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Abstract

Cosmography is the part of cosmology that proceeds by making minimal dynamic as-
sumptions. That is, one does not assume the Friedmann equations (Einstein equa-
tions) unless and until absolutely necessary. On the other hand, cosmodynamics is the part
of cosmology that relates the geometry to the density and pressure using the Friedmann
equations. In both frameworks, we consider the amount of information and the nature
of the constraints we can obtain from the Hubble flow in a FLRW universe. Indeed, the
cosmological parameters contained in the Hubble relation between distance and redshift
provide information on the behaviour of the universe (expansion, acceleration etc...). In
the first framework, it is possible to concentrate more directly on the observational situa-
tion in a model-independent manner. We perform a number of inter-related cosmographic
fits to supernova datasets, and pay particular attention to the extent to which the choice of
distance scale and manner of representing the redshift scale affect the cosmological param-
eters. In the second framework, we use the class of w-parameter models which has become
increasingly popular in the last decade. We explore the extent to which a constraint on the
w-parameter leads to useful and non-trivial constraints on the Hubble flow in terms of cos-
mological parameters H(z), density p(z), density parameter €2(z), distance scales d(z), and
lookback time 7'(z).

On another front, Numerical Relativity has experienced many breakthroughs since 2005,
with full inspiral-merger-ringdown simulations now possible. One of the main goals is
to provide very accurate templates of gravitational waves for ground-based and space-
based interferometers. We explore the potential of a very recent and accurate numerical
method, the Spectral Element Method (SEM), for Numerical Relativity, by treating a singu-
lar Schwarszchild black hole evolution as a test case. Spectral elements combine the theory
of spectral and pseudo-spectral methods for high order polynomials and the variational
formulation of finite elements and the associated geometric flexibility. We use the BSSN
formulation of the Einstein equations with the method of the moving punctures. After ap-
plying the variational formulation to the BSSN system, we present several possible weak
forms of this system and its spectral element discretization in space. We use a Runge-Kutta
fourth order time discretization. The accuracy of high order methods can deteriorate in the
presence of discontinuities or sharp gradients. We show that we can treat the element that
contains the puncture with a filtering method to avoid artificial and spurious oscillations.
These might form and propagate into the domain coming from discontinuous initial data
from the BSSN system.
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“I like mathematics because it is not human
and has nothing particular to do with this
planet or with the whole accidental universe
— because, like Spinoza’s God, it won't love
us in return.”

Bertrand Russell (1872-1970)

Introduction

his thesis mainly deals with problems in General Relativity and Cosmology, however,

as indicated in the title, “Applied Mathematics of space-time and space+time: Prob-
lems in General Relativity and Cosmology”, Applied Mathematics plays a huge part in this
work. Mathematics offers wonderful tools that allows one to explore and compare real-
ity with physics. Some of these tools (non-exhaustive) used here include: statistics, Taylor
series, convergence, data fitting, integrals, inequalities, functional analysis, numerical anal-
ysis and numerical methods, polynomials, differential geometry and so on. Many different
mathematical topics it may seem, but they are all related and linked together here to attack
two main problems in Einstein’s theory of gravitation. The “space-time”, refers to Cosmol-
ogy in a traditional 4D spacetime description of General Relativity, whereas, “space+time”
emphasizes the time and space splitting of spacetime used in Numerical Relativity.

The first part of this thesis treats topics in General Relativity and Cosmology, most of
these investigations have been conducted as a collaborative work with my superviser Matt
Visser, whereas the second part considers the application of a very recently developed nu-
merical method to Numerical Relativity, this part of the thesis is the result of a collaboration
with Mark Hannam.

Regarding cosmology, what amount of information or constraints can one obtain from
the Hubble flow in a FLRW (Friedmann-Lemaitre-Robertson-Walker) universe? How gen-
eral, precise, and useful, can results be under a minimum of theoretical assumptions? These
are the key questions that motivate the first part of this thesis.

Chapter 2 introduces some of the main and basic notions of modern Cosmology in a
FLRW universe. A Friedmann-Lemaitre-Robertson-Walker universe relies on the Coper-
nican principle of isotropy (direction independence) and homogeneity (position indepen-
dence) of our universe. We will introduce the cosmological parameters whose values pre-
scribe the behaviour of the universe, as well as standard definitions of cosmological dis-
tances. There are many notions of distance scale in Cosmology, which one should one use?
We will clarify these concepts and introduce some new definitions leading to alternative
Hubble laws. We will see how we can extract information on the cosmological parameters
using the Supernovae type Ia data (“SNIa”).

Chapter 3 discusses and presents results obtained in the context of Cosmography, that
is, without assuming the Einstein field equations. In this framework, we minimize the
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number of physics assumptions that go into the model. Is the expansion of the universe
still accelerating in this context? What happens when considering realistic estimates of sys-
tematic uncertainties (based on the published data)? Moreover, can we obtain values for
other cosmological parameters and therefore further characterize the behaviour of the uni-
verse? We will explore the aforementioned questions and try to answer them in this chapter.

Chapter 4 presents results developed within the framework of Cosmodynamics, where
general relativity is now assumed. With these further assumptions, we can use the classical
energy conditions to place very general and robust bounds on various cosmological param-
eters, and thereby get a qualitative and quantitative insight on how strange physics gets.
Are the various energy conditions and their associated bounds on the cosmological param-
eters inter-related? Is a systematic and exhaustive analysis possible? Confronting some of
these bounds with the supernova data, can we say anything concerning the universe? In the
absence of any detailed understanding of the precise nature of the cosmological equation
of state p(p), just how much can be deduced with limited information? We will see that in
fact, we can obtain even more general bounds by just assuming a general equation of state
of the form p = wp.

In Numerical relativity, there have been many breakthroughs since 2005, with full inspi-
ral-merger-ringdown simulations now possible. One of the main goals is to provide very
accurate templates of gravitational waves for ground-based and space-based interferome-
ters to detect. What is the potential of the Spectral Element Method for Numerical Relativ-
ity? Would this method allow for better accuracy and efficiency, and possibly contribute to
gravitational wave detection?

Moving on to the second part of this thesis, we summarize basic notions of Numerical
Relativity in Chapter 5. We outline the splitting of space and time necessary for numerical
simulations, as well as stable reformulations of the Einstein equations in this context. We
quickly describe the moving puncture method and BSSN formulation of the field equations.

Chapter 6 is devoted to the introduction of the Spectral Element Method (SEM) in a very
general context. We discuss how to obtain the weak formulation from the variational for-
mulation of a given problem. We show how the domain can be discretized into elements,
and the numerical solution approximated with Lagrange-Legendre basis functions. We
present the assembly process over each element to form a final global system of algeabric
equations. We also mention some very general and powerful theorems of existence and
uniqueness of a solution.

Chapter 7 illustrates the spectral element method in practice with a 1D and 3D wave
equations. We show in much detail the SEM formulations and final discretized matrix sys-
tems obtained. We then present some numerical results one can achieve with this method.

In Chapter 8, we apply the SEM to the BSSN system with moving punctures. We start
with the strong formulation of the system, and through the variational formulation obtain
a weak formulation. After domain and elemental discretization, we describe the elemental
matrix system. Consequent numerical results are presented in Chapter 9.




Finally, Chapter 10 contains the conclusions of this work, as well as suggestions and
remarks about future work in respective fields.
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General Relativity and Cosmology
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Introduction to Cosmology in a FLRW universe

Cosmology is the study of the dynamical structure of the universe on the largest scales
of space and time, considered as a whole.

Contemporary cosmological models are based on the idea that the universe is, on aver-
age, the same overall. That is, when describing the Universe as a whole one assumes that it
is filled with a continuous medium (fluid, gas or radiation). This is based on a very simple
principle, called the cosmological principle, which is a generalization of the Copernican
principle:

The cosmological principle: at each epoch, the universe presents the same aspect from
every point, except for “small” local irregularities [7]. When averaged over sufficiently
large volumes the universe and the matter in the universe should be isotropic and homoge-
neous.

e [sotropy states that space looks the same no matter what direction one looks at (direc-
tion independence).

o Homogeneity is the statement that the metric is the same throughout the space (position
independence).

