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Abstract

Cosmography is the part of cosmology that proceeds by making minimal dynamic as-
sumptions. That is, one does not assume the Friedmann equations (Einstein equa-

tions) unless and until absolutely necessary. On the other hand, cosmodynamics is the part
of cosmology that relates the geometry to the density and pressure using the Friedmann
equations. In both frameworks, we consider the amount of information and the nature
of the constraints we can obtain from the Hubble flow in a FLRW universe. Indeed, the
cosmological parameters contained in the Hubble relation between distance and redshift
provide information on the behaviour of the universe (expansion, acceleration etc...). In
the first framework, it is possible to concentrate more directly on the observational situa-
tion in a model-independent manner. We perform a number of inter-related cosmographic
fits to supernova datasets, and pay particular attention to the extent to which the choice of
distance scale and manner of representing the redshift scale affect the cosmological param-
eters. In the second framework, we use the class of w-parameter models which has become
increasingly popular in the last decade. We explore the extent to which a constraint on the
w-parameter leads to useful and non-trivial constraints on the Hubble flow in terms of cos-
mological parameters H(z), density ρ(z), density parameter Ω(z), distance scales d(z), and
lookback time T (z).

On another front, Numerical Relativity has experienced many breakthroughs since 2005,
with full inspiral-merger-ringdown simulations now possible. One of the main goals is
to provide very accurate templates of gravitational waves for ground-based and space-
based interferometers. We explore the potential of a very recent and accurate numerical
method, the Spectral Element Method (SEM), for Numerical Relativity, by treating a singu-
lar Schwarszchild black hole evolution as a test case. Spectral elements combine the theory
of spectral and pseudo-spectral methods for high order polynomials and the variational
formulation of finite elements and the associated geometric flexibility. We use the BSSN
formulation of the Einstein equations with the method of the moving punctures. After ap-
plying the variational formulation to the BSSN system, we present several possible weak
forms of this system and its spectral element discretization in space. We use a Runge-Kutta
fourth order time discretization. The accuracy of high order methods can deteriorate in the
presence of discontinuities or sharp gradients. We show that we can treat the element that
contains the puncture with a filtering method to avoid artificial and spurious oscillations.
These might form and propagate into the domain coming from discontinuous initial data
from the BSSN system.
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c© Céline Cattoën
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“I like mathematics because it is not human
and has nothing particular to do with this
planet or with the whole accidental universe
– because, like Spinoza’s God, it won’t love
us in return.”

Bertrand Russell (1872–1970) 1
Introduction

This thesis mainly deals with problems in General Relativity and Cosmology, however,
as indicated in the title, “Applied Mathematics of space-time and space+time: Prob-

lems in General Relativity and Cosmology”, Applied Mathematics plays a huge part in this
work. Mathematics offers wonderful tools that allows one to explore and compare real-
ity with physics. Some of these tools (non-exhaustive) used here include: statistics, Taylor
series, convergence, data fitting, integrals, inequalities, functional analysis, numerical anal-
ysis and numerical methods, polynomials, differential geometry and so on. Many different
mathematical topics it may seem, but they are all related and linked together here to attack
two main problems in Einstein’s theory of gravitation. The “space-time”, refers to Cosmol-
ogy in a traditional 4D spacetime description of General Relativity, whereas, “space+time”
emphasizes the time and space splitting of spacetime used in Numerical Relativity.

The first part of this thesis treats topics in General Relativity and Cosmology, most of
these investigations have been conducted as a collaborative work with my superviser Matt
Visser, whereas the second part considers the application of a very recently developed nu-
merical method to Numerical Relativity, this part of the thesis is the result of a collaboration
with Mark Hannam.

Regarding cosmology, what amount of information or constraints can one obtain from
the Hubble flow in a FLRW (Friedmann-Lemaı̂tre-Robertson-Walker) universe? How gen-
eral, precise, and useful, can results be under a minimum of theoretical assumptions? These
are the key questions that motivate the first part of this thesis.

Chapter 2 introduces some of the main and basic notions of modern Cosmology in a
FLRW universe. A Friedmann-Lemaı̂tre-Robertson-Walker universe relies on the Coper-
nican principle of isotropy (direction independence) and homogeneity (position indepen-
dence) of our universe. We will introduce the cosmological parameters whose values pre-
scribe the behaviour of the universe, as well as standard definitions of cosmological dis-
tances. There are many notions of distance scale in Cosmology, which one should one use?
We will clarify these concepts and introduce some new definitions leading to alternative
Hubble laws. We will see how we can extract information on the cosmological parameters
using the Supernovae type Ia data (“SNIa”).

Chapter 3 discusses and presents results obtained in the context of Cosmography, that
is, without assuming the Einstein field equations. In this framework, we minimize the
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CHAPTER 1. INTRODUCTION

number of physics assumptions that go into the model. Is the expansion of the universe
still accelerating in this context? What happens when considering realistic estimates of sys-
tematic uncertainties (based on the published data)? Moreover, can we obtain values for
other cosmological parameters and therefore further characterize the behaviour of the uni-
verse? We will explore the aforementioned questions and try to answer them in this chapter.

Chapter 4 presents results developed within the framework of Cosmodynamics, where
general relativity is now assumed. With these further assumptions, we can use the classical
energy conditions to place very general and robust bounds on various cosmological param-
eters, and thereby get a qualitative and quantitative insight on how strange physics gets.
Are the various energy conditions and their associated bounds on the cosmological param-
eters inter-related? Is a systematic and exhaustive analysis possible? Confronting some of
these bounds with the supernova data, can we say anything concerning the universe? In the
absence of any detailed understanding of the precise nature of the cosmological equation
of state ρ(p), just how much can be deduced with limited information? We will see that in
fact, we can obtain even more general bounds by just assuming a general equation of state
of the form p = wρ.

In Numerical relativity, there have been many breakthroughs since 2005, with full inspi-
ral-merger-ringdown simulations now possible. One of the main goals is to provide very
accurate templates of gravitational waves for ground-based and space-based interferome-
ters to detect. What is the potential of the Spectral Element Method for Numerical Relativ-
ity? Would this method allow for better accuracy and efficiency, and possibly contribute to
gravitational wave detection?

Moving on to the second part of this thesis, we summarize basic notions of Numerical
Relativity in Chapter 5. We outline the splitting of space and time necessary for numerical
simulations, as well as stable reformulations of the Einstein equations in this context. We
quickly describe the moving puncture method and BSSN formulation of the field equations.

Chapter 6 is devoted to the introduction of the Spectral Element Method (SEM) in a very
general context. We discuss how to obtain the weak formulation from the variational for-
mulation of a given problem. We show how the domain can be discretized into elements,
and the numerical solution approximated with Lagrange-Legendre basis functions. We
present the assembly process over each element to form a final global system of algeabric
equations. We also mention some very general and powerful theorems of existence and
uniqueness of a solution.

Chapter 7 illustrates the spectral element method in practice with a 1D and 3D wave
equations. We show in much detail the SEM formulations and final discretized matrix sys-
tems obtained. We then present some numerical results one can achieve with this method.

In Chapter 8, we apply the SEM to the BSSN system with moving punctures. We start
with the strong formulation of the system, and through the variational formulation obtain
a weak formulation. After domain and elemental discretization, we describe the elemental
matrix system. Consequent numerical results are presented in Chapter 9.

2



Finally, Chapter 10 contains the conclusions of this work, as well as suggestions and
remarks about future work in respective fields.
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Part I

General Relativity and Cosmology
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κoσµoλoγια, cosmology
κoσµoς, kosmos, universe
λoγια, logia, study 2
Introduction to Cosmology in a FLRW universe

Cosmology is the study of the dynamical structure of the universe on the largest scales
of space and time, considered as a whole.

Contemporary cosmological models are based on the idea that the universe is, on aver-
age, the same overall. That is, when describing the Universe as a whole one assumes that it
is filled with a continuous medium (fluid, gas or radiation). This is based on a very simple
principle, called the cosmological principle, which is a generalization of the Copernican
principle:

The cosmological principle: at each epoch, the universe presents the same aspect from
every point, except for “small” local irregularities [7]. When averaged over sufficiently
large volumes the universe and the matter in the universe should be isotropic and homoge-
neous.

• Isotropy states that space looks the same no matter what direction one looks at (direc-
tion independence).

• Homogeneity is the statement that the metric is the same throughout the space (position
independence).

Astronomical observations suggest that the universe is homogeneous and isotropic when
viewed on the largest scales. Figure 2.1 is a good illustration of homogeneity, the photo
taken from the Hubble telescope covers an area 2.5 arcminutes across, two parts in a mil-
lion of the whole sky, which is equivalent in angular size to a 65 mm tennis ball at a distance
of 100 metres. The image was assembled from 342 separate exposures taken with the Space
Telescope’s Wide Field and Planetary Camera 2 over ten consecutive days between Decem-
ber 18 and December 28, 1995. Traditionally this homogeneity has been assumed up to
small fluctuations that are large enough to include clusters of galaxies. Note that figure 2.1
is not an observational proof of homogeneity in any sense: The cosmological principle still
has no direct observational verification at present. Indeed, homogeneity is a very crude
assumption as the real Universe has more of a granular structure. The scale at which homo-
geneity sets in, is still not completely certain. Voids with diameters of order 108 light years
are ubiquitous, forming at least 40% of the volume of the universe [8], [9], and are typically
surrounded by bubble walls containing galaxy clusters. The largest feature observed (the
Sloan Great Wall [10]) is 1.47 × 109 light years long. In the history of Cosmology there has
been a constant evolution of the definition of the size of the elementary unit to save the
assumption of homogeneity and isotropy of the Universe in the large. Hence we simply
assume homogeneity for some suitable defined cell size. Note that the universe is assumed
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CHAPTER 2. INTRODUCTION TO COSMOLOGY IN A FLRW UNIVERSE

Figure 2.1: Small region in the constellation Ursa Major, montage constructed from a series
of observations by the Hubble Space Telescope.

to be spatially homogeneous and isotropic at each instant of cosmic time, specifically, we
are talking about homogeneity on each one of the 3-dimensional space-like hypersurfaces.

When looking at distant galaxies, they seem to be receding from our galaxy. It appears
that the universe is not static, but changing with time. Thus most cosmological models are
built on the fact that the universe is homogeneous and isotropic in space, but not in time.
Observationally, the universe today is significantly different from the universe of 1010 years
ago, and radically different from the universe of 1.5× 1010 years from now.

The realization that the Universe may have a history, has been considered very grad-
ually by astronomers and physicists over time. The expansion of the Universe was dis-
covered by Hubble in 1929, and the expansion itself had already started to be described by
the Friedman (1922) and Lemaı̂tre (1927) solutions to Einstein’s equations. Einstein added a
cosmological constant to his theory to try to force it to allow for a static universe with matter
in it. However, the Einstein universe is unstable. Since then, cosmologists have been trying
to reconstruct the possible sequence of events in the evolution of the Universe. The FLRW
(Friedmann-Lemaı̂tre-Robertson-Walker) spacetime is the foundation stone of the standard
Big Bang theory. Some of the main characteristics are that this metric satisfies the Einstein
field equations for a perfect fluid, and is isotropic and homogeneous. The FLRW model has
some clear successes, fitting the Hubble law (reasonably well), the cosmic microwave spec-
trum (to very high accuracy), and being compatible with the measured isotropies and the
assumption of homogeneity. However, this standard model also has some weaknesses. For
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example it lacks a full description of the formation of large-scale structure, and sometimes
the inflation scenario introduces new problems, instead of solving all the uncertainties in-
herent in the naive FLRW universe.

2.1 A brief history of the Universe

Observations suggest that the universe is approximately 13.7 billion years old. The history
of the universe is divided into different periods called epochs, according to the dominant
forces and processes in each period. The main outline of the history of the universe has 3
main phases.

After the initial Big Bang explosion, the universe was very hot until at least 10−36 sec-
onds. Between 10−36 seconds and 10−32 seconds after the Big Bang, there was a period
of exponential growth called cosmic inflation. Near the end of cosmological inflation, the
universe was then cold and empty, and the immense heat and energy associated with the
early stages of the big bang was re-created through the phase change associated with the
end of inflation, through a reheating period. The very early universe was the split second
in which the universe was so hot that particles had energies higher than those currently
accessible in particle accelerators on Earth. Note that the details are largely based on edu-
cated guesses. The evolution of the universe then proceeded according to the known rules
of general relativity and high energy physics.

The last scattering epoch occurred somewhere between 300 000 and 380 000 years after
the Big Bang1. This is where hydrogen atoms appeared. Note that nuclei were formed ear-
lier at the period of nucleosynthesis, whereas the first protons, electrons and neutrons were
formed at reheating. With the formation of neutral hydrogen, the cosmic microwave back-
ground was emitted. Hydrogen and helium are at the beginning ionized, as the universe
cools down, the electrons get captured by the ions making them neutral. This process is
known as recombination, the photons can now travel freely, which means that the universe
has become transparent. The photons emitted right after the recombination, that can there-
fore travel undisturbed, are those that we see in the cosmic microwave background (CMB)
radiation. Therefore the CMB is a picture of the universe at the end of this epoch.

Finally, the epoch of structure formation began, when matter started to aggregate into
the first stars and quasars, and ultimately galaxies, clusters of galaxies and superclusters
formed. The oldest identified quasar (CFHQS 1641+3755) is at 12.7 billion light-years away.
Our solar system was formed approximately 8 billion years ago.

The ultimate fate of the universe is not known, there are several scenarios but according
to the standard ΛCDM model (see section 2.9 for more details), it will continue expanding
forever.

1If last scattering is deemed to “begin” when the ionization fraction has dropped to 10% (a standard defini-
tion of recombination) then this occurs at z ∼ 1250, whereas photon decoupling (which might be deemed to be
the “end” of last scattering) occurs at z = 1090. Using cosmological parameters for the concordance cosmology
as given by Komatsu et al [11], one is led to the expansion ages quoted above, using the exact solution for a
spatially flat universe with matter and radiation (ΩΛ being negligibly small at that epoch).
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2.2 Cosmography

Simply by using the assumptions of isotropy and homogeneity, a cosmological model can
be derived without yet using the Einstein equations. This homogeneous and isotropic cos-
mological model is called the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) geometry
(2.1), and is given by:

ds2 = −dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]} �� ��2.1

where a(t) is the scale factor of the universe. There are only three values of interest for the
parameter k:

• k = −1, this corresponds to a negative curvature (for the hyperboloid);

• k = 0, this corresponds to no curvature (flat space);

• k = +1, this corresponds to a positive curvature (for the 3-sphere).

That is, the assumptions of homogeneity and isotropy alone have determined the space-
time metric up to three discrete possibilities of spatial geometry k and the arbitrary positive
function of the scale factor a(t).

Observational evidence strongly suggests that our universe (or the part of our universe
within our causal past), is well described by a Friedmann–Lemaı̂tre–Robertson–Walker
model, and indeed a k = 0 model, at least as far back in time as the decoupling of mat-
ter and radiation.

For recent work on cosmographic analyses see [12, 13, 14, 15, 16].

2.3 Cosmodynamics

Now, by substituting the spacetime metric (2.1) into Einstein’s equations (2.2):

Gab =
8πGN
c2

Tab,
�� ��2.2

some predictions for the dynamical evolution of the system can be obtained.
But first, we need to describe the matter content of the universe in terms of the stress-

energy tensor. Using the assumptions of isotropy and homogeneity, the stress-energy tensor
of matter in the present universe is approximated in an orthonormal frame by:

T âb̂ =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . �� ��2.3

Here ρ and p are the average density and pressure due to the galaxies, stars, clouds of dusts
and so on.
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Applying the Einstein equations imply the two following Friedmann equations (in the
context of a FLRW universe):

8πGNρ = 3
[
ȧ2

a2
+

k

a2

] �� ��2.4

8πGNp = −
[
ȧ2

a2
+

k

a2
+ 2

ä

a

]
.

�� ��2.5

And consequently, equation (2.4) and equation (2.5) imply:

8πGN [ρ+ 3p] = −6
ä

a
.

�� ��2.6

The Friedmann equations completely specify the evolution of the universe as a function of
time. By imposing homogeneity and isotropy as characteristics of the universe that remain
unchanged with time (on suitably large scales), we have implicitly restricted any evolution
to affect only one remaining characteristic: its size a(t). The Friedmann equations are there-
fore equations for the scale factor a(t), ultimately measuring the evolution of the size of any
freely expanding length scale (gravitational, electromagnetic, etc...) in the universe.
Equation 2.4 tells us about the velocity of the expansion and or contraction of the universe,
being an equation in ȧ. On the other hand, equation 2.5 involves ä which tells us about the
acceleration/deceleration of the expansion or contraction.
In equation 2.4, if k = 0, the universe is spatially flat and equation 2.4 implies that it has to
become infinite with the density ρ approaching zero, in order for the expansion to stop. If
k = 1, the expansion can stop at a finite density at which the matter contribution is balanced
by the space curvature. Thus, at a finite time, the universe will stop expanding and will re-
collapse. Finally, if k = −1, the universe will continue to expand forever even if matter is
completely dispersed.
Notice that the spatial curvature is completely absent from 2.6, this means that the accel-
eration/deceleration of the expansion or contraction of the universe is independent of the
spatial curvature k. This equation also reveals that gravity is always an attractive force.

The difficulty remains to detemermine a suitable matter model for ρ and p, that is to
make even more progress, it is necessary to choose an equation of state between ρ and p.

2.4 Cosmological parameters

This section introduces some of the basic terminology associated with the cosmological
parameters. The values of these parameters describe the behaviour of the universe. It
is standard terminology in mechanics that the first four time derivatives of position are
referred to as velocity, acceleration, jerk and snap. We will see that we have very similar
definitions in cosmology for the cosmological parameters.

2.4.1 The Hubble parameter

The rate of expansion is characterized by the Hubble parameter:

H(t) = +
1
a

da
dt

=
ȧ

a
.

�� ��2.7
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The Hubble parameter quantifies the speed with which the size of the universe is increas-
ing. The value of the Hubble parameter at the present epoch is the Hubble constant H0.
There has been a great deal of controversy about what its actual value is, but currently, the
consensus measurements [17] (2006) give:

H0 = 73
+3
−4

(km/sec)/Mpc,
�� ��2.8

where Mpc stands for megaparsec, 1 Mpc ∼= 3× 1024cm. One parsec is 3.08× 1018cm = 3.26
light years.

The universe is expanding, therefore we know that ȧ > 0. From equation (2.6) we also
know that ä < 0 when assuming that the pressure p and the density ρ are both positive.
The universe must have been expanding at a faster and faster rate when going back in time.
If we consider that the universe has always been expanding at the present rate, then at the
time T = H−1 = a/ȧ ago, the scale factor a would be null, a = 0. However, the expansion
rate was actually faster, therefore, the time at which a = 0 was even closer to the present.
By assuming homogeneity and isotropy, general relativity makes the prediction that at a
time less than H−1 ago, the universe was in a singular state. This singular point referred to
as the Big Bang had an infinite density of matter and an infinite curvature of spacetime.

2.4.2 The deceleration parameter

The value of the Hubble parameter changes over time either increasing or decreasing de-
pending on the sign of the deceleration parameter:

q(t) = −1
a

d2a

dt2

[
1
a

da
dt

]−2

= − ä

aH2
.

�� ��2.9

The deceleration parameter is a dimensionless number which measures the rate of change
of the rate of expansion H . Different values, or ranges of values, of q0 correspond to dif-
ferent cosmological models. In principle, it should be possible to determine the value of q0

observationally. For example, for a set of identical supernovae within remote galaxies, the
relationship between apparent brightness and redshift is dependent on the value of the de-
celeration parameter. Although measurements of this kind are notoriously difficult to make
and to interpret, recent observations tend to favor accelerating universe models. In [18], it
was estimated that

q0 = −0.55+0.26
−0.13.

�� ��2.10

As we will see later on in this thesis this value of q0 is to be taken very carefully. It turns
out to be highly model-dependent, and the argument in favor of an accelerating universe is
not completely as tight as is commonly believed.

2.4.3 The jerk parameter

The Jerk parameter (the third time derivative) is also sometimes referred to as jolt. Less
common alternative terminologies are pulse, impulse, bounce, surge, shock, and super-
acceleration. The dimensionless jerk parameter is defined by:

j(t) = +
1
a

d3a

dt3

[
1
a

da
dt

]−3

=
˙̈a

aH3
.

�� ��2.11
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2.4.4 The snap parameter

The Snap parameter (the fourth time derivative) is also sometimes called jounce. The fifth
and sixth time derivatives are sometimes somewhat facetiously referred to as crackle and
pop. The dimensionless snap parameter is defined by:

s(t) = +
1
a

d4a

dt4

[
1
a

da
dt

]−4

=
¨̈a

aH4
.

�� ��2.12

2.4.5 The density parameter

Another useful quantity is the energy density parameter,

Ω =
8πG
3H2

ρ =
ρ

ρHubble
,

�� ��2.13

where the Hubble density is

ρHubble =
3H2

8πG
.

�� ��2.14

This quantity (which will generally change with time) is called the Hubble density (some-
times also referred to as the critical density) and current measurements2 give:

ρHubble = 2.775× 1011 h2 M� Mpc−3,
�� ��2.15

where M� is the solar mass and h is the present day normalized Hubble expansion rate
with H0 = h(100km/s/Mpc). Using the Friedmann equation (2.4), we can then write:

Ω− 1 =
k

H2a2
.

�� ��2.16

The sign of k is therefore determined by whether the energy density parameter Ω is greater
than, equal to, or less than one. Indeed,

ρ < ρHubble ↔ Ω < 1 ↔ k = −1 ↔ open
ρ = ρHubble ↔ Ω = 1 ↔ k = 0 ↔ flat
ρ > ρHubble ↔ Ω > 1 ↔ k = +1 ↔ closed

�� ��2.17

The density parameter, then, indicates which of the three Robertson-Walker geometries de-
scribes our universe. Determining it observationally is an area of intense investigation,
however, presently, it is thought to be [11]:

Ω = 1.02± 0.02.
�� ��2.18

2.4.6 Analogy with mechanics

Cosmological parameters are used in a similar fashion as parameters used in mechanics, as
illustrated in Table 2.1.

2See S. Eidelman et al. from the Particle Data Group [19] for recent measurement values.
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Table 2.1: Analogy between Mechanics and Cosmology

Mechanics Cosmology
position x(t) scale factor a(t)
velocity v(t) Hubble parameter H(t)

acceleration a(t) deceleration q(t)
jerk j(t) jerk parameter j(t)
snap s(t) snap parameter s(t)
crackle ...

pop ...

The deceleration, jerk, and snap parameters are dimensionless, and we can write a rela-
tion between the scale factor and these cosmological parameters:

a(t) = a0

{
1 +H0 (t− t0)− 1

2
q0 H

2
0 (t− t0)2 +

1
3!
j0 H

3
0 (t− t0)3

+
1
4!
s0 H

4
0 (t− t0)4 +O([t− t0]5)

}
.

�� ��2.19

Equation (2.19) is a key formula that links the cosmological parameters to the behaviour of
the scale factor, and by extension the behaviour of the universe.

2.5 Cosmological Distance Scales

In cosmology there are many different and equally natural definitions of the notion of dis-
tance between two objects or events, whether directly observable or not. Before defining
these distance scales, we first need to introduce the cosmological redshift.

2.5.1 The Cosmological Redshift

The energy of a particle will change as it moves in a spacetime geometry similarly to the
way it would move in a time-dependent potential. The energy of a photon is proportional
to frequency, that change in energy is called the cosmological redshift. Figure 2.2 illustrates
this change of energy for a light ray emitted at te and observed at to.

General definition of the redshift (model independent)

Let λe be the wavelength of light ray emitted from some galaxy and λo the wavelength of
the same light ray observed on Earth. The redshift is defined in its familiar form by:

z =
λo − λe
λe

=
λo
λe
− 1.

�� ��2.20
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∆te

∆to

0

to + ∆to

te + ∆teto

te

t

r
R

Figure 2.2: The cosmological redshift is the change of energy between a light ray emitted
at te and observed at to.

The rate of change of phase of the light wave vp can be measured by a first observer
moving with the 4-velocity uα1 by

vp = k1α u
α
1 ,

�� ��2.21

where kα is the wave vector of the ray. For a short time interval ∆t1, the phase will change
by ∆P = kαu

α∆t1. A second observer moving with the velocity uα2 and measuring the
change of phase at another spacetime point, the same change of phase ∆P will take a dif-
ferent time interval ∆t2. k1α and k2α are respectively affinely parametrized tangent to the
null curve, the light ray has to be geodesic. Therefore we have the following ratio:

∆t1
∆t2

=
(kα uα)2

(kα uα)1
.

�� ��2.22

There is a relationship between the change of phase and the frequency ν which results in
the following:

ν2

ν1
=

∆t1
∆t2

=
(kα uα)2

(kα uα)1
.

�� ��2.23
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Since λo/λe = νe/νo, we have the general model independent cosmological redshift:

1 + z =
νe
νo

=
(kα uα)2

(kα uα)1
.

�� ��2.24

Finally, in terms of light emitted and observed notations, the general cosmological redshift
formula becomes:

1 + z =
(kα uα)e
(kα uα)o

.
�� ��2.25

In order to apply the above equation (2.25) to observational results, one has to integrate the
equations of a null geodesic, which can be very difficult in general.

The redshift in a FLRW universe

To determine the redshift formula in a FLRW universe, one has to know the field of vectors
tangent to light rays kα. Using the spatial homogeneity property of the metric, all points
within the same space t = constant are equivalent, therefore a calculation will be indepen-
dent of the spatial position of the observer. We can then assume an observer to be at the
origin r = 0. A null geodesic sent off radially lies in the surface θ = φ = constant and obeys
the following equation:

0 = dt2 − a2(t)
(1− kr2)

dr2.
�� ��2.26

For an incoming light ray (proceeding towards the observer) we have the following relation:∫ to

te

dt

a(t)
= −

∫ ro

re

dr√
1− kr2

.
�� ��2.27

We can define the following affine parameter v on the geodesic

dt

dv
=

1
a(t)

,
�� ��2.28

the tangent vector in this parametrisation can be written as

kα =
(
−1
a(t)

,
1

a2(t)

√
1− kr2, 0, 0

)
.

�� ��2.29

Since the velocity field is uα = δα0, we have

kα uα =
1
a(t)

.
�� ��2.30

Consequently, the cosmological redshift in a FLRW universe can be written as:

1 + z =
a(t0)
a(te)

.
�� ��2.31

We now have an implicit relation between redshift and time, and we can define distance
scales as a function of the redshift rather than time.
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2.5.2 Original Hubble law

The original Hubble law gives a simple linear relation between the velocity of recession of
an object V and its observed distance d:

V = H0 d.
�� ��2.32

For sufficiently close galaxies this relation is a very good approximation. The recession of
galaxies away from us does not imply that we are at the centre of the universe: Hubble’s
law implies that there is no centre that can be deduced from the expansion itself. Figure 2.5
illustrates this relation with observational data.

2.5.3 Standard (Popular) distance scales

The luminosity distance is:

dL(z) = a0 (1 + z) sink

{
c

H0 a0

∫ z

0

H0

H(z)
dz
}
,

�� ��2.33

where

sink(x) =


sin(x), k = +1;
x, k = 0;
sinh(x), k = −1.

�� ��2.34

By changing variables and adopting definitions as in equations (2.33) and (2.34), we can
rewrite the luminosity diameter distance in an alternative exact general form, ∀ z ∈ [−1,+∞)
and ∀ fixed Ω0:3

dL(z) =
c

H0
(1 + z)

sinh
[√

1− Ω0

∫ z
0

H0
H(z) dz

]
√

1− Ω0
,

�� ��2.35

where we note

Ω0


> 1, k = +1;
= 1, k = 0;
< 1, k = −1.

�� ��2.36

Observe that by continuity of the functions sinx/x and sinhx/x as x → 0, the function
dL(z) is also continuous as Ω0 → 1±. For convenience, from equation (2.35), the luminosity
distance is given by

dL(z) = (1 + z)
c

H0

sinh
[√

1− Ω0 J
]

√
1− Ω0

,
�� ��2.37

where J is the integral defined by

J =
∫ z

0

H0

H(z)
dz = H0 a0

∫ a0

a

da
a ȧ

.
�� ��2.38

3Another notation that is sometimes used is Ωk = 1− Ω0, so that k = −sign(Ωk).
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It is quite standard to write the luminosity distance versus redshift relation [20, 21] as a
Taylor expansion series in z:

dL(z) =
c z

H0

{
1 +

1
2

[1− q0] z +O(z2)

}
,

�� ��2.39

and its higher-order extension [22, 23, 24, 25]

dL(z) =
c z

H0

{
1 +

1
2

[1− q0] z +
1
6
[
q0 + 3q2

0 − (j0 + Ω0)
]
z2

+
1
24
[
2− 2q0 − 15q2

0 − 15q3
0 + 10q0j0 + 5j0 + s0 + 2(1 + 3q0)Ω0

]
z3 +O(z4)

}
.�� ��2.40

The distance modulus is:

µD = 5 log10[dL/(10 pc)] = 5 log10[dL/(1 Mpc)] + 25.
�� ��2.41

Note that the distance modulus can be rewritten in terms of traditional stellar magni-
tudes as

µD = µapparent − µabsolute.
�� ��2.42

The continued use of stellar magnitudes and the distance modulus in the context of cosmol-
ogy is largely a matter of historical tradition, though we shall soon see that the logarithmic
nature of the distance modulus has interesting and useful side effects. Note that we prefer
as much as possible to deal with natural logarithms: lnx = ln(10) log10 x. Indeed

µD =
5

ln 10
ln[dL/(1 Mpc)] + 25,

�� ��2.43

so that
ln[dL/(1 Mpc)] =

ln 10
5

[µD − 25].
�� ��2.44

2.5.4 More distance scales

Instead of using the standard default choice of luminosity distance dL, let us now consider
using one or more of:

The photon flux distance:

dF =
dL

(1 + z)1/2
.

�� ��2.45

The photon flux distance dF is based on the fact that it is often technologically easier to
count the photon flux (photons/sec) than it is to bolometrically measure total energy flux
(power) deposited in the detector. If we are counting photon number flux, rather than
energy flux, then the photon number flux contains one fewer factor of (1 + z)−1. Converted
to a distance estimator, the “photon flux distance” contains one extra factor of (1 + z)−1/2

as compared to the (power-based) luminosity distance.
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The photon count distance:

dP =
dL

(1 + z)
.

�� ��2.46

The photon count distance dP is related to the total number of photons absorbed without
regard to the rate at which they arrive. Thus the “photon count distance” contains one
extra factor of (1 + z)−1 as compared to the (power-based) luminosity distance. Indeed
D’Inverno [7] uses what is effectively this photon count distance as his nonstandard defini-
tion for luminosity distance. Furthermore, though motivated very differently, this quantity
is equal to Weinberg’s definition of proper motion distance [20], and is also equal to Peebles’
version of angular diameter distance [21]. That is:

dP = dL,D’Inverno = dproper,Weinberg = dA,Peebles.
�� ��2.47

The deceleration distance:
dQ =

dL

(1 + z)3/2
.

�� ��2.48

The quantity dQ is (as far as we can tell) a previously un-named quantity that seems to have
no simple direct physical interpretation — but we shall soon see why it is potentially useful,
and why it is useful to refer to it as the deceleration distance.

The angular diameter distance:

dA =
dL

(1 + z)2
.

�� ��2.49

The quantity dA is Weinberg’s definition of angular diameter distance [20], corresponding
to the physical size of the object when the light was emitted, divided by its current angular
diameter on the sky. This differs from Peebles’ definition of angular diameter distance [21],
which corresponds to what the size of the object would be at the current cosmological epoch
if it had continued to co-move with the cosmological expansion (that is, the “comoving
size”), divided by its current angular diameter on the sky. Weinberg’s dA exhibits the (at
first sight perplexing, but physically correct) feature that beyond a certain point dA can
actually decrease as one moves to older objects that are clearly “further” away. In contrast
Peebles’ version of angular diameter distance is always increasing as one moves “further”
away. Note that

dA,Peebles = (1 + z) dA.
�� ��2.50

See reference [26] for more details on distance measures in cosmology. Obviously

dL ≥ dF ≥ dP ≥ dQ ≥ dA.
�� ��2.51

Furthermore these particular distance scales satisfy the property that they converge on each
other, and converge on the naive Euclidean notion of distance, as z → 0.

To simplify subsequent formulae, it is now useful to define the Hubble distance 4

dH =
c

H0
,

�� ��2.52

4The Hubble distance dH = c/H0 is sometimes called the Hubble radius, or the Hubble sphere, or even the
“speed of light sphere” [SLS] [27]. Sometimes Hubble distance is used to refer to the naive estimate d = dH z
coming from the linear part of the Hubble relation and ignoring all higher-order terms — this is definitely not
our intended meaning.
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so that for H0 = 73 +3
−4 (km/sec)/Mpc [17] we have

dH = 4100 +240
−160 Mpc.

�� ��2.53

Furthermore we choose to set

Ω0 = 1 +
kc2

H2
0a

2
0

= 1 +
k d2

H

a2
0

.
�� ��2.54

For our current purposes Ω0 is a purely cosmographic definition without dynamical con-
tent. (Only if one additionally invokes the Einstein equations in the form of the Friedmann
equations does Ω0 have the standard interpretation as the ratio of total density to the Hubble
density, but we would be prejudging things by making such an identification in the current
cosmographic framework.) In the cosmographic framework k/a2

0 is simply the present day
curvature of space (not spacetime), while d −2

H = H2
0/c

2 is a measure of the contribution of
expansion to the spacetime curvature of the FLRW geometry. More precisely, in a FRLW
universe the Riemann tensor has (up to symmetry) only two non-trivial components. In an
orthonormal basis:

Rθ̂φ̂θ̂φ̂ =
k

a2
+

ȧ2

c2 a2
=

k

a2
+
H2

c2
;

�� ��2.55

Rt̂r̂t̂r̂ = − ä

c2 a
=
q H2

c2
.

�� ��2.56

Then at arbitrary times Ω can be defined purely in terms of the Riemann tensor of the FLRW
spacetime as

Ω =
Rθ̂φ̂θ̂φ̂(ȧ→ 0)

Rθ̂φ̂θ̂φ̂(k → 0)
.

�� ��2.57

2.6 Lookback time

The lookback time-redshift relation, is defined as the difference between the present age of
the Universe t0 and its age t(z) when a particular light ray at redshift z was emitted. In the
context of a FLRW universe, it is given by:

T (z) = to − t(z) =
∫ a0

a
dt

�� ��2.58

=
∫

dt
da

da =
∫
a

ȧ

da
a

�� ��2.59

=
∫

1
H

d(a0/(1 + z)
a0/(1 + z)

= −
∫

1
H

dz/(1 + z)2

1/(1 + z)
.

�� ��2.60

That is, in a FLRW universe, the lookback time T (z) is:

T (z) =
∫ z

0

1
(1 + z) H(z)

dz
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2.7 Supernovae

Supernovae are catastrophic explosions of stars whose peak brightness can rival that of the
whole host galaxy. They cause a burst of radiation and are detectable at great distances
before fading from view over several weeks or months. During this short interval, a su-
pernova can radiate as much energy as the Sun could emit over its life span. Most of the
star’s material is expelled during the explosion and the consequent shock waves sweep up
an expanding shell of gas and dust called a supernova remnant. Figure 2.3 shows an X-ray
of the remnant (leftover) of a supernova explosion (Tycho’s nova).

Figure 2.3: X-ray of SN 1572 (Tycho’s Nova) remnant as seen by Chandra X-Ray Observa-
tory, Spitzer Space Telescope, and Calar Alto Observatory

There are several kinds of supernovae, they may be triggered in one of two ways, either
turning off or suddenly turning on the production of energy through nuclear fusion. Table
2.2 describes the classification of several types of supernovae. On average, supernovae oc-
cur about once every 50 years in a galaxy the size of the Milky Way.

A predominant interest in supernova is as “standard candles” for measuring distances
(or more precisely “standardizable candles”). This requires an observation of their peak lu-
minosity. It is therefore important to discover them well before they reach their maximum.

2.7.1 Standard candles

Objects of known brightness are termed standard candles, they are classified into various
brightness classes. By comparing the known luminosity of the latter to its observed bright-
ness, the distance to the object can be inferred. Specifically, the luminosity L of a supernova
can be determined from its apparent brightness f (energy flux measured on Earth) and the
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Table 2.2: Supernovae classifications

Type Characteristics
Type Ia Lacks hydrogen and presents a singly-ionized

silicon line at 615 nm, near peak light
Type Ib Non-ionized helium line at 587.6 nm and

no strong silicon absorption feature near 615 nm
Type Ic Weak or no helium lines and no strong

silicon absorption feature near 615 nm
Type IIP Reaches a “plateau” in its light curve
Type IIL Displays a “linear” decrease in its light curve

(linear in magnitude versus time)

luminosity distance dL can be determined by the inverse square law:

f =
L

4πd2
L

.
�� ��2.61

Practically, the luminosity L can be inferred (from the shape and spectral properties of the
light curve), the flux f can be measured and therefore the luminosity distance dL can be
measured.

In astronomy, the brightness of an object is given in terms of its absolute magnitude.
This quantity is derived from the logarithm of its luminosity as seen from a distance of 10
parsecs. The apparent magnitude, or the magnitude as seen by the observer, can be used
to determine the distance D to the object in kiloparsecs (where 1 kpc equals 103 parsecs) as
follows:

5 · log10

D

kpc
= m − M − 5,

�� ��2.62

where m is the apparent magnitude and M is the absolute magnitude. For this to be accu-
rate, both magnitudes must be in the same frequency band and there must be no relative
motion in the radial direction.

Some means of accounting for interstellar extinction, which also makes objects appear
fainter and more red, is also needed.

2.7.2 Problems

Two problems exist for any class of standard candle.

• Calibration: determining exactly what the absolute magnitude of the candle is.
Classes need to be defined well enough so that members can be recognized. It also
means finding enough members with well-known distances that their true absolute
magnitude can be determined with enough accuracy.

• Recognition: recognizing members of the class.
At extreme distances, which is where one most wishes to use a distance indicator, this
recognition problem can be quite serious.
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The most important issue with standard candles is the recurring question of how stan-
dard they are. For example, all observations seem to indicate that type Ia supernovae that
are of known distance have all the same brightness. However the possibility that the distant
type Ia supernovae have different properties than nearby type Ia supernovae exists.

That this is not merely a philosophical issue can be seen from the history of distance
measurements using Cepheid variables. In the 1950s, Walter Baade discovered that the
nearby Cepheid variables used to calibrate the standard candle were of a different type
than the ones used to measure distances to nearby galaxies. The nearby cepheid variables
were population I stars with much higher metal content than the distant population II stars.
As a result, the population II stars were actually much brighter than believed, and this had
the effect of doubling the distances to the globular clusters, the nearby galaxies, and the
diameter of the Milky Way.

2.7.3 Type Ia light curves

Type Ia supernovae are some of the best ways to determine distances. SNIa occur when a
binary white dwarf star begins to accrete matter from its companion. As the white dwarf
gains matter, eventually it reaches its Chandrasekhar Limit of 1.4M�, once reached, the star
becomes unstable and undergoes a runaway nuclear fusion reaction. Because all Type Ia
supernovae explode at about the same mass, their absolute magnitudes are all the same.
Moreover there is some similarity in basic mechanism between one SNIa and the next and
hence some similarity in their peak luminosity. There is an even tighter correlation between
peak brightness and time it takes for the brightness to decay. This makes them very useful
as standard candles. All type Ia SN have a standard blue and visual magnitude of

MB ≈MV ≈ −19.3± 0.03.

Figure 2.4 shows the light curve of a supernova.
When observing a type Ia supernova, if it is possible to determine what its peak magni-

tude was, then its distance can be calculated. It is not intrinsically necessary to capture the
supernova directly at its peak magnitude; using the multicolor light curve method (MCLS),
the shape of the light curve (taken at any reasonable time after the initial explosion) is com-
pared to a family of parameterized curves that will determine the absolute magnitude at
the maximum brightness.

Using Type Ia supernovae is one of the most accurate methods. Much time has been
devoted to the refining of this method.

2.7.4 The legacy05 dataset

The supernova data is available in published form [28], and in a slightly different format,
via internet [2]. (The differences amount to minor matters of choice in the presentation.) The
final processed result reported for each 115 of the supernovae is a redshift z, a luminosity
modulus µB , and an uncertainty in the luminosity modulus. The luminosity modulus can
be converted into a luminosity distance via the formula

dL = (1 Megaparsec)× 10(µB+µoffset−25)/5.
�� ��2.63
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Figure 2.4: Supernova light curve “standard candles” (NASA)

The reason for the offset is that supernovae by themselves only determine the shape of the
Hubble relation (i.e., q0, j0, etc.), but not its absolute slope (i.e., H0) — this is ultimately due
to the fact that we do not have good control of the absolute luminosity of the supernovae in
question. The offset µoffset can be chosen to match the known value ofH0 coming from other
sources. (In fact the data reported in the published article [28] has already been normalized
in this way to the standard value H70 = 70 (km/sec)/Mpc, corresponding to Hubble dis-
tance d70 = c/H70 = 4283 Mpc, whereas the data available on the website [2] has not been
normalized in this way — which is why µB as reported on the website is systematically
19.308 stellar magnitudes smaller than that in the published article.)

The other item one should be aware of concerns the error bars: The error bars reported
in the published article [28] are photometric uncertainties only — there is an additional
source of error to do with the intrinsic variability of the supernovae. In fact, if you take the
photometric error bars seriously as estimates of the total uncertainty, you would have to
reject the hypothesis that we live in a standard FLRW universe. Instead, intrinsic variability
in the supernovae is by far the most widely accepted interpetation. Basically one uses the
nearby dataset to estimate an intrinsic variability that makes chi-squared look reasonable.
This intrinsic variability of 0.13104 stellar magnitudes [2, 12]) has been estimated by looking
at low redshift supernovae (where we have good measures of absolute distance from other
techniques), and has been included in the error bars reported on the website [2]. Indeed

(uncertainty)website =
√

(intrinsic variability)2 + (uncertainty)2
article.

�� ��2.64

With these key features of the supernovae data kept in mind, conversion to luminosity dis-
tance and estimation of scientifically reasonable error bars (suitable for chi-square analysis)
is straightforward.
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2.7.5 The gold06 dataset

Our second collection of supernova data is the gold06 dataset [3]. This dataset contains
206 supernovae (including most but not all of the legacy05 supernovae) and reaches out
considerably further in redshift, with one outlier at z = 1.755, corresponding to y = 0.6370.
Though the dataset is considerably more extensive it is unfortunately heterogeneous —
combining observations from five different observing platforms over almost a decade. In
some cases full data on the operating characteristics of the telescopes used does not appear
to be publicly available. The issue of data inhomogeneity has been specifically addressed by
Nesseris and Perivolaropoulos in [29]. (For related discussion, see also [30].) In the gold06
dataset one is presented with distance moduli and total uncertainty estimates, in particular,
including the intrinsic dispersion.

A particular point of interest is that the HST-based high-z supernovae previously pub-
lished in the gold04 dataset [2] have their estimated distances reduced by approximately 5%
(corresponding to ∆µD = 0.10), due to a better understanding of nonlinearities in the pho-
todetectors. 5 Furthermore, the authors of [3] incorporate (most of) the supernovae in the
legacy dataset [28, 2], but do so in a modified manner by reducing their estimated distance
moduli by ∆µD = 0.19 (corresponding naively to a 9.1% reduction in luminosity distance)
— however this is only a change in the normalization used in reporting the data, not a phys-
ical change in distance. Based on revised modelling of the light curves, and ignoring the
question of overall normalization, the overlap between the gold06 and legacy05 datasets is
argued to be consistent to within 0.5% [3].

The critical point is this: Since one is still seeing≈ 5% variations in estimated supernova
distances on a two-year timescale, this strongly suggests that the unmodelled systematic
uncertainties (the so-called unknown unknowns) are not yet fully under control in even the
most recent data. It would be prudent to retain a systematic uncertainty budget of at least
5% (more specifically, ∆µD = 0.10), and not to place too much credence in any result that is
not robust under possible systematic recalibrations of this magnitude. Indeed the authors
of [3] state:

• “... we adopt a limit on redshift-dependent systematics to be 5% per ∆z = 1”;

• “At present, none of the known, well-studied sources of systematic error rivals the
statistical errors presented here.”

We shall have more to say about possible systematic uncertainties, both “known unknowns”
and unknown unknowns later in chapter 3.

2.8 Some history

The need for a certain amount of caution in interpreting the observational data can clearly
be inferred from a dispassionate reading of history. We reproduce below Hubble’s original
1929 version of what is now called the Hubble plot (Figure 2.5(a)) [31], a modern update

5Changes in stellar magnitude are related to changes in luminosity distance via equations 2.43 and 2.44.
Explicitly ∆(ln dL) = ln 10 ∆µD/5, so that for a given uncertainty in magnitude the corresponding luminosity
distances are multiplied by a factor 10∆µD/5. Then 0.10 magnitudes→ 4.7% ≈ 5%, and similarly 0.19 magni-
tudes→ 9.1%.
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from 2004 (Figure 2.5(b)) [32], and a very telling plot of the estimated value of the Hub-
ble parameter as a function of publication date (Figure 2.6) [32]. Regarding this last plot,
Kirshner is moved to comment [32]:

“At each epoch, the estimated error in the Hubble constant is small compared
with the subsequent changes in its value. This result is a symptom of underesti-
mated systematic errors.”

It is important to realise that the systematic under-estimating of systematic uncertainties
is a generic phenomenon that cuts across disciplines and sub-fields, it is not a phenomenon
that is limited to cosmology. For instance, the Particle Data Group [http://pdg.lbl.gov/] in
their bi-annual Review of Particle Properties publishes fascinating plots of estimated val-
ues of various particle physics parameters as a function of publication date (Figure 2.7) [17].
These plots illustrate an aspect of the experimental and observational sciences that is often
overlooked:

It is simply part of human nature to always think the situation regarding sys-
tematic uncertainties is better than it actually is — systematic uncertainties
are systematically under-reported.

This historical perspective should be kept in focus — ultimately the treatment of sys-
tematic uncertainties will prove to be an important component in estimating the reliability
and robustness of any conclusions we can draw from the data.
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(a) Hubble’s original 1929 plot [31]. Note the rather large scatter in the data.

(b) Modern 2004 version of the Hubble plot. From Kirshner [32]. The original 1929
Hubble plot is confined to the small red rectangle at the bottom left.

Figure 2.5: The original Hubble law with observational data.
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Figure 2.6: Estimates of the Hubble parameter as a function of publication date. From
Kirshner [32]. Quote: “At each epoch, the estimated error in the Hubble constant is small
compared with the subsequent changes in its value. This result is a symptom of underesti-
mated systematic errors.”
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Cosmography: Extracting the Hubble series from the supernova data 10

Figure 4. Some historical plots of particle physics parameters as a function
of publication date. From the Particle Data Group’s 2006 Review of Particle
Properties [25]. These plots strongly suggest that the systematic under-estimating
of systematic uncertainties is a generic phenomenon that cuts across disciplines and
sub-fields, it is not a phenomenon that is limited to cosmology.

Figure 2.7: Some historical plots of particle physics parameters as a function of publica-
tion date. From the Particle Data Group’s 2006 Review of Particle Properties [17]. These
plots strongly suggest that the systematic under-estimating of systematic uncertainties is a
generic phenomenon that cuts across disciplines and sub-fields, it is not a phenomenon that
is limited to cosmology.
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2.9 The standard Cosmological Model (ΛCDM)

ΛCDM or Lambda-CDM is an abbreviation for Lambda-Cold Dark Matter. This model is
referred to as the concordance model of big bang cosmology, it attempts to explain cosmic
microwave background observations, large scale structure observations and supernovae
observations of the accelerating expansion of the universe. In this model Λ is the cosmo-
logical constant that stands for dark energy.

This model has very strong assumptions, the simplest are:

• Nearly scale-invariant spectrum of primordial perturbations.

• A universe without spatial curvature (k = 0).

• No observable topology, so that the universe is much larger than the observable par-
ticle horizon.

• Cosmic inflation.

• FLRW metric, the Friedmann equations (Einstein field equations) and the cosmolog-
ical equations of state to describe the universe from right after the inflationary epoch
to present and future.

This model has 6 basic parameters: 3 parameters relevant to the Friedmann equations,
the Hubble parameter H0, the baryon density Ωb, the total matter density (baryon + dark
matter) Ωm, and 3 other parameters related to the CMB and perturbative structure, the
optical depth to reionization τ , the scalar fluctuation amplitude As and the scalar spectral
index ns. The model also has some derived parameters including the critical density ρ0, the
dark energy density ΩΛ and the age of the universe t0.

There are some concerns on some of these assumptions. In particular, cosmic inflation
predicts spatial curvature at the level of 10−4 to 10−5. Moreover, the ΛCDM says nothing
about the fundamental physical origin of dark matter, dark energy and the nearly scale-
invariant spectrum of primordial curvature perturbations.

2.10 Energy conditions

In classical general relativity, there are several types of energy conditions [33]:

• the null energy condition (NEC);

• the weak energy condition (WEC);

• the strong energy condition (SEC);

• the dominant energy condition (DEC).

The energy conditions of general relativity permit one to deduce very powerful and
general theorems about the behaviour of strong gravitational fields and cosmological ge-
ometries. There are also Averaged Energy Conditions (AEC), but they are of less relevance
in FLRW cosmology. These conditions can most easily be stated in terms of the components
of the stress energy tensor T µ̂ν̂ in an orthonormal frame. Ultimately, however, constraints
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on the stress-energy are converted, via the Einstein equations, to constraints on the space-
time geometry — in particular in a FLRW spacetime one is ultimately imposing conditions
on the scale factor and its time derivatives (and implicitly cosmological parameters). In
FLRW cosmology, it is sufficiently general to assume that the energy momentum tensor is
of Hawking–Ellis type one (type I) [34, p 89]. In an orthonormal frame, the components of
the stress energy tensor are given by:

T âb̂ =


ρ 0 0 0
0 p1 0 0
0 0 p2 0
0 0 0 p3

 . �� ��2.65

The components of T âb̂ are the energy density and the three principal pressures.

2.10.1 Null Energy condition (NEC)

For all future pointing null vectors ka, we ask that:

Tab k
akb > 0

�� ��2.66

In terms of pressures and density, we have:

∀ i ρ+ pi > 0.

Hawking’s area theorem for black hole horizon relies on the NEC, and hence evapora-
tion of a black hole must violate the NEC.

2.10.2 Weak Energy condition (WEC)

Sometimes it is useful to think about Einstein’s equations without specifying the theory of
matter from which T âb̂ is derived. This leaves us with a great deal of arbitrariness, in the
absence of some constraints on T âb̂, any metric can satisfy the Einstein equations. The real
concern is the existence of solutions to Einstein’s equations with realistic sources of energy
and momentum. The most common property that is demanded of T âb̂ is that it represent
positive energy densities — no negative masses are allowed. In a locally inertial frame
this requirement can be stated as ρ = T00 > 0. To turn this into a coordinate-independent
statement, we ask that:

TabV
aV b > 0 ∀ timelike vector V

In terms of pressures and density, we have:

ρ > 0 and ∀ i ρ+ pi > 0.

Any timelike vector can be a tangent to an observer’s world line. The WEC condition states
that the energy density measured by any timelike observer is non-negative. It seems like
a fairly reasonable requirement, and many of the important theorems about solutions to
general relativity (such as the singularity theorems of Hawking and Penrose ([35, p 240]))
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rely on this condition or something very close to it. Unfortunately it is not set in stone;
indeed, it is straightforward to invent otherwise respectable classical field theories which
violate the WEC, and almost impossible to invent a quantum field theory which obeys it.
Nevertheless, it is legitimate to assume that the WEC holds in all but the most extreme
conditions.

2.10.3 Strong Energy Condition (SEC)

For any timelike vectors V a, we ask that:(
Tab −

T

2
gab

)
V aV b > 0

where T is the trace of the stress-energy tensor: T = Tabg
ab.

In terms of pressures and density, we have:

T = −ρ+
∑
i

pi

∀i ρ+ pi > 0 and ρ+
∑
i

pi > 0.

Note that the SEC implies the NEC, it does not imply the WEC. For example, matter with
a negative energy density but sufficiently high pressures could satisfy the SEC but would
violate the WEC.

The Penrose–Hawking singularity theorem relevant to the cosmological singularity uses
the SEC. See [36, 37] for strong energy condition violations.

2.10.4 Dominant Energy Condition (DEC)

For any timelike vectors V a, we ask that:

TabV
aV b > 0 and that TabV

b is a future directed non-spacelike vector.

The DEC assumes that the WEC holds, and that for all future directed timelike vectors
V a that TabV b is a future directed non-spacelike vector. This ensures that the net energy
flow does not exceed the speed of light. The dominant energy condition implies the weak
energy condition and also the null energy condition, but does not necessarily imply the
strong energy condition.

In terms of pressures and density, we have:

ρ > 0 and ∀ i − ρ 6 pi 6 ρ.

The dominant energy condition can be interpreted as saying that the speed of energy flow
of matter is always less than the speed of light.
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2.10.5 Comments on the Energy Conditions

Note that the null energy condition implies the weak energy condition, but otherwise the
NEC, the WEC and the SEC are mathematically independent assumptions. In particular,
the SEC does not imply the WEC. It is stronger only in the sense that it appears to be a
stronger physical requirement to assume equation (2.10.3) rather than equation (2.10.2). Vi-
olating the NEC implies violating the DEC, SEC and WEC as well.

The energy conditions are looking a lot less secure than they once seemed:

• There are quantum effects that violate all of the energy conditions.

• There are even relatively benign looking classical systems that violate all the energy
conditions [33].

Note that ideal relativistic fluids satisfy the DEC, and certainly all the known forms of
normal matter encountered in our solar system satisfy the DEC. With sufficiently strong
self-intereactions relativistic fluids can be made to violate the SEC (and DEC); but clas-
sical relativistic fluids always seem to satisfy the NEC. Most classical fields (apart from
non-minimally coupled scalars) satisfy the NEC. Violating the NEC seems to require either
quantum physics (which is unlikely to be a major contributor to the overall cosmological
evolution of the universe) or non-minimally coupled scalars (implying that one is effec-
tively adopting some form of scalar-tensor gravity).
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“Statistics:
The only science that enables different
experts using the same figures to draw
different conclusions.”

Evan Esar (1899–1995) 3
Cosmography

in a FLRW universe

From various observations of the Hubble relation, most recently including the supernova
data [28, 1, 2, 3, 38, 39], one is by now very accustomed to seeing many plots of lumi-

nosity distance dL versus redshift z. But are there better ways of representing the data?

For instance, consider cosmography (cosmokinetics) which is the part of cosmology that
proceeds by making minimal dynamic assumptions. One keeps the geometry and symme-
tries of FLRW spacetime,

ds2 = −c2 dt2 + a(t)2

{
dr2

1− k r2
+ r2(dθ2 + sin2 θ dφ2)

}
,

�� ��3.1

at least as a working hypothesis, but does not assume the Friedmann equations (Einstein
equations), unless and until absolutely necessary. By doing so it is possible to defer ques-
tions about the equation of state of the cosmological fluid, minimize the number of theo-
retical assumptions one is bringing to the table, and so concentrate more directly on the
observational situation.

In particular, the “big picture” is best brought into focus by performing a global fit of
all available supernova data to the Hubble relation, from the current epoch at least back
to redshift z ≈ 1.75. Indeed, all the discussion over acceleration versus deceleration, and
the presence (or absence) of jerk (and snap) ultimately boils down, in a cosmographic set-
ting, to doing a finite-polynomial truncated–Taylor series fit of the distance measurements
(determined by supernovae and other means) to some suitable form of distance–redshift or
distance–velocity relationship. Phrasing the question to be investigated in this way keeps
it as close as possible to Hubble’s original statement of the problem, while minimizing the
number of extraneous theoretical assumptions one is forced to adopt. For instance, it is
quite standard to phrase the investigation in terms of the luminosity distance versus red-
shift relation [20, 21]:

dL(z) =
c z

H0

{
1 +

1
2

[1− q0] z +O(z2)

}
,

�� ��3.2
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and its higher-order extension [22, 23, 24, 25]

dL(z) =
c z

H0

{
1 +

1
2

[1− q0] z +
1
6
[
q0 + 3q2

0 − (j0 + Ω0)
]
z2

+
1
24
[
2− 2q0 − 15q2

0 − 15q3
0 + 10q0j0 + 5j0 + s0 + 2(1 + 3q0)Ω0

]
z3 +O(z4)

}
.�� ��3.3

A central question thus has to do with the choice of the luminosity distance as the primary
quantity of interest — there are several other notions of cosmological distance that can
be used, some of which (we shall see) lead to simpler and more tractable versions of the
Hubble relation. Furthermore, as will quickly be verified by looking at the derivation (see,
for example, [20, 21, 22, 23, 24, 25], the standard Hubble law is actually a Taylor series
expansion derived for small z, whereas much of the most interesting recent supernova data
occurs at z > 1. Should we even trust the usual formalism for large z > 1? Two distinct
things could go wrong:

• The underlying Taylor series could fail to converge.

• Finite truncations of the Taylor series might be a bad approximation to the exact result.

In fact, both things happen. There are good mathematical and physical reasons for this
undesirable behaviour, as we shall discuss below. We shall carefully explain just what goes
wrong — and suggest various ways of improving the situation. Our ultimate goal will be
to find suitable forms of the Hubble relation that are well adapted to performing fits to all
the available distance versus redshift data.

Moreover — once one stops to consider it carefully — why should the cosmology com-
munity be so fixated on using the luminosity distance dL (or its logarithm, proportional to
the distance modulus) and the redshift z as the relevant parameters? In principle, in place
of luminosity distance dL(z) versus redshift z one could just as easily plot f(dL, z) versus
g(z), choosing f(dL, z) and g(z) to be arbitrary locally invertible functions, and exactly the
same physics would be encoded. Suitably choosing the quantities to be plotted and fit will
not change the physics, but it might improve statistical properties and insight. (And we
shall soon see that it will definitely improve the behaviour of the Taylor series.)

By comparing cosmological parameters obtained using multiple different fits of the
Hubble relation to different distance scales and different parameterizations of the redshift
we can then assess the robustness and reliability of the data fitting procedure. In performing
this analysis we had hoped to verify the robustness of the Hubble relation, and to possibly
obtain improved estimates of cosmological parameters such as the deceleration parameter
and jerk parameter, thereby complementing other recent cosmographic and cosmokinetic
analyses such as [12, 13, 14, 15, 16], as well as other analyses that take a sometimes skep-
tical view of the totality of the observational data [40, 41, 30, 42, 43]. The actual results of
our current cosmographic fits to the data are considerably more ambiguous than we had
initially expected, and there are many subtle issues hiding in the simple phrase “fitting the
data”.

In this chapter we first discuss the various cosmological distance scales, and the related
versions of the Hubble relation. We then discuss technical problems with the usual redshift
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variable for z > 1, and how to ameliorate them, leading to yet more versions of the Hubble
relation. After discussing key features of the supernova data, we perform, analyze, and
contrast multiple fits to the Hubble relation — providing discussions of model-building
uncertainties (some technical details being relegated to the appendices) and sensitivity to
systematic uncertainties. Finally we present our results and conclusions: There is a dis-
turbingly strong model-dependence in the resulting estimates for the deceleration param-
eter. Furthermore, once realistic estimates of systematic uncertainties (based on the pub-
lished data) are budgeted for it becomes clear that purely statistical estimates of goodness
of fit are dangerously misleading. While the “preponderance of evidence” certainly suggests
an accelerating universe, we would argue that this conclusion is not currently supported
“beyond reasonable doubt” — the supernova data (considered by itself) certainly suggests
an accelerating universe, it is not sufficient to allow us to reliably conclude that the universe
is accelerating.1

3.1 New versions of the Hubble law

As illustrated in section 2.5 on Cosmological Distance Scales, there are many different and
equally natural definitions of the notion of distance between two objects or events, whether
directly observable or not.

For the vertical axis of the Hubble plot, instead of using the standard default choice of
luminosity distance dL, let us now consider using one or more of:

• The photon flux distance:

dF =
dL

(1 + z)1/2
.

�� ��3.4

• The photon count distance:

dP =
dL

(1 + z)
.

�� ��3.5

• The deceleration distance:
dQ =

dL
(1 + z)3/2

.
�� ��3.6

• The angular diameter distance:

dA =
dL

(1 + z)2
.

�� ��3.7

• The distance modulus:

µD = 5 log10[dL/(10 pc)] = 5 log10[dL/(1 Mpc)] + 25.
�� ��3.8

• Or possibly some other surrogate for distance.

1If one adds additional theoretical assumptions, such as by specifically fitting to a Λ-CDM model, the situa-
tion at first glance looks somewhat better — but this is then telling you as much about one’s choice of theoretical
model as it is about the observational situation.
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Remember the relation between the distances

dL ≥ dF ≥ dP ≥ dQ ≥ dA.
�� ��3.9

Furthermore these particular distance scales satisfy the property that they converge on each
other, and converge on the naive Euclidean notion of distance, as z → 0.

New versions of the Hubble law are easily calculated for each of these cosmological
distance scales. Explicitly:

dL(z) = dH z

{
1 +

1
2

[1− q0] z +
1
6
[
q0 + 3q2

0 − (j0 + Ω0)
]
z2

+
1
24
[
2− 2q0 − 15q2

0 − 15q3
0 + 10q0j0 + 5j0 + s0 + 2(1 + 3q0)Ω0

]
z3 +O(z4)

}
.�� ��3.10

dF (z) = dH z

{
1− 1

2
q0z +

1
24
[
3 + 10q0 + 12q2

0 − 4(j0 + Ω0)
]
z2

+
1
48
[
2− 17q0 − 42q2

0 − 30q3
0 + 20q0j0 + 14j0 + 2s0 + 4(2 + 3q0)Ω0

]
z3 +O(z4)

}
.�� ��3.11

dP (z) = dH z

{
1− 1

2
[1 + q0] z +

1
6
[
3 + 4q0 + 3q2

0 − (j0 + Ω0)
]
z2

+
1
24
[
−3− 9q0 − 16q2

0 − 10q3
0 + 8q0j0 + 7j0 + s0 + 4(1 + q0)Ω0

]
z3 +O(z4)

}
.�� ��3.12

dQ(z) = dH z

{
1− 1

2
[2 + q0] z +

1
24
[
27 + 22q0 + 12q2

0 − 4(j0 + Ω0)
]
z2

+
1
48
[
−44− 61q0 − 66q2

0 − 30q3
0 + 20q0j0 + 22j0 + 2s0 + 4(4 + 3q0)Ω0

]
z3 +O(z4)

}
.�� ��3.13

dA(z) = dH z

{
1− 1

2
[3 + q0] z +

1
6
[
12 + 7q0 + 3q2

0 − (j0 + Ω0)
]
z2

+
1
24
[
−50− 46q0 − 39q2

0 − 15q3
0 + 10q0j0 + 13j0 + s0 + 2(5 + 3q0)Ω0

]
z3 +O(z4)

}
.�� ��3.14
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If one simply wants to deduce (for instance) the sign of q0, then it seems that plotting the
photon flux distance dF versus z would be a particularly good test — simply check if the
first nonlinear term in the Hubble relation curves up or down.

In contrast, the Hubble law for the distance modulus itself is given by the more compli-
cated expression

µD(z) = 25 +
5

ln(10)

{
ln(dH/Mpc) + ln z

�� ��3.15

+
1
2

[1− q0] z − 1
24
[
3− 10q0 − 9q2

0 + 4(j0 + Ω0)
]
z2

+
1
24
[
5− 9q0 − 16q2

0 − 10q3
0 + 8q0j0 + 7j0 + s0 + 4(1 + q0)Ω0

]
z3 +O(z4)

}
.

However, when plotting µD versus z, most of the observed curvature in the plot comes from
the universal (ln z) term, and so carries no real information and is relatively uninteresting.
It is much better to rearrange the above as:

ln[dL/(z Mpc)] =
ln 10

5
[µD − 25]− ln z

�� ��3.16

= ln(dH/Mpc)

−1
2

[−1 + q0] z +
1
24
[
−3 + 10q0 + 9q2

0 − 4(j0 + Ω0)
]
z2

+
1
24
[
5− 9q0 − 16q2

0 − 10q3
0 + 8q0j0 + 7j0 + s0 + 4(1 + q0)Ω0

]
z3 +O(z4),

In a similar manner one has

ln[dF /(z Mpc)] =
ln 10

5
[µD − 25]− ln z − 1

2
ln(1 + z)

�� ��3.17

= ln(dH/Mpc)

−1
2
q0z +

1
24
[
3 + 10q0 + 9q2

0 − 4(j0 + Ω0)
]
z2

+
1
24
[
1− 9q0 − 16q2

0 − 10q3
0 + 8q0j0 + 7j0 + s0 + 4(1 + q0)Ω0

]
z3 +O(z4),

ln[dP /(z Mpc)] =
ln 10

5
[µD − 25]− ln z − ln(1 + z)

�� ��3.18

= ln(dH/Mpc)

−1
2

[1 + q0] z +
1
24
[
9 + 10q0 + 9q2

0 − 4(j0 + Ω0)
]
z2

+
1
24
[
3− 9q0 − 16q2

0 − 10q3
0 + 8q0j0 + 7j0 + s0 + 4(1 + q0)Ω0

]
z3 +O(z4),

ln[dQ/(z Mpc)] =
ln 10

5
[µD − 25]− ln z − 3

2
ln(1 + z)

�� ��3.19

= ln(dH/Mpc)

−1
2

[2 + q0] z +
1
24
[
15 + 10q0 + 9q2

0 − 4(j0 + Ω0)
]
z2

+
1
24
[
−7− 9q0 − 16q2

0 − 10q3
0 + 8q0j0 + 7j0 + s0 + 4(1 + q0)Ω0

]
z3 +O(z4),

39



CHAPTER 3. COSMOGRAPHY IN A FLRW UNIVERSE

ln[dA/(z Mpc)] =
ln 10

5
[µD − 25]− ln z − 2 ln(1 + z)

�� ��3.20

= ln(dH/Mpc)

−1
2

[3 + q0] z +
1
24
[
21 + 10q0 + 9q2

0 − 4(j0 + Ω0)
]
z2

+
1
24
[
−3− 9q0 − 16q2

0 − 10q3
0 + 8q0j0 + 7j0 + s0 + 4(1 + q0)Ω0

]
z3

+O(z4).

These logarithmic versions of the Hubble law have several advantages — fits to these rela-
tions are easily calculated in terms of the observationally reported distance moduli µD and
their estimated statistical uncertainties [28, 1, 2, 3, 38]. (Specifically there is no need to trans-
form the statistical uncertainties on the distance moduli beyond a universal multiplication
by the factor [ln 10]/5.) Furthermore the deceleration parameter q0 is easy to extract as it has
been untangled from both Hubble parameter and the combination (j0 + Ω0).

Note that it is always the combination (j0 + Ω0) that arises in these third-order terms of
the Hubble relations, and that it is even in principle impossible to separately determine j0
and Ω0 in a cosmographic framework. When looking at the fourth-order terms, it becomes
impossible to separately determine j0, s0 and Ω0 in this framework. The reason for this
degeneracy is (or should be) well-known [20, p. 451]: Consider the exact expression for the
luminosity distance in any FLRW universe, which is usually presented in the form [20, 21]

dL(z) = a0 (1 + z) sink

{
c

H0 a0

∫ z

0

H0

H(z)
dz
}
,

�� ��3.21

where

sink(x) =


sin(x), k = +1;
x, k = 0;
sinh(x), k = −1.

�� ��3.22

By inspection, even if one knows H(z) exactly for all z one cannot determine dL(z) without
independent knowledge of k and a0. Conversely even if one knows dL(z) exactly for all
z one cannot determine H(z) without independent knowledge of k and a0. Indeed let us
rewrite this exact result in a slightly different fashion as

dL(z) = a0 (1 + z)

sin

{√
k dH
a0

∫ z

0

H0

H(z)
dz

}
√
k

,
�� ��3.23

where this result now holds for all k provided we interpret the k = 0 case in the obvious
limiting fashion. Equivalently, using the cosmographic Ω0 as defined above we have the
exact cosmographic result that for all Ω0:

dL(z) = dH (1 + z)
sin
{√

Ω0 − 1
∫ z

0

H0

H(z)
dz
}

√
Ω0 − 1

.
�� ��3.24

This form of the exact Hubble relation makes it clear that an independent determination of
Ω0 (equivalently, k/a2

0), is needed to complete the link between a(t) and dL(z). When Taylor
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expanded in terms of z, this expression leads to a degeneracy at third-order, which is where
Ω0 [equivalently k/a2

0] first enters into the Hubble series [24, 25].
What message should we take from this discussion? There are many physically equiva-

lent versions of the Hubble law, corresponding to many slightly different physically reason-
able definitions of distance, and whether we choose to present the Hubble law linearly or
logarithmically. If one were to have arbitrarily small scatter/error bars on the observational
data, then the choice of which Hubble law one chooses to fit to would not matter. In the
presence of significant scatter/uncertainty there is a risk that the fit might depend strongly
on the choice of Hubble law one chooses to work with. (And if the resulting values of the
deceleration parameter one obtains do depend significantly on which distance scale one
uses, this is evidence that one should be very cautious in interpreting the results.) Note that
the two versions of the Hubble law based on “photon flux distance” dF stand out in terms
of making the deceleration parameter easy to visualize and extract.

