davey & Broadbent 1980) in the exhumed Fiordland crustal block.

They are also consistent with 6.25–7.5 km s−1 from 4 to 62.5 km

depth from 3-D inversion of local earthquakes (Eberhart-Phillips &

Reyners 2001). The 6.4–6.8 km s−1 wave speeds, however, are not

representative of the lower 6.0–6.2 km s−1 average P-wave speed in

the Southern Alps mid-crust (Eberhart-Phillips & Bannister 2002;

Scherwath et al. 2003; Van Avendonk et al. 2004).

The apparent Pn speeds determined from off-shore Cheviot

and the reverse events in Fiordland are 8.21 ± 0.22 and 8.92 ±

0.18 km s−1, respectively (Fig. 2). Taking a 6.0–6.2 km s−1 mid-

crustal wave speed (more representative of the Southern Alps

crustal wave speed than the Fiordland 6.8 km s−1), that is, a 6.1–

6.23 km s−1 average for the entire crust, results in an average of

8.54 ± 0.20 km s−1 Pn speed and an apparent 2.5 ± 1.3◦ SW dip-

ping Moho. This is a conservative value compared to an apparent

dip value of 2.6–3.1◦ SW for a 6.4–6.8 km s−1 crustal wave speed,

but is also a much lower value than the apparent ∼8◦SW dip calcu-

lated between where the Moho depths at transect T1 (Van Avendonk

et al. 2004) and T2 (Scherwath et al. 2003) intersect with our re-

fraction profile. The inconsistency may result from our assumption

of a uniform dipping Moho.

3 V E L O C I T Y M O D E L A N D C RU S TA L

T H I C K N E S S

Previous crustal studies in South Island (Table 2) are included to

constrain the crustal structure (Fig. 3). Our refraction profile inter-

sects SIGHT T2 15–30 km east of the maximum crustal thickness

of 44 ± 1.4 km (Scherwath et al. 2003). Here, the Moho is 42 km

deep (Scherwath et al. 2003) and accordingly fixed to 42 km depth.

Similarly, the Moho depth is fixed to 33 km at the intersection with

SIGHT T1 (Van Avendonk et al. 2004). South of the crossing with

SIGHT T2, the dip of the Moho is set to 2.5◦ and the upper-mantle

wave speed is set to 8.54 km s−1, as determined above. We apply

a forward modelling technique (Luetgert 1992) on this 2-D model.

Rays propagating from both source locations, Fiordland and off-

shore Cheviot, indicate that an approximately 150 km Moho por-

tion, extending from Wanaka (southern SI) to Tekapo (central SI),

is constrained. A maximum Moho depth of 48 ± 4 km is estimated

Table 2. Previous studies are used to constrain the crustal structure of a 2-D velocity model along the Southern Alps (SA) region (Fig. 3). LVZ: low-velocity

zone within approximately 85 km east of the inferred Alpine Fault location. This LVZ is induced by high-pore fluid pressure in the mid-crust of the Southern

Alps due to the release of fluids during prograde and strain-induced metamorphism (Stern et al. 2001).

Upper crust Middle crust Lower crust
Reference study Location

z (km) vP (km s−1) z (km) vP (km s−1) z (km) vP (km s−1)

Davey & Broadbent (1980) Fiordland 0–3 5.3 3–8 6.5–6.8 >8 7.3

Eberhart-Phillips & Reyners (2001) Fiordland 0–4 5.5 4–62.5 6.25–7.5

Scherwath et al. (2003) SIGHT T2 0–5 5.5 5–32 6.0 (LVZ)–6.2 32–42 7.0

Van Avendonk et al. (2004) SIGHT T1 0–5 5.5 5–30 6.0 (LVZ)–6.2 30–35 6.8

Reyners & Cowan (1993) North Canterbury 2–11 5.7 11–20 6.24 20–27 7.1

This study 2-D model Fiordland 0–5 5.5 5–10 6 10 6.8

Central SA (T2) 0–5 5.5 5–32 6 32–42 6.8

Southern SA (Wanaka) 0–5 5.5 5–38 6 38–48 6.8

East Coast 0–5 5.5 5–20 6 20–27 6.8

near Wanaka at the southwestern tip of this zone (Fig. 3). Hence,

the crustal root is 18 ± 4 km thick at Wanaka (relative to average

coastal values of 30 km in South Island, e.g. Godfrey et al. 2001;

Melhuish et al. 2005) and ∼4 km thicker than imaged along SIGHT

T2 near Mount Cook (Scherwath et al. 2003) suggesting thickening

of the crustal root from north to south along the Southern Alps.

4 P n A N I S O T RO P Y

Knowing the Pn speed at two intersecting profiles, this study and

SIGHT T2 (Scherwath et al. 2003), we infer the Pn anisotropy at

the intersection.

Upper-mantle anisotropy is widely interpreted as being primar-

ily due to lattice preferred orientation (LPO) of olivine minerals

induced by finite strain (McKenzie 1979). Hence, shearing in the

upper mantle can be deduced from anisotropy observations. More-

over, if we know both the total SKS splitting through the whole

mantle and the value of anisotropy in the very top of the mantle lid,

we can ask the question: is it reasonable that all the SKS splitting

is due to shear in the ∼100 km thick mantle lid rather than being

distributed in the asthenosphere?

In the South Island, SKS-splitting observations (Klosko et al.

1999; Duclos et al. 2005) separate into a central and a southern do-

main. The boundary between these two domains is approximately

coincident with SIGHT T2. In central South Island, fast propagation

orientations, 8, of SKS are subparallel to the Alpine Fault, but in

the southern South Island these are consistently oriented ∼28◦ an-

ticlockwise from the strike of the Alpine Fault, that is, the expected

orientation of shear (Fig. 1) (Klosko et al. 1999; Molnar et al. 1999;

Baldock & Stern 2005). Coincidence of fast polarisation azimuths

and the deflection of crustal markers suggests lithospheric mantle

and upper crustal deformation are broadly coupled in the South

Island (Little et al. 2002). In central South Island, fast polarisations

subparallel to the orientation of shear suggest some dynamic recrys-

tallization component and/or higher strain rates than further south

(Little et al. 2002; Scherwath et al. 2002; Savage et al. 2004).

Taking a Pn speed of 8.0 ± 0.2 km s−1 on the nearly perpendicular

profile SIGHT T2 (Scherwath et al. 2003), and our result of 8.54 ±

0.20 km s−1, implies a 6.1 ± 5.0 per cent apparent anisotropy. If we

take the fast orientation of Pn propagation to be that of the SKS fast

polarization orientation, we can rotate the intersecting profiles into

fast and slow orientations to infer a maximum anisotropy. However,

the 8 of 44◦, measured at the profile intersection (Klosko et al.

1999), lies at the turning point between the two distinct domains of

SKS anisotropy. We infer that 8 is likely to be an intermediate value
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Figure 3. Top left: location map of the main divide (dashed line) and Fiordland–Cheviot (thick line) profiles along which mean elevations are calculated.

