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Abstract

The object of study of the thesis is the notion of monadic bounded al-
gebras (shortly, MBA’s). These algebras are motivated by certain nat-
ural constructions in free (first-order) monadic logic and are related to
free monadic logic in the same way as monadic algebras of P. Halmos to
monadic logic (Chapter 1). Although MBA’s come from logic, the present
work is in algebra. Another important way of approaching MBA's is via
bounded graphs, namely, the complex algebra of a bounded graph is an
MBA and vice versa.

The main results of Chapter 2 are two representation theorems: 1) ev-
ery model is a basic MBA and every basic MBA is isomorphic to a model;
2) every MBA is isomorphic to a subdirect product of basic MBA’s. As a
consequence, every MBA is isomorphic to a subdirect product of models.
This result is thought of as an algebraic version of semantical complete-
ness theorem for free monadic logic.

Chapter 3 entirely deals with MBA-varieties. It is proved by the method
of filtration that every MBA-variety is generated by its finite special mem-
bers. Using connections in terms of bounded morphisms among certain
bounded graphs, it is shown that every MBA-variety is generated by at
most three special (not necessarily finite) MBA’s. After that each MBA-
variety is equationally characterized.

Chapter 4 considers finitely generated MBA’s. We prove that every
finitely generated MBA is finite (an upper bound on the number of ele-
ments is provided) and that the number of elements of a free MBA on a
finite set achieves its upper bound. Lastly, a procedure for constructing a

free MBA on any finite set is given.
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Chapter 1
Introduction

The present work is devoted to the study of monadic bounded algebras
which are an algebraic version of free first-order monadic logic. In [7]
P. Halmos introduces and studies monadic algebras which are an alge-
braic version of first-order monadic logic. Following his monadic algebras
we develop monadic bounded algebras. The difference between monadic
logic and free monadic logic is in the way we treat quantifiers. To be more
precise let us give syntax and semantics of free monadic logic.

A language of free monadic logic is a set of symbols arranged as fol-

lows:

1. Logical symbols: Parentheses (,); Sentential connective symbols: —,

—; Variable: z.

2. Parameters: Quantifier symbol: 3; One place predicate symbol: E;
Some set of one-place predicate symbols; Some set of constant sym-
bols.

Atomic formulas and well-formed formulas are defined as usual (see
e.g. [4, p.74]).

Suppose we have a language for free monadic logic. Then a structure
2 for the language is a function whose domain is the set of parameters of
the language such that
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1. A assigns to the quantifier 3 a nonempty set |2| called the universe
(or domain) of ;

2. 2 assigns to the predicate symbol F a subset E* C |2| called the set
of actual elements of 2;

3. 2 assigns to each one-place predicate symbol P a subset P* C |2;
4. 2 assigns to each constant symbol ¢ an element ¢* € |2].

Note that there is only one variable in the language, and we may call
elements in |2A| — E* possible elements. Moreover, we will work with the
existential quantifier only.

The satisfaction notion 2 = ¢la], where ¢ is a formula and a € |2, is

defined as usual (see e.g. [4, p. 83-84]) except quantification:
2 = Jxpla) iff A | p[b] for some b € E2.

So, the specifically designated predicate E in the language of free mona-
dic logic singles out a set of actual elements in the domain of a structure
for free monadic logic and the range of the existential quantifier is re-
stricted to the set of actual elements. This kind of interpretation is known
as "bounded quantification”, hence the name of our algebras.

Define 2 |= ¢ (p is valid in ) iff 2 |= ¢|a] for all a € |2].

The following two constructions motivate our study of the main notion
of the present work, monadic bounded algebra. In the thesis, 2 = {0,1}
designates a two element Boolean algebra.

Let 2 be a structure. Define a (equivalence) relation =on the set of all
formulas by ¢ = Y iff A = ¢ < 1. For a formula ¢, define [p] = {¢ | ¢ =
Y}. Put By = {[¢] | ¢ is a formula}. For every [¢] € By, define a function
o |A| — 2by

1, if2A [ ¢[d]
0, if A plal
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(for every a € |2|). Note that:
1. For every [p] € By, ¢ is a well-defined function;
2. Either EI/xTo(a) =1foralla € || or EI/xTo(a) =0foralla € |
1, ifac E*

0, ifa¢ E*
tic function of the subset E* C ||

3. Since E;:(a) = , we obtain that Ex is the characteris-

It will be useful to notice that:

1. ETa;p(b) = V,epn P(a), for every b € |2];

Proof. Itis obvious that p(a) < 3/9570(6) forevery a € E*. To be proved
that if $(a) < p € 2 for every a € E?, then Jzp(b) < p. Since p € 2,
either p = 0 or p = 1. In the first case we obtain that 2 [~ ¢|a| for
every a € E%, and so & £ Jzp[b], ie. H/xTo(b) = 0 < p. In the second
case we obtain %(b) < pjust because p = 1 is the biggest element
in 2. O]

2. Viepn (@) = Ve (E;c(a) A @(a)) (because Ez is the characteristic
function of E%).

Put M = {@ | [¢] € Ba} . So MY is a set of functions from the do-
main |2 of the structure 2 to the two-element Boolean algebra 2 with the
designated (characteristic) function Ez of the subset E% C |2

We are now about to consider the second construction. Suppose D is
the set of all constant symbols of the language and C' C D. Let S¢ be the
class of all structures in which the actual elements are just the elements
defined by members of C, i.e. A € S¢ iff E* = {¢* | c € C}. Define a
(equivalence) relation SEc on the set of all formulas by ¢ SEc Yiff A = p — P

for all 2 € Sc. For a formula ¢, define [] = {¢ | ¢ = ¢}. Put Bs, = {[¢] |

¢ isaformula}. Bg, is a Boolean algebra. For every formula ¢, define a
function f(¢) : D — Bg, by
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F(@)(e) = [p(c/x)],

where ¢(c/z) is the formula obtained from ¢ by replacing the variable z,
wherever it occurs free in ¢, by the constant symbol c. Note that:

1. For every ¢, f(¢p) is a well-defined function;
2. Forc e C, f(Ez)(c) = 1 (here 1 is the unit element of Bg,.).
It will be useful to notice that:

1. f(3zp)(d) = V e f(@)(c) (for every d € D) or, in other words,

[Fze] =V eolelc/2)];

Proof. Firstly, to be proved that [p(c/x)] < [Fzyp] for every c € C, i.e.
A = ¢(c/x) — Jrp forall A € Se and ¢ € C. Suppose ¢ € C' is
fixed. Let A € S¢, a € || and A | ¢(c/x)[a]. Then & & ¢[c?]. Since
c € Cand A € S, we have ¢ € E. It follows from 2 | ¢[c?]
and ¢* € E* that 2 = Jxpla)]. Therefore 2 = (¢(c/x) — Jzp)[al.
Hence 2l = ¢(c/x) — Jzp. So A = ¢(c/x) — Jzp for all A € Se.
Thus [p(c/x)] < [Fzp]. Secondly, to be proved that if [p(c/x)] < [¢]
for every ¢ € C, then [3zy| < [¢], ie. if A = ¢(c/z) — 9 for all
A€ Scand c € C, then 2 = Jzp — ¢ for all A € Sc. Suppose
20 € Sc,a € | and A = Jzpla]. Hence A = ¢[b] for some b € E>.
Since b € E* and 2l € S¢, we obtain b = ¢! for some ¢, € C. Then
A = o(c/x)]a). Therefore 2 = fa]. So A = (xe — )[a]. Hence
A = Jrp — . Thus A = Jzp — o forall2A € Se. So [Fzp] < [v]. O

2. Veeo f(0)(e) = V. ep(f(Ex)(c) A f(p)(c)) or, in other words,

B¢l = VeeplBe A plc/z)].
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Proof. Firstly, to be proved that [EcAy(c/x)] < [3zyp] forevery c € D,
ie. A = EcAp(c/r) — Jxp forall A € Se and ¢ € D. Suppose
c € Disfixed. Let2A € Sand A = Ec A ¢(c/z). Then A = Ec
and & E ¢(c/x). Hence ¢* € E* and & | ¢[c¥]. So 2 = Jxp.
Secondly, to be proved that if [Ec A p(c/z)] < [¢] for every ¢ € D,
then [Fzp] < [¢], ie. if A = Ec A p(c/z) — 1 for every A € Sc
and c € D, then A |= Jzp — 1 for every A € Sc. Let A € S¢ and
20 = Jrep. Hence 2A = ¢[a] for some a € E. Since 2 € Sc and
a € E*, we obtain a = ¢ for some ¢, € C. Then 2 = Fc, A ¢(c./).
Therefore 2 |= . Hence A |= 3z — 1 for every A € Sc. Thus

[Fze] < [Y]. O

Put M{ = {f(¢) | ¢ is a formula}. So MY is a set of functions from the
set of all constant symbols D of the language to the Boolean algebra B,
with the designated function f(Ex) (which is not a characteristic function
in this case).

Thus free monadic logic naturally provides us with constructions Mg
and MY{. Generalizing them we get the notion of functional monadic
bounded algebra (see Definition 2.1.1). Abstracting from all functional
monadic bounded algebras we obtain (abstract) monadic bounded alge-
bras (see Definition 2.2.1). Roughly speaking, a monadic bounded algebra
is a Boolean algebra with a designated element £ and an unary operation
3, which satisfies six axioms. If we assume that F is the unit element,
then we obtain a monadic algebra of P. Halmos. Hence monadic bounded
algebras may be considered as a generalization of monadic algebras.

As soon as axioms for monadic bounded algebras are formulated, the
question is whether those axioms are an adequate algebraic characteriza-
tion of functional monadic bounded algebras or not, i.e. whether the vari-
ety generated by all functional monadic bounded algebras and the variety
of all monadic bounded algebras are equal or not. It suffices to consider
the following two questions:
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e Isittrue thatevery functional monadic bounded algebra is a monadic
bounded algebra? (i.e. do all functional monadic bounded algebras
satisfy the axioms?);

e Is it true that every monadic bounded algebra belongs to the variety

generated by all functional monadic bounded algebras?

The answer to the first question is given easily (Section 2.1), whereas the
second question requires the following result:

(¥) Every monadic bounded algebra is isomorphic to a subdi-

rect product of models,

where a model is by definition a 2-valued functional monadic bounded
algebra whose designated function £ is the characteristic function (in par-
ticular, M is a model in this sense). This result is a combination of two

representation theorems:

Every basic monadic bounded algebra is isomorphic to a model

(and every model is basic) (Section 2.3)
and

Every monadic bounded algebra is isomorphic to a subdirect
product of basic monadic bounded algebras (Section 2.4).

Basic monadic bounded algebras are related to monadic bounded algebras
as P. Halmos’ simple monadic algebras to monadic algebras. A monadic
bounded algebra (A, E, 3) is basic iff the quantifier 3 satisfies the condition
1, ifpAE#0
dp =
0, ifpAE=0
whereas a monadic algebra (A, 3) is simple iff the quantifier 3 satisfies the
condition
1, ifp+#0
3 = p#
0, ifp=0
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The result (x) may be thought of as an algebraic version of the semantical
completeness theorem for free monadic logic (see p. 34).

There is another way (different from functional) for obtaining monadic
bounded algebras. It is based on bounded graphs and it plays a crucial
role in the thesis. A triple 7 = (W, R, E), where W isaset, RC W x W
and £ C W (the marked vertices), is called a marked directed graph.
It is well-known that the set P(IV) of all subsets of 1 is a Boolean al-
gebra. Moreover, E € P(W) and it is possible to define an operator
(R) : P(W) — P(W) (see Definition 2.2.8). So the algebra (P(WW), E, (R))
is called the complex algebra of 7. On the other hand, if F satisfies certain
properties (see Definition 2.2.9), then it is called a bounded graph. The im-
portant thing is that the complex algebra of a bounded graph is a monadic
bounded algebra (Lemma 2.2.11) and vice versa (Lemma 2.2.12).

Adapting R. Goldblatt’s notion of frame morphisms [6] to bounded
graphs, we obtain the notion of bounded morphisms for bounded graphs.
These bounded morphisms give raise to homomorphisms of the complex
algebras of bounded graphs. The second representation theorem above

may be stated as follows:

Every monadic bounded algebra is isomorphic to a subdirect
product of subalgebras of complex algebras of some bounded
graphs.

From this using the method of filtration due to E.J. Lemmon [8], we can
get the next result:

Every variety of monadic bounded algebras is generated by its

finite special members (Section 3.2),

where special monadic bounded algebras are the complex algebras of a
vacuous bounded graph or of bounded graphs of Type I or II (see p. 44).
Also because of connections (in terms of isomorphisms and homomor-
phisms) among special monadic bounded algebras, every variety of mona-

dic bounded algebras is generated by at most three (not necessarily finite)
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special members (Section 3.3). Hence there are only countably many vari-
eties of monadic bounded algebras.

In [9] D. Monk gives explicit equational characterizations for each va-
riety of monadic algebras. There are analogous characterizations for va-
rieties of monadic bounded algebras in Section 3.4, but we get our alge-
braic expressions by modifying certain formulas from modal logic due to
K. Segerberg [10] instead of modifying D. Monk’s equations. As a conse-
quence, we obtain the fact that the equational theory of every MBA-variety
is finitely based.

Chapter 4 studies finitely generated monadic bounded algebras and it
is based on the paper by H. Bass [1]. Let us just state the essential results
of the chapter:

e Every monadic bounded algebra generated by » < w many elements

23-2r.22“

has at most ' many elements (Section 4.1);

e Every monadic bounded algebra freely generated by » < w many
elements has exactly 222”2 "' many elements (Section 4.2);

e Explicit construction of the monadic bounded algebra freely gener-
ated by » < w many elements is given (actually, this algebra is the
complex algebra of a well defined bounded graph) (Section 4.4).



Chapter 2
Monadic bounded algebras

In [7, p. 37] P. Halmos introduces and studies monadic algebras which are
an algebraic version of first-order monadic logic. This chapter essentially
follows his lines. Let us briefly state what each section of the chapter is
about. In Section 2.1, by generalising our motivating structures Mg and
MY (see Chapter 1), we obtain the notion of functional monadic bounded
algebras. In Section 2.2, by abstracting from functional monadic bounded
algebras, we define (abstract) monadic bounded algebras. Moreover, some
elementary facts about monadic bounded algebras are provided as well as
an important connection between these algebras and bounded graphs. In
Section 2.3 we consider specific monadic bounded algebras (namely, basic
monadic bounded algebras) and a representation of them. In Section 2.4
we represent a monadic bounded algebra as a subdirect product of basic

monadic bounded algebras.

2.1 Functional monadic bounded algebras

In this section, by generalising the set of functions Mg and M{ from Chap-
ter 1, we introduce the notion of functional monadic bounded algebras.
Several algebraic properties of them are given (and these properties will
be the basis of our abstraction from functional monadic bounded algebras

9
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to monadic bounded algebras in the next section).

Let (B, A, V., ,0,1) be a Boolean algebra, X a set and Xy C X.

The set B¥ of all functions from X to B is a Boolean algebra with re-
spect to the pointwise operations: for p,q € B¥, the infimum p A ¢, the
supremum p V g and the complement p’ are defined by

(pAg)(x) =p(x) Aq(z), (pV q)(z) =p(x)Vq(z) and p'(z) = (p(z))’

for each x € X; the zero and the unit of B¥X are the functions that are

constantly equal to 0 and to 1, respectively (here 0 and 1 are in B).

Definition 2.1.1. A Boolean subalgebra A of B* with a designated function E €
B is called a functional monadic bounded algebra (or B-valued functional
monadic bounded algebra with domain (X, Xp) and a designated function E) iff

1. foreveryx € X,z € Xg implies E(z) = 1;

2. forevery p € A, both \/ {p(x) | x € Xg} and \/ {E(z) Ap(x) | x € X}
exist in B and are equal; and

3. for every p € A, the (constant) function 3p, defined by

Ip(y) = VAp(e) [z € Xp} (y € X),

belongs to A.

Example 2.1.2. The sets MZ' and MY of functions in Chapter 1 are functional
monadic bounded algebras, where X = ||, Xy = E* B = 2, F = Ex and
X =D,Xp=0CB=Bg,, E= f(Ex), respectively.

Definition 2.1.3. The operator 3 on a functional monadic bounded algebra is

called a functional existential quantifier.

Theorem 2.1.4. The functional existential quantifier 3 of a functional monadic
bounded algebra A satisfies the following conditions

1. 30 = 0 (here O is the zero element of A),
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N

. pAE <dp,

3. 3(pA3Jq) =TpAdg

s

J9p =Jp,
5 3(pVvq) =3pVg
6. IA(pAE)=3p,
forall p,q € A.

Proof. The items (1) and (2) immediately follow from Definition 2.1.1.

3. This item is based on the following fact: if {p; } is a family of elements
of B such that \/, p; exists, then, for every ¢ € B, \/,(p; A ¢) exists and is
equal to (\/, pi) A q.

4. Let o € X be fixed. Since Jp is a constant function (i.e. Ip(x) =
dp(y) for all z,y € X), the set {Ip(z) | v € Xg} is one-element. Then
VA{3p(z) | x € Xg} = Ip(xo). But I3p(xo) = VV{Ip(z) | z € Xg}. Thus
J3p(xo) = Ip(xp). So ITp = Ip.

5. Let yp € X. Since p,q,p V ¢ € A and using the accociativity of
supremums, we obtain that each of the following supremums exists and

AV 9)( \/{p\/q |3L’€XE}
—\/{P ’xGXE}

= (\/{p ) | @ GXE}) N (\/{q(x) |z € XE}>
= Ip(xo) V q(wo)
= (Ip V 3q) (o).
So3(pVq) =dpV g
6. Let 2y € X. Since E(z) = 1 for every z € Xp, we have I(pA E)(zy) =

VA A E)(z) |2 € Xp} = VAp(z) A E(2) [2 € Xp} = VA{p(2) |2 € Xp} =
Ip(zo). So A(p A E) = Jp. O
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2.2 Abstract monadic bounded algebras (MBA’s)

In this section, by abstracting from functional monadic bounded algebras
via Theorem 2.1.4, we introduce the main notion of the present work, (ab-
stract) monadic bounded algebra. Some elementary facts about monadic
bounded algebras are proved. Moreover, there is an important connection

between monadic bounded algebras and bounded graphs in the section.

Definition 2.2.1. A monadic bounded algebra (shortly, MBA) is a triple (A, E, 3),
where A is a Boolean algebra, E € A, and 3 is a mapping from A to itself such
that

1. 30 =0,

2. pANE <dp,

3. I(pAJqg) =TpAdg

4. dp = ddp,

5. 3(pVq)=TpVig

6. Ip=3(pAE),
forall p,q € A.

Remark 2.2.2. Strictly speaking, we should write (A, A,V,,0,1, E, 3) (and
sometimes we do) instead of (A, E, 3) (so, in terms of universal algebra, the type
of MBA’s is (A, V,',0,1, E,3)). To avoid ambiguity, we occasionally emphasize
04,14, EA and 37, Asusual,p —q=pAqd andp+q=(p—q)V (¢ —p) =
(PAd)V(gAD).

Definition 2.2.3. An MBA (A, E, 3) is trivial iff it has only one element.

Example 2.2.4. Every functional monadic bounded algebra is a (abstract) monadic
bounded algebra (by Theorem 2.1.4).
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Example 2.2.5. Let (M, 3) be a monadic algebra [7, p. 40], i.e. M is a Boolean
algebra and the quantifier 3 : M — M satisfies the following conditions:

1. J0=0,
2. p<dp
3. ApA3Jq)=TpAdg

for every p,q € M. Suppose E € M is any fixed element. Define 3% : M — M
by 3¥p = I(E A p). This represents the notion of bounded quantification on p. 2.
It is possible to see that (M, E, 3%) is an MBA.

Now suppose (A, E, 3) isan MBA such that E = 1. Then (A, 3) is a monadic
algebra. Hence MBA's may be considered as a generalization of monadic algebras.

In the next lemma we sum up some elementary properties of MBA’s
(ct. [7, p. 41-43]).

Lemma 2.2.6. Suppose (A, E,3) isan MBA and p,q € A.
1. pe 3(A)iff Ip=p.
2. If p < g, then Jp < Jq.
3. If p < q, then 3p < 3q (i.e. 3 is monotone).
4. A(pNE")=0.
5 3(E'") =0.

6. dF = 3J1.

10. 3(3p)’ < (3p).
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11. Ip— 3¢ < 3(p—q).

12. Ip+ 3¢ < I(p+ q).

13. 3(p A (3q)") =3p A (Jq)"
14. 3((3p)’) = IE A (3p)'.

Proof. 1. If p € 3(A), then p = Jp, for some p, € A; and so Ip = F3py =
dpo = p. lf p=3p, then p € I(A).

2. Since 3p = 3(p A 3¢) = Ip A g, we get Ip < Jq.

3. Since p < ¢, wegetp A E < g\ E < dq. Then, by previous item,
d(p A E) < Jg. So dp < Jq (by Definition 2.2.1(6)).

4. 3(pANE') =3(p A E"A E) [by Definition 2.2.1(6)] = 3(p A 0) = 0 [by
Definition 2.2.1(1)]].

5. Put p = 1 in the previous item.

6. 3£ = 3(1 A E) = 31 [by Definition 2.2.1(6)]].

7. E = ENE < 3F [by Definition 2.2.1(2)]].

8. Since p < 1, we have dp < J1 (by item (3)). Hence Jp < 3E by
item (6).

9. 0 = 30 = 3((3E) A JE) = 3(IE)’ A 3E [by Definition 2.2.1(3)]
= 3(3E) [by item (8)].

10. Since (3p)’ A dp = 0, we have that 0 = 3((3p)’ A 3Ip) [by Defini-
tion 2.2.1(1)] = 3(3p)’ A3p [by Definition 2.2.1(3)]. Therefore 3(Ip)’ < (3p)’.

11. Since pVq = (p—q) V¢, it follows by Definition 2.2.1(5) that 3pVv3q =
3(p—q)V3q. Forming the infimum of both sides of this equation with (3¢)’,
weobtain Ip — ¢ =3(p—¢q) — g < I(p—¢q). So Ip — ¢ < I(p — q).

12. 3p+3¢ = (3p—3q) vV (3¢ — 3p) < 3(p — ¢) V I(q — p) [by previous
item]= 3((p — ¢) V (¢ — p)) [by Definition 2.2.1(5)] = 3(p + ¢).

13. Part <. Since p A (3¢)’ < pand p A (3¢)’ < (3¢q)', we obtain by item
(8) that 3(p A (F¢)") < Jpand I(p A (F¢)") < 3(q)’. Hence I(p A (Fq)') <
dp A 3(3¢q) < Ip A (q)’ [by item (10)]. Part > is proved by Ip A (3q)" =
Jp — 3¢ = Jp — 33¢ < 3(p — Jg) [by item (11)] = I(p A (3q)").
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14. 3((3p)") = I(E A (Ip)') [by Definition 2.2.1(6)] = IE A (3p)’ [by item
(13)]. 0

Bounded graphs and their complex algebras play a crucial role in the
whole work.

Definition 2.2.7. A triple F = (W, R, E), where W is a set, R C W x W and
E C W (the marked vertices), is called a marked directed graph.

Definition 2.2.8 (cf. [8, p. 192], [6, p. 16]). For a marked directed graph F =
(W, R, E), the complex algebra P ris (P(W),N,U, —,0,1, E, (R)), where N, U,
and — are set-theoretical intersection, union, and complement, respectively, and
0is () and 1 is W and an operator (R) : P(W) — P(W) is defined by

(R)X = {x € W | thereisy € W such that y € X and xRy}, (2.2.1)
for every X € P(W). Note that E € P(W).

Definition 2.2.9. A marked directed graph F = (W, R, E) is a bounded graph
iff F satisfies the following four properties:

1. Ris transitive, i.e. Vx,y,z € W(zRy&yRz — zRz),
2. Ris Euclidean, i.e. Vx,y,z € W(zRy&xRz — yRz),
3. Ve,y e W(zRy —y € E),

4. Vz e W(x € E — zRx).

Example 2.2.10. 1. The marked directed graph F = (W, R, E) is a bounded
graph, where W = {0}, R = 0, and E = (. More specifically, F is a
vacuous bounded graph (see Definition 3.1.18).

2. The marked directed graph F = (W, R, E) is a bounded graph, where
W ={0}, R=W x Wand E =W. In a picture:

o

More specifically, F is a bounded graph of Type I (see Definition 3.1.14).
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3. The marked directed graph F = (W, R, E) is a bounded graph, where
W ={0,1}, R=W x Wand E = W. In a picture:

Co—10)

More specifically, F is a bounded graph of Type I (see Definition 3.1.14).

4. The marked directed graph F = (W, R, E) is a bounded graph, where W =
{2,3,4}, R = {(2,2),(3,3),(2,3),(3,2),(4,2),(4,3)} and E = {2,3}.
In a picture:

AN

More specifically, F is a bounded graph of Type 1I (see Definition 3.1.16).

/\
3

5. The marked directed graph F = (W, R, E) is a bounded graph, where W =
{0,1,2,3,4,5}, R = {(0,0), (1,1),(0,1), (1,0), (2, 2), (3, 3), (2, 3), (3, 2),
(4,2),(4,3),(5,2),(5,3)} and E = {0, 1,2, 3}. In a picture:

X

C0<—>1Q C2<—>3

< Ut

Lemma 2.2.11. Suppose F = (W, R, E) is a bounded graph. Then the complex
algebra P r is an MBA.

Proof. As usual, (P(W),N,U,—,0,1) is a Boolean algebra. By definition,
E € P(W). It remains to check the six axioms in Definition 2.2.1.

