
Characteristics of,sfiae and elastshape in

glacial and non-glasial environments

CliffordBamie Atkins

suburiued," vi**rll l::-,tl, or weningron

in fulfilment ofthe

requirrmerrts for thedsgree of

Doctor of Fhilosopby

iu Geology

Victoria University of Wellington

2003
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Abstract

Linear abrasion features on rock surfaces are produced by interacting rock particles in
relative motion. The most common examples are striae produced by temperate glaciers,
and as a consequence, striae have long been used as a means of identifying the passage

of past glaciers. However, there are many non-glacial processes that can produce striae.
These have been sporadically documented in the geological literature but have failed to
make a lasting impression on the wider Earth Sciences community. These non-glacial
processes include tectonic deformation, meltwater flow, non-glacial ice, wind action,
volcanic blasting, mass movements of rock debris, among many others. Many produce

coarse-grained deposits similar in character to glacial tills and there are several

instances where non-glacial deposits and striae have been misinterpreted as glacial in
origin.

This thesis examines linear abrasion features (mostly striae) from five different
environments, three glacial (temperate, polythermal and cold) and two non-glacial

environments (mass movement and tectonic) to characterise the striae from different
origins. The aim was to assess if there are readily observable and measurable

differences in striae character between environments and to develop field-based criteria
that allow a sound judgement of their origin in the geological record. Over 760

measurements of individual striae were made (orientation and size) on around 20

representative clasts and characteristic features ofabout 50 striated clasts from the

various environments are illustrated in an "Atlas of linear abrasion features',. In addition
clast shape and striae occulrence were measured on 1260 clasts from deposits and about
100 bedrock linear abrasions from a cold-based glacier were recorded.

The results show that some striae are diagnostic of certain environments but a

combination of clast shape and striae characteristics is the most reliable method of
correctly interpreting coarse-grained deposits with striated clasts. Results also highlight
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the wide range of striae characteristics within each environment and the importance of

lithology in striae generation. This is evident even within the well-known temperate

glacial environment where there is a marked contrast between striae formed within a

thick debris layer and those formed in thin debris-rich basal ice. There appears to be

little difference in striae formed by temperate and polyhermal glaciers, but glacial striae

are readily distinguishable from striae found in various mass movement deposits or

tectonically deformed conglomerates.

Glacial striae tend to be sub-parallel to the clast long axes and show a high density on

individual surfaces, whereas those in non-glacial origin typically show a lower density

of slightly shorter, wider striae and show either no preferred orientation or weak

grouping.

The survivability of glacial abrasion features of clasts once they have entered a fluvial

system has been assessed in a small South Island glacier fed river. This has provided a

basis for estimating the proximity of a glaciofluvial deposit to the glacier front. Striae

are found to survive only 1 to 2 km and glacial facets are mostly removed within 6 km.

The study has also documented previously undescribed linear abrasion features from a

cold-based glacier in Antarctica. This discovery is a significant advance in

understanding cold glacial processes, and has provided new criteria for recognising the

passage of cold-based glaciers in polar areas or regions where cold-based ice may have

existed in the past.
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Chapter 1 Inhoduction

CHAPTER ONE

INTRODUCTION

l.t BACKGROUND AND AIMS

Many types of surface abrasion features are found on rock surfaces. These are formed
by the relative motion of rock surfaces or fragments and vary widely in shape and form.
Striations or striae are perhaps the most well known surface features and the term
striation is the most commonly used descriptor applied to linear abrasions of variable
sizes and shapes.

By far the most prevalent reference to striae is in the glacial context. These abrasion

marks are usually formed at the base of a glacier and are "among the most common

features of glacial erosion" (Hambrey, lgg4). These features were recognised early in
the study of earth surface processes in association with the break-through ,,Glacial

Theory" in the 19th century (e.g. Agassiz, 1g3g; Geikie, l g63; chamberlain, I ssg).

Analysis of striae quickly developed into a useful means of interpreting the passage of
past glaciers. Characteristic shapes and orientation of striae on deglaciated bedrock were
used to indicate ice-flow direction. The relationship between sets of cross-cutting striae
allowed relative timing of glacial advance and retreat to be established. In addition, the
presence of striated clasts in "boulder clays" was used to help map the distribution of
glacial deposits. This enabled the reconstruction of complex patterns of past glacial
activity and is still one of the most common uses of striae in Earth science (e.g. Kleman,
1990; Mattsson, 1997). The common reference to striae in a glacial context has resulted
in striae becoming used as a supposedly unambiguous indicator of glacial influence, and
one of the most widely recognised means of establishing a glacial origin (e.g. papers in
Hambrey and Harland, I 981 ; powell and veevers, I 9g7; Aitken, I 991 ; Lewis and

Iillgner, 2000; Spenceley; 200 I ).
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This presents a central problem because "as indicators of glaciation, striae have certain
limitations. They are insufficient in themselves since other non-glacial agencies can
give rise to striae" (Hambrey, lgg4). Several early works reported striae formed by non-
glacial mechanisms, (e.g.Hovey, 1909; von Engeln, 1930; wentworth, l92g; Dyson,
1937)' This was followed by later reports of non-glacial striae (e.g. Nichols, l96l;
Mclennan,l97l; Dionne, 1973; Schermerhom, I974a;Zamoruev, 1974),all cautioning
an immediate glacial interpretation. In a re-evaluation of the evidence for glaciation in
Earth history, Schermerhorn (1974a) observed that these cautions did not leave much of
an impression on the wider science community and the misconception that striae alone
are evidence for glacial influence continued. Eyles (1993) again raised this in a further
review of the evidence for past glacial conditions. He drew attention to non-glacial

mechanisms of producing diamictites and also striated clasts including a long list (29

references) of examples where deposits originally identified as "glacial", actually
formed by non-glacial processes in terrestrial, marine and volcanic environments. The
importance of accurate identification of key criteria such as striae to the interpretation of
the origin of deposits is highlighted by the statement made by Eyles (1993): ..Explaining

the timing and climatic origin of pre-Pleistocene ice ages in Earth history is one of the

longest standing problems in geology".

The issue of striae origin is addressed in this thesis by asking the question: Are there

readily observable and measurable differences in striae fonned in different

environments? This is achieved by characterising small-scale linear abrasion marks

fornred in modern environments where the origin is known. It focuses on striae found

on clasts in coarse-grained deposits but also includes some on some bedrock surfaces.

The aim is to develop field-based criteria for the reliable interpretation of striae in the
geological record.

1.2 STRIAE . THE STORY SO FAR

The description and classification of striae as well as theory of striae formation has been

almost exclusively generated in glaciological and glacial geology literature. Therefore,
this literature review focuses initially on the glacial environment, reviewing theory,
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models and classification of abrasion, and then considers the large number of non-
glacial mechanisms that produce rinear abrasion features on rock surfaces.

Figure 1.1 displays a surnmary tirneline of important milestones in the study of striae
and linear abrasion on rock surfaces.
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1.2.1

Introduction

Glacial abrasion

The mechanics of glacial erosion have long been the subject of study, but in more recent
years, theoretical models have been produced (Boulton, 1g74,lgTg: Hallet, 1979,lggl;
Drewry, 1986). The models have concentrated on understanding abrasion of bedrock
beneath temperate wet-based glaciers, and have shown that striae are formed when

asperities (striator) are dragged over subglacial bedrock or till surfaces. Temporary
tensile stress is produced below the asperity leading to crack growth and brittle failure
of the rock surface as the asperity moves forward (Figure 1.2). The culmination of many

small brittle failure events produces an apparently continuous striation marking the
passage of overriding particles. Factors that appear critical to the generation of striae

are, relative hardness of rock surfaces and striating fragment, force pressing the striator
against the bed, velocity of the striator relative to the bed and concentration of debris in
ice at the abrading surface (Drewry, l936).

Particle asperity

Transient stress
concentrations
Ieading to localised
fracture

Figure 1.2 Simple model of the striation process (redrawn from Benn and Evans, 1998).

Others have furthered this by testing the theories in the laboratory and simulating glacial

abrasion. For example, Matthews (1979) used a simple grindstone rnade of ice and

crushed quatrz between two stone plates in a domestic deep freeze. Following this,
Iverson (1988, 1990, 1991) noted that large variation in the shape of natural glacial
striae could not be easily explained by existing abrasion models. He suggested that the
geometry of the striator and the zone of contact effects the magnitude of shear stress

exerted on the bed, thus influencing striae shape. Using complex apparatus with striators
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of different shapes he closely simulated abrasion of bedrock surfaces by a temperate
glacier, measuring important variables and creating striae similar to those observed on
glaciated bedrock. These results were compared with the pioneering work of
Chamberlain (lssS) who recognised three dominant striation shapes and classified them
as Type 1,2 or 3 (Figure I .3).

Type l: Striae become progressively wider and deeper down glacier until they end
abruptly, often as deep, steep-walled gouges. These are commonly known as ,onailhead,,

striae.

Type 2: The most common striae. These steadily broaden and deepen until a maximum
width and depth is reached at the centres; then they tenninate as they began.

Type 3: Striae begin abruptly as deep gouges and then become progressively narrower
and shallower down glacier.

lce movement

Type 1 ...--

<

lce movement

1OO mm

Type 2

lce movement

Type3 

-Figure l'3 Examples of types of glacial striae in plan view and longitudinal cross section.
Ice movement from left to right. Ten fold exaggeration in striation depth. Examples are redrawn
from experimental results of Iverson (1991).
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Iverson (1991) suggested that Type I striae result when a sharp striator makes contact
with the bed and ploughs progressively deeper, decelerating as the shear stress increases
until the striator point either breaks off or the torque on the clast is sufficient to rotate
the clast out of the groove. Type Zstriae result from a sharp striator that rotates as it
slides. The striator initialry ploughs progressively deeper, resulting in more rapid
rotation and possibly point cornminution, then the striator accelerates and the depth of
indentation decreases. For Type 3 striae, the striafor initially indents the bed. Rotation
with little displacement along the bed produces a small ploughing angle so that a
gradual reduction in indentation occurs as the clast velocity increases. He concluded
that glacial abrasion models should include the effect of rotation of striating rock
fragments, which affect the amount of shear strcss between the striator and the bed. He
also noted that marks similar to glacial striae (particularly Type I striae) can form on
fault surfaces, showing that some of the physicat parameters beneath glaciers also apply
to other situations where rock surfaces move relative to each other. This led to further
refinement of abrasion models and glacial mechanics (Shoemaker, lggg; Hallet, 1996:
Hindmarsh, 1996). Figure I.4 shows a well-defined Type 3 striation on fine-grained
bedrock.

Figure l'4 Recently exposed glacially abraded, fine-grained limestone bedrock showing a
variety of striae' Ice movement was from left to right. A curved rype 3 striation is visible near
the centre- Athabasca Gracier, Arberta, canada. photograph by criff Atkins.



Chapter I Introduction

1.2.2 Striae scale and definition

The term striation is defined as a "linear mark on a surface, slight ridge or furrow or
score" (The Concise Oxford dictionary, sixth edition,IgTG)and is not restricted to
glacial literature and does not imply abrasion processes. The definitions provided in
geological dictionaries often imply abrasion produced by glaciers. For example:

' 
o'A marking on the surface of a pebble or bedrock produced by ice movement,,
(The New Penguin Dictionary of Geology, 1996).

I "Small grooves. The term is commonly applied to grooves formed by glacial

action" (Penguin Dictionary of Geology, lg72).
o "A tiny groove or scratch on the surface ofan ice-abraded rock, produced by the

scoring action of rocks frozen into the base of a glacier" (Penguin Dictionary of
Physical Geography, 1984).

o "One of multiple scratches or minute lines, generally parallel, inscribed on a

rock surface by a geological agent, i.e. glaciers, streams or faulting" (Glossary

of Geology, 1987).

Striae is simply the plural of striation, although the word striations is often used in the

literature. Striae is the tenn used in this thesis

Despite insightful and detailed observations of earlier workers such as Chamberlain
( 1888), poorly constrained usage has resulted in loose meaning in terms of scale and

characteristics, even within the glacial literature, often being interchanged with other
terms such as scratch and groove.

Most references to striae are outcrop scale and are commonly millimetres to centimetres
wide and deep and centimetres to metres long, although they can be found on much
smaller sub-millimetre scales which are sometimes termed micro-striations (Judson a'd
Barks, I 961). The wide range in scale highlights the problem of using the same

terminology for abrasion features formed on bedrock surfaces (that may extend for
several metres) and those formed on clast surfaces (tens of centimetres or less).
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r.2.3 Bedrock striae

Laverdiere et al. (1979), Laverdiere and Guimont (1980) and Laverdiere et al. (19g5),
provided the most comprehensive terminology for bedrock striae (Table l.l). These
papers presented a qualitative and quantitative hierarchical classification of minor
glacial erosion features, ranging lrom glacial "polish" to quarried walls and truncated
planes several metres in dimension. This classification has not influenced mainsrream
glacial geological literature, possibly due to initial publication in French with some

detail lost in translation.

Introduction

Features and sizes of linear marks of glacial origin (Laverdiere et al. 1979).Table l.l

Ternt

Polish

Graze

Striations/
striae

Small
Groove

Scores

Scratches

Large Groove

Grooved joint

Definition

Smooth and brilliant surface.

Superficial but wide scratch.

Group of fine scratches, parallel to
one another, sometimes overlapping.

Group of large scratches, parallel to
one another, sometimes overlapping.

Group of very superficial or weathered
striations and small grooves.

A few short striations or small grooves
somewhat arranged in a fan shape; rare.

Elongate or canoe-shaped depression,
generally occurring alone, or more or
less open at both ends.

Rather narrow and deep large groove
dug out from a joint roughly parallel
to the direction of ice flow

Long, narrow and shallow depression;
may lead morphologically to a small
valley.

Size

Width: 10-20 mm or more:
length: short; depth: very
shallow.

Width: up to 5 mm; length:
variable; depth: shallow.

Width: 5 mm, but may reach
100mm; length: variable; depth:
may reach one-third of width.

(see those terms)

(see those terms)

Width: 100 mm to 5 m; length:
variable; depth: may reach one-
third of width.

Width: decimetric rather than
metric; length: decimetric to
metric; depth: centimetric to
decimetric.

Width: from 5 m to a few dozen
metres; Length: up to 1.5 km;
depth: may reach one-third of
width.

Furrow
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Others have produced less detailed classifications for glacial textbooks. For example,
Hambrey (1994) presented a classification scheme of glacial erosion features accorcling
to process of formation, relief and scale. Striae are recorded as being less than 5 mm in
scale (presumably width or depth) and grooves ranging from 5 cm to 100 m. Benn and

Evans (1998) classified striae generally as one of several "small-scale erosional forms,,
that include striae, rat tails, chattermarks, gouges, fractures and p-forms. Striae are

recorded as ranging in length from less than I cm to several metres and grooves ranging
from several metres to kilometres.

Orientation of bedrock striae is the most commonly measured feature. This has great

value in determining the overall ice flow pattern in glacial reconstructions, but is of
limited use in characterising the actual striae. The striae can be straight and extend for
many metres, but may also be curved "tracks" or deviate markedly from the mean flow
direction (Benn and Evans, 1996; Rastas and seppala, lggl). on flat surfaces, the

deviation may be due to the striating asperity rotating while still in contact with the

surface. On irregular surfaces, deviation from the mean flow and curved striae may

result from irregularities in basal flow of the glacier (Benn and Evans, 1996; Virkkala.
1960). For example, Rastas and seppala (19s1) documented striae on roches

moutonn6es in Finland. They suggested that rock surfaces dipping less than 30o have a

small influence on striae deviation. A dip of more than 50'has a marked effect. On
gently dipping surfaces, striae are longer and better formed than on steep surfaces, ln
addition, Gray (1982) described unweathered glaciated bedrock in Wales, noting that
striae converge into trenches and grooves indicating the streaming of basal ice and

debris into the trenches.

1.2.4 Glacial clasts

As already mentioned, the presence of striae on clasts in glacial deposits has been

known for a long time and quickly became used as a means of establishing a glacial
origin. This common assumption continues today. Schermerh om (1974a) stated,

"Striated and/or faceted stones in mixtites are often considered to furnish a prime
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argument in favour of glacial deposition". Huggett and Kid (1983) reiterated this point,
"Clasts in glacial environments ars often striated and the presence of the striae and
facets is probably the best evidence of glacial origin".

It has long been known that clasts in tills exhibit characteristic "flatiron" shapes with
faceted faces, and that these have striae predominantly parallel to the clast long axis
(e.g. Geikie I 863; von Englen, 1930; Holmes, lg4|, 1960). There are many exceptions

to these characteristics and in more recent years it has become clear that the factors

controlling clast abrasion and therefore clast shape and surface features are complex.

For example, the particular transport path that a clast has taken through a glacier (e.g.

Boulton, 1978), particular subglacial conditions and the lithology of the clasts greatly

affects the clast shape and striae characteristics. This results wide-ranging percenrages

of faceted and striated clasts in various glacial deposits. The characteristics of glacial

clasts are discussed in detail in Chapter 3.

These complexities within the glacial environment are secondary in importance to the

fact that non-glacial processes may striate clasts. Schermerh om (1974a) cautioned,

"Scratched stones in a mixtite do not by themselves prove the deposit to be a tillite. First
it must be established that the striae are truly glacial". Dowdeswell et al. (19S5)

suggested that too little systematic work exists to establish whether the wide variations

in the intensity of striation carry useful information concerning till even though several

works have suggested striae orientation may hold clues to striae genesis. For example,

Anderson (1983) suggested that the number of sets of sub-parallel striae on a clast may

be significant and Frakes (1979) claimed striae on clasts in debris flows show a random

pattern and those of tectonic origin may all be parallel.

10



Chapter I

1.2.5

Introduction

Summary of glacial abrasion

II

Much effort has been directed at understanding the glacial environment, with many
advances made in understanding the complex interaction between ice and substrate.

Abrasion is one of the most common features of glacial influences on rock surfaces and
has long been used as a means of inferring past glacial conditions. Despite this long
history, only limited systematic work exists on the measurement of glacial striae on
bedrock and clasts. This has limited the development of striae as a useful

palaeoenvironmental tool and restricted their use to being simple glacial indicators, or at
best, to delineate ice flow direction in gracial reconstructions.

The difficulty in definition and classification of linear abrasion marks is partly due to
the loose historical usage of terms, but also because of the wide range in the variables in
the glacial environment. These variables influence the formation, characteristics and

preservation of abrasion and lead to a broad spectrum of features with variable scale,

shape and appearance. The most important variable is the lithology, as this not only
influences the character of the abrasion, but also the generation of abrasion marks in the

first place. Finally, the common ignorance of non-glacial mechanisms of producing

striae has meant that the presence of striae has sometimes been incorrectlv used as

evidence of past glacial conditions.
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1.2.6 Non-glacial abrasion

lntroduction T2

Linear abrasion features have been documented from a wide variety of non-glacial

environments. Despite many individual notes scattered widely through the literature and

even several reviews of non-glacial striae (e.g. Judson and Barks, 1961; Dionne 1970,

1973; Zamoruev, 1974; Schermerhorn, 1974a; Eyles, 1993), the misconception that

striae indicate glacial influence continues. Some non-glacial environments and

processes mentioned in the literature are reviewed below.

r.2.7 Sub-glacial drainage

Abrasion features produced by catastrophic, sediment laden, turbulent sub-glacial

drainage have a wide variety of forms. These include flutes, grooves, potholes, P-forms,

rat-tails and hairpin erosional marks (see Shaw, 1987, 1994; Sharpe and Shaw, 1989 for

review and references therein). However, many of these forms could also be produced

by glacial or tectonic mechanisms (Eyles and Boyce, 1998). McCanoll et al. (1989),

discussed "striae" produced by sub-glacial drainage of a glacier dammed lake in

Southern Norway (Figure 1.5). Striae from rock surfaces within the area of sub-glacial

drainage were measured and compared with striae from a glacially abraded n'controln'

site. The results indicated that on the basis of lenglh or width measurements alone, -

"striae" produced by the sub-glacial drainage are not consistently distinguishable from

those produced by glacial abrasion. However, using a ratio of length to width, striae

from the sub-glacial drainage sites often have a lower length to width ratio and more

variable orientation than striae from the glacially abraded sites. The study advised

caution when interpreting striae in an area where sub-glacial drainage is a possibility.
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Figure 1.5 Example of catastrophic sub-glacial drainage striae. The top image shows

variable oriented cross'cutting striae and the bottorn image shows short, wide tapering striae

from impact of boulders transported by saltation. (From McCarroll et al. 1989).

13
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1.2.8 Tectonic abrasion

Introduction

Abrasion forms of tectonic origin have become well known to structural geologists and

widely employed as kinematic indicators of fault movement (Eyles and Boyce, 1998).

These features have been described from both fault plane surfaces and less commonly

on the surfaces ofclasts that have been produced or abraded by tectonic forces. A

separate terminology has developed in structural geology literature with discussion on

processes and mechanism of formation. It includes terms such as striation, groove and

tool mark (that are also widely used in glacial geology), but also terms such as

slickenside or slickenline that are usually restricted to structural geology. The

terminology has many inconsistencies in the meaning of specific terms even within

structural geology literature (Fleuty, 1975\. This is discussed in detail in Chapter 7

(Tectonic striae).

Judson and Barks (1961) reviewed a number of papers from the late lgth Century and

20th century, which refer to tectonically striated clasts. Even in these early reports it was

noted that tectonic striae might be mistaken for glacial striae. Many subsequent reports

extended these observations by reporting tectonic striae produced by deformation within

conglomerates with a fine-grained matrix (Pettijohn, 1956; Winterer, 1963; Clifton,

1965 and Robertson, l97l).In particular, Winterer, (1963) showed that diamictites in

France that had previously been interpreted as glacial in origin, were clearly the product

of differential movement of clasts and matrix during tectonic deformation. Clifton

(1965) described polished and striated pebbles from deformed conglomerates. The striae

were parallel microstriae typically less than 0.5 mm long and 0.05 mm wide, parallel to

the long axis of the clast. Frakes (1979) suggested striae of tectonic origin might all be

parallel and that this may distinguish them from glacial striae, but offered no examples.

Iverson (1991) noted the similarity of some glacial striae to features found on fault

surfaces and Eyles and Boyce (1998) reiterated this by stating: "the similarity of such

abrasion forms with those in glaciated terrains is not widely appreciated by glacial

geologists". Furthermore, they examined abrasion features on slip planes formed by

moving sheets of gouge during repeated faulting and shearing, which they claimed were
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identical to abrasisn features found in glaciated tenain. The features included grooves
cut into the fault plane by the dragging of soarse dianict over slip surfaces (Figure 1.6)
and bullet-shaped clasts exhibiting unidirectional striae (Figure 1.7). In addition, larger
feafurEs such as flute ridges and crescentic scours were also described from the slip
plane a,nd the similarity ofthese tectonic features to much larger flutes and drumlins in
glacial terrains noted. Eyles and Boyce (199S) concluded that the conditions along
faults and tlnder glaciers are essentially similar, with that both generating cataclastites,

which display morphologically identical, but diffrrently scaled genetically related

f,eatures.

['igure 1.6 Exanrple of striated fault surface near Phoenix, Arizona, USA (from Eyles and
Boyce, 1998)

l5
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Ftgure 1.7

Boyce).

Example of a tectonically stiated clast exposed on the fault surface (Eyles and

1.2.9 Wind action abrasion

The effect ofwind has been long known as an effective geological process (Greely and

Iverson, 1985), and several papers have referred to pitted surfaces and glacial like striae

ort pebbles and ventifacts which are attributed to wind action (e.g. Judson and Barks,

1961). Whitney (1978) presented an extensive study of lineations developed by wind
erosion that included features such as pits and grooves ol several scales: flutes (l cm to
sevEral metres wide), rills, (1 to l0 mm wide) striae, (less than 1 mm wide) and micro-
lineations. These were observed on a number of surfaces including vontifacts, bedrock,

snow and sand dunes. Recognition of wind-generated. striae has forced reinterpretation

of some supposedly glacial striae. For example, Tremblay (1961) reinterpreted supposed

glacial striae from northern Alberta and Saskatehewan, Canada as products of wind
action and sandblasting. These features occur on all surfaces of outcrops including
under surfaces of low ledges, but not on the buried portion. Bedrock and clasts appeared
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highly polished, more so than on cornmon glacially polished surfaces. The striae were
described as fine grooves, channels or funnel-shaped striae depending on size, depth and

shape. They are generally shallow and closely spaced with an almost square cross-

section and tlpically less than a foot long. Although appearing to cross an entire

outcrop, they are actually a succession ofshort scoop-like depressions 1 inch to a few
inches long, and slightly deeper near the back of the scoop and opening into the

direction from which the wind came.

t7

1.2.70 volcanic Activity (volcanic brast and pyroclastic flow) abrasion

Hovey (1909) reported bedrock that had been smoothed, scored and grooved by
volcanic sandblasting during the Mont Pelee eruptions in 1902 and 1903. ..The surface

of the ground here was completely denuded of soil and the tuff-agglomerate was scored

with hundreds ofparallel straight striae, many (10 to 15) metres long and several (2 to

l0 or more) centimetres deep". These striae were noted on horizontal and vertical

surfaces and the "direction of the striae depended on the position of the striated surface

with relation to the radii drawn with the crater as the centre". Sparks et al. (1997)

reported that spectacular erosion features on bedrock and boulders formed by the effect
of pyroclastic flows generated by the April 1993 eruption of Lascar Volcano, Chile. The

abrasions range from metre-scale furrows to striae several metres long and centimetres

wide, sub-parallel in areas where flows were confined in nanow gorges. A glacial origin
is discounted as the striated surfaces are below the current ice limit and unequivocally
post-glacial in age (Figure 1.8). Grunewald et al. (2000) described striae and

slickensided friction marks on blocks from pyroclastic flows from the 1gg1-lggg
eruption of Soufriere Hills volcano in Montserrat, noting the similarity to tectonic

abrasion.
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Figure 1.8 Striae formed on ignimbrite by pyroclastic flow.

et al., 1997).

Lascar Volcano, Chile (Sparks

t.z.tl Mass movement abrasion

This has long been known as an effective process of striating both bedrock and clasts.

Several studies refer to striae created by different types of mass-movements including

debris-flows, debris-avalanches, mudflows, lahars and even solifluction and snowslide

deposits. Several have also noted the superficial similarity with glacial striae and that

this may create confusion in interpreting some deposits (e.g. Judson and Barks, 1961;

Dott, l96l; Zamoruev , 1974; schermerh om, l974a,b; Eyles, 1993: Jensen and wulff-
Pedersen, 1996)' This is further complicated by the fact that debris-flows oflen involve
glacial or tectonically derived sediments. In these circumstances, a single debris flow
deposit may include clasts striated by several different mechanisms. Below are some

examples of striae formed by various tlpes of mass movements.
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Subaerial debris-flow

Park (1926) described poorly sorted deposits with striated boulders on the slopes of Mt
Ruapehu, an active volcano in New Zealand,as glacial deposits. The deposits were

subsequently re-interpreted to be the result of debris-avalanche from a sector collapse of
the volcano flank (Hackett and Houghton, l9g9; palmer and Neall, l9g9). These

deposits are investigated in detail in Chapter 6. Hancox et al. ( I 991 ) described a large

rock-avalanche that occurred in 1991 on the flank of Mt Cook in the southern Alps of
New Zealand. Some clasts show striae thought to be produced by clast collisions within
the rock avalanche (McSaveney, personal communication). Furtherrnore, Hewitt (1999)

reported that rock-avalanches have often been mistaken for glacial deposits in many

mountainous areas of the world and cited fifteen individual rock-avalanches in the

Baltistan region of the Himalaya that had been previously mapped as till.

Sundell (1985) described basal shearing with gouge and striae in medial and distal

deposits of a gigantic debris-flow deposit in wyoming, usA, and concluded that a

combination of slide and flow processes were the mechanisms responsible for the debris

deposit and associated striae. Bishop (1997) noted similar basal striae as indicative of
rock-avalanche deposits in south-eastem Califomia. USA.

Jensen and Wulff-Pedersen (1996) reinterpreted the Bigganjargga tillite in Northern

Norway as the result of a debris-flow. The original interpretation as a tillite was based

partly on the presence of a striated pavement beneath the deposit and striated clasts

within the diamict.

Other examples include striated and slickensided fault and scarp surfaces on large

landslides in utah, USA (Flemming and Johnson, l9g9). shakesby and Matthews

(1996) described angular clasts with only occasional indistinct striae as the product of
landsliding in South Wales, [IK.

l9
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Submarine dehris-flow

Introduction 20

Dott (1961) re-interpreted the Squantum Tillite in Massachusetts as the product of a
subaqueous mass-movement and states o'most of the criteria cited for the glacial origin,
(including striated clasts) of this and many other tillites can be explained as well by
other mechanisms". Furthermore, he advised that most examples of ancient tillites must
be re-examined. Eyles and Eyles (1989) and Eyles (1990, 1993) re-interpreted many so-

called tillites of various ages to be the result of submarine debris-flows.

Snow-slide

Dyson (1937) described striae from steeply inclined limestone surfaces in Glacier
National Park, Montana, attributing them to snow-slide action. The unweathered striae

occur on slopes that have not been glaciated for many years and range from '.a mere

trace to more than an inch in width and have depth up to t/+ inch". The grooves are

parallel and oriented directly downslope and some extend for a distances over 10

metres, often becoming more prominent, particularly in width downslope and with
boulders lodged at the end. The author states: "There is no essential difference in the

striae produced by the scouring erosion of both snow-slides and glaciers. There is

however, a profound difference in the rapidity of the action".

Mudflow

Harrington (1971) reported a block of striated tuff embedded in Holocene alluvium in
the Atacama Desert. It displays sub-parallel grooves like glacial striae over several tens

of centimetres and he stated: "Had the block been found in a glaciated area, it would
have been dismissed outright as a commonplace feature". He concluded that the striae

were actually caused by the rasping action of hard rocks in a debris-laden torrential
mudflow (Figure I.9). Blackwelder (1930) reported striated boulders in mudflow

deposits in San Francisco and Death Valley where a glacial origin can be discounted.
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Van Houten (1957) demonstrated that a Colorado conglomerate showing striated clasts
was most likely a mudflow deposit rather than a glacial deposit as originally interpreted
(see Judson and Barks, 1961; Schennerhorn, 1974a for reviews and references therein).