Middle: mean topography (thin curve) and Bouguer gravity anomaly (thick curve) (Reilly & Whiteford 1979) in a 10 km wide band along the Fiordland–Cheviot

profile (Fig. 1); mean topography along the main divide (dashed curve). Bottom: 2-D velocity model; triangles: deployment; T1/T2: intersections with SIGHT

previous crustal studies; dashed line: constrained portion of the Moho between Wanaka and Tekapo; interrogation marks: unconstrained interfaces. Predicted

traveltime curves are dashed curves of Fig. 2.

resulting from the overlap of Fresnel zones over the two domains

of anisotropy: central South Island with mean 8 of 56 ± 2◦ and

southern South Island with 21 ± 1◦. Distinct maximum Pn

anisotropies are calculated for each domain. Given the first terms of

the Taylor expansion of the azimuth-dependent wave speed, α(φ) =

α0 + Ccos(2φ) + Dsin(2φ) (Smith & Ekström 1999), an assumed

fast propagation orientation and Pn speeds in the two crossing pro-

file orientations, three equations are defined which enable solving

for the three parameters: α0, C and D. Taking southern South Is-

land mean 8 of 21 ± 1◦ implies a Pn anisotropy δP of 13.3 ±

3.5 per cent, an average Pn speed α0 of 8.42 ± 0.28 km s−1 and

constants C and D of 0.42 ± 0.08 and 0.78 ± 0.21 km s−1, respec-

tively. Taking a central South Island 8 of 56 ± 2◦ implies δP = 7.0 ±

3.5 per cent, α0 = 8.25 ± 0.24 km s−1, B = −0.11 ± 0.03 km s−1

and C = 0.27 ± 0.15 km s−1. 8.3 ± 0.3 km s−1 fits in the error

bars of both average Pn speeds and the anisotropy is in the range 7–

13 per cent.

The average Pn speed of 8.3 ± 0.3 km s−1 is consistent with a

zone of fast Pn speed inferred in two former studies for the southern

South Island: an average 8.3 ± 0.1 km s−1 from regional events

(Haines 1979) and 8.4 km s−1 from a joint hypocentre determination

of intermediate depth earthquakes in Fiordland (Smith & Davey

1984).

While 7 per cent Pn anisotropy can be explained by finite strain

alone, 13 per cent anisotropy requires infinite strain or additional

dynamic recrystallization. If the calculated anisotropy at the top of

the mantle lid is constant throughout the mantle lid, then a thickness

of the anisotropic layer can be estimated from the observed SKS-

splitting delay times. For the central South Island fast polarisation

end-member, with 7 per cent Pn anisotropy, a layer of about 100 km

thickness would account for the observed SKS-delay time of 1.76 s

(Klosko et al. 1999) (assuming a P- to S-anisotropy ratio of 1.4

and a 4.7 km s−1 average S-wave speed in the uppermost mantle).

This thickness is only half as large, that is, 50 km, for the southern

South Island end-member of 13 per cent Pn anisotropy. Comparison

with parallel and crossing lines off-shore suggests similar anisotropy

within error bars with 6.5 ± 3.0 per cent, 230 km east of the sur-

face trace of the Alpine Fault (Baldock & Stern 2005) and 11.5 ±

2.0 per cent on the Australian side, 30 km west of the Alpine Fault

(Scherwath et al. 2002) (Fig. 1). Note that the 11.5 ± 2.0 per

cent Pn anisotropy on the Australian side and the here inferred 7–

13 per cent Pn anisotropy on the Pacific side are at a similar dis-

tance to the Alpine Fault at Moho depth if we take the dip of the

Alpine Fault to be 45◦ SE. The uncertainty of our anisotropy estimate

doesn’t allow us to predict how anisotropy correlates with distance

from the Alpine Fault, while SKS delay times show no significant
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correlation with distance at all. Overall, mantle anisotropy appears

more widely distributed than upper-crustal deformation (Scherwath

et al. 2003).

5 G R AV I T Y M O D E L L I N G

Intracontinental subduction and continuous thickening both involve

displacement of asthenosphere with colder mantle lithosphere and,

therefore, downwarp of isotherms. Thus, in both models, the nega-

tive temperature contrasts and resultant thermal contraction within

the upper mantle produce positive density contrasts, which appear

as positive gravity anomalies.

The Southern Alps region exhibits a negative Bouguer gravity

anomaly (Fig. 4b), as is usually observed above crustal roots that

sustain the load of mountain ranges (Airy isostasy). However, a

closer look at the Southern Alps shows that the topography (Fig. 4a)

and the Bouguer anomaly (Fig. 4b) do not correlate well (Woodward

1979) and trend at different angles. Moreover, the mean elevations

of ca. 1000 m, as seen in the Wanaka region (Fig. 3), should only

require the support of a ca. 6–9 km thick crustal root underneath,

if Airy load compensation and a −300 to −400 kg m−3 density

contrast between crustal root and mantle are assumed (e.g. Watts

2001). However, the crustal root is 18 ± 4 km at Wanaka (relative

to a 30 km coastal average in South Island). Therefore, at Wanaka

the crust is at least two times thicker than needed to support the

topography. The anomalous gravity effect of the overthickened crust,

that is, the deviation from Airy load compensation, is visible in the

negative isostatic anomaly of the Southern Alps region (Fig. 4c).

We hypothesize that a mass excess exists in the mantle that pulls

the crustal root down and maintains equilibrium by balancing part

of the mass deficit of the crustal root. The positive gravity effect

of such a mantle body, here called the mantle residual anomaly, is

obscured by the large negative anomaly of the crustal root. As a

result the observed Bouguer anomaly low is −85 mGal (Reilly &

Whiteford 1979, Fig. 3) and less than that expected for an 18 km

thick crustal root alone.

The present modelling aims at defining the minimum density

contrast and the lateral and vertical extent of the mantle body that

fits the gravity.

5.1 Model domain

We estimate the mantle residual anomaly along a profile crossing

the South Island at Wanaka, herein called Jackson Bay-Dunedin

profile (JB-D in Figs 4b–5). A 23/4-D gravity modelling software

(GM-SYSTM) is used that allows bodies of finite extent in the di-

mension perpendicular (Y -axis, Figs 4b–c) to the calculated grav-

ity profile (X -axis, Figs 4b–c). The chosen gravity model is ca.

400 km long in the orientation parallel to our JB-D interpretation

profile (X -axis, Figs 4b–c, 5a) and extends 200 km NE and 100 km

SW from profile JB-D (Y -axis, Figs 4b–c and 5b).

5.2 Crustal model

Modelling is done relative to a reference crust of 30 km thickness

above a mantle of 3300 kg m−3 density. An average density con-

trast of −300 kg m−3 is adopted for the crustal root. This value is

less than the −450 kg m−3 (Stern et al. 2000) density contrast esti-

mated at SIGHT T2. As discussed below, using a density contrast of

−450 kg m−3 in this study results in an unreasonably large density

contrast within the upper mantle. The SIGHT T2 mostly traverses

greywacke, apart from a ∼60 km wide strip of Alpine Schist di-

rectly south east of the Alpine Fault. In the mid and lower crust,

rocks are inferred to be greywacke/schist (Scherwath et al. 2003)

and oceanic crust (Kleffman 1999), respectively. In contrast, the

JB-D line is substantially within the Otago Haast Schist (greenschist

facies). These schists represent the deeply exhumed part of a Meso-

zoic accretionary prism on the margins of Gondwana (e.g. Mortimer

2004). The JB-D line strikes parallel to the axis of an antiform that

corresponds to the largest amount of exhumation within the Otago

Schist. Here, the schists retain a first metamorphic event that reached

temperatures and pressures up to 200–400◦C and 4–8 kbar, respec-

tively (Grapes & Watanabe 1992; Grapes 1995; Mortimer 2000) at

estimated depths of 10–25 km. Away from the antiform both degree

of metamorphism and exhumation decrease. Thus, we conclude that

along the line JB-D rocks at a present depth of 30 km were once

possibly ∼50 km deep. At these depths and temperatures, conti-

nental crust starts to transform to eclogite (e.g. Wyllie 1992) of

∼3550 kg m−3 density (Hacker & Abers 2004). If the lower crust

were to be partially transformed to eclogite, the across-Moho density

contrast would be low or even absent.