1. From the definition of (R), it follows that (R)() = ().

2. Tobe proved that XNE C (R) X (for X € P(W)). Supposez € XNE.
Hence z € X and x € E. From x € E follows that zRz. So x € (R)X (since
rxRx and x € X).
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3. To be proved that (R)(X N (R)Y) = ((R)X) N ((R)Y) (for XY €
P(W)). For C, suppose x € (R)(X N(R)Y). Hence thereisy € (X N (R)Y)
such that xRy. Since y € (X N (R)Y'), we get thaty € X and thereis z € Y
with yRz. It follows from xRy and yRz that zRz. Since xRy and y € X,
we obtain z € (R)X. Since xRz and z € Y, we obtain x € (R)Y. Thus
r € ((R)X N(R)Y). For D, suppose z € ((R)X N (R)Y). Hence zRy,
for some y € X, and xRz, for some z € Y. It follows from zRy and zRz
that yRz. Since yRz and z € Y, we have y € (R)Y. Since y € X and
y € (R)Y,wegety € X N(R)Y. From zRy and y € X N (R)Y follows that
r € (R)(X N(R)Y).

4. To be proved that (R)((R)X) = (R)X (for X € P(WW)). For C,
suppose z € (R)((R)X). Hence xRy for some y € (R)X. Sincey € (R)X,
we have yRz for some z € X. It follows from xRy and y Rz that x Rz. Since
rRzand z € X, we get x € (R)X. For DO, suppose = € (R)X. Hence =Ry
for some y € X. Since xRy, we have y € E. Therefore yRy. Since yRy and
y € X,weobtainy € (R)X. So xz € (R)((R)X).

5. To be proved (R)(X UY) = ((R)X) U ((R)Y) (for X,Y € P(W)).
For C, suppose = € (R)(X UY). Hence xRy for some y € X UY. Then
either xRy, for some y € X, or xRy, for some y € Y. If xRy fory € X,
then z € (R)X. If xRy fory € Y, then z € (R)Y. So either z € (R)X or
r € (R)Y. Thusz € ((R)X U (R)Y). For DO, suppose = € ((R)X U (R)Y).
Hence either x € (R)X or z € (R)Y. Firstly, consider the case z € (R)X.
Then xRy for some y € X. Therefore xRy for some y € X UY (since
X CXUY) Sozx e (R)(XUY). Secondly, consider the case x € (R)Y.
Then zRz for some z € Y. Therefore xRz for some z € X UY (since
Y C XUY). Soz € (R)(XUY). Thus in both cases we get z € (R)(X UY).

6. Finally, to be proved that (R)(XNE) = (R) X (for X € P(W)). For C,
suppose = € (R)(X NE). Hence zRy for somey € X NE. Sincey € XNE,
bothy € X andy € E. Soz € (R)X (since xRy and y € X). For D, suppose
r € (R)X. Hence xRy for some y € X. From zRy follows y € E. Then
ye XNE.Sox € (R)(XNE) (since xtRyand y € X N E).
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Thus P is an MBA. [l

The converse of the lemma holds as well.

Lemma 2.2.12. Suppose F = (W, R, E) is a marked directed graph whose com-
plex algebra P r is an MBA. Then F is a bounded graph.

Proof. 1. To be proved that R is transitive. Let z,y,2 € W, xRy and yRx.
Then z € (R){y} and y € (R){z}. From y € (R){z} follows that {y} C
(R){z}, and sowe have (R){y} C (R)(R){z} (since (R) is monotone). Thus
r € (R){y} C (R)(R){z} = (R){z}. Hence zRxz.

2. To be proved that R is Euclidean. Let z,y,2 € W, xRy and zRz.
Then z € (R){y} and = € (R){z},and so x € (R){y} N (R){z} = (R)({y} N
(R){z}). Hence xRy’ for some ¢y’ € {y} N (R){z}. Therefore y = y and
y € (R){z}.Soy € (R){z}. Thus yR=.

3. To be proved that Vz,y € W(zRy — y € E). Let z,y € W and zRy.
Then z € (R){y} = (R)({y} N E). Hence xRy for some y' € {y} N E. So
Yy =yandy € E. Thusy € E.

4. To be proved that Vx € W(x € E — xzRx). Let x € E. Then
{z} N E = {z}. Since {z} N E C (R){x}, we have {z} C (R){z}. Thus
rRz. L

2.3 Basic MBA'’s and their representations as mod-

els

This section considers basic MBA’s and their representations as models.
Firstly, we develop a standard algebraic theory of MBA’s (MBA-subal-
gebras, MBA-ideals, congruences, MBA-homomorphisms, etc.). Secondly,
essentially using Stone’s representation theorem, we prove our representa-
tion theorem. This theorem may be called the first representation theorem
because there will be another representation theorem in the next section.
Basic MBA’s are related to MBA’s as P. Halmos’ simple monadic algebras

to monadic algebras.
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Definition 2.3.1. Let (A, A,V,,0,1, E,3) be an MBA. A nonempty subset
Ay C A is an MBA-subalgebra iff

[ ] 0, 1, FE e Ao,
o A, is closed under operations A\, V," and 3.

Definition 2.3.2. Suppose B is a Boolean algebra. A subset A C B is a Boolean
ideal iff

1. ifp,g € A, thenpV q € A,
2. ifpe A, thenp A\ q € A (for every q € B).

Note this definition of Boolean ideal is equivalent to the usual one in
which the second condition is written as follows: if p € A and ¢ < p, then
q € A.

Now suppose (A, E, 3) is an MBA.

Definition 2.3.3. A subset A C A is called an MBA-ideal iff both
1. A'is a Boolean ideal in the Boolean algebra A,
2. dp € A whenever p € A.

Definition 2.3.4. The quantifier 3 of (A, E,3) is basic iff 3p = 1 whenever
pANE#0.

In other words, the quantifier 3 is basic iff

1, ifpANE#0
0, ifpAE=0

or, equivalently,

1, ifp g FE
0, ifp<E
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Basicness of MBA's is analogous to simplicity of monadic algebras. To
compare them, it suffices just to look at the definitions.

Definition 2.3.5 ([7, p. 41]). The quantifier 3 of a monadic algebra (A,3) is
simple iff

1, ifp#0
0, ifp=0.
Example 2.3.6. The quantifier of a trivial MBA is basic.

Example 2.3.7. The quantifiers of the complex algebras of the bounded graphs in
Example 2.2.10(1-4) are basic, whereas the quantifier of the complex algebra of the
bounded graph in Example 2.2.10(5) is not.

Lemma 2.3.8. If A is an MBA-ideal in (A, E,3), then the relation ~ on A,
defined by

p~qiffptgel,
is a congruence relation on (A, E, 3).

Proof. Letpy ~ p1and ¢y ~ ¢1. Hence po+p1 € Aand ¢y+q¢1 € A. Therefore
PoADL EAN PIADPyEAN @A € Aand g1 A g € A (since A is an MBA-
ideal). So (poAqo) +(P1Aq1) = ((PoAgo) A(P1AG) )V ((PrAg) A(PoAqo)') =
((po Ago) A (py Var)) vV ((pr Agu) AoV agp)) = ((po Ago Aph) V (Po A go A
@)V (et Ag Apg) V(o Aqi A gp)) € A Thus (po A qo) ~ (p1 A q1)-

Similarly with v and ’.

Now let p ~ ¢. Then p + ¢ € A. Hence 3(p + q) € A (since A is an
MBA-ideal), and so 9p + 3¢ € A (by Lemma 2.2.6 (12)). Thus Ip ~ 3¢. [

Lemma 2.3.9. If ~ is a congruence relation on (A, E, 3), then the set A = {p €
A | 0 ~ p} is an MBA-ideal.

Proof. Let p,q € A. Then0 ~ pand 0 ~ ¢q. Hence 0V 0 ~ p V ¢ (since ~ is

a congruence relation). Thus p vV ¢ € A.
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Letpe Aand g € A. Then 0 ~ pand g ~ ¢q. Hence 0 A ¢ ~ p A q (since
~ is a congruence relation). Therefore 0 ~ p A ¢. Thusp A ¢ € A.

Let p € A. Then 0 ~ p, and so 30 ~ dp (since ~ is a congruence
relation). Hence 0 ~ dp. Thus Jp € A. H

We are going to show that the two constructions in Lemma 2.3.8, 2.3.9
are inverse. Firstly, suppose that A is an MBA-ideal in (A, £, 3). Let ~
be the congruence relation as defined in Lemma 2.3.8. Then define A’ =
{p € A|0~p} SoA" = A, because, for every p € A, p € A'iff 0 ~ p
iff 0 +p € Aiff p € A. Secondly, suppose ~ is a congruence relation on
(A, E,3). Let A be the MBA-ideal as defined in Lemma 2.3.9. Then define
by p o qiff p+q € A. So «~~ and ~ are equal, because, for every p,q € A,
poqiffp+qge Aiff0 ~p+qiff p ~gq.

Definition 2.3.10. Suppose (A, EA1 341) and (A,, EA2 342) are MBA’s. A
function f : Ay — Ay is an MBA-homomorphism iff the following conditions
hold:

o floAha)= W) A fla)
o flpVa)=[fW)V fa)
o f() = (),

o f(0A1) =042,

o f(1%1) =1%,

o f(EM)=E",

o f(3p)=3%f(p),

forallp,q € A,.
If f is one-to-one, then it is called an MBA-embedding. If f is bijective, then
it is called an MBA-isomorphism.
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Definition 2.3.11. For an MBA-homomorphism
[ (AL ER 38 = (Ay, B2 3%,
define ker(f) C A, by

ker(f) ={p € A1 | f(p) = 0%}, (2.3.1)

Lemma 2.3.12. Let f : (A, B4, 34) — (A,, EA2 342) be an MBA-homo-
morphism. Then ker(f) is an MBA-ideal in (A, EA1, 341).

Proof. Letp,q € ker(f). Then f(p) = f(q) = 0%2.So f(pVq) = f(p)Vf(q) =
042 v 042 = 042, Thus p V q € ker(f).

Letp € ker(f)and g € A;. Then f(p) = 042. So f(pAq) = f(p) A f(q) =
042 A f(q) = 042, Thus p A q € ker(f).

Letp € ker(f). Then f(p) = 042. Hence f(341p) = F42f(p) = 342042 =
042, Thus 341p € ker(f). O

Suppose (A, E, 3) is an MBA.
Definition 2.3.13. For p € A, define a subset A(p) C A by
Alp) ={q€ Alq<3Ip}
Lemma 2.3.14. A(p) is an MBA-ideal.

Proof. Letqo,q1 € A(p). Then gy < Ipand ¢; < 3p. So ¢oVgr < IpVIp = Ip.
Thus ¢o V ¢1 € A(p).

Let g0 € A(p) and ¢; € A. Then qp < 3p. So g0 A 1 < qo < Tp. Thus
90 N q1 € A(p).

Let ¢ € A(p). Then ¢ < 3p. Hence 3¢ < Jp (by Lemma 2.2.6 (2)). So
dq € A(p). H

Definition 2.3.15. An MBA-ideal A is virtual iffp N E = 0 forall p € A.

Example 2.3.16. Let p € Aand p AN E = 0. Then A ={qe€ A | q<p}isa
virtual MBA-ideal. In particular, {q € A | ¢ < E'} is a virtual MBA-ideal and
it is the biggest virtual MBA-ideal in (A, E, 3).
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Definition 2.3.17. An MBA (A, E, 3) is basic iff every proper MBA-ideal in
(A, E, 3) is virtual.

Lemma 2.3.18. An MBA (A, E, 3) is basic iff the quantifier 3 is basic.

Proof. Suppose (A, E, 3) is basic. To be proved that 3 is basic. Suppose
p € Aand p A E # 0. We will prove that 3p = 1. Since p A £ < Jp, we
havep ANE € A(p)(={qg€ A|q<3Tp}). Letp=pAE.Sop e A(p) and
PAE #0(sincepA\NE = (pANE)ANE =pAE # 0). Thus A(p) is not virtual.
Hence A(p) = A (since A is basic). Then 1 € A(p). Therefore 1 < Jp (by
definition of A(p)). So Ip = 1.

Suppose the quantifier 3 is basic. To be proved that every non-virtual
MBA-ideal in (A, £, 3) is improper. Let A be an MBA-ideal which is not
virtual. Then there exists p € A such that p A E # 0. Hence Jp = 1 (since 3
is basic). Then dp € A (since A is an MBA-ideal and p € A)and 1 € A. So
A = A. Thus A is an improper MBA-ideal in A. O

Definition 2.3.19. Let X be a set, X C X and E be the characteristic function
of Xg. A model is a 2-valued functional monadic bounded algebra with domain
(X, Xg) and designated function E.

Theorem 2.3.20 (cf. [7, Theorem 6]). An MBA is basic if and only if it is (iso-
morphic to) a model (i.e. every basic MBA is isomorphic to a model and every
model is basic).

Proof. Let M be a model and p € M. Suppose p A E # 0 (as functions
from X to 2). Hence p(z() # 0 and E(zy) # 0 for some zy € X. Therefore
p(xo) = 1and E(xy) = 1. Hence \/{E(y) Ap(y) |y € X} =1. ThusIp =1
(as functions from X to 2). Suppose p A E = 0 (as functions from X to 2).
Hence \/{E(y) Ap(y) | y € X} = 0. Thus dp = 0 (as functions from X to
2). So we have proved that the functional quantifier 3 of M is basic. Hence
M is basic (by Lemma 2.3.18).

Now suppose (A, E, 3) is a basic MBA. Note that A may be considered
as a Boolean algebra. As in [7, p. 48], define:
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o Wa = {z | zis a (proper) Boolean ultrafilter of the Boolean algebra A };

e a function ¢ : A — P(Wa) by ¢(p) = {x € Wa | p € z} (for every
p € A).

We are going to define desired sets X, Xz and a model in 2¥. Let

o X =W, and
o Xp={re X |FEe€ux}.

Define a mapping H : A — 2% by

)1 ifz e pp)
H<p><x>{0’ o

for every x € X and p € A; and define E/ € 2X by Ef = H(FE) (where the
superscript f stands for the adjective “functional”).
Then:

e [ is one-to-one. Suppose py,p1 € A and py # p;. Hence there is
u € Wa such that py € wand p; ¢ wu (or, po ¢ uand p; € u). Then
u € p(po) and u ¢ (p1) (or, u & p(po) and u € o(p1)). So H (po) (u) =
1 and H(p1)(u) = 0 (or, H(py)(u) = 0 and H(p;)(u) = 1). Thus

H(po) # H(p1)-

e H preserves A, V.. It is proved by the properties of ultrafilters. We
consider only A (V and ’ are proved similarly):

1, ifzeppAqg) 1, ifpAgex
H(pAq)(x) = , =

0, ifz¢plpAg) 0, ifprg¢w
(
1, ifperandqex

{1, ifperandgex 0, ifp¢randgex

0, ifpdrorqédzx 0, ifperandgé¢x

L0, ifpdrandg ¢z

— H(p)(z) A H(g)(x) = (H(p) A H(q))(2).
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So H(pAq) = H(p) N H(q).

Now consider

Ef(l')_H(E)([L’): L, if:CEgp(E): 1, ifze Xg
) 0 ifrép(E) o, ifrd Xn

So E7 is the characteristic function of the subset Xz C X.
It remains to prove that

H(3p) = 3H(p) (2.3.2)

for every p € A. Note that the quantifier on the right side is functional, i.e.
dH (p)(zo) = V{H(p)(z) | € Xg} for zy € X.

Since (A, E, 3) is basic, the quantifier of (A, £, 3) is basic. Hence, for
every p € A,

Ip = (2.3.3)

1, ifpAE#0(orp< E)
0, ifpAE=0(orp<FE).

To prove (2.3.2) we will consider two cases.

Casel p A E # 0. Then 3p = 1. Therefore, for every z € X, H(3p)(z) =
1, ifz € (1) 1, iflex
H(1)(z) = = [by definition of | =
0, ifz¢ p(1) 0, iflé¢x
1 [ since the unit element belongs to every filter]. Now consider the
right side of (2.3.2). Since H(p)(z) = 1 iff x € p(p), we can write

1, ifthereisy € Xg suchthaty €
EIH(p)(x){ yEaE vELD)  hag

0, otherwise.
Since pA E # 0, the (principal Boolean) filter A = {g € A | ¢ > pAE}
is proper. Then there is an (proper) ultrafilter A, (in the Boolean
algebra A) with A C A (so Ay € X). Hence p A E € A,. Then both

p € Agand E € A (since Ay is an ultrafilter). Therefore Ay € X (by
definition of X) and A, € ¢(p) (by definition of ). So 3H (p)(z) = 1
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for every x € X (by (2.3.4)). (There is a shorter proof. From p A E #
0 follows H(p) A E/ # 0 (since H is one-to-one and preserves A);
hence 3H(p) = 1 (as functions from X to 2) by the first part of this
proof). Thus (in this case) we have proved that H(3p)(z) = 1 and
dH (p)(z) = 1 for every x € X. Hence H(3p) = 3H(p).

Case2 p A E = 0. Then 3p = 0. Therefore, for every z € X, H(3p)(z) =

H(0)(z) = L ifre ) = 1, #0es [by definition of | =
0, ifx ¢ ¢(0) 0, if0¢x

0 (since there is no (proper Boolean) ultrafilter containing the zero
element). Now consider the right side of (2.3.2). We claim that there
isnoy € Xg such thaty € ¢(p) (cf. (2.3.4)). Assume there is yy € Xg
with yo € ¢(p). Hence p € y, (by definition of ¢) and E € y, (by
definition of Xg). Then p A E € vy, (since vy, is an ultrafilter). Since
p A E = 0 (in this case), we obtain 0 € y,. Thus y, is not proper.
So 3H(p)(x) = O for every = € X (by (2.3.4)). (As in Case 1, there
is a shorter proof. From p A E = 0 follows H(p) A E/ = 0 (since H
is one-to-one and preserves A); hence 3H (p) = 0 (as functions from
X to 2)). Thus (in this case) we have proved that H(dp)(z) = 0 and
JH(p)(x) = O for every x € X. Hence H(3p) = 3H(p).

It follows from Case 1 and Case 2 that H(3p) = 3H(p).
So H : A — 2% is an one-to-one mapping which preserves A, V.’ E,
and 3. Thus H(A) C 2¥ is our desired model. O

2.4 Representation of an MBA as a subdirect prod-
uct of basic MBA'’s

In this section we prove the second representation theorem. The theorem
is based, among other things, on E.J]. Lemmon’s representation theorem of

modal algebras [8, p. 206] and on the notion of the reflexive-transitive clo-
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sure of a relation from modal logic [5, p. 9-10]. The theorem will help us to
analyze MBA-varieties in Chapter 3. In the end of this section we discuss
an algebraic version of the completeness theorem for free monadic logic
as well as the representation theorem from the point of view of subdirect
irreducibility.

Definition 2.4.1. Let ((A;, Ej, 3;)),c; be an indexed family of MBA's. The direct
product (A, E, 3) of the family is an MBA with the universe [ [,_,; A; whose op-
erations are defined coordinate-wise. The empty product [[ 0 is the trivial MBA,
i.e. one element MBA, with the universe {(}. For every j € I, define the projec-
tion map

T [Lier Ai — A,

by

(forevery a € [T, Ay).

Definition 2.4.2. An MBA (A, E, 3) is a subdirect product of an indexed fam-
ily (As, Ei, 35)),c; of MBA's iff

o A is an MBA-subalgebra of the direct product [],., A,
e m,(A)= A, foreachic I.

An embedding f : A — [],.; A is subdirect if f(A) is a subdirect product of
the (Az)zél

Definition 2.4.3. An MBA A is subdirectly irreducible if for every subdirect
embedding

f A — Hie] AZ
there is an i € I such that

7TiOfZA—>Ai
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is an MBA-isomorphism.
Let us reformulate Theorem 8.4 from [3]:

Theorem 2.4.4. An MBA A is subdirectly irreducible iff A is trivial or there is
a smallest non-identity congruence on A.

Definition 2.4.5. If we are given maps f; : X — X,, i € I, then the natural

map
[ X = Tl X
is defined by
(f(2))(@) = fi(x),
forevery x € X and i € I.
The next lemma is known from universal algebra ([3, Theorem 7.12(a)]).

Lemma 2.4.6. If f; : (A,E,3) — (A, E;,3), @ € 1, is an indexed family of
MBA-homomorphisms, then the natural map f is an MBA-homomorphism from
Ato A* =T, A

Proof. For all p,q € Aand i € If(p Aq)(i) = filp Aq) = filp) A filq) =
(f() (@) A (f(a)(@) = (f(p) A f(q))(2). Hence f(p A q) = f(p) A f(q).
Forallp € Aandi € I, f(p)(i) = fi(p)) = (filp)) = (f(p)(D))" =
(f(p))'(i). Hence f(p') = (f(p))"
Since f(E)(i) = fi(E) = E; for every i € I, we have f(E)
Forallp € Aandi € I, f(3p)(i) = fi(Tp) = 3i(fi(p)) =
(3% f(p))(i). Hence f(3p) = 3% f(p).
Thus f is an MBA-homomorphism. O

3(f( )())=

The notion of reflexive-transitive closure from modal logic (see [5, p. 9-
10]) will be useful in the second representation theorem.

Definition 2.4.7. Let (W, R, E) be a marked directed graph. Define on W the
relations R* C W x W, for n > 0, and R*, as follows:
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o uRiffu=v,
o uwR™ v iff there exists w such that both uR"w and wRv,
o R'={J,.0R"

It is easy to see that R* is the smallest reflexive-transitive relation including R,
and therefore R* is called the reflexive-transitive closure of R.

Lemma 2.4.8. Let (W, R, E) be a marked directed graph such that R is transitive
and x € W. Put W* ={u e W | zR*u}. Then W* = {z} U{u € W | zRu}.

Proof. For C, suppose v € W*. Then xR*v. If zR%, then z = v. Hence
ve{ztU{u e W | xRu}. If zR" for some 1 < n < w, then zRv (since R is
transitive). Hence v € {z}U{u € W | xRu}. For D, suppose v € {z}U{u €
W | zRu}. If v = z, then zR%. Hence zR*v. Therefore v € W?=. If zRv,
then x R*v. Hence v € W™. O

We are now ready to prove the main result of the section.
Theorem 2.4.9. Every MIBA is isomorphic to a subdirect product of basic MBA'’s.
Proof. Suppose (A, E,3) is an MBA. As in [8, p. 206], define:

1. Wa = {z | z is an (proper Boolean) ultrafilter of the Boolean algebra A};

2. Arelation Ra on Wy by
xRayiff {Ip |p €y} Cx,

for every z,y € Wa;

3. A function ¢ : A — P(Wa) by

¢(p) ={r € Wa | p € z},

for every p € A;
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4. Pa ={p(p) |p € A} (soPa C P(Wa));

5. An operator (Ra) : P(Wa) — P(Wa) by
(RA)C' = {x € W, | thereis y € W such that y € C'and zRay},

for every C' € P(Wa);
6. EA € PA by EA = (p(E)

It follows from [8, p. 206] that ¢ is an MBA-isomorphism between
(A, E,3)and (Pa, Ea, (Ra)).

For z € Wy, define W3 = {y € Wa | 2R3y}, where R} is the reflexive-
transitive closure of Ra. Also, for every € Wj, define P} = {Wi N X |
X €Pa} (soPy CPWR)), EXa =WXNEa and Ry = Ra N (WX x W3).

Note that EX € P} for x € Wa. For x € W,, define a mapping 6, :
P, — P2 by

0., (X)=WinxX,

for every X € Pa.

Obviously, 6, is onto and 6, (Ea) = EX.

Moreover, 0, preserves Boolean operations, because 0,(X NY) = Wi N
(XNY) = (WinX)N(WiNY) =0,(X)N0,.(Y), 6, (XUY) = Win(XUY) =
(WEinX)uWinY) =0,(X)Ub,.(Y)and 0,(Wa—X) =WiNn(Wa—-X) =
Wi — X =Wi — (WENX)=Wi —6,(X).

We are going to prove that 0, ((Ra)X) = (R%)0.(X), i.e.

Wi N ((Ra)X) = (RR)(Wx N X).

For C part, suppose v € Wi N ((Ra)X). Hence u € W3 and uRav for
some v € X. Since u € W}, we have 2R u. Then zR) v (since R}, is the
reflexive-transitive closure of Ra and uRAv). Sov € W3 (and v € W NX).
Thus (u,v) € Ra N (W3 x W3). Hence uR3v. Then u € (R})(WX N X)
(since v € WX N X). For D part, suppose u € (R} )(W3 N X). Hence uR{ v
for some v € Wi NX. Since uRj v, we have (u,v) € RaN(W3Z x W3). Then
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u,v € W5 and uRwv. It follows from uRav and v € X thatu € (Ra)X. So
u e Wi N({(Ra)X) (since u € W3).
Thus, for every x € Wa, (P34, EX, (R4)) is an MBA and

0. : (Pa, Ea,(Ra)) — (P4, EX, (RR))

is a surjective MBA-homomorphism.
Now define

©:Pa—1]] P4

by
O(X)(x) = 0.(X),

for every X € P, and z € Wy (so O is the natural map).

Then we can obtain the following:

e O is one-to-one. Suppose Xy, X1 € P4 and X, # X;. Hence there is
x € Wa suchthatz € Xpand 2 ¢ X (or, x ¢ Xy and z € X;). Then
reWinXoandax ¢ Wi NX; (or, z ¢ Wi NXpand x € W3 NX;)
(since x € W3). Therefore 0,.(Xy) # 6.(X1). So ©(Xo)(z) # O(X;1)(x).
Thus ©(Xj) # O(X,).

e O is an MBA-homomorphism (by Lemma 2.4.6).

e For every x € Wy, the projection map 7, : ©(Ps) — P% is onto.
Suppose Y € P%. Hence Y = 6,(X) for some X € P% (since 6,
is onto). Then Y = W3 N X. Consider 7,(0(X)) = ©(X)(z)[by
definition of projection] = 6,(X) = W N X =Y. So 7, is onto.

Therefore the image of the MBA (P4, Ea, (Ra)) under © is a subdirect
product of the family of MBA’s {(P%, EX, (R4)) | * € Wa}. So the MBA
(Pa, Ea, (Ra)) itself is isomorphic to a subdirect product of the MBA'’s
{(P4,EX.(R%)) | * € Wa}. Hence (A, E, 3) is isomorphic to a subdirect
product of the MBA's {(P34, EX, (RA)) | * € Wa}l.