Figure 1.9 Mudflow striae on the surface on a rhyolite block, Atacama Desert. Direction of
flow follows the hammer, from handle to head (From Harrington, lgTl).

Winterer and von der Borch, (1968) investigated a mudflow deposit in South Australia

that contained striated pebbles. Only about 7Yo of the deposit consists of clasts larger

than sand size but approximately 50 % of these display shallow striae. The striae are

best developed on finer grained and softer rithorogies and generally run in many

directions and on all surfaces of the clasts including ends and corners. Straight and

curved striae are present with some curving around the corners. The semi-arid desert

conditions rule out glacial influence but suit the formation of subaerial mudflows due to

cloudburst events. They concluded that the striae were formed during the late ..drying,,

stage of the mudflow when intergranular pressures are maximised. This contrasts with

2l
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observations by Zamoruev (1974) who described flatiron shaped boulders and clasts

with predominantly straight striae from mudflow deposits in Russia.

Volcanic mudflows or lahars are known to produce striated clasts. For example,

Scrivenor (1929) described polished and striated boulders from rnudflow deposits on the
slopes of a volcano in Indonesia, and Scott (1988) reported striae from lahars during the
Mt. St Helens eruption. Eyles (1993) presented evidence of crudely striated boulders in
rnodern lahar deposits from Costa Rica (Figure 1.10).

Figure 1'10 Striae on a boulder (arrow) from a modern lahar deposit, Costa Rica. (From

Eyles, 1993).

22
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Impact blast

Of a more unusual origin, Rampino et al. (1996) and Ocampo et al. (1996) reported

striae from debris-flow diamictites near Belize, Mexico. These CretaceouslTertiary age

deposits were interpreted to be the product of debris-flows resulting from the Chicxulub

impact ejecta. The striae occur on clasts and boulders up to 8 m in diameter and have a

range of shapes including nailhead striae. Rampino et al. (1996) suggest that the

ballistic effect of high velocity impact and violent collisions combined with abrasion

within the high-speed debris-flow are the main causes of striae formation. Also noted is

that clast features including abrasions depend partly on lithology and that

characterisation of these clast features may allow the identification and discrimination

of debris-flows of various origins.

r.2.12 Non-glacial ice abrasion

Non-glacial ice has long been known as a method of striating both bedrock and clasts

and there is a small literature base on the topic, mostly published in French, drawing

attention to the distinction between striae created by glacial and non-glacial ice. There

are many types of non-glacial ice, with floating marine and lake ice the most commonly

referred to. Some examples are listed next.

Drift ice

The most important non-glacial striae are abrasion marks along shorelines by the action

of debris-laden floating ice (Mclennan, l97l). Dionne (1970, 1973) provided an

exhaustive bibliography of the many early works that debated the importance of drift-

ice and the distinction between drift-ice and glacial striae. Dionne (1985) pointed out

that although these have been reported several times from many regions during the last

century, their importance has only been realised recently.
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Nichols (1961) recognised that ice-push and drift-ice striae can produce striae in polar
regions. He suggests that these can be differentiated from glacial striae using the

following criteria:

. They are not associated with well-planed and smoothed surfaces.

. They are not as deep, straight or as long as glacial striae.

. They are oriented in general at high angles to tlae strand line.

o chattermarks, grooves, trenches and roches moutonn6es are absent.

t TheY are not well developed on vertical and steeply inclined surfaces.

Mclennan (1971) apparently unaware of previous reports, described ..striae

indistinguishable from glacial striae" formed near water bodies in Canada. These

formed by drift-ice and ice-push in lakes during ice break-up in the spring. The striae

appear to radiate from the centre of the widest adjacent stretch of water. He concluded

"ambiguities may appear if one relies too heavily on striae evidence alone when

interpreting glacial environments". Dionn e (1973, Ig7g, lg85) criticised this strongly,

and provided a set of criteria that he argued could easily discriminate between striae

fonned by glaciers from those formed by drift ice on bedrock surfaces (Figure l.l l ). He

separated abrasion into polish, scratches, striae, small grooves and friction cracks. The

criteria offered included:

o Drift ice striae usually cover small surfaces of a large exposed bedrock surface.

' They commonly have an untidy distribution, sporadic nature and multi-

directional orientations and show a criss-cross pattern unlike glacial striae,

which are usually parallel over long distances.

' They are usually short, shallow, isolated, intermittent, divergent, discontinuous

and irregular in width, length and depth and are often sinuous, curved and

crooked.

o Finally, they are restricted to soft rocks in modern and former coastal areas.
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Identification of drift-iee stiae on pebbles is more difficult Stones that have not msved,
but whictr have beem striated by floating ice may show the upper surface striated onty. If
the ice hae moved the stones, they may have striae on several sides and the shape of the

stone may be important in distiagrlishing the origin of the striae (Diorure, lg7J\.These
two sets of oriteriaprovide a conv:incing argument that drift-iee sfiae can be

distinguishcd ftom glaeial striae but are only applicable to striated bedroc.k or boulder
surfaces.

Figure 1.11 Examples o.f drift-iee striae on finegrained bedroek surfaces. Note peneil fol
scale @ionne, [985).
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River-ice
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Floating ice in rivers can also produce striae on rock fragments, boulders, cobbles apd
pebbles. Todd (1892) reported striation of rocks by river-ice and Bamett (1910)

reported striae or furrows in river gravels, often with an uprooted tree at the downstream

end. It is suggested that these features formed either by partly submerged trees dragging
across the gravel bars, held down by debris and ice or ice-blocks beneath a load or ice
jam. Wentworth (1936b) also reported river-ice striae in ice jams in Arctic rivers.

Dionne (1985) concluded that it is usually difficult to distinguish between abrasion

marks on erratics made by floating ice and those made by glacier ice, particularly when

the rock fragments have been transported and redeposited.

Ice-berg scour

Ice-shelves, ice-bergs and sea-ice can produce scour marks on sea floor sediments. On

modem shelves these features have been variously described as striations, plough

marks, gouges, scores, grooves, furrows, scours and troughs. Scale varies considerably

depending on the size of the ice mass, but some may be up to 250 m wide, and 20

metres deep and kilometres in length (Drewry, 1986). Some of these furrows have

smaller centimetre scale striae superimposed on the surfaces. Woodworth-Lynas (1995)

reviewed many examples where soft sediment scouring and related striated surfaces

have been interpreted as indicating a direct glacial origin but suggested many of these

are actually produced by floating ice-bergs (e.g. savag e, 1972; Aitchison et al., l ggg)

(Figure l.l2).
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Figure 1.12 Example of furrows with striae in soft sediment, probably produced by iceberg

scour, Dywka Formation, South Africa. From Savage (1972).

1.2.13

27

Other striae

Several other mechanisms of producing striae are found in the literature. While these

examples are few, they illustrate the broad use of the term striae for a variety of features

that have a superficial similarity to the better-known glacial striae.
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Lava stretching

Fininger (1978,1979) examined an unusual striated andesite outcrop in Peru which

displays remarkably continuous grooves ranging in scale from millimetres to decimetres

wide and up to l0 cm deep. Several previous explanations for the formation of these

features included glacial abrasion and faulting (Schopf, 1979). However, Fininger

(1979) suggested that the striae were actually formed by stretching of freshly extruded

andesite, analogous to lineations seen on pulled taffy. While it is clear that these are not

abrasion features, it illustrates the wide use of the term striation and the potential for

misinterpretation.

Fluvial action

Wentworth (1928) described striae on clasts in fluvial deposits in the southern states of

the USA, where it is impossible for the clasts to be redeposited glacial clasts. The striae

are described as being predominantly straight and even in form.

Biogenic

Splettstoesser (1985) reported striae and gouges between 2 and 5 cm deep on indurated

sandstone bedrock and clasts on the Falkland Islands. The explanation offered was that

the striae were incised by the clawed feet of many generations of rockhopper penguins

as they passed over the same site to and from the water. Furthermore, it was suggested

that these might be confused with glacial striae or erosion by water. Chumakov (1998)

reinterpreted supposed glacial striae on the surfaces of pebbles from Upper Cretaceous

deposits in southem England as representing trace fossils of Cretaceous animals that

scraped food from the pebble surface.
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Periglacial features

Schubert (1973) reported unusual striae from high in the Venezuelan Andes. He

described them as periglacial features which consist of aligned lumps of fine to coarse

sand, separated by small discontinuous channels (1 to 3 cm wide). These features form
by freezing and thawing of water in the sediment and needle ice was observed forming
in the channels. The striae were found to be oriented in the same direction as the

freezing wind, indicating that the wind was an important factor in the formation of the

striae. Lliboutry (1973) suggested the features were actually a consequence of instability
in the ablation process by the sun's rays in a cold atmosphere, and follows the direction

of the sun's path, producing the linear "striae". Zotov (1940) described similar striae in

the Kaimanawa Mountains of New Zealand,. Again, these are obviously not abrasion

features but again highlight the diverse use of the term striae.

I.3 SUMMARY

This review of striae reveals a modest body of literature spanning over 150 years. Early

recognition of abrasion features in glacial environments quickly developed into a useful

tool for delineating past glacier movements but also revealed a diverse list of non-

glacial striae. Nevertheless, widespread ignorance of non-glacial origins of striae has

persisted despite sporadic notes urging caution about the use of striae to establish glacial

origin. Within glacial literature, poor definition and classification and a lack of
systematic analyses have hindered the use of striae as a palaeoenvironmental tool. This
possibly reflects the immense diversity in character of individual striae (in both size and

shape), and the complex nature of the glacial environment. These difficulties are further
exacerbated by the influence of lithology on striae formation and preservation making

any classification difficult to apply universally.
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Thepoteutial ofusing striae as apalaeoenvironmenjal tool is obvious and ataactivg b,t
fbces widespread rnisoonception and paucity of reliable data, not only within glacial
geologyi but also in the wider Barth seiience oo,ntsxt.

Investigation of,abmsion features'on roek surfaces requires a systematio approaoh to
doe,unnont shiae in known glacial adnon-glacial enviroumerats to begin.the task of
establishing criteria to enable usefirr comparisons to be nade.

ltis thesis. begins this task
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CHAPTER TWO

METHODOLOGY

2.1 INTRODUCTION

This chapter presents the scientific methods and techniques employed in this study of
abrasion features, as well as problems encountered and lessons leamed.

The literature review of striae (Chapter One) reveals that little detailed work exists

regarding the measurement and possible palaeoenvironmental use of striae. Therefore,

there was no established tested method for recognising features that are diagnostic of
striae from a particular environment or mode of orisin.

The rationale behind this sfudy of abrasion features (striae) is that particular aspects

(e.g. size, shape and orientation) might hold clues about the processes that have acted on

the rock, assisting in the interpretation of past environments. The motivation for the

study was a wish to provide a sound basis for comparison and interpretatiol of
Cenozoic strata recovered by the Cape Roberts Project in the Victoria Land Basin,

Antarctica, (Banett et al., 1995). To establish if there were observable and quantifirable

differences in striae formed by different processes, studies of striae from known modern

environments where their origin is unambiguous were needed. Of the many processes

that produce striae identified in Chapter One, five major categories were selected for
this study. They comprise three glacial examples (temperate, polyhermal and polar),

mass movement and tectonic processes.

This approach initially appeared to be a simple and attractive way of generating a useful

tool for deciphering erosion processes that have influenced the rocks, and ultimately
understanding the origin of a landscape or deposit. However, the task of actuallv
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measuring striae has proven to be complex and difficult due to the lack of adequate

nomenclature, paucity of published data and the many variables that influence the

generation and preservation of striae.

32
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2.2.r

MEASURING STRIAE

Field based approach

This study has been committed to a field-based approach for measuring striae. The

concept was to produce a means of quickly describing and analysing the striae on the

basis of readily observable and measurable characteristics in the field to establish the

origin.

This required a method of description and measurement with simple field tools. Length,

width and depth of individual striae were the obvious parameters that needed to be

measured' This seductively simple approach soon proved inadequate. The reason is the

large variation in scale between bedrock and clast striae, the variation in width and

depth along a single striation and the variation in striae shape and character depending

on the lithology.

2.2.2 The problem of scale and definition

The study initially planned to document striae on both bedrock and clast surfaces. This
quickly highlighted a problem of scale. The term o'striation" is used liberally in
geological literature in reference to both bedrock and clasts, but with widely different

meanings in terms of scale.

Striae on bedrock surfaces are generally decimetres to metres in length, and millimetres

to centimetres in width, although this definition is often extended to include smaller

scale "scratches" and larger scale "grooves". Striae on clasts are typically much smaller
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and often controlled by the surface area of the clast. This is particularly true for clasts

from drillcores, where clasts are often only a few centimetres in diameter. Striae on

clasts are often sub-millimetre in width and depth and centimetres or less in length.

Differences in scale make these difficult to compare. For example, a linear abrasion 5
mm wide and deep may be described as a small striation on a bedrock outcrop but

constitutes a large groove on the surface of a pebble. Similarly, a sub-millimetre

abrasion mark on a pebble is likely to be called a striation, but dismissed as a superficial

scratch on a bedrock surface.

The problem of scale and terminology is partly overcome by treating bedrock and clast

data separately, making clear what is meant in each context. For example, Judson and

Barks (1961) introduced the term "microstriae" to describe millimetre-scale linear

abrasions on pebbles. Having two orders of scale for striae has some merit from a

practical viewpoint, although a"grey area" remains when dealing with surfaces of
boulders, where bedrock scale is possibly more appropriate than clast-scale

terminology.

This study has evolved to focus on striae on pebble to cobble-sized clasts in response to

the availability of good examples of striated clasts in various environments, and also in
recognising that the striae on clasts are more likely to be confused and misinterpreted

than are bedrock striae.

2.2.3 The problem of lithology

Lithology plays an important role in the generation and preservation of abrasion

features. This had been noted by several previous studies (e.g. Kuhn et al., 1993;

Hambrey, 1994; Bennett et al., 1997). Coarse-grained rocks such as granite or strongly
foliated rocks rarely show striae (Glasser et al., 1998). The grain-size and hardness of
different rock types also influences the character of the striae. For example, fine-grained

mudstones can display smaller striae than coarser grained sandstones. In a study aimed

at characterising striae characteristics from different environments, the added
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complication of lithology is critical because any variation in striae characteristics due to
different mechanisms may be overshadowed by the differences caused by lithology.
Therefore it is difficult to draw meaningful conclusions about striae genesis from rocks
of distinctly different rithorogy and texture. Figure 2.1 shows an exampre of how
lithology can influence the generation of striae. The clast contains a contact between
medium-grained granite (light speckled) and fine-grained dolerite (dark). The clearly
glacially faceted and striated clast shows sub-parallel striae on the dolerite but none on
the granite of the same surface. Where possible, similar lithologies have been used in
this study and specific note of the rock type, grain size and relative hardness have been
made.

Figure 2.1 Glacially striated cobble from Cuff Cape, Antarctica. The cobble shows a
contact between fine-grained dolerite (lower part) and medium-grained granite (light speckled
upper part) on a well-developed glacial facet. Striae are clearly visible on the dolerite but absent
on the granite.
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2.3 METHODS FOR ANALYSING CLASTS

2.3.1 Multiple criteria approach

Recognition of the problems of scale, lithology and variation in the form of striae led to

a focus on clasts in coarse-grained deposits and to a multiple criteria approach to

document the occurrence and character of striae. This approach utilises clast shape as

well as the actual surface features themselves. Fieldwork for the study involved three

elements:

l) Recording the field context of the striae. For modern glaciers, this meant

documenting the location of basal debris in the glacier itself. For other situations,

outcrop descriptions of the deposits or exposures were made.

2) Random clast sample. This was achieved by taking a bulk sample of outcrop or

basal glacial debris. This was designed to provide at least 100 randomly selected clasts

for clast-shape analyses and to give an overall percentage ofstriated clasts from each

example.

3) Selected pebbles or cobbles with obvious striae were collected to provide a

suitable number of striae for detailed striae analvsis.

The background and detail of methods involved in this multiple criteria approach

discussed next.

2.3.2 Clast shape

Clasts attain characteristic shapes that reflect the transport processes that have

influenced the clasts. Analysis of clast shape has been used in many studies of
conglomerates and diamictites, both ancient and modern, to help distinguish those of
glacial origin from those of non-glacial origin and to differentiate between different
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glacial facies. In the glacial context, several early studies showed that clasts transported

by glaciers attained characteristic shapes (see literature review, Chapter l). Boulton

(1978), showed that clast shape is largely a function of the various glacial transport

mechanisms, and recognised a clear distinction between clasts transported in the active

subglacial zone and clasts transported in the passive supraglacial/englacial zones.

Lithology appears to have little effect on clast shape in active subglacial zone. For

example, Kuhn et al. (1993) studied the shape of various clast lithologies in

glaciomarine sediments in Antarctica and concluded, "the shape of clasts is independent

of lithology". Others have also noted this (e.g. Dowdeswell et al., 1985; Bennett et al.,

1997).In this study, clast lithology is not considered in the shape analyses.

Clast shape can be expressed in terms of three independent properties: form (overall

shape), roundness and surface texture (Barrett, 1980). This approach is widely used in

the analysis of clast-rich sediments and has commonly been regarded as a good

indicator of transport mechanisms (Kuhn et al., 1993). Graphical displays and simple

summary statistics are often used to describe clast data (e.g. Domack et al', 1980;

Dowdeswell et al., 1985; Hall, 1989; Kuhn et al., 1993; Bennett et al., 1997). This

approach is followed here.

Form

Form is the gross overall shape of a clast (Barrett, 1980). Clast form can be described in

terms of three orthogonal axes, that is, the long (a), intermediate (b) and short (c) axes,

which define three basic shapes: l) Blocks (spheres), 2) Slabs (discs) and 3) Elongate

(rods) (Benn and Ballantyne, 1993). Benn and Ballantyne (1994) introduced ternary

diagrams that display these basic shapes by plotting the b/a and c/a axial ratios of clasts

t6 describe clast form and to assist in the discrimination of different erosional

"histories" of clasts (Figure 2.2).In a glacial context, they have shown that blocks are

typical of "actively" transported clasts, whereas slabby or elongate forms reflect

unmodified "passively" transported clasts. This technique is useful for plotting data

from all clast-rich deposits and is adopted for all samples used in this study.
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SLABS
0.6 0.8

ELONGATES

Figure 2.2 Clast form ternary diagram of Benn and Ballantyne (1993). Unmodified clasts

(such as rock-fall or scree) tend to plot lowor on the diagram toward o'slab" or "elongate,' forms.

Clasts that have more equidimentional or n'blocky" shapes (typical of active glacial transport)

plot higher on the diagram above a c:a axial ratio of 0.4.

Roundness

Krumbein (1941) devised a visual comparison chart that consisted of a set of pebble

images of pre-determined roundness according to the scheme devised by Wadell (lg31)
(Figure 2.3)' The Krumbein chart divides clasts into one of nine roundness categories

ranging from 0.1 (very-angular) to 0.9 (well-rounded) and provides an effective means

of quantiflng clast roundness (Barrett, l9S0). The scheme is widely used and data are

often displayed as histograms of percent frequency of clasts in each roundness category
(Figure 2.a). Krumbein roundness values correspond to Powers (1953) roundness

classes as follows: very angular 0.0-0.17; angular 0.17-0.2s; subangular 0.25-0.35;

subrounded 0.35-0.49; rounded 0.49-0.7; well rounded 0.7_1.0.

)T

BLOCKS



Chapter 2 Methodology

Figure 2.3 Visual roundness comparison chart of Krumbein (1g41).This divides clasts into
one ofnine roundness categories.

0.1 0.2 0.3 0.4 0.5 0.6

Krumbein Roundness

0.9

Figure 2.4 Frequency percent histogram of clast roundness and lithology. This example is

from basal ice of the Murchison Glacier, New Zealand (see chapter 3).
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Clast form and roundness

Clast morphology can be further explored using plots of shape against roundness.

Boulton (1978) introduced a simple biaxial diagram that plots clast roundness versus

sphericity. These have been widely used in the analysis of glacial sediments (e.g.

Domack et a1.,1980; Dowdeswell et al., 19g5; Hambrey, lgg4). while the ..Boulton"

diagrams do show differences in roundness between samples, the shape data all have

similar ranges in all samples. Therefore, plotting shape against roundness yields little
more information than the use of roundness indices alone because the shape index is

insensitive to the actual variation in the data (Benn and Evans, 1996).

Therefore, Benn and Ballantyne (1994) developed a new method that plots the C.{o index

(percentage of clasts with c/a axial ratio of < 0.4) against the RA index (percentage of
angular and very-angular clasts) (Figure 2.5). They argued that this provides excellent

discrimination between different glacial facies (fields from published data from

temperate and polythermal glaciers are shown). It clearly differentiates clasts with

rounded edges and blocky shapes (high c/a axial ratios) that have experienced "active"
glacial transport, from "passively" transported clasts that are more angular and have low
cla axial ratios. Bennett et al. (1997) supported this and concluded that covariant plots

of the RA index and Cqo index give superior data visualisation and should be adopted in
preference to the more traditional sphericity and roundness plots of Boulton (1978).

Although this was developed for analysis of glacial clasts, it is used to display clast

shape from other deposits in this study.
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RA index versus C+o index

Approximate tieloi troni
i published data

I so""

f Supraglacial

H0 suogtaciat

I I Glaciofluvial

0 20 40 60 80 100

Coo INDEX (% clasts with c:a < 0.4)

F'igure 2.5 RA-C4o diagram of Benn and Ballantyne (1994). RA index is the percentage of
angular and very-angular clasts and Cas index is the percentage of clasts with a c:a axial ratio of
< 0.4. Shaded fields are from data in Benn and Ballantyne (lgg4) and Bennetr et al. (1997) for
temperate and polythermal glaciers.

2.3.3 Clast fabric

Many researchers have used clast fabric to assist in the interpretation of clast-rich

sediments, particularly those of glacial origin, specifically to infer the mode of
deposition and to define glacial flow directions (e.g. Domack and Lawson, l9g5;
Dowdeswell et al., l9S5). Clast fabric was measured for the drill core samples from the

Cape Roberts Project, which is discussed briefly in Chapter 8. Fabric data are presented

in Atkins (2001), included at the end of this thesis. Clast fabric analysis on drillcore is

inherently difficult due to low numbers of clasts and because these are usuatly only seen

on split core faces. This has prompted some to attempt two-dimensional fabric studies

(e.g. Hambrey, 1989). Three-dimensional fabric analysis is preferable and this was
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employed fbr the cape Robefts dritl core by sampling whole-round sections of core
from the coarse grained units. A simple supporting apparatus was designed to allow the
cores to be securcd in an upright position (Figure 2.6). Ahorizontal stage was 1owered
over the core and chisels used to systematically disaggregate the core, exposing
individual whole clasts (uncut by coring) in a manner similar to that outlined by Hicock
(2000)' The trend of the a-axis (long axis) of each clast was recorded on the stage with a
protractor, and the plunge was measured with a standard georogicar compass
clinometer, to provide three dimensionar crast fabric data.

Figure 2'6 simple supporting apparatus ro allow systematic disaggregation of whole-round
sections of drillcore for three_dimensional clast analvsis.
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2.3,.4 $tuiae Aqalysie

procedures Trnore developed to desc,ribe both bedrsck and clast s&iae. As this study
progress'ed" vari'ous modificatious rnrere nnade as knowledge rvas gained. The initially
simple ooncryt ofnreasuring shiae proved ts bodiffiqult, partiorlarly with the

corrunitment to usiqg onlysimple fietd instrumente.

Bedrock,striqe

For b,edrook sti*re; biasic dimensions. (ength, width aid depth) were measured on

ind:ividual striae. This w4s a aomplicated task b.eoause thc width and depth often vary
along tLre lerngth of,a stiation. For example, a naiil-head or wodge striation q/ill b€ widq
and deerper at one end aud t4p,or toward the othen. To more,accurate]y deseribe the shape

of bedrook shiae, nnultiple measrnernents ofwidtfo amd depth at pojnts alongthe length
can be mrade., A- gshomafie dlagraur of tftris ooucept is shonnm in Figure 2,7.

PLANIVIEW

sq

+2

QROCSSECTION VIEW

F'igure 2'7 Sctei,natic diagram of idealised linear abrasion and sqies of.widlh and dep,th

measrrernents ar poihts along the abrasion l€rigth needed to define the shape.
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This method for measuring bedrock striae proved to be a tedious and unpractical

approach in the field, and the time involved in this technique limits its use as an

effective field method. Dimensions were obtained using callipers and a tape measure.

Other characteristics such as distinctive channel shape or textureo channel edge

symmetry; channel lev6es or remnants of abrading tool were noted. The only bedrock

abrasion mark measurements presented in this thesis are from cold-based glaciers in

Antarctica. The three striae types defined by Chamberlain (1838) for temperate glacial

striae were not used, as these did not adequately describe the shape of the cold-based

glacial abrasion marks. In practice, these were described and classified by their general

appearance and only maximum length, width and depth are presented, rather the

multiple measurement scheme outlined above (see chapter five).

Orientation of bedrock abrasion marks were measured as an azimuth with a standard

geological compass and plotted onto a circle (orientation wheel), giving a visual

representation of orientation and grouping. An average orientation for each site was also

plotted on the orientation wheel and then plotted onto a map (Figure 2.8). Orientation

data for abrasion marks were plotted with Stereonet (version 3.03).

Individual striation
measurements

Average azimuth
for the site

Figure 2.8 Bedrock abrasion mark orientation wheel. Individual abrasions are plotted and

an average azimuth given.
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Clast striae

Methodology

For striae on clasts, a different approach was necessary. Striae on clasts are much

smaller scale than on bedrock (commonly only millimetres to centimetres in length and

millimetres or less in width and depth), and many surfaces show a pervasive covering of

frne striae that are visible to the naked eye but impossible to measure individually with a

standard ruler. These visible, but not measurable fine striae are here termed

"background microstriae" (e.g. lmage 5, Temperate glacial striae, Appendix 1).

Collection of striae data was made in two ways. Firstly, for bulk clast samples from

various environments, a range of observations was made to document the occurrence of

striae. This involved recording the:

1. Total percentage of striated clasts in a sample

2. Percentage of striae on different lithologies

3. Roundness class of striated clasts

4. Overall shape of striated clasts

5. Relationship to clast surfaces such as on facets or flat faces

Secondly, clearly striated clasts were collected from each environment to provide

suitable examples of striae for detailed analysis. This involved recording the:

L Orientation of striae in regard to the long axis of clast

2. Length and width measurements of each striation (depth was not

recorded, as this was not reliably measurable at this scale

3. Density and distribution of striae on a given surface, including the

presence of fine "background" striae, termed "microstriae"

4. Curvature of striae

The measurements were made by taking high-resolution digital images of striated

surfaces and printing them with a square grid overlay. The grid scale was usually 5 mm

squares (25 mm2) although two larger clasts had 10 mm squares (100 mm2). For most

clasts, either 50 squares (12.5 cm2) or 100 squares (25 cm2) over a representative section
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of the clast were selected. clearly visible and measurable striae (> 0.2s mm width and >
2 mm length) were marked on the image using the actual clast with wet surfaces under
Iow angle lighting as a guide (Figure 2.9).

clast long axis
(180")

Figure 2'9 Diagram showing a striated clast and 25 mm? overlay grid with striae marked
on the image' The percentage of squares with "background" microstriae and percentage of
squares showing at least one striation were recorded. Also, the total number of striae for the
measured area and orientation of striae relative to the long axis of the clast (1g0") was recorded.

Striae orientation

The orientation of each striation was measured as a direction between 90o andZTo'
relative to a reference line along the long axis (a-axis) of the clast (1g0.), although no
direction of striation is intended (Figure 2.9). The srriae orientations were grouped into
5o degree segments and plotted on half rose diagrams (Figure 2.Io).The length of each
sector indicates the percentage of the total striae in each segment. All striae orientation
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data was plotted with Stereonet (version 3.03). The range of orientations is recorded

relative to the long axis and therefore has a maximum value of 90.. Standard deviation
from the average orientation is given. Average orientation is indicated by an arrow and

direction in degrees. The data were not analysed with further statistical techniques, as

the graphical representation was considered sufficient to display striae orientation

effectively.

Average = 172.1''
Range = 54'

5%- -10% -15o/o

240' 120"

210 150',

Average
+

striae orientation

Figure 2.10 Half rose diagram shows the orientation of striae relative to the long axis of the

clast ( I 80"). Striae are grouped into 5o segments and length of segment indicates the percentage

of striae. Average striae direction is indicated along with the range in values relative to the long
axis and standard deviation from the mean orientation. No direction for striae is intended.

Length and width

The length and width of each striation was measured using a standard ruler. Width
proved difficult to measure, as many are sub-mm scale. In practice, striae width was

grouped to the nearest 0.25 mm. Striae less than 0.5 mm were assigned a value of 0.25

mm and striae less than 0.25 mm were considered "background" microstriae. Only the

maximum width was recorded even though some striae showed a change in width along

the length. Length and width data were plotted using a simple scatter plot of width and
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length and also as range charts showing maximum, minimum and average values for
each clast.

Width divided by length produces a ratio between 0 and 1. This allows an estimation of
striae shape regardless of striae or clast size. The data are ranked lowest to highest and

plotted against the striation number. Summary data are also plotted on a range chart.

The striae shape data were not treated with statistical techniques because the number of
clasts in each environment was considered too low for this approach to be useful.

Striae density

The percentage of squares that displayed "background" microstriae was recorded. In

addition, the total number of measurable striae (larger than 0.25 mm wide) was counted

and divided by the total measured area to provide a number of striae per cmt. These data

were plotted on a density chart that shows average measurable striae per cm2 and the

percent background microstriae for each clast. This background density is represented

by a pie graph, with the black sector indicating the percentage of the measured surface

showing background striae (Figure Z.Il).

