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Abstract 

The microtubule network is involved in cellular processes including protein 

transport and cell division. Microtubule stabilising drugs (MSD) bind to 

microtubules and alter their dynamic balance in favour of the polymerised state. 

While primarily known for their anti-mitotic properties, MSD also exert 

immunomodulatory effects in vitro and in vivo. It is the aim of this project to 

investigate the effects of MSD on protein trafficking and secretion to determine 

how they affect immune-mediated exocytosis.  

 

Previous work in our lab demonstrated that macrophage responses to bacterial 

lipopolysaccharide, as measured by the production of TNF-α and nitric oxide, are 

inhibited by both paclitaxel and peloruside. In this thesis we continued this work 

and saw that inhibition was not affected by temporal IFN-γ priming and found that 

altered production kinetics were not sufficient to explain the inhibition. 

 

To kill target cells cytotoxic T cells (CTL) reorganise their cytoskeleton so that lytic 

granules can traffic down microtubules to be delivered to the target. Using an in 

vitro model of CTL killing, we saw that MSD did not inhibit killing by CTL, lytic 

granule delivery to the cell surface, or antigen-stimulated Interferon-γ (IFN-γ) 

production by CTL. In contrast to this, in a murine model of antigen-induced killing 

we saw that a single dose of paclitaxel had a significant inhibitory effect on CTL-

mediated cytolysis in vivo. 

 

Together these studies suggest that MSD have multiple immunomodulatory 

effects that are independent of their anti-proliferative effects. The data suggest 

that patients undergoing taxane therapy may be unable to fight infection long 

before the anti-mitotic effects of MSD are apparent. 
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1. General Introduction 

1.1 Microtubules & Microtubule Associated Drugs: 

1.1.1 Microtubule Structure and Function 

 
Microtubules are an essential and dynamic component of the cytoskeleton and 

are involved in many intracellular processes. Microtubules help maintain cellular 

structure and are involved in cellular transport, exocytosis, polarisation, migration, 

adhesion and cell division (Bacallao et al., 1989; Dvorak et al., 2002; Ezratty et 

al., 2005; Hirokawa, 1998; Jordan et al., 1993; Kaverina et al., 1998; Kuncl et al., 

2003; Presley et al., 1997; Vasiliev et al., 1970; Yeh et al., 1995; Yisraeli et al., 

1990). They consist of α/β-tubulin heterodimers that stack into linear 

protofilaments, typically thirteen of which associate laterally and fold into 25 

nanometer cylindrical tubes (Desai and Mitchison, 1997; Li et al., 2002; Löwe et 

al., 2001; Nogales et al., 1998). At one end microtubules are bordered by a ring of 

α-tubulin and at the other by a ring of β-tubulin, known respectively as the minus-

end and the plus-end (Nogales et al., 1999). Both α- and β-tubulin possess 

guanine nucleotide binding sites, but in α-tubulin guanosine triphosphate (GTP) 

binds this site irreversibly (Nogales et al., 1998). This irreversibile GTP binding, 

together with associating Mg2+ ions, microtubule associated proteins and 

stabilisation by the microtubule organising centre (MTOC) makes the minus-end a 

relatively stable structure (Drechsel et al., 1992; Menendez et al., 1998; Piel et al., 

2000). Conversely, the β-subunit guanine nucleotide binding site is exchangeable; 

GTP is hydrolysed to guanosine diphosphate (GDP) as new heterodimers bind to 

and lengthen the microtubule (Löwe et al., 2001; Nogales et al., 1999; Nogales et 

al., 1998). Microtubules with GTP-bound β-tubulin exposed at the plus-end favour 

a straight protofilament conformation which promotes polymerisation, whereas 

GDP-bound tubulin adopts a curved conformation promoting depolymerisation 
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(Nogales et al., 1998). As GTP is only hydrolysed on heterodimer addition, the 

exposed plus-end is stable. However, when GDP-bound tubulin is exposed the 

conformational change induces depolymerisation (Desai and Mitchison, 1997; 

Nogales et al., 1999; Walker et al., 1989). Rapid switching between phases of 

microtubule growth and decay, termed “dynamic instability”, is an important part of 

cellular microtubule function (Blocker et al., 1998; Desai and Mitchison, 1997; 

Jordan et al., 1993). As well as processes dependent on dynamicity, MAPs, such 

as kinesin and dynein, use the microtubule network as a scaffold to move proteins 

towards the plus-end and minus-end of microtubules, facilitating rapid transport 

(up to 1.5 µm/s) around the cell (Gibbons, 1981; Presley et al., 1997; Vale et al., 

1985). Two classes of compound elicit their effects by altering the microtubule 

network – Microtubule destabiling drugs (DSD), and microtubule stabilising drugs 

(MSD). Altering the structure and dynamicity of microtubules has wide-reaching 

physiological effects and it was the aim of this thesis to understand how 

modification by microtubule actives affects the immune system.  

1.1.2 Microtubule Destabilising Drugs 

 
DSD interact with microtubules in numerous ways, all of which have the net effect 

of reducing microtubule dynamicity by destroying the microtubule network (Jordan 

and Wilson, 2004; O'Brien Jr et al., 1995). These drugs have been successfully 

employed as anti-cancer or anti-inflammatory drugs (Ahern et al., 1987; Nole et 

al., 2009). DSD commonly used in the laboratory are colchicine, the vinca 

alkaloids (vincristine, vinblastine and vinorelbine), nocodazole and 

podophyllatoxin (Ding et al., 1990a). 

1.1.3 Microtubule Stabilising Drugs 
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In contrast to DSD, MSD have the ability to bind to and stabilise microtubules. 

At low concentrations this suppresses dynamic instability, and at higher 

concentrations the structural arrangement of the network is altered (Hood et al., 

2002; Jordan et al., 1993; Jordan and Wilson, 2004; O'Brien Jr et al., 1995). MSD 

cause mitotic block, the appearance of multiple mitotic asters, and the induction of 

apoptosis in dividing cells as well as cause microtubule bundling in interphase 

cells (Hood et al., 2002; Jordan et al., 1993; O'Brien Jr et al., 1995). Such drugs 

have been applied as chemotherapeutics and are still in wide clinical use. MSD 

include paclitaxel, docetaxel, the epothilones, TTI-237, discodermolide, 

laulimalide and peloruside A (peloruside) (Beyer et al., 2008; Buey et al., 2005; 

Mooberry et al., 1999; West et al., 2000). The microtubule stabilising activity of 

paclitaxel and peloruside are discussed in more detail below. 

1.1.3.1  Paclitaxel 

 

The first discovered MSD, paclitaxel, was isolated from the pacific yew tree Taxus 

brevifolia (Schiff et al., 1979; Wani et al., 1971). Low nanomolar concentrations of 

paclitaxel induce apoptosis and cause mitotic block at the G2/M-phase transition 

of the cell cycle and induce bundling in interphase cells (Jordan et al., 1993; Schiff 

et al., 1979). Paclitaxel binds to the taxane site on microtubules, a site shared by 

most other MSD (Buey et al., 2005; Nogales et al., 1998). Paclitaxel, marketed as 

Taxol®, is used clinically to treat a wide range of solid tumour cancers, including 

breast, endometrial and non-small cell lung carcinoma (Connelly et al., 1996; 

Holmes et al., 1991; Kelly et al., 2001). Some cancers are resistant to a broad 

spectrum of chemotherapeutic agents, including paclitaxel, which is associated 

with overexpression of the MDR-1 gene encoding the P-glycoprotein efflux pump 

(P-gp) (Gaitanos et al., 2004; Goldstein et al., 1989; Newman et al., 2000; Parekh 

et al., 1997). Further, due to limited solubility, paclitaxel is administered using 

Cremophor EL® as a vehicle which is associated with deleterious side effects 
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(Gelderblom et al., 2001; Goldstein et al., 1989; Newman et al., 2000; Parekh et 

al., 1997). Due to limitations of delivery and multi-drug resistance, alternative MSD 

and delivery mechanisms for paclitaxel are currently under development.  

1.1.3.2  Peloruside  

 
A recently discovered MSD, peloruside, was isolated from the New Zealand 

marine sponge Mycale hentscheli (West et al., 2000). Like paclitaxel, peloruside 

causes mitotic block at low nanomolar concentrations and induces microtubule 

bundling at higher concentrations (Crume et al., 2007; Gaitanos et al., 2004; Hood 

et al., 2001; Hood et al., 2002; Miller et al., 2004; Wilmes et al., 2007). Peloruside 

binds to a site on microtubules distinct from the taxane site that shows overlap 

with laulimalide (Gaitanos et al., 2004; Hamel et al., 2006; Huzil et al., 2008). The 

compound is a potent inducer of apoptosis in P-gp-expressing cell lines and 

synergises with a number of taxane-site MSD in the polymerisation of tubulin and 

killing of cell lines in vitro (Gaitanos et al., 2004; Hamel et al., 2006; Wilmes et al., 

2007). Currently, it shows great promise for development as an alternative 

chemotherapeutic agent to paclitaxel. 

1.1.4 In vivo Immunomodulation by Microtubule Stabilising Drugs 

 

As mentioned in section 1.1.3, MSD are used clinically in the treatment of a 

variety of cancers. Chemotherapy involving taxanes (paclitaxel or docetaxel) can 

substantially modify the human immune system. First and foremost, the agents 

cause general leukopenia (Tong et al., 2000). CD8+ T cells, however, survive 

better than other lymphocyte subsets and replenish comparatively faster post-

therapy (Westerterp et al., 2008; Zhang et al., 2008). Increased numbers of IFN-

γ+- and activated CD44High-CD8+ T cells have also been reported following taxane 

therapy (Zhang et al., 2008). In contrast, paclitaxel causes a selective inhibitory 

effect on TREG function (Zhang et al., 2008). Taxane therapy also modifies the 
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cytokine environment of cancer patients, suggesting that MSD induce a variety 

of effects on the immune system (Penson et al., 2000; Tong et al., 2000; Tsavaris 

et al., 2002; Zhang et al., 2008).  

 

Recent investigations in mice combining immunotherapies with taxane treatment 

have consistently found positive effects of the combined therapy on tumour 

regression (Chu et al., 2006; Emens et al., 2001; Yu et al., 2003; Zhong et al., 

2007). These positive outcomes are associated with decreased TREG function and 

increased anti-tumour cytotoxic T lymphocyte (CTL) responses (Chu et al., 2006; 

Garnett et al., 2008; Vicari et al., 2009; Yu et al., 2003; Zhong et al., 2007). It is 

apparent that MSD can alter the immune system, but few studies distinguish 

functional modifications to immune cells caused by MSD from anti-proliferative 

properties. The immune responses of macrophages (MØ) and cytotoxic T 

lymphocytes (CTL) involve microtubules either after or without entering mitosis, 

making it possible to investigate the functional effects of MSD on these cell types. 

1.2 Macrophage function: Role and Responses 

1.2.1 Macrophage Function 

MØ are terminally-differentiated phagocytic cells of the innate immune system. 

MØ are one of the first cells to respond to infection and act predominantly through 

pattern recognition receptors, such as the toll-like receptors (TLR). TLR recognise 

conserved carbohydrate, nucleic acid and lipotechoic acid motifs, collectively 

termed pathogen-associated molecular patterns (PAMP) (Akira et al., 2001). One 

of the major receptors involved in MØ responses is TLR-4, which is stimulated by 

bacterial lipopolysaccharide (LPS) (Akira et al., 2001; Hirschfeld et al., 2000). 

Optimal activation of TLR-4 is conferred when TLR-4 associates with MD-2, 

CD14, and LPS-bound LPS-binding protein to form the TLR-4 signalling complex 

(da Silva Correia et al., 2001; Wright et al., 1990). Stimulation of the TLR-4 
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complex by LPS causes MØ to produce high levels of the proinflammatory 

mediators TNF-α, IL-1β, IL-6, IL-8, IL-12p40, MMP-9, and nitric oxide (NO); to 

upregulate MHC-II; and also alters tissue trafficking of the cells (Chow et al., 1999; 

Crume et al., 2007; Fiorentino et al., 1991; Hirschfeld et al., 2000; Hoshino et al., 

1999; Kawai et al., 1999; Kincy-Cain and Bost, 1997; Marikovsky et al., 2003; 

Nakano et al., 1999; Schartner et al., 2005; Stuehr and Marletta, 1985; Tamandl 

et al., 2003; Tobias et al., 1993; Woo et al., 2004; Xie et al., 1994). Priming MØ 

with IFN-γ augments production of these mediators. Most importantly, pre-

treatment with IFN-γ enhances production of TNF-α and NO in response to LPS 

(Ding et al., 1988; Gifford and Lohmann-Matthes, 1987; Stuehr and Marletta, 

1985). Furthermore, IFN-γ also synergises with TNF-α to enhance the production 

of NO (Vila-del Sol et al., 2006). 

1.2.2 Tumour Necrosis Factor-α  

 

TNF-α signalling is important in the host response to infection, functioning as both 

a signalling molecule and an inducer of apoptosis (Carswell et al., 1975; Havell, 

1989; Rothe et al., 1993). TNF-α is an early onset cytokine that is rapidly 

produced by LPS-activated MØ. TNF-α mRNA can be detected in MØ as little as 

30 minutes after LPS activation and most protein production occurs in the first 2-

10 hours (Crume et al., 2007; Sander et al., 1991; Takasuka et al., 1995). 

Prolonging culture generally leads to decreases in bioactive protein (Fujihara et 

al., 1994; Virca et al., 1989). It was first identified as an LPS activation product 

with tumoricidal properties, and later as a chemotactic agent capable of inducing 

migration of monocytes and neutrophils (Carswell et al., 1975; Ming et al., 1987). 

There are two signalling receptors for TNF-α: TNF-RI and TNF-RII. While both 

TNF-RI and TNF-RII stimulate proinflammatory immune signalling through nuclear 

factor–κβ (NF-kβ) and c-Jun N-terminal kinase (JNK)/MAP-kinase (MAP-K) 

pathways (Liu et al., 1996; Tartaglia et al., 1993), TNF-RI is the predominant 
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effector of apoptosis in non-haematopoetic cells (Beg and Baltimore, 1996; 

Vandenabeele et al., 1995a). TNF-RI expresses a cytoplasmic death domain 

signal sequence which activates the caspase cascade (Nagata, 1997; Wang et 

al., 1998). However, NF-kB signalling blocks TNF-α-induced apoptosis and is thus 

anti-apoptotic (Beg and Baltimore, 1996; Wang et al., 1998). In contrast to TNF-

RI, TNF-RII lacks the cytoplasmic death domain, and while it synergises with TNF-

RI in the induction of apoptosis (Vandenabeele et al., 1995b), TNF-RII is primarily 

involved in immune signalling (Rothe et al., 1994).  

 

Recently it has been identified that secretion of TNF-α occurs in a unique fashion, 

as it associates with recycling endosomes. When MØ are activated, these 

endosomes fuse with the plasma membrane facilitating rapid release of TNF-α 

(Manderson et al., 2007; Murray et al., 2005). Once released, as NF-kβ activation 

stimulates TNF-α gene transcription, TNF-α can enhance its own production 

(Collart et al., 1990).  

1.2.3 Nitric Oxide 

 
Like TNF-α, NO is involved in the host response against microbial infection 

(Stenger et al., 1996). NO is produced by the enzyme nitric oxide synthase (NOS). 

Three distinct isoforms of NOS exist – neuronal NOS (nNOS; NOS1), inducible 

NOS (iNOS; NOS2) and endothelial NOS (eNOS; NOS3) (Bredt et al., 1991; 

Marsden et al., 1992; Xie et al., 1992). nNOS and eNOS are constitutively active 

and produce NO in a calcium dependent manner, but operate in different tissue 

types and have different functions to iNOS (Alderton et al., 2001; Bredt and 

Snyder, 1989, 1990; Janssens et al., 1992). Immune-mediated NO production 

occurs primarily via iNOS which has a minimal requirement for calcium and can 

induce much higher levels of NO than nNOS or eNOS (Lowenstein et al., 1992; 

MacMicking et al., 1997; Stuehr and Marletta, 1985; Xie et al., 1992). While IFN-γ 
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alone can induce iNOS mRNA activity, both LPS and TNF-α synergise with IFN-

γ to enhance NO production (Ding et al., 1988; Geller et al., 1993; MacMicking et 

al., 1997). Compared to TNF-α, NO production occurs relatively later following 

LPS-activation, and is typically measured at later timepoints (Crume et al., 2007; 

Vila-del Sol et al., 2006).  

1.2.4 Paclitaxel is a LPS Mimetic 

 
Unique among MSD, paclitaxel mimics LPS in vitro by activating murine MØ to 

produce proinflammatory mediators including IL-1β, IL-12p40, TNF-α and NO 

(Bogdan and Ding, 1992; Crume et al., 2007; Ding et al., 1990b). Like LPS, 

paclitaxel-induced inflammation is dependent on signalling through the TLR-4 

complex and is blocked in LPS-hyporesponsive and TLR-4-/- mice, as well as by 

antagonists of TLR-4 activation (Byrd-Leifer C.A. et al., 2001; Ding et al., 1992; 

Hoshino et al., 1999; Kawasaki et al., 2000; Manthey et al., 1993; Perera et al., 

2001). No other MSD, including peloruside and the semi-synthetic paclitaxel 

analogue docetaxel, share this mimicry (Crume et al., 2007; Manthey et al., 1993). 

Importantly, paclitaxel specifically stimulates murine TLR-4/MD-2 and does not 

activate human monocytes or MØ (Allen et al., 1993), or cells transfected with 

human MD-2 (Kawasaki et al., 2000; Kawasaki et al., 2001).  