Next we are going to prove that (Wa, Ra, E) is a bounded graph.



CHAPTER 2. MONADIC BOUNDED ALGEBRAS 32

e R, is transitive. Suppose x,y, z € Wy are such that xRy and yRaz.
Then {3p | p € y} Czand {Ip | p € 2z} C y (by definition of R,).
Assume p € z. Then Jp € y, and so 33p € x. Therefore dp € x (since
J3p =3p). So{Ip |p € z} C z,i.e. tRaz.

e R, is Euclidean. Suppose z,y, z € W4 aresuch that x Ray and zRa 2.
Then {3p|pey} Crand {3p|p € 2z} C z. Suppose p € z. We claim
that Ip € y. Assume dp ¢ y. Then (dp)’ € y (since y is an ultrafilter).
Therefore 3(3p)’ € z. Hence (3p)’ € x (by Lemma 2.2.6(10)). On the
other hand, from p € z follows that 3p € z. Thus both (Jp)’ € = and
dp € z, and hence x is not proper. So {3p | p € z} C y, i.e. yRaz.

o Vr,y € Wa(xRay — y € Ea). Suppose z,y € W and xRay. Then
{Ip | p € y} C x. Weclaim that F € y (and so y € Ex). Assume
E ¢ y. Then E’ € y (since y is an ultrafilter). Hence 3£’ € x (by
assumption). Therefore 0 € z (by Lemma 2.2.6(5)). Thus z is not
proper. Soy € Ea.

o Vx € Wa(x € Ea — zRax). Suppose x € Wa and z € Ea. Then
E € x (by definition of EA). Suppose p € x. Then p A E € z (since
E € x and z is an ultrafilter). Therefore dp € z (since p A E < dp). So
{3p|pe€x} Cuaie zRax.

We are going to examine structures (W3, R4, E%), © € Wa. Recall that
the goal is to prove that the MBA’s P}, © € W,, are basic. Note that since

R, is transitive we can write, by Lemma 2.4.8,
WX ={z}U{y € Wa | zRay}.
There are two cases.
Case 1 zRj3x. Tobe proved that EX = W} and R} = WX x W3. Since xR} z,
we have WX = {y € Wa | zRay}. By definition of £}, E5X C W3}.

For the other direction, suppose u € Wj. Then wRsu. Therefore
u € Ep (by the third property of Ra). Thus u € W N Ej, ie. u €
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Case 2

EX. So EX = W3. By definition of R}, Ry C Wi x WZX. For the
other direction, suppose (u,v) € Wi x W3. Then (z,u) € Ra and
(x,v) € Ra. Therefore (u,v) € Ra (since Ra is Euclidean). Thus
(u,v) € R3.So R} = W5 x W3.

(z,z) ¢ R%. To be proved that E}y = WJ — {z} and R} is universal
on E%,ie. RR N(ER x EX) = EX x EX (and so Ry = {(z,y) |
y € E3} U (FX x ER)). From (z,z) ¢ R% and (z,x) € Wi x W%
follows that (z,z) ¢ Ra. Suppose v € Wi — {z}. Then u € W}.
Therefore xRau. Hence u € E (by the third property of Ra). Thus
u e WENEA. Thenu € Ej (by definition of E%). So W3 —{z} C Ej.
Since ERy = W3 N Ea, we have £ C WZ. Hence it remains to
prove that x ¢ E%. From (z,x) ¢ Ra follows x ¢ Ea (by the fourth
property of Ra). Therefore z ¢ WX N Eax. Then z ¢ E%. Thus
EX CW3ZX —{z}. So EX = WZ — {«}.

To be proved that R} N(E% x EX) = E} x E4. The C part is obvious.
For the D part, suppose (u,v) € EX xE4. Henceu,v € W} and u # z,
v # x (since EX = W5 — {z}). Then xRau and xRav. Therefore
uRav (since Ra is Euclidean). Thus (u,v) € (Wi x W3) N Ra, i.e.
(u,v) € R%.So (u,v) € Ry N (E% x ER).

Finally, we are going to prove that the MBA’s (P%, EX, (R%)), * € Wa,
are basic. Recall that

fore
that

and

(Ra)X ={u e W3 | thereis v € W} such that uRivand v € X},

very X € P4. Fixx € Wa. Let X € P4 and X N F} # 0. To be proved
(R3)X = W3. Since (R} ) is an operation of the MBA (P}, E%, (R%))
W3 is the unit element in P}, we have (R%)X C W3. For the other

part, suppose v € Wj. Since X N E} # 0, there is at least one element

u €

X NEX. Hence u € X and u € EX. It follows from v € W} and

u € E3 that (v,u) € R} (in the both cases above). Hence v € (R} )X. So
(R3)X = WJZ. Thus (R3) is basic. Consequently, (P4, £, (R4)) is basic
(by Lemma 2.3.18).



CHAPTER 2. MONADIC BOUNDED ALGEBRAS 34

Thus every MBA is isomorphic to a subdirect product of basic MBA's.
O

Corollary 2.4.10. Every MBA is isomorphic to a subdirect product of models.
Proof. Follows from Thereom 2.3.20 and Theorem 2.4.9. O

Corollary 2.4.10 may be considered as an algebraic version of the com-
pleteness theorem for free monadic logic. In logic the completeness theo-
rem says that

I' = ¢ implies I' - . (24.1)
where, as usual, I' |= ¢ means that I' logically implies ¢ and I' - ¢ means
that ¢ is deriveable from I'. To illustrate the corollary we should come
back to our motivating examples M@ and M¢ from Chapter 1.

As P. Halmos [7, p. 48], we work with the so called refutability rather
than provability. Let I' be a fixed set of sentences in free monadic language.
We claim that Ao = {f(p) | I' b =y} is an MBA-ideal in MY (cf. [7,
p- 48]). Suppose f(¢o), f(p1) € M are such that T’ - =y and T' F .
Hence I' = =g A =1 and so I' B —(p V p1). Then f(po V 1) € {f(¢) |
I'F —p}. Thus f(po) V fp1) € Aper (since f(wo V 1) = flpo) V fe1))-
Now suppose f(pp) € MY is such that I' - —p,. Hence ' - —po V =) (for
any ¢) and so I' = =(pg A ¢). Then f(po A ) € {f(¢) | T F —¢}. Thus
flpo) A f() € Ape . Finally, suppose f(go) € MY is such that T = .
Hence I' + Va—¢y and so I' - —=3x——py. Therefore I' -+ —3zp,. Then
f(3zpo) € {f(p) [ T'F —p}. Thus 3f(po) € Ape r (here 3 is the functional
quantifier of MY).

Therefore the next definition is justified.

Definition 2.4.11 (cf. [7, p. 48]). An MBA-logic is a pair (A, I), where A is an
MBA and 1is an MBA-ideal in A. The elements p € 1 are the refutable elements
of the logic.

Thus, if we have an MBA-logic (A, I), then we can form the quotient
MBA A/I = {[p] | p € A} where [p] = {¢ € A | p+q € I} (see Lemma 2.3.8).
Therefore, for every py € A,
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e if po €1, then [py] =0 (€ A/I);
o if po ¢ 1, then [py] # 0 (€ A/I).

Now we are going to analyze the left side of (2.4.1) (it assumed that
the soundness theorem is known). I' |= ¢ says that, for every structure 2,
2 = I' implies A |= ¢. Recall that every structure 2 provides us with the
model M. So we have:

A = [iff A = o, for all ¢ such that " ),

iff A = 1[a], for all @ € |2A| and ¢ such that I" I- ¢,

iff 2 p= —)|a], for all a € || and ¢ such that I' - ¢,

iff A = ¢a], for all @ € || and ¢ such that I' - —),

iff ) = 0, for all ) such that I' - =) (here ¢, 0 € M2)
and

A = piff A = ¢la], forall a € ||,

iff A = —pla], for all a € ||,

iff = = 0 (here =, 0 € MP).

Definition 2.4.12 (cf. [7, p. 130]). An interpretation of an MBA A is an MBA-

homomorphism of A into a model.

Definition 2.4.13. An element p € A is false in an interpretation f if f(p) = 0.
An element p € A is universally invalid if it is false in every interpretation.

So the zero element 0 € A is universally invalid (since every MBA-
homomorphism preserves all constants). In particular, for every MBA-
logic (A, 1), if py € I then [po] is false in every interpretation of the MBA

A /T and so [po] is universally invalid.

Definition 2.4.14. An MBA A is semantically complete if 0 is the only uni-
versally invalid element, in other words, if p € A is universally invalid, then

p=0.

Suppose A isan MBA and p € A isnon-zero. Then, by Corollary 2.4.10,
there is an interpretation f of A such that f(p) # 0. Hence p is not uni-

versally invalid. Thus every MBA is semantically complete. So suppose
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(A,TI) is an MBA-logic. If py € A and [po] is universally invalid, then
[po] = 0 (€ A/I). Hence py € 1, i.e. py is refutable.

It is worthwhile noticing that the MBA's (P}, EX, (R%)), © € Wy, in
Theorem 2.4.9 are subdirectly irreducible. Firstly, the MBA’s (P}, EX, (R%4)),
x € Wa, are not trivial in both cases of the theorem. Secondly, the MBA’s
(P4, Ex, (R%)) in Case 1 of the theorem may be considered as monadic
algebras because E = 1. Moreover, the quantifiers (R} ) of these algebras
are simple. Therefore they are simple in terms of universal algebra. Hence
the MBA’s in Case 1 are subdirectly irreducible. Thirdly, it follows from
the next more general lemma suggested to me by R. Goldblatt (also cf. [2,
Lemma 4.1]) that the MBA’s (P}, EX, (R%)) in Case 2 of the theorem are
subdirectly irreducible.

Lemma 2.4.15 (R. Goldblatt). Let F = (W, R, E) be a marked directed graph
such that x € W and for every y € W there exists n > 0 with xR™y. Let A be
any subalgebra of the complex algebra P = (P(W),N,U, —,0,1, E, (R)) such
that {z} € A. Then A is subdirectly irreducible.

Proof. By Theorem 2.4.4, it suffices to prove that there is a smallest non-
identity congruence on A. Let 7, be the smallest congruence on A con-
taining the pair ({z}, ). This exists as {z} € A. Since {z} # ), we have
that the congruence 7, is not the identity.

Let ~ be any congruence on A not equal to the identity. Hence there
are X,Y € A such that X ~ Y and X # Y. Therefore thereisy € X +Y
(symmetric difference of X and Y). Moreover, since y € W, there is n > 0
withzR"y. Sox € (R)"{y} C (R)"(X+Y). Thus {z} = {z}N(R)"(X+Y) ~
{z} N (R (Y +Y) ={z}n(R)") = {z} N0 = (). Hence {x} ~ (). Therefore
7, C~ because 7, is the smallest congruence containing the pair ({z}, 0).

Thus 7, is the smallest non-identity congruence on A. O

So, it follows from Theorem 2.4.9 that every MBA is isomorphic to a
subdirect product of subdirectly irreducible MBA’s, which is in accordance

with Birkhoff’s theorem [3, Theorem 8.6] known for algebras in general.
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Theorem 2.4.16 (Birkhoff). Every algebra is isomorphic to a subdirect product
of subdirectly irreducible algebras.



Chapter 3

MBA-varieties

This chapter is concerned with MBA-varieties. In Section 3.1 some well-
known definitions and theorems from universal algebra are given and
a theory of bounded morphisms is developed. In Section 3.2 we prove
that every MBA-variety is generated by its finite special members. In Sec-
tion 3.3 we show that actually every MBA-variety is generated by at most
three special members (not necessarily finite). In Section 3.4 each MBA-

variety is equationally characterized.

3.1 Varieties and bounded morphisms

This section may be considered as consisting of two parts. In the first part
we give some well-known definitions and theorems from universal alge-
bra (see [3]). Moreover, we discuss some consequences from Chapter 2.
In the second part we define special MBA's of three types (Type I, Type I,
vacuous) which are originated from the second representation theorem. In
addition, adapting R. Goldblatt’s frame homomorphisms [6], we develop
a theory of bounded morphisms which allows us to work with morphisms
of the complex algebras of bounded graphs.

We are going to give some well-known definitions and theorems from

universal algebra [3].

38
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Definition 3.1.1. Define the following operators mapping classes of algebras to
classes of algebras (all of the same type):

o A € I(K) iff A is isomorphic to some member of K;

o A € S(K) iff A is asubalgebra of some member of K;

o A € H(K) iff A is a homomorphic image of some member of K;

o A € P(K) iff A isadirect product of a nonempty family of algebras in K.

Definition 3.1.2. A nonempty class K of algebras of type .7 is called a variety
if it is closed under subalgebras, homomorphic images, and direct products.

Recall that the type of MBA's is {A, V., 0,1, E, 3}.
As the intersection of a class of varieties of type .# is again a variety,
and as all algebras of type .# form a variety, we can conlude that for every

class K of algebras of the same type there is a smallest variety containing
K.

Definition 3.1.3. If K is a class of algebras of the same type let V (K') denote the
smallest variety containing K. We say that V (K) is the variety generated by K.
If K ={Ay,...,A,_1} wewrite simply V(Ay, ..., A,_1).

Theorem 3.1.4 (Tarski). V = HSP.

Proof. Let us give a sketch of the proof (for complete proof see [3, Theorem
9.5]). Using the properties of the operators H,S and P, it is possible to
prove that HSP(K) is a variety (for any class of algebras K). Let A €
V(K). Then A € V' for every variety V' with K C V’. In particular,
A € HSP(K). Conversely, let A € HSP(K). Then A is a homomorphic
image of A’ where A’ is a subalgebra of the direct product [],.; A; for
some {A; | i € I} C K. Therefore A € ({V'isavariety | K C V'} =
V(K). O
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Definition 3.1.5. Let X be a set of (distinct) objects called variables. Let .7 be
a type of algebras and %, is the subset of n-ary function symbols in % . The set
T'(X) of terms of type F over X is the smallest set such that

o XU.% CT(X);

o ifpy,...,pn—1 € T(X)and f € F,, then the “string” f(po,...,pn-1) €
T(X).

Definition 3.1.6. Given a term p(xy, ..., x,_1) of type F over some set X and
given an algebra A of type F we define a mapping p* : A" — A as follows:

e if pis a variable x;, then

p™(

a07-~-7an—1) =q

forag,...,a, 1 € A, ie p”is the ith projection;

e if pis of the form f(po(xo....,Tn-1)s--,Dk-1(T0,...,Tn_1)), where f €
F., then

pAag, ... an1) = fAP(ao. .. an_1), ., (Ao, ... an_1)).

p is the term function on A corresponding to the term p.

Definition 3.1.7. An identity of type .# over X is an expression of the form
p=q

where p,q € T(X). Let 1d(X) be the set identities of type F over X. An algebra
A of type F satisfies an identity

p(Toy .-y Tn1) = q(xo, .., Tpo1),

(or the identity is true in A, or holds in A), abbreviated by

A = p(xo, ..., 1) = (20, - Tn1),
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or more briefly

AEp=g
if for every choice ay, . . . , a,—1 € A we have
pA(a(b s 7an—1) = C]A(am SR 7an—1)-

A class K of algebras satisfies p ~ q, written
KEp=q,

if each member of K satisfies p ~ q.

If ¥ is a set of identities, we say K satisfies ¥, written K = X, if K =p~q
foreachp ~ q € .

Given K and X let

lde(X)={p~qe€ldX)| K p~q}
We use the symbol [~ for ”does not satisfy.”

Lemma 3.1.8. For any class K of type . all of the classes K, I(K), S(K),
H(K), P(K) and V (K) satisfy the same identities over any set of variables X.

Proof. By properties of isomorphisms, subalgebras, homomorphisms, di-
rect products (for complete proof see [3, Lemma 11.3]). O

Definition 3.1.9. Let X be a set of identities of type .7, and define Mod(X) to
be the class of algebras A satisfying ¥. A class K of algebras is an equational
class if there is a set of identities ¥ such that K = Mod(X). In this case we say
that K is defined, or axiomatized, by ¥.

Theorem 3.1.10 (Birkhoff). If V is a variety and X is an infinite set of variables,
then V- = Mod(Idy(X)).

Proof. Due to its complexity even the sketch of the proof is not given here

(for proof see [3, Lemma 11.8]). O
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Theorem 3.1.11 (Birkhoff). K is an equational class iff K is a variety.

Proof. Part =. Suppose K = Mod(X). Then V(K) = ¥ (by Lemma 3.1.8).
Therefore V(K) C Mod(X). So V(K) = K, ie. K is a variety. Part <
follows from Theorem 3.1.10. O

Definition 3.1.12 ([3, p. 93]). Let X be a set of variables and 3 a set of identities
of type .F with variables from X. For p,q € T(X) we write

YEprq
(read:”¥ yields p ~ q”) if, given any algebra A,
A = Y implies A = p ~ q.

Definition 3.1.13 ([3, p. 227]). Let X be a set of variables and K a class of
algebras. We say that Idx(X) is finitely based if there is a finite subset ¥ of
Idy(X) such that

S = Idg(X).

Now we are in a position to discuss some relations among certain classes
of MBA'’s. Define the following classes:

e Models is the class of all models,
e FunctionalMBA is the class of all functional MBA's,
e MBA is the variety of all MBA's.

So Models C FunctionalMBA C MBA and V' (Models) C V(FunctionalMBA) C
MBA.

We are going to show that Models # MBA. Let Fy, = (Wy, Ry, Ey),
where Wy, = {a}, Ey = {a}, Ry = {(a,a)} (see Example 2.2.10(2)), and
Fiy = (Wi, Ry, Ey), where W, = {b}, E; = 0 and R; = () (see Exam-
ple 2.2.10(1)). It is easy to see that F, and F; are bounded graphs and
so the complex algebras Pz, and Py, are (basic) MBA’s. Since the direct
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product A = Pz, x Pz is not a basic MBA, we have Models # MBA (by
Theorem 2.3.20). In picture A looks as follows (the dotted lines denote the
usual partial order on A and the continuous lines denote the quantifier of

A):

_Or
)

where 0 = (0,0), E = ({a},0), E' = (0,{b}), 1 = ({a}, {b}).

Now we are going to show that FunctionalMBA # MBA. Firstly, in any
B-valued functional MBA with domain (X, X) and designated function
E,if Xg =0, then E = 0, and if X # (), then 3£ = 1. Secondly, consider
the direct product A again. If A were isomorphic to some functional MBA,
then we would have in A that either £ = 0 or 3F = 1. But F # 0 and
JE # 1 (see the picture above). So A is not isomorphic to any functional
MBA. Thus FunctionalMBA # MBA.

Moreover, the MBA A shows that /(Models) and I (FunctionalMBA) are
not closed under direct products. So both /(Models) and I (FunctionalMBA)
are not varieties.

However, by Corollary 2.4.10, every MBA is isomorphic to a subdirect
product of models. Therefore

V(Models) = MBA

because every variety is closed under subalgebras, homomorphic images,

and direct products. Thus

V(Models) = V (FunctionalMBA) = MBA.
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We are now about to introduce some special bounded graphs which
are originated from Theorem 2.4.9.

Definition 3.1.14. A marked directed graph F = (W, R, E) with E = W # ()
and R = W x W is of Type 1. Diagrammatically:

Example 3.1.15. The bounded graphs in Example 2.2.10(2,3) are of Type L

Definition 3.1.16. A marked directed graph F = (W, R, E) with W = {z¢}UE,
zo ¢ E# 0and R = {(x0,y) | y € E} U (E x E) is of Type 1I. Diagrammati-

cally:
I“

Example 3.1.17. The bounded graph in Example 2.2.10(4) is of Type II.

Definition 3.1.18. A marked directed graph F = (W, R, E) with W = {x,},
R = 0and E = () is vacuous. Diagrammatically it is just one point which is not
related to itself.

Suppose F = (W, R, E) is a marked directed graph of Type I or of
Type II or is vacuous. Then F is actually a bounded graph. Therefore
the complex algebra P is an MBA (by Lemma 2.2.11). We can call F
a bounded graph of Type I, of Type II, or a vacuous bounded graph,
respectively.

The marked directed graphs (W3, R%, £4%) in Case 1 of Theorem 2.4.9
are of Type I, the marked directed graphs (W}, R4, EX) with £ # 0 in
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Case 2 of Theorem 2.4.9 are of Type II, and the marked directed graphs
(W3, R4, EX) with E% = 0 in Case 2 of Theorem 2.4.9 are vacuous.

Definition 3.1.19. An MBA (A, E, 3) is called special if it is equal to the com-
plex algebra Pz, where F = (W, R, E) is a bounded graph of Type I or Type II or
is a vacuous bounded graph. Sometimes we specify by saying “special MBA of
Type 1”, “special MBA of Type I1” or “vacuous MBA”, respectively.

Definition 3.1.20. Every MBA-subalgebra of a special MBA is called a subspe-
cial MBA.

The MBA's {(P%, EX, (R4)) | * € Wa} in Theorem 2.4.9 are subspecial,
and so we obtain the second corollary of the theorem.

Corollary 3.1.21. Every MBA is isomorphic to a subdirect product of subspecial
MBA’s.

From it we can get the next theorem.
Theorem 3.1.22. Every variety of MBA's is generated by its subspecial members.

Proof. Let V' be a variety of MBA’s and A € V. Then A is isomorphic to
a subdirect product of subspecial MBA’s (by Corollary 3.1.21). Since the
product is subdirect and V' is a variety, we conclude that each of these
subspecial MBA's belongs to V. O

The following definitions and results are adaptations of R. Goldblatt’s
frame homomorphisms [6, Section 1.5].

Definition 3.1.23 (cf. [6, Definition 1.5.1]). Let ¥ = (W, R, E) and F =
(W', R', E') be marked directed graphs. A bounded morphism f : F — F'isa
function f : W — W' such that

e for every u,v € W, uRv implies f(u)R'f(v),

o for everyu € W and for every x € W', f(u)R x implies that thereisv € W
such that uRv and f(v) = z,
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o foreveryu e W,u e Eiff f(u) € £

Theorem 3.1.24 (cf. [6, Theorem 1.5.2]). Suppose f : F — F' is a bounded
morphism. Then, for every X, Y € P(W'),

1 fYXNY) = fYX)nfY),
2. fHXUY) = fFHX) U fTHY),
3. f7H(=X) = —fUX) (or, more precisely, f~' (W' — X) =W — f~1(X)),
4. fH(R)X) = (R)fH(X),
5. fNE) = E,
where [~1(X) = {u € W | f(u) € X} for every X € P(W").

Proof. 1. For every x € W, we have z € f1(X NY)iff f(x) € XNY
iff both f(z) € X and f(z) € Y iffbothz € f~YX)and z € f~}(Y) iff
r e fTHX)N Y.

2. Forevery z € W, we have z € fH(X UY)iff f(z) € X UY iff
either f(z) € X or f(z) € YViff eitherx € f7'(X)orz € f71(Y)iffz €
FTHX) U Y.

3. Forevery x € W, we have z € f'(W' — X) iff f(z) € W' — X iff
f(x) e Wand f(z) ¢ Xiffx € f7'(W)and z ¢ f~1(X)iff z € W and
x ¢ f~1(X) (since fTHW') =W)iffx e W — f~1(X).

4. For C, suppose u € f~1((R)YX) (X € P(W'))). Hence f(u) € (R)X.
Then f(u)R'x for some z € X. Therefore there is v € W such that uRv
and f(v) = z (since f is a bounded morphism). Then v € f~!(X), and so
u € (R)f~!(X). For the other direction, suppose u € (R)f~!(X). Then uRv
for some v € f~1(X). Hence f(u)R'f(v) (since f is a bounded morphism).
Since v € f7Y(X), we get f(v) € X. Therefore f(u) € (R)X. Sou €
F(RYX).

5. Suppose u € W. Then we have u € f~1(E') iff f(u) € E' iffu € E.
So f~\(E') = E. O
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Definition 3.1.25 (cf. [6, Definition 1.5.8]). If f : F — F' is a bounded mor-
phism, then the mapping

hy: P(W') — P(W)

is defined by

for every X € P(W").
It follows from the previous lemma that
o hi(XNY)=hp(X)NhY),
o hy(XUY)=hp(X)Uhg(Y),
o hi(—X) = —hs(X) (or, more precisely, hy(W' — X) =W — hs(X)),
o hy((R)X) = (R)hy(X),
o hy(E') =FE.
The following lemma allows us to find relations among special MBA's.

Theorem 3.1.26 (cf. [6, Theorem 1.5.9]). Suppose F = (W, R, E) and F' =
(W', R, E") are marked directed graphs and f : F — F' is a bounded morphism.

1. If f is surjective (i.e. onto), then hy is injective (i.e. one-to-one).
2. If f is injective, then hy is surjective.
3. If f is bijective (i.e. both onto and one-to-one), then h is bijective.

Proof. 1. Suppose X,Y € P(W’) and X # Y. Hence there is 2o € W’ such
that either v € X &zg ¢ Y orag ¢ X &z € Y. Since zp € W' and f is
onto, zy = f(ug) for some ug € W. If zy € X and zy ¢ Y, then ug € f~1(X)
and ug ¢ f1(Y); and so f~1(X) # f1(Y), i.e. hp(X) # hs(Y). Similarly
for the case xp ¢ X and zy € Y.
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2. Suppose U € P(W). Then U C W and f(U) € W’. Therefore
he(f(U)) = 7Y f(U)). To be proved that f~!(f(U)) = U. Obviously,
f~Yf(U)) 2 U. For C, suppose u € f~1(f(U)). Hence f(u) € f(U). Then
f(u) = f(v) for some v € U. So u = v (since f is one-to-one). Thus u € U.