00.5 1

Striae per cm:

1.5 2 2.5
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33.54
g\astj c\as\ 

1 c\aslA c\astz

Percent background striae key
\zs% )50% {tsy" O roo y"

Figure 2.11 Density chart showing that number of striae per cmt and the percent of
"background" microstriae on each clast. The example shown is for four clasts from a temperate

till (Lake Pukaki moraine). The clasts all have at least 2 striae per cmt and 100 % background

striae.
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Striation curvature was noted as this probably represents clast rotation during the

striation process. Also, other special features, such as compound striae, which are wider
than average striae and commonly have finer parallel striae on the abrasion surface.

were noted.

2.4 APPENDIX 1' LINEAR ABRASION PHOTOGRAPHIC ATLAS

Because only a limited number of clasts were used to analyse striae in detail, and many

aspects of striae and the relationship to clast shape are difficult to describe

quantitatively, a visual reference guide was established in the form of a photographic

atlas (appendix l). The atlas provides images of linear abrasion features (mostly striae)

at a variety of scales from each of the environments investigated, accompanied by an

explanation of important features. It aims to present a wide range of different striae

characteristics seen on clasts in each environment to highlight the variability rather than

focussing on the more common features. The atlas is divided into five parts representing

different environments where linear abrasion marks were measured. These are:

Part One: Temperate glacial striae

Examples of striated clasts from debris layers from basal ice in

the Mueller and Murchison Glaciers and also from the Lake

Pukaki moraine, Mt. Cook region, New Zealand.

Part Two: Polythermal glacial striae

striated clasts from debris layers in overturned icebergs on the

Mackay Glacier tongue and also clasts lrom Cuff cape, Granite

Harbour, Victoria Land. Antarctica.

Polar, cold-based linear abrasion features

Examples of abraded bedrock and crasts from Allan Hills.

Victoria Land. Antarctica.
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Part Four:

Methodology

Mass movement striae

Examples of striated clasts from a volcanic debris-avalanche, Mt
Ruapehu, New Zealand and a rock-fall in the Murchison valley,

Mt. Cook, New Zealand.

Part Five: Tectonic striae

Examples of striated clasts from a tectonically sheared beach

gravel, Ngapotiki Fault, New Zealand and a tectonically sheared

fluvial deposit, Wellington Fault, New Zealand.

A full introduction and description of methods is given in appendix I o'Linear Abrasion

Atlas".

2.5 OTHER APPENDICES

This thesis contains six appendices. Appendix I consists of the linear abrasion atlas.

Appendices2,3,5 and 6 consist of spreadsheets of clast data from each environmenr.

The spreadsheets include clast lithology, lenglh of the three axes and averages, clast

roundness, presence ofglacial facets or flat surfaces, presence ofstriae, calculated axial

ratios and values for RA index and C+o index. Also presented is the striae data for

selected clasts from each environment. These include surnmary clast shape data, striae

density measurements, striae orientation, length, width measurements, widthL/length

ratios and presence of curved and compound striae. Appendix 4 is in fwo parts and

contains measurements of cold-based glacier abrasion features from Allan Hills

Antarctica. The first part includes location, type of abrasion, orientation, maximum

length, width and depth of each linear bedrock abrasion mark. The second part contains

orientation, length and width measurements of abrasion marks superirnposed on wind-
polished cobbles. Appendix 7 provides an overview of the Cape Roberts project and

how the results from this study relate to the clasts recovered from the drillcore in the

Victoria Land Basin.
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2.6 FIELDWORK LOCATIONS

Fieldwork locations are in New Zealand and Antarctica. Three different glacial

environments were selected to investigate potential differences in abrasion character

from ice in different thermal states. Temperate (wet-based) glaciat conditions were

investigated at the Murchison and Mueller Glaciers and also the Lake pukaki moraine in

the Mount Cook region of the Southern Alps, New Zealand. These results are discussed

in Chapter 3. The Mackay Glacier and nearby Cuff Cape in Granite Harbour, Antarctica

was used to investigate abrasion features from a polythermal glacier and these results

are presented in Chapter 4. Chapter 5 presents bedrock abrasion features produced by a
polar (cold-based glacier) at Allan Hills, south victoria land, Antarctica.

Chapter 6 presents analyses of striated clasts from a Holocene debris-avalanche on the

slopes of Mt Ruapehu volcano in the central North Island, New Zealand, and also from

a small-scale rock-fall in the Murchison Valley, South Island, New Zealand.

Chapter 7 presents striae produced from recent faulting of conglomerate deposits at two
locations in the southern North Island, New Zealand. The first is the Ngapotiki Fault

where greywacke bedrock has been thrust over a modern beach. The second is a

Quaternary fluvial conglomerate sheared by active faulting near Wellington. Finally,

clasts recovered in cores from the Cape Roberts Drilling Project in Antarctica are

summarised in Chapter 8.
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2.7 OTHER SITES INVESTIGATEI)

several other environments where abrasion was considered

early in the study. However, none of these yielded striae. A

follows.
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likely were investigated

brief description of these

2,7.1 Coastal sea-ice abrasion

A survey of exposed coastal rock was carried out in the Granite Harbour area of the

south Victoria Land coast, Antarctica, for evidence of sea-ice abrasion. Sea-ice forms

annually along this coastline and extends approximately l0-20 kilometres offshore. The

likelihood of abrasion caused by sea-ice movement on coastal headlands was considered

high. Extensive areas of coast were explored from Gregory Island north of Granite

Harbour, into Granite Harbour itself and further south past Cape Roberts and finally the

southernmost location of Dunlop Island (Figure 2.13).

No abrasion marks were found on any of the coastal bedrock surfaces. However, a large

amount of broken ice and sea-floor debris (clasts, sand, and shells) was found on the

shoreline suggesting that significant sediment-laden ice is pushed onto the rocks in

some areas (Figure 2.14). The absence of abrasion marks is probably due to the

lithology of the bedrock. The entire area comprises coarse-grained granite bedrock. The

weathered surfaces and large crystal size are not suitable for striae generation or

preservation, as individual crystals tend to flake and chip from the surface rather than

becoming scored.
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Figure 2.14

Antarctica.

Large blocks of sea-ice "piled" onto coastal headlands on Dunlop Island,

2.7.2 Alluvial fan

The Ngapotiki fan in southeastern Wairarapa, New Zealandis an active alluvial fan on
the eastern side of the Aorangi ranges. The fan consists of poorly sorted angular clasts
ranging from pebbles to boulders several metres in diameter that are composed of
indurated sandstone and mudstone (Figure z.Ls).Despite extensive searching, no
abraded clasts were found. This is surprising considering the large volume of coarse
sediment moved by high-energy fluvial and also gravity-driven processes on the fan,
which produce impacts between rock surfaces. The reason that no abrasion was found is
possibly because they are rare, or the collision force of interacting rock surfaces is too
low to leave recognisable abrasion marks.
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Flgure 2'15 Ngapotiki Alluvial f.an. sourheastern wairarapa, New zealand.No shiated clasts
were fbund in this seting. phoro by Lloyd Horrer (Homerand Moole, lggg).

2;73 Lahar deposits,

Sftri'ated cl'asts i'n lahar deBasits have been notcd in geologic-al ligerarur€ (see Chapter x).
Tlrc cenhal Nor'th Islanc of New Zealand has se-ve-ral compouite andeeite volcanoes in
the Taupo Vdqanic Tnne.Exten:SiV,e areas 06 the sloping ringplain have previously
been r'raBped ao lhhan depoeits. Sevaal of these were exarnined for the presonce of
etriated clhsts. Despite examin ng rnany'outffops of several different formations, no
abrasion marks were found.,This is possibly dueto the distsnee from tnc* sourcearea or
pafiicular flow oharacterisfics sf lahars in this region.
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CHAPTER THREE

TEMPERATE GLACIAL STRIAE

3.I INTRODUCTION

This chapter investigates striae on clasts transported by temperate glaciers. This is
achieved by examining clasts from fwo modern temperate valley glaciers (Mueller and

Murchison) and a Late Pleistocene till (Lake Pukaki moraine) in the Mt Cook region on
the eastern side of the Southern Alps of New Zealand. These were selected to provide

clasts that have undoubtedly experienced temperate (wet-based) glacial transport. In
addition the glacial debris primarily consisted of sandstone and argillite of the

"greywacke" terrain, which has good potential for preserving striae. This chapter also

presents a case study investigating how far temperate glacial features such as facets and

striae on clasts survive during fluvial transport down-stream from the Murchison

Glacier.

3.1.1 Thermal classification of glaciers

Glaciers have traditionally been divided on the basis of their thermal regime into warm

and cold glaciers. This temperature distribution has a fundamental influence on the way
the ice defonns and the role of meltwater in the subglacial zone. For example, warm ice
deforms more readily than cold ice, to the extent that under a given stress, ice at 0o

deforms 100 times faster than ice at -Z0o (Hambrey, lgg4).

Warm or temperate glaciers are at pressure melting point throughout the ice mass and

typically have meltwater at the base that facilitates basal sliding. Therefore, these

glaciers are often referred to as "wet-based" glaciers. Correspondingly, cold glaciers are
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below melting point and are entirely frozen to the bed with no basal sliding. These are

referred to as "dry-based" or more commonly "cold-based" glaciers. In the past, it was

generally accepted that glacier sliding and abrasion can only occur beneath temperate

wet-based ice and that beneath cold-based glaciers erosion and deposition do not occur
(cf. Sugden and John, 1976; Drewry, l9g6).

It is now clear that this division is simplistic and defines end member conditions onlv.

Thermal regime and associated basal conditions vary greatly both spatially and

temporally and form a continuum between w:um and cold-based ice. Glaciers with both

warrn and cold layers within the glacier or where there are patches of warm-based or

cold-based conditions at the bed are termed polythermal glaciers (Blatter and Hutter,

1991)' These polyhermalglaciers often lrave wet-based inner regions but cold-based

margins (Menzies, 1995a), (Figure 3.1).
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WARM OR TEMPERATE
Warm-based or wet-based

lce at melting
point throughout,
Melting at base

POLYTHERMAL

Layers above
and below melting
point within the glacier
and patches of melting
at the base

COLD
Cold-based or dry-based

lce below melting
point throughout
No melting at the base

Figure 3.1 Simple schematic diagrams showing the main types of glacier thermal regime,

emphasising the basal conditions.
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In addition to the temperature character of glacier ice and bed contact, the nature of the

substrate is also important for understanding the processes occurring beneath glaciers.

The interplay between the thermal state of the glacier bed and the substrate at any one

point beneath a glacier influences the way the glacier moves. Figure 3.2 shows how
movement is achieved by glaciers of differing thermal states on various substrates.

A horizon
Unfrozen

B horizon

Figure 3.2 Schematic diagram of ice velocity for different thermal and substrate

conditions' A) Cold-based ice, where glacier movement occurs by intemal deformation of ice

only (Ue ). B) Wet-based ice, where glacier movement occurs by internal ice deformation (Up)

and basal sliding (Us). C) Wet-based ice, where glacier movement occurs by internal

deformation, (uo), basal sliding, (U5) and deformation of subglacial sediments, (up).

Polythermal glaciers are represented by a combination of all three situations. Adapted from
drawings in Drewry, (1986) and Benn and Evans, (1996).

Temperate'owet-based" glaciers and deposits are widespread in middle latitudes with
most glaciological and glacial geology literature referring to processes and effects of
temperate glaciers.
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3.1.2 Striae from temperate glaciers

Abrasion marks such as striae are among the most common features of glacial erosion

(Hambrey, 1994) and most literature refers to striae in the temperate glacial context (see

Chapter 1 review). Striae shape and cross-cutting relationships on deglaciated bedrock

have long been used to infer the direction of past temperate glacial events. Similarly,

striae on clasts in diamicton deposits have been used as a means of establishing a glacial

origin. The common reference to striae in a glacial context has resulted in striae

becoming used as a supposedly unambiguous indicator of glacial influence (e.g.

Schermerhorn, I 974a; papers in Hambrey and Harland, l gg l; Huggett and Kid, l9g3;

Powell and veevers, 1987; Aitken, l99l; Lewis and Iillgner,2000; Spenceley;2001).

However, a variety of non-glacial agencies that can produce striae are identified in

Chapter I. Therefore, the presence of striae alone does not imply glacial origin.

Documenting striae (occurrence, distribution, shape, orientation) from modern

environments can enable better interpretation of ancient deposits.

Previous attempts at classifying striae have considered only temperate glacial examples

on bedrock (chamberlain, 1888; Sugden and John, 1976;Laverdiere et al, 1979;

Iverson, l99l; Hambrey, 1994; Benn and Evans 1998) (see Chapter l). This is of
limited use without some consideration of non-glacial striae or striae on clast surfaces in

coarse-grained deposits.

3.1.3 Shape and surface features of glacial clasts

The approach used in this study utilises clast shape, clast form and surface features to

characterise each deposit. Therefore, an understanding ofclast shape (see Chapter 2)

and its relationship to striae is important.

Several early papers noted that clasts in till exhibit particular shapes and that many

exhibit striae often parallelto the long axis of the clast (Geikie, 1863; Miller, 1850;
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Miller, I884)' Later studies confirmed this (e.g. Gregory, l9l5) and Von Engeln (1930)

provided the first rigorous confirmation that glacial abrasion produces faceted,

triangular clasts thal were termed "flatiton" shapes. This was supported by Wentworth
(1936a) who concluded that the charactedstic glacial clast produced by glacial abrasion

was a "pentagonal wedge" and that these clasts carry more conspicuous striae. Holmes
(1941, 1960) provided detailed studies of the evolution of clasr shape in till and

confirmed earlier suggestions that Iarger clasts show deeper striae. This was used to

account fbr the fact that there was a higher percentage of striation reported for cobbles

than for pebbles (Figure 3.3). He also noted that the more angular "wedge-fbrm" clasts

display stlong striae piu'allel to each other or a prominent edge and that this tendency

was much reduced with increased roundness, so that on well-rounded clasts, individual
striae are less pronounced and traverse convex surfaces apparently at random.

Figure 3.3 An example of a glacially shaped clast showing many of the features

"indicative" of active basal transport. Ice flow from left to right. The left side shows the smooth
and rounded "stoss" end. The right side show the abrupt,jagged lee side produced by plucking.

Striae are predominantly parallel or sub-parallel to the long axis (a-axis). Athabasca Glacier,

Alberta. Canada. Pencil for scale. photograph by Cliff Atkins.
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Kuenen (1971, unpublished manuscript) recognised that the orientation of striae on

glacial clasts had received little attention compared with the orientation of the clasts

(clast fabric) in glacial studies. He measured the orientation of glacial striae and clast

long-axes from glacial deposits in the Netherlands, Switzerland and India. The results

confirmed earlier reports that the long axis is the median direction for striae orientation.

Also, the more equidimensional the clast, the less preferred orientation of the striae,

suggesting that rounded clasts rotate easily during transport. For oblong clasts, the

tendency was for striae to form only on flat surfaces and not on ends. Subrounded clasts

were the most intensely striated. Finally, this work also supported the observation that

the larger the clast, the larger the striae (longer and deeper).

The use of clast shape and surface features has been extended in more recent years to

distinguish clasts deposited from different glacial transport modes. For example, clasts

transported as supraglacial debris are characterised by angular clasts that lack striae

(Boulton, 1978; Domack et al., 1980), due to the lack of abrasion. Clasts transported in

the basal debris zones commonly have faceted sides and random striation directions,

whereas clasts deposited in lodgement till by actively flowing ice show sub-parallel

striae on individual facets. More recent studies have suggested that the abrasion history

of clasts can be more complex. Straight and parallel striae indicate relative stability of

the clast relative to the striating medium. Often such striae are parallel to the long axis

of the clast and typify the upper surfaces of clasts lodged beneath sliding ice (Sharp,

1982; Kruger, 1984; Benn,1994). Curved and/or multiple orientations indicate clast

rotation and realignment during the striating process or a clast that has experienced

abrasion during several different glacial events. Many of the features common to clasts

that have experienced active glacial transport are summarised in Table 3.1.

The percentage of striated clasts varies greatly within known glacial deposits and

appears to be largely controlled by lithology. Dowdeswell et al. (1985), stated "too little

systematic work exists to establish whether the wide variations in the intensity of

striation carry useful information concerning till, or whether they are a function of

lithology and operator definitions of striae". Table 3.2 lists some published examples of

the percentage of striated clasts in glacial deposits.
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Table 3'1. Summary characteristics of "glacial clasts" and striae on glacial clasts that have
experienced active glacial transport.

Table 3.2. Examples of the percentage of striated clasts in various glacial deposits.

Feature Comment
Shape: Triangular or flatiron or "bullet" shape, @
Roundness: Subangular to subrounded.

o
c)
li5
dt
€
q)
I

.6t

(A

Striae percentage! See Table 3.2.
Striae and facets: Predominantly occru on facets, occurrence reduc"s *ittr itrcre.osed

roundness.
Striae orientation: Commonly parallel to a-axis, parallel to@

on more rounded or equidimensional clasts.
Striae and clast size: Larger striae occur on larger clasts.
Striae and clast
roundness:

Predominantly occur on subrounded clasts; seldom occur on ards,
more random orientation on more equidimensional clasts.

Other features: Curved and random striae indicate rotation and realftnmeit of
clast during transport.

Environ
-ment

Published
example

Location 7o striated clasts &
(7o faceted clasts)

Other
comments

cl

0
G)
L
E)-i
I
dt

Holmes (1941) New York tills 28%
Flint (1971) 5-t0%
Drake (1972\ New England till 3%(hard rocks) 0.1%

(soft rocks)
Noted
lithology
influence

Sharp (1982) Icelandic lodgement till 65% Noted
lithology
influence

Humlum (1985) Icelandic tills z0%
Dowdeswell et al
fl985)

Sveanor Fm (Svalbard) 0 to 18% Neoproterozoic
tillite

Bennett et al.
(ree7)

Pedersenbreen,

Spitsbergen
56% (limestone)
2% (schist)

Noted
lithology
influence

Atkins (this study) Mueller and Murchison
Glaciers and Lake
Pukaki moraine (NZ)

ll%,l6%,33% sniated
22%,28% 4l% faceted

Usually on
argillite clasts

q)

6l

Io
(,
rl

Barrett (1975b) DSDP 270, Ross Sea,
Antarctica

t0%

Hall (1989) CIROS -l core,
Antarctica

60%

Domack (1980) George V continental
shelf, Antarctica

57% striated
80% faceted

Kuhn et al.
(lee3))

Weddell andLazarev
seas, Antarctica

4% (igneous rocks)
43% (fine grained
metabasic rocks

Noted
lithology
influence

Atkins (2001) Cape Roberts core,
Antarctica

5% striated
15-50% faceted

Usually on
mudstone
clasts
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3.1.4 summary of temperate gracial striae characteristics

The overview of an extensive literature body indicates that clasts transported in the

basal zones of temperate (wet-based) glaciers produce characteristic clast shapes and

striae patterns. Clasts often become subangular to subrounded with facets on one or

more sides making up 15 % to 80 % of clasts in the deposit. Some clasts show flatiron

shapes with bullet noses (stoss ends) and jagged lee ends. Clasts commonly display

striae, but the overall percentage of striated clasts in glacial deposits varies greatly

(typically between 5 To and 60 %). The striae are predominantly sub-parallel to the long

axis of oblong clasts and occur on faceted surfaces. Some clasts show striae that

deviated from the long axis reflecting clast realignment or multiple glacial events. In

addition, curved striae indicate clast rotation during the striation process. Lithology does

not appear to influence clast shape noticeably but it does influence striae generation,

with softer and finer-grained lithologies preserving striae better than hard, foliated or

coarse-grained lithologies.
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3,2 MURCHISON AND MUELLER GLACIERS, (TEMPERATE

GLACIERS), MT COOK REGION, NEW ZEALAND

3.2.1 Background and setting

The Murchison and Mueller Glaciers are temperate valley glaciers located in the Mt
Cook region on the eastern side of the Southern Alps, New Zealand (Figure 3.4). These

glaciers are sulrounded by steep topography consisting of sandstone "greywacke" and

argillite with minor basic lavas of the Torlesse Group, thought to be of Jurassic and

Triassic age (Gair, 1967). Both glaciers have shown progressive down-wasting during

the last century but they have maintained stationary fronts over this period due to a

characteristic thick (up to 2 m) mantle of insulating supraglacial debris (Chinn, 1996).

The Mueller Glacier flows from a main cirque area at 1900-2000 metres above sea level

(m-asl) approximarely 12 km, temrinating at about 800 m-asl. Small ponds developed at

the terminus of the Mueller Glacier by the mid 1980s and had formed a small (0.7 km
long) proglacial lake by 1993 (Hochstein et al., 1995). The proglacial area of the

Mueller Glacier shows a complex zone of stagnant ice and glacial debris forming

hummocky topography with small streams and fluvial outwash fans drainins into the

lake.

Tlre Murchison Glacier flows from its cirque area at2000 m-asl, about 14 km to the

terminus at 1000 rn-asl. A small, but elongate (3 km) proglacial lake exists directly

around the snout and eastem side of the glacier, but this has only developed in the last

few years' Hochstein et al. (1995) noted a "preglacial lake" beginning to form by 1995.

However, this was not listed as a proglacial lake by Chinn (1996). Much of the glacier

presently terminates as ice cliffs (up to 15 m high) directly into the lake, but a complex

zone of ice, glacial debris and small outwash fans similar to those at the Mueller Glacier
is present on the eastern side of the Murchison Glacier.
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Figure 3.4

region.

Map showingthe location of the Mueller and Murchison Glaciers, Mt cook

3.2.2 Fieldwork and sample collection

Fieldwork involved photographing and sarnpling englacial debris layers on the terminal

face o:f the Mueller Glacier (170T5'005,43"42'20E) (Figure 3.5) and within a tunnel at

the terminus of trVlurchison Glacier (170"20'005, 43o36'l0E) (Figure 3.6). The terminus

areas are complex environments consisting of glacial debris from a variety of sources.

Significant within-site variability exists in these settings and clasts may have a complex

tran$port and erosion histories. However, the sampled dsbris layers contain facetted and

striated clasts that have plainly experienced basal glaciat transport. Therefore, the debris

Iayers are inteqpretod to have been elevated from the base by faulting or fotding.
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I'igure 3.5 The terminal face and glacial tunnel of the Mueller Glacier with sample location
indicated (arrow and circle). Debris bands have been deformed up from the base into steeply

dipping layers. Nore person for scale (circled).

Figure 3.6 A tunnel within the terminus of the Murchison Glacier showing the sample

location (circled) within a debris layer dipping toward the terminus (left). These debris layers

contain clasts that have been basally transported.
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3.2.3 Clast shape

One hundred clasts were measured from the bulk samples collected from in sira debris

layers at each location. Shape analyses were performed using the method outlined in

Chapter 2 and clast data are presented in appendix2.

The Mueller and Murchison Glacier samples show similar proportions of clast

lithologies. Both are dominated by sandstone clasts (72 % and 74 o/o respectively) with

subordinate argillite (26% each) andZYo quartz clasts for the Muller Glacier sample.

Clast form is displayed in Figure 3.7 and shows that both samples have broad

distributions with clast c:a axial ratios plotting from 0.15 to 0.95 for the Mueller Glacier

and 0.12 to 0.76 for the Murchison Glacier. There is no tendency toward one particular

clast shape and the average values for c:a and b:a axial ratios are very similar, plotting

in central positions on the form diagrams (large dot).
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Slabs Elongate

Figure 3.7 Clast form diagrams for: (A) Muller Glacier. (B) Murchison Glacier. Both show

broad clast form distributions. Larger black dots indicate average c:a and b:a axial ratios

occupying central positions. Triangles represent striated clasts.

Clast roundness and lithology is displayed in frequency percent histograms in Figure

3.8' The distribution for the Mueller Glacier data is broad with all roundness classes up

to 0.6 represented. The sample has an average roundness of 0.32 (subangular). There is

no apparent relationship between lithology (sandstone or argillite) and roundness class.

Twenty two percent of the clasts show flat surfaces that are interpreted as glacially

formed facets and these occur on clasts in all roundness classes. Argillite clasts are

almost twice as likely to display facets than sandstone clasts (35 %of total argillite
clasts, compared with 18% of total sandstone clasts).

The Murchison Glacier data shows a more normally shaped distribution than the

Mueller Glacier, but is still broad with all roundness classes up to 0.6 represented. tt has

a similar average roundness value (0.34 subangular), but displays a strong modal peak

in the 0.3 roundness class. No argillite clasts occur in the very angular roundness class

(0.1) or in the 0'6 roundness class. Twenty eight percent of clasts show facets
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interpreted to be glacially formed. These occur only on clasts in the 0.3, 0.4 and 0.5

roundness classes. Again, argillite clasts are more likely to display facets (50 % of all
argillite clasts) than are sandstone clasts (20 % of all sandstone clasts).

A)

Glacier basal clasts

0.2 0.3 0.4 0.5 0.6

Krumbein Roundness

B)

0.2 0.3 0.4 0.5 0.6

Krumbein Roundness

Figure 3.8 Roundness and lithology histograms for the Mueller and Murchison Glaciers

samples. Average roundness values are similar (0.32 for the Mueller and 0.34 for the

Murchison).
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Shape characteristics are highlighted in the covariant plot of RA index (% of angular

and very angular clasts) versus C +o index (% of clasts with a c:a axial ratio of < 0.4),
(Figure 3.9). The Mueller Glacier sample has an RA index of 34 and a Cao index of 52

compared with the Murchison Glacier sample that displays a lower RA index of 20 but
similar C+o index of 53. These results plot within the "subglacial field" determined from
published data of Benn and Ballantyne (1994) and Bennett et al. (lgg7).

RA index versus C40 index for the
Mueller and Murchison basal clasts

published data

I s"r""

I Supraglaclat

Eil suugtacial

L ] GlacioRuviat

0 20 40 60 80 100

Coo INDEX (% clasts with c:a s 0.4)

Figure 3.9 RA-C+o index diagram for clasts from the Mueller and Murchison Glaciers, Mt
Cook area. These samples fall within the subglacial field. Shaded fields are from published data

in Benn and Ballantyne (1994) and Bennett et al. (1997).

3.2.4 Clast striae

Striae occur on llo/o of clasts from the Mueller Glacier. These are found in all

Krumbein roundness classes except 0.1 and are most frequent in the 0.5 class. They
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occur preferentially on argillite clasts (38 Vo of atl argillite) compared with sandstone

clasts (14 7o of all sandstone), and form preferentially on faceted clasts.

The Murchison Glacier data show striae on 167o of clasts, and only in the 0.3, 0.4 and

0.5 classes, again most frequently in the 0.5 roundness class. They occur preferentially

on argillite clasts (507o of all argillite clasts) although a few occur on sandstone clasts (4

Vo of all sandstone clasts). Striae preferentially occur on clasts with facets.

The striae are generally rare, small and faintly inscribed (Figure 3.10). Many clasts

show striae parallel or sub-parallel to the long axis although exceptions occur. Lithology
influences the preservation of striae. Figure 3.10, B shows a clearly faceted sandstone

clast with faint striae parallel to the clast long axis. These are only visible under low
angle lighting. Their subtlety is due to the coarser grain-size of the clast and this could
result in them not being recognised on many sandstones, giving a lithologic bias against

the occurrence of striae on sandstone clasts.

Figure 3.10 A) Striated argillite clast from the Mueller Glacier showing a clear facet with
one isolated, curved striae and three short parallel striae on the surface (arrows). B) A faceted

sandstone clast from the Murchison Glacier. This surface has long axis parallel striae that are

very faint and plainly visible by eye only under low angle lighting but rhey are also

exceptionally diffi cuh to photograph.
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Because these samples have relatively few striated clasts and the striae themselves are

rare, numbers were considered insufficient for detailed striae analysis. Instead, clearly
striated clasts were collected from a compacted diamicton termed the Lake pukaki

moraine, formed during the last glacial by the Palaeo-Tasman Glacier which included

ice from the Mueller and Murchison catchments. The results of detailed striae analysis

on these clasts are discussed in section 3.3.5.

3.2.5 Summary of Mueller and Murchison clasts

Samples from the Mueller and Murchison Glaciers represent clasts that have experience

basal glacial transport within discrete debris layers beneath temperate glaciers. Overall,

the samples show very similar clast characteristics. The percentage of various

lithologies is close and the clast form distributions show central clustering with few

clasts plotting toward blocky, elongate or slabby forms. Average form values are almost

identical with c:a axial ratios just below 0.4. The two samples have sirnilar average

roundness values but the Murchison sample has a lower percentage of angular and very

angular clasts causing it to plot lower on the RA-Cae diagram. However, both samples

plot within the sub-glacial field on the diagram, consistent with the field context of the

samples.

Glacial shapes are rare with few obvious examples of bullet-shaped or stoss and lee-end

clasts' However, both samples contain clasts with distinctive flat faces and rounded

edges, considered to be glaciallyproduced facets. The percentage offaceted clasts is

again consistent with published data from known glacial deposits.

Both samples contain striated clasts, ll o/o for the Mueller sample compared with 16 o

for the Murchison sample. Striae occur preferentially on argillite clasts and are more

common on subrounded and rounded clasts (0.35-0.7). This is also consistent with
published data lrom basal glacial deposits. The relationship between striae and facets is

less clear, with striae occurring preferentially on smooth, flattish surfaces although
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many of these surfaces are not recognised as facets. Few striated clasts show well-
developed long axis parallel striae on clear glacial facets that is "characteristic" of
glacial deposits. The striae from the Mueller and Murchison samples are rare, often
solitary, faint and lack the pervasive "background" of microstriae seen on other

glacially abraded clasts (section 3.3.5). The striae percentage is similar to other known
glacial deposits, but the character of the striae is less consistent.
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3.3 LAKE PUKAKI MORAINE, (TEMPERATE GLACIAL DEPOSIT), MT
COOK REGION, NEW ZEALAi\D

Background and setting3.3.1

The Lake Pukaki moraine is located on the southern shore of Lake pukaki in the

McKenzie Basin, New Zealand (Figure 3.1l). The westward flowing palaeo-Tasman

glacier deposited the moraines during the last glacial maximum (Otiran Glaciation)
(Gair, 1967, Porter,1975). This glacier was a temperate valley glacier that flowed

approximately 80 km from the present Tasman, Mueller, Murchison and Hooker

Valleys, terminating at about 600 metres above sea-level several km south of the present

southern margin of Lake Pukaki (Porter, 1975). The lake itself occupies the lower part

of the glacially scoured valley. Glacial deposits including subglacial till,
glaciolacustrine sediments and glaciofluvial gravel are exposed in vertical bluffs on the

southern margin of the lake (Hart, 1996).