Astronomical observations suggest that the universe is homogeneous and isotropic when
viewed on the largest scales. Figure 2.1 is a good illustration of homogeneity, the photo
taken from the Hubble telescope covers an area 2.5 arcminutes across, two parts in a mil-
lion of the whole sky, which is equivalent in angular size to a 65 mm tennis ball at a distance
of 100 metres. The image was assembled from 342 separate exposures taken with the Space
Telescope’s Wide Field and Planetary Camera 2 over ten consecutive days between Decem-
ber 18 and December 28, 1995. Traditionally this homogeneity has been assumed up to
small fluctuations that are large enough to include clusters of galaxies. Note that figure 2.1
is not an observational proof of homogeneity in any sense: The cosmological principle still
has no direct observational verification at present. Indeed, homogeneity is a very crude
assumption as the real Universe has more of a granular structure. The scale at which homo-
geneity sets in, is still not completely certain. Voids with diameters of order 10® light years
are ubiquitous, forming at least 40% of the volume of the universe [8], [9], and are typically
surrounded by bubble walls containing galaxy clusters. The largest feature observed (the
Sloan Great Wall [10]) is 1.47 x 10 light years long. In the history of Cosmology there has
been a constant evolution of the definition of the size of the elementary unit to save the
assumption of homogeneity and isotropy of the Universe in the large. Hence we simply
assume homogeneity for some suitable defined cell size. Note that the universe is assumed
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Figure 2.1: Small region in the constellation Ursa Major, montage constructed from a series
of observations by the Hubble Space Telescope.

to be spatially homogeneous and isotropic at each instant of cosmic time, specifically, we
are talking about homogeneity on each one of the 3-dimensional space-like hypersurfaces.

When looking at distant galaxies, they seem to be receding from our galaxy. It appears
that the universe is not static, but changing with time. Thus most cosmological models are
built on the fact that the universe is homogeneous and isotropic in space, but not in time.
Observationally, the universe today is significantly different from the universe of 10!° years
ago, and radically different from the universe of 1.5 x 10'° years from now.

The realization that the Universe may have a history, has been considered very grad-
ually by astronomers and physicists over time. The expansion of the Universe was dis-
covered by Hubble in 1929, and the expansion itself had already started to be described by
the Friedman (1922) and Lemaitre (1927) solutions to Einstein’s equations. Einstein added a
cosmological constant to his theory to try to force it to allow for a static universe with matter
in it. However, the Einstein universe is unstable. Since then, cosmologists have been trying
to reconstruct the possible sequence of events in the evolution of the Universe. The FLRW
(Friedmann-Lemaitre-Robertson-Walker) spacetime is the foundation stone of the standard
Big Bang theory. Some of the main characteristics are that this metric satisfies the Einstein
field equations for a perfect fluid, and is isotropic and homogeneous. The FLRW model has
some clear successes, fitting the Hubble law (reasonably well), the cosmic microwave spec-
trum (to very high accuracy), and being compatible with the measured isotropies and the
assumption of homogeneity. However, this standard model also has some weaknesses. For
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example it lacks a full description of the formation of large-scale structure, and sometimes
the inflation scenario introduces new problems, instead of solving all the uncertainties in-
herent in the naive FLRW universe.

2.1 A brief history of the Universe

Observations suggest that the universe is approximately 13.7 billion years old. The history
of the universe is divided into different periods called epochs, according to the dominant
forces and processes in each period. The main outline of the history of the universe has 3
main phases.

After the initial Big Bang explosion, the universe was very hot until at least 10736 sec-

onds. Between 1073% seconds and 10732 seconds after the Big Bang, there was a period
of exponential growth called cosmic inflation. Near the end of cosmological inflation, the
universe was then cold and empty, and the immense heat and energy associated with the
early stages of the big bang was re-created through the phase change associated with the
end of inflation, through a reheating period. The very early universe was the split second
in which the universe was so hot that particles had energies higher than those currently
accessible in particle accelerators on Earth. Note that the details are largely based on edu-
cated guesses. The evolution of the universe then proceeded according to the known rules
of general relativity and high energy physics.

The last scattering epoch occurred somewhere between 300 000 and 380 000 years after
the Big Bang!. This is where hydrogen atoms appeared. Note that nuclei were formed ear-
lier at the period of nucleosynthesis, whereas the first protons, electrons and neutrons were
formed at reheating. With the formation of neutral hydrogen, the cosmic microwave back-
ground was emitted. Hydrogen and helium are at the beginning ionized, as the universe
cools down, the electrons get captured by the ions making them neutral. This process is
known as recombination, the photons can now travel freely, which means that the universe
has become transparent. The photons emitted right after the recombination, that can there-
fore travel undisturbed, are those that we see in the cosmic microwave background (CMB)
radiation. Therefore the CMB is a picture of the universe at the end of this epoch.

Finally, the epoch of structure formation began, when matter started to aggregate into
the first stars and quasars, and ultimately galaxies, clusters of galaxies and superclusters
formed. The oldest identified quasar (CFHQS 1641+3755) is at 12.7 billion light-years away.
Our solar system was formed approximately 8 billion years ago.

The ultimate fate of the universe is not known, there are several scenarios but according
to the standard ACDM model (see section 2.9 for more details), it will continue expanding
forever.

'If last scattering is deemed to “begin” when the ionization fraction has dropped to 10% (a standard defini-
tion of recombination) then this occurs at z ~ 1250, whereas photon decoupling (which might be deemed to be
the “end” of last scattering) occurs at z = 1090. Using cosmological parameters for the concordance cosmology
as given by Komatsu et al [11], one is led to the expansion ages quoted above, using the exact solution for a
spatially flat universe with matter and radiation (€2x being negligibly small at that epoch).
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2.2 Cosmography

Simply by using the assumptions of isotropy and homogeneity, a cosmological model can
be derived without yet using the Einstein equations. This homogeneous and isotropic cos-
mological model is called the Friedmann-Lemaitre-Robertson-Walker (FLRW) geometry
(2.1), and is given by:

2 _ 3.2 2
ds® = —dt” + a(t) {1—l<:r2

+ 12 [d6? + sin” 0 do?] }
where a(t) is the scale factor of the universe. There are only three values of interest for the
parameter k:

e k = —1, this corresponds to a negative curvature (for the hyperboloid);

e k= 0, this corresponds to no curvature (flat space);

e k = +1, this corresponds to a positive curvature (for the 3-sphere).

That is, the assumptions of homogeneity and isotropy alone have determined the space-
time metric up to three discrete possibilities of spatial geometry k£ and the arbitrary positive
function of the scale factor a(t).

Observational evidence strongly suggests that our universe (or the part of our universe
within our causal past), is well described by a Friedmann-Lemaitre-Robertson-Walker
model, and indeed a k = 0 model, at least as far back in time as the decoupling of mat-

ter and radiation.

For recent work on cosmographic analyses see [12, 13, 14, 15, 16].

2.3 Cosmodynamics

Now, by substituting the spacetime metric (2.1) into Einstein’s equations (2.2):

_ 8nGy

SN 1,

some predictions for the dynamical evolution of the system can be obtained.

But first, we need to describe the matter content of the universe in terms of the stress-
energy tensor. Using the assumptions of isotropy and homogeneity, the stress-energy tensor
of matter in the present universe is approximated in an orthonormal frame by:

Gab

p 00 0

ab 0 0 0

ab __ p

=100 p 0
000 p

Here p and p are the average density and pressure due to the galaxies, stars, clouds of dusts
and so on.
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Applying the Einstein equations imply the two following Friedmann equations (in the
context of a FLRW universe):

at k

SrGap = 3[a2+a2]
a k a

STGNp = — |5+ 5+ 2|

And consequently, equation (2.4) and equation (2.5) imply:

87Gy [p + 3p] = *62-

The Friedmann equations completely specify the evolution of the universe as a function of
time. By imposing homogeneity and isotropy as characteristics of the universe that remain
unchanged with time (on suitably large scales), we have implicitly restricted any evolution
to affect only one remaining characteristic: its size a(t). The Friedmann equations are there-
fore equations for the scale factor a(t), ultimately measuring the evolution of the size of any
freely expanding length scale (gravitational, electromagnetic, etc...) in the universe.
Equation 2.4 tells us about the velocity of the expansion and or contraction of the universe,
being an equation in a. On the other hand, equation 2.5 involves & which tells us about the
acceleration/deceleration of the expansion or contraction.
In equation 2.4, if £ = 0, the universe is spatially flat and equation 2.4 implies that it has to
become infinite with the density p approaching zero, in order for the expansion to stop. If
k = 1, the expansion can stop at a finite density at which the matter contribution is balanced
by the space curvature. Thus, at a finite time, the universe will stop expanding and will re-
collapse. Finally, if £ = —1, the universe will continue to expand forever even if matter is
completely dispersed.
Notice that the spatial curvature is completely absent from 2.6, this means that the accel-
eration/deceleration of the expansion or contraction of the universe is independent of the
spatial curvature k. This equation also reveals that gravity is always an attractive force.
The difficulty remains to detemermine a suitable matter model for p and p, that is to
make even more progress, it is necessary to choose an equation of state between p and p.