3. Follows from (1,2). [

Corollary 3.1.27. Suppose F = (W, R, E) and F' = (W', R', E') are bounded
graphs and f : F — F' is a bounded morphism. Then the mapping h; :
P(W') — P(W) is an MBA-homomorphism from Pz to P z. Moreover,

e if f is surjective, then hy is an injective MBA-homomorphism from P z to
Pz, and hence P z is isomorphic to a subalgebra of P z;

o if f is injective, then hy is a surjective MBA-homomorphism from Pz to
Py

e if f is bijective, then hy is an MBA-isomorphism. O

The Lemmas 3.1.28, 3.1.29, 3.1.30 state connections between bounded
graphs of the same type, whereas Lemma 3.1.31 between bounded graphs
of Type I and Type IL

Lemma 3.1.28. If F = (W, R, E) and F' = (W', R, E') are bounded graphs of
Type I and Card(W) = Card(W'), then there is a bijective bounded morphism
from F to F'.

Proof. Since Card(W) = Card(W"’), there is a bijective mapping f : W —
W'. From the assumption that 7 = (W, R, E) and 7' = (W', R, E’) are
bounded graphs of Type I it follows that f is a bounded morphism. O

Lemma 3.1.29. If F = (W, R, E) and F' = (W', R', E') are bounded graphs of
Type 11 and Card(E) = Card(E'), then there is a bijective bounded morphism
from F to F'.

Proof. Suppose W = {xg} UE, 20 ¢ E #0, R = {(z0,y) |y € E}U(E x E)
and W' = {a} UE, 2y, ¢ E' # 0and R = {(zf,y) |y € E'} U (E' x E).



CHAPTER 3. MBA-VARIETIES 49

Since Card(E) = Card(E"), there is a bijective mapping f : E — E'. Then

define g : W — W' by
xp, ifu==x
glu)=4"" !
f(u), ifuek

for every u € W.

To be proved that g is a bijective bounded morphism. Obviously, g is
bijective. Suppose u,v € W and uRv. Hence either v = z0&v € E or
u,v € E. In the first case, g(u) = z; and g(v) € E’, and in the second,
g(u), g(v) € E'. Therefore g(u)R g(v) in both cases. Now suppose that u €
W,z € W and g(u)R'z. Since x € W' and g is a bijection between W and
W, there is v € W with ¢g(v) = . Since g(u)R'z, either g(u) = x, & x € £’
or g(u),z € E’. In the first case, © = 29 and v € F, and in the second,
u,v € E. Therefore uRv in both cases. Finally, by construction of g, v € E
iff g(u) € E' for every u € W. Thus g is a bijective bounded morphism. [

Lemma 3.1.30. If F = (W, R, E) and F' = (W', R', E') are vacuous bounded
graphs, then there is a bijective bounded morphism from F to F'.

Proof. Obvious. O

Lemma 3.1.31. Suppose F = (W, R, E) is a bounded graph of Type I, F' =
(W', R, E") is a bounded graph of Type Il and Card(E) = Card(E"). Then
there is an injective bounded morphism from F to F'.

Proof. Suppose E=W #£0, R=W x Wand W' = {z{} UF/, z;, ¢ E' # 0,
R = {(x,y) |y € E'} U (E' x E'). Since Card(E) = Card(E’), there is a
bijection f : £ — E'.

To be proved that f is an injective bounded morphism from F to F'.
Obviously, f is injective. Suppose u,v € W and uRRv. Thenu,v € E, and so
f(u), f(v) € E'. Therefore f(u)R' f(v) (since £’ x E' C R'). Now suppose
uwe W,z e W and f(u)R'z. Then x € E’. Hence there is (only one) v € £
such that f(v) = z. So uRv. Finally, for every u € W, u € Eiff f(u) € E
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(since f is a mapping from E to £’ and W = E). Thus f is an injective

bounded morphism. O

3.2 MBA-varieties are generated by their finite

special members

The purpose of this section is to prove that every MBA-variety is gener-
ated by its finite special members. Let us firstly find a sufficient condi-
tion for that. Suppose X is an infinite set of variables. Let V' be a va-
riety of algebras (not necessarily of MBA’s) and K C V. To be shown
that /dx(X) = Idy(X) implies that K generates V (i.e. V(K) = V). Let
Idg(X) = Idy(X). Then Idy g (X) = Idy(X) (by Lemma 3.1.8). Hence
Mod(Idyxy(X)) = Mod(Idy(X)), and so V(K) =V (by Theorem 3.1.10).
Thus K generates V. But K C V implies that /dy (X) C Idg(X). There-
fore, to prove that K generates V it suffices to show that Idx (X) C Idy(X)
(or, equivalently, if (to ~ t1) ¢ Idy(X), then (ty ~ t1) ¢ Idx(X)) . More-
over, since in every Boolean algebra (and so in every MBA)

a=>biff (d Vb)A(aVl)=1,

it suffices to consider MBA-equations of the form t(zo, ..., 2,-1) = 1 only.
In the theorem below the method of filtration due to E.J. Lemmon [8]
is taken for granted. Moreover, the notion of distinguished model from
modal logic [5, p. 36] is tacitly used.

Theorem 3.2.1. Suppose V is a variety of MBA’s, K C V is the subset of all
finite special members in'V, and t(xy, . .., x,_1) is an MBA-term. If

Ay t(xg, ..y xn1) & 1
for some Ay € V, then

A1 % t(.r(), e ,In_l) ~1
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for some A, € K.

Proof. Suppose Ay € V and A, does not satisfy ¢(xo, ..., x,_1) =~ 1. There-
fore, by Corollary 3.1.21, there exists A € V such that A does not satisfy
t(xo,...,zn—1) ~ 1 and one of the following holds:

1. A is equal to the complex algebra P of some vacuous bounded
graph F;

2. Aisan MBA-subalgebra of the complex algebra P » of some bounded
graph F of Type I;

3. Aisan MBA-subalgebra of the complex algebra P » of some bounded
graph F of Type IL

In (1), since A is finite and special, we can take for the desired A, the
MBA A itself. So it remains to consider only (2) and (3). Therefore we
reformulate them by saying that A is an MBA-subalgebra of P+ of some
bounded graph F = (W, R, E) such that either

Casel E=W #0and R=W x W, or
Case2 W ={ag}UE, 20 ¢ E#0and R = {(z0,y) |y € E}U (E X E).

Since A [~ t(xo,...,2p-1) ~ 1, there are Ao,...,A,—1 € A such that
tA(A(), ce ,An_l) 7é 1A, ie.
A (Ao, . Apy) £ WL
Note that Ag,..., A, CW.
We are going apply the method of filtration due to E.J. Lemmon (see

[8, Theorem 40]). Let {t¢,...,t.—1} be the set of all subterms of the term
t(xo, ..., Tn—1). Then put

B,L' — tlA(Ao, e ,Anfl),

foreach0<i<r—1,
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and
S - {Bo, ey Br—la Br}
Thus By, ..., B,—1,B, CW,S CP(W),and B; € A (for every i < r). Also

note that S is finite.
Define a binary relation = on W by

r=yifft VBeP(W))(Be S — (r€ B-yeB)). (3.2.1)

Then = is an equivalence relation on W which partitions ¥ into not
more than 2"*! equivalence classes (because there are r + 1 members in S).

Foreveryx € W,putz ={y e W |z =y}, andfor BC W, B = {7 |
x € B}. So W and P(W) are finite.

For x € W and B C W, it is easy to verify that

(o) ifr € B, then € B;
(3) ifz € Band B € S, thenz € B.
Define a binary relation R on W by
TRy iff there exist 2’ € 7 and /' € y such that 2’ Ry/. (3.2.2)

So we have a marked directed graph F = (W, R, E), where E = EA
(le. E = {z | x € EA}). Hence we get the complex algebra Pz of 7. (P
is the desired A;.)

Asin [8, p. 209], we have

() B; =W iff B; =W,

(ii) —B; = B, iff —B; = B;,
(iii) B; N B; = By iff B;N B; = By,
(IV) Bz U Bj = Bk iff Bz U Bj = Bk,

(v) if (R)B; = B;, then (R)B; = B;,
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for every i, j, k <r.
It is possible by induction on the term ¢ to prove that

tA(Ag, ... Ap_y) =87 (Ay, ... Any). (3.2.3)

Since every term is a subterm of itself, t* (A, ..., A, 1) € S. Therefore
tA(Ag, ..., An_1) # W (since tA(Ay, ..., A,_1) # W and using (i)). Hence
tP7(Ag,..., A1) # W (by (3.2.3)), or tP7(Ay,..., A1) # 1P7. So the
algebra P 7 does not satisfy the equation #(x, ..., 2z,—1) ~ 1.

It remains to prove that P 7 is a finite special MBA and that it belongs
to V (so Pz € K). To accomplish it we will follow the plan: a) Pz is a
finite special MBA, b) there is a surjective bounded morphism f from F
onto F, and ¢) h;(Pz) C A. Both in (a) and (b) we will consider two cases
(according to the two cases on p. 51), whereas in (c) we will not.

Part (a).

Case 1. Since E = W, we have £ = W. To be proved that R = W x W.
By definition of R, R C W x W. For D, assume (7,3) € W x W. Then
xRy, sincez € T,y € yand R = W x W. So ZRjj (by definition of R). Thus
the marked directed graph F is a bounded graph of Type I. Hence Pz is a
finite special MBA.

Case 2. Since zy # y, forevery y € E, and E € S, we have 7y = {zo}. It
follows from zy ¢ F and F € S that 7, ¢ E (by 3). Since E # (), we have
E # 0.

To be proved that W = {z,} U E. By definition, W 2 {Z,} U E. For C,
supposez € W. If T = 7y, then 7 € ZgUE. If T # %, then z # z, (since = is
an equivalence relation on W). Hence = € E. So 7 € E (by («)). Therefore
TETGUE.

Next to be proved that R = {(Z,9) | § € F} U (E x E). For C, suppose
T1,7o € W and (71, 7,) € R. Hence there exist u € 7; and v € Z, such that
uRv. Then, by assumption on R, there are two cases:

e u=zxpand v € E. Hence 4 = 7y and ¥ € E. Since @ = 7, and 0 = T,
we obtain that 7, = 7y and Z, € E. So (Z1,72) € {(Zo,9) | § € E}.
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Thus (71, Z9) € {(Zo,y) | ¥ € E} U (E x E).

Since & = Z; and ¥ = o,
So (#1,72) € E x E. Thus

euv € E. Hencew € Fand v € E.
we obtain that z; € E and 7, € E.
(T1,79) € {(Z0,7) | § € E}YU (E x E).

For 2, suppose (Z1, %) € {(Zo,9) | § € E} U (E x E). Then there are two

cases:

o (T,,73) € {(Zo,y) | ¥ € E}. Hence 7; = 7y and 7, € E. Since
To = {79} and Z, = Ty, we have z; = ;. It follows from 7, € F that
zo € E (by (8) using £ € S). Since z1 = o and =3 € E, we get 21 Rz,
(by assumption on R). Therefore Z, R (by definition of R).

e (T1,72) € E x E. Hence z1, 75 € F (by (a) using E € S). Then z; Rz
(by assumption on R). Therefore Z, R, (by definition of R).

Thus we have proved the equality.

So the marked directed graph 7 = (W, R, E) is a bounded graph of
Type II (or, more explicitly, W = {Z,} UE, %y ¢ E # (), and R = {(Zo, %) |
y € E} U (E x E)). Hence P is a finite special MBA.

Thus P £ is a finite special MBA in both cases.

Part (b).

Now define a mapping f : W — W by

for every x € W. Obviously, f is surjective. We are going to prove that f
is a bounded morphism from F = (W, R, E) onto F = (W, R, E).
Case 1.

e Let u,v € W and uRv. Then u € @ and v € v. Therefore uRv (by
definition of R). Thus f(z)Rf(y).

e Letu € W,z € Wand f(u)Rz. Since x € W, we have that z = ¥ for
some v € W. Hence z = f(v). Since R = W x W and u,v € W, we
get uRwv.
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e Foreveryu € W,u € Eiff u € E (since F € S and using («, 3)) iff
f(u) € E.

So f is a bounded morphism from F onto F.
Case 2.

e Let u,v € W and uRv. Then u € @ and v € v. Therefore uRv (by
definition of R). Thus f(x)Rf(y).

o Letuc W,z € Wand f(u)Rz. Since v € W, we have that z = v for
some v € W. Hence z = f(v). Then f(u)Rf(v) and uRv. Therefore
there exist wy € @ and w; € v such that wyRw;. Then, by assumption
on R, there are two cases:

- wy = zo and w; € E. Hence w, = 7y and w, € E. Since wy = 4
and w; = v, we obtain & = 7y and v € E. Since T, = {0} and
u = T, we get u = x¢. It follows from v € E that v € E (by
(B) using E € S). Since u = zy and v € E, we have uRv (by
assumption on R). Thus uRv and z = f(v).

- wy,w; € E. Since wy € u, we have wyg = u. Hence u € F (since
wy € Fand E € 5). Analogously, v € E. Since u,v € F, we get
that uRv (by assumption on R). Thus uRv and = = f(v).

e Foranyu € W, u € Eiff u € E (by (o, 8) using E € S) iff f(u) € E
(by definition of f).

So f is a bounded morphism from F onto F.

Thus f is a surjective bounded morphism from F onto F in both cases.

Part (c).

It follows from Part (b) that A is an injective MBA-homomorphism
from P £ into P (by Corollary 3.1.27), and so P £ is isomorphic to an MBA-
subalgebra of P . Note that we cannot yet conclude that Pz € V, because
P may not belong to V' (although A € V by assumption). But after we
prove that hs(Pz) C A, we will be able to obtain that Pz € V.
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Since, for every B € S, hy(B) = f"Y(B)={zx e W | f(z) € B} ={z €
W |z € B} = B (because B € S and using («a, 3)), we have

h¢(B) = B for every B € S. (3.2.4)

Let Bg be the subalgebra generated by {B | B € S} of the Boolean
algebra P(W) . To be proved that {z} € Bg for every z € W. Suppose
T € W. We are going to represent 7 as a (finite) Boolean combination of
elements in {B | B € S}. Assume that § € W and z # 3. Hence there is
B € S such that eitherx € Bandy ¢ Borx ¢ Bandy € B. If z € B and
y ¢ B,thenz € Band j ¢ B (since B € S and using («, 8)). If z ¢ B and
y € B,thenz ¢ Band §j € B;andso Z € (—B) and § ¢ (—B). Therefore
Z € Byand § ¢ By, where

B _ B, ifreBandjyé¢ B
" | -B, ifi¢ Bandye B.
Note that B; € Bg. Since W is finite, the collection {B; | T # 7} is finite
and {B; |  # y} € Bs. But {z} = N{B; | * # y}. Thus {7} € Bg.
(Compare with the notion of distinguished model in modal logic in [5,
p- 36].)

So Bs = P(W). Hence every element in P(IV) is a (finite) Boolean
combination of elements in {B | B € S}. Therefore h;(P(W)) C A by
(3.2.4) using the fact that iy preserves finite Boolean combinations and A
is closed under finite Boolean combinations.

Since h; : Pz — P is an injective MBA-homomorphism and h (P (W))
C A, we obtain that the complex algebra Pz is isomorphic to an MBA-
subalgebra (namely, to h;(P 7)) of the MBA A . Thus Pz € V (since A € V
and V is closed under subalgebras and homomorphic images).

Finally, since P # is a finite special MBA, we get Pz € K. O

Corollary 3.2.2. Every variety of MBA's is generated by its finite special mem-
bers.

The following corollary will be useful in the next section.
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Corollary 3.2.3. If Ay in the theorem is equal to P , where F is a bounded graph
of Type I or Type Il or is a vacuous bounded graph, then Ay = P, where F' is a
finite bounded graph of Type I or Type 1I or is a vacuous bounded graph, respec-
tively. In other words, if an equation is not satisfied by a special MBA, then it is
not satisfied by some finite special MBA of the same type (see Definition 3.1.19).

3.3 Characterization of MBA-varieties in terms

of their generators

In this section we sharpen (in terms of numbers of generators) Corol-
lary 3.2.2. Firstly, bounded graphs F,,,F°, F¢° on subsets of {c0,0,1,2,...}
are introduced. Secondly, we find relations among the complex algebras
Py, Prs, Preo. Finally, we prove that every MBA-variety is generated by
some subset of {Pz,,Prx, Pz} (forsome 1 <n <wand 1 < m < w).
As a consequence, we obtain that there are countably many varieties of
MBA's.

Let0=0,n={0,1,...,n—1},and w = {0,1,2,... }. Suppose oo is an

entity not in w.

Definition 3.3.1. For every 1 < n < w, the marked directed graph F, is defined
by F, = (W,R,E) where W =n, R=n xnand E = n.

Definition 3.3.2. For every 0 < n < w, the marked directed graph F,° is defined
by F° = (W, R, E) where W = {oo} Un, R = {{c0,2) | & € n} U (n x n) and
E=n.

Note that 7, for 1 < n < w, is a bounded graph of Type I; F:°, for
1 <n < w, is a bounded graph of Type II; and F;° is a vacuous bounded
graph.

Definition 3.3.3. For every 1 < n < w, define the MBA P,, by P,, = Py, .

Definition 3.3.4. For every 0 < n < w, define the MBA P;° by P° = P £,
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So P, P;° and Pg° are finite special MBA’s for 1 < n < w.
Lemma 3.3.5. Suppose A is a finite MIBA.

1. If A = Py for some bounded graph F of Type 1, then A is isomorphic to
P, forsomel <n < w;

2. If A = P for some bounded graph F of Type II, then A is isomorphic to
P2 for some 1 < n < w;

3. If A = Py for some vacuous bounded graph F, then A is isomorphic to
P,

Proof. 1. Suppose A = Prwhere F = (W,R,E), E=W #0,R=W x W.
Since A is finite, we have 1 < Card(W) < w (say Card(W) = n). There-
fore there exists a bijective bounded morphism between F and F, (by
Lemma 3.1.28). Then the MBA’s A and P,, are isomorphic (by Corol-
lary 3.1.27).

2. Suppose A = Py where ¥ = (W, R, E), W = {xo} UE, 2y ¢
E # 0 and R = {{x0,y) | y € F} U (E x E). Since A is finite, we have
1 < Card(E) < w (say Card(E) = n). Therefore there exists a bijec-
tive bounded morphism between F and F,° (by Lemma 3.1.29). Then
the MBA’s A and P;° are isomorphic (by Corollary 3.1.27).

3. Suppose A = P and F is a vacuous structure. Therefore there is a
bijective bounded morphism between F and F3° (by Lemma 3.1.30). Then
the MBA’s A and P{° are isomorphic (by Corollary 3.1.27). O

Let V be an arbitrary variety of MBA's.

Lemma 3.3.6. For every 1 < n < m < w, P, is isomorphic to an MBA-
subalgebra of P,.

Proof. Since n < m, we have n C m. Then define a mapping f : m — n by

e
f(j){j’ nae (3.3.1)

0, ifjem—n
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for every j € m (here m — n is set-theoretical difference). Obviously, f
is surjective. It follows from the fact that both ¥, and F,, are bounded
graphs of Type I that f is a bounded morphism from F,, to F,. So f :
Fm — F, is a surjective bounded morphism. Therefore h; : P, — P,
is an injective MBA-homomorphism (by Corollary 3.1.27). Hence P, is
isomorphic to an MBA-subalgebra of P,,. O

Corollary 3.3.7. Foreveryl <n <m <w, if P,, €V, then P, € V.

Lemma 3.3.8. If P,, € V for arbitrarily large 1 < n € w (i.e. for every m € w
with 1 < m there exists k € w such that m < k and Py, € V), then

1. P, e Vforeveryl <n < w;
2. P,eV.

Proof. 1. Let 1 < n < w be fixed. By assumption, there exists k € w such
thatn < kand P, € V. Then P, € V by Corollary 3.3.7.

2. Assume that P, ¢ V. Hence there exists an identity ¢(zo, ..., z1_1) ~
1 such that P, [~ t(zo,...,21-1) = 1land V E t(zo,...,z-1) = 1 (by
Theorem 3.1.11). Since P, [~ t(xo,...,x;-1) = 1 and F, is a structure of
Type I, we obtain by Corollary 3.2.3 that A; = t(zo,...,2;-1) = 1 where
A, = Py for some finite bounded graph F' of Type I, say Card(F') =
n > 1. Therefore A; and P,, are isomorphic (by Lemma 3.3.5). So P,, [~
t(xo,...,x-1) ~ 1. But P, € V (by the item (1) of this lemma) and V' |=
t(zo,...,r;—1) =~ 1. This is a contradiction. Thus P, € V. O

Lemma 3.3.9. For every 1 < n < m < w, P:° is isomorphic to a subalgebra of
px.
Proof. Since n < m, we haven C m. Then define a mapping f : {oo}Um —
{oo} Un by
00, ifj =00
fG)=<4 ifjen (3.3.2)

0, ifjem—n
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for every j € {oo} Um. Obviously, f is surjective. It follows from the fact
that both F2° and F,¢ are bounded graphs of Type II that f is a bounded
morphism from F2° to F.°. So f : Fy° — F:° is a surjective bounded
morphism. Therefore h; : P;° — P;? is an injective MBA-homomorphism
(by Corollary 3.1.27). Hence P;° is isomorphic to an MBA-subalgebra of
P 0

Corollary 3.3.10. Foreveryl <n <m < w,if P;° € V,then P* € V.
Lemma 3.3.11. If P:° € V for arbitrarily large 1 < n € w, then

1. PP e Vforeveryl <n < w;

2. PX eV,

Proof. 1. Let 1 < n < w be fixed. By assumption, there exists k € w such
that n < k and P3° € V. Then P;° € V by Corollary 3.3.10.

2. Assume that P* ¢ V. Hence there exists an identity ¢(zo, ..., 2z;_1) =
1 such that P® [~ t(xg,...,2-1) & 1and V = t(xg,...,z1-1) = 1 (by
Theorem 3.1.11). Since P2° [~ t(xo,...,2;1) ~ 1 and F2° is a bounded
graph of Type II, we obtain by Corollary 3.2.3 that A; = t(zo,...,2-1) =
1 where A; = Pz for some finite bounded graph of Type II. Therefore
A; and P;® (for some 1 < n < w) are isomorphic (by Lemma 3.3.5). So
P W t(zo,...,z-1) = 1. But P;° € V (by the item (1) of this lemma) and
V = t(zo,...,2;—1) =~ 1. This is a contradiction. Thus P° € V. O

Lemma 3.3.12. For every 1 < n < w, P,, is an homomorphic image of the MBA
P,

Proof. By Lemma 3.1.31 and Corollary 3.1.27. ]
Corollary 3.3.13. Forevery 1 <n < w,if P;° € V, then P,, € V.
We are now ready to prove the main result of the section.

Theorem 3.3.14. Suppose V' is a variety of MBA's. Then there exist 1 < i < w,
1 < j <wandasubset S C {P;,P* P} such that V= V(S). (Roughly
speaking, every variety of MBA's is generated by at most three special members.)
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Proof. Let K = {A € V | Ais a finite special MBA}. Recall that V' = V(K)
by Corollary 3.2.2. Our goal is to single out in V' (not necessarily in K) as
few members as possible that generate the whole variety V.

Let

o Ky={A € K| Ais a (finite) special MBA of Type I},

K1 = {A € K | Ais a (finite) special MBA of Type II},

Ky, ={A € K | Aisavacuous MBA},

Kr={AeK|Ac{P, P, PP |l<n<wl<m<uw}},

So={P,|1<n<w}

S1={P2|1<m<uw}.

Note that K = Ky U K; U K.

We are going to define three sets G, H, and I, whose union will be
the desired S. Below G will consist of at most one MBA P; (for some
1 < < w), H will consist of at most one MBA P%° (for some 1 < j < w)
and I will consist of at most P{°.

Define an index i and a set G according to the following;:

Casel If K*NSy=0,thenletG =0 and i = 1;

Case2 If 1 < Card(K* N Sy) < w, then let i = max{n | P, € K*} and

Case 3 If Card(K* N Sy) = w, then P, € V (by Lemma 3.3.8) and let G =
{P,}Jandi=w.

Similarly define an index j and a set H:
Casel If K*N S, =0,thenlet H =0 and j = 1;

Case2 If 1 < Card(K*NS;) < w, then let j = max{m | P® € K*} and
H= {P;’O};
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Case 3 If Card(K* N S;) = w, then P € V (by Lemma 3.3.11) and let H =
{PX}and j =w.
Finally, define a set I:
Casel If P® ¢ K*, thenlet I = ();
Case2 If Pi° € K*, thenlet I = {P}.

SoletS=GUHUI Thus S C {P;,P*,P5°}and S C V.

Our goal is to prove that V(S) = V, i.e. S generates V. Let X be an
infinite set of variables. By the discussion on page 50, to prove V(S5) = V
it suffices to show that Ids(X) C Idy(X). Moreover, since V = V(K),
it suffices to show that, for every MBA-term ¢(zo,...,z,-1), S EF t = 1
implies K =t~ 1.

Firstly, to be proved that

G =t~ 1implies K =t ~ 1 (for every term t). (3.3.3)
Suppose G =t ~ 1. By definition of G, there are three cases.
Case 1 If K*N Sy =0, then Ky = 0 (by Lemma 3.3.5). Hence K, |= ¢ ~ 1.

Case2 If 1 < Card(K*N S)) < w, then P, =t ~ 1 where i = max{n |
P, € K*}. Hence P, =t ~ 1and P, € V forevery 1 < k < i
(by Lemma 3.3.6 and Corollary 3.3.7). Therefore K, = t =~ 1 (by
Lemma 3.3.5 and by definition of 7).

Case 3 If Card(K*NSy) = w, then P, =t ~ 1. Hence P, E ¢t =~ 1 and
P, € V forevery 1 < k < w (by Lemma 3.3.6 and Corollary 3.3.7).
Therefore K, =t ~ 1 (by Lemma 3.3.5).

Secondly, to be proved that
H =t~ 1implies K; =t ~ 1 (for every term ). (3.3.4)

Suppose H =t ~ 1. By definition of H, there are three cases.
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Case 1 If K*NS; =0, then K; = 0 (by Lemma 3.3.5). Hence K; |= ¢ ~ 1.

