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Abstract

The object of study of the thesis is the notion of monadic bounded al-
gebras (shortly, MBA’s). These algebras are motivated by certain nat-
ural constructions in free (first-order) monadic logic and are related to
free monadic logic in the same way as monadic algebras of P. Halmos to
monadic logic (Chapter 1). Although MBA’s come from logic, the present
work is in algebra. Another important way of approaching MBA’s is via
bounded graphs, namely, the complex algebra of a bounded graph is an
MBA and vice versa.

The main results of Chapter 2 are two representation theorems: 1) ev-
ery model is a basic MBA and every basic MBA is isomorphic to a model;
2) every MBA is isomorphic to a subdirect product of basic MBA’s. As a
consequence, every MBA is isomorphic to a subdirect product of models.
This result is thought of as an algebraic version of semantical complete-
ness theorem for free monadic logic.

Chapter 3 entirely deals with MBA-varieties. It is proved by the method
of filtration that every MBA-variety is generated by its finite special mem-
bers. Using connections in terms of bounded morphisms among certain
bounded graphs, it is shown that every MBA-variety is generated by at
most three special (not necessarily finite) MBA’s. After that each MBA-
variety is equationally characterized.

Chapter 4 considers finitely generated MBA’s. We prove that every
finitely generated MBA is finite (an upper bound on the number of ele-
ments is provided) and that the number of elements of a free MBA on a
finite set achieves its upper bound. Lastly, a procedure for constructing a
free MBA on any finite set is given.
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Chapter 1

Introduction

The present work is devoted to the study of monadic bounded algebras
which are an algebraic version of free first-order monadic logic. In [7]
P. Halmos introduces and studies monadic algebras which are an alge-
braic version of first-order monadic logic. Following his monadic algebras
we develop monadic bounded algebras. The difference between monadic
logic and free monadic logic is in the way we treat quantifiers. To be more
precise let us give syntax and semantics of free monadic logic.

A language of free monadic logic is a set of symbols arranged as fol-
lows:

1. Logical symbols: Parentheses (,); Sentential connective symbols: →,
¬; Variable: x.

2. Parameters: Quantifier symbol: ∃; One place predicate symbol: E;
Some set of one-place predicate symbols; Some set of constant sym-
bols.

Atomic formulas and well-formed formulas are defined as usual (see
e.g. [4, p. 74]).

Suppose we have a language for free monadic logic. Then a structure
A for the language is a function whose domain is the set of parameters of
the language such that

1



CHAPTER 1. INTRODUCTION 2

1. A assigns to the quantifier ∃ a nonempty set |A| called the universe
(or domain) of A;

2. A assigns to the predicate symbol E a subset EA ⊆ |A| called the set
of actual elements of A;

3. A assigns to each one-place predicate symbol P a subset PA ⊆ |A|;

4. A assigns to each constant symbol c an element cA ∈ |A|.

Note that there is only one variable in the language, and we may call
elements in |A| − EA possible elements. Moreover, we will work with the
existential quantifier only.

The satisfaction notion A |= ϕ[a], where ϕ is a formula and a ∈ |A|, is
defined as usual (see e.g. [4, p. 83-84]) except quantification:

A |= ∃xϕ[a] iff A |= ϕ[b] for some b ∈ EA.

So, the specifically designated predicateE in the language of free mona-
dic logic singles out a set of actual elements in the domain of a structure
for free monadic logic and the range of the existential quantifier is re-
stricted to the set of actual elements. This kind of interpretation is known
as ”bounded quantification”, hence the name of our algebras.

Define A |= ϕ (ϕ is valid in A) iff A |= ϕ[a] for all a ∈ |A|.
The following two constructions motivate our study of the main notion

of the present work, monadic bounded algebra. In the thesis, 2 = {0,1}
designates a two element Boolean algebra.

Let A be a structure. Define a (equivalence) relation ≡
A

on the set of all
formulas by ϕ ≡

A
ψ iff A |= ϕ ↔ ψ. For a formula ϕ, define [ϕ] = {ψ | ϕ ≡

A

ψ}. Put BA = {[ϕ] | ϕ is a formula}. For every [ϕ] ∈ BA , define a function
ϕ̂ : |A| → 2 by

ϕ̂(a) =

1, if A |= ϕ[a]

0, if A 6|= ϕ[a]
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(for every a ∈ |A|). Note that:

1. For every [ϕ] ∈ BA, ϕ̂ is a well-defined function;

2. Either ∃̂xϕ(a) = 1 for all a ∈ |A| or ∃̂xϕ(a) = 0 for all a ∈ |A|;

3. Since Êx(a) =

1, if a ∈ EA

0, if a /∈ EA
, we obtain that Êx is the characteris-

tic function of the subset EA ⊆ |A|.

It will be useful to notice that:

1. ∃̂xϕ(b) =
∨

a∈EA ϕ̂(a), for every b ∈ |A|;

Proof. It is obvious that ϕ̂(a) ≤ ∃̂xϕ(b) for every a ∈ EA. To be proved
that if ϕ̂(a) ≤ p ∈ 2 for every a ∈ EA, then ∃̂xϕ(b) ≤ p. Since p ∈ 2,
either p = 0 or p = 1. In the first case we obtain that A 6|= ϕ[a] for
every a ∈ EA, and so A 6|= ∃xϕ[b], i.e. ∃̂xϕ(b) = 0 ≤ p. In the second
case we obtain ∃̂xϕ(b) ≤ p just because p = 1 is the biggest element
in 2.

2.
∨

a∈EA ϕ̂(a) =
∨

a∈|A|

(
Êx(a) ∧ ϕ̂(a)

)
(because Êx is the characteristic

function of EA).

Put MA
0 = {ϕ̂ | [ϕ] ∈ BA} . So MA

0 is a set of functions from the do-
main |A| of the structure A to the two-element Boolean algebra 2 with the
designated (characteristic) function Êx of the subset EA ⊆ |A|.

We are now about to consider the second construction. Suppose D is
the set of all constant symbols of the language and C ⊆ D. Let SC be the
class of all structures in which the actual elements are just the elements
defined by members of C, i.e. A ∈ SC iff EA =

{
cA | c ∈ C

}
. Define a

(equivalence) relation ≡
SC

on the set of all formulas by ϕ ≡
SC

ψ iff A |= ϕ↔ ψ

for all A ∈ SC . For a formula ϕ, define [ϕ] =
{
ψ | ϕ ≡

SC

ψ
}

. Put BSC
=
{
[ϕ] |

ϕ is a formula
}

. BSC
is a Boolean algebra. For every formula ϕ, define a

function f(ϕ) : D → BSC
by
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f(ϕ)(c) = [ϕ(c/x)],

where ϕ(c/x) is the formula obtained from ϕ by replacing the variable x,
wherever it occurs free in ϕ, by the constant symbol c. Note that:

1. For every ϕ, f(ϕ) is a well-defined function;

2. For c ∈ C, f(Ex)(c) = 1 (here 1 is the unit element of BSC
).

It will be useful to notice that:

1. f(∃xϕ)(d) =
∨

c∈C f(ϕ)(c) (for every d ∈ D) or, in other words,

[∃xϕ] =
∨

c∈C [ϕ(c/x)];

Proof. Firstly, to be proved that [ϕ(c/x)] ≤ [∃xϕ] for every c ∈ C, i.e.
A |= ϕ(c/x) → ∃xϕ for all A ∈ SC and c ∈ C. Suppose c ∈ C is
fixed. Let A ∈ SC , a ∈ |A| and A |= ϕ(c/x)[a]. Then A |= ϕ[cA]. Since
c ∈ C and A ∈ SC , we have cA ∈ EA. It follows from A |= ϕ[cA]

and cA ∈ EA that A |= ∃xϕ[a]. Therefore A |= (ϕ(c/x) → ∃xϕ)[a].
Hence A |= ϕ(c/x) → ∃xϕ. So A |= ϕ(c/x) → ∃xϕ for all A ∈ SC .
Thus [ϕ(c/x)] ≤ [∃xϕ]. Secondly, to be proved that if [ϕ(c/x)] ≤ [ψ]

for every c ∈ C, then [∃xϕ] ≤ [ψ], i.e. if A |= ϕ(c/x) → ψ for all
A ∈ SC and c ∈ C, then A |= ∃xϕ → ψ for all A ∈ SC . Suppose
A ∈ SC , a ∈ |A| and A |= ∃xϕ[a]. Hence A |= ϕ[b] for some b ∈ EA.
Since b ∈ EA and A ∈ SC , we obtain b = cAb for some cb ∈ C. Then
A |= ϕ(cb/x)[a]. Therefore A |= ψ[a]. So A |= (∃xϕ → ψ)[a]. Hence
A |= ∃xϕ→ ψ. Thus A |= ∃xϕ→ ψ for all A ∈ SC . So [∃xϕ] ≤ [ψ].

2.
∨

c∈C f(ϕ)(c) =
∨

c∈D(f(Ex)(c) ∧ f(ϕ)(c)) or, in other words,

[∃xϕ] =
∨

c∈D[Ec ∧ ϕ(c/x)].
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Proof. Firstly, to be proved that [Ec∧ϕ(c/x)] ≤ [∃xϕ] for every c ∈ D,
i.e. A |= Ec ∧ ϕ(c/x) → ∃xϕ for all A ∈ SC and c ∈ D. Suppose
c ∈ D is fixed. Let A ∈ S and A |= Ec ∧ ϕ(c/x). Then A |= Ec

and A |= ϕ(c/x). Hence cA ∈ EA and A |= ϕ[cA]. So A |= ∃xϕ.
Secondly, to be proved that if [Ec ∧ ϕ(c/x)] ≤ [ψ] for every c ∈ D,
then [∃xϕ] ≤ [ψ], i.e. if A |= Ec ∧ ϕ(c/x) → ψ for every A ∈ SC

and c ∈ D, then A |= ∃xϕ → ψ for every A ∈ SC . Let A ∈ SC and
A |= ∃xϕ. Hence A |= ϕ[a] for some a ∈ EA. Since A ∈ SC and
a ∈ EA, we obtain a = cAa for some ca ∈ C. Then A |= Eca ∧ ϕ(ca/x).
Therefore A |= ψ. Hence A |= ∃xϕ → ψ for every A ∈ SC . Thus
[∃xϕ] ≤ [ψ].

Put MC
1 = {f(ϕ) | ϕ is a formula}. So MC

1 is a set of functions from the
set of all constant symbols D of the language to the Boolean algebra BSC

with the designated function f(Ex) (which is not a characteristic function
in this case).

Thus free monadic logic naturally provides us with constructions MA
0

and MC
1 . Generalizing them we get the notion of functional monadic

bounded algebra (see Definition 2.1.1). Abstracting from all functional
monadic bounded algebras we obtain (abstract) monadic bounded alge-
bras (see Definition 2.2.1). Roughly speaking, a monadic bounded algebra
is a Boolean algebra with a designated element E and an unary operation
∃, which satisfies six axioms. If we assume that E is the unit element,
then we obtain a monadic algebra of P. Halmos. Hence monadic bounded
algebras may be considered as a generalization of monadic algebras.

As soon as axioms for monadic bounded algebras are formulated, the
question is whether those axioms are an adequate algebraic characteriza-
tion of functional monadic bounded algebras or not, i.e. whether the vari-
ety generated by all functional monadic bounded algebras and the variety
of all monadic bounded algebras are equal or not. It suffices to consider
the following two questions:
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• Is it true that every functional monadic bounded algebra is a monadic
bounded algebra? (i.e. do all functional monadic bounded algebras
satisfy the axioms?);

• Is it true that every monadic bounded algebra belongs to the variety
generated by all functional monadic bounded algebras?

The answer to the first question is given easily (Section 2.1), whereas the
second question requires the following result:

(∗) Every monadic bounded algebra is isomorphic to a subdi-
rect product of models,

where a model is by definition a 2-valued functional monadic bounded
algebra whose designated function E is the characteristic function (in par-
ticular, MA

0 is a model in this sense). This result is a combination of two
representation theorems:

Every basic monadic bounded algebra is isomorphic to a model
(and every model is basic) (Section 2.3)

and

Every monadic bounded algebra is isomorphic to a subdirect
product of basic monadic bounded algebras (Section 2.4).

Basic monadic bounded algebras are related to monadic bounded algebras
as P. Halmos’ simple monadic algebras to monadic algebras. A monadic
bounded algebra (A, E,∃) is basic iff the quantifier ∃ satisfies the condition

∃p =

1, if p ∧ E 6= 0

0, if p ∧ E = 0

whereas a monadic algebra (A,∃) is simple iff the quantifier ∃ satisfies the
condition

∃p =

1, if p 6= 0

0, if p = 0



CHAPTER 1. INTRODUCTION 7

The result (∗) may be thought of as an algebraic version of the semantical
completeness theorem for free monadic logic (see p. 34).

There is another way (different from functional) for obtaining monadic
bounded algebras. It is based on bounded graphs and it plays a crucial
role in the thesis. A triple F = (W,R,E), where W is a set, R ⊆ W ×W

and E ⊆ W (the marked vertices), is called a marked directed graph.
It is well-known that the set P(W ) of all subsets of W is a Boolean al-
gebra. Moreover, E ∈ P(W ) and it is possible to define an operator
〈R〉 : P(W ) → P(W ) (see Definition 2.2.8). So the algebra (P(W ), E, 〈R〉)
is called the complex algebra of F . On the other hand, if F satisfies certain
properties (see Definition 2.2.9), then it is called a bounded graph. The im-
portant thing is that the complex algebra of a bounded graph is a monadic
bounded algebra (Lemma 2.2.11) and vice versa (Lemma 2.2.12).

Adapting R. Goldblatt’s notion of frame morphisms [6] to bounded
graphs, we obtain the notion of bounded morphisms for bounded graphs.
These bounded morphisms give raise to homomorphisms of the complex
algebras of bounded graphs. The second representation theorem above
may be stated as follows:

Every monadic bounded algebra is isomorphic to a subdirect
product of subalgebras of complex algebras of some bounded
graphs.

From this using the method of filtration due to E.J. Lemmon [8], we can
get the next result:

Every variety of monadic bounded algebras is generated by its
finite special members (Section 3.2),

where special monadic bounded algebras are the complex algebras of a
vacuous bounded graph or of bounded graphs of Type I or II (see p. 44).
Also because of connections (in terms of isomorphisms and homomor-
phisms) among special monadic bounded algebras, every variety of mona-
dic bounded algebras is generated by at most three (not necessarily finite)
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special members (Section 3.3). Hence there are only countably many vari-
eties of monadic bounded algebras.

In [9] D. Monk gives explicit equational characterizations for each va-
riety of monadic algebras. There are analogous characterizations for va-
rieties of monadic bounded algebras in Section 3.4, but we get our alge-
braic expressions by modifying certain formulas from modal logic due to
K. Segerberg [10] instead of modifying D. Monk’s equations. As a conse-
quence, we obtain the fact that the equational theory of every MBA-variety
is finitely based.

Chapter 4 studies finitely generated monadic bounded algebras and it
is based on the paper by H. Bass [1]. Let us just state the essential results
of the chapter:

• Every monadic bounded algebra generated by r < ω many elements
has at most 23·2r·22r−1 many elements (Section 4.1);

• Every monadic bounded algebra freely generated by r < ω many
elements has exactly 23·2r·22r−1 many elements (Section 4.2);

• Explicit construction of the monadic bounded algebra freely gener-
ated by r < ω many elements is given (actually, this algebra is the
complex algebra of a well defined bounded graph) (Section 4.4).



Chapter 2

Monadic bounded algebras

In [7, p. 37] P. Halmos introduces and studies monadic algebras which are
an algebraic version of first-order monadic logic. This chapter essentially
follows his lines. Let us briefly state what each section of the chapter is
about. In Section 2.1, by generalising our motivating structures MA

0 and
MC

1 (see Chapter 1), we obtain the notion of functional monadic bounded
algebras. In Section 2.2, by abstracting from functional monadic bounded
algebras, we define (abstract) monadic bounded algebras. Moreover, some
elementary facts about monadic bounded algebras are provided as well as
an important connection between these algebras and bounded graphs. In
Section 2.3 we consider specific monadic bounded algebras (namely, basic
monadic bounded algebras) and a representation of them. In Section 2.4
we represent a monadic bounded algebra as a subdirect product of basic
monadic bounded algebras.

2.1 Functional monadic bounded algebras

In this section, by generalising the set of functions MA
0 and MC

1 from Chap-
ter 1, we introduce the notion of functional monadic bounded algebras.
Several algebraic properties of them are given (and these properties will
be the basis of our abstraction from functional monadic bounded algebras

9
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to monadic bounded algebras in the next section).
Let (B,∧,∨,′ ,0,1) be a Boolean algebra, X a set and XE ⊆ X .
The set BX of all functions from X to B is a Boolean algebra with re-

spect to the pointwise operations: for p, q ∈ BX , the infimum p ∧ q, the
supremum p ∨ q and the complement p′ are defined by

(p ∧ q)(x) = p(x) ∧ q(x), (p ∨ q)(x) = p(x) ∨ q(x) and p′(x) = (p(x))′

for each x ∈ X ; the zero and the unit of BX are the functions that are
constantly equal to 0 and to 1 , respectively (here 0 and 1 are in B).

Definition 2.1.1. A Boolean subalgebra A of BX with a designated functionE ∈
BX is called a functional monadic bounded algebra (or B-valued functional
monadic bounded algebra with domain (X,XE) and a designated function E) iff

1. for every x ∈ X , x ∈ XE implies E(x) = 1;

2. for every p ∈ A, both
∨
{p(x) | x ∈ XE} and

∨
{E(x) ∧ p(x) | x ∈ X}

exist in B and are equal; and

3. for every p ∈ A, the (constant) function ∃p, defined by

∃p(y) =
∨
{p(x) | x ∈ XE} (y ∈ X),

belongs to A.

Example 2.1.2. The sets MA
0 and MC

1 of functions in Chapter 1 are functional
monadic bounded algebras, where X = |A|, XE = EA,B = 2, E = Êx and
X = D,XE = C,B = BSC

, E = f(Ex), respectively.

Definition 2.1.3. The operator ∃ on a functional monadic bounded algebra is
called a functional existential quantifier.

Theorem 2.1.4. The functional existential quantifier ∃ of a functional monadic
bounded algebra A satisfies the following conditions

1. ∃0 = 0 (here 0 is the zero element of A),
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2. p ∧ E ≤ ∃p,

3. ∃ (p ∧ ∃q) = ∃p ∧ ∃q,

4. ∃∃p = ∃p,

5. ∃(p ∨ q) = ∃p ∨ ∃q,

6. ∃(p ∧ E) = ∃p,

for all p, q ∈ A.

Proof. The items (1) and (2) immediately follow from Definition 2.1.1.
3. This item is based on the following fact: if {pi} is a family of elements

of B such that
∨

i pi exists, then, for every q ∈ B,
∨

i(pi ∧ q) exists and is
equal to (

∨
i pi) ∧ q.

4. Let x0 ∈ X be fixed. Since ∃p is a constant function (i.e. ∃p(x) =

∃p(y) for all x, y ∈ X), the set {∃p(x) | x ∈ XE} is one-element. Then∨
{∃p(x) | x ∈ XE} = ∃p(x0). But ∃∃p(x0) =

∨
{∃p(x) | x ∈ XE}. Thus

∃∃p(x0) = ∃p(x0). So ∃∃p = ∃p.
5. Let x0 ∈ X . Since p, q, p ∨ q ∈ A and using the accociativity of

supremums, we obtain that each of the following supremums exists and

∃(p ∨ q)(x0) =
∨
{(p ∨ q)(x) | x ∈ XE}

=
∨
{p(x) ∨ q(x) | x ∈ XE}

=
∨
{p(x), q(x) | x ∈ XE}

=
(∨

{p(x) | x ∈ XE}
)
∨
(∨

{q(x) | x ∈ XE}
)

= ∃p(x0) ∨ ∃q(x0)

= (∃p ∨ ∃q)(x0).

So ∃(p ∨ q) = ∃p ∨ ∃q.
6. Let x0 ∈ X . Since E(x) = 1 for every x ∈ XE , we have ∃(p∧E)(x0) =∨
{(p ∧ E)(x) | x ∈ XE} =

∨
{p(x) ∧ E(x) | x ∈ XE} =

∨
{p(x) | x ∈ XE} =

∃p(x0). So ∃(p ∧ E) = ∃p.
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2.2 Abstract monadic bounded algebras (MBA’s)

In this section, by abstracting from functional monadic bounded algebras
via Theorem 2.1.4, we introduce the main notion of the present work, (ab-
stract) monadic bounded algebra. Some elementary facts about monadic
bounded algebras are proved. Moreover, there is an important connection
between monadic bounded algebras and bounded graphs in the section.

Definition 2.2.1. A monadic bounded algebra (shortly, MBA) is a triple (A, E,∃),
where A is a Boolean algebra, E ∈ A, and ∃ is a mapping from A to itself such
that

1. ∃0 = 0,

2. p ∧ E ≤ ∃p,

3. ∃(p ∧ ∃q) = ∃p ∧ ∃q,

4. ∃p = ∃∃p,

5. ∃(p ∨ q) = ∃p ∨ ∃q,

6. ∃p = ∃(p ∧ E),

for all p, q ∈ A.

Remark 2.2.2. Strictly speaking, we should write (A,∧,∨,′ ,0,1, E,∃) (and
sometimes we do) instead of (A, E,∃) (so, in terms of universal algebra, the type
of MBA’s is (∧,∨,′ ,0,1, E,∃)). To avoid ambiguity, we occasionally emphasize
0A, 1A, EA and ∃A. As usual, p− q = p ∧ q′ and p + q = (p− q) ∨ (q − p) =

(p ∧ q′) ∨ (q ∧ p′).

Definition 2.2.3. An MBA (A, E,∃) is trivial iff it has only one element.

Example 2.2.4. Every functional monadic bounded algebra is a (abstract) monadic
bounded algebra (by Theorem 2.1.4).
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Example 2.2.5. Let (M,∃) be a monadic algebra [7, p. 40], i.e. M is a Boolean
algebra and the quantifier ∃ : M → M satisfies the following conditions:

1. ∃0 = 0,

2. p ≤ ∃p,

3. ∃(p ∧ ∃q) = ∃p ∧ ∃q,

for every p, q ∈ M. Suppose E ∈ M is any fixed element. Define ∃E : M → M

by ∃Ep = ∃(E ∧ p). This represents the notion of bounded quantification on p. 2.
It is possible to see that (M, E,∃E) is an MBA.

Now suppose (A, E,∃) is an MBA such thatE = 1. Then (A,∃) is a monadic
algebra. Hence MBA’s may be considered as a generalization of monadic algebras.

In the next lemma we sum up some elementary properties of MBA’s
(cf. [7, p. 41-43]).

Lemma 2.2.6. Suppose (A, E,∃) is an MBA and p, q ∈ A.

1. p ∈ ∃(A) iff ∃p = p.

2. If p ≤ ∃q, then ∃p ≤ ∃q.

3. If p ≤ q, then ∃p ≤ ∃q (i.e. ∃ is monotone).

4. ∃(p ∧ E ′) = 0.

5. ∃(E ′) = 0.

6. ∃E = ∃1.

7. E ≤ ∃E.

8. ∃p ≤ ∃E.

9. ∃(∃E)′ = 0.

10. ∃(∃p)′ ≤ (∃p)′.
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11. ∃p− ∃q ≤ ∃(p− q).

12. ∃p+ ∃q ≤ ∃(p+ q).

13. ∃(p ∧ (∃q)′) = ∃p ∧ (∃q)′.

14. ∃((∃p)′) = ∃E ∧ (∃p)′.

Proof. 1. If p ∈ ∃(A), then p = ∃p0 for some p0 ∈ A; and so ∃p = ∃∃p0 =

∃p0 = p. If p = ∃p, then p ∈ ∃(A).
2. Since ∃p = ∃(p ∧ ∃q) = ∃p ∧ ∃q, we get ∃p ≤ ∃q.
3. Since p ≤ q, we get p ∧ E ≤ q ∧ E ≤ ∃q. Then, by previous item,

∃(p ∧ E) ≤ ∃q. So ∃p ≤ ∃q (by Definition 2.2.1(6)).
4. ∃(p ∧ E ′) = ∃(p ∧ E ′ ∧ E) [by Definition 2.2.1(6)] = ∃(p ∧ 0) = 0 [by

Definition 2.2.1(1)]].
5. Put p = 1 in the previous item.
6. ∃E = ∃(1 ∧ E) = ∃1 [by Definition 2.2.1(6)]].
7. E = E ∧ E ≤ ∃E [by Definition 2.2.1(2)]].
8. Since p ≤ 1, we have ∃p ≤ ∃1 (by item (3)). Hence ∃p ≤ ∃E by

item (6).
9. 0 = ∃0 = ∃((∃E)′ ∧ ∃E) = ∃(∃E)′ ∧ ∃E [by Definition 2.2.1(3)]

= ∃(∃E)′ [by item (8)].
10. Since (∃p)′ ∧ ∃p = 0, we have that 0 = ∃((∃p)′ ∧ ∃p) [by Defini-

tion 2.2.1(1)] = ∃(∃p)′∧∃p [by Definition 2.2.1(3)]. Therefore ∃(∃p)′ ≤ (∃p)′.
11. Since p∨q = (p−q)∨q, it follows by Definition 2.2.1(5) that ∃p∨∃q =

∃(p−q)∨∃q. Forming the infimum of both sides of this equation with (∃q)′,
we obtain ∃p− ∃q = ∃(p− q)− ∃q ≤ ∃(p− q). So ∃p− ∃q ≤ ∃(p− q).

12. ∃p + ∃q = (∃p − ∃q) ∨ (∃q − ∃p) ≤ ∃(p − q) ∨ ∃(q − p) [by previous
item]= ∃((p− q) ∨ (q − p)) [by Definition 2.2.1(5)] = ∃(p+ q).

13. Part ≤. Since p ∧ (∃q)′ ≤ p and p ∧ (∃q)′ ≤ (∃q)′, we obtain by item
(3) that ∃(p ∧ (∃q)′) ≤ ∃p and ∃(p ∧ (∃q)′) ≤ ∃(∃q)′. Hence ∃(p ∧ (∃q)′) ≤
∃p ∧ ∃(∃q)′ ≤ ∃p ∧ (∃q)′ [by item (10)]. Part ≥ is proved by ∃p ∧ (∃q)′ =

∃p− ∃q = ∃p− ∃∃q ≤ ∃(p− ∃q) [by item (11)] = ∃(p ∧ (∃q)′).
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14. ∃((∃p)′) = ∃(E ∧ (∃p)′) [by Definition 2.2.1(6)] = ∃E ∧ (∃p)′ [by item
(13)].

Bounded graphs and their complex algebras play a crucial role in the
whole work.

Definition 2.2.7. A triple F = (W,R,E), where W is a set, R ⊆ W ×W and
E ⊆ W (the marked vertices), is called a marked directed graph.

Definition 2.2.8 (cf. [8, p. 192], [6, p. 16]). For a marked directed graph F =

(W,R,E), the complex algebra PF is (P(W ),∩,∪,−,0,1, E, 〈R〉), where∩,∪,
and − are set-theoretical intersection, union, and complement, respectively, and
0 is ∅ and 1 is W and an operator 〈R〉 : P(W ) → P(W ) is defined by

〈R〉X = {x ∈ W | there is y ∈ W such that y ∈ X and xRy}, (2.2.1)

for every X ∈ P(W ). Note that E ∈ P(W ).

Definition 2.2.9. A marked directed graph F = (W,R,E) is a bounded graph
iff F satisfies the following four properties:

1. R is transitive, i.e. ∀x, y, z ∈ W (xRy&yRz → xRz),

2. R is Euclidean, i.e. ∀x, y, z ∈ W (xRy&xRz → yRz),

3. ∀x, y ∈ W (xRy → y ∈ E),

4. ∀x ∈ W (x ∈ E → xRx).

Example 2.2.10. 1. The marked directed graph F = (W,R,E) is a bounded
graph, where W = {0}, R = ∅, and E = ∅. More specifically, F is a
vacuous bounded graph (see Definition 3.1.18).

2. The marked directed graph F = (W,R,E) is a bounded graph, where
W = {0}, R = W ×W and E = W . In a picture:

099

More specifically, F is a bounded graph of Type I (see Definition 3.1.14).
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3. The marked directed graph F = (W,R,E) is a bounded graph, where
W = {0, 1}, R = W ×W and E = W . In a picture:

0 //99 1 eeoo

More specifically, F is a bounded graph of Type I (see Definition 3.1.14).

4. The marked directed graph F = (W,R,E) is a bounded graph, where W =

{2, 3, 4}, R = {〈2, 2〉, 〈3, 3〉, 〈2, 3〉, 〈3, 2〉, 〈4, 2〉, 〈4, 3〉} and E = {2, 3}.
In a picture:

4

����
��

��
�

��=
==

==
==

299 // 3 eeoo

More specifically, F is a bounded graph of Type II (see Definition 3.1.16).

5. The marked directed graph F = (W,R,E) is a bounded graph, where W =

{0, 1, 2, 3, 4, 5},R = {〈0, 0〉, 〈1, 1〉, 〈0, 1〉, 〈1, 0〉, 〈2, 2〉, 〈3, 3〉, 〈2, 3〉, 〈3, 2〉,
〈4, 2〉, 〈4, 3〉, 〈5, 2〉, 〈5, 3〉} and E = {0, 1, 2, 3}. In a picture:

4

�� ��=
==

==
==

5

������
��

��
�

099 // 1oo ee 299 // 3 eeoo

Lemma 2.2.11. Suppose F = (W,R,E) is a bounded graph. Then the complex
algebra PF is an MBA.

Proof. As usual, (P(W ),∩,∪,−,0,1) is a Boolean algebra. By definition,
E ∈ P(W ). It remains to check the six axioms in Definition 2.2.1.

1. From the definition of 〈R〉, it follows that 〈R〉∅ = ∅.
2. To be proved thatX∩E ⊆ 〈R〉X (forX ∈ P(W )). Suppose x ∈ X∩E.

Hence x ∈ X and x ∈ E. From x ∈ E follows that xRx. So x ∈ 〈R〉X (since
xRx and x ∈ X).
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3. To be proved that 〈R〉(X ∩ 〈R〉Y ) = (〈R〉X) ∩ (〈R〉Y ) (for X, Y ∈
P(W )). For ⊆, suppose x ∈ 〈R〉(X ∩ 〈R〉Y ). Hence there is y ∈ (X ∩ 〈R〉Y )

such that xRy. Since y ∈ (X ∩ 〈R〉Y ), we get that y ∈ X and there is z ∈ Y
with yRz. It follows from xRy and yRz that xRz. Since xRy and y ∈ X ,
we obtain x ∈ 〈R〉X . Since xRz and z ∈ Y , we obtain x ∈ 〈R〉Y . Thus
x ∈ (〈R〉X ∩ 〈R〉Y ). For ⊇, suppose x ∈ (〈R〉X ∩ 〈R〉Y ). Hence xRy,
for some y ∈ X , and xRz, for some z ∈ Y . It follows from xRy and xRz

that yRz. Since yRz and z ∈ Y , we have y ∈ 〈R〉Y . Since y ∈ X and
y ∈ 〈R〉Y , we get y ∈ X ∩ 〈R〉Y . From xRy and y ∈ X ∩ 〈R〉Y follows that
x ∈ 〈R〉(X ∩ 〈R〉Y ).

4. To be proved that 〈R〉(〈R〉X) = 〈R〉X (for X ∈ P(W )). For ⊆,
suppose x ∈ 〈R〉(〈R〉X). Hence xRy for some y ∈ 〈R〉X . Since y ∈ 〈R〉X ,
we have yRz for some z ∈ X . It follows from xRy and yRz that xRz. Since
xRz and z ∈ X , we get x ∈ 〈R〉X . For ⊇, suppose x ∈ 〈R〉X . Hence xRy
for some y ∈ X . Since xRy, we have y ∈ E. Therefore yRy. Since yRy and
y ∈ X , we obtain y ∈ 〈R〉X . So x ∈ 〈R〉(〈R〉X).

5. To be proved 〈R〉(X ∪ Y ) = (〈R〉X) ∪ (〈R〉Y ) (for X, Y ∈ P(W )).
For ⊆, suppose x ∈ 〈R〉(X ∪ Y ). Hence xRy for some y ∈ X ∪ Y . Then
either xRy, for some y ∈ X , or xRy, for some y ∈ Y . If xRy for y ∈ X ,
then x ∈ 〈R〉X . If xRy for y ∈ Y , then x ∈ 〈R〉Y . So either x ∈ 〈R〉X or
x ∈ 〈R〉Y . Thus x ∈ (〈R〉X ∪ 〈R〉Y ). For ⊇, suppose x ∈ (〈R〉X ∪ 〈R〉Y ).
Hence either x ∈ 〈R〉X or x ∈ 〈R〉Y . Firstly, consider the case x ∈ 〈R〉X .
Then xRy for some y ∈ X . Therefore xRy for some y ∈ X ∪ Y (since
X ⊆ X ∪ Y ). So x ∈ 〈R〉(X ∪ Y ). Secondly, consider the case x ∈ 〈R〉Y .
Then xRz for some z ∈ Y . Therefore xRz for some z ∈ X ∪ Y (since
Y ⊆ X ∪Y ). So x ∈ 〈R〉(X ∪Y ). Thus in both cases we get x ∈ 〈R〉(X ∪Y ).