2.4 Cosmological parameters

This section introduces some of the basic terminology associated with the cosmological
parameters. The values of these parameters describe the behaviour of the universe. It
is standard terminology in mechanics that the first four time derivatives of position are
referred to as velocity, acceleration, jerk and snap. We will see that we have very similar
definitions in cosmology for the cosmological parameters.

24.1 The Hubble parameter

The rate of expansion is characterized by the Hubble parameter:

1da a
H(t)=+- - =
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The Hubble parameter quantifies the speed with which the size of the universe is increas-
ing. The value of the Hubble parameter at the present epoch is the Hubble constant Hj.
There has been a great deal of controversy about what its actual value is, but currently, the
consensus measurements [17] (2006) give:

Hy =173 i_i (km/sec)/Mpc,

where Mpc stands for megaparsec, 1 Mpc 2 3 x 102*cm. One parsec is 3.08 x 10'8cm = 3.26
light years.

The universe is expanding, therefore we know that @ > 0. From equation (2.6) we also
know that @ < 0 when assuming that the pressure p and the density p are both positive.
The universe must have been expanding at a faster and faster rate when going back in time.
If we consider that the universe has always been expanding at the present rate, then at the
timeT = H! =a/a ago, the scale factor a would be null, a = 0. However, the expansion
rate was actually faster, therefore, the time at which a = 0 was even closer to the present.
By assuming homogeneity and isotropy, general relativity makes the prediction that at a
time less than H ! ago, the universe was in a singular state. This singular point referred to
as the Big Bang had an infinite density of matter and an infinite curvature of spacetime.

2.4.2 The deceleration parameter

The value of the Hubble parameter changes over time either increasing or decreasing de-
pending on the sign of the deceleration parameter:

1 d%a [1 da]™? a
H=_= - - .2.9
at) a dt? [a dt] aH?

The deceleration parameter is a dimensionless number which measures the rate of change
of the rate of expansion H. Different values, or ranges of values, of gy correspond to dif-
ferent cosmological models. In principle, it should be possible to determine the value of gy
observationally. For example, for a set of identical supernovae within remote galaxies, the
relationship between apparent brightness and redshift is dependent on the value of the de-
celeration parameter. Although measurements of this kind are notoriously difficult to make
and to interpret, recent observations tend to favor accelerating universe models. In [18], it

was estimated that
go = —0.557075.

As we will see later on in this thesis this value of g is to be taken very carefully. It turns
out to be highly model-dependent, and the argument in favor of an accelerating universe is
not completely as tight as is commonly believed.

2.4.3 The jerk parameter

The Jerk parameter (the third time derivative) is also sometimes referred to as jolt. Less
common alternative terminologies are pulse, impulse, bounce, surge, shock, and super-
acceleration. The dimensionless jerk parameter is defined by:

1 d% [1 da]™? i
() = - - - (2.11)
i) RPRRTE [a dt} aH3
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2.4.4 The snap parameter

The Snap parameter (the fourth time derivative) is also sometimes called jounce. The fifth
and sixth time derivatives are sometimes somewhat facetiously referred to as crackle and
pop. The dimensionless snap parameter is defined by:

1 d*a [1 da]™* a
2.4.5 The density parameter
Another useful quantity is the energy density parameter,
81G p
Q= = , 2.13
32" prubble
where the Hubble density is
3H?
ubble = ——- 2.14
PHubbl 381G

This quantity (which will generally change with time) is called the Hubble density (some-
times also referred to as the critical density) and current measurements? give:

PHubble = 2.775 x 101 h2 My Mpc=3, 515

where Mg is the solar mass and £ is the present day normalized Hubble expansion rate
with Hy = h(100km/s/Mpc). Using the Friedmann equation (2.4), we can then write:

k
The sign of k is therefore determined by whether the energy density parameter 2 is greater
than, equal to, or less than one. Indeed,

p < pPHubble — <1 < k=-1 < open
P = pPHubble <« =1 < k=0 <+ flat 2.17
P> PpHubble < 2>1 < k=41 <« closed

The density parameter, then, indicates which of the three Robertson-Walker geometries de-
scribes our universe. Determining it observationally is an area of intense investigation,
however, presently, it is thought to be [11]:

2 =1.02+0.02. 2.18

2.4.6 Analogy with mechanics

Cosmological parameters are used in a similar fashion as parameters used in mechanics, as
illustrated in Table 2.1.

2See S. Eidelman et al. from the Particle Data Group [19] for recent measurement values.
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Table 2.1: Analogy between Mechanics and Cosmology

] Mechanics \ Cosmology ‘
position z(t) scale factor a(t)
velocity v(t) Hubble parameter H (t)

acceleration a(t) deceleration ¢(t)
jerk j(t) jerk parameter j(t)
snap s(t) snap parameter s(t)
crackle
pop

The deceleration, jerk, and snap parameters are dimensionless, and we can write a rela-
tion between the scale factor and these cosmological parameters:

1 1 .
a(t) = ag {1+H0 (t_tO)_§CIOHg (t—t0)2+§JoH3 (t — to)?
4!

o so HY (t—t0)4+0([t—t0]5)}- 219

Equation (2.19) is a key formula that links the cosmological parameters to the behaviour of
the scale factor, and by extension the behaviour of the universe.

2.5 Cosmological Distance Scales

In cosmology there are many different and equally natural definitions of the notion of dis-
tance between two objects or events, whether directly observable or not. Before defining
these distance scales, we first need to introduce the cosmological redshift.

2.5.1 The Cosmological Redshift

The energy of a particle will change as it moves in a spacetime geometry similarly to the
way it would move in a time-dependent potential. The energy of a photon is proportional
to frequency, that change in energy is called the cosmological redshift. Figure 2.2 illustrates
this change of energy for a light ray emitted at ¢, and observed at ,,.

General definition of the redshift (model independent)

Let A, be the wavelength of light ray emitted from some galaxy and A, the wavelength of
the same light ray observed on Earth. The redshift is defined in its familiar form by:

14




2.5. COSMOLOGICAL DISTANCE SCALES

t
A to+ At,
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V t, te + Ate
At,
...... n
> 7
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Figure 2.2: The cosmological redshift is the change of energy between a light ray emitted
at t, and observed at ¢,,.

The rate of change of phase of the light wave v, can be measured by a first observer
moving with the 4-velocity u$ by

vy = kiquf, 2.21

where £k, is the wave vector of the ray. For a short time interval At;, the phase will change
by AP = k,u“Aty. A second observer moving with the velocity u§ and measuring the
change of phase at another spacetime point, the same change of phase AP will take a dif-
ferent time interval Aty. ki, and ks, are respectively affinely parametrized tangent to the
null curve, the light ray has to be geodesic. Therefore we have the following ratio:

Atl (ka ua)g
— = —= 2.22
Atoy (ka ua)l

There is a relationship between the change of phase and the frequency v which results in
the following:

- = : 2.23
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Since \,/\e = ve/v,, we have the general model independent cosmological redshift:

Ve (koz Ua)2
142 = —=_——-+-. 2.24
Vo (ko u*)1
Finally, in terms of light emitted and observed notations, the general cosmological redshift
formula becomes:

1o = (Faue 2.25

(ka u®)o
In order to apply the above equation (2.25) to observational results, one has to integrate the
equations of a null geodesic, which can be very difficult in general.

The redshift in a FLRW universe

To determine the redshift formula in a FLRW universe, one has to know the field of vectors
tangent to light rays k¢. Using the spatial homogeneity property of the metric, all points
within the same space ¢ = constant are equivalent, therefore a calculation will be indepen-
dent of the spatial position of the observer. We can then assume an observer to be at the
origin r = 0. A null geodesic sent off radially lies in the surface § = ¢ = constant and obeys
the following equation:

2
_ 2 G (t) 2
0 = dt 7(1 — k:r2)dr . 2.26

For an incoming light ray (proceeding towards the observer) we have the following relation:

n
no
~

[
te a(t) re V1-— kr? .
We can define the following affine parameter v on the geodesic

dt 1

dv — a(t)’

N
o
®

the tangent vector in this parametrisation can be written as

—1 1
k® = — /1 — kr2 .
(a(t)’ () " ’0’°>

N
[*)
©

Since the velocity field is u* = §%, we have

oy, - L
K* u, = o) 2.30

Consequently, the cosmological redshift in a FLRW universe can be written as:

a(to)
a(te)

We now have an implicit relation between redshift and time, and we can define distance
scales as a function of the redshift rather than time.

2.3

'

1+2
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2.5.2 Original Hubble law

The original Hubble law gives a simple linear relation between the velocity of recession of
an object V" and its observed distance d:

V =Hpd. 2.32

For sufficiently close galaxies this relation is a very good approximation. The recession of
galaxies away from us does not imply that we are at the centre of the universe: Hubble’s
law implies that there is no centre that can be deduced from the expansion itself. Figure 2.5
illustrates this relation with observational data.