3.2 Why is the redshift expansion badly behaved for z > 1?

In addition to the question of which distance measure one chooses to use, there is a basic
and fundamental physical and mathematical reason why the traditional redshift expansion
breaks down for z > 1.

3.2.1 Convergence

Consider the exact Hubble relation (3.21). This is certainly nicely behaved, and possesses
no obvious poles or singularities, (except possibly at a turnaround event where H(z) →
0, more on this below). However if we attempt to develop a Taylor series expansion in
redshift z, using what amounts to the definition of the Hubble H0, deceleration q0, and jerk
j0 parameters, then:

1
1 + z

=
a(t)
a0

= 1 +H0 (t− t0)− q0 H
2
0

2!
(t− t0)2 +

j0 H
3
0

3!
(t− t0)3

+
1
4!
s0 H

4
0 (t− t0)4 +O([t− t0]5).

�� ��3.25

Now this particular Taylor expansion manifestly has a pole at z = −1, corresponding to the
instant (either at finite or infinite time) when the universe has expanded to infinite volume,
a = ∞. Note that a negative value for z corresponds to a(t) > a0, that is: In an expanding
universe z < 0 corresponds to the future. Since there is an explicit pole at z = −1, by
standard complex variable theory the radius of convergence is at most |z| = 1, so that this
series also fails to converge for z > 1, when the universe was less than half its current size.

Consequently when reverting this power series to obtain lookback time T = t0 − t as a
function T (z) of z, we should not expect that series to converge for z > 1. Ultimately, when
written in terms of a0, H0, q0, j0, and a power series expansion in redshift z you should not
expect dL(z) to converge for z > 1.

Note that the mathematics that goes into this result is that the radius of convergence of
any power series is the distance to the closest singularity in the complex plane, while the
relevant physics lies in the fact that on physical grounds we should not expect to be able
to extrapolate forwards beyond a = ∞, corresponding to z = −1. Physically we should
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expect this argument to hold for any observable quantity when expressed as a function of
redshift and Taylor expanded around z = 0 — the radius of convergence of the Taylor series
must be less than or equal to unity. (Note that the radius of convergence might actually be
less than unity, this occurs if some other singularity in the complex z plane is closer than
the breakdown in predictability associated with attempting to drive a(t) “past” infinite
expansion, a =∞.) Figure 3.1 illustrates the radius of convergence in the complex plane of
the Taylor series expansion in terms of z.

Complex z plane

a = a0/2 a = 0

z = +∞z = 1

a = +∞
z = −1

radius of convergence

a = a0

z = 0

Figure 3.1: Qualitative sketch of the behaviour of the scale factor a and the radius of con-
vergence of the Taylor series in z-redshift.

Consequently, we must conclude that observational data regarding dL(z) for z > 1 is not
going to be particularly useful in fitting a0, H0, q0, and j0, to the usual traditional version
of the Hubble relation.

3.2.2 Pivoting

A trick that is sometimes used to improve the behaviour of the Hubble law is to Taylor
expand around some nonzero value of z, which might be called the “pivot”. That is, we
take

z = zpivot + ∆z,
�� ��3.26

and expand in powers of ∆z. If we choose to do so, then observe

1
1 + zpivot + ∆z

= 1 +H0 (t− t0)− 1
2
q0 H

2
0 (t− t0)2 +

1
3!
j0 H

3
0 (t− t0)3

− 1
4!
s0 H

4
0 (t− t0)4 +O([t− t0]5).

�� ��3.27

The pole is now located at:
∆z = −(1 + zpivot),

�� ��3.28

which again physically corresponds to a universe that has undergone infinite expansion,
a =∞. The radius of convergence is now

|∆z| ≤ (1 + zpivot),
�� ��3.29
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and we expect the pivoted version of the Hubble law to fail for

z > 1 + 2 zpivot.
�� ��3.30

So pivoting is certainly helpful, and can in principle extend the convergent region of the
Taylor expanded Hubble relation to somewhat higher values of z, but maybe we can do
even better?

3.2.3 Other singularities

Other singularities that might further restrict the radius of convergence of the Taylor ex-
panded Hubble law (or any other Taylor expanded physical observable) are also important.
Chief among them are the singularities (in the Taylor expansion) induced by turnaround
events. If the universe has a minimum scale factor amin (corresponding to a bounce) then
clearly it is meaningless to expand beyond

1 + zmax = a0/amin; zmax = a0/amin − 1;
�� ��3.31

implying that we should restrict our attention to the region

|z| < zmax = a0/amin − 1.
�� ��3.32

Since for other reasons we had already decided we should restrict attention to |z| < 1, and
since on observational grounds we certainly expect any bounce, if it occurs at all, to occur
for zmax � 1, this condition provides no new information.

On the other hand, if the universe has a moment of maximum expansion, and then
begins to recollapse, then it is meaningless to extrapolate beyond

1 + zmin = a0/amax; zmin = −[1− a0/amax];
�� ��3.33

implying that we should restrict our attention to the region

|z| < 1− a0/amax.
�� ��3.34

This relation now does provide us with additional constraint, though (compared to the
|z| < 1 condition) the bound is not appreciably tighter unless we are “close” to a point of
maximum expansion. Other singularities could lead to additional constraints.

3.3 Improved redshift variable for the Hubble relation

Now it must be admitted that the traditional redshift has a particularly simple physical
interpretation:

1 + z =
λ0

λe
=
a(t0)
a(te)

,
�� ��3.35

so that
z =

λ0 − λe
λe

=
∆λ
λe

.
�� ��3.36
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That is, z is the change in wavelength divided by the emitted wavelength. This is certainly
simple, but there’s at least one other equally simple choice. Why not use:

y =
λ0 − λe
λ0

=
∆λ
λ0

?
�� ��3.37

That is, define y to be the change in wavelength divided by the observed wavelength. This
implies

1− y =
λe
λ0

=
a(te)
a(t0)

=
1

1 + z
.

�� ��3.38

Now similar expansion variables have certainly been considered before. (See, for example,
Chevalier and Polarski [44], who effectively worked with the dimensionless quantity b =
a(t)/a0, so that y = 1 − b. Similar ideas have also appeared in several related works [45,
46, 47, 48]. Note that these authors have typically been interested in parameterizing the
so-called w-parameter, rather than specifically addressing the Hubble relation.)

Indeed, the variable y introduced above has some very nice properties:

y =
z

1 + z
; z =

y

1− y
.

�� ��3.39

In the past (of an expanding universe)

z ∈ (0,∞); y ∈ (0, 1);
�� ��3.40

while in the future
z ∈ (−1, 0); y ∈ (−∞, 0).

�� ��3.41

So the variable y is both easy to compute, and when extrapolating back to the Big Bang
has a nice finite range (0, 1). We will refer to this variable as the y-redshift. (Originally
when developing these ideas we had intended to use the variable y to develop orthogonal
polynomial expansions on the finite interval y ∈ [0, 1]. This is certainly possible, but we
shall soon see that given the current data, this is somewhat overkill, and simple polynomial
fits in y are adequate for our purposes.)

In terms of the variable y it is easy to extract a new version of the Hubble law by simple
substitution:

dL(y) = dH y

{
1− 1

2
[−3 + q0] y +

1
6
[
12− 5q0 + 3q2

0 − (j0 + Ω0)
]
y2

+
1
24
[
50− 26q0 − 21q2

0 − 15q3
0 + 10q0j0 − 7j0 + s0 + 2(−5 + 3q0)Ω0

]
y3 +O(y4)

}
.�� ��3.42

This still looks rather messy, in fact as messy as before — one might justifiably ask in
what sense is this new variable any real improvement?

First, when expanded in terms of y, the formal radius of convergence covers much more
of the physically interesting region. Consider:

1− y = 1 +H0 (t− t0)− 1
2
q0 H

2
0 (t− t0)2 +

1
3!
j0 H

3
0 (t− t0)3

− 1
4!
s0 H

4
0 (t− t0)4 +O([t− t0]5).

�� ��3.43
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This expression now has no poles, so upon reversion of the series lookback time T = t0 − t
should be well behaved as a function T (y) of y — at least all the way back to the Big Bang.
(We now expect, on physical grounds, that the power series is likely to break down if one
tries to extrapolate backwards through the Big Bang.) Based on this, we now expect dL(y),
as long as it is expressed as a Taylor series in the variable y, to be a well-behaved power
series all the way to the Big Bang. In fact, since

y = +1 ⇔ Big Bang,
�� ��3.44

we expect the radius of convergence to be given by |y| = 1, so that the series converges for

|y| < 1.
�� ��3.45

Consequently, when looking into the future, in terms of the variable y we expect to en-
counter problems at y = −1, when the universe has expanded to twice its current size.
Figure 3.2 illustrates the radius of convergence in the complex plane of the Taylor series
expansion in terms of y.

radius of convergence

a = +∞
y = −∞

a = 0a = a0a = 2a0

y = 1y = 0y = −1

Complex y plane

Figure 3.2: Qualitative sketch of the behaviour of the scale factor a and the radius of con-
vergence of the Taylor series in y-redshift.

Note the tradeoff here — z is a useful expansion parameter for arbitrarily large uni-
verses, but breaks down for a universe half its current size or less; in contrast y is a useful
expansion parameter all the way back to the Big Bang, but breaks down for a universe
double its current size or more. Whether or not y is more suitable than z depends very
much on what you are interested in doing. This is illustrated in Figures 3.1 and 3.2. For
the purposes of this chapter we are interested in high-redshift supernovae — and we want
to probe rather early times — so it is definitely y that is more appropriate here. Indeed the
furthest supernova for which we presently have both spectroscopic data and an estimate of
the distance occurs at z = 1.755 [3], corresponding to y = 0.6370. Furthermore, using the
variable y it is easier to plot very large redshift datapoints. For example, (though we shall
not pursue this point in this chapter), the Cosmological Microwave Background is located
at zCMB = 1088, which corresponds to yCMB = 0.999. This point is not out of range as it
would be if one uses the variable z.
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3.4 More versions of the Hubble law

In terms of this new redshift variable, the linear in distance Hubble relations are:

dL(y) = dH y

{
1− 1

2
[−3 + q0] y +

1
6
[
12− 5q0 + 3q2

0 − (j0 + Ω0)
]
y2

�� ��3.46

+
1
24
[
50− 26q0 − 21q2

0 − 15q3
0 + 10q0j0 − 7j0 + s0 + 2(−5 + 3q0)Ω0

]
y3 +O(y4)

}
.

dF (y) = dH y

{
1− 1

2
[−2 + q0] y +

1
24
[
27− 14q0 + 12q2

0 − 4(j0 + Ω0)
]
y2

�� ��3.47

+
1
24
[
44− 29q0 + 30q2

0 − 30q3
0 + 20q0j0 − 10j0 + 2s0 + 4(−4 + 3q0)Ω0

]
y3 +O(y4)

}
.

dP (y) = dH y

{
1− 1

2
[−1 + q0] y +

1
6
[
3− 2q0 + 3q2

0 − (j0 + Ω0)
]
y2

�� ��3.48

+
1
24
[
6− 6q0 + 9q2

0 − 15q3
0 + 10q0j0 − 3j0 + s0 + 6(1 + q0)Ω0

]
y3 +O(y4)

}
.

dQ(y) = dH y

{
1− q0

2
y +

1
12
[
3− 2q0 + 12q2

0 − 4(j0 + Ω0)
]
y2

�� ��3.49

+
1
48
[
−2− q0 + 6q2

0 − 30q3
0 + 20q0j0 − 2j0 + s0 + 4(−2 + 3q0)Ω0

]
y3 +O(y4)

}
.

dA(y) = dH y

{
1− 1

2
[1 + q0] y +

1
6
[
q0 + 3q2

0 − (j0 + Ω0)
]
y2

�� ��3.50

+
1
24
[
−2 + 2q0 − 3q2

0 − 15q3
0 + 10q0j0 + j0 + s0 + 2(−1 + 3q0)Ω0

]
y3 +O(y4)

}
.

Note that in terms of the y variable it is the “deceleration distance” dQ that has the decelera-
tion parameter q0 appearing in the simplest manner. Similarly, the “logarithmic in distance”
Hubble relations are:

ln[dL/(y Mpc)] =
ln 10

5
[µD − 25]− ln y

�� ��3.51

= ln(dH/Mpc)

−1
2

[−3 + q0] y +
1
24
[
21− 2q0 + 9q2

0 − 4(j0 + Ω0)
]
y2

+
1
24
[
11− q0 + 2q2

0 − 10q3
0 + 8q0j0 − j0 + s0 + 4(−1 + q0)Ω0

]
y3 +O(y4),
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ln[dF /(y Mpc)] =
ln 10

5
[µD − 25]− ln y +

1
2

ln(1− y)
�� ��3.52

= ln(dH/Mpc)

−1
2

[−2 + q0] y +
1
24
[
15− 2q0 + 9q2

0 − 4(j0 + Ω0)
]
y2

+
1
24
[
7− q0 + 2q2

0 − 10q3
0 + 8q0j0 − j0 + s0 + 4(−1 + q0)Ω0

]
y3 +O(y4),

ln[dP /(y Mpc)] =
ln 10

5
[µD − 25]− ln y + ln(1− y)

�� ��3.53

= ln(dH/Mpc)

−1
2

[−1 + q0] y +
1
24
[
9− 2q0 + 9q2

0 − 4(j0 + Ω0)
]
y2

+
1
24
[
3− q0 + 2q2

0 − 10q3
0 + 8q0j0 − j0 + s0 + 4(−1 + q0)Ω0

]
y3 +O(y4),

ln[dQ/(y Mpc)] =
ln 10

5
[µD − 25]− ln y +

3
2

ln(1− y)
�� ��3.54

= ln(dH/Mpc)

−1
2
q0 y +

1
24
[
3− 2q0 + 9q2

0 − 4(j0 + Ω0)
]
y2

+
1
24
[
−1− q0 + 2q2

0 − 10q3
0 + 8q0j0 − j0 + s0 + 4(−1 + q0)Ω0

]
y3 +O(y4),

ln[dA/(y Mpc)] =
ln 10

5
[µD − 25]− ln y + 2 ln(1− y)

�� ��3.55

= ln(dH/Mpc)

−1
2

[1 + q0] y +
1
24
[
−3− 2q0 + 9q2

0 − 4(j0 + Ω0)
]
y2

+
1
24
[
3− q0 + 2q2

0 − 10q3
0 + 8q0j0 − j0 + s0 + 4(−1 + q0)Ω0

]
y3 +O(y4).

Again note that the logarithmic in distance versions of the Hubble law are attractive in
terms of maximizing the disentangling between Hubble distance, deceleration parameter,
and jerk. Now having a selection of Hubble laws on hand, we can start to confront the
observational data to see what it is capable of telling us.

3.5 Cosmic microwave background

A particularly interesting feature of the plots we generate is that we can meaningfully ob-
tain a “global” view of the situation by plotting data coming from the CMB on the same
plot as the supernovae. Recall that decoupling of the CMB occurs at zCMB = 1088, which
corresponds to yCMB = 0.999. The distance to the CMB fireball is estimated as [13]

dP,CMB = 13.8± 1.1 Gpc.
�� ��3.56
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This is a (Peebles-style) angular diameter distance: It depends on the observed angular size
of CMB fluctuations,

θA = 0.6± 0.01 degrees
�� ��3.57

and the estimated size of the acoustic horizon at decoupling

rsound horizon = 146± 10 Mpc.
�� ��3.58

In contast to the supernova data, which is completely cosmographic, the CMB data point
does depend on the Friedmann equations, but only rather “weakly” [13]. The fact that we
can put plot both CMB data and the supernovae on the same plot ultimately works because

H0 = 73 (km/s)/Mpc ⇒ c

H0
= 4110 Mpc ≈

dP,CMB

3
.

�� ��3.59

There is a subtle coincidence behind this. From [12] we have

dP,CMB =
c

H0

∫ 1

yCMB

1√
Ωm(1− y) + Ωr

1
1 + (3Ωb[1− y])/(4Ωγ)

dy

θA
,

�� ��3.60

which depends on the interval y ∈ (yCMB, 1) — from decoupling to the big bang — or more
precisely from decoupling to the end of cosmological inflation. Observationally the integral
in the numerator is about a factor of 3 larger than the angular diameter in the denominator.
This appears to be an instance of cosmological fine tuning.

3.6 Supernova data

For the plots below we have used data from the supernova legacy survey (legacy05) [28, 2]
and the Riess et. al. gold dataset of 2006 (gold06) [3]. Refer to sections 2.7.4 and 2.7.5 for
details on the supernova data.

3.6.1 The legacy05 dataset

Figures 3.3(a) and 3.3(c) illustrate the distance scales defined previously plotted as a func-
tion of the z-redshift, whereas figures 3.3(b) and 3.3(d) show these same distances plotted
as a function of the y-redshift . Mainly, Note that all versions of the Hubble law are linear
at low redshift, and that differences first arise in the non-linear part of the relation beyond
y ≈ 0.2.

To orient oneself, figure 3.4(a) focuses on the deceleration distance dQ(y), and plots
ln(dQ/[y Mpc]) versus y. Visually, the curve appears close to flat, at least out to y ≈ 0.4,
which is an unexpected oddity that merits further investigation — since it seems to imply
an “eyeball estimate” that q0 ≈ 0. Note that this is not a plot of statistical residuals ob-
tained after curve fitting — rather this can be interpreted as a plot of “theoretical residuals”,
obtained by first splitting off the linear part of the Hubble law (which is now encoded in
the intercept with the vertical axis), and secondly choosing the quantity to be plotted so as
to make the slope of the curve at zero particularly easy to interpret in terms of the decel-
eration parameter. The fact that there is considerable “scatter” in the plot should not be
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Figure 3.3: Various distance scales as a function of the z and y-redshift using the nearby and
legacy dataset [1].
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Figure 3.4: The normalized logarithms of the deceleration distance ln(dQ/(y Mpc)) as a
function of the y-redshift (a) and of the photon flux distance ln(dF /(z Mpc)) as a function
of the z-redshift (b), using the legacy05 dataset [1].

thought of as an artifact due to a “bad” choice of variables — instead this choice of vari-
ables should be thought of as “good” in the sense that they provide an honest basis for
dispassionately assessing the quality of the data that currently goes into determining the
deceleration parameter. Similarly, figure 3.4(b) focuses on the photon flux distance dF (z),
and plots ln(dF /[z Mpc]) versus z. Visually, this curve is again very close to flat, at least
out to z ≈ 0.4. This again gives one a feel for just how tricky it is to reliably estimate the
deceleration parameter q0 from the data.
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3.6.2 The gold06 dataset
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Figure 3.5: Various distance scales as a function of the z and y-redshift using the gold06
dataset [2, 3].

Figures 3.5(a) and 3.5(c) illustrate the distance scales defined previously plotted as a
function of the z-redshift, whereas figures 3.5(b) and 3.5(d) show these same distances plot-
ted as a function of the y-redshift . To orient oneself, figure 3.6(a) again focusses on the
normalized logarithm of the deceleration distance dQ(y) as a function of y-redshift. Simi-
larly, figure 3.6(b) focusses on the normalized logarithm of the photon flux distance dF (z)
as a function of z-redshift. Visually, these curves are again very close to flat out to y ≈ 0.4
and z ≈ 0.4 respectively, which seems to imply an “eyeball estimate” that q0 ≈ 0. Again,
this gives one a feel for just how tricky it is to reliably estimate the deceleration parameter
q0 from the data.

Note the outlier at y = 0.6370, that is, z = 1.755. In particular, observe that adopting the
y-redshift in place of the z-redshift has the effect of pulling this outlier “closer” to the main
body of data, thus reducing its “leverage” effect on any data fitting one undertakes — apart
from the theoretical reasons we have given for preferring the y-redshift, (improved conver-
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Figure 3.6: The normalized logarithms of the deceleration distance ln(dQ/(y Mpc)) as a
function of the y-redshift (a) and of the photon flux distance ln(dF /(z Mpc)) as a function
of the z-redshift (b), using the gold06 dataset [2, 3].

gence behaviour for the Taylor series), the fact that it automatically reduces the leverage
of high redshift outliers is a feature that is considered highly desirable purely for statistical
reasons. In particular, the method of least-squares is known to be non-robust with respect to
outliers. One could implement more robust regression algorithms, but they are not as easy
and fast as the classical least-squares method. We have also implemented least-squares re-
gression against a reduced dataset where we have trimmed out the most egregious high-z
outlier, and also eliminated the so-called “Hubble bubble” for z < 0.0233 [49, 50]. While
the precise numerical values of our estimates for the cosmological parameters then change,
there is no great qualitative change to the points we wish to make in this chapter, nor to the
conclusions we will draw.

3.6.3 Peculiar velocities

One point that should be noted for both the legacy05 and gold06 datasets is the way that
peculiar velocities have been treated. While peculiar velocities would physically seem to be
best represented by assigning an uncertainty to the measured redshift, in both these datasets
the peculiar velocities have instead been modelled as some particular function of z-redshift
and then lumped into the reported uncertainties in the distance modulus. Working with the
y-redshift ab initio might lead one to re-assess the model for the uncertainty due to peculiar
velocities. We expect such effects to be small and have not considered them in detail.

3.7 Data fitting: Statistical uncertanties

We shall now compare and contrast the results of multiple least-squares fits to the differ-
ent notions of cosmological distance, using the two distinct redshift parameterizations dis-
cussed above. Specifically, we use a finite-polynomial truncated Taylor series as our model,
and perform classical least-squares fits. This is effectively a test of the robustness of the
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data-fitting procedure, testing it for model dependence. For general background informa-
tion see [51, 52, 53, 54, 55, 56, 57].

3.7.1 Finite-polynomial truncated-Taylor-series fit

Working (for purposes of the presentation) in terms of y-redshift, the various distance scales
can be fitted to finite-length power-series polynomials d(y) of the form

P (y) : d(y) =
n∑
j=0

aj y
j ,

�� ��3.61

where the coefficients aj all have the dimensions of distance. In contrast, logarithmic fits
are of the form

P (y) : ln[d(y)/(y Mpc)] =
n∑
j=0

bj y
j ,

�� ��3.62

where the coefficients bj are now all dimensionless. By fitting to finite polynomials we are
implicitly making the assumption that the higher-order coefficients are all exactly zero —
this does then implicitly enforce assumptions regarding the higher-order time derivatives
dma/dtm for m > n, but there is no way to avoid making at least some assumptions of this
type [51, 52, 53, 54, 55, 56, 57].

The method of least squares requires that we minimize

χ2 =
N∑
I=1

(
PI − P (yI)

σI

)2

,
�� ��3.63

where the N data points (yI , PI) represent the relevant function PI = f(µD,I , yI) of the
distance modulus µD,I at corresponding y-redshift yI , as inferred from some specific super-
novae dataset. Furthermore P (yI) is the finite polynomial model evaluated at yI . The σI
are the total statistical uncertainty in PI (including, in particular, intrinsic dispersion). The
location of the minimum value of χ2 can be determined by setting the derivatives of χ2 with
respect to each of the coefficients aj or bj equal to zero.

Note that the theoretical justification for using least squares assumes that the statistical
uncertainties are normally distributed Gaussian uncertainties — and there is no real justi-
fication for this assumption in the actual data. Furthermore if the data is processed by us-
ing some nonlinear transformation, then in general Gaussian uncertainties will not remain
Gaussian — and so even if the untransformed uncertainties are Gaussian the theoretical
justification for using least squares is again undermined unless the scatter/uncertainties
are small, [in the sense that σ � f ′′(x)/f ′(x)], in which case one can appeal to a local lin-
earization of the nonlinear data transformation f(x) to deduce approximately Gaussian un-
certainties [51, 52, 53, 54, 55, 56, 57]. As we have already seen, in figures 3.4(a)–3.6(b), there
is again no real justification for this “small scatter” assumption in the actual data — nev-
ertheless, in the absence of any clearly better data-fitting prescription, least squares is the
standard way of proceeding. More statistically sophisticated techniques, such as “robust
regression”, have their own distinct draw-backs and, even with weak theoretical underpin-
ning, χ2 data-fitting is still typically the technique of choice [51, 52, 53, 54, 55, 56, 57].
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We have performed least squares analyses, both linear in distance and logarithmic in
distance, for all of the distance scales discussed above, dL, dF , dP , dQ, and dA, both in terms
of z-redshift and y-redshift, for finite polynomials from n = 1 (linear) to n = 7 (septic). We
stopped at n = 7 since beyond that point the least squares algorithm was found to become
numerically unstable due to the need to invert a numerically ill-conditioned matrix — this
ill-conditioning is actually a well-known feature of high-order least-squares polynomial
fitting. We carried out the analysis to such high order purely as a diagnostic — we shall
soon see that the “most reasonable” fits are actually rather low order n = 2 quadratic fits.

3.7.2 χ2 goodness of fit

A convenient measure of the goodness of fit is given by the reduced chi-square:

χ2
ν =

χ2

ν
,

�� ��3.64

where the factor ν = N − n− 1 is the number of degrees of freedom left after fitting N data
points to the n+ 1 parameters.

If the fitting function is a good approximation to the parent function, then the value
of the reduced chi-square should be approximately unity χ2

ν ≈ 1. If the fitting function is
not appropriate for describing the data, the value of χ2

ν will be greater than 1. Also, “too
good” a chi-square fit (χ2

ν < 1) can come from over-estimating the statistical measurement
uncertainties. Again, the theoretical justification for this test relies on the fact that one is
assuming, without a strong empirical basis, Gaussian uncertainties [51, 52, 53, 54, 55, 56, 57].
Note that when the data is normalized toH0 = 70 (km/sec)/Mpc, we are dealing with only
n− 1 free parameters.

In all the cases we considered, for polynomials of order n = 2 and above, we found that
χ2
ν ≈ 1 for the legacy05 dataset, and χ2

ν ≈ 0.8 < 1 for the gold06 dataset. Note that in
Figure 3.7, the goodness of fit is χ2

ν ≈ 1.4 for the gs cases. The difference is that the larger
χ2
ν shows the effect of including the silver data points as well as the gold ones. Linear n = 1

fits often gave high values for χ2
ν . We deduce that:

• It is desirable to keep at least quadratic n = 2 terms in all data fits.

• Caution is required when interpreting the reported statistical uncertainties in the
gold06 dataset.

(In particular, note that some of the estimates of the statistical uncertainties reported in
gold06 have themselves been determined through statistical reasoning — essentially by
adjusting χ2

ν to be “reasonable”. The effects of such pre-processing become particularly
difficult to untangle when one is dealing with a heterogeneous dataset.)

Figures 3.7(a), 3.7(b), 3.7(c), 3.7(d), and 3.7(e), show the goodness of fit of polynomials
of degree 2 to 7 for each distance scale both in z-redshift and y-redshift for the two datasets
gold and silver and nearby and legacy. Note that for all the distance scales and the gold and
silver dataset, the y-redshift seems to give better fits than the z-redshift, whereas, nothing
can be said for the nearby and legacy dataset. This could result from the fact that there are
more data with z > 1 in the gold and silver dataset than in the other set.
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Figure 3.7: Goodness of fit of polynomial data fitting to various distance scales as a function
of the z-redshift and y-redshift, using the gold and silver dataset, and the nearby and legacy
dataset.
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3.7.3 F -test of additional terms

How many polynomial terms do we need to include to obtain a good approximation to the
parent function?

The difference between two χ2 statistics is also distributed as χ2. In particular, if we fit
a set of data with a fitting polynomial of n− 1 parameters, the resulting value of chi-square
associated with the deviations about the regression χ2(n−1) has N −n degrees of freedom.
If we add another term to the fitting polynomial, the corresponding value of chi-square
χ2(n) has N − n − 1 degrees of freedom. The difference between these two follows the χ2

distribution with one degree of freedom.
The Fχ statistic follows a F distribution with ν1 = 1 and ν2 = N − n− 1,

Fχ =
χ2(n− 1)− χ2(n)
χ2(n)/(N − n− 1)

.
�� ��3.65

This ratio is a measure of how much the additional term has improved the value of the
reduced chi-square. Fχ should be small when the function with n coefficients does not
significantly improve the fit over the polynomial fit with n− 1 terms.

In all the cases we considered, the Fχ statistic was not significant when one proceeded
beyond n = 2. We deduce that:

• It is statistically meaningless to go beyond n = 2 terms in the data fits.

• This means that one can at best hope to estimate the deceleration parameter and the
jerk (or more precisely the combination j0 + Ω0). There is no meaningful hope of
estimating the snap parameter from the current data.

Figures 3.8(a), 3.8(b), 3.8(c), 3.8(d) and 3.8(e), illustrate the F -test of additional terms
of polynomial data fitting for various distance scales as a function of the z-redshift and y-
redshift for both the gold and silver and the nearby and legacy datasets. At the polynomial
degree n, we calculate the terms in equation (3.65), if Fχ is small the term of order n is not
needed in the polynomial fit. Overall, it seems that fitting the distance scales by a polyno-
mial of order 3 or 4 is a rather good approximation in the case of nearby and legacy data
points. With the gold and silver data, the degree of fitting polynomials needs to be higher
especially when using the z-redshift. In this case Fχ seems to be oscillating significantly,
however, it seems to be more consistently decreasing when using the variable y.
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Figure 3.8: F -test of additional terms for various distance scales as a function of the z-
redshift and y-redshift, using the gold and silver dataset, and the nearby and legacy dataset.
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3.7.4 Uncertainties in the coefficients aj and bj

From the fit one can determine the standard deviations σaj and σbj for the uncertainty of
the polynomial coefficients aj or bj . It is the root sum square of the products of the stan-
dard deviation of each data point σi, multiplied by the effect that the data point has on the
determination of the coefficient aj [51]:

σ2
aj =

∑
I

[
σ2
I

(
∂aj
∂PI

)2
]
.

�� ��3.66

Similarly the covariance matrix between the estimates of the coefficients in the polynomial
fit is

σ2
ajak

=
∑
I

[
σ2
I

(
∂aj
∂PI

)(
∂ak
∂PI

)]
.

�� ��3.67

Practically, the σaj and covariance matrix σ2
ajak

are determined as follows [51]:

• Determine the so-called curvature matrix α for our specific polynomial model, where
the coefficients are given by

αjk =
∑
I

[
1
σ2
I

(yI)j (yI)k
]
.

�� ��3.68

• Invert the symmetric matrix α to obtain the so-called error matrix ε:

ε = α−1.
�� ��3.69

• The uncertainty and covariance in the coefficients aj is characterized by:

σ2
aj = εjj ; σ2

ajak
= εjk.

�� ��3.70

• Finally, for any function f(ai) of the coefficients ai:

σf =

√√√√∑
j,k

σ2
ajak

∂f

∂aj

∂f

∂ak
.

�� ��3.71

Note that these rules for the propagation of uncertainties implicitly assume that the un-
certainties are in some suitable sense “small” so that a local linearization of the functions
aj(PI) and f(ai) is adequate.

Now for each individual element of the curvature matrix

0 <
αjk(z)

(1 + zmax)2n
<

αjk(z)
(1 + zmax)j+k

< αjk(y) < αjk(z).
�� ��3.72

Furthermore the matrices αjk(z) and αjk(y) are both positive definite, and the spectral ra-
dius of α(y) is definitely less than the spectral radius of α(z). After matrix inversion this
means that the minimum eigenvalue of the error matrix ε(y) is definitely greater than the
minimum eigenvalue of ε(z) — more generally this tends to make the statistical uncertain-
ties when one works with y greater than the statistical uncertainties when one works with
z. (However this naive interpretation is perhaps somewhat misleading: It might be more
appropriate to say that the statistical uncertainties when one works with z are anomalously
low due to the fact that one has artificially stretched out the domain of the data.)
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3.7.5 Estimates of the deceleration and jerk

For all five of the cosmological distance scales discussed in this chapter, we have calcu-
lated the coefficients bj for the logarithmic distance fits, and their statistical uncertainties,
for a polynomial of order n = 2 in both the y-redshift and z-redshift, for both the legacy05
and gold06 datasets. The constant term b0 is (as usual in this context) a “nuisance term”
that depends on an overall luminosity calibration that is not relevant to the questions at
hand. These coefficents are then converted to estimates of the deceleration parameter q0

and the combination (j0 + Ω0) involving the jerk. A particularly nice feature of the logarith-
mic distance fits is that logarithmic distances are linearly related to the reported distance
modulus. So assumed Gaussian errors in the distance modulus remain Gaussian when re-
ported in terms of logarithmic distance — which then evades one potential problem source
— whatever is going on in our analysis it is not due to the nonlinear transformation of
Gaussian errors. We should also mention that for both the lagacy05 and gold06 datasets
the uncertainties in z have been folded into the reported values of the distance modulus:
The reported values of redshift (formally) have no uncertainties associated with them, and
so the nonlinear transformation y ↔ z does not (formally) affect the assumed Gaussian
distribution of the errors.

The results are presented in tables 3.1–3.4. Note that even after we have extracted these
numerical results there is still a considerable amount of interpretation that has to go into
understanding their physical implications. In particular note that the differences between
the various models, (Which distance do we use? Which version of redshift do we use?
Which dataset do we use?), often dwarf the statistical uncertainties within any particular
model.

Table 3.1: Deceleration and jerk parameters (legacy05 dataset, y-redshift).

distance q0 j0 + Ω0

dL −0.47± 0.38 −0.48± 3.53
dF −0.57± 0.38 +1.04± 3.71
dP −0.66± 0.38 +2.61± 3.88
dQ −0.76± 0.38 +4.22± 4.04
dA −0.85± 0.38 +5.88± 4.20

With 1-σ statistical uncertainties.

The statistical uncertainties in q0 are independent of the distance scale used because they
are linearly related to the statistical uncertainties in the parameter b1, which themselves
depend only on the curvature matrix, which is independent of the distance scale used. In
contrast, the statistical uncertainties in (j0 + Ω0), while they depend linearly the statistical
uncertainties in the parameter b2, depend nonlinearly on q0 and its statistical uncertainty.
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Table 3.2: Deceleration and jerk parameters (legacy05 dataset, z-redshift).

distance q0 j0 + Ω0

dL −0.48± 0.17 +0.43± 0.60
dF −0.56± 0.17 +1.16± 0.65
dP −0.62± 0.17 +1.92± 0.69
dQ −0.69± 0.17 +2.69± 0.74
dA −0.75± 0.17 +3.49± 0.79

With 1-σ statistical uncertainties.

Table 3.3: Deceleration and jerk parameters (gold06 dataset, y-redshift).

distance q0 j0 + Ω0

dL −0.62± 0.29 +1.66± 2.60
dF −0.78± 0.29 +3.95± 2.80
dP −0.94± 0.29 +6.35± 3.00
dQ −1.09± 0.29 +8.87± 3.20
dA −1.25± 0.29 +11.5± 3.41

With 1-σ statistical uncertainties.

Table 3.4: Deceleration and jerk parameters (gold06 dataset, z-redshift).

distance q0 j0 + Ω0

dL −0.37± 0.11 +0.26± 0.20
dF −0.48± 0.11 +1.10± 0.24
dP −0.58± 0.11 +1.98± 0.29
dQ −0.68± 0.11 +2.92± 0.37
dA −0.79± 0.11 +3.90± 0.39

With 1-σ statistical uncertainties.
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Figure 3.9: Values of the deceleration parameter q0 for varying polynomial order fits as a
function of various distance scales, with the z and y-redshift, and with the gold06 dataset [3]
(a), (b), and legacy05 dataset [1] (c), (d).
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Figure 3.10: Values of the deceleration parameter q0 for varying polynomial order fits as a
function of various distance scales, with the z and y-redshift, and with the gold06 dataset [3]
(a), (b), and legacy05 dataset [1] (c), (d).
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3.8 Model-building uncertainties

The fact that there are such large differences between the cosmological parameters deduced
from the different models should give one pause for concern. These differences do not arise
from any statistical flaw in the analysis, nor do they in any sense represent any “systematic”
error, rather they are an intrinsic side-effect of what it means to do a least-squares fit —
to a finite-polynomial approximate Taylor series — in a situation where it is physically
unclear as to which if any particular measure of distance is physically preferable, and which
particular notion of distance should be fed into the least-squares algorithm. In Appendix A
we present a brief discussion of the most salient mathematical issues.

The key numerical observations are that the different notions of cosmological distance
lead to equally spaced least-squares estimates of the deceleration parameter, with equal sta-
tistical uncertainties; the reason for the equal-spacing of these estimates being analytically
explainable by the analysis presented in A. Furthermore, from the results in Appendix A
we can explicitly calculate the magnitude of this modelling ambiguity as

[∆q0]modelling = −1 +

[∑
I

zi+jI

]−1

1j

[∑
I

zjI ln(1 + zI)

]
,

�� ��3.73

while the corresponding formula for y-redshift is

[∆q0]modelling = −1−

[∑
I

yi+jI

]−1

1j

[∑
I

yjI ln(1− yI)

]
.

�� ��3.74

Note that for the quadratic fits we have adopted this requires calculating a (n+ 1)× (n+ 1)
matrix, with {i, j} ∈ {0, 1, 2}, inverting it, and then taking the inner product between the
first row of this inverse matrix and the relevant column vector. The Einstein summation
convention is implied on the j index. For the z-redshift (if we were to restrict our z-redshift
dataset to z < 1, e.g., using legacy05 or a truncation of gold06) it makes sense to Taylor
series expand the logarithm to alternatively yield

[∆q0]modelling = −
∞∑

k=n+1

(−1)k

k

[∑
I

zi+jI

]−1

1j

[∑
I

zj+kI

]
.

�� ��3.75

For the y-redshift we do not need this restriction and can simply write

[∆q0]modelling =
∞∑

k=n+1

1
k

[∑
I

yi+jI

]−1

1j

[∑
I

yj+kI

]
.

�� ��3.76

As an extra consistency check we have independently calculated these quantities (which
depend only on the redshifts of the supernovae) and compared them with the spacing we
find by comparing the various least-squares analyses. For the n = 2 quadratic fits these
formulae reproduce the spacing reported in tables 3.1–3.4. As the order n of the polynomial
increases, it was seen that the differences between deceleration parameter estimates based
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on the different distance measures decreases — unfortunately the size of the purely statis-
tical uncertainties was simultaneously seen to increase — this being a side effect of adding
terms that are not statistically significant according to the F test.

Thus to minimize “model building ambiguities” one wishes the parameter “n” to be as large as
possible, while to minimize statistical uncertainties, one does not want to add statistically meaning-
less terms to the polynomial.

Note that if one were to have a clearly preferred physically motivated best distance this
whole model building ambiguity goes away. In the absence of a clear physically justifiable
preference, the best one can do is to combine the data as per the discussion in B, which
is based on NIST recommended guidelines [58], and report an additional model building
uncertainty (beyond the traditional purely statistical uncertainty).

Note that we do limit the modelling uncertainty to that due to considering the five rea-
sonably standard definitions of distance dA, dQ, dP , dF , and dL. The reasons for this limita-
tion are partially practical (we have to stop somewhere), and partly physics-related (these
five definitions of distance have reasonably clear physical interpretations, and there seems
to be no good physics reason for constructing yet more notions of cosmological distance).

Turning to the quantity (j0+Ω0), the different notions of distance no longer yield equally
spaced estimates, nor are the statistical uncertainties equal. This is due to the fact that
there is a nonlinear quadratic term involving q0 present in the relation used to convert the
polynomial coefficient b2 into the more physical parameter (j0 + Ω0). Note that while for
each specific model (choice of distance scale and redshift variable) the F -test indicates that
keeping the quadratic term is statistically significant, the variation among the models is
so great as to make measurements of (j0 + Ω0) almost meaningless. The combined results
are reported in tables 3.5–3.6. Note that these tables do not yet include any budget for
“systematic” uncertainties.

Table 3.5: Deceleration parameter summary: Statistical plus modelling.

dataset redshift q0 ± σstatistical ± σmodelling

legacy05 y −0.66± 0.38± 0.13
legacy05 z −0.62± 0.17± 0.10
gold06 y −0.94± 0.29± 0.22
gold06 z −0.58± 0.11± 0.15

With 1-σ statistical uncertainties and 1-σ model building uncertainties,
no budget for “systematic” uncertainties.

Again, we reiterate the fact that there are distressingly large differences between the
cosmological parameters deduced from the different models — this should give one pause
for concern above and beyond the purely formal statistical uncertainties reported herein.

3.9 Systematic uncertainties

Beyond the statistical uncertainties and model-building uncertainties we have so far con-
sidered lies the issue of systematic uncertainties. Systematic uncertainties are extremely
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Table 3.6: Jerk parameter summary: Statistical plus modelling.

dataset redshift (j0 + Ω0)± σstatistical ± σmodelling

legacy05 y +2.65± 3.88± 2.25
legacy05 z +1.94± 0.70± 1.08
gold06 y +6.47± 3.02± 3.48
gold06 z +2.03± 0.31± 1.29

With 1-σ statistical uncertainties and 1-σ model building uncertanties,
no budget for “systematic” uncertainties.

difficult to quantify in cosmology, at least when it comes to distance measurements — see
for instance the relevant discussion in [3, 38], or in [39]. The method by which light curves
are empirically reduced to make “standard candles” may itself introduce systematic uncer-
tainties, as the recent analysis of Hicken et al. [59] demonstrates. In particular, while the
legacy05 dataset is a homogeneously reduced sample, it has been reduced by the SALT
method in which empirical light curve parameters are simultaneously fit with cosmologi-
cal parameters assuming a ΛCDM cosmology. Hicken et al. find that the SALT reduction
gives greater scatter at larger redshifts than data reduced by the MLCS method. Type Ia
supernovae are only “standardizable candles”, and the empirical method of standardizing
them can introduce systematic errors.

What is less difficult to quantify, but still somewhat tricky, is the extent to which sys-
tematics propagate through the calculation.

3.9.1 Major philosophies underlying the analysis of statistical uncertainty

When it comes to dealing with systematic uncertainties there are two major philosophies
on how to report and analyze them:

• Treat all systematic uncertainties as though they were purely statistical and report
1-sigma “effective standard uncertainties”. In propagating systematic uncertainties
treat them as though they were purely statistical and uncorrelated with the usual sta-
tistical uncertainties. In particular, this implies that one is to add estimated systematic
and statistical uncertainties in quadrature

σ2
combined =

√
σ2

statistical + σ2
systematic.

�� ��3.77

This manner of treating the systematic uncertainties is that currently recommended
by NIST [58], this recommendation itself being based on ISO, CPIM, and BIPM rec-
ommendations. This is also the language most widely used within the supernova
community, and in particular in discussing the gold05 and legacy05 datasets [28, 2, 2,
3, 38], so we shall standardize our language to follow these norms.

• An alternative manner of dealing with systematics (now deprecated) is to carefully
segregate systematic and statistical effects, somehow estimate “credible bounds” on
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the systematic uncertainties, and then propagate the systematics through the calcula-
tion — if necessary using interval arithmetic to place “credible bounds” on the final
reported systematic uncertainty. The measurements results would then be reported
as a number with two independent sources of uncertainty — the statistical and sys-
tematic uncertainties, and within this philosophy there is no justification for adding
statistical and systematic effects in quadrature.

It is important to realise that the systematic uncertainties reported in gold05 and legacy05
are of the first type: effective equivalent 1-sigma error bars [28, 1, 2, 3, 38]. These reported
uncertainties are based on what in the supernova community are referred to as “known
unknowns”.

(The NIST guidelines [58] also recommend that all uncertainties estimated by statistical
methods should be denoted by the symbol s, not σ, and that uncertainties estimated by non-
statistical methods, and combined overall uncertainties, should be denoted by the symbol
u — but this is rarely done in practice, and we shall follow the traditional abuse of notation
and continue to use σ throughout.)

3.9.2 Deceleration

For instance, assume we can measure distance moduli to within a systematic uncertainty
∆µsystematic over a redshift range ∆(redshift). If all the measurements are biased high, or
all are biased low, then the systematic uncertainty would affect the Hubble parameter H0,
but would not in any way disturb the deceleration parameter q0. However there may be a
systematic drift in the bias as one scans across the range of observed redshifts. The worst
that could plausibly happen is that all measurements are systematically biased high at one
end of the range, and biased low at the other end of the range. For data collected over a
finite width ∆(redshift), this “worst plausible” situation leads to a systematic uncertainty
in the slope of

∆
[
dµ

dz

]
systematic

=
2 ∆µsystematic

∆(redshift)
,

�� ��3.78

which then propagates to an uncertainty in the deceleration parameter of

σsystematic =
2 ln 10

5
∆
[
dµ

dz

]
systematic

=
4 ln 10

5
∆µsystematic

∆(redshift)
≈ 1.8

∆µsystematic

∆(redshift)
.

�� ��3.79

For the situation we are interested in, if we take at face value the reliability of the assertion
“...we adopt a limit on redshift-dependent systematics to be 5% per ∆z = 1” [3], meaning
up to 2.5% high at one end of the range and up to 2.5% low at the other end of the range. A
2.5% variation in distance then corresponds, via ∆µD = 5∆(ln dL)/ ln 10, to an uncertainty
∆µsystematic = 0.05 in stellar magnitude. So, (taking ∆z = 1), one has to face the somewhat
sobering estimate that the “equivalent 1-σ uncertainty” for the deceleration parameter q0 is

σsystematic = 0.09.
�� ��3.80

When working with y-redshift, one really should reanalyze the entire corpus of data from
first principles — failing that, (not enough of the raw data is publicly available), we shall
simply observe that

dz
dy
→ 1 as y → 0,

�� ��3.81
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and use this as a justification for assuming that the systematic uncertainty in q0 when using
y-redshift is the same as when using z-redshift.

3.9.3 Jerk

Turning to systematic uncertainties in the jerk, the worst that could plausibly happen is
that all measurements are systematically biased high at both ends of the range, and biased
low at the middle, (or low at both ends and high in the middle), leading to a systematic
uncertainty in the second derivative of

1
2

∆
[
d2µ

dz2

]
systematic

[
∆(redshift)

2

]2

= 2∆µsystematic,
�� ��3.82

where we have taken the second-order term in the Taylor expansion around the midpoint
of the redshift range, and asked that it saturate the estimated systematic error 2∆µsystematic.
This implies

∆
[
d2µ

dz2

]
systematic

=
16 ∆µsystematic

∆(redshift)2
,

�� ��3.83

which then propagates to an uncertainty in the jerk parameter (j0 + Ω0) of at least

σsystematic ≥
3 ln 10

5
∆
[
d2µ

dz2

]
systematic

=
48 ln 10

5
∆µsystematic

∆(redshift)2
≈ 22

∆µsystematic

∆(redshift)2
.

�� ��3.84

There are additional contributions to the systematic uncertainty arising from terms linear
and quadratic in q0. They do not seem to be important in the situations we are interested
in so we content ourselves with the single term estimated above. Using ∆µsystematic = 0.05
and ∆z = 1 we see that the “equivalent 1-σ uncertainty” for the combination (j0 + Ω0) is:

σsystematic = 1.11.
�� ��3.85

Thus direct cosmographic measurements of the jerk parameter are plagued by very high
systematic uncertainties. Note that the systematic uncertainties calculated in this section
are completely equivalent to those reported in [3].

3.10 Historical estimates of systematic uncertainty

We now turn to the question of possible additional contributions to the uncertainty, based
on what the NIST recommendations call “type B evaluations of uncertainty” — namely
“any method of evaluation of uncertainty by means other than the statistical analysis of
a series of observations” [58]. (This includes effects that in the supernova community are
referred to as “unknown unknowns”, which are not reported in any of their estimates of
systematic uncertainty.)

The key point here is this: “A type B evaluation of standard uncertainty is usually based
on scientific judgment using all of the relevant information available, which may include:
previous measurement data, etc...” [58]. It is this recommendation that underlies what we
might wish to call the “historical” estimates of systematic uncertainty — roughly speak-
ing, we suggest that in the systematic uncertainty budget it is prudent to keep an extra
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“historical uncertainty” at least as large as the most recent major re-calibration of whatever
measurement method you are currently using.

Now this “historical uncertainty” contribution to the systematic uncertainty budget
that we are advocating is based on 100 years of unanticipated systematic errors (“unknown
unknowns”) in astrophysical distance scales — from Hubble’s reliance on mis-calibrated
Cepheid variables (leading to distance estimates that were about 666% too large), to last
decade’s debates on the size of our own galaxy (with up to 15% disagreements being com-
mon), to last year’s 5% shift in the high-z supernova distances [3, 38] — and various other
re-calibration events in between. That is, 5% variations in estimates of cosmological dis-
tances on a 2 year time scale seem common, 10% on a 10 year time scale, and 500% or more
on an 80 year timescale? A disinterested outside observer does detect a certain pattern
here. (These re-calibrations are of course not all related to supernova measurements, but
they are historical evidence of how difficult it is to make reliable distance measurements in
cosmology.)

3.10.1 Deceleration

Based on the historical evidence we feel that it is currently prudent to budget an additional
“historical uncertainty” of approximately 5% in the distances to the furthest supernovae,
(corresponding to 0.10 stellar magnitudes), while for the nearby supernovae we generously
budget a “historical uncertainty” of 0%, based on the fact that these distances have not
changed in the last 2 years [3, 38].2

This implies

∆
[
dµ

dz

]
historical

=
∆µhistorical

∆(redshift)
.

�� ��3.86

Note the absence of a factor 2 compared to equation (3.78), this is because in this “histori-
cal” discussion we have taken the nearby supernovae to be accurately calibrated, whereas in
the discussion of systematic uncertainties in equation (3.78) both nearby and distant super-
novae are subject to “known unknown” systematics. This then propagates to an uncertainty
in the deceleration parameter of

σhistorical =
2 ln 10

5
∆
[
dµ

dz

]
historical

=
2 ln 10

5
∆µhistorical

∆(redshift)
≈ 0.9

∆µhistorical

∆(redshift)
.

�� ��3.87

Noting that a 5% shift in luminosity distance is equivalent to an uncertainty of ∆µhistorical =
0.10 in stellar magnitude, this implies an “equivalent 1-σ uncertainty” for the deceleration
parameter q0 is

σhistorical = 0.09.
�� ��3.88

This (coincidentally) is equal to the systematic uncertainties based on “known unknowns”.

2Some researchers have argued that the present “historical” estimates of uncertainty confuse the notion of
“error” with that of “uncertainty”. We disagree. What we are doing here is to use the most recently detected
(significant) error to estimate one component of the uncertainty — this is simply a “scientific judgment using
all of the relevant information available”. We should add that other researchers have argued that our historical
uncertainties should be even larger. By using the most recent major re-calibration as our basis for historical
uncertainty we feel we are steering a middle course between placing too much versus to little credence in the
observational data.
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3.10.2 Jerk

Turning to the second derivative a similar analysis implies

1
2

∆
[
d2µ

dz2

]
historical

∆(redshift)2 = ∆µhistorical.
�� ��3.89

Note the absence of various factors of 2 as compared to equation 3.82. This is because
we are now assuming that for “historical” purposes the nearby supernovae are accurately
calibrated and it is only the distant supernovae that are potentially uncertain — thus in
estimating the historical uncertainty the second-order term in the Taylor series is now to be
saturated using the entire redshift range. Thus

∆
[
d2µ

dz2

]
historical

=
2 ∆µhistorical

∆(redshift)2
,

�� ��3.90

which then propagates to an uncertainty in the jerk parameter of at least

σhistorical ≥
3 ln 10

5
∆
[
d2µ

dz2

]
historical

=
6 ln 10

5
∆µhistorical

∆(redshift)2
≈ 2.75

∆µhistorical

∆(redshift)2
.
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Again taking ∆µhistorical = 0.10 this implies an “equivalent 1-σ uncertainty” for the combi-
nation j0 + Ω0 is

σhistorical = 0.28.
�� ��3.92

Note that this is (coincidentally) one quarter the size of the systematic uncertainties based
on “known unknowns”, and is still quite sizable.

Table 3.7: Deceleration parameter summary: Statistical, modelling, systematic, and histori-
cal.

dataset redshift q0 ± σstatistical ± σmodelling ± σsystematic ± σhistorical

legacy05 y −0.66± 0.38± 0.13± 0.09± 0.09
legacy05 z −0.62± 0.17± 0.10± 0.09± 0.09
gold06 y −0.94± 0.29± 0.22± 0.09± 0.09
gold06 z −0.58± 0.11± 0.15± 0.09± 0.09

With 1-σ effective statistical uncertainties for all components.

The systematic and historical uncertainties are now reported in tables 3.7–3.8. The esti-
mate for systematic uncertainties are equivalent to those presented in [3], which is largely
in accord with related sources [28, 1, 2]. Our estimate for “historical” uncertainties is likely
to be more controversial — with, we suspect, many cosmologists arguing that our esti-
mates are too generous — and that σhistorical should perhaps be even larger than we have
estimated. What is not (or should not) be controversial is the need for some estimate of
σhistorical. Previous history should not be ignored, and as the NIST guidelines emphasize,
previous history is an essential and integral part of making the scientific judgment as to
what the overall uncertainties are.
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Table 3.8: Jerk parameter summary: Statistical, modelling, systematic, and historical.

dataset redshift (j0 + Ω0)± σstatistical ± σmodelling ± σsystematic ± σhistorical

legacy05 y +2.65± 3.88± 2.25± 1.11± 0.28
legacy05 z +1.94± 0.70± 1.08± 1.11± 0.28
gold06 y +6.47± 3.02± 3.48± 1.11± 0.28
gold06 z +2.03± 0.31± 1.29± 1.11± 0.28

With 1-σ effective statistical uncertainties for all components.

3.11 Combined uncertainties

We now combine these various uncertainties, purely statistical, modelling, “known un-
known” systematics, and “historical” (“unknown unknowns”). Adopting the NIST phi-
losophy of dealing with systematics, these uncertainties are to be added in quadrature [58].
Including all 4 sources of uncertainty we have discussed:

σcombined =
√
σ2

statistical + σ2
modelling + σ2

systematic + σ2
historical.

�� ��3.93

That the statistical and modelling uncertainties should be added in quadrature is clear from
their definition. Whether or not systematic and historical uncertainties should be treated
this way is very far from clear, and implicitly presupposes that there are no correlations
between the systematics and the statistical uncertainties — within the “credible bounds”
philosophy for estimating systematic uncertainties there is no justification for such a step.
Within the “all errors are effectively statistical” philosophy adding in quadrature is stan-
dard and in fact recommended — this is what is done in current supernova analyses, and
we shall continue to do so here. The combined uncertainties σcombined are reported in tables
3.9–3.10.

3.12 Expanded uncertainty

An important concept under the NIST guidelines is that of “expanded uncertainty”

Uk = k σcombined.
�� ��3.94

Expanded uncertainty is used when for either scientific or legal/regulatory reasons one
wishes to be certain that the actual physical value of the quantity being measured lies
within the stated range. We shall take k = 3, this being equivalent to the well-known
particle physics aphorism “if it’s not three-sigma, it’s not physics”. Note that this is not an
invitation to randomly multiply uncertainties by 3, rather it is a scientific judgment that if
one wishes to be 99.5% certain that something is or is not happening one should look for a
3-sigma effect. Bitter experience within the particle physics community has led to the con-
sensus that 3-sigma is the absolute minimum standard one should look for when claiming
“new physics”. There is now a growing consensus in the particle physics community that 5-
sigma should be the new standard for claiming “new physics” [60]. In other words, 2-sigma
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is generally used in “sociology”, 3-sigma is “evidence for” whereas 5-sigma is “discovery
of new physics”. We take

U3 = 3 σcombined,
�� ��3.95

and also present the results one would obtain with U5. The best estimates, combined uncer-
tainties σcombined, and expanded uncertainties U , are reported in tables 3.9–3.10.

Table 3.9: Deceleration parameter summary: Combined and expanded uncertainties.

dataset redshift q0 ± σcombined q0 ± U3 q0 ± U5

legacy05 y −0.66± 0.42 −0.66± 1.26 −0.66± 2.1
legacy05 z −0.62± 0.23 −0.62± 0.70 −0.62± 1.26
gold06 y −0.94± 0.39 −0.94± 1.16 −0.94± 1.95
gold06 z −0.58± 0.23 −0.58± 0.68 −0.58± 1.15

Table 3.10: Jerk parameter summary: Combined and expanded uncertainties.

dataset redshift (j0 + Ω0)± σcombined (j0 + Ω0)± U3 (j0 + Ω0)± U5

legacy05 y +2.65± 4.63 +2.65± 13.9 +2.65± 23.1
legacy05 z +1.94± 1.72 +1.94± 5.17 +1.94± 8.6
gold06 y +6.47± 4.75 +6.47± 14.2 +6.47± 23.7
gold06 z +2.03± 1.75 +2.03± 5.26 +2.03± 8.75

3.13 Results

What can we conclude from this? While the “preponderance of evidence” is certainly that
the universe is currently accelerating, q0 < 0, this is not yet a “gold plated” result. We
emphasise the fact that (as is or should be well known) there is an enormous difference
between the two statements:

• “the most likely value for the deceleration parameter is negative”, and

• “there is significant evidence that the deceleration parameter is negative”.

When it comes to assessing whether or not the evidence for an accelerating universe is
physically significant, the first rule of thumb for combined uncertainties is the well known
aphorism “if it’s not three-sigma, it’s not physics”. The second rule is to be conservative
in your systematic uncertainty budget. We cannot in good faith conclude that the expan-
sion of the universe is accelerating. It is more likely that the expansion of the universe is
accelerating, than that the expansion of the universe is decelerating — but this is a very
long way from having definite evidence in favour of acceleration. The summary regarding
the jerk parameter, or more precisely (j0 + Ω0), is rather grim reading, and indicates the
need for considerable caution in interpreting the supernova data. Note that while use of
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the y-redshift may improve the theoretical convergence properties of the Taylor series, and
will not affect the uncertainties in the distance modulus or the various distance measures, it
does seem to have an unfortunate side-effect of magnifying statistical uncertainties for the
cosmological parameters.

As previously mentioned, we have further checked the robustness of our analysis by
first excluding the outlier at z = 1.755, then excluding the so-called “Hubble bubble” at
z < 0.0233 [49, 50], and then excluding both — the precise numerical estimates for the
cosmological parameters certainly change, but the qualitative picture remains as we have
painted it here.

3.14 Conclusions on Cosmography

Why do our conclusions seem to be so much at variance with currently perceived wisdom
concerning the acceleration of the universe? The main reasons are twofold:

• Instead of simply picking a single model and fitting the data to it, we have tested
the overall robustness of the scenario by encoding the same physics (H0, q0, j0) in
multiple different ways (dL, dF , dP , dQ, dA; using both z and y) to test the robustness
of the data fitting procedures.

• We have been much more explicit, and conservative, about the role of systematic un-
certainties, and their effects on estimates of the cosmological parameters.

If we only use the statistical uncertainties and the “known unknowns” added in quadra-
ture, then the case for cosmological acceleration is much improved, and is (in some cases
we study) “statistically significant at three-sigma”, but this does not mean that such a con-
clusion is either robust or reliable. (By “cherry picking” the data, and the particular way
one analyzes the data, one can find statistical support for almost any conclusion one wants.)

The modelling uncertainties we have encountered depend on the distance variable one
chooses to do the least squares fit (dL, dF , dP , dQ, dA). There is no good physics reason for
preferring any one of these distance variables over the others. One can always minimize the
modelling uncertainties by going to a higher-order polynomial — unfortunately at the price
of unacceptably increasing the statistical uncertainties — and we have checked that this
makes the overall situation worse. This does however suggest that things might improve if
the data had smaller scatter and smaller statistical uncertainties: We could then hope that
the F -test would allow us to go to a cubic polynomial, in which case the dependence on
which notion of distance we use for least-squares fitting should decrease.

We wish to emphasize the point that, regardless of one’s views on how to com-
bine formal estimates of uncertainty, the very fact that different distance scales
yield data-fits with such widely discrepant values strongly suggests the need
for extreme caution in interpreting the supernova data.

Though we have chosen to work on a cosmographic framework, and so minimize the
number of physics assumptions that go into the model, we expect that similar modelling un-
certainties will also plague other more traditional approaches. (For instance, in the present-
day consensus scenario there is considerable debate as to just when the universe switches
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from deceleration to acceleration, with different models making different statistical predic-
tions [61].) One lesson to take from the current analysis is that purely statistical estimates of
error, while they can be used to make statistical deductions within the context of a specific
model, are often a bad guide as to the extent to which two different models for the same
physics will yield differing estimates for the same physical quantity.

There are a number of other more sophisticated statistical methods that might be ap-
plied to the data to possibly improve the statistical situation. For instance, ridge regression,
robust regression, and the use of orthogonal polynomials and loess curves. However one
should always keep in mind the difference between accuracy and precision [51]. More so-
phisticated statistical analyses may permit one to improve the precision of the analysis, but
unless one can further constrain the systematic uncertainties such precise results will be no
more accurate than the current situation. Excessive refinement in the statistical analysis, in
the absence of improved bounds on the systematic uncertainties, is counterproductive and
grossly misleading.

However, we are certainly not claiming that all is grim on the cosmological front —
and do not wish our views to be misinterpreted in this regard — there are clearly parts of
cosmology where there is plenty of high-quality data, and more coming in, constraining
and helping refine our models. But regarding some specific cosmological questions the
catch cry should still be “Precision cosmology? Not just yet” [62].

In particular, in order for the current technique to become a tool for precision cosmol-
ogy, we would need more data, smaller scatter in the data, and smaller uncertainties. For
instance, by performing the F -test we found that it was almost always statistically mean-
ingless to go beyond quadratic fits to the data. If one can obtain an improved dataset of
sufficient quality for cubic fits to be meaningful, then ambiguities in the deceleration pa-
rameter are greatly suppressed.

In closing, we strongly encourage readers to carefully contemplate figures 3.4(a)–3.6(b)
as an inoculation against over-interpretation of the supernova data. In those figures we
have split off the linear part of the Hubble law (which is encoded in the intercept) and
chosen distance variables so that the slope (at redshift zero) of whatever curve one fits to
those plots is directly proportional to the acceleration of the universe (in fact the slope is
equal to −q0/2). Remember that these plots only exhibit the statistical uncertainties. Re-
membering that we prefer to work with natural logarithms, not stellar magnitudes, one
should add systematic uncertainties of ±[ln(10)/5]× (0.05) ≈ 0.023 to these statistical error
bars, presumably in quadrature. Furthermore a good case can be made for adding an addi-
tional “historical” uncertainty, using the past history of the field to estimate the “unknown
unknowns”.

Ultimately however, it is the fact that figures 3.4(a)–3.6(b) do not exhibit any
overwhelmingly obvious trend that makes it so difficult to make a robust and
reliable estimate of the sign of the deceleration parameter.
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“Every generation of humans believed it had all the
answers it needed, except for a few mysteries they
assumed would be solved at any moment. And they
all believed their ancestors were simplistic and de-
luded. What are the odds that you are the first gen-
eration of humans who will understand reality?”

Scott Adams (born 1957)
4

Cosmodynamics
in a FLRW universe

Some 10 years ago Matt Visser initiated a programme of using the classical energy condi-
tions of general relativity to place very general and robust bounds on various cosmolog-

ical parameters [63, 64, 65]. In that early work, attention was mainly focussed on the energy
density ρ(z) and lookback time T (z). Since then, the classical energy conditions have (on
the one hand) seen continued use in studying issues such as the minimal requirements for
cosmological bounces [66, 67] and other cosmological milestones [68, 69, 70], and (on the
other hand) have seen further applications to bounding cosmological distances d(z) [71, 72],
and lookback time T (z) [73]. In the first part of this chapter we shall try to draw these var-
ious threads together and establish several simple and rugged energy-condition-induced
bounds on cosmological parameters. Several of these bounds are completely new, several
are significant extensions of known results, and all are now generalized to arbitrary spatial
curvature. For some generic cosmological parameter, say represented by X(z), we shall
seek bounds of the form

X(z) ≷ Xbound ≡ X0 f(Ω0, z),
�� ��4.1

where X0 is the value of X(z) at the present epoch, the direction of the inequality may
depend both on the bound being considered and the redshift region of interest, and f(Ω0, z)
is some dimensionless function to be determined. Typically f(Ω0, z) will be a polynomial,
rational, algebraic, or elementary function, though for the particular case of the dominant
energy condition applied to the lookback time we shall encounter a specific hypergeometric
function.

There is (at least) one important caveat: It should be kept clearly in mind that the classi-
cal energy conditions are not fundamental physics — in fact the classical energy conditions
are known to be violated by quantum effects [74, 75, 76, 76, 77, 78, 79, 80], at least to some
extent, and so the energy conditions should always be viewed provisionally — as a way of
characterizing whether or not a certain situation is describable by “normal” physics [79, 80].

In all of these analyses with the classical energy conditions there is a trade-off between
the precision and generality of the constraints one obtains — the art lies in choosing a form
of the input assumptions that is as general as possible, but not too general, for the precision
of the output constraints one wishes to derive.

In the second part of this chapter we shall derive some very general bounds in terms of
assumptions about the w-parameter, where as usual w = p/ρ. Specifically, we shall ask the
question: If we know for theoretical reasons, or can observationally determine, that w lies
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in some restricted range
w(z) ∈ [w−, w+],

�� ��4.2

between redshift zero and redshift z, what constraint does that place on the cosmological
expansion? We shall see that considerable useful information can be extracted regarding
the density ρ(z), Hubble parameter H(z), density parameter Ω(z), various cosmological
distances dX(z), and lookback time T (z). Specifically, for some generic cosmological pa-
rameter X(z), we shall be looking for bounds of the form

Xw±(z) ≤ X(z) ≤ Xw∓(z),
�� ��4.3

Conversely, observational constraints on these cosmological parameters can be used to infer
features of the cosmological fluid in a largely model-independent manner. In contrast to
other partial results scattered throughout the literature, we carry out the computations for
arbitrary values of the space curvature k ∈ [−1, 0,+1], equivalently for arbitrary Ω0 ≶ 1.

4.1 Basic formulae

In standard cosmology, one assumes the cosmological principle, that is, our universe is
isotropic and homogeneous on large scales. This assumption leads one to consider cosmo-
logical spacetimes of the idealized FLRW form [81, 20, 82, 21, 83, 84]:

ds2 = −dt2 + a(t)2

{
dr2

1− kr2
+ r2 [dθ2 + sin2 θ dφ2]

}
.

�� ��4.4

If we further assume that gravitational interactions at large scales are described by general
relativity, we can use the Friedmann equations that relate the total density ρ and the total
pressure p to a function of the scale factor a and its time derivatives. Indeed, in units where
8πGN = 1, but explicitly retaining the speed of light c, we have 1

ρ(t) = 3
(
ȧ2

a2
+
k c2

a2

)
,

�� ��4.5

p(t) = −2
ä

a
− ȧ2

a2
− k c2

a2
,

�� ��4.6

ρ(t) + 3 p(t) = −6
ä

a
.

�� ��4.7

The classical energy conditions of general relativity, to the extent that one believes that they
are a useful guide [79, 80], allow one to deduce physical constraints on the behaviour of
matter fields in strong gravitational fields or cosmological geometries. For a perfect fluid
cosmology, and in terms of pressure and density, the so-called Null, Weak, Strong and
Dominant energy conditions reduce to [88]:

1Note that we are now specifically assuming Friedmann dynamics for the universe, one is thus explicitly
stepping outside the “cosmographic” or “cosmokinetic” framework of [22, 23, 24, 25, 12, 13, 85, 86, 87].
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NEC: ρ+ p ≥ 0.
In view of the Friedmann equations this then reduces to

− ä

a
+
ȧ2

a2
+
k c2

a2
≥ 0; that is

ä

a
≤ ȧ2

a2
+
k c2

a2
.
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WEC: This specializes to the NEC plus ρ ≥ 0.
This then reduces to the NEC plus the condition

ȧ2 + k c2 ≥ 0.
�� ��4.9

This condition is vacuous for k ∈ {0,+1} and only for k = −1 does it convey even a
little information.

SEC: This specializes to the NEC plus ρ+ 3p ≥ 0.
This then reduces to the NEC plus the deceleration condition

ä

a
≤ 0.

�� ��4.10

DEC: ρ± p ≥ 0.
This reduces to the NEC plus the condition

ä

a
≥ −2

(
ȧ2

a2
+
k c2

a2

)
.

�� ��4.11

Note particularly that the condition (4.10) is independent of the space curvature k. Now,
DEC implies WEC implies NEC, and SEC implies NEC, but otherwise the NEC, WEC, SEC,
and DEC are mathematically independent assumptions. In particular, the SEC does not
imply the WEC. Violating the NEC implies violating the DEC, SEC, and WEC as well [88].

Using this dynamical formulation of the energy conditions, and adopting the outlook
of [63, 64, 65], Santos et al. [71] have recently derived some bounds, for the special case k =
0, on the luminosity distance dL of supernovae, and have then compared these bounds with
the legacy [28, 1] and gold [3] datasets. In reference [72] bounds on the distance modulus
are presented for general values of k ∈ {−1, 0,+1}, while in reference [73] they concentrate
on the lookback time. Herein, we shall use a similar but distinct approach to obtain rugged
and more general bounds on the Hubble parameter, the Omega parameter, the density,
the lookback time, and on the various distance scales defined previously in [85, 86] for all
values of k space curvature ∈ {−1, 0,+1}.