6. Finally, to be proved that 〈R〉(X∩E) = 〈R〉X (forX ∈ P(W )). For⊆,
suppose x ∈ 〈R〉(X ∩E). Hence xRy for some y ∈ X ∩E. Since y ∈ X ∩E,
both y ∈ X and y ∈ E. So x ∈ 〈R〉X (since xRy and y ∈ X). For⊇, suppose
x ∈ 〈R〉X . Hence xRy for some y ∈ X . From xRy follows y ∈ E. Then
y ∈ X ∩ E. So x ∈ 〈R〉(X ∩ E) (since xRy and y ∈ X ∩ E).
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Thus PF is an MBA.

The converse of the lemma holds as well.

Lemma 2.2.12. Suppose F = (W,R,E) is a marked directed graph whose com-
plex algebra PF is an MBA. Then F is a bounded graph.

Proof. 1. To be proved that R is transitive. Let x, y, z ∈ W , xRy and yRz.
Then x ∈ 〈R〉{y} and y ∈ 〈R〉{z}. From y ∈ 〈R〉{z} follows that {y} ⊆
〈R〉{z}, and so we have 〈R〉{y} ⊆ 〈R〉〈R〉{z} (since 〈R〉 is monotone). Thus
x ∈ 〈R〉{y} ⊆ 〈R〉〈R〉{z} = 〈R〉{z}. Hence xRz.

2. To be proved that R is Euclidean. Let x, y, z ∈ W , xRy and xRz.
Then x ∈ 〈R〉{y} and x ∈ 〈R〉{z}, and so x ∈ 〈R〉{y} ∩ 〈R〉{z} = 〈R〉({y} ∩
〈R〉{z}). Hence xRy′ for some y′ ∈ {y} ∩ 〈R〉{z}. Therefore y′ = y and
y′ ∈ 〈R〉{z}. So y ∈ 〈R〉{z}. Thus yRz.

3. To be proved that ∀x, y ∈ W (xRy → y ∈ E). Let x, y ∈ W and xRy.
Then x ∈ 〈R〉{y} = 〈R〉({y} ∩ E). Hence xRy′ for some y′ ∈ {y} ∩ E. So
y′ = y and y′ ∈ E. Thus y ∈ E.

4. To be proved that ∀x ∈ W (x ∈ E → xRx). Let x ∈ E. Then
{x} ∩ E = {x}. Since {x} ∩ E ⊆ 〈R〉{x}, we have {x} ⊆ 〈R〉{x}. Thus
xRx.

2.3 Basic MBA’s and their representations as mod-

els

This section considers basic MBA’s and their representations as models.
Firstly, we develop a standard algebraic theory of MBA’s (MBA-subal-
gebras, MBA-ideals, congruences, MBA-homomorphisms, etc.). Secondly,
essentially using Stone’s representation theorem, we prove our representa-
tion theorem. This theorem may be called the first representation theorem
because there will be another representation theorem in the next section.
Basic MBA’s are related to MBA’s as P. Halmos’ simple monadic algebras
to monadic algebras.
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Definition 2.3.1. Let (A,∧,∨,′ ,0,1, E,∃) be an MBA. A nonempty subset
A0 ⊆ A is an MBA-subalgebra iff

• 0,1, E ∈ A0,

• A0 is closed under operations ∧,∨,′ and ∃.

Definition 2.3.2. Suppose B is a Boolean algebra. A subset ∆ ⊆ B is a Boolean
ideal iff

1. if p, q ∈ ∆, then p ∨ q ∈ ∆,

2. if p ∈ ∆, then p ∧ q ∈ ∆ (for every q ∈ B).

Note this definition of Boolean ideal is equivalent to the usual one in
which the second condition is written as follows: if p ∈ ∆ and q ≤ p, then
q ∈ ∆.

Now suppose (A, E,∃) is an MBA.

Definition 2.3.3. A subset ∆ ⊆ A is called an MBA-ideal iff both

1. ∆ is a Boolean ideal in the Boolean algebra A,

2. ∃p ∈ ∆ whenever p ∈ ∆.

Definition 2.3.4. The quantifier ∃ of (A, E,∃) is basic iff ∃p = 1 whenever
p ∧ E 6= 0.

In other words, the quantifier ∃ is basic iff

∃p =

1, if p ∧ E 6= 0

0, if p ∧ E = 0

or, equivalently,

∃p =

1, if p � E ′

0, if p ≤ E ′
.
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Basicness of MBA’s is analogous to simplicity of monadic algebras. To
compare them, it suffices just to look at the definitions.

Definition 2.3.5 ([7, p. 41]). The quantifier ∃ of a monadic algebra (A,∃) is
simple iff

∃p =

1, if p 6= 0

0, if p = 0.

Example 2.3.6. The quantifier of a trivial MBA is basic.

Example 2.3.7. The quantifiers of the complex algebras of the bounded graphs in
Example 2.2.10(1-4) are basic, whereas the quantifier of the complex algebra of the
bounded graph in Example 2.2.10(5) is not.

Lemma 2.3.8. If ∆ is an MBA-ideal in (A, E,∃), then the relation ∼ on A,
defined by

p ∼ q iff p+ q ∈ ∆,

is a congruence relation on (A, E,∃).

Proof. Let p0 ∼ p1 and q0 ∼ q1. Hence p0+p1 ∈ ∆ and q0+q1 ∈ ∆. Therefore
p0 ∧ p′1 ∈ ∆, p1 ∧ p′0 ∈ ∆, q0 ∧ q′1 ∈ ∆ and q1 ∧ q′0 ∈ ∆ (since ∆ is an MBA-
ideal). So (p0∧q0)+(p1∧q1) = ((p0∧q0)∧(p1∧q1)′)∨((p1∧q1)∧(p0∧q0)′) =

((p0 ∧ q0) ∧ (p′1 ∨ q′1)) ∨ ((p1 ∧ q1) ∧ (p′0 ∨ q′0)) = ((p0 ∧ q0 ∧ p′1) ∨ (p0 ∧ q0 ∧
q′1)) ∨ ((p1 ∧ q1 ∧ p′0) ∨ (p1 ∧ q1 ∧ q′0)) ∈ ∆. Thus (p0 ∧ q0) ∼ (p1 ∧ q1).

Similarly with ∨ and ′.
Now let p ∼ q. Then p + q ∈ ∆. Hence ∃(p + q) ∈ ∆ (since ∆ is an

MBA-ideal), and so ∃p+ ∃q ∈ ∆ (by Lemma 2.2.6 (12)). Thus ∃p ∼ ∃q.

Lemma 2.3.9. If ∼ is a congruence relation on (A, E,∃), then the set ∆ = {p ∈
A | 0 ∼ p} is an MBA-ideal.

Proof. Let p, q ∈ ∆. Then 0 ∼ p and 0 ∼ q. Hence 0 ∨ 0 ∼ p ∨ q (since ∼ is
a congruence relation). Thus p ∨ q ∈ ∆.
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Let p ∈ ∆ and q ∈ A. Then 0 ∼ p and q ∼ q. Hence 0 ∧ q ∼ p ∧ q (since
∼ is a congruence relation). Therefore 0 ∼ p ∧ q. Thus p ∧ q ∈ ∆.

Let p ∈ ∆. Then 0 ∼ p, and so ∃0 ∼ ∃p (since ∼ is a congruence
relation). Hence 0 ∼ ∃p. Thus ∃p ∈ ∆.

We are going to show that the two constructions in Lemma 2.3.8, 2.3.9
are inverse. Firstly, suppose that ∆ is an MBA-ideal in (A, E,∃). Let ∼
be the congruence relation as defined in Lemma 2.3.8. Then define ∆′ =

{p ∈ A | 0 ∼ p}. So ∆′ = ∆, because, for every p ∈ A, p ∈ ∆′ iff 0 ∼ p

iff 0 + p ∈ ∆ iff p ∈ ∆. Secondly, suppose ∼ is a congruence relation on
(A, E,∃). Let ∆ be the MBA-ideal as defined in Lemma 2.3.9. Then define
v by p v q iff p+ q ∈ ∆. So v and ∼ are equal, because, for every p, q ∈ A,
p v q iff p+ q ∈ ∆ iff 0 ∼ p+ q iff p ∼ q.

Definition 2.3.10. Suppose (A1, E
A1 ,∃A1) and (A2, E

A2 ,∃A2) are MBA’s. A
function f : A1 → A2 is an MBA-homomorphism iff the following conditions
hold:

• f(p ∧ q) = f(p) ∧ f(q),

• f(p ∨ q) = f(p) ∨ f(q),

• f(p′) = (f(p))′,

• f(0A1) = 0A2 ,

• f(1A1) = 1A2 ,

• f(EA1) = EA2 ,

• f(∃A1p) = ∃A2f(p),

for all p, q ∈ A1.
If f is one-to-one, then it is called an MBA-embedding. If f is bijective, then

it is called an MBA-isomorphism.
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Definition 2.3.11. For an MBA-homomorphism

f : (A1, E
A1 ,∃A1) → (A2, E

A2 ,∃A2),

define ker(f) ⊆ A1 by

ker(f) = {p ∈ A1 | f(p) = 0A2}. (2.3.1)

Lemma 2.3.12. Let f : (A1, E
A1 ,∃A1) → (A2, E

A2 ,∃A2) be an MBA-homo-
morphism. Then ker(f) is an MBA-ideal in (A1, E

A1 ,∃A1).

Proof. Let p, q ∈ ker(f). Then f(p) = f(q) = 0A2 . So f(p∨q) = f(p)∨f(q) =

0A2 ∨ 0A2 = 0A2 . Thus p ∨ q ∈ ker(f).
Let p ∈ ker(f) and q ∈ A1. Then f(p) = 0A2 . So f(p∧q) = f(p)∧f(q) =

0A2 ∧ f(q) = 0A2 . Thus p ∧ q ∈ ker(f).
Let p ∈ ker(f). Then f(p) = 0A2 . Hence f(∃A1p) = ∃A2f(p) = ∃A20A2 =

0A2 . Thus ∃A1p ∈ ker(f).

Suppose (A, E,∃) is an MBA.

Definition 2.3.13. For p ∈ A, define a subset ∆(p) ⊆ A by

∆(p) = {q ∈ A | q ≤ ∃p}.

Lemma 2.3.14. ∆(p) is an MBA-ideal.

Proof. Let q0, q1 ∈ ∆(p). Then q0 ≤ ∃p and q1 ≤ ∃p. So q0∨q1 ≤ ∃p∨∃p = ∃p.
Thus q0 ∨ q1 ∈ ∆(p).

Let q0 ∈ ∆(p) and q1 ∈ A. Then q0 ≤ ∃p. So q0 ∧ q1 ≤ q0 ≤ ∃p. Thus
q0 ∧ q1 ∈ ∆(p).

Let q ∈ ∆(p). Then q ≤ ∃p. Hence ∃q ≤ ∃p (by Lemma 2.2.6 (2)). So
∃q ∈ ∆(p).

Definition 2.3.15. An MBA-ideal ∆ is virtual iff p ∧ E = 0 for all p ∈ ∆.

Example 2.3.16. Let p ∈ A and p ∧ E = 0. Then ∆ = {q ∈ A | q ≤ p} is a
virtual MBA-ideal. In particular, {q ∈ A | q ≤ E ′} is a virtual MBA-ideal and
it is the biggest virtual MBA-ideal in (A, E,∃).
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Definition 2.3.17. An MBA (A, E,∃) is basic iff every proper MBA-ideal in
(A, E,∃) is virtual.

Lemma 2.3.18. An MBA (A, E,∃) is basic iff the quantifier ∃ is basic.

Proof. Suppose (A, E,∃) is basic. To be proved that ∃ is basic. Suppose
p ∈ A and p ∧ E 6= 0. We will prove that ∃p = 1. Since p ∧ E ≤ ∃p, we
have p ∧ E ∈ ∆(p) (= {q ∈ A | q ≤ ∃p}). Let p̄ = p ∧ E. So p̄ ∈ ∆(p) and
p̄∧E 6= 0 (since p̄∧E = (p∧E)∧E = p∧E 6= 0). Thus ∆(p) is not virtual.
Hence ∆(p) = A (since A is basic). Then 1 ∈ ∆(p). Therefore 1 ≤ ∃p (by
definition of ∆(p)). So ∃p = 1.

Suppose the quantifier ∃ is basic. To be proved that every non-virtual
MBA-ideal in (A, E,∃) is improper. Let ∆ be an MBA-ideal which is not
virtual. Then there exists p ∈ ∆ such that p∧E 6= 0. Hence ∃p = 1 (since ∃
is basic). Then ∃p ∈ ∆ (since ∆ is an MBA-ideal and p ∈ ∆) and 1 ∈ ∆. So
∆ = A. Thus ∆ is an improper MBA-ideal in A.

Definition 2.3.19. Let X be a set, XE ⊆ X and E be the characteristic function
of XE . A model is a 2-valued functional monadic bounded algebra with domain
(X,XE) and designated function E.

Theorem 2.3.20 (cf. [7, Theorem 6]). An MBA is basic if and only if it is (iso-
morphic to) a model (i.e. every basic MBA is isomorphic to a model and every
model is basic).

Proof. Let M be a model and p ∈ M. Suppose p ∧ E 6= 0 (as functions
from X to 2). Hence p(x0) 6= 0 and E(x0) 6= 0 for some x0 ∈ X . Therefore
p(x0) = 1 and E(x0) = 1. Hence

∨
{E(y) ∧ p(y) | y ∈ X} = 1. Thus ∃p = 1

(as functions from X to 2). Suppose p ∧ E = 0 (as functions from X to 2).
Hence

∨
{E(y) ∧ p(y) | y ∈ X} = 0. Thus ∃p = 0 (as functions from X to

2). So we have proved that the functional quantifier ∃ of M is basic. Hence
M is basic (by Lemma 2.3.18).

Now suppose (A, E,∃) is a basic MBA. Note that A may be considered
as a Boolean algebra. As in [7, p. 48], define:
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• WA = {x | x is a (proper) Boolean ultrafilter of the Boolean algebra A};

• a function ϕ : A → P(WA) by ϕ(p) = {x ∈ WA | p ∈ x} (for every
p ∈ A).

We are going to define desired sets X,XE and a model in 2X . Let

• X = WA and

• XE = {x ∈ X | E ∈ x}.

Define a mapping H : A → 2X by

H(p)(x) =

1, if x ∈ ϕ(p)

0, if x /∈ ϕ(p)

for every x ∈ X and p ∈ A; and define Ef ∈ 2X by Ef = H(E) (where the
superscript f stands for the adjective “functional“).

Then:

• H is one-to-one. Suppose p0, p1 ∈ A and p0 6= p1. Hence there is
u ∈ WA such that p0 ∈ u and p1 /∈ u (or, p0 /∈ u and p1 ∈ u). Then
u ∈ ϕ(p0) and u /∈ ϕ(p1) (or, u /∈ ϕ(p0) and u ∈ ϕ(p1)). So H(p0)(u) =

1 and H(p1)(u) = 0 (or, H(p0)(u) = 0 and H(p1)(u) = 1). Thus
H(p0) 6= H(p1).

• H preserves ∧,∨,′. It is proved by the properties of ultrafilters. We
consider only ∧ (∨ and ′ are proved similarly):

H(p ∧ q)(x) =

1, if x ∈ ϕ(p ∧ q)

0, if x /∈ ϕ(p ∧ q)
=

1, if p ∧ q ∈ x

0, if p ∧ q /∈ x

=

1, if p ∈ x and q ∈ x

0, if p /∈ x or q /∈ x
=



1, if p ∈ x and q ∈ x

0, if p /∈ x and q ∈ x

0, if p ∈ x and q /∈ x

0, if p /∈ x and q /∈ x

= H(p)(x) ∧H(q)(x) = (H(p) ∧H(q))(x).
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So H(p ∧ q) = H(p) ∧H(q).

Now consider

Ef (x) = H(E)(x) =

1, if x ∈ ϕ(E)

0, if x /∈ ϕ(E)
=

1, if x ∈ XE

0, if x /∈ XE

.

So Ef is the characteristic function of the subset XE ⊆ X .
It remains to prove that

H(∃p) = ∃H(p) (2.3.2)

for every p ∈ A. Note that the quantifier on the right side is functional, i.e.
∃H(p)(x0) =

∨
{H(p)(x) | x ∈ XE} for x0 ∈ X .

Since (A, E,∃) is basic, the quantifier of (A, E,∃) is basic. Hence, for
every p ∈ A,

∃p =

1, if p ∧ E 6= 0 ( or p 
 E ′)

0, if p ∧ E = 0 ( or p 6 E ′).
(2.3.3)

To prove (2.3.2) we will consider two cases.

Case 1 p ∧ E 6= 0. Then ∃p = 1. Therefore, for every x ∈ X , H(∃p)(x) =

H(1)(x) =

1, if x ∈ ϕ(1)

0, if x /∈ ϕ(1)
=

1, if 1 ∈ x

0, if 1 /∈ x
[by definition of ϕ] =

1 [ since the unit element belongs to every filter]. Now consider the
right side of (2.3.2). Since H(p)(x) = 1 iff x ∈ ϕ(p), we can write

∃H(p)(x) =

1, if there is y ∈ XE such that y ∈ ϕ(p)

0, otherwise.
(2.3.4)

Since p∧E 6= 0, the (principal Boolean) filter ∆ = {q ∈ A | q > p∧E}
is proper. Then there is an (proper) ultrafilter ∆0 (in the Boolean
algebra A) with ∆ ⊆ ∆0 (so ∆0 ∈ X). Hence p ∧ E ∈ ∆0. Then both
p ∈ ∆0 and E ∈ ∆0 (since ∆0 is an ultrafilter). Therefore ∆0 ∈ XE (by
definition ofXE) and ∆0 ∈ ϕ(p) (by definition of ϕ). So ∃H(p)(x) = 1
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for every x ∈ X (by (2.3.4)). (There is a shorter proof. From p ∧ E 6=
0 follows H(p) ∧ Ef 6= 0 (since H is one-to-one and preserves ∧);
hence ∃H(p) = 1 (as functions from X to 2) by the first part of this
proof). Thus (in this case) we have proved that H(∃p)(x) = 1 and
∃H(p)(x) = 1 for every x ∈ X . Hence H(∃p) = ∃H(p).

Case 2 p ∧ E = 0. Then ∃p = 0. Therefore, for every x ∈ X , H(∃p)(x) =

H(0)(x) =

1, if x ∈ ϕ(0)

0, if x /∈ ϕ(0)
=

1, if 0 ∈ x

0, if 0 /∈ x
[by definition of ϕ] =

0 (since there is no (proper Boolean) ultrafilter containing the zero
element). Now consider the right side of (2.3.2). We claim that there
is no y ∈ XE such that y ∈ ϕ(p) (cf. (2.3.4)). Assume there is y0 ∈ XE

with y0 ∈ ϕ(p). Hence p ∈ y0 (by definition of ϕ) and E ∈ y0 (by
definition of XE). Then p ∧ E ∈ y0 (since y0 is an ultrafilter). Since
p ∧ E = 0 (in this case), we obtain 0 ∈ y0. Thus y0 is not proper.
So ∃H(p)(x) = 0 for every x ∈ X (by (2.3.4)). (As in Case 1, there
is a shorter proof. From p ∧ E = 0 follows H(p) ∧ Ef = 0 (since H
is one-to-one and preserves ∧); hence ∃H(p) = 0 (as functions from
X to 2)). Thus (in this case) we have proved that H(∃p)(x) = 0 and
∃H(p)(x) = 0 for every x ∈ X . Hence H(∃p) = ∃H(p).

It follows from Case 1 and Case 2 that H(∃p) = ∃H(p).
So H : A → 2X is an one-to-one mapping which preserves ∧,∨,′ , E,

and ∃. Thus H(A) ⊆ 2X is our desired model.

2.4 Representation of an MBA as a subdirect prod-

uct of basic MBA’s

In this section we prove the second representation theorem. The theorem
is based, among other things, on E.J. Lemmon‘s representation theorem of
modal algebras [8, p. 206] and on the notion of the reflexive-transitive clo-
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sure of a relation from modal logic [5, p. 9-10]. The theorem will help us to
analyze MBA-varieties in Chapter 3. In the end of this section we discuss
an algebraic version of the completeness theorem for free monadic logic
as well as the representation theorem from the point of view of subdirect
irreducibility.

Definition 2.4.1. Let ((Ai, Ei,∃i))i∈I be an indexed family of MBA’s. The direct
product (A, E,∃) of the family is an MBA with the universe

∏
i∈I Ai whose op-

erations are defined coordinate-wise. The empty product
∏
∅ is the trivial MBA,

i.e. one element MBA, with the universe {∅}. For every j ∈ I , define the projec-
tion map

πj :
∏

i∈I Ai → Aj

by

πj(a) = a(j)(
for every a ∈

∏
i∈I Ai

)
.

Definition 2.4.2. An MBA (A, E,∃) is a subdirect product of an indexed fam-
ily ((Ai, Ei,∃i))i∈I of MBA’s iff

• A is an MBA-subalgebra of the direct product
∏

i∈I Ai,

• πi(A) = Ai for each i ∈ I .

An embedding f : A →
∏

i∈I Ai is subdirect if f(A) is a subdirect product of
the (Ai)i∈I .

Definition 2.4.3. An MBA A is subdirectly irreducible if for every subdirect
embedding

f : A →
∏

i∈I Ai

there is an i ∈ I such that

πi ◦ f : A → Ai
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is an MBA-isomorphism.

Let us reformulate Theorem 8.4 from [3]:

Theorem 2.4.4. An MBA A is subdirectly irreducible iff A is trivial or there is
a smallest non-identity congruence on A.

Definition 2.4.5. If we are given maps fi : X → Xi, i ∈ I , then the natural
map

f : X →
∏

i∈I Xi

is defined by

(f(x))(i) = fi(x),

for every x ∈ X and i ∈ I .

The next lemma is known from universal algebra ([3, Theorem 7.12(a)]).

Lemma 2.4.6. If fi : (A, E,∃) → (Ai, Ei,∃i), i ∈ I , is an indexed family of
MBA-homomorphisms, then the natural map f is an MBA-homomorphism from
A to A∗ =

∏
i∈I Ai.

Proof. For all p, q ∈ A and i ∈ I ,f(p ∧ q)(i) = fi(p ∧ q) = fi(p) ∧ fi(q) =

(f(p))(i) ∧ (f(q)(i)) = (f(p) ∧ f(q))(i). Hence f(p ∧ q) = f(p) ∧ f(q).
For all p ∈ A and i ∈ I , f(p′)(i) = fi(p

′) = (fi(p))
′ = (f(p)(i))′ =

(f(p))′(i). Hence f(p′) = (f(p))′.
Since f(E)(i) = fi(E) = Ei for every i ∈ I , we have f(E) = EA∗ .
For all p ∈ A and i ∈ I , f(∃p)(i) = fi(∃p) = ∃i(fi(p)) = ∃i(f(p)(i)) =

(∃A∗
f(p))(i). Hence f(∃p) = ∃A∗

f(p).
Thus f is an MBA-homomorphism.

The notion of reflexive-transitive closure from modal logic (see [5, p. 9-
10]) will be useful in the second representation theorem.

Definition 2.4.7. Let (W,R,E) be a marked directed graph. Define on W the
relations Rn ⊆ W ×W , for n ≥ 0, and R∗, as follows:
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• uR0v iff u = v,

• uRn+1v iff there exists w such that both uRnw and wRv,

• R∗ =
⋃

n≥0R
n.

It is easy to see that R∗ is the smallest reflexive-transitive relation including R,
and therefore R∗ is called the reflexive-transitive closure of R.

Lemma 2.4.8. Let (W,R,E) be a marked directed graph such thatR is transitive
and x ∈ W . Put W x = {u ∈ W | xR∗u}. Then W x = {x} ∪ {u ∈ W | xRu}.

Proof. For ⊆, suppose v ∈ W x. Then xR∗v. If xR0v, then x = v. Hence
v ∈ {x}∪ {u ∈ W | xRu}. If xRnv for some 1 ≤ n < ω, then xRv (since R is
transitive). Hence v ∈ {x}∪{u ∈ W | xRu}. For⊇, suppose v ∈ {x}∪{u ∈
W | xRu}. If v = x, then xR0v. Hence xR∗v. Therefore v ∈ W x. If xRv,
then xR∗v. Hence v ∈ W x.

We are now ready to prove the main result of the section.

Theorem 2.4.9. Every MBA is isomorphic to a subdirect product of basic MBA’s.

Proof. Suppose (A, E,∃) is an MBA. As in [8, p. 206], define:

1. WA = {x | x is an (proper Boolean) ultrafilter of the Boolean algebra A};

2. A relation RA on WA by

xRAy iff {∃p | p ∈ y} ⊆ x,

for every x, y ∈ WA;

3. A function ϕ : A → P(WA) by

ϕ(p) = {x ∈ WA | p ∈ x},

for every p ∈ A;
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4. PA = {ϕ(p) | p ∈ A} (so PA ⊆ P(WA));

5. An operator 〈RA〉 : P(WA) → P(WA) by

〈RA〉C = {x ∈ WA | there is y ∈ WA such that y ∈ C and xRAy},

for every C ∈ P(WA);

6. EA ∈ PA by EA = ϕ(E).

It follows from [8, p. 206] that ϕ is an MBA-isomorphism between
(A, E,∃) and (PA, EA, 〈RA〉).

For x ∈ WA, define W x
A = {y ∈ WA | xR∗

Ay}, where R∗
A is the reflexive-

transitive closure of RA. Also, for every x ∈ WA, define Px
A = {W x

A ∩X |
X ∈ PA} (so Px

A ⊆ P(W x
A)), Ex

A = W x
A ∩ EA, and Rx

A = RA ∩ (W x
A ×W x

A).
Note that Ex

A ∈ Px
A for x ∈ WA. For x ∈ WA, define a mapping θx :

PA → Px
A by

θx(X) = W x
A ∩X ,

for every X ∈ PA.
Obviously, θx is onto and θx(EA) = Ex

A.
Moreover, θx preserves Boolean operations, because θx(X ∩Y ) = W x

A∩
(X∩Y ) = (W x

A∩X)∩(W x
A∩Y ) = θx(X)∩θx(Y ), θx(X∪Y ) = W x

A∩(X∪Y ) =

(W x
A∩X)∪(W x

A∩Y ) = θx(X)∪θx(Y ) and θx(WA−X) = W x
A∩(WA−X) =

W x
A −X = W x

A − (W x
A ∩X) = W x

A − θx(X).
We are going to prove that θx(〈RA〉X) = 〈Rx

A〉θx(X), i.e.

W x
A ∩ (〈RA〉X) = 〈Rx

A〉(W x
A ∩X).

For ⊆ part, suppose u ∈ W x
A ∩ (〈RA〉X). Hence u ∈ W x

A and uRAv for
some v ∈ X . Since u ∈ W x

A, we have xR∗
Au. Then xR∗

Av (since R∗
A is the

reflexive-transitive closure ofRA and uRAv). So v ∈ W x
A (and v ∈ W x

A∩X).
Thus 〈u, v〉 ∈ RA ∩ (W x

A ×W x
A). Hence uRx

Av. Then u ∈ 〈Rx
A〉(W x

A ∩ X)

(since v ∈ W x
A ∩X). For ⊇ part, suppose u ∈ 〈Rx

A〉(W x
A ∩X). Hence uRx

Av

for some v ∈ W x
A∩X . Since uRx

Av, we have 〈u, v〉 ∈ RA∩(W x
A×W x

A). Then
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u, v ∈ W x
A and uRAv. It follows from uRAv and v ∈ X that u ∈ 〈RA〉X . So

u ∈ W x
A ∩ (〈RA〉X) (since u ∈ W x

A).
Thus, for every x ∈ WA, (Px

A, E
x
A, 〈Rx

A〉) is an MBA and

θx : (PA, EA, 〈RA〉) → (Px
A, E

x
A, 〈Rx

A〉)

is a surjective MBA-homomorphism.
Now define

Θ : PA →
∏

x∈WA
Px

A

by

Θ(X)(x) = θx(X),

for every X ∈ PA and x ∈ WA (so Θ is the natural map).
Then we can obtain the following:

• Θ is one-to-one. Suppose X0, X1 ∈ PA and X0 6= X1. Hence there is
x ∈ WA such that x ∈ X0 and x /∈ X1 (or, x /∈ X0 and x ∈ X1). Then
x ∈ W x

A ∩X0 and x /∈ W x
A ∩X1 (or, x /∈ W x

A ∩X0 and x ∈ W x
A ∩X1)

(since x ∈ W x
A). Therefore θx(X0) 6= θx(X1). So Θ(X0)(x) 6= Θ(X1)(x).

Thus Θ(X0) 6= Θ(X1).

• Θ is an MBA-homomorphism (by Lemma 2.4.6).

• For every x ∈ WA, the projection map πx : Θ(PA) → Px
A is onto.

Suppose Y ∈ Px
A. Hence Y = θx(X) for some X ∈ Px

A (since θx

is onto). Then Y = W x
A ∩ X . Consider πx(Θ(X)) = Θ(X)(x)[by

definition of projection] = θx(X) = W x
A ∩X = Y . So πx is onto.

Therefore the image of the MBA (PA, EA, 〈RA〉) under Θ is a subdirect
product of the family of MBA’s {(Px

A, E
x
A, 〈Rx

A〉) | x ∈ WA}. So the MBA
(PA, EA, 〈RA〉) itself is isomorphic to a subdirect product of the MBA’s
{(Px

A, E
x
A, 〈Rx

A〉) | x ∈ WA}. Hence (A, E,∃) is isomorphic to a subdirect
product of the MBA’s {(Px

A, E
x
A, 〈Rx

A〉) | x ∈ WA}.
Next we are going to prove that (WA, RA, EA) is a bounded graph.
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• RA is transitive. Suppose x, y, z ∈ WA are such that xRAy and yRAz.
Then {∃p | p ∈ y} ⊆ x and {∃p | p ∈ z} ⊆ y (by definition of RA).
Assume p ∈ z. Then ∃p ∈ y, and so ∃∃p ∈ x. Therefore ∃p ∈ x (since
∃∃p = ∃p). So {∃p | p ∈ z} ⊆ x, i.e. xRAz.

• RA is Euclidean. Suppose x, y, z ∈ WA are such that xRAy and xRAz.
Then {∃p | p ∈ y} ⊆ x and {∃p | p ∈ z} ⊆ x. Suppose p ∈ z. We claim
that ∃p ∈ y. Assume ∃p /∈ y. Then (∃p)′ ∈ y (since y is an ultrafilter).
Therefore ∃(∃p)′ ∈ x. Hence (∃p)′ ∈ x (by Lemma 2.2.6(10)). On the
other hand, from p ∈ z follows that ∃p ∈ x. Thus both (∃p)′ ∈ x and
∃p ∈ x, and hence x is not proper. So {∃p | p ∈ z} ⊆ y, i.e. yRAz.

• ∀x, y ∈ WA(xRAy → y ∈ EA). Suppose x, y ∈ WA and xRAy. Then
{∃p | p ∈ y} ⊆ x. We claim that E ∈ y (and so y ∈ EA). Assume
E /∈ y. Then E ′ ∈ y (since y is an ultrafilter). Hence ∃E ′ ∈ x (by
assumption). Therefore 0 ∈ x (by Lemma 2.2.6(5)). Thus x is not
proper. So y ∈ EA.

• ∀x ∈ WA(x ∈ EA → xRAx). Suppose x ∈ WA and x ∈ EA. Then
E ∈ x (by definition of EA). Suppose p ∈ x. Then p ∧ E ∈ x (since
E ∈ x and x is an ultrafilter). Therefore ∃p ∈ x (since p ∧E ≤ ∃p). So
{∃p | p ∈ x} ⊆ x, i.e. xRAx.

We are going to examine structures (W x
A, R

x
A, E

x
A), x ∈ WA. Recall that

the goal is to prove that the MBA’s Px
A, x ∈ WA, are basic. Note that since

RA is transitive we can write, by Lemma 2.4.8,

W x
A = {x} ∪ {y ∈ WA | xRAy}.

There are two cases.

Case 1 xRx
Ax. To be proved thatEx

A = W x
A andRx

A = W x
A×W x

A. Since xRx
Ax,

we have W x
A = {y ∈ WA | xRAy}. By definition of Ex

A, Ex
A ⊆ W x

A.
For the other direction, suppose u ∈ W x

A. Then xRAu. Therefore
u ∈ EA (by the third property of RA). Thus u ∈ W x

A ∩ EA, i.e. u ∈
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Ex
A. So Ex

A = W x
A. By definition of Rx

A, Rx
A ⊆ W x

A × W x
A. For the

other direction, suppose 〈u, v〉 ∈ W x
A ×W x

A. Then 〈x, u〉 ∈ RA and
〈x, v〉 ∈ RA. Therefore 〈u, v〉 ∈ RA (since RA is Euclidean). Thus
〈u, v〉 ∈ Rx

A. So Rx
A = W x

A ×W x
A.