 

Some work investigating the TLR-4-mediated effects of paclitaxel on LPS-

tolerance has been conducted. LPS-tolerance is a state in which MØ responses to 

LPS are altered if the MØ have previously been exposed to low concentrations of 

LPS (Takasuka et al., 1991). The low-dose LPS-priming depresses transcriptional 

activity and alters the proinflammatory cytokine response (Shnyra et al., 1998; 

Tominaga et al., 1999). Most significantly, LPS-primed MØ are reciprocally 

rendered predominant producers of either TNF-α or NO, relating directly to the 

priming dose of LPS (Hirohashi and Morrison, 1996; Shnyra et al., 1998; Zhang 
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and Morrison, 1993a, b). In a similar fashion, when MØ are pretreated with 

either LPS or paclitaxel, paclitaxel-induced TNF-α production is reduced, and the 

production of NO is reciprocally enhanced (Nakano et al., 1999). Further studies 

show that paclitaxel, likely due to its TLR-4 mimicry, depresses NF-kB and MAP-K 

phosphorylation in LPS-tolerant MØ (Tominaga et al., 1999), and a similar state of 

tolerance is induced by paclitaxel on LPS responses in B-cells (Lee and Jeon, 

2001; Lee et al., 2000). 

1.2.5 Involvement of the Microtubule Network in LPS Signalling 

 

Activation of the TLR-4 complex by paclitaxel has been heavily investigated, but 

only a small body of literature has examined the combined effects of simultaneous 

exposure to LPS and microtubule actives on TLR-4 responses. The most recent 

studies by our group investigated the effects of paclitaxel and peloruside on IFN-

γ-primed murine bone-marrow derived MØ (BMMØ) and demonstrated that while 

peloruside does not activate TLR-4 like paclitaxel, both peloruside and paclitaxel 

inhibit LPS-induced TNF-α and NO production (Crume et al., 2007). Earlier work 

using LPS-activated peritoneal MØ (PMØ) assessed only low concentrations of 

paclitaxel that did not inhibit TNF-α production, but did not assess higher 

concentrations which may have revealed an effect (Manthey et al., 1992). 

 

Similar effects on LPS-induced cytokine production are seen with DSD. DSD 

diminish LPS-induced TNF-RI expression, TNF-α protein production, iNOS activity 

and NO production in PMØ (Ding et al., 1990b; Kirikae et al., 1996; Li et al., 

1996). In the RAW MØ cell line, LPS-induced production of TNF-α and GM-CSF 

are inhibited, but in contrast to PMØ, iNOS activity is unaltered (Isowa et al., 1999; 

Rao et al., 1997). Thus murine MØ responses to LPS are similarly inhibited by 

DSD and MSD. 
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In general, DSD & MSD affect human and murine MØ similarly, but some 

differences between species do occur. Studies into DSD show that colchicine 

inhibits LPS-induced peripheral blood mononuclear cell (PBMC) TNF-α 

production, but enhances IL-1β production (Allen et al., 1991). Similar inhibitory 

effects of the DSD nocodazole on IL-1β and TNF-α are observed in PMA-

stimulated human monocytes (Rammes et al., 1997). Interestingly, while paclitaxel 

does not directly activate human TLR-4 (Kawasaki et al., 2000; Resman et al., 

2008), in the presence of paclitaxel, PBMC production of both IL-1β and TNF-α 

are increased (Allen et al., 1993). This is the opposite effect of paclitaxel on TNF-

α production to that seen in murine BMMØ (Crume et al., 2007), and the opposite 

effect on TNF-α production from DSD (Allen et al., 1991).  

  

Here, it is apparent that species and cell type can lead to different effects of 

microtubule actives on cytokine production. Microtubules are involved in almost 

every facet of cellular function (section 1.1.1) so targeting them causes relatively 

non-specific pathway inhibition. It is the combined effect of all such modified 

interactions that render the final phenotype; altering the microtubule network can 

have drastic consequences on the inflammatory response. With this in mind, it is 

important to understand the pathways that are most crucial for immune signalling 

that we may better understand the immunological implications of MSD therapy. 

1.3 CD8+ T Cells: Activation & CTL-Mediated Cell Death 

 

1.3.1 The role of CD8+ T Cells 

 
Cytotoxic T lymphocytes (CTL) are cells of the adaptive immune system that 

function primarily to kill virally-infected and cancerous cells (Abougergi et al., 

2005; Breart et al., 2008; Kagi et al., 1994; Shimizu et al., 1999). Naïve CD8+ T 
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cells are the precursors to CTL, both of which express T cell receptors (TCR) 

specific for the same short peptide presented in the context of MHC-I (Townsend 

et al., 1986). Such short peptides are termed „antigens‟ (Janeway et al., 2001). 

Typically the TCR repertoire of an individual mouse or human is enormous and 

allows the immune system to direct responses against pathogens expressing 

many different antigens. However, transgenic mice have been generated that 

express limited and peptide-specific TCR. For example, OT-I mice are modified 

such that a large proportion of T cells express CD8 and Vα2/Vβ5.1/5.2-TCR that 

recognise the SIINFEKL peptide of OVA protein, allowing for great enrichment of 

these T cells and tight control of the experimental immune response (Hogquist et 

al., 1994). 

 

For both normal and transgenic CD8+ T cells, recognition of the TCR-specific 

antigen in the context of MHC-I is required to activate the T cell and generate an 

effective immune response. To differentiate into effector CTL, naïve CD8+ T cells 

encountering an antigen presenting cell (APC) in the lymph node scan the APC 

surface for antigen-MHC-I complexes. When the specific antigen is recognised, 

formation of a signalling complex including the TCR, MHC-I, CD8 and 

costimulatory molecules activate the T cell (Albert et al., 1998; Bachmann et al., 

1997; Cottalorda et al., 2006; Luescher et al., 1995). This leads to large-scale 

proliferative expansion and activation of the CD8+ T cell population (Tanchot et 

al., 1997). 

 

As the CD8+ T cells replicate they undergo characteristic functional changes that 

alter their activity and tissue homing properties. Immature, antigen inexperienced, 

naïve CD8+ T cells are required to divide at least once to reach effector status, 

both in vitro and in vivo (Oehen and Brduscha-Riem, 1998). During progressive 
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divisions, the lytic machinery of the CD8+ T cell is upregulated and the cells 

increase in cytolytic capacity (Oehen and Brduscha-Riem, 1998; Wolint et al., 

2004). With later cell divisions, CTL granule potency reduces, and the CTL 

develop into a memory phenotype (Oehen and Brduscha-Riem, 1998).  

 

The effector status of CD8+ T cells can be determined by surface markers 

involved in tissue homing and intercellular recognition (Table 1.1). In vivo, naïve 

CD8+ T cells are stereotypically CD44low, CD45RA+, CD62Lhigh, and CD69low 

(Hamann et al., 1997; Oehen and Brduscha-Riem, 1998). After antigenic 

stimulation, naïve CD8+ T cells immediately upregulate CD69 and integrins, and 

begin to divide (Hamann et al., 1997; Oehen and Brduscha-Riem, 1998). It takes 

at least 24 hours for CD8+ T cells to divide and become CTL capable of rapidly 

killing target cells (Boissonnas et al., 2004; Hwang et al., 2006; Oehen and 

Brduscha-Riem, 1998). CTL are characteristically CD44High, CD62LLow,  and 

express reduced levels of TCR as well as increased levels CD25 (Oehen and 

Brduscha-Riem, 1998). Further divisions convert the CTL population into a 

memory phenotype. Two related classes of memory T cells exist – Effector 

memory T cells (TEM), and central memory T cells (TCM). Both classes are 

CD44High, CD11AHigh, CD69Low and CD25Low. TCM are stereotypically CD45RO+, 

CD62L+, CCR7+, and CD27High, while TEM
 are CD62L-, CCR7- and CD27Low/Mid 

(Geginat et al., 2003; Hamann et al., 1997; Masopust et al., 2001; Wherry et al., 

2003).  On antigenic stimulation, CTL, TEM and TCM release granules, but the 

granules of TCM are deficient in lytic proteins, and they do not induce lysis (Wolint 

et al., 2004). Thus, while CTL and TEM can immediately induce death of target 

cells, TCM are primarily involved in ongoing immunological surveillance, as they 

can revert to a CTL phenotype on re-exposure to antigen (Oehen and Brduscha-

Riem, 1998; Wherry et al., 2003). The different phenotypes provide tight 
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immunological surveillance – CTL, TEM and TCM can circulate through the 

periphery and respond to current and future infection, while naïve T cells localise 

in the lymphoid tissues awaiting activation (Wherry et al., 2003). In mouse models, 

6-8 days after initial antigen exposure generates an optimal CTL response with 

minimal proliferation (De Boer et al., 2001).  
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Table 1.1 

CD8+ T Cell Surface Phenotype Determines Effector Status. Naive CD8+ 

T cells reside in lymphoid tissues until they are stimulated by APC to divide 

into CTL which rapidly kill target cells. CTL eventually divide to establish 

transient TEM or long-lived TCM populations. TEM also have lytic capabilities. 

Over a period of time TEM also divide into TCM. TCM are unable to immediately 

kill TC and must first divide and return to a CTL phenotype. 
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1.3.2 Death Mediated by CTL 

 
On encounter of a specific target cell (TC), CTL employ two major pathways to 

mediate the removal of such cells. The primary pathway requires the delivery of 

perforin and granzyme-containing lytic granules to the TC. The second is 

dependent on the ligation of Fas receptors (Fas) on the surface of the TC by Fas-

Ligand (FasL) expressed by CTL. Both mechanisms have the net result of 

induction of apoptosis in the TC, and are discussed in more detail in sections 

1.3.4 and 1.3.5 respectively.  

1.3.3 Formation of the Immunological Synapse 

 
Once a T cell recognises an appropriate TC, TCR-conjugation initiates binding 

and segregation of signalling components. This leads to the formation of two 

distinct supramolecular activation clusters (SMAC) at the CTL:TC interface and 

concurrent increases in affinity at the contact site, which becomes known as the 

immunological synapse (IS) (Bunnell et al., 2001; Monks et al., 1998; 

Stinchcombe et al., 2001b; Stinchcombe et al., 2006). Analogous to CD4+ T cell 

immunological synapses, CTL:TC conjugates form a tight central ring enriched in 

TCR, CD3, Lck, and PKC-θ, comprising the central SMAC (cSMAC) (Monks et al., 

1998; Stinchcombe et al., 2001b; Stinchcombe and Griffiths, 2003; Wiedemann et 

al., 2006). The cSMAC is surrounded by a dense ring of LFA-1 and talin, 

comprising the peripheral SMAC (pSMAC) (Grakoui et al., 1999; Monks et al., 

1998; Stinchcombe et al., 2001b; Stinchcombe and Griffiths, 2003). In CD8+ IS, 

some PKC-θ is present in the pSMAC, but the relevance of this is not known. 

More importantly for effective signalling, CD45 is excluded from the cSMAC, 

which allows for optimal TCR/CD3 stimulation (Stinchcombe et al., 2001b), and 

downstream stimulation of signalling events (Janes et al., 1999; Janes et al., 

2000). While formation of an IS is requisite to successful killing by CTL, large 
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enrichment of TCR/CD3 in the cSMAC is not necessary for the initiation of 

apoptosis in the target, suggesting that signalling and lysis are separately 

regulated in CTL (Faroudi et al., 2003; Stinchcombe et al., 2001b; Wiedemann et 

al., 2006). Thus, CTL stimulation can be separated into two stages: first, 

degranulation by CTL to kill TC; and second, activation of immune signalling (i.e., 

IFN-γ production). As the threshold required to induce cytokine production is 

higher than that of degranulation (Faroudi et al., 2003; Wherry et al., 2003), the 

lytic and stimulatory events of CTL activation may be differentially susceptible to 

the effects of MSD. 

1.3.4 Inducing Cell Death via Granule Exocytosis 

 
In conjunction with IS formation, large scale cytoskeletal remodelling occurs in 

CTL (Figure 1.1). Actin microfilaments are excluded from the cSMAC along with 

talin and terminate at the outer edge of the pSMAC (Kuhn and Poenie, 2002; 

Stinchcombe et al., 2001a; Stinchcombe et al., 2001b; Stinchcombe et al., 2006).  

The microtubule network at this point is comprised of two distinct types of 

microtubules – The first type are long sweeping microtubules, of which the plus 

ends contact the plasma membrane within the pSMAC and terminate peripheral 

from the IS; The second type are short straight microtubules that extend from the 

MTOC and terminate within the IS at sites away from the cSMAC (Kuhn and 

Poenie, 2002; Stinchcombe et al., 2006). Simultaneous with pSMAC/cSMAC 

partitioning, the MTOC and associated golgi-apparatus vectorially translocate 

down the long sweeping microtubules to associate with the IS, localising at or 

near the cSMAC (Geiger et al., 1982; Stinchcombe et al., 2001b). Thus, by the 

time the MTOC associates with the IS, actin filaments and microtubule plus-ends 

have been cleared from the site of lytic granule delivery (Kuhn and Poenie, 2002; 

Stinchcombe et al., 2006). 
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After MTOC polarisation, preformed lytic granules stored in the cell periphery 

traffic down microtubules and cluster around the MTOC (Stinchcombe et al., 

2001b; Stinchcombe et al., 2006). Lytic granule mediated cytolysis can take place 

in the absence of plus-end movements of lytic granules, suggesting a unique 

exocytosis mechanism, likely involving dyneins, in lytic granule delivery (Kuhn and 

Poenie, 2002; Stinchcombe et al., 2006). During killing, the CTL MTOC 

dynamically oscillates across the IS in single CTL:TC conjugates, at times 

contacting the plasma membrane (Kuhn and Poenie, 2002). Lytic granules detach 

from the microtubule network to be delivered to the TC via the golgi apparatus 

(Bossi and Griffiths, 2005; Stinchcombe et al., 2001a). As lytic granules dissociate 

from the microtubule network they release their contents in a static secretory 

domain between the cSMAC and pSMAC, defined visually by a pre-formed 

invagination in the TC membrane (Stinchcombe et al., 2001b; Stinchcombe and 

Griffiths, 2003). The high concentration of lytic proteins found within lytic granules, 

including a range of granzymes (primarily A,B,C) and perforin (cytolysin), induces 

apoptosis in the TC (Konigsberg and Podack, 1986; Macdermott et al., 1986; 

Munger et al., 1986; Peters et al., 1991; Podack and Dennert, 1983; Podack and 

Konigsberg, 1984). After granule delivery, CTL can dissociate from TC and 

recirculate to kill multiple TC in a similar manner (Chuang, 1994; Chuang et al., 

1994). The whole process occurs very rapidly, with the time from initial antigen 

encounter to measurable apoptosis generally occurring in less than 20 minutes in 

vitro and in vivo (Mempel et al., 2006; Stinchcombe et al., 2001b). 

 

The importance of degranulation is demonstrated in both in vitro and in vivo 

processes. In vitro, CTL deficient in perforin, one of the key lytic granule proteins, 

are severely impaired in lytic capacity (Kagi et al., 1994; Lowin et al., 1994). In 

vivo, Tumour-infiltrating lymphocytes (TIL) are rendered unable to polarise and 
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deliver granules to TC and are accordingly unable to elicit killing (Radoja et al., 

2001); and TREG greatly impair TC killing by CTL by inhibiting granule release 

(Mempel et al., 2006). However, the most striking example of the involvement of 

degranulation in CTL-mediated cytolysis is demonstrated by CTL generated from 

Ashen mice. CTL from these mice lack the small Ras-like GTPase Rab27a, which 

is required for lytic granules to dock and release their contents at the CTL:TC 

interface (Stinchcombe et al., 2001a). Because of this deficiency, CTL from Ashen 

mice are rendered incapable of killing certain types of TC (Stinchcombe et al., 

2001a). 
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Involvement of the microtubule network in lytic granule delivery. (1) When a 

CTL (whole cell) recognises a TC (shown in part) an IS is formed and the MTOC 

(red) relocalises and associates with the CTL:TC interface, known as the 

immunological synapse (2). (3) Lytic granules (blue) traffic down microtubules (4) 

and cluster around the MTOC (5) for delivery to and induction of apoptosis in the 

TC (6). 

Figure 1.1 
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1.3.5 Fas-Ligand Mediated Cell-Death 

 

The second pathway CTL employ to kill TC involves the ligation of Fas on the TC 

by Fas Ligand (FasL) expressed on the surface of the CTL. FasL exists in two 

forms: As either membrane bound FasL or soluble FasL (sFasL). While in humans 

sFasL can induce diapedesis and has cytolytic activity (Seino et al., 1998; Tanaka 

et al., 1995), murine sFasL is minimally active, operating solely as a competitive 

inhibitor for Fas binding (Hohlbaum et al., 2000; Tanaka et al., 1995).  

 

The intracellular domain of Fas shares sequence homology with the apoptosis-

inducing death domain of TNF-RI (Itoh and Nagata, 1993; Nagata and Golstein, 

1995). When expressed in non-haematopoietic cells, FasL is constitutively 

expressed and limits autoimmunity at immunologically priviledged sites (Bossi and 

Griffiths, 1999; Bossi et al., 2000). In contrast, FasL is only expressed by CTL on 

CD3/TCR activation (Vignaux et al., 1995). FasL can compensate for deficiencies 

in the perforin/granzyme (i.e., lytic granule) pathway (Kagi et al., 1995; Lowin et 

al., 1994), and is essential in the clearance of some viral infections (Abougergi et 

al., 2005). While only expressed in CTL on activation, control of FasL expression 

in CTL is biphasic. Pre-formed FasL is stored in lytic granules and on CTL 

activation is delivered to the surface in lytic granules (Blott et al., 2001; Bossi and 

Griffiths, 1999; Bossi et al., 2000). FasL synthesised thereafter, however, is 

expressed directly on the CTL surface (He and Ostergaard, 2007). This second 

phase of FasL expression bypasses the granule component and does not require 

the microtubule network (He and Ostergaard, 2007). Thus, to be functional, 

murine FasL needs to be present on the plasma membrane of CTL, but can be 

expressed in the absence of degranulation and compensate for deficiencies in the 

perforin/granzyme pathway (He and Ostergaard, 2007; Lowin et al., 1994). 
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1.3.6 The Known Effects of Microtubule Actives on Lymphocyte 
Function 

 

Early work investigating the role of the microtubule network in CTL function 

primarily employed DSD. While actin microfilaments, and not microtubules, are 

involved in initial TC recognition (Bunnell et al., 2001; Plaut et al., 1973), 

microtubules are involved in stabilising the IS (Bunnell et al., 2001). DSD also 

reduce the TCR turnover rate at the IS, which may affect signalling events (Das et 

al., 2004). Most importantly, destroying the microtubule network prevents lethal hit 

delivery and inhibits cytolysis in vitro (Plaut et al., 1973). The inhibitory effect DSD 

have occurs primarily because they block CTL polarisation by preventing 

relocalisation of the MTOC adjacent to the TC, precluding all the downstream 

events involved in killing (Geiger et al., 1982; Kupfer and Dennert, 1984; Kupfer et 

al., 1985).  