The crustal root is 14 km thick at SIGHT T2 (Y = −140 km)

and thickens to 18 km midway (Y = −100 km) between SIGHT T2

and profile JB-D (Fig. 5b). The crustal structure along profile JB-D

is not known in detail and is constrained by only three points of

known crustal thickness. The crustal thickness is ca. 30 km off-shore

Jackson Bay (Melhuish et al. 2005), 48 ± 4 km thick near Wanaka

(this study) and ranges between 27 and 33 km off-shore from

Dunedin (Godfrey et al. 2001). In between these three points the

shape of the crustal root and the location of its deepest point are not

well constrained. The simplest hypothesis is that the crustal root is

asymmetric as imaged along SIGHT T1 (Van Avendonk et al. 2004)

and T2 (Scherwath et al. 2003). However, geodetic strain-rates (Hen-

derson 2003) and Holocene reverse faulting show that contraction

occurs as far as eastern Otago (Fig. 4a) in the southern South Island

(Norris & Cooper 2000) and is here more distributed than in central

South Island (SIGHT T2). Indeed, low dip-slip angles on the south-

ern section of the Alpine Fault (Jackson Bay) (Sutherland 1994)

are associated with the widest zone of active deformation across the

southern South Island (Norris & Cooper 2000). 3-D crustal structure

obtained from simultaneous inversion of earthquake and shot arrival

times and gravity data included below 20 km (Eberhart-Phillips &

Bannister 2002, their Fig. 12) also suggests a wider crustal root in

south than in north. Hence, the crustal root may be distributed fur-

ther southeast from the Alpine Fault along profile JB-D than it is in

the north (SIGHT T2). We, therefore, assume a symmetric crustal

root with respect to the gravity minimum.

The maximum crustal thickness is fixed to 48 km at the inter-

section with the Fiordland–Cheviot profile (X = 100 km of profile

JB-D) and the crustal root is symmetric with respect to the gravity

minimum (X = 123 km, Figs 4b and 5a).

Due to the strong trade-off between shape of the crustal root and

symmetry of the mantle body, the mantle residual anomaly, that

is, the difference between the Bouguer anomaly and the modelled

crustal root gravity effect, is symmetric (Fig. 6) and requires the

presence of a symmetric positive mantle mass excess. In contrast,

an asymmetric crustal root would require an asymmetric, that is,

dipping, mantle body. In other words, we can place reasonable con-

straints on the mass excess of the mantle body, but not its shape.

5.3 Models for the mantle body

Assuming the mantle mass excess is a cylinder-type source

(Nettleton 1976), a first-order maximum depth of 90–100 km is

estimated for the centre of mass from the half-maximum of the
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Figure 4. (a) Topography of South Island, SIGHT T2 and Jackson Bay-Dunedin profile (JB-D). Highest elevations (Mt Cook region) appear in yellow.

(b) Bouguer gravity anomaly (adapted from Scherwath et al. 2002). Rectangles: domain of the gravity model used in 23/4-D modelling and extent of model

cross-sections taken along SIGHT T2 and profile JB-D (Fig. 5a); hatched rectangle: mantle body (model 1 of Table 3). (c) Isostatic gravity anomaly on-shore

(DSIR) superposed on free-air anomaly off-shore (Seasat) and axis of the 23/4-D model.

mantle gravity anomaly. The mass per unit length of strike of the

mantle body is ca. 2.7 × 1011 kg m−1 as determined by the mass

balance between topography and crustal root. Thus, although the

density contrast, width and depth extent of the mantle body are free

parameters, the mass excess is required to attain the above mass per

unit length of 2.7 × 1011 kg m−3 within 10 per cent. In addition,

the combination of the Moho depth, that is, the minimum depth

that the top of the mass excess can reach and the first-order depth
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Figure 5. Cross-sections through gravity model 1 (Table 3). The thin oceanic crust, the crustal root and the mantle body are represented with their density

contrasts determined relative to a reference crust of 30 km thickness and an average mid-lower crustal density of 3000 kg m−3 above a mantle of 3300 kg m−3

density. (a) Mean topography in a 10 km wide band, Bouguer gravity anomaly (Reilly & Whiteford 1979) and X -cross-section (Y = 0 km) taken along the

Jackson Bay-Dunedin profile (JB-D). (b) Y -cross-section (X = 100 km in Figs 4b–c) taken perpendicular to profile JB-D. JB-D and T2 denote the intersections

with crossing profiles.

estimate of the centre of mass, provides bounds to the vertical extent

of the mantle body. A minimum density contrast is found for which

the body’s vertical dimension is maximum but contained within the

vertical bounds mentioned above, and the resulting gravity effect

satisfies the amplitude and wavelength of the Bouguer anomaly. For

density contrasts smaller than this minimum, vertical stretch of the

mantle body is necessary in order to fit the maximum amplitude of

the gravity anomaly. However, because the gravity effect is propor-

tional to r−2, deeper mass is less effective in producing a gravity

effect and more mass needs to be added than required to attain mass

balance. Hence, there is no body found with density contrast below

this minimum that can fulfil all requirements.

A minimum density contrast, 1ρ, of 35 ± 5 kg m−3 is required

for a mantle body centred at 90–100 km depth in order to satisfy the

mass balance and the wavelength of the gravity anomaly (model 1

of Table 3, Figs 5 and 6) with a misfit of the order of 10 mGal. The

lateral and vertical dimensions of this body are 110 ± 20 and 70 ±

20 km, respectively. The minimum density contrast (1ρ) is 20 ±

5 kg m−3 for an across-Moho density contrast of −250 kg m−3

(model 2 of Table 3) or 55 ± 5 kg m−3 for the across-Moho density

contrast of −350 kg m−3 (model 3 of Table 3). The minimum density

contrast is even larger, 1ρ ∼ 120 kg m−3, if we adopt a crustal root

contrast of −450 kg m−3, as assumed under SIGHT T2 (Stern et al.

2000). However, such a density contrast is far beyond the average

of 60 kg m−3 (e.g. Houseman et al. 2000) that can be considered

as a reasonable maximum to be explained by isotherm deflections

alone. Further chemical heterogeneities would be required within

the mantle if we used such a large density contrast.

In summary, the mantle body is wider and less thick than previ-

ously inferred along the SIGHT T2 line (Stern et al. 2000) (model 0,

Table 3), but provides a similar mass excess in the case of a crustal

root with −300 kg m−3 density contrast.

6 D I S C U S S I O N

We interpret the 8.54 ± 0.20 km s−1 Pn speed estimated at ca.

N5◦E from the Alpine Fault to be the result of seismic anisotropy

and high average wave speed in the mantle lid. Seismic anisotropy

is recognised to be mostly the product of 850 km shear between

the Pacific and the Australian Plates in the past 45 Myr (Molnar

et al. 1999; Little et al. 2002; Savage et al. 2004; Baldock & Stern

2005). Pn speeds higher than the worldwide average upper-mantle

wave speed of 8.1 km s−1 (Kennett & Engdahl 1991, IASP91) are

indicative of shortened and cold mantle beneath the Southern Alps

C© 2006 The Authors, GJI, 168, 681–690

Journal compilation C© 2006 RAS



688 S. Bourguignon, T. A. Stern and M. K. Savage

Figure 6. Bouguer gravity anomaly (Reilly & Whiteford 1979). Gravity

anomalies are calculated for model 1 (Table 3, Fig. 5) using GM-SYSTM, a

23/4-D gravity modelling software. These are the anomaly for a symmetric

crustal root alone, that for the entire model (crustal root + mantle body),

the mantle residual anomaly (Bouguer − crustal root) and the total misfit

(Bouguer anomaly − entire model).

after 20 Myr (Cande & Stock 2004) continuously increasing con-

vergence, as discussed below.