Case 2 〈x, x〉 /∈ Rx
A. To be proved that Ex

A = W x
A − {x} and Rx

A is universal
on Ex

A, i.e. Rx
A ∩ (Ex

A × Ex
A) = Ex

A × Ex
A (and so Rx

A = {〈x, y〉 |
y ∈ Ex

A} ∪ (Ex
A × Ex

A)). From 〈x, x〉 /∈ Rx
A and 〈x, x〉 ∈ W x

A × W x
A

follows that 〈x, x〉 /∈ RA. Suppose u ∈ W x
A − {x}. Then u ∈ W x

A.
Therefore xRAu. Hence u ∈ EA (by the third property of RA). Thus
u ∈ W x

A∩EA. Then u ∈ Ex
A (by definition of Ex

A). So W x
A−{x} ⊆ Ex

A.
Since Ex

A = W x
A ∩ EA, we have Ex

A ⊆ W x
A. Hence it remains to

prove that x /∈ Ex
A. From 〈x, x〉 /∈ RA follows x /∈ EA (by the fourth

property of RA). Therefore x /∈ W x
A ∩ EA. Then x /∈ Ex

A. Thus
Ex

A ⊆ W x
A − {x}. So Ex

A = W x
A − {x}.

To be proved that Rx
A∩ (Ex

A×Ex
A) = Ex

A×Ex
A. The⊆ part is obvious.

For the⊇ part, suppose 〈u, v〉 ∈ Ex
A×Ex

A. Hence u, v ∈ W x
A and u 6= x,

v 6= x (since Ex
A = W x

A − {x}). Then xRAu and xRAv. Therefore
uRAv (since RA is Euclidean). Thus 〈u, v〉 ∈ (W x

A × W x
A) ∩ RA, i.e.

〈u, v〉 ∈ Rx
A. So 〈u, v〉 ∈ Rx

A ∩ (Ex
A × Ex

A).

Finally, we are going to prove that the MBA’s (Px
A, E

x
A, 〈Rx

A〉), x ∈ WA,
are basic. Recall that

〈Rx
A〉X = {u ∈ W x

A | there is v ∈ W x
A such that uRx

Av and v ∈ X},

for every X ∈ Px
A. Fix x ∈ WA. Let X ∈ Px

A and X ∩Ex
A 6= ∅. To be proved

that 〈Rx
A〉X = W x

A. Since 〈Rx
A〉 is an operation of the MBA (Px

A, E
x
A, 〈Rx

A〉)
and W x

A is the unit element in Px
A, we have 〈Rx

A〉X ⊆ W x
A. For the other

part, suppose v ∈ W x
A. Since X ∩ Ex

A 6= ∅, there is at least one element
u ∈ X ∩ Ex

A. Hence u ∈ X and u ∈ Ex
A. It follows from v ∈ W x

A and
u ∈ Ex

A that 〈v, u〉 ∈ Rx
A (in the both cases above). Hence v ∈ 〈Rx

A〉X . So
〈Rx

A〉X = W x
A. Thus 〈Rx

A〉 is basic. Consequently, (Px
A, E

x
A, 〈Rx

A〉) is basic
(by Lemma 2.3.18).
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Thus every MBA is isomorphic to a subdirect product of basic MBA’s.

Corollary 2.4.10. Every MBA is isomorphic to a subdirect product of models.

Proof. Follows from Thereom 2.3.20 and Theorem 2.4.9.

Corollary 2.4.10 may be considered as an algebraic version of the com-
pleteness theorem for free monadic logic. In logic the completeness theo-
rem says that

Γ |= ϕ implies Γ ` ϕ. (2.4.1)

where, as usual, Γ |= ϕ means that Γ logically implies ϕ and Γ ` ϕ means
that ϕ is deriveable from Γ. To illustrate the corollary we should come
back to our motivating examples MA

0 and MC
1 from Chapter 1.

As P. Halmos [7, p. 48], we work with the so called refutability rather
than provability. Let Γ be a fixed set of sentences in free monadic language.
We claim that ∆MC

1 ,Γ = {f(ϕ) | Γ ` ¬ϕ} is an MBA-ideal in MC
1 (cf. [7,

p. 48]). Suppose f(ϕ0), f(ϕ1) ∈ MC
1 are such that Γ ` ¬ϕ0 and Γ ` ¬ϕ1.

Hence Γ ` ¬ϕ0 ∧ ¬ϕ1 and so Γ ` ¬(ϕ0 ∨ ϕ1). Then f(ϕ0 ∨ ϕ1) ∈ {f(ϕ) |
Γ ` ¬ϕ}. Thus f(ϕ0) ∨ f(ϕ1) ∈ ∆MC

1 ,Γ (since f(ϕ0 ∨ ϕ1) = f(ϕ0) ∨ f(ϕ1)).
Now suppose f(ϕ0) ∈ MC

1 is such that Γ ` ¬ϕ0. Hence Γ ` ¬ϕ0 ∨ ¬ψ (for
any ψ) and so Γ ` ¬(ϕ0 ∧ ψ). Then f(ϕ0 ∧ ψ) ∈ {f(ϕ) | Γ ` ¬ϕ}. Thus
f(ϕ0) ∧ f(ψ) ∈ ∆MC

1 ,Γ. Finally, suppose f(ϕ0) ∈ MC
1 is such that Γ ` ¬ϕ0.

Hence Γ ` ∀x¬ϕ0 and so Γ ` ¬∃x¬¬ϕ0. Therefore Γ ` ¬∃xϕ0. Then
f(∃xϕ0) ∈ {f(ϕ) | Γ ` ¬ϕ}. Thus ∃f(ϕ0) ∈ ∆MC

1 ,Γ (here ∃ is the functional
quantifier of MC

1 ).
Therefore the next definition is justified.

Definition 2.4.11 (cf. [7, p. 48]). An MBA-logic is a pair (A, I), where A is an
MBA and I is an MBA-ideal in A. The elements p ∈ I are the refutable elements
of the logic.

Thus, if we have an MBA-logic (A, I), then we can form the quotient
MBA A/I = {[p] | p ∈ A}where [p] = {q ∈ A | p+q ∈ I} (see Lemma 2.3.8).
Therefore, for every p0 ∈ A,
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• if p0 ∈ I, then [p0] = 0 (∈ A/I);

• if p0 /∈ I, then [p0] 6= 0 (∈ A/I).

Now we are going to analyze the left side of (2.4.1) (it assumed that
the soundness theorem is known). Γ |= ϕ says that, for every structure A,
A |= Γ implies A |= ϕ. Recall that every structure A provides us with the
model MA

0 . So we have:
A |= Γ iff A |= ψ, for all ψ such that Γ ` ψ,
iff A |= ψ[a], for all a ∈ |A| and ψ such that Γ ` ψ,
iff A 6|= ¬ψ[a], for all a ∈ |A| and ψ such that Γ ` ψ,
iff A 6|= ψ[a], for all a ∈ |A| and ψ such that Γ ` ¬ψ,
iff ψ̂ = 0, for all ψ such that Γ ` ¬ψ (here ψ̂,0 ∈ MA

0 )
and

A |= ϕ iff A |= ϕ[a], for all a ∈ |A|,
iff A 6|= ¬ϕ[a], for all a ∈ |A|,
iff ¬̂ϕ = 0 (here ¬̂ϕ,0 ∈ MA

0 ).

Definition 2.4.12 (cf. [7, p. 130]). An interpretation of an MBA A is an MBA-
homomorphism of A into a model.

Definition 2.4.13. An element p ∈ A is false in an interpretation f if f(p) = 0.
An element p ∈ A is universally invalid if it is false in every interpretation.

So the zero element 0 ∈ A is universally invalid (since every MBA-
homomorphism preserves all constants). In particular, for every MBA-
logic (A, I), if p0 ∈ I then [p0] is false in every interpretation of the MBA
A/I and so [p0] is universally invalid.

Definition 2.4.14. An MBA A is semantically complete if 0 is the only uni-
versally invalid element, in other words, if p ∈ A is universally invalid, then
p = 0.

Suppose A is an MBA and p ∈ A is non-zero. Then, by Corollary 2.4.10,
there is an interpretation f of A such that f(p) 6= 0. Hence p is not uni-
versally invalid. Thus every MBA is semantically complete. So suppose
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(A, I) is an MBA-logic. If p0 ∈ A and [p0] is universally invalid, then
[p0] = 0 (∈ A/I). Hence p0 ∈ I, i.e. p0 is refutable.

It is worthwhile noticing that the MBA’s (Px
A, E

x
A, 〈Rx

A〉), x ∈ WA, in
Theorem 2.4.9 are subdirectly irreducible. Firstly, the MBA’s (Px

A, E
x
A, 〈Rx

A〉),
x ∈ WA, are not trivial in both cases of the theorem. Secondly, the MBA’s
(Px

A, E
x
A, 〈Rx

A〉) in Case 1 of the theorem may be considered as monadic
algebras because Ex

A = 1. Moreover, the quantifiers 〈Rx
A〉 of these algebras

are simple. Therefore they are simple in terms of universal algebra. Hence
the MBA’s in Case 1 are subdirectly irreducible. Thirdly, it follows from
the next more general lemma suggested to me by R. Goldblatt (also cf. [2,
Lemma 4.1]) that the MBA’s (Px

A, E
x
A, 〈Rx

A〉) in Case 2 of the theorem are
subdirectly irreducible.

Lemma 2.4.15 (R. Goldblatt). Let F = (W,R,E) be a marked directed graph
such that x ∈ W and for every y ∈ W there exists n ≥ 0 with xRny. Let A be
any subalgebra of the complex algebra PF = (P(W ),∩,∪,−,0,1, E, 〈R〉) such
that {x} ∈ A. Then A is subdirectly irreducible.

Proof. By Theorem 2.4.4, it suffices to prove that there is a smallest non-
identity congruence on A. Let τx be the smallest congruence on A con-
taining the pair 〈{x}, ∅〉. This exists as {x} ∈ A. Since {x} 6= ∅, we have
that the congruence τx is not the identity.

Let ∼ be any congruence on A not equal to the identity. Hence there
are X, Y ∈ A such that X ∼ Y and X 6= Y . Therefore there is y ∈ X + Y

(symmetric difference of X and Y ). Moreover, since y ∈ W , there is n ≥ 0

with xRny. So x ∈ 〈R〉n{y} ⊆ 〈R〉n(X+Y ). Thus {x} = {x}∩〈R〉n(X+Y ) ∼
{x} ∩ 〈R〉n(Y + Y ) = {x} ∩ 〈R〉n∅ = {x} ∩ ∅ = ∅. Hence {x} ∼ ∅. Therefore
τx ⊆∼ because τx is the smallest congruence containing the pair 〈{x}, ∅〉.

Thus τx is the smallest non-identity congruence on A.

So, it follows from Theorem 2.4.9 that every MBA is isomorphic to a
subdirect product of subdirectly irreducible MBA’s, which is in accordance
with Birkhoff’s theorem [3, Theorem 8.6] known for algebras in general.
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Theorem 2.4.16 (Birkhoff). Every algebra is isomorphic to a subdirect product
of subdirectly irreducible algebras.



Chapter 3

MBA-varieties

This chapter is concerned with MBA-varieties. In Section 3.1 some well-
known definitions and theorems from universal algebra are given and
a theory of bounded morphisms is developed. In Section 3.2 we prove
that every MBA-variety is generated by its finite special members. In Sec-
tion 3.3 we show that actually every MBA-variety is generated by at most
three special members (not necessarily finite). In Section 3.4 each MBA-
variety is equationally characterized.

3.1 Varieties and bounded morphisms

This section may be considered as consisting of two parts. In the first part
we give some well-known definitions and theorems from universal alge-
bra (see [3]). Moreover, we discuss some consequences from Chapter 2.
In the second part we define special MBA’s of three types (Type I, Type II,
vacuous) which are originated from the second representation theorem. In
addition, adapting R. Goldblatt’s frame homomorphisms [6], we develop
a theory of bounded morphisms which allows us to work with morphisms
of the complex algebras of bounded graphs.

We are going to give some well-known definitions and theorems from
universal algebra [3].

38
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Definition 3.1.1. Define the following operators mapping classes of algebras to
classes of algebras (all of the same type):

• A ∈ I(K) iff A is isomorphic to some member of K;

• A ∈ S(K) iff A is a subalgebra of some member of K;

• A ∈ H(K) iff A is a homomorphic image of some member of K;

• A ∈ P (K) iff A is a direct product of a nonempty family of algebras in K.

Definition 3.1.2. A nonempty class K of algebras of type F is called a variety
if it is closed under subalgebras, homomorphic images, and direct products.

Recall that the type of MBA’s is {∧,∨,′ ,0,1, E,∃}.
As the intersection of a class of varieties of type F is again a variety,

and as all algebras of type F form a variety, we can conlude that for every
class K of algebras of the same type there is a smallest variety containing
K.

Definition 3.1.3. If K is a class of algebras of the same type let V (K) denote the
smallest variety containing K. We say that V (K) is the variety generated by K.
If K = {A0, . . . ,An−1} we write simply V (A0, . . . ,An−1).

Theorem 3.1.4 (Tarski). V = HSP .

Proof. Let us give a sketch of the proof (for complete proof see [3, Theorem
9.5]). Using the properties of the operators H ,S and P , it is possible to
prove that HSP (K) is a variety (for any class of algebras K). Let A ∈
V (K). Then A ∈ V ′ for every variety V ′ with K ⊆ V ′. In particular,
A ∈ HSP (K). Conversely, let A ∈ HSP (K). Then A is a homomorphic
image of A′ where A′ is a subalgebra of the direct product

∏
i∈I Ai for

some {Ai | i ∈ I} ⊆ K. Therefore A ∈
⋂
{V ′ is a variety | K ⊆ V ′} =

V (K).
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Definition 3.1.5. Let X be a set of (distinct) objects called variables. Let F be
a type of algebras and Fn is the subset of n-ary function symbols in F . The set
T (X) of terms of type F over X is the smallest set such that

• X ∪F0 ⊆ T (X);

• if p0, . . . , pn−1 ∈ T (X) and f ∈ Fn, then the “string” f(p0, . . . , pn−1) ∈
T (X).

Definition 3.1.6. Given a term p(x0, . . . , xn−1) of type F over some set X and
given an algebra A of type F we define a mapping pA : An → A as follows:

• if p is a variable xi, then

pA(a0, . . . , an−1) = ai

for a0, . . . , an−1 ∈ A, i.e. pA is the ith projection;

• if p is of the form f(p0(x0. . . . , xn−1), . . . , pk−1(x0, . . . , xn−1)), where f ∈
Fk, then

pA(a0, . . . , an−1) = fA(pA0 (a0. . . . , an−1), . . . , p
A
k−1(a0, . . . , an−1)).

pA is the term function on A corresponding to the term p.

Definition 3.1.7. An identity of type F over X is an expression of the form

p ≈ q

where p, q ∈ T (X). Let Id(X) be the set identities of type F over X . An algebra
A of type F satisfies an identity

p(x0, . . . , xn−1) ≈ q(x0, . . . , xn−1),

(or the identity is true in A, or holds in A), abbreviated by

A |= p(x0, . . . , xn−1) ≈ q(x0, . . . , xn−1),
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or more briefly

A |= p ≈ q,

if for every choice a0, . . . , an−1 ∈ A we have

pA(a0, . . . , an−1) = qA(a0, . . . , an−1).

A class K of algebras satisfies p ≈ q, written

K |= p ≈ q,

if each member of K satisfies p ≈ q.
If Σ is a set of identities, we say K satisfies Σ, written K |= Σ, if K |= p ≈ q

for each p ≈ q ∈ Σ.
Given K and X let

IdK(X) = {p ≈ q ∈ Id(X) | K |= p ≈ q}.

We use the symbol 6|= for ”does not satisfy.”

Lemma 3.1.8. For any class K of type F all of the classes K, I(K), S(K),
H(K), P (K) and V (K) satisfy the same identities over any set of variables X .

Proof. By properties of isomorphisms, subalgebras, homomorphisms, di-
rect products (for complete proof see [3, Lemma 11.3]).

Definition 3.1.9. Let Σ be a set of identities of type F , and define Mod(Σ) to
be the class of algebras A satisfying Σ. A class K of algebras is an equational
class if there is a set of identities Σ such that K = Mod(Σ). In this case we say
that K is defined, or axiomatized, by Σ.

Theorem 3.1.10 (Birkhoff). If V is a variety andX is an infinite set of variables,
then V = Mod(IdV (X)).

Proof. Due to its complexity even the sketch of the proof is not given here
(for proof see [3, Lemma 11.8]).
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Theorem 3.1.11 (Birkhoff). K is an equational class iff K is a variety.

Proof. Part ⇒. Suppose K = Mod(Σ). Then V (K) |= Σ (by Lemma 3.1.8).
Therefore V (K) ⊆ Mod(Σ). So V (K) = K, i.e. K is a variety. Part ⇐
follows from Theorem 3.1.10.

Definition 3.1.12 ([3, p. 93]). Let X be a set of variables and Σ a set of identities
of type F with variables from X . For p, q ∈ T (X) we write

Σ |= p ≈ q

(read:“Σ yields p ≈ q“) if, given any algebra A,

A |= Σ implies A |= p ≈ q.

Definition 3.1.13 ([3, p. 227]). Let X be a set of variables and K a class of
algebras. We say that IdK(X) is finitely based if there is a finite subset Σ of
IdK(X) such that

Σ |= IdK(X).

Now we are in a position to discuss some relations among certain classes
of MBA’s. Define the following classes:

• Models is the class of all models,

• FunctionalMBA is the class of all functional MBA’s,

• MBA is the variety of all MBA’s.

So Models ⊆ FunctionalMBA ⊆ MBA and V (Models) ⊆ V (FunctionalMBA) ⊆
MBA.

We are going to show that Models 6= MBA. Let F0 = (W0, R0, E0),
where W0 = {a}, E0 = {a}, R0 = {〈a, a〉} (see Example 2.2.10(2)), and
F1 = (W1, R1, E1), where W1 = {b}, E1 = ∅ and R1 = ∅ (see Exam-
ple 2.2.10(1)). It is easy to see that F0 and F1 are bounded graphs and
so the complex algebras PF0 and PF1 are (basic) MBA’s. Since the direct
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product A = PF0 × PF1 is not a basic MBA, we have Models 6= MBA (by
Theorem 2.3.20). In picture A looks as follows (the dotted lines denote the
usual partial order on A and the continuous lines denote the quantifier of
A):

1

��
(E)′

((

E XX

0 XX

where 0 = 〈∅, ∅〉, E = 〈{a}, ∅〉, E ′ = 〈∅, {b}〉, 1 = 〈{a}, {b}〉.
Now we are going to show that FunctionalMBA 6= MBA. Firstly, in any

B-valued functional MBA with domain (X,XE) and designated function
E, if XE = ∅, then E = 0, and if XE 6= ∅, then ∃E = 1. Secondly, consider
the direct product A again. If A were isomorphic to some functional MBA,
then we would have in A that either E = 0 or ∃E = 1. But E 6= 0 and
∃E 6= 1 (see the picture above). So A is not isomorphic to any functional
MBA. Thus FunctionalMBA 6= MBA.

Moreover, the MBA A shows that I(Models) and I(FunctionalMBA) are
not closed under direct products. So both I(Models) and I(FunctionalMBA)

are not varieties.
However, by Corollary 2.4.10, every MBA is isomorphic to a subdirect

product of models. Therefore

V (Models) = MBA

because every variety is closed under subalgebras, homomorphic images,
and direct products. Thus

V (Models) = V (FunctionalMBA) = MBA.
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We are now about to introduce some special bounded graphs which
are originated from Theorem 2.4.9.

Definition 3.1.14. A marked directed graph F = (W,R,E) with E = W 6= ∅
and R = W ×W is of Type I. Diagrammatically:

W = Ex�y~z}{|

Example 3.1.15. The bounded graphs in Example 2.2.10(2,3) are of Type I.

Definition 3.1.16. A marked directed graphF = (W,R,E) withW = {x0}∪E,
x0 /∈ E 6= ∅ and R = {〈x0, y〉 | y ∈ E} ∪ (E × E) is of Type II. Diagrammati-
cally:

•x0

��

Ex�y~z}{|

Example 3.1.17. The bounded graph in Example 2.2.10(4) is of Type II.

Definition 3.1.18. A marked directed graph F = (W,R,E) with W = {x0},
R = ∅ and E = ∅ is vacuous. Diagrammatically it is just one point which is not
related to itself.

Suppose F = (W,R,E) is a marked directed graph of Type I or of
Type II or is vacuous. Then F is actually a bounded graph. Therefore
the complex algebra PF is an MBA (by Lemma 2.2.11). We can call F
a bounded graph of Type I, of Type II, or a vacuous bounded graph,
respectively.

The marked directed graphs (W x
A, R

x
A, E

x
A) in Case 1 of Theorem 2.4.9

are of Type I, the marked directed graphs (W x
A, R

x
A, E

x
A) with Ex

A 6= ∅ in
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Case 2 of Theorem 2.4.9 are of Type II, and the marked directed graphs
(W x

A, R
x
A, E

x
A) with Ex

A = ∅ in Case 2 of Theorem 2.4.9 are vacuous.

Definition 3.1.19. An MBA (A, E,∃) is called special if it is equal to the com-
plex algebra PF , where F = (W,R,E) is a bounded graph of Type I or Type II or
is a vacuous bounded graph. Sometimes we specify by saying “special MBA of
Type I”, “special MBA of Type II” or “vacuous MBA”, respectively.

Definition 3.1.20. Every MBA-subalgebra of a special MBA is called a subspe-
cial MBA.

The MBA’s {(Px
A, E

x
A, 〈Rx

A〉) | x ∈ WA} in Theorem 2.4.9 are subspecial,
and so we obtain the second corollary of the theorem.

Corollary 3.1.21. Every MBA is isomorphic to a subdirect product of subspecial
MBA’s.

From it we can get the next theorem.

Theorem 3.1.22. Every variety of MBA’s is generated by its subspecial members.

Proof. Let V be a variety of MBA’s and A ∈ V . Then A is isomorphic to
a subdirect product of subspecial MBA’s (by Corollary 3.1.21). Since the
product is subdirect and V is a variety, we conclude that each of these
subspecial MBA’s belongs to V .

The following definitions and results are adaptations of R. Goldblatt’s
frame homomorphisms [6, Section 1.5].

Definition 3.1.23 (cf. [6, Definition 1.5.1]). Let F = (W,R,E) and F ′ =

(W ′, R′, E ′) be marked directed graphs. A bounded morphism f : F → F ′ is a
function f : W → W ′ such that

• for every u, v ∈ W , uRv implies f(u)R′f(v),

• for every u ∈ W and for every x ∈ W ′, f(u)R′x implies that there is v ∈ W
such that uRv and f(v) = x,
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• for every u ∈ W , u ∈ E iff f(u) ∈ E ′.

Theorem 3.1.24 (cf. [6, Theorem 1.5.2]). Suppose f : F → F ′ is a bounded
morphism. Then, for every X, Y ∈ P(W ′),

1. f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y ),

2. f−1(X ∪ Y ) = f−1(X) ∪ f−1(Y ),

3. f−1(−X) = −f−1(X) (or, more precisely, f−1(W ′−X) = W − f−1(X)),

4. f−1(〈R′〉X) = 〈R〉f−1(X),

5. f−1(E ′) = E,

where f−1(X) = {u ∈ W | f(u) ∈ X} for every X ∈ P(W ′).

Proof. 1. For every x ∈ W , we have x ∈ f−1(X ∩ Y ) iff f(x) ∈ X ∩ Y

iff both f(x) ∈ X and f(x) ∈ Y iff both x ∈ f−1(X) and x ∈ f−1(Y ) iff
x ∈ f−1(X) ∩ f−1(Y ).

2. For every x ∈ W , we have x ∈ f−1(X ∪ Y ) iff f(x) ∈ X ∪ Y iff
either f(x) ∈ X or f(x) ∈ Y iff either x ∈ f−1(X) or x ∈ f−1(Y ) iff x ∈
f−1(X) ∪ f−1(Y ).

3. For every x ∈ W , we have x ∈ f−1(W ′ − X) iff f(x) ∈ W ′ − X iff
f(x) ∈ W ′ and f(x) /∈ X iff x ∈ f−1(W ′) and x /∈ f−1(X) iff x ∈ W and
x /∈ f−1(X) (since f−1(W ′) = W ) iff x ∈ W − f−1(X).

4. For ⊆, suppose u ∈ f−1(〈R′〉X) (X ∈ P(W ′))). Hence f(u) ∈ 〈R′〉X .
Then f(u)R′x for some x ∈ X . Therefore there is v ∈ W such that uRv
and f(v) = x (since f is a bounded morphism). Then v ∈ f−1(X), and so
u ∈ 〈R〉f−1(X). For the other direction, suppose u ∈ 〈R〉f−1(X). Then uRv
for some v ∈ f−1(X). Hence f(u)R′f(v) (since f is a bounded morphism).
Since v ∈ f−1(X), we get f(v) ∈ X . Therefore f(u) ∈ 〈R′〉X . So u ∈
f−1(〈R′〉X).

5. Suppose u ∈ W . Then we have u ∈ f−1(E ′) iff f(u) ∈ E ′ iff u ∈ E.
So f−1(E ′) = E.
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Definition 3.1.25 (cf. [6, Definition 1.5.8]). If f : F → F ′ is a bounded mor-
phism, then the mapping

hf : P(W ′) → P(W )

is defined by

hf (X) = f−1(X),

for every X ∈ P(W ′).

It follows from the previous lemma that

• hf (X ∩ Y ) = hf (X) ∩ hf (Y ),

• hf (X ∪ Y ) = hf (X) ∪ hf (Y ),

• hf (−X) = −hf (X) (or, more precisely, hf (W
′ −X) = W − hf (X)),

• hf (〈R′〉X) = 〈R〉hf (X),

• hf (E
′) = E.

The following lemma allows us to find relations among special MBA’s.

Theorem 3.1.26 (cf. [6, Theorem 1.5.9]). Suppose F = (W,R,E) and F ′ =

(W ′, R′, E ′) are marked directed graphs and f : F → F ′ is a bounded morphism.

1. If f is surjective (i.e. onto), then hf is injective (i.e. one-to-one).

2. If f is injective, then hf is surjective.

3. If f is bijective (i.e. both onto and one-to-one), then hf is bijective.

Proof. 1. Suppose X, Y ∈ P(W ′) and X 6= Y . Hence there is x0 ∈ W ′ such
that either x0 ∈ X &x0 /∈ Y or x0 /∈ X &x0 ∈ Y . Since x0 ∈ W ′ and f is
onto, x0 = f(u0) for some u0 ∈ W . If x0 ∈ X and x0 /∈ Y , then u0 ∈ f−1(X)

and u0 /∈ f−1(Y ); and so f−1(X) 6= f−1(Y ), i.e. hf (X) 6= hf (Y ). Similarly
for the case x0 /∈ X and x0 ∈ Y .
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2. Suppose U ∈ P(W ). Then U ⊆ W and f(U) ⊆ W ′. Therefore
hf (f(U)) = f−1(f(U)). To be proved that f−1(f(U)) = U . Obviously,
f−1(f(U)) ⊇ U . For ⊆, suppose u ∈ f−1(f(U)). Hence f(u) ∈ f(U). Then
f(u) = f(v) for some v ∈ U . So u = v (since f is one-to-one). Thus u ∈ U .

3. Follows from (1,2).

Corollary 3.1.27. Suppose F = (W,R,E) and F ′ = (W ′, R′, E ′) are bounded
graphs and f : F → F ′ is a bounded morphism. Then the mapping hf :

P(W ′) → P(W ) is an MBA-homomorphism from PF ′ to PF . Moreover,

• if f is surjective, then hf is an injective MBA-homomorphism from PF ′ to
PF , and hence PF ′ is isomorphic to a subalgebra of PF ;

• if f is injective, then hf is a surjective MBA-homomorphism from PF ′ to
PF ;

• if f is bijective, then hf is an MBA-isomorphism. �

The Lemmas 3.1.28, 3.1.29, 3.1.30 state connections between bounded
graphs of the same type, whereas Lemma 3.1.31 between bounded graphs
of Type I and Type II.

Lemma 3.1.28. If F = (W,R,E) and F ′ = (W ′, R′, E ′) are bounded graphs of
Type I and Card(W ) = Card(W ′), then there is a bijective bounded morphism
from F to F ′.

Proof. Since Card(W ) = Card(W ′), there is a bijective mapping f : W →
W ′. From the assumption that F = (W,R,E) and F ′ = (W ′, R′, E ′) are
bounded graphs of Type I it follows that f is a bounded morphism.

Lemma 3.1.29. If F = (W,R,E) and F ′ = (W ′, R′, E ′) are bounded graphs of
Type II and Card(E) = Card(E ′), then there is a bijective bounded morphism
from F to F ′.

Proof. Suppose W = {x0} ∪E, x0 /∈ E 6= ∅, R = {〈x0, y〉 | y ∈ E} ∪ (E ×E)

and W ′ = {x′0} ∪ E ′, x′0 /∈ E ′ 6= ∅ and R′ = {〈x′0, y〉 | y ∈ E ′} ∪ (E ′ × E ′).
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Since Card(E) = Card(E ′), there is a bijective mapping f : E → E ′. Then
define g : W → W ′ by

g(u) =

x′0, if u = x0

f(u), if u ∈ E

for every u ∈ W .
To be proved that g is a bijective bounded morphism. Obviously, g is

bijective. Suppose u, v ∈ W and uRv. Hence either u = x0 & v ∈ E or
u, v ∈ E. In the first case, g(u) = x′0 and g(v) ∈ E ′, and in the second,
g(u), g(v) ∈ E ′. Therefore g(u)R′g(v) in both cases. Now suppose that u ∈
W,x ∈ W ′ and g(u)R′x. Since x ∈ W ′ and g is a bijection between W and
W ′, there is v ∈ W with g(v) = x. Since g(u)R′x, either g(u) = x′0 &x ∈ E ′

or g(u), x ∈ E ′. In the first case, u = x0 and v ∈ E, and in the second,
u, v ∈ E. Therefore uRv in both cases. Finally, by construction of g, u ∈ E

iff g(u) ∈ E ′ for every u ∈ W . Thus g is a bijective bounded morphism.

Lemma 3.1.30. If F = (W,R,E) and F ′ = (W ′, R′, E ′) are vacuous bounded
graphs, then there is a bijective bounded morphism from F to F ′.

Proof. Obvious.

Lemma 3.1.31. Suppose F = (W,R,E) is a bounded graph of Type I, F ′ =

(W ′, R′, E ′) is a bounded graph of Type II and Card(E) = Card(E ′). Then
there is an injective bounded morphism from F to F ′.

Proof. Suppose E = W 6= ∅, R = W ×W and W ′ = {x′0} ∪ E ′, x′0 /∈ E ′ 6= ∅,
R′ = {〈x′0, y〉 | y ∈ E ′} ∪ (E ′ × E ′). Since Card(E) = Card(E ′), there is a
bijection f : E → E ′.

To be proved that f is an injective bounded morphism from F to F ′.
Obviously, f is injective. Suppose u, v ∈ W and uRv. Then u, v ∈ E, and so
f(u), f(v) ∈ E ′. Therefore f(u)R′f(v) (since E ′ × E ′ ⊆ R′). Now suppose
u ∈ W , x ∈ W ′ and f(u)R′x. Then x ∈ E ′. Hence there is (only one) v ∈ E
such that f(v) = x. So uRv. Finally, for every u ∈ W , u ∈ E iff f(u) ∈ E ′
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(since f is a mapping from E to E ′ and W = E). Thus f is an injective
bounded morphism.

3.2 MBA-varieties are generated by their finite

special members

The purpose of this section is to prove that every MBA-variety is gener-
ated by its finite special members. Let us firstly find a sufficient condi-
tion for that. Suppose X is an infinite set of variables. Let V be a va-
riety of algebras (not necessarily of MBA’s) and K ⊆ V . To be shown
that IdK(X) = IdV (X) implies that K generates V (i.e. V (K) = V ). Let
IdK(X) = IdV (X). Then IdV (K)(X) = IdV (X) (by Lemma 3.1.8). Hence
Mod(IdV (K)(X)) = Mod(IdV (X)), and so V (K) = V (by Theorem 3.1.10).
Thus K generates V . But K ⊆ V implies that IdV (X) ⊆ IdK(X). There-
fore, to prove thatK generates V it suffices to show that IdK(X) ⊆ IdV (X)

(or, equivalently, if (t0 ≈ t1) /∈ IdV (X), then (t0 ≈ t1) /∈ IdK(X)) . More-
over, since in every Boolean algebra (and so in every MBA)

a = b iff (a′ ∨ b) ∧ (a ∨ b′) = 1,

it suffices to consider MBA-equations of the form t(x0, . . . , xn−1) = 1 only.
In the theorem below the method of filtration due to E.J. Lemmon [8]
is taken for granted. Moreover, the notion of distinguished model from
modal logic [5, p. 36] is tacitly used.

Theorem 3.2.1. Suppose V is a variety of MBA’s, K ⊆ V is the subset of all
finite special members in V , and t(x0, . . . , xn−1) is an MBA-term. If

A0 6|= t(x0, . . . , xn−1) ≈ 1

for some A0 ∈ V , then

A1 6|= t(x0, . . . , xn−1) ≈ 1
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for some A1 ∈ K.

Proof. Suppose A0 ∈ V and A0 does not satisfy t(x0, . . . , xn−1) ≈ 1. There-
fore, by Corollary 3.1.21, there exists A ∈ V such that A does not satisfy
t(x0, . . . , xn−1) ≈ 1 and one of the following holds:

1. A is equal to the complex algebra PF of some vacuous bounded
graph F ;

2. A is an MBA-subalgebra of the complex algebra PF of some bounded
graph F of Type I;

3. A is an MBA-subalgebra of the complex algebra PF of some bounded
graph F of Type II.

In (1), since A is finite and special, we can take for the desired A1 the
MBA A itself. So it remains to consider only (2) and (3). Therefore we
reformulate them by saying that A is an MBA-subalgebra of PF of some
bounded graph F = (W,R,E) such that either

Case 1 E = W 6= ∅ and R = W ×W , or

Case 2 W = {x0} ∪ E, x0 /∈ E 6= ∅ and R = {〈x0, y〉 | y ∈ E} ∪ (E × E).