 

Studies into the effects of MSD on lymphocytes have concentrated on the use of 

paclitaxel. Paclitaxel induces G2/M-phase block in proliferating lymphocytes in 

vitro (Brown et al., 1985). Paclitaxel also inhibits allogeneic activation of cells in 

the mixed lymphocyte reaction (MLR), but only when responding cells, not 

stimulators, are treated with paclitaxel (Roy et al., 1988). In human NK T cells, 

paclitaxel inhibits TC death without killing the effector cells (Markasz et al., 2007). 

Two separate studies have analysed paclitaxel in human CTL, both showing that 

the ability of CTL to kill multiple targets is inhibited at low micromolar 

concentrations in vitro (Chuang et al., 1994; Markasz et al., 2008). However, in 

the murine system micromolar concentrations of paclitaxel induce microtubule 

bundling in interphase CTL, but do not inhibit in vitro cytolysis by CTL (Brown et 

al., 1985; Knox et al., 1993). Further, low-dose paclitaxel can partially abrogate 

the inhibitory effects of DSD on killing (Kupfer et al., 1983; Wolberg et al., 1984).  
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The immunological effects of peloruside on lymphocytes are less widely explored. 

Peloruside is known to inhibit IL-2 and IFN-γ production by killing splenocytes 

stimulated with T cell mitogens, as well as in the MLR (Crume et al., 2007; Hood 

et al., 2001; Miller et al., 2004). Aside from this, little is known about the effects 

the compound has on immediate processes, such as CTL-mediated cytolysis. 

 

In contrast to human CTL, studies into the effects of paclitaxel did not 

demonstrate effects on murine CTL function (Knox et al., 1993). However, the 

initial study by Knox et al. only investigated the effects at high CTL:TC ratios 

(Knox et al., 1993). Due to the known importance of dynamic instability in other 

cell transport mechanisms and the involvement of the cytoskeleton in lytic granule 

delivery, it is possible that under more limited circumstances such as at lower 

CTL:TC ratios, or in an in vivo setting, effects of MSD may become more 

apparent. Further, because the mechanisms of microtubule stabilisation by 

paclitaxel and peloruside differ, these two agents may differentially affect 

degranulation and cell death. Thus, there is reason to believe paclitaxel and 

peloruside may differently or similarly affect CTL function in vitro and MSD may 

alter killing processes in vivo. Determining how these agents affect CTL function 

will identify immediate effects of MSD therapy on the immune system and better 

clarify the involvement of microtubules in the normal immune response.
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2 Methods 

2.1 Mice 

BALB/c mice were from breeders at VUW. C57BL/6 mice were purchased from 

the Otago School of Medicine Biomedical Research Unit, Wellington, New 

Zealand. OT-I and OT-I/ptp-rca mice were kindly provided by Prof. Franca 

Ronchese at the Malaghan Institute of Medical Research (MIMR). OT-I mice 

possess an enriched population of T cells expressing Vα2/Vβ5.1/5.2-TCR specific for 

the SIINFEKL peptide of OVA (Hogquist et al., 1994). T cells from OT-I/ptp-rca 

mice are SIINFEKL-peptide specific and CD45.1+/CD45.2+, whereas C57BL/6 T 

cells only express CD45.2. Thus, populations of OT-I/ptp-rca T cells can be 

tracked in C57BL/6 mice by measuring CD45.1 expression. Mice used for in vivo 

work were housed in a 12-hour light/dark cycle and experiments started early in 

the light cycle. Mice were euthanized by CO2 asphyxiation and tissues removed 

by blunt dissection with forceps and scissors sterilised in 100% ethanol. All mouse 

work was done in accordance with the guidelines of the Victoria University of 

Wellington Animal Ethics Committee.  

2.2 Reagents 

 

Paclitaxel purified from Taxus yannanensis, colchicine and LPS (from E. coli) 

were purchased from Sigma Chemical Company (St. Louis, MO, USA). Taxol® 

(Taxol; in Cremophor; Bristol Myers Squibb, New York City, NY, USA) was 

purchased from Capital Coast Chemists (Wellington, New Zealand). Cremophor 

EL® was purchased from Sigma-Aldrich-Fluka (Taufkirchen, Germany). 

Peloruside was provided by Dr. Peter Northcote (Victoria University of Wellington, 

School of Chemical and Physical Sciences). Paclitaxel and peloruside stocks 
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were dissolved in ethanol at 1 mM and stored at -80°C. Colchicine was 

dissolved in ethanol at 1 mM and stored at room temperature protected from light. 

2.3 Cell Culture 

2.3.1 BMMØ Culture 

BMMØ culture has been described previously (Crume et al., 2007). Femurs and 

tibias were excised from euthanised C57BL/6 or BALB/c mice and 5 mL 

Dulbecco‟s phosphate buffered saline (dPBS; Invitrogen, Auckland, New Zealand) 

was flushed through each bone. The elute was collected into a 50 mL polystyrene 

tube (Falcon, Franklin Lakes, NJ, USA). Clumps of marrow were disrupted and 

red blood cells were lysed with 2 mL Red Blood Cell Lysing Buffer (Sigma). Cells 

were seeded in 10 or 30 mL volumes in T-25 or T-75 tissue culture flasks 

(Greiner, Monroe, NC, USA) respectively at 4x105-1x106/mL in complete T cell 

medium (CTCM; see Appendix A) overnight. The following day GM-CSF and IL-3 

(from supernatants from the GM-KLON and WEHI-3 cell lines respectively) were 

added and the non-adherent population cultured for a further 7-9 days. Cells were 

fed on day 4 or day 5 with the original volume of CTCM and cytokines. After a 

total of 8-10 days culture the non-adherent fraction was removed, the plates 

washed briefly with dPBS and vigorously blasted with ice-cold dPBS to remove 

the adherent population. These cells were deemed „BMMØ‟. BMMØ were washed 

once in handling medium (Appendix A) prior to use. In all experiments BMMØ 

were checked visually for large, adherent granular cells.  Cultures were typically 

80-95% CD11b+, F4/80high, I-Ab+, GR-1-PElow/mid as determined by flow cytometry. 

2.3.2 LPS Stimulation of BMMØ 

 

Following culture, 5x104 BMMØ were seeded at 2.5x105/mL in 96-well flat-

bottomed plates (Falcon). Unless otherwise stated, BMMØ were stimulated 
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overnight with 40 U/mL IFN-γ. After 12-18 hours, 100 µL of the supernatant was 

replaced with CTCM or CTCM+LPS with or without paclitaxel or ethanol (as 

vehicle control). Final concentrations are stated in figures. For TNF-α analysis, 

100 µL supernatant from each well was removed and frozen at -20°C for TNF-α 

ELISA. The cells were incubated for a final total of 72 hours and subjected to the 

Greiss Reaction and the MTT Assay (described below). 

2.3.3 BMDC Culture 

BMDC were cultured from C57BL/6 mice as previously described (Yang et al., 

2006). Femurs and tibias were flushed with 5mL Iscove‟s modified Dulbecco‟s 

medium (IMDM; Invitrogen), the cells washed once in IMDM and cultured in 

cIMDM (Appendix A) in 5 mL aliquots at 4x105/mL in 6-well tissue culture plates 

(Invitrogen) in the presence of 20 ng/mL recombinant murine GM-CSF and 20 

ng/mL recombinant murine IL-4. On days 3 and 5 of culture 2 mL of the 

supernatant was carefully replaced with 2 mL cIMDM containing the original 

volume of cytokines. On day 6 BMDC were matured with 100 ng/mL LPS for 16-

20 hours before use in further experiments. The majority of LPS-matured BMDC 

were typically CD11bhigh, I-Ab+ and CD11cMid. Cultures were also checked visually 

for typical BMDC morphology (medium to large cells extending whispy dendrites). 

2.3.4 CTL Culture 

For in vitro CTL culture, OT-I or OT-I-ptprca mice were euthanized and inguinal, 

brachial, axillary, cervical and mesenteric lymph nodes (LN) were excised. Cells 

were separated by disrupting the LN capsules and passing through 70 µm pore 

size strainers (Falcon). LN cells were washed once in IMDM and combined with 

LPS-matured BMDC that had been incubated with 0.1 µM SIINFEKL peptide (JPT 

Peptide Technologies GmbH, Berlin, Germany) for 4 hours. Cells were incubated 

at final concentrations of 1.25x104/mL (BMDC) and 1x105 /mL (LN cells) in 5 mL 
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aliquots of cIMDM in 6-well plates. After 4 days the non-adherent fraction was 

removed, washed once and cultured at 2.5x105/mL in cIMDM containing 100U/mL 

recombinant human IL-2 in T-75 tissue culture flasks. IL-2 was replaced after 24 

hours of culture and CTL were used the following day. CTL were generally >99% 

Vα2/Vβ5.1/5.2-TCR-specific, of which 98-99% were CD8+, 98% CD44high and >90% 

CD62Llow as determined by flow cytometry. Visually, CTL were larger and less 

spherical than naïve T cells. 

2.3.5 EL-4 Cell line maintenance 

Seeder stocks of the murine T-cell hybridoma/thymoma EL-4 were grown from a 

stock from the MIMR and stored in Freezing Medium (Appendix A) in liquid 

nitrogen. Cells were maintained in T-25 and T-75 tissue culture flasks at a density 

of 2x105-2x106/mL for a maximum of 20 passages in cIMDM.  

2.4 MTT Assay 

The MTT assay was used to determine metabolic activity of cell cultures as 

described previously (Crume et al., 2007). In experiments with BMMØ, after the 

removal of supernatant for the Greiss Reaction, 50 µL CTCM and 20 µL sterile 

filtered 5 mg/mL (3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide) 

(MTT; Sigma) in dPBS was added to each well. For JAM assay controls (refer to 

page 38), after a 4 hour pre-treatment with 1 µM paclitaxel, 1 µM peloruside or 

0.1% ethanol as vehicle control, CTL (1x105/well) were washed once and 

incubated in 100 µL fresh medium in 96-well flat bottomed plates for 4 hours. 

When JAM plates were harvested, 20 µL MTT was added to each well of the MTT 

plate. For degranulation assay controls, after pre-treatment CTL were overlayed 

with 100 µL cIMDM and incubated until the end of the degranulation assay (4 or 6 

hours). While degranulation plates were being stained MTT plates were spun for 

60 seconds at 50g to settle the cells to the bottom of wells, 100 µL supernatant 
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carefully removed and 20 µL MTT was added to each well. In all cases plates 

were incubated for 2-2.5 hours with MTT and the reaction was stopped with 100 

µL 10% weight/volume sodium dodecyl sulfate (Sigma) in 0.01N HCl. Plates were 

incubated overnight to allow the crystals to solubilise and read on a Versamax 

plate reader (Molecular Devices; Sunnyvale, CA, USA) at 570 nanometers the 

following day.  

2.5 ELISA 

Enzyme-linked Immunosorbant Assays (ELISA) were run as per the 

manufacturer‟s recommendations and unless stated ELISA reagents were from 

BD Bioscience. Washes were in 0.05% Tween-20 (Sigma) in phosphate buffered 

saline (PBS; Appendix A). Capture antibodies used were Rat-anti-mouse-TNF-α 

or Rat-anti-mouse-IFN-γ. Capture was done in 96-well ELISA plates (Greiner) 

overnight at 4°C by diluting the capture antibody in sodium phosphate buffer 

pH=6.0 for TNF-α and pH=9.0 for IFN-γ. All subsequent steps were done at room 

temperature. Plates were blocked with blocking buffer (5% foetal calf serum (FCS; 

Invitrogen) in PBS) for 2 hours. After four washes; standards and samples (either 

neat or diluted in blocking buffer) were added to wells for 2 hours. Plates were 

washed four more times and incubated with a biotinylated detection antibody for 

TNF-α or IFN-γ; incubated for 1 hour then washed six more times. Plates were 

then incubated with streptavidin-horse radish peroxidase for 1 hour and washed 8 

times. TMB reagents “A” and “B” were combined and added to each well. After 

sufficient colour development the reaction was stopped by the addition of 100 µL 

0.18 M sulfuric acid. Plates were read at 450 nanometers and cytokine 

concentrations were calculated by comparing sample absorbances to the 

standards. 
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2.6 Greiss Reaction 

The Greiss Reaction was used to measure NO production as described previously 

(Crume et al., 2007). NO gas is unstable and breaks down rapidly to form nitrite 

(NO2
-) and nitrate which accumulate in culture (Stuehr and Marletta, 1985). By 

measuring NO2
-, the Greiss reaction provides a relative measure of NO 

production. 72 hours after BMMØ were activated with LPS 50 µL of culture 

supernatants were removed to wells of a 96-well flat-bottomed ELISA plate. 

Greiss reagents A and B (Appendix A) were combined in equal volumes and 50 

µL added to each sample well; each plate contained a row of titrated standards. 

Plates were read at 570 nanometers in a plate reader and NO production 

calculated by comparing to the standard curve. 

2.7 JAM assay 

The Just Another Method (JAM) assay has been described previously (Matzinger, 

1991; Usharauli et al., 2006). When radioactively-labelled TC are induced to 

apoptose by effector cells, TC DNA is cleaved to a size that passes through a 

filtermat while intact DNA is trapped (Matzinger, 1991). This results in a reduction 

in radioactivity in wells with specific killing. OT-I CTL were used as effector cells 

and EL-4 cells were TC. TC split the day before were incubated overnight in 6-well 

plates in cIMDM containing 2 µCi/mL [methyl-3H]Thymidine (GE Healthcare, 

Auckland, New Zealand). The following day TC were washed twice and incubated 

for 60-90 minutes at 5x104/mL in cIMDM with (Ag+) or without (Ag-) 10 ng/mL 

SIINFEKL peptide. 5x103 Ag+ TC or 5x103 Ag- TC were combined with CTL 

titrated out in half-logs to give final CTL:TC ratios of 50:1-0.4:1 in a volume of 200 

µL in 96-well round bottomed plates. In some assays CTL were pre-treated for 4 

hours at 1x106/mL with 1 µM paclitaxel, 1 µM peloruside or 0.1% ethanol (as 

vehicle control) in 5 mL polystyrene tubes (Falcon). Following pre-treatment CTL 
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were washed and resuspended to the specified ratios in drug-free medium. 

After combining CTL and TC, plates were spun for 60 seconds at 50g to promote 

CTL:TC conjugation. Plates were incubated at 37°C for 4-4.5 hours and 

immediately harvested onto 96-well plate glass fibre filters (Wallac, Perkin Elmer, 

Boston, USA) in an automated Mach-III-FM cell harvester (Tomtec, Hamden, CT, 

USA). Radioactivity was measured in scintillations per minute (cpm) determined 

by liquid scintillation counting in Betaplate Scint (Wallac). Specific Lysis was 

calculated as: Specific Lysis = 100 - % Specific Survival; % Specific Survival was 

normalised to Ag+ TC without effectors as: % Specific Survival = (x/µy) * 100; 

Where x = cpm of wells with CTL and µy = mean cpm wells without effectors. 

Spontaneous lysis was controlled for by harvesting a TC-only plate at the start 

and comparing cpm to control wells at the end of the assay. Spontaneous lysis 

was generally 5-30%.  

2.8 Degranulation assay 

CTL (1x105/well) were pre-treated for 4 hours with peloruside, paclitaxel, 

colchicine or ethanol in 100 µL at concentrations specified in the text. At the start 

of the assay, wells were topped up with an equal volume of media containing 

CD107a-Fitc (final concentration 2.5 µg/mL) or non-specific IgG2α-Fitc antibody 

with or without SIINFEKL peptide to a final concentration of 25 nM, thus halving 

the drug concentration for the remainder of the assay. When a pre-treatment step 

was not used the final concentration of colchicine relates to the final 200 µL 

volume. After 2, 4 or 6 hours as stated in the text, plates were spun down, 100 µL 

of the supernatant was removed from each well and frozen at -20°C for IFN-γ 

ELISA. The cells were then stained for CD8 and subjected to flow cytometry 

procedures. Live gates were set with control antibodies and IFN-γ production was 
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determined by combining results from all peptide-treated wells. The antibody 

used did not affect IFN-γ production at any timepoint (data not shown). 

2.9 Confocal Microscopy 

2.9.1 Coverslip preparation for CTL 

Thirteen millimetre round glass coverslips were stored in 70% ethanol and on the 

day before use sterilised by flaming. When dry, coverslips were put into 6-well 

plates, and coated with 200 µL 10 µg/mL poly-D/L-lysine hydrobromide (PDL; 

Sigma). PDL was removed, coverslips were washed twice in double-distilled 

water, and dried under sterile conditions. Coverslips were stored under sterile 

conditions at 4°C until use.  

2.9.2 Staining of CTL 

CTL were incubated with drug as specified in figure legends. After 4 hours, 1x105 

cells (100 µL) were aliquoted onto coverslips and allowed to adhere for 30 

minutes. Coverslips were transferred directly into ice-cold 1:1 Acetone:Methanol 

and fixed for 7 minutes at room temperature. Coverslips were washed twice for 5 

minutes in PBS and permeabilised in permeabilisation buffer (0.25% Triton-X 100 

(Sigma) in 1% bovine serum albumin (Invitrogen) in PBS) for 30 minutes. 

Coverslips were then incubated overnight at 4°C with 30 µL 1 µg/mL polyclonal 

rabbit anti-alpha-tubulin-IgG (Abcam; Sapphire Biosciences, Redfern, Australia) in 

permeabilisiation buffer. The following day coverslips were washed three times for 

5 minutes in PBS and incubated for 1 hour at room temperature in the dark with 

30 µL 1 µg/mL Alexafluor-488 goat-anti-rabbit-IgG (Invitrogen). Coverslips were 

washed three times for 5 minutes in PBS, overlayed with 10 µL Prolong Gold® 

antifade with DAPI (Invitrogen) and sealed with nail polish. Microtubules and 

nuclei were visualised with a 60 x oil immersion objective lens using an Olympus 
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FluoView FV1000 confocal laser scanning biological microscope (inverted 

model IX81) using sequential frame acquisition. Images were acquired using 

Olympus FV10-ASW software. 