3.3.2 Fieldwork and sample collection

An excellent exposure of glacial moraine on the southern margin of the Lake pukaki

was selected and a section was measured (170010'00 S,44010'30E) (Grid reference

838 665 on NZMS 260, Ohau, H38) (Figure 3.11). A bulk sample was collected from a

diamicton unit interpreted as a till deposited either subglacially or by rainout of basal

debris in a lake. This provided 100 clasts for shape analysis to compare with the results
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from debris layers in the modem temperate Mueller and Murchison Glaciers. In

addition, several clearly striated clasts were collected from the cliamictite to provide

suitable examples of temperate striae for detailed analysis. This was needed because the

striated clasts from the modern glaciers were relatively few and often poorly striated,

making characterisation on these clasts impractical.
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Figure 3.ll Map showing the tocation of the Lake Pukaki moraine sampled in this study.

Map is NZMS 260, sheer H3B, l:50000. Edition L

Outcrop description for Lake Pukaki moraine

UNIT I DIAMICTON

Lower contact obscured by lake beach. Compacted matrix-supponed yellow-grey diamicton.

Clasts range from boulders up to 40 cm a-axis to granules. Average clast size is 5-10 cm. Clasts

are subangular to rounded. Very poorly sorted to unsorted. Lithologies are sandstone and

argillite. Many clast surfaces (especially argillite) show fine striae predominantty oriented

parallel to the clast long axis. Some show clear facets and stoss-lee form. Matrix is sandy silt
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with granules. Vague bedding apparent in places marked by gravel lenses up to 30 cm thick and

2 m long and clastpoor laminated silt layers up to 20 cm thick. The unit has maximum

thickness of 3 m above beach to base of UNm 2.

UNIT 2 GRAVEL

Lower contact with UNTI I is sharp and wavy with up to 40 cm relief. TINIT 2 is a clast-

supported gravel. Clasts range from boulders up to 1.0 m long axis to pebbles. Average clast

size is approximately 5-10 cm. Clasts are subangular to well-rounded and consist of sandstone

and argillite lithologies. Poorly sorted with no obvious bedding. UNIT 2 has variable thickness

up to 2.0 rn thick, but mostly about t.5 m thick.

UNIT 3 DIAMICTON

Lower contact with UNIT 2 is sharp and wavy with up to 30 cm relief. uNIT 3 is a clast poor

matrix supported diamicton. Clasts range from 30 cm long axis to pebbles with average clasts

size of 5 cm. Clasts are angular to rounded and is comprised of sandstone and argillite. Sorne

show glacial shapes and striated surfaces. Matrix is sandy silt. Faintty bedded with irregular

lenses of laminated siltstone and some glaciotectonic deformation appaxent. LNIT 3 is up to 3 m

thick to the top of exposure.

Figure 3.12 Outcrop of glacial moraine at the southern margin of Lake pukaki. Three units

are present. The clast samples were taken from the clast-rich diamicton of UNIT I (arrow).
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Figure 3.13 Close-up of the diamicton of LINII 1. Abundant striated clasts are presenr in

this uuit. Tape measure is2 metres long.

3.3.3 Clast shape

The sample collected fiom Unit I provided 100 clasts for shape analyses. Clast shape

data are presented in appendix 2.

The Lake Pukaki sample is dominated by sandstone clasts (529o) with subordinate

argillite (l8.7a). Clast form analysis shows that the sample has a broad distribution w,ith

clast a:a axial 1a1iss plotting from 0.16 to 0.88 and an average of 0.45 (Figure 3.14).
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Figure 3.14 Clast form diagram for the Lake Pukaki moraine. Large black dot indicates

average c:a and b:a axial ratio. Small black triangles represent striated clasts.

Roundness and lithology are displayed in frequency percent histograms in Figure 3.1 5.

The distribution is broad and bimodal with all roundness with modal peaks in the 0.3

and 0.6 classes, reflecting a mix of pre-existing fluvially rounded gravel (rounded) and

glacially modified clasts (subangular). The sample contains no very angular clasts (0.1)

and has an average roundness of 0.43 (subrounded), which is higher than the Mueller
and Murchison Glaciers. There is no relationship between lithology (sandstone or

argillite) and roundness class, although no argillite occurs in the 0.7 class. Forty-one

percent of the clasts show flat surfaces (gtacially formed facets) and these occur on

clasts in the 0.2,0.3,0.4 and 0.5 roundness classes. Eighty-nine percent of the argillite

clasts show facets, compared with only 30 % of sandstone clasts. The percentage of
faceted clasts is higher than for the Mueller and Murchison Glacier samples.
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Krumbein Roundness

Figure 3.15 Roundness and lithology histograms for clasts from the Lake Pukaki moraine.

The distribution is bimodal reflecting the mix of pre-existing fluvially rounded clasts and glacial

modit-ication of some clasts providing a subangular component. Average roundness (0.43,

subrounded) is greater than for the Mueller and Murchison Graciers.

Figure 3.16 displays a covariant plot of RA index (% of angular and very angular clasts)

versus C ae index (% of clasts with a c:a axial ratio of s 0.4). The data show an RA index

of l3 and a C+o index of 34. These results plot within the "subglacial field" determined

from published data of Benn and Ballantyne (1994) and Bennett et al. (1997), but lower

and to the left of the samples from the Mueller and Murchison Glaciers, highlighting the

more rounded and more equidimensional clasts in the Lake Pukaki moraine.

77

q)
l

oL
l.L

s



Chapter 3 Temperate glacial shiae

RA index versus C40 index for
the Lake Pukaki moraine

I Approxtmate fieios fronl
atrhllchor{ drtapubllshed data

f s"r""

f Supraglacial

H Suuglactat

i-l Gbcionuvial

0 20 40 60 80 100

Coo INDEX (% clasts with c:a < 0.4)

Figure 3.16 RA-Co index diagram for clasts from the Lake Pukaki moraine, Mt Cook. The

sample plots within the subglacial field. Also shown are samples from Mueller and Murchison

Glaciers. Shaded fields are from published data in Benn and Ballantyne (199a) and Bennett et

al. (1997).

3.3.4 Clast striae

Small-scale striae occur on330/o of clasts from the Lake Pukaki moraine. This is

significantly higher than the percentage from either the Mueller (ll%) or the Murchison

(16%) Glaciers. The striae in the Lake Pukaki sample occur on clasts in all Krumbein

roundness classes except 0.7. They occur preferentially on argillite clasts (94 o/o of all
argillite) compared with sandstone clasts (r9.5 % of all sandstone) and form
preferentially (but not exclusively) on faceted clasts. Striae occur on clasts of all forms

(Figure 3.14) although preferentially on clasts with slabby forms (clasts that plot to the

left and below the 0.4 c:a axial ratio line of the form triangle.
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3.3.5 Character of striae

General characteristics of striae are highlighted in the "Linear Abrasion Atlas"
presented in appendix l. The atlas aims to present a range of features observed on

temperate glacially striated clasts from the modern Mueller and Murchison Glaciers and

the Lake Pukaki moraine.

A common characteristic is that many clasts display surfaces (both faceted and non-

faceted) with a pervasive "background" of microstriae (< 0.25 mm width and < 2 mm

length), with larger striae superimposed on top. Many elongate clasts show striae

parallel or sub-parallel to the long axis, some with larger striae occasionally oblique to

the long axis' (Figure 3.17). This occurs on flat glacial facets and also on curved clast

surfaces.

Figure 3.17 An elongate (b:a axial ratio of 0.40) fine-grained sandstone clast from the Lake

Pukaki moraine showing a pervasively striated surface. This consists of a "background,' of
microstriae with larger striae superimposed. These range up to 5 mm wide and cut obliquely

across the clast' Most striae are parallel to the long axis of the clast. This clast is also shown in

appendix l, (Linear abrasion Atlas - Temperate striae, Image Z).
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However, there are many exceptions to this generalisation. For example, some clasts

show apparently random striae orientations, particularly if the clast is close to

equidimensional. These clasts also commonly display curved striae indicative of clast

rotation during the striation process (Figure 3.lg).

Figure 3.18 An equidimensional argillite clast (b:a axial ratio of 0.98) from the Lake pukaki

moraine showing multiple striae directions (clast 2 in Figure 3.19). Two curved striae (arrows)

are also visible suggesting rotation during the striation process.

Striae orientation

Orientations of striae on four clasts from the Lake Pukaki moraine were measured with

reference to the long axis of the clast as described in Chapter 2. This produced a

direction with reference to the long axis (r80") of between 90u and 270o for each

stdation. These were grouped into 5" segments and displayed on half rose diagrams
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(Figure 3.19). Additional high-resolution images of these and other clasts are provided

in Appendix L

Lake Pukaki moraine clast I is a clearly striated fine-grained sandstone clast. It has a

distinctly elongate shape with a b:a axial ratio of 0.4. The striae are preferentially

oriented parallel to the long axis (180") with 38 o/o fallingwithin 5o and g4 % within 30'
of the long axis giving an average orientation of 181'. A small percentage of striae are

oriented oblique to the long axis giving an overall range of 70" and standard deviation

of 24'. This pattern is also displayed by clasts 3 and 4 from the Lake pukaki moraine,

which also have distinct long axes (b;a ratios of 0.41 and 0.63 respectively) and show

striae that are preferentially oriented parallel to the long axis. Clast 3 shows a srong

clustering with 80 % of striae within 30'of the long axis, giving a low range (54") and a

low standard deviation of 20'. Clast 4 hasT5Yoof striae within 30'of the long axis with

a similar range of 58' (standard deviation of 26"). Clasts 3 and 4 have 4 Yo cuwedstriae

suggesting some rotation during the striation process despite the overall dominance of
long axis parallel striae.

These data contrast markedly with clast 2, which is a smaller (45 mm-long axis) argillite

clast (Figure 3.18) that has almost equal long and intermediate axes (b:a axial ratio of
0.98). The striae have no prefened orientation with only 30 % of striae within 30o of the

Iong axis. The striae have a wide range of 89o and high standard deviation of 48". This

clast has 60lo curved striae.

Although only four clasts are considered, these data illustrate the wide range in striae

orientations within the temperate glacial environment. It also indicates a strong

association between than striae orientation and the shape of the clast. Striae parallel to

the long axis are more common on elongate clasts and less common on more

equidimensional clasts. This is ascribed to clast alignment during basal glacial transport

with elongate clasts less likely to rotate once they have established a stable position

(long axis parallel to flow) than equidimensional clasts, which are more likely to be

rotated.
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Lake Pukakimoraine (temperate glacial) Clast 1

82

n=50
SD=13Ers

n.50
S.D = 48.45

Av€ra0i:1E0,5'
Range = 7d

5S .. ro&n - l5ri {

2

t.5

lr
0.5s.
0'
05r0

a

!
I

Sklae langth.nd wldth

15m253035
Irngrh (nm)

Sl.las longth and wldth

.0 45 50

Lake Pukaki(tem ate glacial) Clast 2
AvgratJ€ E 19r-f

Range = 89' 4
5! r0j6 l5\

J.t

I

^ 2-5

€ rs
-l

0
05 f015m253035401560

str|a$l8$glhdrd wldlh

Lake Pukaki (temperate glaciat) Clast 3

n=30
s,D = 20.23

Avongr = 172 I
Rang6 . 64

-^. $% l0tr tsttI\I\\ Ell'l €
II IrF

ai

35

Zb

2

l5
I

05

0 50 55 60 65

o- a aa a
taaa

aa

5 r01520 25 30 f,s 40 15
lenglh (mn)

Lake Pukaki (temperate glacial) Clast 4

so=?s.06 ffi;'l'.|:

N6*
4

t.5

1

?5

2

1.5

I

05

0

c
!
'

Slrlae lsngth and wldth

051015m25
hnglh {m)

30 35 40 45 50

+

Figure 3.19 Striated clasts from the Lake Pukaki moraine. The half-rose diagrams represent

orientation ofstriae relative to the long axis ofthe clast (180'). Striae are grouped into 5o

segments. The black anows indicate average striae orientation. Also shown is a plot of striae

length and width.
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Striae length

Temperate glacial striae

Striae length was measured for more than 40 striae on each clast and the results shown

in Figure 3.19 and Figure 3.20. These data show that there is a wide range in striae

length on individual clasts and that striae length is influenced by the size and shape of
the clast. For example, the smallest and most equidimensional clast (clast 2 which is 45

mm long), has amaximum striae length of only 15 mm, the lowest average striae length

(4.5 mm) and least range and standard deviation (2.9 mm). The largest, elongate clast

(clast 3 which is 196 mm long) has a maximum striation length of 65 mm, average

striation length of 13.2 mm and much higher range and standard deviation of 12.4 mm

(Figure 3.20).

Clast 1 (r2s rnm) 
I

Clast striae length (mm)

10 20 30 40 50 60 70 80 90

Clast 2 1as r*y 
--Clast 3 (rso mmt

Clast 4 lros mm1 
I

Figure 3.20 Shiae length ranges and averages for the four clasts from the Lake Pukaki

moraine. The Iongest striae, greatest range and highest average occur on the longest clast (clast

3) and the smallest range and lowest average occur on the smallest clast (clast 2). Clast length is

shown in brackets.

Striae width

Striae width is displayed in Figure 3.19 and Figure 3.21. Awide variation in striae

width occurs even on individual clasts, but width is also related to clast size and shape.

The widest striae (2.5 mm), highest average width (0.7 mm) and greatest standard

deviation (0.6lmm) occur on the largest elongate clast, whereas the smallest maximum
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striae width (1 mm), lowest average (0.25 mm) and smallest standard deviation (0.20

mm) occur on the smallest, equidimensional clast.
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Figure 3.21 Striae width ranges and averages. The widest striae (2,5 mm), highest average

width and greatest width range occur on the largest clast (clast 3) and the lowest average and

range occur on the smallest clast (clast 2). Clast lengths are shown in brackets.

Width and length ratios

Length and width of striae are not closely linked. Some longer striae are wider than

average, but other long striae have average and less than average widths. Width divided

by length of each striation was calculated to produce a ratio befween 0 and I. These are

displayed in Figure 3.22.The results are interesting because although the range of
values for each clast appears to reflect the size ofthe clast (greatest range on the longest

clast and smallest range on the smallest clast), the average width/length ratios do not.

These average values are all close but the highest average ratio (0.102) occurs on the

smallest and most equidimensional clast. This indicates that it has slightly wider and

shorter striae relative to the more elongate clasts.
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$triae density

The density of shiae wao measured using the technique outlined in Chapter 2. Thi.s

provided an average number ofsfiae per cmt and also a percultage of ttre measirr,ed

surfaoe that soruar1r'"r''*s "b'ackgrormd'' striae, Thcse regults are disptrayed in Figure, 3, ,ZJ. In
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addition, indication of striae distribution was obtained by calculating the percentage of
25 mmz squares over the measured area that have at least one striation.

All of the Lake Pukaki moraine clasts are pervasively striated with 100 %background

microstriae on the measured surfaces. The number of striae per cm2 ranges from a low
of 2.1 on the largest clast (fine sandstone) to a maximum of 4.0 striae per cmt on the

smallest clast (argillite). The clasts have a minimum of 74 %of squares with at least I

striation showing that striae are widely distributed across the surface.
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Figure 3.23 Striae density diagram showing the number of striae per cmt for each clast and

the percentage of "background" striae. The clasts have at least 2 striae per cmz and 100%

background striae.

3.3.6 Discussion and conclusion

The Lake Pukaki moraine is undoubtedly a temperate glacial deposit from the palaeo-

Tasman Glacier. However, clast shape and striae characteristics differ considerablv

from the clasts recovered from basal debris layers of the modern Mueller and

Murchison Glaciers-

The deposit has identical lithologies represented but shows a slightly higher percentage

of sandstone clasts compared with the modern glacier samples. It shows a more variable
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clasts shape distribution but has a slightly higher average clast form indices of 0.45

compared with values just under 0.4 for the glacier samples. This indicates that the Lake

Pukaki moraine sample is on average slightly more equidirnensional or blocky than the

modern glacier samples. This is seen also in the roundness, with the Lake pukaki

moraine sample showing a broader and better-rounded distribution. When plotted on the

RA-C+o diagram, all three samples plot within the known subglacial field but the greater

blockiness and roundness of the Lake Pukaki samples is evident. This most likely
reflects entrainment of pre-existing fluvially rounded clasts from the floor of the pukaki

valley into the basal debris layer of the advancing palaeo-Tasman glacier, which were

then abraded and deposited as till at the terminal moraine. Most clasts have retained

their fluvial shape, despite subsequent basal glacial abrasion. The glaciers in the region

have generally been retreating since the last glacial that deposited the Lake pukaki

moraine, They are presently at their minimum extent and therefore the debris within the

modern glaciers will not have experienced previous fluvial abrasion, though they may

have been affected by subglacial water flow.

The clasts from the Mueller and Murchison Glaciers display fewer obvious glacially

fornred facets (22 % and 28 o/o respectively) compared with the Lake Pukaki moraine,

although in all samples, facets preferentially occur on argillite clasts. Also, the

percentage of striated clasts is considerably lower, ll o/o and 16 o/o for the modern

glaciers compared with 33 Yo for the Lake Pukaki moraine. Although striae

preferentially occur on argillite clasts in all samples, the striae on the clasts from the

modem glaciers are rare, often solitary and generally faintly inscribed and lack the

pervasive "background" of microstriae. Abrasion is certainly occurring within the basal

layers but is of a much lower intensity than that which produced the pervasively striated

and commonly faceted clasts in the Lake pukaki moraine.

Striae on the Lake Pukaki clasts conform with the long-standing idea that striae occur

predominantly parallel to the long axis of elongate clasts. The striae preferentially occur

on facets but are also seen on curved surfaces. The data also suggest that striae show

less preferred orientations on more equidimensional clasts and that these clasts show

more curved striae, reflecting the greater ability of equidimensional clasts to rotate
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within basal glacial layers. Striae length displays great variation and is clearly related to

clast size with longer striae forming on longer clasts. Width is less variable, showing

consistently lower ranges in values than most other environments studied, but still
related to clas,t size (widest striae occur on largest clasts). Overall, striae on temperate

clasts tend to be long and narrow and lack the wide compound striae seen on clasts from

other envirorunents-

Clasts from the Lake Pukaki moraine show a pervasive "background" of microstriae on

fine-grained l.ithologies. clasts typically have at least 2 striae per cm2 and are

widespread orrer the clast surface. Striae density is much lower for clasts from the

modem Mueller and Murchison Glaciers. This probably reflects the difference between

abrasion that occurred in relatively thin debris layers (Mueller and Murchison

examples), and abrasion that occurred within a thicker basal glacial zone (Lake pukaki

example) where there was more rock debris and a fine-grained matrix around clasts

producing a high density of striae and pervasive background microstriae.
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3.4 STFUAE *SURVIVABILITY'' CASE STUDY - MURCHISON VALLEY

3.4.1 Introduction

The aim of this study is to investigate the "survivability" of glacial features of clasts

during fluvial transport to allow an estimate of how far recognisable glacial clast

features persist downstream from a glacier terminus. This was achieved by measuring

clast shape and surface features from sites progressively further downstream from the

terminus of the Murchison Glacier. This location was chosen because it is the most

accessible glercier in the region that was not listed as having a proglacial lake (Chinn

1996), therefore providing a continuous fluvial transport path downstream from the

glacier. However, a small proglacial lake had developed between 1996 and the date of
fieldwork in r\pril 2001. The lake had formed around the front and along the eastern

margin of the glacier, in part occupying the old fluvial channel draining the glacier

(evident sn [(rpographic rnaps). The lake presently blocks the fluvial transport path from

the glacier Sflrlut to the fluvial braid plain. Because the development of the lake is

recent, the sarnples used in this study are still considered to represent increasing fluvial

hansport distance downstream (Figure 3.24).

3.4.2 Background

As discussed in Chapter 2, clasts attain characteristic shapes that reflect the transport

processes the clasts have undergone. In the glacial context, Boulton (197S) showed that

clast shape is largely a function of the various glacial transport mechanisms and

recognised a clear distinction between clasts transported in the active subglacial zone

and clasts transported in the passive supraglacial/englacial zones. Many subsequent

workers have replicated and extended this to use shape analysis to interpret glacial

sediment and landforms of uncertain origin (cf. Bennett et al., rggT).
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In the wider <:ontext, it has long been established that parameters such as particle size,

shape, and roundness change progressively downstream in coarse-grained alluvial

systems as a oonsequence of sorting, mechanical abrasion and chemical weathering

during sedimr:nt transport (e.g. Mills, 1979; Hudd art,lgg4). Most temperate glaciers are

drained by fltrvial systems, but it appears that there has been little study on the effect of
downstream c,hange on the features specific to glacially derived clasts such as faceted

surfaces and srtriae. The value of such a study is that it provides criteria for estimating

fluvial transport distance for ancient glaciofluvial deposits, and proximity of the ice

front for gravr:ls with striated clasts.

3.4.3 Field.work

Ten sites (nunrbered MH I to MH 10) were selected ranging from a glacial tunnel (MH

l) at the glacir:r terminus, to I I km downstream on the Murchison River braid plain

(lvfH l0). The sites were chosen to reflect increasing fluvial transport distance from the

glacier (Figure 3.24).

At each site, an area of riverbed covered with pebble to cobble sized clasts was selected

and 50 clasts \vere measured, except at site one (MH 1, glacial tunnel) where 100 clasts

within an englacial debris layer were measured. Shape analysis was performed using the

method outlinr:d in Chapter 2.
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Figure 3.24 Map showing the ten sample sites with distance downstream from the

Murchison Glacier terminus. The original map is Terralink Aoraki/IVlt Cook alpine area

l;50000, (t999)' A preglacial lake began forming in front of the glacier about 1995 (Hochstein

et al., 1995), represented here by dark blue shading. This has since become a proglacial lake

around the front and eastern margin of the glacier snout (indicated by transparent light blue

shading).

3.4.4 Site clescriptions

Site MH 1

Site MH I was located within a natural glacial tunnel on the eastern side of the glacier.

This tun'nel wa.s the closest accessible grounded ice to the proglacial lake but did not

terminate in th'o lake itself (Figure 3.6 and Figure 3.25). The sample was collected from

an englacial debris-rich ice layer. However, the clasts had plainly experienced basal
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transport ancl are likely to have been elevated to the englacial position by thrusting

along shear planes within the glacier. This site was chosen to represent basally

transported g;lacial clasts, which had not experienced fluvial transport (other than

possible subglacial fl uvial).

Site MH 2

MH 2 was lo;ated approximately 50 metres downstream from MH I on an active fluvial

outwash fan lbrmed by a meltwater stream draining from the glacial tunnel. The site

was selected to reflect very limited amount of fluvial influence on glacially derived

clasts.

Figure 3.25 Sites MH I (glacial tunnel) and MH 2 (50 m downstream) on a fluvial outwash

fan. Streamflou, is from right to Ieft. Stagnant debris+overed ice is visible in the background.

Site MH 3

Site MH 3 was located about 650 m down-stream from MH 2 on the bank of the main

fluvial channel that has been partially inundated by the growth of the lake (Figure 3.26).

The lake has frrrmed a small beach at the site; however, the pebble-sized clasts at MH 3

are consiclered to represent sediment that has been fluvially transported from the glacier

prior to lake formation.
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Site MH 4

MH 4 was located 1900 m down-valley of MH I (Figure 3.26). This site was chosen to

contrast with the fluvially transported debris. Site MH 4 was situated at rhe base of a

steep, unstable active scree slope that today encroaches on the modern lake and is not

representative of the fluvial transport pathway. The site comprised mostly shattered,

angular rock-fall debris. This site is of particular interest as it contained many freshly

broken clasts showing striae produced by the process of rock-fall and is investigated in

detail in Chapter 6.

Site MH 5

MH 5 was also located on the lake edge but immediately down-valley from where the

scree slopes enters the lake and does not contain rock-falt debris (Figure 3.26). Beaches

have formed at this site but it appears to also be the bank of the pre-lake fluvial system

similar to MH 3. MH 5 is therefore considered to represent2200 m of fluvial transport.

Figure 3.26 View looking down-valley from atop the Murchison Glacier. MH 1, (glacial

tunnel) is located in the lower right. MH 2 (50 m downstream), MH 3 (650 m downstream) and

MH 4 (rock-fall-scree), MH 5 (22ffi m downstream) and MH 6 (z4som downstream).
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Site MH 6

MH 6 was located 250 m down-stream of site MH 5 (Figure 3.27). This was the last site

before the lake outlet channel (cut in the end moraine) and represents 2450 m of fluvial

transport distance from the glacial runnel (MH l).

Figure 3.27 View from site MH 6, (2450 m) looking up valley ro rhe Murchison Glacier and

other sample sites.

Site MH 7

MH 7 was situated 3550 m down-stream of MH I, where the Murchison River begins to

braid and immediately in front of the end moraine of the Murchison Glacier. The

sample was collected from a longitudinal bar in the main channel complex. The channel

cutting the end moraine is stable with vegetated flanks. This indicates that the end

moraine has not added debris into the fluvial system for a considerable time.
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Site MH 8

MH 8 was located 3800 m down-streanr of MH 1. The sample was again taken from a

longitudinal bar within the active stream channel.

Site MII9
MH 9 was located on the main channel bank 6200 rn downstream of MH I @gure

3.28).

Site MH 10

MH 10 was located 11000 m down-stream of MH I whero the braid plain intersects the

terminal moraine of the Murchison Glacier at the confluence with the Tasman Glacier

(Figure 3.28).

Figure 3.28 View down the Murchison Valley with sample sites MH 9 (6200 m

downstream) and MH l0 (l t000 m downstream) from the glacier terminus. Tasman Valley in

background.
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3.4.5 Clast Lithology

Temperate glacial striae

The clasts in the Murchison Valley samples were either indurated sandstone or argillite.

These are derived from deformed beds of alternating sandstone (greywacke) and

argillite of the Jurassic and Triassic age Torlesse Group sedimentary rocks that are

widespread in the Southern Alps (Gair, 1967). All sites were dominated by sandstone

clasts (at least 66%) (Figure 3.29). The percentage of argillite clasts decreases rapidly

ftom 26 % in basal ice at site MH I to 6 o/o at MH 2, and shows an overall decrease in

percentage of argillite clasts further downstream. MH 4 (rock-fall scree) shows a

marked spike to 34 ah argillite, reflecting the incorporation of unweathered rock-fall

material. MH 5 and MH 6 both have 12 % argillite clasts, which decreases to 4 Yo at

MH 7 and 8% at MH 8 (3800 m downstream). Sites MH 9 and MH l0 do not contain

argillite clasts.

Clast lithology versus site
100

f Argillite

I Sandstone

10 11

^$a$,{"
. \o.'

$*
Distance (km) and site number

Figure 3.29 Clast lithology at each site. A sharp decrease in the percentage of argillite is

evident from MH 1 to MH 2 and values fluctuate but overall decline for sites further

downstream with none beyond MH 8. MH 4 (rock-fall scree) is a special case as this is where

rock-fall clasts provide a "spike" in the percentage of argillite clasts, but is not pan of the fluvial

transport path.
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3,4.6 Ctast s,ha-pe

Clast for,ms frorn the Murohison study aro plotted on te,mary diagfams in Figlrre 3.30.

Clastb from NIIH. I (debris+ich baeal ioe) shows a broad distnibution iu theeenh.al,area,

qihereas MH 2 antl trt4H 3 show a eftglrt uhift toward rnore equidimensiornal forms (9:a

axial ratio of 0.39 for MH 1 to 0-43 shifts to 0.42 for N{H 2 and MH 3 respeerively.

I\ffi 4 displays shows tm o-bvious difr,ferenoe with,rnore slabby aad elongate clasts

(average e :a axiaX ratio of 0,31), refleotiag the eharacter of freshrock-fall matenial, that

is not part of the fluvial transport pafhway (see Chapter 6, mass movements deposits).

ekutsfrorn MH 5 to NIH 10 st{ow increasing abundarioerof more e.{luidimensional

(blsskyj shaBed clasts (c;a ocial ratiosincreasing from 0.43 for MII S to 0.49 for Un 9
'ailld MI{ 10) with inoreasing,downetroam fluvial transport (Figure 3.31).
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c:a axial ratio and site number for Murchison Valley
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Figure 3.31 Graph showing the increase in average c:a axial ratio (trend toward more

equidimensional clasts with distance downstream. The exception is Site MH 4 (rock-fall) with

distinctly more slabby and elongate clasts (low c:a axial ratios). Dashed trend line is fitted by

eye.

Krumbein roundness for each site is also shown in Figure 3.30 as percent frequency

histograms. The data show generally broad distributions, but an overall increase in

average roundness with distance downstream from 0.34 (subangular) for MH 1 to 0.58

(rounded) at MH l0 (Figure 3.32). The exception is again MH 4, which has a narrow

distribution with 66% of clasts having roundness values of 0.1 and 0.2 and average

roundness of 0.24 (angular). This again reflects the rock-fall debris at MH 4 (see

Chapter 6). MH 6 is also anomalous, with 16 o/o of clasts having values of 0.1 and 0.2,

contrasting with other samples downstream of the glacier terminus that do not have any

clasts in the 0.1 class.
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tend trine is fitted by eye.

Clast fornr And roundness af,e also expressed on'the covariant plot ofRA versus Cqo,

index (Figure 3.33). The most glacierproximal samples (MH l, MII2 and MH 3) all

plot in the "subglacial" field. MI{ 4 (roclc-fall) ploXs welil away from all other samples in

the 
qscr e" field. MH 6 plots o-utside the defined fields:with a notably high RA index of

16. The remaining samples have variable Cqq index values, but all plot very low on the

RA index.
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RA index versus C40 index
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Figure 3.33 Covariant plot of RA index versus Cae index for Murchison samples' MH I

(basal debris sample), MH 2 and MH 3 plot in the subglacial field. MH 4 plots away from the

other samples in the "scree field. MH 5 to MH 10 show variable C+o values but are generally in

the lower left. Shaded fields are from published data in Benn and Ballantyne (1994) and Bennett

et al. (1997).