Since A 6|= t(x0, . . . , xn−1) ≈ 1, there are A0, . . . , An−1 ∈ A such that
tA(A0, . . . , An−1) 6= 1A, i.e.

tA(A0, . . . , An−1) 6= W .

Note that A0, . . . , An−1 ⊆ W .
We are going apply the method of filtration due to E.J. Lemmon (see

[8, Theorem 40]). Let {t0, . . . , tr−1} be the set of all subterms of the term
t(x0, . . . , xn−1). Then put

Bi = tAi (A0, . . . , An−1),

for each 0 ≤ i ≤ r − 1,

Br = EA,
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and

S = {B0, . . . , Br−1, Br}.

Thus B0, . . . , Br−1, Br ⊆ W , S ⊆ P(W ), and Bi ∈ A (for every i ≤ r). Also
note that S is finite.

Define a binary relation ≡ on W by

x ≡ y iff (∀B ∈ P(W ))(B ∈ S → (x ∈ B ↔ y ∈ B)). (3.2.1)

Then ≡ is an equivalence relation on W which partitions W into not
more than 2r+1 equivalence classes (because there are r+1 members in S).

For every x ∈ W , put x̄ = {y ∈ W | x ≡ y}, and for B ⊆ W , B̄ = {x̄ |
x ∈ B}. So W̄ and P(W̄ ) are finite.

For x ∈ W and B ⊆ W , it is easy to verify that

(α) if x ∈ B, then x̄ ∈ B̄;

(β) if x̄ ∈ B̄ and B ∈ S, then x ∈ B.

Define a binary relation R̄ on W̄ by

x̄R̄ȳ iff there exist x′ ∈ x̄ and y′ ∈ ȳ such that x′Ry′. (3.2.2)

So we have a marked directed graph F̄ = (W̄ , R̄, Ē), where Ē = EA

(i.e. Ē = {x̄ | x ∈ EA}). Hence we get the complex algebra PF̄ of F̄ . (PF̄

is the desired A1.)
As in [8, p. 209], we have

(i) Bi = W iff B̄i = W̄ ,

(ii) −Bi = Bj iff −B̄i = B̄j ,

(iii) Bi ∩Bj = Bk iff B̄i ∩ B̄j = B̄k,

(iv) Bi ∪Bj = Bk iff B̄i ∪ B̄j = B̄k,

(v) if 〈R〉Bi = Bj , then 〈R̄〉B̄i = B̄j ,
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for every i, j, k ≤ r.
It is possible by induction on the term t to prove that

tA(A0, . . . , An−1) = tPF̄ (Ā0, . . . , Ān−1). (3.2.3)

Since every term is a subterm of itself, tA(A0, . . . , An−1) ∈ S. Therefore
tA(A0, . . . , An−1) 6= W̄ (since tA(A0, . . . , An−1) 6= W and using (i)). Hence
tPF̄ (Ā0, . . . , Ān−1) 6= W̄ (by (3.2.3)), or tPF̄ (Ā0, . . . , Ān−1) 6= 1PF̄ . So the
algebra PF̄ does not satisfy the equation t(x0, . . . , xn−1) ≈ 1.

It remains to prove that PF̄ is a finite special MBA and that it belongs
to V (so PF̄ ∈ K). To accomplish it we will follow the plan: a) PF̄ is a
finite special MBA, b) there is a surjective bounded morphism f from F
onto F̄ , and c) hf (PF̄) ⊆ A. Both in (a) and (b) we will consider two cases
(according to the two cases on p. 51), whereas in (c) we will not.

Part (a).
Case 1. Since E = W , we have Ē = W̄ . To be proved that R̄ = W̄ × W̄ .

By definition of R̄, R̄ ⊆ W̄ × W̄ . For ⊇, assume 〈x̄, ȳ〉 ∈ W̄ × W̄ . Then
xRy, since x ∈ x̄, y ∈ ȳ and R = W ×W . So x̄R̄ȳ (by definition of R̄). Thus
the marked directed graph F̄ is a bounded graph of Type I. Hence PF̄ is a
finite special MBA.

Case 2. Since x0 6= y, for every y ∈ E, and E ∈ S, we have x̄0 = {x0}. It
follows from x0 /∈ E and E ∈ S that x̄0 /∈ Ē (by β). Since E 6= ∅, we have
Ē 6= ∅.

To be proved that W̄ = {x̄0} ∪ Ē. By definition, W̄ ⊇ {x̄0} ∪ Ē. For ⊆,
suppose x̄ ∈ W̄ . If x̄ = x̄0, then x̄ ∈ x̄0∪Ē. If x̄ 6= x̄0, then x 6= x0 (since≡ is
an equivalence relation on W ). Hence x ∈ E. So x̄ ∈ Ē (by (α)). Therefore
x̄ ∈ x̄0 ∪ Ē.

Next to be proved that R̄ = {〈x̄0, ȳ〉 | ȳ ∈ Ē} ∪ (Ē × Ē). For ⊆, suppose
x̄1, x̄2 ∈ W̄ and 〈x̄1, x̄2〉 ∈ R̄. Hence there exist u ∈ x̄1 and v ∈ x̄2 such that
uRv. Then, by assumption on R, there are two cases:

• u = x0 and v ∈ E. Hence ū = x̄0 and v̄ ∈ Ē. Since ū = x̄1 and v̄ = x̄2,
we obtain that x̄1 = x̄0 and x̄2 ∈ Ē. So 〈x̄1, x̄2〉 ∈ {〈x̄0, ȳ〉 | ȳ ∈ Ē}.
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Thus 〈x̄1, x̄2〉 ∈ {〈x̄0, ȳ〉 | ȳ ∈ Ē} ∪ (Ē × Ē).

• u, v ∈ E. Hence ū ∈ Ē and v̄ ∈ Ē. Since ū = x̄1 and v̄ = x̄2,
we obtain that x̄1 ∈ Ē and x̄2 ∈ Ē. So 〈x̄1, x̄2〉 ∈ Ē × Ē. Thus
〈x̄1, x̄2〉 ∈ {〈x̄0, ȳ〉 | ȳ ∈ Ē} ∪ (Ē × Ē).

For ⊇, suppose 〈x̄1, x̄2〉 ∈ {〈x̄0, ȳ〉 | ȳ ∈ Ē} ∪ (Ē × Ē). Then there are two
cases:

• 〈x̄1, x̄2〉 ∈ {〈x̄0, ȳ〉 | ȳ ∈ Ē}. Hence x̄1 = x̄0 and x̄2 ∈ Ē. Since
x̄0 = {x0} and x̄1 = x̄0, we have x1 = x0. It follows from x̄2 ∈ Ē that
x2 ∈ E (by (β) using E ∈ S). Since x1 = x0 and x2 ∈ E, we get x1Rx2

(by assumption on R). Therefore x̄1R̄x̄2 (by definition of R̄).

• 〈x̄1, x̄2〉 ∈ Ē × Ē. Hence x1, x2 ∈ E (by (α) using E ∈ S). Then x1Rx2

(by assumption on R). Therefore x̄1R̄x̄2 (by definition of R̄).

Thus we have proved the equality.
So the marked directed graph F̄ = (W̄ , R̄, Ē) is a bounded graph of

Type II (or, more explicitly, W̄ = {x̄0} ∪ Ē, x̄0 /∈ Ē 6= ∅, and R̄ = {〈x̄0, ȳ〉 |
ȳ ∈ Ē} ∪ (Ē × Ē)). Hence PF̄ is a finite special MBA.

Thus PF̄ is a finite special MBA in both cases.
Part (b).
Now define a mapping f : W → W̄ by

f(x) = x̄,

for every x ∈ W . Obviously, f is surjective. We are going to prove that f
is a bounded morphism from F = (W,R,E) onto F̄ = (W̄ , R̄, Ē).

Case 1.

• Let u, v ∈ W and uRv. Then u ∈ ū and v ∈ v̄. Therefore ūR̄v̄ (by
definition of R̄). Thus f(x)R̄f(y).

• Let u ∈ W , x ∈ W̄ and f(u)R̄x. Since x ∈ W̄ , we have that x = v̄ for
some v ∈ W . Hence x = f(v). Since R = W ×W and u, v ∈ W , we
get uRv.
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• For every u ∈ W , u ∈ E iff ū ∈ Ē (since E ∈ S and using (α, β)) iff
f(u) ∈ Ē.

So f is a bounded morphism from F onto F̄ .
Case 2.

• Let u, v ∈ W and uRv. Then u ∈ ū and v ∈ v̄. Therefore ūR̄v̄ (by
definition of R̄). Thus f(x)R̄f(y).

• Let u ∈ W , x ∈ W̄ and f(u)R̄x. Since x ∈ W̄ , we have that x = v̄ for
some v ∈ W . Hence x = f(v). Then f(u)R̄f(v) and ūR̄v̄. Therefore
there exist w0 ∈ ū and w1 ∈ v̄ such that w0Rw1. Then, by assumption
on R, there are two cases:

– w0 = x0 and w1 ∈ E. Hence w̄0 = x̄0 and w̄1 ∈ Ē. Since w̄0 = ū

and w̄1 = v̄, we obtain ū = x̄0 and v̄ ∈ Ē. Since x̄0 = {x0} and
ū = x̄0, we get u = x0. It follows from v̄ ∈ Ē that v ∈ E (by
(β) using E ∈ S). Since u = x0 and v ∈ E, we have uRv (by
assumption on R). Thus uRv and x = f(v).

– w0, w1 ∈ E. Since w0 ∈ ū, we have w0 ≡ u. Hence u ∈ E (since
w0 ∈ E and E ∈ S). Analogously, v ∈ E. Since u, v ∈ E, we get
that uRv (by assumption on R). Thus uRv and x = f(v).

• For any u ∈ W , u ∈ E iff ū ∈ Ē (by (α, β) using E ∈ S) iff f(u) ∈ Ē

(by definition of f ).

So f is a bounded morphism from F onto F̄ .
Thus f is a surjective bounded morphism from F onto F̄ in both cases.
Part (c).
It follows from Part (b) that hf is an injective MBA-homomorphism

from PF̄ into PF (by Corollary 3.1.27), and so PF̄ is isomorphic to an MBA-
subalgebra of PF . Note that we cannot yet conclude that PF̄ ∈ V , because
PF may not belong to V (although A ∈ V by assumption). But after we
prove that hf (PF̄) ⊆ A, we will be able to obtain that PF̄ ∈ V .



CHAPTER 3. MBA-VARIETIES 56

Since, for every B ∈ S, hf (B̄) = f−1(B̄) = {x ∈ W | f(x) ∈ B̄} = {x ∈
W | x̄ ∈ B̄} = B (because B ∈ S and using (α, β)), we have

hf (B̄) = B for every B ∈ S. (3.2.4)

Let BS be the subalgebra generated by {B̄ | B ∈ S} of the Boolean
algebra P(W̄ ) . To be proved that {x̄} ∈ BS for every x̄ ∈ W̄ . Suppose
x̄ ∈ W̄ . We are going to represent x̄ as a (finite) Boolean combination of
elements in {B̄ | B ∈ S}. Assume that ȳ ∈ W̄ and x̄ 6= ȳ. Hence there is
B ∈ S such that either x ∈ B and y /∈ B or x /∈ B and y ∈ B. If x ∈ B and
y /∈ B, then x̄ ∈ B̄ and ȳ /∈ B̄ (since B ∈ S and using (α, β)). If x /∈ B and
y ∈ B, then x̄ /∈ B̄ and ȳ ∈ B̄; and so x̄ ∈ (−B̄) and ȳ /∈ (−B̄). Therefore
x̄ ∈ B̄ȳ and ȳ /∈ B̄ȳ, where

B̄ȳ =

B̄, if x̄ ∈ B̄ and ȳ /∈ B̄

−B̄, if x̄ /∈ B̄ and ȳ ∈ B̄.

Note that B̄ȳ ∈ BS . Since W̄ is finite, the collection {B̄ȳ | x̄ 6= ȳ} is finite
and

⋂
{B̄ȳ | x̄ 6= ȳ} ∈ BS . But {x̄} =

⋂
{B̄ȳ | x̄ 6= ȳ}. Thus {x̄} ∈ BS .

(Compare with the notion of distinguished model in modal logic in [5,
p. 36].)

So BS = P(W̄ ). Hence every element in P(W̄ ) is a (finite) Boolean
combination of elements in {B̄ | B ∈ S}. Therefore hf (P(W̄ )) ⊆ A by
(3.2.4) using the fact that hf preserves finite Boolean combinations and A

is closed under finite Boolean combinations.
Since hf : PF̄ → PF is an injective MBA-homomorphism and hf (P(W̄ ))

⊆ A, we obtain that the complex algebra PF̄ is isomorphic to an MBA-
subalgebra (namely, to hf (PF̄)) of the MBA A . Thus PF̄ ∈ V (since A ∈ V
and V is closed under subalgebras and homomorphic images).

Finally, since PF̄ is a finite special MBA, we get PF̄ ∈ K.

Corollary 3.2.2. Every variety of MBA’s is generated by its finite special mem-
bers.

The following corollary will be useful in the next section.
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Corollary 3.2.3. If A0 in the theorem is equal to PF , whereF is a bounded graph
of Type I or Type II or is a vacuous bounded graph, then A1 = PF ′ , where F ′ is a
finite bounded graph of Type I or Type II or is a vacuous bounded graph, respec-
tively. In other words, if an equation is not satisfied by a special MBA, then it is
not satisfied by some finite special MBA of the same type (see Definition 3.1.19).

3.3 Characterization of MBA-varieties in terms

of their generators

In this section we sharpen (in terms of numbers of generators) Corol-
lary 3.2.2. Firstly, bounded graphsFn,F∞

m ,F∞
0 on subsets of {∞, 0, 1, 2, . . . }

are introduced. Secondly, we find relations among the complex algebras
PFn ,PF∞m , PF∞0 . Finally, we prove that every MBA-variety is generated by
some subset of {PFn ,PF∞m , PF∞0 } (for some 1 ≤ n ≤ ω and 1 ≤ m ≤ ω).
As a consequence, we obtain that there are countably many varieties of
MBA’s.

Let 0 = ∅, n = {0, 1, . . . , n − 1}, and ω = {0, 1, 2, . . . }. Suppose ∞ is an
entity not in ω.

Definition 3.3.1. For every 1 ≤ n ≤ ω, the marked directed graph Fn is defined
by Fn = (W,R,E) where W = n, R = n× n and E = n.

Definition 3.3.2. For every 0 ≤ n ≤ ω, the marked directed graph F∞
n is defined

by F∞
n = (W,R,E) where W = {∞} ∪ n, R = {〈∞, x〉 | x ∈ n} ∪ (n× n) and

E = n.

Note that Fn, for 1 ≤ n ≤ ω, is a bounded graph of Type I; F∞
n , for

1 ≤ n ≤ ω, is a bounded graph of Type II; and F∞
0 is a vacuous bounded

graph.

Definition 3.3.3. For every 1 ≤ n ≤ ω, define the MBA Pn by Pn = PFn .

Definition 3.3.4. For every 0 ≤ n ≤ ω, define the MBA P∞
n by P∞

n = PF∞n .
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So Pn, P∞
n and P∞

0 are finite special MBA’s for 1 ≤ n < ω.

Lemma 3.3.5. Suppose A is a finite MBA.

1. If A = PF for some bounded graph F of Type I, then A is isomorphic to
Pn for some 1 ≤ n < ω;

2. If A = PF for some bounded graph F of Type II, then A is isomorphic to
P∞

n for some 1 ≤ n < ω;

3. If A = PF for some vacuous bounded graph F , then A is isomorphic to
P∞

0 .

Proof. 1. Suppose A = PF where F = (W,R,E), E = W 6= ∅, R = W ×W .
Since A is finite, we have 1 ≤ Card(W ) < ω (say Card(W ) = n). There-
fore there exists a bijective bounded morphism between F and Fn (by
Lemma 3.1.28). Then the MBA’s A and Pn are isomorphic (by Corol-
lary 3.1.27).

2. Suppose A = PF where F = (W,R,E), W = {x0} ∪ E, x0 /∈
E 6= ∅ and R = {〈x0, y〉 | y ∈ E} ∪ (E × E). Since A is finite, we have
1 ≤ Card(E) < ω (say Card(E) = n). Therefore there exists a bijec-
tive bounded morphism between F and F∞

n (by Lemma 3.1.29). Then
the MBA’s A and P∞

n are isomorphic (by Corollary 3.1.27).
3. Suppose A = PF and F is a vacuous structure. Therefore there is a

bijective bounded morphism between F and F∞
0 (by Lemma 3.1.30). Then

the MBA’s A and P∞
0 are isomorphic (by Corollary 3.1.27).

Let V be an arbitrary variety of MBA’s.

Lemma 3.3.6. For every 1 ≤ n ≤ m ≤ ω, Pn is isomorphic to an MBA-
subalgebra of Pm.

Proof. Since n ≤ m, we have n ⊆ m. Then define a mapping f : m→ n by

f(j) =

j, if j ∈ n

0, if j ∈ m− n
(3.3.1)
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for every j ∈ m (here m − n is set-theoretical difference). Obviously, f
is surjective. It follows from the fact that both Fn and Fm are bounded
graphs of Type I that f is a bounded morphism from Fm to Fn. So f :

Fm → Fn is a surjective bounded morphism. Therefore hf : Pn → Pm

is an injective MBA-homomorphism (by Corollary 3.1.27). Hence Pn is
isomorphic to an MBA-subalgebra of Pm.

Corollary 3.3.7. For every 1 ≤ n ≤ m ≤ ω, if Pm ∈ V , then Pn ∈ V .

Lemma 3.3.8. If Pn ∈ V for arbitrarily large 1 ≤ n ∈ ω (i.e. for every m ∈ ω

with 1 ≤ m there exists k ∈ ω such that m ≤ k and Pk ∈ V ), then

1. Pn ∈ V for every 1 ≤ n < ω;

2. Pω ∈ V .

Proof. 1. Let 1 ≤ n < ω be fixed. By assumption, there exists k ∈ ω such
that n ≤ k and Pk ∈ V . Then Pn ∈ V by Corollary 3.3.7.

2. Assume that Pω /∈ V . Hence there exists an identity t(x0, . . . , xl−1) ≈
1 such that Pω 6|= t(x0, . . . , xl−1) ≈ 1 and V |= t(x0, . . . , xl−1) ≈ 1 (by
Theorem 3.1.11). Since Pω 6|= t(x0, . . . , xl−1) ≈ 1 and Fω is a structure of
Type I, we obtain by Corollary 3.2.3 that A1 6|= t(x0, . . . , xl−1) ≈ 1 where
A1 = PF ′ for some finite bounded graph F ′ of Type I, say Card(F ′) =

n ≥ 1. Therefore A1 and Pn are isomorphic (by Lemma 3.3.5). So Pn 6|=
t(x0, . . . , xl−1) ≈ 1. But Pn ∈ V (by the item (1) of this lemma) and V |=
t(x0, . . . , xl−1) ≈ 1. This is a contradiction. Thus Pω ∈ V .

Lemma 3.3.9. For every 1 ≤ n ≤ m ≤ ω, P∞
n is isomorphic to a subalgebra of

P∞
m .

Proof. Since n ≤ m, we have n ⊆ m. Then define a mapping f : {∞}∪m→
{∞} ∪ n by

f(j) =


∞, if j = ∞

j, if j ∈ n

0, if j ∈ m− n

(3.3.2)
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for every j ∈ {∞} ∪m. Obviously, f is surjective. It follows from the fact
that both F∞

n and F∞
m are bounded graphs of Type II that f is a bounded

morphism from F∞
m to F∞

n . So f : F∞
m → F∞

n is a surjective bounded
morphism. Therefore hf : P∞

n → P∞
m is an injective MBA-homomorphism

(by Corollary 3.1.27). Hence P∞
n is isomorphic to an MBA-subalgebra of

P∞
m .

Corollary 3.3.10. For every 1 ≤ n ≤ m ≤ ω, if P∞
m ∈ V , then P∞

n ∈ V .

Lemma 3.3.11. If P∞
n ∈ V for arbitrarily large 1 ≤ n ∈ ω, then

1. P∞
n ∈ V for every 1 ≤ n < ω;

2. P∞
ω ∈ V .

Proof. 1. Let 1 ≤ n < ω be fixed. By assumption, there exists k ∈ ω such
that n ≤ k and P∞

k ∈ V . Then P∞
n ∈ V by Corollary 3.3.10.

2. Assume that P∞
ω /∈ V . Hence there exists an identity t(x0, . . . , xl−1) ≈

1 such that P∞
ω 6|= t(x0, . . . , xl−1) ≈ 1 and V |= t(x0, . . . , xl−1) ≈ 1 (by

Theorem 3.1.11). Since P∞
ω 6|= t(x0, . . . , xl−1) ≈ 1 and F∞

ω is a bounded
graph of Type II, we obtain by Corollary 3.2.3 that A1 6|= t(x0, . . . , xl−1) ≈
1 where A1 = PF ′ for some finite bounded graph of Type II. Therefore
A1 and P∞

n (for some 1 ≤ n < ω) are isomorphic (by Lemma 3.3.5). So
P∞

n 6|= t(x0, . . . , xl−1) ≈ 1. But P∞
n ∈ V (by the item (1) of this lemma) and

V |= t(x0, . . . , xl−1) ≈ 1. This is a contradiction. Thus P∞
ω ∈ V .

Lemma 3.3.12. For every 1 ≤ n ≤ ω, Pn is an homomorphic image of the MBA
P∞

n .

Proof. By Lemma 3.1.31 and Corollary 3.1.27.

Corollary 3.3.13. For every 1 ≤ n ≤ ω, if P∞
n ∈ V , then Pn ∈ V .

We are now ready to prove the main result of the section.

Theorem 3.3.14. Suppose V is a variety of MBA’s. Then there exist 1 ≤ i ≤ ω,
1 ≤ j ≤ ω and a subset S ⊆ {Pi,P

∞
j ,P

∞
0 } such that V = V (S). (Roughly

speaking, every variety of MBA’s is generated by at most three special members.)
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Proof. Let K = {A ∈ V | A is a finite special MBA}. Recall that V = V (K)

by Corollary 3.2.2. Our goal is to single out in V (not necessarily in K) as
few members as possible that generate the whole variety V .

Let

• K0 = {A ∈ K | A is a (finite) special MBA of Type I},

• K1 = {A ∈ K | A is a (finite) special MBA of Type II},

• K2 = {A ∈ K | A is a vacuous MBA},

• K∗ =
{
A ∈ K | A ∈ {Pn,P

∞
m ,P

∞
0 | 1 ≤ n < ω, 1 ≤ m < ω}

}
,

• S0 = {Pn | 1 ≤ n < ω},

• S1 = {P∞
m | 1 ≤ m < ω}.

Note that K = K0 ∪K1 ∪K2.
We are going to define three sets G, H , and I , whose union will be

the desired S. Below G will consist of at most one MBA Pi (for some
1 ≤ i ≤ ω), H will consist of at most one MBA P∞

j (for some 1 ≤ j ≤ ω)
and I will consist of at most P∞

0 .
Define an index i and a set G according to the following:

Case 1 If K∗ ∩ S0 = ∅, then let G = ∅ and i = 1;

Case 2 If 1 ≤ Card(K∗ ∩ S0) < ω, then let i = max{n | Pn ∈ K∗} and
G = {Pi};

Case 3 If Card(K∗ ∩ S0) = ω, then Pω ∈ V (by Lemma 3.3.8) and let G =

{Pω} and i = ω .

Similarly define an index j and a set H :

Case 1 If K∗ ∩ S1 = ∅, then let H = ∅ and j = 1;

Case 2 If 1 ≤ Card(K∗ ∩ S1) < ω, then let j = max{m | P∞
m ∈ K∗} and

H = {P∞
j };



CHAPTER 3. MBA-VARIETIES 62

Case 3 If Card(K∗ ∩ S1) = ω, then P∞
ω ∈ V (by Lemma 3.3.11) and let H =

{P∞
ω } and j = ω .

Finally, define a set I :

Case 1 If P∞
0 /∈ K∗, then let I = ∅;

Case 2 If P∞
0 ∈ K∗, then let I = {P∞

0 }.

So let S = G ∪H ∪ I . Thus S ⊆ {Pi,P
∞
j ,P

∞
0 } and S ⊆ V .

Our goal is to prove that V (S) = V , i.e. S generates V . Let X be an
infinite set of variables. By the discussion on page 50, to prove V (S) = V

it suffices to show that IdS(X) ⊆ IdV (X). Moreover, since V = V (K),
it suffices to show that, for every MBA-term t(x0, . . . , xn−1), S |= t ≈ 1

implies K |= t ≈ 1.
Firstly, to be proved that

G |= t ≈ 1 implies K0 |= t ≈ 1 (for every term t). (3.3.3)

Suppose G |= t ≈ 1. By definition of G, there are three cases.

Case 1 If K∗ ∩ S0 = ∅, then K0 = ∅ (by Lemma 3.3.5). Hence K0 |= t ≈ 1.

Case 2 If 1 ≤ Card(K∗ ∩ S0) < ω, then Pi |= t ≈ 1 where i = max{n |
Pn ∈ K∗}. Hence Pk |= t ≈ 1 and Pk ∈ V for every 1 ≤ k ≤ i

(by Lemma 3.3.6 and Corollary 3.3.7). Therefore K0 |= t ≈ 1 (by
Lemma 3.3.5 and by definition of i).

Case 3 If Card(K∗ ∩ S0) = ω, then Pω |= t ≈ 1. Hence Pk |= t ≈ 1 and
Pk ∈ V for every 1 ≤ k < ω (by Lemma 3.3.6 and Corollary 3.3.7).
Therefore K0 |= t ≈ 1 (by Lemma 3.3.5).

Secondly, to be proved that

H |= t ≈ 1 implies K1 |= t ≈ 1 (for every term t). (3.3.4)

Suppose H |= t ≈ 1. By definition of H , there are three cases.
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Case 1 If K∗ ∩ S1 = ∅, then K1 = ∅ (by Lemma 3.3.5). Hence K1 |= t ≈ 1.

Case 2 If 1 ≤ Card(K∗ ∩ S1) < ω, then P∞
j |= t ≈ 1 where j = max{m |

P∞
m ∈ K∗}. Hence P∞

k |= t ≈ 1 for every 1 ≤ k ≤ j and P∞
k ∈ V

(by Lemma 3.3.9 and Corollary 3.3.10). Therefore K1 |= t ≈ 1 (by
Lemma 3.3.5 and by definition of j).

Case 3 If Card(K∗ ∩ S1) = ω, then P∞
ω |= t ≈ 1. Hence P∞

k |= t ≈ 1 and
P∞

k ∈ V for every 1 ≤ k < ω (by Lemma 3.3.9 and Corollary 3.3.10).
Therefore K1 |= t ≈ 1 (by Lemma 3.3.5).

Finally, to be proved that

I |= t ≈ 1 implies K2 |= t ≈ 1 (for every term t). (3.3.5)

Suppose I |= t ≈ 1. By definition of I , there are two cases.

Case 1 If P∞
0 /∈ K∗, then K2 = ∅ (by Lemma 3.3.5). Hence K2 |= t ≈ 1.

Case 2 If P∞
0 ∈ K∗, then P∞

0 |= t ≈ 1. ThereforeK2 |= t ≈ 1 (by Lemma 3.3.5).

It follows from (3.3.3), (3.3.4), (3.3.5) that S |= t ≈ 1 implies K |= t ≈ 1

(for every MBA-term t). So V (S) = V , i.e. V is generated by S.

Corollary 3.3.15. There are countably many varieties of MBA’s.

3.4 Equational characterizations of MBA-varieties

In [9] D. Monk gives explicit equational characterizations for each variety
of monadic algebras. The purpose of this section is to provide an anal-
ogous result for monadic bounded algebras, namely, equationally char-
acterize each variety of MBA’s. As a consequence, we get that the equa-
tional theory of every MBA-variety is finitely based. Our algebraic expres-
sions are obtained by modifying certain formulas from modal logic due to
K. Segerberg [10].

We are going to sort all MBA-varieties via the previous section. By
Theorem 3.3.14, there are eighteen types of MBA-varieties:
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1. V (Pω,P
∞
ω ,P

∞
0 ),

2. V (Pω,P
∞
ω ),

3. V (P∞
ω ,P

∞
0 ),

4. V (Pω,P
∞
0 ),

5. V (Pω),

6. V (P∞
ω ),

7. V (P∞
0 ),

8. V (Pn,P
∞
ω ,P

∞
0 ), 1 ≤ n < ω,

9. V (Pn,P
∞
ω ), 1 ≤ n < ω,

10. V (Pn,P
∞
0 ), 1 ≤ n < ω,

11. V (Pn), 1 ≤ n < ω,

12. V (Pω,P
∞
m ,P

∞
0 ), 1 ≤ m < ω,

13. V (Pω,P
∞
m ), 1 ≤ m < ω,

14. V (P∞
m ,P

∞
0 ), 1 ≤ m < ω,

15. V (P∞
m ), 1 ≤ m < ω,

16. V (Pn,P
∞
m ,P

∞
0 ), 1 ≤ n < ω and 1 ≤ m < ω,

17. V (Pn,P
∞
m ), 1 ≤ n < ω and 1 ≤ m < ω,

18. V (∅).

Let us consider two cases both in (16) and in (17):

16a. V (Pn,P
∞
m ,P

∞
0 ), 1 ≤ n ≤ m < ω,

16b. V (Pn,P
∞
m ,P

∞
0 ), 1 ≤ m < n < ω,
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and

17a. V (Pn,P
∞
m ), 1 ≤ n ≤ m < ω,

17b. V (Pn,P
∞
m ), 1 ≤ m < n < ω.

Recall that

• Pi is isomorphic to an MBA-subalgebra of Pj for 1 ≤ i ≤ j ≤ ω (see
Lemma 3.3.6),

• P∞
i is isomorphic to an MBA-subalgebra of P∞

j for 1 ≤ i ≤ j ≤ ω

(see Lemma 3.3.9),

• Pi is an homomorphic image of P∞
i for 1 ≤ i ≤ ω (see Lemma 3.3.12).

Therefore some MBA-varieties are equal:

• V (Pω,P
∞
ω ,P

∞
0 ) = V (P∞

ω ,P
∞
0 ) = V (Pn,P

∞
ω ,P

∞
0 ) for 1 ≤ n < ω (see

items 1, 3, 8),

• V (Pω,P
∞
ω ) = V (P∞

ω ) = V (Pn,P
∞
ω ) for 1 ≤ n < ω (see items 2, 6, 9),

• V (P∞
m ,P

∞
0 ) = V (Pn,P

∞
m ,P

∞
0 ) for 1 ≤ n ≤ m < ω (see items 14, 16a),

• V (P∞
m ) = V (Pn,P

∞
m ) for 1 ≤ n ≤ m < ω (see items 15, 17a).

So there are actually fourteen types of MBA-varieties:

1. V (P∞
ω ,P

∞
0 ),

2. V (P∞
ω ),

3. V (Pω,P
∞
0 ),

4. V (Pω),

5. V (P∞
0 ),

6. V (Pn,P
∞
0 ), 1 ≤ n < ω,
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7. V (Pn), 1 ≤ n < ω,

8. V (Pω,P
∞
m ,P

∞
0 ), 1 ≤ m < ω,

9. V (Pω,P
∞
m ), 1 ≤ m < ω,

10. V (P∞
m ,P

∞
0 ), 1 ≤ m < ω,

11. V (Pn,P
∞
m ,P

∞
0 ), 1 ≤ m < n < ω,

12. V (P∞
m ), 1 ≤ m < ω,

13. V (Pn,P
∞
m ), 1 ≤ m < n < ω,

14. V (∅).

The goal is to find equations which characterize each of them.

Definition 3.4.1. V̄ is the variety of all MBA’s.

Definition 3.4.2. V0 is the variety of all one-element MBA’s.

So V0 = V (∅) and V̄ = V (P∞
ω ,P

∞
0 ).

Let {v0, v1, . . . } be a set of variables.

Definition 3.4.3 (cf. [10, p. 52]). For 1 ≤ n < ω, denote the MBA-term∧
0≤i≤n

∃(v0 ∧ · · · ∧ vi−1 ∧ v′i) (3.4.1)

by Altn.

Note that Altn is not defined for n = ω.

Definition 3.4.4 (cf. [9, p. 54]). A set Γ of MBA-equations characterizes a set L
of MBA’s relative to V̄ (or, L is characterized by Γ relative to V̄ ) iff L = {A ∈
V̄ | A |= Γ}.

Recall that to distinguish operations and constants in different MBA’s
we use superscripts:
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• P∞
k = (P∞

k ,∩,∪,′ ,0P∞k ,1P∞k , EP∞k ,∃P∞k ),

• Pk = (Pk,∩,∪,′ ,0Pk ,1Pk , EPk ,∃Pk),

• P∞
0 = (P∞

0 ,∩,∪,′ ,0P∞0 ,1P∞0 , EP∞0 ,∃P∞0 ).

Lemma 3.4.5. For 1 ≤ n < ω, the following conditions are equivalent:

1. P∞
k |= Altn ≈ 0;

2. Pk |= Altn ≈ 0;

3. k ≤ n.