4.2 Energy conditions and the Hubble parameter H(z)

The energy conditions translate, in a FLRW setting, into the inequalities (4.8), (4.9), (4.10),
and (4.11), from which we deduce bounds on the Hubble function H(z) in terms of the
Hubble parameter H0, the Omega parameter Ω0, and the z-redshift.
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4.2.1 NEC:

Using inequality (4.8) we obtain:

ȧ

a

d
da

(
ȧ

a

)
≤ k c2

a3
,
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which can be integrated to yield

∫ a0

a

d
da

(
1
2

(
ȧ

a

)2
)

da ≤
∫ a0

a

k c2

a3
da.

�� ��4.13

That is
H2

0 −H(z)2 ≤ −k c2 {a−2
0 − a

−2}
�� ��4.14

Now using

a0

a
= 1 + z,

�� ��4.15

and the relation

Ω0 = 1 +
kc2

a2
0H

2
0

,
�� ��4.16

after a few rearrangements we obtain a bound in terms of a simple algebraic function: 2

H(z) ≥ HNEC ≡ H0

√
Ω0 + [1− Ω0] (1 + z)2.

�� ��4.17

In order to obtain this inequality we have assumed that z > 0, so that one is looking into the
past. When looking into the future, z < 0, the inequality is reversed.3 Physically, we see that
for Ω0 ≤ 1 equation (4.17) implies H(z) ≥ H0, so the Hubble parameter is nondecreasing
(nonincreasing) as we look into the past (future) — this implies that the expansion is always
less than exponential.

Technical point: To be useful, the bound on the Hubble parameter must be a real number.
For Ω0 6 1 this is automatic. In contrast, note that when Ω0 > 1, there exists a z value for
which the expression in the square root becomes negative or zero. This specific value of the
z-redshift is given by:

zNEC =
√

Ω0

Ω0 − 1
− 1.

�� ��4.18

Note that at z = zNEC , we get HNEC(zNEC) = 0. Also note that zNEC is positive as long as Ω0

is positive. Nothing unusual need happen to the universe itself at zNEC , it is only the bound

2In fact, all the Hubble bounds derived below will be algebraic.
3Note that looking back into the past z > 0, with z =∞ corresponding to the big bang. In contrast, looking

forward into the future z < 0, with z = −1 corresponding to infinite expansion [85, 86].
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that loses its predictive usefulness. In practice, given that current observational estimates
are

Ω0 = 1.02± 0.02 (PDG 2004 [89]),
�� ��4.19

Ω0 = 1.003+0.013
−0.017 (PDG 2006 [17]),

�� ��4.20

we see that (for instance) zNEC(Ω0 = 1.04) = 4.1 and zNEC(Ω0 = 1.01) = 9.0. So given
current observational estimates of Ω0, the fact that the highest-z supernovae seen to date
have z . 2, and the fact that we are expected to run out of galaxies by the time we reach
z . 7, the limitations associated with zNEC are unlikely to be significant in any realistic
setting.

Overall, the bound on the Hubble function (4.17) is valid for Ω0 ≤ 1, ∀ z ∈ [0,+∞),
and for Ω0 > 1 under the condition that z ∈ [0, zNEC ].

4.2.2 WEC:

From inequality (4.9), we can deduce that

for k = −1, ȧ ≤
√
−k c.

�� ��4.21

To obtain a constraint on the Hubble function, we divide equation (4.21) by a, and obtain
the rather weak bound:

H(z) ≥ HWEC ≡ H0 (1 + z)
√

1− Ω0 ∀ Ω0 ∈ (0, 1).
�� ��4.22

We have assumed that z > 0 in inequality (4.22) so that one is looking into the past. When
looking into the future z < 0, the inequality is reversed. Note that this bound is only valid
∀ Ω0 ∈ (0, 1) and ∀ z > 0.

Important remark: Note that as long as Ω0 > 0 we have:

HNEC ≥ HWEC .
�� ��4.23

That is, the WEC really does not give us anything extra beyond the statement that Ω0 is
positive.

4.2.3 SEC:

From inequality (4.10), we deduce that

∀ a < a0
1
ȧ
≤ 1

H0 a0
.

�� ��4.24

Further, to obtain a relation on the Hubble function and Hubble parameter, we multiply
equation (4.24) by a, and we obtain the bound: 4

H(z) ≥ HSEC ≡ H0 (1 + z).
�� ��4.25

4We have assumed that z > 0 in inequality (4.25) so that one is looking into the past. When looking into the
future z < 0, the inequality is reversed. Note that this specific bound can also be found in [71, 72].
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Physically we see that this bound can be rewritten as ȧ ≥ ȧ0, implying thatH must decrease
at least as rapidly as free expansion — it is this particular energy condition that is violated
by the now-usual interpretation of the observational supernovae data in terms of cosmic
acceleration. (Equivalently, the “dark energy” is specifically designed to violate this energy
condition.)

4.2.4 DEC:

To satisfy this energy condition, the NEC must hold as well as inequality (4.11). We use the
same approach as for the NEC, rewriting (4.11) as:

d(a2ȧ)
dt

+ 2kc2a ≥ 0,
�� ��4.26

that is,
da
dt

d
da

(a2ȧ) + 2kc2a ≥ 0.
�� ��4.27

Multiplying by a2, this inequality leads to

d
da

[
1
2
(
a2 ȧ

)2 +
k c2

2
a4

]
≥ 0 ∀ a.

�� ��4.28

Integrating, we can deduce the new inequality,

∀ a < a0

(
a2 ȧ

)2 + k c2 a4 ≤
(
a2

0ȧ0

)2 + k c2 a4
0.

�� ��4.29

Now, we multiply or divide appropriately by some combination of a and a0 to force the ap-
pearance of the Hubble functionH(z) and the Hubble parameterH0. We also use equations
(4.15) and (4.16) and substitute, leading to:

H(z) ≤ HDEC ≡ H0 (1 + z)
√

1 + Ω0 [(1 + z)4 − 1],
�� ��4.30

Again, we have assumed that z > 0 in inequality (4.30) so that one is looking into the past.
When looking into the future z < 0, the inequality is reversed.

Thus the DEC is satisfied if and only if:

HNEC ≤ H(z) ≤ HDEC ,
�� ��4.31

where HNEC and HDEC are defined respectively in equations (4.17), and (4.30).

Technical point: Similarly to the situation for the NEC, the bound is guaranteed to be real
for all values of z > −1 (and hence z ≥ 0) if Ω0 ∈ (0, 1). However, note that when Ω0 > 1,
there exists a z value for which the expression in the square root becomes negative or zero.
This specific value of the z-redshift is given by:

zDEC =
(

Ω0 − 1
Ω0

)1/4

− 1.
�� ��4.32

Note that zDEC is always negative so it is never a problem when looking back into the past.
In fact zDEC(Ω0 = 1.04) = −0.56 and zDEC(Ω0 = 1.01) = −0.68 are well into the future.

Thus the bound on the Hubble function (4.30) is valid for Ω0 ∈ (0, 1), ∀ z ≥ −1, and for
Ω0 > 1 under the condition that z ∈ [zDEC ,+∞]. If we are only interested in looking into
the past, then the DEC bound holds for Ω0 > 0 and z > 0.
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4.3 Energy conditions and the distance scales

In order to obtain bounds on the various distance scales, it is enough to obtain a bound
on Peebles’ angular diameter distance [21] and then use the different relations between the
various distance scales presented in [85, 86]. 5 We choose to work primarily with Peebles’
angular diameter distance because it minimizes the number of factors of (1 + z) occurring
in the various formulae. Recall from section 2.5 that Peebles’ angular diameter distance can
be defined in its exact form as [21]:

dP (z) = a0 sink

{
c

H0 a0

∫ z

0

H0

H(z)
dz
}
,

�� ��4.33

where

sink(x) =


sin(x), k = +1;
x, k = 0;
sinh(x), k = −1.

�� ��4.34

By changing variables and adopting definitions as in equations (4.15) and (4.16), we can
rewrite Peebles’ angular diameter distance in an alternative exact general form, ∀ z ∈
[−1,+∞) and ∀ fixed Ω0:6

dP (z) =
c

H0

sinh
[√

1− Ω0

∫ z
0

H0
H(z) dz

]
√

1− Ω0
,

�� ��4.35

where we note

Ω0


> 1, k = +1;
= 1, k = 0;
< 1, k = −1.

�� ��4.36

Observe that by continuity of the functions sinx/x and sinhx/x as x→ 0, the function dP (z)
is also continuous as Ω0 → 1±. For convenience, from equation (4.35), the angular diameter
distance is given by

dP (z) =
c

H0

sinh
[√

1− Ω0 J
]

√
1− Ω0

,
�� ��4.37

where J is the integral defined by

J =
∫ z

0

H0

H(z)
dz = H0 a0

∫ a0

a

da
a ȧ

.
�� ��4.38

The procedure now is as follows: The energy conditions provide bounds on H(z), which
allow us to obtain a bound on the integral J . Then provided the function sink is monotonic
on the interval z ∈ [0,+∞], (or at least some sub-interval z ∈ [0, zmax] ), we can derive a
bound on the angular diameter distance on this same domain.

5Peebles’ angular diameter distance is equal to Weinberg’s proper motion distance [20], and is also equal to
D’Inverno’s version of luminosity distance [7]. Details on how the various distance scales are inter-related can
be found in section 2.5.

6Another notation that is sometimes used is Ωk = 1− Ω0, so that k = −sign(Ωk).
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4.3.1 NEC:

The null energy condition gives a bound on H in equation (4.17) leading to the inequality,

J =
∫ z

0

H0

H(z)
dz ≤ JNEC ≡

∫ z

0

dz√
Ω0 + [1− Ω0] (1 + z)2

. �� ��4.39

We integrate, and substitute the resulting bound back into the angular diameter distance.
In the general case, we obtain the algebraic bound

dP (z) ≤ dP
NEC

= c
H0 Ω0

[
1 + z −

√
Ω0 + (1− Ω0) (1 + z)2

]
;

{
∀ Ω0 ≤ 1, ∀ z ∈ [0,+∞];
∀ Ω0 > 1, ∀ z ∈ [0, zNEC).

�� ��4.40

Special case: Note that as Ω0 → 1 (k = 0), we have

dP (z) ≤ dP
NEC

=
c z

H0
Ω0 = 1; ∀ z ∈ [0,+∞].

�� ��4.41

so we find the same particular result as in [71], that is,

dL(z) ≤ dL
NEC

=
c z (1 + z)

H0
Ω0 = 1; ∀ z ∈ [0,+∞].

�� ��4.42

Comment: In contrast, note that equation (4.40) is the general case, now valid for all val-
ues of k ∈ {−1, 0,+1}. The apparently rather different equation (15) of reference [72], which
involves (hyperbolic) trigonometric functions and their inverses, can be viewed as an inter-
mediate step in deriving the comparatively simple and general algebraic result in equation
(4.40) above.

Note that as Ω0 → 1, equation (4.40) can be developed in a Taylor series as

dP
NEC

(z) =
c z

H0
+

c z2

2 H0
(Ω0 − 1) +O

(
[Ω0 − 1]2

)
.

�� ��4.43

If instead one performs a low-redshift expansion, then for general Ω0

dP
NEC

(z) =
cz

H0

{
1 +

(Ω0 − 1) z
2

+O(z2)
}
.

�� ��4.44

4.3.2 WEC:

The weak energy condition gives a new (but weak) bound on H(z) as in equation (4.22),
but only for Ω0 ∈ (0, 1), leading to the inequality:

J =
∫ z

0

H0

H(z)
dz ≤ JWEC ≡

∫ z

0

dz√
1− Ω0 (1 + z)

=
ln(1 + z)√

1− Ω0
. �� ��4.45
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We integrate, and substitute the resulting bound back into the angular diameter distance to
obtain:

dP (z) ≤ dP
WEC

= c
2 H0

√
1−Ω0

z(2+z)
(1+z) ;

�� ��4.46

∀ Ω0 ∈ (0, 1), ∀ z ∈ [0,+∞].

Comment: Note that dP
NEC
≤ dP

WEC
. Thus the bound dP

WEC
is not very useful.

4.3.3 SEC:

This energy condition gives a bound on H(z) in (4.25), and therefore

J ≤ JSEC ≡
∫ z

0

dz
1 + z

= ln(1 + z).
�� ��4.47

In the general case, we obtain the bound on the angular diameter distance (cf . the related
equation (17) of [72]):

dP (z) ≤ dP
SEC

(z) = c
H0

sinh[
√

1−Ω0 ln(1+z)]√
1−Ω0

;
�� ��4.48

{
∀ Ω0 ≤ 1, ∀ z ∈ [0,+∞];
∀ Ω0 > 1, ∀ z ∈ [0, zmax].

In particular, we can make this much more explicit than the analysis in [72] by evaluating:

• For k = −1, that is ∀ Ω0 < 1, and ∀ z ∈ [0,+∞],

dP
SEC

(z) =
c

H0

(1 + z)
√

1−Ω0 − (1 + z)−
√

1−Ω0

2
√

1− Ω0
;

�� ��4.49

• For k = 0, that is when Ω0 = 1, and ∀ z ∈ [0,+∞] 7

dP
SEC

(z) =
c

H0
ln (1 + z) ;

�� ��4.50

• For k = +1, that is ∀ Ω0 > 1, and ∀ z ∈ [0, zmax],

dP
SEC

(z) =
c

H0

sin
[√

Ω0 − 1 ln (1 + z)
]

√
Ω0 − 1

,
�� ��4.51

where 8

zmax = exp
(

π

2
√

Ω0 − 1

)
− 1.

�� ��4.52

In fact, since zmax(Ω0 = 1.04) = 2575 and zmax(Ω0 = 1.01) = 6.6×106, we see that this
constraint is never a significant limitation on the validity of the bounds.

7Cf . the equivalent special case result in [71].
8 If J ≤ JSEC then for the sine function we have sin(

√
Ω0 − 1 J) ≤ sin(

√
Ω0 − 1 JSEC), provided that

0 ≤
√

Ω0 − 1 JSEC ≤ π/2, thus leading to the condition that z ≤ zmax = exp
“

π
2
√

Ω0−1

”
− 1.
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Note that as Ω0 → 1+, zmax → +∞, and equation (4.48) can be developed in a Taylor series
as

dP
SEC

(z) =
c

H0
ln (1 + z)− c

6H0
[ln (1 + z)]3 (Ω0 − 1) +O

(
[Ω0 − 1]2

)
. �� ��4.53

If instead one performs a low-redshift expansion, then for general Ω0

dP
SEC

(z) =
cz

H0

{
1− z

2
+O(z2)

}
.

�� ��4.54

4.3.4 DEC:

Remember that to satisfy the DEC, the Hubble function needs to satisfy both the NEC,
inequality (4.17), and the second inequality (4.30). As a consequence, in order for the DEC
to hold, Peebles’ angular diameter distance must satisfy inequality (4.40), and a second
inequality to be derived below. From equation (4.30), we obtain

J =
∫ z

0

H0

H(z)
dz ≥ JDEC ≡

∫ z

0

dz
(1 + z)

√
1 + Ω0 [(1 + z)4 − 1]

. �� ��4.55

This integration is a bit more tricky than the previous integrations for the NEC and SEC.
We obtain:

JDEC =
1

2
√

1− Ω0
ln


(
1− Ω0 +

√
1− Ω0

)
(1 + z)2

1− Ω0 +
√

1− Ω0

√
1 + Ω0

[
(1 + z)4 − 1

]
. �� ��4.56

In the general case, this leads to the following algebraic lower bound on the angular diam-
eter distance:

dP (z) ≥ dP
DEC

(z) ≡ c

H0(1 + z)

√√√√√
√

1 + Ω0

[
(1 + z)4 − 1

]
−
(

1 + Ω0

[
(1 + z)2 − 1

])
2Ω0 (1− Ω0)

;

{
∀ Ω0 ≤ 1, ∀ z ∈ [0,+∞];
∀ Ω0 > 1, ∀ z ∈ (zDEC ,+∞].

�� ��4.57

This simplifies and makes explicit consequences that are implicit in the rather different-
looking equations (19) and (20) of [72], which are presented in terms of (hyperbolic) trigono-
metric functions and their inverses, and which can be viewed as intermediate stages in de-
riving this much simpler algebraic result. Note that in contrast to the situation for the SEC,
there is no constraint on a maximum value for z coming from the requirement that the sine
function be monotonic.
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The lower bound of the DEC in equation (4.57) can also be represented in a Taylor series
as Ω0 → 1,

dP
DEC

(z) =
c

H0

z (2 + z)
2 (1 + z)2 +

c

H0

z2 (2 + z)2 (3z2 + 6z + 4
)

16 (1 + z)6 (Ω0 − 1) +O
(
[Ω0 − 1]2

)
. �� ��4.58

If instead one performs a low-redshift expansion, then for general Ω0

dP
DEC

(z) =
cz

H0

{
1− (2Ω0 + 1) z

2
+O(z2)

}
.

�� ��4.59

4.3.5 Energy conditions and Supernovae data:

We can now plot the angular diameter distance bounds (NEC, WEC, SEC, and DEC) and
compare them with the data from the supernova datasets. We have used data from the su-
pernova legacy survey (legacy05) [28, 1] and the Riess et al. gold dataset of 2006 (gold06) [3].
See section 2.7 for detailed information on the supernovae datasets.

Figure 4.1 compares the upper bounds (NEC and SEC), and the lower bound (DEC),
with the legacy05 dataset. In contrast figure 4.2 uses the gold06 dataset.

To satisfy the NEC, the data must lie under the red solid bound, and we can see that
most of the data seem to satisfy this condition.

For the SEC to hold, the data must lie under the black dashdot bound. Visually it seems
“obvious” that the data significantly violate the SEC.

Finally, the DEC is satisfied if both: (1) the NEC is satisfied, and (2) if the data lies above
the magenta dashed lower bound. This latter condition is well satisfied for the bulk of the
data, therefore satisfying the DEC is dependent on the NEC holding.

As is traditional for estimates of cosmological distance, we plot only one-sigma statisti-
cal uncertainties, without any allowance for systematic uncertainties. Any realistic attempt
at more careful treatment of the systematics, and/or going to 3-sigma error bars, makes it
clear that the interpretation of these plots is an extremely subtle matter fraught with uncer-
tainties and unknowns [85, 86].

There seem to be noticeable visual differences when looking at figures 4.1, or 4.2, which
make it tricky to conclude whether the classical energy conditions are satisfied or not by just
looking at the supernova data in isolation. For example, there are a few supernovae data in
the redshift range 0.8 < z < 1 that appear to violate the NEC in an obvious manner for the
legacy05 dataset in figure (4.1) . However, the violation does not appear to be as dramatic
when looking at the same range of data in the gold06 dataset in figure (4.2). Another exam-
ple is that the NEC naively seems to be violated for data in the redshift range 0.4 < z < 0.6
in the gold06 dataset. On the contrary, even if there are less data in the legacy05 dataset,
one cannot draw the same conclusion.
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Figure 4.1: This figure shows Peebles’ angular diameter distance dP (z) as a function
of the z-redshift from the nearby and legacy survey, legacy05 dataset [28, 1]. Data un-
der the red solid lines satisfy the NEC/WEC, data under the black dashdot lines satisfy
the SEC, data under the red solid lines and above the magenta dashed lines satisfy the
DEC. The 5 lines for each energy conditions correspond to varying values of the param-
eter Ω0 = {0.96, 0.98, 1.00, 1.02, 1.04}. The value of the Hubble constant is taken to be
H0 = 70 km/s/Mpc.

In contrast to references [71, 72, 73], we believe we cannot draw any firm conclusions
by using the low-redshift linear part of the distance scale curve; as in those articles the data
has been scaled to enforce a particular value of H0 that was chosen to be compatible with
other (non-SNae) determinations of the Hubble parameter. It is important to realise that the
slope of the bounds at z = 0 depends sensitively on the estimate of H0 one adopts, and can
further be affected by the value of the magnitude offset reported for the data.

More generally, note in particular that for low redshift the luminosity distance is bounded,
both above and below, by constraints of the form cz/H0 + O(z2). Thus for data with any
statistical uncertainties whatsoever, at low enough z, one would expect roughly half the
supernovae to violate one or more of these bounds.
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Figure 4.2: This figure shows Peebles’ angular diameter distance dP (z) as a function of the
z-redshift from the gold06 dataset [3]. Data under the red solid lines satisfy the NEC/WEC,
data under the black dashdot lines satisfy the SEC, data under the red solid lines and above
the magenta dashed lines satisfy the DEC. The 5 lines for each energy conditions corre-
spond to varying values of the parameter Ω0 = {0.96, 0.98, 1.00, 1.02, 1.04}. The value of
the Hubble constant is taken to be H0 = 70 km/s/Mpc.

4.4 Energy conditions and the lookback time T(z)

The lookback time is defined as [63, 64, 65]

T (z) =
∫ a0

a
dt =

∫
dt
da

da =
∫
a

ȧ

da
a

=
∫

1
H

d[a0/(1 + z)]
a0/(1 + z)

= −
∫

1
H

dz/(1 + z)2

1/(1 + z)
.

�� ��4.60

That is

T (z) =
∫ z

0

1
(1 + z) H(z)

dz.
�� ��4.61

In order to obtain bounds on the lookback time for the different energy conditions NEC,
WEC, SEC, and DEC, we again use the bounds on the Hubble parameter H(z).
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4.4.1 NEC:

The null energy condition gives a bound on H(z) in equation (4.17), leading to the inequal-
ity

T (z) =
∫ z

0

1
(1 + z) H(z)

dz ≤ TNEC(z) ≡
∫ z

0

1
(1 + z) HNEC(z)

dz
�� ��4.62

We integrate, and see that in this case the lookback time is bounded by an elementary func-
tion (of an algebraic argument) 1

T (z) ≤ TNEC(z) =
1

H0

√
Ω0

ln

 (1 + z)
(
1 +
√

Ω0

)√
Ω0 + (1− Ω0) (1 + z)2 +

√
Ω0

, �� ��4.63

this bound is valid ∀ Ω0 ≤ 1, ∀ z > 0 and ∀ Ω0 > 1, ∀ z ∈ [0, zNEC ].
Alternatively, this bound can be rewritten as

T (z) ≤ TNEC(z) =
1

H0

√
Ω0

ln


√

Ω0 + (1− Ω0) (1 + z)2 −
√

Ω0(
1−
√

Ω0

)
(1 + z)

. �� ��4.64

Using the standard result that sinh−1 x = ln(x+
√
x2 + 1), we can for k = −1 (that is, Ω0 < 1)

also re-cast this as

T (z) ≤ TNEC(z) =
1

H0

√
Ω0

{
sinh−1

(√
Ω0

1− Ω0

)
− sinh−1

(
1

1 + z

√
Ω0

1− Ω0

)}
. �� ��4.65

Equivalent formulae can be found in reference [64]. Similarly for k = +1 (that is, Ω0 > 1)
we can use the fact that cosh−1 x = ln(x+

√
x2 − 1) to obtain 2

T (z) ≤ TNEC(z) =
1

H0

√
Ω0

{
cosh−1

(√
Ω0

Ω0 − 1

)
− cosh−1

(
1

1 + z

√
Ω0

Ω0 − 1

)}
. �� ��4.66

Finally, the upper bound derived from the NEC in equation (4.63), or equivalently any of
equations (4.64)–(4.65)–(4.66), can also be represented in a Taylor series as Ω0 → 1:

TNEC(z) =
ln (1 + z)

H0
+
z2 + 2z − 2 ln (1 + z)

4H0
(Ω0 − 1) +O

(
[Ω0 − 1]2

)
.

�� ��4.67

In particular for the special case Ω0 = 1 we recover the results of references [64] and [73].

1Equivalent formulae can be found in reference [64], see also equation (14) of [73].
2Note that this formula is valid only for z ≤ zNEC , since otherwise the argument of the cosh−1 is less than

unity.
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4.4.2 WEC:

This energy conditions gives a bound on H(z) in (4.22) for Ω0 ∈ (0, 1) only. Thereby it can
be deduced that

T (z) =
∫ z

0

1
(1 + z) H(z)

dz ≤ TWEC(z) ≡
∫ z

0

1
(1 + z) HWEC(z)

dz,
�� ��4.68

providing the (weak) bound

T (z) ≤ TWEC(z) =
z

H0

√
1− Ω0 (1 + z)

.
�� ��4.69

Again, this provided no additional useful information beyond the NEC-derived bound.

4.4.3 SEC:

This energy condition gives a bound on H(z) in (4.25). Thereby it can be deduced (as in the
articles [63, 64, 65, 73]) that,

T (z) =
∫ z

0

1
(1 + z) H(z)

dz ≤ TSEC(z) ≡
∫ z

0

1
(1 + z) HSEC(z)

dz,
�� ��4.70

that is

TSEC(z) =
z

H0 (1 + z)
.

�� ��4.71

The above result equation (4.71) is completely independent of the value of the parameter
Ω0. Note that this result was first introduced by Visser in [63, 64, 65].

4.4.4 DEC:

Remember that to satisfy the DEC, the Hubble function needs to satisfy the NEC, inequality
(4.17), and inequality (4.30). As a consequence, in order for the DEC to hold, the lookback
time must satisfy inequality (4.63), and a second inequality that we shall derive below. From
equation (4.30), we obtain

T (z) =
∫ z

0

1
(1 + z) H(z)

dz ≥ TDEC(z) ≡
∫ z

0

1
(1 + z) HDEC(z)

dz,
�� ��4.72

that is

TDEC(z) =
1
H0

∫ z

0

1
(1 + z)2

√
1 + Ω0 ((1 + z)4 − 1)

dz,
�� ��4.73

The integration of this bound is considerably harder than for the other energy conditions,
and will require us to use hypergeometric functions. Let us first write

TDEC(z) =
1

H0

√
Ω0

∫ z

0

1

(1 + z)4

√
1− (1− Ω−1

0 ) (1 + z)−4
dz,

�� ��4.74
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and then, (following the procedure of [64]), apply the binomial theorem

[
1− (1− Ω−1

0 ) (1 + z)−4
]−1/2 =

∞∑
n=0

(
−1/2
n

)
(−1)n (1− Ω−1

0 )n (1 + z)−4n.
�� ��4.75

Now the binomial series will converge provided∣∣(1− Ω−1
0 ) (1 + z)−4

∣∣ < 1,
�� ��4.76

and in view of the region we are integrating over, this means that the series for the lookback
time will converge provided∣∣1− Ω−1

0

∣∣ < 1, that is Ω0 ∈ (1/2,∞).
�� ��4.77

Subject to this condition we can integrate, and obtain the convergent series

TDEC(z) =
1

H0

√
Ω0

∞∑
n=0

(
−1/2
n

)
(−1)n

1
4n+ 3

(1− Ω−1
0 )n

[
1− (1 + z)−4n−3

]
.

�� ��4.78

As a practical matter, for many purposes this series representation may be enough, but we
can tidy things up somewhat by first defining

S(x) =
∞∑
n=0

(
−1/2
n

)
(−x)n

4n+ 3
=

1
3

+
x

14
+

3x2

88
+O(x3),

�� ��4.79

in which case

TDEC(z) =
1

H0

√
Ω0

{
S
(
1− Ω−1

0

)
− (1 + z)−3 S

(
(1− Ω−1

0 )
(1 + z)4

)}
.

�� ��4.80

Explicitly, the first two terms in the “near–spatially-flat” Taylor series expansion is

TDEC(z) =
1

H0

√
Ω0

{
1− (1 + z)−3

3
+
(
1− Ω−1

0

) 1− (1 + z)−7

14

+O
([

1− Ω−1
0

]2)}
.

�� ��4.81

For the restricted special case k = 0, that is Ω0 = 1, the leading term reduces to equation
(20) in [73].

Returning to the exact series result, we finally recognize that S(x) is a particular example
of hypergeometric series, 3 and so write

S(x) =
∞∑
n=0

(
−1/2
n

)
(−x)n

4n+ 3
=

1
3 2F1

(
1
2
,
3
4

;
7
4

;x
)
.

�� ��4.83

3 The classical hypergeometric series is given by

2F1 (a, b; c;x) =

∞X
n=0

(a)n(b)n
(c)n

xn

n!
,

�� ��4.82

where (a)n = a(a+ 1)(a+ 2)(a+ n− 1) is the rising factorial, or Pochhammer symbol. The series is in general
a convergent power series for values of x such that |x| < 1.
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Therefore

TDEC(z) =
1

3H0

√
Ω0

�� ��4.84

×
{

2F1

(
1
2
,
3
4

;
7
4

; 1− Ω−1
0

)
− (1 + z)−3

2F1

(
1
2
,
3
4

;
7
4

;
(1− Ω−1

0 )
(1 + z)4

)}
.

Again this agrees with and generalizes the results reported in [64]. Of course writing the
result in terms of hypergeometric functions does not necessarily give one much additional
physical insight — for physical insight the series S(x) is sufficient, and the realization that
one is in fact dealing with a hypergeometric function is likely to be useful only if for some
reason one wishes to numerically programme the bound into a computer. 4

4.5 Energy conditions and the Omega parameter Ω(z)

We have the following identity

Ω− 1 =
k c2

a2H2
=

k c2

a2
0H

2
0

a2
0

a2

H2
0

H2
= (Ω0 − 1) (1 + z)2 H2

0

H2
.

�� ��4.85

That is

Ω(z) = 1 + (Ω0 − 1) (1 + z)2 H2
0

H(z)2
.

�� ��4.86

Therefore, a bound on H(z) automatically implies a bound on Ω(z).

4.5.1 NEC:

The null energy condition gives a bound on H(z), as in equation (4.17), leading to a simple
rational polynomial bound

ΩNEC =
Ω0

Ω0 + (1− Ω0) (1 + z)2 ,
�� ��4.87

and the inequalities

if Ω0 < 1, ∀ z > 0, then Ω(z) ≥ ΩNEC ;
�� ��4.88

if Ω0 = 1, ∀ z > 0, then Ω(z) = ΩNEC = 1;
�� ��4.89

if Ω0 > 1, ∀ z > 0, then Ω(z) ≤ ΩNEC .
�� ��4.90

Note that as Ω0 → 1, equation (4.87) can be developed in a Taylor series as

ΩNEC = 1 + (1 + z)2 (Ω0 − 1) +O
(
[Ω0 − 1]2

)
.

�� ��4.91

4The result can also be cast in terms of elliptic integrals, as mentioned in [64] and [73], but this does not
appear to be particularly illuminating.
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4.5.2 WEC:

The weak energy condition gives a bound on H(z), as in equation (4.22), but for Ω0 ∈ (0, 1)
only, leading to the trivial result ΩWEC = 0, and the trivial inequality

if Ω0 < 1, ∀ z > 0, Ω ≥ ΩWEC = 0.
�� ��4.92

That is, this bound is not useful, except as a consistency check.

4.5.3 SEC:

The strong energy condition gives a bound onH(z), as in equation (4.25), leading to a trivial
constant bound:

ΩSEC ≡ Ω0,
�� ��4.93

and the inequalities

if Ω0 < 1, ∀ z > 0, then Ω(z) ≥ ΩSEC = Ω0;
�� ��4.94

if Ω0 = 1, ∀ z > 0, then Ω(z) = ΩSEC = Ω0 = 1;
�� ��4.95

if Ω0 > 1, ∀ z > 0, then Ω(z) ≤ ΩSEC = Ω0.
�� ��4.96

4.5.4 DEC:

The dominant energy condition gives a bound on H(z), as in equation (4.30), again leading
to a rational polynomial bound:

ΩDEC =
Ω0 (1 + z)4

1 + Ω0

[
(1 + z)4 − 1

] , �� ��4.97

and the inequalities

if Ω0 < 1, ∀ z > 0, then Ω(z) ≤ ΩDEC ;
�� ��4.98

if Ω0 = 1, ∀ z > 0, then Ω(z) = ΩDEC = 1;
�� ��4.99

if Ω0 > 1, ∀ z ∈ [0, zDEC ], then Ω(z) ≥ ΩDEC .
�� ��4.100

Note that as Ω0 → 1, equation (4.97) can be developed in a Taylor series as

ΩDEC = 1 +
(Ω0 − 1)
(1 + z)4 +O

(
[Ω0 − 1]2

)
.

�� ��4.101

These bounds on Ω(z) are potentially of interest with regard to cosmological nucleosyn-
thesis, which is effectively sensitive to Ω(znucleosynthesis). More generally, any bound on the
number of relativistic particle species at any particular epoch can be converted, with a little
work and some technical assumptions, into a bound on the Omega parameter at that epoch.
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4.6 Energy conditions and the density ρ(z)

We have the following identity

ρ = 3 Ω H2 = 3
[
1 + (Ω0 − 1) (1 + z)2 H

2
0

H2

]
H2.

�� ��4.102

That is
ρ(z) = 3H(z)2 + 3 (Ω0 − 1) (1 + z)2 H2

0 ,
�� ��4.103

showing that a bound on H(z) automatically implies a bound on ρ(z).
Alternatively, we can also write the following identity

ρ = 3
(
H2 +

kc2

a2

)
= 3H2

0

H2

H2
0

+
3kc2

a2
0

a2
0

a2

=
ρ0

Ω0

H2

H2
0

+ ρ0

(
1− 1

Ω0

)
(1 + z)2 .

�� ��4.104

That is

ρ(z) = ρ0

[
1

Ω0

H(z)2

H2
0

+
(

1− 1
Ω0

)
(1 + z)2

]
.

�� ��4.105

Again, a bound on H(z) automatically implies a bound on ρ(z).

4.6.1 NEC:

The null energy condition gives a bound on H(z), as in equation (4.17), leading to

ρNEC = 3Ω0 H
2
0 = ρ0,

�� ��4.106

and the inequality,

∀ Ω0, ∀ z > 0, ρ(z) ≥ ρNEC = ρ0.
�� ��4.107

This inequality was also derived by more direct means in [63, 64].

4.6.2 WEC:

The weak energy condition gives a bound on H(z), as in equation (4.22), leading to

ρWEC = 0,
�� ��4.108

and the inequality,

∀ Ω0 < 1, ∀ z > 0, ρ ≥ ρWEC = 0.
�� ��4.109

Of course, since by assuming the WEC we have already assumed that ρ > 0, this bound is
not very useful (and is at best a consistency check on the formalism).
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4.6.3 SEC:

The strong energy condition gives a bound on H(z), as in equation (4.25), leading to the
polynomial bound

ρSEC = 3Ω0 H
2
0 (1 + z)2 = ρ0 (1 + z)2 ,

�� ��4.110

and the inequality,

∀ Ω0, ∀ z > 0, ρ(z) ≥ ρSEC = ρ0 (1 + z)2.
�� ��4.111

This inequality was also derived by more direct means in [63, 64].

4.6.4 DEC:

The dominant energy condition gives a bound on H(z) in equation (4.30), leading to

ρDEC = 3Ω0 H
2
0 (1 + z)6 = ρ0 (1 + z)6 ,

�� ��4.112

and the inequality

∀ Ω0, ∀ z > 0, ρ ≤ ρDEC = ρ0 (1 + z)6 .
�� ��4.113

This inequality was also derived by more direct means in [63, 64].
Note that bounds on the density and the Hubble function are intimately related. A

bound on one will automatically provide a bound on the other, and comments made re-
garding the Hubble bounds can be carried over to this situation as well.

4.7 Energy conditions and the pressure p(z)

For the pressure p(z) things are a little different; we have the following identity involving
the second time derivative of the scale factor:

p = − ȧ
2

a2
− k c2

a2
− 2

ä

a
.

�� ��4.114

But

ȧ2

a2
+ 2

ä

a
=

1
ȧa2

d(ȧ2a)
dt

=
1
a2

d(ȧ2a)
da

=
1
a2

d[H2a3]
da

,
�� ��4.115

implying

p = − 1
a2

(
d[H2a3]

da
+ k c2

)
.

�� ��4.116

Here the point is that one would need a bound on the derivative of H(z) in order to get a
direct bound on the pressure p(z). This does not appear to lead to anything useful.

However, if one has a bound on H(z) and hence ρ(z), one can indirectly get a constraint
on p(z) via the classical energy conditions. Again, this does not appear to lead to anything
useful.
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4.8 Strategy for general bounds with the w-parameter

In the current section we shall derive some very general bounds in terms of assumptions
about the w-parameter, where as usual w = p/ρ. Specifically, we shall ask the question:
If we know for theoretical reasons, or can observationally determine, that w lies in some
restricted range

w(z) ∈ [w−, w+],
�� ��4.117

between redshift zero and redshift z, what constraint does that place on the cosmological
expansion?

Our strategy will be to adopt a standard FLRW cosmology

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

}
,

�� ��4.118

then, (setting 8πGN → 1, but explicitly retaining the speed of light c), we have the two
Friedmann equations:

ρ = 3
[
ȧ2

a2
+
kc2

a2

]
, and p = − ȧ

2

a2
− kc2

a2
− 2

ä

a
.

�� ��4.119

Together, these two equations imply the standard conservation law:

ρ̇ = −3(ρ+ p)
ȧ

a
.

�� ��4.120

We also have the fundamental definitions 5

ρHubble = 3
[
ȧ2

a2

]
= 3H2,

�� ��4.121

and

Ω =
ρ

ρHubble
=

ρ

3H2
=
H2 + kc2/a2

H2
= 1 +

kc2

a2H2
.

�� ��4.122

For intermediate steps of the calculation we shall work with the very simple linear equation
of state

p = w∗ ρ,
�� ��4.123

where w∗ is taken to be a constant. Picking some generic cosmological parameter X(z),
we shall first calculate Xw∗(z), and then (by assuming that w(z) ∈ [w−, w+] from redshift
zero out to redshift z, and depending on the direction of the relevant inequality) use this to
derive bounds of the form

Xw−(z) ≤ X(z) ≤ Xw+(z),
�� ��4.124

or
Xw+(z) ≤ X(z) ≤ Xw−(z).

�� ��4.125

5Historically it was common to refer to this quantity as the critical density, ρcritical, but with the advent
of widespread acceptance of a nonzero cosmological constant, or more generally dark energy, the logical con-
nection between this critical density and possible re-collapse of the universe has been severed. In a modern
context then, it is inappropriate to refer to this as a critical density, and the considerably more neutral phrase
Hubble density is preferable.
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We shall also make the extremely mild assumption that the density is positive

ρ > 0.
�� ��4.126

This is certainly a completely redundant assumption for k = 0 and k = +1 FLRW universes.
Only for k = −1 universes does this provide the extremely mild additional constraint H >
c/a, that is, H(z) > (c/a0) (1 + z). 6

4.9 General bounds and the Density ρ(z)

We now apply this strategy to the density. From

ρ̇ = −3(ρ+ p)
ȧ

a
= −3ρ(1 + w∗)

ȧ

a
,

�� ��4.127

we have
ρ̇

ρ
= −3(1 + w∗)

ȧ

a
.

�� ��4.128

So integrating, for constant w∗ we obtain the well-known result

ρw∗ = ρ0(a/a0)−3(1+w∗) = ρ0 (1 + z)3(1+w∗).
�� ��4.129

But now ask what happens if we only know that w− ≤ w(z) ≤ w+? (Where in the real
observable universe w(z) certainly need not be a constant.) Following the above analysis,
we find that we must replace equalities by inequalities and so deduce

ρ0 (1 + z)3(1+w−) ≤ ρ(z) ≤ ρ0 (1 + z)3(1+w+). (z ≥ 0).
�� ��4.130

Note that for z > 0 we are looking into the past; in contrast for −1 < z < 0, we are looking
into the future [86], and the inequality reverses to 7

ρ0 (1 + z)3(1+w+) ≤ ρ(z) ≤ ρ0 (1 + z)3(1+w−); (−1 < z ≤ 0).
�� ��4.131

Of course, these simple constraints on the density are by far the most elementary of the
inequalities we shall deduce — some of the other inequalities derived below will prove to
be much more subtle.

If we now in addition relax our initial constraint on ρ0, by assuming we only know that
the present epoch density lies in some bounded interval

ρ0 ∈ [ρ0− , ρ0+ ], that is, ρ0− ≤ ρ0 ≤ ρ0+ ,
�� ��4.132

then these two bounds generalize to

ρ0−(1 + z)3(1+w−) ≤ ρ(z) ≤ ρ0+(1 + z)3(1+w+); (z ≥ 0);
�� ��4.133

ρ0−(1 + z)3(1+w+) ≤ ρ(z) ≤ ρ0+(1 + z)3(1+w−); (−1 < z ≤ 0).
�� ��4.134

6This is equivalent to enforcing ȧ > c, for a k = −1 FLRW universe, noting that ȧ is not a physical velocity,
so that ȧ > c is a perfectly acceptable physical statement.

7Furthermore, note that there is no reason to ever go below z = −1, as z = −1 corresponds to infinite
expansion. Also, note that the sign of 1 + w− and 1 + w+ does not affect these inequalities.
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4.10 General bounds and the Density parameter Ω(z)

We have the following identity

Ω− 1 ≡ k c2

a2H2
=

k c2

a2
0H

2
0

a2
0

a2

H2
0

H2
= (Ω0 − 1)

Ω
Ω0

ρ0

ρ
.

�� ��4.135

This leads to the useful result

Ω(z)− 1
Ω(z)

=
(

Ω0 − 1
Ω0

)
ρ0

ρ(z)
.

�� ��4.136

Therefore, a bound on ρ(z) automatically implies a bound on Ω(z). From the result for
ρw∗(z) presented above, we deduce that bounds on Ω(z) can be given in terms of

Ωw∗(z)− 1
Ωw∗(z)

=
(

Ω0 − 1
Ω0

)
(1 + z)−(3w∗+1),

�� ��4.137

which we can equivalently recast as

Ωw∗(z) =
Ω0 (1 + z)3w∗+1

(1− Ω0) + Ω0 (1 + z)3w∗+1 .
�� ��4.138

We can now use this quantity, which was derived for strictly constant w∗, to bound the
density parameter Ω(z) for a more realistic matter model satisfying the milder condition
w− ≤ w(z) ≤ w+. We obtain:

• If Ω0 < 1 (but remember that by assumption Ω0 > 0) then

Ωw−(z) ≤ Ω(z) ≤ Ωw+(z); (z > 0),
�� ��4.139

Ωw+(z) ≤ Ω(z) ≤ Ωw−(z); (−1 < z < 0).
�� ��4.140

• If Ω0 = 1 then ∀z : Ω(z) = 1.

• If Ω0 > 1,
Ωw+(z) ≤ Ω(z) ≤ Ωw−(z); (z > 0),

�� ��4.141

Ωw−(z) ≤ Ω(z) ≤ Ωw+(z); (−1 < z < 0),
�� ��4.142

but note that the bound can break down when the denominator of Ωw∗(z) equals zero
— this occurs at

zΩ(w∗,Ω0) =
(

Ω0 − 1
Ω0

)1/(3w∗+1)

− 1.
�� ��4.143

The failure of the bound might occur either in the past or the future depending on the
value of w∗.

– If 3w∗ + 1 > 0 then the bound is useful only for z > zΩ(w∗,Ω0) < 0, implying a
limitation in the past.

– If 3w∗ + 1 = 0 then the bound is valid for all z.
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– If 3w∗ + 1 < 0 then the bound is useful only for z < zΩ(w∗,Ω0) > 0, implying a
limitation in the future.

Note that nothing unusual need happen to the universe itself at
zΩ(w∗,Ω0), it is only the bound that loses its predictive usefulness. Combining these
observations we see that for Ω0 > 1 it is better (in the sense of reducing the amount of
special case exceptions to the general rule) to recast the bounds in the form:(

Ω0 − 1
Ω0

)
(1 + z)−(3w++1) ≤ Ω(z)− 1

Ω(z)
≤
(

Ω0 − 1
Ω0

)
(1 + z)−(3w−+1)

�� ��4.144

for z > 0, and(
Ω0 − 1

Ω0

)
(1 + z)−(3w−+1) ≤ Ω(z)− 1

Ω(z)
≤
(

Ω0 − 1
Ω0

)
(1 + z)−(3w++1)

�� ��4.145

for −1 < z < 0.

4.11 General bounds and the Hubble parameter H(z)

Let us now use the density equation (the first Friedmann equation) and the definition of the
density parameter Ω to write

H2 =
ρ

3
− kc2

a2
=

ρ

ρ0

ρ0

3
− a2

0

a2

kc2

a2
0

=
ρ

ρ0
Ω0H

2
0 −

a2
0

a2
(Ω0 − 1)H2

0 .
�� ��4.146

That is, as an identity:

H2 = H2
0

{
Ω0

ρ

ρ0
− (Ω0 − 1)

a2
0

a2

}
= H2

0

{
Ω0

ρ

ρ0
− (Ω0 − 1)(1 + z)2

}
.

�� ��4.147

But we have already derived a formula for ρw∗(z), whence

H2
w∗(z) = H2

0

{
Ω0(1 + z)3(1+w∗) − (Ω0 − 1)(1 + z)2

}
,

�� ��4.148

which we can recast as

Hw∗(z) = H0(1 + z)
√

1− Ω0 + Ω0(1 + z)3w∗+1.
�� ��4.149

For realistic matter, satisfying some constraint w− ≤ w(z) ≤ w+, we then deduce

Hw−(z) ≤ H(z) ≤ Hw+(z); (z > 0);
�� ��4.150

Hw+(z) ≤ H(z) ≤ Hw−(z); (−1 < z < 0).
�� ��4.151

Note that the Hubble bound ceases to provide useful information once the argument of the
square root occurring in Hw∗(z) becomes negative.

• For Ω0 ≤ 1 there is no limitation in the physical region z ∈ (−1,∞).
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• For Ω0 > 1 this limitation manifests itself at zH(w∗,Ω0) = zΩ(w∗,Ω0), the same place
that the bound on Ω(z) ran into difficulties. (Some numerical estimates of where the
bounds fail, based on current consensus observational data, are discussed in [90].)

Finally, suppose that we do not have precise information regarding H0 and Ω0, and only
have the more limited information

H0 ∈ [H0− , H0+ ], Ω0 ∈ [Ω0− ,Ω0+ ],
�� ��4.152

then these two Hubble bounds further generalize to

H0−(1 + z)
√

1− Ω0− + Ω0−(1 + z)3w−+1 ≤ H(z)
�� ��4.153

≤ H0+(1 + z)
√

1− Ω0+ + Ω0+(1 + z)3w++1; (z > 0);

H0−(1 + z)
√

1− Ω0+ + Ω0+(1 + z)3w++1 ≤ H(z)
�� ��4.154

≤ H0+(1 + z)
√

1− Ω0− + Ω0−(1 + z)3w−+1; (−1 < z < 0);

subject to the caveat that for Ω0 > 1 we should not push the bound past zH(w∗,Ω0).

4.12 General bounds and distance scales

Let us for the time being focus on Peebles’ definition of angular diameter distance. This is
what Weinberg calls the proper motion distance [21, 20], for more definitions and a discus-
sion regarding the physical interpretation of the cosmological distance scales see [26], see
also [86, 85]. We make this choice to minimize the number of factors of 1 + z in subsequent
formulae. Then the standard definition is

dP = a0 sink

(
c

a0H0

∫
H0

H(z)
dz
)
.

�� ��4.155

But since
c

a0H0
=
√
k(Ω0 − 1),

�� ��4.156

this can be rewritten more suggestively as

dP =
c

H0

1√
1− Ω0

sinh
(√

1− Ω0

∫
H0

H(z)
dz
)
.

�� ��4.157

When interpreting this last formula for Ω0 > 1 we make use of the fact that sinh(iΘ) =
i sin(Θ). Substituting H(z)→ Hw∗(z) and performing the integral, after considerable effort
both Mathematica and Maple yield∫

H0

Hw∗(z)
dz =

2√
1− Ω0 (3w∗ + 1)

ln

{
(
√

1− Ω0 + 1) (1 + z)(3w∗+1)/2

√
1− Ω0 +

√
1− Ω0 + Ω0(1 + z)(3w∗+1)

}
,�� ��4.158
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whence

dPw∗ (z) =
c

2H0

√
1− Ω0

{ (
√

1− Ω0 + 1) (1 + z)(3w∗+1)/2

√
1− Ω0 +

√
1− Ω0 + Ω0(1 + z)(3w∗+1)

}2/(3w∗+1)

−

{
(
√

1− Ω0 + 1) (1 + z)(3w∗+1)/2

√
1− Ω0 +

√
1− Ω0 + Ω0(1 + z)(3w∗+1)

}−2/(3w∗+1)
 .

�� ��4.159

This simplifies slightly

dPw∗ (z) =
c

2H0

√
1− Ω0

(1 + z)

{
(
√

1− Ω0 + 1)
√

1− Ω0 +
√

1− Ω0 + Ω0(1 + z)(3w∗+1)

}2/(3w∗+1)

− (1 + z)−1

{
(
√

1− Ω0 + 1)
√

1− Ω0 +
√

1− Ω0 + Ω0(1 + z)(3w∗+1)

}−2/(3w∗+1)
 .

�� ��4.160

We now note

(
√

1− Ω0 + 1)
√

1− Ω0 +
√

1− Ω0 + Ω0(1 + z)(3w∗+1)
=

√
1− Ω0 + Ω0(1 + z)(3w∗+1) −

√
1− Ω0

(1−
√

1− Ω0) (1 + z)3w∗+1
,�� ��4.161

(cross multiply top and bottom), which finally permits us to write the most tractable form
of our exact result for Peebles’ angular diameter distance (in a constant w(z) = w∗ FLRW
universe):

dPw∗ (z) =
c

2H0

√
1− Ω0 (1 + z)

{√1− Ω0 + Ω0(1 + z)(3w∗+1) −
√

1− Ω0

(1−
√

1− Ω0)

}2/(3w∗+1)

−

{√
1− Ω0 + Ω0(1 + z)(3w∗+1) +

√
1− Ω0

(1 +
√

1− Ω0)

}2/(3w∗+1)
 .

�� ��4.162

In this final expression we are always raising quantities to the same power, and the dif-
ference between the two terms is just in the placement of + and − signs. (Note that this
expression is guaranteed to be real whatever the value of Ω0; for Ω0 > 1 the two terms are
complex conjugates of each other and after taking the pre-factor

√
1− Ω0 into account, the

overall combination is guaranteed to be real.)
Note that once we have an explicit formula for the (Peebles) angular diameter distance

dP , any of the other standard cosmological distances can easily be obtained by multiplying
by suitable powers of (1 + z) [21, 20, 26], see also [86, 85]. In particular the luminosity
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distance is

dLw∗ (z) =
c

2H0

√
1− Ω0

{√1− Ω0 + Ω0(1 + z)(3w∗+1) −
√

1− Ω0

(1−
√

1− Ω0)

}2/(3w∗+1)

−

{√
1− Ω0 + Ω0(1 + z)(3w∗+1) +

√
1− Ω0

(1 +
√

1− Ω0)

}2/(3w∗+1)
 .

�� ��4.163

Returning to Peebles’ angular diameter distance, the Taylor series expansion in z can be
computed as

dPw∗ (z) =
c

H0

{
z − 2 + Ω0 + 3w∗Ω0

4
z2

�� ��4.164

+
4 + Ω2

0 + w∗(2Ω0 + 6Ω2
0) + w2

∗(−6Ω0 + 9Ω2
0)

8
z3 +O(z4)

}
.

Perhaps of more interest is the Taylor series expansion in Ω0 (since observationally we have
good reasons for expecting Ω0 ≈ 1). The leading term is easy to calculate

dPw∗ (z) =
2c

H0(3w∗ + 1)

{
1− (1 + z)−(3w∗+1)/2

}
+O[Ω0 − 1].

�� ��4.165

Extracting the next O[Ω0 − 1] term is not too difficult, but is somewhat tedious

dPw∗ (z) =
2c

H0(3w∗ + 1)

{
1− (1 + z)−(3w∗+1)/2

}
− [Ω0 − 1] c

H0

{[
1− (1 + z)−(3w∗+1)/2

(3w∗ + 1)
− 1− (1 + z)3(3w∗+1)/2

3(3w∗ + 1)

]

−1
6

[
1− (1 + z)−(3w∗+1)/2

(3w∗ + 1)/2

]3}
+O

(
[Ω0 − 1]2

)
.

�� ��4.166

In any realistic situation (provided you accept the standard consensus cosmology) the un-
certainties in w will completely dwarf any possible effect due to uncertainties in Ω0, so
carrying the expansion to higher order is not warranted.

As usual, dPw∗ (z) [or dLw∗ (z)] can be used to bound dP (z) [or dL(z)]. Specifically, let w
lie in the range [w−, w+] then independent of Ω0 ≶ 1:

• dPw+
(z) ≤ dP (z) ≤ dPw− (z); (z > 0),

• dPw− (z) ≤ dP (z) ≤ dPw+
(z); (−1 < z < 0).

Here dPw± (z) is given by the rather formidable equation (4.162).
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4.13 General bounds and the Lookback time T(z)

Finally, consider the lookback time defined by:

T (z) =
∫ a0

a
dt =

∫
dt
da

da =
∫
a

ȧ

da
a

=
∫

1
H

d(a0/(1 + z))
a0/(1 + z)

= −
∫

1
H

dz/(1 + z)2

1/(1 + z)
.

�� ��4.167

That is:
T (z) =

∫ z

0

1
(1 + z) H(z)

dz.
�� ��4.168

Using the known form of Hw∗(z) we define

Tw∗(z) ≡
1
H0

∫ z

0

1
(1 + z)2

√
1 + Ω0 ((1 + z)3w∗+1 − 1)

dz,
�� ��4.169

and shall use this quantity to place bounds on the actual lookback time T (z).
It is easy to obtain the leading term for Ω0 ≈ 1:

Tw∗(z) =
2

3H0 (1 + w∗)

{
1− (1 + z)−(3w∗−1)/2

}
+O[Ω0 − 1].

�� ��4.170

The next sub-leading term again is trickier. We eventually obtain

Tw∗(z) =
2

3H0 (1 + w∗)

{
1− (1 + z)−(3w∗−1)/2

}
− [Ω0 − 1]

H0

[
1− (1 + z)−3(w∗+1)/2

3(w∗ + 1)
− 1− (1 + z)−(9w∗+5)/2

9w∗ + 5

]
+O

(
[Ω0 − 1]2

)
.

�� ��4.171

Again, in any realistic situation (provided you accept the standard consensus cosmology)
the uncertainties in w will completely dwarf any possible effect due to uncertainties in Ω0.
Exact integration and subsequent evaluation of the result for Tw∗(z) can only be performed
in terms of hypergeometric functions. Let us first be a little more careful about the use of
the dummy variable in the integration and write

Tw∗(z) =
1

H0

√
Ω0

∫ z

0

1

(1 + z̃)2+1/2(3w∗+1)

√
1− (1− Ω−1

0 ) (1 + z̃)−(3w∗+1)
dz̃,

�� ��4.172

and then, (following the procedure of [64, 90]), apply the binomial theorem[
1− (1− Ω−1

0 ) (1 + z̃)−(3w∗+1)
]−1/2

=
∞∑
n=0

(
−1/2
n

)
(−1)n (1− Ω−1

0 )n (1 + z̃)−(3w∗+1)n.�� ��4.173
Now this particular binomial series will converge provided 8∣∣∣(1− Ω−1

0 ) (1 + z̃)−(3w∗+1)
∣∣∣ < 1.

�� ��4.174

8Note that for z < 0 one is actually calculating the lookforward time — the time until the universe expands
by an additional factor of 1

1−|z| in each direction.
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That is, provided ∣∣1− Ω−1
0

∣∣ < (1 + z̃)3w∗+1.
�� ��4.175

More explicitly, the integral will make sense provided∣∣∣∣1− Ω0

Ω0

∣∣∣∣ < (1 + z̃)3w∗+1; ∀ z̃ ∈ (0, z) or z̃ ∈ (z, 0),
�� ��4.176

which is equivalent to ∣∣∣∣1− Ω0

Ω0

∣∣∣∣ < min{1, (1 + z)3w∗+1}.
�� ��4.177

• In all cases, to ensure convergence at redshift zero, we must certainly have∣∣1− Ω−1
0

∣∣ < 1, that is Ω0 ∈ (1/2,∞).
�� ��4.178

• If z > 0 and (3w∗ + 1) > 0, (w∗ > −1/3), or if z < 0 and (3w∗ + 1) 6 0, (w∗ 6 −1/3):
Then (1 + z)(3w∗+1) ≥ 1, and no additional limitation is imposed.

• If z > 0 and (3w∗+ 1) < 0, (w∗ < −1/3), or if z < 0 and (3w∗+ 1) > 0, (w∗ > −1/3): In
this situation (1 + z)(3w∗+1) < 1, therefore we now obtain an additional limitation on
z that is necessary to ensure convergence:

– If z > 0, then we need

z <

∣∣∣∣Ω0 − 1
Ω0

∣∣∣∣−1/|3w∗+1|
− 1 > 0.

�� ��4.179

– If z < 0 then we need

z >

∣∣∣∣1− Ω0

Ω0

∣∣∣∣1/(3w∗+1)

− 1 < 0.
�� ��4.180

• In view of equation (4.137) these last conditions can also be interpreted as constraints
on the Ω parameter at the redshift one wishes to probe:∣∣1− Ωw∗(z)

−1
∣∣ < 1, that is Ωw∗(z) ∈ (1/2,∞).

�� ��4.181

Subject to this convergence condition we can integrate term by term, and obtain the conver-
gent series

Tw∗(z) =
1

H0

√
Ω0

∞∑
n=0

(
−1/2
n

)
(−1)n

(1− Ω−1
0 )n

[
1− (1 + z)−(3w∗+1)n−3/2(w∗+1)

]
(3w∗ + 1)n+ 3/2(w∗ + 1)

.
�� ��4.182

As a practical matter, for many purposes this series representation may be enough, but we
can tidy things up somewhat by first defining

Sw∗(x) =
∞∑
n=0

(
−1/2
n

)
(−x)n

(3w∗ + 1)n+ 3/2(w∗ + 1)
,

�� ��4.183
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in which case

Tw∗(z) =
1

H0

√
Ω0

{
Sw∗

(
1− Ω−1

0

)
− (1 + z)−3/2(w∗+1) Sw∗

(
(1− Ω−1

0 )
(1 + z)3w∗+1

)}
.

�� ��4.184

Finally we can recognize that Sw∗(x) is itself a particular example of a hypergeometric func-
tion, 9 and so we can write

Sw∗(x) =
1

3/2(w∗ + 1) 2F1

(
1
2
,
3
2

[
w∗ + 1
3w∗ + 1

]
;
1
2

[
9w∗ + 5
3w∗ + 1

]
;x
)
. �� ��4.185

Therefore

Tw∗(z) ≡
1

3/2(w∗ + 1)H0

√
Ω0
×
{

2F1

(
1
2
,
3
2

[
w∗ + 1
3w∗ + 1

]
;
1
2

[
9w∗ + 5
3w∗ + 1

]
; 1− Ω−1

0

)
−(1 + z)−3/2(w∗+1)

2F1

(
1
2
,
3
2

[
w∗ + 1
3w∗ + 1

]
;
1
2

[
9w∗ + 5
3w∗ + 1

]
;

1− Ω−1
0

(1 + z)3w∗+1

)}
.�� ��4.186

As usual, Tw∗(z) can be used to bound T (z). Specifically, let w(z) lie in the bounded range
w(z) ∈ [w−, w+], then independent of Ω0 ≶ 1:

• Tw+(z) ≤ T (z) ≤ Tw−(z); (z > 0),

• Tw−(z) ≤ T (z) ≤ Tw+(z); (−1 < z < 0).

Here Tw±(z) is given by the rather formidable equation (4.186), based on the use of hyper-
geometric functions.

4.14 Special cases and consistency checks

Useful special cases, and consistency checks we can perform on the formalism, include:

Dust: For pure dust, w+ = w− = 0, we have simple exact results

Hdust(z) = H0(1 + z)
√

1 + Ω0z.
�� ��4.187

Ωdust(z) =
Ω0 (1 + z)
1 + Ω0 z

.
�� ��4.188

ρdust(z) = ρ0 (1 + z)3 .
�� ��4.189

9 The classical hypergeometric series is given by

2F1 (a, b; c;x) =

∞X
n=0

(a)n(b)n
(c)n

xn

n!
,

where (a)n = a(a+1)(a+2)(a+n−1) is the rising factorial, or Pochhammer symbol. This series is convergent
for |x| < 1.
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dPdust
(z) =

2c
H0

{
(
√

1 + Ω0z − 1)(
√

1 + Ω0z − 1 + Ω0)
(1 + z)Ω2

0

}
.

�� ��4.190

Tdust(z) =
1

H0(1− Ω0)

{
1−
√

1 + Ω0z

1 + z

} �� ��4.191

+
Ω0

H0(1− Ω0)3/2

{
tanh−1

√
1 + Ω0z√
1− Ω0

− tanh−1 1√
1− Ω0

}
.

The only one of these equations for which the Ω0 → 1 limit is even remotely subtle is
the lookback time, for which

Tdust,Ω0=1(z) =
2

3H0

{
1− 1

(1 + z)3/2

}
.

�� ��4.192

Radiation: For pure radiation, w+ = w− = 1/3, we have

Hradiation(z) = H0(1 + z)
√

1 + Ω0[(1 + z)2 − 1].
�� ��4.193

Ωradiation(z) =
Ω0 (1 + z)2

1− Ω0 + Ω0 (1 + z)2 .
�� ��4.194

ρradiation(z) = ρ0 (1 + z)4 .
�� ��4.195

dPradiation
(z) =

c

H0

{√
1 + Ω0[(1 + z)2 − 1]− 1

(1 + z)Ω0

}
.

�� ��4.196

Tradiation(z) =
1

H0(1− Ω0)

[
1−

√
1 + Ω0((1 + z)2 − 1)

1 + z

]
.

�� ��4.197

The only one of these equations for which the Ω0 → 1 limit is even remotely subtle is
the lookback time, for which

Tradiation,Ω0=1(z) =
1

2H0

{
1− 1

(1 + z)2

}
.

�� ��4.198

Cosmological constant: For pure cosmological constant w+ = w− = −1. We then obtain
(now as equalities rather than inequalities) what would for the NEC have been a set
of bounds, such as those presented in [63, 64, 65, 90] . (That is, a nonzero cosmological
constant is right on the verge of violating the NEC.)

Furthermore, comparing with previous results in this chapter with bounds with the energy
conditions:

• For w− = −1/3 one has
H(z) ≥ H0 (1 + z).

�� ��4.199

This reproduces the SEC lower bound previously investigated in [63, 64, 65, 90].
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• For w− = −1 one has

H(z) ≥ H0 (1 + z)
√

(1 + z)−2 + [Ω0 − 1] [(1 + z)−2 − 1],
�� ��4.200

whence

H(z) ≥ H0

√
1 + [Ω0 − 1] [1− (1 + z)2] = H0

√
Ω0 + [1− Ω0] (1 + z)2.

�� ��4.201

This reproduces the NEC lower bound previously investigated in [63, 64, 65, 90].

• For w+ = +1 we have

H(z) ≤ H0 (1 + z)
√

(1 + z)4 + [Ω0 − 1] [(1 + z)4 − 1],
�� ��4.202

that is
H(z) ≤ H0 (1 + z)

√
1 + Ω0 [(1 + z)4 − 1].

�� ��4.203

This reproduces the DEC upper bound previously investigated in [63, 64, 65, 90].

4.15 Conclusions

In this chapter we have extended and generalized the discussion of the original articles [63,
64, 65], and more recently of [71, 72, 73], to develop a number of rugged and general energy-
condition-induced bounds on various cosmological parameters, bounds which have all
taken the form

X(z) ≷ Xbound ≡ X0 f(Ω0, z),
�� ��4.204

where X(z) is some cosmological parameter, X0 is its present-day value, and f(Ω0, z) is
some dimensionless function depending on the particular bound under consideration. The
bounds we have considered can be derived by elementary means, and are typically ex-
pressed in terms of polynomial, rational, algebraic, and elementary functions — though
in one particular instance we had to resort to hypergeometric functions. Several of these
bounds are completely new [such as the explicit bounds on H(z) and Ω(z), and the phys-
ically important Taylor series expansions for Ω0 ≈ 1], several are significant extensions
of previously known partial results [see especially dP

NEC
(4.40), dP

DEC
(4.57), TDEC (4.85)],

and all of these bounds are now valid for arbitrary spatial curvature [see especially the ex-
plicit bounds on ρ(z) for k 6= 0]. Additionally, since the analysis is now systematic and
exhaustive, it is clear how the various energy conditions and their associated bounds are
inter-related.

Furthermore, in the absence of any detailed understanding of the precise nature of the
cosmological equation of state ρ(p) it is useful to examine the question of just how much
can be deduced with limited information. In the second part of this chapter we have also
worked in terms of the w-parameter w(z) = p/ρ, and we have used the idealized case of
constant w∗ as a “template” for comparison purposes with more realistic w(z). Specifically:

• For constantw∗ the explicit results for the density ρw∗(z) and Hubble parameterHw∗(z)
are well-known. The explicit result for the Ω parameter Ωw∗(z) is less well-known,
and the explicit results we have obtained for the angular diameter distance dPw∗ (z)
and lookback time Tw∗(z) appear to be both novel and significant.
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• More importantly we have seen that these idealized results for constant w∗ can be
used as the basis for general comparison results that bound the various features of
the Hubble flow in the following sense: If we know that w(z) ∈ [w−, w+] between
redshift zero and redshift z, then for monotonically evolving generic cosmological
quantities X(z) we have derived a number of rigorous bounds of the form

Xw±(z) ≤ X(z) ≤ Xw∓(z),
�� ��4.205

where we have explicitly seen that the direction of the inequality depends both on the
precise details of the evolution of X(z), and on the redshift range of interest.

Finally we point out that all of our bounds have been explicitly calculated for all signs of
the spatial curvature k ∈ [−1, 0,+1], that is for all Ω0 (though we have restricted ourselves
to the physically very plausible Ω0 > 0). We have briefly sketched how to use these bounds
and the energy conditions to confront the supernova data, but have not yet performed any
detailed analysis of this point.

The bounds presented in this chapter may appear to be valid for a single fluid compo-
nent. However, they can also be used for multi-fluid components as follows. Consider that
the total density ρ is given by the linear combination

ρ =
n∑
i

ρi,
�� ��4.206

and that the total pressure is given by the linear combination

p =
n∑
i

pi,
�� ��4.207

with the equation of state pi = wiρi for each value of i. If we can determine the biggest and
smallest of the wi-values, that is w+ = maxi(wi) and w− = mini(wi), we can then sum over
the number of fluid components (as long as ρi ≥ 0) and obtain the relation

p ≶ w± ρ.
�� ��4.208

The bounds we have derived will then apply in this case. Thus all the bounds we have
derived are both very general and very powerful.
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Numerical Relativity

109





Nomenclature

We present here all the various notations we use throughout the numerical relativity part
of this thesis. An attempt has been made to keep the basic notation as standard as possible,
however, the following list will hopefully help clarify any potential ambiguities.