Clasts with flat faces and rounded edges are present in many of the samples' These

surfaces are interpreted as glacially formed facets. The abundance of these glacially

shaped clasts decreases downstream (Figure 3.34). However, the decrease is irregular

and appears to be controlled in part by the lithology of the clasts. MH I has 28 Yo

faceted clasts, with argillite being more likely to show facets (50 % of argillite clasts)

compared with only ?0 o/o of sandstone clasts. This suggests that argillite is more prone

to faceting during basal glacial transport. MH 2 has only two argillite clasts, both

faceted, but the sample has overall 38 % faceted clasts. The remaining samples show

significantly less faceted clasts (maximum 18 % at MH 5) but persist downstream to

MH 10 with 8 %. Numbers of faceted argillite clasts decrease more rapidly with none
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found downstream of MH 5, although argillite clasts persist down to MH 8. This

indicates that facets on argillite clasts are removed faster than on sandstone during

fluvial transport (in this study 22A0 m) and that this is not simply a reflection of the

downstream decrease in argillite clasts.

Facets and striated clasts versus site
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Figure 3.34 Graph showing the percentage of clasts with glacial facets and percentage of

striated clasts with increasing fluvial transport distance. The percentage of flat faces decreases

with transport distance but some are still evident even after I 1000 m of fluvial transport.

Striated clasts, however, decreased rapidly with few surviving more than 600 m fluvial fansport

and none more than 3350m.

The number of striated clasts decreases rapidly with fluvial transport distance. For basal

debris sample MH 1, 16 To arc striated (mostly argillite clasts). The striae occur on

clasts in the 0.3, 0.4 and 0.5 roundness classes. The proportion of striated clasts

decreases dramatically to MH 2, where only 8% are striated (6% of all sandstone and I

of 2 argillite clasts). These occur on clasts in the 0.2 and 0.3 roundness classes. MH 3

has only one striated argillite clast (0.4 roundness class). MH 4 (rock-fall) has the
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highest abundance of striated clasts, but the majority of these occur on freshly broken

angular argillite clasts produced by rock-fall processes (discussed in Chapter 6)' MH 5

(2200m) and samples further downstream had no striated clasts. Because site MH 4

(rock-fall) is not part of the fluvial transport path, MH 3 (650 m downstream) is actually

the most distal sample from the glacier to contain striated clasts. The striae that form on

sandstone clasts are weakly inscribed compared with striae on argillite clasts, even on

well developed glacial facets.

3.4.7 Discussion and Conclusions

Many aspects of clast shape, in particular glacial features such as faceted clasts and

striae, change progressively with increasing fluvial transport distance'

The Murchison Valley study confirms that lithology is an important variable influencing

clast features in fluvial systems. Softer lithologies (in this case argillite) decrease in

abundance downstream as they are more rapidly broken down into sand grains. This

increases the relative percentage of harder, more resistant lithologies (sandstone)

downstream from the glacier.

The form of clasts becomes progressively more equidimensional and clasts become

better rounded during fluvial transport due to abrasion. This process of abrasion of

removes the features specific to glacially sourced clasts. Facets become less distinct as

edges are progressively rounded causing a decrease in the number of identifiably

faceted clasts with increased fluvial transport distance. Facets on argillite clasts do not

survive as well as those on sandstone clasts. Facets on some sandstone clasts are still

recognisable even after 1l km of fluvial transport.

The generation of striae on clasts is highly dependent on the lithology and striae occur

preferentially on the softer argillite clasts. Although some sandstone clasts in samples

MH I and 2 carry very faint striae, these features are difficult to see on the clast surface

and are not discernable at sites downstream, so have an extremely low "survivability"
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(between 50 and 650 m fluvial transport). These striae are not well inscribed ol the

harder sandstone gurfaces imd arc easilyrenroved byweathsring. The relatively soft and

fine-grained argillite clasts altrow clearly inscribed small-sc&16 sfiae to form. Although

better fonned artd clearer than striae on sandstone clasts; these striae are also re'moved

quickly during fluvial ftansport. Most disappearwithin the ffrsttens to hundreds of

noehes of trarypsrt with few strrvivi,ng,more 650 m (MLI3).

On the basis,of this 'study, it appea^r,e that sfriae on glacial ctasts are relnov€d within' 1 ts

2 km of doownetream fluvial tansport" Glacial facets strvive lorger, but most become

indistinguishable between 3 and 6 km of fl'uvial h,ansport altbough some appear to

stuvjve at least 11 hn. The further downsheam the clasts:have havelled, the more

diffieult it is to distinguish between:glaoial facets and other flat surfaoes on clasts.
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CHAPTER FOUR

POLYTHERMAL GLACIAL STRIAE

4.1 INTRODUCTION

Striae on clasts found in the basal layers of the polythermal Mackay Glacier on the

Victoria Land coast in Antarctica are investigated in this chapter. The aim is to

characterise the striae and identify differences, if any, between striae from polythermal

glaciers and temperate glaciers.

4.1.1 Polythermalglaciers

Glacier thermal regime and classification is discussed in Chapter 3. Polythermal or sub-

polar glaciers are those that have both warrn and cold ice and associated patches of

w:um and cold-based bed conditions. This commonly means the interior is warm-based

but the margins of the glacier are cold-based and frozen to the substrate'

Several of the larger glaciers in the Dry Valley region of Antarctica fall into this

category. The Mackay Glacier is a well-studied example of an East Antarctic Ice Sheet

outlet glacier that exists in a polar environment, but has polythermal basal conditions

due to the thickness of the glacier allowing pressure melting of basal ice along its axis.

This study describes the character of the glacial sediment it carries and in particular the

occurrence of striae on clasts. This is especially relevant considering the close proximity

of the Mackay Glacier to the Cape Roberts drill-sites and likelihood that the Mackay

Valley has been the main sediment source for Granite Harbour and the Cape Roberts

area for much of the Cenozoic epoch (Powell et al., 2000) (see Chapter 8).

105



Chapter 4 Polythermal glacial striae

4.2 MACKAY GLACTER, GRANITE HARBOLJR

4.2.1 Background and setting

The Mackay Glacier is an outlet glacier draining from the East Antarctic ice sheet into

Granite Harbour on the western side of McMurdo Sound, Antarctica (Figure 4.1). The

gfacier is approximately 65 km long and 5 km wide (Macpherson, 1987). Calkin (1974)

used radio-echo soundings to show that it is about 500 m thick over much of its length.

It terminates as a floating marine ice tongue approximately 3 km wide and 5 km long

(Pyne er al., 1991). The glacier descends from a bedrock elevation of about 1200 m (65

km inland) to 400 m at the grounding-line, cutting through plutonic, sedimentary and

intrusive and rocks of the Transantarctic Mountains.

7T 15

Figure 4.1 Location map of Mackay Glacier in Victoria Land, Antarctica. Black rectangle

indicates area enlarged in Figure 4.2.
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Macpherson (1987) used the relatively high geothermal gradient in the region calculated

by Decker and Bucher (1977) and the equation of Weertman (1961) to show that the

Mackay Glacier is wet-based due to pressure melting wherever the glacier exceeds 425

m thickness. Furthermore, the glacier moves at about 212 ma't (up glacier from the

grounding-line) with a total discharge of 0.238 k-' yt-' (Macpherson, 1987). The

floating tongue of the Mackay Glacier thins dramatically from over 400 m at the

grounding-line to about 200 m at the glacier snout where it calves into Granite Harbour.

However, the ice tongue is locked in sea-ice (up to 2.5 mthick) for approxirnately

eleven months of the year.

In situbasal debris layers such as those at the terminus of the polythermal Taylor

Glacier 80 km to the south, are not directly visible at the Mackay Glacier because of its

floating terminus. However, Macpherson (1987) observed basal debris in an unusual

way. Several small, (up to 42 m long) debris-charged icebergs with large grooves on the

base were found close to the grounding-line within nalrow canyons and along the ice

tongue margins. The layers of debris-rich ice displayed coarse, subangular to sub

rounded (average roundness 0.36), faceted and striated clasts (up to 5l% striated).

These bergs were considered to represent marginal portions of basal ice of the Mackay

Glacier that had broken off and floated upside down to the surface as the glacier passed

the grounding-line, exposing basally transported sediment. Similar overturned bergs

displaying prominent englacial layers of debris were found in during reconnaissance

fieldwork for this study. Clasts within the layers display faceted and striated clasts that

have clearly experienced basal transport. Therefore, the layers are likely to have been

elevated from the bed to an englacial position by glaciotectonic faulting or folding. The

bergs remained intact and locked in sea-ice throughout three summer field seasons. In

addition, glacial debris from the Mackay Glacier was found on a low bedrock ridge

(Cuff Cape) at the margin of the glacier (Figure 4.2 and Figure 4.3)'
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Figure 4.2 Map of Mackay Glacier and Granite Harbour, showing location overturned

debris-bearing icebergs on the floating glacier tongue and Cuff Cape.

4.2.2 Fieldwork and sample collection

Bulk samples of well-exposed debris layers in overturned bergs were collected at two

sites. The first was MK I located on the northern side of the floating tongue close to the

grounding-line (Figure 4.2, Figure 4.3 and Figure 4.4) andthe second was MK 2near

the present most seaward tip of the glacier tongue (Figure 4.2, Figure 4-3 andFigure

4.5). In addition, several clearly striated clasts were collected from Cuff Cape (Figure

4.2 andFigure 4.3). These all provided examples for charactErisation of striae (see

section 4.3),

Guff Gapq samdles
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Figure 43 View of northern Granite Harbour (looking north from Mt. England) showing

the floating ice-tongue of the Mackay Glacier with sample sites MK I (inner t*tg), MK 2 (outer

berg) and CuffCape on the immediate southern margin of the Glacier.

Figure 4.4 Sample site MK I on an overturned glacier berg (inner-berg) near the present

grounding-line of the Mackay Glacier. Note the bag and hammer (circle) for scale'
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Figure 4.5

33 cm long.

Sample site MK 2 on an overturned glacier berg (outer-htg), Rock hammer is

4.2.3 Clast shape

The bulk samptes collected from debris layers in the overturned bergs provided 100

clasts each for shape analyses. This was performed using the method outlined in

Chapter 2, and clast data are presented in appendix 3.

The Mackay Glacier samples are dominated by dolerite and granitic clasts with minor

siltstone and other lithologies. The proportions vary between the samples, with MK 1

(inner berg) consisting of 64Vo doleite,3OVo granite and 6 Vo other, whereas M'Kz

(outer berg) contained only 24 Vo dolente and 72Vo gtanite and 4 Vo other.

Clast form is displayed in Figure 4.6 andshows that both samples have broad

distributions, but with the majority of clasts lying above the 0.4 c:a axial ratio line

(toward blocky shaped clasts). Average axial ratios are similar but MK 2 (outer berg)

u0
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has a slightly higher c:a value of 0.53 conrpared with lt{K t wfth 0.50r These values are

higher than those for the sandstone and argiliite slasts frog temperate glacial saurples.

A)

Slabs Elongate

Slabs

Figure 4.6 Cilast fornr,diagsans- fon (A) (I\/trK 1, inner berg), (B) (lW( 2, outer berg). Both

show broad d-ishibutions. Aver.age c:a and b;a axial ratiss (large blaok dofs) are simt'lar,

although IlfiC 2 has sligfuly highsr o:a axial ratio of 53 cornpared with Nfl( 1 wi'th a o:a axial

ratio of 50. Black tiangles r-eprcsent stiated clasts'

l lr

Blocks

Blocks
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Roundness and lithology are displayed in frequency percent histograms in Figure 4.7'

The distribution for the MK I (inner berg) is broad with all roundness classes up to 0.5

represented ,bttt 630/o of clasts fall in the angular and very angular classes, giving an

average roundness of 0.23 (angular). Dolerite dominates the 0.2 roundness class'

Twenty two percent of the clasts display flat surfaces with rounded edges. These are

interpreted as glacially formed facets and these occur on clasts in the 0.2, 0.3, 0.4 and

0.5 roundness classes and preferentially on dolerite clasts (27 % of all dolerite clasts),

although the small number (5) of "other" lithologies (not dolerite or granite) clasts also

display facets.

Sample MK 2 (outer berg) displays a more normally shaped distribution than MK 1, bttt

with all roundness classes up to 0.6 represented and with a slightly higher average

roundness of 0.28 (subangular). Granite dominates in all roundness classes. Facets occur

on l2 % of clasts in the 0.2 to 0.4roundnessclasses, usuallyon doleriteor"othsr"

lithologies and less commonly on granitic clasts'

A)
Clast roundness and lithology for the Mackay

Glacier basal clasts (inner berg)

o.2 0.3 0.4 0.5 0.6

Krumbein Roundness
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B)
Clast roundness and lithology for the Mackay

Glacier basal clasts (outer berg)

0.? 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Krumbein Roundness

Figure 4.7 Roundness and lithology histograms for clasts from basal debris samples from

the Mackay Glacier. A) MK I (inner berg) has a higher percentage of angular and very angular

clasts (averages roundness of 0.23). B) MK 2 (outer berg) has average roundness of 0.28.

Shape characteristics are highlighted in the covariant plot of RA index (% of angular

and very angular clasts) versus C+o index (% of clasts with a c:a axial ratio of <0'4)

(Figure 4.8). The samples show similar C+o indices of 22 o/, for MK I (inner berg) and

2l Yo for MK 2 (outer berg) reflecting the dominance of blocky or equant shaped clasts

in both samples. The main difference between the samples is the much higher RA index

of 63 yo for MK I compared with 40 o/o for MK 2, highlighting the higher percentage of

very angular clasts in the MK I sample.
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RA index versus C40 index for Mackay glacier
basal debris (overturned bergs)
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Figure 4.8 RA versus Cm index diagram for clasts from overtumed bergs on the Mackay

Glacier tongue. Both samples plot outside known fields with low Caq values and high RA values

particularly for sample MK I (inner berg), reflecting the high percentage of angular and very

angular clasts. Shaded fields are from published data in Benn and Ballantyne (1994) and

Bennett et al. (1997).

4.2.4 Clast striae

Small-scale striae occur on 8% of MK I clasts, on all lithologies (but rare on granite)

and in all size classes except 0.1. Striae only occur on clear faceted surfaces. For sample

MK 2, only 5 % of the clasts carry striae. These occur on dolerite clasts (0'3 and 0.4

roundness classes), and on a single siltstone clast (0.5 roundness class) and a single

mudstone clast (0.3 roundness class). As with MK 1, striae occur only on clearly faceted

clasts. Striae features are discussed in detail in section 4.3.2.
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4,3 CUFF CAPE, GRANITE HARBOUR

4.3.1 Background and setting

Cuff Cape is a partially ice covered granite bedrock ridge located on the southern

margin of the Mackay glacier (Figure 4.2 and Figure 4.3). The ridge has clearly been

overridden by the Mackay Glacier and displays striated bedrock surfaces and abundant

glacial debris. Many dolerite clasts and boulders show obvious striae. Several of these

striated clasts were collected for the purpose of characterising the striae formed by the

polythermal Mackay Glacier. These provide clearer examples of striated clasts than the

bulk samples from the overturned icebergs from the floating Mackay Glacier ice tongue.

4.3.2 Characteristics of clast striae

Appendix l, "Linear Abrasion Atlas" presents images and notes highlighting the main

features of the clasts from the Mackay Glacier and Cuff Cape. The more common

features are discussed next with particular reference to striae on four striated clasts from

Cuff Cape that were studied in detail.

The striae on clasts from the Mackay Glacier and Cuff Cape show a wide range in size

and orientation. Fine-grained sedimentary clasts and dolerite clasts are the most

commonly striated. On elongate clasts, striae are preferentially oriented parallel to the

long axis of the clast. The surfaces tend to be pervasively striated with a "background"

of microstri ae (<2 mm long and < 0.25 mm wide). Individual striae of this type are

difficult to define or measure individually. Superimposed on this "background" are

larger, distinct striae up to 4 mm wide and several 10's of mm long, occasionally

deviating by up to 90" from the long axis (Figure 4.9). The background microstriae

occur on both flat facets and on slightly curved surfaces. These characteristics are

similar to those observed on temperate glacially striated clasts.
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A)

Figure 4.9 A) A mudstone clast from Cuff Cape shows a striated surface with most striae

parallel to the long axis. It has a "background" of microstriae and some larger striae oriented

oblique to the long axis. This clast is also shown in appendix l, (Linear Abrasion Atlas -
polythermal Glacial striae, Images I and 2). B) A siltstone clast from an overturned iceberg on

the Mackay Glacier tongue, showing similar features at a smaller scale.

There are exceptions to the characteristics described above. Some elongate clasts show

wide variation in orientations of striae unrelated to the long axis (Figure 4.12, clast 3)

and some almost equidimensional clasts have striae remarkably parallel to the long axis

(Figure 4.12, clast 4).

Some larger clasts show large compound striae up to 20 mm wide that consist of several

smaller, parallel striae. The most common compound striae were found on a large

glacially shaped dolerite clast (Figure 4.10). One of these compound striae is curved and

almost perpendicular to the long axis suggestive of clast rotation during the striation

procoss.

n6
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A)

Figure 4.10 A) Large striated dolerite cobble showing a densely striated surface with large

eompound striae up to 20 mm wide. B) The compound striae consist of many smaller parallel

striae and one is slightly curved and oriented perpendicular to the long axis. This clast is also

shown in appendix l, (Linear Abrasion Atlas - Polythermal Glacial striae, Images I I and l2).

The generation of striae is influenced by the lithology of the clast. Striae rarely occur on

coarse-grained dolerite or granite clasts. When they do, the striae are usually wide (> 2

mm) and on larger clasts. An example is displayed in Figure 4.11, which is a medium-

fine grained granite clast from the Mackay Glacier. The facet is pervasively striated but

the striae are poorly inscribed and only the largest striae are individually

distinguishable.

il7
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Figure 4.11 Striated dolerite clast from sarnple MK l. The surface is intensely striated but

only the largest striae are individually distinguishable. This clast is also shown in appendix I'

(Linear Abrasion Atlas - Polythermal Glacial striae, Image 7)'

Striae orientation

Four of the Cuff Cape clasts showing a range of shapes and striae characteristics were

selected for detailed analysis. Striae orientations are displayed in Figure 4.12. Clast 2 is

an elongate (b:a axial ratio of 0.5) dolerite clast with a clear glacially faceted surface.

The striae are oriented parallel to the long axis with 32 7o within 5o and a smaller mode

oriented at 165o. A small percentage of striae are oblique to the long axis giving an

average striae orientation of 174" and range of 60" (standard deviation is 15.5").

The other clasts show less defined long axis parallelism. Clast I is a mudstone clast

with higher b:a ratio of 0.69. It shows a strong mode about the long axis, but a greater

range of 90" (standard deviation 31"). Four percent of the striae are curved. Clast 3 has a

less obvious long axis (b:a ratio of 0.75), weak clustering with several modes at various

orientations and has a wide range of 76o and standard deviation (35.7). This clast has no

curved striae.

l18
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Ctast 4 is the most equid,funensional clast in ttle oollection (b:a ratio of 0.9). Howeveri it

shows moderate clustering with a sbong mode pa,rallel to the,long axis and a sligbtly

oblique *6fle at about 16ff. It has2Vt cllrved stiae. While the €'tlrved stiae s:uggesl

clast rotatioq the dominance of long alris sub-parallel stiae indjcate that

eqgidimensional clasts do not necessarily ghsw rno e variable orientations. These results

highlight bsth similarities and differenees whon compard with temperate striae" Shiae

parallel to thE long ax.is of elongate claslS is a common charaeteristic of botb

:euvironrients and reflest the process of clast atignrnent with 'the 
ice flow and rnovernent

of ohiatfurg rock particles along the long alces,sf clasts. However, there are exoeptions

and a wide range of str,iae orientatiq4s are possible depending on the particular abrasioa

history of ihdividual clasts.

lt9
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Figure 4.12 Striated clasts from Cuff Cape. The half-rose diagrams represent orientation of

striae relative to the long axis of the clast (180'). Striae are grouped into 5o segments. The black

arrows indicate average striae orientation. Also shown is a plot of striae length and width. Large

colour images of clasts are presented in appendix tr, Linear abrasion Atlas -Polythermal Glacial

striae.
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Striae length

Polyhermal glacial striae

Striae length shows wide variation, but is generally shorter than striae on temperate

striated clasts. Furthermore, striae length for the Cuff Cape clasts is not consistently

linked to clast size (Figur e 4.12 and Figure 4.13). For example the longest stnae (35

mm), highest average striae length (9.97 mm) and greatest range occur on an

intermediate sized and most equidimensional clast (clast 4). The smallest average length

(5.96 mm) and smallest range occur on the other elongate clast that has the least

preferred striae orientation (clast 3). The longest and most elongate clast (clast 2) has an

intermediate range and average length (6.4 mm) similar to clasts I and 3'

Clast striae length (mm)

30 40 50 60 70

t2l

Clast NO. (a-axts)

Clast 1 (ss.')

Clast 2 (zso mm)

Clast 3 (tsg 
'nm)

Clast 4 (rss mm)

91020
__

9080

Figure 4.13 Striae length ranges and averages for the four clasts from the Cuff Cape' The

greatest range and highest average length occur on an intermediate sized, equidimensional clast

(clast 4).

Striae width

Striae width values also show mixed results (Figure 4.14). The two largest and most

elongate clasts (clasts 2 and3) show identical maximum striae widths of 2.25 mm and

low ranges with standard deviations of 0.54 and 0.42 respectively, while the smaller

clasts (1 and 4) have rare compound striae up to 4 mm wide giving higher ranges and

standard deviations of 0.65 and 0.78 respectively. This is not minored in the average

values. The smallest (clast i, mudstone) has the lowest average width (0.54 mm) and

largest (clast 2, dolerite) has only a slightly higher average of 0.62 mm. The

intermediate sized clast 3 has an average width of 0.7 mm and the most equidimensional
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clast has the widest average striae (0.9 mm). These results are different from the

temperate striae measurements with the Cuff Cape clasts showing a higher number of

wider striae, greater ranges of widths and higher averages that are not consistently

related to clast size.

Clast striae width (mm)

cf ast No. 1"-a.rs; 
0 0'5 1 1'5 2 2'5 3 3'5 4 4'5 5

t'

Cf ast l (sr mm)

Clast 2 (zso mm)

Clast 3 (rss mm)

Clast 4 (ms mm)

Figure 4.14 Striae width ranges and averages for polythermal striated clasts. Width ranges

up to 4 mm. The highest average width occurs on the most equidimensional (but not the largest)

clast 4.

Width and length ratios

Width and length is displayed in Figure 4.12, and width/length ratios displayed in

Figure 4.15. Longer striae are generally wider than average but there are many

exceptions. For example, Clast 1 displays one compound striation that is 4 mm wide but

only 6 mm long. This influences the width/length ratio producing the highest

width/length ratio (0.67) of all striae from all environments in this study (Figure 4.1 5),

However, the average width/length ratios are generally similar, although clast 3

(intermediate size) has a slightly higher average than the other 3 clasts. These results are

broadly similar to those on temperate striated clasts, but highlight the presence of a few

short and wide (usually compound) striae on the polyhermal striated clasts.

t22
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Striae density

,striae dEusity for the CuffCqpe clast$ iE high, Sfiiae p€r;sQuare cn ranges ftsm. a low of

2.1 onthe nnost equidirnensional clast (eiast 4) to 33 on the largest and rnost eloqgg,te

olast (olast 2). Theporcentage of baclcground stiac is als-o high, with all showing 100%

er(eopt ths lnudstono clast l, whieh has a dep,tes.sion on the surfaoe that has escaped

abrasion resulting in92 %backgroqnd sffiael The pereentage of 25 mma squares o.n the
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measured surfaces with at least one striation ranges from 65% to 81olo, indicating that

the striae are broadly distributed across the clast surfaces. The striae density

characteristics for Cuff Cape clasts are similar to those on temperate striated clasts (see

Chapter 3), with both having a high density of background striae, at least 2 striae per

cm2 and broad distribution over the clast surface

t24striae

40 0.5

Striae per cm2

1.5 2 2.5 3

H
Background striae

)50% Jzsv"

3.5

O too y"t zs"/o

Figure 4.16 Striae density diagram showing the number of striae per cm'for each clast and

the percentage of "background" striae. The Cuff Cape clasts have at least 2 striae per cmz and at

least 92 % background striae. These results are similar to temperate clast striae density.

4.4 DISCUSSION AND CONCLUSIONS

Samples from the Mackay Glacier icebergs represent clasts that have been transported

beneath a large polythermal glacier. The percentage of various lithologies is variable

with MK I (inner berg) dominated by dolerite clasts and MK 2 (outer berg) dominated

by granite. However, clast form is similar with both samples displaying broad

distributions but with axial ratios trending toward more equidimensional or blocky

shaped clasts (average c:a axial ratios of 0.53 for MK 2 (outer berg) and 0.50 for MK 1).

These are higher than those recorded for temperate glacial clasts reflecting either the

different lithologies between the samples or possibly a difference in the abrasion

occurring beneath the glaciers.
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The two Mackay Glacier samples have similar average roundness values but the MK I

sample has a higher percentage of angular and very angular clasts compared with MK 2

causing it to plot significantly higher on the RA-C+o diagram showing there is local

variability in clast shape between individual debris layers. Both samples plot well

outside the subglacial field defined from temperate and polythermal clasts because of

dominance of blockier and more angular clasts, consistent with the observations of

Macpherson (1987). Despite this, both samples contain clasts with distinctive flat faces

and rounded edges, considered to be facets produced by basal glacial abrasion. The

percentage in MK 2 is similar to the modern temperate glaciers, but MK I is much

lower. However, these values are still consistent with published data from known

temperate glacial deposits.

Both samples contain low numbers of striated clasts, 8 % for the MK I (inner berg)

compared with 5 o/o for the MK 2 (outer berg). This contrasts with the results of

Macpherson (1987), who recorded 5l o/o striated clasts from the Mackay Glacier. This

suggests that the debris sampled by Macpherson (1987) experienced significantly more

basal transport and abrasion than the clasts in this study. Striae occur preferentially on

subangular to subrounded, fine-grained sedimentary clasts and are oriented

predominantly sub-parallel to the long axis. Dolerite clasts usually have indistinct

weakly inscribed striae. The percentage of striated clasts is slightly lower than for

modern temperate glacial clasts from the Mueller and Murchison Glaciers and

significantly lower than the temperate Lake Pukaki moraine.

Striae from the nearby Cuff Cape also represent clasts abraded by the polythermal

Mackay Glacier. They commonly show long axis parallel striae on elongate clasts,

although there are exceptions. Surfaces of fine-grained sedimentary and dolerite clasts

commonly show a "background" of microstriae and the number of larger striae

superimposed on this background is similar to that of temperate glacially striated clasts,

with the Cuff Cape clasts showing at least 2 striae per cm2.

t25
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Sfriae size is not as clearlyrelated to clast size as it is on temperato glacial clasts. While

the largest striae seen on a clast frsm euffCape, does occur on the largest olast (Figwe

4.10), there are many exoeptions. "Average striae lengths me broadly similar to tho-se on

terilperate clasts but there is a sm.aller rarilge in lengt]ls, even on large clasts. Av'erage

width and range in striae widths is ggnerally higher than on tomperate clasts, resulting is

slightly higber widtt/lengtr ratios. In other words, the striae on poly,thernal clasts fhom

Cuff Cape are generally a little shortEr and wider relative to ternperat,e clast striae.

D;eqpite'tlaese ndhor diff.erelrces, the overa[ character of thesfriae on fine'girained clasts

from, Cuff C'ape is not readily distinguishablE ftom those produced beneath temperate

glaeiers, suggesting that eonditions influencing striation processes beneath the

polyt-hernral hdaekay Gtracier are similar to those beneath temperate glaeiers. Clast shape

and ro,rurdness howevor are sigpifrcantly different This may reflect the marked.ly

difforent lilhologies in the two studies, o-r ma)r indicate'a differcnce in the conditions

b"e,neath the glaciers.
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COLD-BASED GLACIAL ABRASION FEATURES

5.1 INTRODUCTION

This chapter documents newly discovered abrasion features created beneath a cold-

based glacier in Antarctica. This discovery is signifrcant as it is commonly assumed that

sliding and erosion cannot occur beneath cold-based ice and is the first documented

geological evidence of cold-based ice advance. These features have been reported in

Atkins and Barrett (2000) and Atkins et al. (2002) from work carried out for this study.

A review of the current understanding of cold-based glaciers is provided, followed by a

case study of cold-based bedrock abrasion features in the Allan Hills, south Victoria

Land. Antarctica.

5.2 COLD-BASED ICE

5.2.1 Traditional view of cold-based ice movement

Cold-based ice is usually found in polar environments, but can also form at high

altitudes in temperate latitudes (Hambrey, 1994). The generally accepted view is that

the ice is frozen to the bed and all movement of the ice is due to internal deformation of

the ice mass by slippage or "creepn'within or between ice individual ice crystals

(Menzies, 1995). Because the ice is frozen to the substrate, no basal sliding occurs, and

therefore no erosion.
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5.2.2 Landscape preservation by cold-based ice

The widely held opinion that cold-based ice is non-erosive has been used in milly

studies of landscape evolution and glacial reconstructions. A cornmon theme is that

cold-based ice can actually protect landforms and other features from weathering and

erosion. For example, Goldthwait (1960) and Falconer (1966) observed vegetation such

as lichens that had survived overriding by cold-based ice in Greenland and Arctic

Canada. Others described landforms that have been preserved beneath cold-based ice,

For example, England (1986) reported an alluvial fan passively overridden by ice on

Ellesmere Island, Arctic Canada. Sugden (1978) observed "landscapes of selective

linear erosion" where pre-existing valleys channelled ice flow creating a situation where

there was warm-based ice in the valleys and cold-based ice over the intervening plateau.