In other words, P∞
k |= Altn ≈ 0 iff there are at most n elements in EP∞k and

Pk |= Altn ≈ 0 iff there are at most n elements in EPk .

Proof. (1) ⇒ (2). By Lemma 3.3.12.
(2) ⇒ (3). Assume k > n. Then k − n ≥ 1. For every i < n, let pi =

{0, . . . , k − (i+ 2)}, and pn = ∅. So

k − (i+ 1) ∈ p0 ∩ · · · ∩ pi−1 ∩ p′i,

and therefore p0 ∩ · · · ∩ pi−1 ∩ p′i 6= ∅ (for each i ≤ n). Hence⋂
i≤n ∃Pk(p0 ∩ · · · ∩ pi−1 ∩ p′i) =

⋂
i≤n{0, . . . , n− 1} = {0, . . . , n− 1} 6= ∅

(since EPk = 1Pk and ∃Pk is basic). Thus Pk 6|= Altn ≈ 0.
(3) ⇒ (1). Assume that P∞

k 6|= Altn ≈ 0. Then⋂
i≤n ∃P∞k (p0 ∩ · · · ∩ pi−1 ∩ p′i) 6= ∅

for some p0, . . . , pn ∈ P∞
k (so p0, . . . , pn ⊆ {∞, 0, . . . , k − 1}). Then each

member of the intersection is nonempty. Therefore, by Definition 2.2.1 (1,6),

EP∞k ∩ p′0 6= ∅,

EP∞k ∩ p0 ∩ p′1 6= ∅,

EP∞k ∩ p0 ∩ p1 ∩ p′2 6= ∅,
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. . .

EP∞k ∩ p0 ∩ · · · ∩ pn−2 ∩ p′n−1 6= ∅,

EP∞k ∩ p0 ∩ · · · ∩ pn−1 ∩ p′n 6= ∅.

So we have that
1) EP∞k consists of k > 0 elements (by definition of P∞

k ),
2) EP∞k ∩ p0 consists of at most k − 1 > 0 elements,
3) EP∞k ∩ p0 ∩ p1 consists of at most k − 2 > 0 elements,
...
n) EP∞k ∩ p0 ∩ · · · ∩ pn−2 consists of at most k − (n− 1) > 0 elements,
n+1) EP∞k ∩ p0 ∩ · · · ∩ pn−1 consists of at most k − n > 0 elements.
Thus k > n.

Lemma 3.4.6. For every 1 ≤ n < ω, P∞
0 |= Altn ≈ 0.

Proof. Since ∃P∞0 p = ∅ for every p ∈ P∞
0 , we obtain the result.

Lemma 3.4.7. For 1 ≤ m < n ≤ ω, V (Pm) ⊂ V (Pn).

Proof. Suppose 1 ≤ m < n ≤ ω. Then Pm is isomorphic to an MBA-
subalgebra of Pn (by Lemma 3.3.6). Therefore V (Pm) ⊆ V (Pn). By Lem-
ma 3.4.5, Pm |= Altm ≈ 0. But Pn 6|= Altm ≈ 0 (otherwise n ≤ m). Thus
V (Pm) 6= V (Pn). So V (Pm) ⊂ V (Pn).

Lemma 3.4.8. For 1 ≤ m < n ≤ ω, V (P∞
m ) ⊂ V (P∞

n ).

Proof. Suppose 1 ≤ m < n ≤ ω. Then P∞
m is isomorphic to an MBA-

subalgebra of P∞
n (by Lemma 3.3.9). Therefore V (P∞

m ) ⊆ V (P∞
n ). By

Lemma 3.4.5, P∞
m |= Altm ≈ 0. But P∞

n 6|= Altm ≈ 0 (otherwise n ≤ m).
Thus V (P∞

m ) 6= V (P∞
n ). So V (P∞

m ) ⊂ V (P∞
n ).

Lemma 3.4.9. For every variety V of MBA’s, if

• P∞
0 ∈ V or
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• Pn ∈ V (for some 1 ≤ n ≤ ω) or

• P∞
m ∈ V (for some 1 ≤ m ≤ ω),

then V 6= V0.

Proof. Obvious.

Lemma 3.4.10. For 1 ≤ k ≤ ω and 1 ≤ n < ω,

P∞
k |= E ∨ (Altn)′ ≈ 1 iff P∞

k |= Altn ≈ 0.

Proof. The ⇐ part is obvious. For ⇒, assume P∞
k 6|= Altn ≈ 0. Then⋂

i≤n ∃P∞k (p0 ∩ · · · ∩ pi−1 ∩ p′i) 6= ∅

for some p0, . . . , pn ⊆ {∞, 0, . . . , n− 1}. Therefore⋂
i≤n ∃P∞k (p0 ∩ · · · ∩ pi−1 ∩ p′i) = {∞, 0, . . . , n− 1}

(since P∞
k is basic). Hence(⋂

i≤n ∃P∞k (p0 ∩ · · · ∩ pi−1 ∩ p′i)
)′

= ∅.

So

P∞
k 6|= E ∨ (Altn)′ ≈ 1

(since EP∞k = {0, . . . , k − 1} 6= {∞, 0, . . . , k − 1}).

Corollary 3.4.11. For 1 ≤ k ≤ ω and 1 ≤ n < ω, P∞
k |= E ∨ (Altn)′ ≈ 1 iff

k ≤ n.

The next technical lemma about certain inequalitites among MBA-va-
rieties will be applied many times in Facts 3.4.14-3.4.27.

Lemma 3.4.12. Let S be a set of MBA’s.

1. For 1 ≤ n ≤ ω, V (Pn) 6= V (S) where either P∞
m ∈ S (for some 1 ≤ m ≤

ω) or P∞
0 ∈ S.
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2. V (P∞
0 ) 6= V (S) where either Pn ∈ S (for some 1 ≤ n ≤ ω) or P∞

m ∈ S

(for some 1 ≤ m ≤ ω).

3. For 1 ≤ j ≤ ω, V (P∞
j ) 6= V (S) where P∞

0 ∈ S.

4. For 1 ≤ k ≤ ω and 1 ≤ j ≤ ω, V (Pk,P
∞
j ) 6= V (S) where P∞

0 ∈ S.

5. For 1 ≤ k ≤ ω, V (Pk,P
∞
0 ) 6= V (S) where P∞

m ∈ S (for some 1 ≤ m ≤ ω).

6. For 1 ≤ k ≤ ω and 1 ≤ j < m ≤ ω, V (Pk,P
∞
j ) 6= V (P∞

m ).

7. For 1 ≤ j ≤ m < n ≤ ω, V (P∞
j ) 6= V (Pn,P

∞
m ).

8. For 1 ≤ j ≤ m < n ≤ ω, V (P∞
j ,P

∞
0 ) 6= V (Pn,P

∞
m ,P

∞
0 ).

Proof. 1. Assume V (Pn) = V (S) where n and S satisfy the given condi-
tions. Since Pn |= E ≈ 1, we have V (Pn) |= E ≈ 1. Then V (S) |= E ≈ 1.
Hence either P∞

m |= E ≈ 1 (1 ≤ m ≤ ω) or P∞
0 |= E ≈ 1. But EP∞m 6= 1P∞m

and EP∞0 6= 1P∞0 .
2. Assume V (P∞

0 ) = V (S) where S satisfies the given condition. Since
P∞

0 |= E ≈ 0, we have V (P∞
0 ) |= E ≈ 0. Then V (S) |= E ≈ 0. Hence

either Pn |= E ≈ 0 (1 ≤ n ≤ ω) or P∞
m |= E ≈ 0 (1 ≤ m ≤ ω). But

EPn 6= 0Pn and EP∞m 6= 0P∞m .
3. Assume V (P∞

j ) = V (S) where j and S satisfy the given conditions.
Since P∞

j |= ∃E ≈ 1, we have V (P∞
j ) |= ∃E ≈ 1. Then V (S) |= ∃E ≈ 1.

Hence P∞
0 |= ∃E ≈ 1. But ∃P∞0 EP∞0 6= 1P∞0 .

4. Assume V (Pk,P
∞
j ) = V (S) where k, j, S satisfy the given condi-

tions. Since Pk,P
∞
j |= ∃E ≈ 1, we have V (Pk,P

∞
j ) |= ∃E ≈ 1. Then

V (S) |= ∃E ≈ 1. Hence P∞
0 |= ∃E ≈ 1. But ∃P∞0 EP∞0 6= 1P∞0 .

5. Assume V (Pk,P
∞
0 ) 6= V (S) where k and S satisfy the given condi-

tions. Since Pk,P
∞
0 |= E∨ (∃E)′ ≈ 1, we have V (Pk,P

∞
0 ) |= E∨ (∃E)′ ≈ 1.

Then V (S) |= E ∨ (∃E)′ ≈ 1. Hence P∞
m |= E ∨ (∃E)′ ≈ 1 (1 ≤ m ≤ ω). But

P∞
m 6|= E ∨ (∃E)′ ≈ 1.

6. Assume V (Pk,P
∞
j ) = V (P∞

m ) where k, j,m satisfy the given condi-
tions. Since Pk,P

∞
j |= E∨(Altj)

′ ≈ 1, we have V (Pk,P
∞
j ) |= E∨(Altj)

′ ≈ 1.
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Then V (P∞
m ) |= E ∨ (Altj)

′ ≈ 1. Hence P∞
m |= E ∨ (Altj)

′ ≈ 1. Therefore
m ≤ j (by Corollary 3.4.11). But j < m.

7. Assume V (P∞
j ) = V (Pn,P

∞
m ) where j, n,m satisfy the given con-

ditions. Since P∞
j |= Altj ≈ 0, we have V (P∞

j ) |= Altj ≈ 0. Then
V (Pn,P

∞
m ) |= Altj ≈ 0. Hence Pn |= Altj ≈ 0. Therefore n ≤ j (by

Lemma 3.4.5). So n < n.
8. Assume V (P∞

j ,P
∞
0 ) = V (Pn,P

∞
m ,P

∞
0 ) where j, n,m satisfy the given

conditions. Since P∞
j ,P

∞
0 |= Altj ≈ 0, we have V (P∞

j ,P
∞
0 ) |= Altj ≈ 0.

Then V (Pn,P
∞
m ,P

∞
0 ) |= Altj ≈ 0. Hence Pn |= Altj ≈ 0. Therefore n ≤ j

(by Lemma 3.4.5). So n < n.

The main result of the section is the following theorem, whose proof is
given in a series of fourteen facts.

Theorem 3.4.13. V (S) is characterized by a finite set Γ of MBA-equations rela-
tive to V̄ , where S and Γ are in the table below.

Proof. See Facts 3.4.14-3.4.27.

Fact S Γ

3.4.14 {P∞
ω ,P

∞
0 } ∅

3.4.15 {P∞
ω } {∃E ≈ 1}

3.4.16 {Pω,P
∞
0 } {E ∨ (∃E)′ ≈ 1}

3.4.17 {Pω} {E ≈ 1}
3.4.18 {P∞

0 } {E ≈ 0}
3.4.19 {Pn,P

∞
0 }, 1 ≤ n < ω {E ∨ (∃E)′ ≈ 1,Altn ≈ 0}

3.4.20 {Pn}, 1 ≤ n < ω {E ≈ 1,Altn ≈ 0}
3.4.21 {Pω,P

∞
n ,P

∞
0 }, 1 ≤ n < ω {E ∨ (Altn)′ ≈ 1}

3.4.22 {Pω,P
∞
n }, 1 ≤ n < ω {∃E ≈ 1, E ∨ (Altn)′ ≈ 1}

3.4.23 {P∞
n ,P

∞
0 }, 1 ≤ n < ω {Altn ≈ 0}

3.4.24 {Pn,P
∞
m ,P

∞
0 }, 1 ≤ m < n < ω {Altn ≈ 0, E ∨ (Altm)′ ≈ 1}

3.4.25 {P∞
n }, 1 ≤ n < ω {∃E ≈ 1,Altn ≈ 0}

3.4.26 {Pn,P
∞
m}, 1 ≤ m < n < ω {∃E ≈ 1,Altn ≈ 0, E ∨ (Altm)′ ≈ 1}

3.4.27 ∅ {v0 ≈ v1}
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In Facts 3.4.14-3.4.27, we characterize each of the fourteen types of
MBA-varieties. Since {A ∈ V̄ | A |= Σ}, where Σ is a set of MBA-
equations, is an equational class of MBA’s, {A ∈ V̄ | A |= Σ} is an
MBA-variety (by Theorem 3.1.11). Therefore, by Theorem 3.3.14, there
exist 1 ≤ i ≤ ω, 1 ≤ j ≤ ω and a subset S ⊆ {Pi,P

∞
j ,P

∞
0 } such that

V (S) = {A ∈ V̄ | A |= Σ}. We stipulate that in the proofs Facts 3.4.14-
3.4.27 all this will be shortened to the phrase “Since {A ∈ V̄ | A |= Σ} is
an equational class of MBA’s, V (S) = {A ∈ V̄ | A |= Σ} where S consists
of at most three special MBA’s”.

Fact 3.4.14. V (P∞
ω ,P

∞
0 )(= V̄ ) is characterized by ∅ relative to V̄ .

Proof. Since V̄ = {A ∈ V̄ | A |= ∅}, V̄ is characterized by ∅ relative to V̄ .
So V (P∞

ω ,P
∞
0 ) is characterized by ∅ relative to V̄ .

Fact 3.4.15. V (P∞
ω ) (= V (Pn,P

∞
ω ) for every 1 ≤ n ≤ ω) is characterized by

{∃E ≈ 1} relative to V̄ .

Proof. To be proved that V (P∞
ω ) = {A ∈ V̄ | A |= ∃E ≈ 1}. Since P∞

ω |=
∃E ≈ 1, we have V (P∞

ω ) ⊆ {A ∈ V̄ | A |= ∃E ≈ 1} 6= V0. Since {A ∈
V̄ | A |= ∃E ≈ 1} is an equational class of MBA’s, V (S) = {A ∈ V̄ | A |=
∃E ≈ 1} where S 6= ∅ consists of at most three special MBA’s.

Since P∞
0 6|= ∃E ≈ 1, we have P∞

0 /∈ S.
Assume S = {Pk} for some 1 ≤ k ≤ ω. Then V (Pk) ⊆ V (Pω) ⊆

V (P∞
ω ) ⊆ V (S) = V (Pk) and so V (Pk) = V (P∞

ω ). But V (Pk) 6= V (P∞
ω ) (by

Lemma 3.4.12 (1)).
Assume S = {P∞

m} for some 1 ≤ m < ω. Then V (P∞
m ) ⊂ V (P∞

ω ) [by
Lemma 3.4.8] ⊆ V (S) = V (P∞

m ). Hence V (P∞
m ) ⊂ V (P∞

m ).
Assume S = {Pk,P

∞
j } for some 1 ≤ k ≤ ω and 1 ≤ j < ω. Then

V (Pk,P
∞
j ) ⊆ V (Pω,P

∞
ω ) = V (P∞

ω ) ⊆ V (S) = V (Pk,P
∞
j ) and so V (Pk,P

∞
j )

= V (P∞
ω ). But V (Pk,P

∞
j ) 6= V (P∞

ω ) (by Lemma 3.4.12(6)).
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So it remains that either S = {Pn,P
∞
ω } (for some 1 ≤ n ≤ ω) or S =

{P∞
ω }. Since V (Pn,P

∞
ω ) = V (P∞

ω ) (for all 1 ≤ n ≤ ω), we have proved that
V (P∞

ω ) = {A ∈ V̄ | A |= ∃E ≈ 1} (= V (Pn,P
∞
ω ) for every 1 ≤ n ≤ ω).

Fact 3.4.16. V (Pω,P
∞
0 ) is characterized by {E ∨ (∃E)′ ≈ 1} relative to V̄ .

Proof. To be proved that V (Pω,P
∞
0 ) = {A ∈ V̄ | A |= E ∨ (∃E)′ ≈ 1}.

Since Pω,P
∞
0 |= E ∨ (∃E)′ ≈ 1, we have V (Pω,P

∞
0 ) ⊆ {A ∈ V̄ | A |=

E ∨ (∃E)′ ≈ 1} 6= V0. Since {A ∈ V̄ | A |= E ∨ (∃E)′ ≈ 1} is an equational
class of MBA’s, V (S) = {A ∈ V̄ | A |= E∨(∃E)′ ≈ 1}where S 6= ∅ consists
of at most three special MBA’s.

Since P∞
n 6|= E ∨ (∃E)′ ≈ 1, we have P∞

n /∈ S for any 1 ≤ n ≤ ω.
Assume S = {P∞

0 }. Then V (P∞
0 ) ⊆ V (Pω,P

∞
0 ) ⊆ V (S) = V (P∞

0 ) and
so V (P∞

0 ) = V (Pω,P
∞
0 ). But V (P∞

0 ) 6= V (Pω,P
∞
0 ) (by Lemma 3.4.12(2)).

Assume S = {Pk} for some 1 ≤ k ≤ ω. Then V (Pk) ⊆ V (Pω) ⊆
V (Pω,P

∞
0 ) ⊆ V (S) = V (Pk) and so V (Pk) = V (Pω,P

∞
0 ). But V (Pk) 6=

V (Pω,P
∞
0 ) (by Lemma 3.4.12(1)).

So it remains that S = {Pk,P
∞
0 } for some 1 ≤ k ≤ ω. We are going to

prove that k = ω. Assume k < ω. Then V (Pk,P
∞
0 ) ⊆ V (Pω,P

∞
0 ) ⊆ V (S) =

V (Pk,P
∞
0 ) and so V (Pk,P

∞
0 ) = V (Pω,P

∞
0 ). Since Pk,P

∞
0 |= Altk ≈ 0, we

have Pω |= Altk ≈ 0. Hence ω ≤ k (by Lemma 3.4.5). But k < ω by our
assumption.

So S = {Pω,P
∞
0 }. Thus V (Pω,P

∞
0 ) = {A ∈ V̄ | A |= E ∨ (∃E)′ ≈

1}.

Fact 3.4.17. V (Pω) is characterized by {E ≈ 1} relative to V̄ .

Proof. To be proved that V (Pω) = {A ∈ V̄ | A |= E ≈ 1}. Since Pω |= E ≈
1, we have V (Pω) ⊆ {A ∈ V̄ | A |= E ≈ 1} 6= V0. Since {A ∈ V̄ | A |= E ≈
1} is an equational class of MBA’s, V (S) = {A ∈ V̄ | A |= E ≈ 1} where
S 6= ∅ consists of at most three special MBA’s.

Since neither P∞
m (for any 1 ≤ m ≤ ω) nor P∞

0 satisfies E ≈ 1, we ob-
tain that S = {Pn} for some 1 ≤ n ≤ ω. Assume 1 ≤ n < ω. Then V (Pn) ⊂
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V (Pω) [by Lemma 3.4.7] ⊆ V (S) = V (Pn) and so V (Pn) ⊂ V (Pn). There-
fore n = ω. Hence S = {Pω}. Thus V (Pω) = {A ∈ V̄ | A |= E ≈ 1}.

Fact 3.4.18. V (P∞
0 ) is characterized by {E ≈ 0} relative to V̄ .

Proof. To be proved that V (P∞
0 ) = {A ∈ V̄ | A |= E ≈ 0}. Since P∞

0 |=
E ≈ 0, we have V (P∞

0 ) ⊆ {A ∈ V̄ | A |= E ≈ 0} 6= V0. Since {A ∈ V̄ |
A |= E ≈ 0} is an equational class of MBA’s, V (S) = {A ∈ V̄ | A |= E ≈
0} where S 6= ∅ consists of at most three special MBA’s.

Since neither Pn (for any 1 ≤ n ≤ ω) nor P∞
m (for any 1 ≤ m ≤ ω)

satisfies E ≈ 0, we obtain that S = {P∞
0 }. Thus V (P∞

0 ) = {A ∈ V̄ | A |=
E ≈ 0}.

Fact 3.4.19. For 1 ≤ n < ω, V (Pn,P
∞
0 ) is characterized by {E ∨ (∃E)′ ≈

1,Altn ≈ 0} relative to V̄ .

Proof. To be proved that V (Pn,P
∞
0 ) = {A ∈ V̄ | A |= E∨ (∃E)′ ≈ 1,Altn ≈

0}. Since Pn,P
∞
0 |= E ∨ (∃E)′ ≈ 1,Altn ≈ 0, we have V (Pn,P

∞
0 ) ⊆ {A ∈

V̄ | A |= E ∨ (∃E)′ ≈ 1,Altn ≈ 0} 6= V0. Since {A ∈ V̄ | A |= E ∨ (∃E)′ ≈
1,Altn ≈ 0} is an equational class of MBA’s, V (S) = {A ∈ V̄ | A |=
E ∨ (∃E)′ ≈ 1,Altn ≈ 0} where S 6= ∅ consists of at most three special
MBA’s.

Since P∞
j 6|= E ∨ (∃E)′ ≈ 1, we have P∞

j /∈ S for any 1 ≤ j ≤ ω.
Assume S = {P∞

0 }. Then V (P∞
0 ) ⊆ V (Pn,P

∞
0 ) ⊆ V (S) = V (P∞

0 ) and
so V (P∞

0 ) = V (Pn,P
∞
0 ). But V (P∞

0 ) 6= V (Pn,P
∞
0 ) (by Lemma 3.4.12(2)).

Assume S = {Pk} for some 1 ≤ k ≤ ω. Since Pk |= Altn ≈ 0, we have
k ≤ n (by Lemma 3.4.5). Then V (Pk) ⊆ V (Pn) [since k ≤ n] ⊆ (Pn,P

∞
0 ) ⊆

V (S) = V (Pk) and so V (Pk) = V (Pn,P
∞
0 ). But V (Pk) 6= V (Pn,P

∞
0 ) (by

Lemma 3.4.12(1)).
So it remains that S = {Pk,P

∞
0 } for some 1 ≤ k ≤ ω. Since Pk |=

Altn ≈ 0, we have k ≤ n (by Lemma 3.4.5). Then V (Pk,P
∞
0 ) ⊆ V (Pn,P

∞
0 )

[since k ≤ n] ⊆ V (S) = V (Pk,P
∞
0 ) and so V (Pk,P

∞
0 ) = V (Pn,P

∞
0 ). Since

Pk,P
∞
0 |= Altk ≈ 0, we have V (Pk,P

∞
0 ) |= Altk ≈ 0. Then V (Pn,P

∞
0 ) |=
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Altk ≈ 0 and so Pn |= Altk ≈ 0. Therefore n ≤ k (by Lemma 3.4.5). Hence
k = n. So S = {Pn,P

∞
0 }. Thus V (Pn,P

∞
0 ) = {A ∈ V̄ | A |= E ∨ (∃E)′ ≈

1,Altn ≈ 0}.

Fact 3.4.20. For 1 ≤ n < ω, V (Pn) is characterized by {E ≈ 1,Altn ≈ 0}
relative to V̄ .

Proof. To be proved that V (Pn) = {A ∈ V̄ | A |= E ≈ 1,Altn ≈ 0}. Since
Pn |= E ≈ 1,Altn ≈ 0, we have V (Pn) ⊆ {A ∈ V̄ | A |= E ≈ 1,Altn ≈
0} 6= V0. Since {A ∈ V̄ | A |= E ≈ 1,Altn ≈ 0} is an equational class of
MBA’s, V (S) = {A ∈ V̄ | A |= E ≈ 1,Altn ≈ 0} where S 6= ∅ consists of at
most three special MBA’s.

Since neither P∞
m (for any 1 ≤ m ≤ ω) nor P∞

0 satisfies E ≈ 1, we
obtain that S = {Pk} for some 1 ≤ k ≤ ω. Then Pk |= Altn ≈ 0. Hence
k ≤ n (by Lemma 3.4.5). If k < n, then V (Pk) ⊂ V (Pn) [by Lemma 3.4.7]
⊆ V (S) = V (Pk) and so V (Pk) ⊂ V (Pk). Therefore k = n. So S = {Pn}.
Thus V (Pn) = {A ∈ V̄ | A |= E ≈ 1,Altn ≈ 0}.

Fact 3.4.21. For 1 ≤ n < ω, V (Pω,P
∞
n ,P

∞
0 ) is characterized by {E ∨ (Altn)′ ≈

1} relative to V̄ .

Proof. To be proved that V (Pω,P
∞
n ,P

∞
0 ) = {A ∈ V̄ | A |= E ∨ (Altn)′ ≈ 1}.

Since Pω,P
∞
n ,P

∞
0 |= E ∨ (Altn)′ ≈ 1, we have V (Pω,P

∞
n ,P

∞
0 ) ⊆ {A ∈ V̄ |

A |= E ∨ (Altn)′ ≈ 1} 6= V0. Since {A ∈ V̄ | A |= E ∨ (Altn)′ ≈ 1} is an
equational class of MBA’s, V (S) = {A ∈ V̄ | A |= E ∨ (Altn)′ ≈ 1} where
S 6= ∅ consists of at most three special MBA’s.

Assume S = {P∞
0 }. Then V (P∞

0 ) ⊆ V (Pω,P
∞
n ,P

∞
0 ) ⊆ V (S) = V (P∞

0 )

and so V (P∞
0 ) = V (Pω,P

∞
n ,P

∞
0 ). But V (P∞

0 ) 6= V (Pω,P
∞
n ,P

∞
0 ) (by Lem-

ma 3.4.12(2)).
Assume S = {Pk} for some 1 ≤ k ≤ ω. Then V (Pk) ⊆ V (Pω) ⊆

V (Pω,P
∞
n ,P

∞
0 ) ⊆ V (S) = V (Pk) and so V (Pk) = V (Pω,P

∞
n ,P

∞
0 ). But

V (Pk) 6= V (Pω,P
∞
n ,P

∞
0 ) (by Lemma 3.4.12(1)).

Assume S = {P∞
j } for some 1 ≤ j ≤ ω. Since P∞

j |= E ∨ (Altn)′ ≈ 1,
we have j ≤ n (by Corollary 3.4.11). Then V (P∞

j ) ⊆ V (P∞
n ) [since j ≤ n]



CHAPTER 3. MBA-VARIETIES 76

⊆ V (Pω,P
∞
n ,P

∞
0 ) ⊆ V (S) = V (P∞

j ) and so V (P∞
j ) = V (Pω,P

∞
n ,P

∞
0 ). But

V (P∞
j ) 6= V (Pω,P

∞
n ,P

∞
0 ) (by Lemma 3.4.12(3)).

Assume S = {Pk,P
∞
0 } for some 1 ≤ k ≤ ω. Then V (Pk,P

∞
0 ) ⊆

V (Pω,P
∞
0 ) ⊆ V (Pω,P

∞
n ,P

∞
0 ) ⊆ V (S) = V (Pk,P

∞
0 ) and so V (Pk,P

∞
0 ) =

V (Pω,P
∞
n ,P

∞
0 ). But V (Pk,P

∞
0 ) 6= V (Pω,P

∞
n ,P

∞
0 ) (by Lemma 3.4.12(5)).

Assume S = {P∞
j ,P

∞
0 } for some 1 ≤ j ≤ ω. Since P∞

j |= E∨(Altn)′ ≈ 1,
we have j ≤ n (by Corollary 3.4.11). Then V (P∞

j ,P
∞
0 ) ⊆ V (P∞

n ,P
∞
0 ) [since

j ≤ n] ⊆ V (Pω,P
∞
n ,P

∞
0 ) ⊆ V (S) = V (P∞

j ,P
∞
0 ) and so V (P∞

j ,P
∞
0 ) =

V (Pω,P
∞
n ,P

∞
0 ). But V (P∞

j ,P
∞
0 ) 6= V (Pω,P

∞
n ,P

∞
0 ) (by Lemma 3.4.12(8)).

Assume S = {Pk,P
∞
j } for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω. Since P∞

j |=
E ∨ (Altn)′ ≈ 1, we have j ≤ n (by Corollary 3.4.11). Then V (Pk,P

∞
j ) ⊆

V (Pk,P
∞
n ) [since j ≤ n] ⊆ V (Pω,P

∞
n ) ⊆ V (Pω,P

∞
n ,P

∞
0 ) ⊆ V (S) =

V (Pk,P
∞
j ) and so V (Pk,P

∞
j ) = V (Pω,P

∞
n ,P

∞
0 ). But V (Pk,P

∞
j ) 6= V (Pω,

P∞
n ,P

∞
0 ) (by Lemma 3.4.12(4)).

So it remains that S = {Pk,P
∞
j ,P

∞
0 } for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω.

Since P∞
j |= E ∨ (Altn)′ ≈ 1, we have j ≤ n (by Corollary 3.4.11). Then

V (Pk,P
∞
j ,P

∞
0 ) ⊆ V (Pω,P

∞
n ,P

∞
0 ) [since k ≤ ω and j ≤ n] ⊆ V (S) =

V (Pk,P
∞
j ,P

∞
0 ) and so V (Pk,P

∞
j ,P

∞
0 ) = V (Pω,P

∞
n ,P

∞
0 ).

Firstly, we are going to prove that j = n. Since Pk,P
∞
j ,P

∞
0 |= E ∨

(Altj)
′ ≈ 1, we have V (Pk,P

∞
j ,P

∞
0 ) |= E∨(Altj)

′ ≈ 1. Then V (Pω,P
∞
n ,P

∞
0 )

|= E ∨ (Altj)
′ ≈ 1 and so P∞

n |= E ∨ (Altj)
′ ≈ 1. Therefore n ≤ j (by Corol-

lary 3.4.11). Hence j = n. Thus S = {Pk,P
∞
n ,P

∞
0 } and V (Pk,P

∞
n ,P

∞
0 ) =

V (Pω,P
∞
n ,P

∞
0 ).

Secondly, we are going to prove that k > n. Assume k ≤ n. Then
V (Pk,P

∞
n ,P

∞
0 ) = V (P∞

n ,P
∞
0 ). Hence V (P∞

n ,P
∞
0 ) = V (Pω,P

∞
n ,P

∞
0 ). But

V (P∞
n ,P

∞
0 ) 6= V (Pω,P

∞
n ,P

∞
0 ) (by Lemma 3.4.12(8)).

Thirdly, we are going to prove that k = ω. Assume k < ω. Since k > n,
we have P∞

n |= Altk ≈ 0 (by Lemma 3.4.5). Hence Pk,P
∞
n ,P

∞
0 |= Altk ≈ 0

and V (Pk,P
∞
n ,P

∞
0 ) |= Altk ≈ 0. Then V (Pω,P

∞
n ,P

∞
0 ) |= Altk ≈ 0 and so

Pω |= Altk ≈ 0. Therefore ω ≤ k (by Lemma 3.4.5). But k < ω by our
assumption.
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So S = {Pω,P
∞
n ,P

∞}. Thus V (Pω,P
∞
n ,P

∞
0 ) = {A ∈ V̄ | A |= E ∨

(Altn)′ ≈ 1}.

Fact 3.4.22. For 1 ≤ n < ω, V (Pω,P
∞
n ) is characterized by {∃E ≈ 1, E ∨

(Altn)′ ≈ 1}.

Proof. To be proved that V (Pω,P
∞
n ) = {A ∈ V̄ | A |= ∃E ≈ 1, E∨ (Altn)′ ≈

1}. Since Pω,P
∞
n |= ∃E ≈ 1, E ∨ (Altn)′ ≈ 1, we have V (Pω,P

∞
n ) ⊆ {A ∈

V̄ | A |= ∃E ≈ 1, E ∨ (Altn)′ ≈ 1} 6= V0. Since {A ∈ V̄ | A |= ∃E ≈
1, E ∨ (Altn)′ ≈ 1} is an equational class of MBA’s, V (S) = {A ∈ V̄ | A |=
∃E ≈ 1, E ∨ (Altn)′ ≈ 1} where S 6= ∅ consists of at most three special
MBA’s.

Since P∞
0 6|= ∃E ≈ 1, we have P∞

0 /∈ S.
Assume S = {Pk} for some 1 ≤ k ≤ ω. Then V (Pk) ⊆ V (Pω) ⊆

V (Pω,P
∞
n ) ⊆ V (S) = V (Pk) and so V (Pk) = V (Pω,P

∞
n ). But V (Pk) 6=

V (Pω,P
∞
n ) (by Lemma 3.4.12(1)).

Assume S = {P∞
j } for some 1 ≤ j ≤ ω. Then P∞

j |= E ∨ (Altn)′ ≈
1. Hence j ≤ n (by Corollary 3.4.11). Therefore V (P∞

j ) ⊆ V (P∞
n ) [since

j ≤ n] ⊆ V (Pω,P
∞
n ) ⊆ V (S) = V (P∞

j ) and so V (P∞
j ) = V (Pω,P

∞
n ). But

V (P∞
j ) 6= V (Pω,P

∞
n ) (by Lemma 3.4.12(7)).

So it remains that S = {Pk,P
∞
j } for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω.

Then P∞
j |= E ∨ (Altn)′ ≈ 1. Hence j ≤ n (by Corollary 3.4.11).

We are going to prove that j = n. Since V (Pk,P
∞
j ) ⊆ V (Pk,P

∞
n )

[since j ≤ n] ⊆ V (Pω,P
∞
n ) ⊆ V (S) = V (Pk,P

∞
j ), we get V (Pk,P

∞
j ) =

V (Pω,P
∞
n ). Since Pk,P

∞
j |= E ∨ (Altj)

′ ≈ 1, we have V (Pk,P
∞
j ) |= E ∨

(Altj)
′ ≈ 1. Then V (Pω,P

∞
n ) |= E∨(Altj)

′ ≈ 1 and so P∞
n |= E∨(Altj)

′ ≈ 1.
Therefore n ≤ j (by Corollary 3.4.11). Hence j = n.