2.5.3 Standard (Popular) distance scales

The luminosity distance is:

: c * Hy
= 1 2.
dr(z) ap (14 z) sing {Ho w0 ) T dz} , 33

where

sin(z), k=+1;
sing(z) = x, k = 0; 2.34
sinh(z), k= -1

By changing variables and adopting definitions as in equations (2.33) and (2.34), we can
rewrite the luminosity diameter distance in an alternative exact general form, V z € [—1, +00)
and V fixed Qo3

sinh [m IS % dz}

d(z) = — (1+32) = ,

Hy

where we note
> 1, k= +1;
Qo =1, k=0; 2.36
<1, k=-—1.

Observe that by continuity of the functions sinz/z and sinhz/x as + — 0, the function
dr(z) is also continuous as 2y — 1%. For convenience, from equation (2.35), the luminosity
distance is given by

¢ sinh [\/1 — Qo J]

d = (142) — , 2.37
where J is the integral defined by
Z H e d
J = 0 dr = Hoao/ . 2.38
0 H(Z) a @Q
3 Another notation that is sometimes used is 2, = 1 — Qq, so that k = —sign(Q).
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It is quite standard to write the luminosity distance versus redshift relation [20, 21] as a
Taylor expansion series in z:

dL(z):;jrz{l—l—;[l—QO]z—i—O(z?)}, 2.39

and its higher-order extension [22, 23, 24, 25]

CcCZz

dL(Z) = H()

1 1 .
{1+2[1—qo]z+6[qo+3q(2)—(]0+(20)]22

1 f . . :
+o; (2 — 2g0 — 15¢3 — 15¢§ + 10g0jo + 570 + so + 2(1 + 3q0)Q0] 2* + O(z*)

—

n
N
o

The distance modulus is:
pup =5 loggldr /(10 pc)] =5 logyoldr/(1 Mpc)] + 25. 2.41

Note that the distance modulus can be rewritten in terms of traditional stellar magni-

tudes as
WD = Happarent — Mabsolute-

The continued use of stellar magnitudes and the distance modulus in the context of cosmol-
ogy is largely a matter of historical tradition, though we shall soon see that the logarithmic
nature of the distance modulus has interesting and useful side effects. Note that we prefer
as much as possible to deal with natural logarithms: In z = In(10) log;, z. Indeed

5
so that _
Infdy/(1 Mpe)] = ——[up — 25]. 0.44

2.5.4 More distance scales

Instead of using the standard default choice of luminosity distance dy, let us now consider
using one or more of:

The photon flux distance:
dr,

(1+2)1/2
The photon flux distance dr is based on the fact that it is often technologically easier to
count the photon flux (photons/sec) than it is to bolometrically measure total energy flux
(power) deposited in the detector. If we are counting photon number flux, rather than
energy flux, then the photon number flux contains one fewer factor of (1 + z)~!. Converted
to a distance estimator, the “photon flux distance” contains one extra factor of (1 + z)~1/2
as compared to the (power-based) luminosity distance.

drp = 2.45
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The photon count distance:
dr,
dp = ——. 2.46
-

The photon count distance dp is related to the total number of photons absorbed without
regard to the rate at which they arrive. Thus the “photon count distance” contains one
extra factor of (1 + 2)~! as compared to the (power-based) luminosity distance. Indeed
D’Inverno [7] uses what is effectively this photon count distance as his nonstandard defini-
tion for luminosity distance. Furthermore, though motivated very differently, this quantity
is equal to Weinberg's definition of proper motion distance [20], and is also equal to Peebles’
version of angular diameter distance [21]. That is:

dP = dL,D’Inverno = dproper,Weinberg = dA,Peebles' 2.47

The deceleration distance: J
dog = —+~ . 2.48
Q (1 _'_2)5/2

The quantity dq is (as far as we can tell) a previously un-named quantity that seems to have
no simple direct physical interpretation — but we shall soon see why it is potentially useful,
and why it is useful to refer to it as the deceleration distance.

The angular diameter distance:
dr,
da = 22

The quantity d 4 is Weinberg’s definition of angular diameter distance [20], corresponding
to the physical size of the object when the light was emitted, divided by its current angular
diameter on the sky. This differs from Peebles” definition of angular diameter distance [21],
which corresponds to what the size of the object would be at the current cosmological epoch
if it had continued to co-move with the cosmological expansion (that is, the “comoving
size”), divided by its current angular diameter on the sky. Weinberg'’s d4 exhibits the (at
first sight perplexing, but physically correct) feature that beyond a certain point d4 can
actually decrease as one moves to older objects that are clearly “further” away. In contrast
Peebles’ version of angular diameter distance is always increasing as one moves “further”
away. Note that

dA,Peebles = (1 + Z) dA- 2.50
See reference [26] for more details on distance measures in cosmology. Obviously

dr, > dp >dp > dg > da.

Furthermore these particular distance scales satisfy the property that they converge on each
other, and converge on the naive Euclidean notion of distance, as z — 0.

To simplify subsequent formulae, it is now useful to define the Hubble distance *

dg = — 2.52

*The Hubble distance dir = c/Hy is sometimes called the Hubble radius, or the Hubble sphere, or even the
“speed of light sphere” [SLS] [27]. Sometimes Hubble distance is used to refer to the naive estimate d = dy =
coming from the linear part of the Hubble relation and ignoring all higher-order terms — this is definitely not
our intended meaning.
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so that for Hy = 73 fi (km/sec)/Mpc [17] we have

di = 4100 7240 Mpc. 2.53
Furthermore we choose to set
kc? k d2
Q=1+ ——=1 iy 2.54
T W T

For our current purposes (2 is a purely cosmographic definition without dynamical con-
tent. (Only if one additionally invokes the Einstein equations in the form of the Friedmann
equations does )y have the standard interpretation as the ratio of total density to the Hubble
density, but we would be prejudging things by making such an identification in the current
cosmographic framework.) In the cosmographic framework k/a? is simply the present day
curvature of space (not spacetime), while d,;? = HZ/c? is a measure of the contribution of
expansion to the spacetime curvature of the FLRW geometry. More precisely, in a FRLW
universe the Riemann tensor has (up to symmetry) only two non-trivial components. In an

orthonormal basis:
koooa? k ~H*

Bigis =@t gz =gt a 2.9
a q H?
R = —5o = 2.56

Then at arbitrary times €2 can be defined purely in terms of the Riemann tensor of the FLRW
spacetime as
Rji55(@— 0
q _ Bagasla —0) 257

2.6 Lookback time

The lookback time-redshift relation, is defined as the difference between the present age of
the Universe to and its age ¢(z) when a particular light ray at redshift z was emitted. In the
context of a FLRW universe, it is given by:

T(z) = ty—t(z) = / " at 258
dt ada
= /dada:/da 2.59
B 1d(ao/(1+2) ldz/(1+z)2
o H ao/(14+2) H 1/1+2) 2.60

That is, in a FLRW universe, the lookback time 7'(z) is:

z 1
6= | e ¢
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2.7 Supernovae

Supernovae are catastrophic explosions of stars whose peak brightness can rival that of the
whole host galaxy. They cause a burst of radiation and are detectable at great distances
before fading from view over several weeks or months. During this short interval, a su-
pernova can radiate as much energy as the Sun could emit over its life span. Most of the
star’s material is expelled during the explosion and the consequent shock waves sweep up
an expanding shell of gas and dust called a supernova remnant. Figure 2.3 shows an X-ray
of the remnant (leftover) of a supernova explosion (Tycho’s nova).

Figure 2.3: X-ray of SN 1572 (Tycho’s Nova) remnant as seen by Chandra X-Ray Observa-
tory, Spitzer Space Telescope, and Calar Alto Observatory

There are several kinds of supernovae, they may be triggered in one of two ways, either
turning off or suddenly turning on the production of energy through nuclear fusion. Table
2.2 describes the classification of several types of supernovae. On average, supernovae oc-
cur about once every 50 years in a galaxy the size of the Milky Way.

A predominant interest in supernova is as “standard candles” for measuring distances
(or more precisely “standardizable candles”). This requires an observation of their peak lu-
minosity. It is therefore important to discover them well before they reach their maximum.