The plateaus show little or no sigr of glacial erosion suggesting that cold-based ice

protected the landscape. Another example is Kleman et al. (1994), who suggested that

drift lineations and esker swarms previously interpreted to be the product of the Late

Wisconsinian Laurentide Ice Sheet in the Quebec-Labrador region of Canada were in

fact formed during the deglaciation of an older ice sheet and preserved in a cold-based

central zone of the Laurentide lce Sheet.

Similar observations of landscape preservation have been reported from Scandinavia

(Kleman and Borgstrom, 1994; Kleman, 1990; Rea et al., 1996). In the Asgard Range,

Antarctica, Sugden et al. (1991) reported unconsolidated sediments from subglacial

meltwater channels thought to have been covered and preserved by cold-based ice.

Holmlund and Niislund (1994) and Niislund (1997), detected large-scale landforms by

radio-echo sounding beneath the present cold-based Amundsenisen Ice Sheet in

Dronning Maud Land, East Antarctica. They claimed that glacially eroded arrd

sediment-filled valleys have been covered and protected by the present ice sheet since at

least mid-Pliocene (but probably Miocene) times.

r28
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5.2.3 Sliding and erosion at sub-freezing temperatures

Boulton (1972) suggested that in cold-based ice frozen to the bed, differential

movement would occur along a smooth flowline approximating the shape of the bed,

creating limited erosion. This flowline is the lowest level of debris transport and only

reaches and erodes the bed at the summit of high protuberances. This concept was

supported by Holdsworth (1974) who observed an "effective bed" forming a smooth

curve over the bouldery surface allowing debris to abrade the boulder summits beneath

the Meserve Glacier in the Wright Valley, Antarctica.

Shreve (1984) was the first to introduce the idea of basal sliding at subfreezing

temperatures by regelation around small protrusions in the ice and concluded that basal

sliding velocities would be extremely low, but total distance of sliding by a glacier

dunng the lifetirne of a large glacier can be of consequence and result in abrasion.

Several other workers on both theoretical and experimental grounds extended this

concept of a liquid layer around particles and sub-temperate sliding (e.g. Fowler, 1986;

Cuffey et al., 1999). This was supported by direct observations of basal sliding and

debris entrainment at sub-freezing temperatures of -50 C (Echelmeyer and Wang, 1987)

and -170 C beneath the Meserve Glacier, Antarctica (Cuffey et al., 1999; Cuffey et al',

2000). These observations suggested that the entrainment has occurred at subfreezing

temperatures due to local melt and refreeze of interfacial films between ice and

immersed solids. Furthermore, Cuffey et al. (2000) suggest that the U-shaped trough

beneath the Meserve Glacier is result of cold-based erosion impllng that significant

geomorphic work is possible by cold-based ice.

Drewry ( 1986) proposed that abrasion could occur beneath cold ice even if there is no

sliding motion at the ice-rock interface sensu stricto by considering a situation where a

clast resting on bedrock, but embedded in ice is rotated by shear in the lowermost layers

of ice. The rotating motion produces torque, giving rise to an angular velocity (tl"), and

forward motion that causes dragging along the bed producing abrasion (Figure 5.1).
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Figure 5.1 Diagram from Drewry (1986), showing rotation and net forward motion of a

particle embedded in the basal layer of a cold glacier frozen to bedrock. The vertical velocity

profile is shown (left) with zero forward movement at the bed but with finite horizontal flow,

due to creep, increasing with distance above the bed (hence a shear zone). The clast experiences

angular velocity (ro.) and forward velocity (Uo). The net forward motion of the clast (Uo) by

rolling is; Un: <rl"r..

None of these studies has reported ancient cold-based sub-glacial abrasion features that

have survived to the present day. During this study, features of erosion and deposition

interpreted to be the product of cold-based ice advance were identified at Allan Hills in

South Victoria Land, Antarctica. These observations suggest that cold-based ice is an

important but little recognised geomorphic agent.

5.3 ALLAN HILLSO VICTORIA LAI\D, ANTARCTICA

5.3.1 Introduction

The Allan Hills (76"42'S, 159o40'E) form a wishbone-shaped nunatak situated high

(1600-2100 m above sea level) in the Transantarctic Mountains in south Victoria Land

at the edge of the present East Antarctic Ice Sheet (EAIS). The 50 square kilometres
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(km) of exposed rock is barely emergent with most of the area rising less than 300 m

above the surrounding ice making the nunatak sensitive to fluctuations in the edge of the

EAIS (Figure 5.2).

76" 30

Figure 5.2 Location map of Allan Hills near the margin of the East Antarctic lce Sheet

(EAIS) in south Victoria Land.

The Polar Plateau bounds the southern and western sides of the nunatak. On the eastern

side, the Odell Glacier separates Allan Hills from Coombs Hills. The centre of the

wishbone is occupied by the Manhaul Bay Glacier (unofficial name) and is fed by ice

flowing north on either side of the glacier turning south around the tips of the wishbone.

The eastern part of Allan hills has a broad U-shaped valley named Trudge Valley and is

partially occupied by a tongue of the Odell glacier (Figure 5.3).
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Figure 5.3 Allan Hills with estimated ice flow into the centre of the wishbone feeding the

central Manhaul Bay Glacier.

5.3,2 Bedrock geology of Allan Hills

The bedrock of Allan Hills comprises near flat-lying Permian and Triassic sandstones,

shales and coal measures of the Beacon Supergroup, intruded by extensive sills and

occasionally thin dykes of Jurassic Ferrar Dolerite (Ballance and Watters, l97l).

A patchy distribution of diamictite mantles the Beacon strata throughout the central area

of Allan Hills and is considered to be part of the Sirius Group diamictite deposits.

The Sirius Group tills are thought to represent the last time the area was overridden by

sliding warm-based advance of the EAIS. Although these deposits have not been dated

directly, other Sirius deposits and rock surfaces in the Dry Valleys region south of Allan

Hills have yielded ages as old as l0 Ma, with volcanic ash deposits as old as l5 Ma



Chapter 5 Cold$ased glacial abrasior f,eahrres 133

(Surnnnerfield et a1., X999). The nature of tfue surfaces and the pr,eservation of"the ashes

iudicate ftat t6e landscap,e has experienoed persistent polar desert conditio,ns dominared

bywind erosion sineethose times.

5.3,3 Present elimate:and recent glae-ial activity

The,mean annual tempera,tur.e at Allao Hills is approxirnate,$ -300C (Robin, 1983). The

preserit Manhaul Bay Glacier is eslimated at -2,00 m thick in tho middle" with basal

tempwrtures ef^,Zlrc (estinrated frorn thE MAT of -30'c and the gpph of Robin'

lg.S5, Fig. 3), The ioe ftonts of tlre hilanhaultsay and Odell Glaciers are wind-scrilptetl

".blueice" t5pical sf ablation that has been rrreasured at 5 crn/yr in ioe fields several

kilonrc1res w,est 6Fagre and Buchanan, tr987). Retreat of thesE glaciers, presunnably ftolu

Last Glacial N'Xalcinruo (tGM) advance, has exposed abrasional eurd de'positional

feattues on.rockplatfomrs andridgesbeyond the margin of tho glaci:ers (Figurre 5.4 and

Figure 5.5). These features mr.rst hairc formEdbeneath ice that is he,re estiurated to be of

einrifar thieklress and low basal tempe.rature to that of,today.
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76?1S

76'42S

76"43S

76'45S

Figure 5.4 Map of central Allan Hills, Antarctica showing distribution of abrasion features

recording former extent of Manhaul Bay and Odell Glaciers. Dark shading shows distribution of

much older Sirius diamictite. The light shading indicates the disfibution of abrasion marks

around the ice margins, and circles around the ice margins show linear abrasion orientations and

average azimuth at each site (small grey arrows). Small circles with numbers refer to cobbles

with cold-based abrasion marks. Large dark arrows on the glaciers indicate the ice-advance

direction, and white lines indicate maximum advance limit of cold-based Manhaul Bay and

Odell Glaciers. Contours in metres above sea level'
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-tJt*-:

Manhaul eay Ctacier 1:
B-t \j

Figure 5.5 Aerial photograph of central Allan Hills looking north east, showing the

Manhaul Bay Glacier and the maximum advance limit (solid line) and area around the ice

margin where abrasion features are most common (dotted line). Black arrow indicate the past

advance direction.

5,3.4 Cold-based erosion features

Indicators of erosion at Allan Hills are principally in the form of abrasion features on

Beacon sandstone surfaces and on the upper surface of the Sirius Tillite close to the

margins of the Manhaul Bay and Odell Glaciers. These abrasion marks generally occur

within several metres of the ice edge and abundance decreases rapidly away from the

ice, with very few more than 50 metres "inland". The marks are variable in shape' size

and grouping and range from broad scrapes to narrow grooves and gouges, unlike the

consistent, uniform sets of parallel striae and grooves common on bedrock abraded by

wet-basecl sliding ice. Measurements of these abrasions were made at sites around the

Manhaul Bay Glacier (Sites MHG I to MHG 12) and at one site at the margin of the

Odell Glacier (Figure 5.5). These data are displayed in appendix 4 and representative

images are presented in appendix l, Linear Abrasion Atlas, Cold-based glacial abrasion'

The linear abrasions features at Allan Hills can be broadly divided into four types.
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Type I: Broad Scrapes

Cold-based glacial abrasion features

Broad unweathered scrapes (up to 500 mm width,40 mm depth, 1200 mm length), but

defined as (width >75 mm, depth > 15 mm, length >340 mm), typically consist of many

smaller striae or grooves centimetres or millimetres in width. Some examples (Figure

5.6) show progressive increase in depth and width with an abrupt terminus' Typically

the abrasion mark has crushed sandstone remnants of the abrading tool smeared onto the

surface, particularly at the deepest terminal wall. Occasionally, small centimetre-scale

"levde$" occur along the sides of the abrasion mark. These marks are close to the

present margin of the Manhaul Bay Glacier and indicate ice movement from north to

south.

Figure 5.6 Type I abrasion. Large broad scrape consisting of multiple grooves cut in well-

developed foresets of Beacon sandstone. Example becomes deeper and wider with an abrupt

terminus and has remnants of abrading tool on surface. Arrow indicates ice-movement direction'

Hammer is 33 cm long.
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Type 2: Ind,ividual striae and grooves

Variably shaped, unweathered individual linear abrasions (scrapes, striae, and grooves)

make up a wide variety of discrete abrasion marks (defined as: length unlimited' width

< 75 mm, depth <15 mm). Where several marks occur in one location, they are

generally sub-parallel. Some show a progressive increase in depth and width (nail-head)

whereas others have more symmetrical, tapered ends. Occasionally, individual marks

occur "in linen'to form a trail of marks up to 2 m in length (Figure 5.7). Some marks

have crushed sandstone remnants of the abrading tool smeared onto the surface and are

sometimes bordered by small centimetre-scale "lev6es." These abrasion features are

common near the present margins of Manhaul Bay and Odell Glaciers and rare farther

inland from the ice, protected beneath brecciated sandstone debris.

Figure 5.7 TypeZabrasion. Variably shaped, individual unweathered abrasion marks on

Beacon sandstone. Arrow indicates ice-flow direction'
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Type 3: Scraped boulders and cobbles

Variably shaped, unweathered scrapes up to several centimetles wide (and related

striae) occur on the stoss side of some weathered dolerite boulders and cobbles lodged

within, or resting on, Sirius diamictite. Abrasion has removed the characteristic dark

brown desert varnish from the surfaces of the boulders, making the marks clearly visible

(Figure 5.8). Some boulders have been overturned, exposing a surface that lacks the

wind polish typical on exposed surfaces. These distinctive overturned and abraded

boulders and cobbles were found over a wide area in central the Allan Hills, and up to

1800 m south (inland) of the present Manhaul Bay Glacier margin (Figure 5'4)'

-

Figure 5.8 Type 3 abrasion. unweathered scrapes. A) on weathered, wind-polished

dolerite boulder in Sirius diarnictite. Some scraped boulders have been overturned. B) Abrasions

on wind-polished clasts. Associated abrasion mark on the bedrock surface is visible (centre-top

of photograph). Hammer is 33 cm long. Anows indicate direction of ice-movement.
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Type 4 : Ridge-and-Groove lineatio ns

Localised surfaces display abraded patches with many parallel fine lineations

(millimetre scale width and depth), described here as ridge-and-groove lineations. The

surfaces are typically dark and have a platy appearance and sheen similar to slickensides

(Figure 5.9). These abraded patches occur within thin carbonaceous layers beneath

brecciated sandstone debris and indicate north to south glacier movement. These

patches occur over a wide area in the central Allan Hills within the Manhaul Bay

Glacier advance limit shown in Figure 5'5.

Figure 5.9 . Type 4 abrasion. Ridge-and-Groove lineations on thin carbonaceous layers in

Beacon srata. Surfaces have a sheen similar to slickensides. Ice movement was from top to

bortom. This surface is within 5 m of the Manhaul Bay Glacier margin.
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5.3.5 Characteristics and orientation of bedrock linear abrasions

Basic dimensions of type I and type 2 linear abrasion marks from around the margins of

the Manhaul Bay and Odell glaciers were measured. Measurement of abrasion marks

proved diffrcult due to the range in shape and size, with many showing significant

change in width and depth along the same striation. Data presented here are length,

maximum width and maximum depth only.

Length and width of cold-based bedrock abrasion marks are shown in Figure 5.10 and

Figure 5.1 l. The measurements separate the cold-based abrasion marks into 2 types.

Type I is generally longer and wider and deeper than type 2. The maximum length for

type 1 abrasion marks is 1130 mm and maximum width is 470 mm (average length is

6g2 mm and average width is 200 mm). Depth is the least reliable measurement because

of the difficulty measuring in the field but ranged from 18 mm to 40 mm (average is 26

mm). For type2abrasion marks, maximum length is 1780 mm and maximum width is

160 mm (average length is 324 mm and average width is 29 mm). Maximum measured

depth of type 2 abrasion marks is 15 mm and average is 3.7 mm. Some overlap between

the two types occurs because a few tlpe 2 abrasion marks are long (especially if several

occur in line) giving a wide range and a few are wider than the 75 mm lower width limit

of tlpe I abrasion marks. These are still classified as type 2 because they are shallow (<

15 mm).
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Width/length ratio

0.2 0.3 0.4

Type 1

Type 2
-T

Figure 5.12 WidtMlength ratio range and average for the cold-based bedrock abrasions

showing that the Type I have a much higher average than type 2 abrasion marks'

Figure 5.13 clearly shows fresh, short, discontinuous type 2 cold-based abrasion mark

on a weathered Beacon sandstone surface. These contrast with the older, weathered,

long and continuous wet-based striae extending under a cover of Sirius till.

Figure 5.13 Linear abrasion marks on a Beacon sandstone surface with Sirius till on top.

Surface shows two clear sets of linear abrasion marks. Weathered striae are long and narrow.

Recent cold-based abrasion marks are shorter, wider and less regular than older wet-based

..Sinius striae". Arrows indicate ice flow directions that generated the abrasion marks. Hammer

is 33 cm long.
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Orientation of bedrock abrasion marks (Type I and 2 abrasion) was measured around

the perimeter of the Manhaul Bay Glacier. Between 3 and l5 individual measurements

were made from at each location from an area of several hundred metres' All indicate

movement from north to south (inland). The measurements are displayed as orientation

wheel diagrams in Figure 5.5, with small grey arrows showing the mean orientation for

each site. These show a generally splayed pattern radiating from beneath the glacier

confirming that these have been produced by the Manhaul Bay Glacier. Measurements

of Type 2 abrasion marks were also made on the northern edge of the Odell Glacier and

indicate a westerly ice movement into Trudge Valley.

5.3.6 Characteristics and orientation of clast abrasion marks

Ten weathered, wind-polished dolerite cobbles showing fresh cold-based abrasions were

collected from within the cold-based advance limit in central Allan Hills (Fig 5.4). On

these clasts, abrasion has removed the characteristic brown weathered surface leaving

distinctive abrasion mark (Figure 5.14). Additional images of these and other clasts are

presented in appendix l, Linear Abrasion Atlas, Cold-based glacial abrasion'

Figure S.l4 Example of a cold-based abrasion mark on wind-polished dolerite clast.

Abrasion has removed the weathered surface. Arrow indicates ice-flow direction.
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Measurements of these abrasions are presented in appendix 4. The linear abrasion marks

show great variation in lenglh, ranging from 17 mm to 80 mm (average of 5l mm) and

width ranging from 3 mm to 30 mm (average of 9 mm). No consistent relationship is

evident between the length and width (Figure 5.15). Depth was not measured, but all are

less than lmm.

80

)
--'' Io

o_ Avera!91__ _

a'o
o* ' 

'to 20 30 40 so oo 70 80 90 1oo

Clast abrasion mark length (mm)

Figure 5.15 Comparison of length and width of cold-based abrasion marks on desert

varnished dolerite clasts from central Allan Hills. Maximum abrasion mark length is 80 mm and

maximum width is 30 mm. Average is 5l mm length and 9 mm width. Grey shading indicates

field of cold-based linear abrasion mark dimensions on clasts from the Allan Hills data.

The abrasion marks occur on the top surface or on the northern side of clasts. For the

latter, this is the side of the clast facing the Manhaul Bay Glacier and is therefore

interpreted as the stoss side. Some abrasions preferentially occur on raised portions of

the clast such as ridges between faces and appear to influence the orientation and

10
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curvature of the abrasion. Also, the length and width of the abrasion marks are often

controlled by the surface on which the abrasion has occuned. If the surface is not

planar, the abrasions may appear "intermittent" with several individual abrasions "in-

line" as the striator has made contact with the raised parts of the surface'

The orientation of abrasion marks on clasts was measured relative to the long axis of the

clast and also relative to the north-south azimuth in the field (Figure 5.16). There is a

preference for abrasion marks to be aligned sub-parallel to the long axis of the clast.

Variation fionr the long axis varied up to 75 degrees. This may be due to a preference

for clast long-axes to be oriented north/south, although the reason for this is not clear'

The abrasion marks are preferentially oriented sub-parallel to the north-south azimuth'

This is the expected direction of flow from the Manhaul Bay Glacier over the clasts'

variation from the north-south line ranged up to 34 degrees but 5 of the 1l measured

abrasion marks were aligned exactly parallel to the north/south line'

Figure 5.16 Orientation wheels for abrasion marks on ten weathered, wind-polished clasts

from central Allan Hills (Figure 5.4). On the left, orientation is relative to the long axis of the

clast. On the right, orientation is relative to north. Arrows indicate average orientation for the

abrasion marks.
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5.3.7 Interpretation of erosional features

Broad scrapes (type 1 abrasion marks) and individual striae and gtooves (type 2

abrasion marks) are interpreted to be the result of debris within the ice being dragged

along the bedrock by either basal slip or forward rotational movement created by the

striator projecting into the deforming ice mass as suggested by Drewry (1986)' Because

the abrading particles were most likely to be the same lithology as the bedrock, there

was little hardness contrast, and abrasions tend to be broad and shallow and commonly

have remnants of the sandstone striator on the abraded surface or as low lev6es on the

sides. This is particularly noticeable on abrasions that progressively deepen and then

terminate abruptly, indicating that the striator disintegrated under dry simple shear with

no melt water to wash away the lev6es. Examples that have more symmetrical tapered

ends suggest that the striator made contact with the bed briefly, but lifted off again.

Occasionally, several of these abrasions occur in line over 1-2 m where the striator

touched the bedrock surface several times on its journey (Figure 5.7)'

A similar process is inferred for the short irregular abrasional marks on wind-polished

boulders and cobbles (type 3 abrasion marks) (Figwe 5.8). Differential ice movement

close to the glacier bed has initially dragged the striating tool over the boulders and

cobbles abrading the northern (stoss) face or the top surface and in some cases

overturned them.

Type 4 abrasion (Figure 5.9) is interpreted as a glaciotectonic structure formed by

differential slip on thin, weak carbonaceous shale layers within the Beacon strata in

response to increased shear stress from loading as cold ice moved over bedrock

promontories.

These processes are depicted in a schematic model of cold-based glacial processes at

Allan Hills (Figure 5.17).
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Figure 5.lZ Schematic model of processes beneath cold-based ice at Allan Hitls. Vertical

profile indicates assumed ice velocity within glacier. Erosion followed by entrainment occur by

(A) plucking stoss sides of outcrops, (B) dragging blocks along bedrock surface either by

sliding or rotation of clast by velocity gradient above bed, and (C) glaciotectonic extension

producing fractures and differential slip along weak layers producing abraded, slickenside

surfaces. Depositional processes are shown also but not discussed here. For an explanation of

depositional processes see Atkins et al. (2002)'

5.3.8 Interpretation of cold-based glacier movement at Allan Hills

The solid wl'rite lines in Figure 5.4 represent the maximum advance positions for the

margins of the Manhaul and Odell Glaciers, delineated by the most inland positions of

overturned and abraded boulders and cobbles (type 2 abrasion) and sandstone breccia

deposits (not discussed here). Reconstruction of the longitudinal profile of the Manhaul

Bay Glacier, following the modern profile to the limit shown, indicates that a maximum

ice thickness of -200 m was attained at the present southern ice margin'

On the basis of fresh abrasion marks cutting through desert vamish on boulders and

cobbles, the unweathered appearance ofglacial Scrapes, grooves' and striae on rock
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ledges close to the ice margins, the features described here are interpreted to have

formed during the Last Glacial Maximum (LGM). This was the last time the East

Antarctic Ice Sheet was more extensive in this region (Hughes, 1998; Siegert, 2001;

Denton and Hughes, 2002). A more extensive Manhaul Bay Glacier most likely

produced many abrasion features over the extensive bedrock platforms it once covered,

but these have been removed by wind erosion apart from those most recently exposed

by ice ablation or still protected by debris.

5.4 CONCLUSIONS AND IMPLICATTONS

The recent advance of the Manhaul Bay Glacier, whose limit has been reasonably well

defined. must have been entirely cold-based. This has produced a range of glacial

abrasion features indicating that cold-based ice is capable of erosion'

The abrasion features show a wide variety in size and shape but are distinctly different

from those produced by wet-based sliding ice. The development of these abrasions is

likely to be influenced by the character of the bedrock, forming mostly on relatively soft

lithologies such as Beacon sandstone. In the case of cold-based abrasion features on

wind-polished dolerite clasts these are likely to have formed by contact with equally

hard clasts. tn addition, there appears to be a low preservation potential on soft bedrock

due to erosion by wind. The preservation potential of abrasion features is significantly

higher on harder wind-polished boulders and cobbles, where it takes longer to weather

the surface and remove abrasion marks.

These features have been used to define the limit of the southward advance of cold ice 2

km into the present ice-free area of the central Allan Hills during the LGM' This

advance overtopped landforms up to 100 m above the present ice limit' such an ice

advance requires that the adjacent outlet glaciers flowing north past Allan Hills were

higher by a similar amount. These newly recognised cold-based glacier features provide

criteria for mapping the former LGM extent of ice throughout the TAM and elsewhere

in Antarctica where similar bedrock lithologies are present.
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CHAPTER SIX

MASS MOVEMENT STRIAE

INTRODUCTION

This chapter draws attention to the generation of striae in gravity-driven movements of

rock debris by examining two mass movement deposits of very different character. The

first example is a debris-avalanche deposit of Holocene age on the lower slopes of Mt.

Ruapehu in the North Island of New Zealand, and the second is a modern rock-fall from

tlre central Southern Alps in the South Island of New Zealand. Characterising striae

formed by mass movement is important because mass movement deposits can have

similar texture and appearance to glacial deposits.

..Mass movement" is the down-slope movement of soil and rock material under the

influence of gravity (Selby, 1993). This encompasses a wide variety of movements that

differ depending on material, slope and water content. Several classification schemes

have been developed, but considerable confusion exists in the application of terms. One

of the most widely used classifications is that of Varnes (1958), which provides a

simple depiction of the main types of mass movement (Figure 6.1) and is used in this

study.

As the name implies, rock-falls are the result of falling particles of resistant rock. This

contrasts with debris-avalanches that occur neilr the opposite end of the mass-movement

spectrum and result from the process of flow involving variably wet soils and

unconsolidated rock.
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Figure 6.1 Classification of mass movement types according to Varnes (1958)' Rock-fall

and debris-avalanche are positioned at opposite ends of the mass movement spectnrm (large

arrows), (modified from Selby, 1993)'
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Rock-falls produce talus at the base of steep slopes and generate clasts ranging in stze

frorn pebbles to large boulders. The deposits are typically poorly-sorted and have often

been misinterpreted as glacial deposits (Hewitt, 1999). Individual rock particles move

by rolling, bouncing and sliding until they reach a lower slope and an area comprising

similar-sized particles. Larger rocks will roll and bounce over the smaller ones and tend

to accumulate lower on the talus slope (Selby, 1993). Grain{o-grain interactions are

frequent, but impact forces will vary depending on the size and movement of each rock

particle. However, these are often great enough to produce abrasion marks on rock

surfaces.

Debris-avalanches have been defined as "rapid movements of an incoherent unsorted

mass of rock and soil mobilised by gravity''(Schuster and Crandell, 1984). These are

separated from debris-slides and debris-flows on the basis of water content and degree

of defornration of tle soil material (Figure 6.1). Therefore, a debris-avalanche contains

more water and shows greater deformation than a debris-slide, but less water and

deformation than a debris-flow (Selby, 1993). Inter-particle contact forces and

deformation are significant and can produce both large shattered blocks that still

preserve the original bedrock stratigraphy and also discrete clasts and rnatrix (Palmer

and Neall, 1989). Debris-avalanches typically produce hummocky, poorly-sorted and

chaotic deposits that are similar to glacial tills.

Several studies have noted the superficial similarity between mass-movement and

glacial striae. This has led to confusion in the distinction between glacial and non-

glacial poorly-sorted deposits (e.g. Judson and Barks, 1961 ; Dott, 1961; Zamoruev,

1974; Schermerhorn, 1974a;Eyles, 1993; Jensen and Wulff-Pedersen, 1996, Hewitt,

1999), (see "Literature Review", Chapter One). This is further complicated by the fact

that debris-flows often involve glacial or tectonically derived sediments. In these

circumstances, a single lnass movement deposit may include clasts striated by several

different mechanisms. Thus, a better understanding of striae characteristics in mass

movement deposits should help in correctly interpreting poorly-sorted deposits of

unknown origin.

l5l



Chapter 6 Mass Movernent stiae

------------l

North

Mt Ruapehu and Mudmotu
debris€vala-fi ctlE de Posit

r+t
0 roo a,o ln

Murehison ValleY
rcck-tafi dePosit

South lsland

Figure 6.2 Map of New Za\and showing the locatlon of the mass rno\iemeff study sites

152

6.2,L

MURIMOTU FORMATION' @EBRIS-A.\r'ALADICIIE)' MT RUAPEIIU'

NEW ZEALAND

Background

IvItRuapehuQTITm)isthehigfuestmountainintheNo'rthIslan4NewZEaland.Itisan

aotive andesific stratovolcano in the southern part of the Tongariro volcanic oentr€ of

the Taupo Volcanie Zone (Ilackett and Houghton, l9S9). A' distinctive area of

hqnunook)'topography is present o.n the northwestem lower flank of the mouRtain near

Higbway 48 anit the Chateau Tongariro (Figure 6.3 and Figure 63). This is part of the

Murimotu Fonnatlonn which l,ns bEen identified as a debris-avalanche depoeit (Palmer

rurd N,eal[, 1989}. Striated slaSts ,are pre \rrr*t in the deposit and pro:vide a clear eNatmple

of non-glac'ial striae in a diamrietoll deposrit.
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The mounds were originally interpreted to be blisters on the surface of lava that had

flowed over water-saturated ground (Hill, 1891; Bossard, 1928, both referenced in

Gregg, 1960). Park (1926) described them as conical hills and interpreted them to be

glacial moraines on the basis of their similarity to poorly-sorted deposits in glacial

terrain. These and other "dome-shaped hills" found on the westem slopes of Mt Egmont

in Taranaki were later interpreted by Grange (1931) to be the result of "mudflows

caused either by eruption from a crater lake, collapse of a sector of the volcano, or by

the action of rain and volcanic ash on the sides of the volcano during or following an

enrption". Interestingly, rare striated and faceted boulders were noted in the deposits.

These were suggested to be either scratches formed in the mudflow or glacial striae on

boulders incorporated into the mudflow.

The mounds have subsequently been interpreted to be the result of a debris-avalanche

(Hackett a1d Houghton, 1989; Palmer and Neall, 1989). Pahner and Neall (1989)

restricted the use of the term "Murimotu" to diamictons and breccias exposed in the area

of the Whakapapanui and Whakapapaiti streams and formally named them the

Murimotu Formation. The Formation covers c. 23 km2 and contains 0.2 krns of material

forming an irregular lobe that pinches out onto older deposits (Figure 6'3)' The

Formation is divided into three facies. Facies I and 2 are characterised by the presence

of debris-avalanche blocks and hummocky surface topography. Facies 1 occupies the

central axis of the formation and Facies 2 occurs along the lateral margins. Facies 3

contains few blocks and either overlies Facies 2 or occurs beyond the lateral margins of

Facies 2. The deposit was interpreted as a single debris-avalanche from a gravity-driven

sector collapse high on the western flank of Mt Ruapehu (Figure 6'4)' The flow was

initially confined in the Whakapapanui Valley before becorning unconfined in the

vacinity of the Chateau Tongariro (Palmer and Neall, 1989). Timing of the event was c'

9540 years B.P from wood found within the formation (Topping,1973).

The sampled outcrop in this study is located in the central axis of the deposit, within

Facies I of Palmer and Neall (1989). They described Facies I as containing >50%

debris-avalanche blocks up to 36 m long that constitute completely shattered masses of

clasts and matrix-supported breccia. The deposit also contains fragments of lithified
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volcaniclastic rock and subangular to angular clasts of andesite and dacite up to 4 m in

length. The upper surface is hummocky with up to 10 m relief (Figure 6.4).

Interestingly, palmer and Neall (1989) make no mention of striated clasts or boulders

within the deposit. Finally, it is possible that some glacially striated bedrock or moraine

debris from higher parts of Mt Ruapehu was incorporated in the debris avalanche.