So S = {Pk,P
∞
n }. Thus V (Pk,P

∞
n ) = V (Pω,P

∞
n ).

If k ≤ n, then V (Pk,P
∞
n ) = V (P∞

n ) and so V (P∞
n ) = V (Pω,P

∞
n ). But

V (P∞
n ) 6= V (Pω,P

∞
n ) (by Lemma 3.4.12(7)). Therefore k > n.

We are going to prove that k = ω. Assume 1 ≤ k < ω (so n < k <

ω). Then Pk |= Altk ≈ 0 and P∞
n |= Altk ≈ 0 (by Lemma 3.4.5). Hence
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V (Pk,P
∞
n ) |= Altk ≈ 0. Then V (Pω,P

∞
n ) |= Altk ≈ 0 and so Pω |= Altk ≈ 0.

Therefore ω ≤ k (by Lemma 3.4.5). But k < ω by assumption. Hence
k = ω.

So S = {Pω,P
∞
n }. Thus V (Pω,P

∞
n ) = {A ∈ V̄ | A |= ∃E ≈ 1, E ∨

(Altn)′ ≈ 1}.

Fact 3.4.23. For 1 ≤ n < ω, V (P∞
n ,P

∞
0 )(= V (Pk,P

∞
n ,P

∞
0 )) for any 1 ≤ k ≤

n) is characterized by {Altn ≈ 0} relative to V̄ .

Proof. To be proved that V (P∞
n ,P

∞
0 ) = {A ∈ V̄ | A |= Altn ≈ 0}. Since

P∞
n ,P

∞
0 |= Altn ≈ 0, we have V (P∞

n ,P
∞
0 ) ⊆ {A ∈ V̄ | A |= Altn ≈ 0} 6= V0.

Since {A ∈ V̄ | A |= Altn ≈ 0} is an equational class of MBA’s, V (S) =

{A ∈ V̄ | A |= Altn ≈ 0} where S 6= ∅ consists of at most three special
MBA’s.

Assume S = {P∞
0 }. Then V (P∞

0 ) ⊆ V (P∞
n ,P

∞
0 ) ⊆ V (S) = V (P∞

0 ) and
so V (P∞

0 ) = V (P∞
n ,P

∞
0 ). But V (P∞

0 ) 6= V (P∞
n ,P

∞
0 ) (by Lemma 3.4.12(2)).

Assume S = {Pk} for some 1 ≤ k ≤ ω. Since Pk |= Altn ≈ 0, we
have k ≤ n (by Lemma 3.4.5). Then V (Pk) ⊆ V (Pn) [since k ≤ n] ⊆
V (P∞

n ) ⊆ V (P∞
n ,P

∞
0 ) ⊆ V (S) = V (Pk) and so V (Pk) = V (P∞

n ,P
∞
0 ). But

V (Pk) 6= V (P∞
n ,P

∞
0 ) (by Lemma 3.4.12(1)).

Assume S = {P∞
j } for some 1 ≤ j ≤ ω. Since P∞

j |= Altn ≈ 0, we
have j ≤ n (by Lemma 3.4.5). Then V (P∞

j ) ⊆ V (P∞
n ) [since j ≤ n] ⊆

V (P∞
n ,P

∞
0 ) ⊆ V (S) = V (P∞

j ) and so V (P∞
j ) = V (P∞

n ,P
∞
0 ). But V (P∞

j ) 6=
V (P∞

n ,P
∞
0 ) (by Lemma 3.4.12(3)).

Assume S = {Pk,P
∞
j } for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω. Since

Pk |= Altn ≈ 0 and P∞
j |= Altn ≈ 0, we have k ≤ n and j ≤ n (by

Lemma 3.4.5). Then V (Pk,P
∞
j ) ⊆ V (Pn,P

∞
n ) [since k, j ≤ n] ⊆ V (P∞

n ) ⊆
V (P∞

n ,P
∞
0 ) ⊆ V (S) = V (Pk,P

∞
j ) and so V (Pk,P

∞
j ) = V (P∞

n ,P
∞
0 ). But

V (Pk,P
∞
j ) 6= V (P∞

n ,P
∞
0 ) (by Lemma 3.4.12(4)).

Assume S = {Pk,P
∞
0 } for some 1 ≤ k ≤ ω. Since Pk |= Altn ≈ 0, we

have k ≤ n (by Lemma 3.4.5). Then V (Pk,P
∞
0 ) ⊆ V (Pn,P

∞
0 ) [since k ≤ n]

⊆ V (P∞
n ,P

∞
0 ) ⊆ V (S) = V (Pk,P

∞
0 ) and so V (Pk,P

∞
0 ) = V (P∞

n ,P
∞
0 ). But

V (Pk,P
∞
0 ) 6= V (P∞

n ,P
∞
0 ) (by Lemma 3.4.12(5)).



CHAPTER 3. MBA-VARIETIES 79

So it remains that either S = {P∞
j ,P

∞
0 } for some 1 ≤ j ≤ ω or S =

{Pk,P
∞
j ,P

∞
0 } for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω.

• Suppose S = {P∞
j ,P

∞
0 } for some 1 ≤ j ≤ ω. Since P∞

j |= Altn ≈ 0,
we have j ≤ n (by Lemma 3.4.5). Then V (P∞

j ,P
∞
0 ) ⊆ V (P∞

n ,P
∞
0 )

[since j ≤ n]⊆ V (S) = V (P∞
j ,P

∞
0 ) and so V (P∞

j ,P
∞
0 ) = V (P∞

n ,P
∞
0 ).

Since P∞
j ,P

∞
0 |= Altj ≈ 0, we have V (P∞

j ,P
∞
0 ) |= Altj ≈ 0. Then

V (P∞
n ,P

∞
0 ) |= Altj ≈ 0 and so P∞

n |= Altj ≈ 0. Therefore n ≤ j (by
Lemma 3.4.5). Hence j = n. Thus S = {P∞

n ,P
∞
0 } (in this case).

• Now suppose S = {Pk,P
∞
j ,P

∞
0 } for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω.

Since Pk |= Altn ≈ 0 and P∞
j |= Altn ≈ 0, we have k ≤ n and

j ≤ n (by Lemma 3.4.5). Then V (Pk,P
∞
j ,P

∞
0 ) ⊆ V (Pn,P

∞
n ,P

∞
0 )

[since k, j ≤ n] = V (P∞
n ,P

∞
0 ) ⊆ V (S) = V (Pk,P

∞
j ,P

∞
0 ) and so

V (Pk,P
∞
j ,P

∞
0 ) = V (P∞

n ,P
∞
0 ). Since Pk,P

∞
j ,P

∞
0 |= E ∨ (Altj)

′ ≈ 1,
we have V (Pk,P

∞
j ,P

∞
0 ) |= E ∨ (Altj)

′ ≈ 1. Then V (P∞
n ,P

∞
0 ) |=

E ∨ (Altj)
′ ≈ 1 and so P∞

n |= E ∨ (Altj)
′ ≈ 1. Therefore n ≤ j (by

Corollary 3.4.11). Hence j = n. Thus S = {Pk,P
∞
n ,P

∞
0 } and k ≤ n

(in this case).

So either S = {P∞
n ,P

∞
0 } or S = {Pk,P

∞
n ,P

∞
0 } for some 1 ≤ k ≤ n. Since

V (P∞
n ,P

∞
0 ) = V (Pk,P

∞
n ,P

∞
0 ) for all 1 ≤ k ≤ n, we have proved that

V (P∞
n ,P

∞
0 ) = {A ∈ V̄ | A |= Altn ≈ 0}(= V (Pk,P

∞
n ,P

∞
0 ) for any 1 ≤ k ≤

n).

Fact 3.4.24. For 1 ≤ m < n < ω, V (Pn,P
∞
m ,P

∞
0 ) is characterized by Γ =

{Altn ≈ 0, E ∨ (Altm)′ ≈ 1} relative to V̄ .

Proof. To be proved that V (Pn,P
∞
m ,P

∞
0 ) = {A ∈ V̄ | A |= Γ}. Since

Pn,P
∞
m ,P

∞
0 |= Γ, we have V (Pn,P

∞
m ,P

∞
0 ) ⊆ {A ∈ V̄ | A |= Γ} 6= V0. Since

{A ∈ V̄ | A |= Γ} is an equational class of MBA’s, V (S) = {A ∈ V̄ | A |=
Γ} where S 6= ∅ consists of at most three special MBA’s.

Assume S = {P∞
0 }. Then V (P∞

0 ) ⊆ V (Pn,P
∞
m ,P

∞
0 ) ⊆ V (S) = V (P∞

0 )

and so V (P∞
0 ) = V (Pn,P

∞
m ,P

∞
0 ). But V (P∞

0 ) 6= V (Pn,P
∞
m ,P

∞
0 ) (by Lem-

ma 3.4.12(2)).
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Assume S = {Pk} for some 1 ≤ k ≤ ω. Since Pk |= Altn ≈ 0, we
have k ≤ n (by Lemma 3.4.5). Then V (Pk) ⊆ V (Pn) [since k ≤ n] ⊆
V (Pn,P

∞
m ,P

∞) ⊆ V (S) = V (Pk) and so V (Pk) = V (Pn,P
∞
m ,P

∞
0 ). But

V (Pk) 6= V (Pn,P
∞
m ,P

∞
0 ) (by Lemma 3.4.12(1)).

Assume S = {P∞
j } for some 1 ≤ j ≤ ω. Since P∞

j |= E ∨ (Altm)′ ≈ 1,
we have j ≤ m (by Corollary 3.4.11). Then V (P∞

j ) ⊆ V (P∞
m ) [since j ≤ m]

⊆ V (Pn,P
∞
m ,P

∞) ⊆ V (S) = V (P∞
j ) and so V (P∞

j ) = V (Pn,P
∞
m ,P

∞
0 ). But

V (P∞
j ) 6= V (Pn,P

∞
m ,P

∞
0 ) (by Lemma 3.4.12(3)).

Assume S = {Pk,P
∞
0 } for some 1 ≤ k ≤ ω. Since Pk |= Altn ≈ 0,

we have k ≤ n (by Lemma 3.4.5). Then V (Pk,P
∞
0 ) ⊆ V (Pn,P

∞
0 ) [since

k ≤ n] ⊆ V (Pn,P
∞
m ,P

∞
0 ) ⊆ V (S) = V (Pk,P

∞
0 ) and so V (Pk,P

∞
0 ) =

V (Pn,P
∞
m ,P

∞
0 ). But V (Pk,P

∞
0 ) 6= V (Pn,P

∞
m ,P

∞
0 ) (by Lemma 3.4.12(5)).

Assume S = {Pk,P
∞
j } for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω. Since Pk |=

Altn ≈ 0 and P∞
j |= E ∨ (Altm)′ ≈ 1, we have k ≤ n (by Lemma 3.4.5) and

j ≤ m (by Corollary 3.4.11). Then V (Pk,P
∞
j ) ⊆ V (Pn,P

∞
m ) [since k ≤ n

and j ≤ m] ⊆ V (Pn,P
∞
m ,P

∞
0 ) ⊆ V (S) = V (Pk,P

∞
j ) and so V (Pk,P

∞
j ) =

V (Pn,P
∞
m ,P

∞
0 ). But V (Pk,P

∞
j ) 6= V (Pn,P

∞
m ,P

∞
0 ) (by Lemma 3.4.12(4)).

Assume S = {P∞
j ,P

∞
0 } for some 1 ≤ j ≤ ω. Since P∞

j |= E ∨
(Altm)′ ≈ 1, we have j ≤ m (by Corollary 3.4.11). Then V (P∞

j ,P
∞
0 ) ⊆

V (P∞
m ,P

∞
0 ) [since j ≤ m] ⊆ V (Pn,P

∞
m ,P

∞
0 ) ⊆ V (S) = V (P∞

j ,P
∞
0 ) and

so V (P∞
j ,P

∞
0 ) = V (Pn,P

∞
m ,P

∞
0 ). But V (P∞

j ,P
∞
0 ) 6= V (Pn,P

∞
m ,P

∞
0 ) (by

Lemma 3.4.12(8)).
So it remains that S = {Pk,P

∞
j ,P

∞
0 } for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω.

Since Pk |= Altn ≈ 0 and P∞
j |= E ∨ (Altm)′ ≈ 1, we have k ≤ n (by

Lemma 3.4.5) and j ≤ m (by Corollary 3.4.11). Then V (Pk,P
∞
j ,P

∞
0 ) ⊆

V (Pn,P
∞
m ,P

∞) [since k ≤ n and j ≤ m] ⊆ V (S) = V (Pk,P
∞
j ,P

∞
0 ) and so

V (Pk,P
∞
j ,P

∞
0 ) = V (Pn,P

∞
m ,P

∞
0 ).

Firstly, we are going to prove that j = m. Since Pk,P
∞
j ,P

∞
0 |= E ∨

(Altj)
′ ≈ 1, we have V (Pk,P

∞
j ,P

∞
0 ) |= E∨(Altj)

′ ≈ 1. Then V (Pn,P
∞
m ,P

∞
0 )

|= E ∨ (Altj)
′ ≈ 1 and so P∞

m |= E ∨ (Altj)
′ ≈ 1. Therefore m ≤ j (by Corol-

lary 3.4.11). Hence j = m. Thus S = {Pk,P
∞
m ,P

∞
0 } and V (Pk,P

∞
m ,P

∞
0 ) =



CHAPTER 3. MBA-VARIETIES 81

V (Pn,P
∞
m ,P

∞
0 ).

Secondly, we are going to prove that k > m. Assume k ≤ m. Then
V (Pk,P

∞
m ,P

∞
0 ) = V (P∞

m ,P
∞
0 ). Hence V (P∞

m ,P
∞
0 ) = V (Pn,P

∞
m ,P

∞
0 ). But

V (P∞
m ,P

∞
0 ) 6= V (Pn,P

∞
m ,P

∞
0 ) (by Lemma 3.4.12(8)).

Thirdly, we are going to prove that k = n. Since k > m, we have P∞
m |=

Altk ≈ 0. Hence Pk,P
∞
m ,P

∞
0 |= Altk ≈ 0 and V (Pk,P

∞
m ,P

∞
0 ) |= Altk ≈ 0.

Then V (Pn,P
∞
m ,P

∞
0 ) |= Altk ≈ 0 and so Pn |= Altk ≈ 0. Therefore n ≤ k

(by Lemma 3.4.5). Hence k = n.
So S = {Pn,P

∞
m ,P

∞
0 }. Thus V (Pn,P

∞
m ,P

∞
0 ) = {A ∈ V̄ | A |= Γ}.

Fact 3.4.25. For 1 ≤ n < ω, V (P∞
n ) (= V (Pk,P

∞
n ) for any 1 ≤ k ≤ n) is

characterized by {∃E ≈ 1,Altn ≈ 0} relative to V̄ .

Proof. To be proved that V (P∞
n ) = {A ∈ V̄ | A |= ∃E ≈ 1,Altn ≈ 0}. Since

P∞
n |= ∃E ≈ 1,Altn ≈ 0, we have V (P∞

n ) ⊆ {A ∈ V̄ | A |= ∃E ≈ 1,Altn ≈
0} 6= V0. Since {A ∈ V̄ | A |= ∃E ≈ 1,Altn ≈ 0} is an equational class of
MBA’s, V (S) = {A ∈ V̄ | A |= ∃E ≈ 1,Altn ≈ 0} where S 6= ∅ consists of
at most three special MBA’s.

Since P∞
0 6|= ∃E ≈ 1, we have P∞

0 /∈ S.
Assume S = {Pk} for some 1 ≤ k ≤ ω. Then Pk |= Altn ≈ 0. Hence

k ≤ n (by Lemma 3.4.5). Therefore V (P∞
n ) ⊆ V (S) = V (Pk) ⊆ V (Pn)

[since k ≤ n] ⊆ V (P∞
n ) and so V (P∞

n ) = V (Pk). But V (P∞
n ) 6= V (Pk) (by

Lemma 3.4.12(1)).
So it remains that either S = {P∞

j } (for some 1 ≤ j ≤ ω) or S =

{Pk,P
∞
j } (for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω).

• Suppose S = {P∞
j } for some 1 ≤ j ≤ ω. Then P∞

j |= Altn ≈ 0.
Hence j ≤ n (by Lemma 3.4.5). If j < n, then V (P∞

j ) ⊂ V (P∞
n ) [by

Lemma 3.4.8] ⊆ V (S) = V (P∞
j ) and so V (P∞

j ) ⊂ V (P∞
j ). Therefore

j = n. Thus S = {P∞
n } (in this case).

• Now suppose S = {Pk,P
∞
j } for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω.

Then Pk |= Altn ≈ 0 and P∞
j |= Altn ≈ 0. Hence k ≤ n and j ≤ n



CHAPTER 3. MBA-VARIETIES 82

(by Lemma 3.4.5). We are going to prove that j = n. Since Pk,P
∞
j |=

E ∨ (Altj)
′ ≈ 1, we have V (Pk,P

∞
j ) |= E ∨ (Altj)

′ ≈ 1. Then P∞
n |=

E ∨ (Altj)
′ ≈ 1 (since P∞

n ∈ V (P∞
n ) ⊆ V (S) = V (Pk,P

∞
j )). Therefore

n ≤ j (by Corollary 3.4.11). Hence j = n. Thus S = {Pk,P
∞
n } for

some 1 ≤ k ≤ n (in this case).

So either S = {P∞
n } or S = {Pk,P

∞
n } for some 1 ≤ k ≤ n. Since

V (P∞
n ) = V (Pk,P

∞
n ) for any 1 ≤ k ≤ n, we obtain that V (P∞

n ) = {A ∈ V̄ |
A |= ∃E ≈ 1,Altn ≈ 0} (= V (Pk,P

∞
n ) for any 1 ≤ k ≤ n).

Fact 3.4.26. For 1 ≤ m < n < ω, V (Pn,P
∞
m ) is characterized by Γ = {∃E ≈

1,Altn ≈ 0, E ∨ (Altm)′ ≈ 1} relative to V̄ .

Proof. To be proved that V (Pn,P
∞
m ) = {A ∈ V̄ | A |= Γ}. Since Pn,P

∞
m |=

Γ, we have V (Pn,P
∞
m ) ⊆ {A ∈ V̄ | A |= Γ} 6= V0. Since {A ∈ V̄ | A |= Γ}

is an equational class of MBA’s, V (S) = {A ∈ V̄ | A |= Γ} where S 6= ∅
consists of at most three special MBA’s.

Since P∞
0 6|= ∃E ≈ 1, we get P∞

0 /∈ S.
Assume S = {Pk} for some 1 ≤ k ≤ ω. Then Pk |= Altn ≈ 0.

Hence k ≤ n (by Lemma 3.4.5). Then V (Pk) ⊆ V (Pn) ⊆ V (Pn,P
∞
m ) ⊆

V (S) = V (Pk) and so V (Pk) = V (Pn,P
∞
m ). But V (Pk) 6= V (Pn,P

∞
m ) (by

Lemma 3.4.12(1)).
Assume S = {P∞

j } for some 1 ≤ j ≤ ω. Then P∞
j |= E ∨ (Altm)′ ≈ 1.

Hence j ≤ m (by Corollary 3.4.11). Therefore V (P∞
j ) ⊆ V (P∞

m ) [since
j ≤ m] ⊆ V (Pn,P

∞
m ) ⊆ V (S) = V (P∞

j ) and so V (P∞
j ) = V (Pn,P

∞
m ). But

V (P∞
j ) 6= V (Pn,P

∞
m ) (by Lemma 3.4.12(7)).

So it remains that S = {Pk,P
∞
j } for some 1 ≤ k ≤ ω and 1 ≤ j ≤ ω.

Then Pk |= Altn ≈ 0 and P∞
j |= E ∨ (Altm)′ ≈ 1. Hence k ≤ n (by

Lemma 3.4.5) and j ≤ m (by Corollary 3.4.11). Therefore V (Pk,P
∞
j ) ⊆

V (Pn,P
∞
m ) [since k ≤ n and j ≤ m]⊆ V (S) = V (Pk,P

∞
j ) and so V (Pk,P

∞
j )

= V (Pn,P
∞
m ).

We are going to prove that j = m. Since Pk,P
∞
j |= E ∨ (Altj)

′ ≈ 1, we
have V (Pk,P

∞
j ) |= E ∨ (Altj)

′ ≈ 1. Then V (Pn,P
∞
m ) |= E ∨ (Altj)

′ ≈ 1 and
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so P∞
m |= E ∨ (Altj)

′ ≈ 1. Hence m ≤ j (by Corollary 3.4.11). Thus j = m.
So S = {Pk,P

∞
m} and V (Pk,P

∞
m ) = V (Pn,P

∞
m ).

If k ≤ m, then V (Pk,P
∞
m ) = V (P∞

m ). Hence V (P∞
m ) = V (Pn,P

∞
m ). But

V (P∞
m ) 6= V (Pn,P

∞
m ) (by Lemma 3.4.12(7)). Thus k > m.

Next we are going to prove that k = n. Since k > m, we have Pk,P
∞
m |=

Altk ≈ 0. Hence V (Pk,P
∞
m ) |= Altk ≈ 0. Then V (Pn,P

∞
m ) |= Altk ≈ 0 and

so Pn |= Altk ≈ 0. Therefore n ≤ k (by Lemma 3.4.5). Hence k = n.
So S = {Pn,P

∞
m}. Thus V (Pn,P

∞
m ) = {A ∈ V̄ | A |= Γ}.

Fact 3.4.27. V (∅) is characterized by {v0 ≈ v1} relative to V̄ .

Proof. To be proved that V (∅) = {A ∈ V̄ | A |= v0 ≈ v1}. Part ⊆. Let
A ∈ V (∅). Hence A ∈ V0 (since V (∅) = V0). Then A ∈ V̄ (since V0 ⊆ V̄ )
and A |= v0 ≈ v1 (otherwise there exist at least two different elements in
A). Part⊇. Let A ∈ V̄ and A |= v0 ≈ v1. Then A 6= ∅ (since A is an algebra)
and p = q for all p, q ∈ A. So A is one-element. Therefore A ∈ V (∅).

Corollary 3.4.28. Let X be an infinite set of variables and V a variety of MBA’s.
Then IdV (X) is finitely based.

Proof. By Theorem 3.4.13, V = {A ∈ V̄ | A |= Γ} for some finite set Γ of
equations. To be proved that Axioms ∪ Γ |= IdV (X), where Axioms is the
set of six equations from Definition 2.2.1. Suppose A |= Axioms ∪ Γ. Then
A ∈ V̄ and A |= Γ. Hence A ∈ V . Thus Axioms ∪ Γ |= IdV (X). So IdV (X)

is finitely based.



Chapter 4

Finitely generated MBA’s

In [1] H. Bass considers finitely generated monadic algebras. The present
chapter, except Section 4.2, is similar to his paper. In Section 4.1 we in-
troduce (as in [1]) useful notations and prove that every finitely generated
MBA is finite (an upper bound on the number of elements is provided).
In Section 4.2 we show that the number of elements of a free MBA on
a finite set achieves its upper bound. Section 4.3 states a necessary and
sufficient condition under which certain maps between finitely generated
MBA’s can be extended to MBA-homomorphisms. In Section 4.4 we con-
struct a free MBA on any finite set. In Section 4.1 and Section 4.4 two
particular cases are considered explicitly.

4.1 Finitely generated MBA’s are finite

In this section we introduce (as in [1]) useful notations and prove that ev-
ery finitely generated MBA is finite (an upper bound on the number of
atoms and an upper bound on the number of elements are provided). For
better understanding, two particular cases of the notation are considered
explicitly. In addition, several other technical results are given.

Definition 4.1.1. D = {−1, 1}.

84
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Definition 4.1.2. For 0 ≤ n < ω, Dn = D × · · · ×D︸ ︷︷ ︸
n

. (Note that, in particular,

D0 = {∅}, i.e. D0 consists of only one zero-dimensional vector.)

Definition 4.1.3. For 0 ≤ n < ω, i < n and e ∈ Dn, ei is the ith coordinate of e.

Definition 4.1.4. For 0 ≤ n < ω and i < n, Dn
i = {e ∈ Dn | ei = 1}.

Let 0 ≤ r < ω and m = 2r (cases r = 0 and r = 1 are provided below).
We choose some definite enumeration {ei | 0 ≤ i < m} of Dr.

Suppose (M,∧,∨,′ ,0,1, E,∃) is an MBA and {p0, . . . , pr−1} ⊆ M.

Definition 4.1.5. For p ∈ M, p1 = p and p−1 = p′.

Definition 4.1.6. P = (p0, . . . , pr−1).

Definition 4.1.7. For e ∈ Dr, λP (e) =
∧

i<r p
ei
i .

Definition 4.1.8. λP = (λP (e0), . . . , λP (em−1)).

Definition 4.1.9. ∃λP = (∃λP (e0), . . . ,∃λP (em−1)).

Definition 4.1.10. For d ∈ Dm, λ∃λP (d) =
∧

i<m(∃λP (ei))di .

Definition 4.1.11. For i < m and d ∈ Dm
i , µλP,i(d) = λP (ei) ∧ E ∧ λ∃λP (d).

Definition 4.1.12. For i < m and d ∈ Dm, ηλP,i(d) = λP (ei) ∧ E ′ ∧ λ∃λP (d).

Note that P, λP, ∃λP are vectors, whereas λP (e), λ∃λP (d), µλP,i(d), ηλP,i(d)

are elements in M.
We are going to look at particular cases.
Let r = 0 . Then

• m = 1;

• Dr = D0 = {∅} and so enumerate D0 = {e0} where e0 = ∅;

• Dm = D1 = {(1), (−1)} and Dm
0 = D1

0 = {(1)};

• P = ∅ (zero-dimensional vector);
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• if e ∈ Dr(= D0), then e = e0 and so λP (e) = λP (e0) = λ∅(∅) = 1 (since∧
∅ = 1);

• λP = (λP (e0)) = (λ∅(∅)) = (1) (one dimensional vector whose single
coordinate is the unit element of M);

• ∃λP = (∃1) (one dimensional vector);

• if d ∈ Dm(= D1), then either d = (1) or d = (−1); so if d ∈ Dm(= D1),
then either

– λ∃λP (d) = λ(∃1)((1)) = (∃1)1 = ∃1 or

– λ∃λP (d) = λ(∃1)((−1)) = (∃1)−1 = (∃1)′;

• if i < m(= 1), then i = 0; if d ∈ Dm
0 (= D1

0), then d = (1); so if
i < m(= 1) and d ∈ Dm

i (= Dm
0 ), then there is only one µ-expression

µλP,i(d) = µ(1),0((1)) = λP (e0)∧E∧λ(∃1)((1)) = 1∧E∧(∃1)1 = E∧∃1
(although it is equal to E, it is better to keep it in this form);

• if i < m(= 1), then i = 0; if d ∈ Dm(= D1), then either d = (1) or
d = (−1); so if i < m and d ∈ Dm, then either

– ηλP,i(d) = η(1),0((1)) = λP (e0)∧E ′ ∧ λ(∃1)((1)) = 1∧E ′ ∧ (∃1)1 =

E ′ ∧ ∃1 or

– ηλP,i(d) = η(1),0((−1)) = λP (e0) ∧ E ′ ∧ λ(∃1)((−1)) = 1 ∧ E ′ ∧
(∃1)−1 = E ′ ∧ (∃1)′.

So there are one µ-expression and two η-expressions in this case.
Now let r = 1 . Then

• m = 2;

• Dr = D1 = {(1), (−1)} and so enumerate D1 = {e0, e1} where e0 =

(1), e1 = (−1) (one dimensional vectors);
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• Dm = D2 = {(1, 1), (−1, 1), (1,−1), (−1,−1)}, D2
0 = {(1, 1), (1,−1)}

and D2
1 = {(1, 1), (−1, 1)};

• P = (p0) (one dimensional vector);

• if e ∈ Dr(= D1), then either e = e0 or e = e1; so if e ∈ Dr, then either

– λP (e) = λP (e0) = λ(p0)(e
0) =

∧
i<1 p

e0
i

i = p
e0
0

0 = p1
0 = p0 or

– λP (e) = λP (e1) = λ(p0)(e
1) =

∧
i<1 p

e1
i

i = p
e1
0

0 = p−1
0 = p′0;

• λP = (λP (e0), λP (e1)) = (p0, p
′
0);

• ∃λP = (∃p0,∃(p′0));

• if d ∈ Dm(= D2), then one of the following holds:

– λ∃λP (d) = λ(∃p0,∃(p′0))((1, 1)) = (∃p0)
1 ∧ (∃(p′0))1 = ∃p0 ∧ ∃(p′0),

– λ∃λP (d) = λ(∃p0,∃(p′0))((−1, 1)) = (∃p0)
−1∧(∃(p′0))1 = (∃p0)

′∧∃(p′0),

– λ∃λP (d) = λ(∃p0,∃(p′0))((1,−1)) = (∃p0)
1∧(∃(p′0))−1 = ∃p0∧(∃(p′0))′,

– λ∃λP (d) = λ(∃p0,∃(p′0))((−1,−1)) = (∃p0)
−1 ∧ (∃(p′0))−1 = (∃p0)

′ ∧
(∃(p′0))′;

• if i < m(= 2), then either i = 0 or i = 1; if i = 0 and d ∈ Dm
i (= D2

0),
then either

– µλP,i(d) = µ(p0,p′0),0((1, 1)) = λP (e0)∧E ∧ λ(∃p0,∃(p′0))((1, 1)) = p0 ∧
E ∧ ∃p0 ∧ ∃(p′0) or

– µλP,i(d) = µ(p0,p′0),0((1,−1)) = λP (e0) ∧ E ∧ λ(∃p0,∃(p′0))((1,−1)) =

p0 ∧ E ∧ ∃p0 ∧ (∃(p′0))′;

if i = 1 and d ∈ Dm
i (= D2

1), then either

– µλP,i(d) = µ(p0,p′0),1((1, 1)) = λP (e1)∧E ∧ λ(∃p0,∃(p′0))((1, 1)) = p′0 ∧
E ∧ ∃p0 ∧ ∃(p′0) or
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– µλP,i(d) = µ(p0,p′0),1((−1, 1)) = λP (e1) ∧ E ∧ λ(∃p0,∃(p′0))((−1, 1)) =

p′0 ∧ E ∧ (∃p0)
′ ∧ ∃(p′0);

• if i < m(= 2), then either i = 0 or i = 1; if i = 0 and d ∈ Dm(= D2),
then one the following holds:

– ηλP,i(d) = η(p0,p′0),0((1, 1)) = λP (e0)∧E ′ ∧ λ(∃p0,∃(p′0))((1, 1)) = p0 ∧
E ′ ∧ ∃p0 ∧ ∃(p′0),

– ηλP,i(d) = η(p0,p′0),0((−1, 1)) = λP (e0) ∧ E ′ ∧ λ(∃p0,∃(p′0))((−1, 1)) =

p0 ∧ E ′ ∧ (∃p0)
′ ∧ ∃(p′0),

– ηλP,i(d) = η(p0,p′0),0((1,−1)) = λP (e0) ∧ E ′ ∧ λ(∃p0,∃(p′0))((1,−1)) =

p0 ∧ E ′ ∧ ∃p0 ∧ (∃(p′0))′,

– ηλP,i(d) = η(p0,p′0),0((−1,−1)) = λP (e0)∧E ′∧λ(∃p0,∃(p′0))((−1,−1)) =

p0 ∧ E ′ ∧ (∃p0)
′ ∧ (∃(p′0))′;

if i = 1 and d ∈ Dm(= D2), then one of the following holds:

– ηλP,i(d) = η(p0,p′0),1((1, 1)) = λP (e1)∧E ′ ∧ λ(∃p0,∃(p′0))((1, 1)) = p′0 ∧
E ′ ∧ ∃p0 ∧ ∃(p′0),

– ηλP,i(d) = η(p0,p′0),1((−1, 1)) = λP (e1) ∧ E ′ ∧ λ(∃p0,∃(p′0))((−1, 1)) =

p′0 ∧ E ′ ∧ (∃p0)
′ ∧ ∃(p′0),

– ηλP,i(d) = η(p0,p′0),1((1,−1)) = λP (e1) ∧ E ′ ∧ λ(∃p0,∃(p′0))((1,−1)) =

p′0 ∧ E ′ ∧ ∃p0 ∧ (∃(p′0))′,

– ηλP,i(d) = η(p0,p′0),1((−1,−1)) = λP (e1)∧E ′∧λ(∃p0,∃(p′0))((−1,−1)) =

p′0 ∧ E ′ ∧ (∃p0)
′ ∧ (∃(p′0))′.

So there are four µ-expressions and eight η-expressions in this case.

Definition 4.1.13. An MBA (M, E,∃) is free on a set of generators G ⊆ M

(or, (M, E,∃) is freely generated by a subset G ⊆ M) iff (i) G generates M,
and (ii) any map f0 of G into an MBA (A, E,∃) can be extended to an MBA-
homomorphism f : M → A.
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Definition 4.1.14. Let B be a Boolean algebra and σ = {p0, . . . , pn−1} be a finite
subset of B. σ is a partition of p ∈ B iff

• pi ∧ pj = 0 for i 6= j and

•
∨

i<n pi = p.

For future reference, we state some facts from the theory of Boolean
algebras (see [1]).