Case2 If 1 < Card(K* N S)) < w, then P =t ~ 1 where j = max{m |
P € K*}. Hence P =t ~ 1foreveryl < k < jand P* € V
(by Lemma 3.3.9 and Corollary 3.3.10). Therefore K; =t ~ 1 (by
Lemma 3.3.5 and by definition of j).

Case 3 If Card(K*NS;) = w, then P =t ~ 1. Hence P{° =t ~ 1 and
Py € V forevery 1 < k < w (by Lemma 3.3.9 and Corollary 3.3.10).
Therefore K, =t ~ 1 (by Lemma 3.3.5).

Finally, to be proved that
I =t~ 1implies K, |=t ~ 1 (for every term ). (3.3.5)
Suppose [ |=t =~ 1. By definition of /, there are two cases.

Case 1 If P® ¢ K*, then K, = () (by Lemma 3.3.5). Hence K, =t ~ 1.

Case2 If P° € K*,then Py =t ~ 1. Therefore K, =t ~ 1 (by Lemma 3.3.5).

It follows from (3.3.3), (3.3.4), (3.3.5) that S =t ~ 1 implies K =t~ 1
(for every MBA-term ¢). So V(S) =V, i.e. V is generated by S. O

Corollary 3.3.15. There are countably many varieties of MBA’s.

3.4 Equational characterizations of MBA-varieties

In [9] D. Monk gives explicit equational characterizations for each variety
of monadic algebras. The purpose of this section is to provide an anal-
ogous result for monadic bounded algebras, namely, equationally char-
acterize each variety of MBA’s. As a consequence, we get that the equa-
tional theory of every MBA-variety is finitely based. Our algebraic expres-
sions are obtained by modifying certain formulas from modal logic due to
K. Segerberg [10].

We are going to sort all MBA-varieties via the previous section. By
Theorem 3.3.14, there are eighteen types of MBA-varieties:
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1. V(P,, P2, Py),
2. V(P,,PX),
3. V(PX,Py),
4. V(P,,PY),
5. V(P,),
6. V(P),
7. V(PY),
8. V(P,,PX P¥),l1<n<uw,
9. V(P,,PX),1<n<uw,
10. V(P,,P&), 1< n <w,
11. V(P,), 1 <n<w,
12. V(P,, P2 PYP), 1 <m < w,
13. V(P,,P=),1<m < w,
14. V(P2 PF), 1< m < w,
15. V(PY), 1 <m < w,
16. V(P,, P2 Py¥),1<n<wand1 <m<uw,
17. V(P,,P¥),1<n<wand 1 <m < w,
18. V(0).
Let us consider two cases both in (16) and in (17):
16a. V(P,, P2 PF),1<n<m<uw,

16b. V(P,,,PX P¥), 1 <m<n<uw,
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and

17a. V(P,,P2),1<n<m<uw,
17b. V(P,,PX), 1 <m <n < w.
Recall that

e P, is isomorphic to an MBA-subalgebra of P, for 1 <i < j < w (see
Lemma 3.3.6),

e P is isomorphic to an MBA-subalgebra of P forl <i<j<w
(see Lemma 3.3.9),

e P;is an homomorphic image of P;° for 1 < i < w (see Lemma 3.3.12).
Therefore some MBA-varieties are equal:

o V(P,,PX Pyr)=VPXPyr) =V(P,PX Py forl <n < w (see
items 1, 3, 8),

o V(P,,PX)=V(PY)=V(P,,P) forl <n < w (seeitems?2,6,9),
o V(PX.PP)=V(P,,PX Py)forl <n<m < w (seeitems 14, 16a),
o V(PY)=V(P,,PX) for1 <n<m < w(seeitems 15, 17a).
So there are actually fourteen types of MBA-varieties:
1. V(P PF),
2. V(PY),
3. V(P,,Py),
4. V(P,),
5. V(Pg),

6. V(P,,PX),1<n<w,
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7. V(P,),1<n<uw,
8. V(P,,PX Pr),l1<m<uw,
9. V(P,,P®), 1 <m < w,
10. V(P2,PP), 1 <m < w,
11. V(P,, P2, PP), 1 <m<n<w,
12. V(PY),1<m<w,
13. V(P,,PX), 1 <m<n<uw,
14. V(0).
The goal is to find equations which characterize each of them.
Definition 3.4.1. V is the variety of all MBA's.
Definition 3.4.2. Vj is the variety of all one-element MBA's.

SoVy=V(0)and V = V (P>, PY).
Let {vg, v1, ...} be a set of variables.

Definition 3.4.3 (cf. [10, p. 52]). For 1 < n < w, denote the MBA-term

A\ o A Avisg A) (3.4.1)

0<i<n

by Alt,,.
Note that Alt,, is not defined for n = w.

Definition 3.4.4 (cf. [9, p. 54]). A set I of MBA-equations characterizes a set L
of MBA’s relative to V (or, L is characterized by T relative to V) iff L = {A €
VIAET}L

Recall that to distinguish operations and constants in different MBA'’s

we use superscripts:
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o P = (Pyo,Nn,U,/,0FF 1PF EPE 3P,
o P, = (Py,Nn, U/, 0P 1P EPr IPr)
o P = (Pr,Nn,U,/,0F 1P5 EPe IP5).
Lemma 3.4.5. For 1 < n < w, the following conditions are equivalent:
1. P = Alt, ~ 0;
2. Py EAlt, = 0;
3. k<n.

In other words, P = Alt, ~ 0 iff there are at most n elements in E¥% and

Py |= Alt,, = 0 iff there are at most n elements in E¥*.

Proof. (1) = (2). By Lemma 3.3.12.
(2) = (3). Assume k > n. Then k —n > 1. For every i < n, let p; =
{0,...,k—(i+2)}, and p, = 0. So

k—(i+1) €pon--Npi1 Np,
and therefore po N --- N p;_1 N pl # O (for each i < n). Hence
Nicn 350N Npict OPf) = My, {0,- ., n =1} ={0,...,n — 1} #0

(since E¥* = 1P* and 3F* is basic). Thus Py, [~ Alt,, ~ 0.
(3) = (1). Assume that P{° F~ Alt,, ~ 0. Then

Nicn 3% (o N+ Npim N p;) # 0

for some py,...,p, € P° (so po,...,pn € {00,0,...,k — 1}). Then each
member of the intersection is nonempty. Therefore, by Definition 2.2.1 (1,6),

EPE npy #0,
EPE NnpoNp) #0,

EPE NpoNp Npy #0,
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EPENpon - NpaaNpl_y #0,
EPF Npon---Np,_1Npl, #0.

So we have that

1) EPE consists of k > 0 elements (by definition of P°),
2) EP¥ N py consists of at most & — 1 > 0 elements,

3) EF¥ M py N p; consists of at most £ — 2 > 0 elements,

n) EP¥ Npy N -+ Np,_o consists of at most k — (n — 1) > 0 elements,
n+1) EP¥ NpyN---Np,_1 consists of at most k — n > 0 elements.
Thus k > n. O

Lemma 3.4.6. Forevery 1 < n < w, P§° = Alt, = 0.
Proof. Since 3P p = ) for every p € P§°, we obtain the result. O
Lemma 3.4.7. For1 <m <n <w, V(P,) C V(P,).

Proof. Suppose 1 < m < n < w. Then P,, is isomorphic to an MBA-
subalgebra of P,, (by Lemma 3.3.6). Therefore V' (P,,) C V(P,,). By Lem-
ma 3.4.5, P,, E Alt,, = 0. But P, [~ Alt,, = 0 (otherwise n < m). Thus
V(Pn) #V(P,). SoV(P,) C V(P,). O

Lemma 3.4.8. For 1 <m <n <w, V(PY) C V(P).

Proof. Suppose 1 < m < n < w. Then P{? is isomorphic to an MBA-
subalgebra of Py° (by Lemma 3.3.9). Therefore V(P;?) C V(P:°). By
Lemma 3.4.5, P = Alt,, =~ 0. But P;° = Alt,, ~ 0 (otherwise n < m).
Thus V(P®) # V(P®). So V(PX) C V(PX). 0

Lemma 3.4.9. For every variety V of MBA’s, if

e P*cVor
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o P,cV (forsomel <n<w)or

o P cV (forsomel <m <w),
then V' # Vj.
Proof. Obvious. L
Lemma 3.4.10. For 1 <k <wandl1 <n <w,

P® = EV (Alt,) ~ 1iff P® = Alt, ~ 0.
Proof. The « part is obvious. For =, assume P}° [~ Alt,, ~ 0. Then
Nice 3% (Po N -+~ Npis N ) # 0
for some py, ...,p, C {00,0,...,n — 1}. Therefore
ﬂignEIon(poﬁ~--ﬂpi_1 Np) ={c0,0,...,n—1}
(since Pg° is basic). Hence
(Micn I°F (po N+~ Ny N p)) = 0.
So
P £ BV (Alt,) ~

(since E¥¥ ={0,...,k —1} # {00,0,...,k —1}). O

Corollary 3.4.11. For 1 <k <wand1 <n < w, P = EV (Alt,) = 1iff
k <n.

The next technical lemma about certain inequalitites among MBA-va-
rieties will be applied many times in Facts 3.4.14-3.4.27.

Lemma 3.4.12. Let S be a set of MBA's.

1. For1 <n <w, V(P,) # V(S) where either P’ € S (for some 1 < m <
w)or P e S.
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2. V(P) # V(S) where either P,, € S (for some 1 < n < w)or P € S
(for some 1 < m < w).

3. For1 <j <w, V(P$) # V(S) where Pg° € S.

4. For1 <k <wand1<j <w, V(P P) # V(S) where Pi° € S.

5. Forl <k <w,V(Py,Py) # V(S) where Py € S (forsome1l < m < w).
6. Fori1<k<wandl <j<m<uw, V(Pk,P;?O) # V(PX).

7. For1<j<m<n<w, V(P¥)#V(P,PY).

8 For1<j<m<n<w V(P PF) #V(P,, Py Py).

Proof. 1. Assume V(P,) = V(S) where n and S satisfy the given condi-
tions. Since P, = £ ~ 1, wehave V(P,,) = E~ 1. Then V(S) = F ~ 1.
Hence either P° = E~1(1 <m <w)or PP = E ~ 1. But B~ # 1P~
and E¥¢ #£ 1F0,

2. Assume V(Pg) = V(S) where S satisfies the given condition. Since
Py = FE ~ 0, we have V(Py) = F ~ 0. Then V(S) = F ~ 0. Hence
either P, F E~0(l <n<worPPEFx~0(1<m<w). But
EPn» £ 0P and EP» # 0P,

3. Assume V' (P5°) = V/(S) where j and S satisfy the given conditions.
Since P° = 3E ~ 1, we have V(P%°) = 3E ~ 1. Then V(S) = JE = 1.
Hence P = JF ~ 1. But 3F¢ EFo" £ 1P0°,

4. Assume V (P, P5°) = V(S) where k, j, S satisfy the given condi-
tions. Since Py, P = JE ~ 1, we have V(P;,P{°) = 3E ~ 1. Then
V(S) | JF ~ 1. Hence P° = JF ~ 1. But FF0 FPo” £ 1P0.

5. Assume V (P, Py) # V(S) where k and S satisfy the given condi-
tions. Since Py, P° = EV (3E) ~ 1, wehave V (P, Py) = EV (IE) = 1.
Then V(S) = EV (3E) ~ 1. Hence P* = EV (FE) ~ 1 (1 < m < w). But
P> £ Ev (3E) ~ 1.

6. Assume V (P, P5°) = V(P?) where £, j, m satisfy the given condi-
tions. Since Py, P = EV(Alt;) ~ 1, wehave V (P, P°) = EV(Alt;)" ~ 1.
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Then V(P?) = E V (Alt;) =~ 1. Hence Py = E V (Alt;)’ = 1. Therefore
m < j (by Corollary 3.4.11). But j < m.

7. Assume V(P%°) = V(P,, Pyy) where j,n,m satisfy the given con-
ditions. Since P$° = Alt; ~ 0, we have V(P}°) = Alt; ~ 0. Then
V(P,,Py) = Alt; ~ 0. Hence P, = Alt; ~ 0. Therefore n < j (by
Lemma 3.4.5). Son < n.

8. Assume V (P, P§°) = V(P,, P}, P5°) where j, n, m satisfy the given
conditions. Since P°, P{° = Alt; ~ 0, we have V (P, P°) = Alt; ~ 0.
Then V(P,,, P2, PY) = Alt; ~ 0. Hence P,, |= Alt; ~ 0. Therefore n < j
(by Lemma 3.4.5). So n < n. [

The main result of the section is the following theorem, whose proof is

given in a series of fourteen facts.

Theorem 3.4.13. V' (.S) is characterized by a finite set I" of MBA-equations rela-
tive to V., where S and T are in the table below.

Proof. See Facts 3.4.14-3.4.27. O
Fact | S r
3.4.14 | {P>*, Py} 0
3.4.15 | {P>} {3E ~ 1}
34.16 | {P,, P} (EV(EE) ~ 1}
34.17 | {P.} (E~1)
3.4.18 | {P{°} {F ~ 0}
3419 | {P,,Pr}1<n<w {EV (3E) ~ 1,Alt, ~ 0}
3420 | (P} 1<n<w (E ~1,Alt, ~ 0}
3421 | {P,, P, Pr}1<n<w {EV (Alt,) ~ 1}
3422 | {P,,PX}1<n<w {3E~1,EV (Alt,) =~ 1}
3423 | {P* Prh1<n<uw {Alt, ~ 0}
3424 | {P,,PX Prl1<m<n<w]|{Alt,=0,EV(Alt,) ~ 1}
3425 | {Pr}1<n<w {3F ~ 1,Alt, = 0}
3426 | {P,, P} 1<m<n<w {3IE ~ 1,Alt, = 0, E V (Alt,,) ~ 1}
3427 | () {vo = v}
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In Facts 3.4.14-3.4.27, we characterize each of the fourteen types of
MBA-varieties. Since {A € V | A ¥}, where ¥ is a set of MBA-
equations, is an equational class of MBA’s, {A € V | A X} is an
MBA-variety (by Theorem 3.1.11). Therefore, by Theorem 3.3.14, there
exist ] <i < w,1 < j < wand asubset S C {PZ-,P;?O,P(C;O} such that
V(S) = {A € V| A = ¥}. We stipulate that in the proofs Facts 3.4.14-
3.4.27 all this will be shortened to the phrase “Since {A € V | A = ¥} is
an equational class of MBA’s, V(S) = {A € V | A | X} where S consists
of at most three special MBA’s”.

Fact 3.4.14. V(P P)(= V) is characterized by () relative to V.

Proof. Since V = {A € V | A = 0}, V is characterized by () relative to V.
So V (P>, P°) is characterized by () relative to V. O

Fact 3.4.15. V(PY) (= V(P,,P2) for every 1 < n < w) is characterized by
{3E ~ 1} relative to V.

Proof. To be proved that V(P®) = {A € V | A | 3F ~ 1}. Since P®
JE ~ 1, wehave V(P®) C {A € V | A E 3E ~ 1} # V. Since {A €
V| A = 3E ~ 1} is an equational class of MBA's, V(S) = {A € V | A |=
JE ~ 1} where S # () consists of at most three special MBA's.

Since P° £ JE ~ 1, we have P ¢ S.

Assume S = {P;} for some 1 < k < w. Then V(Py) C
V(P>) C V(S) = V(P.) and so V(P) = V(PX). But V(Py) #
Lemma 3.4.12 (1)).

Assume S = {P} for some 1 < m < w. Then V(P?) C V(PX) [by
Lemma 3.4.8] C V(S) = V(P2). Hence V(P) C V/(PX).

Assume S = {Pk,P;’O} forsomel < k < wand 1 < j < w. Then
V(P PP) CV(P,,PY) =V(PY) CV(S) =V(P,P;°)and so V (P, P5°)
=V(PZ). But V(P,, P) # V(PZ) (by Lemma 3.4.12(6)).

V(P,) C
V(Pg) (by
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So it remains that either S = {P,, P2} (forsome 1 < n < w)or S =
{P:r}. Since V(P,,,P*) = V(PY) (for all 1 < n < w), we have proved that
VPX)={A eV I|AEIE~1}(=V(P,,P¥) foreveryl <n<w). 0O

Fact 3.4.16. V (P, P) is characterized by {E vV (3E)’ ~ 1} relative to V.

Proof. To be proved that V(P,,,P?) = {A € V | A E EV (3E) =~ 1}
Since P,,P¥ = EV (3E) ~ 1, we have V(P,,,P?) C{A € V | A |
EV (3E) ~ 1} # V,.Since {A € V | A | EV (3E)' ~ 1} is an equational
class of MBA’s, V(S) = {A € V | A = EV(3E) ~ 1} where S # () consists
of at most three special MBA's.

Since P £ EV (3E) ~ 1, wehave P* ¢ Sforany 1 <n < w.

Assume S = {Pg°}. Then V(P{) C V(P,,P§) C V(S) = V(P§) and
so V(P) = V(P,, PE). But V(PZ) # V(P,, P¥) (by Lemma 3.4.12(2)).

Assume S = {P;} for some 1 < k < w. Then V(P;) C V(P,) C
V(P,,PF) C V(S) = V(Py) and so V(Py) = V(P,,P). But V(Py) #
V(P,,Pg) (by Lemma 3.4.12(1)).

So it remains that S = {P;,P{°} for some 1 < k < w. We are going to
prove that k = w. Assume k£ < w. Then V (P, Py°) C V(P,,Pj) CV(S) =
V(Pg, Py) and so V (P, Py) = V(P,,Py). Since Py, P5° = Alt, =~ 0, we
have P, |= Alt; ~ 0. Hence w < k (by Lemma 3.4.5). But £ < w by our
assumption.

So S = {P,,Py}. Thus V(P,,P¥) = {A € V | A = EV (3E) ~
1}. O

Fact 3.4.17. V(P,) is characterized by { E ~ 1} relative to V.

Proof. To be proved that V(P,) ={A €V | A= E~ 1}.Since P, = E ~
1,wehave V(P,) C{AcV |AEE~1}#V,.Since{AcV |AEE =~
1} is an equational class of MBA’s, V(S) = {A € V | A & E ~ 1} where
S # () consists of at most three special MBA's.

Since neither P¢? (for any 1 < m < w) nor P§° satisfies £ ~ 1, we ob-
tain that S = {P,,} forsome 1 <n < w. Assume 1 < n < w. Then V(P,,) C
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V(P,) [by Lemma 3.4.7] C V(S) = V(P,) and so V(P,,) C V(P,,). There-
fore n = w. Hence S = {P,}. Thus V(P,) ={A €V |AE E ~ 1}. O

Fact 3.4.18. V(P) is characterized by { E ~ 0} relative to V.

Proof. To be proved that V(PF) = {A € V | A E E ~ 0}. Since Py
E~0,wehave V(PP) C{A €V | A E =0} # V. Since {A €V |
A = E =~ 0} is an equational class of MBA’s, V(S) = {A €V | A E E ~
0} where S # () consists of at most three special MBA's.

Since neither P,, (for any 1 < n < w) nor Py (forany 1 < m < w)
satisfies £ ~ 0, we obtain that S = {P°}. Thus V(P?) = {A € V | A =
E =~ 0}. O

Fact 3.4.19. For 1 < n < w, V(P,,Py°) is characterized by {E V (IE) =~
1, Alt, ~ 0} relative to V.

Proof. To be proved that V(P,,,Py) ={A € V | A = EV(3E) ~ 1,Alt, ~
0}. Since P,,,P° = EV (3E) = 1,Alt, ~ 0, we have V(P,,,P°) C {A €
V|IAEEV@AE) =~1,Alt, ~0} # Vy.Since {A €V |AEEV(3E) ~
1,Alt, ~ 0} is an equational class of MBA’s, V(S) = {A € V | A E
EV (3E) = 1,Alt, ~ 0} where S # () consists of at most three special
MBA's.

Since P = £V (3E) ~ 1, we have P ¢ Sforany 1 < j <w.

Assume S = {P§ }. Then V(P§) C V(P,, P§°) C V(S) = V(P{) and
so V(Py) = V(P,,P°). But V(Pg°) # V(P,,Py) (by Lemma 3.4.12(2)).

Assume S = {P;} for some 1 < k < w. Since P; = Alt, ~ 0, we have
k < n (by Lemma 3.4.5). Then V(P;) C V(P,,) [since k < n] C (P,,Py) C
V(S) = V(Py) and so V(Py) = V(P,,P). But V(Py) # V(P,,Py) (by
Lemma 3.4.12(1)).

So it remains that S = {Py,P°} for some 1 < k < w. Since Py =
Alt, ~ 0, we have k < n (by Lemma 3.4.5). Then V (P, Py°) C V(P,,Py)
[since £ < n] CV(S) =V (P, Py)and so V (P, Py) = V(P,,Py). Since
P, P5° = Alty = 0, we have V (P, P5°) = Alty = 0. Then V(P,,P)
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Alt; ~ 0 and so P,, |= Alt; ~ 0. Therefore n < k (by Lemma 3.4.5). Hence
k=n.S0 S = {P,,PF}. Thus V(P,,Py¥)={A €V |AEEV(3E) ~
1,Alt, ~ 0}. O

Fact 3.4.20. For 1 < n < w, V(P,,) is characterized by {E ~ 1,Alt, ~ 0}
relative to V.

Proof. To be proved that V(P,)) = {A € V | A  E ~ 1,Alt, ~ 0}. Since
P, E~1Alt, ~0,wehave V(P,) C{A €V | Ak FE ~ 1,Alt, ~
0} # Vp. Since {A € V | A | E ~ 1,Alt, ~ 0} is an equational class of
MBA’s, V(S) ={A €V | A E E ~1,Alt, ~ 0} where S # () consists of at
most three special MBA's.

Since neither P;° (for any 1 < m < w) nor P{° satisties £ ~ 1, we
obtain that S = {P;} for some 1 < k < w. Then P, = Alt, ~ 0. Hence
k < n (by Lemma 3.4.5). If k < n, then V(P;) C V(P,) [by Lemma 3.4.7]
C V(S) = V(Py) and so V(Py) C V(Py). Therefore k = n. So S = {P,}.
Thus V(P,) ={A €V | A E~1,Al, ~0}. O

Fact 3.4.21. For 1 <n < w, V(P,, P, Py) is characterized by {E V (Alt,))" =
1} relative to V.

Proof. To be proved that V(P,,, P>, P)={A €V | A E EV(Alt,) ~ 1}
Since P, P>, P = E V (Alt,) ~ 1, we have V(P,,, P* PX) C {A € V|
A = EV(Alt,) ~ 1} # V. Since {A € V| A E EV (Alt,) ~ 1} is an
equational class of MBA’s, V(S) = {A € V | A & EV (Alt,) ~ 1} where
S # () consists of at most three special MBA's.

Assume S = {Pg°}. Then V(P§) C V(P,, P2, Py) C V(S) = V(P{)
and so V(Pg°) = V(P,,P°, Py). But V(PY) # V(P,, P, Py°) (by Lem-
ma 3.4.12(2)).

Assume S = {P} for some 1 < k < w. Then V(P;) C V(P,) C
V(P,,PX.Pyr) C V(S) = V(P) and so V(Py) = V(P,, P, P). But
V(Py) # V(P,, P, Py) (by Lemma 3.4.12(1)).

Assume S = {P%} for some 1 < j < w. Since P° = £V (Alt,)" ~ 1,
we have j < n (by Corollary 3.4.11). Then V(P$°) C V(P;°) [since j < n]
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C V(P,, Py, Py) C V(S) = V(P%) and so V(P5°) = V(P,, P, PF). But
V(P°) # V (P, P, Py) (by Lemma 3.4.12(3)).

Assume S = {P;, Py} for some 1 < k < w. Then V(P,,P5°) C
V(P,,Py) C V(P,, P2, Pyr) C V(S) = V(P P§) and so V (P, Py) =
V(P,, P>, PY). But V(Py, PY) # V(P,, PX, PZ) (by Lemma 3.4.12(5)).

Assume S = {P$°, P{°} forsome 1 < j < w. Since P = EV(Alt,) ~ 1,
we have j < n (by Corollary 3.4.11). Then V (P$°, Pg°) C V(P5°, P§°) [since
j < n] CV(P,,PY,Pyr) C V(S) = V(P Py and so V(PP P5°) =
V(P,, Py, PF). But V(P P) # V(P,, Py, Py°) (by Lemma 3.4.12(8)).

Assume S = {Pk,P;?O} forsome 1 <k <wand 1 < j <w. Since P =
EV (Alt,)" ~ 1, we have j < n (by Corollary 3.4.11). Then V (P}, P5°) C
V (P, PS°) [since j < n] C V(P,,P®) C V(P,,PX,Py) C V(S) =
V(Py, P®) and so V (P, P¥) = V(P,, PX, Py). But V (P, P¥) # V(P,,
P, Py°) (by Lemma 3.4.12(4)).

So it remains that S = {Pk,P;?O,PSO} forsomel < k<wandl1 < j <w.
Since P$° = £V (Alt,)" ~ 1, we have j < n (by Corollary 3.4.11). Then
V(P, P, PyF) C V(P,, Py, Py) [since k < wand j < n] € V(5) =
V (P, P, Pg°) and so V(Py, P, P5°) = V(P,, P, PE°).

Firstly, we are going to prove that j = n. Since P, P, Py = EV
(Alt;)" ~ 1, wehave V (P, P5°, Py°) = EV(Alt;)" ~ 1. Then V (P, P;Y, P{)
= EV (Altj) =~ 1and so P = E'V (Alt;)" = 1. Therefore n < j (by Corol-
lary 3.4.11). Hence j = n. Thus S = {P;, P;°,P;°} and V(Py,, P°, PY°) =
V(P,, P2, PY).

Secondly, we are going to prove that £ > n. Assume k < n. Then
V (P, PX,PX) = V(P®,PY). Hence V(P®,PF) = V(P,, P>, P). But
V(Pr,Py) # V(P,, Py, Py) (by Lemma 3.4.12(8)).