Greek Letters

α, β, ... Index for 4D space-time dimensions

Latin Letters

a, b, ... Index for 3D space dimensions

Subscripts and Superscripts

a, b, c Summation indices for the test functions and local nodes
k Superscript index for the k-th element
h Subscript index used to represent discrete quantities, e.g uh
m,n, p Summation indices for the unknown variables
q, r, s Summation indices for the GLL (Gauss–Lobatto–Legendre) quadrature

Solution domains

Ω Solution domain
Ωh Discrete solution domain
Ωk Domain of the k-th element
Γ Boundary of the domain Ω
Γh Discrete boundary of the domain Ω

Various constants

N Polynomial order for the spectral elements
NE Number of elements dividing the domain Ω
Ng Total number of points in the domain Ω
NGLL Number of GLL (Gauss–Lobatto–Legendre) points per elementNGLL = N+1

Variables

u Variable used for the wave equation
gij Physical metric of the BSSN system
ψ Conformal factor of the BSSN system
g̃ij Conformal metric of the BSSN system
φ Variable of the BSSN system for the φ-method, φ = lnψ
χ Variable of the BSSN system for the χ-method, χ = ψ−4

Aij Extrinsic curvature of the BSSN system
Ãij Conformal extrinsic curvature of the BSSN system
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K Trace of the extrinsic curvature of the BSSN system
Γ̃i Auxiliary variable of the BSSN system
Γijk Connection of the physical metric of the BSSN system
Γ̃ijk Conformal connection of the BSSN system
α Lapse function of the BSSN system
βi Shift function of the BSSN system

Expansion basis notation

hni (x) Lagrange-Legendre polynomial basis functions of order n used in the SEM
uabc Expansion coefficients
x, y, z Global Cartesian coordinates (physical coordinates)
ξ, η, ζ Local Cartesian coordinates (computational coordinates in the master ele-

ment)
Ln(x) Legendre polynomials of order n
Hij First differentiation elemental matrix of the Lagrange-Legendre basis func-

tions
Jk Jacobian of the elemental mapping for on the element Ωk

I(a, b, c,k) Global numbering function that maps the local numbering of the computa-
tional nodes to their global numbering

Spaces

L2(Ω) Lebesgue space
H1(Ω) Sobolev space
U ,W Space of trial (unknowns) and test functions
Uh,Wh Discrete space of trial (unknowns) and test functions
PN (Ωk) Space of polynomials of degree less that or equal to N on the element Ωk

Elemental matrices

Mk Elemental mass matrix for the k-th element
Ak
i Elemental advection matrix type 1 for the k-th element, with respect to the

i-th coordinate
Ak
ij Elemental second derivative matrix type 1, for the k-th element, with respect

to the i-th and j-th coordinates
Dk
i Elemental advection matrix type 2 for the k-th element, for the i-th coordinate

Dk
ij Elemental second derivative matrix type 2, for the k-th element, with respect

to the i-th and j-th coordinates
Kk
ii Elemental stiffness matrix, for the k-th element, with respect to the i-th coor-

dinate
Bk Elemental boundary matrix for the k-th element
(Λa

bc)
k Elemental Christoffel symbol matrix for the k-th element

Fk Elemental force vector for the k-th element
Dk
ij Elemental second covariant derivative matrix, for the k-th element, with re-

spect to the i-th and j-th coordinates
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Nomenclature

(Rij)k Elemental Ricci tensor matrix, for the k-th element
(XTF

ij )k Elemental XTF
ij matrix term, for the k-th element

Global matrices

M Mass matrix
Ai Advection matrix type 1 with respect to the i-th coordinate
Aij Second derivative matrix type 1 with respect to the i-th and j-th coordinates
Di Advection matrix type 2 with respect to the i-th coordinate
Dij Second derivative matrix type 2 with respect to the i-th and j-th coordinates
Kii Stiffness matrix with respect to the i-th coordinate
B Boundary matrix
Λa
bc Christoffel symbol matrix

F Force vector
Dij Second covariant derivative matrix with respect to the i-th and j-th coordi-

nates
Rij Ricci tensor matrix
XTF
ij Matrix term XTF

ij , (Trace-free part of Xij)

Operators

∇2 Laplacian in 3D space
Lβ Lie derivative in 3D space with respect to the shift β
D Covariant or contravariant derivative in 3D space
D̃ Conformal covariant or contravariant derivative in 3D space
: Scalar matrix product or Hadamard matrix product with (A : B)ijl = aijl bijl
⊗ Matrix multiplication operator used in the SEM notation
·xy 3D Matrix multiplication operator, regular matrix product in the xy direction

for each z dimension (A ·xy B)abc =
∑

iAaicBib
·yz 3D Matrix multiplication operator, regular matrix product in the yz direction

for each x dimension (A ·yz B)abc =
∑

iAabiBic

Acronyms

SEM Spectral Element Method
FEM Finite Element Method
FD Finite Difference Method
SM Spectral Method
BSSN Shibata-Nakamura-Baumgarte-Shapiro formulation of Einstein equations
GLL Gauss–Lobatto-Legendre
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“That’s not right.
That’s not even wrong.”

Wolfgang Pauli (1900–1958) 5
Introduction to Numerical Relativity

One of the predictions of Einstein’s theory of gravity is the existence of gravitational
waves. Perturbations of spacetime propagate as waves at the speed of light. Any ac-

celerating object will produce gravitational waves but only astrophysical objects produce
enough gravitational wave energy to be detected. One of the strongest predicted sources
is the merger of two black holes. However, gravitational waves are weak and have not yet
been directly detected. The only gravitational wave sources that we expect to be strong
enough to be detected in the near future are astrophysical ones. One of the main goal of
numerical relativity is to calculate gravitational wave forms from promising astrophysical
sources, in order to provide theoretical templates both for the new ground-based gravita-
tional wave laser interferometers like LIGO in the US, VIRGO in Italy, GEO in Germany,
TAMA in Japan, and the proposed AIGO detector in Australia, as well as for space-based
interferometers such as LISA.

The first attempts to simulate black holes were in 1964. For decades, the quest for nu-
merically stable black-hole inspiral simulations has been very challenging. Many questions
had to be addressed:

• How do we represent black-hole singularities in a computer code?

• How do we set up initial conditions for two black holes in orbit?

• What coordinate (gauge) conditions should we use?

• How do we accurately describe tiny black holes and huge waves?

• What if the equations are not numerically stable?

In numerical relativity, we need to set up the Einstein system as a Cauchy problem,
that is, a problem with initial data that are evolved in time. Determination of initial data is
highly non-trivial due to initial data constraints that have to be solved. In solving them we
need to disentangle the gauge and physical degrees of freedom, as well as find solutions
that describe the physical system one is interested in (astrophysically realistic conditions).
This finally leads on to the question of whether we continue with free or constrained evolu-
tion. The tensorial nature of the field equations, the constraints and the coordinate freedom
result in a development of multitude of formalisms. Indeed, one must choose the dynam-
ical variables (the quantity advanced in time with evolution equations); one must choose
the specific form of the field equations, multiple constraints can be added to the evolution
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CHAPTER 5. INTRODUCTION TO NUMERICAL RELATIVITY

equations; furthermore, one must make a choice of coordinates or classes of coordinate sys-
tems. Constraints and coordinate freedom lead to many options for advancing the discrete
solution from one time step to the next.

There are several techniques employed in numerical relativity for evolution problems:
free evolution, partially constrained evolution and fully constrained evolution. In a free
evolution, the constraints are solved at the initial time only and then all the dynamical
variables are advanced in time using evolution equations. In a partially constrained evolu-
tion, some or even all of the constraints are solved at each time step for specific dynamical
variables, instead of using the corresponding evolution equations. In a fully constrained
evolution, all of the constraints are solved at each time step and all 4 degrees of coordi-
nate freedom are used to eliminate the dynamical variables, leaving exactly 2 dynamical
degrees of freedom to be advanced with the evolution equations. Typically, in many prob-
lems of interest in numerical relativity, one should expect a large dynamic range, e.g for
binary black hole collisions, one must resolve the dynamics on the scale of the black hole,
and many wavelengths of characteristic gravitational radiation. Gravitational waves tend
to be a small effect, however, they must be computed very accurately for maximal utility in
the context of gravitational earth-based detections.

The first pioneering numerical simulation of colliding black holes were implemented
by Hahn and Lindquist [91]. There was progress on all of these issues, but full inspiral-
merger-ringdown simulations were not possible until 2005 with Pretorius’ breakthrough
simulation [92] based on a harmonic code. The method of the moving punctures was to
follow developed in parallel by two independent groups [93, 94].

Recent developments in numerical relativity consists of the following topics, see refer-
ence [95] for a review: Binary black holes (BBHs); Binary neutron stars (BNSs); Binary black
hole-neutron stars (BBHNSs); Rotating relativistic stars; Collisionless clusters; Scalar fields;
Critical phenomena; Cosmic censorship; and General relativistic magnetohydrodynamics
(GRMHD).

5.1 Einstein’s legacy

In 1916, Einstein published his general theory of relativity, gravity appears as curvature
of spacetime. General relativity explains many phenomena, amongst them, the perihelion
advance of Mercury, and predicts the gravitational deflection of light by the sun, which was
verified by Eddington in 1919. There is one more very important prediction: gravitational
waves. If we start with flat space,

gµν = ηµν ,
�� ��5.1

and then perturb the metric, we obtain:

gµν = ηµν + hµν ,
�� ��5.2

where |hµν | � 1 and

h̄µν = hµν −
1
2
ηµνh.

�� ��5.3
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The Einstein equations now reduce to,

�h̄µν = 16πTµν ,
�� ��5.4

that is, a wave equation for the perturbation. Note that in vacuum the Einstein equations
further reduce to

�hµν = 0.
�� ��5.5

Equation (5.4) is crucial as it implies that the perturbations of spacetime propagate as waves
at the speed of light. These waves are the gravitational waves. Any accelerating object will
produce gravitational waves, however, gravity can be very weak (see Table 5.1 for some
illustrative figures). Only astrophysical objects produce enough gravitational wave energy
to be detected (one of the strongest predicted sources is the merger of two black holes. ).

Table 5.1: Gravitational wave energy comparisons between astrophysical objects

Weak-field: (radiation power) ∼
32
5
G
c5

(moment of inertia)(frequency)6

iron bar (1000 t, 100m, 3 Hz) 10−26 W
Earth around Sun 200 W
close binary stars 1015 – 1030 W

close neutron star binary (100 km, 100 Hz) 1045 W

Even if gravitational waves are relatively strong, by the time the waves reach Earth, they
are extremely weak, hence the need for large detectors, such as LIGO and LISA. At merger
of two black holes, the signal becomes an order of magnitude stronger, around 3% of the
binarys mass is emitted as gravitational waves. Ground-based detectors have arms from
600 m up to 4 km long (see figure 5.1).

5.2 The 3+1 formalism

General Relativity is based on a covariant approach of describing spacetime geometry. It
is not the most intuitive concept from everyday life experience, where we rather experi-
ence spacetime as a temporal succession of spatial geometries. The 3+1 formalism is closer
to our intuitive experience, and relies on the slicing of the 4-dimensional spacetime by 3-
dimensional surfaces (hypersurfaces). These hypersurfaces have to be spacelike, so that
the metric induced on them by the Lorentzian spacetime metric [signature(−,+,+,+)] is
Riemannian [signature(+,+,+)]. This decomposition of Einstein equations can then be for-
mulated as a Cauchy problem with constraints. One manipulates only time-varying tensor
fields in the 3-dimensional space, where the standard scalar product is Riemannian.

In order to do numerical simulations, one needs to decompose 4-dimensional objects
into time and the 3-dimensional space components:

• by selecting a specific time coordinate;

117



CHAPTER 5. INTRODUCTION TO NUMERICAL RELATIVITY

(a) LIGO: 4km detector arms
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(b) Theoretical noise curves (power spectral density)
for the detectors Enhanced LIGO, Advanced LIGO,
Virgo and Advanced Virgo, from [96].
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(c) The gravitational-wave strain from an optimally-
oriented 60 M� equal-mass nonspinning black-hole
binary located 100 Mpc away from the detector. The
waveform covers about six orbits, or twelve GW cy-
cles, before merger [96].

Figure 5.1: Gravitational wave detector LIGO in Hanford and Livingstone (US) and gravi-
tational waves at merger.
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• by decomposing every 4-dimensional object (metric, Ricci and stress-energy tensors)
into 3-dimensional components in order to produce a Cauchy problem;

• by writing down the 3-dimensional field equations that translate the covariant ones
into terms of the newly defined 3-dimensional objects.

General covariance is still preserved but becomes a hidden feature of the resulting 3 + 1
equations. However, these equations themselves will not be covariant under a general co-
ordinate transformation.

Let us introduce a global time function t whose level sets are the hypersurfaces defining
the foliation. We then define the 3-dimensional metric gij for i, j = 1, 2, 3) that measures
distances within a given hypersurface. The lapse function α measures the proper time
between adjacent hypersurfaces, that is, between the slice at time t and the next slice at
t + dt. The shift vector βi measures the relative speed between observers moving along
the normal direction to the hypersurfaces, and those keeping constant spatial coordinates,
in other words, βi prescribes how the coordinates shift between the two slices. The four
dimensional metric can then be written as:

ds2 =
(
−α2 + βiβi

)
dt2 + 2βidtdxi + gijdx

idxj ,
�� ��5.6

where βi = gijβ
j . The spacetime metric gives the invariant interval between neighboring

points A and B on the two slices represented in Figure 5.2.

t

xi + dxi

t+ dt

A

xi(t)

xi(t+ dt)

~βdt

~nαdts

B

Figure 5.2: Illustration of the 3 + 1 ADM decomposition.

To measure how the spatial hypersurfaces are immersed in spacetime, one introduces
the extrinsic curvature tensor Kij , given by the Lie derivative of gij along the time lines:

∂tgij = −2αKij +Diβj +Djβi,
�� ��5.7

where Di is the covariant derivative associated with gij . The Einstein equations are then
spilt into two groups: the Hamiltonian and Momentum constraints and the evolution
equations. The first group involves no time derivatives and represents constraints that
must be verified at all times.
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The Hamiltonian constraints: In geometrized units (G = c = 1), it is:

R+ (K)2 −KijK
ij = 16πρ,

�� ��5.8

where R is the scalar curvature of the spatial geometry, K = trK = gijKij is the trace
of the extrinsic curvature, and ρ is the energy density of matter measured by the normal
observers.

The Momentum constraints: They are of the form

Dj

(
Kij − gijK

)
= 8πJ i,

�� ��5.9

where J is the momentum flux of matter measured by the normal observers.

The evolution equations: They include the remaining 6 Einstein equations and contain
the dynamics of the system:

∂tKij = βkDkKij +KikDjβ
k +KjkDiβ

k −DiDjα

+α
(
Rij − 2KikK

k
j +Kij K

)
+4πα [gij (trS − ρ)− 2Sij ] ,

�� ��5.10

where Sij is the stress-energy tensor of matter.

Note that the existence of the constraints implies that the 12 dynamical quantities gij ,
Kij cannot be specified as arbitrary initial conditions. The Bianchi identities imply that
the evolution equations preserve the constraints, consequently, if they are satisfied initially,
they will remain satisfied at subsequent times. Also the 3 + 1 formalism prescribes no
equations whatsoever for the lapse α and the shift βi. These four functions represent the
gauge (coordinate) freedom inherent in general relativity. One of the main challenges of
numerical relativity is to choose them appropriately, especially in the presence of black
holes. It is very difficult to just specify the lapse and shift as known functions of spacetime,
therefore they are often chosen dynamically as functions of the evolving geometry, in that
sense, the coordinates are chosen as we go.

Equations (5.8), (5.9) and (5.10) are known as the Arnowitt-Deser-Misner equations
(ADM). They represent the starting point of practically all of 3+1 numerical relativity. These
equations are derived in more details in the original ADM article [97]. Note that the nota-
tion used here follows York’s article [98].

The ADM equations are, however, not ideal for direct numerical simulations, because it
turns out that the evolution system is only weakly hyperbolic and thus not well posed.

5.3 Hyperbolic systems

The ADM evolution equations previously introduced are highly non-unique. Indeed, arbi-
trary multiples of the constraints (multiples of zero) can be added to the equations without
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affecting the physical solutions. Violating the constraints is inevitable in numerical simula-
tions since truncation errors imply that the constraints are never satisfied exactly. This non-
uniqueness of the evolution equations is well known. The original equations of ADM [97]
differ from those of York [98] just by the addition of a multiple of the Hamiltonian con-
straint. It turns out that York’s formulation is better behaved mathematically [99] and it has
become the standard form used in numerical relativity.

An important key feature when studying the Cauchy problem is the well-posedness of
the system of evolution equations: solutions exist (at least locally) and are stable (small
changes in the initial data produce small changes in the solution). Hyperbolic systems are
well posed under very general conditions [100]. In light of the disadvantages of the ADM
system, a large number of 3 +1 hyperbolic formulations of general relativity have been
developed (see the recent review article by Reula [101] for an extensive survey and a more
complete list of references). Bona and Massó started studying hyperbolic formulations for
numerical relativity [102, 103, 104] in the early 1990s. Baumgarte and Shapiro [105] showed
that a reformulation of the ADM equations proposed by Nakamura, Oohara and Kojima
[30], and Shibata and Nakamura [106], had far superior numerical stability properties than
ADM. The ADM system is only weakly hyperbolic, whereas this new reformulation, now
known as the BSSN formulation, is strongly hyperbolic [107, 108]. We will focus on the
system based on the work by Baumgarte and Shapiro, and Shibata and Nakamura, and the
work by Bona and Massó on slicing conditions.

5.4 The BSSN formulation

The key ideas of the BSSN (Shibata-Nakamura-Baumgarte-Shapiro) formalism are, to elim-
inate the mixed second derivatives in the Ricci tensor by introducing some auxiliary vari-
ables, and to evolve a conformal factor ψ and K separately in the spirit of the spin de-
composition of geometric quantities. Thereby, the physical metric and extrinsic curvature
variables are replaced by a conformal metric and extrinsic curvature, in a similar fashion as
the “York-Lichnerowicz” split [109, 110]:

gij = ψ4g̃ij ,
�� ��5.11

The variable ψ is the conformal factor used to provide conformally rescaled quantities
{ψ, K, g̃ij , Ãij} for the evolutions equations. Note that the tilde refers to conformal quan-
tities. It proves convenient to split the extrinsic curvature into its trace K and tracefree part
Aij as

Kij = Aij +
1
3
gijK.

�� ��5.12

After decomposing the variables with respect to the conformal metric g̃ij , we obtain:

Aij = ψ−pÃij ,
�� ��5.13

K = K̃,
�� ��5.14

βi = β̃i.
�� ��5.15

In the standard conformal decomposition often used to solve the constraint equations, one
chooses p = −2. We will see in the next section, that the BSSN decomposition used in the
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moving-puncture method has p = 4. It is important to notice that the trace of the extrinsic
curvature and the contravariant components of the shift are unchanged by this conformal
rescaling.

A new variable Γ̃i is introduced by the following relation:

Γ̃i = g̃jkΓ̃ijk = −∂j g̃ij ,
�� ��5.16

where Γ̃ijk is the conformal connection. This is the original BSSN hyperbolic evolution
system.

5.4.1 The puncture approach

One approach to constructing initial data for black hole simulation, is to introduce inner
boundaries around each hole, with some imposed mixed (Robin) conditions to guarantee
that the final solution did indeed describe one or more black holes, that is, that the solu-
tion contained apparent horizons. Excision first appeared in an article by Jonathan Thorn-
burg [111], following a suggestion by Unruh who pointed out that, given that black hole
interiors are causally disconnected from the exterior universe, one can excise the inside of a
black hole from the computational domain. Since event horizons require the knowledge of
the complete spacetime, one should use the apparent horizon as surfaces within which to
excise. Also, note that Robin conditions are used in a particular construction of initial data.
They are not used in an evolution.

The key idea of the puncture approach, is that the singularities in the Hamiltonian con-
straint can be absorbed in an analytic expression. Black holes can be represented by a Brill-
Lindquist two-sheeted topology at t = 0 (see figure 5.3):

ψBL = 1 +
N∑
i=1

Mi

2|~r − ~ri|
,

�� ��5.17

where Mi are the bare masses of the black holes and ~ri are the locations of the punctures.
Now we can factor out the singular behaviour of the conformal factor ψ using the following
ansatz with N black holes [112, 113]:

ψ = ψBL + u.
�� ��5.18

We now need to solve the Hamiltonian constraints for u everywhere on R3 with N punc-
tures:

4flatu = −b
(
1 + ψ−1

BLu
)−7 ;

�� ��5.19

b =
1
8
ψ−7
BLÃijÃ

ij .
�� ��5.20

There is now no need to excise; the poles at the centre of the black holes have been absorbed
into the analytical terms and the ansatz (5.17) effectively takes the place of inner boundary
conditions. The corrections u are regular everywhere. A slight disadvantage of this method
is that one can locate the apparent horizon only after the data are constructed. One must
also adjust the parameters Mi in order to achieve the desired black-hole masses (as defined
by the area of the apparent horizon).
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Figure 5.3: Brill-Lindquist two-sheeted topology to represent black holes at t = 0 numeri-
cally.

Originally, the static puncture evolution method was introduced in [112, 113], consist-
ing in factoring out the singular part, then evolving the regular part and choosing singular-
ity avoiding slices with vanishing shift to fix the punctures in the grid. Unfortunately, for
orbiting binaries this involves a co-rotating gauge to keep the black hole horizons around
the punctures, and the code crashed after one orbit. A later paper by the AEI group [114]
achieved evolutions that lasted a bit longer, and it is not clear how far the method could be
pushed. Two years later, the moving puncture evolution method was introduced by Cam-
panelli et al. [93] and the Goddard group. The singular part of the metric is not factored out,
both the regular and singular parts are evolved together. Gauge conditions are chosen so
that the punctures move freely in the grid, this results in a stable and accurate code.

The initial data in a typical moving-puncture simulation represents black holes using
a wormhole topology. When following the coordinates towards one of the black holes,
one does not reach the black hole’s singularity but instead passes through a wormhole
to another exterior space eventually reaching an asymptotically flat region. For example,
data containing N black holes consist of N + 1 asymptotically flat regions connected by
N wormholes (figure 5.3). Each unphysical asymptotically flat region is compactified so
that its spatial infinity is transformed to a single point, the puncture. Note that in this
construction, all of the black hole singularities are conveniently avoided, and no region
needs to be excised. Standard puncture data are smooth over the entire space except for
the conformal factor ψ which diverges as 1/r near each puncture (only in the initial data, it
diverges as 1/

√
r for evolutions).

5.4.2 The BSSN system and the moving-punctures

The moving-puncture extension of the BSSN system deals with puncture data, and involves
introducing yet another variable, either φ = lnψ (see [115]) or χ = ψ−4 (see [93]). This
newly introduced variable is evolved instead of the conformal factor ψ. Although φ di-
verges logarithmically at the puncture, the method appears to be stable. Furthermore, one
needs to specify gauge conditions that allow the punctures to move across the numerical
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grid. The physical metric and extrinsic curvature variables are now given by:

g̃ij = e−4φgij
�� ��5.21

Ãij = K̃ij −
1
3
g̃ijK.

�� ��5.22

The transformations between the physical metric gij and the conformal metric g̃ij are crucial
and are described below:

g̃ij = ψ−4gij = e(−4φ)gij ;
�� ��5.23

g̃ij = ψ4gij = e(4φ)gij .
�� ��5.24

The quantity Ãij is rescaled like the metric itself:

Ãij = e−4φAij ,
�� ��5.25

The indices of Ãij are raised and lowered with the conformal metric g̃ij , so that

Ãij = e4φAij .
�� ��5.26

The new variables of the evolution system are now φ, g̃ij , Ãij , K and Γ̃i. These variables are
evolved using the following evolution system

∂0φ = −1
6
αK,

�� ��5.27

∂0g̃ij = −2αÃij ,
�� ��5.28

∂0Ãij = e−4φ[−DiDjα+ αRij ]TF

+α(KÃij − 2ÃikÃkj),
�� ��5.29

∂0K = −DiDiα+ α(ÃijÃij +
1
3
K2),

�� ��5.30

∂tΓ̃i = g̃jk∂j∂kβ
i +

1
3
g̃ij∂j∂kβ

k + βj∂jΓ̃i

−Γ̃j∂jβi +
2
3

Γ̃i∂jβj − 2Ãij∂jα

+2α
(

Γ̃ijkÃ
jk + 6Ãij∂jφ−

2
3
g̃ij∂jK

)
,

�� ��5.31

where ∂0 = ∂t − Lβ , D̃i is the covariant derivative with respect to the conformal metric g̃ij ,
Di is the covariant derivative with respect to the physical metric gij , and “TF” denotes the
trace-free part of the expression with respect to the physical metric1, XTF

ij = Xij − 1
3gijX

k
k .

1Note that the trace-free part expression given with the conformal metric is the same, as the conformal factor
cancels out.
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The Ricci tensor Rij is given by

Rij = R̃ij +Rφij

�� ��5.32

R̃ij = −1
2
g̃lm∂l∂mg̃ij + g̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k +

g̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj
)
,

�� ��5.33

Rφij = −2D̃iD̃jφ− 2g̃ijD̃kD̃kφ+ 4D̃iφD̃jφ−

4g̃ijD̃kφD̃kφ.
�� ��5.34

The Lie derivatives of the tensor densities φ, g̃ij and Ãij (with weights 1/6, −2/3 and −2/3)
are

Lβφ = βk∂kφ+
1
6
∂kβ

kφ,

Lβ g̃ij = βk∂kg̃ij + g̃ik∂jβ
k + g̃jk∂iβ

k − 2
3
g̃ij∂kβ

k,

LβÃij = βk∂kÃij + Ãik∂jβ
k + Ãjk∂iβ

k − 2
3
Ãij∂kβ

k.

In addition, the Lie derivative of a scalar field is given by

LβK = βk∂kK.
�� ��5.35

The covariant derivatives of the lapse are with respect with the physical metric and are
defined by

DiDjα = ∂i∂jα− 4∂(iφ ∂j)α− Γ̃kij∂kα+ 2gijgkl∂kφ ∂lα,
�� ��5.36

Furthermore, the trace is given by

DiDiα = exp(−4φ) g̃ilD̃lD̃iα;
�� ��5.37

= exp(−4φ)
(
g̃ij∂i∂jα− Γ̃k∂kα+ 2g̃ij∂iφ∂jα

)
.

�� ��5.38

On the other hand the covariant derivative of φ is with respect to the physical metric and is
defined by

D̃iD̃jφ = ∂i∂jφ− Γ̃kij∂kφ.
�� ��5.39

The BSSN evolution system is hyperbolic [114], first order in time and second order in space.
In practice, the punctures orbit each other and spiral inwards, as if the black holes were

being represented by point particles, see figure 5.4. The plots of the punctures tracks easily
match our intuitive picture of objects in orbit. However, a word of clarification is in order
here, the orbiting punctures are not point particles but asymptotic infinities of wormholes.
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Figure 5.4: The punctures orbit each other and spiral inwards, as if the black holes were
being represented by point particles. The plots are for equal-mass and mass-ratio 1:4 non-
spinning binaries. The equal-mass data are published in [4]. The 1:4 data are from M.
Hannam et al unpublished.

5.4.3 The φ method versus the χ method

In the φ-method, one works directly with the original BSSN variable φ,

φ = lnψ,
�� ��5.40

and the evolution system remains as Eqs (5.27)-(5.31). The purely experimental result is that
finite differencing across the ln(r) singularity at r = 0 leads to stable evolutions.

In the χ-method, a new conformal factor is defined, that is finite at the puncture,

χ = ψ−4,
�� ��5.41

∂0χ =
2
3
χ
(
αK − ∂kβk

)
Lβχ = βk∂kχ

�� ��5.42

Now Eq. (5.42) replaces Eq. (5.27) in the BSSN evolution system.

5.5 Coordinate conditions or choices for the gauge

Determining a good coordinate system for use in numerical relativity is not an easy task.
First of all, the coordinate system must cover the regions of spacetime of interest, avoid
physical singularities and furthermore, remain non-singular and non-pathological itself. A
good choice of coordinates can simplify the physics, for example, spherical coordinates for
spherical problems. One also wants a choice that will be computationally efficient, and
most importantly compatible with hyperbolicity, well-posedness and stability. There are
several traditional gauge choices (coordinate conditions) for the lapse α and the shift β:
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Geodesic (Gaussian-normal) Coordinates:

α = 1
�� ��5.43

βi = 0.
�� ��5.44

Unfortunately, this coordinate condition is singularity seeking, but it does provide substan-
tial simplification of the 3 + 1 equations.

Normal Coordinates:

βi = 0.
�� ��5.45

This has been widely used in initial phases of code development due to the simplification
of the evolution equations.

Maximal Slicing:

K = 0.
�� ��5.46

The volume of the hypersurfaces are maximized with respect to the continuous deforma-
tions within spacetime. This gauge choice is singularity avoiding, which makes it quite
popular, however, it requires an elliptic solver at every time step, which makes it computa-
tionally expensive.

Note that these different gauge choices can be used in combinations. For example, max-
imal slicing determines the lapse function, but not the shift.

Harmonic Coordinates:

∇a∇axα = 0.
�� ��5.47

This leads to the lapse and the shift, in a 3 + 1 formalism:(
∂t − βj∂j

)
α = −α2K

�� ��5.48(
∂t − βj∂j

)
βi = −α2

(
gij∂j lnα+ gjkΓijk

)
.

�� ��5.49

The field equations reduce to non-linear wave equations, which is very appealing and was
therefore widely used in early hyperbolic formulations. However, harmonic slices may tend
to be singularity seeking instead of singularity avoiding, and also, harmonic coordinates
may be susceptible to coordinate singularities, see [116, 117] for more details on that matter.

Bona-Massó Slicing: (
∂t − βj∂j

)
lnα = −αf(α)K,

�� ��5.50

with f(α) ≥ 0. This slicing condition is invariant under coordinate transformation on each
hypersurface. This condition must be expressed in terms of slicing scalars (here first order)
and their proper time derivatives. For specific values of f(α), one can recover some of the
previously defined gauge conditions:
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• f = 0: Geodesic slicing with α = 1 initially;

• f →∞ : Maximal slicing;

• f = 1: Harmonic slicing;

• f = 2/α: 1 + log slicing.

The latter slicing condition 1 + log has singularity avoidance properties very similar to the
maximal slicing condition but is inexpensive computationally. This is the gauge condi-
tion that we will use when applying the spectral element method to the BSSN system with
moving punctures. This gauge choice relies on the covariant form of 1 + log slicing,

(∂t − βi∂i)α = −2αK.
�� ��5.51

For the shift, we use a gamma-freezing condition [118].

∂0β
i =

3
4
Bi, ∂0B

i = ∂tΓ̃i − ηBi.
�� ��5.52

Note that here ∂0 = ∂t − βk∂k, but another variant would be to make the replacement
∂0 → ∂t everywhere. The gamma-freezing condition allows the puncture to move across
the numerical grid. Thereby, the punctures orbit each other and spiral inwards, as if the
black holes were represented by point particles, matching one’s intuitive picture of objects
in orbit. This condition was originally developed to provide a time-evolution analogue
of the ”minimal distortion” shift (which is given by an elliptic equation, as with maximal
slicing), and is meant to minimize the dynamics of the shift. Also, this shift condition has the
effect of causing the punctures to orbit, but that was not the intention of the shift condition.

5.6 Numerical Approximations in NR

Considering symmetries when possible improves the computational cost immensely. Nu-
merical approximations consist of the discretization of a continuous set of arbitrary func-
tions. Any function u is replaced by a finite set of discrete values :

u(t) −→ {un} n = 0..N.
�� ��5.53

The continuous set of values of u is replaced by a discrete set ofN+1 values. The discrete set
of values of {un} can be constructed in many different ways, which depend on the specific
numerical method used. Common methods include:

Finite Difference (FD): In this approach, the continuous spacetime is replaced by a lattice
of points, that is the numerical grid. The values un are the values of u at the grid points.

Spectral Methods (SM): In this approach, the values un correspond to the coefficients of
the development of the function u in a series with a particular set of basis functions over
the entire domain. Typically, u is approximated by global basis functions by:

u(r, t) =
N∑
0

un(t)φn(r).
�� ��5.54
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The order of the polynomial basis functions in Spectral Methods is usually of the order of
N = 50, 100, 200. See [119] for a review of spectral methods in numerical relativity and
see [120] for a general description of spectral methods.

Finite Element Method: (FEM) In this approach, the entire domain is divided into K
elements. The values un correspond to the coefficient of the development of the function u
in a series with a particular set of basis functions over each element. Typically, u is approx-
imated by a superposition of local basis functions by:

u(r, t) =
N∑
0

un(t)φn(r).
�� ��5.55

Moreover, the equations to solve necessarily need to be rewritten in a weak form. A discrete
weak formulation is derived from the continuous variational problem, and the latter is for-
mulated by multiplying each side of the equations by a test function and integrating over
the whole domain. The weak formulation is then obtained by integration by parts lowering
the differentiability requirements of the approximate solution. Typically the basis functions
are polynomials of order N = 1, 2 or 3 at most. When more accuracy is needed, there are 3
different strategies:

• Subdivide each element to improve resolution uniformly over the whole domain. This
is usually called h-refinement because h is the common symbol for the size or average
size of a subdomain.

• Subdivide only in regions of steep gradients where high resolution is needed. This is
called r-refinement.

• Keep the subdomains fixed while increasing N the degree of the polynomials in each
subdomain. This strategy is referred to as p-refinement, this is also a technique em-
ployed for Spectral Methods.

Spectral Element Method (SEM): This approach is a generalization of the finite element
method, it combines the theory of spectral and pseudo-spectral methods for high order
polynomials and the variational formulation of finite elements and the associated geometric
flexibility. Similar to the FEM, the values un correspond to the coefficients of the develop-
ment of the function u in a series with a particular set of basis functions over each element.
Typically, u is approximated by a superposition of local basis functions by:

u(r, t) =
N∑
0

un(t)φn(r).
�� ��5.56

Typically the basis functions are polynomials of order N = 5, .., 20 in the SEM case.

Comment on the above methods: Figure 5.5 shows the main differences between the
space discretization methods. Note that FD method (second order) can formally be in-
terpreted as the limit case of the FEM and SEM approach for a polynomial order P = 1.
Spectral methods generate algebraic equations with full matrices. However, the high order
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of the basis functions gives high accuracy for a given N . FEM and SEM have two advan-
tages over the SM:

1. The resulting matrix equations from the variational formulation are sparse because
only a couple of basis functions are non-zero in a given element;

2. In multi-dimensional problems, the elements become little triangles (FEM) or tetra-
hedra (FEM and SEM) which can be fitted to very irregular geometries. The disad-
vantage of FEM is low accuracy because each basis function is a polynomial of low
degree.

However, the SEM gains advantages from both FD and SM: The domain is subdivided into
elements, to gain the flexibility and matrix sparsity of finite elements, at the same time,
the degree of the polynomial N in each subdomain is sufficiently high to retain the high
accuracy and low storage of spectral methods.

Spectral Methods: 

Finite/Spectral Element Methods:

Finite Differences:

Figure 5.5: Illustration of the main differences between the space discretization of the Spec-
tral Method, the Finite Difference method, and the Spectral Element Method.

In numerical relativity both the SM and FD are used to discretize space only, and the
discretization of time is usually dealt with using other methods linked to the FD approach.
The most commonly used time discretization method is the Runge-Kutta method. See [120]
for a detailed discussion on the comparisons of the aforementioned numerical methods.
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5.7 Yet another numerical method?

One of the main goals of Numerical Relativity, is to provide very accurate templates of grav-
itational waves for ground-based and space-based interferometers to detect. There are now
robust and stable numerical methods for Numerical Relativity that work well, for instance
finite differences and the moving punctures, and spectral methods with excision. Why is
there need for yet another numerical implementation? Current simulations are certainly
good enough for ground-based detection, however, the scientific community is not yet sure
for LISA, the space-based interferometer. There is also a computational difficulty for high
mass ratio simulations, run times can be extremely long. An order-of-magnitude improve-
ment in code efficiency would change the situation tremendously.

What is the potential of the Spectral Element Method for Numerical Relativity? Would
this method allow for better accuracy and efficiency? And possibly contribute to gravita-
tional wave detection?
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Anyone who considers arithmetical methods
of producing random digits is, of course, in a
state of sin.

John Von Neumann (1903–1957) 6
Introduction to

the Spectral Element Method

The spectral element method (SEM) is a generalization of the finite element method
(FEM). Space is divided into a number of subdomains (mesh), and the solution is writ-

ten with local basis functions that are non-zero over a couple of sub-interval. Typically the
basis functions are polynomials of order 1 or 2 in the finite element case, and high order
Lagrange-Legendre type polynomials in the spectral element case. Spectral elements com-
bine the theory of spectral and pseudo-spectral methods for high order polynomials and the
variational formulation of finite elements and the associated geometric flexibility. The spec-
tral element method may use any type of Jacobi polynomial to define the basis functions
but typically either Chebyshev or Legendre polynomials are used. In this thesis we use
Legendre polynomials and therefore, the local basis functions are the Lagrange-Legendre
interpolants.

The spectral element method was first introduced by Maday and Patera [121] for en-
gineering fluid flow problems. Since then, this method has been used extensively in large
scale simulations of incompressible fluid flow, Stokes flows, fluid-structure interactions, the
shallow-water equations, seismic wave propagation, oceanic models and many other appli-
cations, see [122, 123, 124, 125].

A word of caution is in order, this chapter contains a very technical and theoretical
overview of the spectral element method, whereas Chapter 7 contains a more practical
overview of the method, where one example (the wave equation) is treated in 1D and 3D.

6.1 Overview of the spectral element method

The spectral element method consists of writing a variational formulation of a specified
problem with boundary conditions. Existence and uniqueness to a solution of the weak for-
mulation obtained from this approach can be proved with some version of the Lax-Milgram
theorem [126, 127, 128] which will be presented in section 6.4.2. One of its most valuable
consequences is an error estimate on the solution when some conditions are met. A dis-
crete weak formulation is derived from the continuous variational problem and its discrete
solution is obtained with spectral convergence properties. The layout of the method is as
follows:

1. The strong formulation of a problem is considered with boundary and initial condi-
tions;
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2. The variational approach to this problem is formulated by multiplying each side of
the equations by a test function and integrating over the whole domain;

3. The weak formulation is obtained by integration by parts lowering the differentiabil-
ity requirements of the approximate solution;

4. The domain discretization consists of dividing the domain into subdomains (ele-
ments);

5. The element discretization requires the choice of basis functions for the approximate
solution and test functions. The weak formulation of the problem is discretized for
each element.

6. The elemental matrix form of the problem results from the spectral element discretiza-
tion of the weak form on each element.

7. The assembly process consists of assembling elemental matrices for each element to
form a global system of algebraic equations (typically sparse matrices for conforming
elements).

One huge advantage of the method is the fact that any order polynomial can be gener-
ated automatically, concurrently with its numerical integration rule. If we select the Gauss
quadrature points for the integration rules to be the collocation points we get orthogonal
basis functions which means that the mass matrices are then diagonal. There is also no
need to define the basis functions explicitly because we can define implicit relations a priori
for the inner products of the functions and their derivatives. Since the collocation points
are not equi-spaced, staggered grids can be generated automatically by using varying or-
der polynomials for the different variables (say the pressure and velocity in Navier–Stokes
avoiding the development of any spurious pressure modes).

There are two paths to convergence with the spectral element method: algebraic through
element refinement (h-refinement) and exponential (when the solution is smooth) through
increasing the interpolation polynomial order (p-refinement). The optimal allocation be-
tween the h versus p-type discretization is very problem dependent. Smooth solutions in
regular geometries are most efficiently computed with high-order polynomial order. Com-
plicated geometries and localized features, such as fronts, require using more elements and
lower order polynomials. In practice, polynomial orders N = 7 or 8 are common because
they seem to be a good compromise between accuracy and computational efficiency. An
element with a polynomial orderN requiresNGLL = N+1 points in each space dimension.

6.2 Strong formulation

For clarity of explanation, we will refer to two different problems throughout this section.
The first problem is an elliptic stationary homogeneous Dirichlet problem in 3D defined by{

−∇2u(x) = f(x), ∀ x ∈ Ω
u(x) = 0, ∀ x ∈ ∂Ω.

�� ��6.1

This type of problem is a simple case-study, and all the theoretical and numerical analysis of
the spectral/finite element method have been extensively explored for this problem [129].
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It is therefore a good example to refer to when introducing the main philosophy of the SEM
method, which is based on the theory of Sobolev spaces and relatively advanced functional-
analytic concepts. This example is also treated in [123].

We will also consider a second more complex problem, treated in a similar way as the
example in [130]. Let us consider a 3D advection-diffusion equation for the velocity u(x, t)
with x = (x1, x2, x3) ∈ R3 with boundary and initial conditions:

∂tu+ c · ∇u = ν∇2u, ∀ (x, t) ∈ Ω× T

u(x, t) = b(x, t), ∀ (x, t) ∈ ∂Ω× T,

u(x, t0) = ui(x), ∀ x ∈ Ω,

�� ��6.2

where ν is the kinematic viscosity. We have the Burger’s equation if c = u and if c = c(t) =
(c1(t), c2(t), c3(t)) we have a linear advection equation with velocity c. Note that in prob-
lem (6.2) the boundary conditions are non-homogeneous Dirichlet conditions. Applying
the SEM analysis in this case, is equivalent to applying the analysis in the homogeneous
case with the use of the auxiliary function U(x, t) = u(x, t) − U0(x, t), with U0|∂Ω

= b and
a slightly different right hand side. There are different techniques to deal with various
boundary conditions (Dirichlet, Neumann, Fourier conditions) but the philosophy in the
analysis is very similar.

Existence and uniqueness of a solution in an evolution problem is a bit more subtle
than in a stationary problem. Typically the weak formulation can be formulated to hold
on the time interval ∀t ∈ [0, T ], and the test functions v are time independent. In many
textbooks, the existence and uniqueness of a solution of a non-stationary problem is simply
“assumed”.

6.3 Variational formulation

A variational formulation reduces the order of the partial derivatives by integrating by parts
in the 1D case, or by using Green’s formula for higher dimensions. This feature enlarges the
space for the numerical solution in the sense that we are able to lower the differentiability
requirements of the solution to roughly half those in the original equation. The variational
approach requires the use of Lebesgue, Hilbert and Sobolev spaces from functional analysis.
We recall that the Lebesgue space L2(Ω) is defined as:

L2(Ω) =
{
u : Ω→ R |

∫
Ω
|u|2 dx <∞

}
.

In other words, the function u is measurable over the domain Ω if u ∈ L2(Ω). It is a Hilbert
space when equipped with the scalar product

(u, v)L2(Ω) =
∫

Ω
u v dx,

and an induced norm given by

‖u‖L2(Ω) =
√

(u, u)L2(Ω) =
(∫

Ω
|u|2 dx

) 1
2

.
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Also the Sobolev spaceH1(Ω) is defined by

H1(Ω) =
{
u ∈ L2(Ω) and

∂u

∂xi
∈ L2(Ω), i = 1, 2, 3

}
,

and its corresponding norm is

‖u‖H1(Ω) =

(∫
Ω

(|u|2 +
∣∣∣∣ ∂u∂xi

∣∣∣∣2) dx

) 1
2

.

Furthermore we define the Sobolev spaceH1
0(Ω) which is the space ofH1(Ω) containing all

functions inH1(Ω) that vanish at the boundary ∂Ω,

H1
0(Ω) =

{
u ∈ L2(Ω) and

∂u

∂xi
∈ L2(Ω), i = 1, 2, 3, and u|∂Ω

= 0
}
.

In a non-homogeneous Dirichlet problem as in (6.2) we define the Sobolev space

H1
b(Ω) =

{
u ∈ L2(Ω) and

∂u

∂xi
∈ L2(Ω), i = 1, 2, 3, and u|∂Ω

= b(x, t)
}
.

The first step in writing the variational formulation of the first problem (6.1) is to multiply
each side of the equations by a test function w ∈ H1

0(Ω), integrate over the domain Ω, and
then look for a solution u ∈ H1

0(Ω). Problem (6.1) is now defined by
Find u ∈ H1

0(Ω), ∀ w ∈ H1
0(Ω)

−
∫

Ω
∇2u w dx =

∫
Ω
f v dx.

�� ��6.3

For the non-homogeneous case (6.2), the test function is still defined in the Sobolev space
that vanishes at the boundary H1

0(Ω), but the space of the solution is different due to the
non-vanishing boundary condition. Hence, problem (6.2) is now defined by

Find u(., t) ∈ H1
b(Ω)∫

Ω
∂tu wdx+

∫
Ω
c · ∇u wdx =

∫
Ω
ν∇2u wdx, ∀ w ∈ H1

0(Ω)

u(x, t0) = ui(x), ∀ x ∈ Ω.

�� ��6.4

6.4 Weak formulation

Problems (6.1) and (6.2) are not quite in the form of a weak formulation yet, they need to be
manipulated in order for the second derivative terms to disappear using some combination
of integration by parts. In the multi-dimensional case, the most useful formulae are the
divergence theorem∫

Ω
∇ [a(x)∇u(x)]w(x)dx =

∫
Γ
a(S)

∂u(S)
∂n

w(S)dS

−
∫

Ω
a(x) [∇u(x)] · [∇w(x)] dx,

�� ��6.5
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and Green’s formula∫
Ω

[
∇2u(x)

]
w(x)dx+

∫
Ω

[∇u(x)] · [∇w(x)] dx =
∫

Γ

∂u(S)
∂n

w(S)dS,
�� ��6.6

where ∂/∂n is the derivative in the direction of the outward normal to the boundary Γ.
We apply Green’s formula to problem (6.1) and use the fact that the test function w

vanishes at the boundary to write the equivalent problem in the weak formulation
Find u ∈ H1

0(Ω), ∀w ∈ H1
0(Ω)∫

Ω
∇u · ∇w dx =

∫
Ω
f w dx.

�� ��6.7

Note that if u belongs to C2(Ω) then the weak solution is also a solution in the space of
L2(Ω), and by reversing the integration by parts, u is also solution of the strong formulation.

There are several variational formulations possible for a given differential problem.
They depend on the choice of unknown which is usually driven by computational costs,
and depend on the choice of integral transformations which result in the order of differ-
entiation of the unknown. The latest has consequences in the choice of the interpolating
polynomials: for the FEM if we choose interpolating polynomials of order N=1 (for exam-
ple hat functions) then we cannot use second derivatives in the weak form.

The weak formulation for problem (6.2) is
Find u(., t) ∈ H1

b(Ω), ∀ w ∈ H1
0(Ω)∫

Ω
∂tu w dx+

∫
Ω
C u w dx = −

∫
Ω ν∇u ∇w dx,

�� ��6.8

with the initial condition,
u(x, t0) = ui(x), ∀ x ∈ Ω.

�� ��6.9

and where C = c · ∇ is the advection operator.
For a system of equations, each equation can be multiplied by a different test function,

for example, let us consider the Stokes system and nearly incompressible elasticity. Given
a viscosity ν > 0, a function f in the dual space of H1(Ω) and g in the dual space of L2(Ω)
such that ∫

Γ
g · n dS = 0,

�� ��6.10

we consider the problem,

Find (u, p) ∈ H1
b(Ω)× L2

0(Ω),

− ν∇2u+∇p = f,

∇ · u = 0,

u|Γ = g.

�� ��6.11
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Note that the velocity is continuous whereas the pressure is discontinuous in this formula-
tion. The weak formulation of this problem becomes,

Find (u, p) ∈ H1
b(Ω)× L2

0(Ω),

ν

∫
Ω

trace(∇u∇wT ) dx−
∫

Ω
∇ · w p dx =

∫
Ω
f dx, ∀w ∈ H1

0(Ω)

−
∫

Ω
∇ · u q = 0, ∀q ∈ L2

0(Ω),

�� ��6.12

where the term trace(∇u∇wT ) is the Frobenius inner product1 defined by

trace(∇u∇wT ) =
n∑

i,j=1

∂ui
∂xj

∂wi
∂xj

.
�� ��6.13

6.4.1 General Boundary conditions

Writing a problem in its variational formulation also depends on the specified boundary
conditions. The following section is a short synopsis of examples on how boundary condi-
tions are dealt with.

Non-homogeneous Dirichlet conditions: Consider the following problem,
−∇2u = f, ∀ x ∈ Ω

u|Γ = ub,

�� ��6.14

and introduce an auxiliary variable ũ = u+ u0 such that u0|Γ = ub. The problem written for
the new unknown ũ is a homogeneous Dirichlet boundary problem,

−∇2ũ = f +∇2u0, ∀ x ∈ Ω

ũ|Γ = 0,

�� ��6.15

Finally, we associate the weak formulation
Find ũ ∈ H1

0(Ω), ∀w ∈ H1
0(Ω),∫

Ω
∇ũ · ∇w dx =

∫
Ω
f v dx−

∫
Ω
∇u0 · ∇w dx.

�� ��6.16

Without going into details, there are practical ways of choosing u0.

1The Forbenius inner product between 2 matrices A and B is sometimes noted A : B = trace(ABT ) =
trace(ATB). However, in this thesis we have chosen to use the notation “:” for the Hadamard prodcut that will
be defined further on.
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Neumann conditions:

Consider the following problem,
−∇2u = f, ∀ x ∈ Ω
∂u

∂n |Γ
= g,

�� ��6.17

where values of u on Γ are unknown and therefore we look for test functions v and the
solution u in the spaceH1(Ω). The weak formulation is given by

Find u ∈ H1(Ω), ∀w ∈ H1(Ω),∫
Ω
∇u · ∇w dx =

∫
Ω
f w dx+

∫
Γ
g w ds.

�� ��6.18

Note that in that case, another condition needs to be satisfied in order to obtain a solution,
using Stokes’ formula, we get the constraint∫

Ω
f dx+

∫
Γ
g ds = 0.

�� ��6.19

Fourier conditions:

Consider the following problem,
−∇2u = f, ∀ x ∈ Ω
∂u

∂n |Γ
= −k(u− u0) + β,

�� ��6.20

with k > 0. The corresponding weak formulation is of the form
Find u ∈ H1(Ω), ∀w ∈ H1(Ω),∫

Ω
∇u · ∇w dx+

∫
Γ
k u w ds =

∫
Ω
f w dx+

∫
Γ

(ku0 + β) w ds.

�� ��6.21

6.4.2 Existence and uniqueness of a solution

This is perhaps the most difficult and highly theoretical part of the method. Simple ellip-
tic problems with various boundary conditions have been studied extensively, and have
been put into formulations that satisfy certain conditions. More complex problems have
been studied case by case, like the Navier-Stokes equations, Burger’s equations, and other
linear/nonlinear stationary or time-dependent problems, and/or are still active research
topics [131].

Without too much detail, we introduce a few definitions that are required for the theo-
rems of existence and uniqueness.

LetW be a general Hilbert space with scalar product (·, ·)W and corresponding induced
norm ‖ · ‖W . A real bilinear form a(·, ·) : W ×W → R is a function which is linear in each
argument separately:
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• a(u1 + u2, w) = a(u1, w) + a(u2, w);

• a(u,w1 + w2) = a(u,w1) + a(u,w2);

• a(λu,w) = a(u, λw) = λa(u,w).

A bilinear form can be

• symmetric if a(u,w) = a(w, u), with u, w ∈ W ;

• continuous or bounded if |a(u,w)| 6 α‖u‖W‖w‖W , u, w ∈ W ;

• coercive or elliptic if a(u, u) > β‖u‖2W , u ∈ W, β > 0.

A sesquilinear form a(·, ·) : W ×W → C is a bilinear form that is linear in one argument
and conjugate-linear in the other.

In a more concise abstract form the weak formulation (6.1) is equivalent to finding u ∈
H1

0(Ω) such that
a(u,w) = L(w), ∀w ∈ H1

0(Ω),
�� ��6.22

where the symmetric, continuous and coercive bilinear form a is defined as

a(u,w) =
∫

Ω
∇u · ∇w dx, ∀u, ∀w ∈ H1

0(Ω),
�� ��6.23

and the linear form L is also the scalar product

L(w) = (f, w) =
∫

Ω
f w dx, ∀f ∈ L2(Ω), ∀w ∈ H1

0(Ω).
�� ��6.24

Note that as a(·, ·) is continuous, one can associate a linear operator A such that equation
(6.22) can be rewritten as

Au = F ,
�� ��6.25

where F is the linear operator associated to L. A lot of the theory relies on the concepts of
distributions, for example, the linear operator A is defined in H′ the space of distributions
dual toH1

0(Ω).

The abstract weak form of problem (6.2) is

b(u̇, w) + b(Cu,w) = −νa(u,w),
�� ��6.26

where

a(u,w) =
∫

Ω
∇u · ∇w dx, ∀u, ∀w ∈ H1

0(Ω)

b(u,w) =
∫

Ω
u w dx ∀u, ∀w ∈ H1

0(Ω)
�� ��6.27

There are different theorems of existence and uniqueness. The first theorem relies on the
properties of the symmetric part of the bilinear form and it is not the most general version.
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Theorem 1 The Lax-Milgram theorem:
Let H be a Hilbert space and a(·, ·) a real bilinear form that is symmetric, continuous, and coer-
cive. Moreover, let a linear functional L(·) be continuous. Note that L(V ) =

∫
H f w dx with

f ∈ H′. Then, the weak formulation
Find u ∈ H

a(u,w) = L(w), ∀w ∈ H,
�� ��6.28

admits a unique solution u inH. Additionally,we have the estimate,

‖u‖H 6
1
β
‖f‖H′ ,

�� ��6.29

where β is the coercivity constant.

The Lax-Milgram theorem can be generalized to more complex problems that are non-
symmetric and indefinite.

Theorem 2 The generalized Lax-Milgram theorem:
Let W be a Hilbert space and let us introduce a complex sesquilinear form a(·, ·) : W × W →
C. Assume that a(·, ·) is continuous, and coercive. Moreover, let a linear functional L(·) be
continuous. Note that L(V ) =

∫
W f w dx with f ∈ W ′.

Then, the weak formulation
Find u ∈ W

a(u,w) = L(w), ∀v ∈ W,

�� ��6.30

admits a unique solution u inW , satisfying,

‖u‖W 6
1
β
‖f‖W ′ ,

�� ��6.31

where β is the coercivity constant.

In practice, it is not always easy to prove the coercivity of a problem, but there are a few
inequalities that can be very useful in this regard, see for instance some inequalities in
appendix C. There is another theorem that uses the Babus̆ka-Brezzi condition that makes
explicit conditions under which a problem is well-posed.

Theorem 3 Babus̆ka-Brezzi theorem:
LetW andQ be Hilbert spaces with the associated norms ‖·‖W and ‖·‖Q. Let a(·, ·) be a continuous
bilinear form onW ×W , let b(·, ·) a continuous bilinear form onW ×Q.

• Assume that we can associate to b(·, ·) a continuous linear operator B : W → Q′2, defined by
(Bw, q) = b(w, q), u ∈ W, q ∈ Q.

2Q′ is the dual space ofQ, it is sometimes written asQ∗.

141



CHAPTER 6. INTRODUCTION TO THE SPECTRAL ELEMENT METHOD

• Assume that b(·, ·) satisfies the inf-sup condition

inf
q 6=0 ∈Q

sup
w 6=0 ∈W

b(w, q)
‖v‖W‖q‖Q

> γ > 0
�� ��6.32

• Assume that a(·, ·) is coercive on kerB = {w ∈ W | b(w, q) = 0, q ∈ Q}.

Then the problem 
Find (u, p) ∈ W ×Q,

a(u,w) + b(w, p) = F (w), ∀w ∈ W

b(u, q) = G(q), ∀q ∈ Q,

�� ��6.33

has a solution (u, p). The first component u is unique while p is defined up to an element in kerB.
Additionally,

‖u‖W 6 c1 (‖F‖W ′ + ‖G‖Q′) ,
�� ��6.34

and
‖p‖Q 6 c2 (‖F‖W ′ + ‖G‖Q′) ,

�� ��6.35

where c1 and c2 are constants that depend only on α1, α2 (the continuity coefficients of a(·, ·) and
b(·, ·)), β (coercivity parameter), and γ (inf-sup condition).

It is relatively easy to prove that the symmetric Lax-Milgram theorem holds in the case
of the first elliptic stationary Dirichlet problem and that problem (6.1) has a unique solution.

The weak formulation (6.12) of the Stokes system and nearly incompressible elasticity
problem (6.11) is of the same form as of problem (6.33). We can therefore apply the Babus̆ka-
Brezzi theorem 6.4.2 to prove existence and uniqueness of a solution. In that particular case
we can define,

a(u,w) = ν

∫
Ω

trace(∇u∇wT ) dx, b(u, p) = −
∫
Ω∇ · u p dx,

�� ��6.36

F (w) =
∫

Ω
f dx, G(q) = 0,

�� ��6.37

and
W = H1

0(Ω), Q = L2
0(Ω).

�� ��6.38

6.4.3 Nonlinear problems

Note that all the previous theorems deal with linear equations. There are several ways to
deal with nonlinearity:

Linearization: It is common practice to linearize some unknowns in the Navier-Stokes
equations for incompressible viscous fluids. Reference [132] has considered the finite ele-
ment methods in general relativity using perturbation theory for a non-rotating black hole
as their master equations. Proving the existence and uniqueness of a linear problem is a lot
easier than its nonlinear counterpart.
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Trilinear forms: In [133] a stationary nonlinear fluid-solid interaction is considered. A
weak formulation is presented with linear, bilinear and trilinear functionals, for example
the nonlinearity appears as

a(u, u, w) =
∫

Ω
ρ(u · ∇)u · w dx.

�� ��6.39

However, there are no standard theorems or proofs of existence and uniqueness using those
types of functionals to our knowledge.

Newton iteration: The argument presented in [134] is that by using a Newton iteration to
a nonlinear problem, it boils down to solving a linear problem at each step. If this corre-
sponding linear problem is well-posed then the original nonlinear one will be well-posed
too. The same type of argument is discussed in [135].

However, in practice it is not automatic for every problem to obtain the required condi-
tions of all the previous existence and uniqueness theorems. The complete analysis of some
complex problems can be very difficult and is often still under active research. Some proofs
are only possible numerically, see for example [131] for a numerical proof for solutions of
nonlinear hyperbolic equations.

6.4.4 Summary on the weak formulation

The weak formulation and proof of existence and uniqueness of a solution can be very
technical and require some insights in the theory of functional analysis. However there
are some numerical techniques used to prove that the numerical solution obtained is not
non-sense [131] and hence this part of the analysis is unfortunately overlooked most of
the time. In practice, a reference to the general Lax-Milgram theorem is mentioned and the
problem at hand is discretised in its weak formulation without any further lengthy technical
arguments.

6.5 Domain discretization in space

The domain Ω is decomposed into NE = NEx ×NEy ×NEz sub-domains Ωk such that

Ω̄ =
NE⋃
k=0

Ω̄k, ∀k, l Ωk
⋂
k 6=l

Ωl = 0,
�� ��6.40

where Ω̄ is the closure of the domain Ω. The weak formulation is applied in each subdo-
main Ωk individually. It is common to use the notation uh to represent the discrete variable
resulting from the continuous variable u. In each subdomain, the generic variable uk

h is ex-
panded into cardinal basis functions. In higher dimensions, the formulation of the basis
comes from the tensor product of one dimensional Lagrangian interpolant basis hi(x). So
the Lagrangian interpolants are chosen as basis functions in each dimension. We expand
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the unknowns as

∀uk
h ∈ Wh, u

k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
mnp(t) hm(x) hn(y) hp(z). �� ��6.41

Variables/Coordinates x y z

Unknowns m n p

Tests functions a b c

Local nodes a b c

GLL quadrature q r s

Master Element ξ η ζ

Table 6.1: Index conventions in 3D

In 3D, the domain is decomposed into nonoverlapping hexahedral elements. Spectral
elements are multi-element methods and have a weighted residual based implementation
in the same way as the finite element method. There are two types of domain decompo-
sitions, one that uses conforming elements and another that is based on non-conforming
elements (see figure 6.1). Conformity means that the decomposition satisfies the constraint
that the intersection of two adjacent elements is either an entire edge or a vertex and the
order of approximation is equal for adjacent elements. In other words, it means that the
collocation points match at element interfaces. It is very difficult to keep conforming in-
terfaces when using an adaptive mesh refinement procedure as it results in severe restric-
tions. Therefore the non-conforming elements need to be introduced for adaptive mesh
refinement. In the variational approach, continuity across conforming element interfaces is
naturally imposed. There are several ways to extend this classical conforming formulation
to the non-conforming element case but that will not be described any further.

The particularity of the FEM and SEM is that the numerical solution of a problem is de-
scribed by local basis functions. Let PN denote the space of polynomials of degree less that
or equal to N in each spatial dimension. In the case of the FEM, the local basis functions are
constructed from polynomials of order 0 to 3, for the SEM we use high degree polynomials
based on the same philosophy as the spectral method (with Legendre or Chebychev poly-
nomials). In the conforming SEM,Wh is a subspace of the Sobolev spaceW = H1

0(Ω) that
consists of all the piecewise high-order polynomials defined on Ωk,

Wh = H1
0(Ω)

⋂
PN,k(Ω),

�� ��6.42

where the space PN,k(Ω) is defined for each discretization parameter h over the domain Ω
such that

PN,k(Ω) =
{
θ ∈ L2(Ω), θ|

Ωk
∈ PN (Ωk)

}
.

�� ��6.43

PN (Ωk) denotes the space of polynomials of degree less than or equal to N on each sub-
domain Ωk. Note that the space PN,k(Ω) ensures that the solution is integrable over the
domain Ω, whereasH1

0(Ω) ensures continuity over Ω.
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Ω3

Non-conforming Domain ΩConforming Domain Ω

Ω1 Ω2

Ω3 Ω4

Ω1 Ω2

Figure 6.1: 2D conforming domain Ω on the left and 2D non-conforming domain Ω on the
right

Here we use the index conventions in Table (6.5) and uk
mnp(t) = uk

mnp(x, y, z, t) are the
nodal basis coefficients. The spaceWh =W

⋃
PN,k(Ω)×PN,k(Ω)×PN,k(Ω) is taken to be a

subspace ofW and consisting of the tensor product of all piecewise high order polynomials
of degree less than or equal to N defined on Ωk. Furthermore, we have the definition

PN,k(Ω) =
{
θ ∈ L2(Ω), θ|

Ωk
∈ PN (Ωk)

}
.

�� ��6.44

For regular shaped elements (see Appendix F for general shaped elements), we can also
derive the unknowns with respect to x, y, z or t in the following manner:

∂xu
k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
mnp(t) ∂xhm(x) hn(y) hp(z),

�� ��6.45

∂yu
k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
mnp(t) hm(x) ∂yhn(y) hp(z),

�� ��6.46

∂zu
k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
mnp(t) hm(x) hn(y) ∂zhp(z),

�� ��6.47

∂tu
k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

u̇k
mnp(t) hm(x) hn(y) hp(z).

�� ��6.48

The test function wh is selected to be the same as the basis functions h(x)× h(y)× h(z)
used for the generic unknowns uh, and therefore using Einstein summation convention,

wk
h(x, y, z) = wk

abcha(x) hb(y) hc(z),
�� ��6.49

where wk
abc = 1, ∀a, b, c for the test functions. Note that the same test functions are used for

each variable here but they could be different if one was for example to choose a different
polynomial order for each unknown. In the case of the Navier-Stokes equations the velocity
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u can be written with a polynomial of order N and the pressure with order N − 2. This
avoids spurious modes, and hence the test functions associated to u and p respectively, are
different.

Spectral methods are popular for their exponential convergence characteristics. How-
ever, in order to keep this order of the approximation error, one needs to numerically inte-
grate equation (6.51) with sufficient accuracy. Hence, the quadrature errors need to be of
the same order as the approximation error. The convergence of the numerical solution uh
to the solution u can be determined by stability and approximation theory.

If the conditions of the Lax-Milgram theorem were met for the weak formulation over
the whole domain, then the theorem can also be applied in each sub-domain, and the dis-
crete weak formulation admits a unique solution.

For a general Galerkin numerical approximation of the general problem on the contin-
uous domain Ω, 

Find u ∈ W ∀w ∈ W

a(u,w)W = L(w)W ,

�� ��6.50

the variational form applies to a family of discrete dimensional spacesWh,
Find uh ∈ Wh ∀wh ∈ Wh
NE∑
k=1

a(uh, wh)Wh
=

NE∑
k=1

L(wh)Wh
,

�� ��6.51

where h = (N,k) denotes a discretization parameter that depends on the number of ele-
ments NE and the degree of the interpolating polynomials.

The partially discrete weak formulation of problem (6.1) can be written as
Find uh ∈ Wh, ∀wh ∈ Wh

NE∑
k=1

′ ∫
Ωk

∇uh · ∇wh dx =
NE∑
k=1

′ ∫
Ωk

fh wh dx,

�� ��6.52

whereWh is the same as in (6.42). Here
NE∑
k=1

′

denotes elemental direct summation in which

the continuity and boundary conditions are taken into account.
The partially discrete weak formulation for problem (6.2) is written as

Find uh(., t) ∈ Uh, ∀ wh ∈ Wh

NE∑
k=1

′ ∫
Ωk

∂tuh wh dx+
NE∑
k=1

′ ∫
Ωk

C uh wh dx = −
NE∑
k=1

′ ∫
Ωk

ν∇uh ∇wh dx,
�� ��6.53

with the initial condition,

∀k uh(x, t0) = ~ui(x), ∀ x ∈ Ωk.
�� ��6.54

and where C = c · ∇ is the advection operator. Note that here U = H1
b(Ω) with Uh =

H1
b(Ω)

⋂
PN,k(Ω).
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On each element Ωk there are N3
GLL = (N + 1)3 nodal points but in total there are

Ng = [NExN + 1]× [NEyN + 1]× [NEzN + 1]
�� ��6.55

global nodal points. One needs to create a global numbering function that keeps track of
local and global nodes on the domain Ω. There are many ways to label the elements and
element nodes. The different protocols of element and node numbering have no effect on
the spectral element solution itself but they have a huge impact on the structure of the global
mass and advection matrices and therefore on the efficiency of the spectral element code.
Figure (6.2) illustrates an example of global numbering technique in 2D for NEx = NEy = 2
elements so NE = 4, and polynomial order N = 3, that is NGLL = 4 GLL points per space.
Figure (6.3) shows the local numbering convention per subdomain Ωk and corresponding
elemental matrix storage. Let I denote global indices which are functions of the element
index k and the indexes a, b, c within each element,

I = I(a, b, c,k).
�� ��6.56

The global numbering function maps the local numbering of the computational nodes to
their global (non-redundant) numbering. I(a, b, c,k) is the global node index of the (a, b, c)-
th GLL node internal to the k-th element. Here, elements are numbered row by row from
bottom-left to top-right. The table of indices I(a, b, c,k) is typically needed to build or
assemble global data from local data (that is, assemble the contributions from each element).

x

Ω3 Ω4

Ω2Ω1

29 41
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−LX
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4644
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2
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28

2423

161514

121110

13

18

9

19

2221208

4

5 7

3
−LY

y

LX

LY

Figure 6.2: Global numbering conventions on a rectangular 2D domain Ω in terms of global
GLL nodes and subdomains Ωk.

Note that in 2D, the elemental matrix that represents the unknown uk on the k-th ele-
ment is a NGLL × NGLL matrix. Each nodal coefficient is noted uk

mn. In 3D, the elemental
matrix that represents the unknown uk on the k-th element is aNGLL×NGLL×NGLL matrix.
Each nodal coefficient is noted uk

mnp.
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
(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1)
. . . ...

(3, 1)
. . . ...

(4, 1) · · · · · · (4, 4)

y

x

Ωk

(4, 1)(3, 1)(1, 1) (2, 1)

(1, 4) (4, 4)

(1, 3)

(1, 2)

y

x

Figure 6.3: Local numbering conventions in 2D for any node (a, b) per subdomain Ωk and
corresponding elemental matrix storage.
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(1, 1, 3)

(1, 1, 2)

(4, 1, 1)(3, 1, 1)(2, 1, 1)(1, 1, 1)

y

z

Ωk

y
x

(1, 1, 4)
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(1, 1, 2)
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(4, 1, 1)

(3, 1, 1)

(2, 1, 1)

(1, 1, 1)

x

Figure 6.4: Local numbering conventions in 3D for any node (a, b, c) per subdomain Ωk and
corresponding elemental matrix storage.

148



6.5. DOMAIN DISCRETIZATION IN SPACE

Γ1

y

x

LY

−LY

LX−LX

Γ4

Ω

0

dΓ = dy dΓ = dy

dΓ = dxΓ3

dΓ = dx

n =

∣∣∣∣ −1
0

n =

∣∣∣∣ 0
1

n =

∣∣∣∣ 1
0

n =

∣∣∣∣ 0
−1

Γ2

Figure 6.5: 2D domain Ω with boundaries Γ1, Γ2, Γ3 and Γ4 and corresponding outward
unit normal n.
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6.6 Element discretization

The elemental discretization is where the finite element method differs dramatically from
the spectral element method. Generally the interpolating polynomials in the SEM are the
Lagrange-Legendre basis functions of order N for one space direction. Each dimension
does not need to have the same degree. Each element is discretized by N1 × N2 × N3

collocation points ξ1
a, ξ

2
b , ξ

3
c in 3D. When considering a system with several unknowns it is

not obvious that all the polynomial interpolants have the same degree. For example the
Navier-Stokes problem formulated by Maday and Patera consider the mixed formulation
PN − PN−2 for the velocity and pressure respectively. However, it is a lot more simple to
consider N1 = N2 = N3 = N as is the case in this thesis, where NGLL = N + 1 is the
number of GLL points per element in each space direction.

6.6.1 Gauss–Lobatto–Legendre quadrature

There are several numerical techniques to compute integrals numerically, they are typically
referred to as quadrature rule. Here the quadrature applied to the integrals is the Gauss–
Lobatto–Legendre (GLL) quadrature, it includes boundary points of the interval Λ = [−1, 1]
as collocation points. Refer to appendices D and E for more details on Lagrange and Leg-
endre polynomials. The GLL quadrature is defined as follows

∫ 1

−1
Φ(ξ)dξ =

N∑
i=0

ρiΦ(ξi) + εN , ∀Φ ∈ P2N−1(−1, 1),
�� ��6.57

with the collocation points defined as

ξ0 = −1, ξN1 = 1, L′N (ξi) = 0 ∀i ∈ {1, ..., N − 1}.
�� ��6.58

The quadrature weights are ρi given by,

ρi =
2

N(N + 1)
(
LN (xi)

)2 .
�� ��6.59

LN is the N th order Legendre polynomial and the error is εN ∼ O(Φ2N (ξ)) for some point
ξ ∈ (−1, 1).

A very important property of Gaussian quadratures (including the GLL quadrature),
is that they are exact with εN = 0 if the integrand Φ(ξ) is a polynomial of degree 2N − 1
or less. For deformed elements there are additional errors related to curvature. In the
spectral element method, each integration on the master element involves the product of
two polynomials of degree N the unknown and the test function. The integration of the
resulting polynomial of degree 2N is thus never exact, even in this simple case. In order
to take advantage of efficient sum-factorization techniques, the basis points are taken to be
the same as the quadrature points on each element. This results in a diagonal mass matrix
obtained by a process of subintegration. Consequently, the mass matrix is always diagonal
by construction. In this respect, the SEM is related to FEM in which mass lumping is used
to avoid the costly resolution of the non-diagonal system resulting from the use of Gauss
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quadrature. In other words, the GLL quadrature used in this way allows for fully explicit
schemes.