2.7.1 Standard candles

Objects of known brightness are termed standard candles, they are classified into various
brightness classes. By comparing the known luminosity of the latter to its observed bright-
ness, the distance to the object can be inferred. Specifically, the luminosity L of a supernova
can be determined from its apparent brightness f (energy flux measured on Earth) and the
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Table 2.2: Supernovae classifications

] Type \ Characteristics ‘

Type Ia Lacks hydrogen and presents a singly-ionized
silicon line at 615 nm, near peak light

Type Ib Non-ionized helium line at 587.6 nm and
no strong silicon absorption feature near 615 nm
Type Ic Weak or no helium lines and no strong

silicon absorption feature near 615 nm

Type IIP Reaches a “plateau” in its light curve
TypeIIL | Displays a “linear” decrease in its light curve
(linear in magnitude versus time)

luminosity distance dj, can be determined by the inverse square law:

L

= . 2.61
4wd%

f

Practically, the luminosity L can be inferred (from the shape and spectral properties of the
light curve), the flux f can be measured and therefore the luminosity distance d;, can be
measured.

In astronomy, the brightness of an object is given in terms of its absolute magnitude.
This quantity is derived from the logarithm of its luminosity as seen from a distance of 10
parsecs. The apparent magnitude, or the magnitude as seen by the observer, can be used
to determine the distance D to the object in kiloparsecs (where 1 kpc equals 103 parsecs) as
follows:

D
5'10g10k7pczm—M—5, 2.62

where m is the apparent magnitude and M is the absolute magnitude. For this to be accu-
rate, both magnitudes must be in the same frequency band and there must be no relative
motion in the radial direction.

Some means of accounting for interstellar extinction, which also makes objects appear
fainter and more red, is also needed.

2.7.2 Problems
Two problems exist for any class of standard candle.

o Calibration: determining exactly what the absolute magnitude of the candle is.
Classes need to be defined well enough so that members can be recognized. It also
means finding enough members with well-known distances that their true absolute
magnitude can be determined with enough accuracy.

e Recognition: recognizing members of the class.
At extreme distances, which is where one most wishes to use a distance indicator, this
recognition problem can be quite serious.
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The most important issue with standard candles is the recurring question of how stan-
dard they are. For example, all observations seem to indicate that type Ia supernovae that
are of known distance have all the same brightness. However the possibility that the distant
type Ia supernovae have different properties than nearby type Ia supernovae exists.

That this is not merely a philosophical issue can be seen from the history of distance
measurements using Cepheid variables. In the 1950s, Walter Baade discovered that the
nearby Cepheid variables used to calibrate the standard candle were of a different type
than the ones used to measure distances to nearby galaxies. The nearby cepheid variables
were population I stars with much higher metal content than the distant population I stars.
As a result, the population II stars were actually much brighter than believed, and this had
the effect of doubling the distances to the globular clusters, the nearby galaxies, and the
diameter of the Milky Way.

2.7.3 Type Ialight curves

Type Ia supernovae are some of the best ways to determine distances. SNIa occur when a
binary white dwarf star begins to accrete matter from its companion. As the white dwarf
gains matter, eventually it reaches its Chandrasekhar Limit of 1.4/, once reached, the star
becomes unstable and undergoes a runaway nuclear fusion reaction. Because all Type Ia
supernovae explode at about the same mass, their absolute magnitudes are all the same.
Moreover there is some similarity in basic mechanism between one SNIa and the next and
hence some similarity in their peak luminosity. There is an even tighter correlation between
peak brightness and time it takes for the brightness to decay. This makes them very useful
as standard candles. All type Ia SN have a standard blue and visual magnitude of

Figure 2.4 shows the light curve of a supernova.

When observing a type Ia supernova, if it is possible to determine what its peak magni-
tude was, then its distance can be calculated. It is not intrinsically necessary to capture the
supernova directly at its peak magnitude; using the multicolor light curve method (MCLS),
the shape of the light curve (taken at any reasonable time after the initial explosion) is com-
pared to a family of parameterized curves that will determine the absolute magnitude at
the maximum brightness.

Using Type la supernovae is one of the most accurate methods. Much time has been
devoted to the refining of this method.

2.74 The legacy05 dataset

The supernova data is available in published form [28], and in a slightly different format,
via internet [2]. (The differences amount to minor matters of choice in the presentation.) The
final processed result reported for each 115 of the supernovae is a redshift z, a luminosity
modulus iz, and an uncertainty in the luminosity modulus. The luminosity modulus can
be converted into a luminosity distance via the formula

dr, = (1 Megaparsec) x 10(#8FHoftset=25)/5, 2.63
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Figure 2.4: Supernova light curve “standard candles” (NASA)

The reason for the offset is that supernovae by themselves only determine the shape of the
Hubble relation (i.e., qo, jo, etc.), but not its absolute slope (i.e., Hy) — this is ultimately due
to the fact that we do not have good control of the absolute luminosity of the supernovae in
question. The offset fiogset can be chosen to match the known value of Hy coming from other
sources. (In fact the data reported in the published article [28] has already been normalized
in this way to the standard value H7y = 70 (km/sec)/Mpc, corresponding to Hubble dis-
tance dro = ¢/Hro = 4283 Mpc, whereas the data available on the website [2] has not been
normalized in this way — which is why up as reported on the website is systematically
19.308 stellar magnitudes smaller than that in the published article.)

The other item one should be aware of concerns the error bars: The error bars reported
in the published article [28] are photometric uncertainties only — there is an additional
source of error to do with the intrinsic variability of the supernovae. In fact, if you take the
photometric error bars seriously as estimates of the total uncertainty, you would have to
reject the hypothesis that we live in a standard FLRW universe. Instead, intrinsic variability
in the supernovae is by far the most widely accepted interpetation. Basically one uses the
nearby dataset to estimate an intrinsic variability that makes chi-squared look reasonable.
This intrinsic variability of 0.13104 stellar magnitudes [2, 12]) has been estimated by looking
at low redshift supernovae (where we have good measures of absolute distance from other
techniques), and has been included in the error bars reported on the website [2]. Indeed

(uncertainty ) website = \/ (intrinsic variability)? + (uncertainty)irtide. 2.64
With these key features of the supernovae data kept in mind, conversion to luminosity dis-
tance and estimation of scientifically reasonable error bars (suitable for chi-square analysis)
is straightforward.

24




2.8. SOME HISTORY

2.7.5 The gold06 dataset

Our second collection of supernova data is the gold06 dataset [3]. This dataset contains
206 supernovae (including most but not all of the legacy05 supernovae) and reaches out
considerably further in redshift, with one outlier at z = 1.755, corresponding to y = 0.6370.
Though the dataset is considerably more extensive it is unfortunately heterogeneous —
combining observations from five different observing platforms over almost a decade. In
some cases full data on the operating characteristics of the telescopes used does not appear
to be publicly available. The issue of data inhomogeneity has been specifically addressed by
Nesseris and Perivolaropoulos in [29]. (For related discussion, see also [30].) In the gold06
dataset one is presented with distance moduli and total uncertainty estimates, in particular,
including the intrinsic dispersion.

A particular point of interest is that the HST-based high-z supernovae previously pub-
lished in the gold04 dataset [2] have their estimated distances reduced by approximately 5%
(corresponding to App = 0.10), due to a better understanding of nonlinearities in the pho-
todetectors. ° Furthermore, the authors of [3] incorporate (most of) the supernovae in the
legacy dataset [28, 2], but do so in a modified manner by reducing their estimated distance
moduli by App = 0.19 (corresponding naively to a 9.1% reduction in luminosity distance)
— however this is only a change in the normalization used in reporting the data, not a phys-
ical change in distance. Based on revised modelling of the light curves, and ignoring the
question of overall normalization, the overlap between the gold06 and legacy05 datasets is
argued to be consistent to within 0.5% [3].

The critical point is this: Since one is still seeing ~ 5% variations in estimated supernova
distances on a two-year timescale, this strongly suggests that the unmodelled systematic
uncertainties (the so-called unknown unknowns) are not yet fully under control in even the
most recent data. It would be prudent to retain a systematic uncertainty budget of at least
5% (more specifically, App = 0.10), and not to place too much credence in any result that is
not robust under possible systematic recalibrations of this magnitude. Indeed the authors
of [3] state:

e “... we adopt a limit on redshift-dependent systematics to be 5% per Az = 17;

e “At present, none of the known, well-studied sources of systematic error rivals the
statistical errors presented here.”

7

We shall have more to say about possible systematic uncertainties, both “known unknowns”
and unknown unknowns later in chapter 3.