The average Pn speed of ∼8.3 km s−1 is a 2–3 per cent perturba-

tion relative the upper-mantle wave speed of 8.1 km s−1 (Kennett &

Engdahl 1991). Taking δVP/δT = 5 × 10−4 km s−1 ◦C−1 (Anderson

& Isaak 1995), the relationship between lateral wave speed varia-

tion and temperature, this perturbation of speed could be explained

by a ∼400 ◦C negative temperature contrast with the surrounding

mantle. Similarly, the temperature contrast, 1T , caused by the de-

flection of isotherms can be estimated from the density contrast,

1ρ, with 1ρ = −ρα1T . Taking α = 3.5 × 10−5 (Anderson et al.

1992) as the coefficient of thermal expansion and ρ = 3300 kg m−3

for the uppermost-mantle density, the equivalent average temper-

ature contrast ranges from −170 to −480◦C in the case of a 20–

55 kg m−3 density contrast in the mantle lid, as suggested by the

above gravity modelling.

The bulk of the inferred mantle body (Fig. 5) compares well with

a zone of fast wave speed below the Southern Alps imaged by 3-D

Table 3. Gravity models are derived for an 18 km thick crustal root below a 30 km deep Moho, symmetric to X = 123 km and maximum between

X = 100 and X = 146 km of profile JB-D (Figs 4b–c and 5a). The crustal root is thickened midway (Y = −100 km) from 14 km at SIGHT T2

to 18 km at JB-D (Fig. 5b). Density contrasts, 1ρ, in the range −250 to −350 kg m−3 are adopted for the crustal root. The minimum density

contrast and dimensions of a mantle anomaly are varied with the requirement to fit the Bouguer anomaly (Reilly & Whiteford 1979) (Fig. 6) and

to attain the mass balance between topography, crustal root and mantle body within 10 per cent: δm(mantle) + δm(topography) ≈ −δm(crustal

root). X 1 − X 2 is the lateral extent of the mantle body, Z1 − Z2, the depth range (Fig. 5a), A = (X 2 − X 1)(Z 2 − Z 1), the cross-section and δm =

A · 1 ρ, the linear mass excess of the mantle body. The temperature contrast, 1T , is calculated by assuming that the density contrast 1ρ is

solely due to thermal contrast and taking 1ρ = −ρα1T with α = 3.5 × 10−5 (Anderson et al. 1992) the coefficient of thermal expansion and

ρ = 3300 kg m−3 the uppermost-mantle density.

Root Mantle body
Model Topography

δm 1ρ δm 1ρ X 1m − X 2m Z1 − Z2 A δm 1T

(kg m−1) (kg m−3) (kg m−1) (kg m−3) (km) (km) (m2) (kg m−1) (◦C)

1 2.4 × 1011 −300 −5.1 × 1011 +35 60–175 60–130 8.0 × 109 2.8 × 1011 305

2 2.4 × 1011 −250 −4.1 × 1011 +20 50–200 75–125 7.5 × 109 1.5 × 1011 170

3 2.4 × 1011 −350 −5.9 × 1011 +55 60–170 60–125 7.1 × 109 3.9 × 1011 480

Mantle body derived at SIGHT T2 (Stern et al. 2000)

0 3.4 × 1011 −450 −5.5 × 1011 +30 70–160 70–170 9.0 × 109 2.7 × 1011 260

inversion of teleseismic traveltime residuals (Kohler & Eberhart-

Phillips 2002, their Fig. 7). Along profile JB-D, their inversion dis-

plays a zone of anomalous mantle with P-wave speed perturbations

of 1.5–3 per cent relative to 8.1 km s−1 existing in a ca. 100 km

wide zone located ca. 50 km offset east of the Alpine Fault. Sim-

ilar to their 3-D inversion (Kohler & Eberhart-Phillips 2002) our

modelling suggests that the anomalous mantle extends deeper north

(Mt Cook region) than south (Wanaka region) (compare models 1

and 0 of Table 3).

Crustal roots of 14 ± 2 km thickness in central South Island

(Scherwath et al. 2003) and 18 ± 4 km thickness in southern South

Island (relative to a coastal average of 30 km) as well as mantle

mass of similar excess beneath both regions seem, at first, counter-

intuitive with the total convergence across the Alpine Fault being

ca. 40 km less (Cande & Stock 2004) and elevations ca. 500 m less

across southern than central South Island. Lower crustal extrusion

(Bird 1991) in an oblique convergent setting was suggested as a

possible mechanism for maximum crustal thickening south east of

the Southern Alps topographic maximum and at ca. 15◦ counter-

clockwise from the Alpine Fault (Gerbault et al. 2002). Although

lower crustal extrusion is a possible explanation for the large crustal

thickness beneath Wanaka, a further process is required that thickens

the mantle lithosphere and provides the mass excess to fit the gravity

anomaly beneath the Wanaka region.

Two observations let us speculate that the nearby Puysegur mar-

gin may contribute to thickening of the Pacific lithosphere of the

southwestern South Island. First, hypocentres image north-eastward

steepening of the Benioff zone in the Australian slab beneath Fiord-

land (Smith & Davey 1984; Reyners et al. 2002). Second, 3-D in-

version of local-earthquake data indicates a zone of high mantle

VP (VP > 8.5 km s−1, that is, to 2–3 per cent faster VP than the sur-

rounding) beneath Fiordland that is east of and adjacent to the Aus-

tralian slab (Eberhart-Phillips & Reyners 2001, their Fig. 6d). This

high VP zone shallows from 90 km depth beneath Fiordland to 60

km depth beneath the Southern Alps (Eberhart-Phillips & Reyners

2001), while the eastern extent is unresolved. We interpret this zone

of high wave speed as the southernmost expression of the thick-

ened Pacific mantle lithosphere. Here, the Australian slab may act

as a rigid backstop, a buttress (Malservisi et al. 2003), which con-

tributes to thickening of the Pacific mantle lithosphere of the south-

ern South Island from the southwest. Projecting the 34 mm yr−1

relative plate motion at the latitude of Fiordland (DeMets et al.

1994) onto the Australian slab (Reyners et al. 2002) results in a
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convergence rate as large as 26 mm yr−1, that is, six times greater

than the convergence rate perpendicular to the Alpine Fault at

Jackson Bay. Alternatively, Malservisi et al. (2003) interpret a back-

stop wider than the slab inferred from seismicity (Reyners et al.

2002) onto which the Pacific mantle collides at the almost full plate

speed of ∼34 mm yr−1. Assuming that the Pacific mantle has been

converging for 10–20 Ma at a rate of 26 mm yr−1 onto the Aus-

tralian slab, then the total shortening across the margin would be as

large as 250–480 km. The length of the Australian slab Benioff zone

implies that at least 150 km of the total shortening must have been

accommodated as subduction, while the 100–330 km remainder

may have been accommodated by thickening of the Pacific mantle

lithosphere. Hence, in the southern South Island, shortening of the

mantle may occur both at a slow convergence rate oriented perpen-

dicular to the Alpine Fault, for example, 30 km of total convergence

(Cande & Stock 2004), but also at a faster rate oriented perpendic-

ular to the Australian slab. As a result, the thickened mantle litho-

sphere is an effective load that pulls down and thickens the overlying

crust.