Thirdly, we are going to prove that £ = w. Assume k < w. Since k& > n,
we have P;° |= Alt; ~ 0 (by Lemma 3.4.5). Hence P, P°, P5° |= Alt, = 0
and V (P, Py, P°) = Alty = 0. Then V(P,,P°, P) = Alty = 0 and so
P, = Alt, = 0. Therefore w < k (by Lemma 3.4.5). But k& < w by our

assumption.
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So S = {P,,P>* P*}. Thus V(P,,P*Py¥) ={A eV |AEEV
(Alt,) ~ 1}. ]

Fact 3.4.22. For 1 < n < w, V(P,,P°) is characterized by {3E ~ 1,E V
(Alt,) ~ 1}.

Proof. To be proved that V(P,,P*) ={A € V| A E3IE ~1,EV (Alt,) ~
1}. Since P, P> = 3F ~ 1, E Vv (Alt,) ~ 1, we have V(P_,,P>) C {A €
V]AE3IE~1EV (A, ~ 1} # V. Since {A € V | A | 3F ~
1, EV (Alt,) ~ 1} is an equational class of MBA’s, V(S) = {A € V | A
JE ~ 1,E V (Alt,) ~ 1} where S # () consists of at most three special
MBA's.

Since Py° £ 3F ~ 1, we have P ¢ S.

Assume S = {P;} for some 1 < k < w. Then V(P;) C V(P,) C
V(P,,PX) C V(S) = V(Py) and so V(Py) = V(P,,P). But V(Py) #
V (P, P:°) (by Lemma 3.4.12(1)).

Assume S = {P%} for some 1 < j < w. Then P = £V (Alt,)" =~
1. Hence j < n (by Corollary 3.4.11). Therefore V(P$°) C V(P;°) [since
j < nl CV(P,,PY) C V(S) = V(P®) and so V(PF) = V(P,,P). But
V(P) # V(P,, Py?) (by Lemma 3.4.12(7)).

So it remains that S = {Pk,PJO-O} forsomel <k <wand1l < j < w.
Then P§° |= E'V (Alt,)’ = 1. Hence j < n (by Corollary 3.4.11).

We are going to prove that j = n. Since V(P,P¥) C V(Py,Py)
[since j < n] C V(P,,Py?) C V(S) = V(P,P5), we get V(P Py) =
V(P,,Py). Since P, P* = EV (Alt;) = 1, we have V(P;,P¥) | £V
(Alt;) ~ 1. Then V(P,,,P>) |= EV (Alt;) ~ 1and so P® = EV (Alt;) ~ 1.
Therefore n < j (by Corollary 3.4.11). Hence j = n.

So S = {Pg,PX}. Thus V(Py, P°) = V(P,, P).

If & < n, then V(Py,P) = V(Py°) and so V(P) = V(P,,P°). But
V(Py) # V(P,,P:) (by Lemma 3.4.12(7)). Therefore k > n.

We are going to prove that £ = w. Assume 1 < k < w(son < k <
w). Then Py, = Alt; = 0 and P;° = Alt; ~ 0 (by Lemma 3.4.5). Hence
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V(Pg, P) E Aty = 0. Then V (P, PS°) = Alt, = 0 and so P, = Alt, =~ 0.
Therefore w < k (by Lemma 3.4.5). But £ < w by assumption. Hence

k=w.
So S = {P,,P¥}. Thus V(P,,P¥) ={A €V |AE3JE~1EV
(Alt,) ~ 1}. ]

Fact 3.4.23. For 1 <n <w, V(PX, P°)(= V(Pg, P2, PY)) forany 1 < k <
n) is characterized by {Alt,, ~ 0} relative to V.

Proof. To be proved that V (P2, Py) = {A € V | A | Alt, ~ 0}. Since
P> P = Alt, ~ 0, we have V(P2 PP) C {A € V | A E Alt, = 0} # V.
Since {A € V | A | Alt, ~ 0} is an equational class of MBA’s, V(S) =
{A € V| A Alt, ~ 0} where S # () consists of at most three special
MBA'’s.

Assume S = {P{°}. Then V(P{) C V(P Py) C V(S) = V(P{) and
so V(P) = V(P PY). But V(PF) £ V(P PE) (by Lemma 3.4.12(2)).

Assume S = {P;} for some 1 < k < w. Since P, = Alt, = 0, we
have £ < n (by Lemma 3.4.5). Then V(P,) C V(P,) [since £ < n] C
V(Py) CV(Pr,P) C V(S) =V(P) and so V(Py) = V(P°,P). But
V(Py) # V(P:,Pg°) (by Lemma 3.4.12(1)).

Assume S = {P;?O} for some 1 < j < w. Since P¥° = Alt, ~ 0, we
have j < n (by Lemma 3.4.5). Then V(P$?) C V(P;°) [since j < n] C
V(Py,P§) CV(S) =V(Py)and so V(P) = V(P;?, Py). But V(P°) #
V (P, Py°) (by Lemma 3.4.12(3)).

Assume S = {Pk,P;?O} forsomel < k <wand 1 < j < w. Since
P, | Alt, ~ 0 and P = Alt, ~ 0, we have k < nand j < n (by
Lemma 3.4.5). Then V (P, P$°) C V(P,, P;Y) [since k,j < n] C V(P?) C
VP, PF) C V(S) = V(P P5°) and so V (P, P) = V(P P§). But
V (P, P) # V(P P5°) (by Lemma 3.4.12(4)).

Assume S = {Py,P:°} for some 1 < k < w. Since Py = Alt, =~ 0, we
have k£ < n (by Lemma 3.4.5). Then V (P, Py°) C V(P,,,Py°) [since k < n]
C V(P> PP) CV(S) =V (P, Py) and so V (P, P°) = V(P2 P). But
V (P, Pg°) # V (P, Py°) (by Lemma 3.4.12(5)).
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So it remains that either S = {P;?O, Py} forsomel < j < wor S =
{Pk,P‘]?O,PSO} forsomel <k <wand1l <j <w.

e Suppose S = {P3°, P{°} for some 1 < j < w. Since P° |= Alt, ~ 0,
we have j < n (by Lemma 3.4.5). Then V (P, Pg°) C V(P Py)
[since j < n]C V(S) =V (P, P§°)andso V(P P) = V(P2 Py).
Since P$°, P = Alt; ~ 0, we have V(P P5°) = Alt; ~ 0. Then
V (P, Py) = Alt; = 0 and so P° |= Alt; ~ 0. Therefore n < j (by
Lemma 3.4.5). Hence j = n. Thus S = {P°, Py} (in this case).

e Now suppose S = {P;, P;°, P} forsome 1 <k <wand1<j <w.
Since P, = Alt, ~ 0 and P{° = Alt, = 0, we have £ < n and
j < n (by Lemma 3.45). Then V(P;,P® Py) C V(P,, P>, PY)
[since k,j < n] = V(P?,P5°) C V(S) = V(P P, P§°) and so
V (P, P, Pg°) = V(Py2, Pg°). Since Py, P, Py = BV (Alt)) ~ 1,
we have V (P, P, Py°) = E V (Alt;) = 1. Then V(P Pf) =
E Vv (Alt;) ~ 1and so P;° = EV (Altj)’ = 1. Therefore n < j (by
Corollary 3.4.11). Hence j = n. Thus S = {P;,P;*, P} and k < n
(in this case).

So either S = {P;°,P;°} or S = {Py, P°, P} for some 1 < k < n. Since
V(Pr,PyP) = V(Pg, P2, PY) for all 1 < k£ < n, we have proved that
V(PE,PP)={AcV|AEAl, ~0}(=V(P;, P PP forany 1 < k <
n). O

Fact 3.4.24. For 1 < m < n < w, V(P,, P P) is characterized by I' =
{Alt, =~ 0, E V (Alt,,) ~ 1} relative to V.

Proof. To be proved that V(P,,P2, P*) = {A € V | A | I'}. Since
P,, P P =T,wehave V(P,,PX, PyY) C {A eV | AT} # V. Since
{A € V | A T} is an equational class of MBA’s, V(S) = {A e V | A |
I'} where S # () consists of at most three special MBA's.

Assume S = {P3°}. Then V(PY) C V(P,, PX,PY) C V(S) = V(PY)
and so V(Py°) = V(P,, Py, Py). But V(P) # V(P,, P2, P°) (by Lem-
ma 3.4.12(2)).
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Assume S = {P;} for some 1 < k < w. Since P, = Alt, = 0, we
have £k < n (by Lemma 3.4.5). Then V(P,) C V(P,) [since £ < n] C
V(P,, P2, P>) C V(S) = V(Py) and so V(Py) = V(P,, P2, PF). But
V(Py) #V(P,, Py, Py) (by Lemma 3.4.12(1)).

Assume S = {P$°} for some 1 < j < w. Since P§° = EV (Alt,) ~ 1,
we have j < m (by Corollary 3.4.11). Then V(P%°) C V(P}?) [since j < m]
C V(P,, Py, P>) CV(S) =V(P¥)and so V(P$) = V(P,, Py, Py). But
V(PS°) # V (P, Py, Py) (by Lemma 3.4.12(3)).

Assume S = {P;, P} for some 1 < k < w. Since P, | Alt, =~ 0,
we have £ < n (by Lemma 3.4.5). Then V (P, Py) C V(P,,P) [since
k< n] CV(P,PXPr) C V(S) = V(P,Py) and so V (P, PY) =
V(P,, P2, P°). But V(Py, Py°) # V(P,, P2, P°) (by Lemma 3.4.12(5)).

Assume S = {P;, P} forsome 1 < k <wand 1 < j <w. Since P, =
Alt, ~ 0 and P = E'V (Alt,,) ~ 1, we have k < n (by Lemma 3.4.5) and
j < m (by Corollary 3.4.11). Then V (P, P5°) C V(P,,Py) [since k < n
and j < m] C V(P,, Py, Py) C V(S) = V(P,P) and so V (P, P¥) =
V(P,,, P, PY). But V(Py, PF) # V(P,, P, Py) (by Lemma 3.4.12(4)).

Assume S = {P¥ P} for some 1 < j < w. Since P¥ | EV
(Alt,,)" ~ 1, we have j < m (by Corollary 3.4.11). Then V(P%,Pg°) C
V (P, Pg°) [since j < m] C V(P,, P2, PF) C V(S) = V(P P§°) and
so V(P Py°) = V(P,, Py, P§°). But V(P*,P§) # V(P,, Py, Py) (by
Lemma 3.4.12(8)).

So it remains that S = {Pk,P;?O,Pgo} forsomel < k<wandl < j <w.
Since P, |= Alt, ~ 0 and P = E V (Alt,)" = 1, we have k < n (by
Lemma 3.4.5) and j < m (by Corollary 3.4.11). Then V (P}, P, P5°) C
V(P,, Py, P>) [since k < nand j < m] C V(S) = V(P P, Py) and so
V(Py, P®, Py) = V(P,, P2, PY).

Firstly, we are going to prove that j = m. Since P, P5°,P{° = E'V
(Alt;)" ~ 1, wehave V (P, P$°, P5°) = EV(Alt;)" =~ 1. Then V (P, Py, P{)
= EV(Alt;) = 1and so P;? = E'V (Alt;)’ = 1. Therefore m < j (by Corol-
lary 3.4.11). Hence j = m. Thus S = {P,P;?, P} and V (P, Pye PY) =
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V(P,, P2, P).

Secondly, we are going to prove that £k > m. Assume k < m. Then
V(Py, P2, P) = V(P®, PY). Hence V(P2 P = V(P,, P>, P). But
V (P, Pyr) # V(P,,PX, Py) (by Lemma 3.4.12(8)).

Thirdly, we are going to prove that £ = n. Since k > m, we have P |=
Alt; ~ 0. Hence P, P2, P;° = Alty ~ 0 and V (P, P2° P) = Alt, =~ 0.
Then V(P,,, P2 P) | Alt, =~ 0 and so P,, = Alt;, ~ 0. Therefore n < k
(by Lemma 3.4.5). Hence k = n.

SoS ={P,,P2 Pr}. ThusV(P,,P¥,PX)={AcV|ART} O

Fact 3.4.25. For 1 < n < w, V(P?) (= V(P,PyX) forany 1 < k < n)is
characterized by {3E ~ 1, Alt,, ~ 0} relative to V.

Proof. To be proved that V(P>) = {A € V | A = 3F ~ 1, Alt, ~ 0}. Since
P> = 3F ~ 1,Alt, ~ 0,wehave V(P®) C{A € V | A E 3E =~ 1,Alt, ~
0} # V4. Since {A € V | A E 3F ~ 1, Alt, ~ 0} is an equational class of
MBA’s, V(S) = {A € V | A = 3E =~ 1, Alt, ~ 0} where S # () consists of
at most three special MBA's.

Since Py° £ 3F ~ 1, we have P ¢ S.

Assume S = {P;} for some 1 < k < w. Then P, | Alt, ~ 0. Hence
k < n (by Lemma 3.4.5). Therefore V(P°) C V(S) = V(P;) C V(P,)
[since k < n] C V(P°) and so V(P) = V(Py). But V(P°) # V(Py) (by
Lemma 3.4.12(1)).

So it remains that either S = {Pjo} (forsome 1 < j < w)or S =
{Py, P} (forsome 1 <k <wand 1< j <w).

e Suppose S = {P$°} for some 1 < j < w. Then P{° |= Alt, ~ 0.
Hence j < n (by Lemma 3.4.5). If j < n, then V(P%°) C V(P;°) [by
Lemma 3.4.8] C V(S5) = V(P$°) and so V(P%°) C V(P$°). Therefore
j =n. Thus S = {P} (in this case).

e Now suppose S = {P;,P{°} forsome 1 < k <wand 1 < j < w.
Then Py, = Alt, ~ 0 and P E Alt, = 0. Hence k < nand j <n
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(by Lemma 3.4.5). We are going to prove that j = n. Since Py, P§° |=
EV (Alt;)" ~ 1, we have V (P, P5°) = E'V (Alt;)’ ~ 1. Then P;° =
EV (Alt;) =~ 1 (since Py? € V(P;Y) C V(S) = V(Py, P)). Therefore
n < j (by Corollary 3.4.11). Hence j = n. Thus S = {P, P’} for
some 1 < k < n (in this case).

So either S = {P} or S = {P;, P} for some 1 < k£ < n. Since
V(PX) = V (P, P2) for any 1 < k < n, we obtain that V(P¥) = {A € V|
A E=3E~1,Alt, =0} (=V (P, PX) forany 1 <k < n). O

Fact 3.4.26. For 1 < m < n < w, V(P,,P) is characterized by I' = {IE ~
1,Alt, ~ 0, E V (Alt,,)" ~ 1} relative to V.

Proof. To be proved that V(P,,,P*) = {A € V | A = T}. Since P,,, P¥ =
I,wehave V(P,,PX) C{AcV |AET}#V,Since{AcV|AET}
is an equational class of MBA’s, V(S) = {A € V | A = T} where S # 0
consists of at most three special MBA's.

Since P - dE ~ 1, we get Py ¢ S.

Assume S = {P;} for some 1 < k < w. Then P, E Alt, ~ 0.
Hence k£ < n (by Lemma 3.4.5). Then V(P;) C V(P,) C V(P,,P) C
V(S) = V(Pg) and so V(Py) = V(P,,P). But V(Py) # V(P,,PY) (by
Lemma 3.4.12(1)).

Assume S = {P%} for some 1 < j < w. Then P = E'V (Alt,,)" ~ 1.
Hence j < m (by Corollary 3.4.11). Therefore V(P$°) C V(P5?) [since
j<m]CV(P,,Py) CV(S)=V(P) and so V(P;) = V(P,,P;y). But
V(P$°) # V (P, P;y) (by Lemma 3.4.12(7)).

So it remains that S = {Pk,P;?o} forsomel <k <wand1l < j < w.
Then P, = Alt, ~ 0 and P = EV (Alt,,)’ =~ 1. Hence k < n (by
Lemma 3.4.5) and j < m (by Corollary 3.4.11). Therefore V (P, P%°) C
V(P,,Py)[sincek <nandj < m]C V(S)=V(P,P)andso V (P, P¥)
= V(P,,P>).

We are going to prove that j = m. Since P, P = E'V (Alt;)' =~ 1, we
have V(P, P5°) = £V (Alt;)' = 1. Then V(P,,, P7Y) = £V (Alt;) ~ 1 and
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so P = £V (Alt;) = 1. Hence m < j (by Corollary 3.4.11). Thus j = m.

So S ={Py, P} and V (P, PY) = V(P,,Px).

If £ < m, then V(P,P) = V(P:°). Hence V(PY) = V(P,,P:°). But
V(P) # V(P,,Py) (by Lemma 3.4.12(7)). Thus k > m.

Next we are going to prove that k£ = n. Since k > m, we have P, P =
Alt, = 0. Hence V (P, P°) = Alty ~ 0. Then V(P,,,P) = Alt, = 0 and
so P, = Alt;, = 0. Therefore n < k (by Lemma 3.4.5). Hence k = n.

So S ={P,,P*}. Thus V(P,,PX)={A c V| A ET}. O

Fact 3.4.27. V() is characterized by {vy ~ v, } relative to V.

Proof. To be proved that V() = {A € V | A | vy =~ v;}. Part C. Let
A € V(D). Hence A € Vj (since V() = Vp). Then A € V (since V, C V)
and A = vy =~ v; (otherwise there exist at least two different elements in
A).PartD. Let A € Vand A |= vy ~ v;. Then A # () (since A is an algebra)
and p = ¢ for all p,q € A. So A is one-element. Therefore A € V (()). O

Corollary 3.4.28. Let X be an infinite set of variables and V' a variety of MBA's.
Then 1dy (X)) is finitely based.

Proof. By Theorem 3.4.13, V = {A € V | A = I'} for some finite set " of
equations. To be proved that Axioms UT" |= Idy (X)), where Axioms is the
set of six equations from Definition 2.2.1. Suppose A |= Axioms UI'. Then
A € Vand A =T. Hence A € V. Thus Axioms UT = Idy(X). So Idy(X)
is finitely based. O



Chapter 4

Finitely generated MBA'’s

In [1] H. Bass considers finitely generated monadic algebras. The present
chapter, except Section 4.2, is similar to his paper. In Section 4.1 we in-
troduce (as in [1]) useful notations and prove that every finitely generated
MBA is finite (an upper bound on the number of elements is provided).
In Section 4.2 we show that the number of elements of a free MBA on
a finite set achieves its upper bound. Section 4.3 states a necessary and
sufficient condition under which certain maps between finitely generated
MBA's can be extended to MBA-homomorphisms. In Section 4.4 we con-
struct a free MBA on any finite set. In Section 4.1 and Section 4.4 two

particular cases are considered explicitly.

4.1 Finitely generated MBA'’s are finite

In this section we introduce (as in [1]) useful notations and prove that ev-
ery finitely generated MBA is finite (an upper bound on the number of
atoms and an upper bound on the number of elements are provided). For
better understanding, two particular cases of the notation are considered

explicitly. In addition, several other technical results are given.

Definition 4.1.1. D = {—1, 1}.

84
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Definition 4.1.2. For 0 <n < w, D" = D x --- x D. (Note that, in particular,
S —

DY = {0}, i.e. D° consists of only one zero-dimensional vector.)

Definition 4.1.3. For 0 < n < w, i < nand e € D", e, is the ith coordinate of e.

Definition 4.1.4. For 0 <n <wandi <n, D} ={e € D" | ¢; = 1}.

Let0 <r <wand m = 2" (cases r = 0 and r = 1 are provided below).
We choose some definite enumeration {¢’ | 0 < i < m} of D".
Suppose (M, A,V,”,0,1, E, 3) is an MBA and {po, ...,p,—1} € M.

Definition 4.1.5. Forp € M, p' = pandp~* = p'.

Definition 4.1.6. P = (po, ..., pr—1).

Definition 4.1.7. For e € D", Ap(e) = \,_, p;"-

Definition 4.1.8. AP = (Ap(e%), ..., Ap(e™™1)).

Definition 4.1.9. IAP = (I\p(e?), ..., IAp(e™)).

Definition 4.1.10. For d € D™, A3xp(d) = \,_,,(3Ap(e))%.

Definition 4.1.11. Fori < mand d € D", pyp:(d) = Ap(e') A E A Aazp(d).
Definition 4.1.12. Fori < mand d € D™, n\pi(d) = Ap(e') A E' A Agrp(d).

Note that P, \P, 3\ P are vectors, whereas A\p(e), Agxp(d), papi(d), napi(d)
are elements in M.

We are going to look at particular cases.

Letr = 0. Then

o m =1,
e D" =D’ = {0} and so enumerate D” = {e"} where ¢’ = (;
o D™ =D'={(1),(=1)} and D§" = Dy = {(1)};

e P = () (zero-dimensional vector);
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e ife € D"(= D), thene = e’ and so Ap(e) = Ap(e”) = N\g(0) = 1 (since
A0 =1);

e AP = (Ap(e”)) = (Ap(?)) = (1) (one dimensional vector whose single
coordinate is the unit element of M),

e JAP = (31) (one dimensional vector);

e if d € D™(= D'), then eitherd = (1) ord = (—1);s0if d € D™ (= D'),
then either
- )\3,\p(d) = )\(31)((1)) = (31)1 =dlor
= Aap(d) = Aay((-1)) = 3~ = (31);
e ifi < m(= 1), theni = 0; if d € DJ*(= D;), then d = (1); so if
i <m(=1)and d € D"(= Dj"), then there is only one y-expression

papi(d) = payo((1) = Ap(e”) AEAA@((1) = IANEA(3L)! = EAZL
(although it is equal to E, it is better to keep it in this form);

e ifi < m(= 1), theni = 0; if d € D™(= D'), then either d = (1) or
d=(—1);s0if i < mand d € D™, then either

= mpi(d) = 1)0((1) = Ap(e®) AE A X@n (1) = 1AE'A(F1)! =
E''AN31or

= mri(d) = nwo((=1)) = Ap(e®) A E' A d@y((—1)) = TAE'A
(31)1 = E' A (31).

So there are one pi-expression and two n-expressions in this case.
Now let r = 1. Then

o m =2

e D" = D' = {(1),(-1)} and so enumerate D' = {¢",e'} where ¢’ =

(1), ¢! = (—1) (one dimensional vectors);
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L1, (=1,1),(1,-1), (=1, =1}, D§ = {(1,1), (1, =1)}
) (=1 )}

P = (po) (one dimensional vector);

. D" = D = {1
and D? = {(1,1

if e € D"(= D%), then either ¢ = €° or e = e!; so if ¢ € D", then either
0 el €q 1
= )‘(po)(e ) = /\i<1 P; =Pg = Py = Po OT
1

e 61 —
Awoy(€) = Nic1 Py =030 =Dy ' = Dy
o AP = (Ap(e?), Ap(e")) = (po,p}));

e JAP = (3po, A(pp));

| I
> >
) )
—~~
2 2

[
> >
) g
—~~
aQ Q

— =)

I |

e if d € D™(= D?), then one of the following holds:
= Aap(d) = A@poawy) ((1,1) = (3po)' A (3(po))" = Tpo A 3(pp),
= Aap(d) = Agpo 2y (=1, 1)) = (Fpo) ' AE(p0))" = (Fpo) A3(w5),
= Aaxp(d) = Agpo.aey) (1, —1)) = (Gpo)' AB(po) ™" = FpoA(3(0))',
= Aaar(d) = A@poay (1, =1)) = (Bpo)™ A 3(p0)) ™" = (3po) A

(3(p6))"
e ifi < m(=2),theneitheri =0ori = 1;ifi = 0and d € D"(= D}),
then either

= ipild) = Hpop.0(1,1)) = Ap(€%) A E A Azpo 3 (1,1)) = po A
E A 3dpo A 3(pjy) or

— 1api(d) = figpopy,0((1, =1)) = Ap(e®) A E A Napo 3y (1, —1)) =
po AN E A 3po A (3(p5));

ifi =1and d € DI"(= D}), then either

= ipild) = Hpoppa (1,1)) = Ap(eh) A E A Aapo ) ((1,1)) = pp A
E A dpo A 3(pjy) or
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— 1api(d) = fipopyy 1 ((=1,1)) = Ap(e') A E A Napo 3y ((—1,1)) =
o AN E A (3po) A 3pp);

e if i < m(=2), theneitheri =0ori=1;ifi = 0and d € D™ (= D?),
then one the following holds:

= i) = Mo py)0((1,1)) = Ap(€) A E" A XNapo 3 ((1,1)) = po A
E" A 3po A 3(pp),

- nAPi(d> 0(( ) 1)) (60) ANEA >‘(3po73(p6))((_1> 1)) =

po N E' N (HPO) 3(pp),

((1,

— mpi(d) = Npopy0((1,=1)) = Ap(e®) A E' A Xgpo 3 (1, —1)) =
po AN E"AJpe A (3(pp)),

(=1, =1)) = Ap(e))AE AA@po 3 (=1, 1)) =
)

ifi = 1and d € D™ (= D?), then one of the following holds:

(
= mpi(d) = Npyp).0(
po AN E" A (3po) A (

— i) = Mo py) 1 (1, 1)) = Ap(e') A E" A XNapo 3y ((1,1)) = pp A
E’" A 3po A 3(pp),

= Mpi(d) = Mo py a1 ((=1,1)) = Ap(e') A E" A Napo 3y ((—1,1)) =
Po N E A (Fpo) A 3(pp),

- 77/\Pi(d> N(po,pp) 1((17 —1)) = (61) ANE"N AGZJOE(%))((L -1)) =
o AE Adpo A (3(p))),

(=1, =1)) = Ap(eDAE AAGpo 3 (=1, 1)) =

3(pp))"-

So there are four p-expressions and eight n-expressions in this case.

= mpi(d) = Mo pp).(
PoNE"A(3po) A(

Definition 4.1.13. An MBA (M, E, 3) is free on a set of generators G C M
(or, (M, E, 3) is freely generated by a subset G C M) iff (i) G generates M,
and (ii) any map fo of G into an MBA (A, E,3) can be extended to an MBA-
homomorphism f : M — A.
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Definition 4.1.14. Let B be a Boolean algebra and o = {po, . .., pn—1} be a finite
subset of B. o is a partition of p € B iff

e p; A\pj =0 fori# jand

* VicaPi =p.