The interpolants hi are expressed as

hi(ξ) = −
(
1− ξ2

)
L′N (ξ)

N (N + 1)LN (ξi)(ξ − ξi)
, ξ ∈ Λ, ∀i ∈ {0, N},

�� ��6.60

with the following properties

hi(ξj) = δij , ∀i, j ∈ {0, N}2, hi ∈ PN (Λ).
�� ��6.61

Furthermore the derivative of the Lagrange-Legendre interpolants matrix is defined by

∂ξhj(ξi) = Hij =


H00 = −HNN = −N(N+1)

4
Hii = 0 i ∈ {1, N − 1}
Hij = LN (ξi)

LN (ξj) (ξi−ξj) i 6= j

�� ��6.62

On the other hand, the second derivative of the Legendre interpolants matrix is defined by

∂ξξhj(ξi) = Wij =


W00 = (−1)N

3 L′′N (−1)
WNN = 1

3L
′′
N (1)

Wii = 1
3
L′′N (ξi)

LN (ξi)
i ∈ {1, N − 1}

Wij = −2 LN (ξi)
LN (ξj) (ξi−ξj)2 i 6= j

�� ��6.63

Refer to appendix D on how to derive the 2 preceding matrices.
The GLL quadrature formula in 3D is given for some function f(ξ, η, ζ) by∫

Λ3

f(ξ, η, ζ) dξ dη dζ '
N∑
q=0

N∑
r=0

N∑
s=0

ρqrsf(ξq, ηr, ζs) dξ dη dζ,
�� ��6.64

where ρqrs = ρq ρr ρs are the weights in 3D.

6.6.2 Master Element

To apply the quadrature rule on each element, one needs to define an affine transformation
to map each spectral element Ωk to the reference or master element Λ × Λ × Λ = Λ3 (see
Figure 6.6). This is a common feature to spectral methods, finite element methods and
spectral element methods. Let us define the local elemental mappings:

(x, y, z)k = (x, y, z)k
abc ha(ξ) hb(η) hc(ζ),

�� ��6.65

we can now map the physical elements (x, y, z)k ∈ Ωk onto the computational domain
(ξ, η, ζ) ∈ Λ3. We denote by Jk the Jacobian associated to this mapping such that

Jk =
∂(x, y, z)k

∂(ξ, η, ζ)
=


∂xk

∂ξ

∂xk

∂η

∂xk

∂ζ
∂yk

∂ξ

∂yk

∂η

∂yk

∂ζ
∂zk

∂ξ

∂zk

∂η

∂zk

∂ζ

 .
�� ��6.66
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By ∂xk/∂ξ we refer to ∂x/∂ξ for some point x in the kth element Ωk. We refer to |Jk| as the
determinant of the Jacobian Jk. This change of variable is a key component of the method
and |Jk| appears in the elemental matrix discretization,

|Jk| =
∂xk

∂ξ

∂yk

∂η

∂zk

∂ζ
− ∂xk

∂ξ

∂yk

∂ζ

∂zk

∂η
+
∂xk

∂η

∂yk

∂ζ

∂zk

∂ξ

−∂x
k

∂η

∂yk

∂ξ

∂zk

∂ζ
+
∂xk

∂ζ

∂yk

∂ξ

∂zk

∂η
− ∂xk

∂ζ

∂yk

∂η

∂zk

∂ξ
.

�� ��6.67

x

(x,y)
(−1, 1) (1, 1)

(1,−1)(−1,−1)

η

ξΩk

y

Figure 6.6: Coordinate mapping from a physical element to a master element in 2D.

Special case: 3D homogeneous element decomposition

Practically, derivatives with respect to the physical coordinate x are evaluated in terms of
the computational coordinate ξ (respectively for y, η and z, ζ). The mapping from the
element

(x, y, z)k ∈ Ωk = [Xk, Xk+1]× [Yk, Yk+1]× [Zk, Zk+1]
�� ��6.68

to the computational space used is

ξ =
2

∆xk
(xk −Xk)− 1,

�� ��6.69

η =
2

∆yk
(yk − Yk)− 1

�� ��6.70

ζ =
2

∆zk
(zk − Zk)− 1

�� ��6.71

where ∆xk = Xk+1 −Xk, ∆yk = Yk+1 − Yk and ∆zk = Zk+1 − Zk so that

∂xk

∂ξ
=

∆xk

2
,
∂xk

∂η
= 0, and

∂xk

∂ζ
= 0,

∂yk

∂η
=

∆yk

2
,

∂yk

∂ξ
= 0, and

∂yk

∂ζ
= 0,

∂zk

∂ζ
=

∆zk

2
,

∂zk

∂ξ
= 0, and

∂zk

∂η
= 0,

�� ��6.72
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and hence, the determinant of the Jacobian simplifies drastically

|Jk| =
∆xk ∆yk ∆zk

8
.

�� ��6.73

In particular, the Jacobian |Jk| becomes the same for all the elements ∀ k in the case of a
homogeneous (evenly decomposed) domain in the x, y and z directions.

Note that this is what we would intuitively expect: we have just provided a uniform
scaling to our elements, without deforming them in any way, so the Jacobian here just gives
us an appropriate scale factor.

6.6.3 Elemental matrix form

The elemental matrix forms can be very specific to a given problem. The following is a
brief overview, the 1D and 3D wave equations are treated more explicitly and in details in
chapter 7. For each element Ωk, the weak formulation of problem 6.1 has a corresponding
discretized equation in Local Matrix form as follows:

Weak form on Ωk

∫
Ωk

∇uh · ∇wh dx =
∫

Ωk

fh wh dx

Local Matrix form Mk ⊗ uk = Fk,

�� ��6.74

where Mk is the local Mass matrix and F is the local Force vector. Here the notation
“⊗” refers to a matrix multiplication operator that depends on the matrix and the space
dimension. See section 7.1.4 in Chapter 7 for more details. For problem 6.2, we have a
different weak form and matrix discretization given by

Weak form on Ωk

∫
Ω
∂tuh wh dx+

∫
Ω
C uh wh dx = −

∫
Ω
ν∇uh ∇wh dx

Local Matrix form Mk ⊗ u̇k + Ck ⊗ uk = −νKk ⊗ uk,

�� ��6.75

where C is the linear or nonlinear local Advection matrix and K is the local Stiff matrix.

Local Mass matrix Mk

In 1D, consider the scalar product on the element Ωk, the mapping transformation and then
the quadrature rule, we have,∫

Ωk

uk
h(x) wk

h(x) dx =
∫

Λ3

uk
h(ξ) wk

h(ξ) |J |k dξ,
�� ��6.76(∫

Ωk

uk
h(x) wk

h(x) dx
)

GLL

∼
N∑
q=0

N∑
i=0

N∑
a=0

ρk
q |J |k uk

i hi(ξ) w
k
aha(ξ),

�� ��6.77

where ρk
q are the GLL weights and ncp is a number combining the sum over theGLL points

for the basis functions and the sum over the GLL points for the quadrature rule. The corre-
sponding matrix to this elemental discretization is referred to as the local Mass matrix Mk

in FEM and SEM. The bilinear form a(hi, ha) is non zero only if hi and ha belong to the same
element, this is due to the fact that each basis function is nonzero over a single element only.
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Local Stiff matrix Kk

Consider the first problem (6.1), the discretization of the left hand side on each element is

a(uh, wh)Ωk =
∫

Ωk

∇uk
h(x) · ∇wk

h(x) dx,
�� ��6.78

∼
∫

Λ3

|Jk|−1 ∇uk
h(ξ) · ∇wk

h(ξ) dξ,
�� ��6.79

∼
N∑
q=0

N∑
i=0

N∑
a=0

ρk
q |Jk|−1 ∇

(
uk
i hi(ξ)

)
· ∇
(
wk
aha(ξ)

)
,

�� ��6.80

where equation (6.80) can be further simplified with formulas of derivatives of the inte-
grand polynomials.

The corresponding matrix to this elemental discretization is referred to as the local Stiff
matrix Kk in FEM and SEM.

Local Force vector Fk

Consider the first problem (6.1), the discretization of the right hand side on each element is

(fh, wh)Ωk =
∫

Ωk

fk
h (x) wk

h(x) dx,
�� ��6.81

∼
∫

Λ3

|Jk|fk
h (ξ) wk

h(ξ) dξ,
�� ��6.82

∼
N∑
q=0

N∑
i=0

N∑
a=0

ρk
q |Jk| fk

i hi(ξ) w
k
aha(ξ).

�� ��6.83

The corresponding vector to this elemental discretization is referred to as the local Force
vector Fk in FEM and SEM.

Other Local matrices

The previous sections give a rough idea on how to discretize some integral terms that are
present in a given problem. There are different types of integral terms but their discretiza-
tion is accomplished in similar ways. For example, for the second problem we would obtain
the linear or nonlinear local Advection matrix Ck coming from the integral term∫

Ωk

C ukh w
k
h dx.

�� ��6.84

Summary

The mesh corresponding to a spectral element method has to be a Gauss-Lobatto-based
mesh. In elemental matrix notation, the first problem (6.1) can be written as

Mk ⊗ uk = Fk,
�� ��6.85
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where the unknowns uk correspond to the nodal basis coefficients on the approximate so-
lution. Remember that the test functions wh are chosen to be non-zero at only one global
collocation point. The second problem (6.2) can be written in elemental matrix notation as

Mk ⊗ u̇k + Ck ⊗ uk = −νKk ⊗ uk.
�� ��6.86

6.7 Assembly

The assembly process uses the conformity between the element interfaces in an implicit
manner, it involves a one-to-one matching between the unknowns of the elements sharing
an interface. The global assembly operation is often referred to as direct stiffness sum-
mation. This process constructs a continuous global expansion basis from the elemental
basis functions. In practice, most operations are performed in a local fashion within each
element and then the contributions are summed to form the global system. A mapping is
needed in order to assemble the global system from the local system. It identifies the global
node number of a local node within each element. Interior nodes may be independently
numbered as global degrees of freedom. This assembly process depends tremendously on
the topology of the mesh. When using an adaptive mesh refinement the assembly process
needs to be modified for non-conforming elements.

All the elemental contributions need to be added together this is called the assembly of
the global matrix. In general, consider a local matrix Ak, its global matrix A is

A =
k=NE∑
k=1

′ Ak,
�� ��6.87

where
k=NE∑
k=1

′ represents the assembly summation. Figure 6.7 illustrates the process of direct

summation to obtain a global system of algebraic equations.
As an example, we introduce the global Mass matrix M. It is the result of the assembly

process of the local Mass matrix Mk for every element. The discretization on the whole
domain of the scalar product is∫

Ω
ukh(x) wkh(x) dx ∼

k=NE∑
k=1

′
(∫

Ωk

ukh(x) wkh(x) dx
)

GLL

�� ��6.88

∼
k=NE∑
k=1

′Mk ⊗ uk.
�� ��6.89

All the local matrices of a problem are assembled to form algebraic systems to be solved. In
parallel, this is an important aspect for processor communications.

The first problem (6.1) results in the following algebraic matrix system

M⊗ u = F.
�� ��6.90

The second problem (6.2) can be written as

M⊗ u̇+ C⊗ u = −νK⊗ u.
�� ��6.91
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coupling at boundary nodes

interior nodes

boundary nodes

A1

A2

A3

Figure 6.7: Schematic of the direct summation of local matrices Ak to form the global matrix
A.

6.8 Why is the weak form important?

There are many bad and good reasons why the weak form is widely used in the FEM and
SEM.

Historically, finite elements were developed by structural engineers in the sixties. It was
very natural to use variational principles in analytical and earlier numerical methods, and
hence the FEM should be discretizations of these variational principles. These variational
formulas typically are expressed in terms of integral inner products. Although spectral
elements are most commonly applied in fluid mechanics, and much has changed in the
intervening forty years, it is nevertheless true that when a problem can be expressed in
more than one way, the choice of representation is strongly steered by history.

Another bad reason is that the weak form simplifies convergence and uniqueness proofs
for discrete algorithms.

A good reason for choosing the weak form is, as mentioned earlier in this chapter, it
lowers the order of the highest derivative that must be computed. Thus, the weak form of
a second order differential equation involves only first derivatives. This is advantageous in
a couple of ways:

• In FEM, it becomes possible to solve second order differential equations using so-
called tent or chapeau functions, which are piecewise linear, and thus the second
derivative of these functions is zero. These basis functions are useless for solving
a second order equation through any mean weighted residual method applied to the
strong form. However, when applied to the weak form, piecewise linear basis func-
tions give second order convergence.

• It is very helpful to reduce the order of derivatives in multiple space dimensions.
Spectral elements are used primarily to cope with geometrical difficulty of some sort.
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However, complicated geometry with curved elements have a nontrivial mapping
(change-of-coordinates) that transforms the physical subdomain with its curvy sides
into the unit square or cube where a tensor product spectral basis is applied. The
coordinate transform implies that the differential equation in the computational co-
ordinates has additional metric factors multiplying the derivatives. The crucial point
is that the metric factors rise rapidly in number and complexity with the order of the
derivative and the number of dimensions. Even the second derivative in 2D is a hor-
rible mess and worse, it is a computationally expensive mess. The weak form implies
that only first derivatives are needed for a second order differential equation and thus
takes a lot of the pain out of the metric factors.

Another good reason to use the weak form is, that it is defined even when the strong
form is not because of discontinuities.

The weak form simplifies the matching of subdomains. Indeed, the strong form of a
second order differential equation requires explicitly matching both u and its first derivative
at interdomain walls. In 1D, this is fairly easy, but in complicated geometry in 2D and 3D
this matching is difficult and expensive. The weak form amazingly allows one to obtain an
exponential rate of convergence as the number of unknowns in each element is increased
even if only the function itself is explicitly matched.

Consequently, the weak forms and variational principles are very useful, and are used
to the almost total exclusion of the strong form in finite elements and spectral elements.

6.9 Mesh generation

A first crucial step towards the accurate simulation of 3D problems with the SEM is the
design of the mesh. There are many mesh generation techniques, such as advancing front,
structured meshing and Delaunay; they all follow a bottom-up3 construction procedure [136].
Designing a good mesh can be a very difficult and demanding problem. In this section we
will not discuss the specific details, but highlight some of the basic ingredients of mesh
design, which are classical finite element results.

There are 2 possibilities of mesh for the spectral element method: triangle elements in 2D
and tetrahedral elements in 3D, or, quadrilateral elements in 2D, and hexahedral elements
in 3D. Tetrahedral elements are typical to the FEM, however they are not as popular with
the SEM because of the tensorization product of the polynomial basis that is required to
obtain a diagonal mass matrix.

The mesh is conforming if the 6 faces of each hexahedral elements match up exactly with
the sides of neighboring elements.

A good mesh should take into account the major first and second order discontinuities
in the problem, and the size of the elements should reflect the distribution of wave speeds if
such waves are present in the model under study. The mapping between Cartesian points

3The bottom-up approach initially discretises the edges of the boundary representation into discrete seg-
ments which conform to the points of the boundary representation. Every surface of the boundary representa-
tion is then bounded by a set of discretised edges, and so the next step of the generation is to develop a surface
discretisation in terms of quadrilateral elements. The generation process is finally completed by constructing el-
ements in the interior of the domain which comply to the face and edge definitions constructed in the previous
steps.
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X = (x, y, z) within a deformed hexahedral element Ωk and the master element are of the
form

X(ξ, η, ζ) =
na∑
a=1

Na(ξ, η, ζ)Xa.
�� ��6.92

The Na shape functions are 3D tensorial products of Lagrange-Legendre basis functions of
order na. The higher the order of the shape functions Na, the more curved the physical
elements can be. The final geometry of the curved hexahedral elements is also determined
with the anchor points Xa. The behaviour of the Jacobian is controlled by the geometry of
the mesh and is therefore a measure of the mesh quality.

To calculate the Jacobian, one needs to differentiate the mappingX(ξ, η, ζ) function with
respect to ξ, η, ζ and obtain the respective partial derivatives:

∂ξX(ξ, η, ζ) =
na∑
a=1

∂ξNa(ξ, η, ζ)Xa;
�� ��6.93

∂ηX(ξ, η, ζ) =
na∑
a=1

∂ηNa(ξ, η, ζ)Xa;
�� ��6.94

∂ζX(ξ, η, ζ) =
na∑
a=1

∂ζNa(ξ, η, ζ)Xa.
�� ��6.95

Finally, the Jacobian associated to this mapping is determined by

J =
∂X(ξ, η, ζ)
∂(ξ, η, ζ)

=


∂x

∂ξ

∂x

∂η

∂x

∂ζ
∂y

∂ξ

∂y

∂η

∂y

∂ζ
∂z

∂ξ

∂z

∂η

∂z

∂ζ

 .
�� ��6.96

Partial derivatives of the shape functions ∂ξNa, ∂ηNa and ∂ζNa are analytically deter-
mined in terms of the Lagrange-Legendre polynomials of degree 1 or 2 and their detiva-
tives. One needs to ensure that the mapping from the physical to master element is unique
and invertible. The mapping should be well defined and the Jacobian should never vanish.

Once the anchor points are specified, one can obtain the coordinate transformations, the
first derivatives of the change of variables and the Jacobian as described above and perform
all the elemental matrix calculations needed for the system to solve.

6.9.1 Quadrilateral elements

Each quadrilateral element is isomorphic to the square, its 4 corners are always used as
anchors, but its side centres and its centre may be used as additional anchors. For simple
elements with straight edges, only 4 control points (anchor points) suffice, whereas curved
elements require 9 anchor points to describe the geometry accurately.

In 2D, the geometry of an element can be defined by its na = 4 anchor points Xa and
shape functions Na(ξ, η) products of Lagrange polynomials hN,ξi of degree N = 1 by

X(ξ, η) =
na∑
a=1

Na(ξ, η)Xa.
�� ��6.97
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Typically, the two Lagrange polynomials are of degree 1 for 2 anchor points or degree 2 for
3 anchor points, and are evaluated at ξi = ±1 and

hN,ξi=+1(ξ) =
1 + ξ

2
hN,ξi=−1(ξ) =

1− ξ
2

.
�� ��6.98

Remember that the Lagrange-Legendre polynomials evaluated at a GLL point have a value
of either 0 or 1. Any point in the physical element is given by the following relation:

X(ξ, η) =
(

1− ξ
2

)(
1− η

2

)
X1 +

(
1 + ξ

2

)(
1− η

2

)
X2

+
(

1 + ξ

2

)(
1 + η

2

)
X3 +

(
1− ξ

2

)(
1 + η

2

)
X4, �� ��6.99

where Xa are the four anchor points of coordinates (xa, ya).

Physical locations of the nodes. Consider a simple square element of length a. To find the
points in the x and y direction, we need only know the maximum and minimum x values
for that element in order to give the ξ values of the Gauss–Lobatto–Legendre points, i.e.,
the ith x value is

xi =
1
2

(xmin + xmax) +
1
2

(xmax − xmin) ξGLL(i)

= a ξGLL(i),
�� ��6.100

yj =
1
2

(ymin + ymax) +
1
2

(ymax − ymin) ηGLL(j)

= a ηGLL(i).
�� ��6.101

The first derivatives can easily be calculated in this case:

∂x

∂ξ
= a,

∂x

∂η
= 0,

∂y

∂η
= a,

∂y

∂ξ
= 0.

�� ��6.102

The Jacobian is defined by the determinant of the first derivative functions, so for this type
of simple square element of length a we have

|J | =
∣∣∣∣∂(x, y)
∂(ξ, η)

∣∣∣∣ = a2.
�� ��6.103

6.9.2 Hexahedral elements

The 3D generalization of the above is straightforward. Each hexahedral element is mapped
into a reference cube. For a simple hexahedral element with straight faces, one needs eight
corner nodes. By adding mid-side and centre nodes the number of anchors can become as
large as 27-node hexahedral elements
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Figure 6.8: Schematic representations of a quadrilateral element with 4 anchor points and 9
anchor points.

In 3D, the geometry of an element can be defined by its na = 8 anchor points Xa and
shape functions Na(ξ, η, ζ) products of Lagrange polynomials hN,ξi of degree N = 1 by

X(ξ, η, ζ) =
na∑
a=1

Na(ξ, η, ζ)Xa.
�� ��6.104

Typically, the two Lagrange polynomials are of degree 1 for 2 anchor points or degree 2 for
3 anchor points, and are evaluated at ξi = ±1 and

hN,ξi=+1(ξ) =
1 + ξ

2
hN,ξi=−1(ξ) =

1− ξ
2

.
�� ��6.105

Again, remember that the Lagrange-Legendre polynomials evaluated at a GLL point have
a value of either 0 or 1. Any point in the physical element is given by the following relation:

X(ξ, η, ζ) =
(

1 + ξ

2

)(
1 + η

2

)(
1 + ζ

2

)
X1 +

(
1 + ξ

2

)(
1− η

2

)(
1 + ζ

2

)
X2

+
(

1− ξ
2

)(
1− η

2

)(
1 + ζ

2

)
X3 +

(
1− ξ

2

)(
1 + η

2

)(
1 + ζ

2

)
X4,

+
(

1 + ξ

2

)(
1 + η

2

)(
1− ζ

2

)
X5 +

(
1 + ξ

2

)(
1− η

2

)(
1− ζ

2

)
X6

+
(

1− ξ
2

)(
1− η

2

)(
1− ζ

2

)
X7 +

(
1− ξ

2

)(
1 + η

2

)(
1− ζ

2

)
X8.�� ��6.106

where Xa are the four anchor points of coordinates (xa, ya).

Physical locations of the nodes. Consider a simple hexahedral element of length a. To
find the points in the x, y and z direction, we need only know the maximum and minimum x
values for that element in order to give the ξ values of the Gauss–Lobatto–Legendre points,
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i.e., the ith x value is

xi =
1
2

(xmin + xmax) +
1
2

(xmax − xmin) ξGLL(i)

= a ξGLL(i),
�� ��6.107

yj =
1
2

(ymin + ymax) +
1
2

(ymax − ymin) ηGLL(j)

= a ηGLL(i),
�� ��6.108

zl =
1
2

(zmin + zmax) +
1
2

(zmax − zmin) ζGLL(l)

= a ζGLL(l).
�� ��6.109

The first derivatives can easily be calculated in this case:

∂x

∂ξ
= a,

∂x

∂η
= 0,

∂x

∂ζ
= 0

∂y

∂η
= a,

∂y

∂ξ
= 0,

∂y

∂ζ
= 0

∂z

∂ζ
= a,

∂z

∂ξ
= 0,

∂z

∂η
= 0.

�� ��6.110

The Jacobian is defined by the determinant of the first derivative functions, so for this type
of simple square element of length a we have

|J |k =
∣∣∣∣∂(x, y, z)
∂(ξ, η, ζ)

∣∣∣∣ = a3.
�� ��6.111

Figure 6.9: Schematic representations of a hexahedral element with 8 anchor points and 27
anchor points.

6.10 Time discretization for evolution problems

There are many time discretization schemes, explicit, implicit, semi-implicit multistep meth-
ods. Typically most packages have a few different methods available. Once a scheme has
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been chosen, the problem can be discretized in time as well as in space. We have chosen a
Runge–Kutta fourth order method for the time discretization.

The time discretization of the system

U̇ = AU + F = f(U, t),
�� ��6.112

is computed by an explicit fourth order Runge–Kutta method. Given an initial condition
U0, the solution Un+1 at time tn+1 is determined from the previous time tn and solution Un
as follows:

(RK4)



k1 = f(Un, tn)
k2 = f(Un + a21∆t k1, tn + c2∆t)
k3 = f(Un + a31∆t k1 + a32∆t k2, tn + c3∆)
k4 = f(Un + a41∆t k1 + a42∆t k2 + a43∆t k3, tn + c4∆t)

Un+1 = Un + ∆t (b1k1 + b2k2 + b3k3 + b4k4) .

�� ��6.113

To specify a particular method, one needs to provide the number of stages (here we use 4
stages and fourth order), and the coefficients aij , bi and ci. These data are usually arranged
in a mnemonic device, known as a Butcher tableau:

0
c2 a21

c3 a31 a32

c4 a41 a42 a43

b1 b2 b3 b4

The Runge–Kutta method is consistent if

i−1∑
j

aij = ci ∀i = 2, · · · , 4.
�� ��6.114

There are also other requirements, if we require the method to have a certain order p, mean-
ing that the truncation error is O(∆tp+1). These can be derived from the definition of the
truncation error itself.

In all our numerical simulations, we have used the particular coefficients:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

And hence, we have used in this thesis, the following fourth order Runge–Kutta method

162



6.11. FILTERING TECHNIQUES

with the spectral elements:

(RK4)



k1 = f(Un, tn)

k2 = f(Un +
∆t
2
k1, tn +

∆t
2

)

k3 = f(Un +
∆t
2
k2, tn +

∆t
2

)

k4 = f(Un + ∆t k3, tn + ∆t)

Un+1 = Un +
∆t
6

(k1 + 2k2 + 2k3 + k4) .

�� ��6.115

There are no large systems to solve or inversions of large matrices due to the explicit foward
scheme used.

6.11 Filtering techniques

Many hyperbolic problems lead to discontinuous solutions, solutions of limited regularity
or even solutions featuring sharp gradients. What happens with the SEM when disconti-
nuities and shocks develop in the solution? What can we expect regarding accuracy and
stability in such situations? In general, the accuracy of high order methods deteriorates in
these situations, the pointwise error convergence of global approximations of discontinu-
ous functions is at most first order. Furthermore, there is a loss of pointwise convergence
at the point of discontinuity. On top of this, artificial and persistent oscillations are intro-
duced around the point of discontinuity with possible propagation destroying the solution
globally. In nonlinear equations, the situation can get much worse, the nonlinear interac-
tion of the oscillations with the numerical solution will increase the energy of all the modes,
thereby resulting in nonlinear instability, that is unbounded growth of high-frequency en-
ergy in time. This is due to the well known Gibbs phenomenon, which can potentially be
treated by adding an artificial dissipation term that will stabilize the method; or, by filter-
ing the high-frequency oscillations either in physical space or modal space. For a more
complete analysis on filtering techniques and implementations , see the very informative
books [137] and [138].

Filtering is a numerical technique more and more popular in spectral and spectral ele-
ment methods for various reasons:

1. The numerical approximation can be stabilized and it results in a more robust method.

2. Filtering discontinuous functions can recover high-order accuracy in the smooth re-
gions away from the discontinuity.

In modal space, the coefficients û of a spectral expansion for u can be multiplied by a filter
function σ(η). The filter function needs to have several properties: It is a infinitely differen-
tiable function, and it should be equal to unity around the origin in order not to change the
mean value of the filtered function u.
A filter is a real and even function σ(η) of order p if:

1. σ(0) = 1, σ(l)(0) = 0, with 1 ≤ l ≤ p− 1;
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2. σ(η) = 0 for |η| ≥ 1;

3. σ(η) ∈ Cp−1, for η ∈ (−∞,∞).

Let us introduce two commonly used filter functions:

The Exponential filter :

σ
( n

Nc

)
=

{
1, 0 ≤ n ≤ Nc

exp
[
−α

(
n−Nc
N−Nc

)p]
, Nc < n ≤ N,

�� ��6.116

where p is the order of the filter, α = − log ε (ε is the machine zero), and Nc is the cutoff
mode.

The Sharp cut-off filter

σ
( n

Nc

)
=

{
1, 0 ≤ n ≤ Nc

0, Nc < n ≤ N,
�� ��6.117

where Nc is the cutoff mode.

The numerical solution is approximated by

u(x) ∼ uN (x) =
N∑
n=1

unhn(x),
�� ��6.118

where hn(x) are the Lagrange-Legendre polynomial basis functions. The nodal coefficients
un can are also written as an expansion by

un =
N∑
i=1

u∗iLi(x),
�� ��6.119

where Li are the Legendre polynomials obtained from the classical Jacobi polynomials. In
terms of matrix notations, one has for the nodal coefficients

u = VTh,
�� ��6.120

and the relation between the nodal coefficients u and modal coefficients u∗,

u = Vu∗,
�� ��6.121

where V is the Vandermonde matrix with respect to the Legendre polynomials (explicitly
defined below)and h are the Lagrange-Legendre polynomials defined by hj(ξi) = δij . Note
that the modal coefficients u∗ are recovered from the nodal coefficients ū by taking the
inverse of V by

u∗ = V−1u.
�� ��6.122
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For a nodal basis, a transformation to modal space employing the Vandermonde matrix
V or a combination of the Legendre polynomial basis is required first. Then a filter can
be applied on the new set of coefficients as a diagonal matrix. Finally, the coefficients are
transformed back to nodal space. Let us define a filter vector fi and filter diagonal f =
diag(f0, ..., fN ). The filtered modal values û∗ are produced by the matrix operation

û∗ = fu∗ = f V−1u,
�� ��6.123

thereby, the filtered nodal values can be recovered as

û = V f V−1ū = Fu,
�� ��6.124

where F is called the filter matrix. In terms of sum notations it is equivalent to

û =
∑
i

Fimum.
�� ��6.125

The Vandermonde matrix for the Legendre polynomials is

Vij =


L0(ξ0) L1(ξ0) L2(ξ0) · · · Lj(ξ0) · · · LN (ξ0)

...
...

...
...

...
L0(ξi) L1(ξi) L2(ξi) · · · Lj(ξi) · · · LN (ξi)

...
...

...
...

...
L0(ξN ) L1(ξN ) L2(ξN ) · · · Lj(ξN ) · · · LN (ξN )


�� ��6.126

An alternative to the Vandermonde matrix V is the Legendre transform matrix derived
in [139], given by

Lij =


L0(ξ0) L1(ξ0) L2(ξ0)− L0(ξ0) · · ·

...
...

...
L0(ξi) L1(ξi) L2(ξi)− L0(ξi) · · ·

...
...

...
L0(ξN ) L1(ξN ) L2(ξN )− L0(ξN ) · · ·

Lj(ξ0)− Lj−2(ξ0) · · · LN (ξ0)− LN−2(ξ0)
...

...
Lj(ξi)− Lj−2(ξi) · · · LN (ξi)− LN−2(ξi)

...
...

Lj(ξN )− Lj−2(ξN ) · · · LN (ξN )− LN−2(ξN )


�� ��6.127

The main reason for constructing the Legendre transform matrix as above instead of the
Vandermonde matrix is simple. In this case, only the first two modes L0 and L1 affect the
element boundary values, whereas the remainder of the modes only affect the element in-
terior values. Therefore, the filter can be applied in an element-by-element sense without
violating the C0 continuity condition at the element interfaces. These 2 filtering approaches
preserve the end-values and thus the inter-element continuity is not affected.
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In 2D, the filter is applied as follows:

ˆ̄u = FuFT .
�� ��6.128

In terms of sum notations, it is equivalent to

û =
∑
i

∑
j

FimFnjumn.
�� ��6.129

In 3D, the filter is applied as follows:

û = F
(

(uFT ) ·yz FT

)
.

�� ��6.130

Again in terms of sum notations, this is equivalent to

û =
∑
i

∑
j

∑
k

FimFnjFpkumnp.
�� ��6.131

How does one choose a filter? Should the filter be applied once or more per time step,
or once every several time steps? What is the effect of applying a filter repeatedly on the
accuracy of the approximation?

Non-idempotent filters tend to zero out all but the first couple of modes, and the effect
results in staircasing of the numerical solution. In comparison, an idempotent filter only
zeros out the highest modes n > Nc.

The Gibbs oscillations may look bad, but surprisingly, they do not destroy the attrac-
tive properties of the scheme. The highly oscillatory result contains the information needed
to reconstruct a spectrally accurate solution. Several model problems confirm Lax’s state-
ment [140]: information is contained in the oscillations associated with high order schemes,
and high-order schemes retain more information than lower-order schemes.

Shu and Wang [141] recovered spectral accuracy for the nonlinear Burgers equation
where discontinuity develops and moves around the domain. There is a very recent pro-
cedure that removes the Gibbs phenomenon completely, to obtain exponential accuracy in
the maximum norm in any interval of analyticity, based on the Fourier or Gegenbauer se-
ries of a discontinuous but piecewise analytic function. For details, we refer to the review
paper [142, 143].

6.12 Spectral elements and parallelization

One of the most attractive feature of the spectral element method, is its extremely good scal-
ability on parallel computers. Clusters or grids of computers have a distributed memory
architecture. The standard approach with parallel machines with distributed memory in a
portable way is to use message passing interfaces (MPI). When using an explicit time dis-
cretization (Runge-Kutta fourth order in this project), the SEM algorithm consists of small
local matrix products in each element. Therefore, processors spend most of their time doing
actual calculations, and there is only a small amount of time in the communication step. In
this light, we see that the SEM is not very sensitive to the speed of the network connecting
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different processors, which make this method highly suitable to run on clusters or grids of
computers.

Practically, one needs to split the mesh into as many domains as the number of available
processors. Calculations can be performed locally on each processor on the elements con-
tained in its corresponding domain. Then, one communication phase is required at each
timestep for the assembly process. MPI communication tables that contain the sequence
of messages that needs to be exchanged amongst the domains at each timestep need to be
created only once and for all when the mesh is built.

In the spectral multi-domain method, the C0 and C1 boundary conditions at the interface
of the elements have to be enforced explicitly. In contrast, the spectral element method uses
the variational principle to guarantee C0 and C1 (weakly) continuity at the interface, which
makes a parallel implementation more convenient.

In 2D, the computational cost grows proportionally to NEN
2
GLL, remember that NE is

the number of elements and NGLL is related to the interpolation polynomial order N by
NGLL = N + 1. The communication cost grows proportionally to N1/2

E NGLL. The speedup
S is the ratio of the computational time between the serial and parallel codes, it can roughly
be approximated (see [144]) by:

S =
p

(1 +N
−1/2
E N−2

GLL)
,

�� ��6.132

where p is the number of processors. This rough estimate shows that the communication
cost increases only linearly with the method’s order, whereas its computational cost in-
creases cubically, which gives a quadratic ratio between the two costs. In comparison, high-
order finite-difference methods have a quadratic increase of the communication cost with
the order of the method, because of the number of neighboor points that must pass between
processors increases. In the SEM, only edge points exchange information across elements.

6.13 Adaptive mesh refinement

Conforming elements require the implementation of interface conditions that are not too
difficult. However, using non-conforming grids is very appealing as their use allows for
parallel generation of meshes, adaptive mesh refinments and fast and independent solvers.
There are various ways to extend the conforming formulation to include non-conforming
elements, see [145]. Here is a of a few of them:

• Pointwise matching: This regains the lost C0 continuity at the non-conforming inter-
faces by enforcing pointwise projection of the unknowns.

• Mortar element method: In this method the lost C0 continuity is not regained but the
jump at the non-conforming interfaces minimized by enforcing a weighted-integral
matching.

• Robin interface conditions: This method is very recent [146] and is based on Schwarz
type approaches that allow for the use of Robin interface conditions on non-conforming
grids.
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• The DARe technique: This procedure is based on an interpolating scheme to maintain
continuity between elements. It is used in the package GASpAR in a fully dynamic
adaptivity context [130].

6.14 Available SEM packages

There are now several spectral element packages available:

• in Matlab: SEMLAB available at
http://www.gps.caltech.edu/̃ ampuero/software.html,

• in Fortran:
SPECFEM3D available at
http://www.geodynamics.org/cig/software/packages/seismo/specfem3d-globe,
SEM2DPACK available at
http://www.gps.caltech.edu/̃ ampuero/software.html,
shallow water, available at
http://frederic.dupont8.free.fr/science/download.html#spoc,
SEPRAN, available at
http://ta.twi.tudelft.nl/sepran/sepran.html.

• in C++: GASpAR available at http://www.image.ucar.edu/TNT/Software/GASpAR/

SEMLAB: This package uses the spectral element method for 1D and 2D SH seismic wave
propagation.

SPECFEM3D: This package simulates 3D global and regional seismic wave propagation
in parallel but is very specific to this problem.

SEM2DPACK: This package uses the 2D Spectral Element Method for seismic wave prop-
agation and earthquake dynamics. It is ideal for realistic 2D models (e.g. sedimentary
basins, non-planar faults, heterogeneous or non-linear media).

shallow water: This package is based on a PhD thesis by Frederic Dupont McGill Uni-
versity in Montreal ”Comparison of numerical methods for modelling ocean circulation in
basins with irregular coasts”. It is written in parallel and is very specific to this problem
and minimally documented.

SEPRAN: This package is a spectral element library written in Fortran 77, it does not have
adaptive mesh refinement but can be used in parallel and has extensive user guides.

GASpAR: This is an adaptive spectral element code for geophysics and astrophysics. It
has a lot of documentation and examples, see [130]. However, it does not seem to be very
portable, it compiles with the Protland group compiler (PGI) (commercial) but does not
seem to compile with the free GNU compiler collection (gcc). It would take a lot of work to
correct all the errors and change the code to make it portable to gcc.
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6.15. CONCLUSION

6.15 Conclusion

In this Chapter, we have presented an overview of the theory of the spectral element method.
While the theory contains high levels of functional analysis and may be somewhat off-
putting, this method has many successes in many different fields and offers great advan-
tages over other numerical methods. The SEM combines the theory of spectral and pseudo-
spectral methods for high order polynomials and the variational formulation of finite ele-
ments and the associated geometric flexibility.

The variational formulation is applied to the problem at hand and the weak formulation
is then obtained. Space is divided into a number of elements, and the solution is written
with local Lagrange–Legendre basis functions that are non-zero over a couple of elements.
The spectral element discretization of the problem reduced to its weak form, results in el-
emental matrix forms of the problem. After the assembly process, one can obtain a global
system of algebraic equations of the problem (typically sparse matrices for conforming ele-
ments) to solve. For explicit time stepping scheme, such a Runge–Kutta fourth order, there
are no full matrix (non-sparse) to invert as the Mass matrix is diagonal due to the choice of
the GLL quadrature.

We have introduced filtering techniques that can be useful for the SEM as stabilization
techniques and as recovering high-accuracy in the smooth region away from any present
discontinuity in the solution.

Finally, we have discussed the extremely good scalability of the SEM on parallel com-
puters.
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The art of doing mathematics consists in find-
ing that special case which contains all the
germs of generality.

David Hilbert (1862–1943) 7
The Spectral Element Method for the wave

equation in 1D and 3D

This chapter applies the spectral element method (SEM) to a wave equation in 1D and
3D. The purpose here is to illustrate the application of the method described in a more

theoretical framework in chapter 6 to a concrete problem, and show the consequent numer-
ical results.

The wave equation is typically a second-order linear partial differential equation that
describes the propagation of a variety of waves, such as sound waves, light waves and
water waves. It arises in fields such as acoustics, electromagnetics, and fluid dynamics. The
following wave equation belongs to the class of hyperbolic problems:

∂ttu = c2∇2u,
�� ��7.1

where ∇2 is the Laplacian and where c is a fixed constant equal to the propagation speed
of the wave. There is a very simple general solution to the 1 dimensional wave equation. If
we now define 2 new variables by

v = r − ct
�� ��7.2

w = r + ct,
�� ��7.3

the wave equation is changed into

∂2u

∂v∂w
= 0.

�� ��7.4

General solutions of equation 7.4 are of the form

u(v, w) = F (v) +G(w),
�� ��7.5

which is equivalent to

u(x, t) = F (x− ct) +G(x+ ct).
�� ��7.6

General solutions of the 1D wave equation are sums of a left traveling function F and a
right traveling function G.
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Spherical waves are waves whose amplitude depends only upon the radial distance r from
a central point source. For such waves, the three-dimensional wave equation takes the form

∂ttu = c2

(
∂rru+

2
r
∂ru

)
.

�� ��7.7

Note that we can rewrite equation 7.7 as

∂tt(ru) = c2

(
∂rr(ru)

)
,

�� ��7.8

so, the quantity ru satisfies the 1D wave equation. Therefore, the general solution for spher-
ical wave equations takes the form

u(r, t) =
F (r − ct) +G(r + ct)

r
.

�� ��7.9

To illustrate the spectral element method, we choose a 3D exact spherical solution ur with
no source term of the form,

ur(r, t) =
e−(r−t)2 − e−(r+t)2

r
,

�� ��7.10

where r =
√
x2 + y2 + z2. The speed of the wave has been set to c = 1 here. The motivation

behind this particular solution is a numerically well-behaved solution everywhere on the
domain Ω = [−L,L]. Note that for this particular solution, all the following limits are finite:

lim
r→0

u(r, t) =
4
et2

;
�� ��7.11

lim
r→∞

u(r, t) = 0;
�� ��7.12

lim
t→0

u(r, t) = 0;
�� ��7.13

lim
t→∞

u(r, t) = 0.
�� ��7.14

We choose to implement the spectral element method to illustrate our 1D and 3D exam-
ples with Matlab. Matlab is an interpreted language and is ideal for developing and testing
the SEM, in particular with fast and simple matrix vectorization calculations and relatively
easy computer graphic visualization. See section 9.4.1 for more explanations on our choice
of the Matlab language for this project.

7.1 Hyperbolic system first order in space and time in 1D

Remember from section 5.4.2 , that the BSSN system is hyperbolic and more importantly,
first order in time. The wave equation presented in 7.1, however, is second order in time
and in space. We therefore convert the wave equation into a hyperbolic system first order
in time and space to deal with a simplified system as close as possible as the BSSN system.
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7.1.1 Wave equation with source term

The wave equation on the domain x ∈ [−L,L] is

∂ttu− ∂xxu = S(x, t).
�� ��7.15

Ultimately we want to look at the 3D version of the problem with Sommerfeld-like bound-
ary conditions, we therefore adapt the 1D wave equation to have this kind of solution. This
is why we introduce a source term. This equation is second order in space and in time. One
needs an initial condition u0 = u(x, t0) and boundary conditions. We use the Sommerfeld-
like absorbing or non-reflecting boundary conditions so that

∂xu(L, t) + ∂tu(L, t) = 0;
�� ��7.16

∂xu(−L, t)− ∂tu(−L, t) = 0.
�� ��7.17

Exact solution To evaluate the spectral element method accuracy we will compare the
numerical solution to an exact solution. The following solution ur, is an exact solution with
no source term in 3D only, where r =

√
x2 + y2 + z2:

ur(r, t) =
e−(r−t)2 − e−(r+t)2

r
.

�� ��7.18

If we take r = x we obtain a 1D version,

ux(x, t) =
e−(x−t)2 − e−(x+t)2

x
.

�� ��7.19

However, equation 7.19 does not satisfy the wave equation, we therefore need to introduce
a source term S(x, t) so that:

S(x, t) = ∂ttux − ∂xxux

=
2
x3

{
2
[
xe−(−x+t)2

(−x+ t) + xe−(x+t)2
(x+ t)

]
− e−(−x+t)2

+ e−(x+t)2

}
.

�� ��7.20

Now the function ux is the solution of the inhomogeneous wave equation

S(x, t) = ∂ttux − ∂xxux.
�� ��7.21

From now on, we will denote ux = u to simplify notations.

Initial and boundary conditions

The initial condition of the solution for t0 = 0 is

u(x, 0) = u0(x) = 0.
�� ��7.22
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For the derivatives, we have

∂xu(x, 0) = ux0(x) = 0,
�� ��7.23

∂tu(x, 0) = ut0(x) = 4e−x
2
.

�� ��7.24

The absorbing boundary conditions are not exactly verified in 1D, therefore, we deter-
mine the function b1(x, t) and b2(x, t) so that:

∂xu(L, t) + ∂tu(L, t) = b1(L, t)
�� ��7.25

∂xu(−L, t)− ∂tu(−L, t) = b2(L, t) = −b1(L, t).
�� ��7.26

The boundary function b1(L, t) has the following properties:

lim
L→∞

b1(L, t) = 0;
�� ��7.27

lim
t→∞

b1(L, t) = 0.
�� ��7.28

In view of the above limits, the right hand sides of equation (7.25) and (7.26) go to 0 expo-
nentially for a large enough value of L. In other words, the boundary conditions are only
approximate, but a sufficiently distant outer boundary can always be chosen such that they
are correct to some required accuracy, for a certain time. Therefore the boundary conditions
are numerically verified for this particular choice of source term and exact solution.

7.1.2 System of 3 unknowns: strong formulation

The BSSN system is a strongly hyperbolic system of order 1 in time and of order 2 in space.
Thereby, we present the wave equation reformulated as a hyperbolic system of first order
in time. Let’s define u1 = u and then introduce 2 more variables,

u2 = ∂xu1;
�� ��7.29

u3 = ∂tu1.
�� ��7.30

The wave equation can be rewritten as a system
∂tu1 = u3

∂tu2 = ∂xu3

∂tu3 = ∂xu2 + S(x, t)
.

�� ��7.31

The system (7.31) can be written in matrix form

∂tU = AU + F,
�� ��7.32

where U = (u1 u2 u3)T , F = (0 0 S(x, t))T , and

A =

 0 0 1
0 0 ∂x
0 ∂x 0

 .
�� ��7.33
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The initial conditions on u1, u2 and u3 are given in terms of the initial condition u0, its initial
first space derivative (∂xu)0 and its initial first time derivative (∂tu)0. For the exact solution
we are looking at we have:

u2(x, 0) = ux0(x) = 0,
�� ��7.34

and

u3(x, 0) = ut0(x) = −12e−x
2
.

�� ��7.35

The absorbing boundary conditions (7.25) and (7.26) translate into a relation between
the two introduced variables,

u2(L, t) + u3(L, t) = b1(x, t),
�� ��7.36

u2(−L, t)− u3(−L, t) = b2(x, t).
�� ��7.37

For the exact solution we are looking at, these two relations (7.36) and (7.37) are not exact,
but only approximately verified.

7.1.3 Weak formulation

We apply the variational formulation to the system (7.31) by multiplying the unknowns
with a test function w, and integrating over the whole domain Ω. We obtain the weak
formulation ∫

Ω
∂tu1 w dx =

∫
Ω
u3 w dx,

�� ��7.38∫
Ω
∂tu2 w dx =

∫
Ω
∂xu3 w dx︸ ︷︷ ︸

I1

,
�� ��7.39

∫
Ω
∂tu3 w dx =

∫
Ω
∂xu2 w dx︸ ︷︷ ︸

I2

+
∫

Ω
S(x, t) w dx .

�� ��7.40

Weak formulation version 1

The boundary conditions ( 7.36) and ( 7.37) are introduced when integrating I1 or/and I2

by parts,

I1 =
[
u3 w

]L
−L
−
∫

Ω
u3 ∂xw dx,

�� ��7.41

= −u2(L, t)w(L)− u2(−L, t)w(−L)−
∫

Ω
u3 ∂xw dx,

�� ��7.42

and

I2 =
[
u2 w

]L
−L
−
∫

Ω
u2 ∂xw dx,

�� ��7.43

= −u3(L, t)w(L) + u3(−L, t)w(−L)−
∫

Ω
u2 ∂xw dx.

�� ��7.44
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In this version of the weak formulation we choose to integrate by parts both I1 and I2. In
the next section we present an alternative weak formulation where we integrate by parts
only I2 in order to introduce the boundary conditions. The two versions differ numerically
only slightly in amplitudes of the order of the numerical error. When we consider the 2D
version of this system, it is not practical to integrate the 2D equivalent of I1 as it would
require the component in the x direction of the unknown u3 rather than the unknown itself.
In 1D both weak formulations are equivalent because the x-component of the unknown is
the unknown itself.

When integrating by parts both integrals I1 and I2, the final weak formulation (version
1) of the system is∫

Ω
∂tu1 w dx =

∫
Ω
u3 w dx,

�� ��7.45∫
Ω
∂tu2 w dx = −u2(L, t)w(L)− u2(−L, t)w(−L)−

∫
Ω
u3 ∂xw dx,

�� ��7.46∫
Ω
∂tu3 w dx = −u3(L, t)w(L) + u3(−L, t)w(−L)−

∫
Ω
u2 ∂xw dx

+
∫

Ω
S(x, t) w dx.

�� ��7.47

We need to define the space of solutions and test functions. Let’s define the space of mea-
surable functions V = L2(Ω) and the Hilbert space

W = H1(Ω) =
{
w ∈ L2(Ω) and ∂xw ∈ L2(Ω)

}
.

�� ��7.48

All 3 unknowns are defined in the space V , whereas the test functions w is defined in W .
Ultimately this means that the solution u = u1 to the original wave equation belongs to the
space

U =
{
u ∈ L2(Ω), ∂xu ∈ L2(Ω), and ∂tu ∈ L2(Ω)

}
.

�� ��7.49

Weak formulation version 2

In preparation for solving this problem in higher dimensions, we present an alternative
weak formulation that is more practical in 2D and 3D. The boundary conditions ( 7.36)
and ( 7.37) are introduced when integrating I2 only by parts. As mentioned in the previous
subsection the motivation comes from the fact that integrating the 2D equivalent of I1 would
require the x-component of the unknown u3 and would require some kind of projection
operator.

When integrating by parts only integral I2, the final weak formulation (version 2) of the
system is ∫

Ω
∂tu1 w dx =

∫
Ω
u3 w dx,

�� ��7.50∫
Ω
∂tu2 w dx =

∫
Ω
∂xu3 w dx

�� ��7.51∫
Ω
∂tu3 w dx = −u3(L, t)w(L)− u3(−L, t)w(−L)

−
∫

Ω
u2 ∂xw dx+

∫
Ω
S(x, t) w dx.

�� ��7.52
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In this alternative weak formulation u1, u2 and u3 are defined in the space V , whereas the
test function w is inW .

7.1.4 Domain Discretization

The domain Ω is decomposed into NE sub-domains Ωk such that

Ω̄ =
K⋃

k=0

Ω̄k, ∀k, l Ωk
⋂
k 6=l

Ωl = 0,
�� ��7.53

where Ω̄ is the closure of the domain Ω. The weak formulation is applied in each subdo-
main Ωk individually, version 1 becomes∫

Ωk

∂tu
k
1 w

k
1 dx =

∫
Ωk

uk
3 w

k
1 dx,

�� ��7.54∫
Ωk

∂tu
k
2 w

k
2 dx =

(
− uk

2 (L, t)wk
2 (L)− uk

2 (−L, t)wk
2 (−L)

)
bdy

−
∫

Ωk

uk
3 ∂xw

k
2 dx,

�� ��7.55∫
Ωk

∂tu
k
3 w

k
3 dx =

(
− uk

3 (L, t)w(L)− uk
3 (−L, t)wk

3 (−L)
)

bdy

−
∫

Ωk

uk
2 ∂xw

k
3 dx+

∫
Ωk

Sk wk
3 dx

�� ��7.56

Note that the boundary terms in (7.55) and (7.56) are relevant only for the 2 elements that
share a node with the boundary x = −L and x = L. If the source term S(x, t) is given as a
function of x and t, then Sk is nothing but the restriction of S(x, t) to the subdomain Ωk.

In terms of the second version of the weak formulation, we write in each subdomain Ωk

individually and version 2 becomes∫
Ωk

∂tu
k
1 w

k
1 dx =

∫
Ωk

uk
3 w

k
1 dx,

�� ��7.57∫
Ωk

∂tu
k
2 w

k
2 dx =

∫
Ωk

∂xu
k
3 w

k
2 dx,

�� ��7.58∫
Ωk

∂tu
k
3 w

k
3 dx =

(
− uk

3 (L, t)w(L)− uk
3 (−L, t)wk

3 (−L)
)

bdy

−
∫

Ωk

uk
2 ∂xw

k
3 dx+

∫
Ωk

Sk wk
3 dx

�� ��7.59

Important remark: Normally, if we integrate by parts on each element separately there
would be a number of boundary terms at the interior boundaries. For the exact solutions
these terms cancel in pairs, but the spectral elements are only C0 and the subdomain wall
boundary terms do not cancel. This difference arises from the fact that discretization and
differentiation of the weak form do not commute for C0 spectral elements. These extra terms
go to zero in the limit so the spectral element strategy is to ignore them which is equivalent
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to performing an integration by parts first and discretization second. This is referred to as
the variational crime [120].

In each subdomain, the solutions uk
1 , u

k
2 and uk

3 are expanded into cardinal function
series of polynomial order N ,

∀uk
1 ∈ Vh, uk

1 (x, t) =
m=N∑
m=0

uk
1m(t) hm(x),

�� ��7.60

∀uk
2 ∈ Vh, uk

2 (x, t) =
m=N∑
m=0

uk
2m(t) hm(x),

�� ��7.61

∀uk
3 ∈ Vh, uk

3 (x, t) =
m=N∑
m=0

uk
3m(t) hm(x).

�� ��7.62

The elemental Lagrangian interpolants hm(ξ) are chosen as basis functions and uk
1m(t) =

uk
1m(x, t) are the nodal basis coefficients. The space Vh = V

⋃
PN,k(Ω) is taken to be a

subspace of V which consists of all piecewise high order polynomials of degree less than or
equal to N defined on Ωk. Furthermore, we have the definition

PN,K(Ω) =
{
θ ∈ L2(Ω), θ|

Ωk
∈ PN (Ωk)

}
.

�� ��7.63

The test function w is selected to be the same as the shape functions hm(x) used for the
unknowns uk

1 , u
k
2 and uk

3 , and therefore

wk
1 (x) =

a=N∑
a=0

ha(x),
�� ��7.64

wk
2 (x) =

a=N∑
a=0

ha(x),
�� ��7.65

wk
3 (x) =

a=N∑
a=0

ha(x).
�� ��7.66

Note that here, the same test functions are used for each variable, but they could in prin-
ciple be different if, for example, one was to choose a different polynomial order for each
unknown. Recall from the discussion in the previous chapter, that, in the case of the Navier-
Stokes equations the velocity u can be written with polynomial order N and the pressure
with order N − 2. This avoids spurious modes and hence the test functions associated with
u and p respectively are different.

On each element Ωk there are NGLL = (N + 1) nodal points but in total there are Ng =
N × NE + 1 global nodal points. One needs to create a global numbering function that
keeps track of local and global nodes on the domain Ω. Let I denote global indices which
are functions of the element index k and the index a within each element, for example,

I(a, k) = N(k − 1) + a.
�� ��7.67
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Master Element

To apply the quadrature rule on each element, one needs to define an affine transformation
to map each spectral element Ωk to the reference or master element Λ. Let us define the
local elemental mappings:

xk(ξ) = xk
m hm(ξ),

�� ��7.68

where there is a summation on m. We can now map the physical elements (xk) ∈ Ωk

onto the computational domain (ξ) ∈ Λ. We denote by Jk the Jacobian associated to this
mapping such that

Jk =
∂xk

∂ξ
=
(
∂x

∂ξ

)k

.
�� ��7.69

By ∂xk/∂ξ we refer to ∂x/∂ξ for some point x in the kth element Ωk. We refer to |Jk| as the
determinant of the Jacobian Jk. This change of variable is a key component of the method
and |Jk| appears in the elemental matrix discretization.

x2
2x2

1x1
3

x1
4 = x2

0

x1
2x1

1x1
0

xNgx11x10x9x8x7x6x5x4x3x2x1x0

Ω1 Ω2 Ω3

element numbering

global numbering

local numbering
x3

4x3
3x3

2x3
1

x2
4 = x3

0

x2
3

Figure 7.1: Illustration of a 1D SEM mesh with 3 elements of order N = 4 and NGLL = 5
GLL (Gauss–Lobatto–Legendre) points per element.

Figure 7.1 illustrates a homogeneous 1D spectral element mesh with 3 elements of order
N = 4 with 5 GLL points per element Ωk. Practically, derivatives with respect to the phys-
ical coordinate x are evaluated in terms of the computational coordinate ξ. The mapping
from the element xk ∈ Ωk = [Xk, Xk+1] to the computational space used is

ξ =
2

∆xk
(xk −Xk)− 1,

�� ��7.70

where ∆xk = Xk+1 −Xk so that
∂xk

∂ξ
=

∆xk

2
,

�� ��7.71

and hence, the determinant of the Jacobian is

|Jk| =
∆xk

2
.

�� ��7.72

In particular, |Jk| is the same for all the elements ∀ k in the case of a homogeneous (evenly
decomposed) domain.
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Elemental matrix forms

On each subdomain, each integral is discretized in a similar fashion.

Elemental Mass matrix Mk: The test functions are non zero for only one nodal point per
element. We apply the method of weighted residuals to the integral

∫
Ωk u

k
3 w

k dx and write
for each value a ∈ {0, N}∫

Ωk

uk
3 w

k
a dx =

∫
Ωk

m=N∑
m=0

uk
3mhm(x) ha(x) dx.

�� ��7.73

The first step is to do a change of variable from the physical coordinate to the computational
coordinate and then apply the GLL quadrature rule to the integral with weights ρk

q .

∫
Ωk

m=N∑
m=0

uk
3mhm(x) ha(x) dx =

∫
Λ

m=N∑
m=0

uk
3mhm(ξ) ha(ξ) |Jk|dξ

�� ��7.74

=
q=N∑
q=0

m=N∑
m=0

uk
3mhm(ξq) ha(ξq) ρk

q |Jk|.

Now we use the properties of the Legendre interpolant. In particular equation (6.61) states
that

hi(ξj) = δij .
�� ��7.75

We can then write for each value i ∈ {0, N},∫
Ωk

m=N∑
m=0

uk
3mhm(x) ha(x) dx =

m=N∑
m=0

uk
3m

q=N∑
q=0

δqm δqa ρ
k
q |Jk|

= ρk
a |Jk|uk

3a.
�� ��7.76

To adopt a matrix form we can write for each element Ωk the system of N unknowns uk
3i

∫
Ωk

m=N∑
m=0

uk
3mhm(x)h0(x)dx

...∫
Ωk

m=N∑
m=0

uk
3mhm(x)ha(x)dx

...∫
Ωk

m=N∑
m=0

uk
3mhm(x)hN (x)dx



k

=



. . . 0
ρk
a |Jk|

0 . . .



k

︸ ︷︷ ︸
Mk


uk

30
...
uk

3a
...

uk
3N



k

︸ ︷︷ ︸
uk

3 �� ��7.77

We define the local or elemental mass matrix Mk by

Mk
am = δam ρk

a |Jk|.
�� ��7.78

180



7.1. HYPERBOLIC SYSTEM FIRST ORDER IN SPACE AND TIME IN 1D

Note that Mk is diagonal due to the choice of the inexact1 GLL quadrature formula used in
the SEM. Therefore, on each element we have the following discretization,

∫
Ωk

uk
3 w

k
1 dx =

m=N∑
m=0

Mk
amu

k
3m = Mk ⊗ uk

3 .
�� ��7.79

The notation ⊗ is matrix multiplication operator that depends on the elemental matrix it is
applied and on the spatial dimension. In the 1D case, and for the local mass matrix this ⊗
operator is a regular matrix multiplication. We will see more definitions of the ⊗ operator
in the coming sections and in 3D. The following integrals have a similar discretization,∫

Ωk

∂tu
k
1 w

k
1 dx = Mk ⊗ u̇k

1 ,
�� ��7.80∫

Ωk

∂tu
k
2 w

k
2 dx = Mk ⊗ u̇k

2 ,
�� ��7.81∫

Ωk

∂tu
k
3 w

k
3 dx = Mk ⊗ u̇k

3 ,
�� ��7.82

where
u̇k

1 = ∂tu
k
1 .

�� ��7.83

Elemental Force vector: To obtain the elemental force vector that arises from the integral
on each subdomain Ωk ∫

Ωk

Sk wk
3 dx,

�� ��7.84

we proceed in a similar fashion as for the elemental mass matrix.
For each value i ∈ {0, N}we have,∫

Ωk

Sk wk
3a dx =

∫
Ωk

Sk(x) ha(x) dx
�� ��7.85

Again, the first step is to do a change of variable from the physical coordinate to the com-
putational coordinate and then apply the GLL quadrature rule to the integral with weights
ρk
q . ∫

Ωk

Sk(x) ha(x) dx =
∫

Λ
Sk(ξ) ha(ξ) |Jk|dξ

�� ��7.86

=
q=N∑
q=0

Sk(ξq) ha(ξq) ρk
q |Jk|,

�� ��7.87

=
q=N∑
q=0

Sk(ξq) δqa ρk
q |Jk|

�� ��7.88

1We recall that the GLL quadrature rule is exact for an integrand of order 2N − 1 or less. With the SEM, the
integrand is a product of 2 basis functions or order N which results in a polynomial of order 2N . However, by
choosing an inexact quadrature rule, the mass matrix is by construction diagonal which is computationally a
very important advantage.
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Simplifying further, we can write for each value a = {0, N},∫
Ωk

Sk(x) ha(x) dx = Sk
a ρ

k
a |Jk|.

�� ��7.89

Adopting a vector notation, we can write for each element Ωk the vector of N elements

∫
Ωk

Sk(x)h0(x)dx

...∫
Ωk

Sk(x)ha(x)dx

...∫
Ωk

Sk(x)hN (x)dx



k

=



ρk
1 |Jk| Sk

0
...

ρk
a |Jk| Sk

a
...

ρk
N |Jk| Sk

N



k

︸ ︷︷ ︸
Fk

�� ��7.90

We define the local or elemental force vector Fk by

Fk
a = ρk

a |Jk| Sk
a ,

�� ��7.91

where Sk
a = Sk(ξa). Therefore, on each element we have the following discretization,∫

Ωk

Sk wk
3 dx = Fk.

�� ��7.92

Elemental Advection matrix: Typically the advection matrix arises from integral terms of
this form

• in version 1 ∫
Ωk

uk
3 ∂xw

k
2 dx;

�� ��7.93

• in version 2 ∫
Ωk

∂xu
k
3 w

k
2 dx.

�� ��7.94

In both integrals one derivative term is present and they generate related elemental advec-
tion matrices respectively Dk and Ak. Again the discretization process of these integrals is
somewhat similar to the one of the elemental mass matrix.

For each element Ωk and each value i = {0, N} that corresponds to each nodal point,∫
Ωk

uk
3 ∂xw

k
2 dx =

∫
Ωk

m=N∑
m=0

uk
3mhm(x) ∂xha(x) dx.

�� ��7.95

Once again, we apply a change of variable from the physical coordinate to the computa-
tional coordinate and then apply the GLL quadrature rule to the integral with weights ρk

q .∫
Ωk

m=N∑
m=0

uk
3mhm(x) ∂xha(x) dx =

∫
Λ

m=N∑
m=0

uk
3mhm(ξ) ∂ξha(ξ)

∂ξ

∂x
|Jk|dξ

=
q=N∑
q=0

m=N∑
m=0

uk
3mhm(ξq) ∂ξha(ξq) ρk

q .
�� ��7.96
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Remember that in 1D ∂xk/∂ξ = |Jk|, so that the determinant of the Jacobian disappears in
the advection integral. The derivative of the Lagrange-Legendre interpolant is defined in
equation (6.62)

∂ξhi(ξj) = Hji.
�� ��7.97

Therefore, we can write for each nodal point,∫
Ωk

m=N∑
m=0

uk
3mhm(x) ∂xha(x) dx =

m=N∑
m=0

uk
3m

q=N∑
q=0

δqm Hqa ρ
k
q .

�� ��7.98

To adopt a matrix form we can write for each element Ωk the system of N unknowns uk
3a

∫
Ωk

m=N∑
m=0

uk
3mhm(x)∂xh0(x)dx

...∫
Ωk

m=N∑
m=0

uk
3mhm(x)∂xha(x)dx

...∫
Ωk

m=N∑
m=0

uk
3mhm(x)∂xhN (x)dx



k

=


ρk

0H00 · · · ρk
NHN0

... ρk
qHqa

...

ρk
0H0N · · · ρk

NHNN


k

︸ ︷︷ ︸
Dk


uk

30
...
uk

3a
...

uk
3N



k

︸ ︷︷ ︸
uk

3 �� ��7.99

We define the local or elemental advection matrix Dk by

Dk
am =

m=N∑
m=0

δqm Hqa ρ
k
q = ρk

mHma =
(
ρk
m Ham

)T
.

�� ��7.100

Note that Dk is not diagonal. Finally, on each element we have the following discretization,∫
Ωk

uk
3 ∂xw

k
2 dx =

m=N∑
m=0

Dk
amu

k
3m = Dk ⊗ uk

3 .
�� ��7.101

The following integral has a similar discretization,∫
Ωk

uk
2 ∂xw

k
3 dx =

m=N∑
m=0

Dk
amu

k
2m = Dk ⊗ uk

2 .
�� ��7.102

When keeping the original integral in version 2

I1 =
∫

Ωk

∂xu
k
3 w

k
2 dx

�� ��7.103

the discretization is slightly different. We obtain in this case∫
Ωk

∂xu
k
3 w

k
2 dx =

m=N∑
m=0

Ak
amu

k
3m = Ak ⊗ uk

3 ,
�� ��7.104
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where

Ak
am =

m=N∑
m=0

Hqm δqa ρ
k
q = ρk

aHam.
�� ��7.105

We have the relation between those two types of matrices in 1D only,

Ak =
(
Dk
)T

.
�� ��7.106

Elemental boundary terms: As mentioned earlier, in an Important remark, the treatment
of the elemental boundary terms is special. If we integrate by parts on each element sepa-
rately there would be a number of boundary terms at the interior boundaries. The spectral
element strategy is to ignore these extra interior terms and only take into account the terms
on the elements at the boundary. In 1D, this means that we only look at the boundary terms
at the first and last global nodes. Let’s define the boundary matrix Bk so that

Bk ⊗ uk
2 =


−u1

2(−L, t) δ(−L)
0
...
0

−uNE2 (L, t) δ(L)



k

=


−u1

2I(0,1) δiI(0,1)

0
...
0

−uNE2I(N,NE) δiI(N,NE)



k

.
�� ��7.107

Furthermore we have the boundary term

Bk ⊗ uk
3 =


−u1

3I(0,1) δiI(0,1)

0
...
0

−uNE3I(N,NE) δiI(N,NE)



k

.
�� ��7.108

7.1.5 Elemental matrix system

Version 1 In each subdomain Ωk, we have the following discretization of the weak for-
mulation (version 1) of equations (7.183), (7.184) and (7.185),

Mk ⊗ u̇k
1 = Mk ⊗ uk

3 ,
�� ��7.109

Mk ⊗ u̇k
2 = Bk ⊗ uk

2 −Dk ⊗ uk
3 ,

�� ��7.110

Mk ⊗ u̇k
3 = Bk ⊗ uk

3 −Dk ⊗ uk
2 + Fk

�� ��7.111

Version 2 In each subdomain Ωk, we have the following discretization of the weak for-
mulation (version 2) of equations (7.57), (7.58) and (7.59),

Mk ⊗ u̇k
1 = Mk ⊗ uk

3 ,
�� ��7.112

Mk ⊗ u̇k
2 = Ak ⊗ uk

3 ,
�� ��7.113

Mk ⊗ u̇k
3 = Bk ⊗ uk

3 −Dk ⊗ uk
2 + Fk

�� ��7.114
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Remember that in the 1D case, for elemental matrix operations, the matrix operator ⊗
corresponds to a regular matrix vector multiplication.

7.1.6 Assembly of global discretization matrix

All the elemental contributions need to be added together and this is called the assembly of
the global matrix. In general, consider a local matrix Ak, the global matrix A is noted

A =
k=NE∑
k=1

′ Ak,
�� ��7.115

where
k=NE∑
k=1

′ represents the assembly process often called direct stiffness summation. Tech-

nically, this is not quite a direct sum; each submatrix has one line and column in common
(boundary nodes) with another submatrix. The ′ is to point out the fact that this is not a
typical summation. Figure 7.2 illustrates the process of direct stiffness summation to obtain
a global system of algebraic equations.

coupling at boundary nodes

interior nodes

boundary nodes

A1

A2

A3

Figure 7.2: Schematic of the direct summation of local matrices Ak to form the global matrix
A.

The global system of our problem is therefore given for version 1 by

k=NE∑
k=1

′
(

Mk ⊗ u̇k
1

)
=

k=NE∑
k=1

′
(

Mk ⊗ uk
3

)
,

�� ��7.116

k=NE∑
k=1

′
(

Mk ⊗ u̇k
2

)
=

k=NE∑
k=1

′
(

Bk ⊗ uk
2 −Dk ⊗ uk

3

)
,

�� ��7.117

k=NE∑
k=1

′
(

Mk ⊗ u̇k
3

)
=

k=NE∑
k=1

′
(

Bk ⊗ uk
3 −Dk ⊗ uk

2 + Fk

)
.

�� ��7.118
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In version 2 only equation (7.117) is modified and becomes

k=NE∑
k=1

′
(

Mk ⊗ u̇k
2

)
=

k=NE∑
k=1

′
(

Ak ⊗ uk
3

)
.