7 C O N C L U S I O N S

This earthquake refraction study offers new constraints on the

uppermost-mantle properties beneath the Southern Alps, in a di-

rection almost parallel to the Australian–Pacific Plate boundary

and perpendicular to former crustal studies across the Southern

Alps.

(i) The average Pn speed along the N60◦E profile is 8.54 ±

0.20 km s−1 and the Moho is dipping at an apparent angle of 2.5 ±

1.3◦ SW. We infer a 48 ± 4 km crustal thickness near Wanaka. At

80 km east of the Alpine Fault but ca. 50 km east at Moho depth,

the Pn anisotropy is in the range 7–13 per cent and the average Pn

speed is 8.3 ± 0.3 km s−1.

(ii) The Southern Alps crustal root near Wanaka is 18 ± 4 km

thick (relative to a coastal average of 30 km in South Island)

and is twice that required by Airy isostasy for a crustal root of

−300 kg m−3 density contrast.

(iii) Mass balance predicts the presence of a mantle mass excess

per unit strike length of 2.7 × 1011 kg m−1 beneath the southern

Southern Alps (Jackson Bay-Dunedin profile), for an 18 km thick

crustal root of assumed −300 kg m−3 density contrast with the

lithospheric mantle. This mantle mass excess is approximately the

same across the central (Stern et al. 2000, SIGHT T2) South Island,

but would be greater for larger across-Moho density contrasts, for

example, 40 per cent greater for a crustal root of −350 kg m−3.

(iv) The mantle body has a positive density contrast of 35 ±

5 kg m−3 minimum with 110 ± 20 km width and 70 ± 20 km

thickness for an across-Moho density contrast of −300 kg m−3.

(v) For crustal roots with density contrasts of −400 kg m−3

and more, the minimum density contrast required for the mantle

body is larger than can be explained by the downwarp of isotherms

alone and would require chemical heterogeneities within the

mantle.

(vi) We speculate that the Puysegur margin, located southwest

of the Southern Alps collision zone, contributes to thickening of

the Pacific mantle lithosphere beneath the southern South Island

by its subducted slab acting as a rigid backstop. This thickened

mantle lithosphere is an effective load that pulls down the overlying

crust.

(vii) The present gravity modelling is limited by the lack of con-

straints on the crustal structure beneath the southern South Island.

Here crustal and mantle investigations are needed in order to model

the gravity effect of the crustal root more precisely, and constrain

the bulk and geometry of the mantle body.
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and crustal-stacking wedge in the Himalayas and other collision belts, in

Collision Tectonics, Geol. Soc. Spec. Publ., 19, 37–50.

Maunder, D. E. (ed.), 2001. New Zealand Seismological Report 1999, Seis-

mological Observatory Bulletin E-182, Institute of Geological & Nuclear

Science Report, 2001/7, 156 p.

McKenzie, D., 1979. Finite deformation during fluid flow, Geophys. J. R.

astr. Soc., 58(3), 689–715.

Melhuish, A., Holbrook, W.S., Davey, F., Okaya, D. & Stern, T.A., 2005.

Crustal and upper mantle seismic structure of the Australian plate, South

Island, New Zealand, Tectonophysics, 395, 113–135.

Molnar, P., 1992. Brace-Goetze strength profiles, the partitioning of strike-

slip and thrust faulting at zones of oblique convergence, and the stress-heat

flow paradox of the San Andreas Fault, in Fault Mechanics and Transport

Properties in Rocks: A Festschrift in Honor of W. F. Brace, pp. 435–459,

eds Evans, B. & Wong, T.F., Academic Press, San Diego, California.

Molnar, P. et al. 1999. Continuous Deformation Versus Faulting Through

the Continental Lithosphere of New Zealand, Science, 286, 516–519.

Mortimer, N., 2000. Metamorphic discontinuities in orogenic belts: example

of the garnet-biotite-albite zone in the Otago Schist, New Zealand, Int. J.

Earth Sci., 89, 295–306.

Mortimer, N., 2004. New Zealand’s geological foundations, Gondwana Res.,

7(1), 261–272.

Nettleton, L.L., 1976. Gravity and Magnetics in Oil Prospecting, pp. 464,

McGraw-Hill Book Co., New York.

Norris, R.J. & Cooper, A.F., 2000. Late Quaternary slip rates and slip par-

titioning on the Alpine Fault, New Zealand, J. Struct. Geol., 23, 507–

520.

Okaya, D., Henrys, S. & Stern, T., 2002. Double-sided onshore-offshore

seismic imaging of a plate boundary: ‘super-gathers’ across South Island,

New Zealand, Tectonophysics, 355, 247–263.

Reilly, W.I., Whiteford, C.M., 1979. Gravity Map of New Zealand,

1:1000000, Bouguer Anomaly, 1st edn, Dept. Sci. Ind. Res., Wellington,

New Zealand.

Reyners, M., Cowan, H., 1993. The transition from subduction to continental

collision: crustal structure in the North Canterbury region, New Zealand,

Geophys. J. Int., 115, 1124–1136.

Reyners, M., Robinson, R., Pancha, A. & McGinty, P., 2002. Stresses and

strains in a twisted subduction zone—Fiordland, New Zealand, Geophys.

J. Int., 148, 637–648.

Reyners, M.E. et al., 2003. The M W 7.2 Fiordland earthquake of August 21,

2003: background and preliminary results, Bulletin of the New Zealand

Society for Earthquake Engineering, 36(4), 233–248.

Savage, M.K., Fischer, K.M. & Hall, C.E., 2004. Strain modelling, seismic

anisotropy and coupling at strike-slip boundaries: Applications in New

Zealand and the San Andreas Fault, in Vertical Coupling and Decoupling

in Lithosphere, Geol. Soc. Lond. Spec. Publ., 227, 9–39.

Scherwath, M., Stern, T., Melhuish, A. & Molnar, P., 2002. Pn anisotropy

and distributed upper mantle deformation associated with a continental

transform fault, Geophys. Res. Lett., 29(8) pp. 4.

Scherwath, M., Stern, T., Davey, F., Okaya, D., Holbrook, W.S., Davies,

R. & Kleffmann, S., 2003. Lithospheric structure across oblique con-

tinental collision in New Zealand from wide-angle P-wave modelling,

J. geophys. Res., 108(B12) pp. 18.

Smith, E. & Davey, F.J., 1984. Joint hypocentre determination of interme-

diate depth earthquakes in Fiordland, New Zealand, Tectonophsics, 104,

127–144.

Smith, G.P. & Ekström, G., 1999. A global study of Pn anisotropy beneath

continents, J. geophys. Res., 104(B1), 963–980.

Stein, S. & Wysession, M., 2003. An Introduction to Seismology,

Earthquakes, and Earth Structure, Blackwell Publishing, Oxford, UK,

498 p.

Stern, T., Molnar, P., Okaya, D. & Eberhart-Philips, D., 2000. Teleseis-

mic P wave delays and modes of shortening the mantle lithosphere be-

neath South Island, New Zealand, J. geophys. Res., 105(B9), 21 615–

21 631.

Stern, T., Kleffman, S., Okaya, D., Scherwath, M. & Bannister, S., 2001. Low

seismic-wave speeds and enhanced fluid pressure beneath the Southern

Alps of New Zealand, Geology, 29(8), 679–682.

Sutherland, R., 1994. Displacement since the Pliocene along the south-

ern section of the Alpine Fault, New Zealand, Geology, 22(4), 327–

330.