2.8 Some history

The need for a certain amount of caution in interpreting the observational data can clearly
be inferred from a dispassionate reading of history. We reproduce below Hubble’s original
1929 version of what is now called the Hubble plot (Figure 2.5(a)) [31], a modern update

5Changes in stellar magnitude are related to changes in luminosity distance via equations 2.43 and 2.44.
Explicitly A(lndz) =1n10 App/5, so that for a given uncertainty in magnitude the corresponding luminosity
distances are multiplied by a factor 102#2/5 Then 0.10 magnitudes — 4.7% = 5%, and similarly 0.19 magni-
tudes — 9.1%.
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from 2004 (Figure 2.5(b)) [32], and a very telling plot of the estimated value of the Hub-
ble parameter as a function of publication date (Figure 2.6) [32]. Regarding this last plot,
Kirshner is moved to comment [32]:

“At each epoch, the estimated error in the Hubble constant is small compared
with the subsequent changes in its value. This result is a symptom of underesti-
mated systematic errors.”

It is important to realise that the systematic under-estimating of systematic uncertainties
is a generic phenomenon that cuts across disciplines and sub-fields, it is not a phenomenon
that is limited to cosmology. For instance, the Particle Data Group [http:/ /pdg.lbl.gov/]in
their bi-annual Review of Particle Properties publishes fascinating plots of estimated val-
ues of various particle physics parameters as a function of publication date (Figure 2.7) [17].
These plots illustrate an aspect of the experimental and observational sciences that is often
overlooked:

It is simply part of human nature to always think the situation regarding sys-
tematic uncertainties is better than it actually is — systematic uncertainties
are systematically under-reported.

This historical perspective should be kept in focus — ultimately the treatment of sys-
tematic uncertainties will prove to be an important component in estimating the reliability
and robustness of any conclusions we can draw from the data.
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Figure 2.5: The original Hubble law with observational data.
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Figure 2.6: Estimates of the Hubble parameter as a function of publication date. From
Kirshner [32]. Quote: “At each epoch, the estimated error in the Hubble constant is small
compared with the subsequent changes in its value. This result is a symptom of underesti-
mated systematic errors.”

28




2.8. SOME HISTORY

Hg

143

2

=

&2 mean [ntime ips)

-

1 1 1 1 m
1951 17M)  9E0 1990 30O 201¢ 1350 1050 197 1960 990 3300

—
I #

BB T b e g
=4

i e

I 2B e bl

Ir:IIIEIII

—
o=
T T

0 (7RI wisth (MeY)

332338

1961 197 1980 1590 O 20

mgl- gl 10" ns 1}

IHIiﬂ 11

sl b u
1960 10 L9H0 199M BOMM 2D

h{l]BHHHEI

:
‘51115.4-
-

sk }

11150 st

Lt
FUBLICATION DATE

FETTTTTTI FRTTTTTTTIRTIITITITH [TITIITIT
1990 1% 194 1960 195 2080 210
FUBLICATION DATE

FTTTIT FIRRTETR IRTYRITTI FATRRTOTR FIRRTIOT
1970 1960 M0N0 2000 X

: EIIIHHHIH‘_

197 1950 1MD 2AHQ

A tiialii
108k 20HY 2d
.........
r - T 7
- l-}{*i
; ||||||||| ooy 14 Lasaiaaias
1080 N 2010

199G M G0 S 196G 1970 19R0 1990 200 2010
MIBLICATIONY DATE

Figure 2.7: Some historical plots of particle physics parameters as a function of publica-
tion date. From the Particle Data Group’s 2006 Review of Particle Properties [17]. These
plots strongly suggest that the systematic under-estimating of systematic uncertainties is a
generic phenomenon that cuts across disciplines and sub-fields, it is not a phenomenon that

is limited to cosmology.
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2.9 The standard Cosmological Model (ACDM)

ACDM or Lambda-CDM is an abbreviation for Lambda-Cold Dark Matter. This model is
referred to as the concordance model of big bang cosmology, it attempts to explain cosmic
microwave background observations, large scale structure observations and supernovae
observations of the accelerating expansion of the universe. In this model A is the cosmo-
logical constant that stands for dark energy.

This model has very strong assumptions, the simplest are:

e Nearly scale-invariant spectrum of primordial perturbations.
e A universe without spatial curvature (k = 0).

e No observable topology, so that the universe is much larger than the observable par-
ticle horizon.

e Cosmic inflation.

o FLRW metric, the Friedmann equations (Einstein field equations) and the cosmolog-
ical equations of state to describe the universe from right after the inflationary epoch
to present and future.

This model has 6 basic parameters: 3 parameters relevant to the Friedmann equations,
the Hubble parameter Hj, the baryon density 2, the total matter density (baryon + dark
matter) (2,,, and 3 other parameters related to the CMB and perturbative structure, the
optical depth to reionization 7, the scalar fluctuation amplitude A, and the scalar spectral
index n,. The model also has some derived parameters including the critical density py, the
dark energy density 25 and the age of the universe ¢.

There are some concerns on some of these assumptions. In particular, cosmic inflation
predicts spatial curvature at the level of 10~ to 107°. Moreover, the ACDM says nothing
about the fundamental physical origin of dark matter, dark energy and the nearly scale-
invariant spectrum of primordial curvature perturbations.

2.10 Energy conditions

In classical general relativity, there are several types of energy conditions [33]:
¢ the null energy condition (NEC);
o the weak energy condition (WEC);
o the strong energy condition (SEC);
o the dominant energy condition (DEC).

The energy conditions of general relativity permit one to deduce very powerful and
general theorems about the behaviour of strong gravitational fields and cosmological ge-
ometries. There are also Averaged Energy Conditions (AEC), but they are of less relevance
in FLRW cosmology. These conditions can most easily be stated in terms of the components
of the stress energy tensor 7 in an orthonormal frame. Ultimately, however, constraints
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on the stress-energy are converted, via the Einstein equations, to constraints on the space-
time geometry — in particular in a FLRW spacetime one is ultimately imposing conditions
on the scale factor and its time derivatives (and implicitly cosmological parameters). In
FLRW cosmology, it is sufficiently general to assume that the energy momentum tensor is
of Hawking-Ellis type one (type I) [34, p 89]. In an orthonormal frame, the components of
the stress energy tensor are given by:

p 0 0 0
ab_ |0 pr 0 0
T = 00 pp 0 2.65
0 0 0 p3
The components of T are the energy density and the three principal pressures.
2.10.1 Null Energy condition (NEC)
For all future pointing null vectors k¢, we ask that:
Tup kK" >0 2.66

In terms of pressures and density, we have:
Vi p+p;=0.

Hawking'’s area theorem for black hole horizon relies on the NEC, and hence evapora-
tion of a black hole must violate the NEC.

2.10.2 Weak Energy condition (WEC)

Sometimes it is useful to think about Einstein’s equations without specifying the theory of
matter from which 7% is derived. This leaves us with a great deal of arbitrariness, in the

absence of some constraints on 7%, any metric can satisfy the Einstein equations. The real
concern is the existence of solutions to Einstein’s equations with realistic sources of energy
and momentum. The most common property that is demanded of 7% is that it represent
positive energy densities — no negative masses are allowed. In a locally inertial frame
this requirement can be stated as p = Typ > 0. To turn this into a coordinate-independent
statement, we ask that:

TVeVe >0 V timelike vector V'
In terms of pressures and density, we have:
p=0 and V4 p+pi=0.

Any timelike vector can be a tangent to an observer’s world line. The WEC condition states
that the energy density measured by any timelike observer is non-negative. It seems like
a fairly reasonable requirement, and many of the important theorems about solutions to
general relativity (such as the singularity theorems of Hawking and Penrose ([35, p 240]))
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rely on this condition or something very close to it. Unfortunately it is not set in stone;
indeed, it is straightforward to invent otherwise respectable classical field theories which
violate the WEC, and almost impossible to invent a quantum field theory which obeys it.
Nevertheless, it is legitimate to assume that the WEC holds in all but the most extreme
conditions.

2.10.3 Strong Energy Condition (SEC)

For any timelike vectors V¢, we ask that:

T
(Tab - 2gab> Vavb Z 0

where T is the trace of the stress-energy tensor: T = T,;,g%.
In terms of pressures and density, we have:

T:—/H‘sz‘
:

Vi p+pi >0 and p—l—ZPt?O.
i

Note that the SEC implies the NEC, it does not imply the WEC. For example, matter with
a negative energy density but sufficiently high pressures could satisfy the SEC but would
violate the WEC.

The Penrose-Hawking singularity theorem relevant to the cosmological singularity uses
the SEC. See [36, 37] for strong energy condition violations.

2.10.4 Dominant Energy Condition (DEC)

For any timelike vectors V¢, we ask that:
TpVeV? >0 and that T, V? is a future directed non-spacelike vector.

The DEC assumes that the WEC holds, and that for all future directed timelike vectors
V@ that T,,,V? is a future directed non-spacelike vector. This ensures that the net energy
flow does not exceed the speed of light. The dominant energy condition implies the weak
energy condition and also the null energy condition, but does not necessarily imply the
strong energy condition.