2.10  In Vivo Assay of Cell Death 

2.10.1 Immunisation 

 

The in vivo VITAL assay was adapted from Hermans et al. (Hermans et al., 2004). 

BMDC were incubated for 2 hours at 1x106/mL in cIMDM with or without 1 µM 

SIINFEKL peptide, washed once and resuspended in IMDM at 1x106/mL. 1x105 

Ag+-BMDC or 1x105 Ag--BMDC were injected subcutaneously into the right flank 

of C57BL/6 mice for immunised and unimmunised groups respectively. For 

adoptive transfer experiments, 1x106 LN cells from naïve OT-I-ptprca mice were 

injected into congenic C57BL/6 recipients via the lateral tail vein 1 day prior to 

immunisation. 

2.10.2 CFSE & CTO labelling of splenocytes 

 

Splenocytes from naïve syngenic C57BL/6 mice were harvested and flushed 

through 70 µm pore size strainers. Red blood cells were lysed and cells 

resuspended at 1x106/mL in cIMDM and incubated for at least 60 minutes with or 

without 1 µM SIINFEKL-peptide for Ag+ TC and Ag- TC respectively. Ag- TC were 

washed once in IMDM and incubated in cIMDM with 10 µM Cell Tracker Orange® 

(CTO; Invitrogen) for 15 minutes at 2x107/mL, and then incubated in medium 

alone for 15 minutes. Ag+ TC were washed in dPBS and incubated at 2x107/mL in 

dPBS with 200 nM 5,6-carboxyfluorescein succinimidyl ester (CFSE; Sigma) for 8 

minutes at room temperature. CFSE labelling was quenched with 2.5 volumes of 

FCS. Both Ag+ TC and Ag- TC were washed twice in IMDM, resuspended at 

4x107/mL in IMDM and combined for adoptive transfer. 
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2.10.3 The in vivo VITAL assay 

 

 One week after immunisation mice were given a single intraperitoneal dose of 20 

mg/kg or 30 mg/kg Taxol or an equivalent dose Cremophor EL® (as vehicle 

control). Groups were sib- and weight matched; drug doses were based on 

average weight to the nearest 2.5g in a given experiment. The drug dose was 

based on the work of Innocenti et al., suggesting that intraperitoneal 

administration of 18-36 mg/kg Taxol results in plasma concentrations of >1 µM for 

the first few hours after injection (Innocenti et al., 1995), and thus was likely to 

provide comparable concentrations to those used in in vitro CTL work (chapter 4).   

 

Approximately 2 hours after drug administration 200 µL (8x106) TC were injected 

into each mouse via the lateral tail vein. The TC contained an equal mix of CFSE-

labelled SIINFEKL+ (Ag+) TC and CTO-labelled control (Ag-) TC prepared as 

outlined in the previous section. After 8 or 10 hours as specified in the text mice 

were euthanized and splenocytes stained for CD8 or CD8+CD45.1 and subjected 

to flow cytometric analysis. Total CD8+ or CD8+/CD45.1+ T cell number was 

calculated by multiplying the proportion of CD8+ or CD8+/CD45.1+ splenocytes 

determined from flow cytometry data by the total number of splenocytes 

determined by the Trypan Blue Exclusion test. One control mouse in adoptive 

transfer experiments was excluded as its CD45.1+/CD8+ T cell numbers and killing 

profile matched that of unimmunised mice. Mice with <400 events in the Ag- gate 

were also excluded from analyses. Specific Lysis was determined by subtracting 

Specific Survival from 100%. Specific Survival was calculated as the proportion of 

Ag+/Ag- splenocytes in immunised mice normalised to unimmunised mice with the 

same drug treatment multiplied by 100. The final calculation is as follows: 

 

SLA=100-(Ag+
A/Ag-

A)/(µDU)*100 
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Where SLA= Specific Lysis in mouse A;  

µDU= mean Ag+/Ag- of unimmunised mice receiving the same drug treatment. 

2.11  General Flow Cytometry  

Staining for flow cytometry was done in eppendorfs or 96-well round bottomed 

plates (Falcon). Samples were washed twice in FACS buffer (Appendix A) and Fc-

Receptors blocked with 1 µg/mL 24G2 antibody for 5 minutes prior to the addition 

of primary antibodies. Samples were incubated with primary antibodies or relevant 

isotype controls at 4°C for 30 minutes (Appendix B contains sources of all 

antibodies). Samples were washed twice in FACS buffer and resuspended for flow 

cytometry. When a secondary antibody (Streptavidin-Cyc) was used, cells were 

incubated with the antibody at 4°C for 10 minutes, washed twice and resuspended 

for flow cytometry. In some assays samples were stored overnight at 4°C prior to 

collection. Samples were collected with a FACSScan, FACScalibur or FACSort 

flow cytometer mounted with Cellquestpro (Becton Dickinson, Franklin Lakes, NJ, 

USA). Background fluorescence was set with isotype controls, and compensation 

was done with single antibody stains. FLOWJO 8.8.4 (Tree Star, Ashland, OR, 

USA) or Cellquestpro were used to graph data. 

 

2.12  Trypan Blue Exclusion Test 

 

Viable cell number was determined by mixing a known volume of cells with 0.4% 

trypan blue (Sigma). 2 to 4 fields were counted and multiplied by the dilution factor 

field volume, and total volume to determine overall cell number. In in vivo assays, 

total numbers of CD8+ and CD8+/CD45.1+ CTL were back-calculated after 

determining relative proportions of total live cells. 
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2.13  Statistics 

Data were graphed in Graphpadprism 4.0 (Graphpad Software Inc., San Diego, 

CA, USA). Student‟s t-test, One-way ANOVA with Bonferroni correction, Two-way 

ANOVA with Bonferroni correction and linear regression analysis were performed 

in Graphpadprism. Student‟s t-test was used in adoptive transfer experiments due 

to low group numbers. In JAM assays, after calculating mean % specific lysis, 

group means at different CTL:TC ratios were ranked and compared using 

Friedman‟s mean rank sum test against a table of Chi(Χ)-square statistics by the 

formula: 

 

Χ2=12*S/(n*g*(g+1)) 

Where n=number of means in samples; g=number of drug treatments; and  

S=(RanksumA)2+(RanksumB)2+(RanksumC)2-(Sumranksum)2 

Where RanksumA=The total of the ranked means for drug A; and 

Sumranksum=The sum of all the ranked sums for all the groups 

 

Unless otherwise stated, bar graphs show group mean plus standard error of the 

mean (SEM). 
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3 Interactions of Lipopolysaccharide and Paclitaxel on 
Proinflammatory Processes in Macrophages 

3.1 Introduction 

 

Paclitaxel stimulates proinflammatory pathways, especially those leading to TNF-

α and NO production in BMMØ, by binding to and activating TLR-4 in a manner 

similar to LPS (Bogdan and Ding, 1992; Byrd-Leifer C.A. et al., 2001; Crume et 

al., 2007; Ding et al., 1990b; Kawasaki et al., 2000; Kirikae et al., 1996; Manthey 

et al., 1994; Manthey et al., 1993). Figure 3.1A illustrates the ability of paclitaxel to 

induce TNF-α production by IFN-γ-primed BMMØ. In contrast, when IFN-γ-primed 

BMMØ are activated with LPS, production is dose-dependently inhibited by both 

paclitaxel (Figure 3.1B; (Crume et al., 2007)) and peloruside (Crume et al., 2007). 

To better understand the contradictory effects of paclitaxel on TNF-α production, 

we investigated the relationship between LPS concentration and paclitaxel-

mediated inhibition to determine the conditions that induce the optimal inhibitory 

response.  
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3.2 Results 

3.2.1 Paclitaxel inhibits IFN-γ-primed BMMØ responses to LPS in a 
broad time window 

 

The first set of experiments aimed to determine if IFN-γ priming was essential to 

the observed inhibitory effects of paclitaxel on LPS-stimulated BMMØ. Previous 

studies have shown that BMMØ primed with IFN-γ are far more responsive to LPS 

than unprimed MØ (Gifford and Lohmann-Matthes, 1987; Yamamoto et al., 1994). 

As shown in Figure 3.2, when primed, BMMØ respond strongly to lower levels of 

LPS than unprimed MØ. IFN-γ renders cells increasingly sensitive to LPS and this 

augmentation reaches its maximum between 8 and 12 hours (Chung and 

Benveniste, 1990; Ma et al., 1996). Thus, we wished to determine if the inhibition 

of LPS-stimulated TNF-α production by MSD was due to a delay or defect in the 

IFN-γ priming response. By priming BMMØ for various times after the previous 

period of 12 hours we saw no shift in inhibition by paclitaxel (Figure 3.3A&B). This 

suggests that paclitaxel does not defer augmentation by IFN-γ and that the 

interaction of paclitaxel and IFN-γ is consistent after 12 hours priming.  

3.2.2 Altered Production Kinetics do not Explain Inhibition of TNF-
α production 

 

One possible explanation for paclitaxel-mediated inhibition of TNF-α production by 

LPS-stimulated BMMØ is that the kinetics of TNF-α production are altered. TNF-α 

feeds back on TNF-RI and TNF-RII expressed by MØ which can induce NO and 

further augment TNF-α production (Miller et al., 1996; Vila-del Sol et al., 2006). 

Moreover, bioactive TNF-α bound by TNF receptors can be taken up and 

removed from culture by MØ (Fujihara et al., 1994; Virca et al., 1989).  Thus, we 

postulated MSD may lead to an early peak in extracellular TNF-α and subsequent 

reduction in detectable levels by 8 hours. However, while TNF-α production by 

LPS-stimulated, IFN-γ-primed BMMØ increases between 2 and 8 hours (Figure 
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3.4A), the addition of paclitaxel does not alter the time of peak production 

(Figure 3.4B). Instead, paclitaxel significantly inhibited production of TNF-α at 6 

and 8 hours. This finding suggests that paclitaxel does not alter the kinetics of 

LPS-induced TNF-α production by promoting early enhanced production.  

3.2.3 Paclitaxel inhibits TNF-α and NO production in a manner 
dependent on LPS-responsiveness 

 

Work by other groups suggests that TNF-α production can decrease above an 

optimal concentration of LPS (Chung and Benveniste, 1990; Kastenbauer and 

Ziegler-Heitbrock, 1999; Kikkawa et al., 1998; Takasuka et al., 1991). Further, 

pre-treatment of MØ with low-dose LPS can exacerbate this decrease, inhibiting 

and even ablating TNF-α production on restimulation with LPS (Hirohashi and 

Morrison, 1996; Nakano et al., 1999; Shnyra et al., 1998; Zhang and Morrison, 

1993a, b). Thus, we sought to determine if there was a concentration-dependent 

interaction for TNF-α with LPS, and whether altering this LPS concentration 

affected the inhibition seen by paclitaxel. BMMØ primed with IFN-γ for 18 hours 

were treated with 10 µM paclitaxel, an equivalent concentration of ethanol 

(vehicle) or medium alone and activated with concentrations of LPS ranging from 

0.5 ng/mL to 128 ng/mL for 8 hours. As shown in Figure 3.5A, TNF-α produced by 

LPS-stimulated BMMØ peaked at 4 ng/mL and above this LPS concentration, 

TNF-α production decreased to a basal level. As shown by other groups, it is also 

observed that the presence of ethanol affected TNF-α production on LPS 

activation (Feng et al., 2002; Fernandez-Lizarbe et al., 2008; Kolls et al., 1995; 

Shi et al., 2002; Stoltz et al., 2000; Xie et al., 1995). While inhibition by ethanol 

was not always this pronounced (c.f. Figure 3.3A), peak TNF-α production by 

LPS-stimulated BMMØ occurred at the same concentration as medium alone (4 

ng/mL), and also decreased to basal levels above 4 ng/mL. Paclitaxel inhibited 

TNF-α production compared with vehicle control at concentrations of LPS where 
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TNF-α production was highest (i.e., 1-8 ng/mL). Above 8 ng/mL LPS and below 

1 ng/mL, no inhibition of TNF-α could be seen by paclitaxel against vehicle or 

medium alone. From these studies we conclude that the greatest level of inhibition 

of TNF-α production by paclitaxel is found at optimal LPS responsive levels. 

 

Additionally, because TNF-α production peaked similarly (<16 ng/mL LPS) in all 

three conditions, this experiment supports our previous finding that paclitaxel does 

not shift LPS-responsivity of BMMØ. That is, paclitaxel did not alter TNF-α 

production such that peak production occurred at a lower or a higher 

concentration of LPS, but paclitaxel generally depressed TNF-α production at 

optimal LPS responsive levels. Therefore we conclude that a shift in peak LPS 

responsiveness by paclitaxel does not explain inhibition by MSD.  

 

3.2.4 NO Production is inhibited by Paclitaxel at LPS 
Concentrations above which TNF-α Inhibition is seen 

 

iNOS is the main enzyme responsible for the production of inducible NO and it is 

expressed by LPS-activated IFN-γ-primed BMMØ (Santos et al., 2006). IFN-γ also 

operates in synergy with TNF-α to produce large amounts of NO (Geller et al., 

1993; Vila-del Sol et al., 2006). It has therefore been suggested that inhibiting 

TNF-α production may cause a subsequent decrease in NO production by LPS-

stimulated BMMØ (Crume et al., 2007).  

 

After removal of a portion of the supernatant at 8 hours to measure TNF-α, cells 

were incubated for a further 64 hours and assayed for NO production (Figure 

3.5B). Unlike TNF-α, NO breaks down to form nitrate and NO2
- which cannot be 

removed by BMMØ and accumulate over the course of the assay (Stuehr and 

Marletta, 1985; Stuehr and Marletta, 1987). Thus by measuring NO2
- the total 
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amount of NO produced can be determined at later times than TNF-α. In the 

presence of 10 µM paclitaxel, IFN-γ-primed BMMØ NO production was 

significantly inhibited at 4 ng/mL LPS and above (p<0.05, Two-way ANOVA with 

Bonferroni correction). By comparing TNF-α and NO production from these cells 

(Figure 3.5A & Figure 3.5B) there was overlap in inhibition where control TNF-α 

production was optimal, but at concentrations above 16 ng/mL, where TNF-α 

production reduced to basal levels, NO production became increasingly inhibited. 

When assessed together these findings may suggest that NO production is 

inhibited by paclitaxel in a manner independent of generation by TNF-α. 

3.2.5 Myeloid-derived cells show increased metabolism in the 
presence of paclitaxel 

 

One previously noted phenomenon is the specific increase in metabolic activity of 

BMMØ treated with high dose (1-10 µM) paclitaxel (Crume et al., 2007). Figure 

3.6A shows a 10 µM dose of paclitaxel pronouncedly increases metabolic activity 

of BMMØ (p<0.01 by Student‟s t-test; paclitaxel vs. vehicle). In like fashion, LPS-

matured BMDC also show enhanced metabolism in the presence of paclitaxel 

(Figure 3.6B; p<0.01 by Student‟s t-test; paclitaxel vs. vehicle). Figure 3.6C 

demonstrates that with increasing concentrations of LPS BMMØ metabolic activity 

increases. It is also apparent that a 10 µM dose of paclitaxel does not inhibit 

metabolic activity of BMMØ at any concentration of LPS, nor does the addition of 

LPS to paclitaxel treated BMMØ additively increase MTT reduction by BMMØ. 

That is, BMMØ are similarly metabolically active regardless of the LPS 

concentration. Previously it has been demonstrated that paclitaxel induces a dose 

dependent increase in metabolism in LPS-activated BMMØ (Crume et al., 2007). 

Thus, it is possible that at 10 µM, paclitaxel induces maximal metabolic activity by 

BMMØ, and the addition of LPS cannot increase MTT reduction further. Finally, it 

also follows that at lower concentrations, such as those used by Crume et al. 
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(Crume et al., 2007), paclitaxel and LPS may show additive effects on metabolic 

activity. 
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Paclitaxel exhibits dichotomous effects on BMMØ TNF-α production. (A) 

IFN-γ-primed BMMØ (5x104/well) were cultured with 10 µM paclitaxel or an 

equivalent concentration of ethanol (Vehicle). TNF-α production was measured in 

the supernatant by ELISA after 2 hours. *p<0.001; Student‟s t-test. (B) IFN-γ-

primed BMMØ (5x104/well) were activated with 2 ng/mL LPS in the presence of 

paclitaxel or an equivalent concentration of ethanol (Vehicle). After 8 hours the 

supernatant was assayed for TNF-α production by ELISA. Control TNF-α 

production was 17.453 ± 1.4125 ng/mL in this experiment. *p<0.001; One-way 

ANOVA with Bonferroni correction; Vehicle vs. Paclitaxel. Data points represent 

mean+SEM of duplicate wells from one of two similar experiments. 
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IFN-γ increases sensitivity of BMMØ to LPS. IFN-γ-primed (+ IFN-γ) or 

unprimed (- IFN-γ) BMMØ (5x104/well) were activated with LPS. (A) After 8 hours 

the supernatant was assayed by ELISA for TNF-α production. *p<0.01; Student‟s 

t-test vs. blank. (B) After 72 hours supernatants were assayed for nitric oxide 

production by the Greiss reaction. *p<0.05; **p<0.01; Two-way ANOVA with 

Bonferroni Correction, IFN-γ-primed vs unprimed. Data points and bars show 

mean+SEM of duplicate wells. 

 

Figure 3.2A Figure 3.2B 
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Duration of IFN-γ priming does not alter inhibition by paclitaxel. BMMØ 

(5x104/well) were primed with IFN-γ for various times prior to activation with 2 

ng/mL LPS in the presence or absence of 10 µM paclitaxel or an equivalent 

concentration of ethanol (Vehicle). (A) Bars represent mean+SEM of duplicate 

wells. (B) Bars represent mean+SEM of duplicate wells combined from two 

experiments. *p<0.05; **p<0.01; ***p<0.001; Paclitaxel vs. Vehicle, Two-way 

ANOVA with Bonferroni correction. 