�� ��7.119

Global system version 1

The final global system of the 3 unknowns in matrix form in version 1 is

M⊗ u̇1 = M⊗ u3,
�� ��7.120

M⊗ u̇2 = B⊗ u2 −D⊗ u3,
�� ��7.121

M⊗ u̇3 = B⊗ u3 −D⊗ u2 + F.
�� ��7.122

Note that after the assembly, we still use the notation ⊗ as a matrix multiplication oper-
ator on the global matrices, but it is not a regular matrix-vector multiplication anymore as
for the local matrix operations. To simplify the notations further, we introduce the system
in a similar fashion as in (7.32)

U̇ = Av1U + F ,
�� ��7.123

that is  u̇1

u̇2

u̇3


︸ ︷︷ ︸

U̇

=

 0 0 1
0 B/M −D/M
0 −D/M B/M


︸ ︷︷ ︸

Av1

 u1

u2

u3


︸ ︷︷ ︸

U

+

 0
0
S


︸ ︷︷ ︸
F

�� ��7.124

Global system version 2

The final global system of the 3 unknowns in matrix form in version 2 is

M⊗ u̇1 = M⊗ u3,
�� ��7.125

M⊗ u̇2 = A⊗ u3,
�� ��7.126

M⊗ u̇3 = B⊗ u3 −D⊗ u2 + F.
�� ��7.127

In terms of a system notation we introduce

U̇ = Av2U + F ,
�� ��7.128

that is  u̇1

u̇2

u̇3


︸ ︷︷ ︸

U̇

=

 0 0 1
0 0 A/M
0 −D/M B/M


︸ ︷︷ ︸

Av2

 u1

u2

u3


︸ ︷︷ ︸

U

+

 0
0
S


︸ ︷︷ ︸
F

�� ��7.129
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In practice:

From a computational point of view the assembly of the local advection matrix

k=NE∑
k=1

′
(

Dk ⊗ uk
3

)
,

�� ��7.130

is constructed by first initializing the matrix D to zero, and then beginning an outer loop
over the element index k. For each value k, there are two inner loops over the indices i and
j to calculate all the rows and columns that are affected by the element Ωk. For example

DI(i,k),I(j,k) := DI(i,k),I(j,k) + Dk
ij i, j ∈ {1, NGLL}

�� ��7.131

:= DI(i,k),I(j,k) +
(
ρk
i Hij

)T
.

�� ��7.132

Note that the coefficients i and j run from {1, NGLL} instead of {0, N} for computational
reasons. Once assembled the matrix D is sparse and “almost” block diagonal in 1D (bound-
ary nodes in common between submatrices). So in order to limit memory storage it is use-
ful to perform calculations directly while assembling. Further optmisation of the numerical
procedure could be achieved by implementing a block-diagonal sparse matrix, but is not
essential for the illustration presented here.

7.1.7 Time Discretization

The time discretization of the system

U̇ = A⊗ U + F = f(U, t),
�� ��7.133

is computed by an explicit fourth order Runge–Kutta method. Given an initial condition
U0, the solution Un+1 at time tn+1 is determined from the previous time tn and the solution
Un. The details of the Runge–Kutta fourth order method can be found more explicitly in
6.10.

7.2 Numerical results for a hyperbolic system first order in space
and time in 1D

In this section we show some numerical results obtained with the spectral element method
with a 1D wave equation with a source term. The numerical solution is represented in
figure 7.3 as a function of time t and space x. For our particular problem the timestep ∆t is
set by the Courant–Friedrichs–Lewy stability condition2 CFL by the following relation:

∆t = CFL×min(∆x).
�� ��7.134

2The Courant–Friedrichs–Lewy stability condition ensures the stability of explicit time schemes.
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Figure 7.3: Numerical solution u1 for N = 15, NE = 17, L = 4 and a Courant–Friedrichs–
Lewy condition CFL = 0.5.

To compare the exact and numerical solution we calculate the numerical norm

(
numerical L2 norm

)
=

√√√√√√
Ng∑
j=1

(
uexact(xj)− unumerics(xj)

)2

Ng

�� ��7.135

7.2.1 L2 norm and hp-convergence in 1D

Figure (7.4) shows the numerical L2 norm for varying accuracies with NE = 9, 17 number
of elements, and polynomial orders N = 5, 9, 15. In Table 7.2.1, we give the number of
degrees of freedom or total number of points Ng, for each of the different combinations of
polynomial order N and number of elements NE .

In the 1970s, the mathematical theory of FEM has established rigorously the conver-
gence of the h-version of the finite element method. The error in the numerical solution
decays algebraically by refining the mesh, that is introducing more elements while keep-
ing the order of the interpolating polynomial N constant. An alternative approach is to
keep the number of elements fixed and increase the order of the interpolating polynomials
in order to reduce the error in the numerical solution. This is called p-type refinement and
is typical of polynomial spectral methods. For infinitely smooth solutions, the p-refinement
usually leads to an exponential decay of the numerical error.

A few basic key definitions are in order here, for more detailed definitions see [120]:
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Figure 7.4: L2 norm of the numerical and exact solution u1 for varying polynomial order
N = 5, 9, 15 and number of elements NE = 9, 17 for a domain L = 4, with CFL = 0.5.

HHHH
HHN

NE 7 9 11 13 15 17

5 36 46 56 66 76 86
7 50 64 78 92 106 120
9 64 82 100 118 136 154

11 78 100 122 144 166 188
13 92 118 144 170 196 222
15 106 136 166 196 226 256

Table 7.1: Degrees of freedom Ng (total number of points) as a function of the polynomial
order N and the number of elements NE in 1D.
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Algebraic convergence rate: The term an follows an algebraic convergence rate if

an ∼ O(
1
nk

) n� 1,
�� ��7.136

where k is the index of convergence.

Exponential convergence rate: The term an follows an exponential convergence rate if

an ∼ O(exp(−kn)) n� 1,
�� ��7.137

where k is the index of convergence.

Figure 7.5 shows the L2 norm as a function of the total degree of freedom (total num-
ber of points Ng), for both the h-refinement with a fixed polynomial order N , and a p-
refinement based on an evenly decomposed mesh. In figure 7.5, we also illustrate the
shapes of algebraic and exponential convergence rates for comparison purposes. Note that
on a log-log axis, algebraic convergence asymptotes to a straight line whose slope is −k,
whereas exponential convergence bends away with ever-increasing negative slopes.
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Figure 7.5: hp-convergence for the L2 norm of the numerical and exact solution u1 as a
function of the number of points Ng. We fix the polynomial order N and vary the number
of elements NE (h-convergence in solid lines), and we fix the number of elements NE and
vary the polynomial order N (p-convergence in dashed lines). See Table 7.2.1 for the values
of N and NE . The norms are taken at t = 1 for a domain L = 4, with CFL = 0.5

The h-refinement initially resolves the solution faster than the p-refinement, however,
as the asymptotic exponential convergence is achieved the p-refinement overtakes the h-
refinement process.
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The optimum convergence path as a function of degrees of freedom Ng, involves using
both h and p-refinement.

In general, we would like to know the error as a function of the computational cost,
but this is much harder to measure. However, for smooth solutions, the concept of hp-
refinement still provides the optimal convergence strategy.

7.2.2 Experiments on Sommerfeld-like Boundary conditions in 1D

We now focus our attention to the numerical errors coming from the boundary conditions.

• Figure (7.6(a)) shows the numerical L2 norm for the same polynomial order N = 9
and the same ratio of elements NE = 4L for various values of length of domains
L = 3, 4, 5, 6, 7.

• Figure (7.6(b)) shows the numerical L2 norm for the same polynomial order N = 15
and the same ratio of elements NE = 4L.

• Figure (7.6(c)) shows the numerical L2 norm for the same polynomial order N = 15
and the same ratio of elements NE = 6L.

All norms clearly suggest that with the same resolution in space and time, the error
decreases as the boundary is pushed further away.

7.2.3 Convergence in time

Figure 7.7 shows the fourth order convergence in time with the Runge–Kutta method. A
scheme is fourth order convergent if the norm Norm∆t obtained with timestep ∆t is(Norm∆t) =
(24 × Norm∆t/2) where Norm∆t/2 is the norm obtained with a time-stepping of ∆t/2 and
the same spatial resolution. In the figure we see that both norms are on top of each other
which shows a fourth order convergent scheme in time.
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(b) Polynomial order N = 15 with NE = 4L

1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

14

16

x 10−12
L2 norm of u, N=15 NE=6*L

CFL=0.5

L2  n
or

m

t

 

 
L=3
L=4
L=5
L=6
L=7

(c) Polynomial order N = 15 with NE = 6L

Figure 7.6: Convergence test on the Sommerfeld-like boundary conditions in 1D. For the
same accuracy in space and time, the domain is successively L = 3, 4, 5, 6, 7. The error
decreases as the boundary is pushed further away.
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Figure 7.7: Fourth-order convergence in time for the Runge-Kutta method. The L2 norms
are given for the same spatial accuracy but for ∆t and ∆t/2, we can see that (Norm∆t) =
(24×Norm∆t/2) which shows a fourth order convergent scheme. The domain is L = 4 with
a polynomial order N = 15 a number of elements NE = 17 and with CFL = 0.5
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7.3 Hyperbolic system first order in space and time in 3D

We now convert the 3D wave equation into a hyperbolic system first order in time and
space to deal with a simplified system as close as possible as the BSSN system.

7.3.1 Wave equation with source term

The original wave equation is given on the domain x, y, z ∈ [−L,L].

∂ttu− (∂xxu+ ∂yyu+ ∂zzu) = S(x, y, z, t).
�� ��7.138

This equation is in 3D and is second order in space and in time. One needs an initial condi-
tion u0 = u(x, y, z, t0) and boundary conditions. We use the Sommerfeld-like absorbing or
non-reflecting boundary conditions.

Exact solution in 3D: To evaluate the spectral element method accuracy we compare the
numerical solution to an exact solution u given by,

u(r, t) =
exp(−(r − t)2)− exp(−(r + t)2)

r
,

�� ��7.139

where r =
√
x2 + y2 + z2. There is no source term for this solution.

Initial and boundary conditions in 3D for a spherical solution: The initial condition of
the solution for t0 = 0 is

u(r, 0) = u0(r).
�� ��7.140

For the derivatives, we have

∂xu(r, 0) = ux0(r) = 0,
�� ��7.141

∂yu(r, 0) = uy0(r) = 0,
�� ��7.142

∂yu(r, 0) = uz0(r) = 0,
�� ��7.143

∂tu(0, t) = ut0(t) =
4− 8t2

et2
.

�� ��7.144

We use some absorbing boundary conditions on the 6 boundaries (faces) Γ1, Γ2, Γ3, Γ4,
Γ5 and Γ6 , so that

On Γi :
xi
Ri

∂tu∣∣
Γi

+ ∂iu∣∣
Γi

+
xi
R2
i

u∣∣
Γi

= bi,
�� ��7.145

where Ri =
(√

x2 + y2 + z2
)∣∣

Γi

. Specifically,

On Γ1 : xi = −LZ , ∂i = ∂z, Ri =
√
x2 + y2 + (−LZ)2;

�� ��7.146

On Γ2 : xi = LZ , ∂i = ∂z, Ri =
√
x2 + y2 + (LZ)2;

�� ��7.147

On Γ3 : xi = −LY , ∂i = ∂y, Ri =
√
x2 + (−LY )2 + z2;

�� ��7.148

On Γ4 : xi = LY , ∂i = ∂y, Ri =
√
x2 + (LY )2 + z2;

�� ��7.149

On Γ5 : xi = −LX , ∂i = ∂x, Ri =
√

(−LX)2 + y2 + z2;
�� ��7.150

On Γ6 : xi = LX , ∂i = ∂x, Ri =
√

(LX)2 + y2 + z2.
�� ��7.151
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The boundary functions bi, i = 1, 6 are not exactly zero but go to zero exponentially for a
large enough value of L. They are given by

bi =
4(Ri + t)xie−(Ri+t)

2

Ri
.

�� ��7.152

Figure 7.8 represents a domain Ω in 3D with the boundaries Γi and outward unit normals
ni.

x

n2 = (0, 0, 1)

n6 = (1, 0, 0)

n5 = (−1, 0, 0) n4 = (0, 1, 0)

n1 = (0, 0,−1)

n3 = (0,−1, 0)

Γ6
Γ5

Γ4

Γ3

Γ2

Γ1

z

y

Figure 7.8: Representation of a 3D domain with boundary faces and outward unit normal
vectors.

7.3.2 System of 5 unknowns: strong formulation

Let us define u1 = u and then introduce 4 more variables (coming from the partial deriva-
tives in space and time),

u2 = ∂xu1;
�� ��7.153

u3 = ∂yu1;
�� ��7.154

u4 = ∂zu1;
�� ��7.155

u5 = ∂tu1.
�� ��7.156

The wave equation can be rewritten into a system
∂tu1 = u5

∂tu2 = ∂xu5

∂tu3 = ∂yu5

∂tu4 = ∂zu5

∂tu5 = ∂xu2 + ∂yu3 + ∂zu4 + S(x, y, t)

.
�� ��7.157
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The system (7.157) can be written in matrix form

∂tU = AU + F,
�� ��7.158

where U = (u1 u2 u3 u4 u5)T , F = (0 0 0 0 S(x, y, z, t))T , and

A =


0 0 0 0 1
0 0 0 0 ∂x
0 0 0 0 ∂y
0 0 0 0 ∂z
0 ∂x ∂y ∂z 0

 .
�� ��7.159

The initial conditions on u1, u2, u3, u4 and u5 are given in terms of the initial condition u0, its
initial first space derivatives (∂xu)0, (∂yu)0, (∂zu)0 and its initial first time derivative (∂tu)0.

7.3.3 Weak formulation

To simplify the notation, we use
∫
Ω =

∫∫∫
Ω. We apply the variational formulation to the

system (7.157) and obtain the following weak formulation

∫
Ω
∂tu1 w dΩ =

∫
Ω
u5 w dΩ,

�� ��7.160∫
Ω
∂tu2 w dΩ =

∫
Ω
∂xu5 w dΩ︸ ︷︷ ︸

I1

,
�� ��7.161

∫
Ω
∂tu3 w dΩ =

∫
Ω
∂yu5 w dΩ︸ ︷︷ ︸

I2

,
�� ��7.162

∫
Ω
∂tu4 w dΩ =

∫
Ω
∂zu5 w dΩ︸ ︷︷ ︸

I3

,
�� ��7.163

∫
Ω
∂tu5 w dΩ =

∫
Ω
∂xu2 w dΩ +

∫
Ω
∂yu3 w dΩ +

∫
Ω
∂zu4 w dΩ︸ ︷︷ ︸

I4

+
∫

Ω
S(x, y, z, t) w dΩ .

�� ��7.164

The boundary conditions are generally introduced when integrating by parts. However,
not all of the above integrals I1, I2, I3 and I4 should be integrated by parts in 3 dimensions.
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7.3.4 Integration by parts in 3D

Let us recapitulate a few general formulae of integration by parts in 3 dimensions.∫
Ω

(∇ · u) w dΩ =
∫

Ω
(∂xu+ ∂yu+ ∂zu) w dΩ,

=
∫

Γ
(n · u) w dΓ−

∫
Ω

(u · ∇w) dΩ,

=
∫

Γ
(nx ux + ny uy + nz uz) w dΓ

−
∫

Ω
(ux ∂xw + uy ∂yw + uz ∂zw) dΩ,

�� ��7.165

where n is the outward unit normal vector to the boundary Γ and nx,ny,nz are its x, y
and z components. Furthermore ux, uy and uz represent the x, y and z components of
u. Now, integrals I1, I2, and I3 correspond to the decomposition in x, y and z directions
of the integral in the left hand side of formula (7.165). We can always have the following
decomposition: ∫

Ω
∂xu w dΩ =

∫
Γ

(nx ux) w dΓ−
∫

Ω
ux ∂xw dΩ,

�� ��7.166∫
Ω
∂yu w dΩ =

∫
Γ

(ny uy) w dΓ−
∫

Ω
uy ∂yw dΩ,

�� ��7.167∫
Ω
∂zu w dΩ =

∫
Γ

(nz uz) w dΓ−
∫

Ω
uz ∂zw dΩ.

�� ��7.168

We would still need to decompose the solution u into its x, y and z components which
would require some projection operator. Hence, integrating these equations is far from
ideal.

Let us introduce a second integration by parts formula,∫
Ω

(
∇2u

)
w dΩ =

∫
Ω

(∇ · ∇u )w dΩ =
∫

Ω

(
∂2
xu+ ∂2

yu+ ∂2
zu
)
w dΩ,

=
∫

Γ
(n · ∇u) w dΓ−

∫
Ω

(∇u · ∇w) dΩ,

=
∫

Γ
(nx ∂xu+ ny ∂yu+ nz ∂zu) w dΓ

−
∫

Ω
(∂xu ∂xw + ∂yu ∂yw + ∂zu ∂zw) dΩ,

�� ��7.169

We use formula (7.169) in the weak formulation of the original wave equation∫
Ω
∂2
t u1 w dΩ =

∫
Ω

(
∂2
xu1 + ∂2

yu1 + p2
zu1

)
w dΩ +

∫
Ω
S w dΩ,

�� ��7.170

and integrate by parts I4:∫
Ω

(
∂2
xu1 + ∂2

yu1 + ∂2
zu1

)
w dΩ =

∫
Γ

(nx ∂xu2 + ny ∂yu3 + ny ∂zu4) w dΓ

−
∫

Ω
(u2 ∂xw + u3 ∂yw + u4 ∂zw) dΩ.

�� ��7.171
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7.3.5 Final weak formulation

The final weak formulation is

∫
Ω
∂tu1 w dΩ =

∫
Ω
u5 w dΩ,

�� ��7.172∫
Ω
∂tu2 w dΩ =

∫
Ω
∂xu5 w dΩ,

�� ��7.173∫
Ω
∂tu3 w dΩ =

∫
Ω
∂yu5 w dΩ,

�� ��7.174∫
Ω
∂tu4 w dΩ =

∫
Ω
∂zu5 w dΩ,

�� ��7.175∫
Ω
∂tu5 w dΩ =

∫
Γ

(nx ∂xu2 + ny ∂yu3 + nx ∂xu4) w dΓ

−
∫

Ω
(u2 ∂xw + u3 ∂yw) dΩ +

∫
Ω
S(x, y, z, t) w dΩ.

�� ��7.176

We need to define the space of solutions and test functions. Let us define the space of
measurable functions V = L2(Ω) and the Hilbert spaces

Wx = H1(Ω) =
{
w ∈ L2(Ω) and ∂xw ∈ L2(Ω)

}
,

�� ��7.177

Wy = H1(Ω) =
{
w ∈ L2(Ω) and ∂yw ∈ L2(Ω)

}
,

�� ��7.178

Wz = H1(Ω) =
{
w ∈ L2(Ω) and ∂zw ∈ L2(Ω)

}
,

�� ��7.179

and

Wxyz = H1(Ω) =
{
w ∈ L2(Ω) and (∂xw + ∂yw + ∂zw) ∈ L2(Ω)

}
.

�� ��7.180

Here, ∂tu1, ∂tu2, ∂tu3, ∂tu4 and ∂tu5 are all in V , u2 ∈ Wx and u3 ∈ Wy, and u4 ∈ Wz ,
whereas u5 ∈ Wxyz . Ultimately this means that the solution u = u1 to the original wave
equation belongs to the space

U =
{
u ∈ L2(Ω), (∂xu+ ∂yu+ ∂zu) ∈ L2(Ω), and ∂2

t u ∈ L2(Ω)
}
.

�� ��7.181

7.3.6 Domain Discretization

The domain Ω is decomposed into NE = NEx ×NEy ×NEz sub-domains Ωk such that

Ω̄ =
K⋃
k=0

Ω̄k, ∀k, l Ωk
⋂
k 6=l

Ωl = 0,
�� ��7.182
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where Ω̄ is the closure of the domain Ω. The weak formulation is applied in each subdo-
main Ωk individually,∫

Ωk

∂tu
k
1 w

k dΩ =
∫

Ωk

uk
5 w

k dΩ,
�� ��7.183∫

Ωk

∂tu
k
2 w

k dΩ =
∫

Ωk

∂xu
k
5 w

k dΩ,
�� ��7.184∫

Ωk

∂tu
k
3 w

k dΩ =
∫

Ωk

∂yu
k
5 w

k dΩ,
�� ��7.185∫

Ωk

∂tu
k
4 w

k dΩ =
∫

Ωk

∂yu
k
5 w

k dΩ,
�� ��7.186∫

Ωk

∂tu
k
5 w

k dΩ = −
∫

Ωk

(
uk

2 ∂xw
k + uk

3 ∂yw
k + uk

4 ∂zw
k
)
dΩ +

∫
Ωk

Sk(x, y, z, t) wk dΩ

+
∫

Γk

(
nk
x ∂xu

k
2 + nk

y ∂yu
k
3 + nk

z ∂zu
k
4

)
wk dΓ.

�� ��7.187

Note that the boundary terms in (7.187) are relevant only for all the elements that share at
least one side with Γk. If the source term S(x, y, z, t) is given as a function of x, y, and z and
t, then Sk is nothing else than the restriction of S(x, y, z, t) to the subdomain Ωk.

In each subdomain, the solutions uk
1 , u

k
2 , uk

3 , uk
4 and uk

5 are expanded into cardinal basis
functions. In higher dimensions, the formulation of the basis comes from the tensor product
of one dimensional Lagrangian interpolant basis ha(x). So the Lagrangian interpolants are
chosen as basis functions in each dimension. We expand the unknowns as

∀uk
1 ∈ Vh, uk

1 (x, y, z, t) =
m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
1mnp(t) hm(x) hn(y) hp(z),

�� ��7.188

∀uk
2 ∈ Vh, uk

2 (x, y, z, t) =
m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
2mnp(t) hm(x) hn(y) hp(z),

�� ��7.189

∀uk
3 ∈ Vh, uk

3 (x, y, z, t) =
m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
3mnp(t) hm(x) hn(y) hp(z),

�� ��7.190

∀uk
4 ∈ Vh, uk

4 (x, y, z, t) =
m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
4mnp(t) hm(x) hn(y) hp(z),

�� ��7.191

∀uk
5 ∈ Vh, uk

5 (x, y, z, t) =
m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
5mnp(t) hm(x) hn(y) hp(z).

�� ��7.192

Here we use the index conventions exposed in Table (6.5) and uk
1mnp(t) = uk

1mnp(x, y, z, t)
are the nodal basis coefficients. The space Vh = V

⋃
PN,k(Ω) is taken to be a subspace of V

consisting of the tensor product of all piecewise high order polynomials of degree less than
or equal to N defined on Ωk. Furthermore, we have the definition

PN,K(Ω) =
{
θ ∈ L2(Ω), θ|

Ωk
∈ PN (Ωk)× PN (Ωk)

}
.

�� ��7.193
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We can also differentiate the unknowns with respect to x, y or t in the following manner:

∂xu
k
1 (x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
1mn(t) ∂xhm(x) hn(y), hn(z),

�� ��7.194

∂yu
k
1 (x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
1mn(t) ∂yhm(x) hn(y), hn(z),

�� ��7.195

∂zu
k
1 (x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
1mn(t) ∂zhm(x) hn(y), hn(z),

�� ��7.196

∂tu
k
1 (x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

u̇k
1mn(t) hm(x) hn(y), hn(z).

�� ��7.197

The test function w is selected to be as the same as the basis functions h(x) × h(y) ×
h(z) used for the unknowns uk

1 , u
k
2 , uk

3 and uk
4 , and therefore using Einstein summation

convention,

wk(x, y, z) = wk
abcha(x) hb(y) hc(z),

�� ��7.198

wherewk
abc = 1. As mentioned previously, the same test functions are used for each variable

here but they could be different.
On each element Ωk there are NGLL = (N + 1)3 nodal points but in total there are

Ng = [NEx (NGLL − 1) + 1]× [NEy (NGLL − 1) + 1]× [NEz (NGLL − 1) + 1]
�� ��7.199

global nodal points. One needs to create a global numbering function that keeps track of
local and global nodes on the domain Ω. There are many ways to label the elements and
element nodes. The different protocols of element and node numbering have no effect on
the spectral element solution itself but they have a huge impact on the structure of the
global mass and advection matrices and therefore on the efficiency of the spectral element
code. Figure (6.2) illustrates an example of global numbering technique in 2D for NE = 4
and NGLL = 4, the same process of global numbering in 3D is very similar. Figure (6.4)
shows the local numbering convention per subdomain Ωk and corresponding elemental
matrix storage in 3D. Let I denote global indices which are functions of the element index
k and the indexes a, b, c within each element,

I = I(a, b, c,k).
�� ��7.200

The global numbering function maps the local numbering of the computational nodes to
their global (non-redundant) numbering. I(a, b, c,k) is the global node index of the (a, b, c)-
th GLL node internal to the k-th element. Elements are numbered row by row from bottom-
left to top-right (see Figure(6.3)). The table of indices I(a, b, c,k) is typically needed to build
or assemble global data from local data (contributions from each element).

7.3.7 Master Element

To apply the quadrature rule on each element, one needs to define an affine transformation
to map each spectral element Ωk to the reference or master element Λ × Λ × Λ = Λ3 in the
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3D case. Let us define the local elemental mappings:

(x, y, z)k = (x, y, z)k
abc ha(ξ) hb(η) hc(ζ),

�� ��7.201

we can now map the physical elements (x, y, z)k ∈ Ωk onto the computational domain
(ξ, η, ζ) ∈ Λ3. We denote by Jk the Jacobian associated to this mapping such that

Jk =
∂(x, y, z)k

∂(ξ, η, ζ)
=


∂xk

∂ξ

∂xk

∂η

∂xk

∂ζ
∂yk

∂ξ

∂yk

∂η

∂yk

∂ζ
∂zk

∂ξ

∂zk

∂η

∂zk

∂ζ

 .
�� ��7.202

By ∂xk/∂ξ we refer to ∂x/∂ξ for some point x in the kth element Ωk. We refer to |Jk| as the
determinant of the Jacobian Jk. This change of variable is a key component of the method
and |Jk| appears in the elemental matrix discretization,

|Jk| =
∂xk

∂ξ

∂yk

∂η

∂zk

∂ζ
+
∂xk

∂η

∂yk

∂ζ

∂zk

∂ξ
+
∂xk

∂ζ

∂yk

∂ξ

∂zk

∂η

�� ��7.203

− ∂xk

∂ζ

∂yk

∂η

∂zk

∂ξ
− ∂xk

∂ξ

∂yk

∂ζ

∂zk

∂η
− ∂xk

∂η

∂yk

∂ξ

∂zk

∂ζ
.

�� ��7.204

Practically, derivatives with respect to the physical coordinate x are evaluated in terms
of the computational coordinate ξ (respectively for y, η and z, ζ). The mapping from the
element

(x, y, z)k ∈ Ωk = [Xk, Xk+1]× [Yk, Yk+1]× [Zk, Zk+1]
�� ��7.205

to the computational space used is

ξ =
2

∆xk
(xk −Xk)− 1,

�� ��7.206

η =
2

∆yk
(yk − Yk)− 1

�� ��7.207

ζ =
2

∆zk
(zk − Zk)− 1

�� ��7.208

where ∆xk = Xk+1 −Xk, ∆yk = Yk+1 − Yk and ∆zk = Zk+1 − Zk so that

∂xk

∂ξ
=

∆xk

2
and

∂xk

∂η
=
∂xk

∂ζ
= 0,

�� ��7.209

∂yk

∂η
=

∆yk

2
and

∂yk

∂ξ
=
∂yk

∂ζ
= 0,

�� ��7.210

∂zk

∂ζ
=

∆zk

2
and

∂zk

∂ξ
=
∂zk

∂η
= 0

�� ��7.211

and hence, the determinant of the Jacobian is

|Jk| =
∆xk ∆yk ∆zk

8
.

�� ��7.212

In particular, the |Jk| becomes the same for all the elements Ωk in the case of a homoge-
neous (evenly decomposed) domain in the x, y, z directions.

201



CHAPTER 7. THE SPECTRAL ELEMENT METHOD FOR THE WAVE EQUATION IN 1D AND 3D

7.3.8 Elemental matrix forms

On each subdomain, each integral is discretized in a similar fashion as for the 1D case. In
higher dimensions, the number of subscripts and superscipts increase a great deal. In the
following, we drop the superscript k that refers to the element k for clarity and simplifica-
tion of the notations.

Elemental Mass matrix M For the elemental mass matrix, we will go into more details
and explanations. The Mass matrix M appears in the following type of integral∫

Ω
u w dΩ = M⊗ u.

�� ��7.213

The test functions are non zero for only one nodal point (a, b, c) per element Ωk (see Figure
(6.3)). In a general manner, we apply the method of weighted residuals to the integral and
write for all three values (a, b, c) ∈ {0, N}3∫

Ω
u wabc dΩ =

∫
Ω
umnphm(x)hn(y)hp(z) ha(x)hb(y)hc(z) dxdydz.

�� ��7.214

Note that we are now using the Einstein summation convention, equation (7.214) has three
sums on m, n and p in the right hand side. The first step is to do a change of variables from
the physical coordinate to the computational coordinate (isoparametric element) and then
apply the GLL quadrature rule to the integral with weights ρqrs.∫

Ω
u wabc dΩ =

∫
Λ3

umnphm(ξ)hn(η)hp(ζ) ha(ξ)hb(η)hc(ζ) |J |dξdηdζ �� ��7.215
= ρqrsumnphm(ξq)hn(ηr)hp(ζs) ha(ξq)hb(ηr)hc(ζs) |J |. �� ��7.216

Note that the right hand side of equation (7.216) has 6 sums over the indices q, r, s, m, n
and p in this order from left to right for values in {0, N}. Remember that in this elemental
representation (Figure (6.3) for 2D), u, w and ρ are NGLL ×NGLL ×NGLL matrices in 3D.

Now we use the properties of the Legendre interpolants, in particular equation (6.61)
states that

hi(ξj) = δij .
�� ��7.217

We can then write, ∫
Ω
u wabc dΩ = ρqrsumnpδqmδrnδsp δqaδrbδsc |J |.

�� ��7.218

To adopt a matrix notation, one of the key formulae are the following matrix products be-
tween any two matrices A and B:

(A ·xy B)ijl =
N∑
r=0

airl brjl;
�� ��7.219

(A ·yz B)ijl =
N∑
r=0

aijr birl.
�� ��7.220
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These 3D matrix products are the natural extension to the well known 2D formula for each
of the extra dimensions,

(A ·B)ij =
N∑
r=0

air brj .
�� ��7.221

Let us also define the scalar matrix product, also known as the Hadamard matrix product,
by

(A : B)ijl = aijl bijl.
�� ��7.222

To obtain the elemental mass matrix in 3D, we deal with index after index from right to
left that is p, n, then m, then s,r and finally q. Let’s reformulate equation (7.214) with this
procedure in mind. ∫

Ω
u wabc dΩ = ρqrsumnpδqmδrnδsp δqaδrbδsc |J |,

�� ��7.223

= ρqrsuqrs δqaδrbδsc |J |,
�� ��7.224

= (ρ : u)qrs δqaδrbδsc |J |,
�� ��7.225

= (ρ : u)qrc δqaδrb |J |,
�� ��7.226

= (ρ : u)abc |J |.
�� ��7.227

So in terms of an elemental or local representation we have for each physical node
(a, b, c) in each element Ωk the following relation for the 3D matrices · · ·

...
∫
Ω u wabc dΩ

...
· · ·


k

=

 · · ·
... ρabc|J |

...
· · ·


k︸ ︷︷ ︸

M

:

 · · ·
... uabc

...
· · ·


k︸ ︷︷ ︸

u

�� ��7.228

Elemental advection matrix Ak type 1 The advection matrix Ak appears in the following
type of integral (see Appendix F for general shaped elements)∫

Ω
f∂ku w dΩ = f : (Ak ⊗ u) ,

�� ��7.229

where, f, u and w are scalar functions and k = x, y, or z. The operator ⊗ will act on u in a
different manner depending on the value of k as described below:

Ax ⊗ u = ρ : (H ·xy u) |J |∂ξ
∂x

�� ��7.230

Ay ⊗ u = ρ :
(
u ·xy HT

)
|J |∂η

∂y

�� ��7.231

Az ⊗ u = ρ :
(
u ·yz HT

)
|J |∂ζ

∂z
.

�� ��7.232
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Remember that the elemental unknown u is represented by a (NGLL)3 matrix. So the nota-
tion ·xy means a matrix product in the xy direction for each z dimension. And the notation
·yz means a matrix product in the yz direction for each x dimension. More explicitly,(

u ·xy HT
)
abc

=
∑
i

uaicH
T
ib

�� ��7.233

(
u ·yz HT

)
abc

=
∑
i

uabiH
T
ic .

�� ��7.234

Furthermore, the H matrix represents the first derivative of the Legendre interpolants.

Elemental advection matrix Dk type 2 The advection matrix Dk appears in the following
type of integral ∫

Ω
fu ∂kw dΩ = f : (Dk ⊗ u) ,

�� ��7.235

where, f, u and w are scalar functions and k = x, y, or z. The operator ⊗ will act on u in a
different manner depending on the value of k as described below:

Dx ⊗ u =
[
HT ·xy

(
|J |∂ξ

∂x
: ρ : u

)] �� ��7.236

Dy ⊗ u =
[(
|J |∂η

∂y
: ρ : u

)
·xy H

] �� ��7.237

Dz ⊗ u =
[(
|J |∂ζ

∂z
: ρ : u

)
·yz H

]
.

�� ��7.238

Elemental boundary terms B The treatment of the elemental boundary terms are very
special. If we integrate by parts on each element separately there would be lots of bound-
ary terms at the interior boundaries. The spectral element strategy is to ignore these extra
interior terms and only take into account the terms on the elements at the boundaries. In 3D
and in a rectangular domain, this means that we look at six boundaries Γ1, Γ2, Γ3, Γ4, Γ5

and Γ6 corresponding to the six faces of the domain. The boundary integral in our problem
is defined by ∫

Γk

(
nk
x ∂xu

k
2 + ny ∂yuk

3 + ny ∂zuk
4

)
wk dΓ.

�� ��7.239

Figure 7.8 illustrates the six faces of the domain and the corresponding values of Γi, dΓ and
n. We use some absorbing boundary conditions on the 6 boundaries so that

On Γi :
xi
Ri

∂tu∣∣
Γi

+ ∂iu∣∣
Γi

+
xi
R2
i

u∣∣
Γi

= bi,
�� ��7.240

where Ri =
(√

x2 + y2 + z2
)∣∣

Γi

. The boundary functions bi, i = 1, 6 are not exactly zero

but are very close to zero numerically. Each face has specific values for the outward unit
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normal and the 2D jacobian dΓ of the the surface. Specifically,

Γ1 : (x, y,−LZ) dΓ = dx dy n1 = (0, 0,−1);
�� ��7.241

Γ2 : (x, y,+LZ) dΓ = dx dy n2 = (0, 0,+1);
�� ��7.242

Γ3 : (x,−LY , z) dΓ = dx dz n3 = (0,−1, 0);
�� ��7.243

Γ4 : (x,+LY , z) dΓ = dx dz n4 = (0,+1, 0);
�� ��7.244

Γ5 : (−LX , y, z) dΓ = dy dz n5 = (−1, 0, 0);
�� ��7.245

Γ6 : (+LX , y, z) dΓ = dy dz n6 = (+1, 0, 0).
�� ��7.246

The boundary term on Γ1 will be treated in more detail. First of all, applying the bound-
ary conditions (7.240) to the face Γ1, we obtain:

On Γ1 :
−LZ
R1

∂tu∣∣
Γ1

+ ∂zu∣∣
Γ1

+
−LZ
R2

1

u∣∣
Γ1

= b1,
�� ��7.247

For the wave equation written as a hyperbolic system, equation (7.247) implies a relation
between the variables u2, u3, u4 and u5:

On Γ1 :
−LZ
R1

u
5
∣∣
Γ1

+ u
4
∣∣
Γ1

+
−LZ
R2

1

u
1
∣∣
Γ1

= b1,
�� ��7.248

∫
Γ1

(nxu2 + nyu3 + nzu4)wabcdΓ =
∫

Γ1

(0 + 0− u4)ha(x)hb(y)hc(−LZ)dxdy.�� ��7.249

We can now replace the right hand side of equation (7.249) by the relation between the
variables in equation (7.247), and obtain, the following discretization∫

Γ1

(−u4)wabcdΓ = −
∫

Γ1

(
LZ
R1

u5 +
LZ
R2

1

+ b1

)
ha(x)hb(y)hc(−LZ)dxdy. �� ��7.250

Since R1 = R(x, y,−LZ) in the x, y and z coordinates, it corresponds to R(ξr, ηr, ζ0) = Rqr0
in terms of elemental notations. After a change of variable to the 3D master element and
applying the quadrature rule in 3D, we obtain:∫

Γ1

(−u4)wabcdΓ = −ρqr0

(
LZ
Rqr0

u5mnp +
LZ
R2

1qr0

u1mnp + b1

)
δqmδrnδ0pδqaδrbδ0c

∂x

∂ξ

∂y

∂η
|J |.�� ��7.251

After simplification done in a very similar as was the 1D case, we define the elemental
boundary matrix BΓ1 of size NGLL ×NGLL ×NGLL so that

On Γ1 : (BΓ1 ⊗ (−u4))abc = −∆x∆y∆z
8

ρ00

(
LZ
Rab0

uab0 +
LZ
R2

1ab0

u1ab0 + b1

)
.

�� ��7.252
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Only the bottom face of this 3D elemental boundary matrix is non zero, it corresponds to
the nodes of the bottom boundary in the domain Ω in Figure 7.8. The other 5 elemental
boundary matrices on Γ2, Γ3, Γ4 and Γ5 are determined very similarly.

Finally, the total elemental boundary matrix B is defined as follows

B = BΓ1 + BΓ2 + BΓ3 + BΓ4 + BΓ5 + BΓ6 .
�� ��7.253

Elemental matrix system

In each subdomain Ωk, we have the following discretization of the weak formulation of
equations (7.183), (7.184), (7.185), and (7.186),

Mk ⊗ u̇k
1 = Mk ⊗ uk

4 ,
�� ��7.254

Mk ⊗ u̇k
2 = Ak

x ⊗ uk
4 ,

�� ��7.255

Mk ⊗ u̇k
3 = Ak

y ⊗ uk
4 ,

�� ��7.256

Mk ⊗ u̇k
4 = Bk ⊗ uk

4 −
(
Dk
x ⊗ uk

2 + Dk
y ⊗ uk

3

)
.

�� ��7.257

7.3.9 Assembly of global discretization matrix

All the elemental contributions need to be added together this is called the assembly of the
global matrix. In general, consider a local matrix Ak, where here the superscipt k represents
the kth-element, the global matrix A is noted

A =
k=NE∑
k=1

′ Ak,
�� ��7.258

where
k=NE∑
k=1

′ represents the assembly summation.

From a computational point of view the assembly of the local advection matrix in the x
direction Ax,

k=NE∑
k=1

′
(

Ak
x ⊗ uk

)
,

�� ��7.259

is constructed by first initializing the matrix Ak
x to zero, and then beginning an outer loop

over the element index k. For each value k, there are two inner loops over the indices a, b
and c to calculate all the rows and columns that are affected by the element Ωk. For example

a, b, c ∈ {1, NGLL}(
Ak
x ⊗ uk

)
I(a,b,c,k)

:=
(
Ak
x ⊗ uk

)
I(a,b,c,k)

+
(
Ak
x ⊗ uk

)
abc
.

�� ��7.260

This can also be written in matrix language over a loop over the elements k (Matlab)(
Ak
x ⊗ uk

)
I(:,:,:,k)

:=
(
Ak
x ⊗ uk

)
I(:,:,:,k)

+
(
ρk :

(
H ·xy uk

))
|J |∂ξ

∂x
.

�� ��7.261
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Note that the indices a, b and c run from {1, NGLL} instead of {0, N} for computational
reasons. In order to limit memory storage it is useful to perform calculations directly while
assembling.

The assembly process will result in a global system of n-variables in matrix form.

The global system of our problem is therefore given by

k=NE∑
k=1

′
(

Mk ⊗ u̇k
1

)
=

k=NE∑
k=1

′
(

Mk ⊗ uk
5

)
,

�� ��7.262

k=NE∑
k=1

′
(

Mk ⊗ u̇k
2

)
=

k=NE∑
k=1

′
(

Ak
x ⊗ uk

5

)
,

�� ��7.263

k=NE∑
k=1

′
(

Mk ⊗ u̇k
3

)
=

k=NE∑
k=1

′
(

Ak
y ⊗ uk

5

)
,

�� ��7.264

k=NE∑
k=1

′
(

Mk ⊗ u̇k
4

)
=

k=NE∑
k=1

′
(

Ak
z ⊗ uk

5

)
,

�� ��7.265

k=NE∑
k=1

′
(

Mk ⊗ u̇k
5

)
=

k=NE∑
k=1

′
(

Bkuk
4 −

(
Dk
x ⊗ uk

2 + Dk
y ⊗ uk

3 + Dk
z ⊗ uk

4

))
.�� ��7.266

In order to simplify the notations, we adopt the following convention

k=NE∑
k=1

′
(

Ak
x ⊗ uk

4

)
= Ax ⊗ u4.

�� ��7.267

The final global system of the 4 unknowns in matrix form is

M⊗ u̇1 = M⊗ u4,
�� ��7.268

M⊗ u̇2 = Ax ⊗ u4,
�� ��7.269

M⊗ u̇3 = Ay ⊗ u4,
�� ��7.270

M⊗ u̇4 = Ay ⊗ u5,
�� ��7.271

M⊗ u̇5 = B⊗ uk
4 − (Dx ⊗ u2 + Dy ⊗ u3 + Dy ⊗ u4) .

�� ��7.272

To simplify the notations further, we introduce the system in a similar fashion as in (7.158)

U̇ = AU,
�� ��7.273
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that is


u̇1

u̇2

u̇3

u̇4

u̇5


︸ ︷︷ ︸

U̇

=



0 0 0 0 1

0 0 0 0
Ax

M
0 0 0 0

Ay

M
0 0 0 0

Az

M
0

B−Dx

M
B−Dy

M
B−Dz

M
0


︸ ︷︷ ︸

A


u1

u2

u3

u4

u5


︸ ︷︷ ︸

U

�� ��7.274

7.3.10 Time Discretization

The time discretization of the system

U̇ = AU = f(U, t),
�� ��7.275

is computed by an explicit fourth order Runge–Kutta method. Given an initial condition
U0, the solution Un+1 at time tn+1 is determined from the previous time tn and the solution
Un. The details of the Runge–Kutta fourth order method can be found more explicitly in
6.10.

7.4 Numerical results in 3D

In this section we show some numerical results obtained with the spectral element method
with a spherical 3D wave equation with no source term.

For our particular problem the timestep ∆t is set by the stability condition CFL by the
following relation in 3D:

CFL = max
(

∆t
∆s

)
,

�� ��7.276

where ∆s =
√

∆x2 + ∆y2 + ∆z2 so

max(∆t) 6 CFL×min(∆s).
�� ��7.277

Note that this formula is slightly different than the 1D case.
To compare the exact and numerical solution we calculate the L2 norm given by equa-

tion 7.135.
The numerical solution is represented in figure 7.10 as a function of time t and radius

r, whereas figure 7.9 shows the solution as specific time steps and in Cartesian coordinates
x, y and z.

7.4.1 L2 norm and hp-convergence in 3D

Figure (7.11) show the numerical norm L2 for varying accuracies with NE = 9, 17 number
of elements, and polynomial orders N = 5, 9, 15 and for a domain where L = 4. In Table
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(a) u1 at t = 0.4229 (b) u1 at t = 1.2687

(c) u1 at t = 2.5374 (d) u1 at t = 3.8061

Figure 7.9: Numerical solution u1 at several time steps for P = 5, NE = 1000 , L = 4 and
CFL = 0.5.

HH
HHHHN
NE 73 93 113 133 153 173

5 46 656 97 336 175 616 287 496 438 976 636 056
7 125 000 262 144 474 552 778 688 1 191 016 1 728 000
9 262 144 551 368 1 000 000 1 643 032 2 515 456 3 652 2264
11 474 552 1 000 000 1 815 848 2 985 984 4 574 296 6 644 672
13 778 688 1 643 032 2 985 984 4 913 000 7 529 536 10 941 048
15 1 191 016 2 515 456 4 574 296 7 529 536 11 543 176 16 777 216

Table 7.2: Degrees of freedom Ng (total number of points) as a function of the polynomial
order N and the number of elements NE in 3D.
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Figure 7.10: Numerical solution u1 as a function of r and t for P = 15, NEx = NEy = NEz =
9 so NE = 729 , L = 4 and CFL = 0.5. The total number of space points is Ng = 2515456
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Figure 7.11: L2 norm of the numerical and exact solution u1 for varying polynomial order
P = 5, 9, 15 and number of elements NE = 9, 17 for a domain L = 4, with CFL = 0.5.
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7.4.1, we give the number of degree of freedom or total number of points Ng, for each of the
different combinations of polynomial order N and number of elements NE .

Figure 7.5 shows the L2 norm as a function of the total degree of freedom (total num-
ber of points Ng), for both the h-refinement with a fixed polynomial order N , and a p-
refinement based on an evenly decomposed mesh.
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Figure 7.12: hp-convergence for the L2 norm of the numerical and exact solution u1 as a
function of the number of points Ng. We fix the polynomial order N and vary the number
of elements NE (h-convergence in solid lines), and we fix the number of elements NE and
vary the polynomial order N (p-convergence in dashed lines). See Table 7.4.1 for the values
of N and NE . The norms are taken at t = 1 for a domain L = 4, with CFL = 0.5

The h-refinement initially resolves the solution faster than the p-refinement, however,
as the asymptotic exponential convergence is achieved the p-refinement takes over the h-
refinement process.

The optimum convergence path as a function of degrees of freedom Ng, involves using
both h and p-refinement.

7.4.2 Experiments on Sommerfeld Boundary conditions in 3D

We now focus our attention to the numerical errors coming from the boundary conditions.

• Figure (7.4.2) show the numerical L2 norm for the same polynomial order N = 5
and the same ratio of elements NE = 4L for various values of length of domains
L = 2, 3, 4, 5, 6.

All norms clearly suggest that with the same resolution in space and time, the error
decreases as the boundary is pushed further away.
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1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

x 10−6 L2 norm of u, N=5 NE=4*L
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L=4
L=5
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Figure 7.13: Convergence test on the Sommerfeld boundary conditions in 3D. For the same
accuracy in space and time, the domain is successively L = 2, 3, 4, 5, 6. The error decreases
as the boundary is pushed further away.
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7.4.3 Convergence in time

Figure 7.14 shows the fourth order convergence in time with the Runge–Kutta method.
Recall that a scheme is fourth order convergent if the norm Norm∆t obtained with timestep
∆t is (Norm∆t) = (24 × Norm∆t/2) where Norm∆t/2 is the norm obtained with a time-
stepping of ∆t/2 and the same spatial resolution. In the figure we see that both norms are
on top of each other which shows a fourth order convergent scheme in time.
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Figure 7.14: Fourth-order convergence in time for the Runge-Kutta method. The L2 norms
are given for the same spatial accuracy but for ∆t and ∆t/2, we can see that (Norm∆t) =
(24×Norm∆t/2) which shows a fourth order convergent scheme. The domain is L = 4 with
a polynomial order N = 15 a number of elements NE = 93.

7.5 Conclusion

In this Chapter, we have presented 2 applications of the spectral element method to the
wave equation reformulated as a hyperbolic equation of first order in time and space in
1D and 3D. We have seen how to obtain a suitable weak formulation from the variational
principle in the 1D case and 3D case.

We have derived the spectral element discretization of this 1D and 3D hyperbolic sys-
tem in some detail, explaining how the most general elemental matrix forms of the system
are calculated. We have also illustrated the local numbering convention in 3D that we have
been using for this problem, and that we will be using for the BSSN system. We have also
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presented the global system of algebraic equations of the problem to solve in 1D and 3D.
For explicit time stepping schemes, such a Runge–Kutta fourth order, there are no full ma-
trices (non-sparse) to invert as the Mass matrix is diagonal due to the choice of the GLL
quadrature.

We have presented numerical results in both the 1D and 3D case, showing the advan-
tages of the hp-convergence, and recovering the fourth order convergence in time of the
Runge–Kutta method.
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“As far as the laws of mathematics refer to re-
ality, they are not certain, and as far as they
are certain, they do not refer to reality.”

Albert Einstein (1879-1955) 8
SEM for the BSSN puncture formulation

This chapter applies the spectral element method (SEM) to the BSSN system with the
puncture method. Section 8.1 introduces the strong formulation of the BSSN system.

We will then introduce the weak form of the BSSN system in section 8.2. The spectral
element discretization will be explained in section 8.3. Finally, we will present the global
assembled system in 8.4 and 8.5.

8.1 Strong form of the BSSN system

The standard BSSN variables are φ or χ, g̃ij , Ãij ,K, and Γ̃i. We evolve the following system.

∂0φ = −1
6
αK,

�� ��8.1

∂0χ =
2
3
χαK

�� ��8.2

∂0g̃ij = −2αÃij ,
�� ��8.3

∂0Ãij = e−4φ[−DiDjα+ αRij ]TF

+α(KÃij − 2ÃikÃkj),
�� ��8.4

∂0K = −DiDiα+ α(ÃijÃij +
1
3
K2),

�� ��8.5

∂tΓ̃i = g̃jk∂j∂kβ
i +

1
3
g̃ij∂j∂kβ

k + βj∂jΓ̃i

−Γ̃j∂jβi +
2
3

Γ̃i∂jβj − 2Ãij∂jα

+2α
(

Γ̃ijkÃ
jk + 6Ãij∂jφ−

2
3
g̃ij∂jK

)
,

�� ��8.6

(∂t − βi∂i)α = −2αK
�� ��8.7

∂0β
i =

3
4
Bi,

�� ��8.8

∂0B
i = ∂tΓ̃i − ηBi.

�� ��8.9

where ∂0 = ∂t − Lβ , D̃i is the covariant derivative with respect to the conformal metric g̃ij ,
Di is the covariant derivative with respect to the background metric gij , and “TF” denotes
the trace-free part of the expression with respect to the background metric, XTF

ij = Xij −
1
3gijX

k
k .
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In particular, we have chosen a particular form of the system with “1+log” slicing and
“gamma-driver” shift.

The Ricci tensor Rij is given by

Rij = R̃ij +Rφij

�� ��8.10

R̃ij = −1
2
g̃lm∂l∂mg̃ij + g̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k +

g̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj
)
,

�� ��8.11

Rφij = −2D̃iD̃jφ− 2g̃ijD̃kD̃kφ+ 4D̃iφD̃jφ−

4g̃ijD̃kφD̃kφ.
�� ��8.12

The Lie derivatives of the tensor densities φ, g̃ij and Ãij (with weights 1/6, −2/3 and −2/3)
are

Lβφ = βk∂kφ+
1
6
∂kβ

k,

Lβχ = βk∂kχ−
2
3
∂kβ

kχ,

LβK = βk∂kK,

Lβ g̃ij = βk∂kg̃ij + g̃ik∂jβ
k + g̃jk∂iβ

k − 2
3
g̃ij∂kβ

k,

LβÃij = βk∂kÃij + Ãik∂jβ
k + Ãjk∂iβ

k − 2
3
Ãij∂kβ

k.

The covariant derivatives of the lapse are with respect with the physical metric and are
defined by

DiDjα = ∂i∂jα− 4∂(iφ ∂j)α− Γ̃kij∂kα+ 2gijgkl∂kφ ∂lα,
�� ��8.13

Furthermore, the trace is given by

DiDiα = exp(−4φ) g̃ilD̃lD̃iα;
�� ��8.14

= exp(−4φ)
(
g̃ij∂i∂jα− Γ̃k∂kα+ 2g̃ij∂iφ∂jα

)
.

�� ��8.15

The covariant derivative of φ is with respect to the background metric and is defined by

DiDjφ = ∂i∂jφ− Γ̃kij∂kφ.
�� ��8.16

8.2 Weak form of the BSSN system

The weak form needs to be applied to the evolution system, equations (8.1)-(8.6), as well as
the equations coming from the gauge choice, equations (8.7) and (8.8). Alternatively if the
χ-method is chosen, equation (8.2) replaces equation (8.1).

It is important to remember that there might not be a unique weak formulation of the
evolution system, depending on one’s choice of which integrals are integrated by parts in
order for the boundary conditions to appear in the system. In this section, we will present
two different versions of weak formulation.
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8.2.1 General integration by parts formulae in 3D

Let β = (βx, βy, βz) be a vector, φ be a scalar function of the coordinates (x, y, z), and w a
scalar test function, we have the following equality:∫

Ω
β · (∇φ) w dΩ =

∫
Ω
∇ · (βφ) w dΩ︸ ︷︷ ︸

A

−
∫

Ω
(∇ · β)φ w dΩ︸ ︷︷ ︸

B

,
�� ��8.17

In terms of sums using the Einstein convention, this equality is equivalent to:∫
Ω
βk∂kφ w dΩ =

∫
Ω
∂k

(
βkφ

)
w dΩ−

∫
Ω

(
∂kβ

k
)
φ w dΩ.

�� ��8.18

We have the following formulae of integration by parts ,

A =
∫

Ω
∇ · (βφ) w dΩ =

∫
Γ

[(βφ)w] · n dΓ−
∫

Ω
(βφ) · ∇w dΩ ;

�� ��8.19

B =
∫

Ω
(∇ · β)φ w dΩ =

∫
Γ

(n · β)φw dΓ−
∫

Ω
[β · ∇ (φw)] dΩ ,

�� ��8.20

where n = (nx,ny,nz) is the outward normal unit vector.
If one integrates by parts both A and B then the term that introduces boundary condi-

tions disappears and the point of the exercise of integrating by parts is completely missed.
So we have two choices there:

• integrate A by parts and leave B as it is:∫
Ω
β · (∇φ) w dΩ =

∫
Γ

[(βφ)w] · n dΓ−
∫

Ω
(βφ) · ∇w dΩ

−
∫

Ω
(∇ · β)φ w dΩ;

�� ��8.21

• integrate B by parts and leave A as it is:∫
Ω
β · (∇φ) w dΩ =

∫
Ω
∇ · (βφ) w dΩ−

∫
Γ

(n · β)φw dΓ

+
∫

Ω
[β · ∇ (φw)] dΩ.

�� ��8.22

It turns out that the first option involves only ∇w,∇β and no ∇φ and gives a nicer and
shorter formula than the second one and therefore we make this choice for now.

There is an alternative choice of integration by parts that involves integrating second
order space derivatives. First, remember the previous integration by parts formula∫

Ω
∇ · F w dΩ =

∫
Γ
F · n wdΓ−

∫
Ω
F · ∇w dΩ,

�� ��8.23
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where F = (f1, f2, f3) holds true for all F and in particular for F = (f, 0, 0) (or equivalently
for the y and z components). Hence we have the following dimension specific integration
by parts formula (with no summation):∫

Ω
∂if w dΩ =

∫
Γ
fni wdΓ−

∫
Ω
f∂iw dΩ.

�� ��8.24

Therefore, when integrating by parts we obtain∫
Ω
f∂i∂ju w dΩ =

∫
Γ
f ∂ju ni wdΓ−

∫
Ω
∂ju ∂i(fw) dΩ

=
∫

Γ
f ∂ju ni wdΓ−

∫
Ω
∂ju ∂if w dΩ

−
∫

Ω
f ∂ju ∂iw dΩ.

�� ��8.25

8.2.2 Weak form, version 1

A choice of weak form of the evolution system is as follows:∫
Ω
∂tφ w dΩ =

∫
Γ
βknkφw dΓ−

∫
Ω
βkφ∂kw dΩ−

∫
Ω
∂kβ

kφw dΩ

+
1
6

∫
Ω
∂kβ

kw dΩ− 1
6

∫
Ω
αKw dΩ;

�� ��8.26

or equivalently for the χ-method,∫
Ω
∂tχ w dΩ =

∫
Γ
βknkχw dΓ−

∫
Ω
βkχ∂kw dΩ− 5

3

∫
Ω
∂kβ

kχw dΩ

+
2
3

∫
Ω
χαKw dΩ;

�� ��8.27

∫
Ω
∂tg̃ij w dΩ =

∫
Γ
βknkg̃ijw dΓ−

∫
Ω
βkg̃ij∂kw dΩ− 5

3

∫
Ω
∂kβ

kg̃ijw dΩ

+
∫

Ω

(
g̃ik∂jβ

k + g̃jk∂iβ
k
)
w dΩ− 2

∫
Ω
αÃijw dΩ;

�� ��8.28

∫
Ω
∂tÃij w dΩ =

∫
Γ
βknkÃijw dΓ−

∫
Ω
βkÃij∂kw dΩ− 5

3

∫
Ω
∂kβ

kÃijw dΩ

+
∫

Ω

(
Ãik∂jβ

k + Ãjk∂iβ
k
)
w dΩ

+
∫

Ω
e−4φ [−DiDjα+ αRij ]

TF w dΩ

+
∫

Ω
α(KÃij − 2ÃikÃkj) w dΩ;

�� ��8.29
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∫
Ω
∂tK w dΩ =

∫
Γ
βknkKw dΓ−

∫
Ω
βkK∂kw dΩ−

∫
Ω
∂kβ

kKw dΩ

−
∫

Ω
DiDiαw dΩ +

∫
Ω
α

(
ÃijÃ

ij +
1
3
K2

)
w dΩ;

�� ��8.30

∫
Ω
∂tΓ̃i w dΩ =

∫
Ω
g̃jk∂j∂kβ

iw dΩ +
1
3

∫
Ω
g̃ij∂j∂kβ

kw dΩ +
∫

Ω
βj∂jΓ̃iw dΩ

−
∫

Ω
Γ̃j∂jβiw dΩ +

2
3

∫
Ω

Γ̃i∂jβjw dΩ− 2
∫

Ω
Ãij∂jαw dΩ

+2
∫

Ω
α

(
Γ̃ijkÃ

jk + 6Ãij∂jφ−
2
3
g̃ij∂jK

)
w dΩ.

�� ��8.31

For the shift and the lapse we have the following weak form,∫
Ω
∂tα w dΩ =

∫
Γ
βknkαw dΓ−

∫
Ω
βkα∂kw dΩ−

∫
Ω
∂kβ

kαw dΩ

−2
∫

Ω
αKw dΩ;

�� ��8.32

∫
Ω
∂tβ

i w dΩ =
∫

Ω
βi∂iβ

iw dΩ +
3
4

∫
Ω
Biw dΩ

�� ��8.33∫
Ω
∂tB

i w dΩ =
∫

Ω
βi∂iB

iw dΩ +
∫

Ω
∂tΓ̃iw dΩ

−
∫

Ω
ηBiw dΩ.

�� ��8.34

A few comments:

• For the variables φ, χ, g̃ij , Ãij ,K and α the boundary conditions appear in the same
way, due to the integration by parts discussed in equation (8.21), from the integral∫

Ω
βk∂kφ w dΩ =

∫
Γ
βknkφ w dΓ−

∫
Ω
φβk∂kw dΩ−

∫
Ω
φ∂kβ

k w dΩ.
�� ��8.35

• For the moment there is no integral on the boundary for the variable Γ̃i because there
is no obvious integral term appropriate for integration by parts. Since Γ̃i = −∂j g̃ij ,
then if there is a boundary condition introduced for g̃ij it should be implicitly intro-
duced for the variable Γ̃i as well.

• For a similar reason, there is no boundary condition on β in the system (8.33)-(8.34).
However, the variable β appears in the boundary integral in all the other evolution
equations (8.26)-(8.30), so the boundary condition on β could be introduced in this
manner.
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8.2.3 Weak form, version 2

A second choice of weak form of the evolution system can be obtained by not integrating
by parts the same type of integrals as in version 1, but to integrate second order space
derivatives instead, only appearing with the terms denoted (Terms)IP below. We use the
test function w. ∫

Ω
∂tφ w dΩ =

∫
Ω
Lβφ w dΩ− 1

6

∫
Ω
αKw dΩ;

�� ��8.36

or equivalently for the χ-method,∫
Ω
∂tχ w dΩ =

∫
Ω
Lβχ w dΩ +

2
3

∫
Ω
χαKw dΩ;

�� ��8.37

∫
Ω
∂tg̃ij w dΩ =

∫
Ω
Lβ g̃ij w dΩ− 2

∫
Ω
αÃij w dΩ;

�� ��8.38

∫
Ω
∂tÃij w dΩ =

∫
Ω
LβÃij w dΩ +

∫
Ω
α(KÃij − 2ÃikÃkj) w dΩ

+
(∫

Ω
e−4φ [−DiDjα+ αRij ]

TF w dΩ
)IP

;
�� ��8.39

∫
Ω
∂tK w dΩ =

∫
Ω
LβK w dΩ−

(∫
Ω
DiDiαw dΩ

)IP

+
∫

Ω
α

(
ÃijÃ

ij +
1
3
K2

)
w dΩ;

�� ��8.40

∫
Ω
∂tΓ̃i w dΩ =

(∫
Ω
g̃jk∂j∂kβ

iw dΩ
)IP

+
(1

3

∫
Ω
g̃ij∂j∂kβ

kw dΩ
)IP

+
∫

Ω
βj∂jΓ̃iw dΩ−

∫
Ω

Γ̃j∂jβiw dΩ

+
2
3

∫
Ω

Γ̃i∂jβjw dΩ− 2
∫

Ω
Ãij∂jαw dΩ

+2
∫

Ω
α

(
Γ̃ijkÃ

jk + 6Ãij∂jφ−
2
3
g̃ij∂jK

)
w dΩ. �� ��8.41

For the shift and the lapse we have the following weak form,∫
Ω
∂tα w dΩ =

∫
Ω
Lβα w dΩ− 2

∫
Ω
αKw dΩ;

�� ��8.42

∫
Ω
∂tβ

i w dΩ =
∫

Ω
Lββi w dΩ +

3
4

∫
Ω
Biw dΩ;

�� ��8.43∫
Ω
∂tB

i w dΩ =
∫

Ω
LβBi w dΩ +

∫
Ω
∂tΓ̃iw dΩ

−
∫

Ω
ηBiw dΩ;

�� ��8.44
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The weak form of all the Lie derivatives are explicitly given by:∫
Ω
Lβφ w dΩ =

∫
Ω
βk∂kφ w dΩ +

1
6

∫
Ω
∂kβ

k w dΩ;
�� ��8.45∫

Ω
Lβχ w dΩ =

∫
Ω
βk∂kχw dΩ− 2

3

∫
Ω
χ∂kβ

k w dΩ;
�� ��8.46∫

Ω
Lβ g̃ij w dΩ =

∫
Ω
βk∂kg̃ij w dΩ− 2

3

∫
Ω
g̃ij∂kβ

k w dΩ;

+
∫

Ω

(
g̃ik∂jβ

k + g̃jk∂iβ
k
)
w dΩ;

�� ��8.47∫
Ω
LβÃij w dΩ =

∫
Ω
βk∂kÃij w dΩ− 2

3

∫
Ω
Ãij∂kβ

k w dΩ;

+
∫

Ω

(
Ãik∂jβ

k + Ãjk∂iβ
k
)
w dΩ

�� ��8.48∫
Ω
LβK w dΩ =

∫
Ω
βk∂kK w dΩ;

�� ��8.49∫
Ω
Lβα w dΩ =

∫
Ω
βk∂kαw dΩ;

�� ��8.50∫
Ω
Lββi w dΩ =

∫
Ω
βk∂kβ

i w dΩ;
�� ��8.51∫

Ω
LβBi w dΩ =

∫
Ω
βk∂kB

i w dΩ.
�� ��8.52

Comments: The integration by parts here introduce boundary conditions for the variables
α, β, g̃ij , φ. Note that this way, there are no boundary conditions for χ, K, Ãij and Γ̃i.

8.2.4 Weak form, version 3

Another alternative weak form could be a combination of the two previous weak forms,
versions 1 and 2. Moreover, a combination would allow for the introduction of boundary
conditions for all the variables.

8.2.5 Abstract weak form of the BSSN

We can write the weak forms of BSSN in terms of bilinear forms. Terms that are not inte-
grated by parts can be described by the following bilinear form:

a(u,w) =
∫

Ω
u wdΩ.

�� ��8.53

The terms that are integrated by parts can be described by the following bilinear form

b(u,w) =
∫
u ∇wdΩ.

�� ��8.54

8.3 Discretization of the weak form of the BSSN system

For each element, the weak form presented in the previous section 8.2 holds and can be
discretized and written in matrix form before the assembly process.
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8.3.1 Elemental matrix form of the BSSN system

In order to keep the number of subscripts and superscripts to a minimum, we will now
not use explicitly the letter k corresponding to the k-th element for the elemental matrices.
That is, for example, the elemental mass matrix Mk will be referred to as M in the following
section.

Elemental matrix form of the BSSN system version 1

The elemental matrix form of the BSSN system of version 1 is given by,

M⊗ φ̇ = B⊗
(
βk : φ

)
−Dk ⊗

(
βk : φ

)
− φ :

(
Ak ⊗ βk

)
+

1
6
Ak ⊗ βk −

1
6
M⊗ (α : K) ;

�� ��8.55

alternatively, for the χ-method,

M⊗ χ̇ = B⊗
(
βk : χ

)
−Dk ⊗

(
βk : χ

)
− 5

3
χ :
(
Ak ⊗ βk

)
+

2
3
M⊗ (χ : α : K) ;

�� ��8.56

M⊗ ˙̃gij = B⊗
(
βk : g̃ij

)
−Dk ⊗

(
βk : g̃ij

)
− 5

3
g̃ij :

(
Ak ⊗ βk

)
+g̃ik :

(
Aj ⊗ βk

)
+ g̃jk :

(
Ai ⊗ βk

)
−2M⊗

(
α : Ãij

)
;

�� ��8.57

M⊗ ˙̃Aij = B⊗
(
βk : Ãij

)
−Dk ⊗

(
βk : Ãij

)
− 5

3
Ãij :

(
Ak ⊗ βk

)
+Ãik :

(
Aj ⊗ βk

)
+ Ãjk :

(
Ai ⊗ βk

)
+ XTF (e−4φ)

+M⊗
(
α : K : Ãij − 2α : Ãik : Ãkj

)
;

�� ��8.58

M⊗ K̇ = B⊗
(
βk : K

)
−Dk ⊗

(
βk : K

)
−K :

(
Ak ⊗ βk

)
+M⊗

[
α :
(
Ãij : Ãij +

1
3
K : K

)]
− (Dli(g̃il)⊗ α) ;

�� ��8.59

M⊗ ˙̃Γi = −g̃jk :
(
Ajk ⊗ βi

)
+

1
3
g̃ij :

(
Ajk ⊗ βk

)
− βj :

(
Aj ⊗ Γ̃i

)
+2α :

[
Λi

jk : Ãjk + 6Ãij (Aj ⊗ φ)− 2
3
g̃ij : (Aj ⊗K)

]
−Γ̃j :

(
Aj ⊗ βi

)
+

2
3

Γ̃i :
(
Aj ⊗ βj

)
−2Ãij : (Aj ⊗ α) .

�� ��8.60
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And finally for the lapse and the shift:

M⊗ α̇ = B⊗
(
βk : α

)
−Dk ⊗

(
βk : α

)
− α :

(
Ak ⊗ βk

)
−2M⊗ (α : K) ;

�� ��8.61

M⊗ β̇i = βk :
(
Ak ⊗ βi

)
− 3

4
M⊗Bi;

�� ��8.62

M⊗ Ḃi = βk :
(
Ak ⊗Bi

)
+ M⊗ ˙̃Γi − ηM⊗Bi.

�� ��8.63

The dot notation β̇ refers to ∂tβ the time derivative of β. The symbol : refers to the term
by term matrix multiplication (Hadamard product), that is (A : B)ij = aij ∗ bij . On the
other hand, the symbol ⊗ is a multiplication operator that will be defined below for each
elemental matrix type.

Elemental matrix form of the BSSN system version 2

The elemental matrix form of the BSSN system of version 2 is given by,

M⊗ φ̇ = Lβ ⊗ φ−
1
6
M⊗ (α : K) ;

�� ��8.64

alternatively, for the χ-method,

M⊗ χ̇ = Lβ ⊗ χ−
2
3
βk : (Ak ⊗ χ) +

2
3
M⊗ (χ : α : K) ;

�� ��8.65

M⊗ ˙̃gij = Lβ ⊗ g̃ij − 2M⊗
(
α : Ãij

)
;

�� ��8.66

M⊗ ˙̃Aij = Lβ ⊗ Ãij + XTF (e−4φ)

+M⊗
(
α : K : Ãij − 2α : Ãik : Ãkj

)
; �� ��8.67

M⊗ K̇ = Lβ ⊗K − (Dli(g̃il)⊗ α)

+M⊗
[
α :
(
Ãij : Ãij +

1
3
K : K

)]
;

�� ��8.68

M⊗ ˙̃Γi = g̃jk :
(
Ajk ⊗ βi

)
+

1
3
g̃ij :

(
Ajk ⊗ βk

)
− βj :

(
Aj ⊗ Γ̃i

)
+2α :

[
Λi

jk : Ãjk + 6Ãij (Aj ⊗ φ)− 2
3
g̃ij : (Aj ⊗K)

]
−Γ̃j :

(
Aj ⊗ βi

)
+

2
3

Γ̃i :
(
Aj ⊗ βj

)
−2Ãij : (Aj ⊗ α) .