In terms of pressures and density, we have:

p=20 —and Vi —p<pi<p

The dominant energy condition can be interpreted as saying that the speed of energy flow
of matter is always less than the speed of light.
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2.10.5 Comments on the Energy Conditions

Note that the null energy condition implies the weak energy condition, but otherwise the
NEC, the WEC and the SEC are mathematically independent assumptions. In particular,
the SEC does not imply the WEC. It is stronger only in the sense that it appears to be a
stronger physical requirement to assume equation (2.10.3) rather than equation (2.10.2). Vi-
olating the NEC implies violating the DEC, SEC and WEC as well.

The energy conditions are looking a lot less secure than they once seemed:
e There are quantum effects that violate all of the energy conditions.

e There are even relatively benign looking classical systems that violate all the energy
conditions [33].

Note that ideal relativistic fluids satisfy the DEC, and certainly all the known forms of
normal matter encountered in our solar system satisfy the DEC. With sufficiently strong
self-intereactions relativistic fluids can be made to violate the SEC (and DEC); but clas-
sical relativistic fluids always seem to satisfy the NEC. Most classical fields (apart from
non-minimally coupled scalars) satisfy the NEC. Violating the NEC seems to require either
quantum physics (which is unlikely to be a major contributor to the overall cosmological
evolution of the universe) or non-minimally coupled scalars (implying that one is effec-
tively adopting some form of scalar-tensor gravity).
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“Statistics:

The only science that enables different
experts using the same figures to draw
different conclusions.”

Evan Esar (1899—-1995)

Cosmography
in a FLRW universe

rom various observations of the Hubble relation, most recently including the supernova
data [28, 1, 2, 3, 38, 39], one is by now very accustomed to seeing many plots of lumi-
nosity distance dj, versus redshift z. But are there better ways of representing the data?

For instance, consider cosmography (cosmokinetics) which is the part of cosmology that
proceeds by making minimal dynamic assumptions. One keeps the geometry and symme-
tries of FLRW spacetime,

dr?

2 2 2 2
dS = —C dt +a(t) {1—]{’]”2

+r2(d#? + sin® 0 d¢2)} ,

at least as a working hypothesis, but does not assume the Friedmann equations (Einstein
equations), unless and until absolutely necessary. By doing so it is possible to defer ques-
tions about the equation of state of the cosmological fluid, minimize the number of theo-
retical assumptions one is bringing to the table, and so concentrate more directly on the
observational situation.

In particular, the “big picture” is best brought into focus by performing a global fit of
all available supernova data to the Hubble relation, from the current epoch at least back
to redshift z ~ 1.75. Indeed, all the discussion over acceleration versus deceleration, and
the presence (or absence) of jerk (and snap) ultimately boils down, in a cosmographic set-
ting, to doing a finite-polynomial truncated—Taylor series fit of the distance measurements
(determined by supernovae and other means) to some suitable form of distance-redshift or
distance—velocity relationship. Phrasing the question to be investigated in this way keeps
it as close as possible to Hubble’s original statement of the problem, while minimizing the
number of extraneous theoretical assumptions one is forced to adopt. For instance, it is
quite standard to phrase the investigation in terms of the luminosity distance versus red-
shift relation [20, 21]:

dL<z>=;'Z{H;u—qo]zw(z?)},
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and its higher-order extension [22, 23, 24, 25]

cz 1 1 .
dr(z) = HO{1+2[1—Q0]Z+6 (90 + 3¢5 — (jo + Q)] 2°

1 _ . :
+— [2 = 2q0 — 15¢3 — 1543 + 10qozo + 5jo + s0 + 2(1 + 3q0)] 2° + O(z4)}.

24

A central question thus has to do with the choice of the luminosity distance as the primary
quantity of interest — there are several other notions of cosmological distance that can
be used, some of which (we shall see) lead to simpler and more tractable versions of the
Hubble relation. Furthermore, as will quickly be verified by looking at the derivation (see,
for example, [20, 21, 22, 23, 24, 25], the standard Hubble law is actually a Taylor series
expansion derived for small z, whereas much of the most interesting recent supernova data
occurs at z > 1. Should we even trust the usual formalism for large z > 1? Two distinct
things could go wrong;:

e The underlying Taylor series could fail to converge.

e Finite truncations of the Taylor series might be a bad approximation to the exact result.

In fact, both things happen. There are good mathematical and physical reasons for this
undesirable behaviour, as we shall discuss below. We shall carefully explain just what goes
wrong — and suggest various ways of improving the situation. Our ultimate goal will be
to find suitable forms of the Hubble relation that are well adapted to performing fits to all
the available distance versus redshift data.

Moreover — once one stops to consider it carefully — why should the cosmology com-
munity be so fixated on using the luminosity distance dy, (or its logarithm, proportional to
the distance modulus) and the redshift z as the relevant parameters? In principle, in place
of luminosity distance dy,(z) versus redshift z one could just as easily plot f(dy, z) versus
g(z), choosing f(dyr, z) and g(z) to be arbitrary locally invertible functions, and exactly the
same physics would be encoded. Suitably choosing the quantities to be plotted and fit will
not change the physics, but it might improve statistical properties and insight. (And we
shall soon see that it will definitely improve the behaviour of the Taylor series.)

By comparing cosmological parameters obtained using multiple different fits of the
Hubble relation to different distance scales and different parameterizations of the redshift
we can then assess the robustness and reliability of the data fitting procedure. In performing
this analysis we had hoped to verify the robustness of the Hubble relation, and to possibly
obtain improved estimates of cosmological parameters such as the deceleration parameter
and jerk parameter, thereby complementing other recent cosmographic and cosmokinetic
analyses such as [12, 13, 14, 15, 16], as well as other analyses that take a sometimes skep-
tical view of the totality of the observational data [40, 41, 30, 42, 43]. The actual results of
our current cosmographic fits to the data are considerably more ambiguous than we had
initially expected, and there are many subtle issues hiding in the simple phrase “fitting the
data”.

In this chapter we first discuss the various cosmological distance scales, and the related
versions of the Hubble relation. We then discuss technical problems with the usual redshift
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variable for z > 1, and how to ameliorate them, leading to yet more versions of the Hubble
relation. After discussing key features of the supernova data, we perform, analyze, and
contrast multiple fits to the Hubble relation — providing discussions of model-building
uncertainties (some technical details being relegated to the appendices) and sensitivity to
systematic uncertainties. Finally we present our results and conclusions: There is a dis-
turbingly strong model-dependence in the resulting estimates for the deceleration param-
eter. Furthermore, once realistic estimates of systematic uncertainties (based on the pub-
lished data) are budgeted for it becomes clear that purely statistical estimates of goodness
of fit are dangerously misleading. While the “preponderance of evidence” certainly suggests
an accelerating universe, we would argue that this conclusion is not currently supported
“beyond reasonable doubt” — the supernova data (considered by itself) certainly suggests
an accelerating universe, it is not sufficient to allow us to reliably conclude that the universe
is accelerating.!

3.1 New versions of the Hubble law

As illustrated in section 2.5 on Cosmological Distance Scales, there are many different and
equally natural definitions of the notion of distance between two objects or events, whether
directly observable or not.

For the vertical axis of the Hubble plot, instead of using the standard default choice of
luminosity distance dy,, let us now consider using one or more of:

o The photon flux distance:
dr,
dr = ——+. 3.4
F (1 —1—2)1/2 -

The photon count distance:

dpz(dL.

The deceleration distance:

‘= o

The angular diameter distance:

da=

(1+2)2%

The distance modulus:

i =5 logyoldr/(10 pe)] = 5 logio[ds/(1 Mpc)] + 25.

e Or possibly some other surrogate for distance.

'If one adds additional theoretical assumptions, such as by specifically fitting to a A-CDM model, the situa-
tion at first glance looks somewhat better — but this is then telling you as much about one’s choice of theoretical
model as it is about the observational situation.
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Remember the relation between the distances

dr, > dp > dp > dg > da.

Furthermore these particular distance scales satisfy the property that they converge on each
other, and converge on the naive Euclidean notion of distance, as z — 0.

New versions of the Hubble law are easily calculated for each of these cosmological
distance scales. Explicitly:

1 1 )
dp(z) = dg Z{l +3 [1—qo] z + 6 [q0 + 345 — (jo + Q)] 2°

1 f . .
+og (2 — 2g0 — 15g5 — 15¢3 + 10g0jo + 5j0 + so + 2(1 + 3q0)20] 2* + O(z4)}.

3.10

1 1 .
dr(z) = dg z{l — 5407 + 21 [3 -+ 10g + 12¢2 — 4(jo + Qo) 22

1 . .
+15 [2 — 17q0 — 4243 — 30g( + 20q0jo + 1450 + 250 + 4(2 + 3q0) ] 2° + O(z4)}.