Van Avendonk, H.J.A., Holbrook, W.S., Okaya, D., Austin, J., Davey, F. &

Stern, T., 2004. Continental crust under compression: A seismic refraction

study of SIGHT Transect I, South Island, New Zealand, J. geophys. Res.,

109, pp. 16, doi:10.1029/2003JB002790.

Walcott, R.I., 1998. Modes of oblique compression: Late Cenozoic tectonics

of the South Island of New Zealand, Rev. Geophys., 36, 1–26.

Waschbusch, P., Batt, G. & Beaumont, C., 1998. Subduction zone retreat

and recent tectonics of the South Island of New Zealand, Tectonics, 17(2),

267–284.

Watts, A.B., 2001. Isostasy and Flexure of the Lithosphere, Cambridge Uni-

versity Press, Cambridge, UK.

Wellman, H.W., 1979. An uplift map for the South Island of New Zealand,

and a model for uplift of the Southern Alps, Bull. Roy. Soc. New Zealand,

18, 13–20.

Woodward, D.J., 1979. The crustal structure of the Southern Alps, New

Zealand, as determined by gravity, Bull. Roy. Soc. New Zealand, 18, 95–

98.

Wyllie, P.J., 1992. Experimental petrology: earth materials science, in

Understanding the Earth: A New Synthesis, pp. 67–87, eds Brown,

G.C., Hawkesworth, C.J. & Wilson, R.C.L., Cambridge University Press,

Cambridge, UK.

C© 2006 The Authors, GJI, 168, 681–690

Journal compilation C© 2006 RAS



1

AGU: OKAYA Ch08_Page 1 - 09/28/2007, 04:54PM MTC

TITLE

Geophysical Monograph Series XXX

XXXXXXXXXXXXXXXXXXXXXXXXXXX

10.1029/XXXGMXX

dipping shear zone at the slab top interface. In the continu-

ous thickening end-member, shortening is accommodated by 

distributed pure shear. While both end-member models in-

volve cold temperature contrasts in the mantle that produce 

faster wave speeds, the distribution of deformation and that 

of seismic anisotropy, i.e., localized on a narrow discontinu-

ity vs. widespread, may help discriminate between them. 

Continuous and distributed thickening has been suggested 

based on teleseismic traveltime residuals [Kohler and Eberhart- 

Phillips, 2002; Stern et al., 2000] showing a symmetric pat-

tern. However, the simple shear model is preferred by a 

number of numerical models that intend to fit the GPS veloc-

ity field across the Southern Alps [Beavan et al., 1999; Ellis et 

al., 2006; Liu and Bird, 2006]. Numerical investigations of the 

development of continental collision [Pysklywec et al., 2002] 

have shown that both modes of shortening may be combined 

depending on the thermal structure and the convergence rate. 

Crustal Thickness and Pn Anisotropy Beneath the Southern Alps 
Oblique Collision, New Zealand 

S. Bourguignon, M. K. Savage and T. Stern 

Institute of Geophysics, School of Geography, Environment and Earth Sciences, 

Victoria University of Wellington, New Zealand 

Over-thickened crust and fast, anisotropic mantle material are interpreted beneath 

South Island, New Zealand, from an earthquake refraction study along the Southern 

Alps foothills. An 8.54 ± 0.20 km/s Pn speed is estimated along the N60ºE striking 

refraction profile and a maximum crustal thickness of 48 ± 4 km is inferred near 

Wanaka township, at the southern end of the profile. The crustal thickness represents 

an 18 km thick crustal root relative to a 30 km coastal average. Thus, the root is 2–3 

times thicker than expected for Airy isostatic compensation of the mean ~1000 m 

Southern Alps topographic load. This suggests that the underlying mantle plays an 

active role in depressing topography. Comparison of the 8.54 ± 0.20 km/s Pn-speed 

estimate with cross profiles suggests anisotropy arising from finite strain of the 

mantle lid rocks. The Pn anisotropy is estimated near Lake Tekapo, at the northern 

end of the profile, to be a minimum of 6.5 ± 3.5%. We predict a maximum Pn 

anisotropy of 7–13% and an average isotropic Pn speed of ~8.3 km/s by adopting 

the fast polarization orientation from previous SKS splitting measurements done at 

the profile intersection. The Pn speed of 8.3 km/s is consistent with previous studies 

showing high average Pn speeds below the southern half of South Island and the 

presence of cold, dense mantle lithosphere. 

1. INTRODUCTION 

A long standing question on collision zones is how the 

upper mantle accommodates shortening. Two end-member 

models, intra-continental subduction [Wellman, 1979; Beau-

mont, 1996] and continuous thickening [Molnar et al., 1999; 

Stern et al., 2000] have been proposed for the Southern Alps 

of South Island, New Zealand. These two modes of defor-

mation are analogous to the simple shear [Wernicke, 1985] 

and pure shear [e.g., McKenzie, 1978] models of extension, 

respectively. In the subduction-type end-member, deforma-

tion by simple shear is localized in a narrow and obliquely-
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Determining Pn speeds and their azimuthal variation 

with respect to the orientation of the plate boundary can 

provide insight on physical conditions and deformation 

experienced in the uppermost mantle. Pn anisotropy com-

bined with SKS-splitting measurements [Savage, 1999; 

Figure 1.

 Location of Fiordland-Cheviot refraction study wit

hin South Island. AUS and PAC denote Australian and Pac

i!c plates, respectively, AF is the Alpine Fault and light line

s denote additional faults. Open arrow indicates the Australian-Paci!c relative plate motion [DeMets, 1994]. Locations cited in this study are: Cheviot (C), Tekapo (T), Wanaka (W) and Fiordland (F). The Fiordland-Cheviot refraction pro!le is represented by line F–C. Earthquake sources (stars) numbered 1–6 are described in Table

 1. Seismic data 
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Figure 2. Top: Arrivals from the Fiordland aftershock are bandpass filtered at cut-off and corner frequencies of 0.5-1-5-10 Hz. First-break 

Pn are indicated by the bottom pair of arrows and single arrows in blow-up on the right, and predicted Pg and Pn travel-time curves by 

dashed curves (see model Figure 3c). Pn arrivals are followed ca. 1.5 s later by arrivals (~1.5-s peg-leg indicated with top pair of ar-

rows) with much larger amplitude. These second arrivals have the same apparent wave speed as the Pn and are interpreted as an internal 

reflection ~5 km near the source. The Pn-speed estimate and corresponding 95% confidence interval (right-hand side of graph) is the mean 

of single regression slopes weighted with their respective standard deviations. Bottom:Arrivals from the ML 4.1 offshore Cheviot event 

are bandpass filtered at cut-off and corner frequencies of 0.5-1-3-5 Hz. Note the offset axis is in the opposite direction to that of the top 

figure. First-break Pn are indicated by the pair of arrows and the predicted Pn travel-time curve by a dashed curve (see model Figure 3c). 

The Pn-speed estimate is the result of a single linear regression and is given with corresponding 95% confidence interval (right-hand side 

of graph). In both graphs the trace of the third station from the left was shifted by 3.5 s to correct a timing error. However, the pick wasn’t 

included in Pn-speed calculations because of uncertainty in the timing error [after Bourguignon et al., 2007].



4 CRUSTAL THICKNESS AND PN ANISOTROPY

AGU: OKAYA Ch08_Page 4 - 09/28/2007, 04:54PM MTC

of this experiment with others of this type in the Sierra Ne-

vada [Jones et al., 1994; Savage et al., 1994; Ruppert, 1998; 

Louie et al., 2004] suggests that two factors may have made 

the observation of Pn along the crustal root possible. (1) The 

Moho is smoothly dipping along the profile line, as a result 

of both the obliquity of the profile relative to the Southern 

Alps crustal root and gentle thickening of the root in the east. 