Lemma 4.1.15. Every finitely generated Boolean algebra is finite.

Lemma 4.1.16 (see [1, (1.1)]). If p0, . . . , pn−1 generate a Boolean algebra B, then
{λP (e) | e ∈ Dn} (where P = (p0, . . . , pn−1)) is a partition of 1 whose nonzero
elements are just the atoms of B.

Suppose (M, E,∃) is an MBA, 0 ≤ r < ω, m = 2r and {p0, . . . , pr−1} ⊆
M. Put P = (p0, . . . , pr−1).

Lemma 4.1.17. For i < m and d ∈ Dm
i , ∃(µλP,i(d)) = λ∃λP (d).

Proof.

∃(µλP,i(d)) = ∃
(
λP (ei) ∧ E ∧ λ∃λP (d)

)
= ∃

(
λP (ei) ∧ E ∧

(∧
j<m

(∃λP (ej))dj

))
= ∃

(
λP (ei) ∧ E

)
∧
(∧

j<m

(∃λP (ej))dj

)
[by Definition 2.2.1(3) and Lemma 2.2.6(13)]

= ∃λP (ei) ∧
(∧

j<m

(∃λP (ej))dj

)
[by Definition 2.2.1(6)]

=
∧
j<m

(∃λP (ej))dj [since di = 1]

= λ∃λP (d) [by Definition 4.1.10].
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Lemma 4.1.18. For i < m and d ∈ Dm, ∃(ηλP,i(d)) = 0.

Proof. ∃(ηλP,i(d)) = ∃
(
λP (ei) ∧ E ′ ∧ λ∃λP (d)

)
= 0 [by Lemma 2.2.6(4)].

Now suppose that (M, E,∃) is an MBA generated by {p0, . . . , pr−1} ⊆
M. Let A0 be the Boolean subalgebra of M generated by

{λP (ek) ∧ E, λP (ek) ∧ E ′,∃λP (ek) | k < m}.

So the Boolean algebra A0 is finite (by Lemma 4.1.15) and A0 ⊆ M. By
proving that M and A0 are equal as sets, we can conclude that every
finitely generated MBA is finite.

Lemma 4.1.19. p0, . . . , pr−1, E are in A0.

Proof. To be proved that p0 ∈ A0. p0 can be represented as follows

p0 = p0 ∧ 1 = p0 ∧ ((p0 ∧ · · · ∧ pr−1 ∧ E) ∨ (p0 ∧ · · · ∧ pr−1 ∧ E)′)

= p0 ∧ ((p0 ∧ · · · ∧ pr−1 ∧ E) ∨ (p′0 ∨ · · · ∨ p′r−1 ∨ E ′))

= (p0 ∧ · · · ∧ pr−1 ∧ E)∨

∨ ((p0 ∧ p′0) ∨ (p0 ∧ p′2) ∨ · · · ∨ (p0 ∧ p′r−1) ∨ (p0 ∧ E ′))

= (p0 ∧ · · · ∧ pr−1 ∧ E)∨

∨ ((p0 ∧ p′1) ∨ (p0 ∧ p′2) ∨ · · · ∨ (p0 ∧ p′r−1) ∨ (p0 ∧ E ′)).

Using the fact that a = (a ∧ b) ∨ (a ∧ b′), we obtain that

p0 ∧ p′1 =
∨

e2,e3,...,er−1,er∈{±1}

(
p0 ∧ p′1 ∧ p

e2
2 ∧ pe3

3 ∧ · · · ∧ per−1

r−1 ∧ Eer
)
,

p0 ∧ p′2 =
∨

e1,e3,...,er−1,er∈{±1}

(
p0 ∧ pe1

1 ∧ p′2 ∧ p
e3
3 ∧ · · · ∧ per−1

r−1 ∧ Eer
)
,

. . .

p0 ∧ p′r−1 =
∨

e1,e2,e3,...,er−2,er∈{±1}

(
p0 ∧ pe1

1 ∧ pe2
e ∧ pe3

3 ∧ · · · ∧ per−2

r−2 ∧ p′r−1 ∧ Eer
)
,

p0 ∧ E ′ =
∨

e1,e2,...,er−2,er−1∈{±1}

(
p0 ∧ pe1

1 ∧ pe2
2 ∧ · · · ∧ per−2

r−2 ∧ p
er−1

r−1 ∧ E ′) .
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So p0 ∧ p′1, . . . , p0 ∧ p′r−1, p0 ∧ E ′ are finite Boolean combinations of some
elements in {λP (ek) ∧ E, λP (ek) ∧ E ′,∃λP (ek) | k < m}. By substituting
them into the representation of p0, we get that p0 belongs to A0 (since A0

is closed under finite Boolean combinations).
Similarly it is possible to prove that p1, . . . , pr−1, E ∈ A0.

Lemma 4.1.20. {λP (ek) ∧ E, λP (ek) ∧ E ′ | k < m} is a partition of 1.

Proof. Since the collection consists of all possible combinations∧
i<r p

±
i ∧ E±,

the collection is a partition of 1.

Lemma 4.1.21.{(∧
i<m

(λP (ei)∧E)ci

)
∧
(∧

i<m

(λP (ei)∧E ′)c̄i

)
∧
(∧

i<m

(∃λP (ei))di

)∣∣∣c, c̄, d ∈ Dm

}
is a partition of 1 whose nonzero elements are just the atoms of the Boolean algebra
A0.

Proof. Since the set {λP (ek) ∧ E, λP (ek) ∧ E ′,∃λP (ek) | k < m} generates
the Boolean algebra A0, we just apply Lemma 4.1.16.

Lemma 4.1.22. Every atom of the Boolean algebra A0 is equal to either

• µλP,j(d), for some j < m and d ∈ Dm
j , or

• ηλP,j(d), for some j < m and d ∈ Dm.

Proof. Suppose a ∈ A0 is an atom. Hence a 6= 0. By Lemma 4.1.21,

a =

(∧
i<m

(λP (ei) ∧ E)ci

)
∧
(∧

i<m

(λP (ei) ∧ E ′)c̄i

)
∧
(∧

i<m

(∃λP (ei))di

)
(4.1.1)

for some c, c̄, d ∈ Dm.
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To be proved that precisely one element in {c0, . . . , cm−1, c̄0, . . . , c̄m−1}
is equal to 1. Since a 6= 0, we have(∧

i<m

(λP (ei) ∧ E)ci

)
∧
(∧

i<m

(λP (ei) ∧ E ′)c̄i

)
6= 0. (4.1.2)

If every element in {c0, . . . , cm−1, c̄0, . . . , c̄m−1} were equal to −1, then we
would obtain(∧

i<m

(λP (ei) ∧ E)ci

)
∧
(∧

i<m

(λP (ei) ∧ E ′)c̄i

)
=

(∧
i<m

(λP (ei) ∧ E)−1

)
∧
(∧

i<m

(λP (ei) ∧ E ′)−1

)
=

((∨
i<m

(λP (ei) ∧ E)

)
∨
(∨

i<m

(λP (ei) ∧ E ′)

))−1

= 1′ [by Lemma 4.1.20]

= 0.

Therefore at least one element in {c0, . . . , cm−1, c̄0, . . . , c̄m−1} is equal to 1.
Similarly (in particular, using Lemma 4.1.20) it is possible to prove that
such an element is the only one.

So precisely one element in {c0, . . . , cm−1, c̄0, . . . , c̄m−1} is equal to 1.
There are two cases:

Case 1 cj = 1 for some j < m (and others are −1). Using Lemma 4.1.20 and
the fact p ∧ q = 0 iff p ≤ q′ iff p ∧ q′ = p, we obtain

a = λP (ej) ∧ E ∧
(∧

i<m

(∃λP (ei))di

)
. (4.1.3)

It follows from a 6= 0 and λP (ej) ∧ E ≤ ∃λP (ej) that d ∈ Dm
j . Thus

a = µλP,j(d) and d ∈ Dm
j .

Case 2 c̄j = 1 for some j < m (and others are −1). Analogously,

a = λP (ej) ∧ E ′ ∧
(∧

i<m

(∃λP (ei))di

)
. (4.1.4)

Thus a = ηλP,j(d) and d ∈ Dm.
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Lemma 4.1.23. If a ∈ A0 is an atom, then ∃a ∈ A0.

Proof. By Lemma 4.1.22, there are two cases.
If a = µλP,j(d) for some j < m and d ∈ Dm

j , then ∃a = ∃(µλP,j(d)) =

λ∃λP (d) [by Lemma 4.1.17] =
∧

i<m(∃λP (ei))di ∈ A0 [by definition of A0].
If a = ηλP,j(d) for some j < m and d ∈ Dm, then ∃a = ∃(ηλP,j(d)) = 0

[by Lemma 4.1.18] ∈ A0.

Lemma 4.1.24. The Boolean algebra A0 is closed under ∃, i.e. ∃p ∈ A0 for all
p ∈ A0.

Proof. Suppose p ∈ A0. Let {a0, . . . , al−1} be the set of all atoms of A0 such
that ai ≤ p for i < l. Since A0 is a finite Boolean algebra, p =

∨
i<l ai, and

so ∃p = ∃
(∨

i<l ai

)
=
∨

i<l ∃ai ∈ A0 (by Lemma 4.1.23).

Theorem 4.1.25. The MBA (M, E,∃) is finite.

Proof. It follows from Lemma 4.1.19 and Lemma 4.1.24 that M = A0 as
sets. Since A0 is finite, we conlude that M is finite.

Theorem 4.1.26. The MBA (M, E,∃) has at most 3 · 2r · 22r−1 atoms.

Proof. Let a ∈ M be an atom. Hence a is an atom of A0 (since M = A0

as sets). Then, by Lemma 4.1.22, either a = µλP,j(d), for some j < m and
d ∈ Dm

j , or a = ηλP,j(d), for some j < m and d ∈ Dm. So it suffices to count
the number of elements of the set

{µλP,j(d) | j < m, d ∈ Dm
j } ∪ {ηλP,j(d) | j < m, d ∈ Dm}.

Thus there are at most

m · 2m−1 +m · 2m = (1 + 2) ·m · 2m−1 = 3 · 2r · 22r−1

atoms in (M, E,∃).

Since every element in M is a supremum of some finite set of atoms,
we have
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Corollary 4.1.27. There are at most 23·2r·22r−1 elements in (M, E,∃).

In particular, an MBA generated by the empty set has at most 3 atoms
and 8 elements and an MBA generated by one element has at most 12

atoms and 212 = 4096 elements.
Let us give other results which will be useful in the following sections.

Define

Ω = {µλP,i(d) | i < m, d ∈ Dm
i } ∪ {ηλP,i(d) | i < m, d ∈ Dm}. (4.1.5)

So Ω is a partition of 1 whose nonzero elements are just the atoms of
(M, E,∃).

Lemma 4.1.28. For every d ∈ Dm,

λ∃λP (d) =
∨

{i|di=1},k<m

{µλP,i(d), ηλP,k(d)}. (4.1.6)

Proof. Let d ∈ Dm be fixed.
If di = 1 for some i < m, then d ∈ Dm

i (hence µλP,i(d) is defined) and
µλP,i(d) = λP (ei) ∧ E ∧ λ∃λP (d) ≤ λ∃λP (d). For every k < m, ηλP,k(d) =

λP (ek) ∧ E ′ ∧ λ∃λP (d) ≤ λ∃λP (d).
Next to be proved that the other members of Ω are disjoint from λ∃λP (d).

Suppose c ∈ Dm
j and c 6= d (j may be equal to some i with di = 1). Then

λ∃λP (d) ∧ µλP,j(c) = λ∃λP (d) ∧ λP (ej) ∧ E ∧ λ∃λP (c) = 0 (since d 6= c).
Suppose c ∈ Dm and c 6= d. Then, for every k < m, λ∃λP (d) ∧ ηλP,k(c) =

λ∃λP (d) ∧ λP (ek) ∧ E ′ ∧ λ∃λP (c) = 0 (since d 6= c).
Thus we have proved (4.1.6) (since every element in (M, E,∃) is the

supremum of atoms it contains).

Corollary 4.1.29. For every i < m and d ∈ Dm
i ,

∃(µλP,i(d)) =
∨

{j|dj=1},k<m

{µλP,j(d), ηλP,k(d)}. (4.1.7)

Proof. Follows from Lemma 4.1.17 and Lemma 4.1.28.
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Lemma 4.1.30. For i < m,

λP (ei) =
∨

d∈Dm
i , c∈Dm

{µλP,i(d), ηλP,i(c)}. (4.1.8)

Proof. Let i < m be fixed.
If d ∈ Dm

i , then µλP,i(d) = λP (ei)∧E ∧λ∃λP (d) ≤ λP (ei). If c ∈ Dm, then
ηλP,i(c) = λP (ei) ∧ E ′ ∧ λ∃λP (c) ≤ λP (ei).

Next to be proved that the other members of Ω are disjoint from λP (ei).
Suppose j < m and j 6= i. Hence ei 6= ej . If d ∈ Dm

j , then λP (ei) ∧
µλP,j(d) = λP (ei) ∧ λP (ej) ∧E ∧ λ∃λP (d) = 0 (since ei 6= ej). If c ∈ Dm, then
λP (ei) ∧ ηλP,j(c) = λP (ei) ∧ λP (ej) ∧ E ′ ∧ λ∃λP (c) = 0 (since ei 6= ej).

Thus we have proved (4.1.8).

Lemma 4.1.31.
E =

∨
i<m,d∈Dm

i

µλP,i(d). (4.1.9)

Proof. For every i < m and d ∈ Dm
i , µλP,i(d) = λP (ei) ∧ E ∧ λ∃λP (d) ≤ E.

On the other hand, for every i < m and d ∈ Dm, E ∧ηλP,i(d) = E ∧λP (ei)∧
E ′ ∧ λ∃λP (d) = 0.

4.2 On the number of elements of a free MBA on

a finite set

The present section is concerned with the number of atoms and elements
of free MBA’s on finite sets. It is proved that the number of atoms and
the number of elements of a free MBA on a finite set achieves its upper
bound (see Theorem 4.1.26 and Corollary 4.1.27). The proof is based on
the properties of free MBA’s and does not require construction of the free
MBA’s as such.

Let (M, E,∃) be a free MBA on the set G = {p0, . . . , pr−1} ⊆ M. As
usual, let m = 2r, Dr = {e0, . . . , em−1}, P = (p0, . . . , pr−1).

Recall that
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Ω = {µλP,i(d) | i < m, d ∈ Dm
i } ∪ {ηλP,i(d) | i < m, d ∈ Dm}

is a partition of 1 whose nonzero elements are just the atoms of (M, E,∃).
By showing that each element in Ω is nonzero we will be able to prove that
there are exactly 3 · 2r · 22r−1 atoms in M (and so M has exactly 23·2r·22r−1

elements).

Lemma 4.2.1. For every i < m and d ∈ Dm
i , µλP,i(d) 6= 0.

Proof. LetW be a set consisting ofm elements. Then it is possible to choose
q0, . . . , qr−1 ⊆ W such that {q0, . . . , qr−1} freely generates the Boolean alge-
bra (P(W ),∩,∪,−,0,1) of all subsets of W . Therefore, for every e ∈ Dr,
qe0
0 ∩ · · · ∩ qer−1

r−1 = {w} for precisely one w ∈ W . So we enumerate W =

{w0, . . . , wm−1} according to {wi} = q
ei
0

0 ∩ · · · ∩ qei
r−1

r−1 (i < m).
Let i < m and d ∈ Dm

i be fixed. Our goal is to prove that µλP,i(d) 6= 0.
Define a marked directed graph Fi,d = (Wi,d, Ri,d, Ei,d) by

Wi,d = W,Ei,d = {wj | dj = 1, j < m}, Ri,d = Ei,d × Ei,d. (4.2.1)

Since d ∈ Dm
i , we have wi ∈ Ei,d. Obviously, Fi,d is a bounded graph.

Therefore the complex algebra PFi,d
is an MBA (by Lemma 2.2.11).

Let Q = (q0, . . . , qr−1).
To be proved that µλQ,i(d) 6= 0 (here we work in PFi,d

). Consider

µλQ,i(d) = q
ei
0

0 ∩ · · · ∩ qei
r−1

r−1 ∩ Ei,d ∩
(
〈Ri,d〉

(
q

e0
0

0 ∩ · · · ∩ qe0
r−1

r−1

))d0

∩ . . .

· · · ∩
(
〈Ri,d〉

(
q

em−1
0

0 ∩ · · · ∩ qem−1
r−1

r−1

))dm−1

= {wi} ∩ (〈Ri,d)〉{w0})d0 ∩ · · · ∩ (〈Ri,d〉{wm−1})dm−1 .

We are going to prove that the whole expression is equal to {wi}. Consider
dj for j < m. There are two cases:

• If dj = 1, then wj ∈ Ei,d ⇒ wiRi,dwj [since wi ∈ Ei,d] ⇒ wi ∈
(〈Ri,d〉{wj}) ⇒ wi ∈ (〈Ri,d〉{wj})dj .
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• If dj = −1, then wj /∈ Ei,d ⇒ 〈wi, wj〉 /∈ Ri,d ⇒ wi /∈ (〈Ri,d〉{wj}) ⇒
wi ∈ (〈Ri,d〉{wj})dj .

Thus {wi}∩ (〈Ri,d)〉{wj})dj = {wi}. So µλQ,i(d) = {wi}. Hence µλQ,i(d) 6= 0.
Now define a mapping f0 : G→ {q0, . . . , qr−1} by f0(pk) = qk for every

k < r. Then there is an MBA-homomorphism f : M → PFi,d
which ex-

tends f0 (since M is free on the set G of generators). Therefore µλP,i(d) 6= 0

otherwise µλQ,i(d) = f(µλP,i(d)) = f(0) = 0.

Lemma 4.2.2. For every i < m and d ∈ Dm, ηλP,i(d) 6= 0.

Proof. Let W and q0, . . . , qr−1 be as in previous lemma (see the first para-
graph of its proof). Then let U = {u0, v0, . . . , um−1, vm−1}. Define a map-
ping g : U → W by g(ui) = g(vi) = wi for every i < m.

Obviously, g is surjective. Then the mapping hg : P(W ) → P(U) is
a (injective) Boolean algebra homomorphism, where hg(X) = g−1(X) (cf.
Definition 3.1.25).

Note that hg({wi}) = {ui, vi} and hg({wi}) = hg

(
q

ei
0

0 ∩ · · · ∩ qei
r−1

r−1

)
=

(hg(q0))
ei
0 ∩ · · · ∩ (hg(qr−1))

ei
r−1 for every i < m. Hence

(hg(q0))
ei
0 ∩ · · · ∩ (hg(qr−1))

ei
r−1 = {ui, vi} (i < m). (4.2.2)

So we define p̄0, . . . , p̄r−1 ∈ P(U) by p̄k = hg(qk) for k < r.
Let i < m and d ∈ Dm be fixed. Our goal is to prove that ηλP,i(d) 6= 0.
Define an auxiliary relation Raux

i,d ⊆ U × U by

Raux
i,d = {〈ui, vi〉 | di = 1} ∪ {〈ui, uj〉, 〈ui, vj〉 | dj = 1, j < m, j 6= i}. (4.2.3)

Note that ui /∈ range(Raux
i,d ).

Define a marked directed graph Fi,d = (Wi,d, Ri,d, Ei,d) by

Wi,d = U,

Ri,d = Raux
i,d ∪

(
range(Raux

i,d )× range(Raux
i,d )

)
,

Ei,d = range(Raux
i,d ).

(4.2.4)
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So ui /∈ Ei,d, 〈ui, ui〉 /∈ Ri,d, and for all u, v ∈ Wi,d, uRi,dv implies v ∈
range(Raux

i,d ).
To be proved that Fi,d is a bounded graph.

• Ri,d is transitive. Suppose u, v, w ∈ Wi,d, uRi,dv and vRi,dw. Since
vRi,dw, we have w ∈ range(Raux

i,d ) (so uiR
aux
i,d w). Since uRi,dv, either

u = ui or u ∈ range(Raux
i,d ). If u = ui, then uRi,dw (since uiR

aux
i,d w). If

u ∈ range(Raux
i,d ), then uRi,dw (since w ∈ range(Raux

i,d )). Thus uRi,dw

in both cases.

• Ri,d is Euclidean. Let u, v, w ∈ Wi,d, uRi,dv and uRi,dw. Then v, w ∈
range(Raux

i,d ). Hence vRi,dw.

• ∀u, v ∈ Wi,d(uRi,dv → v ∈ Ei,d). Let u, v ∈ Wi,d and uRi,dv. Then
v ∈ range(Raux

i,d ). Hence v ∈ Ei,d.

• ∀u ∈ Wi,d(u ∈ Ei,d → uRi,du). Let u ∈ Ei,d. Then u ∈ range(Raux
i,d ).

Hence 〈u, u〉 ∈ range(Raux
i,d )× range(Raux

i,d ). Therefore uRi,du.

Therefore the complex algebra PFi,d
is an MBA (by Lemma 2.2.11).

Let Q = (p̄0, . . . , p̄r−1).
To be proved that ηλQ,i(d) 6= 0 (here we work in PFi,d

). Consider

ηλQ,i(d) = p̄
ei
0

0 ∩ · · · ∩ p̄ei
r−1

r−1 ∩ E ′
i,d ∩

(
〈Ri,d〉

(
p̄

e0
0

0 ∩ · · · ∩ p̄e0
r−1

r−1

))d0

∩ . . .

· · · ∩
(
〈Ri,d〉

(
p̄

em−1
0

0 ∩ · · · ∩ p̄em−1
r−1

r−1

))dm−1

= {ui, vi} ∩ E ′
i,d ∩ (〈Ri,d〉{u0, v0})d0 ∩ . . .

· · · ∩ (〈Ri,d〉{um−1, vm−1})dm−1 [see Equation 4.2.2].

We are going to prove that the whole expression contains ui. Since ui /∈
Ei,d, we have ui ∈ E ′

i,d. Consider dj for j < m with j 6= i. There are two
cases:

• dj = 1. Then uiR
aux
i,d uj ⇒ uiRi,duj ⇒ ui ∈ (〈Ri,d〉{uj, vj}) ⇒ ui ∈

(〈Ri,d〉{uj, vj})dj .
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• dj = −1. Then 〈ui, uj〉 /∈ Raux
i,d and 〈ui, vj〉 /∈ Raux

i,d . Hence 〈ui, uj〉 /∈
Ri,d and 〈ui, vj〉 /∈ Ri,d. Therefore ui /∈ (〈Ri,d〉{uj, vj}). So ui ∈
(〈Ri,d〉{uj, vj})dj .

So ui ∈ (〈Ri,d〉{uj, vj})dj . It remains to prove that ui ∈ (〈Ri,d〉{ui, vi})di .
There are two cases:

• di = 1. Then uiR
aux
i,d vi ⇒ uiRi,dvi ⇒ ui ∈ (〈Ri,d〉{ui, vi}) ⇒ ui ∈

(〈Ri,d〉{ui, vi})di .

• di = −1. Then 〈ui, vi〉 /∈ Raux
i,d . Hence 〈ui, vi〉 /∈ Ri,d. Therefore ui /∈

(〈Ri,d〉{ui, vi}). So ui ∈ (〈Ri,d〉{ui, vi})di .

Thus ui ∈ (〈Ri,d〉{ui, vi})di in both cases.
So ηλQ,i(d) 6= 0.
Now define a mapping f0 : G→ {p̄0, . . . , p̄r−1} by f0(pk) = p̄k for every

k < r. Then there is an MBA-homomorphism f : M → PFi,d
which ex-

tends f0 (since M is free on the set G of generators). Therefore µλP,i(d) 6= 0

otherwise µλQ,i(d) = f(µλP,i(d)) = f(0) = 0.

Theorem 4.2.3. Every MBA freely generated by r < ω many elements has ex-
actly 3 · 2r · 22r−1 atoms.

Proof. Follows from Lemma 4.2.1 and Lemma 4.2.2.

Corollary 4.2.4. Every MBA freely generated by r < ω many elements has
exactly 23·2r·22r−1 elements.

Let us compare the theorem and its corollary with the monadic case. In
[1, Theorem 4] H. Bass proves that the monadic algebra free on r elements
has exactly 2r ·22r−1 atoms and 22r·22r−1 elements. So, in particular, the MBA
and the monadic algebra freely generated by the empty set (i.e. r = 0)
have 8 and 2 elements, respectively, and the MBA and the monadic algebra
freely generated by one element (i.e. r = 1) have 212 = 4096 and 24 = 16

elements, respectively.
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We are going to draw the diagram of the MBA freely generated by the
empty set. The elementsE∧∃1,E ′∧∃1 andE ′∧(∃1)′ (see µ-, η-expressions
on p. 86) are the atoms of the MBA freely generated by the empty set. So
the diagram looks as follows:

1

qqqqqqqqqqqqq

OOOOOOOOOOOOOOO

∃1

LLLLLLLLLLLL E ∨ (∃1)′

rrrrrrrrrrr

NNNNNNNNNNN E ′

ppppppppppppp

E ∧ ∃1

MMMMMMMMMMMMM E ′ ∧ ∃1 E ′ ∧ (∃1)′

ooooooooooooo

0

4.3 Extensions of MBA-homomorphisms of finite

MBA’s

In this section we give a necessary and sufficient condition under which
certain maps between finitely generated MBA’s can be extended to MBA-
homomorphisms. The section may be considered as a preliminary to the
next section.

The following result is known from [1, p. 261]. Suppose A and B are
Boolean algebras, A is finite, with σ = {p0, . . . , pn−1} and τ = {t0, . . . , tn−1}
partitions of 1 in A and B, respectively. Define a map f0 : σ → τ by
f0(pi) = ti for every i < n.

Lemma 4.3.1 (H. Bass). Suppose σ contains all the atoms of the Boolean algebra
A. Then the map f0 can be extended to a Boolean homomorphism f : A → B iff
ti = 0 whenever pi = 0.

Proof. The necessity is an immediate consequence of the fact that f(0) = 0.
Suppose, conversely, that ti = 0 whenever pi = 0.
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To be proved that if pi ∈ σ is not an atom of A, then pi = 0. Assume
pi ∈ σ is not an atom and pi 6= 0. Then there is at least one atom a ∈ A

such that a ≤ pi. Hence a = pj for some j < n with j 6= i. Therefore
pi ∧ pj = pi ∧ a = a 6= 0 and i 6= j. But σ is a partition.

Define f : A → B by

f(pi0 ∨ · · · ∨ pik) = ti0 ∨ · · · ∨ tik .

This f is well defined since every element of A is uniquely a supremum of
atoms, and if extra pi’s which all equal zero are thrown in on the left, the
corresponding ti’s, by hypothesis, contribute nothing new on the right.
Moreover, f clearly extends f0 and commutes with all suprema. That f
commutes with complementation follows from the fact that the comple-
ment of a supremum of elements in a partition of 1 is just the supremum
of the remaining elements in that partition. Therefore f is the desired ho-
momorphism.

Now let (A, E,∃) and (B, E,∃) be MBA’s generated by σ = {p0, . . . , pr−1}
⊆ A and τ = {t0, . . . , tr−1} ⊆ B, respectively. Then let m = 2r, Dr =

{e0, . . . , em−1}, P = (p0, . . . , pr−1), T = (t0, . . . , tr−1), and

ΩA = {µλP,i(d) | i < m, d ∈ Dm
i } ∪ {ηλP,i(d) | i < m, d ∈ Dm}, (4.3.1)

ΩB = {µλT,i(d) | i < m, d ∈ Dm
i } ∪ {ηλT,i(d) | i < m, d ∈ Dm}. (4.3.2)

Theorem 4.3.2. The map f0 : σ → τ defined by f0(pj) = tj (j < r) can be
extended to an MBA-homomorphism f : A → B iff the following two conditions
hold:

1. For every i < m and d ∈ Dm
i , µλT,i(d) = 0 whenever µλP,i(d) = 0,

2. For every i < m and d ∈ Dm, ηλT,i(d) = 0 whenever ηλP,i(d) = 0.

Proof. Part ⇒. Suppose f0 can be extended to an MBA-homomorphism
f : A → B. Assume µλP,i(d) = 0 for some d ∈ Dm

i and i < m. Then

µλT,i(d) = f(µλP,i(d)) = f(0) = 0.
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Analogously with the second item.
Part⇐. Suppose both (1) and (2) hold. Define a mapping g0 : ΩA → ΩB

by

g0(p) =

µλT,i(d), if p = µλP,i(d) for some i < m and d ∈ Dm
i

ηλT,i(d), if p = ηλP,i(d) for some i < m and d ∈ Di.
(4.3.3)

Recall that ΩA and ΩB are partitions of 1 in A and B, respectively, and ΩA

contains all the atoms of A. Therefore we can apply Lemma 4.3.1 to g0. So
g0 can be extended to a Boolean homomorphism f : A → B.

To be proved that f(E) = E. Consider

f(E) = f

 ∨
i<m,d∈Dm

i

µλP,i(d)

 [by Lemma 4.1.31]

=
∨

i<m,d∈Dm
i

f (µλP,i(d)) [since f is a Boolean homomorphism]

=
∨

i<m,d∈Dm
i

g0 (µλP,i(d)) [since f extends g0]

=
∨

i<m,d∈Dm
i

µλT,i(d) [by definition of g0]

= E [by Lemma 4.1.31].

Next to be proved that f preserves ∃. It suffices by Definition 2.2.1(5)
to prove that f commutes with ∃ on atoms of A.

Firstly, let i < m and d ∈ Dm
i . Then
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f(∃µλP,i(d)) = f

 ∨
{j|dj=1},k<m

{µλP,j(d), ηλP,k(d)}

 [by Corollary 4.1.29]

=
∨

{j|dj=1},k<m

{f(µλP,j(d)), f(ηλP,k(d))}

[since f is a Boolean homomorphism]

=
∨

{j|dj=1},k<m

{g0(µλP,j(d)), g0(ηλP,k(d))} [since f extends g0]

=
∨

{j|dj=1},k<m

{µλT,j(d), ηλT,k(d)} [by definition of g0]

= ∃µλT,i(d) [by Corollary 4.1.29]

= ∃(g0(µλP,i(d))) [by definition of g0]

= ∃(f(µλP,i(d))) [since f extends g0] .

Thus f(∃µλP,i(d)) = ∃f(µλP,i(d)) for every i < m and d ∈ Dm
i .

Secondly, let i < m and d ∈ Dm. Then f(∃(ηλP,i(d))) = f(0) [by
Lemma 4.1.18] = 0 = ∃(ηλT,i(d)) [by Lemma 4.1.18] = ∃(g0(ηλP,i(d))) [by
definition of g0] = ∃(f(ηλP,i(d))) [since f extends g0]. Thus f(∃(ηλP,i(d))) =

∃(f(ηλP,i(d))) for every i < m and d ∈ Dm.
So f commutes with ∃ on atoms of A. Hence f preserves ∃.
It remains only to show that f extends f0 (i.e. f(pj) = tj for every

j < r). We know that, for every j < r,

pj =
∨

e∈Dr
j

λP (e) =
∨

e∈Dr
j

(
pe0

0 ∧ · · · ∧ pej−1

j−1 ∧ p1
j ∧ p

ej+1

j+1 ∧ · · · ∧ p
er−1

r−1

)
(4.3.4)

and

tj =
∨

e∈Dr
j

λT (e) =
∨

e∈Dr
j

(
te0
0 ∧ · · · ∧ tej−1

j−1 ∧ t1j ∧ t
ej+1

j+1 ∧ · · · ∧ t
er−1

r−1

)
. (4.3.5)

It therefore suffices to prove that f(λP (ek)) = λT (ek) for every k < m. For
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every k < m, we have

f(λP (ek)) = f

 ∨
d∈Dm

k , c∈Dm

{µλP,k(d), ηλP,k(c)}

 [by Lemma 4.1.30]

=
∨

d∈Dm
k , c∈Dm

{f(µλP,k(d)), f(ηλP,k(c))}

=
∨

d∈Dm
k , c∈Dm

{g0(µλP,k(d)), g0(ηλP,k(c))}

=
∨

d∈Dm
k , c∈Dm

{µλT,k(d), ηλT,k(c)}

= λT (ek) [by Lemma 4.1.30].

So f(pj) = f
(∨

e∈Dr
j
λP (e)

)
=
∨

e∈Dr
j
f(λP (e)) =

∨
e∈Dr

j
λT (e) = tj (for

every j < r). Hence f extends f0.
Thus f is an MBA-homomorphism which extends f0.

4.4 Free MBA’s on finite sets themselves

The purpose of this section is to construct free MBA’s on finite sets. Firstly,
a marked directed graph is defined. Secondly, we prove that this marked
directed graph is a bounded graph. Thirdly, certain subsets of the bounded
graph are defined. Finally, using results from the previous section, we
prove that the complex algebra of the bounded graph is a free MBA on
the set consisting of the subsets. For better understanding, two particular
cases are considered explicitly.

Let r < ω be fixed. Our goal is to construct the free MBA on r elements.
Let m = 2r, x0, . . . , xr−1 be variables, and X = (x0, . . . , xr−1). Choose a

definite enumeration Dr = {e0, . . . , em−1} and, as usual, put

Ω = {µλX,i(d) | i < m, d ∈ Dm
i } ∪ {ηλX,i(d) | i < m, d ∈ Dm}.

Note that µλX,i(d) and ηλX,i(d) are terms of the type {∧,∨,′ ,0,1, E,∃}



CHAPTER 4. FINITELY GENERATED MBA’S 105

over {x0, . . . , xr−1}. Since different terms as such are distinct objects, there
are 3 · 2r · 22r−1 distinct elements in Ω.