For future reference, we state some facts from the theory of Boolean
algebras (see [1]).

Lemma 4.1.15. Every finitely generated Boolean algebra is finite.

Lemma 4.1.16 (see [1, (1.1)]). If po, . . . , pn—1 generate a Boolean algebra B, then
{A\p(e) | e € D"} (where P = (po, . ..,pn-1)) is a partition of 1 whose nonzero
elements are just the atoms of B.

Suppose (M, E,3)isan MBA, 0 < r < w, m = 2" and {py,...,pr—1} C
M. Put P = (po, c. ,prfl).

Lemma 4.1.17. Fori < mand d € D!, I(prpi(d)) = Aarp(d).

Proof.
I(papi(d)) = 3(Ap(e') A E A Aazp(d))

3(an(e) A EA (A Brte)®))

j<m

A A EIA( A Gr)”)

j<m

[by Definition 2.2.1(3) and Lemma 2.2.6(13)]
— IAp(e) A ( A (HAp(ej))dj) by Definition 2.2.1(6)]
j<m
= N\ 3rp(e?))% [since d; = 1]
j<m

= Aaap(d) [by Definition 4.1.10].
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Lemma 4.1.18. Fori < mand d € D™, 3(n\pi(d)) = 0.
Proof. 3(nxps(d)) = I(Ap(e') A E' A Xanp(d)) = 0 [by Lemma 2.2.6(4)]. O

Now suppose that (M, E, 3) is an MBA generated by {po,...,p.—1} C
M. Let A be the Boolean subalgebra of M generated by

Ap(e¥) AN E Ap(e¥) A E',INp(e¥) | k < m}.

So the Boolean algebra A, is finite (by Lemma 4.1.15) and A, € M. By
proving that M and A, are equal as sets, we can conclude that every

finitely generated MBA is finite.
Lemma 4.1.19. py, ..., p,_1, E arein A,.

Proof. To be proved that py € Ay. po can be represented as follows

Po=poAL=po A((po A+ Apoat AE)V (po A+ Apr_y A E)')
=po A ((Po A Apra AE)V (pp V-V, V E))
=@PoA--Aprt NE)V
V ((po Apo) V (Po APa) V-V (po A1) V (po A E'))
=@Po A Apra ANE)V
V((po APV (Po APy) VeV (o A1) V (po A E")).

Using the fact that « = (a A b) V (a A V'), we obtain that

po APy = \/ (Do AP ADE APS A= APy AE™),
€2,€3,....er—1,erE{E1}
Po A ph = \/ (Do NPT APy ADSEA - AP NEST),

€1,€3,....,er—1,erE{£1}

Po APy = \ (Po NPT AP AP A ApS Ay NET),
517627837---aer—27er€{i1}
poNE = \/ (o AP ADE A Apys Ap ANE') .

e1,e2,...,er—2,er—1€{£1}
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So po APy, ...,po ADP._y,p0 N E' are finite Boolean combinations of some
elements in {\p(e*) A E, Ap(e*) A E',INp(e¥) | k < m}. By substituting
them into the representation of p,, we get that p, belongs to A (since A,
is closed under finite Boolean combinations).

Similarly it is possible to prove that py,...,p,—1, £ € A,. H
Lemma 4.1.20. {\p(c*) A E, Ap(e*) A E' | k < m} is a partition of 1.

Proof. Since the collection consists of all possible combinations

/\i<r p;t /\ Eil

the collection is a partition of 1. O

Lemma 4.1.21.

{ ( A ()\p(ei)/\E)ci) /\( A ()\p(ei)/\E')ci) /\( A (EI)\p(ei))di> ¢,éd e Dm}
<m <m <m

is a partition of 1 whose nonzero elements are just the atoms of the Boolean algebra
A,.

Proof. Since the set {\p(e®) A E,Ap(e¥) A E',INp(eF) | k < m} generates
the Boolean algebra A, we just apply Lemma 4.1.16. O

Lemma 4.1.22. Every atom of the Boolean algebra A is equal to either
® (p;(d), for some j < mand d € DT, or
e np;(d), for some j < mand d € D™,

Proof. Suppose a € Ay is an atom. Hence a # 0. By Lemma 4.1.21,

a= (/\ (Ap(€) A E)Ci)/\</\ (Ap(e) A E/)@')/\(/\ (axp(ei))di) (4.1.1)

<m <m <m

forsomec,c,d € D™.
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To be proved that precisely one element in {co, ..., ¢n_1,Co, .-, Cm-1}
is equal to 1. Since a # 0, we have

(AOr AE A ADetern B )20 @12)

<m <m
If every element in {cy,...,cn-1,Co,...,Cn_1} Were equal to —1, then we
would obtain
(AGee a1 ) ( Abreie) n B )
<m <m
= ( )_I)A(/\()\p<€i) /\E/)_1>
<m i<m
' -1
_ (< /\E)> <\/()\p(e’) /\E’)))
<m <m
= 1" [by Lemma 4.1.20]
=0.
Therefore at least one element in {cy,...,¢n-1,C,...,Cn_1} is equal to 1.

Similarly (in particular, using Lemma 4.1.20) it is possible to prove that
such an element is the only one.
So precisely one element in {co,...,¢n-1,C0,...,Cm_1} is equal to 1.
There are two cases:
Casel ¢; = 1 for some j < m (and others are —1). Using Lemma 4.1.20 and
the factp A q = 0iff p < ¢ iff p A ¢ = p, we obtain
a=Mp(e) NE A (/\ (EI)\p(ei))di) (4.1.3)
<m
It follows from a # 0 and Ap(e/) A E < 3\p(e?) that d € D}". Thus
a = pp;(d) and d € DT

Case 2 ¢; = 1 for some j < m (and others are —1). Analogously,

a=Ap(e’) NE'A (/\ (EI/\p(ei))di) (4.14)

<m

Thus a = nyp,(d) and d € D™.
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Lemma 4.1.23. If a € A, is an atom, then Ja € A,.

Proof. By Lemma 4.1.22, there are two cases.
If a = prp;(d) for some j < m and d € D}, then Ja = 3(urp;(d)) =
Aaap(d) [by Lemma 4.1.17] = A, _,,(3Ap(e))% € Ao [by definition of A,].
If a = n\pj(d) for some j < mand d € D™, then Ja = I(nyp;(d)) = 0
[by Lemma 4.1.18] € A,. ]

Lemma 4.1.24. The Boolean algebra A, is closed under 3, i.e. Ip € Ay for all
p e Ao.

Proof. Suppose p € Ay. Let{ay,...,a;_1} be the set of all atoms of A, such
that a; < p for i < [. Since A, is a finite Boolean algebra, p = \/,_, a;, and
sodp=3(V,.,a) = V., Ja; € Ag (by Lemma 4.1.23). O

Theorem 4.1.25. The MBA (M, E, 3) is finite.

Proof. 1t follows from Lemma 4.1.19 and Lemma 4.1.24 that M = A, as
sets. Since Aj is finite, we conlude that M is finite. O

Theorem 4.1.26. The MBA (M, E, 3) has at most 3 - 2" - 22"~ atoms.

Proof. Let a € M be an atom. Hence «a is an atom of A, (since M = A,
as sets). Then, by Lemma 4.1.22, either a = yu,p;(d), for some j < m and
de D}, ora= mp;(d), for some j < mand d € D™. So it suffices to count
the number of elements of the set

{apj(d) | j <m,d € D'} U{np;(d) | j <m,d € D™}.
Thus there are at most
m-2m 7 2 = (142) -m - 2m = 3. 2r . 92 )
atoms in (M, £, 3). O

Since every element in M is a supremum of some finite set of atoms,

we have
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Corollary 4.1.27. There are at most 252"2* " elements in (M, E, 3).

In particular, an MBA generated by the empty set has at most 3 atoms
and 8 elements and an MBA generated by one element has at most 12
atoms and 2'? = 4096 elements.

Let us give other results which will be useful in the following sections.

Define
Q = {japi(d) | i < m,d € D'} U {mpy(d) | i <m,d€ D™} (415)

So (2 is a partition of 1 whose nonzero elements are just the atoms of
(M, E, 3).

Lemma 4.1.28. For everyd € D™,

darp(d) =\ {mri(d), mer(d)} (4.1.6)
{ild;=1},k<m
Proof. Let d € D™ be fixed.

If d; = 1 for some i < m, then d € D" (hence p,p,(d) is defined) and
ppi(d) = Ap(e') A E A Aaap(d) < Aaap(d). For every k < m, npi(d) =
Ap(e") A E" A daap(d) < Aaap(d).

Next to be proved that the other members of (2 are disjoint from A3, p(d).
Suppose ¢ € D7* and ¢ # d (j may be equal to some i with d; = 1). Then
Aanp(d) A papj(c) = Aaap(d) A Xp(e?) A E A Aaxp(c) = 0 (since d # c).
Suppose ¢ € D™ and ¢ # d. Then, for every k < m, Aa\p(d) A mpi(c) =
Aaap(d) A Ap(e¥) A E' A Aaap(c) = 0 (since d # c).

Thus we have proved (4.1.6) (since every element in (M, E, J) is the

supremum of atoms it contains). H

Corollary 4.1.29. For every: < mand d € D}",

Fra(d) =\ {maps(d), mapr(d)}. (4.1.7)

{jld;j=1},k<m

Proof. Follows from Lemma 4.1.17 and Lemma 4.1.28. O
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Lemma 4.1.30. Fori < m,

M) =\ {mapild), mpi(e)}- (4.1.8)
deD, ceD™
Proof. Let i < m be fixed.

If d € D", then pypi(d) = Ap(e') A EAXaxp(d) < Ap(€'). If c € D™, then
mpi(c) = Ap(e') A E' A daxp(c) < Ap(e').

Next to be proved that the other members of (2 are disjoint from Ap(e").
Suppose j < m and j # i. Hence ¢’ # ¢/. If d € D7, then Ap(e) A
papi(d) = Ap(e') ANAp(e?) A E A Xaxp(d) = 0 (since €' # e). If ¢ € D™, then
Ap(€") Amapi(c) = Ap(e’) AXp(e?) A E" A Aazp(c) = 0 (since e # €7).

Thus we have proved (4.1.8). [

Lemma 4.1.31.
E= \/ wpild). (4.1.9)
i<m,deD™
Proof. For every i < mand d € DI, uxpi(d) = Ap(e’) A E A Aazp(d) < E.
On the other hand, for every i < mand d € D™, EAn\pi(d) = EAXp(e') A
E’' A A3xp(d) = 0. O

4.2 On the number of elements of a free MBA on

a finite set

The present section is concerned with the number of atoms and elements
of free MBA’s on finite sets. It is proved that the number of atoms and
the number of elements of a free MBA on a finite set achieves its upper
bound (see Theorem 4.1.26 and Corollary 4.1.27). The proof is based on
the properties of free MBA’s and does not require construction of the free
MBA's as such.

Let (M, E,3) be a free MBA on the set G = {po,...,p,—1} € M. As
usual, letm =2", D" ={e°, ..., e '}, P = (po,...,pr_1).

Recall that
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0= {u)\pﬂ'(d) | 1< m,d c Dlm} U {nAP,i(d) | 1< m,d < Dm}

is a partition of 1 whose nonzero elements are just the atoms of (M, E, 3).
By showing that each element in (2 is nonzero we will be able to prove that
there are exactly 3 - 2 - 22! atoms in M (and so M has exactly 232"2*

elements).
Lemma 4.2.1. For every i < mand d € D", j1p,(d) # 0.

Proof. Let W be a set consisting of m elements. Then it is possible to choose
o, - --qr—1 € W such that {qo, ..., ¢—1} freely generates the Boolean alge-
bra (P(W),N,U, —,0,1) of all subsets of W. Therefore, for every e € D",
@’ N Ngr = {w} for precisely one w € W. So we enumerate W =
{wo, ..., wy_1} according to {w;} = qgé N---N qf:“_‘f (1 < m).
Leti < mand d € D!" be fixed. Our goal is to prove that 1.,p;(d) # 0.
Define a marked directed graph F; ; = (W, 4, R; 4, Ei 4) by

Wi,d = VV, Ei,d = {Q,Uj | dj = 1,] < m}, Ri,d = Ei,d X Ei,d- (421)

Since d € D", we have w; € E;4. Obviously, F;, is a bounded graph.
Therefore the complex algebra P, , is an MBA (by Lemma 2.2.11).
Let Q = (q07 ce 7QT71)-

To be proved that pg,i(d) # 0 (here we work in P, ;). Consider
el el L €0 e0 1 do
prgi(d) =q’N---Ng 7 NE; 4N ((Ri,d> (qoo N---Ng’ 5 )) n...
m—1 6’rnfl dm—l
N <<Ri,d> (CIOO n---Ng ))
= {wi} N ((Rea)) {wo})® N -+ - N ((Ria){wim-1})™ .

We are going to prove that the whole expression is equal to {w; }. Consider

d; for j < m. There are two cases:

o If dj =1, then w; € Ei,d = wiRi,dwj [since w; € Ez‘,d] = w; €
(Ria){w;}) = wi € ((Ria){w;})% .
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o Ifd; = —1, thenw; ¢ Eig = (w;,w;) ¢ Rig = w; ¢ ((Ria){w;}) =
w; € ((Ria){w;})%.

Thus {w;} N ((Ria)){w; ¥ = {wi}. So prg.i(d) = {w;}. Hence j15q,i(d) # 0.

Now define a mapping fy : G — {qo, - --.q—-1} by fo(pr) = qi for every
k < r. Then there is an MBA-homomorphism f : M — Pz, , which ex-
tends fj (since M is free on the set G of generators). Therefore 1)p;(d) # 0

otherwise p\q,i(d) = f(papi(d)) = f(0) = 0. O
Lemma 4.2.2. For every i < mand d € D™, n\p,(d) # 0.

Proof. Let W and qq, . .., ¢,—1 be as in previous lemma (see the first para-
graph of its proof). Then let U = {ug, vy, ..., Un—1, Um_1}. Define a map-
ping g : U — W by g(u;) = g(v;) = w; for every i < m.

Obviously, g is surjective. Then the mapping h, : P(W) — P(U) is
a (injective) Boolean algebra homomorphism, where h,(X) = ¢~ (X)) (cf.
Definition 3.1.25). _

Note that h,({w;}) = {u;, v} and hy({w;}) = h, (q§3 n---n qfi-;) -
(hg(g0)) N -+~ N (hy(gy—y1)) for every i < m. Hence

(hg(q0))0 N -+ N (By(grr))=1 = {us, v} (i < m). (4.2.2)

So we define py, . .., p,—1 € P(U) by pr = hy(qi) for k <.
Leti < mand d € D™ be fixed. Our goal is to prove that 7,p,(d) # 0.
Define an auxiliary relation Ri¢ CUxU by

ta = Uug,ve) | di = 13 U {{ug, ug), (ug,v5) | dy = 1,5 <m,j #i}. (42.3)

Note that u; ¢ range(R{§").
Define a marked directed graph F; 4 = (W, 4, Ri 4, Ei 4) by
Wia=U,
Ria= RY§" (mnge( vi) x range( i”f)) , (4.2.4)

Ejq = range(R{G").
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So u; ¢ Eiq4 (uij,u;) ¢ R;q, and for all u,v € W, 4, uR; qv implies v €

mnge(Rfff).

To be proved that F; ; is a bounded graph.

R, 4 is transitive. Suppose u,v,w € W, 4,uR;qv and vR; qw. Since
vR; qw, we have w € range(R{{") (so u;R{ " w). Since uR; 4v, either
u = u; or u € range(R{y). If u = u;, then uR; yw (since u; Ry w). If
u € mnge(Rfff), then uR; qw (since w € range(R{y")). Thus uR; qw

in both cases.

R, 4 is Euclidean. Let u,v,w € W, 4,uR; qv and uR; yw. Then v,w €

range(R{y"). Hence v R; jw.

Vu,v € Wig(uR;qv — v € E;4). Let u,v € W, 4 and uR; qv. Then
v € range(R{§"). Hence v € Ej 4.

Vu € Wig(u € Ejg — uR;qu). Let u € E;4. Then u € range(RY").
Hence (u,u) € range( Ry ") x range(R{y"). Therefore uR; ju.

Therefore the complex algebra P, , is an MBA (by Lemma 2.2.11).

Let Q = (}30, s 7]57‘—1>'
To be proved that 7,q,i(d) # 0 (here we work in P, ,). Consider

i

€ _el_ _ed 762_ do
77/\Q7i(d) =Py N---N p/—f N Ez{,d N ((Ri,d> (Poo n---N Pr—f)) n...

7em—1 7€m711 dmfl
"ﬂ<<Ri,d> <p00 m...mprr_—l >>

= {ui, Ui} N E;,d N (<Ri7d>{U0, ’Uo})do N...
N ((Ria){ttm—1, Um_1})*"" [see Equation 4.2.2].

We are going to prove that the whole expression contains u;. Since u; ¢

E; 4, we have u; € E;jd. Consider d; for j < m with j # i. There are two

cases:

g = 1. Then UIRZZQCUJ = UiRinUj = U; € (<Ri,d>{ujuvj}) = Uu; €
((Ria){uj, v 1%
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e d; = —1. Then (u;,u;) ¢ R{y and (u;,v;) ¢ Ry Hence (u;, u;) ¢
Ri,d and <UZ‘,U]'> ¢ Ri,d- Therefore U; ¢ (<Ri7d>{u]',1}j}). So u; €
((Ria){uj, v Y.

So u; € ((Ria){uj,v;})%. It remains to prove that u; € ((R;4){u;,v;})%.
There are two cases:

) dZ = 1. Then UZRZ?leZ = uiRi,dUi = U; € (<R17d>{uz,vz}) = U; €
(Ria){ui, vi})*.

e d; = —1. Then (u;,v;) ¢ R{y". Hence (u;,v;) ¢ R;q. Therefore u; ¢
((Riyd>{ui,vi}). So U; € ((Ri,d>{ui, Ui})di.

Thus u; € ((R;4){us,v;})% in both cases.

S0 maq.i(d) # 0.

Now define a mapping fo : G — {po, ..., Pr—1} by fo(px) = pi, for every
k < r. Then there is an MBA-homomorphism f : M — Pz, , which ex-
tends f, (since M is free on the set G of generators). Therefore p,p;i(d) # 0
otherwise fixgi(d) = f(jixpi(d)) = f(0) = 0. s

Theorem 4.2.3. Every MBA freely generated by r < w many elements has ex-
actly 3-27 - 2% ~1 atoms.

Proof. Follows from Lemma 4.2.1 and Lemma 4.2.2. O

Corollary 4.2.4. Every MBA freely generated by r < w many elements has
exactly 232%™ elements.

Let us compare the theorem and its corollary with the monadic case. In
[1, Theorem 4] H. Bass proves that the monadic algebra free on r elements

922"~ olements. So, in particular, the MBA

has exactly 2"-2?" ~! atoms and
and the monadic algebra freely generated by the empty set (i.e. r = 0)
have 8 and 2 elements, respectively, and the MBA and the monadic algebra
freely generated by one element (i.e. » = 1) have 2! = 4096 and 2* = 16

elements, respectively.
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We are going to draw the diagram of the MBA freely generated by the
empty set. The elements EAJ1, E'’AJ1 and E'A(31)’ (see -, n-expressions
on p. 86) are the atoms of the MBA freely generated by the empty set. So
the diagram looks as follows:

1

E /\ a1 E’ A 31 A (T1)

\/

4.3 Extensions of MBA-homomorphisms of finite
MBA'’s

In this section we give a necessary and sufficient condition under which
certain maps between finitely generated MBA’s can be extended to MBA-
homomorphisms. The section may be considered as a preliminary to the
next section.

The following result is known from [1, p. 261]. Suppose A and B are
Boolean algebras, A is finite, with o = {po, ..., p,_1}and 7 = {to, ..., t,1}
partitions of 1 in A and B, respectively. Define a map f, : ¢ — 7 by
fo(pi) =t; for every i < n.

Lemma 4.3.1 (H. Bass). Suppose o contains all the atoms of the Boolean algebra
A. Then the map f, can be extended to a Boolean homomorphism f : A — B iff
t; = 0 whenever p; = 0.

Proof. The necessity is an immediate consequence of the fact that f(0) = 0.

Suppose, conversely, that ¢, = 0 whenever p; = 0.
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To be proved that if p; € o is not an atom of A, then p; = 0. Assume
p; € o is not an atom and p; # 0. Then there is at least one atom a € A
such that ¢ < p;. Hence a = p; for some j < n with j # i. Therefore
piNpj =piNa=a#0andi # j. But o is a partition.
Define f : A — B by
fig Voo Vi) = tig VooV i,
This f is well defined since every element of A is uniquely a supremum of
atoms, and if extra p;’s which all equal zero are thrown in on the left, the
corresponding ¢;’s, by hypothesis, contribute nothing new on the right.
Moreover, f clearly extends f; and commutes with all suprema. That f
commutes with complementation follows from the fact that the comple-
ment of a supremum of elements in a partition of 1 is just the supremum
of the remaining elements in that partition. Therefore f is the desired ho-

momorphism. O

Now let (A, £, 3) and (B, E, 3) be MBA’s generated by o = {po, ..., pr—1}
C Aand 7 = {to,...,t,-1} C B, respectively. Then let m = 2", D" =
{607 ce 7€m_1}/ P = (pOJ s 7p1“71)/ T= (tOJ s 7t7’71)/ and

Qa ={mpi(d) |t <m,d € D"} U{mpi(d) [t <m,d € D™},  (43.1)
Qp = {/L/\Tﬂ'(d) | 1< m, de Dlm} U {TD\TJ'(d) | 1< m, de Dm} (432)

Theorem 4.3.2. The map f, : 0 — 7 defined by fo(p;) = t; (j < r) can be
extended to an MBA-homomorphism f : A — B iff the following two conditions
hold:

1. Forevery i < mand d € D", uxr;(d) = 0 whenever puyp;(d) =0,
2. Foreveryi < mand d € D™, n\r,(d) = 0 whenever nyp;(d) = 0.

Proof. Part =. Suppose fy can be extended to an MBA-homomorphism
f: A — B. Assume pyp;(d) = 0 for some d € D" and i < m. Then

pari(d) = f(papi(d)) = f(0) = 0.
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Analogously with the second item.
Part <. Suppose both (1) and (2) hold. Define a mapping g : 2a — (s

by

pari(d), if p= prpi(d) for some i < mand d € D"
9o(p) = { (4.3.3)

mari(d), if p=mn\p;(d) for some i < mandd € D;.

Recall that Q24 and Qg are partitions of 1 in A and B, respectively, and 25
contains all the atoms of A. Therefore we can apply Lemma 4.3.1 to go. So
go can be extended to a Boolean homomorphism f : A — B.

To be proved that f(E) = E. Consider

i<m,deD]"

f(E) = f( \/ Mm(d)) [by Lemma 4.1.31]

= \/ f (papi(d)) [since f is a Boolean homomorphism]

i<m,deD]"

— \/ go (uxpi(d)) [since f extends go]

i<m,deD"
= \/ par,i(d) [by definition of gq]
i<m,deD™

= I [by Lemma 4.1.31].

Next to be proved that f preserves 3. It suffices by Definition 2.2.1(5)
to prove that f commutes with 3 on atoms of A.
Firstly, let i < m and d € D}". Then
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{j‘d‘j:1}7k<m

f(ﬂ,ukpﬂ(d)) = f ( \/ {M)\P,j(d>, nAP,k(d)}) [by Corollary 4129]

=/ {flursi(d), Fmpr(d)}

{jld;=1} k<m
[since f is a Boolean homomorphism]
=V A{9mri(d), 90(mpi(d))} [since f extends go]
{jld;=1} k<m

=V {mwr(d), mri(d)} [by definition of go]
{jld;=1}k<m

= Juxri(d) [by Corollary 4.1.29]

= 3(go(1rpi(d))) [by definition of go]

= 3(f(prpi(d))) [since f extends go] .

Thus f(3papi(d)) = 3f(uarpi(d)) for every i < mand d € D™

Secondly, let i < m and d € D™. Then f(3(mpi(d))) = f(0) [by
Lemma 4.1.18] = 0 = 3(nr.(d)) [by Lemma 4.1.18] = I(go(nar:(d))) [by
definition of go] = 3(f(nxpi(d))) [since f extends go]. Thus f(I(nrp.(d))) =
3A(f(nrpi(d))) for every i < mand d € D™.

So f commutes with 3 on atoms of A. Hence f preserves 3.

It remains only to show that f extends f, (i.e. f(p;) = t; for every
j < r). We know that, for every j < r,

pi=\ Aple) =\ (06 A~ APYT AP AP A ApTT)  (43.4)
SED; eEDJT.

and

b=\ Mle)=\/ (t0 A AT AL AL A AL (435)
eGDJT- eED;

It therefore suffices to prove that f(Ap(e*)) = Ap(e*) for every k < m. For
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every k < m, we have

deDyr, ce D™

FAp(e") = f ( \/ {mp,k(d),mp,k(c)}) [by Lemma 4.1.30]

_ \/ {f(rpr(d)), f(mpr(c))}

deDyr, ce D™

= \/ {g0(ark(d)), go(mprr(c))}

deDy, ceD™
= \/ {M,\T,Ic(d)a nAT,k(C)}

deDyr, ce D™

= Ar(e¥) [by Lemma 4.1.30].

S0 f (1) = J (Vee Ap(€)) = Vieny FOP(©) = Veepr Ar(e) = t; (for
every j < r). Hence f extends fj.
Thus f is an MBA-homomorphism which extends f. O

4.4 Free MBA'’s on finite sets themselves

The purpose of this section is to construct free MBA’s on finite sets. Firstly,
a marked directed graph is defined. Secondly, we prove that this marked
directed graph is a bounded graph. Thirdly, certain subsets of the bounded
graph are defined. Finally, using results from the previous section, we
prove that the complex algebra of the bounded graph is a free MBA on
the set consisting of the subsets. For better understanding, two particular
cases are considered explicitly.