(2) Fast wave speeds within the cold mantle lithosphere may 

contribute to efficient refraction of seismic waves along the 

Moho boundary. 

3. CRUSTAL THICKNESS 

Previous crustal studies in South Island [Davey and 

Broadbent, 1980; Reyners et al., 1993; Eberhart-Phillips 

and Reyners, 2001; Eberhart-Phillips and Bannister, 2002; 

Scherwath et al., 2003; van Avendonk et al., 2003] were inte-

grated into a crustal model taken along our refraction profile 

(Figure 3c). In addition, the above measurements were used 

to constrain the dip of the Moho to 2.5ºSW, to the south-

west of the intersection of the Fiordland-Cheviot profile 

with SIGHT T2. The uppermost mantle wave speed was 

set to 8.54 km/s. Ray tracing [Luetgert, 1992] on this 2-D 

crustal model (Figure 3c) shows that rays propagating 

from Fiordland and offshore Cheviot constrain a ~150 km 

Moho portion extending from Wanaka (southern SI) to 

the intersection of SIGHT T2 with the Fiordland-Cheviot 

profile, i.e., west of Tekapo (central SI). Along this profile, 

the Moho depth is maximum near Wanaka, located at the 

southwestern tip of the constrained zone, and estimated to 

48 ± 4 km (Figure 3c). This crustal thickness represents 

an 18 ± 4 km thick crustal root beneath the Southern Alps 

relative to a coastal average of 30 km crustal thickness in 

South Island [Godfrey et al., 2001; Melhuish et al., 2005]. 

Hence, near Wanaka the crustal root is estimated to be 4 km 

thicker than near Mount Cook [Scherwath et al., 2003] and 

suggests thickening of the Southern Alps crustal root from 

the NE to the SW. In contrast, mean elevations decrease 

from ~1500 m near Mt Cook to ~1000 m near Wanaka (Fig-

ure 3b). Thus, topography and crustal root thickness have an 

inverse relationship in the Southern Alps region. For 1000 m 

elevation and an Airy root with a density contrast of –300 

kg/m3
 

[Bourguignon et al., 2007] or –400 kg/m3
 

[Scherwath, 

2002] with the surrounding mantle, the crustal root should 

be 9 or 6 km thick, respectively, i.e., less than half the ca. 

18 km inferred near Wanaka. A similar conclusion was 

drawn further north where Stern et al. [2000] deduced the 

presence of a dense mantle body beneath the central South-

ern Alps. Modeling of the crustal structure along SIGHT 

T2 with an assumed –450 kg/m3
 

density contrast between 

crustal root and mantle predicts a Bouguer gravity anom-

aly far more negative than observed [Reilly and Whiteford, 

1979], indicating a ca. 10 km excess of crustal root thick-

ness (relative to that expected from Airy isostasy). Stern et 

al. [2000] attributed this excess of crustal thickness to the 

downward pull of a cold, and therefore dense, lithospheric 

root (Figure 3d). 

Intermediate depth seismicity beneath Fiordland indicates 

steepening of the Australian slab in proximity to the Southern 

Alps collision zone [Reyners et al., 2002, also see Figure 3d]. 

It has been suggested that the Australian slab may act as a 

backstop that converges at ~26 mm/yr, i.e., 3/4 of the full plate 

speed, with the Pacific lithosphere and contributes to thicken 

the Pacific mantle lithosphere from the southwest (Figure 3d; 

Malservisi et al., 2003; Bourguignon et al., 2007]. 

4. PN ANISOTROPY 

We combine the Pn speed from this study’s earthquake re-

fraction and that from SIGHT T2’s seismic line [Scherwath 

et al., 2003] to infer the Pn anisotropy at these two profile 

intersections. The first terms of the Taylor expansion of the 

azimuth-dependent wave speed, α( ) = om, α
0 
+ Ccos(2 ) + 

Dsin(2 ) [Smith and Ekström, 1999] are employed to rotate 

Table 1. Events 1–4 and 6 are the Fiordland aftershocks located using data collected by a temporary seismograph deployment [Reyners 

et al., 2003] and a 1-D velocity model for Fiordland [Eberhart-Phillips and Reyners, 2001]. Event 5 is the offshore Cheviot event located 

by GeoNet using the standard 1-D model for New Zealand [Maunder, 1999].

Event Origin time Location
Magnitude

M
L

nb ID Date Time Lat. Long. Depth (km)

1 

2 

3 

4 

5 

6 

2105255 

2106280 

2106314 

2106319 

2106361 

2110611

2003/08/25

2003/08/26

2003/08/27

2003/08/27

2003/08/27

2003/09/04 

03:36:30.26

23:56:26.57

01:29:40.41

01:42:54.12

03:39:37.23

08:40:44.25

–45.111 

–45.486 

–45.442 

–45.314 

–42.802 

–45.224 

166.964

166.596

166.716

166.945

173.758

166.921

20.5 

19.7 

22.7 

24.4

35 

22.7

5.0 

5.5 

5.1 

5.6 

4.1 

6.1 
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the intersecting profiles into fast and slow orientations and 

infer a maximum anisotropy. Three equations are found, 

which enable us to solve for the three unknown parameters, 

α
0
, the average Pn-speed and both constants C and D, si-

multaneously. Two equations are determined by substitut-

ing α( ) and for the known Pn-speed values and azimuths 

of the two respective intersecting profiles. A third equation, 

|( )
Φ=0], is found by assuming α( ) is maximum for 

the fast propagation azimuth, , from a nearby SKS-splitting 

measurement. 

Taking our result of 8.54 ± 0.20 km/s and a Pn speed of 

8.0 ± 0.2 km/s on the nearly perpendicular profile SIGHT T2 

[Scherwath et al., 2003], implies 6.5 ± 3.5% apparent anisot-

ropy (T in Figure 1). Assuming the fast orientation to be that 

of the nearby SKS fast polarization orientation, we can cal-

culate the maximum anisotropy. However, the nearby fast-

polarization measurement [Klosko et al., 1999] is located at 

the transition between two domains of anisotropy and this 

must be an average resulting from the overlap of Fresnel 

zones over the two domains. In central South Island, SKS 

fast polarization orientations, , are sub-parallel to the Al-

pine Fault, while in southern South Island these are consist-

ently oblique to the Alpine fault, i.e., the orientation of shear 

(Figure 1) [Klosko et al., 1999; Molnar et al., 1999]. There-

fore, two possible fast orientations need to be considered. 