Figure 3.3A Figure 3.3B 
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Paclitaxel does not cause an early shift in TNF-α production. IFN-γ-primed 

BMMØ (5x104/well) were activated with 2 ng/mL LPS in the presence of 10 µM 

paclitaxel or an equivalent concentration of ethanol (Vehicle). After 8 hours the 

supernatant was assayed by TNF-α ELISA. Data points represent mean+SEM of 

duplicate wells from one of three similar experiments (n=2) (A), all replicates were 

combined for values in (B) (n=6). *p<0.01; **p<0.001; Two-way ANOVA with 

Bonferroni correction.  

Figure 3.4B Figure 3.4A 
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Paclitaxel inhibits TNF-α and NO production by BMMØ at optimal responsive 

levels. IFN-γ-primed BMMØ (5x104/well) were activated with LPS in the presence 

or absence of 10 µM paclitaxel or an equivalent concentration of ethanol 

(Vehicle). After 8 hours the supernatant was assayed for TNF-α by ELISA (A). 

Cultures were incubated for a further 64 hours and assayed by the Greiss reaction 

for NO production (B). (A) Data points represent mean+SEM of duplicate wells 

from one of two similar experiments (n=2). (B) Data points represent mean+SEM 

of duplicate wells combined from two experiments (n=4 wells). LPS 

concentrations at which inhibition was seen were assessed for significance. 

*p<0.05;**p<0.01;***p<0.001; Paclitaxel vs. Vehicle by Two-way ANOVA with 

Bonferroni correction.  
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Figure 3.5B 
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Paclitaxel enhances metabolic activity of Bone-Marrow Derived Cells. IFN-γ-

primed BMMØ (5x104/well) (A) or LPS-matured BMDC (1x105/well) (B) were 

incubated for 72 hours in the presence or absence of 10 µM Paclitaxel or an 

equivalent concentration of ethanol (Vehicle) and subjected to the MTT assay. 

Bars show duplicate wells from one of three similar experiments (n=2). *p<0.01; 

Paclitaxel vs. Vehicle by Student‟s t-test. (C) IFN-γ-primed BMMØ were incubated 

for 72 hours with the stated concentrations of LPS in the presence or absence of 

10 µM paclitaxel or an equivalent concentration of ethanol (Vehicle). Data points 

represent mean+SEM of duplicate wells from one of two similar experiments 

(n=2). *p<0.01;**p<0.001; Paclitaxel vs. Vehicle by Two-way ANOVA with 

Bonferroni correction.  

Figure 3.6B 

Figure 3.6A 

Figure 3.6C 
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3.3 Discussion 

 
This study set out to determine why and how paclitaxel inhibits LPS-stimulated 

BMMØ TNF-α and NO production. An overnight stimulus of IFN-γ is commonly 

used as a stimulation step and requires 8-12 hours to fully augment LPS-

responsivity (Chung and Benveniste, 1990; Ma et al., 1996). The first experiments 

asked if there was interplay between IFN-γ priming and paclitaxel‟s inhibitory 

effect. If this was the case, we expected to see a shift in inhibition with extended 

priming duration. However, we found that when primed for 12-18 hours with IFN-γ, 

BMMØ production of TNF-α and NO was depressed by paclitaxel similarly at all 

time points. This finding suggests that paclitaxel does not cause a delay in the 

IFN-γ priming response. However, these assays did not examine the effects of 

paclitaxel on unprimed BMMØ. It would be interesting to determine if IFN-γ 

priming is requisite for inhibition, or if the pathways to production are depressed 

whether or not BMMØ are first stimulated with IFN-γ. 

  

Next we tested whether the drug was altering the temporal production of TNF-α. 

We postulated that a kinetic shift in production could induce an earlier peak in 

TNF-α production followed by a decrease in production by 8 hours. The results 

demonstrated that TNF-α increases with time in both drug-treated and vehicle-

treated cultures. However, by 6 hours TNF-α production in the presence of 

paclitaxel was lower than in control BMMØ. This difference persisted until the end 

of the assay indicating that production was inhibited by paclitaxel and did not peak 

early. 

 

Paclitaxel significantly reduced production of TNF-α and NO when BMMØ were 

stimulated with an optimal concentration of LPS. At low concentrations of LPS 

(<16 ng/mL) TNF-α production was inhibited by paclitaxel, but as LPS 
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concentrations increased, control BMMØ TNF-α production reduced to a basal 

level, masking paclitaxel‟s inhibitory effect. However, at all concentrations above 

16 ng/mL LPS, NO production was significantly inhibited by paclitaxel. The 

different dose-responses of TNF-α and NO may relate to differences in the 

processing of the agents once in the supernatant. Extracellular TNF-α can be 

removed from culture by BMMØ (Crume et al., 2007; Fujihara et al., 1994), 

whereas NO breaks down rapidly and accumulates in culture as nitrite and nitrate 

(Stuehr and Marletta, 1985; Stuehr and Marletta, 1987). Further, TNF-α is an early 

onset cytokine, while NO production occurs later (Sander et al., 1991; Stuehr and 

Marletta, 1987; Vila-del Sol et al., 2006). It would be of interest to investigate the 

production of both TNF-α and NO at intermediary timepoints when both agents 

are present, such as 16 or 24 hours. This may reveal more precisely how 

paclitaxel affects the two mediators simultaneously and shed light on the 

mechanisms involved in its inhibitory activity. Furthermore, investigating the 

interdependence of TNF-α and NO by adding antibodies to TNF-α and iNOS 

inhibitors such as aminoguanidine hemisulfate will determine the involvement of 

feedback within the system. 

 

The initial investigations by Crume et al. into the effects of LPS+paclitaxel on IFN-

γ-primed BMMØ showed that exposure to paclitaxel can lead to reduced levels of 

TNF-α and NO (Crume et al., 2007). The present study extends this finding by 

indicating that this reduction is likely due to mechanistic inhibition rather than 

kinetic alteration of TNF-α production. The mechanism by which this inhibition 

occurs is not clear; however, there are a number of functional levels at which 

paclitaxel may be interrupting the process. Some ways paclitaxel may affect the 

process include competitive interactions with TLR-4; inhibiting TNF-α secretion; 

and inhibiting signalling pathways. 
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The first possibility is that paclitaxel directly inhibits the interaction of LPS with 

TLR-4. Paclitaxel is able to bind to and activate murine MD-2/TLR-4 complexes 

(Kawasaki et al., 2000; Kawasaki et al., 2001), so a mechanism of competitive 

inhibition for TLR-4 or other direct interactions may be involved. This possibility is 

unlikely for two reasons. Firstly, as peloruside demonstrates the same inhibitory 

properties as paclitaxel (Crume et al., 2007), it is likely that the microtubule 

network is involved in some way. Secondly, paclitaxel is seen to inhibit TNF-α and 

NO without altering IL-12p40 production, suggesting that the receptor is activated 

normally (Crume et al., 2007).  

 

An alternative is that TNF-α secretion is blocked when the microtubule network is 

stabilised. While TNF-α and IL-12p40 are induced by the same transcription 

factors and processed by the golgi apparatus prior to secretion (Baumgartner et 

al., 1996; Ma et al., 2004; Trinchieri, 1995), only LPS-induced TNF-α production is 

inhibited by paclitaxel (Crume et al., 2007). Recently it has been shown that TNF-

α release in MØ is controlled by the recycling endosome, and the phagosome is 

involved in its delivery to the recycling endosome (Manderson et al., 2007; Murray 

et al., 2005). There is evidence to suggest that suppressing microtubule dynamics 

with paclitaxel, colchicine or nocodazole causes inhibition of MØ phagosome 

movements and golgi transport (Blocker et al., 1998; Blocker et al., 1997; 

Peachman et al., 2004). It may be that by inhibiting these processes paclitaxel 

blocks TNF-α release. Furthermore, recycling endosome activity in T cells is 

inhibited by colchicine (Das et al., 2004), and if paclitaxel similarly represses 

recycling endosome activity in MØ it may directly inhibit TNF-α secretion. 

However, our results show that NO production is inhibited by paclitaxel at LPS 

concentrations where TNF-α production appears negligible. This does not rule out 
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that paclitaxel blocks TNF-α secretion but implicates other mechanisms in the 

inhibition of NO. 

 

Another possibility is that stimulatory signals activated by LPS were altered by 

paclitaxel. LPS can directly associate with β-tubulin and microtubule-associated 

proteins such as tau (Bohm et al., 1999; Ding et al., 1992). LPS also induces 

microtubule stabilisation and enhances associations of microtubule associated 

proteins with microtubules (Allen et al., 1997a; Allen et al., 1997b). Furthermore, 

LPS causes preferential phosphorylation of p42/44 MAP-K (Ding et al., 1996) 

which regulates TNF-α secretion (Rousseau et al., 2008). Thus, the microtubule 

network is known to be involved and modified by LPS signalling, which may 

partially explain why microtubule actives alter LPS-induced cytokine production. 

Assessing TNF-α mRNA levels in LPS-activated BMMØ treated with paclitaxel will 

indicate if signalling, or at least pre-translational processes are affected by the 

compound. Further, examining intracellular versus extracellular protein expression 

may also provide insight into how release is affected. Together these tools may 

determine the functional level of inhibition. 

 

TLR-4 signalling is also altered by DSD - Colchicine, nocodazole, podophyllotoxin 

and the vinca alkaloids affect MØ responses to LPS. These agents inhibit the 

LPS-induced formation of reactive oxygen species and NO, GM-CSF production 

and activity, and decrease TNF-α receptor, TNF-α protein and TNF-α mRNA 

expression (Allen et al., 1991; Ding et al., 1990a; Kirikae et al., 1996; Li et al., 

1996; Rammes et al., 1997; Rao et al., 1997). The similarities in the interactions 

make it tempting to speculate that the effects of MSD and DSD are causally 

related. If this is the case, it would suggest that a dynamic microtubule network is 

requisite to adequate signalling, release and effective MAP-K activity. In support 
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of this theory, paclitaxel and colchicine both inhibit TNF-α production, and also 

act to enhance IL-1β production following LPS stimulation (Allen et al., 1991; 

Crume et al., 2007; O'Brien Jr et al., 1995). Unlike TNF-α, IL-1β is not processed 

through the golgi apparatus but is instead cleaved from pro-IL-1β which 

associates with microtubules (Auron et al., 1984; O'Brien Jr et al., 1995; 

Stevenson et al., 1992). These different exocytosis pathways may determine the 

way the microtubule network affects cytokine production by BMMØ.  

 

We also investigated the metabolic activity of BMMØ in the presence of paclitaxel. 

As shown previously, paclitaxel increases BMMØ metabolic activity (Crume et al., 

2007). We saw that overall metabolic activity by BMMØ increased with LPS 

concentration. Basal metabolic activity of BMMØ is decreased by addition of low 

concentrations of LPS (c.f. Figure 3.6.A & 3.6.C) but increases with ramping LPS 

concentrations. Previous work by other groups suggests that the decrease is due 

to apoptosis induced by NO (Yamamoto et al., 1994).  Crume et al. showed that 

peloruside does not enhance BMMØ metabolic activity (Crume et al., 2007). 

Interestingly, in our experiments 10 µM paclitaxel induced the same metabolic 

activity irrespective of LPS concentration and it seems likely, as suggested 

previously (Crume et al., 2007), this may relate to its capacity to activate TLR-4. 

To determine if this alteration in metabolism correlates with changes in survival 

following LPS stimulation, looking at markers of apoptosis will be of value. Further, 

using LPS in combination with other ligands that stimulate TLR will help determine 

whether the increase in metabolic activity occurs in a TLR-dependent manner.  

 

We have investigated the responses of BMMØ to LPS in the presence of the MSD 

paclitaxel. Our results indicate that inhibition is not due to an early peak in 

production of TNF-α, is independent of the duration of IFN-γ priming and is only 
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observed at optimal LPS responsive levels, which differ for TNF-α and NO. We 

also demonstrate that metabolic activity of BMMØ and BMDC is significantly 

enhanced in the presence of paclitaxel. Taken together our findings demonstrate 

that BMMØ TNF-α and NO synthesis in response to LPS is inhibited and 

metabolic activity enhanced by paclitaxel. This in vitro modulation suggests that 

paclitaxel can affect the immune system in ways distinct from its anti-mitotic 

properties and may be clinically relevant to cancer patients fighting infection. 
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4 Involvement of the Microtubule Cytoskeleton in CTL 
Function 

 

4.1 Introduction 

 

Relocalisation of the MTOC to the IS is a prerequisite for CTL-mediated cell death 

(Kupfer et al., 1985). DSD inhibit this process and preclude cytolysis by CTL 

(Kupfer and Dennert, 1984; Wolberg et al., 1984). In addition to polarisation 

toward the TC, the microtubule cytoskeleton is involved in many steps of CTL-

mediated cytolysis. To induce TC death, the microtubule network is used as a 

scaffold along which lytic granules traffic en route to the IS (Stinchcombe et al., 

2001b). In synapsed CTL:TC conjugates, the CTL MTOC shows dynamic 

oscillations at the IS (Kuhn and Poenie, 2002). Further, actin microfilaments and 

microtubule plus-ends are cleared from the IS during lytic granule delivery, and 

there is evidence to suggest dynein-mediated transport is sufficient to deliver lytic 

granules to the IS (Kuhn and Poenie, 2002; Poenie et al., 2004; Stinchcombe et 

al., 2006). We were interested to investigate how MSD affect CTL lytic granule 

delivery, and to determine if peloruside and paclitaxel elicit different effects on 

CTL function. Specifically we asked if CTL-mediated cell death, degranulation and 

cytokine production are altered by in vitro treatment with paclitaxel or peloruside. 
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4.2 Results 

4.2.1 Short term paclitaxel treatment does not inhibit cytolysis in 
vitro 

 

To begin to determine effects of MSD on CTL-mediated cell death in vitro, we 

compared killing by CTL in the presence of paclitaxel, a vehicle control (0.1% 

ethanol) or medium alone at a range of CTL:TC ratios (50:1-0.4:1). Figure 4.1A 

shows that when CTL were combined with TC in the absence of peptide they were 

unable to kill target cells. However, when TC were pre-incubated with SIINFEKL 

peptide, specific lysis of the TC by CTL increased with higher ratios of CTL:TC. 

The addition of 0.1 µM or 1 µM paclitaxel did not inhibit specific lysis (p>0.05; 

Friedman‟s mean rank-sum test). Although the drug was present for the duration 

of the assay, we did not observe any effect on TC survival as measured by cpm of 

TC at the end of the assay (Figure 4.1B, p>0.05; One-way ANOVA). These results 

demonstrate that TC killing by CTL in vitro occurs effectively in the presence of 

paclitaxel. 

4.2.2 Pre-treatment with paclitaxel or peloruside does not inhibit 
CTL-mediated cell death in vitro 

 

Concentrations of paclitaxel and peloruside above 100 nM can induce microtubule 

bundling (Hood et al., 2002; Jordan et al., 1993). Brown et al. have demonstrated 

that a 4-hour pre-treatment with 1 µM paclitaxel induces microtubule bundles in 

the majority of CTL (Knox et al., 1993), and these bundles remain stable, even 

after washing until the cells enter mitosis (Brown et al., 1985). As we observed no 

effect of paclitaxel on CTL lytic capacity without pre-treatment, we examined 

killing under conditions that induce microtubule bundling, potentially amplifying the 

effects of MSD on CTL. Because microtubule bundles caused by MSD are stable 

after drug washout (Brown et al., 1985), we were able to compare killing at a wide 
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range of CTL:TC ratios with limited amounts of MSD. CTL were pre-treated for 

4 hours with 1 µM paclitaxel, 1 µM peloruside or an equivalent vehicle control 

(0.1% ethanol), washed and compared for their ability to lyse target cells in vitro. 

Figure 4.2A shows that, similar to the cytolytic assay in the continued presence of 

paclitaxel, a 4h pre-treatment with 1 µM peloruside or 1 µM paclitaxel did not 

inhibit CTL-mediated cytolysis in vitro (p>0.05; Friedman‟s mean rank-sum test). 

Additionally, we measured the metabolic activity of drug-treated CTL and saw no 

difference in the overall metabolism of CTL (p>0.05, One-way ANOVA). These 

results indicate that pre-treating CTL with MSD does not inhibit cytolysis of TC 

and is not directly cytotoxic to CTL. 

4.2.3 Paclitaxel and Peloruside do not inhibit degranulation by 
activated CTL 

 

Because FasL activity can compensate for deficiencies in the perforin/granzyme 

pathway (i.e., lytic granule delivery) (Lowin et al., 1994), and its expression does 

not require the microtubule network (He and Ostergaard, 2007), it was possible 

that increased FasL-induced apoptosis could mask any effect of MSD on lytic 

granule delivery. Thus, we directly assessed degranulation by measuring surface 

expression of the lysosomally-associated membrane protein CD107a (LAMP-1), 

which is indicative of lytic granule release (Betts et al., 2003). CD107a associates 

with lytic granules almost exclusively; however, during synthesis a small 

proportion transiently resides in the plasma membrane before trafficking to lytic 

granules (Carlsson and Fukuda, 1992), and thus can be detected at low levels on 

unactivated CTL.  

 

Colchicine has previously been shown to inhibit degranulation by CTL (Betts et 

al., 2003). As shown in Figure 4.3A&B, pre-treatment with 1 µM colchicine 

inhibited degranulation. However, without pre-treatment degranulation was not 
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inhibited. Because pre-treatment with colchicine was required to inhibit 

degranulation, we used a pre-treatment step in all subsequent degranulation 

assays.  