�� ��8.69
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And finally for the lapse and the shift:

M⊗ α̇ = Lβ ⊗ α− 2M⊗ (α : K) ;
�� ��8.70

M⊗ β̇i = Lβ ⊗ βi −
3
4
M⊗Bi;

�� ��8.71

M⊗ Ḃi = Lβ ⊗Bi + M⊗ ˙̃Γi − ηM⊗Bi.
�� ��8.72

8.3.2 Basic combinations of Elemental Matrices appearing in the BSSN system

The basic elemental matrices, the mass matrix M, advection and diffusion matrices A, D
are fully described in chapter 7. The following matrices are combinations of those basic
elemental matrices. See Appendix F for general shaped elements.

Elemental advection matrix product of advection matrix Ak type 1

The product of advection matricesAk appears in the following type of integral∫
Ω
f∂iu∂ju w dΩ = f : (Ai ⊗ u) : (Aj ⊗ u)

1
|J |

.
�� ��8.73

Note that the factor 1/|J | present in the above equation results from the multiplication
of 2 space derivatives within the same integral (one change of variables) and the current
definition we are using for Ak. Each time the product of 2 space derivatives appear in the
same integral this factor of 1/|J | needs to be present accordingly to our definition of Ak.

Elemental matrix for second derivative in space Aij type 1

The advection matrix Aij appears in the following type of integral∫
Ω
f∂i∂ju w dΩ = f : (Aij ⊗ u) ,

�� ��8.74

where, f, u and w are scalar functions and i, j = x, y, or z. The operator ⊗ will act on u in a
different manner depending on the value of i, j as described below:

• i 6= j

Axy ⊗ u = Ayx ⊗ u = ρ :
[
(H ·xy u) ·xy HT

]
|J |∂ξ

∂x

∂η

∂y
;

�� ��8.75

Axz ⊗ u = Azx ⊗ u = ρ :
[
(H ·xy u) ·yz HT

]
|J |∂ξ

∂x

∂ζ

∂z
;

�� ��8.76

Ayz ⊗ u = Azy ⊗ u = ρ :
[(
u ·xy HT

)
·yz HT

]
|J |∂η

∂y

∂ζ

∂z
.

�� ��8.77
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• i = j then

Axx ⊗ u = Qx ⊗ u+ (Ax ⊗ u)
∂2ξ

∂x2

(
∂x

∂ξ

)2

;
�� ��8.78

Ayy ⊗ u = Qy ⊗ u+ (Ay ⊗ u)
∂2η

∂y2

(
∂y

∂ξ

)2

;
�� ��8.79

Azz ⊗ u = Qz ⊗ u+ (Az ⊗ u)
∂2ζ

∂z2

(
∂z

∂ζ

)2

;
�� ��8.80

where

Qx ⊗ u = ρ : (W ·xy u) |J |
(
∂ξ

∂x

)2

;
�� ��8.81

Qy ⊗ u = ρ :
(
u ·xy W T

)
|J |
(
∂η

∂y

)2

;
�� ��8.82

Qz ⊗ u = ρ :
(
u ·yz W T

)
|J |
(
∂ζ

∂z

)2

.
�� ��8.83

Note that theW matrix represents the second derivative of the Legendre interpolants.

Comment: For our particular choice of domain, ∂2ξ/∂x2 = 0 (respectively for η, ζ),
so Aii ⊗ u = Qi ⊗ u.

Elemental matrix for second derivative in space Dii type 2

The advection matrix Dii results from the integration by parts of∫
Ω
f∂i∂iu w dΩ,

�� ��8.84

and appears in the following type of integral∫
Ω
∂iu ∂i(fw) dΩ = Dii(f)⊗ u.

�� ��8.85

This type 2 matrix Dii is an alternative version to Aii, to avoid the use of the second
node differentiation matrix W.

In terms of elemental matrices, we have (for i, j equal)

Dii(f)⊗ u = − (Ai ⊗ u) : (Ai ⊗ f)
1
|J |
−Kii(f)⊗ u,

�� ��8.86

where Kii is the stiffness matrix. Including the boundary term from the integration by
parts, we have the elemental discretization∫

Ω
f∂i∂iu w dΩ = B⊗ (∂iu)− (Ai ⊗ u) : (Ai ⊗ f)

1
|J |

−Kii(f)⊗ u.
�� ��8.87
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Furthermore, in the case of 2 multiplying functions f and g, we have

Dii(f : g)⊗ u = −g : (Ai ⊗ u) : (Ai ⊗ f)
1
|J |
− f : (Ai ⊗ u) : (Ai ⊗ g)

1
|J |

−Kii(f : g)⊗ u.
�� ��8.88

Elemental stiffness matrix Kii

The elemental stiffness matrix Kii appears in the following type of integral∫
Ω
f∂iu ∂iw dΩ = Kii(f)⊗ u,

�� ��8.89

where, f, u and w are scalar functions and i = x, y, or z. This type of integral results from
the integration by parts of ∫

Ω
f∂i∂iu w dΩ.

�� ��8.90

The operator ⊗ will act on u in a different manner depending on the value of i as de-
scribed below:

• i = x

Kxx(f)⊗ u =
[
HT ·xy

(
f : |J |

(
∂ξ

∂x

)2

: ρ : (H ·xy u)
)]

;
�� ��8.91

• i = y

Kyy(f)⊗ u =
[(
f : |J |

(
∂η

∂y

)2

: ρ :
(
u ·xy HT

))
·xy H

]
;

�� ��8.92

• i = z

Kzz(f)⊗ u =
[(
f : |J |

(
∂ζ

∂z

)2

: ρ :
(
u ·yz HT

))
·yz H

]
;

�� ��8.93

8.3.3 Specific Elemental matrices to the BSSN system

Elemental matrix for the Christoffel symbol Λa
bc associated with the metric g̃ij

The elemental matrix for the Christoffel symbol Λa
bc appears in∫

Ω
f Γ̃abc w dΩ = f : Λa

bc,
�� ��8.94

where

Λa
bc =

1
2
g̃al : (Ab ⊗ g̃lc + Ac ⊗ g̃lb −Al ⊗ g̃bc) .

�� ��8.95
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Elemental matrix for the contracted Christoffel symbol Λabc associated with the metric
g̃ij

The elemental matrix for the Christoffel symbol Λabc appears in∫
Ω
f Γ̃abc w dΩ =

∫
Ω
fg̃amΓ̃mbc w dΩ = f : Λabc,

�� ��8.96

where

Λabc =
1
2
g̃am : g̃ml : (Ab ⊗ g̃lc + Ac ⊗ g̃lb −Al ⊗ g̃bc) .

�� ��8.97

Elemental matrix for the product of Christoffel symbols and contracted Christoffel sym-
bols Λa

bcΛdef

The elemental matrix for the product of the Christoffel symbol Γ̃abc and the contracted form
Γ̃def appears in ∫

Ω
f Γ̃abcΓ̃def w dΩ = f : (Λa

bcΛdef ) ,
�� ��8.98

where

Λa
bcΛdef =

1
4
g̃al : (Ab ⊗ g̃lc + Ac ⊗ g̃lb −Al ⊗ g̃bc) :

g̃dm : g̃mo : (Ae ⊗ g̃of + Af ⊗ g̃oe −Ao ⊗ g̃ef )
1
|J |

. �� ��8.99

Elemental matrix for the covariant derivatives in space Dij

The second covariant derivative Dij appears in the following term∫
Ω
fDiDju w dΩ = Dij(f)⊗ u,

�� ��8.100

where u = α or u = φ and the definition of DiDjα is given in equation (8.13).

Version 1 If we do not integrate by parts the second order space derivative terms, we have

Dij(f)⊗ u = f : (Dij ⊗ u) .
�� ��8.101

And for the case u = α, we have the following elemental matrix definitions

Dij ⊗ u = Aij ⊗ u− 4
(
A(i ⊗ φ

)
:
(
Aj) ⊗ u

) 1
|J |
−Λk

ij : (Ak ⊗ u)
1
|J |

+2gijgkl : [(Ak ⊗ φ) : (Al ⊗ u)]
1
|J |

.
�� ��8.102

For the case u = φ, we have

Dij ⊗ u = Aij ⊗ u−Λk
ij : (Ak ⊗ u)

1
|J |

.
�� ��8.103

227



CHAPTER 8. SEM FOR THE BSSN PUNCTURE FORMULATION

Version 2 If we do integrate by parts the second order space derivative terms, we have
for the case u = α,

Dij(f)⊗ u = Dij(f)⊗ u+
[
− 4

(
A(i ⊗ φ

)
:
(
Aj) ⊗ u

) 1
|J |

−Λk
ij : (Ak ⊗ u)

1
|J |

+ 2g̃ij g̃kl : [(Ak ⊗ φ) : (Al ⊗ u)]
1
|J |

]
. �� ��8.104

For the case u = φ, we have

Dij ⊗ u = Dij ⊗ u−Λk
ij : (Ak ⊗ u)

1
|J |

.
�� ��8.105

Note that we use the definition of symmetry

(
A(i ⊗ φ

)
:
(
Aj) ⊗ u

)
=

1
2

[
(Ai ⊗ φ) : (Aj ⊗ u) + (Aj ⊗ φ) : (Ai ⊗ u)

]
. �� ��8.106

Elemental matrix for the Ricci tensor Rij

The elemental matrix for the Ricci tensor appears in the following∫
Ω
fRij w dΩ = Rij(f) =

(
R̃ij(f) + Rφ

ij(f)
)
,

�� ��8.107

Version 1 If we do not integrate by parts the second order space derivative terms, we have

Rij(f) =
(
R̃ij(f) + Rφ

ij(f)
)

= f :
(
R̃ij + Rφ

ij

) �� ��8.108

where

R̃ij = −1
2
g̃lm : (Alm ⊗ g̃ij) + g̃k(i :

(
Aj) ⊗ Γ̃k

)
+Γ̃k : Λ(ij)k + g̃lm :

(
2Λk

l(iΛj)km + Λk
jmΛklj

)
;

�� ��8.109

and

Rφ
ij = −2Dij ⊗ φ− 2g̃ij : g̃kl : (Dlk ⊗ φ) + 4 (Ai ⊗ φ) : (Aj ⊗ φ)

1
|J |

−4g̃ij : g̃kl : (Al ⊗ φ) : (Ak ⊗ φ)
1
|J |

.
�� ��8.110
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Version 2 If we do integrate by parts the second order space derivative terms, we have

R̃ij(f) = −1
2

(
Dlm(f : g̃lm)⊗ g̃ij

)
+ g̃k(i :

(
Aj) ⊗ Γ̃k

)
+Γ̃k : Λ(ij)k + g̃lm :

(
2Λk

l(iΛj)km + Λk
jmΛklj

)
;

�� ��8.111

and

Rφ
ij(f) = −2Dij(f)⊗ φ− 2

(
Dlk(f : g̃ij : g̃kl)⊗ φ

)
+ 4 (Ai ⊗ φ) : (Aj ⊗ φ)

1
|J |

−4g̃ij : g̃kl : (Al ⊗ φ) : (Ak ⊗ φ)
1
|J |

.
�� ��8.112

Elemental matrix XTF for the XTF
ij term

The integral that contains the trace free part TF term∫
Ω
f [−DiDjα+ αRij ]

TF w dΩ = XTF (f),
�� ��8.113

is discretized by

XTF (f) = f : [−Dij ⊗ α+ α : Rij ]
TF

=
(
− Dij(f)⊗ α+ Rij(f, α)

)
−1

3

(
− Dlk(f : gij : gkl)⊗ α+ Rlk(f : α : gij : gkl)

)
. �� ��8.114

Elemental boundary terms B

The elemental boundary matrix B appears in the following integrals∫
Γ

nku w dΓ = B⊗ u.
�� ��8.115

The term B⊗ u will depend strongly on the choice of the boundary conditions on u on Γ.

As mentioned in section 7.1.4 , if we integrate by parts on each element separately there
would be many boundary terms at the interior boundaries. For the exact solutions these
terms cancel in pairs, but the spectral elements are only C0 and the subdomain wall bound-
ary terms do not cancel. This difference arises from the fact that discretization and deriva-
tion of the weak form do not commute for C0 spectral elements. These extra terms go to zero
in the limit so the spectral element strategy is to ignore them which is equivalent to perform-
ing an integration by parts first and discretization second. As previously mentioned, this is
referred to as the variational crime [120].

In 3D and in a rectangular domain, this means that we look at 6 boundaries Γ1, Γ2, Γ3,
Γ4, Γ5 and Γ6 corresponding to the 6 faces of the domain. See figure 7.8 for a clearer picture
of the domain Ω and boundaries Γ.
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Terms containing second order space derivatives The following equations contain terms
with second order space derivatives that need to be integrated by parts:

∂tÃij ∼ exp(−4φ) [−DiDjα+ αRij ]
TF

�� ��8.116

exp(−4φ)Xij −
1
3

exp(−4φ)g̃klXlk

�� ��8.117

∂tK ∼ −DiDiα;
�� ��8.118

∂tΓ̃i ∼ g̃jk∂j∂kβ
i +

1
3
g̃ij∂j∂kβ

k;
�� ��8.119

in particular with,

R̃ij ∼ −1
2
g̃lm∂l∂mg̃ij ;

�� ��8.120

Rφij ∼ −2D̃iD̃jφ− 2g̃ijD̃kD̃kφ;
�� ��8.121

DiDjα ∼ ∂i∂jα;
�� ��8.122

DiDiα ∼ exp(−4φ)g̃ij∂i∂jα;
�� ��8.123

D̃iD̃jφ ∼ ∂i∂jφ.
�� ��8.124

There is an integration by parts only for the terms ∂i∂ju = ∂i∂iu with obviously i = j.

Formulae for integration by parts There are two cases:∫
Ω
∂i∂iu wdΩ =

∫
Γ

(
∂iu · n

)
wdΓ−

∫
Ω
∂iu ∂iwdΩ

�� ��8.125

and with a multiplying function∫
Ω
f∂i∂iu wdΩ =

∫
Γ

(
(f∂iu) · n

)
wdΓ−

∫
Ω
∂if∂iu wdΩ

−
∫

Ω
f∂iu∂iwdΩ.

�� ��8.126

Note that n is the normal unit vector for each surface Γ

n =


nx

ny

nz

�� ��8.127

and nx,ny,nz have values (±1 or 0) depending on the surface Γ (6 surfaces in 3D). The
term · is the scalar product and hence for some function u we have the following

u · n = uxnx + uyny + uznz.
�� ��8.128

Terms that need boundary conditions in the standard puncture data After a few calcula-
tions, here is the summary of the terms that will need values or relations on the boundaries
Γi, i = 1..6:
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• Terms that appear in ∂tÃij , ∂tK and more specifically in DiDiα:∫
Γ

(
exp(−4φ) g̃ii∂iα

)
· n wdΓ, with summation on i.

�� ��8.129

• Terms that appear in ∂tΓ̃i, and more specifically in g̃jk∂j∂kβi:∫
Γ

(
g̃jj∂jβ

i
)
· n wdΓ, with summation on j.

�� ��8.130

• Terms that appear in ∂tΓ̃i, and more specifically in 1
3 g̃
ij∂j∂kβ

k:∫
Γ

(
g̃ii∂iβ

i
)
· n wdΓ, with NO summation on i.

�� ��8.131

• Terms that appear in ∂tÃij , and more specifically in Xij that is αR̃ij :∫
Γ

(
αg̃ll∂lg̃ij

)
· n wdΓ, with summation on l.

�� ��8.132

• Terms that appear in ∂tÃij , and more specifically in−1
3 exp(−4φ)g̃klXlk (variant of the

above):∫
Γ

(
exp(−4φ)g̃klαg̃mm∂mg̃lk

)
· n wdΓ, with summation on m, l, k;

�� ��8.133

and ∫
Γ

(
exp(−4φ)g̃llα∂lφ

)
· n wdΓ, with summation on l.

�� ��8.134

• Terms that appear in ∂tÃij , and more specifically in αRφij :∫
Γ

(
α∂iφ

)
· n wdΓ, with NO summation on i;

�� ��8.135

and ∫
Γ

(
αg̃ij g̃

kk∂kφ
)
· n wdΓ, with summation on k only.

�� ��8.136

Terms that need boundary conditions in the stationary trumpet Schwarzschild punc-
ture data The stationary trumpet Schwarzschild puncture data will be defined in detail
in Chapter 9, it is the initial data we have used for all our numerical results for the BSSN
system presented in this thesis. These calculations, for the stationary solution, are just sim-
plification of the general case (non-stationary) for the boundaries Γi, i = 1..6:

• Terms that appear in ∂tÃij , ∂tK and more specifically in DiDiα:∫
Γ

(
exp(−4φ) ∂iα

)
· n wdΓ, with summation on i.

�� ��8.137
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• Terms that appear in ∂tΓ̃i, and more specifically in g̃jk∂j∂kβi:∫
Γ

(
∂jβ

i
)
· n wdΓ, with summation on j.

�� ��8.138

• Terms that appear in ∂tΓ̃i, and more specifically in 1
3 g̃
ij∂j∂kβ

k:∫
Γ

(
∂iβ

i
)
· n wdΓ, with NO summation on i.

�� ��8.139

• Terms that appear in ∂tÃij , and more specifically in Xij that is αR̃ij :∫
Γ

(
α∂lδ̃ii

)
· n wdΓ, with summation on l.

�� ��8.140

This term should be identically zero for this particular solution.

• Terms that appear in ∂tÃij , and more specifically in−1
3 exp(−4φ)g̃klXlk (variant of the

above): ∫
Γ

(
exp(−4φ)α∂mδ̃kk

)
· n wdΓ, with summation on m, k.

�� ��8.141

This term should be identically zero for this particular solution., and∫
Γ

(
exp(−4φ)α∂lφ

)
· n wdΓ, with summation on l.

�� ��8.142

• Terms that appear in ∂tÃij , and more specifically in αRφij :∫
Γ

(
α∂iφ

)
· n wdΓ, with NO summation on i;

�� ��8.143

and ∫
Γ

(
αδ̃ij∂kφ

)
· n wdΓ, with summation on k only.

�� ��8.144

To investigate the SEM, we simply impose the analytic solution at the boundaries in-
stead of using Sommerfeld boundary conditions. When the boundaries are pushed far
away, it simplifies the boundary conditions immensely. At spatial infinity, the analytic so-
lution of most of the variables are zero or constant and therefore their spatial derivatives
are zero. It is important to note that, there is no need to introduce different equations on the
boundaries as is the case in FD.

We have briefly discussed a possible way of treating the boundary conditions, however,
further work is needed to investigate the application of the Sommerfeld boundary condi-
tions to the BSSN system with the SEM.
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8.4 Assembly of global discretization matrix

All the elemental contributions now need to be “added together” this is called the assem-
bly of the global matrix. Now, reintroducing the superscript k for the kth-element, we
construct the general global matrix A from its associated elemental matrix Ak,

A =
k=NE∑
k=1

′ Ak,
�� ��8.145

where
k=NE∑
k=1

′ represents the assembly process or direct stiffness summation.

8.4.1 Global assembled matrix system of the BSSN system version 1

The elemental matrix form of the BSSN system of version 1 is given by,

k=NE∑
k=1

′M⊗ φ̇ =
k=NE∑
k=1

′
[
B⊗

(
βk : φ

)
−Dk ⊗

(
βk : φ

)
− φ :

(
Ak ⊗ βk

)

+
1
6
Ak ⊗ βk −

1
6
M⊗ (α : K)

]k

;
�� ��8.146

alternatively, for the χ-method,

k=NE∑
k=1

′M⊗ χ̇ =
k=NE∑
k=1

′
[
B⊗

(
βk : χ

)
−Dk ⊗

(
βk : χ

)
− 5

3
χ :
(
Ak ⊗ βk

)

+
2
3
M⊗ (χ : α : K)

]k

;
�� ��8.147

k=NE∑
k=1

′M⊗ ˙̃gij =
k=NE∑
k=1

′
[
B⊗

(
βk : g̃ij

)
−Dk ⊗

(
βk : g̃ij

)
− 5

3
g̃ij :

(
Ak ⊗ βk

)
+g̃ik :

(
Aj ⊗ βk

)
+ g̃jk :

(
Ai ⊗ βk

)
− 2M⊗

(
α : Ãij

)]k

;
�� ��8.148

k=NE∑
k=1

′M⊗ ˙̃Aij =
k=NE∑
k=1

′
[
B⊗

(
βk : Ãij

)
−Dk ⊗

(
βk : Ãij

)
− 5

3
Ãij :

(
Ak ⊗ βk

)
+Ãik :

(
Aj ⊗ βk

)
+ Ãjk :

(
Ai ⊗ βk

)
+ XTF (e−4φ)

+ M⊗
(
α : K : Ãij − 2α : Ãik : Ãkj

)]k

;
�� ��8.149
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k=NE∑
k=1

′M⊗ K̇ =
k=NE∑
k=1

′
[
B⊗

(
βk : K

)
−Dk ⊗

(
βk : K

)
−K :

(
Ak ⊗ βk

)
+M⊗

[
α :
(
Ãij : Ãij +

1
3
K : K

)]

− (Dli(g̃il)⊗ α)

]k

;
�� ��8.150

k=NE∑
k=1

′M⊗ ˙̃Γi =
k=NE∑
k=1

′
[
− g̃ij :

(
Ajk ⊗ βi

)
+

1
3
g̃ij :

(
Ajk ⊗ βk

)
+2α :

[
Λi

jk : Ãjk + 6Ãij (Aj ⊗ φ)− 2
3
g̃ij : (Aj ⊗K)

]
−Γ̃j :

(
Aj ⊗ βi

)
+

2
3

Γ̃i :
(
Aj ⊗ βj

)
− βj :

(
Aj ⊗ Γ̃i

)
− 2Ãij : (Aj ⊗ α)

]k
.

�� ��8.151

And finally for the lapse and the shift:

k=NE∑
k=1

′M⊗ α̇ =
k=NE∑
k=1

′
[
B⊗

(
βk : α

)
−Dk ⊗

(
βk : α

)
− α :

(
Ak ⊗ βk

)

− 2M⊗ (α : K)

]k

;
�� ��8.152

k=NE∑
k=1

′M⊗ β̇i =
k=NE∑
k=1

′
[
βk :

(
Ak ⊗ βi

)
− 3

4
M⊗Bi

]k

;
�� ��8.153

k=NE∑
k=1

′M⊗ Ḃi =
k=NE∑
k=1

′
[
βk :

(
Ak ⊗Bi

)
+ M⊗ ˙̃Γi

− ηM⊗Bi

]k

.
�� ��8.154

Recall that the dot notation β̇ refers to ∂tβ the time derivative of β. The symbol : refers to the
term by term matrix multiplication (Hadamard product). On the other hand, the symbol
⊗ is multiplication operator which exact definition depends on each elemental matrix type
and space dimensions for differentiating elemental matrices.

8.4.2 Global assembled matrix system of the BSSN system version 2

The elemental matrix form of the BSSN system of version 2 is given by,

k=NE∑
k=1

′M⊗ φ̇ =
k=NE∑
k=1

′
[
Lβ ⊗ φ−

1
6
M⊗ (α : K)

]k

;
�� ��8.155
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alternatively, for the χ-method,
k=NE∑
k=1

′M⊗ χ̇ =
k=NE∑
k=1

′
[
Lβ ⊗ χ−

2
3
βk : (Ak ⊗ χ)

+
2
3
M⊗ (χ : α : K)

]k

;
�� ��8.156

k=NE∑
k=1

′M⊗ ˙̃gij =
k=NE∑
k=1

′
[
Lβ ⊗ g̃ij − 2M⊗

(
α : Ãij

)]k

;
�� ��8.157

k=NE∑
k=1

′M⊗ ˙̃Aij =
k=NE∑
k=1

′
[
Lβ ⊗ Ãij + XTF (e−4φ)

+ M⊗
(
α : K : Ãij − 2α : Ãik : Ãkj

)]k
; �� ��8.158

k=NE∑
k=1

′M⊗ K̇ =
k=NE∑
k=1

′
[
Lβ ⊗K − (Dli(g̃il)⊗ α)

+ M⊗
[
α :
(
Ãij : Ãij +

1
3
K : K

)]]k

;
�� ��8.159

k=NE∑
k=1

′M⊗ ˙̃Γi =
k=NE∑
k=1

′
[
g̃ij :

(
Ajk ⊗ βi

)
+

1
3
g̃ij :

(
Ajk ⊗ βk

)
+2α :

[
Λi

jk : Ãjk + 6Ãij (Aj ⊗ φ)− 2
3
g̃ij : (Aj ⊗K)

]
−Γ̃j :

(
Aj ⊗ βi

)
+

2
3

Γ̃i :
(
Aj ⊗ βj

)
− βj :

(
Aj ⊗ Γ̃i

)
− 2Ãij : (Aj ⊗ α)

]k

.
�� ��8.160

And finally for the lapse and the shift:

k=NE∑
k=1

′M⊗ α̇ =
k=NE∑
k=1

′
[
Lβ ⊗ α− 2M⊗ (α : K)

]k

;
�� ��8.161

k=NE∑
k=1

′M⊗ β̇i =
k=NE∑
k=1

′
[
Lβ ⊗ βi −

3
4
M⊗Bi

]k

;
�� ��8.162

k=NE∑
k=1

′M⊗ Ḃi =
k=NE∑
k=1

′
[
Lβ ⊗Bi + M⊗ ˙̃Γi − ηM⊗Bi

]k

;
�� ��8.163
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8.5 Time Discretization

The time discretization of the system

U̇ = AU + F = f(U, t),
�� ��8.164

is computed by an explicit fourth order Runge–Kutta method. Given an initial condition
U0, the solution Un+1 at time tn+1 is determined from the previous time tn and the solution
Un. The details of the Runge–Kutta fourth order method can be found more explicitly in
6.10.

8.6 Conclusion

In this Chapter, we have presented an overview of the spectral element method applied to
the BSSN system, a hyperbolic space+time reformulation of the Einstein equations of gen-
eral relativity.

We have applied the variational formulation to the BSSN system and presented several
possible weak forms. From these weak forms, we have explained in detail how the elemen-
tal matrix forms specific to the BSSN system are calculated in light of the spectral element
discretization.

We have briefly discussed a possible way of treating the boundary condition. However,
further work is needed to investigate the application of the Sommerfeld-like boundary con-
ditions to the BSSN system with the SEM.

Finally, we have also presented the global system of algebraic equations of the reformu-
lated Einstein equations.
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A computation is a temptation that should be
resisted as long as possible.

J. P. Boyd, paraphrasing T. S. Eliot 9
Exploring the Spectral Element Method

for moving puncture simulations

In this Chapter, we present numerical experiments and results from the applications of the
spectral element method to the BSSN system, and by extension to the Einstein equations

of general relativity.

The first implementation of any numerical method to a complex problem such as the
Einstein equations is not an easy task. Many numerical experimentations are needed to
understand the behaviour of the SEM applied to our specific problem: the BSSN system.
How does the method handle the irregularities, steep gradients and discontinuities across
the puncture? How much resolution is needed and in which part of the domain, in order
to obtain accurate and stable simulations? Through numerous numerical experiments, we
have tried to answer these questions and get an overall understanding and feeling of how
the SEM works with our problem at hand.

We have studied a particular stationary solution using the Schwarzschild trumpet punc-
ture data solution derived in [5, 6]. We will discuss our motivations behind the choice of the
Matlab language to implement our numerical code. We will then illustrate the geometric
flexibility of the method before presenting numerical results, showing how the SEM han-
dles discontinuities at the puncture and further away in the smoother parts of the solution.

9.1 The puncture data for a Schwarzschild black hole

There exists a true stationary “1 + log” slice1 through the Schwarzschild spacetime called
the trumpet solution [5, 6]. Refer to figure 9.1 to clearly see why the geometry is called
trumpet. This solution is flat at one end and cylindrical of radius R ∼ 1.31M at the other.
When this solution is transformed to isotropic coordinates, it provides puncture trumpet
data that are time independent in a moving-puncture simulation. This solution provides an
excellent test-case for our numerical evolution of the SEM applied to the BSSN system. The
moving-puncture approach is currently the most popular method for simulating black-hole
binaries, but for such codes, there is no analytic black hole solution that can be used to test
a new code, except the “1 + log” stationary trumpet solution presented in [5, 6] and also

1See section 5.5 for a discussion on slicing and gauge conditions in numerical relativity.
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in [147, 148]. Note that there also exists a “maximal” trumpet solution.

Figure 9.1: Embedding diagram of a 2 dimensional slice of a maximal puncture trumpet
data solution [5, 6]

The Schwarzschild metric in Schwarzschild coordinates is

ds2 = −fdT 2 + f−1dR2 +R2dΩ2,
�� ��9.1

where f = 1 − 2M/R. The quantities R and T denote the Schwarzschild radial coordinate
and Schwarzschild time. The surface R = 2M is the event horizon, R = 0 is a physical
singularity, and R → ∞ is spatial infinity (keeping T fixed). Now, to obtain the metric in
isotropic coordinates, we apply the following coordinate transformation R = ψ2r, where
we define ψ as

ψ = 1 +
M

2r
.

�� ��9.2

The Schwarzschild metric then becomes

ds2 = −

(
1− M

2r

1 + M
2r

)2

dT 2 + ψ4(dr2 + r2dΩ2).
�� ��9.3

The Schwarzschild metric in isotropic coordinates is better adapted to the standard punc-
ture method. The isotropic coordinate r does not reach the physical singularity at R = 0.
For large r we have R → ∞, but for small r we have again R → ∞. There is a minimum
of R = 2M at r = M/2. We now have two copies of the space outside the event horizon
R > 2M , and the two spaces are connected by a wormhole with a throat at R = 2M . The
point r = 0 is referred to as the puncture.

The Schwarzschild metric solution in isotropic coordinates is

g̃ij = δij ,
�� ��9.4

ψ = 1 +
M

2r
,

�� ��9.5

Ãij = 0,
�� ��9.6

K = 0.
�� ��9.7
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Figure 9.2: Exact solution for χ and φ for a trumpet Schwarzschild black hole
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(b) Ãxx versus y in the x = z ∼ 0 plane
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Figure 9.3: Exact solution for Ãij for a trumpet Schwarzschild black hole
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Figure 9.4: Exact solution for K and α for a trumpet Schwarzschild black hole
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Figure 9.5: Exact solution for βi for a trumpet Schwarzschild black hole
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The lapse and shift are

α =
1− M

2r

1 + M
2r

,
�� ��9.8

βi = 0.
�� ��9.9

If equations (9.4) – (9.7) are chosen as initial data, with the lapse (9.8) and shift (9.9), then
the data will remain unchanged: this is a stationary solution. This solution might seem
trivial to implement, however, it is difficult to reproduce numerically in a standard 3D
black-hole evolution code. Indeed, most codes are not stable when the lapse is negative,
which it is here for r < M/2. In a numerical code we prefer to use a lapse that is always
positive, or at least non-negative. However, a “1 + log” or maximal slicing evolution with
two asymptotically flat ends and with a non negative lapse cannot reach a stationary state.
By giving up one of the flat ends, we can obtain a trumpet stationary solution with a “1+log”
slicing condition and a positive lapse. Note that there is also a solution with a maximally
sliced condition K = 0, but one must solve an elliptic equation at each timestep to find
the corresponding lapse function that maintains maximal slicing. This is computationally
expensive and it is more practical to choose a slicing condition so that the lapse can be
calculated from an evolution equation like the rest of the dynamical variables.

The “1 + log” slicing condition corresponds to the following evolution equation:

(∂t − βi∂i)α = −nαK.
�� ��9.10

After analytical calculations, the corresponding time-independent Schwarzschild solution
can be derived for this slicing condition, see [5, 6] for details. The lapse is now given by

α2 = 1− 2M
R

+
C(n)2e2α/n

R4
,

�� ��9.11

where the value of the constant C(n) is given by

C2(n) =
(3n+

√
4 + 9n2)3

128n3
e−2αc/n,

�� ��9.12

with the specific value for αc

α2
c =

√
4 + 9n2 − 3n√
4 + 9n2 + 3n

.
�� ��9.13

We can then calculate βR (in Schwarzschild coordinates) with the relation:

βR = α
√
α2 − f.

�� ��9.14

The metric term gRR is given by

gRR =
1
α2
,

�� ��9.15
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and finally, the extrinsic curvature is described by

KRR =
β′

α2
,

�� ��9.16

Kθθ = Rβ,
�� ��9.17

Kφφ = Rβ sin2 θ,
�� ��9.18

where β =
√
βiβi and β′ = ∂β/∂R. The trace of the extrinsic curvature K = Ki

i is

K =
2β
R

+ β′.
�� ��9.19

Equations (9.11-9.19) give the 1 + log trumpet solution for a Schwarzschild black hole. The
horizon is located at α(R = 2M) = 0.376179.

Figures 9.2, 9.3, 9.4 and 9.5 show the exact solution for most of the BSSN variables. Note
that g̃ij = δij and Γ̃i = 0 are not represented. The solution is represented as a function of
x in the plane y = z ∼ 0 (near the puncture) and in 3 dimensions as a function of x, y and
z. Note that the conformal metric g̃ij and the extrinsic curvature Ãij are symmetric and
therefore we have:

g̃xy = g̃yx g̃xz = g̃zx g̃yz = g̃zy;
�� ��9.20

Ãxy = Ãyx Ãxz = Ãzx Ãyz = Ãzy.
�� ��9.21

From the aforementioned figures, we can clearly see the properties of each variable. The
variables χ, g̃ij , Γ̃i are all smooth, the variables φ, K, α and βi are continuous but only C0 so
we can expect some of the derivatives to be discontinuous or have at least some kinks near
the puncture. In particular, note that α behaves as |x| close to the puncture. In contrast, the
variables Ãij are clearly discontinuous across the puncture and these terms will indeed be
the most problematic.

Not only is this “1 + log” stationary trumpet solution extremely useful for testing a new
code, but it also offers the possibility to test each equation separately, evolving only one
variable at a time and keeping all the other variables exact. It is therefore possible to work
on each variable as part of an uncoupled system, as well as all the variables as part of a
coupled system.

9.2 Behaviour of extrinsic curvature near the puncture

This is easiest to see in the maximal case, where we can write many relations in closed form.
The physical extrinsic curvature is given in spherical coordinates by

Ki
j = diag(−2C/R3, C/R3, C/R3),

�� ��9.22

where C2 = 27M4/16. The BSSN extrinsic curvature is then given in Cartesian coordinates
by

Ãij =
C

ψ6r3
(1− 3nxny),

�� ��9.23

244



9.3. EXPERIMENTING WITH THE SEM AND BSSN SYSTEM:
WHY? WHAT? WHERE? HOW?

where ni = xi/r. We therefore have, for example, that

Ãxx =
C

ψ6

y2 + z2 − 2x2

r5
.

�� ��9.24

Near the puncture, the conformal factor behaves like

ψ ≈
√

3M
2r

,
�� ��9.25

and so the conformal extrinsic curvature looks like

Ãxx = A
y2 + z2 − 2x2

r2
,

�� ��9.26

whereA is a constant. We see that this quantity has direction-dependent limits. If we choose
y = z = 0, then we have

Ãxx|y=z=0
= −2A.

�� ��9.27

If we instead choose x = y = 0, then we have

Ãxx|x=y=0
= A.

�� ��9.28

The same effect also shows up in the 1 + log solution. But the length scale is small, and
so the effect is only clear with very high resolution near the puncture.

9.3 Experimenting with the SEM and BSSN system:
Why? What? Where? How?

Why would a numerical method work or not with a particular system? What would be the
best set-up to take full advantage of the SEM for BSSN simulations? Where would the most
resolution be needed? How would the method behave overall with our problem?

Through numerous numerical experiments with various meshes and resolution setups,
we have investigated the overall behaviour of the SEM with the nonlinear Einstein equa-
tions. We have tried to address each of the following:

From a computational point of view. Why did we choose Matlab for our implementa-
tion of the SEM? We will also present rough estimates of the memory requirements of the
method for the BSSN system.

Geometric flexibility. The SEM is well-known for its geometric flexibility. How easy is it
to create a mesh adapted to our problem?

Different versions of the weak form. This tests how much the behaviour depends on the
weak form, does it make a big difference? Is this something that deserves more attention?
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The φ-method versus the χ-method with the SEM. With finite differences, both methods
can be used leading to similar results? Is there an advantage using one method over the
other with the SEM?

Far from the puncture. This is where we expect the system to behave well. What is the
verdict?

Puncture at the centre of an element. This puts the discontinuities in the center of one
element, and allows us to look at how the errors behave. This also counts as a sort of ”base
case”, from which we can compare cleverer setups. As we will see further on, it turns out
that the discontinuity at the puncture is a very significant problem.

How can the problems at the puncture be dealt with, without the use of any stabilization
technique (e.g. filtering)? With FD methods, the errors do not propagate away from the
puncture, is it possible here, that the errors will not propagate beyond one element?

Offset mesh. To deal with the irregularities at the puncture, it might be a good idea to
locate the discontinuity at the edge of an element. Indeed, in structural mechanics, cracks
in the material introduce discontinuities in the solution. These are best dealt with by mod-
ifying the mesh to cover cracks across elements rather than inside an element. Can we do
the same with the BSSN system?

Increasing the number of elements near the puncture. In some problems, this is a way
to deal with discontinuities, is this a practical way to deal with the puncture?

Filtering “as much or as little as needed”. If all else fails to deal with the discontinuities
at the puncture, will filtering make a difference?

Long-term stable evolutions? How does the SEM applied to the BSSN system handle
long-term evolutions?

9.4 From a computational point of view

9.4.1 Why Matlab?

The Matlab language was primarily chosen for its ability to integrate numerical computa-
tion in particular with fast and simple matrix vectorization calculations and relatively easy
computer graphic visualization. Matlab programming language is in some ways superior
and in some ways inferior to traditional upper-level languages such as Fortran, C and C++.

As an interpreted language, the instructions in the code are translated into machine
language and executed in real time in contrast with a compiled source code therefore Matlab
codes are not suitable for large-scale computations. In other words, this translates into a
slower running speed for the code.

However, Matlab is ideal for developing and testing the SEM. This involves mostly ele-
mental matrix calculations with the BSSN system, as well as implementing various meshes
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and hence using many available graphics components. Matlab includes a great deal of
infrastructure – matrix operations, input/output, visualisation, as well as freely available
examples of SEM in 1D and 2D [149] – making it much quicker to develop and test new
ideas, without having to spend time writing and debugging infrastructure that is irrelevant
to the method.

Translation of a Matlab code to another computer language is straightforward and it will
offer the possibility to run in parallel which works very well with the SEM since elemental
calculations can be done faster on separate CPUs communicating results only during the
assembly process.

9.4.2 Memory efficiency of the SEM

In the Matlab code, all the elemental matrices except (Mass and Boundary) are assembled
while performing calculations at the same time because of memory storage advantages
(many zeros), and hence only the non zero blocks A, D etc... are stored. The Runge-Kutta
method requires such calculations 4 times per timestep over a loop on the number of ele-
ments NE . Remember that Ng is the global number of space points and N = P + 1 is the
number of GLL points per element.

Memory requirement for the construction of a 3D SEM mesh

• Iglob is the global index function and requires: ∼ Ng × (8 Bytes);

• iglob is the local to global index function I(a, b, c, k) and requires: ∼ (NGLL)3 ×NE ×
(8 Bytes);

• Jacobian, first derivatives (e.g ∂x/∂ξ) requires: ∼ (NGLL)3 ×NE × n× (8 Bytes),
where n depends on the structure of the mesh n = 10 for a general deformed mesh or
n = 4 when ∂x/∂η and other derivatives are zero.

• x, y, z are the physical coordinates and require: ∼ 3Ng × (8 Bytes).

Total minimum memory requirement for a 3D mesh:

memory ∼ 4Ng × (8 Bytes) + (n+ 1)(NGLL)3 ×NE × (8 Bytes) +O (8 Bytes) .�� ��9.29

If we fix the memory to a maximum value then we have the following restrictions on the
global number of points Ng:

Ng <
memory− (n+ 1)(NGLL)3 ×NE × (8 Bytes)

4× (8 Bytes)
.

�� ��9.30

Memory requirement for the BSSN evolution equations

• Iglob is the global index function and requires: ∼ Ng × (8 Bytes);

• iglob is the local to global index function I(a, b, c, k) and requires: ∼ (NGLL)3 ×NE ×
(8 Bytes);
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• x, y, z are the physical coordinates and require: ∼ 3Ng × (8 Bytes);

• Jacobian, first derivatives (e.g ∂x/∂ξ) requires: ∼ (NGLL)3 ×NE × n× (8 Bytes),
where n depends on the structure of the mesh n = 10 for a general deformed mesh or
n = 4 when ∂x/∂η and other derivatives are zero.

• unknowns, if we estimate roughly 40 variables the requirement is: ∼ 40 var × Ng ×
(8 Bytes);
However, using a 4 time stepping scheme RK4, all the variables have to be stored 4
times for the Runge-Kutta method, the requirement would be: ∼ 4 steps × 40 var ×
Ng × (8 Bytes);
Fortunately, we can optimize this by assembling and calculating the right hand sides
of each equation separately requiring only 4 auxiliary variables for all the unknown,
the memory requirement is now:∼ 44 var×Ng × (8 Bytes);

• Elemental matrices, only M is pre-assembled, the rest (∼ 10 to 20 depending on the
variable under claculation) are calculated for each element but not stored, the rough
memory requirement estimate is:
∼ Ng × (8 Bytes) + (nb elemental matrices)× (NGLL)3 × (8 Bytes);

• Node differentiation matrices, H , HT require: ∼ (2 node differentiation matrices) ×
(NGLL)2 × (8 Bytes);

Total minimum memory requirement for the evolution equation:

memory ∼ 49×Ng × (8 Bytes) + (n+ 1)(NGLL)3 ×NE × (8 Bytes)
+ (nb elemental matrices)× (NGLL)3 × (8 Bytes)

+2× (NGLL)2 × (8 Bytes) +O (8 Bytes) .
�� ��9.31

What do these memory requirement estimates tell us? These estimates are an indication
of the minimum memory requirements for the application of the SEM to the BSSN system.
Using the interpreted language Matlab will certainly imply slower simulations than with
any other method implemented with a compiled language. Although we are not able to
comment on the computational speed, these memory requirement estimates certainly show
an advantage of the SEM over the finite difference method (FD): the derivatives of the vari-
ables do not need to be calculated and kept in memory globally over the whole domain, and
all calculations are done on an elemental basis only requiring N3

GLL type matrices at a time.
Remember that for the SM and SEM, the derivatives of any function consist of the nodal
coefficients with the derivatives of the Lagrange–Legendre basis functions. The derivatives
of the interpolants only need calculating once and are stored in a N2

GLL matrix Hij .

9.5 Geometric flexibility

In Chapter 7, all the simulations have been performed on a uniform mesh: the “even” mesh,
where the domain is decomposed evenly, and all the elements have the same size. In the
simulations presented there, the solution of the wave equation was traveling across the
domain L which was relatively small L = 2, ..., 7. The consequent number of elements and
hence number of points was not extremely significant and problematic.
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To solve the BSSN system, however, we need a large domain of at least L = 80M , the
larger the domain, the less errors propagating from the boundary conditions spread in the
solution. An even mesh is absolutely impractical for such large domains.

For example, to obtain a L2 norm of 1.10−6 on average, for the wave equation in 3D
with a domain of L = 4, we need, a polynomial order N = 5, a total number of elements
NE = 163, and therefore a total number of points of Ng = 531 441. To obtain the same
level of resolution with an even mesh for a domain of L = 80 however, we require the same
polynomial order, a total number of elements NE = 3203, which makes the total number of
points Ng = 4 103 684 801.

In light of the previous section, the memory requirements for this simulation would be
of roughly 223 GigaBytes of RAM.

Since the most spatial resolution needed for the BSSN variables concentrate near the
puncture, it is definitely in our interest to design a mesh that would take this property into
account.

In this section, we present some “distorted meshes” that consist of small elements near
the puncture that can get stretched out when moving outwards to the boundaries.

9.5.1 Distorted meshes

For a regular evenly decomposed mesh, the anchor points can be formulated as

Xa = −LX + a
2LX
NEx

∀a = {0, ..., NE}.
�� ��9.32

We can now define a distorted square mesh in a similar fashion:

L2 = (LX)1/2,
�� ��9.33

Xa = sign
(
−L2 + a

2L2

NEx

)(
−L2 + a

2L2

NEx

)2

∀a = {0, ..., NE}.
�� ��9.34

We can also define a distorted cubic mesh as follows

L3 = (LX)1/3,
�� ��9.35

Xa =
(
−L3 + a

2L3

NEx

)3

∀a = {0, ..., NE}.
�� ��9.36

Many types of distorted meshes can be defined in this fashion. What do these meshes look
like? These meshes distort an even mesh by squeezing the elements close to the centre and
by enlarging elements further away from the centre. This allows for more points near the
puncture and less points where we do not need as much resolution.

These types of meshes have some disadvantages: they provide high resolution near
the coordinate planes, not just near the puncture, and this is a waste of resources. However,
these meshes have the advantage of being simple to implement, and allow enough variation
in resolution for testing purposes, and illustrate the basic flexibility of meshes in the SEM
approach. The ideal mesh would mimic spherical coordinates at large distances.
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In Figure 9.6, we represent 2 examples of distorted square and cubic meshes with the
same number of elements NE and domain L = 80. Note that the cubic mesh distorts the
size of the elements the most, the elements at the centre are smaller and the elements close
to the boundaries are larger than with a square mesh. In Appendix G we present these
meshes with varying parameters

• Figure (G.1) present a 2D slice of a 3D distorted square mesh with anchor points with-
out GLL points with NE = 53, 73, 93, 113 respectively.

• Figure (G.2) present a 2D slice of a 3D distorted cubic mesh with anchor points with-
out GLL points with NE = 53, 73, 93, 113 respectively.

Tables (G.1) and (G.2) illustrate the requirements for distorted square meshes and distorted
cubic meshes respectively as functions of the number of elements NE and the polynomial
order N and in terms of the minimum and maximum dx, timestep dt required and the total
number of points Ng involved.
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2D slice of the 3D mesh without GLL points, N=3, NEL=729
L=80, min dx=0.54596, max dx=14.1342, dt=0.27298 Ng=21952points
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(a) Square mesh with NE = 93
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(b) Cubic mesh with NE = 93

Figure 9.6: 3D distorted square and cubic meshes represented in a 2D slice for the same
number of elements NE = 93 and domain L = 80.

9.5.2 Mixed Distorted meshes

We can also combine the definitions of several mesh types to obtain one mixed distorted
mesh in order to ensure a more precise density of points in certain areas. This allows for
even more flexibility in the choice of the grid. For example, we can define an inside box to
be an even mesh for LXin = 1.5 and a square distorted mesh on the outside up to LX = 20
for example. We can also have a distorted square in the inside box and any other distorted
mesh outside. Figure 9.7 illustrates 2 mixed distorted meshes. In Appendix G, we present
more mixed distorted meshes for varying number of elementsNE , see figure G.3 for details.

We have illustrated the relative ease in implementing simple distorted meshes more
adapted to our problem, taking advantage of the geometric flexibility of the SEM. These

250



9.6. DIFFERENT VERSIONS OF THE WEAK FORM

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

2D slice of the 3D mesh without GLL points, N=5, NEL=729, L=20, Ng=97336points
dx(~0)=0.11409, min dx=0.046989, max dx=4.2214, dt=0.023494

X

y

(a) Even inside Box NEIn = 53, square outside Box,
NE = 73.
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(b) Square inside BoxNEIn = 53, square outside Box,
NE = 73.

Figure 9.7: 3D mixed distorted meshes represented in a 2D slice for number of elements
NE = 73 and for a domain L = 20. The outside area is a square mesh and the inside box is
even for (a), whereas the inside box is square for (b).

distorted and mixed distorted meshes are not ideal. An ideal mesh would mimic spherical
coordinates at large distances, they allow for more points near the puncture and less points
where we do not need as much resolution.

9.6 Different versions of the weak form

In this section we present results for the evolution equation of χ with 2 types of weak forms
introduced in Chapter 8. Remember that in weak form 1, we integrate by parts and obtain:∫

Ω
∂tχ w dΩ =

∫
Γ
βknkχw dΓ−

∫
Ω
βkχ∂kw dΩ− 5

3

∫
Ω
∂kβ

kχw dΩ

+
2
3

∫
Ω
χαKw dΩ.

�� ��9.37

However, if we do not integrate by parts we obtain the weak form 2:∫
Ω
∂tχ w dΩ =

∫
Ω
Lβχ w dΩ +

2
3

∫
Ω
χαKw dΩ,

�� ��9.38

with ∫
Ω
Lβχ w dΩ =

∫
Ω
βk∂kχw dΩ− 2

3

∫
Ω
χ∂kβ

k w dΩ.
�� ��9.39

What is the difference numerically between implementing the first or second weak form? It
turns out that the difference is roughly of the order of the numerical accuracy in the domain.
Furthermore, the first weak form needs boundary conditions imposed whereas the second
version does not. So in the end it turns out that the 2nd weak form offers slightly better
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numerical results. We will use the second weak form in the following simulations. See
figure 9.8 for visual comparisons of the L2 norms of χ and φ obtained from the evolution of
χ.
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Figure 9.8: L2 norms comparing the implementation of the weak form 1 (in solid lines) and
weak form 2 (in dashed dot lines) for χ (in blue +) and φ (in red x).

9.7 The φ-method versus the χ-method with the SEM

The BSSN system is presented in detail in Chapters 5 and 8. We have mentioned that the
conformal factor ψ could be evolved through the variable φ (with the φ-method) or through
the variable χ (with the χ-method).

Recall that with the φ-method, one works directly with the original BSSN variable φ,

φ = lnψ,
�� ��9.40

and the evolution equation for φ is

∂tφ− Lβφ = −1
6
αK Lβφ = βk∂kφ+

1
6
∂kβ

k.
�� ��9.41

The purely experimental result is that finite differencing across the ln(r) singularity at r = 0
leads to stable evolutions. Is this the case with the spectral element method?

In the χ-method, a new conformal factor is defined, that is finite at the puncture,

χ = ψ−4,
�� ��9.42

with the corresponding evolution equation

∂tχ− Lβχ =
2
3
χαK Lβχ = βk∂kχ−

2
3
χ∂kβ

k.
�� ��9.43
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Since χ is initially finite at the puncture, it will be smooth across the entire domain, whereas
φ will be discontinuous at the puncture. The disadvantage is that one has to make sure χ
does not become negative in the evolution code, as φ = −1/4 ln(χ) would not be defined. It
is common practice to set χ to a minimum cut-off value when χ < 0.

A priori, it would make sense that the χ-method would exhibit better performance for
the SEM. Figure 9.9 shows the comparison of the L2 norms of the evolution of φ, the evolu-
tion of φ with filtering, the evolution of χ and φ calculated from the evolution of χ. In this
figure, the variables are evolved up to t = 10M , and it is clear that the norm of φ obtained
from evolving χ gives the most desirable results. Hence, this experimental result confirms
that using the χ-method is strongly recommended when using the SEM. All the following
simulations in this thesis will be based on the χ-method.
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Figure 9.9: The φ-method versus the χ-method: comparison of the L2 norms of the evo-
lution of φ, the evolution of φ with filtering, the evolution of χ and φ calculated form the
evolution of χ.

9.8 Far from the puncture

Sufficiently away from the puncture, all the variables of the BSSN system are smooth and
we expect the system to behave well. This means that the SEM is able to obtain high-
accuracy convergence in this part of the domain.

The variables that require the most attention are Ãxx, Ãxy, K and Γ̃x. To illustrate the
behaviour of the SEM far from the puncture, we show the norms of these variables for a
domain L = 64 with a cubic mesh and varying polynomial order and number of elements
in Figure 9.10. Note that these norms do not contain any values from the centre domain
(−4, 4), as we wish to only concentrate in the smooth parts of the variables for now.

In appendix G, we show the pointwise errors and L2 norms of all the variables in detail,
see Figures G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, and G.12.
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Figure 9.10: Pointwise error and L2 norm for φ at the same time steps for varying accuracy
and for different slices across a domain of L = 64 with a cubic mesh.

We can easily quantify the level of errors for g̃ij = δij , as it is straightforward to interpret
errors when the true value is one. In particular, let us concentrate on the results shown in
figure G.6 for g̃xx for the lowest and highest resolution presented there. The lowest reso-
lution contains Ng = 50 653 points, whereas the highest resolution contains more than 10
times as many points with Ng = 531 441 points. In the plane y = z ∼ 5.7M the maximum
pointwise error (absolute value) for the lowest resolution is of 1.5 10−5. For 10 times the
resolution, the maximum error decreases to 2.5 10−7. Moving away from the puncture at
roughly 50% of the domain away from the puncture (in the plane y = z ∼ 31.9M), we ob-
tain 1.5 10−8 versus 2.5 10−11. Closer to the boundaries, in the plane y = z ∼ 59M, the
maximum error is now 3. 10−10 for the lowest resolution and 7.5 10−13 for the highest res-
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olution. To get an overall picture, we can also look at the percentage error of the L2 norms
with the centre excised concentrating only in the smooth parts: on average, the lowest res-
olution gives an error of 1 10−6, with slightly more than 10 times the number of points, the
error comes down to 5 10−9. By increasing the resolution by 10 times, on average, we have
divided the error by 1 000.

Although we have briefly discussed a possible way of treating the boundary conditions,
further work is needed to investigate the application of the Sommerfeld-like boundary con-
ditions to the BSSN system with the SEM. In these simulations, we have used analytic
boundary conditions. We could also look at more physically appropriate boundary con-
ditions [150, 151, 152, 153].

9.8.1 hp-convergence with χ

For infinitely smooth solutions and for an evenly decomposed domain, h-refinement usu-
ally leads to an algebraic decay of the numerical error, whereas, p-refinement usually leads
to an exponential decay. In other words, the hp-convergence shows the rates of conver-
gence when varying both the number of elements NE and the polynomial order N .

Here we wish to show the results of the investigation of the hp-convergence for the
variable χ in details for various setups of meshes: evenly decomposed mesh (even mesh)
and distorted meshes (cubic and square meshes). Although χ is initially smooth even at the
puncture, its evolution equation contains derivatives of βi which are not completely regular
at the puncture. Therefore, we look at hp-convergence norms after a very small evolution
time t ∼ 0.1M, before most oscillations (even small) have the potential to propagate from
the puncture.

It is useful to look at the hp-convergence of χ on an evenly decomposed mesh and see
how the results compare with the solution of the 3D wave equation.

• Figures 9.11(a) and 9.11(b), show the hp-convergence for an even domain of L = 4,
which is a small domain but it allows us to work with reasonable amount points.

We also illustrate the shapes of algebraic and exponential convergence rates for comparison
purposes. Recall that on a log-log axis, algebraic convergence asymptotes to a straight
line whose slope is −k (where k represents the index of convergence), whereas exponential
convergence bends away with ever-increasing negative slopes. In the figures we have set
k = 1. In figure 9.11(b), only the centre element is excised from the L2 norm, and we see
that as the resolution increases around the puncture, the hp-convergence fades. This is
due to the fact that some oscillations propagate in the neighbour elements very quickly, see
figure G.13 in the appendix for the behaviour of χ for the highest resolution: oscillations
are present outside the centre element extremely quickly.

• Figures 9.11(c) and 9.11(d), show the hp-convergence for a distorted cubic mesh of
L = 64.
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• Figures 9.11(e) and 9.11(f), show the hp-convergence for a distorted square mesh of
L = 64.

What conclusions can we draw from figure 9.11?
Over the entire domain, we do not obtain hp-convergence, this should be completely

expected because even though χ is initially smooth, its evolution equation introduces dis-
continuities at the puncture.

On the other hand, when excising the errors near the puncture from the L2 norm, we do
obtain convergence rates that are very close to hp-convergence rates. Not only do we have
hp-convergence in the smooth parts of the solution for an evenly decomposed domain (as
expected), but it is also the case for distorted meshes. Although the rates of convergence
are only approximate for a cubic mesh on the algebraic side (highly distorted domain), the
rates of convergence are surprisingly clean for the square mesh.

These results do not just stand for the variable χ, all the other variables of the BSSN sys-
tem present similar rates of convergence as the resolution is increased, in the smooth parts
of the solutions. Hence, the convergence rates are very similar to the numerical results ob-
tained with the 3D wave equation in Chapter 7.

These numerical results demonstrate that the part of the code and system that we expect
to behave well really do so. This section illustrates the power of the method, and more
importantly, that the code is implemented correctly.
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(c) Same as (a) but with a cubic mesh L = 64
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(d) Same as (b) but with a cubic mesh L = 64
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(e) Same as (a) but with a square mesh L = 64
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Figure 9.11: hp-convergence for χ on various types of meshes: evenly decomposed mesh of
L = 4, cubic mesh and square mesh of L = 64.
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9.9 Puncture at the centre of an element

We first present some results close to the discontinuity with an even mesh, that is, all the
elements have the same size throughout the whole domain. Here, we wish to investigate
the behaviour of the method near the puncture. Therefore, we run simulations on a very
small domain L = 2 to be close to the point of irregularity, for short evolution times.

The 4 types of accuracy we use in our tests are defined below:

1. Accuracy 1): N = 3, NE = 3, Ng = 1000 points (acc 1);

2. Accuracy 2): N = 5, NE = 5, Ng = 17576 points (acc 2);

3. Accuracy 3): N = 7, NE = 5, Ng = 46656 points (acc 3);

4. Accuracy 4): N = 7, NE = 7, Ng = 125000 points (acc 4).
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(b) Pointwise error of Γ̃x near the puncture

Figure 9.12: Pointwise error of Ãxx and Γ̃x for 4 types of accuracy for L = 2 at t ∼ 0.2M :
acc1, acc2, acc3 and acc4.

Figure 9.12, shows the typical behaviour of discontinuous functions near the point of
discontinuity: the appearance of Gibbs oscillations. In this figure, we concentrate on Ãxx
and Γ̃x, but we present figures of all the other variables in appendix G. We see the point-
wise error of Ãxx and Γ̃x with 4 accuracies at a similar time of t ∼ 0.2M . Remember that
the pointwise error is just the difference between the exact and numerical solution.

In contrast, for acc3, figure 9.13 shows the L2 norm over the entire domain and the
L2 norm with the region close to the puncture excised (centre element) and the boundary
(L − 0.5) excised. We can see that the L2 norm of the wave equation is doing much better
than all the other variables over the entire domain. However, we can see from the excised
norms that the norm of the solution of the wave equation is comparable to the BSSN vari-
ables until the oscillations propagate outside the centre element.
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Figure 9.13: Comparison of the logarithmic norm L2 over the entire region with the centre
element (−0.67, 0.67) and the boundary L − 0.5 excised of all the variables for acc 1 with
CFL = 0.5 and L = 2.

If we look at the behaviour of the method in more detail for all the BSSN variables, we
can make several comments and conclusions:

• For most variables, we can see that the method completely fails in the element con-
taining the puncture and thereby the discontinuities. As the number of points increase
near the puncture, we observe that oscillations arise and get worse. Even the variables
that are not discontinuous initially show this phenomenon due to the presence of dis-
continuous functions in their respective evolution equations.

• Figures G.14(c), G.15(c) and G.15(e) also present some oscillations near the bound-
ary. This is due to the fact that there are some integration by parts in these evolution
equations. Remember that the boundary terms go to zero as the boundary is pushed
further away. Since we are looking at a very small domain here, these boundary terms
are no longer negligible and the solution is not as accurate at the boundaries.

• In figure G.16, we present the norm over the entire domain of all the BSSN variables,
including the norm obtained for the solution of the 3D wave equation u for compar-
ison purposes. We can see that for a small accuracy (acc 1), the norms of the BSSN
variables are slighlty worse than that of the wave solution. However, as the number
of points increase around the puncture, the accuracy gets worse for the BSSN vari-
ables and the difference with u can be clearly seen. This difference is again due to the
increasing oscillations and overshooting of the method near the puncture.

• Figure G.17, is the same as figure G.16 but with the region near the puncture and the
boundary excised. We can now see that the norms of the BSSN are now comparable
to the one of the wave solution at least up to a certain time. What happens is that
the oscillations created by the discontinuities tend to propagate across the domain
and start appearing outside the excised region. The variables Ãxy, K, Γ̃i have steep
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gradients or discontinuities close to the puncture, so there is a need for more points
in this region to catch the rapidly changing values of the variables, more so than for
the other variables. However, when a very steep gradient is present, increasing the
number of points tends to introduce oscillations and over-shoot of the coefficients
with the SEM. This is why the norms for these specific variables are worse than for
the other variables.

9.10 The offset mesh:
The puncture on an edge or face of an element

In the FEM or SEM, discontinuities in the numerical solutions are often treated by designing
a mesh so that the discontinuity is at an edge or face of an element. For example, in struc-
tural mechanics, cracks in the material introduce discontinuities in the solution. Those are
best dealt with by modifying the mesh to cover cracks across elements rather than inside
an element. Indeed, the theory of the FEM and SEM tells us that the test functions have to
be C0 inside each element, but they are not required to be C0 across elements.

In light of this property, we design an offset mesh, that will put the puncture at an edge
or a face of an element, and study the effects on the numerical results. Remember that some
of the variables are not defined at the puncture, therefore we have a strong constraint on the
mesh: we cannot define a grid point at the puncture. This means that we cannot decompose
our mesh into even elements in each direction, otherwise, there would be a grid point at the
puncture, the corner of 4 elements. To obtain an offset mesh, we need an even number of
elements in each space direction. The offset is given by half the minimum distance between
2 GLL points:

offset =
min(xi − xj)

2
, i, j = 1, NGLL.

�� ��9.44

Since the GLL points are not evenly spaced, this means that the minimum distance will
be between an anchor point (first GLL point) and the second GLL point, or the N -th GLL
points and the N + 1-th GLL points. It is very important to note that as the resolution
increases, and also as the number of GLL points increases, the offset will get closer to zero.
If the puncture has coordinates (0, 0, 0), then:

1. Offset 1: The centre of the mesh has coordinates (offset, 0, 0). Therefore, the puncture
sits on an edge of 3 elements. The computational domain will now be [−L+offset, L+
offset]× [−L,L]× [−L,L].

2. Offset 2: The centre of the mesh has coordinates (offset, offset, 0). Therefore, the punc-
ture sits on a face of 2 elements. The computational domain will now be [−L +
offset, L+ offset]× [−L+ offset, L+ offset]× [−L,L].

3. Offset 3: The centre of the mesh has coordinates (offset, offset, offset). Therefore, the
puncture sits inside one element. The computational domain will now be [−L +
offset, L+ offset]× [−L+ offset, L+ offset]× [−L+ offset, L+ offset].

Note that Ãij , Γ̃i deserve closer scrutiny. We note that:
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Figure 9.14: Comparison of 3 different types of offsets showing the pointwise error and L2

norm with increasing accuracy for a domain L = 64 with a square mesh for the variable
Ãxy. In blue, the offset is 1, in red the offset is 2 and in black the offset is 3 (puncture inside
the element in the negative values of x).

• Figure 9.14 shows the comparison of the 3 different types of offsets (offset 1 in blue,
offset 2 in red and offset 3 in black) for the variable Ãxy. The results for this variable
are very indicative of what happens for all the other variables. We see the pointwise
error and L2 norm with increasing accuracy for a domain L = 64 with a square mesh.
Similar figures for the remainder of the variables are presented in Appendix G in G.18,
G.19 and G.20.

• Note that offset 1 and 2 are much better than offset 3. In offset 3 the puncture is
inside one element whereas for the other offsets the puncture is on a face or edge. Not
only that, but the mesh with offset 3 results in significant oscillations that propagate
in the whole domain. The method becomes unstable (see the L2 norms for offset 3
dramatically increasing after a certain amount of time).

These numerical experiments reveal that the overall error on the entire computational do-
main is affected by where the puncture is located.

We obtain much better results when discontinuities are placed between elements rather
than inside an element. This would be fine for a stationary puncture, however when the
puncture moves, the point of discontinuity will move, and eventually find itself inside an el-
ement. It could in principle be possible to adjust the mesh structure as the puncture moves,
so that it is always located on an element face, but it would be preferable to be able to avoid
this restriction. It is therefore more ideal, to know how to deal with a discontinuity inside
an element with the spectral element method.
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9.11 Increasing the number of elements

In some cases, increasing the resolution, and in particular the number of elements, near
the area of irregularities, has proven to be a way of reducing the Gibbs phenomenon. In
[154], numerical experiments were conducted on the inviscid Burgers equation with the
SEM. By increasing the number of elements, the accuracy of the solution was improved
significantly in terms of resolving the discontinuity more accurately as well as removing
the oscillations without the use of a filter. Fourier basis functions were used instead of
the Lagrange-Legendre interpolants that we are using in this project. However, this type of
behaviour is typical for all other spectral element discretizations tested in [154]: oscillations
formed only for the fewer-element cases.

After numerous attempts, we have found that for Ãxx, the oscillations in the puncture
propagate beyond one element, even when the side of this element gets smaller and smaller.
If this was going to work, we would probably need much smaller central elements, which
would not be practical at all.

This is a useful result: it is not a very positive result, however, this is something impor-
tant that we have learnt about the SEM and the BSSN system. Without filtering and with
the puncture placed inside an element, we have been unable to simulate the BSSN system
for any reasonable amount of time at any reasonable resolution with the SEM.

9.12 Filtering “as much or as little as needed”

Although the SEM applied to the BSSN system works very well sufficiently away from
the puncture, we have seen that the discontinuous variables introduce Gibbs oscillations,
eventually propagating across the whole domain, spoiling the accuracy of the numerical
results.

In section 6.11, we have introduced a stabilization technique that can deal with discon-
tinuous solutions: Filtering.

If a solution u(x) has a discontinuity in the computational domain, the Gibbs phe-
nomenon appears with the SEM. This manifestation of the Gibbs phenomenon, or ulti-
mately the lack of regularity, is a slow decay of the expansion coefficients. This suggests
that we could attempt to modify the expansion coefficients to decay faster in the hope of
recovering a more rapidly convergent expansion and more accurate approximations. In this
light, we apply a filter to the modal coefficients of all the functions of the BSSN susceptible
to irregularities or steep gradients near the puncture.

In the two books [137] and [138], one can find numerical examples with filtering tech-
niques, both on the analytical and numerical levels. Numerical experiments show that
using too low a filter order results in an overly dissipated solution. The characteristic of too
strong a filter is the appearance of faceting2 of the solution. We need to experiment numer-
ically to know the right balance of the strength of the filter.

2In geometry, faceting is the process of removing parts of a polygon without creating any new vertices. In
this context, it means that the numerical solution develops a staircase-like shape.
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It is important to note that differentiation and filtering do not commute for many of the
common spectral element filters, and in particular for the sharp cut-off filter we are using.
Additional commutation error arises in addition to other numerical errors. This error does
not appear to be significant however. In all our simulations, when applying filtering, we
filter the modal coefficients after differentiation.

In this section, we have applied filtering in the centre element of the domain that con-
tains the puncture. We use a sharp cut-off filter with a strong cut-off value Nc = 1. This
means that for basis functions with a polynomial order N , all the modal values of the poly-
nomial order with N > Nc are set to zero. In the following figure, we present the behaviour
of Ãxy initially and after t = 2M , without filtering and with filtering only discontinuous
functions in the centre element:

• Figure 9.15, shows the pointwise error of Ãxy close to the puncture without filtering
9.15(a), 9.15(b), and with filtering 9.15(c), 9.15(d), for a very small domain of L = 1.

We also present similar results further away from the puncture for Ãxy, and the same results
obtained with Ãxx in Appendix G (see figures G.21, G.22, G.23 and G.24).

We wish to emphasize the different scale of the y-axis (pointwise error) on the plots with
and without filtering.

At t ∼ 0.5M, the maximum error without filtering is roughly 20 times bigger than with
filtering (0.4 versus 0.02). There is a significant difference in the maximum error which is
placed in the centre element. If we look outside the centre element, the difference between
the maximum error is even more impressive: the maximum pointwise error without filter-
ing is 400 times bigger than with filtering (1.10−1 versus 2.5.10−3).

If we now look at the results at a later time of t ∼ 2.4M, the results without filtering and
with filtering show a clear drift. The maximum error in the centre element without filtering
is roughly 25 times bigger than with filtering (1.2 versus 5.10−2), and outside the centre
element it is still roughly 400 times bigger (1 versus 2.5.10−3).

What happens with all the other variables in the coupled system?

• Figures 9.16 presents the results of a simulation of the coupled system for a small
domain L = 3 up to t = 3M . In solid lines (Figure 9.16(a)), we see the L2 norms of
the unfiltered variables, whereas in dashed dot lines (Figure 9.16(b)), we see the L2

norms of the filtered variables (only the centre element is filtered with Nc = 1). The
filtered system shows more stability, as a matter of fact, the unfiltered system becomes
completely unstable from t ∼ 2M . Initially, the L2 norms of the unfiltered variables
over the whole domain give better results than with the filtered variables. This is due
to a loss of accuracy in the filtered element. However, this loss of accuracy is quickly
compensated by the fact that the scheme is more stable, as there are no oscillations
from the centre element propagating outwards as time advances.