1 1 ,
dp(z) = dgy z{l— 5[1+q0]z+6 34 4g0 + 3¢5 — (jo + Q0)] 2

1
to1 [—3 — 9go — 1645 — 10q3 + 8qojo + Tjo + so + 4(1 + qo)Q0] 2* + 0(24)}.

3.12
1 1 2 . 2
do(z) = dumzq1— 5 2+ qo) z + 21 [27 + 22q0 + 12¢5 — 4(jo + Qo)] 2
1
+15 [—44 — 61qo — 66¢5 — 30q; + 20q0jjo + 22jjo + 250 + 4(4 + 3¢0) ] 2° + O(z4)}.
1 1 2 . 2
da(z) = dgz 1—5[3+q0]z+6 [12+7q0+3q0—(30+90)]z

1 . ,
+57 [50 — 4640 — 39¢5 — 1545 + 10g0jo + 1370 + s0 + 2(5 + 3g0)0] 2° + 0(24)}.
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If one simply wants to deduce (for instance) the sign of ¢y, then it seems that plotting the
photon flux distance dr versus z would be a particularly good test — simply check if the
first nonlinear term in the Hubble relation curves up or down.

In contrast, the Hubble law for the distance modulus itself is given by the more compli-
cated expression

)
up(z) = 5+1(){1n(dH/Mpc)+lnz 3.15
1 1 2 - 2
+5 =]z - [3 —10g0 — 9g5 + 4(jo + Q0)] »
1
24 [5 9q0 — 16q0 — 1Oq0 + 8qojo + Tjo + so +4(1 + qo)Qo} 2+ 0(z )}

However, when plotting j.p versus z, most of the observed curvature in the plot comes from
the universal (In z) term, and so carries no real information and is relatively uninteresting.

It is much better to rearrange the above as:
Inl
Infdy /(= Mpe)] = 5 01 — 25] — In 2 3.16
= In(dg/Mpc)

1
2[ 1+Q0]Z+*[ 3+ 10qo + 9g5 — 4(jo + Q)] 2

+—4 [5— 9g0 — 16g5 — 10g3 + 8qogo + Tjo + so + 4(1 + go)Q] 2° + O(2*),

In a similar manner one has

Inl 1
Infdp/ (= Mpa)] = - b — 25 —n— S {1+ 2) 317
= In(dy/Mpc)
1 1 .
—5%07 Tt 5 3+ 100 + 945 — 4(jo + Q0)] =
1 : .
+og [1—9g0 — 16¢5 — 10g; -+ 8qojo + Tjo + so + 4(1 + q0)Q] 2° + O(2"),
In10
In[dp/(z Mpc)] = T[,up—%]—lnz—ln(l—i—z) 3.18
= In(dg/Mpc)
1
—5 L+ a]z+ ﬁ 9+ 10g0 + 95 — 4(jo + Q0)] 2°
1
+og [3 —9g0 — 16¢5 — 10g5 + 8qozjo + Tjo + so + 4(1 + ¢o)Q] 2° + O(24),
Inl
In[dg/(z Mpc)] = n50[ D — 25] — lnz—gln(l—i—z) 3.19
= In(dg/Mpc)
1 .
-5 2+ qo] 2 + 5 [15 + 10go + 9g5 — 4(jo + Q)] 2°
24 [ 7—9q — 16q0 — 10q0 + 8qojo + Tjo + so +4(1 + qo)Qo} 234+ 0(2Y),
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In 10
In[da/(z Mpc)] = HT[MD —25] —Inz — 2In(1 + 2) 3.20
= In(dg/Mpc)
1 1 .
—gBralz+g; 21 + 10go + 9g5 — 4(jo + )] 2>
1 .
+to1 [—3 =90 — 165 — 10g5 + 8qojo + o + so + 4(1 + q0)Q] 2°
+0(2h).

These logarithmic versions of the Hubble law have several advantages — fits to these rela-
tions are easily calculated in terms of the observationally reported distance moduli p.p and
their estimated statistical uncertainties [28, 1, 2, 3, 38]. (Specifically there is no need to trans-
form the statistical uncertainties on the distance moduli beyond a universal multiplication
by the factor [In 10]/5.) Furthermore the deceleration parameter ¢ is easy to extract as it has
been untangled from both Hubble parameter and the combination (jo + o).

Note that it is always the combination (jo + §2o) that arises in these third-order terms of
the Hubble relations, and that it is even in principle impossible to separately determine jj
and g in a cosmographic framework. When looking at the fourth-order terms, it becomes
impossible to separately determine jo, sop and € in this framework. The reason for this
degeneracy is (or should be) well-known [20, p. 451]: Consider the exact expression for the
luminosity distance in any FLRW universe, which is usually presented in the form [20, 21]

. c ® Hyp
= 1 .21
dr(z) =ap (14 z) sing {Ho a0 ) T dz} , 3

where
sin(z), k=+1;
sing(xz) = ¢ =, k=0; 3.22
sinh(z), k= -1
By inspection, even if one knows H (z) exactly for all z one cannot determine dy,(z) without
independent knowledge of k£ and ay. Conversely even if one knows d,(z) exactly for all

z one cannot determine H (z) without independent knowledge of k and ag. Indeed let us
rewrite this exact result in a slightly different fashion as

sin{\/EdH * Ho dz}
) —— )

o H(z
\/% )
where this result now holds for all £ provided we interpret the £ = 0 case in the obvious

limiting fashion. Equivalently, using the cosmographic 2 as defined above we have the
exact cosmographic result that for all Q:

dL(Z) = qq (1-1—2’ 3.23

Sm{m/oz Hffz) dz}‘

VQy—1

This form of the exact Hubble relation makes it clear that an independent determination of
Qo (equivalently, k/a?), is needed to complete the link between a(t) and dy,(z). When Taylor

3.24

dr(z) =dg (1+ 2)
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expanded in terms of z, this expression leads to a degeneracy at third-order, which is where
Qo [equivalently &/ ag] first enters into the Hubble series [24, 25].

What message should we take from this discussion? There are many physically equiva-
lent versions of the Hubble law, corresponding to many slightly different physically reason-
able definitions of distance, and whether we choose to present the Hubble law linearly or
logarithmically. If one were to have arbitrarily small scatter/error bars on the observational
data, then the choice of which Hubble law one chooses to fit to would not matter. In the
presence of significant scatter /uncertainty there is a risk that the fit might depend strongly
on the choice of Hubble law one chooses to work with. (And if the resulting values of the
deceleration parameter one obtains do depend significantly on which distance scale one
uses, this is evidence that one should be very cautious in interpreting the results.) Note that
the two versions of the Hubble law based on “photon flux distance” dr stand out in terms
of making the deceleration parameter easy to visualize and extract.

3.2 Why is the redshift expansion badly behaved for > > 1?

In addition to the question of which distance measure one chooses to use, there is a basic
and fundamental physical and mathematical reason why the traditional redshift expansion
breaks down for z > 1.

3.2.1 Convergence

Consider the exact Hubble relation (3.21). This is certainly nicely behaved, and possesses
no obvious poles or singularities, (except possibly at a turnaround event where H(z) —
0, more on this below). However if we attempt to develop a Taylor series expansion in
redshift z, using what amounts to the definition of the Hubble H,, deceleration qg, and jerk
Jjo parameters, then:

1 a(t) g0 Hf 2 Jo Hy 3
=——= = 1+ Hy(t—1g) — t—t —— (t—1
172 a + Ho (t — to) 5 (E—t0)" + 3 (t —to)
1
+ 47 %0 H (t —to)* + O([t — to]®). 3.25
Now this particular Taylor expansion manifestly has a pole at z = —1, corresponding to the

instant (either at finite or infinite time) when the universe has expanded to infinite volume,
a = oo. Note that a negative value for z corresponds to a(t) > ao, that is: In an expanding
universe z < 0 corresponds to the future. Since there is an explicit pole at z = —1, by
standard complex variable theory the radius of convergence is at most |z| = 1, so that this
series also fails to converge for z > 1, when the universe was less than half its current size.

Consequently when reverting this power series to obtain lookback time 7' = ¢, —t as a
function T'(z) of z, we should not expect that series to converge for z > 1. Ultimately, when
written in terms of ag, Ho, qo, jo, and a power series expansion in redshift z you should not
expect d,(z) to converge for z > 1.

Note that the mathematics that goes into this result is that the radius of convergence of
any power series is the distance to the closest singularity in the complex plane, while the
relevant physics lies in the fact that on physical grounds we should not expect to be able
to extrapolate forwards beyond a = oo, corresponding to z = —1. Physically we should
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expect this argument to hold for any observable quantity when e