Figure 3. (a): Bouguer gravity anomaly [Reilly and Whiteford, 1979] in 50 mGal contours is supplemented with locations of Mt Cook 

(triangle) and of the main divide (dashed line) and Fiordland-Cheviot (solid line) profiles of the graph below. (b): Mean topography in 

a 10 km wide swath along the Fiordland-Cheviot profile (thin curve) and the Main Divide (thick dashed curve) and Bouguer anomaly 

(thick curve; [Reilly and Whiteford, 1979]) along the Fiordland-Cheviot profile (solid line in Figure 3a). (c): 2-D velocity model based on 

this study’s Pn speed and Moho dip estimates and on results from: Davey and Broadbent [1980], Reyners et al. [1993], Eberhart-Phillips 

and Reyners [2001], Eberhart-Phillips and Bannister [2002], Scherwath et al. [2003] and van Avendonk et al. [2003]. Triangles denote 

deployed instruments, T1/T2 indicate intersections with SIGHT previous crustal studies, ray-tracing is for events 5 and 6 (predicted travel-

time curves in Figure 2), thick dashed line indicates the constrained portion of the Moho that extends from Wanaka to Tekapo, question 

marks denote unconstrained interfaces [after Bourguignon et al., 2007]. (d): 2-D model of the Fiordland-Cheviot profile (no vertical exag-

geration) with seismicity within a 10 km wide swath and interpretation. 
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Taking central South Island  of 56 ± 2º implies a maximum 

Pn anisotropy δP of 7 ± 3.5 % and an average Pn speed α
0
 of 

8.25 ± 0.24 km/s while taking southern South Island mean 

 of 21 ± 1º implies a δP of 13.3 ± 3.5% and an α
0
 of 8.42 ± 

0.28 km/s. A mean α
0
 of 8.3 ± 0.3 km/s fits both results and is 

consistent with Haines’ average 8.3 ± 0.1 km/s for southern 

South Island (1979) and wave-speed perturbations of ~2 % 

[relative to the IASP91 Earth’s model; Kennett and Engdahl, 

1991] imaged by inversion of teleseismic travel times [Koh-

ler and Eberhart-Phillips, 2002]. The 8.3 km/s Pn speed is 

~3% more than the 8.1 km/s world-wide average [Kennett 

and Engdahl, 1991] and suggests cold and dense upper man-

tle material. 

We replicate the analysis further north at the intersection 

with SIGHT T1 and make the important assumption that the 

Pn speed northeast of the constrained portion of the Cheviot-

Fiordland refraction profile is 8.54 ± 0.20 km/s as well. The 

Pn speed on the intersecting SIGHT T1 line is 7.9–8.0 km/s 

[van Avendonk et al., 2003], i.e., slightly less than along 

SIGHT T2. Here the azimuths of SIGHT T1 and the Cheviot-

Fiordland profile almost align with the slow and fast orienta-

tions of wave propagation. Taking a 7.9 ± 0.2 km/s Pn speed 

along SIGHT T1, an 8.54 ± 0.20 km/s along our refraction 

profile and a  of 56 ± 2º, results in a 8.1 ± 3.5 % Pn aniso-

tropy and an average Pn speed α
0
 of 8.21 ± 0.24 km/s. 

If the 7% or 13% anisotropy at the intersection with 

SIGHT T2 is constant throughout the mantle lid, then an 

anisotropic layer of about 100 km or 50 km thickness, re-

spectively, would account for the observed SKS-delay time 

of 1.76 s [Klosko et al., 1999] (assuming a P-to S-anisotropy 

ratio of 1.4 and a 4.7 km/s average S-wave speed in the up-

permost mantle). 

Dynamic slip alone can’t explain in situ anisotropy greater 

than a theoretical maximum of 10% [Ribe, 1992] as cal-

culated for southern South Island, but requires additional 

dynamic re-crystallization by subgrain rotation and grain-

boundary migration [Nicolas et al., 1973; Karato, 1988], ad-

ditional pure shear or infinite strain. All these processes have 

the effect of rotating fast propagation orientations parallel to 

the shear orientation, i.e., reducing the obliquity of fast ori-

entations to that of shear. However, SKS fast polarizations 

of southern South Island are ~28º oblique to the Alpine Fault 

and the shear orientation. Hence, a 13.3 ± 3.5% Pn anisotropy 

as calculated for southern South Island seems incompat-

ible with the obliquity of fast polarization orientations from 

SKS splitting to that of shear. A 7 ± 3.5% anisotropy, cal-

culated for central South Island, is a more reasonable result. 

However, there fast polarizations are oriented parallel to the 

shear orientation. An amount of anisotropy intermediate to 

7% and 13% or rotation of material independent of strain 

would resolve this paradox. 

4.1. Comparison with previous Pn-anisotropy 

measurements in South Island 

Three other Pn-anisotropy measurements were made on 

crossing refraction lines. The Pn anisotropy is 11.5 ± 2.0% 

on the Australian side, 30 km west of the surface trace of the 

Alpine Fault (S in Figure 1) [Scherwath et al., 2002]. If we 

take the dip of the Alpine Fault as 40ºSE [Kleffmann et al., 

1998], then at the Moho, the measurement on the Australian 

side is at a similar distance to the fault as our measurement 

of 7–13% anisotropy on the Pacific side. Offshore 230 km 

east of the Alpine Fault, two null Pn anisotropy measure-

ments on crossing lines SIGHT T1 and T3 and SIGHT T2 

and T3 (B1 and B2 in Figure 1) show that upper mantle ani-

sotropy does not extend 50 km east of South Island [Baldock 

and Stern, 2005; correction in prep.]. The Pn speed is 8.1 ± 

0.1 km/s in both transect azimuths and can be assumed as 

the isotropic Pn speed. Beneath the Canterbury plains (east 

of the Southern Alps) into the offshore, however, northwest-

southeast raypaths define a broad region of 7.8 ± 0.1 km/s 

Pn speed [Baldock, 2004]. Assuming 7.8 km/s and 8.1 km/s 

are the minimum and isotropic Pn speeds, respectively, the 

Pn anisotropy beneath the Canterbury plains is 7.5 ± 3.0% 

[Baldock and Stern, 2005; correction in prep.]. 

These measurements suggest that the Pn anisotropy is 

strong up to ~70–80 km distance from the Alpine Fault at 

depth. Scherwath et al.[2002] noted that the 11.5 ± 2.0% Pn 

anisotropy (S in Figure 1) is slightly greater than the theoret-

ical maximum of ~10% for strain-induced anisotropy [Ribe, 

1992]. They suggested dynamic recrystallization, some pure 

shear component and/or infinite strain as possible mecha-

nisms to explain the high observed anisotropy. In the east 

of South Island, the Pn anisotropy is less strong, and pos-

sibly extends as far as the east coast, ~150 km east from 

the Alpine Fault at depth. Modeling of Ellis et al. [2006], 

in contrast, predicts a width of ~100 km maximum. Duclos 

et al. [2005] interpret constant SKS-splitting delay times but 

decreasing Pn anisotropy with distance to the Alpine Fault 

as the result of widening of a continuously distributed zone 

of mantle deformation with depth. 

5. CONCLUSIONS 

A Pn speed of 8.54 ± 0.20 km/s and a Moho apparent dip 

of 2.5 ± 1.3ºSW are determined from an earthquake refrac-

tion travel-time analysis along the Southern Alps crustal 

root. The profile line is oriented N60ºE, ~N5ºE from the Al-

pine Fault. 

We estimate a 48 ± 4 km crustal thickness near Wanaka, 

which is a ca. 18 km thick crustal root (relative to a coastal 

average of 30 km). Here the root is at least twice as thick 
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as expected for Airy isostatic compensation of the Southern 

Alps topographic load. 

The relatively high wave speed of 8.54 ± 0.20 km/s is in-

terpreted to be the result of both anisotropy in the mantle lid 

and a relatively high average Pn speed of ca. 8.3 km/s below 

southern South Island. The Pn anisotropy is 7–13% 80 km 

east of the Alpine Fault. Pn anisotropy values across South 

Island confine the deformation to a maximum ~100 km thick 

layer in the mantle lid assuming anisotropy is constant with 

depth. An average 8.3 km/s P-wave speed is interpreted as 

mantle lithosphere colder and, hence, denser and with higher 

P-wave speeds than surrounding mantle rocks. This colder 

zone results from the downward deflection of isotherms and 

acts as an effective load at the base of the crust. 
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