Figure 6.3 Map showing the distribution of the Murimotu Formation and sample location

(modified from Palmer and Neall (1989).
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Figure 6.4 View looking southeast showing Mt Ruapehu and the Murimotu debris-

avalanche mound topography in the foreground. The approximate source area of the debris is

marked.

6.2.2 Fieldwork

Highway 48 dissects one of the distinctive debris-avalanche mounds of the Murimotu

Formation, approximately 4.5 km by road from the Chateau Tongariro (175"30'30"

39"10'10") or 265229 NZMS 260, S19, Raurimu. (Figure 6.3). A section was measured

and three units were defined (Figure 6.5). Units I and 2 occur within the Murimotu

Formation and are mantled by the overlying air-fall deposits of the Papakai Tephra

Formation (Unit 3) (Topping, 1973; Palmer and Neall, 1989). Two collections of clasts

were raken from Unit I (Figure 6.6), one being a bulk sample of predominantly pebble-

sized clasts for the purpose ofclast-shape analyses, and the other being several clearly

striated larger clasts were selected from the outcrop for striae characterisation.
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Figure 6.5 An outcrop of one of the debris-avalanche mounds showing Unit I and unit 2

of the Murimotu Formation and overlying Papkai Tephra Formation' Clast sample location also

shown.

outcrop description for Murimotu Formation, Highway 48, Mt Ruapehu

UNIT I DIAMICTON

Lower contact obscured by scree. Matrix-supported (locally-clast supported) diamicton' Red-

brown oxidised colour (particularly in centre of outcrop). Clasts range from boulders up to l'3

m diameter to granules. Average clast size is large pebble to cobble size. Clasts are angular to

subangular, some show striae. No obvious imbrication. Very poorly sorted to unsotled'

Lithologies include pumice, light and dark-coloured andesite and altered andesite. Some clast

surfaces show an orange/pink weathering colour and show many small striae' Matrix is coarse

sand and granules. Thickness is maximum 2.3 m above scree slope to base of UNIT 2'

UNIT 2 DIAMICTON

Lower contact with UNIT I is distinct but gradational over 15 cm, irregular and wavy with 30-

40 cm relief. UNIT 2 fines up (normal grading). Basal 50 cm is matrix to clast-supPorted

diamicton. Red-brown colour. Clasts range from 30 cm a-axis to granules. Average clast size is

approximately 5 cm. Ctasts are angular to sub angular. Some show striae' No obvious
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imbrication. Very poorly sortecl. Matrix is sand and granules. Lithologies as in UNIT l. Above

basal 50 cm. significantly lower clast concentration. Matrix-supported. Clast size is unchanged

from below and angular to subangular. Matrix is sand and silt. Upper 30 cm clast poor, dark

brown paleosol horizon. Thickness of UNIT 2 is variable up to 2.0 m.

UNIT 3 LAPILLI (PAPAKAI TEPHRA FORMATION)

Lower contact with UNIT 2 is sharp and wavy with up to 50 cm relief, but mostly 20 cm' The

unit is poorly sorted pumiceous lapilli. The deposit appears to drape UNIT 2 and has soil

developed on the top with abundant vegetation. UNIT 3 is up to I m thick'

r57

Figure 6.6 Detail of UNIT I (Facies

sorted diamicton with striated clasts. The

hammer, which is 33 cnr long.

I of Palmer and Neall, 1989) showing angular, poorly

bulk clast sample was taken from the area around the
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6.2.3

Mass Movement striae

Clast shape

One hundred clasts were measured from the bulk sample taken from Unit 1 (Figure 6.6)'

Shape analyses were performed using the method outlined in Chapter 2 and clast shape

data are presented in Appendix 5.

The clast sample comprises light-coloured andesite/dacite clasts (54 %), dark-coloured

andesite clasts (34 %) and deeply oxidised clasts (12 %). The dark andesite clasts are

slightly harder than the lighter andesite/dacite clasts and the oxidised clasts. Clast form

is displayed in Figure 6.7 andshows a broad distribution with clast c:a axial ratios

plotting from 0.26 to 0.83. The majority of clasts falling above 0.4 and show the highest

average c:a ratio (0.54) of all environments in this study. This indicates a marked

tendency toward blocky shapes and the absence of elongate or slabby clasts.

Slabs Elongate

Figure 6.7 Clast form diagram showing the dominance of blocky clasts and highest

average c:a axial ratio of all environments studied. Small black triangles represent striated

clasts.
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Clast roundness is displayed in frequency percent h stograms in Figure 6.8' The

distribution shows a dominance of very angular and angular clasts, with 47% in the 0.1

category, 50% in the 0.2 category and no clasts with roundness greater than 0.3.

Average roundness shows the lowest value (0.16) of all environments in this study. The

0.1 class is dominated by dark-coloured andesite clasts, the 0.2 class is dominated by

slightly softer light-coloured andesite/dacite clasts and the 0.3 class contains only light

andesite/dacite, suggesting that lithology infl uences roundness.

Clast roundness and lithologY for
the Murimotu Fm

a Altered

r Andesite (light)

r Andesite (dark)

0.2 0.3 0.4 0.5 0.6 0-7

Krumbein Roundness

Figure 6.8 Roundness and lithology histogram for clasts from Unit 1 (Facies 1) of the

Murimotu Formation debris-avalanche deposit. The sample is the most angular of all samples in

this study (average roundness of0.t6).
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The shape characteristics are highlighted in the covariant plot of RA index vorsus C+o

index (Figure 6.9). Clasts from the sample show a low Ceo index of only l4o/o and a

remarkably high RA index (g7%) This unusual combination of extreme angularity with

blocky clast form means the debris-avalanche sample plots in a unique field on the

diagram, well away from glacial, scree and tectonically influenced deposits (see

summary diagram in Chapter 8 for comparison).

RA index versus C40 index for the Murimotu Fm
(debris-avalanche)

100 o
Murimotu Fm
(debris-avalanche)

160

Mackay 1 {polythormal)
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I so""

I Supragtaciat

Hl suugtaciat

f] Glaciofluvial

0 20 40 60 80 100

Coo INDEX (% clasts with c:a 3 0.4)

Figure 6.9 RA versus C+o index diagram for clasts from Unit I of the Murimotu Formation,

which plots in a distinct part of the diagram, well away from all other samples and known fields.

This reflects the very angular and blocky character ofthe clasts. Shaded fields are from

published data in Benn and Ballantyne (1994) and Bennett et al. (1997).
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Distinct planar fracture surfaces occur on 40 o/o of the clasts. These surfaces typically

have a slightly oxidised pink and orange weathered appearance. Small-scale striae occur

on l0 % of the clasts, mostly on the weathered surfaces and all of which are dark-

coloured andesite clasts in the 0.1 Krumbein class. Striae occur on clasts of all shapes

(Figure 6.7).

6.2.4 Character of debris-avalanche striae

Several clasts showing obvious striated surfaces were selected from the outcrop for

detailed striae analyses. General observations are discussed below and additional large

colour images and comments are presented in Appendix 1, "Linear Abrasion Atlas-

Mass movement striae - (debris-avalanche)" and striae data are presented in appendix 5.

Although striae were recorded only on dark-coloured andesite clasts in the bulk sample,

the larger clasts selected from the outcrop show striae on both dark-coloured andesite

and light-coloured andesite/dacite. The striae are best preserved on weathered fracture

(often flat) surfaces. The surfaces have no consistent relationship with the long axis of

the clast. Parts of some surfaces show a 
o'background" of microstriae (< 0.25 mm width

and <2 mm length). Larger striae are superimposed on this background and range up to

broad compound striae (4 mm wide) that have fine parallel striae on the surfaces.

Some clasts display striae with no preferred orientation and wide range in shape and

size on a single surface (Figure 6.10, A and B). However, others show sets of more

regular parallel striae on an individual face, occasionally sub-parallel to the long axis

(Figure 6.10, C and D).
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A) B)

C)

Figure 6.10 Examples of striae on weatherecl fracture surfaces of clasts from the Murimotu

Formation. A) Well-defined striae on a weathered flat face showing weakly grouped striae' but

many others at multiple orientations. B) A flat face showing a high density of small striae with

only weak clustering of striae (clast I in Fig. 6. l2). C) Parallel striae on the flat face at the end

of a clasr (clast 2 in Fig 6.12). D) A surface showing high density of striae, some of which are

large compound striae sub-parallel to the long axis of the clast. Larger images of these and other

clasts with additional comments are presented in appendix l, Linear abrasion Atlas - Mass

movements striae (debri s-avalanche).
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One unusual example displayed fine sub-mm width striae that appear to radiate from the

centre of the clast (Figure 6.1l). The surface has several larger striae superimposed on

the finer striae. The process producing these splayed striae is not clear'

Figure 6.ll A) A striated andesite/dacire clast showing part of the surface where thin striae

radiate outward from the centre of the clast. B) Closeup of the splayed striae with one striation

cutting across the others. This clast is also shown in appendix l, Linear abrasion Atlas - Mass

movements striae (debris-avalanche),Images 5 and 6.

Striae orientation

Wide-ranging orientation patterns are evident on the Murimotu debris-avalanche clasts'

These are displayed in Figure 6.12. Clast t is a large light-coloured andesite/dacite clast,

which is very angular and elongate (b:a ratio of 0.65), with a flat face showing an

exceptionally wide range in orientations. There are two weak clusters in orientation but

it also shows the highest standard deviation (46'96) of the three clasts'

This contrasts with clast 2, which is a blocky (b:a ratio of 0.86) andesite clast. It has a

flat face showing remarkably parallel striae. The face occurs on the clast end and
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therefore the sbiae w€r€ not measured relative to the long axis of the clasl Rather, they

were measured rElative to an afbitr,ary anis that ooineidEd with the rnain hend of the'

striae. Eighty five percent of striae oosur within 30o of the arbifrary axis (180),

indioating a well-defined mod-e and low range (58') md standard deviation (21"). The

sffirae are clearly not rctrhted to the fior,ry axis of t]re,clast indicating ttrat parallel sftiae can

ocour on flat fac-es of arry orientation in debris-avalanches'

Clast 3 is an olongate (b:a ratio sf 0.6-1), light-coloured andesite/dacite clast with arn

r,mdulating fracture:Eurfac6 showing abund'ant striae. The sniae are moderately well

grouped (standard deviation 36o) with a range of 66o, and a well-developed mode

occurring b-etw,ecn 120o amd 1500, but sftill shows awide range in striae orientation

ranging up to 66' from the trong axis, with a standard doviation of 36".
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Murimotu Fm (debris'avalanche) Clast 1
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Figure 6.12 Striated clasts from the Murimotu debris-avalanche deposit. The half-rose

diagrams represent the orientation of sfiae relative to the long axis of the clast (180"), except

clast 2 (see text), Striae are grouped into 5' segments. The black alTows indicate average striae

orientation. Also shown is a plot of striae length and width. Additional large colour images of

these and other clasts are presented in appendix l, Linear Abrasion Atlas-(Mass movement

striae).



Chapter 6 Mass Movement striae

Striae length

Striae length is represented in Figure 6.12 andFigure 6.13. The clasts show the shortest

maximum lengths and least range in striae length of all environments studied. Clast I

shows the shortest maximum length of 12 mm, lowest average length (4'5 mm) and

lowest range, despite not being the smallest clast. Clast 3 (longest clast) shows only a

slightly longer maximum striae length than the smallest clast (21.5 mm and 20'5 mm

respectively), as well as a slightly longer average striae lenglh (7.3 mm and 5'6 mm

respectively). These data suggest there is no obvious relationship between striae length

and clast size or shape.

Glast No. 1a-axis1

Clast 1 1tzo.'y

Clast 2 (rro,n.)

Clast 3 (tgo mm)

striae length range (mm)

10 20 30 40 50 60 70 B0 90

Figure 6.13 Striae length ranges and averages for the three clasts from the Murimotu Fm

debris-avalanche deposit. The striae show the shortest maximum lengths and smallest range of

all clasts in all the environments in this study.

Striae width

Striae width is shown in Figure 6.12 and Figure 6.14. Clast 3 is the largest clast and

shows the widest striation (4 mm) and widest average (1.0 mm). The widest striae are

compound striae that constitute broad scrapes, most of which have fine parallel striae on

the surface. These are probably the result of a single striating rock fragment. Clast 2 is

the smallest clast with the most equidimensional shape and a striated surface on one

end. It shows the smallest range and average striae width. While only three clasts are
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considered here, the data suggest that wider striae occur on larger and more elongate

clasts.

Clast striae width (mm)

Cf ast No. (a'axis) 0 0.5 1 1.5 2 2'5 3 3'5 4 4'5 5

Clastl ltzomml - ' ' ' i '

Clast 2 (rto mm)

Clast 3 (tso mm)

Figure 6.14 Striae width for the Murimotu Fm debris-avalanche clasts' Clast 3 (largest clast)

has the widest striae and highest average width, whereas clast 2 (smallest clast) has the lowest

range and average width.

Striae width and length ratios

Despite the overall shortness of the striae on the Murimotu Fm debris-avalanche clasts,

the striae are relatively wide. Width divided by length ratios show that clast I has the

highest width/length ratio (0.625) of the three clasts and is the second highest value

from all environments studied (Figure 6.15). Only one polythermal glacially striated

clast has a higher width/lenglh ratio. Furthermore, clast I has the highest average

width/length ratio of all clasts in all environments studied. This indicates that the striae

are generally shorter and wider compared with striae on other clasts. Clast 2 (the

smallest and blockiest clast) has the lowest average widtUlength ratio of the three clasts

indicating that most of its striae are relatively longer and thinner than the striae on the

other two clasts.
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least I striation is also variable with a low of 48 o/o on clast 2 due to the striae being

closely grouped, whereas clasts ;1. and 3 show higher values of 78 o/o and79 Yo

respectively indicating the striae are distributed widely across the clast surface. These

results indicate that overall, the density of striae is lower than on glacial clasts but

variable, with many combinations of individual striae, background density and

distribution possible.
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Figure 6.16 Stnae density diagram showing the number of striae per cmt and the percentage

of background striae for each clast. The clasts have the lowest range in striae per cm? of all

environments studied.

Summary of the Murimotu Fm debris-avalanche deposit6.2.5

The Murimotu Formation is a volcanic debris-avalanche deposit that contains clasts

striated by particle collisions during the avalanche process. The deposit has distinctive

clast shape characteristics. It is dominated by blocky clast form (c:a axial ratios > 0.6)

with the highest average c:a axial ratio (0.54) of all environments in this study,

reflecting the massive crystalline character of the source rocks that have few natural

planes of weakness. The clasts are distinctly angular (0.1-0.3 Krumbein roundness) with

the lowest average Krumbein value (0.16) of all environments and common flat fracture

faces with sharp irregular edges. This means the clast sample plots in a unique position

on the RA-Cao diagram, separate from glacial, rock-fall and tectonic samples. Lithology
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appears to influence the roundness of the clasts with dark-coloured andesite clasts

dominating the 0.1 class, and softer light-coloured andesite/dacite clasts tending to

become slightly more rounded. These features are interpreted to reflect turbulent

transport within the debris-avalanche, which generates frequent clast breakage and only

minor edge rounding on clasts.

Striae occur on l0 % of the clasts and exclusively on very angular clasts but are not

influenced by the shape of clasts. Striae occur only on the dark-coloured andesite clasts

in the sample of 100 clasts, but are also present on larger light-coloured andesite/dacite

clasts selected from the outcroP'

Striae occur mostly on flat, weathered faces but are also found on curved and inegular

surfaces. Striae orientation ranges from random or weakly grouped, to parallel striae in

exceptional cases, but these are not aligned with the long axis. A few curved striae

occur on some clasts. Striae occasionally form on clast ends. This particular

characteristic was also found on the tectonic clasts.

Striae length shows the lowest overall range of all environments, but striae width varies

markedly reflecting the occurrence of wide compound striae on most clasts. The debris-

avalanche clasts show lower striae density than glacial clasts and smallest range in striae

per cm2 of all environments. However, the density of background striae varies

markedly.
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6.3 MURCHISON VALLEY, (ROCK-FALL DEPOSIT), NEW ZEALAND

6.3.1 Background

The Murchison Valley is situated in the Mt Cook region of the central South Island of

New Zealand (Figure 6.2). The valley contains the Murchison Glacier and an extensive

gravel outwash system downstream from the glacier terminus. The valley is surrounded

by steep mountain topogfaphy consisting of Mesozoic sandstone "greywacke" and

argillite. The location has been used as a case study on the "survivability" of glacially

striated clasts after they enter a fluvial environment. This case study, a full introduction

to the area and a location map are included in Chapter 3, "Temperate glacial striae".

Modern scree slopes are present on the eastern side of the Murchison Valley. These

comprise largely rock-fall debris and display many angular broken clasts with striated

surfaces. One site was selected to provide examples for characterisation of striae

produced by the rock-fall process.

6.3.2 Fieldwork and site description

The rock-fall site is one of eleven used for the case study focussing on striae

survivability. For consistency with this case study the site is named "MH 4". It is

located on the eastern side of the Murchison valley approximately 1900 m downstream

from the glacier terminus. At this site, a steep scree slope encroaches the modern

proglacial lake. The site consists of angular, poorly sorted, unlithified debris with clasts

ranging from boulders several metres in diameter to pebbles (Figure 6' 17)
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Figure 6,17 Site MH 4 on the eastern side of the Murchison Valley. Active scree slopes

extend into the modern proglacial lake. Note the large range in clast size and angular shape'

6.3.3 Clast shape

Fifty clasts were randomly selected from site MH 4, and clast-shape analysis was

performed using the method outlined in Chapter Z.The clast data are presented in

appendix 5.

The lithology of the scree clasts is dominated by indurated sandstone (66Vo), with the

remainder being argillite (347o\. Clast form is displayed in Figure 6.18. Most clasts plot

lower on the diagram (low c:a axial ratios with average 0.31) toward slabs and

particularly elongate forms (low b:a axial ratios).
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Slabs Elongate

Figure 6.18 Clast form diagram for Site MH 4, rock-fall deposit. The sample shows the

lowest c:a axial ratio (0.3 I ) of all environments studied. Small black triangles represent striated

clasts.

Figure 6.19 displays frequency percent histograms of clast roundness and lithology' The

distribution shows roundness classes up to with 0.4 represented' Only l0% of clasts

occur in the 0.1 roundness category, but a distinct modal peak in the 0'2 category (56%\

and 30% in the 0.3 category, give an average roundness of 0.23 (angular).

Clast roundness and lithology for Site 4'
Murchison Valley rock-fall deposit

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Krumbein Roundness

Figure 6.19 Roundness and lithology histogram for clasts from Site MH 4, rock-fall deposit'

The sample has an average roundness of 0.23 (angular)'
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Form and roundness results are also displayed in a covariant plot of RA index versus

Casindex (Figure 6.20).The high to moderate number of very angular and angular clasts

(66%),and high percentage (78%) of clasts with c:a axial ratios below 0.4 means the

sample plots high and to the right on the diagrarn close to the supraglacial and scree

fields.

RA index versus C40 index for Site MH 4
Murchison ValleY (rock-fall )

Munmotu Fm
(dobris-avalanchs)

174

SitE MH
(rock-fall) i I s"ru"

I I supragtaciat

H suuglaciat

fl Gtaciofluvi"' __f

0 20 40 60 E0 luu
c40 INDEX (%)

Ftgure 6.20 RA versus Cae index diagram for clasts from site MH 4, rock-fall deposit. The

sample plots high and to the right on the diagram just outside the supraglacial field. The

supraglacial and scree fields have a significant overlap. Shaded fields are from published data in

B-enn and Ballantyne (1994) and Bennett et dl' (1997).

6.3.4 Character of rock-fall striae

Striae occur on26 % of the 50 clasts samples and in all roundness categories f,rom 0.1

0.4, preservation of striae is highly dependant on lithology with only argillite clasts

showing striae. This may be true only for small-scale striae on pebble-sized clasts,
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because larger abrasion marks are seen on sandstone boulders. Flat surfaces are

common and usually represent fracturing along bedding planes within the argillite.

These surfaces are present in all roundness categories, and striae generally occur on the

flat fracture surfaces. The striae range from microstriae to wide compound striae (up to

4 mrn wide) (Figure 6.21). Striae orientation ranges from random to sub-parallel but

there appears to be no consistent relationship between striae and long axis of the clast'

Figure 6.21 Example of an angular striated argillite clast from the rock-fall deposit. A)

Randonrly oriented striae on a fresh fracture surface. Striae range from microstriae to the I I rnm

long,5 mm wide compound striation (inset square). B) Closeup image of the surface showing

the broad compound striation with other individual striae oriented perpendicular to the long axis

(centre top of the image). This is MH 4 clast I in Figure 6'23'
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Striae on clast surfaces at Murchison Site MH 4 vary widely in scale. On large boulders

with fresh fractured surfaces, abrasion marks range from superficial scrapes to

centimetre deep gouges. These were not studied in detail but nevertheless show that

abrasion marks occur on clasts of all sizes (Figure 6'22)'

Figure 6.22 A large sandstone boulder showing a freshly broken surface and common

variable abrasion marks interpreted as the product of clast collision during rock-fall on scree

slopes. The most prominent abrasion marks are arrowed'

Several pebble-sized clasts showing obvious striae were selected for detailed analyses.

Largecolour images and notes on the main features are presented in appendix 1,

o,Linear Abrasion Atlas, Mass movement - rock-fall". Striae data are presented in

appendix 5. Details of the striae are discussed below'
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Striae orientation

Mass Movement sbrae

Striae orientation on clasts from the rock-fall deposit was measured relative to the clast

long axis as outlined in Chapter 2.The results are shown in Figure 6.23. The striae are

not preferentially oriented parallel to the long axis of the clasts. Striae on clast t have no

obvious preferred orientation and show a high standard deviation of 5#. Several of

these striae are curved. Striae on clast 2 also show a high standard deviation of 62.5o.

Howevern 54.5 %of striae are clustered between 240o and 270o, showing that some

striae are oriented parallel to each other, although they are almost perpendicular to the

long axis of the clast. This clast has no curved striae. Striae on clast 3 also show a

similar high standard deviation of 55". However, some striae are clustered about a mode

at240'. This clast shows one curved striation'

Although only three clasts are considered, the data show that striae on rock-fall clasts

are not related to the long axis of the clast. Striae show very wide ranges in orientations

on all three clasts, although two clasts show some weakly clustered striae. These results

suggest that the striae are inscribed by multiple striating eventsn with the clasts changing

orientation many times during transport. This is consistent with them having fallen,

bounced and rolled down the scree slope incurring many impacts with other rock

particles.
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Figure 6.23 Striated clasts from MH 4 rock-fall deposit. The half-rose diagrams represent

orientation of striae relative to the long axis of the clast (180')' Striae are grouped into 5o

segments. The black arrows indicate average striae orientation. Also shown is a plot of striae

length and width.

Striae length

Striae length does not appear to be clearly related to clast size or shape (Figure 6'23 and

Figure 6.24). The shortest striae and lowest average length do occur on the smallest

clast (clast l), but the intermediate sized clast 2, has the longest striae (30.5 mm)' These



179
Chapter 6 Mass Movement shtae

two clasts have identical b:a axial ratios (0.62). Average lengths are very close although

clast 3 (the largest clast) has a slightly higher average length (5.7 mm) compared with

clast I (4.1 mm) and clast 2 (5.3 mm).

Clast No. (a-aris) 0 10 20

Clast striae length (mm)

30 40 50 60 70 B0 90

Clast 1 (oz'n'n)

Clast2pt^ 1

Clast 3 (rol..)

Figure 6.24 Striae length ranges and averages for the three clasts from Site MH 4 rock-fall

deposit. The shortest striae and lowest average length occur on the smallest clast (clast 1) but

the longest striae occur on the intermediate size clast (clast 2)'

Striae width

Striae width is highly variable and is not related to clast size or shape. The widest

striation (a mm) is a compound striation and occurs on the smallest clast (clast 1)' The

shortest maximum striae width and smallest range occurs on the intermediate size clast

(clast 2). Average widths are all low and very close. Clasts I and 2 have almost identical

average widths of 0.41 mm and 0.4 mm respectively while the largest clast has an

average width of 0.5 mm (Figure 6.23 and Figure 6.25)'

Clast striae width (mm)

0.5 1 1.5 2 2.5 3 3.5 4 4.5Clast No.
Clast 1

Clast 2

Clast 3

n
(a-axis) U

t_

(62 mm)

(77 mn)

(104 mm)

Figure 6.25 Striae widths range up to 4 mm. The widest is a broad compound striation on

the smallest clast (clast 1). Average widths are all low and very close (between 0'4 mm and 0'5

mm).
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'SJrlae 
width and length ratios

Width/length ratios are shown in Figure 6.26. The largest clast (clast 3) shows the

highost range in width/length ratio, and the smallest clast (ctast l) has the lowest range',

however, average widttllength ratios are si:milar for all three clasts indieating that striae

are generally the sarrae regardless of thE clast size'
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Striae density

The rock-fall clasts show a wide range in density (Figure 6,27). Clast I has the highest

number of striae per cm2 of 2.8,compared with the much lower values of 1.4 and 1.5

striae per cmt for clasts 1 and 2 respectively. These clasts show the widest range in

percent background striae of all the environments studied. Clast t has 100 %

background striae, whereas clast 2 has 60 o/o andclast 3 only 20 %, which is the lowest

for all the environments studied. The percentage of counted squares showing at least I

striation also varies widely. Clast t has a high of 72 o/o indicating striae are widely

distributed whereas clasts Z and 3 have 48o/o and 49 o/o respectively, but this reflects the

scarcity of striae rather than limited distribution.

t8l

Striae Per cm2

1 1.5 2 2.5

clast 3 c\ast2

Background striae

) 50% J zsv.

3

c\ast 
1

3.5

O too "2.

40 0.5

) 2s%

Figure 6.27 Striae density diagram showing the number of striae per cmt for each clast' as

well as the percentage of "background" striae. This environment shows the widest range in

background striae.

6.3.5 Summary of MH 4 rock-fall dePosit

Clasts from Site MH 4 are the result of rock-fall. Form and roundness of pebble-sized

clasts highlight the elongate, slabby and angular character of the clasts. This sample

shows the lowest average c:a axial ratio of all the environments studied. This reflects
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the character of the well-bedded source bedrock that breaks along bedding planes and

also the limited edge rounding during the short, rapid downslope transport. These shape

characteristics cause the sample to plot high and to the right on the RA-C+o diagram

close to the unmodified "supraglacial" and o'scree" fields'

Striae occur on about a quarter of clasts and are dependant on lithology, with striae

occurring only on argillite clasts and most commonly on fresh, planar fracture surfaces'

Striae orientation ranges from random to weakly grouped, but are not related to the clast

long axes. Curved striae occur on some clasts' Average striae lengths and widths are

low. However, maximum striae widths are large, despite the small size of the clasts,

reflecting the presence of rare but characteristic compound striae on the clasts. The

clasts show a wide range in striae density and have the largest range in background

striae of all the environments studied.

6.4 COMPARJSON, DISCUSSION AND CONCLUSIONS

The two forms of mass rnovement studied here show remarkably different shape

characteristics, reflecting the character of the source rock. For the Murimotu sample' the

source rock is massive volcanic andesite with few planes of natural weakness,

producing blocky and extremely angular clasts that were transported by turbulent

conditions within a large debris-avalanche. The Murchison clasts are derived from well-

bedded and extensively fractured fine-grained sedimentary rock with a natural tendency

to break along weak bedding planes, producing angular slabby shaped clasts during

small-scale rock-fall. The clast shape characteristics are highlighted on the RA-Cao

diagram with the samples plotting on different sides, but both higher than all other

samples from all the environments studied.

Both samples have striated clasts (10% for Murimotu debris-avalanche sample and26

o/o for Murchison rock-fall sample) and these are preferentially preserved on flat fracture

surfaces. Striae occur on the ends of some blocky debris-avalanche clasts' The only

other clasts that show striae on the ends are found in tectonic deposits'
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Rock-fall striae have the lowest avsrage widths of all environments studied, which

reflect the smaller clast sizes. However, both samples have wide range in width

measurements reflecting the occasional compound striae that occur on most clasts'

Both deposits display variable striae orientations. The Murimotu debris-avalanche

shows the greatest variability, with striae ranging from multiple orientations with only

weak clustering to markedly parallel but unrelated to the long axis. The Murchison

rock-fall clasts either show no preferred orientation or weak clustering, again unrelated

to the long axis.

For debris-avalanche clasts, the overall short, but occasionally very wide striae with

common weakly clustered orientations unrelated to the clast long axis, and variable

striation densities reflect the nature of clast interactions during the mass movement'

These are dominated by brief, multiple collisions within a chaotic, turbulent movement

of variably coherent rock fragments to produce a wide variety of abrasion possibilities

on a single clast.

For rock-falls, clasts move by falling, bouncing and rolling, unconstrained by other

debris. This generates numerous and frequent clast impacts varying in force depending

on the size of the falling clast, producing short but occasionally wide, variably oriented

striae. Density of striae depends on the number of individual impact events during

down-slope movement.

The examples studied here suggest that the combined analysis of shape, roundness and

surface features of clasts allow the clear distinction of between different types of mass-

movement deposits. It provides a basis for distinguishing mass-movement from glacial

deposits, which gelerally show better-rounded clasts and a higher density of long' thin

striae parallel to the clast long axis that reflects the continual traction of striating rock

fragments over the clast surface.
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TECTONIC STRIAE

7.1 INTRODUCTION

This chapter documents striae formed by tectonic movements by examining two

locations whsre conglomerate clasts and boulders have been incorporated into shear

planes of major active faults. The study sites are located in the southern North Island,

New Zealand. The first site is the Ngapotiki Fault, where Mesozoic greywacke bedrock

contacts modern beach gravels and the second site has Mesozoic greywacke in contact

with Holocene fluvial conglomerate along the Wellington Fault (Figure 7.1). These

provide examples of tectonically striated clasts for comparison with glacial and non-

glacial striae.