 

To determine the ability of lytic granules to traffic to the cell surface in the 

presence of MSD, CTL were pre-treated for 4 hours with 1 µM paclitaxel, 1 µM 

peloruside, 1 µM colchicine (as a positive control) or an equivalent vehicle control 

(0.1% ethanol), and then stimulated to degranulate. Neither paclitaxel nor 

peloruside inhibited degranulation by CTL (Figure 4.3C&D), whereas colchicine 

reduced degranulation by CTL at both 2 and 4 hours. Interestingly, pre-treatment 

with paclitaxel, peloruside or colchicine resulted in higher background MFI than 

control CTL (Figure 4.3A,C). We cannot explain why this occurs, but it may relate 

to CD107a trafficking or reinternalisation during synthesis (Carlsson and Fukuda, 

1992).  

4.2.4 Paclitaxel and Peloruside do not inhibit IFN-γ Production by 
activated CTL 

 

The signals leading to cytokine production and degranulation are differentially 

regulated in CTL (Faroudi et al., 2003; Wiedemann et al., 2006), and therefore 

may be uniquely susceptible to modulation by MSD. Because CTL produce large 

amounts of IFN-γ upon activation, in addition to degranulation and cytolysis, we 

investigated whether paclitaxel or peloruside altered IFN-γ production by CTL. 

However, while IFN-γ production was significantly inhibited by colchicine at both 2 

hours (Figure 4.4A; p<0.001) and 4 hours (p<0.01), it was not reduced by 

paclitaxel or peloruside (both p>0.05; Two-way ANOVA with Bonferroni correction, 

drug vs. vehicle). This suggests that pre-treating CTL with MSD does not inhibit 

their production of IFN-γ. 
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In parallel with assays of degranulation and IFN-γ production we examined 

metabolic activity of CTL. Neither paclitaxel nor peloruside altered metabolic 

activity, but some reduction in colchicine-treated cells was observed (Figure 4.4B; 

p<0.05, One-way ANOVA with Bonferroni correction, Colchicine vs. Vehicle). 

Together our data suggest that in the absence of anti-mitotic effects neither 1 µM 

paclitaxel nor 1 µM peloruside inhibit CTL-mediated cytolysis, degranulation or 

IFN-γ production in vitro. In contrast, colchicine, a known inhibitor of CTL function 

consistently reduced CTL degranulation, IFN-γ production and metabolic activity. 

4.2.5 Paclitaxel and Peloruside induce microtubule bundling in OT-
I T cells 

 

As we observed no effect of MSD on CTL activity we determined the extent to 

which the microtubule network was modified by our drug regimen. CTL were pre-

treated with 10 µM paclitaxel, 1 µM paclitaxel, 1 µM peloruside or 1 µM colchicine 

for 4 hours; adhered to coverslips for 30 minutes and stained for microtubules 

(green) and nuclei (blue). In control cells the microtubule network extends through 

the cytoplasm, radiating out from a dense core of microtubules which is likely to 

be the centrosome (Figure 4.5A,B). Examples of individual microtubules are 

demarcated by arrows. In contrast to control cells, 10 µM paclitaxel induces thick 

bundles of microtubules in almost all cells (Figure 4.5C; demarcated by asterisks). 

1 µM paclitaxel and 1 µM peloruside also induced microtubule bundling in CTL 

(Figure 4.5D,E), but less extensively than 10 µM paclitaxel. Pre-treating CTL with 

colchicine caused diffuse staining across the cytoplasm (Figure 4.5F; cell with 

arrow), indicating the presence of solubilised α/β-tubulin heterodimers. These 

results suggest that a 4-hour pre-treatment with MSD can induce microtubule-

bundling in CTL. However, because we observed stronger bundling at 10 µM 

paclitaxel than 1 µM it was possible that a high concentration (10 µM) of paclitaxel 

was required to alter degranulation and cytokine production by CTL.  
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4.2.6 10 µM Paclitaxel does not inhibit degranulation or IFN-γ 
production 

 

As the confocal microscopy results revealed extreme bundling in CTL pre-treated 

for 4 hours with 10 µM paclitaxel, we pre-treated CTL with 10 µM paclitaxel, 10 

µM colchicine or an equivalent vehicle control and assessed degranulation at 2, 4 

and 6 hours. As shown in Figure 4.6A&B even at this high dose of paclitaxel 

degranulation was not altered, but was reduced by 10 µM colchicine. 

Furthermore, similar to the effects on degranulation, production of IFN-γ was 

inhibited by 10 µM Colchicine, but not by 10 µM paclitaxel (Figure 4.6C). Further, 

10 µM paclitaxel did not alter CTL metabolism while 10 µM colchicine strongly 

reduced CTL metabolism (Figure 4.6D). These results support our previous 

findings that microtubule bundling does not inhibit peptide-induced degranulation 

or IFN-γ production by CTL. 
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Paclitaxel does not inhibit CTL-mediated cytolysis in vitro. CTL were 

subjected to a 4 hour JAM assay against SIINFEKL-pulsed (Ag+ TC) or control 

(Ag- TC) EL-4 target cells (TC) at various ratios in the presence of 0.1 µM 

paclitaxel, 1 µM paclitaxel, 0.1% ethanol (Vehicle) or medium alone. (A) % 

Specific Lysis was calculated as stated in the methods section. Lysis was specific 

to peptide-pulsed TC and did not differ significantly between the four treatments 

(p>0.05, Friedman‟s mean rank sum test). (B) In the absence of CTL, TC survived 

equally well with or without 1 µM paclitaxel as no loss of radioactivity (cpm) at the 

end of the assay was observed (p>0.05, One-Way ANOVA). This indicates that 

paclitaxel was not directly toxic to the TC. Data points represent mean+SEM of 

triplicate wells from one experiment. 

 

Figure 4.1A Figure 4.1B 
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Pre-treatment with Paclitaxel or Peloruside does not inhibit CTL-Mediated 

Cytolysis in vitro. CTL were pre-treated for 4 hours with 1 µM paclitaxel, 1 µM 

peloruside or 0.1% ethanol as control (Vehicle) and combined with TC at various 

ratios in drug-free media. (A) Specific lysis was calculated as stated in the 

methods section. In the absence of peptide (Ag- TC), no specific lysis was 

observed. In the presence of peptide (Ag+ TC), specific lysis was higher in wells 

with more CTL. Neither paclitaxel nor peloruside inhibited specific lysis at 4 hours 

(p>0.05, Friedman‟s mean rank sum test). (B) Metabolic activity of CTL was 

measured in parallel by the MTT assay. Neither paclitaxel nor peloruside caused a 

reduction in metabolic activity at the end of the assay (p>0.05, One-Way ANOVA). 

(A) Data points represent two to four wells from one of three similar experiments. 

(B) Data points represent triplicate wells from one of three similar experiments. 

Figure 4.2A Figure 4.2B 
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Paclitaxel and Peloruside do not inhibit degranulation in vitro. (A) CTL 

(1x105/well) were incubated with an antibody to CD107a with (solid lines) or 

without (dashed lines) SIINFEKL-peptide and assessed for their ability to 

degranulate as determined by MFI shift (B). All events were gated on CD8+ live 

cells. Purple shading shows vehicle-treated CTL background CD107a expression. 

When added at the same time as peptide (T=0), 1 µM colchicine did not alter 2 

hour degranulation compared to 0.1% ethanol (Vehicle). A 4-hour pre-treatment 

(T-4) with 1 µM colchicine inhibited degranulation at 2 hours. *p<0.001 One-way 

ANOVA with Bonferroni correction, Colchicine vs. Vehicle. Bars show mean+SEM 

of individual wells combined from two separate experiments. (C) CTL were pre-

treated for 4 hours with 1 µM paclitaxel (blue lines), 1 µM peloruside (green lines), 

1 µM colchicine (red lines) or 0.1% ethanol (vehicle; black lines) and subjected to 

2 hour 

4 hour 
CD107a Fitc 

CD107a Fitc 

Figure 4.3C 

(T=0) 
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the degranulation assay as in (A). (D) Neither 1 µM paclitaxel nor 1 µM 

peloruside inhibited degranulation, whereas colchicine inhibited degranulation at 

both 2 and 4 hours. *p<0.01; Two-way ANOVA with Bonferroni correction, 

colchicine vs. vehicle. (D) Bars represent mean MFI shift + SEM of duplicate wells 

from one of three similar experiments; representative histograms from one such 

experiment are shown in (C).  
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Paclitaxel and peloruside do not inhibit IFN-γ production and are not 

immediately cytotoxic to CTL. (A) CTL (1x105/well) were pre-treated for 4 

hours with 1 µM paclitaxel, 1 µM peloruside, 1 µM colchicine or 0.1% ethanol 

(Vehicle) and then stimulated with SIINFEKL peptide. After 2 or 4 hours the 

supernatant was assayed for IFN-γ by ELISA. Neither paclitaxel nor peloruside 

inhibited IFN-γ production, whereas colchicine inhibited production at both 2 and 

4 hours. Without SIINFEKL peptide no IFN-γ was produced (data not shown). 

*p<0.01, **p<0.001, Two-way ANOVA with Bonferroni correction, colchicine vs. 

vehicle. Bars represent mean+SEM of two to four wells combined from three 

similar experiments. In one experiment 4-hour supernatants were discarded prior 

to analysis. (B) Following pre-treatment as in (A) CTL were subjected to the MTT 

assay as described in the methods section. Metabolic activity was not altered by 

paclitaxel or peloruside, but was reduced by colchicine. *p<0.05, One-way 

ANOVA with Bonferroni correction vs. vehicle. Bars represent mean+SEM of 

triplicate wells combined from three similar experiments. 

Figure 4.4A Figure 4.4B 
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Figure 4.5A - Vehicle 

Figure 4.5B - Vehicle 

Figure 4.5C- 10 µM Paclitaxel 

Microtubule Actives Modify the 

interphase CTL microtubule network. 

CTL were incubated for four hours in 

the presence of 0.1% ethanol, or the 

stated concentration of drug and 

subjected to immunocytochemistry. 

Microtubules were stained with rabbit 

anti-tubulin IgG and alexafluor-488 goat 

anti-rabbit IgG (green) and nuclei were 

identified using DAPI (blue). In control 

cells (A,B), individual microtubules 

(arrows) were seen extending through 

the cytoplasm. Some fragmented 

chromatin was observed, possibly an 

artefact of the sealing process. When 

treated with paclitaxel (C,D) or 

peloruside (E) microtubule bundles 

(asterisks) were observed. Bundling 

was more pronounced at 10 µM (C) 

than 1 µM paclitaxel (D) or 1 µM 

peloruside (E). In colchicine treated 

cells (F) diffuse staining (cell with arrow) 

was observed across the cell.  

→ 
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Figure 4.5D- 1 µM Paclitaxel 

Figure 4.5E- 1 µM Peloruside 

Figure 4.5F- 1 µM Colchicine 
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(pink), paclitaxel (light blue) or colchicine (orange) without SIINFEKL peptide, or 

on exposure to SIINFEKL after pretreatment with vehicle (green), paclitaxel (dark 

blue) or colchicine (red). Paclitaxel did not inhibit degranulation (A,B), IFN-γ 

production (C), and had no effect on metabolism (D), while colchicine caused 

reductions in all three. (B,C) *p<0.001; Two-Way ANOVA with Bonferroni 

correction vs. vehicle. (D) *p<0.001 One-Way ANOVA with Bonferroni Correction 

vs. vehicle. (A) histograms are representative of duplicate wells from one of two 

experiments. (B-D) Bars show mean+SEM of two to four replicates from one of 

two similar experiments. 

 

10 µM paclitaxel does 

not affect CTL 

exocytosis in vitro. CTL 

(1x105/well) were pre-

treated for 4 hours with 10 

µM paclitaxel, 10 µM 

colchicine or vehicle (1% 

ethanol) and assessed for 

lytic granule release by 

the degranulation assay 

(A,B), IFN-γ production by 

ELISA (C), and survival by 

the MTT assay (D). (A) 

Histograms show CTL 

CD107a expression 2, 4 

and 6 hours after pre-

treatment with vehicle 

(pink) 
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4.3 Discussion 

 
The majority of work into MSD activity has focussed on their anti-mitotic properties 

and only more recently have the effects of these compounds on interphase cells 

been investigated. While the effects of paclitaxel on immune cells have been 

investigated to some extent, the immunological effects of peloruside are largely 

unknown. Currently, peloruside is known to kill proliferating splenocytes and to 

inhibit the LPS-induced production of TNF-α and NO, but not IL-12p40 (Crume et 

al., 2007; Miller et al., 1996). Additionally, Crume et al. showed that peloruside 

does not stimulate TLR-4 like paclitaxel (Crume et al., 2007). This thesis is the 

first study to look at the effects of peloruside on interphase CTL processes.  

 

Previously it has been shown that killing by murine CTL at high ratios of CTL:TC is 

unaffected by paclitaxel treatment, even at concentrations that induce bundling 

(Knox et al., 1993). In contrast, paclitaxel inhibits killing by human CTL (Chuang, 

1994; Chuang et al., 1994; Markasz et al., 2008). Because the study by Knox et 

al. utilized very high ratios of CTL:TC (50:1) and paclitaxel inhibited cytolysis by 

human CTL in vitro, we hypothesised that a more contact-limited system (lower 

CTL:TC ratio) may bring to light any subtle effects of paclitaxel on killing by murine 

CTL. Furthermore, we were interested to determine if effects of peloruside on CTL 

function were distinct from paclitaxel. 

 

When we examined killing in the presence of paclitaxel we saw no effect at high 

or low ratios of CTL:TC. Moreover, pre-treating CTL with paclitaxel or peloruside 

to induce microtubule bundling did not have any evident effects on killing, 

degranulation or IFN-γ production. Colchicine, as shown previously, inhibited 

degranulation, IFN-γ production and reduced cell metabolic activity (Betts et al., 

2003; Goldfinger et al., 1965; Ito et al., 1976). Given that DSD inhibit normal 
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MTOC relocalisation in CTL (Kupfer and Dennert, 1984), it is not surprising that 

degranulation and IFN-γ production, like killing (Wolberg et al., 1984), were 

inhibited by colchicine.  

 

It is surprising, however, that CTL, even in the presence of high concentrations of 

MSD, were able to degranulate and kill TC effectively. The lack of inhibition 

argues that microtubule dynamicity is not essential in the killing process. Our 

confocal images show bundled microtubules in MSD-treated cells, but also 

demonstrate that microtubules still radiate out from the MTOC; this has previously 

been observed in CTL treated with paclitaxel (Knox et al., 1993). Furthermore, the 

MTOC can relocalise in CTL treated with paclitaxel, but not DSD, suggesting that 

this process is independent of microtubule dynamicity (Knox et al., 1993; Kupfer 

and Dennert, 1984). Lytic granules are associated with the peripheral microtubule 

network in unstimulated CTL (Stinchcombe et al., 2001b) and it is thought that 

delivery in stimulated CTL at least partially occurs in a dynein-mediated fashion 

(Kuhn and Poenie, 2002; Poenie et al., 2004; Stinchcombe et al., 2006). Thus, it 

appears that bundled microtubules operate as a sufficient scaffold for the 

transport of lytic granules. Because the concentrations of paclitaxel we used are 

well in excess (10-100 fold) of those required to inhibit dynamic instability in 

interphase cells (Jordan et al., 1993), our results and others (Knox et al., 1993), 

indicate that lytic granule delivery by murine CTL occurs sufficiently in the 

absence of a dynamic microtubule network. 

 

During killing the CTL MTOC becomes a particularly dynamic entity. As well as 

relocalising to the IS, when at the interface the MTOC often shows oscillatory 

movements both towards and across the IS (Kuhn and Poenie, 2002). In single 

CTL:TC conjugates, these oscillations occur exclusively at the IS; in CTL 
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conjugated to multiple TC large-scale migration of the MTOC is observed 

between the two (Kuhn and Poenie, 2002). The importance of MTOC motility with 

regard to lytic granule delivery is unknown. It has been suggested that dynein 

proteins are the driving forces that pull the MTOC through to the IS, and as such 

are important not only for lytic granule delivery, but also controlling these dynamic 

movements across the IS (Poenie et al., 2004). Based on our results it seems that 

if these oscillatory movements are involved in the killing process they occur even 

in CTL treated with MSD. Alternatively, these migrations may not be causatively 

involved in killing. Examining the microtubule network of MSD-treated CTL during 

killing in greater detail may elucidate the importance of these oscillations and how 

they are modified in the cell. 

 

The interactions at the IS leading to lytic granule exocytosis and stimulation of 

proinflammatory signalling pathways (i.e., production of IFN-γ) are differentially 

regulated in CTL. Lower TCR activation thresholds are required to elicit killing 

than cytokine production (Faroudi et al., 2003), and lytic granule delivery occurs 

more rapidly than large-scale TCR aggregation (Wiedemann et al., 2006). 

Colchicine inhibits recycling endosome activity in the human Jurkat T cell line 

resulting in lower TCR expression at the IS (Das et al., 2004), while, paclitaxel and 

vinblastine inhibit similar transport processes in MØ (Blocker et al., 1998). Thus it 

was possible that MSD could depress TCR expression and inhibit cytokine 

production by CTL without affecting degranulation. However, our results which 

measured degranulation and IFN-γ production simultaneously indicated that 

neither paclitaxel nor peloruside altered either process in activated CTL. 

Nevertheless, because at any given time only a small number of TCR are bound 

to ligand at the IS (Monks et al., 1998), it is possible that MSD do reduce CTL 

TCR recycling but such reductions were not sufficient to alter CTL activity. 
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Studies into the IS using the Jurkat T cell line and anti-CD3-coated coverslips 

show that microtubules are involved in stabilising the IS, and removal of 

microtubules with colchicine decreases the time for which an IS is maintained 

(Bunnell et al., 2001). Conversely, as colchicine decreases IS stability (Bunnell et 

al., 2001), inducing bundling may increase the duration of CTL:TC conjugation or 

increase the time it takes for signalling components to segregate appropriately in 

the IS (Grakoui et al., 1999; Monks et al., 1998). This increased contact time may 

explain why the overall rate of killing is reduced in human CTL (Chuang, 1994; 

Chuang et al., 1994; Markasz et al., 2008). However, the lack of effect we and 

others (Knox et al., 1993) observe in murine CTL suggests MSD affect CTL from 

mice and humans differently. Examining the real-time interactions of microtubules, 

lytic granules and IS components in MSD-treated cells may explain how CTL can 

elicit specific cell death with an altered microtubule network; explain why murine 

and human CTL are differently susceptible; and uncover effects of MSD on CTL 

that were not assessed in our experiments. 