• Figure 9.17 presents the L2 norm of φ when varying the filter strength in the centre
element. We set the cut off value of the filter to Nc = 1, 2, ..., N , where Nc = N
implies that there are no modal values affected and is equivalent to no filter. The L2

norms over the entire domain suggest that increasing the strength of the filter (low
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(a) Ãxy without filtering versus x at t ∼ 0.5
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(b) Ãxy without filtering versus x at t ∼ 2.4
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(c) Ãxy with filtering versus x at t ∼ 0.5
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(d) Ãxy with filtering versus x at t ∼ 2.4

Figure 9.15: Pointwise error of Ãxy close to the puncture (in a 2D slice for y ∼ z = 0.01M),
without filtering (a), (b) and with filtering (c), (d) for a very small domain of L = 1. Filtering
makes a big difference in stopping the propagation of oscillations throughout the domain.
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Figure 9.16: The effect of filtering the centre element for a small domain L = 3 for most
BSSN variables. In solid lines we see the L2 norms of the unfiltered variables, whereas in
dashed dot lines we see the L2 norms of the filtered variables (only the centre element). The
filtered system shows more stability.
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Figure 9.17: Varying the strength of filtering at the centre element for φ with cut off values
Nc = 1, 2, 3, 4, 5, 6, N for a polynomial order N = 7 and for a small domain L = 2. Note
that Nc = N corresponds to no filtering.
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values of Nc) results in less accuracy. However, when excising the values of the centre
element, the L2 norm with the centre excised shows completely different results: for
a very weak filter, the oscillations still appear and propagate, for a stronger filter, the
results indicate more stable evolutions. Typically, for a polynomial order of N = 7,
one should preferably set the cut-off value to Nc ≤ 3 to eliminate the propagation of
oscillations.

Filtering makes a big difference in stopping the propagation of oscillations throughout
the domain. In fact, these numerical results seem to imply that filtering is essential to obtain
stabilization for the application of the SEM in general relativity.

Although these results are obtained on a small domain, it is clear that filtering is one
requirement for a working system. Since the filtering is required purely to deal with the
discontinuities at the puncture, a large domain was not required for these tests.

9.13 Long-term stable evolutions?

Long-term simulations are more computationally demanding for our SEM Matlab code.
Remember that Matlab is an interpreted language and is therefore not as fast as other com-
piled languages. In terms of memory, the SEM applied to the BSSN system is quite efficient,
since calculations of derivatives are executed on an elemental basis and assembled on the
fly, we are not required to keep all these terms globally.

To minimize the computational time, we evolve each variable separately (uncoupled
system) to investigate the long-term stability of the method in the best possible case. Ob-
viously, if one variable in an uncoupled system leads to numerical instabilities, the full
coupled system will suffer from the same fate.

The results in figure 9.18, show the L2 norm of each of the BSSN variables with the ele-
ment containing the puncture filtered. We look at a domain of L = 20 and a simulation time
of t = 50M. For a binary simulation, run times are typically for 1000s of M. So 50M is not
considered a long time, however, recall that we have looked at one stationary Schwarzschild
black hole only, so the runtime of 50M is sufficient to give some indication of the stability
of each of the BSSN variables. Obviously the setup we are using here (distorted mesh) is
not ideal and would not be used for binaries, and the mesh is the real key to efficiency with
the SEM. The point of this test is thus to check whether all the evolution variables are stable.

Note that in these simulations, Ãxx and Ãxy are coupled, g̃xy is coupled to g̃xx, and the
norms are of the same order. However to show the effect of coupling we have plotted the
norm of g̃xx uncoupled. When coupling variables, the errors are obviously worse but the
behaviour is very similar.

The L2 norm of Γ̃x is by far the worst, because this mesh does not have enough reso-
lution between 2M and 10M for this variable in particular. However, when using a higher
resolution the norm is lower by roughly the rate we would expect, in particular, refer to the
results with a cubic mesh presented in figure G.11.
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Figure 9.18: L2 norms of most variables of the BSSN system for a domain of L = 20 up to
t = 50M, with a mesh softevenBoxIn, N = 7, NE = 113

None of these simulations were unstable, except the simulation for Ãxx and Ãxy which
showed instabilities at t = 47M. With an outer boundary at 20M, however, this is not nec-
essarily a bad sign, especially since the instabilities came from the under-resolved region
between 2M and 10M and not the puncture. As a matter of fact, the filtered centre element
containing the puncture shows stability for all the variables.

Although these results are very preliminary, they seem to indicate that the SEM has a
good chance to be stable for long runs with filtering in the centre element. More exper-
iments need to be done on a more ideal mesh for more efficient simulations. It is also
possible that filtering more than the centre element might bring more stability especially
for the quadratic nonlinear terms.

9.14 Conclusion

In this Chapter, we have studied the numerical results of a particular stationary solution
using the Schwarzschild trumpet puncture data solution derived in [5, 6]. Not only is this
“1 + log” stationary trumpet solution extremely useful for testing a new code, but it also
offers the possibility to test each equation separately, evolving only one variable at a time
and keeping all the other variables exact. We have therefore worked on each variable as
part of an uncoupled system as well as all the variables as part of a coupled system.

We have illustrated the relative ease in implementing simple distorted meshes more
adapted to our problem, taking advantage of the geometric flexibility of the SEM. Although
these meshes are not ideal, as an ideal mesh would mimic spherical coordinates at large dis-
tances, they allow for more points near the puncture and less points where we do not need
as much resolution. These meshes allow enough variation in resolution for testing pur-
poses.
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We have shown experimentally that the numerical behaviour does not depend strongly
on the weak form of the system. Experimental results also confirm that using the χ-method
is strongly recommended when using the SEM.

When applying the SEM without the use of filtering, the method completely fails for
most variables in the element containing the puncture and thereby the discontinuities. As
the number of points increase near the puncture, we observe Gibbs oscillations that spread
across the domain and eventually spoil the high accuracy. Indeed, the method is very pow-
erful further away from the puncture, in the smooth parts of the solution. One can recover
hp-convergence even in the case of distorted meshes.

Although we obtain much better results when discontinuities are placed between ele-
ments rather than inside an element, this is not a practical way to deal with moving punc-
tures where the point of discontinuity moves. Without filtering, and with the puncture
placed inside an element, we have been unable to simulate the BSSN system for a reason-
able amount of time at any reasonable resolution with the SEM, even by increasing the
number of elements near the puncture. This is not a positive result, but it is an important
one, this also suggests that applying spectral methods with domain decomposition would
be very difficult, since the oscillations near the puncture would be far worse than with the
SEM as the polynomial order is typically more significant NSM � NSEM .

Filtering is significant in stopping the propagation of oscillations throughout the do-
main. In fact, our numerical results seem to imply that filtering is essential to obtain stabi-
lization for the application of the SEM in general relativity. Although our long-term stability
tests are preliminary, they seem to indicate that the SEM has a good chance to be stable for
long runs with filtering in the centre element.

This is an important conclusion. It could have turned out that errors at the puncture
propagate outwards, and that even filtering cannot cure the problem. There was a general
feeling in the numerical relativity community that spectral-like methods may not be appli-
cable to puncture evolutions, and the results here indicate that such evolution may indeed
be quite possible, with the “simple” addition of some standard filtering methods.

268



Part III

Conclusion

269





“It is important to keep an open mind; just not
so open that your brains fall out.”

Albert Einstein (1879-1955) 10
Conclusion

In the first part of this thesis, we have addressed problems in General Relativity and Cos-
mology motivated by the simple key questions:

• How much information and how many constraints can one obtain from the Hubble
flow in a FLRW universe?

• How general, precise, and useful, can results be under a minimum of theoretical as-
sumptions?

In the second part of the work presented here, we have explored the use and benefits of
the Spectral Element Method for Numerical Relativity.

• What is the potential of the Spectral Element Method for Numerical Relativity? How
does this method work with the BSSN formulation and, with the method of moving
punctures? Would this method allow for better accuracy and efficiency, and possibly
contribute to gravitational wave detection?

Let us discuss and comment on the main results obtained from the above motivations.

10.1 General Relativity and Cosmology

In Cosmography, one keeps the geometry and symmetries of FLRW spacetime,

ds2 = −c2 dt2 + a(t)2

{
dr2

1− k r2
+ r2(dθ2 + sin2 θ dφ2)

}
,

�� ��10.1

at least as a working hypothesis, but does not assume the Friedmann equations (Einstein
equations), unless and until absolutely necessary.

Furthermore, it is quite common in cosmology to encounter physical quantities ex-
panded as a Taylor series in the cosmological redshift z. Perhaps the most well-known
exemplar of this phenomenon is the Hubble relation between distance and redshift. For
instance, it is quite standard to phrase the investigation in terms of the luminosity distance
versus redshift relation [20, 21]:

dL(z) =
c z

H0

{
1 +

1
2

[1− q0] z +O(z2)

}
,

�� ��10.2
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and its higher-order extension [22, 23, 24, 25]

dL(z) =
c z

H0

{
1 +

1
2

[1− q0] z +
1
6
[
q0 + 3q2

0 − (j0 + Ω0)
]
z2

+
1
24
[
2− 2q0 − 15q2

0 − 15q3
0 + 10q0j0 + 5j0 + s0 + 2(1 + 3q0)Ω0

]
z3 +O(z4)

}
.�� ��10.3

However, we now have considerable high-z data available, for instance we have su-
pernova data at least back to redshift z ≈ 1.75. This opens up the theoretical question as
to whether or not the Hubble series (or more generally any series expansion based on the
z-redshift) actually converges for large redshift? Based on a combination of mathematical
and physical reasoning, we have argued in Chapter 3, that the radius of convergence of
any series expansion in z is less than or equal to 1, and that z-based expansions must break
down for z > 1, corresponding to a universe less than half its current size.

Furthermore, we have argued on theoretical grounds for the utility of an improved pa-
rameterization y = z/(1 + z). In terms of the y-redshift we have shown that the radius
of convergence of any series expansion in y is less than or equal to 1, so that y-based ex-
pansions are likely to be good all the way back to the big bang (y = 1), but that y-based
expansions must break down for y < −1, now corresponding to a universe more than twice
its current size. Our main conclusions of the latter are threefold:

• The use of the z-redshift for z > 1 is likely to lead to mathematical problems — specif-
ically any Taylor series in z will be guaranteed to diverge for z > 1, and so finite
truncations will be poor approximations to the underlying physical function. This is
not all that early in the evolution of the universe — indeed many galaxies and super-
novae are seen in the region z & 1, so one ignores this issue at one’s peril.

• The use of the y-redshift, where y = z/(1 + z), is very much to be encouraged for
z > 1 (corresponding to y > 1/2). Taylor series in the y-redshift are likely to be well
behaved all the way back to the big bang (corresponding to y = 1).

• By combining the notions of z-redshift, y-redshift, and the many reasonably standard
notions of “cosmological distance” that have appeared in the literature, it is possible to
extract many different versions of the Hubble law. Which version of the Hubble law
one chooses to adopt for any specific purpose will depend on the specific question
being addressed.

Is the expansion of the universe still accelerating in a Cosmographic framework? The
“big picture” is best brought into focus by performing a global fit of all available supernova
data to the Hubble relation, from the current epoch at least back to redshift z ≈ 1.75. Indeed,
all the discussion over acceleration versus deceleration, and the presence (or absence) of jerk
(and snap) ultimately boils down, in a cosmographic setting, to doing a finite-polynomial
truncated–Taylor series fit of the distance measurements (determined by supernovae and
other means) to some suitable form of distance–redshift or distance–velocity relationship.
Phrasing the question to be investigated in this way keeps it as close as possible to Hubble’s
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original statement of the problem, while minimizing the number of extraneous theoretical
assumptions one is forced to adopt.

A central question thus has to do with the choice of the luminosity distance as the pri-
mary quantity of interest — there are several other notions of cosmological distance that can
be used, some of which lead to simpler and more tractable versions of the Hubble relation.
Why should the cosmology community be so fixated on using the luminosity distance dL
(or its logarithm, proportional to the distance modulus) and the redshift z as the relevant
parameters? In principle, in place of luminosity distance dL(z) versus redshift z one could
just as easily plot f(dL, z) versus g(z), choosing f(dL, z) and g(z) to be arbitrary locally in-
vertible functions, and exactly the same physics would be encoded. Suitably choosing the
quantities to be plotted and fit will not change the physics, but it might improve statistical
properties and insight.

By comparing cosmological parameters obtained using multiple different fits of the
Hubble relation to different distance scales and different parameterizations of the redshift
we have assessed, in Chapter 3, the robustness and reliability of the data fitting procedure.
In performing this analysis we had hoped to verify the robustness of the Hubble relation,
and to possibly obtain improved estimates of cosmological parameters such as the decel-
eration parameter and jerk parameter, thereby complementing other recent cosmographic
and cosmokinetic analyses such as [12, 13, 14, 15, 16], as well as other analyses that take a
sometimes skeptical view of the totality of the observational data [40, 41, 30, 42, 43]. The
actual results of our current cosmographic fits to the data are considerably more ambiguous
than we had initially expected, and there are many subtle issues hiding in the simple phrase
“fitting the data”.

There is a disturbingly strong model-dependence in the resulting estimates for the de-
celeration parameter. What happens when considering realistic estimates of systematic un-
certainties (based on the published data)? Once realistic estimates of systematic uncertain-
ties are budgeted for it becomes clear that purely statistical estimates of goodness of fit are
dangerously misleading.

So, is the expansion of the universe still accelerating in this Cosmographic framework?
While the “preponderance of evidence” certainly suggests an accelerating universe, we would
argue that this conclusion is not currently supported “beyond reasonable doubt” — the
supernova data (considered by itself) certainly suggests an accelerating universe, it is not
sufficient to allow us to reliably conclude that the universe is accelerating. If one adds
additional theoretical assumptions, such as by specifically fitting to a Λ-CDM model, the
situation at first glance looks somewhat better — but this is then telling you as much about
one’s choice of theoretical model as it is about the observational situation.

Why do our conclusions seem to be so much at variance with currently perceived wis-
dom concerning the acceleration of the universe? The main reasons are twofold:

• Instead of simply picking a single model and fitting the data to it, we have tested
the overall robustness of the scenario by encoding the same physics (H0, q0, j0) in
multiple different ways (dL, dF , dP , dQ, dA; using both z and y) to test the robustness
of the data fitting procedures.

• We have been much more explicit, and conservative, about the role of systematic un-
certainties, and their effects on estimates of the cosmological parameters.
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However, we are certainly not claiming that all is grim on the cosmological front — and
do not wish our views to be misinterpreted in this regard — there are clearly parts of cos-
mology where there is plenty of high-quality data, and more coming in, constraining and
helping refine our models. But regarding some specific cosmological questions the catch
cry should still be “Precision cosmology? Not just yet” [62].

More recent data have now been released “Union 07” [155], and “essence 09” [156]. The
combination of these datasets is referred to as the “Constitution dataset” [59]. Will these
change our main conclusions? This remains to be seen.

In Chapter 4 we have extended and generalized the discussion of the original arti-
cles [63, 64, 65], and more recently of [71, 72, 73], to develop a number of rugged and gen-
eral energy-condition-induced bounds on various cosmological parameters, bounds which
have all taken the form

X(z) ≷ Xbound ≡ X0 f(Ω0, z),
�� ��10.4

where X(z) is some cosmological parameter, X0 is its present-day value, and f(Ω0, z) is
some dimensionless function depending on the particular bound under consideration. The
bounds we have considered can be derived by elementary means, and are typically ex-
pressed in terms of polynomial, rational, algebraic, and elementary functions — though
in one particular instance we had to resort to hypergeometric functions. Several of these
bounds are completely new [such as the explicit bounds on H(z) and Ω(z), and the phys-
ically important Taylor series expansions for Ω0 ≈ 1], several are significant extensions of
previously known partial results, and all of these bounds are now valid for arbitrary spatial
curvature. Additionally, since the analysis is now systematic and exhaustive, it is clear how
the various energy conditions and their associated bounds are inter-related.

Furthermore, in the absence of any detailed understanding of the precise nature of the
cosmological equation of state ρ(p) it is useful to examine the question of just how much
can be deduced with limited information. In the second part of Chapter 4, we have also
worked in terms of the w-parameter w(z) = p/ρ, and we have used the idealized case of
constant w∗ as a “template” for comparison purposes with more realistic w(z). Specifically:

• For constantw∗ the explicit results for the density ρw∗(z) and Hubble parameterHw∗(z)
are well-known. The explicit result for the Ω parameter Ωw∗(z) is less well-known,
and the explicit results we have obtained for the angular diameter distance dPw∗ (z)
and lookback time Tw∗(z) appear to be both novel and significant.

• More importantly we have seen that these idealized results for constant w∗ can be
used as the basis for general comparison results that bound the various features of
the Hubble flow in the following sense: If we know that w(z) ∈ [w−, w+] between
redshift zero and redshift z, then for monotonically evolving generic cosmological
quantities X(z) we have derived a number of rigorous bounds of the form

Xw±(z) ≤ X(z) ≤ Xw∓(z),
�� ��10.5

where we have explicitly seen that the direction of the inequality depends both on the
precise details of the evolution of X(z), and on the redshift range of interest.
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All the bounds we have derived in Chapter 4 are thus both very general and very powerful.

Further developments and more realistic bounds could be achieved by looking at gen-
eral linear combinations of w-matter. Consider that the density ρ is given by the linear
combination

ρ =
∑
i

ρi,
�� ��10.6

and that the pressure is given by the linear combination

p =
∑
i

pi,
�� ��10.7

with the equation of state pi = wiρi for each value of i. One could apply the same strategy
discussed in Chapter 4 to the total linear combination of w-matter and in principle obtain
even more realistic and tighter bounds.

10.2 Numerical Relativity

One of the main goals of numerical relativity is to provide very accurate templates of grav-
itational waves for ground-based and space-based interferometers. There are now robust
and stable numerical methods for Numerical Relativity that work well, with finite differ-
ences and the moving punctures, and spectral methods with excision. Why the need for
yet another numerical implementation? Current simulations are certainly good enough for
ground-based detection, however, the scientific community is not yet sure for LISA, the
space-based interferometer. There is also a computational difficulty for high mass ratio
simulations; run timescales can be extremely long. An order-of-magnitude improvement in
code efficiency would change the situation tremendously.

We have investigated the potential of the spectral element method applied to numerical
relativity, and in particular, to the BSSN system. We have explored different options for a
weak formulation, different mesh structures, and filtering options, and have highlighted
the most useful directions to pursue.

First, we have presented an overview of the theory of the spectral element method.
While the theory contains high levels of functional analysis and may be somewhat off-
putting, this method has many successes in many different fields and offers great advan-
tages over other numerical methods. The SEM combines the theory of spectral and pseudo-
spectral methods for high order polynomials, and the variational formulation of finite ele-
ments, and the associated geometric flexibility.

The variational formulation is applied to the problem at hand and a weak formulation is
then obtained. Space is divided into a number of elements, and the solution is written with
local Lagrange–Legendre basis functions that are non-zero over a couple of elements. The
spectral element discretization of the problem reduced to its weak form results in elemental
matrix forms of the problem. After the assembly process, one can obtain a global system of

275



CHAPTER 10. CONCLUSION

algebraic equations of the problem (typically sparse matrices for conforming elements). For
explicit time stepping schemes, such as Runge–Kutta fourth order, there are no full matrices
to invert as the Mass matrix is diagonal due to the choice of the GLL quadrature. This is a
tremendous computational advantage.

We have applied the variational formulation to the BSSN system and presented several
possible weak forms. From these weak forms, we have explained in detail how the elemen-
tal matrix forms specific to the BSSN system are calculated in light of the spectral element
discretization.

The SEM is well-known for its geometric flexibility, we have illustrated the relative ease
of designing a simple mesh specific to solving the BSSN system. Although these types of
meshes have some disadvantages, providing high resolution near the coordinate planes,
not just near the puncture, these meshes have the advantage of being very simple to im-
plement, and allow enough variation in resolution for testing purposes. The “ideal” mesh,
however, would mimic spherical coordinates at large distances.

When applying the SEM without the use of filtering, the method completely fails for
most variables in the element containing the puncture and thereby the discontinuities. As
the number of points increase near the puncture, we observe Gibbs oscillations that spread
across the domain and eventually spoil the high accuracy.

Without filtering, and with the puncture placed inside an element, we have been unable
to simulate the BSSN system for a reasonable amount of time at any reasonable resolution
with the SEM, even by increasing the number of elements near the puncture. This is not a
positive result, but it is an important one. On the other hand, the method is very powerful
further away from the puncture, in the smooth parts of the solution. One can recover hp-
convergence even in the case of distorted meshes.

Filtering is significant in stopping the propagation of oscillations throughout the do-
main. In fact, our numerical results seem to imply that filtering is essential to obtain stabi-
lization for the application of the SEM in general relativity. Moreover, they seem to indicate
that the SEM has a good chance to be stable for long runs with filtering in the centre element.

This is an important conclusion. It could have turned out that errors at the puncture
propagate outwards, and that even filtering cannot cure the problem. There was a general
feeling in the numerical relativity community that spectral-like methods may not be appli-
cable to puncture evolutions, and the results here indicate that such evolution may indeed
be quite possible, with the “simple” addition of some standard filtering methods.

We have briefly discussed a possible way of treating the boundary conditions, however,
further work is needed to investigate the application of Sommerfeld-like boundary condi-
tions to the BSSN system with the SEM. We could also look at more physically appropriate
boundary conditions [150, 151, 152, 153].

The next obvious step is to implement and test non-stationary initial data and study
the behaviour of the method in the case where the puncture will be moving in the grid.
Shu and Wang [141] recovered spectral accuracy for the nonlinear Burgers equation where
discontinuity develops and moves around the domain. This is a not a proof in itself, but
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a good indication regarding the possibilities of the SEM with the BSSN system. Every
problem is different. It is very difficult for complex problems to predict if the method
will handle the moving discontinuities across the domain with the BSSN system until it
is actually implemented and tested. Depending on the outcome, the next long-term step
is, of course, the implementation of binary black holes with the SEM. Efforts should be in-
vested in a mesh specifically designed to minimize the number of points needed. A similar
method to the SEM would be the Mortar Element Method (MEM) which basically reduces
to the SEM with domain decomposition that would allow for non-conformal elements in
the mesh and henceforth mesh refinement implementation. Another possibility for BBH
simulations would be to adopt the dual-coordinate method used by the Caltech and Cor-
nell groups [157]: Changing the coordinate system at each time step, (or a number of time
steps), so that the black holes effectively do not move in the numerical domain. Eventu-
ally one might want to move them a bit (for example, once an orbit, to capture the inspiral
without having to warp the coordinates too much) but this would make for a significant
computational saving in any spectral-like code.

The numerical analysis part of the SEM applied to the BSSN puncture method might be
very useful in terms of bounding numerical errors (this is due in part to the finite element
inheritance). Some important issues regarding the existence of solutions, and uniqueness
of solutions could be explored analytically (as much as possible) and numerically. See Mi-
namoto [131] for numerical methods using finite elements for proving the existence and
uniqueness of numerical solutions of nonlinear hyperbolic problems.

A possible future development resides in the Gegenbauer reconstruction method, based
on the Fourier or Gegenbauer series of a discontinuous but piecewise analytic function, to
deal with discontinuities. This recently developed method removes the Gibbs phenomenon
completely, and it is possible to obtain exponential accuracy in the maximum norm in any
interval of analyticity.

Another possible development, would be to reformulate the BSSN systen using the Dis-
continuous Spectral Element Method using the Discontinuous Galerkin collocation method
(DGSEM), instead of the Continuous Galerkin collocation method. A typical disadvantage
of this method however is the fact that one needs to know very precisely the location of the
discontinuity to implement this method. However, we always do know where the puncture
is located. The puncture is tracked in a moving puncture code by noting that the speed of
the puncture is given by vi = −βi, evaluated at the puncture. One can integrate up the
velocity to give the puncture position. This works well, but would it give us the puncture
location accurately enough for the DG method to work?

Finally, we have discussed the extremely good scalability of the SEM on parallel com-
puters. This promises for efficient and fast computational simulations with the spectral
element method. The SEM is not very sensitive to the speed of the network connecting
different processors, which make this method highly suitable to run on clusters or grids of
computers. A communication phase is required at each timestep for the assembly process.
However, MPI communication tables that contain the sequence of messages that needs to
be exchanged amongst the domains at each timestep need to be created only once and for

277



CHAPTER 10. CONCLUSION

all when the mesh is built. Moreover, in the spectral multi-domain method, the C0 and
C1 boundary conditions at the interface of the elements have to be enforced explicitly. In
contrast, the spectral element method uses the variational principle to guarantee C0 and C1

(weak) continuity at the interface, which makes a parallel implementation more convenient.
This is an important point, if conforming elements are used, the SEM can provide among
the least computational overhead at processor boundaries.

The SEM is not just very interesting for binary black holes, but it would also be ideal
for neutron stars, supernovae, and collapsing supernovae simulations because of the fact
that it can easily handle complex geometries. In particular this would be a great advantage
when dealing with different layers of discontinuous densities or pressures. In particular,
we refer to the recent work by the Caltech-Cornell group [158], on using a mixture of finite-
difference methods and spectral methods to deal with neutron stars and black hole binaries.
Spectral methods are used in most places, but finite differences are used at the neutron star,
because discontinuities prevent the use of the spectral method. SEM (or DGSEM) could
potentially improve on this significantly.

10.3 Summary

In Chapter 3 we have discussed and presented results obtained in the context of Cosmog-
raphy, that is without assuming the Einstein field equations, whereas in Chapter 4 we have
derived powerful bounds in the context of Cosmodynamics, that is, assuming General Rel-
ativity.

In both frameworks, we considered how much information and how many constraints
we could obtain from the Hubble flow in a FLRW universe. Indeed, the cosmological pa-
rameters contained in the Hubble relation between distance and redshift provide informa-
tion on the behaviour of the universe (expansion, acceleration etc...).

In Cosmography, it is possible to concentrate more directly on the observational situ-
ation in a model-independent manner, because, it is possible to defer questions about the
equation of state of the cosmological fluid, minimizing the number of theoretical assump-
tions one is bringing to the table. We have performed a number of inter-related cosmo-
graphic fits to supernova datasets, and paid particular attention to the extent to which the
choice of distance scale and manner of representing the redshift scale affected the cosmo-
logical parameters.

In the context of Cosmodynamics, we have developed a number of rugged and general
energy-condition-induced bounds on various cosmological parameters. We have also ex-
plored the extent to which a constraint on the w-parameter leads to useful and non-trivial
constraints on the Hubble flow in terms of cosmological parameters H(z), density ρ(z),
density parameter Ω(z), distance scales d(z), and lookback time T (z).

In the Numerical Relativity part of this thesis, we have explored the potential of a very
recent and accurate numerical method, the Spectral Element Method (SEM), by treating a
single Schwarszchild black hole evolution as a test case. The initial data we have imple-
mented is a stationary solution called the Schwarzschild trumpet puncture data solution.

Spectral elements combine the theory of spectral and pseudo-spectral methods for high

278



10.3. SUMMARY

order polynomials and the variational formulation of finite elements and the associated
geometric flexibility. In Chapter 6 , we have summarized the theory of the SEM, and in
Chapter 7, we have explained in details its practical implementation and the consequent
numerical results for the wave equation formulated as a hyperbolic system in 1D and 3D.

In Chapter 8, we have formulated possible weak forms for the BSSN system and their
corresponding spectral element discretization.

The accuracy of high order methods can deteriorate in the presence of discontinuities or
sharp gradients. In Chapter 9, we have shown that we can treat the element that contain
the puncture with a filtering method to avoid artificial and spurious oscillations (coming
from discontinuous initial data from the BSSN system) forming and propagating into the
domain .

279





Appendices

281





A
Some ambiguities

in least-squares fitting

Let us suppose we have a function f(x), and want to estimate f(x) and its derivatives at
zero via least squares. For any g(x) we have a mathematical identity

f(x) = [f(x)− g(x)] + g(x),
�� ��A.1

and for the derivatives
f (m)(0) = [f − g](m)(0) + g(m)(0).

�� ��A.2

Adding and subtracting the same function g(x) makes no difference to the underlying func-
tion f(x), but it may modify the least squares estimate for that function. That is: Adding
and subtracting a known function to the data does not commute with the process of per-
forming a finite-polynomial least-squares fit. Indeed, let us approximate

[f(x)− g(x)] =
n∑
i=0

bf−g,i x
i + ε.

�� ��A.3

Then given a set of observations at points (fI , xI) we have (in the usual manner) the equa-
tions (for simplicity of the presentation all statistical uncertainties σ are set equal for now)

[fI − g(xI)] =
n∑
i=0

b̂f−g,i x
i
I + εI ,

�� ��A.4

where we want to minimize ∑
I

|εI |2.
�� ��A.5

This leads to ∑
I

[fI − g(xI)]x
j
I =

n∑
i=0

b̂f−g,i
∑
I

xi+jI ,
�� ��A.6

whence

b̂f−g,i =

[∑
I

xi+jI

]−1 ∑
I

[fI − g(xI)]x
j
I ,

�� ��A.7
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where the square brackets now indicate an (n+ 1)× (n+ 1) matrix, and there is an implicit
sum on the j index as per the Einstein summation convention. But we can re-write this as

b̂f−g,i = b̂f,i −

[∑
I

xi+jI

]−1 ∑
I

[g(xI)]x
j
I ,

�� ��A.8

relating the least-squares estimates of bf,i and bf−g,i. Note that by construction i ≤ n. If we
now use this to estimate f (i)(0), we see:

f̂
(i)
[f−g]+g(0) = f̂

(i)
f−g(0) + g(i)(0),

�� ��A.9

whence

f̂
(i)
[f−g]+g(0) = f̂ (i)(0)− i!

[∑
I

xi+jI

]−1 ∑
I

[g(xI)]x
j
I + g(i)(0),

�� ��A.10

where f̂ (i)(0) is the “naive” estimate of f (i)(0) obtained by simply fitting a polynomial to f
itself, and f̂

(i)
[f−g]+g(0) is the “improved” estimate obtained by first subtracting g(x), fitting

f(x)−g(x) to a polynomial, and then adding g(x) back again. Note the formula for the shift
of the estimate of the ith derivative of f(x) is linear in the function g(x) and its derivatives.
In general this is the most precise statement we can make — the process of finding a trun-
cated Taylor series simply does not commute with the process of performing a least squares
fit.

We can gain some additional insight if we use Taylor’s theorem to write

g(x) =
∞∑
k=0

g(k)(0)
k!

xk =
n∑
k=0

g(k)(0)
k!

xk +
∞∑

k=n+1

g(k)(0)
k!

xk,
�� ��A.11

where we temporarily suspend concerns regarding convergence of the Taylor series. Then

f̂
(i)
[f−g]+g(0) = f̂ (i)(0) + g(i)(0)

�� ��A.12

−i!

[∑
I

xi+jI

]−1 ∑
I

{
n∑
k=0

g(k)(0)
j!

xkI +
∞∑

k=n+1

g(k)(0)
j!

xkI

}
xjI .

So

f̂
(i)
[f−g]+g(0) = f̂ (i)(0) + g(i)(0)

�� ��A.13

−i!

[∑
I

xi+jI

]−1 { n∑
k=0

g(k)(0)
k!

∑
I

xj+kI +
∞∑

k=n+1

g(k)(0)
k!

∑
I

xj+kI

}
,

whence

f̂
(i)
[f−g]+g(0) = f̂ (i)(0) + g(i)(0)− i!

n∑
k=0

g(k)(0)
k!

[∑
I

xi+jI

]−1 [∑
I

xj+kI

]

−i!
∞∑

k=n+1

g(k)(0)
k!

[∑
I

xi+jI

]−1∑
I

xj+kI .
�� ��A.14
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But two of these matrices are simply inverses of each other, so in terms of the Kronecker
delta

f̂
(i)
[f−g]+g(0) = f̂ (i)(0) + g(i)(0)− i!

n∑
k=0

g(k)(0)
k!

δik

−i!
∞∑

k=n+1

g(k)(0)
k!

[∑
I

xi+jI

]−1∑
I

xj+kI ,
�� ��A.15

which now leads to significant cancellations

f̂
(i)
[f−g]+g(0) = f̂ (i)(0)− i!

∞∑
k=n+1

g(k)(0)
k!

[∑
I

xi+jI

]−1∑
I

xj+kI .
�� ��A.16

This is the best (ignoring convergence issues) that one can do in the general case. Note the
formula for the shift of the estimate of the ith derivative of f(x) is linear in the derivatives
of the function g(x), and that it starts with the (n + 1)th derivative. Consequently as the
order n of the polynomial used to fit the data increases there are fewer terms included in
the sum, so the difference between various estimates of the derivatives becomes smaller as
more terms are added to the least squares fit.

In the particular situation we discuss in the body of the thesis

f(x)→ µ̃ = ln
(

d(z)
z Mpc

)
; g(x)→ K

2
ln(1 + z); K ∈ Z;

�� ��A.17

or a similar formula in terms of the y-redshift. Consequently, from equation (A.10), partic-
ularized to our case

ˆ̃µ(i)
K (0) = ˆ̃µ(i)(0) +

K

2
[ln(1 + z)](i)(0)− K i!

2

[∑
I

zi+jI

]−1 [∑
I

zjI ln(1 + zI)

]
.

�� ��A.18

Then the “gap” between any two adjacent estimates for ˆ̃µ(i)
K (0) corresponds to taking ∆K =

1 and so

∆ˆ̃µ(i)(0) =
(−1)i−1 (i− 1)!

2
− i!

2

[∑
I

zi+jI

]−1 [∑
I

zjI ln(1 + zI)

]
.

�� ��A.19

But then for the particular case i = 1 which is of most interest to us

ˆ̃µ(1)
K (0) = ˆ̃µ(1)(0) +

K

2
− K

2

[∑
I

zi+jI

]−1

1j

[∑
I

zjI ln(1 + zI)

]
,

�� ��A.20

and

∆ˆ̃µ(1)(0) =
1
2
− 1

2

[∑
I

zi+jI

]−1

ij

[∑
I

zjI ln(1 + zI)

]
.

�� ��A.21
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By Taylor series expanding the logarithm, and reindexing the terms, this can also be recast
as

ˆ̃µ(i)
K (0) = ˆ̃µ(i)(0) +

K i!
2

∞∑
k=n+1

(−1)k

k

[∑
I

zi+jI

]−1∑
I

zj+kI ,
�� ��A.22

whence

ˆ̃µ(1)
K (0) = ˆ̃µ(1)(0) +

K

2

∞∑
k=n+1

(−1)k

k

[∑
I

zi+jI

]−1

1j

∑
I

zj+kI ,
�� ��A.23

and

∆ˆ̃µ(1)(0) =
1
2

∞∑
k=n+1

(−1)k

k

[∑
I

zi+jI

]−1

1j

∑
I

zj+kI ,
�� ��A.24

(Because of convergence issues, if we work with z-redshift these last three formulae make
sense only for supernovae datasets where we restrict ourselves to zI < 1, working in y-
redshift no such constraint need be imposed.) Now relating this to the modelling ambiguity
in q0, we have

[∆q0]modelling = −2 ∆ˆ̃µ(1)(0),
�� ��A.25

so that

[∆q0]modelling = −1 +

[∑
I

zi+jI

]−1

1j

[∑
I

zjI ln(1 + zI)

]
.

�� ��A.26

By Taylor-series expanding the logarithm, modulo convergence issues discussed above, this
can also be expressed as:

[∆q0]modelling = −
∞∑

k=n+1

(−1)k

k

[∑
I

zi+jI

]−1

1j

[∑
I

zj+kI

]
.

�� ��A.27

In particular, without further calculation, these results collectively tell us that the different
estimates for q0 will always be evenly spaced, and it suggests that as n→∞ the differences
will become smaller. This is actually what is seen in the data analysis we performed. If
we were to have a good physics reason for choosing one particular definition of distance as
being primary, we would use that for the least squares fit, and the other ways of estimating
the derivatives would be “biased” — but in the current situation we have no physically
preferred “best” choice of distance variable.
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B
Combining measurements

from different models

Suppose one has a collection of measurements Xa, each of which is represented by a ran-
dom variable X̂a with mean µa = E(X̂a) and variance σ2

a = E([X̂a − µa]2). How should
one then combine these measurements into an overall “best estimate”?

If we have no good physics reason to reject one of the measurements then the best we
can do is to describe the combined measurement process by a random variable X̂Â where Â
is now a discrete random variable that picks one of the measurement techniques with some
probability pa. More precisely

Prob(Â = a) = pa,
�� ��B.1

where the values pa are for now left arbitrary. Then

µ = E(X̂Â) =
∑
a

pa E(X̂a) =
∑
a

pa µa,
�� ��B.2

and
E(X̂2

Â
) =

∑
a

pa E(X̂a)2 =
∑
a

pa (σ2
a + µ2

a).
�� ��B.3

But equally well
E(X̂2

Â
) = σ2 + µ2,

�� ��B.4

so that overall
µ =

∑
a

pa µa,
�� ��B.5

and
σ2 =

∑
a

pa σ
2
a +

∑
a

pa (µa − µ)2.
�� ��B.6

This lets us split the overall variance into the contribution from the purely statistical uncer-
tanties on the individual measurements

σstatistical =
√∑

a

pa σ2
a,

�� ��B.7

plus the “modelling ambiguity” arising from different ways of modelling the same physics

σmodelling =
√∑

a

pa (µa − µ)2.
�� ��B.8
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In the particular case we are interested in we have 5 different ways of modelling distance
and no particular reason for choosing one definition of measurement over all the others so
it is best to take pa = 1/5.

Furthermore in the case of the estimates for the deceleration parameter, all individual
estimates have the same statistical uncertainty, and the estimates are equally spaced with a
gap ∆:

σa = σ0; µa = µP + n∆; n ∈ {−2,−1, 0, 1, 2}.
�� ��B.9

Therefore
µ = µP ; σstatistical = σ0; σmodelling =

√
2 ∆.

�� ��B.10

For estimates of the jerk, we no longer have the simple equal-spacing rule and equal statisti-
cal uncertainties rule, but there is still no good reason for preferring one distance surrogate
over all the others so we still take pa = 1/5 and the estimate obtained from the combined
measurements satisfies

µ =
∑

a µa
5

; σstatistical =

√∑
a σ

2
a

5
; σmodelling =

√∑
a(µa − µ)2

5
.

�� ��B.11

These formulae are used to calculate the statistical and modelling uncertainties reported
in tables 3.5–3.6 and 3.7–3.8 . Note that by definition the combined purely statistical and
modelling uncertainties are to be added in quadrature

σ =
√
σ2

statistical + σ2
modelling.

�� ��B.12

This discussion does not yet deal with the estimated systematic uncertainties (“known un-
knowns”) or “historically estimated” systematic uncertainties (“unknown unknowns”).
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C
Useful inequalities

The following inequalities are crucial tools for the analysis of variational problems, spectral
element methods and also domain decomposition methods.

C.1 Cauchy-Schwarz inequality

Lemma 1 Let V be a Hilbert space, with the inner product (·, ·)V and the norm ‖ · ‖V , then we have
the Cauchy-Schwarz inequality,

(u, v)V 6 ‖u‖V ‖v‖V , u, v ∈ V.
�
 �	C.1

C.2 Poincaré inequality:

Lemma 2 Let u ∈ H1(Ω), then there exist constants, depending only on Ω, such that,

‖u‖2L2(Ω) 6 c1 |u|2H1(Ω) + c2

(∫
Ω
u d~x

)2

.
�
 �	C.2

Theorem 4 Let Ω ⊂ Rn be a bounded Lipshitz domain and V be a closed subspace of H1(Ω) that
contains P0(Ω), the space of constant functions on Ω. LetW be a Hilbert space with a norm ‖ · ‖W
and let A : V → W be a bounded linear operator, such that

Av = 0, v ∈ P0(Ω).
�
 �	C.3

If

‖Au‖W 6 ‖A‖ ‖u‖H1(Ω), u ∈ W,
�
 �	C.4

then
‖Au‖W 6 ‖A‖ cΩ |u|H1(Ω) , u ∈ W,

�
 �	C.5

where cΩ depends only on the domain Ω, but is independent of u, A and of the spaces V andW .

In other words, it means that if the left hand side of the inequality does not change if one
adds a constant to u, then the norm on the right hand side can be replaced by the semi-norm.
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C.3 Friedrichs inequality

Lemma 3 Let Γ ⊆ ∂Ω have non-vanishing (n − 1)-dimensional measure. Then there exists con-
stants, depending only on Ω and Γ, such that, for u ∈ H1(Ω),

‖u‖2L2(Ω) 6 c1 |u|2H1(Ω) + c2‖u‖2L2(Γ).
�
 �	C.6

In particular, if u vanishes on Γ,

‖u‖2L2(Ω) 6 c1 |u|2H1(Ω) ,
�
 �	C.7

and therefore,
|u|2H1(Ω) 6 ‖u‖

2
H1(Ω) 6 (c1 + 1) |u|2H1(Ω) .

�
 �	C.8
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D
General cardinal functions,

Lagrange basis

Lagrange interpolation is a method of interpolation that introduces a family of N th-degree
Lagrange polynomials for a set of interpolation points xi defined by the requirement that

hN,i(xj) = δij i, j ∈ {0..N},
�� ��D.1

where δij is the usual Kronecker delta symbol. The Lagrange interpolant is also defined
below:

hN,i(xj) =
(x− x0)...(x− xi−1)(x− xi+1)...(x− xN )

(xi − x0)...(xi − xi−1)(xi − xi+1)...(xi − xN )
,

�� ��D.2

Note that the factor (x − xi) does not appear in the numerator which is a polynomial of
degree N and the factor (xi − xi) is missing in the denominator which is a constant.

An alternative approach is to define a Lagrange generating polynomial of degree (N+1)

φN+1(x) = (x− x0)(x− x1)...(x− xN−1)(x− xN ).
�� ��D.3

The generating polynomial φN+1 is zero at all the data points, that is

φN+1(xi) = 0 i ∈ {0, N}.
�� ��D.4

Furthermore, the derivative with respect to x at the collocation points xi gives

i ∈ {0, N}
φ′N+1(xi) = (xi − x0)...(xi − xi−1)(xi − xi+1)...(xi − xN ).

�� ��D.5

From the previous two definitions we can define the Lagrange interpolants in an alternative
manner to equation (D.2) by

hN,i(x) =
φN+1(x)

φ′N+1(xi)(x− xi)
.

�� ��D.6

The term

ci =
1

φ′N+1(xi)

�� ��D.7

291



APPENDIX D. GENERAL CARDINAL FUNCTIONS,
LAGRANGE BASIS

is referred to as the barycentric weights.
The Lagrange interpolants are also called cardinal functions, cardinal basis or Lagrange

basis. The Lagrange generating polynomial can be identified to (or some combination of)
the Legendre, Lobatto, Chebychev, Hermite etc... polynomials.

Some desired interpolating polynomial can be expressed in terms of the Lagrange basis
as

PN (x) =
i=N∑
i=0

pihN,i(x).
�� ��D.8

The cardinal functions in the SEM are Lagrange basis with the following Lagrange gen-
erating polynomials:

φN+1(x) = − 1
cN−1

(1− x2)LoN−1(x),
�� ��D.9

where LoN (x) are Lobatto polynomials and cN−1 are the highest power of the N −1-degree
Lobatto polynomial. Since there is a relationship between Lobatto polynomials and Legen-
dre polynomials

LoN (x) = L′N+1(x),
�� ��D.10

the Lagrange generating polynomial can be written as

φN+1(x) = − 1
cN

(1− x2)L′N (x).
�� ��D.11

Substituting the spectral element Lagrange generating polynomial into the Lagrange
basis definition, we obtain the cardinal basis functions for the spectral element method:

hN,i(x) = −
(1− x2)L′N (x)

N(N + 1)LN (xi)(x− xi)
.

�� ��D.12

To derive equation (D.12), we have used one of the property of the Legendre polynomials
described in Appendix E:((

1− x2
)
L′N (x)

)′
= −N(N + 1)LN (x).

�� ��D.13

The grid points are

x0 = −1 xN = 1 and the (N − 1) roots of L′N (x).
�� ��D.14

The quadrature weights are

ρi =
2

N(N + 1)
(
LN (xi)

)2 .
�� ��D.15

Figure D.1 illustrates Lagrange-Legendre polynomials of order P = 8 in a 1D master
element Λ = [−1, 1].
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D.1. FIRST DERIVATIVE AND THE FIRST NODE DIFFERENTIATION MATRIX H FOR LAGRANGE BASIS

Figure D.1: Lagrange–Legendre interpolants of degree P = 8 at the Gauss–Lobatto–
Legendre points on the reference segment Λ = [−1, 1]. The N = P + 1 = 9 GLL points
can be distinguished along the horizontal axis. All Lagrange type polynomials are by defi-
nition 0 or 1 at each of these GLL points.

D.1 First derivative and the first node differentiation matrix H

for Lagrange basis

We differentiate the desired interpolating polynomial expressed in terms of the Lagrange
basis by

dPN (x)
dx

=
i=N∑
i=0

pi
dhN,i(x)
dx

.
�� ��D.16

Using the definition of hN,i with the Lagrange generating polynomial in equation (D.6), we
obtain,

dhN,i(x)
dx

=
φ′N+1(x)(x− xi)− φN+1(x)

φ′N+1(xi)(x− xi)2
.

�� ��D.17

We can then evaluate the right hand side at the interpolation nodes xi with

dxhj(xi) = Hij =


Hij =

φ′N+1(xi)
φ′N+1(xj) (xi − xj)

i 6= j

Hii =
φ′′N+1(xi)
2φ′N+1(xi)

i ∈ {0, N}

�� ��D.18

To obtain the first node differentiation matrixH we have used the property that φN+1(xi) =
0 at the nodes and in the case i = j we have used Taylor series expansion around x→ xi:

Hii =
(
dhi(x)
dx

)
x=xi

=
φ′′N+1(xi)
2φ′N+1(xi)

.
�� ��D.19
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D.1.1 First derivative and the first node differentiation matrix H for SEM basis

We further substitute the Lagrange generating polynomial by the Legendre interpolants
and obtain the first node differentiation matrix H :

dξhj(ξi) = Hij =


H00 = −HNN = −N(N+1)

4
Hii = 0 i ∈ {1, N − 1}
Hij = LN (ξi)

LN (ξj) (ξi−ξj) i 6= j

�� ��D.20

D.2 Second derivative and the second node differentiation ma-
trix W for Lagrange basis

We differentiate twice the desired interpolating polynomial expressed in terms of the La-
grange basis by

d2PN (x)
dx2

=
i=N∑
i=0

pi
d2hN,i(x)
dx2

.
�� ��D.21

Using the definition of hN,i with the Lagrange generating polynomial in equation (D.6), we
obtain,

d2hN,i(x)
dx2

=
φ′′N+1(x)(x− xi)2 − 2φ′N+1(x)(x− xi) + 2φN+1(x)

φ′N+1(xi)(x− xi)3
.

�� ��D.22

We can then evaluate the right hand side at the interpolation nodes xi with

dxxhj(xi) = Wij =


Wij =

φ′′N+1(xi)(xi − xj)− 2φ′N+1(xi)
φ′N+1(xj) (xi − xj)2

i 6= j

Wii =
φ′′′N+1(xi)
3φ′N+1(xi)

i ∈ {0, N}

�� ��D.23

To obtain the second node differentiation matrixW we have used the property that φN+1(xi) =
0 at the nodes, and in the case i = j we have used Taylor series expansions around x → xi
for φN+1(x), φ′N+1(x) and φ′′N+1(x).

D.2.1 Second derivative and the second node differentiation matrix W for SEM
basis

We further substitute the Lagrange generating polynomial by the Legendre interpolants
and obtain the second node differentiation matrix W :

dξξhj(ξi) = Wij =


W00 = (−1)N

3 L′′N (−1)
WNN = 1

3L
′′
N (1)

Wii = 1
3
L′′N (ξi)

LN (ξi)
i ∈ {1, N − 1}

Wij = −2 LN (ξi)
LN (ξj) (ξi−ξj)2 i 6= j

�� ��D.24
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E
Legendre polynomial properties

In this section we present properties of the family of the Legendre polynomials LN (x) that
have many applications. They can be used as an alternative to Chebychev polynomials and
are very appropriate for non-periodic problems.

• Domain of definition: x ∈ [−1, 1]

• Weight ρ(x) = 1

• Inner product: ∫ 1

−1
LiLj dx =

2
2i+ 1

δij
�� ��E.1

• Endpoint values:

LN (±1) = (±1)N
dLN
dx

(±1) = (±1)N−1 N(N + 1)
2

�� ��E.2

• Explicit form

LN (x) =
1

2N
dN

dxN
(
x2 − 1

)N
.

�� ��E.3

• Three-Term Recurrence and starting values:
Legendre polynomials recurrence:

L0(x) = 1, L1(x) = x,

LN+1(x) =
1

N + 1
[(2N + 1)xLN (x)−NLN−1(x)] ;

�� ��E.4

First derivative Legendre polynomials recurrence:

L′0(x) = 1, L′1(x) = 1, L′2(x) = 3x,

L′N+1(x) =
1
N

[
(2N + 1)xL′N (x)− (N + 1)L′N−1(x)

]
;

�� ��E.5

Second derivative Legendre polynomials recurrence:

L′′0(x) = 1, L′′1(x) = 0, L′′2(x) = 3, L′′3(x) = 15x

L′′N+1(x) =
1

N − 1
[
(2N + 1)xL′′N (x)− (N + 2)L′′N−1(x)

]
.

�� ��E.6
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• General differentiation: There is a relationship between Legendre and Gegenbauer
polynomials Cmn

dmLN (x)
dxm

= 1 · 3 · 5 · · · (2m− 1)Cm+1/2
N−m (x).

�� ��E.7

• Important properties:((
1− x2

)
L′N (x)

)′
= −N(N + 1)LN (x);

�� ��E.8

(N + 1)LN+1(x) = (2N + 1)xLN (x)−NLN−1(x);
�� ��E.9

NLN (x) = xL′N (x)− L′N−1(x);
�� ��E.10

L′N+1(x) = xL′N (x) + (n+ 1)LN (x).
�� ��E.11

• Relation to the Lobatto Polynomials LoN (x):

LoN (x) = L′N+1(x).
�� ��E.12

• Relation to the Gegenbauer polynomials Cmn

LN (x) = C
(1/2)
N (x).

�� ��E.13

• Relation to the Jacobi polynomials J (α,β)
N

LN (x) = J (0,0)N (x).
�� ��E.14
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F
General shaped elements

In the problems treated in this thesis, we have dealt with meshes containing regular shaped
elements. In that case, the linear mapping transformation is given by

x = x(ξ);
�� ��F.1

y = y(η);
�� ��F.2

z = z(ζ).
�� ��F.3

Note that the Jacobian of this type of mapping is constant in each element. This will not be
the case anymore when using general shaped elements, where the mapping transformations
are:

x = x(ξ, η, ζ);
�� ��F.4

y = y(ξ, η, ζ);
�� ��F.5

z = z(ξ, η, ζ).
�� ��F.6

Recall that in each subdomain, the generic variable uk
h is expanded into cardinal basis

functions. In higher dimensions, the formulation of the basis comes from the tensor product
of one dimensional Lagrangian interpolant basis hi(x). So the Lagrangian interpolants are
chosen as basis functions in each dimension. We expand the unknowns as

∀uk
h ∈ Wh, u

k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
mnp(t) hm(x) hn(y) hp(z).

�� ��F.7

However, for regular shaped elements, we can also differentiate the unknowns with
respect to x, y, z or t in the following manner:

∂xu
k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
mnp(t) ∂xhm(x) hn(y) hp(z),

�� ��F.8

∂yu
k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
mnp(t) hm(x) ∂yhn(y) hp(z),

�� ��F.9

∂zu
k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
mnp(t) hm(x) hn(y) ∂zhp(z),

�� ��F.10

∂tu
k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

u̇k
mnp(t) hm(x) hn(y) hp(z).

�� ��F.11
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For general shaped elements, we have to use the chain rule, and the derivative for x for
example, becomes:

∂xu
k
h(x, y, z, t) =

m=N∑
m=0

n=N∑
n=0

p=N∑
p=0

uk
mnp(t)

[
∂ξhm(ξ) hn(η) hp(ζ)

∂ξ

∂x

+ hm(ξ) ∂ηhn(η) hp(ζ)
∂η

∂x
+ hm(ξ) hn(η) ∂ζhp(ζ)

∂ζ

∂x

]
.

�� ��F.12

We show here, how this general case changes the formula for the Elemental advection
matrix Ak type 1.

Recall that the advection matrix Ak appears in the following type of integral∫
Ω
f∂ku w dΩ = f : (Ak ⊗ u) ,

�� ��F.13

where, f, u and w are scalar functions and k = x, y, or z. The operator ⊗ will act on u in a
different manner depending on the value of k as described below:

Akξ ⊗ u = |J | ∂ξ
∂k

: ρ : (H ·xy u)
�� ��F.14

Akη ⊗ u = |J | ∂η
∂k

: ρ :
(
u ·xy HT

) �� ��F.15

Akζ ⊗ u = |J | ∂ζ
∂k

: ρ :
(
u ·yz HT

)
.

�� ��F.16

And finally, in the general shaped element case, we have

Ak ⊗ u = Akξ ⊗ u+ Akη ⊗ u+ Akζ ⊗ u.
�� ��F.17

Calculations for the other Elemental matrices can be derived in a similar fashion.
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G
Extended numerical results of the SEM and

BSSN

This Appendix contains more detailed results and figures describing the numerical results
discussed in Chapter 9.

G.1 Geometric flexibility

G.1.1 Distorted Meshes

We present distorted square and cubic meshes with varying parameters

• Figure (G.1) presents a 2D slice of a 3D distorted square mesh with anchor points
without GLL points with NE = 53, 73, 93, 113 respectively.

• Figure (G.2) presents a 2D slice of a 3D distorted cubic mesh with anchor points with-
out GLL points with NE = 53, 73, 93, 113 respectively.

Tables (G.1)and (G.2) illustrate the requirements for distorted meshes (square and cubic
respectively). We show the mesh properties with varying parameters (number of elements
NE and polynomial order N ): minimum and maximum dx, timestep dt required and the
total number of points Ng

G.1.2 Mixed Distorted meshes

Figure 9.7 illustrates 2 mixed distorted meshes. We present here mixed distorted meshes
for varying number of elements NE , see Figure G.3 for details.

G.2 Far from the puncture

Sufficiently far from the puncture, all the variables of the BSSN system are smooth.
Figures G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, and G.12, show the pointwise errors and

L2 norms of most variables of the BSSN system for a domain L = 64 with a cubic mesh.
These numerical results demonstrate that the part of the code and system that we expect

to behave well really do so.
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Figure G.1: 3D distorted square mesh represented in a 2D slice for varying number of ele-
ments NE and for a domain L = 80.
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G.2. FAR FROM THE PUNCTURE
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Figure G.2: Same as figure G.1 but for a 3D distorted cubic mesh.
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Nb poly dx(∼ 0) dxmin dxmax dt Total
elements order N points

53 N = 7 dx = 1.34 dx = 0.41 dx = 10.71 dt = 0.21 Ng = 46656
53 N = 9 dx = 1.06 dx = 0.26 dx = 8.5 dt = 0.13 Ng = 97336
53 N = 15 dx = 0.67 dx = 0.097 dx = 5.2 dt = 0.05 Ng = 438976
53 N = 17 dx = 0.57 dx = 0.076 dx = 4.59 dt = 0.04 Ng = 636056
73 N = 3 dx = 1.46 dx = 0.9 dx = 17.5 dt = 0.45 Ng = 10648
73 N = 9 dx = 0.54 dx = 0.13 dx = 6.5 dt = 0.07 Ng = 262144
73 N = 11 dx = 0.45 dx = 0.09 dx = 5.3 dt = 0.045 Ng = 474552
73 N = 15 dx = 0.33 dx = 0.05 dx = 3.9 dt = 0.024 Ng = 1191016
93 N = 3 dx = 0.88 dx = 0.55 dx = 14.1 dt = 0.27 Ng = 21952
93 N = 5 dx = 0.56 dx = 0.23 dx = 9 dt = 0.12 Ng = 97336
93 N = 9 dx = 0.33 dx = 0.08 dx = 5.2 dt = 0.04 Ng = 551368
93 N = 11 dx = 0.27 dx = 0.054 dx = 4.3 dt = 0.027 Ng = 1000000
113 N = 3 dx = 0.59 dx = 0.37 dx = 11.8 dt = 0.18 Ng = 39304
113 N = 5 dx = 0.38 dx = 0.16 dx = 7.5 dt = 0.08 Ng = 175616
113 N = 9 dx = 0.22 dx = 0.05 dx = 4.4 dt = 0.027 Ng = 1000000
113 N = 11 dx = 0.18 dx = 0.036 dx = 3.6 dt = 0.018 Ng = 1815848

Table G.1: Properties for a distorted square mesh with a domain L = 80. The timestep is
given by dt = CFL× dxmin with CFL = 0.5.

Nb poly dx(∼ 0) dxmin dxmax dt Total
elements order N points

53 N = 7 dx = 0.27 dx = 0.082 dx = 13.13 dt = 0.04 Ng = 46656
53 N = 9 dx = 0.21 dx = 0.051 dx = 10.36 dt = 0.017 Ng = 97336
53 N = 11 dx = 0.17 dx = 0.035 dx = 8.6 dt = 0.05 Ng = 175616
53 N = 15 dx = 0.13 dx = 0.019 dx = 6.35 dt = 0.0097 Ng = 438976
53 N = 17 dx = 0.11 dx = 0.015 dx = 5.62 dt = 0.0076 Ng = 636056
73 N = 3 dx = 0.21 dx = 0.13 dx = 22.7 dt = 0.064 Ng = 10648
73 N = 5 dx = 0.13 dx = 0.055 dx = 14.5 dt = 0.027 Ng = 46656
73 N = 9 dx = 0.077 dx = 0.019 dx = 8.4 dt = 0.009 Ng = 262144
73 N = 11 dx = 0.06 dx = 0.013 dx = 6.9 dt = 0.006 Ng = 474552
73 N = 15 dx = 0.047 dx = 0.007 dx = 5.1 dt = 0.0035 Ng = 1191016
93 N = 3 dx = 0.098 dx = 0.06 dx = 18.9 dt = 0.03 Ng = 21952
93 N = 5 dx = 0.06 dx = 0.026 dx = 12.08 dt = 0.013 Ng = 97336
93 N = 9 dx = 0.036 dx = 0.009 dx = 7 dt = 0.004 Ng = 551368
93 N = 11 dx = 0.03 dx = 0.006 dx = 5.8 dt = 0.003 Ng = 1000000
113 N = 3 dx = 0.053 dx = 0.033 dx = 10.3 dt = 0.017 Ng = 39304
113 N = 5 dx = 0.034 dx = 0.014 dx = 7.5 dt = 0.07 Ng = 175616
113 N = 9 dx = 0.02 dx = 0.0048 dx = 5.98 dt = 0.0024 Ng = 1000000
113 N = 11 dx = 0.016 dx = 0.0033 dx = 4.9 dt = 0.0017 Ng = 1815848

Table G.2: Same as table G.1 but for a distorted cubic mesh.
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G.2. FAR FROM THE PUNCTURE
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Figure G.3: 3D mixed distorted meshes represented in a 2D slice for a domain L = 20.
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Figure G.4: Pointwise error and L2 norm for φ at the same time steps for varying accuracy
and for different slices across a domain of L = 64 with a cubic mesh.
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Figure G.5: Same as figure G.4 but for χ.
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Figure G.6: Same as figure G.4 but for g̃xx.
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Figure G.7: Same as figure G.4 but for g̃xy.
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Figure G.8: Same as figure G.4 but for Ãxx.
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(c) Ãxy versus x in a 2D slice for y ∼ z = 31.83M

−80 −60 −40 −20 0 20 40 60 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10−9 Axy num−Axy exact at y=z~58.9718 at t~0.4

x

A xy
 n

um
−A

xy
 e

xa
ct

 

 
acc P6 NELX6
acc P6 NELX8
acc P8 NELX8
acc P5 NELX10
acc P6 NELX10
acc P7 NELX10
acc P8 NELX10
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Figure G.9: Same as figure G.4 but for Ãxy.
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Figure G.10: Same as figure G.4 but for K.
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Figure G.11: Same as figure G.4 but for Γ̃x.

311



APPENDIX G. EXTENDED NUMERICAL RESULTS OF THE SEM AND BSSN

−80 −60 −40 −20 0 20 40 60 80
−5

−4

−3

−2

−1

0

1
x 10−7 !num−!exact at y=z~5.679 at t~0.4

x

!
nu

m
−!

ex
ac

t

 

 
acc P6 NELX6
acc P6 NELX8
acc P8 NELX8
acc P5 NELX10
acc P6 NELX10
acc P7 NELX10
acc P8 NELX10

(a) α versus x in a 2D slice for y ∼ z = 5.7M

−80 −60 −40 −20 0 20 40 60 80
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10−9 !num−!exact at y=z~16.8945 at t~0.4

x

!
nu

m
−!

ex
ac

t

 

 
acc P6 NELX6
acc P6 NELX8
acc P8 NELX8
acc P5 NELX10
acc P6 NELX10
acc P7 NELX10
acc P8 NELX10

(b) α versus x in a 2D slice for y ∼ z = 16.9M

−80 −60 −40 −20 0 20 40 60 80

−2

−1

0

1

2

3
x 10−11 !num−!exact at y=z~31.8313 at t~0.4

x

!
nu

m
−!

ex
ac

t

 

 
acc P6 NELX6
acc P6 NELX8
acc P8 NELX8
acc P5 NELX10
acc P6 NELX10
acc P7 NELX10
acc P8 NELX10

(c) α versus x in a 2D slice for y ∼ z = 31.83M
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Figure G.12: Same as figure G.4 but for α.
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G.3. PUNCTURE AT THE CENTRE OF AN ELEMENT

G.2.1 hp-convergence with χ

We obtain hp-convergence only away from the point of discontinuity.
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(a) Pointwise error for χ near the puncture for low
resolution, we see no oscillation in the neighbour ele-
ments of the puncture
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(b) Pointwise error for χ near the puncture for high
resolution, we see oscillations in the neighbour ele-
ments of the puncture

Figure G.13: Pointwise error for χ near the puncture for low and high resolution on an even
mesh L = 4: the effect of increasing the resolution near the puncture very quickly leads to
the propagation of oscillations.

G.3 Puncture at the centre of an element

Figures G.14 and G.15 show the typical behaviour of discontinuous functions near the point
of discontinuity: the appearance of Gibbs oscillations. We see the pointwise errors of most
variables with 4 accuracies at a similar time of t ∼ 0.2M .

In contrast, figures G.16 and G.17 show the L2 norm over the entire domain, and the L2

norm with the region close to the puncture being excised (−0.67, 0.67), and the boundary
(L − 0.5) being excised. We can see that the L2 norm of the wave equation is doing much
better than all the other variables over the entire domain. However, we can see from the
excised norms that the norm of the solution of the wave equation is comparable to the BSSN
variables until the oscillations propagate outside the centre element.
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(a) Pointwise error of φ near the puncture
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(b) Pointwise error of χ near the puncture
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(c) Pointwise error of Γ̃x near the puncture
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(d) Pointwise error of α near the puncture

Figure G.14: Pointwise error of φ, χ, Γ̃x and α for 4 types of accuracy for L = 2 at t ∼ 0.2M :
1) acc1 P = 3, NE = 33; 2) acc2 P = 5, NE = 53; 3) acc3 P = 7, NE = 53; 4) acc4
P = 7, NE = 73
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(a) Pointwise error of g̃xx near the puncture
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(b) Pointwise error of g̃xy near the puncture
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(c) Pointwise error of Ãxx near the puncture
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(d) Pointwise error of Ãxy near the puncture
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(e) Pointwise error of K near the puncture

Figure G.15: Same as figure G.14 but for g̃xx, g̃xy, Ãxx and Ãxy.

315



APPENDIX G. EXTENDED NUMERICAL RESULTS OF THE SEM AND BSSN

0 0.5 1 1.5 2 2.5
10−5

10−4

10−3

10−2

10−1

Norm L2 of error
for on all the variables for P=3, NEL=27, CFL=0.5, L=2

t

er
ro

r n
or

m
 L

2

 

 

phi
chi
gxx
gxy
Axx
Axy
K
Gamx
Gamy
alpha
u

(a) L2 norm for accuracy 1)

0 0.5 1 1.5 2 2.5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Norm L2 of error
for on all the variables for P=5, NEL=125, CFL=0.5, L=2

t

er
ro

r n
or

m
 L

2

 

 

phi
chi
gxx
gxy
Axx
Axy
K
Gamx
Gamy
alpha
u

(b) L2 norm for accuracy 2)

0 0.5 1 1.5 2 2.5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Norm L2 of error
for on all the variables for P=7, NEL=125, CFL=0.5, L=2

t

er
ro

r n
or

m
 L

2

 

 

phi
chi
gxx
gxy
Axx
Axy
K
Gamx
Gamy
alpha
u

(c) L2 norm for accuracy 3)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Norm L2 of error
for on all the variables for P=7, NEL=343, CFL=0.5, L=2

t

er
ro

r n
or

m
 L

2

 

 

phi
chi
gxx
gxy
Axx
Axy
K
Gamx
Gamy
alpha
u

(d) L2 norm for accuracy 4)

Figure G.16: Comparison of the logarithmic norm L2 over the entire region of all the vari-
ables for 4 types of accuracy with CFL = 0.5 and L = 2.
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Figure G.17: Same as figure G.16 but with the centre element (−0.67, 0.67) and the boundary
L− 0.5 excised.
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G.4 The offset mesh:
The puncture on an edge or face of an element

Figures G.18, G.19 and G.20 show the comparison of the 3 different types of offsets (offset
1 in blue, offset 2 in red and offset 3 in black) for the BSSN variables. We see the pointwise
error and L2 norm with increasing accuracy for a domain L = 64 with a square mesh.
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Figure G.18: Comparison of 3 different types of offsets showing the pointwise error and L2

norm for χ, φ, and α, with increasing accuracy for a domain L = 64 with a square mesh.
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Figure G.19: Same as figure G.18 but for g̃xx, g̃xy and Γ̃x.
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Figure G.20: Same as figure G.18 but for Ãxx, Ãxy and K.
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G.5 Filtering “as much or as little as needed”

In the following figures, we present the behaviour of Ãxx and Ãxy initially and after t = 2M ,
without filtering and with filtering with a cut off value of Nc = 1 for the filter in the centre
element:

• Figure G.21, shows the pointwise error of Ãxx close to the puncture without filtering
G.21(a), G.21(b), and with filtering G.21(c), G.21(d), for a very small domain of L = 1.

• Figure G.22, shows the pointwise error of Ãxy close to the puncture without filtering
G.22(a), G.22(b), and with filtering G.22(c), G.22(d), for a very small domain of L = 1.

Notice the different scale of the y-axis (errors) on the plots with and without filtering.
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(a) Ãxx without filtering versus x at t ∼ 0.5
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(b) Ãxx without filtering versus x at t ∼ 2.4
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(c) Ãxx with filtering versus x at t ∼ 0.5
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(d) Ãxx with filtering versus x at t ∼ 2.4

Figure G.21: Pointwise error of Ãxx close to the puncture ( in a 2D slice for y ∼ z = 0.01M),
without filtering (a), (b) and with filtering (c), (d) for a very small domain of L = 1. Filtering
makes a big difference in stopping the propagation of oscillations throughout the domain.
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(a) Ãxy without filtering versus x at t ∼ 0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
Axy num−Axy exact at y=0.01495 z=0.01495 at t~2.4049

x

A xy
 n

um
−A

xy
 e

xa
ct

 

 

acc P7 NELX9 NELXIn7 evenBoxIn

(b) Ãxy without filtering versus x at t ∼ 2.4
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(c) Ãxy with filtering versus x at t ∼ 0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05
Axy num−Axy exact at y=0.01495 z=0.01495 at t~2.3934

x

A xy
 n

um
−A

xy
 e

xa
ct

 

 

acc P7 NELX9 NELXIn7 evenBoxIn

(d) Ãxy with filtering versus x at t ∼ 2.4

Figure G.22: Same as figure G.21 but for Axy.
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(a) Ãxx without filtering versus x at t ∼ 0.5
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(b) Ãxx without filtering versus x at t ∼ 2.4
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(c) Ãxx with filtering versus x at t ∼ 0.5
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(d) Ãxx with filtering versus x at t ∼ 2.4

Figure G.23: Same as figure G.21 but further away from the puncture for y ∼ z = 0.5M.
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(a) Ãxy without filtering versus x at t ∼ 0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Axy num−Axy exact at y=0.5 z=0.5 at t~2.4049

x

A xy
 n

um
−A

xy
 e

xa
ct

 

 
acc P7 NELX9 NELXIn7 evenBoxIn

(b) Ãxy without filtering versus x at t ∼ 2.4
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(c) Ãxy with filtering versus x at t ∼ 0.5
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(d) Ãxy with filtering versus x at t ∼ 2.4

Figure G.24: Same as figure G.23 but for Ãxy
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[68] C. Cattoën and M. Visser, “Necessary and sufficient conditions for big bangs,
bounces, crunches, rips, sudden singularities, and extremality events,” Class. Quant.
Grav. 22 (2005) 4913–4930, arXiv:gr-qc/0508045.
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