Let r < w be fixed. Our goal is to construct the free MBA on r elements.

Let m = 27, zo, ..., x,_1 be variables, and X = (zq,...,z,_1). Choose a
definite enumeration D" = {€°,... e™ '} and, as usual, put

Q= {/L)\X’i<d) ‘ 1 < m,d € Dzm} U {T])\X,i(d> ’ 1< m,d S Dm}

Note that s x;(d) and 7, x,(d) are terms of the type {A,V,”,0,1, £, 3}



CHAPTER 4. FINITELY GENERATED MBA’S 105

over {xo, ..., x,_1}. Since different terms as such are distinct objects, there
are 3 - 2" - 2% ~1 distinct elements in 2.
Define a marked directed graph F = (W, R, E) by

o IV =0,
o E={juxald) |i <m,de D},

e k= Ui<m,deD;n Rlux.i(d)], where

R[UAX,i(d)] :{<MAX,j(d)7#/\X,i(d)>7 <77>\X,k:(d)7,u>\X,i(d>> |

(4.4.1)
j <msuchthatd; =1,k < m}.

SoW — E = {mx.(d) | i <m,d e D™}. Moreover, (uxx.i(d), urx.i(d)) €
Rlpxx,i(d)] (and hence (i x,i(d), ax,i(d)) € R) foreveryi < mandd € D}

We are going to look at particular cases.

Let r = 0. Then, as on page 85, we have

W = {MAX,z‘(d) | 1< 1,d c Dzl} U {77)\X7Z'(d> | 1< 1,d € Dl}
= {max(d) |1 =0,d € Dy ={(1)}}
U{mxi(d)|i=0,de D" ={(1),(-1)}}
= {tax,0((1)} U {maxo((1), mx0((—=1))}
={EANT1}U{E' AJL, E' A (31)'}.

So £ = {mx,0((1))} ={EA31}and
R= U Rlpxxi(d)] = Rlpax,o((1))]
i<1,deD}
= {<M/\X,j((1))7,U)\X,O((l)»? <77AX,k((1))>MAX,o((1))> |
j <1lsuchthat(1l); =1,k <1}

= {{axo((D); paxo((D)); (max0((1); ax0((1))) }
={(EANT1L,EATL),(E'AT1,EATL)}
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In a picture the marked directed graph looks like

where

wo = mx,o((1)) = E"A 3L,

wi = mxol((=1)) = E"A(31),

we = frx,o((1)) = EA3L.
(This is actually a bounded graph whose complex algebra is the MBA
freely generated by the empty set.)

Let r = 1. Then, as on page 86, we have

W = {ux.i(d) | i <2,d € D} U{nx.i(d) | i< 2,d € D?*}

— {axa(d) i = 0,d € DEYU {sirald) | i = 1,d € D?}

U{mx.i(d) |i=0,d € D*} U{mx.i(d)|i=1,d€ D*}

= {paxo((1, 1)), paxo((1, =1))} U {ax1 (1, 1)), paxa((=1,1))}

U {mxo((1,1),mxo((—=1, 1)) mxo((1, =1)), mxo((—1,—1))}

U{maxi (1 1), maxa (=1, 1), mxa((1, 1)), maxi (=1, —1)) }
= {xo A ENJxo AI(xg), 20 AN E A Fzg A (F(p))'}
U{z( A E A Jzg A3(xp), 29 A E A (3zo) A 3(zg)}
U{zo A E" A Jzg A3(24), 20 AN E' A (Fzo) A (),
o A E A Jzg A (A2, 20 A B A (Fwo) A (Bx)'}
U{zg A E'AJxg A3(z4), 25 AN E' A (Fzo) A 3(xp),
o))’ o A EA (o) A (3(ap) -

—_— o~

o AN E' A Jxg A (3(z
So

E= {MAX,O((L 1))7 M)\X,O((lv _1))7 MAX,I((L 1)>a MAX,I((_17 1)>}
= {zo A E A Jxg A I(2q), 20 A E A Txg A (),
xg AN E AN Jxg A3(xg), 20 A E A (Fxg) A 3(xg)}
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and
R= |J Rlmxid)]= | Rluxo(d]U |J Rlpxa(d)]
i<2,de D? deD} deD3?

= Rlxx,0((1,1))] U Rlpax o((1, =1))] U Rlpax 1 ((1,1))] U Rlpax 1 ((=1,1))],

where

Rlpnxo((1,1))] = {{xx (1, 1)), pax,0((1, 1)), (max (1, 1)), paxo((1, 1)) |
j <2suchthat(1,1); =1,k < 2}
= {{ax0((1, 1)), maxo((1, 1)), (paxa (1, 1)), maxo((1, 1)),
(mxo((1,1)), pax,0((1,1))), (max,1((1, 1)), pax0((1,1))) }
= {{zo A E A Jxg A I(2q), 20 A E A Jxg A I(ay)),
(g N ENTxg A3(zy), 20 A E A Jzg A I(ap)),
(o N E' A Jxg A I(xp), mo A EA Txg A I(2y)),
(xg AN E' A Jxg A 3(xp), mo A E A Txg A3()) },

Rlpnxo((1, —=1))] = {{pax,; (1, =1)), paxo((1, —1))),
(mxk((1,—1)), taxo((1,-1))) | j < 2such that (1,-1); = 1,k < 2}
= {{ax0((L, =1)), paxo((1, =1))), (max.o((1, =1)), pax,o((1, =1))),
(mxa((1,=1)), axo((1, =1)))}
= {{xg AN ENTxg A (3(20)) ;20 AN E A Fzg A (I(g))"),
(kg AN E' A Txg A (3(g))' w0 A E A Tzg A (F(xp))),
(g N E" Nz A (3(g))' s w0 A E A Txg A (3(25)

o))}
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Rlpax 1 (1, 1)] = {{ax 5 ((1, 1)), pax,1 (1, 1)) (i (1, 1)), a1 (1, 1)) |
j <2suchthat(1,1); =1,k < 2}
= {{ax0((1, 1)), pax,1 (1, 1)), (ax 1 (1, 1)), paxa ((1,1))),
(vo((L 1), s (1, D)), e (1 1)), s (1, 1))
= {{zg A E A Jxg A I(2q), 25 A E A Jxg A I(ay)),
(g N ENTxg A3(zy), 25 A E A Fxg A F(xp)),
(o N E' A Jxg A I(xp), xg A E A Txg A 3(zy)),
(xg N E'" N Fxg A I(xy), 2y A E A Txg A3()) },

Rlpaxa((=1,1))] = {{uax;(=1,1)), pax 1 ((=1,1))),
(mxk((=1,1)), mrax1((=1,1))) [ j < 2suchthat (—1,1); =1,k < 2}
= {{rax1((=1,1)), pax1 (=1, 1)), (maxo((=1, 1)), paxa ((=1,1))),
(mx1((=1,1)), paxa ((=1,1)))}
= {{zg AN E N (Fzo) AN3(zg), 25 AN E A () A Iay)),
(g N E" N (3x) A axy), wg A E A (Fzo) A 3(xp)),
(g N E" A (x) A J(z5), 29 A E A (o) A 3(xy)) }-

In a picture the marked directed graph looks like

Wy Ws We Wio Ws Wy wr w11
P VN
where

wo = trxo0((1,1)) =20 A E A Jzg A 3(27)),

wy = mxo((1,—=1)) =z A EAJzg A (I(zg)),

we = fxx1((1,1)) = 2 A E A Jzg A 3(xy),

ws = xx1((—1,1)) =z A E A (xg) A 3(zp),

wy = mxo((1,1)) = 2o A E" A Jxg A 3(x5),

ws = Mxo((—1,1)) = zo A E" A (Fzo)" A I(xy),

we = Mxo((1,—1)) =z A E' A Jzg A (3(xy)),
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wr = Mmxo((—1, 1)) = z0 A E"A (xo)" A (3(5)),
ws :77)\)(71((1,1)) , /\E,/\Ell’o/\zl(.%{)),

wy = mx1((—1,1)) =z A E" A (Fzo)" A I(xy),

W10 :nAX1<< 1)) —IO/\E//\HJI()/\(EK ))/,

wir = Mxa((=1,=1)) = 25 A E" A (3xo)" A (3(25))"-
(This is actually a bounded graph whose complex algebra is an MBA freely
generated by a certain subset of {wy, ..., w11}.)

We are going to prove several useful lemmas.
Lemma 4.4.1. Suppose i, j < m.

1. Ford € Di" and c € D}, pxxi(d) = pax j(c) iff both i = jand d = c.

2. Ford,c € D™, nax.(d) = max;(c) iff both i = jand d = c.

3. Ford € D" and c € D™, jyx.i(d) # nax,;(c).
Proof. Obvious. O
Lemma 4.4.2. Suppose u,v € W.

1. If (u,v) € R, then v = uyx ;(d) for some i < mand d € D"

2. Fori <mandd € D", (u, pixxi(d)) € Riff (u, prxi(d)) € Rlpaxi(d)].

3. For 1,7 < m, de Djm and ¢ € D:n/ </L)\X’j(d>,,u)\x7i(c>> c R[,u)\X’i(c)] Zﬁc
d=c.

4. For Z,j <m, de D™ and c € D;n, <T])\X,i(d)7ﬂ)\X,j(C)> S R[,U)\ij(Cﬂ l_ﬁ
d=-c.

Proof. 1. Let (u,v) € R. Then (u,v) € R[uxx.(d)] for some i < m and
d € D". Hence v = p1,x,(d) (by definition of R[uyx;(d)]).

2. Leti < mand d € D;". The « part is by definition of R. Part =.
Since (u, pyx,i(d)) € R, we have (u, uxxi(d)) € Rlux, ;(c)] for some j < m
and c € DT". Hence juxx i(d) = pax,;(c) (by definition of R[ux ;(c)]). Thus
(u, pax,i(d)) € Rlpax.i(d)]-



CHAPTER 4. FINITELY GENERATED MBA’S 110

3. Letd € Dj" and ¢ € Dj". The <« part is by definition of R[u,x.i(c)]-
Part =. Since (uxx ;(d), iax.i(c)) € Rluax.i(c)], we have pyx ;(d) = paxr(c)
for some k < m with ¢, = 1. Hence d = ¢ (and j = k).

4. Leti,j < m,d € D™ and ¢ € D}". The < part is by definition
of Rluxx ;(c)]. Part =. Since (nxx.i(d), uax;(c)) € Rlurx;(c)], we have
mx.i(d) = max k(c) for some k < m. Hence d = ¢ (and ¢ = k). O

Lemma 4.4.3. R is transitive.

Proof. Letu,v,w € W, uRv and vRw. To be proved uRw.

Since uRv, we have (u,v) € R[uxx.,(d)] for some iy < m and d € D}’
Hence v = pyx,i,(d), and either u = pyx j,(d), for some jo € {j <m | d; =
1}, or u = nyx k, (d) for some ky < m.

Since vRw, we have (v,w) € R[uxx, (c)] for some i; < m and c € D}’
Hence w = x4 (c), and either v = pyx j, (¢), forsome j; € {j <m | ¢; =
1}, or v = x i, (¢), for some k; < m.

Since we already know that v = uyx,(d), we obtain that )y, (d) =

tax,j (¢). Sod = ¢ (and iy = j1). Hence w = pyx;, (d). There are two cases:

o If u = pyx,(d) (for some jo € {j < m | d; = 1}), then (u,w) =
(ax jo (), axir (d)) € Rlpax.i, (d)]-

o Ifu= TIAX ko (d) (fOI' some ko < m), then (u, w) = <7’]>\X7/§0 (d), HAX iy (d)> €
Rlpax i, (d)].

Thus in both cases (u, w) € R[uxx, (d)]. So (u,w) € R. O
Lemma 4.4.4. R is Euclidean.

Proof. Letu,v,w € W, uRv and uRw. To be proved vRw.

Since uRv, we have (u,v) € R[uxx i, (d)] for some iy < m and d € D}
Hence v = pyx.i,(d), and either u = uyx j,(d), for some jo € {j <m | d; =
1}, or u = nyx .k, (d), for some ky < m.

Since uRw, we have (u,w) € R[ux; (c)] for somei; < mand c € D;.
Hence w = pyx.i, (c), and either u = p\x j,(c), forsome j; € {j <m | ¢; =

1}, or u = nx, (), for some ky; < m.
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There are actually two cases:

o u = [i)xj,(d) (for some jo € {j < m | d; =1})and u = pyx () (for
some j; € {j <m|c¢; =1}).

o U =1)xk(d) (for some ky < m)and u = nyxx, (c) (for some k; < m).

From each of them follows that d = c.
Thus d = c¢. Hence v = x4, (c). Therefore (v, w) = (uax.i,(¢), tax.i, (¢))
€ Rlux,i, (¢)]- So (v,w) € R. O

Lemma 4.4.5. Vu,v € W(uRv — v € E).

Proof. Letu,v € W and uRv. Then (u,v) € R[ux,i(d)] for some ¢ < m and
d € DI". Hence v = uyx;(d). Sov € E. O

Lemma 4.4.6. Vu € W(u € E — uRu).

Proof. Let u € W and v € E. Then u = p,x,(d) for some i < m and
d € D". Since d € D", we get thati € {j < m | d; = 1}. Therefore
(u,u) € Rlprx.i(d)]. So (u,u) € R. O

Theorem 4.4.7. The marked directed graph F = (W, R, E) is a bounded graph
and the complex algebra P r is an MBA.

Proof. It follows from Lemmas 4.4.3 - 4.4.6 that F is a bounded graph.
Therefore P £ is an MBA (by Lemma 2.2.11). O

After the following technical facts, we will define » many elements in
P (W) which freely generate the MBA P .

Lemma 4.4.8. For every i < m, (., (Dj)% = {e'} where

; Dy ifel =1
(Dp)w = , (for every k < 7).
D" — Dy, ifei = —1
Proof. Let i < m be fixed.
Part C, suppose e € ﬂkq(D};)ei. Then e € (D})% for all k < r. Hence
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1, ifel =1
er = . (for every k < 7).
—1, ifel = —1
So e, = ¢} for every k < r. Thus e = €.

Part D. For every k < r, there are two cases:

e Ifei =1, then ¢’ € Dj and (D})% = Dj; hence ¢’ € (D)%%,

e Ifei = —1,thene’ € D"— D} and (D})% = D" — Dj; hence ¢ € (Dj)%.
Thus in both cases ¢’ € (D})%. So e € (., (Dj)%. O
Definition 4.4.9. For every k < r, define A, C m(={0,...,m —1}) by

Ay ={j<m|e €D} (4.4.2)
(Recall that D™ = {e", ..., e™1}.)
Definition 4.4.10. For every | € {£1} and k < r, define

Ay, ifl=1
(A =4 F f (4.4.3)
m — Ak, lfl =—1.

Corollary 4.4.11. For every i < m, ﬂ,m,(Ak)@i = {i}.
Proof. Leti < m be fixed. Since m — Ay, = {j <m | &/ € (D" — D})}, we
can write (A;)% = {j < m | ¢/ € (D})%}. Therefore, by Lemma 4.4.8,

N(aws = G <m el e (Dpit={j<mle e DY+ }= (i}

k<r k<r k<r

]

We are now ready to specify r many elements in P(W) which freely
generate the MBA P£. For every k < r, define p, € P(W) by
pe = | fnxs (@) maxy(c) | d € DI, e € D™, (4.4.4)
JEAR
Consider particular cases. If » = 0, then we do not have any p;. Let
r = 1. Then k < r implies ¥ = 0. Hence we have only one p, € P(W).
Since
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Ao ={j<2]e € Dy={e"} ={(1)}} = {0},
Dg ={(1,1),(1,-1)}
and
D? ={(1,1),(=1,1), (1, =1), (=1, -1)},

we obtain
po = U {1rxi(d),mx;(c) | d € D}, c e D*}

JEAD
= {1xx.0(d), maxo(c) | d € Dj, c € D*}
= {pax0((1, 1)), pax0((1, =1)), max0((1, 1)), max0((—1,1)),
mxo((1,=1)), mxo((=1,=1))}.
Using notation on page 108 we may write py = {wy, w1, wy, ws, we, wr }.

Let P = (po, NN 7pr—1)-
Note that, by Lemma 4.4.1,

= = {{mxs(d),mx;(c) [ d € Df',c e D} | j < m} (4.4.5)

is a set-theoretic partition of IV, i.e. the intersection of two distinct ele-

ments in = is the empty set and the union of all elements in = is W¥.
Lemma 4.4.12. For every i < m,

Ap(e') = {ixx.i(d),mx.i(c) | d € DI",c € D™}. (4.4.6)
Proof. Let i < m be fixed. Then

Ap(e') = ﬂpzi - ( U {maxi(d), mxi(c) [ d € D}, c € Dm})

k<r k<r \jEA

- ﬂ U .{M)\X,j(d%n/\X,j(C) | d e D ce D™}

< \Ge(anch
= U Awxs@.mxsle) | de Dyee D)
i€ (N (a0t)
= {pxi(d), mx.i(c) | d € DI",c € D™} [by Corollary 4.4.11].
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]

In the next two lemmas we will prove that jiyp;(d) # O (for every i < m
and d € D!") and nyp;(d) # O (for every i < m and d € D™). The proofs

are similar.

Lemma 4.4.13. For every iy < m and d* € Dj, pxpi(d*) = {pxx(d*)}.
(Note that iyp,,(d*) is an MBA-expression and {ji\x ,(d*)} is a one-element
subset of W.)

Proof. Letio < mand d* € D; be fixed. Then

o (d) = Ap(e) N E N [V ((R)Ap(e)
j<m
= {xxio (), Mxio(¢) | d € Dif,c € D™}
N{wxi(d) | d e D", i <m}
A () (R maxs(d)maxs(e) [ d € D c.e DH)
j<m
(by Lemma 4.4.12 and definition of E).

Part C. Suppose u € prpi,(d*)(w € W). Then, in particular, u €
Ap(e®) N E. Hence u = pyx,;,(d) for some d € DI". To be proved that
d = d* (and so u = jiyx.,(d*)). For every coordinate d}, j < m, there are
two cases:

Casel d; = 1. Then u € (R){uxx;(d),max,;(c) | d € DI',c € D™} (since u €
((R)Ap(e7))%). Hence (u, purx,;(d)) € R for some d € D' (by defini-
tion of (R) and Lemma 4.4.2(1)). Therefore (u, uxx j(d)) € Rlurx, ;(d)]
(by Lemma 4.4.2(2)). So {px.i,(d), pax,;(d)) € Rlurx;(d)]. Hence
d = d (by Lemma 4.4.2(3)). Thus d; = 1 (since d € D7"). Therefore

dr = dj.

Case2 d; = —1. Then u ¢ (R){jxx ;(d),mx;(c) | d € Df*,c € D™} (since
u € ({(R)Ap(e”))%). Hence, in particular, (u, iyxj(d)) ¢ R forall d €
D7 (by definition of (R)). Therefore (u, jxx ;(d)) & Rluax,;(d)] for all
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d € D" (by Lemma 4.4.2(2)). So (ax.io (d), prx,;(d)) ¢ Rluax,;(d)] for
all d € D}'. We claim that d # d for all d € D7". If d = d for some
d € DT, then (1xx,i,(d), prx,j(d)) ¢ Rluxx ;(d)] which contradicts the
definition of R[uxx,;(d)]. Thus d; = —1. Therefore d} = d;.

So d; = d: for every j < m. Thus d = d*. Hence u = juxx;,(d").
Part D. It remains to prove that yyx ;,(d*) € Ap(e®)NE and pyx,(d*) €
((R)Ap(e?))% for every j < m. Since d* € DI

20”7

we have px;,(d*) €
Ap(e") N E. For every j < m, there are two cases:

Casel dj = 1. Then d* € DJ". Hence pyx j(d*) is defined and pxx ;(d*) €
{paxj(d),mx(c) | d € DJ",c € D™}. Since d* € Dj', we have
(rxio (d%), pax,j(d7)) € Rlpax,j(d")]. Therefore (puxx o (d), pax,;(d")) €
R. So piaxip(d*) € (R){mxx;(d), mx;(c) | d € Dj",c € D™}. Thus
Faxio (d%) € ((RYAp(e?)) %

Case2 dj = —1. Then d* ¢ D7". We claim that jixx;,(d*) ¢ (R){px;(d),
mx.j(c) | d € Df*,c € D™}. Assume that pyx,(d*) € (R){uxx,;(d),
mxj(c) | d € DI',e € D™} Then (uax.i,(d*), uaxj(d)) € R for
some d € D} (by definition of (R) and Lemma 4.4.2(1)). Hence
(axio (d%), pax j(d)) € Rluax,;(d)] (by Lemma 4.4.2(2)). Therefore
d* = d (by Lemma 4.4.2(3)). So d* € D} (since d € D}'). Butd* ¢ D}".
Thus jixx i, (d°) € ((R)Ap(e?))%.

So we have proved that jiyx ;,(d*) € ((R)Ap(e?))% for every j < m. There-
fore we conclude that 1\ x ;,(d*) € papi,(d*). O

Lemma 4.4.14. For every ip < m and d* € D™, nxp,(d*) = {nax.i, (d*) }.
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Proof. Letio < mand d* € Dj be fixed. Then

Mpao () = Ap(€) N E'N [ ({(R)Ap ()%

j<m
= {M/\X7i0(d)an)\X,io(c) | de D;ga cE Dm}
N{mx,(c) | c€ D™ i <m}

4 (ﬂ ((B){pax,i(d), max,(c) | d € D, c € Dm})d;>

j<m

(since E' = W — E and by Lemma 4.4.12).
Part C. Suppose u € np;,(d*) (u € W). Then, in particular, u €

)\p<€i

°) N E'. Hence u = nxx,,(¢) for some ¢ € D™. To be proved that

¢ = d* (and so u = nyx,,(d")). For every coordinate d}, j < m, there are

two cases:

Case 1

Case 2

d; = 1. Then u € (R){pax,;(d),max(c) | d € D}*,c € D™} (since u €
((R)Ap(e7))%). Hence (u, purx,;(d)) € R for some d € D' (by defini-
tion of (R) and Lemma 4.4.2(1)). Therefore (u, pxx j(d)) € Rlurx,;(d)]
(by Lemma 4.4.2(2)). S0 (axy(€): siaxy(d)) € Rluax,(d)]. Hence
¢ = d (by Lemma 4.4.2(4)). Thus ¢; = 1 (since d € D}"). Therefore

*— .
dj—c].

d; = —1. Then u ¢ (R){px;(d),mx;(c) | d € Dj*,c € D™} (since
u € ((R)Ap(e”))%). Hence, in particular, (u, 1yxj(d)) ¢ R forall d €
D7 (by definition of (R)). Therefore (u, jxx ;(d)) & Rlurx,;(d)] for all
d € D} (by Lemma 4.4.2(2)). So (nxxi, (€), fax.j(d)) & Rlpax,;(d)] for
all d € DY'. We claim that ¢ # d for all d € D7". If ¢ = d for some
d € DT, then (nxx i, (d), xx j(d)) ¢ Rluxx ;(d)] which contradicts the
definition of R[uyx j(d)]. Thus ¢; = —1. Therefore d} = ¢;.

So ¢; = d; for every j < m. Thus ¢ = d*. Hence u = nxx 4, (d").

Part D. It remains to prove that nyx ;, (d*) € Ap(e)NE’ and nyx;,(d*) €
((R)Ap(e?))% for every j < m. It is clear that nyx., (d*) € Ap(e®®) N E'. For
every j < m, there are two cases:
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Casel d; = 1. Then d* € DJ". Hence pyx j(d*) is defined and pyx ;(d*) €
{tnxj(d),mxj(c) | d € DI",c € D™}. By definition of Rl ;(d")],
(mxio (A7), pax 5(d")) € Rlpax,;(d*)]. Therefore (nxx.i,(d*), pax;(d*)) €
R. S0 mxio(d*) € (R){prx;(d), mx;(c) | d € DF',c € D™}. Thus
Mxio(d°) € ((R)Ap(e7))%.

Case2 di = —1. Then d* ¢ D*. We claim that nyx;,(d*) ¢ (R){pax;(d),
mx(c) | d € DY c e D™}, Assume that nyx;, (d*) € (R){uax;(d),
mx,j(c) | d € Dj*,c € D™}, Then (maxi,(d), uaxj(d)) € R for
some d € D7 (by definition of (R) and Lemma 4.4.2(1)). Hence
(Mxio(d*), paxj(d)) € Rlprx,j(d)] (by Lemma 4.4.2(2)). Therefore
d* = d (by Lemma 4.4.2(4)). So d* € DY (sinced € D}"). Butd* ¢ D}
Thus x4, (d*) € ((R)Ap(e?))%.

So we have proved that n,x ., (d*) € ((R)Ap(e?))% for every j < m. There-
fore we conclude that 7y x ;, (d*) € nxp,i, (d¥). O

Theorem 4.4.15. The MBA P £ is freely generated by {py, . .. ,pr—1}.

Proof. By Lemma 4.4.13 and Lemma 4.4.14, every one-element subset of
W is expressible via {py, ..., p,—1}. Hence every subset of IV is expressible
via {po, ...,pr—1}. Therefore {py,...,p,_1} generates the MBA P .

Now let (M, E, 3) be an MBA and f; : {po,...,pr—1} — M. Then let
(My, £, 3) be the MBA-subalgebra of M generated by { fo(po), - - -, fo(pr—1)}-
By Lemma 4.4.13 and Lemma 4.4.14, the assumptions of Theorem 4.3.2 are
satisfied vacuously. Hence f, can be extended to an MBA-homomorphism
f Pz — M. So f, can be extended to an MBA-homomorphism from P
into M.

Thus the MBA P is freely generated by {po, ...,p,—1}. ]

So the complex algebra of the bounded graph on page 106 is an MBA
freely generated by the empty set (see page 112 as well) and the complex
algebra of the bounded graph on page 108 is an MBA freely generated by

one element py = {wo, wy, wy, ws, we, w7} (see page 112 as well).
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