 

Our results add to knowledge of the involvement of the microtubule network in 

CTL function in vitro to show that peloruside, like paclitaxel, does not inhibit 

specific lysis at high or low CTL:TC ratios; that both compounds induce bundling 

in CTL; and neither compound inhibits peptide-specific degranulation or IFN-γ 

production. Our results support work by others showing that MSD treatment does 

not inhibit murine CTL function in vitro. 
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5 Effects of Paclitaxel on CTL function in vivo 

5.1 Introduction 

 
There is a modest body of literature looking at modulation of the human immune 

system in vivo after systemic taxane therapy, including effects on plasma cytokine 

concentrations and alterations to cell populations. While general leukopenia 

occurs following taxane therapy (Tong et al., 2000), CD8+ T cells show a degree 

of resistance to the cytotoxic effects of MSD, and ex vivo responses of the CTL 

population actually seem to be enhanced after therapy cessation (Westerterp et 

al., 2008; Zhang et al., 2008). One study showed that CD8+/IFN-γ+ T cell 

responses are associated with decreased tumour burden, and these responses 

are enhanced following combination carboplatin/paclitaxel therapy (Coleman et 

al., 2005). In another study, both CD8+/IFN-γ+ and (activated) CD44+/CD8+ T cells 

were more numerous in patients after paclitaxel therapy (Zhang et al., 2008). A 

recent study investigated the effects of Taxol on the CTL response 2 days post 

therapy, and saw no change in the baseline killing of TC after 16 hours (Vicari et 

al., 2009). Because Taxol has an in vivo half-life of 0.8 hours (Zhang et al., 1997), 

and therefore may no longer be at an effective concentration 2 days post therapy, 

we analyzed the immediate in vivo effector response of CD8+ T cells following 

drug administration.  

5.2 Overview of the In vivo Cytolytic Assay 

 

To induce an antigen-specific CTL response in vivo, mice were injected with LPS-

matured, SIINFEKL peptide-pulsed BMDC to immunise mice. One week later 

mice were administered a single intraperitoneal dose of 20 mg/kg Taxol and 

approximately 2 hours later injected intravenously with 8x106 syngeneic 

splenocytes as TC. The TC contained an equal mix of carboxyfluorescein 

succinimidyl ester (CFSE)-labelled SIINFEKL+ (Ag+) TC and Cell Tracker 
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Orange® (CTO)-labelled control (Ag-) TC. After 10 hours, the mice were 

euthanized, their spleens removed and stained for CD8, and the % specific lysis 

was calculated by comparing the survival of Ag+ TC relative to Ag- TC. For 

example, if Ag- specific lysis occurred in vivo, fewer Ag+ TC would be recovered 

compared to Ag- TC.  

 

To determine if Ag-specific CTL survival was altered by Taxol treatment, mice 

received 1x106 congenic OT-I/ptp-rca lymph node cells one day prior to 

immunisation. OT-I/ptp-rca T cells express clonal Vα2/Vβ5.1/5.2-TCRs specific for 

the SIINFEKL peptide, and are CD45.1+/CD45.2+. Because the recipient C57BL/6 

mice T cells are exclusively CD45.2+ we can track the OT-I/ptp-rca population by 

examining CD45.1 expression. As the TCR of the adoptively-transferred 

population is SIINFEKL-specific, these cells should predominate the immune 

response following immunization, allowing us to closely monitor the effector CTL 

in vivo. Following euthanasia splenocytes were examined for CD8 and CD45.1 

expression alongside Ag+/Ag- TC survival. 
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5.3 Results 

5.3.1 Taxol Inhibits Immediate Cytolysis in Mice 

 

Because in vitro assays are highly optimized and tightly controlled, it was possible 

that in the more limiting and variable in vivo setting moderate alterations in CTL 

function would be more evident. During their proliferative phase, the CTL 

population expands rapidly, reaching a stage where cells divide on average every 

5-9 hours (De Boer et al., 2001; Hwang et al., 2006; Oehen and Brduscha-Riem, 

1998). However, maximal numbers of CTL are generated around day 6 after 

which proliferation slows and becomes minimal by day 7 (De Boer et al., 2001). 

Our immunisation strategy was set in a window that allowed mice to generate a 

potent CTL response, while avoiding any anti-mitotic effects of Taxol. To further 

minimise anti-mitotic effects, we examined cytolysis in a short time period (10 

hours) which has previously been shown to be sufficient to detect killing (Hermans 

et al., 2004).  

 

Immunising mice with BMDC pulsed with 1 µM SIINFEKL peptide generated a 

strong anti-SIINFEKL response causing specific depletion of the Ag+ TC 

population (Figure 5.1A; p<0.01 by One-way ANOVA with Bonferroni correction; 

Immunised vs. Unimmunised within drug treatment). Differences in Ag+ TC 

survival in unimmunised groups were minimal (p=0.100; Effect of Drug alone by 

Two-way ANOVA; data not shown); nevertheless, to account for any non-specific 

effect of Taxol we normalised killing within a drug treatment. In contrast to the in 

vitro results, in vivo treatment with 20 mg/kg Taxol caused a reduction in CTL-

mediated cytolysis (Figure 5.1A; p<0.05; One-way ANOVA with Bonferroni 

correction, Taxol vs. Vehicle, Immunised Groups). While our system was 

designed to reduce the anti-mitotic effects of Taxol, a decrease in effector CTL 

numbers would explain the reduced cytolysis in drug-treated mice. However, 
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examining CD8+ T cell numbers, of which the effector CTL will form a subset, no 

difference was observed between any groups (p>0.05; One way ANOVA with 

Bonferroni correction; Figure 5.1B). Thus, our data suggest that Taxol inhibits 

CTL-mediated cytolysis in vivo without significant effects on survival of the CD8+ 

population. 

5.3.2 Taxol does not deplete the effector population in vivo 

 

Our initial data suggested that Taxol did not inhibit cytolysis by killing CD8+ 

splenocytes. However, as effector CTL comprise only a subset of all CD8+ T cells, 

it was possible that the background CD8+ population was masking a depletion of 

Ag-specific CTL by Taxol. We redesigned our experiment to include the adoptive 

transfer (AT) of OT-I/ptp-rca lymph node cells prior to immunisation, which should 

then predominate the SIINFEKL-specific CTL response. As expected, 

immunisation increased numbers of CD8+/CD45.1+ T cells (Figure 5.2A) and 

greatly enhanced specific lysis (Figure 5.2B) in immunized mice. 

 

To determine the effects of Taxol on CTL survival in vivo we administered mice an 

intraperitoneal dose of 20 mg/kg Taxol or an equivalent dose of Cremophor EL® 

and submitted them to a 10 hour VITAL assay. As shown in Figure 5.3A, Taxol 

treatment did not deplete the CTL population. Further, Taxol caused a small 

reduction in specific lysis that did not reach significance in this assay (Figure 

5.3B), which may relate to low animal numbers in each group. This lack of effect is 

contrary to the results of Figure 5.1 A. Moreover, mean cytolysis at 10 hours in 

experiments where control mice received transgenic T cells prior to immunisation 

was higher than in experiments where they did not (c.f. Figure 5.1A & 5.3B; 

p<0.05, Student‟s t-test, shown again in Figure 5.3C). Because mice with 

transgenic T cells potently eliminated SIINFEKL-specific TC, the kinetics of 

cytolysis may be more rapid in this system, so earlier timepoints may be more 
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appropriate when using OT-I/ptp-rca T cells. Furthermore, Taxol possesses only 

a short half-life in vivo (0.8 hours) and is rapidly eliminated from tissues, including 

the spleen (Zhang et al., 1997). We reasoned that a higher bolus dose of Taxol 

may inhibit CTL responses for longer periods, which would exaggerate inhibition 

at earlier timepoints. Further, higher drug concentrations would accentuate any 

residual anti-mitotic effects on the effector population. Thus, we repeated the 

adoptive transfer experiment and treated mice with 30 mg/kg Taxol (0.75 

mg/mouse) and examined killing of Ag+ TC after 8 hours.  

 

Even with this high drug concentration the CTL population was not depleted in 

drug-treated mice (Figure 5.4A; p=0.5753; Student-s t-test, Taxol vs. Vehicle, 

Immunised groups). Specific lysis was inhibited by Taxol to a similar level as 

previous experiments (Figure 5.4B), although this difference did not reach 

statistical significance (p=0.0988; Student‟s t-test, Taxol vs. Vehicle, Immunised 

groups), we again believe this is most likely due to the low numbers of animals in 

each group. In support of this supposition, when we combined mice treated with 

Taxol at either dose, we still did not observe any effect on CTL survival (Figure 

5.4C, p=0.4322), whereas combining the groups did lead to a detectable 

difference in cytolysis (Figure 5.4D, p=0.0329; Student‟s t-test, Vehicle vs. Taxol, 

immunised groups). To further clarify if the number of CTL was directly related to 

the level of killing, we correlated the numbers of OT-I/ptp-rca CTL to % specific 

lysis in all mice from both experiments (Figure 5.5). Although the number of CTL 

was not related to % specific lysis in vehicle-treated mice (r2=0.2420), there was a 

significant relationship between CTL number and % specific lysis in Taxol-treated 

mice (r2=0.7049; linear regression analysis). Further, the relationship between 

CTL number and % specific lysis was significantly different in Taxol-treated and 

vehicle-treated immunised mice (p<0.05; linear regression F-test for difference in 
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slope). Thus, these results suggest that under conditions where CTL numbers 

are limiting, Taxol exerts the greatest inhibition on their function. Together these 

data support the hypothesis that inhibition of CTL-mediated cytolysis in vivo is due 

to functional inhibition of CTL rather than cytotoxic effects on the effector 

population.  
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Taxol inhibits CTL-Mediated Cytolysis without depleting CD8+ cells in vivo. 

C57BL/6 mice were immunised as described in general methods. One week later, 

mice were injected intraperitoneally with 20 mg/kg Taxol or an equivalent vehicle 

control (Cremophor EL®) and subjected to a 10-hour VITAL assay. Specific lysis 

(A) and numbers of CD8+ splenocytes (B) were calculated as described in the 

general methods section. Data points represent individual mice pooled from three 

separate experiments; lines represent group means. (A) *p<0.05; One-way 

ANOVA with Bonferroni correction, Taxol vs. Vehicle, Immunised Groups. (B) No 

difference in total CD8+ number was detected (p>0.05; One-Way ANOVA). 

Figure 5.1A 
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Immunisation Expands the Adoptively-Transferred Population and Permits 

Specific Lysis. Prior to immunisation mice received 1x106 OT-I/ptp-rca lymph 

node cells. One week later mice were given an intraperitoneal dose of Cremophor 

EL® or Taxol and subjected to the VITAL assay. (A) Total CD45.1+/CD8+ numbers 

(A) and specific lysis (B) were determined as described in general methods. Bars 

represent mean+SEM from all immunised mice combined from two experiments, 

shown individually in Figure 5.3A&B and Figure 5.4A&B. *p<0.001, Student‟s t-

test Immunised vs. Unimmunised. 
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did not receive (C57BL/6) transgenic T cells prior to immunisation shown in 5.1A 

and 5.3B are represented here by bars showing mean+SEM. Mice that received 

transgenic T cells prior to immunisation eliminated TC to a greater extent than 

C57BL/6 mice that did not (*p<0.05, Student‟s t-test). 
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Figure 5.3A Taxol does not deplete 

CD45.1+/CD8+ CTL in vivo. Prior to 

immunisation as described in 

general methods mice received 

1x106 OT-I/ptp-rca lymph node cells. 

One week later mice were given an 

intraperitoneal dose of 20 mg/kg 

Taxol or an equivalent dose of 

Cremophor EL® as vehicle control. 

Two hours later mice were subjected 

to a 10 hour VITAL assay. Total 

numbers of CD45.1+/CD8+ CTL (A) 

and specific lysis (B) were 

calculated as described in general 

methods. Data points represent 

individual mice; lines represent 

group means. Killing was not 

significantly inhibited in this assay 

(p>0.05, Student‟s t-test; Immunised 

groups). (C) Killing in vehicle-treated 

mice that received (OT-I/ptp-rca) or 

did  
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Taxol does not deplete CTL and inhibits CTL-Mediated Cytolysis in vivo. 

Prior to immunisation, mice received 1x106 OT-I/ptp-rca lymph node cells. (A,B) 

One week after immunisation mice were given an intraperitoneal dose of 30 mg/kg 

Taxol or an equivalent dose of Cremophor EL® as vehicle control. 2 hours later 

mice were subjected to an 8 hour VITAL assay. Total numbers of CD45.1+/CD8+ 

CTL (A) and specific lysis (B) were calculated as described in general 

methods.(C,D) Immunised mice analysed separately in Figure 5.3A,B and Figure 

5.4A,B were combined and analysed together. Data points represent individual 

mice; lines represent group means. *p<0.05, Student‟s t-test, Taxol vs. Vehicle. 
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Figure 5.5 

0 1.0×105 2.0×105 3.0×105 4.0×105 5.0×105

0

20

40

60

80

100

Taxol Immunised

Vehicle Immunised

Taxol Unimmunised

Vehicle Unimmunised

# CD8+/CD45.1+ CTL

%
 S

p
e
c
if

ic
 L

y
s
is

Taxol inhibits CTL-mediated cytolysis in mice with similar numbers of CTL. 

Numbers of CD45.1+/CD8+ CTL in mice shown in Figure 5.4C were correlated to 

specific lysis in Figure 5.4D. Between immunised groups, Taxol-treated mice 

showed reduced lytic capacity compared to Vehicle-treated mice with similar 

numbers of CD45.1+/CD8+ CTL. Dots show individual mice, lines show the group 

trends, which differ for Taxol- and Vehicle-treated mice (p<0.01; Taxol vs. Vehicle, 

Immunised groups; F-test for difference in slope)  
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5.4 Discussion 

 

We set up two complementary systems to measure the effects of Taxol on CTL 

functionality in vivo. In the first, we examined the effect of drug on the autologous 

host response to SIINFEKL peptide. Our results showed that a single 20 mg/kg 

dose of Taxol inhibited CTL-mediated cytolysis in vivo. A second system, the 

adoptive transfer of OT-I/ptp-rca lymph node cells into C57BL/6 recipients, allowed 

us to monitor survival of the effector population and lytic activity simultaneously. In 

these studies immunisation caused the expansion of CD45.1+/CD8+ cells in the 

spleens of mice and the presence of this population correlated well with cytolysis 

in vivo. Further, similar numbers of CD45.1+/CD8+ CTL were detected in mice 

treated with Cremophor EL® and Taxol. However, control mice appeared better 

able to eliminate TC than Taxol-treated mice. Taken together our data suggest 

Taxol inhibits CTL activity in vivo and this occurs independently of Taxol‟s anti-

mitotic properties. 

 

In line with our work, Vicari et al. recently reported an inhibitory effect of Taxol on 

CTL-mediated cytolysis in vivo.(Vicari et al., 2009) In a solid-tumor cancer model, 

this study initially showed paclitaxel enhanced the anti-tumour response in a 

CD8+-dependent manner.(Vicari et al., 2009) However, when mice were given a 

TLR-9 agonist and tested for their ability to kill SIINFEKL-pulsed splenocytes (as 

TC), paclitaxel limited killing to levels of control mice (≈10%). In this experiment 

both paclitaxel and the immune adjuvant (PF-3512676) were administered 2 days 

prior to TC transfer, so it may be that paclitaxel depressed the enhancement 

conferred by the TLR-9 agonist, rather than inhibiting CTL:TC killing. In contrast, 

our studies aimed to determine the immediate effects of paclitaxel on cytolysis in 

vivo. 
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In our adoptive transfer (AT) experiments mice given a 30 mg/kg dose of Taxol 

exhibited impaired killing versus controls at 8 hours. When we assessed the 

effects of a 20 mg/kg dose at 10 hours, the difference was less pronounced. We 

resolved that this was likely due to the kinetics of cytolysis. As suggested by 

others (Hermans et al., 2004), if killing plateaus as TC become sparse, differences 

will be best detected during the exponential phase of cytolysis in control mice. In 

experiments assessing the host-generated immune response, 10 hours provided 

a window in which differences in specific lysis between control and drug treated 

mice were detected. However, mice that contained OT-I/ptp-rca CTL appeared to 

eliminate the target population to a greater extent than C57BL/6 heterologous 

responders, leading to more pronounced effects of drug at 8 rather than 10 hours.  

 

Kinetically, Taxol may affect killing in two independent but not mutually exclusive 

ways. Firstly, at early times, high concentrations of drug may ablate killing, but as 

the drug concentration reduces, killing rates return to those of controls (Figure 

5.6). Secondly, following drug exposure, killing may be depressed such that the 

rate of killing is reduced relative to controls (Figure 5.7). Taxol is eliminated 

relatively rapidly in vivo, with a half-life of approximately 0.8 hours (Zhang et al., 

1997), but accumulates in tissues such as the spleen when administered 

continuously (Klecker et al., 1994). If the effects of Taxol are transient, then 

differences in specific lysis will best be determined at early times before the effect 

of drug wears off. Alternatively these effects will be amplified with multiple 

administrations of drug. Conversely, if Taxol operates by reducing the rate of lysis, 

inhibition will be most exaggerated at times just prior to plateau in control mice. 

These two possibilities could be distinguished by maintaining a constant level of 

drug and by assessing cytolysis at multiple timepoints. 
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While our results indicate that paclitaxel inhibits CTL function in vivo, Taxol does 

not necessarily affect CTL directly. Because our in vitro results indicate that in 

murine CTL, the process of lytic granule exocytosis is not inhibited by MSD, it is 

likely that other microtubule-dependent processes are involved in the inhibition of 

CTL function caused by Taxol in vivo. These alternative explanations include 

altered tissue homing of cells; changes to the surface phenotype of TC; increased 

CTL:TC conjugation periods; and modification of the signals between CTL and 

TC.  