Define a marked directed graph F = (W,R,E) by

• W = Ω,

• E = {µλX,i(d) | i < m, d ∈ Dm
i },

• R =
⋃

i<m,d∈Dm
i
R[µλX,i(d)], where

R[µλX,i(d)] ={〈µλX,j(d), µλX,i(d)〉, 〈ηλX,k(d), µλX,i(d)〉 |

j < m such that dj = 1, k < m}.
(4.4.1)

So W −E = {ηλX,i(d) | i < m, d ∈ Dm}. Moreover, 〈µλX,i(d), µλX,i(d)〉 ∈
R[µλX,i(d)] (and hence 〈µλX,i(d), µλX,i(d)〉 ∈ R) for every i < m and d ∈ Dm

i .
We are going to look at particular cases.
Let r = 0. Then, as on page 85, we have

W = {µλX,i(d) | i < 1, d ∈ D1
i } ∪ {ηλX,i(d) | i < 1, d ∈ D1}

= {µλX,i(d) | i = 0, d ∈ D1
0 = {(1)}}

∪ {ηλX,i(d) | i = 0, d ∈ D1 = {(1), (−1)}}

= {µλX,0((1))} ∪ {ηλX,0((1)), ηλX,0((−1))}

= {E ∧ ∃1} ∪ {E ′ ∧ ∃1, E ′ ∧ (∃1)′}.

So E = {µλX,0((1))} = {E ∧ ∃1} and

R =
⋃

i<1,d∈D1
i

R[µλX,i(d)] = R[µλX,0((1))]

= {〈µλX,j((1)), µλX,0((1))〉, 〈ηλX,k((1)), µλX,0((1))〉 |

j < 1 such that (1)j = 1, k < 1}

= {〈µλX,0((1)), µλX,0((1))〉, 〈ηλX,0((1)), µλX,0((1))〉}

= {〈E ∧ ∃1, E ∧ ∃1〉, 〈E ′ ∧ ∃1, E ∧ ∃1〉}.
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In a picture the marked directed graph looks like

w0

!!DD
DD

DD
DD

w1

w2EE

where
w0 = ηλX,0((1)) = E ′ ∧ ∃1,
w1 = ηλX,0((−1)) = E ′ ∧ (∃1)′,
w2 = µλX,0((1)) = E ∧ ∃1.

(This is actually a bounded graph whose complex algebra is the MBA
freely generated by the empty set.)

Let r = 1. Then, as on page 86, we have

W = {µλX,i(d) | i < 2, d ∈ D2
i } ∪ {ηλX,i(d) | i < 2, d ∈ D2}

= {µλX,i(d) | i = 0, d ∈ D2
0} ∪ {µλX,i(d) | i = 1, d ∈ D2

1}

∪ {ηλX,i(d) | i = 0, d ∈ D2} ∪ {ηλX,i(d) | i = 1, d ∈ D2}

= {µλX,0((1, 1)), µλX,0((1,−1))} ∪ {µλX,1((1, 1)), µλX,1((−1, 1))}

∪ {ηλX,0((1, 1)), ηλX,0((−1, 1)), ηλX,0((1,−1)), ηλX,0((−1,−1))}

∪ {ηλX,1((1, 1)), ηλX,1((−1, 1)), ηλX,1((1,−1)), ηλX,1((−1,−1))}

= {x0 ∧ E ∧ ∃x0 ∧ ∃(x′0), x0 ∧ E ∧ ∃x0 ∧ (∃(x′0))′}

∪ {x′0 ∧ E ∧ ∃x0 ∧ ∃(x′0), x′0 ∧ E ∧ (∃x0)
′ ∧ ∃(x′0)}

∪ {x0 ∧ E ′ ∧ ∃x0 ∧ ∃(x′0), x0 ∧ E ′ ∧ (∃x0)
′ ∧ ∃(x′0),

x0 ∧ E ′ ∧ ∃x0 ∧ (∃(x′0))′, x0 ∧ E ′ ∧ (∃x0)
′ ∧ (∃(x′0))′}

∪ {x′0 ∧ E ′ ∧ ∃x0 ∧ ∃(x′0), x′0 ∧ E ′ ∧ (∃x0)
′ ∧ ∃(x′0),

x′0 ∧ E ′ ∧ ∃x0 ∧ (∃(x′0))′, x′0 ∧ E ′ ∧ (∃x0)
′ ∧ (∃(x′0))′}.

So

E = {µλX,0((1, 1)), µλX,0((1,−1)), µλX,1((1, 1)), µλX,1((−1, 1))}

= {x0 ∧ E ∧ ∃x0 ∧ ∃(x′0), x0 ∧ E ∧ ∃x0 ∧ (∃(x′0))′,

x′0 ∧ E ∧ ∃x0 ∧ ∃(x′0), x′0 ∧ E ∧ (∃x0)
′ ∧ ∃(x′0)}
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and

R =
⋃

i<2,d∈D2
i

R[µλX,i(d)] =
⋃

d∈D2
0

R[µλX,0(d)] ∪
⋃

d∈D2
1

R[µλX,1(d)]

= R[µλX,0((1, 1))] ∪R[µλX,0((1,−1))] ∪R[µλX,1((1, 1))] ∪R[µλX,1((−1, 1))],

where

R[µλX,0((1, 1))] = {〈µλX,j((1, 1)), µλX,0((1, 1))〉, 〈ηλX,k((1, 1)), µλX,0((1, 1))〉 |

j < 2 such that (1, 1)j = 1, k < 2}

= {〈µλX,0((1, 1)), µλX,0((1, 1))〉, 〈µλX,1((1, 1)), µλX,0((1, 1))〉,

〈ηλX,0((1, 1)), µλX,0((1, 1))〉, 〈ηλX,1((1, 1)), µλX,0((1, 1))〉}

= {〈x0 ∧ E ∧ ∃x0 ∧ ∃(x′0), x0 ∧ E ∧ ∃x0 ∧ ∃(x′0)〉,

〈x′0 ∧ E ∧ ∃x0 ∧ ∃(x′0), x0 ∧ E ∧ ∃x0 ∧ ∃(x′0)〉,

〈x0 ∧ E ′ ∧ ∃x0 ∧ ∃(x′0), x0 ∧ E ∧ ∃x0 ∧ ∃(x′0)〉,

〈x′0 ∧ E ′ ∧ ∃x0 ∧ ∃(x′0), x0 ∧ E ∧ ∃x0 ∧ ∃(x′0)〉},

R[µλX,0((1,−1))] = {〈µλX,j((1,−1)), µλX,0((1,−1))〉,

〈ηλX,k((1,−1)), µλX,0((1,−1))〉 | j < 2 such that (1,−1)j = 1, k < 2}

= {〈µλX,0((1,−1)), µλX,0((1,−1))〉, 〈ηλX,0((1,−1)), µλX,0((1,−1))〉,

〈ηλX,1((1,−1)), µλX,0((1,−1))〉}

= {〈x0 ∧ E ∧ ∃x0 ∧ (∃(x′0))′, x0 ∧ E ∧ ∃x0 ∧ (∃(x′0))′〉,

〈x0 ∧ E ′ ∧ ∃x0 ∧ (∃(x′0))′, x0 ∧ E ∧ ∃x0 ∧ (∃(x′0))′〉,

〈x′0 ∧ E ′ ∧ ∃x0 ∧ (∃(x′0))′, x0 ∧ E ∧ ∃x0 ∧ (∃(x′0))′〉},
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R[µλX,1((1, 1))] = {〈µλX,j((1, 1)), µλX,1((1, 1))〉, 〈ηλX,k((1, 1)), µλX,1((1, 1))〉 |

j < 2 such that (1, 1)j = 1, k < 2}

= {〈µλX,0((1, 1)), µλX,1((1, 1))〉, 〈µλX,1((1, 1)), µλX,1((1, 1))〉,

〈ηλX,0((1, 1)), µλX,1((1, 1))〉, 〈ηλX,1((1, 1)), µλX,1((1, 1))〉}

= {〈x0 ∧ E ∧ ∃x0 ∧ ∃(x′0), x′0 ∧ E ∧ ∃x0 ∧ ∃(x′0)〉,

〈x′0 ∧ E ∧ ∃x0 ∧ ∃(x′0), x′0 ∧ E ∧ ∃x0 ∧ ∃(x′0)〉,

〈x0 ∧ E ′ ∧ ∃x0 ∧ ∃(x′0), x′0 ∧ E ∧ ∃x0 ∧ ∃(x′0)〉,

〈x′0 ∧ E ′ ∧ ∃x0 ∧ ∃(x′0), x′0 ∧ E ∧ ∃x0 ∧ ∃(x′0)〉},

R[µλX,1((−1, 1))] = {〈µλX,j((−1, 1)), µλX,1((−1, 1))〉,

〈ηλX,k((−1, 1)), µλX,1((−1, 1))〉 | j < 2 such that (−1, 1)j = 1, k < 2}

= {〈µλX,1((−1, 1)), µλX,1((−1, 1))〉, 〈ηλX,0((−1, 1)), µλX,1((−1, 1))〉,

〈ηλX,1((−1, 1)), µλX,1((−1, 1))〉}

= {〈x′0 ∧ E ∧ (∃x0)
′ ∧ ∃(x′0), x′0 ∧ E ∧ (∃x0)

′ ∧ ∃(x′0)〉,

〈x0 ∧ E ′ ∧ (∃x0)
′ ∧ ∃(x′0), x′0 ∧ E ∧ (∃x0)

′ ∧ ∃(x′0)〉,

〈x′0 ∧ E ′ ∧ (∃x0)
′ ∧ ∃(x′0), x′0 ∧ E ∧ (∃x0)

′ ∧ ∃(x′0)〉}.

In a picture the marked directed graph looks like

w4

�� !!DD
DD

DD
DD

w8

��}}zz
zz

zz
zz

w6

��

w10

||yy
yy

yy
yy

w5

��

w9

}}zz
zz

zz
zz

w7 w11

w0EE
// w2EE

oo w1EE w3EE

where
w0 = µλX,0((1, 1)) = x0 ∧ E ∧ ∃x0 ∧ ∃(x′0),
w1 = µλX,0((1,−1)) = x0 ∧ E ∧ ∃x0 ∧ (∃(x′0))′,
w2 = µλX,1((1, 1)) = x′0 ∧ E ∧ ∃x0 ∧ ∃(x′0),
w3 = µλX,1((−1, 1)) = x′0 ∧ E ∧ (∃x0)

′ ∧ ∃(x′0),
w4 = ηλX,0((1, 1)) = x0 ∧ E ′ ∧ ∃x0 ∧ ∃(x′0),
w5 = ηλX,0((−1, 1)) = x0 ∧ E ′ ∧ (∃x0)

′ ∧ ∃(x′0),
w6 = ηλX,0((1,−1)) = x0 ∧ E ′ ∧ ∃x0 ∧ (∃(x′0))′,
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w7 = ηλX,0((−1,−1)) = x0 ∧ E ′ ∧ (∃x0)
′ ∧ (∃(x′0))′,

w8 = ηλX,1((1, 1)) = x′0 ∧ E ′ ∧ ∃x0 ∧ ∃(x′0),
w9 = ηλX,1((−1, 1)) = x′0 ∧ E ′ ∧ (∃x0)

′ ∧ ∃(x′0),
w10 = ηλX,1((1,−1)) = x′0 ∧ E ′ ∧ ∃x0 ∧ (∃(x′0))′,
w11 = ηλX,1((−1,−1)) = x′0 ∧ E ′ ∧ (∃x0)

′ ∧ (∃(x′0))′.
(This is actually a bounded graph whose complex algebra is an MBA freely
generated by a certain subset of {w0, . . . , w11}.)

We are going to prove several useful lemmas.

Lemma 4.4.1. Suppose i, j < m.

1. For d ∈ Dm
i and c ∈ Dm

j , µλX,i(d) = µλX,j(c) iff both i = j and d = c.

2. For d, c ∈ Dm, ηλX,i(d) = ηλX,j(c) iff both i = j and d = c.

3. For d ∈ Dm
i and c ∈ Dm, µλX,i(d) 6= ηλX,j(c).

Proof. Obvious.

Lemma 4.4.2. Suppose u, v ∈ W .

1. If 〈u, v〉 ∈ R, then v = µλX,i(d) for some i < m and d ∈ Dm
i .

2. For i < m and d ∈ Dm
i , 〈u, µλX,i(d)〉 ∈ R iff 〈u, µλX,i(d)〉 ∈ R[µλX,i(d)].

3. For i, j < m, d ∈ Dm
j and c ∈ Dm

i , 〈µλX,j(d), µλX,i(c)〉 ∈ R[µλX,i(c)] iff
d = c.

4. For i, j < m, d ∈ Dm and c ∈ Dm
j , 〈ηλX,i(d), µλX,j(c)〉 ∈ R[µλX,j(c)] iff

d = c.

Proof. 1. Let 〈u, v〉 ∈ R. Then 〈u, v〉 ∈ R[µλX,i(d)] for some i < m and
d ∈ Dm

i . Hence v = µλX,i(d) (by definition of R[µλX,i(d)]).
2. Let i < m and d ∈ Dm

i . The ⇐ part is by definition of R. Part ⇒.
Since 〈u, µλX,i(d)〉 ∈ R, we have 〈u, µλX,i(d)〉 ∈ R[µλX,j(c)] for some j < m

and c ∈ Dm
j . Hence µλX,i(d) = µλX,j(c) (by definition of R[µλX,j(c)]). Thus

〈u, µλX,i(d)〉 ∈ R[µλX,i(d)].
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3. Let d ∈ Dm
j and c ∈ Dm

i . The ⇐ part is by definition of R[µλX,i(c)].
Part ⇒. Since 〈µλX,j(d), µλX,i(c)〉 ∈ R[µλX,i(c)], we have µλX,j(d) = µλX,k(c)

for some k < m with ck = 1. Hence d = c (and j = k).
4. Let i, j < m, d ∈ Dm and c ∈ Dm

j . The ⇐ part is by definition
of R[µλX,j(c)]. Part ⇒. Since 〈ηλX,i(d), µλX,j(c)〉 ∈ R[µλX,j(c)], we have
ηλX,i(d) = ηλX,k(c) for some k < m. Hence d = c (and i = k).

Lemma 4.4.3. R is transitive.

Proof. Let u, v, w ∈ W , uRv and vRw. To be proved uRw.
Since uRv, we have 〈u, v〉 ∈ R[µλX,i0(d)] for some i0 < m and d ∈ Dm

i0
.

Hence v = µλX,i0(d), and either u = µλX,j0(d), for some j0 ∈ {j < m | dj =

1}, or u = ηλX,k0(d) for some k0 < m.
Since vRw, we have 〈v, w〉 ∈ R[µλX,i1(c)] for some i1 < m and c ∈ Dm

i1
.

Hence w = µλX,i1(c), and either v = µλX,j1(c), for some j1 ∈ {j < m | cj =

1}, or v = ηλX,k1(c), for some k1 < m.
Since we already know that v = µλX,i0(d), we obtain that µλX,i0(d) =

µλX,j1(c). So d = c (and i0 = j1). Hence w = µλX,i1(d). There are two cases:

• If u = µλX,j0(d) (for some j0 ∈ {j < m | dj = 1}), then 〈u,w〉 =

〈µλX,j0(d), µλX,i1(d)〉 ∈ R[µλX,i1(d)].

• If u = ηλX,k0(d) (for some k0 < m), then 〈u,w〉 = 〈ηλX,k0(d), µλX,i1(d)〉 ∈
R[µλX,i1(d)].

Thus in both cases 〈u,w〉 ∈ R[µλX,i1(d)]. So 〈u,w〉 ∈ R.

Lemma 4.4.4. R is Euclidean.

Proof. Let u, v, w ∈ W , uRv and uRw. To be proved vRw.
Since uRv, we have 〈u, v〉 ∈ R[µλX,i0(d)] for some i0 < m and d ∈ Dm

i0
.

Hence v = µλX,i0(d), and either u = µλX,j0(d), for some j0 ∈ {j < m | dj =

1}, or u = ηλX,k0(d), for some k0 < m.
Since uRw, we have 〈u,w〉 ∈ R[µλX,i1(c)] for some i1 < m and c ∈ Dm

i1
.

Hence w = µλX,i1(c), and either u = µλX,j1(c), for some j1 ∈ {j < m | cj =

1}, or u = ηλX,k1(c), for some k1 < m.
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There are actually two cases:

• u = µλX,j0(d) (for some j0 ∈ {j < m | dj = 1}) and u = µλX,j1(c) (for
some j1 ∈ {j < m | cj = 1}).

• u = ηλX,k0(d) (for some k0 < m) and u = ηλX,k1(c) (for some k1 < m).

From each of them follows that d = c.
Thus d = c. Hence v = µλX,i0(c). Therefore 〈v, w〉 = 〈µλX,i0(c), µλX,i1(c)〉

∈ R[µλX,i1(c)]. So 〈v, w〉 ∈ R.

Lemma 4.4.5. ∀u, v ∈ W (uRv → v ∈ E).

Proof. Let u, v ∈ W and uRv. Then 〈u, v〉 ∈ R[µλX,i(d)] for some i < m and
d ∈ Dm

i . Hence v = µλX,i(d). So v ∈ E.

Lemma 4.4.6. ∀u ∈ W (u ∈ E → uRu).

Proof. Let u ∈ W and u ∈ E. Then u = µλX,i(d) for some i < m and
d ∈ Dm

i . Since d ∈ Dm
i , we get that i ∈ {j < m | dj = 1}. Therefore

〈u, u〉 ∈ R[µλX,i(d)]. So 〈u, u〉 ∈ R.

Theorem 4.4.7. The marked directed graph F = (W,R,E) is a bounded graph
and the complex algebra PF is an MBA.

Proof. It follows from Lemmas 4.4.3 - 4.4.6 that F is a bounded graph.
Therefore PF is an MBA (by Lemma 2.2.11).

After the following technical facts, we will define r many elements in
P(W ) which freely generate the MBA PF .

Lemma 4.4.8. For every i < m,
⋂

k<r(D
r
k)

ei
k = {ei} where

(Dr
k)

ei
k =

Dr
k, if ei

k = 1

Dr −Dr
k, if ei

k = −1
(for every k < r).

Proof. Let i < m be fixed.
Part ⊆, suppose e ∈

⋂
k<r(D

r
k)

ei
k . Then e ∈ (Dr

k)
ei
k for all k < r. Hence
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ek =

1, if ei
k = 1

−1, if ei
k = −1

(for every k < r).

So ek = ei
k for every k < r. Thus e = ei.

Part ⊇. For every k < r, there are two cases:

• If ei
k = 1, then ei ∈ Dr

k and (Dr
k)

ei
k = Dr

k; hence ei ∈ (Dr
k)

ei
k .

• If ei
k = −1, then ei ∈ Dr−Dr

k and (Dr
k)

ei
k = Dr−Dr

k; hence ei ∈ (Dr
k)

ei
k .

Thus in both cases ei ∈ (Dr
k)

ei
k . So ei ∈

⋂
k<r(D

r
k)

ei
k .

Definition 4.4.9. For every k < r, define ∆k ⊆ m(= {0, . . . ,m− 1}) by

∆k = {j < m | ej ∈ Dr
k}. (4.4.2)

(Recall that Dr = {e0, . . . , em−1}.)

Definition 4.4.10. For every l ∈ {±1} and k < r, define

(∆k)
l =

∆k, if l = 1

m−∆k, if l = −1.
(4.4.3)

Corollary 4.4.11. For every i < m,
⋂

k<r(∆k)
ei
k = {i}.

Proof. Let i < m be fixed. Since m − ∆k = {j < m | ej ∈ (Dr − Dr
k)}, we

can write (∆k)
ei
k = {j < m | ej ∈ (Dr

k)
ei
k}. Therefore, by Lemma 4.4.8,⋂

k<r

(∆k)
ei
k =

⋂
k<r

{j < m | ej ∈ (Dr
k)

ei
k} =

{
j < m | ej ∈

⋂
k<r

(Dr
k)

ei
k

}
= {i}.

We are now ready to specify r many elements in P(W ) which freely
generate the MBA PF . For every k < r, define pk ∈ P(W ) by

pk =
⋃

j∈∆k

{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}. (4.4.4)

Consider particular cases. If r = 0, then we do not have any pk. Let
r = 1. Then k < r implies k = 0. Hence we have only one p0 ∈ P(W ).
Since
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∆0 = {j < 2 | ej ∈ D1
0 = {e0} = {(1)}} = {0},

D2
0 = {(1, 1), (1,−1)}

and

D2 = {(1, 1), (−1, 1), (1,−1), (−1,−1)},

we obtain

p0 =
⋃

j∈∆0

{µλX,j(d), ηλX,j(c) | d ∈ D2
j , c ∈ D2}

= {µλX,0(d), ηλX,0(c) | d ∈ D2
0, c ∈ D2}

= {µλX,0((1, 1)), µλX,0((1,−1)), ηλX,0((1, 1)), ηλX,0((−1, 1)),

ηλX,0((1,−1)), ηλX,0((−1,−1))}.

Using notation on page 108 we may write p0 = {w0, w1, w4, w5, w6, w7}.
Let P = (p0, . . . , pr−1).
Note that, by Lemma 4.4.1,

Ξ =
{
{µλX,j(d), ηλX,j(c) | d ∈ Dm

j , c ∈ Dm} | j < m
}

(4.4.5)

is a set-theoretic partition of W , i.e. the intersection of two distinct ele-
ments in Ξ is the empty set and the union of all elements in Ξ is W .

Lemma 4.4.12. For every i < m,

λP (ei) = {µλX,i(d), ηλX,i(c) | d ∈ Dm
i , c ∈ Dm}. (4.4.6)

Proof. Let i < m be fixed. Then

λP (ei) =
⋂
k<r

p
ei
k

k =
⋂
k<r

( ⋃
j∈∆k

{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}

)ei
k

=
⋂
k<r

 ⋃
j∈(∆k)

ei
k

{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}


=

⋃
j∈

„T
k<r(∆k)

ei
k

«{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}

= {µλX,i(d), ηλX,i(c) | d ∈ Dm
i , c ∈ Dm} [by Corollary 4.4.11].
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In the next two lemmas we will prove that µλP,i(d) 6= 0 (for every i < m

and d ∈ Dm
i ) and ηλP,i(d) 6= 0 (for every i < m and d ∈ Dm). The proofs

are similar.

Lemma 4.4.13. For every i0 < m and d∗ ∈ Dm
i0

, µλP,i0(d
∗) = {µλX,i0(d

∗)}.
(Note that µλP,i0(d

∗) is an MBA-expression and {µλX,i0(d
∗)} is a one-element

subset of W .)

Proof. Let i0 < m and d∗ ∈ Dm
i0

be fixed. Then

µλP,i0(d
∗) = λP (ei0) ∩ E ∩

⋂
j<m

(〈R〉λP (ej))d∗j

= {µλX,i0(d), ηλX,i0(c) | d ∈ Dm
i0
, c ∈ Dm}

∩ {µλX,i(d) | d ∈ Dm
i , i < m}

∩
(⋂

j<m

(
〈R〉{µλX,j(d), ηλX,j(c) | d ∈ Dm

j , c ∈ Dm}
)d∗j )

(by Lemma 4.4.12 and definition of E).
Part ⊆. Suppose u ∈ µλP,i0(d

∗)(u ∈ W ). Then, in particular, u ∈
λP (ei0) ∩ E. Hence u = µλX,i0(d̄) for some d̄ ∈ Dm

i0
. To be proved that

d̄ = d∗ (and so u = µλX,i0(d
∗)). For every coordinate d∗j , j < m, there are

two cases:

Case 1 d∗j = 1. Then u ∈ 〈R〉{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm} (since u ∈

(〈R〉λP (ej))d∗j ). Hence 〈u, µλX,j(d)〉 ∈ R for some d ∈ Dm
j (by defini-

tion of 〈R〉 and Lemma 4.4.2(1)). Therefore 〈u, µλX,j(d)〉 ∈ R[µλX,j(d)]

(by Lemma 4.4.2(2)). So 〈µλX,i0(d̄), µλX,j(d)〉 ∈ R[µλX,j(d)]. Hence
d̄ = d (by Lemma 4.4.2(3)). Thus d̄j = 1 (since d ∈ Dm

j ). Therefore
d∗j = d̄j .

Case 2 d∗j = −1. Then u /∈ 〈R〉{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm} (since

u ∈ (〈R〉λP (ej))d∗j ). Hence, in particular, 〈u, µλX,j(d)〉 /∈ R for all d ∈
Dm

j (by definition of 〈R〉). Therefore 〈u, µλX,j(d)〉 /∈ R[µλX,j(d)] for all
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d ∈ Dm
j (by Lemma 4.4.2(2)). So 〈µλX,i0(d̄), µλX,j(d)〉 /∈ R[µλX,j(d)] for

all d ∈ Dm
j . We claim that d̄ 6= d for all d ∈ Dm

j . If d̄ = d for some
d ∈ Dm

j , then 〈µλX,i0(d), µλX,j(d)〉 /∈ R[µλX,j(d)] which contradicts the
definition of R[µλX,j(d)]. Thus d̄j = −1. Therefore d∗j = d̄j .

So d̄j = d∗j for every j < m. Thus d̄ = d∗. Hence u = µλX,i0(d
∗).

Part⊇. It remains to prove that µλX,i0(d
∗) ∈ λP (ei0)∩E and µλX,i0(d

∗) ∈
(〈R〉λP (ej))d∗j for every j < m. Since d∗ ∈ Dm

i0
, we have µλX,i0(d

∗) ∈
λP (ei0) ∩ E. For every j < m, there are two cases:

Case 1 d∗j = 1. Then d∗ ∈ Dm
j . Hence µλX,j(d

∗) is defined and µλX,j(d
∗) ∈

{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}. Since d∗ ∈ Dm

i0
, we have

〈µλX,i0(d
∗), µλX,j(d

∗)〉 ∈ R[µλX,j(d
∗)]. Therefore 〈µλX,i0(d

∗), µλX,j(d
∗)〉 ∈

R. So µλX,i0(d
∗) ∈ 〈R〉{µλX,j(d), ηλX,j(c) | d ∈ Dm

j , c ∈ Dm}. Thus
µλX,i0(d

∗) ∈ (〈R〉λP (ej))d∗j .

Case 2 d∗j = −1. Then d∗ /∈ Dm
j . We claim that µλX,i0(d

∗) /∈ 〈R〉{µλX,j(d),

ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}. Assume that µλX,i0(d

∗) ∈ 〈R〉{µλX,j(d),

ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}. Then 〈µλX,i0(d

∗), µλX,j(d)〉 ∈ R for
some d ∈ Dm

j (by definition of 〈R〉 and Lemma 4.4.2(1)). Hence
〈µλX,i0(d

∗), µλX,j(d)〉 ∈ R[µλX,j(d)] (by Lemma 4.4.2(2)). Therefore
d∗ = d (by Lemma 4.4.2(3)). So d∗ ∈ Dm

j (since d ∈ Dm
j ). But d∗ /∈ Dm

j .
Thus µλX,i0(d

∗) ∈ (〈R〉λP (ej))d∗j .

So we have proved that µλX,i0(d
∗) ∈ (〈R〉λP (ej))d∗j for every j < m. There-

fore we conclude that µλX,i0(d
∗) ∈ µλP,i0(d

∗).

Lemma 4.4.14. For every i0 < m and d∗ ∈ Dm, ηλP,i0(d
∗) = {ηλX,i0(d

∗)}.
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Proof. Let i0 < m and d∗ ∈ Dm
i0

be fixed. Then

ηλP,i0(d
∗) = λP (ei0) ∩ E ′ ∩

⋂
j<m

(〈R〉λP (ej))d∗j

= {µλX,i0(d), ηλX,i0(c) | d ∈ Dm
i0
, c ∈ Dm}

∩ {ηλX,i(c) | c ∈ Dm, i < m}

∩
(⋂

j<m

(
〈R〉{µλX,j(d), ηλX,j(c) | d ∈ Dm

j , c ∈ Dm}
)d∗j )

(since E ′ = W − E and by Lemma 4.4.12).
Part ⊆. Suppose u ∈ ηλP,i0(d

∗) (u ∈ W ). Then, in particular, u ∈
λP (ei0) ∩ E ′. Hence u = ηλX,i0(c̄) for some c̄ ∈ Dm. To be proved that
c̄ = d∗ (and so u = ηλX,i0(d

∗)). For every coordinate d∗j , j < m, there are
two cases:

Case 1 d∗j = 1. Then u ∈ 〈R〉{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm} (since u ∈

(〈R〉λP (ej))d∗j ). Hence 〈u, µλX,j(d)〉 ∈ R for some d ∈ Dm
j (by defini-

tion of 〈R〉 and Lemma 4.4.2(1)). Therefore 〈u, µλX,j(d)〉 ∈ R[µλX,j(d)]

(by Lemma 4.4.2(2)). So 〈ηλX,i0(c̄), µλX,j(d)〉 ∈ R[µλX,j(d)]. Hence
c̄ = d (by Lemma 4.4.2(4)). Thus c̄j = 1 (since d ∈ Dm

j ). Therefore
d∗j = c̄j .

Case 2 d∗j = −1. Then u /∈ 〈R〉{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm} (since

u ∈ (〈R〉λP (ej))d∗j ). Hence, in particular, 〈u, µλX,j(d)〉 /∈ R for all d ∈
Dm

j (by definition of 〈R〉). Therefore 〈u, µλX,j(d)〉 /∈ R[µλX,j(d)] for all
d ∈ Dm

j (by Lemma 4.4.2(2)). So 〈ηλX,i0(c̄), µλX,j(d)〉 /∈ R[µλX,j(d)] for
all d ∈ Dm

j . We claim that c̄ 6= d for all d ∈ Dm
j . If c̄ = d for some

d ∈ Dm
j , then 〈ηλX,i0(d), µλX,j(d)〉 /∈ R[µλX,j(d)] which contradicts the

definition of R[µλX,j(d)]. Thus c̄j = −1. Therefore d∗j = c̄j .

So c̄j = d∗j for every j < m. Thus c̄ = d∗. Hence u = ηλX,i0(d
∗).

Part⊇. It remains to prove that ηλX,i0(d
∗) ∈ λP (ei0)∩E ′ and ηλX,i0(d

∗) ∈
(〈R〉λP (ej))d∗j for every j < m. It is clear that ηλX,i0(d

∗) ∈ λP (ei0) ∩ E ′. For
every j < m, there are two cases:
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Case 1 d∗j = 1. Then d∗ ∈ Dm
j . Hence µλX,j(d

∗) is defined and µλX,j(d
∗) ∈

{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}. By definition of R[µλX,j(d

∗)],
〈ηλX,i0(d

∗), µλX,j(d
∗)〉 ∈ R[µλX,j(d

∗)]. Therefore 〈ηλX,i0(d
∗), µλX,j(d

∗)〉 ∈
R. So ηλX,i0(d

∗) ∈ 〈R〉{µλX,j(d), ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}. Thus

ηλX,i0(d
∗) ∈ (〈R〉λP (ej))d∗j .

Case 2 d∗j = −1. Then d∗ /∈ Dm
j . We claim that ηλX,i0(d

∗) /∈ 〈R〉{µλX,j(d),

ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}. Assume that ηλX,i0(d

∗) ∈ 〈R〉{µλX,j(d),

ηλX,j(c) | d ∈ Dm
j , c ∈ Dm}. Then 〈ηλX,i0(d

∗), µλX,j(d)〉 ∈ R for
some d ∈ Dm

j (by definition of 〈R〉 and Lemma 4.4.2(1)). Hence
〈ηλX,i0(d

∗), µλX,j(d)〉 ∈ R[µλX,j(d)] (by Lemma 4.4.2(2)). Therefore
d∗ = d (by Lemma 4.4.2(4)). So d∗ ∈ Dm

j (since d ∈ Dm
j ). But d∗ /∈ Dm

j .
Thus ηλX,i0(d

∗) ∈ (〈R〉λP (ej))d∗j .

So we have proved that ηλX,i0(d
∗) ∈ (〈R〉λP (ej))d∗j for every j < m. There-

fore we conclude that ηλX,i0(d
∗) ∈ ηλP,i0(d

∗).

Theorem 4.4.15. The MBA PF is freely generated by {p0, . . . , pr−1}.

Proof. By Lemma 4.4.13 and Lemma 4.4.14, every one-element subset of
W is expressible via {p0, . . . , pr−1}. Hence every subset of W is expressible
via {p0, . . . , pr−1}. Therefore {p0, . . . , pr−1} generates the MBA PF .

Now let (M, E,∃) be an MBA and f0 : {p0, . . . , pr−1} → M. Then let
(M0, E,∃) be the MBA-subalgebra of M generated by {f0(p0), . . . , f0(pr−1)}.
By Lemma 4.4.13 and Lemma 4.4.14, the assumptions of Theorem 4.3.2 are
satisfied vacuously. Hence f0 can be extended to an MBA-homomorphism
f : PF → M0. So f0 can be extended to an MBA-homomorphism from PF

into M.
Thus the MBA PF is freely generated by {p0, . . . , pr−1}.

So the complex algebra of the bounded graph on page 106 is an MBA
freely generated by the empty set (see page 112 as well) and the complex
algebra of the bounded graph on page 108 is an MBA freely generated by
one element p0 = {w0, w1, w4, w5, w6, w7} (see page 112 as well).
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