 

As CTL-mediated cytolysis is contact dependent, CTL must encounter TC to 

induce specific lysis. Thus, Taxol may alter the migratory properties of either CTL 

or TC. Previous studies have shown that systemic Taxol administration inhibits 

LPS-induced neutrophil extravasation, vascular leakage and protects mice from 

septic shock (Mirzapoiazova et al., 2007). Further, Taxol ablates the expected 

leukocyte infiltration into the peritoneum following LPS administration 

(Mirzapoiazova et al., 2007). Even slight modifications to cell migratory properties 

could alter the ability of CTL to interact with TC. Depending on the tissue 

localisation of the targets, paclitaxel may prevent CTL from coming into contact 

with TC. As we measure lysis and survival in the spleen, it seems unlikely that the 

populations are prevented from mixing. However, as effector CTL traffic through 

the periphery is more than naïve T cells (Wherry et al., 2003), and approximately 

30% of our in vivo TC will be naïve T cells (Garnett et al., 2008), it is possible that 

paclitaxel alters tissue homing and reduces the rate of encounter of the two cell 

types prior to final analysis in the spleen. 
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An alternative explanation is that paclitaxel modifies the target cell, such that 

the intercellular signals that lead to target cell death are hindered. In order to 

induce lysis, protein signalling between CTL and TC must be strong enough to 

form a stable immunological synapse (IS), activate the TCR and polarise the CTL 

to kill the TC. If the ability of CTL to recognise TC is compromised then the 

formation of the synapse will be inhibited. In support of this, pre-treatment of 

murine cell lines with paclitaxel reduces surface expression of CD11a and CD54 

(Zhao et al., 2003), both of which are involved in stabilisation of the IS (Monks et 

al., 1998; Stinchcombe et al., 2001b; Stinchcombe and Griffiths, 2003; 

Stinchcombe et al., 2006). This decreased expression directly correlates with 

reduced lysis of the cells by CD3-activated lymphocytes (Zhao et al., 2003). If 

such modifications have an effect in vivo, cytolysis will be inhibited.  

 

Also concerning the interaction between CTL and TC, the ability of CTL to kill 

multiple targets in vivo may be impeded. In human CTL in vitro it has been shown 

that while CTL readily conjugate and elicit cell death in individual TC, their ability 

to recycle and kill multiple targets is greatly limited by paclitaxel (Chuang, 1994; 

Chuang et al., 1994). Similar to the in vitro setting, CTL in vivo are likely to kill 

multiple TC either serially or simultaneously (Breart et al., 2008), so inhibition of 

the rate of cytolysis may explain the decreases in killing we observe in mice in 

vivo. 

 

As well as modulation of intercellular adhesion, the stimulatory signals leading to 

formation of the IS may be depressed by Taxol. For example, paclitaxel has been 

shown to inhibit DC stimulation of T cell proliferation in vitro by effects on the DC, 

even though the DC have elevated MHC-II expression (Joo, 2003). The ability to 

form and stabilise an IS is heavily dependent on the strength of interaction 
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between TCR and MHC-peptide complexes (Grakoui et al., 1999), rather than 

the number of bound TCR (Monks et al., 1998). If Taxol inhibits the interaction of 

TCR-MHC-peptide, the drug may have some effect on the ability of CTL to induce 

death of TC. Transient interactions such as these could be more important for 

interactions of CTL and TC  in vivo than in vitro. 

 

Our study contrasts a number of reports in humans and mice suggesting 

enhanced CD8+ T cell function following paclitaxel treatment. In humans, reports 

suggest that IFN-γ-secreting CD8+ T cells are more numerous after therapy; 

activated (CD44High) CD8+ T cells are more frequent and TREG are specifically 

inhibited by Taxol (Zhang et al., 2008). This depletion is important because TREG 

directly suppress CTL activity in vitro and in vivo; in the absence of TREG, CTL 

activity is increased (Mempel et al., 2006; Vicari et al., 2009). Moreover, the CD8+ 

subpopulation of lymphocytes is enriched in cancer sufferers and has been 

reported to either recover rapidly following or be minimally depleted by paclitaxel 

treatment (Tong et al., 2000; Westerterp et al., 2008). However, in contrast to our 

experiments, these reports generally measure cell function following cessation of 

therapy, so these effects may relate to leukopenia caused by Taxol.  

 

Murine studies demonstrate that as immune adjuvants, paclitaxel and docetaxel 

enhance anti-tumour responses. Using either DC therapies or GM-CSF-based 

vaccinations, CD8+ T cell function and CD8+-IFN-γ production are enhanced by 

paclitaxel (Chu et al., 2006; Garnett et al., 2008; Yu et al., 2003); CD4+ and CD8+ 

T cell tumour infiltration increase (Zhong et al., 2007); and epitope spreading is 

induced (Garnett et al., 2008). Most importantly, however, in combination with 

immunotherapies, taxanes inhibit tumour growth and increase progression-free 

survival (Chu et al., 2006; Emens et al., 2001; Garnett et al., 2008; Machiels et al., 
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2001; Vicari et al., 2009; Yu et al., 2003; Zhong et al., 2007). Reactivation of the 

tumour-specific immune response with chemotherapeutics seems a promising 

avenue for effective cancer treatment, particularly considering the positive results 

of such studies. However, our results show that immediate effector function is 

inhibited by Taxol prior to the observation of any anti-mitotic effects.  

 

Our system was not designed to measure the anti-tumor response, but rather the 

immediate cytolytic response to infection of CD8+ T cells. CTL-mediated cytolysis 

is drastically modified by the tumor micro-environment, and the interactions of 

CTL with tumor cells differ from those with individual TC (Breart et al., 2008; 

Mempel et al., 2006; Radoja et al., 2001; Vicari et al., 2009). We suggest that any 

enhancing effects of paclitaxel on the CD8+ T cell population will not be 

immediate, and before complete leukocyte recovery, the host immune system will 

be impaired in its ability to fight infection and elicit specific cell death in vivo.  
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Figure 5.6 

 

Theory pertaining to in vivo inhibition by Taxol 1: Killing is blocked while Taxol 

is present at significant levels, but killing returns to normal rates after drug is 

removed from the host. By 8 hours, control mice (in adoptive transfer 

experiments) have removed the majority of the TC population and killing reaches 

a plateau. Drug-treated mice at 8 hours are killing TC at a higher rate than 

controls, so the difference between the two reduces as time continues. 
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Figure 5.7 

 

Theory pertaining to in vivo inhibition by Taxol 2: Killing is functionally 

inhibited in drug treated mice. Killing occurs at a consistent but reduced rate 

compared with control mice and does not recover with drug washout. Killing will 

reach a plateau phase, but at delayed times in the presence of drug. 
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6 General Discussion 
 

6.1 General Summary of Work 

 

This thesis set out to determine the functional immunological effects of MSD. It 

specifically investigated effects of MSD on exocytic function in immune cells. 

BMMØ are a terminally differentiated cell type and thus are not susceptible to the 

anti-mitotic effects of MSD (Crume et al., 2007). Degranulation is an interphase 

CTL process that heavily involves the microtubule network (Mempel et al., 2006; 

Stinchcombe et al., 2001b; Stinchcombe et al., 2006) and could be examined 

while avoiding the anti-mitotic effects of MSD. 

 

The current study continued work in our lab showing that BMMØ production of 

TNF-α and NO are inhibited by MSD (Crume et al., 2007). It investigated the 

involvement of IFN-γ stimulation in the inhibition; assessed the kinetics of TNF-α 

production in the presence of paclitaxel; and addressed why the stimulating dose 

of LPS affects paclitaxel‟s inhibitory effect on TNF-α production. Furthermore, our 

research expanded knowledge of how TLR-4 activation alters cellular metabolic 

activity. The results of the current study implicate functional inhibition and largely 

exclude kinetic alteration as the mechanism behing MSD-mediated supression of 

BMMØ inflammatory responses.  

  

Of particular note we observed different LPS-dose responses for BMMØ 

production of TNF-α and NO, which led to different inhibitory relationships with 

paclitaxel. With increased concentrations of LPS, NO production plateaued, 

whereas TNF-α reduced to a basal level. Similar LPS dose-response curves for 

TNF-α and NO have been observed previously (Kastenbauer and Ziegler-
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Heitbrock, 1999; Shnyra et al., 1998; Stuehr and Marletta, 1985; Stuehr and 

Marletta, 1987; Takasuka et al., 1991). This refractiveness for TNF-α appears to 

be important in BMMØ responses to LPS and helps explain why paclitaxel does 

not inhibit TNF-α production above 20 ng/mL as seen in the work by Crume et al. 

(Crume et al., 2007).  

 

Similar to MØ responses to LPS, CTL-mediated cytolysis occurs after cell division 

and thus provided an alternative system in which to investigate the functional 

effects of MSD on immune processes. Furthermore, MØ and CTL are both key 

components of the cell-mediated immune response, which makes examining CTL 

and MØ together beneficial to the understanding of the wider immunological 

implications of MSD therapy.  

 

In this thesis, the results from in vitro work using CTL supported work by others 

(Knox et al., 1993) showing that concentrations of paclitaxel that induce 

microtubule bundling do not inhibit killing by murine CTL in vitro. The current study 

extended these findings to show that neither degranulation nor IFN-γ production 

by CTL were inhibited by paclitaxel treatment. Furthermore, this was the first study 

to assess the effects of peloruside on interphase CTL processes. Like paclitaxel, 

peloruside showed no inhibitory effect on CTL killing, degranulation or IFN-γ 

production in vitro and also induced microtubule bundling in CTL, albeit to a lesser 

extent than paclitaxel.  

 

Perhaps the most significant result of this thesis was attained in a murine model of 

CTL-mediated cytolysis. Investigating CTL-mediated TC death in vivo revealed an 

inhibitory effect of paclitaxel that was not apparent in vitro. Importantly, this 

occurred in the absence of anti-mitotic effects on the CTL population. This is the 
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first study (to the knowledge of the author) to assess the immediate effects of 

paclitaxel on CTL-mediated cytolysis in vivo. We believe it provides new 

information relevant to patients undergoing taxane therapy, and illustrates the 

importance of using in vivo models in the search for less invasive and increasingly 

effective treatments for cancer.  

 

It is important to consider that the interactions of CTL and TC in the tumor micro-

environment differ to those in lymphoid tissue (Breart et al., 2008; Mempel et al., 

2006), so the data may not apply directly to anti-tumour responses, but rather be 

more relevant to CTL-dependent control of infection during MSD treatment. 

Increased risk of infection following MSD therapy is generally associated with the 

anti-mitotic effect of the drugs (Iura et al., 2009; Souglakos et al., 2002). The 

current study supports work by others (Chuang et al., 1994; Crume et al., 2007; 

Markasz et al., 2008) demonstrating functional inhibition of both CTL and MØ 

responses by paclitaxel. Collectively these results suggest that the increased risk 

of infection during paclitaxel therapy may occur in part due to functional effects, 

and not solely anti-mitotic effects of the compound. 

 

Knowledge of how the immune system is modified by chemotherapeutics is 

becoming more important, particularly with increasing investigation into co-

immuno-chemotherapies. Numerous recent studies identify enhancement of the 

anti-cancer immune response by taxanes both clinically and in murine models 

(Garnett et al., 2008; Machiels et al., 2001; Vicari et al., 2009; Westerterp et al., 

2008; Yu et al., 2003; Zhang et al., 2008; Zhong et al., 2007). These studies 

generally assess immune responses following cessation of therapy, whereas the 

current study looked at immune responses during MSD treatment. The results of 

the current thesis suggest that immediate functional repression of CTL can occur 
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during MSD treatment in vivo. Hopefully a better understanding of the 

immediate and long-term benefits and risks of MSD treatment will allow for 

improved quality of life and longer progression-free survival for cancer patients.  

 

As we understand more about the immunological implications of MSD treatment, 

we are not only better able to limit and control undesirable side effects, but can 

also find other clinical applications for the drugs. Repressing the immune system 

can be desirable in settings outside of cancer. The anti-mitotic properties of MSD 

have already been exploited in a murine model of multiple sclerosis (Cao et al., 

2000), and utilised clinically to limit in-stent restenosis (occlusion of a stent by 

tissue regrowth) (Tanabe et al., 2003). Furthermore, paclitaxel has been shown to 

block cell extravasation and vascular leakage during murine LPS-induced sepsis 

(Mirzapoiazova et al., 2007), suggesting MSD have the potential to prevent 

cytotoxicities involving aberrant cell trafficking. It is important, however, to 

consider the currently unavoidable toxic effects of high doses of MSD (Tong et al., 

2000; Westerterp et al., 2008). As such we are not advocating that treatments with 

tolerable side effects be replaced with MSD, but rather aim to illustrate the 

potential use and development of MSD for contexts distinct from cancer therapy. 

Better understanding of the functional modifications caused by MSD in vivo may 

enable appropriate application to other diseases in the future. 

6.2 Future directions 

 

The current study provides some evidence that the immune system is functionally 

altered by MSD therapy and paves the way for continuing investigations in both 

BMMØ and CTL. Some, but not all, of the possible interactions leading to 

depressed cytokine production in BMMØ by paclitaxel were assessed in the 

current study. Future research examining the signalling molecules, transcription 
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factors and mRNA transcript levels in LPS stimulated, paclitaxel-treated 

BMMØ may help determine the functional cellular level at which cytokine 

production is blocked by MSD. Further, visualising cytokine transport and release 

from BMMØ treated with MSD or DSD could identify how microtubule-dependent 

transport mechanisms are involved in cytokine production.  

 

Numerous questions regarding the effects of MSD on CTL function in vitro and in 

vivo provide potential avenues of future research. Firstly, while murine CTL 

function is not inhibited in CTL treated with MSD (this thesis & Knox et al., 1993), 

exactly how lytic granules can traffick to the IS in CTL with an aberrant 

microtubule network remains unclear. Modified polarisation microscopy has been 

used to visualise the interaction of lytic granules with microtubules in live cells 

(Poenie et al., 2004), and this technology may be useful in determining how CTL 

can deliver lytic granules to TC when treated with MSD in vitro. Secondly, it would 

be of great interest to extend the in vivo component of this project and determine 

if peloruside or other MSD inhibit CTL-mediated cytolysis in vivo to the same 

extent as Taxol. Lastly, the question of how CTL-mediated cytolysis in vivo was 

altered by Taxol warrants further investigation. Flow cytometric assessment of 

CTL and TC surface phenotype and tissue distribution may provide basic 

information about how the cells can interact following MSD administration. 

Further, using visualisation techniques such as multiphoton intravital microscopy 

as used by Mempel et al. (Mempel et al., 2006) could allow for clear observation 

of how CTL and TC interact in vivo in mice treated with MSD.  

6.3 Final Conclusions 

 

This project aimed to understand the immunological implications of MSD therapy 

with specific regard to immune-mediated exocytosis. The results of this thesis can 
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be summarised in two statements. First, LPS-activated BMMØ production of 

TNF-α and NO is likely to be inhibited at a functional cellular level. Second, 

paclitaxel and peloruside do not alter CTL-mediated cytolysis, degranulation or 

IFN-γ production in vitro; whereas paclitaxel confers an inhibitory effect on CTL-

mediated cytolysis in vivo. This project is the first to examine the in vitro effects of 

peloruside on interphase CTL processes. It is also the first to show inhibition of 

CTL-mediated cytolysis in vivo by Taxol. The results of this thesis demonstrate 

that paclitaxel can functionally repress components of the immune system and 

suggest that patients undergoing MSD therapy may be unable to fight infection 

long before the anti-mitotic effects of MSD are apparent. 
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 Appendices 
 

Appendix A: Recipes 

 
Phosphate Buffered Saline (PBS): 

Sterile double distilled water with: 

Na2HPO4 8.7 mM 

NaH2PO4 1.3 mM 

NaCl  145 mM 

 

FACS buffer:  

2% FCS 

0.1% Sodium Azide 

97.9% PBS. 

 

Complete T cell Medium (CTCM) – Medium for MØ work: 

85.9% Dulbecco‟s Modified Eagle Medium (dMEM; Invitrogen) 

10% FCS 

1%HEPES (1 M) (Sigma) 

1%L-Glutamine (200 mM) (Invitrogen) 

1% Penicillin-Streptomycin (Penstrep; 100000 U/mL, 10000 g/mL respectively; 

Invitrogen) 

0.1% β-Mercaptoethanol (1000 x 55 mM; Invitrogen) 

1% Non-essential Amino Acids (10 mM 100x;Invitrogen) 

 

Handling medium - For MØ work: 

96% dMEM; 

3% HEPES; 
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1% PenStrep. 

 

Complete Iscove’s Modified Dulbecco’s Medium (cIMDM) – Medium for CTL 

and BMDC work: 

93.9% Iscove‟s Modified Dulbecco‟s Medium (IMDM; Invitrogen) 

5% FCS 

1% Penstrep 

0.1% β-Mercaptoethanol 

 

Freezing Medium – For cell storage: 

90% DMSO (Sigma) 

10% FCS 

 

Greiss Reagents: 

 A: 1% w.v Sulphanilamide in 2.5% phosphoric Acid 

 B: 0.1% w/v N-(1-naphthyl) ethylenediamine in 2.5% phosphoric Acid 
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Appendix B: Antibodies: 

 

Streptavidin-CyC (BD Bioscience) 

Anti-I-Ab-PE (BD Bioscience) 

Anti-CD11b-Fitc (BD Bioscience) 

Anti-CD107a-Fitc (BD Bioscience) 

Anti-CD8a-Cyc (BD Bioscience) 

Anti-Vβ5.1/5.2-PE (BD Bioscience) 

Anti-CD44-AP (BD Bioscience) 

Anti-CD62L-AP (BD Bioscience) 

IgG2-α-Fitc (BD Bioscience) 

IgG2-α-PE (BD Bioscience) 

IgG2-α-Cyc (BD Bioscience) 

Anti-F4/80-biotin (Serotec, Oxford, UK) 

Anti-alpha-tubulin-IgG (Abcam) 

Alexafluor 488 polyclonal anti-rabbit IgG (Invitrogen) 

Anti-Vα2-Fitc (eBioscience, San Diego, CA, USA) 

Anti-CD45.1-APC (eBioscience) 

Anti-mouse-CD16/32 (FcR block) (eBioscience) 
 