Figure 7.1 Map of lower North Island, New Zealand showing location of active faults

where tectonicallv striated clasts were collected.
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7.1.1 Tectonicabrasionnomenclature

Structural geologists have long recognised shiny, polished surfaces and linear features

on fault plane slip surfaces and used them as kinematic indicators of fault movement

(e.g. Tija, 1964,l97l; Petit, 1987; Lundin, 1989; Fry, 1992). These features are formed

during frictional sliding by removal of material by abrasion and by "plastering" on of

material through adhesion. A variety of terms have been used to describe various

tectonic features formed in these ways. These include terms such as striatiott, groove,

and tool mark, which are widely used in glacial geology (e.g. Eyles and Boyce, 1998;

also see literature review, Chapter 1) but also include terms such as slickenside and

slickenltne that are usually restricted to structural geology. The terminology has many

inconsistencies in the meaning of specific terms even within structural geology

literature (Fleurty, 197 5).

Slickensides have been defrned as "polished and smoothly striated surfaces that result

from friction along the fault plane" (Gary et al., 1977). However, the term slickenside

appears to be used liberally and is often interchanged with "striation", slip lineation and

slickenline. This not only confuses the distinction between planar and linear features,

but also the distinction between abrasive, adhesive and fibrous growth features. Fleuty

(1975) recognised the widespread confusion concerning the term slickenside, noting

that it had become common practice to use slickenside to describe linear features such

as striae or grooves as well as the "polished surface" (see Fleuty, 197 5 and references

therein). He stated that "such confusing usage for a simple, common term seem quite

unnecessary, leads to misunderstanding and poor communication of information". To

remedy this, the following terms and definition were proposed.

o Slickenside: "A polished and commonly, though not invariably, striated shear

surface in rocks".

o Slickenline: "A linear structure, either striation or grooving, resulting from

friction on a slickenside".
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o Slickenstep (Slickenside step):"A minute step feature on a slickenside, usually

approx imately perpendi cul ar to slickenlines"'

Finally, Fleuty (1g75) also acknowledged that other features variably described as

slickensides, slickenside striations and slickenside steps are not produced by friction and

abrasion, but are in fact "bundles of overlapping quartz or calcite fibres'

Despite this attempt to clarify the terminology, many workers persisted with the liberal

use of such terms. Means (1987) recognised this broad usage and extended the term

slickenside to cover a wide range of linear features on fault planes' This included

..classical sliekensides", which refers to smooth or shiny fault surfaces (slickensides of

Fleuty, lg7s)that are commonly striated in the slip direction, to less shiny types where

the lineation dominates, such as mats of parallel crystal fibres, vein bearing' non fibrous

surfaces with parallel slip lineation and surfaces of lineated gouge'

Means (19S7) described six types of slip-parallel linear features on slickensides.

L Grooves or scratches resultingfrom asperity ploughing - Produced by a

proturbance that is part of one sliding surface, or as a piece of debris between the

surfaces, with excavation accomplished by a variety of brittle or ductile

deformation processes. Terms such as 
oowear grooves", "wear tracks" or "tool

tracks" are used.

2. Debris streaks -Slip parallel elongate bodies of gouge formed either by the

wearing down of a soft asperity leaving a streak on the other surface or by the

"piling" up of debris fore and aft of the asperity, as in a manner claimed for some

glacial drumlins.

3. Erosional sheltering - Tails of erosion-sheltered material on the down slip side of

hard asperities in the same manner as "crag-and-tails"'

4. Fibre growth - Fibres and rods of vein material (commonly qtartz and calcite)

that fill potential voids behind steps or asperities'

5. Slickotiteformation - Dissolution surfaces with spikes and columns pointing in

the displacement direction. These are the inverse of crystal fibre slickenside

lineations.
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Nestecl ridge-in-groove lineations - Comrgated surfaces of nested ridges and

grooves that match each other on both sides of the fault plane.

7.1.2 Tectonic abrasion on fault surfaces

Hancock and Barka (1987) presented a detailed description of linear structures on slip

planes from normal faults in western Turkey. They recognised a hierarchy of linear

abrasion features listed in Table 7.1.

Table T.l. Average dimensions of slip-parallel lineations on fault surfaces (Hancock and

Barka, 1987).

Lineation tyPe Width or
wavelength (mm)

Depth or
amPlitude (mm)

Length
(mm)

Scratch-like striae 1 0.5 <200

Groove-like sfiiae 20 ) <300

Tool tracks 30 15 >1140

Gutters 45 25 ca 2500

Minor comrgations 50 20 ca 3000

Major comrgations 450 60 ca 10000

Mega comrgations 4500 2s0 ca 1 5000

Striae are described as ranging from scrafches to minor grooves,with scratches being

most characteristic of the polished areas of slip planes, often superimposed on larger

forms such as tool tracks, gutters and corrugations.Tooltracks are described as isolated

score marks (abrasive), and some are deeper at the up-slope end and others deeper at the

downslope end. Levee-like ridges, a few millimetres wide and high flank the edges of

sonre tool tracks. These tool tracks have been variously described as"prod marks"

(Trja, lgTl),"wear lracks" or"wettr grooves" (Means, l9S7). Striae, grooves and tool

tracks are all abrasion features produced by "asperity ploughing" described by Means

(1987). Gutters are described as rectilinearn steep sided, flat-floored channels a few

centimetres wide but do not, unlike striae, define a pervasive lineation on slip planes'
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Iverson (1991) noted the similarity of some glacial striae to features found on fault

surfaces, and Eyles and Boyce (199S) documented gtooves ranging from a few

millimetres wide and less than 20 cm long, up to 4 cm wide and 30 cm long on tectonic

slip planes. Other features included crescentic fractures and positive relief features such

as ridge-in-groove marks (less than I cm high and2 cm wide) similar to "rat-tail"

glacial structures that form as a ridge in the lee of a hard asperity and taper away.

Eyles and Boyce (1998) concluded that the gouge (diamict) produced by low grade

shearing along fault planes is directly comparable to deformation till (diamict) formed

by pervasive shearing beneath soft-bedded ice sheets. In their view, both diamict facies

are tectonically generated cataclasites, which display morphologically identical, but

differently scaled, genetically related features.

7.1.3 Tectonic striae on clasts

Reports that refer to tectonically striated clasts are much fewer (e.g. Judson and Barks,

1961; Pettijohn, 1956; Clifton, 1965; Robertson, 1971; Schermerhorn, 1974a; Winterer,

1963; Rattenbury and Sporli, 1985, Eyles and Boyce, 1998; see literature review in

Chapter 1). Perhaps the most detailed is that by Clifton (1965). He described polished

and striated pebbles from deformed conglomerates of various ages in the United States.

The striae are parallel microstriae typically between 0.1 and 0.5 mm long and 0.01 and

0.05 mm wide on polished pebble surfaces although larger'ogouges" several mm long

and up to 1.0 mm across showing intemal striae were also noted. Striae on opposite

faces of the same clast were generally parallel and over 50% of clasts showed striae

parallel to the long axis of the clast. Finally, he also noted that the striae commonly

were parallel to fracture planes in the clasts and oriented normal to the overall structural

trend of the area. More recently, Eyles and Boyce (1998) reported that some clasts on

tectonic slip surfaces have flat-iron or bullet shapes and exhibit unidirectional striae

parallel to the ridges. They also noted the similarity between these and glacially striated

clasts. [n the next section, two new occuffences of tectonically striated clasts are

reported.
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7.2 NGAPOTIKI FAULT, WAIRARAPA, NEW ZEALAND

7.2.1 Background and setting

The Ngapotiki Fault is located in the southeast Wairarapa region on the East Coast of

the North Island, New Zealand, It lies on the eastern side of coastal ranges on the

leading edge of the Australian plate within the "Hikurangi forearc", a fold-thrust belt/

subduction complex (Lewis and Pettinga, 1993). The fault is active and juxtaposes the

Late Jurassic-Early Cretaceous greywackes of the rapidly rising Aorangi range with

Late Miocene marine strata (Figure 7.2).The fault contact strikes approximately north-

south and dips west at about 45o" (Grapes et al., 1997). Raised beach ridges and tilted

Quaternary terraces indicate an uplift rate of 0.8 m/ka.

Te Rakauwhakamataku Point is a prominent boulder bank extending several hundred

metres offshore from the present sea-cliff near where the Ngapotiki fault intersects the

coast. It is considered to have formed within the last few hundred years and may record

the last coseismic displacement of the Ngapotiki Fault (Grapes et al., 1997). The

inferred position of the Ngapotiki Fault contact between greywacke and Miocene

mudstone lies east and seaward of the modern beach. However, a secondary low-angle

pug-lined thrust plane has formed within a wide zone of sheared greywacke that forms

the hanging wall of the Ngapotiki Fault and is exposed in the present sea-cliff at the

base of the headland. This has created a situation where crushed greywacke is thrust

over the modern beach (Figure 7.3). Several rounded beach boulders and associated

beach gravel is partly enclosed and overlain by greywacke cataclasite in the thrust

plane. The upper surfaces of the larger boulders display obvious abrasional striae. The

striae trend 094', which is identical to the trend of slickenlines developed on the thrust

plane of the Ngapotiki Fault further inland, confirming a tectonic origin for the striae

and the close relationship between the main and secondary thrusts (Grapes et a1.,1997).
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7.2.2 Fieldwork

Tectonic striae l9l

Fieldwork consisted of describing and measuring the sea-cliff outcrop of the secondary

thrust plane at Te Rakauwhakamataku Point. A bulk clast sample was collected from the

sheared conglomerate layer immediately surrounding one of several large, in situ

striated boulders at the base of the outcrop at the modern beach level. The sample site is

located at (775o22' I0"E 41o35'05"S).

Outcrop description of secondary Ngapotiki Fault (south to north) at Te

Rakauwhakamataku Point

GREYWACKE BRECCIAUNIT 1

Indurated sandstone and argillite (greywacke). Variably brecciated with abundant deformed

quartzveins, but some original bedding present. TJNIT I becomes increasingly brecciated along

outcrop (northward) toward LJNIT 2. A vertical shear zone about I m wide occurs l7 m before

the contact. The shear zone shows fine, grey fault gouge with broken quartz veins. UNIT I is 30

m wide.

UNIT 2 GREYWACKE CATACLASITE

Contact with Unit I is gradational and marked by an increase in deformation. Pervasively

deformed greywacke with abundant broken quartzveins and multiple shear planes at various

angles showing fault pug (gouge) texture. One dominant shear plane cuts across the outcrop

fiom south to north at 40o. The shear plane consists of fine gley fault pug (gouge) with abundant

fractured greywacke clasts up to 10 cm in diameter. LI-NIT 2 is 23 m wide.

L'NIT 3 SHEARED CATACLASITE WITH STRIATED BOULDERS

Contact with UNIT 2 is gradational, marked by the presence of striated boulders along the base

of the outcrop. TINIT 3 is similar to UNIT 2 but overlies and partially encloses beach boulders.

The boulders occur at beach level and are up to 1.5 m diameter. The boulders are greywacke

sandstone and subrounded. Several display parallel striae on the upper surfaces. Irregular layers

and pockets oftectonically sheared clasts and rounded beach clasts occur around the boulders.
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Some of these clasts show striae. This

53 m wide.

Tectonic striae

is where the bulk clast sample was collected. UNIT 3 is

t92

UNIT 4 GREYWACKE BRECCIA

Contact with UNIT 3 is gradational and marked by a lack of obvious shear planes. UNIT 4 is

similar to UNIT I and consists of variably brecciated greywacke with abundant quartz veins and

remnants of original bedding are present.

Figure 7.4 Exposure of the shear zone associated with the secondary Ngapotiki Fault, Te

Rakauwhakamataku Point. UNITS I to 3 and sample location are shown. The generaldirection

of thrust movement is from left to right over the beach. The sea cliff subsequently erodes back

to expose the tectonically striated clasts.
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Figure 7.5 The sea cliff exposing sheared cataclasite of UNIT 3 and in sitil overthrust

striated beach boulders. Discrete shear planes occur within the cataclasite'
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Figure 7.6 Closeup of in situstriated beach boulders within UNIT 3' A shear plane with

fine-grained fault gouge is visible above the boulders' The sample was taken from the deformed

layers and pockets of clasts comprising a mix of tectonic and beach clasts around the larger

beach boulders. This outcrop is approximately l0 m to the left of the outcrop shown in Figure

7.5.
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7,2.3 Clast shape

Tectonic striae t94

The bulk sample collected from the sheared conglomerate in Unit 3, provided 100 clasts

for shape analysis that was performed using the method outlined in Chapter 2. The clast

data are presented in Appendix 6 -Tectonic clast data.

The clast sample contains more sandstone (54%) than argillite clasts (46%), derived

from the local "greywacken'terrain. Clast form is displayed in Figure 7.7 and shows a

broad distribution with clast c:a axial ratios plotting from 0.16 to 0.7 (average is 0.45),

indicating a slight tendency toward blocky shapes. This is similar to the average c:a

axial ratios measured for temperate glacier clasts.

Slabs Elongate

Figure 7.7 Clast form diagram showing a dominance of blocky clasts from a shear zone

(Unit 3) of the secondary Ngapotiki Fault. The average c:a axial ratio is 0.45 (large black dot).

Small black triangles represent striated clasts.

Roundness and lithology are displayed in frequency percent histograms in Figure 7.8.

The distribution again shows a broad distribution, with all Krumbein roundness classes

up to 0.7 represented, reflecting the mix of angular tectonically fractured or tectonically

generated clasts with the better rounded beach clasts. The average roundness is 0.33

Blocks



Chapter 7 Tectonic

(subangular), which is similar to average roundness for ternperate glacial clasts. There is

no significant trend of one particular lithology (sandstone or argillite) in any roundness

class. Twenty one percent of the clasts showed evidence of tectonic fracturing' Slightly

more sandstone clasts (24%of total sandstone clasts) showed this as compared with 17

% of argillite clasts and these occur on clasts in all roundness classes except 0.7 (well

rounded).

Clast roundness and lithologY for
the NgaPotiki Fault

0.2 0.3 0.4 0.5 0'6

Krumbein Roundness
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Figure 7.8 Roundness and lithology histogram

the Ngapotiki Fault. The average roundness is 0'33

for clasts from the shear zone (Unit 3) from

(subangular).

Shape characteristics are highlighted in the covariant plot of RA index versus cco index

(Figure 7.9). The sample has an RA index of 39 and Cao index of 32, reflecting the wide

range in roundness and intermediate clast form'

r Argillite

I Sandstone
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RA index versus C40 index for the Ngapotiki Fault
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Figure 7.9 RA versus Cqo index diagram for clasts from the Ngapotiki Fault' The sample

plots outside lnown glacial fields and reflects moderate number of angular and very angular

clasts combined with an intermediate clast form. Data from other environments are included for

comparison. shaded fields are from published data in Benn and Ballantyne (199a) and Bennett

et al. (1997).

7.2.4 Clast striae

Striae occur onZTo/oof the clasts, and in all Krumbein roundness classes except the

most angular (0.1) and the most rounded (0.7), with a slight tendency to occur on clasts

in the 0.6 roundness class. slightly more argillite clasts carry striae (34 % of all argillite

clasts) compared with 20 % of sandstone clasts. The striae occur on both the fractwed

clasts as well as on whole, non-fractured clasts, and clast form does not appear to

influence the presence of striae (Figure 7.7)'
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Teetsnie stfiap are discussed in detail in section 7.3.6.HOwever, stfiae on the large

boulderg at the base of the Ngapotiki outcrop are hriefly diseussed below'

At the b.ase of the outcrop in unit 3, the cataclasite has e-roded to expose i'n situ beach

boulders that show StriaQ on the tlppor surfaces. TheEe otri.ae are p'arallel to each other in

the direction, of fau,h movement. The stri'ae are difficult to distinguis,h individually; but

6r€ Gontintrous ovef ounEd boulder surfaces, bUt nst on the lee ends, This suggests the

striating fiagtnents wereheld firmly in the enolosing fault gonrge as it deforured around

the boulder, but then eeaeed to striato the boulde-r once in the pressure shadsw that

wouldoccur on the lce side Flgure 7.10)'

F,igure 7J0 The surfase of a 'striated, in cinbmch boulder. The top s'rnface 'shows parallel

sUiae prodUeed as:the cataclasite of Unit 3 was thrust over the'tgp of the ib@eh' IndividUal 'smiae

are difficuJt todisti,ngr.lis:h, but lor,ni pervasively suiated surfaces.
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7.2.5 Summary of the Ngapotiki Fault clasts

The tectonically sheared outcrop at Te Rakauwhakamataku Point contains sandstone

and argillite clasts that have been rounded on a high-energy beach, subsequently

overthrust, and incorporated into a low-angle thrust plane associated with the Ngapotiki

Fault. This tectonic movement has caused differential movement between greylvacke

cataclasite and the beach, producing striae on the upper surfaces oflarge, in sittt

boulders and on surfaces ofclasts.

The clast form and roundness distributions represent both the rounded high-energy

beach clasts (blocky and subrounded to well-rounded), and also tectonically fractured or

possible tectonically generated clasts (variable form and more angular). Therefore, the

sample plots in an intermediate zone on the RA-C+o diagram. Argillite clasts are slightly

more prone to tectonic fracturing than sandstone clasts, but this is not obvious in the

form and roundness distributions. Clast form and roundness do not appear to be

associated with the occurrence of tectonic striae, although it is noted that no striae occur

on very angular (0.1) clasts. Argillite clasts are slightly more likely to carry striae than

sandstone clasts.

The percentage of striated clasts in this outcrop (22 %) is similar to the percentage in

temperate glacial deposits. The striae show a wide range in character. These features are

discussed in detail in section 7 .3.6. Striae on overthrust, in situ boulders that have not

been displaced by fault movement, are remarkably parallel to direction of fault

movement.

Tectonic striae 198
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7.3 WELLINGTON FAULT, HARCOURT PARK' NEW ZEALAIID

7.3.1 Background and setting

The Wellington Fault is one of the longest and more laterally persistent of New

Zealand's on-shore active faults (Begg et al., 1997).It is a predominantly dextral

reverse fault with a near vertical dipping fault plane upthrown on the western side'

Along the Wellinglon-Hutt section of the fault, the downthrown side has produced

several basins that are filled with Quaternary fluvial sediments' An average horizontal

slip rate estimated from offset terraces is 6.6 mm/yr and vertical movement is <0'5

mm/yr. The calculated average recurence interval is 485-783 years (Berr)rman' 1990)'

At Harcourt Park in upper Hutt, the fault offsets a series of Quatemary alluvial tenaces

and the fault plane is clearly exposed in the true right bank of the Hutt River (Figure

7.1 1). The fault dips at 65o to the southeast and cuts Holocene age (< I 5000 yrs) fluvial

terrace gravels (Berryman' 1990).

Figure 7.11 Map of Harcourt Park and Quatemary fluvial terraces offset by the active

Wellington Fault. Outcrop and sample site are indicated'
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crushed greywacke bedrock is exposed in the riverbed and lower stream bank on the

upstream side of the fault. Fault gouge is visible close to the fault zone and contacts

compacted fluvial conglomerate. The compacted conglomerate forms a unit

approximately 1l metres wide that stands out in the riverbank profile' Near vertical

shear planes on both the up and downstream sides of the unit contain fault pug (gouge)

and fractured and striated clasts. On the downstream side, the compacted conglomerate

contacts undeformed, horizontally bedded fluvial terrace conglomerate (Figure 7 '12)'

The conglomerate unit has moved as a coherent block in response to movement on the

Wellington Fault with slip occurring on both margins (upstream and downstream)'

7.3.2 Fieldwork

Fieldwork consisted of describing and measuring the riverbank outcrop of the

Wellington Fault at Harcourt Park (175o05'00"E 41o07'00"5) or NZMS 260'R27 '

856094). Two clast samples were collected. The first was a bulk sample providing a

random collection of pebble-sized clasts from the downstream sheared margin of the

compacted conglomerate unit for clast-shape analysis. The second consisted of several

clearly striated clasts (up to 30 cm diameter) for characterising the striae' These striated

clasts were collected from the shear planes on both sides of the compacted

conglomerate unit (Figure 7.13).

outcrop description of the wellington Fault at Harcourt Park

LTNIT ] GREYWACKE CATACLASITE

Dark grey, fine grained sandstone and argillite with abundant quartz veins' Extensively

deformed with original bedding almost obliterated. Brecciated into angular, slabby slivers of

greywacke. Some greenish mineralised surfaces. occasional near-vertical shear planes up to 20

cm wide with angular greywacke chips on margins and sticky, grey pug with occasional clasts'

Deformed greywacke with shear zones extends at least 50 m upstream from fault'

200
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UNIT 2 FAULT GOUGE

contact with greyrvacke cataclasite (LINIT 1) is gradational as deformation becomes more

pervasive closer to the fault plane. UNIT 2 is soft, dark-grey, sticky gouge with variable

abundance of coarse grit and angular greyrvacke clast up to 4 cm diameter' Near vertical

lineations obvious in the finer grained gouge zone. UNIT 2 is24 m wide with distinct

weathering back of bank Profile.

UNIT 3 COMPACTED CONGLOMERATE

Near vertical distinct fault contact between fault gouge (uMT 2) and pugJined margin of

compacted conglomerate (IINIT 3). Unit consists of clast-supported conglomerate' Clasts are up

to 30 cm diameter. Average is 5-10 cm. Clasts ale greywacke and generally well-rounded but

many are fractured. Some show striae. No apparent orientation. Matrix is sand. Clasts are tightly

packed forming a compacted unit that stands out in weathering profile' PugJined shear zones

(30-50 cm wide) with common striated rounded clasts occur on both sides of the compacted

conglomerate unit. Pug is gley, f,rne and sticky. some elongate clasts are aligned near vertical in

the shear zone. uNIT 3 (including shear zones on both sides) is I 1.4 m wide.

TINIT 4 UNDEFORMED CONGLOMERATE

Contact with LINIT 3 is distinct. Conglomerate is matrix supported with largest clasts up to 50

cm diameter. Average clast size is 5-20 cm. Clasts are greywaoke and rounded to well rounded'

Matrix is sand and grit. Crude horizontal bedding is marked by slight clast size changes' vague

clast imbrication is evident.
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Figure 7.12 Exposure of the Wellington Fault in the bank of the Hutt River' Harcourt Park'

The four units described above and sample locations are shown' Two shear planes occur' one on

each side of the compacted conglomerate (UNIT 3)'

Figure 7.13 Close up of pug-filled shear plane separating Unit 3 and unit 4' some striated

clasts are aligned with the long axes parallel to the shear plane' Hammer is 35 cm long'

702
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7.3.3 Clast shape

Tectonic striae 203

A bulk clast sample was collected from the sheared margin of Unit 3' Shape analysis

was performed on 100 clasts using the method outlined in Chapter 2 and clast data are

presented in ApPendix 6.

The sample is dominated by sandstone clasts (74%) with the remainder being argillite

clasts (26%).Clast form is displayed in Figure 7,14 and shows that the sample has a

broad scatter with c:a axial ratios ranging from 0.23 to 0'74,but the majority of clasts

falling above the 0.4 line (average is 0.49) meaning the sample trends slightly toward

blocky (equidimensional) shapes. This is only slightly higher than for the Ngapotiki

Fault (0.45) and similar to values for temperate glacial clasts.

Slabs Elongate

Figure 7.14 clast form diagram showing a central clustering, but slight trend toward blocky

clast form in the sheared margin of UNIT 3 (compacted conglomerate), Wellington Fault'

Average c:a axial ratio is 0.49. Small black triangles represent striated clasts'

Blocks
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Roundness and lithology are displayed in the frequency percent histogram in Figure

7.1 5. This shows a broad bimodal distribution with clasts in all Krumbein roundness

classes up to 0.7 (well-rounded) and modal peaks in the 0.3 (subangular) and 0'7

roundness classes. The sample has |lYoof clasts in the 0'5-0'7 classes (rounded and

well-rounded) producing an average roundness of 0'47 (subrounded)' This is the highest

average roundness value for all environments studied. clast lithology does not appear to

influence roundness, although it is noted that no argillite clasts occur in the 0'l class and

0.4 classes.

Fifteen percent of the clasts are fractured ipdicating that fracturing due to fault

movement is common. This influences the roundness distribution, with fractured clasts

making up 76Yoof clasts in the 0.1 and 0.2 roundness classes. Both sandstone and

argillite clasts show fractures and these are usually normal to the long axis'

Clast roundness and lithology for the
Wellington Fault

0.2 0.3 0.4 0.5 0.6 0.7

Krumbein Roundness

Figure 7.15 Roundness histogram for clasts from fault sheared fluvial conglomerate'

Wellington Fault. The distribution is broad and bimodal, reflecting the combination of well-

rounded fluvial clasts and the more angular component due to tectonic fracturing of some clasts'

Average roundness is 0.47 and is the highest value for all environments studied'
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The covariant plot of RA index versus C+o index (Figure 7'16) emphasises the low

percentage of angular and very angular clasts (RA index of 16) and the high number of

equidimensional clasts (low Cao index of Z2),resulting in the Wellington Fault sample

plotting in the lower left of the diagram'

RA index versus c40 index for the wellington Fault

100

Approximate flelda from
published data

I s"t"u

I Supraglacial

t suugtaciat

f] Glaciofluvial

0 20 40 60 80 100

Coo INDEX (% clasts with c:a 3 0.4)

Figure 7.16 RA versus C+o index diagram for clasts from fault sheared fluvial conglomerate,

wellington Fault. Data from other environments is included for comparison. Shaded fields are

from published data in Benn and Ballantyne (1994) and Bennett et al. (1997)'

7.3.4 Clast striae

Forty three percent of the clasts from the fault sheared conglomerate display well-

developed abrasional striae (asperity ploughing of Means, 1987)' These occur in all

roundness classes except the most angular (0.1) and are most prevalent on more rounded

clasts (gl %of striated clasts are 0.5,0.6 or 0.7 roundness). Striae occur on clasts of all

shapes (Figure 7.14). Striae are more common on argillite clasts (65 % of all argillite
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clasts) than sandstone clasts (35 %of all sandstone clasts)' Striae from both the

Wellington Fault and the Ngapotiki Fault are discussed in detail in7 '3'6'

7.3.5 Summary of Wetlington Fault clasts

clasts recovered from the wellington Fault, upper Hutt, represent a fluvial deposit that

has been tectonically sheared by active faulting' Differential shearing within these zones

has produced abrasional striae on the surfaces of many clasts'

Clast form and roundness distributions reflect the well-rounded (highest average

roundness value for all environments studied) blocky shaped clasts of the fluvial

conglomerate but also show a more angular component reflecting tectonically fractured

clasts. The sample plots low on both axes of the RA-C+o diagram, distinct from other

samples.

A remarkably high percentage of striated clasts (43 %) occur in this example (highest

for all environments in this study)' Striae preferentially occur on more rounded clasts

and not at all on the most angular (0.1). Argillite clasts are twice as likely to carry striae

than sandstone clasts.

7.3.6 Character of tectonic striae from the Ngapotiki and Wellington Faults

Characteristic features of striated clasts from the Ngapotiki and Wellington Faults are

presented in Appendix l, "Linear Abrasion Atlas - Tectonic striae". These features are

discussed next, followed by detailed analyses of four clearly striated clasts'

Striae occasionally occur on the ends of clasts and Figure 7.17 shows an example from

the Ngapotiki Fault. The striae are parallel and form a set 8 mm wide' Striae on clast

ends are observed only on tectonic and debris-avalanche clasts.

206
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Figure 7.17 An argillite clast from the Ngapotiki Fault shows parallel striae on the end of

the clast. This is observed only in tectonic and debris avalanche clasts' This clast is also

presented in appendix l, Linear Abrasion Atlas, Tectonic striae, Image 3.

Larger clasts tend to show larger striae. For example, the sandstone cobble in Figure

7.18-A, from the wellington Fault is the largest clast and has the largest striae measured

in this study. The longest and widest striae are usually compound striae that consist of

several smaller parallel striae. The clast shows striae sub-parallel to the long axis' which

has been fractured by tectonic movement. Fractures are typically norrnal to the long axis

of the clast. This clast is also shown in Figure 7.19, clast l. The clast shown in (Figure

7. 18-B) has a pervasively striated surface with remarkably straight striae, oblique to the

long axis and continuous across the curved surface'

A feature peculiar to tectonically striated clasts is the concentration of striae on the

margins of the clast, where the curvature increases toward the end' An example is

shown in Figure 7.18-C, where abrasion has truncated part of a surface on a rounded

clast. Individual striae are difficult to identify individually, but comprise a clearly

abraded surface. The striae overlap and have a comrgated appearance akin to ridge and

groove lineations, such as those described by Means (1987)' Clast D' (Figure 7'18)

displays multiple striae orientations. The clast is almost equidimentional and some striae

are curved suggesting that the clast has rotated during the striation process'
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B)A)

50 mm

Figure 7.18 A) A large clast showing striae up to 5 mm wide and 86 mm long oriented sub-

parallel to the long axis. The clast is fractured normal to the long axis (clast I in Figure 7'19)'

B) Parallel striae oriented oblique to the long axis on a curved surface' C) A rounded clast with

a corrugated abrasion surface concentrated on the curved margin of the clast' D) A flat surface

with striae showing multiple striae orientations and some curved striae (clast 3 in Figure 7'19)'

Larger images of these and other clasts with additional comments are presented in appendix I'

Linear abrasion Atlas - Tectonic striae'
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Striae orientation
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Striae orientation for the four clasts measured in detail show wide variation. These are

displayed in Figure 7.19. Clast I is a moderately elongate sandstone clast (b:a ratio of

0.65). It is the largest and most rounded clast of the four. The striae show a moderate

preferred orientation oblique to the clast long axis. There is however, a wide variation in

other striae orientations, giving a range of 88o and high standard deviation of 45o. The

clast displays 6 o/o curved striae. Clast 2, which is the second largest and most elongate

clast (b:a axial ratio of 0.51), shows a weak mode perpendicular to the long axis, but

overall shows variable orientations with a range of 88" and the highest standard

deviation of all four clasts (49.8). This clast has one curved striation.

Clast 3 is the smallest and most equidimensional clast of the collection (b:a axial ratio

of 0.80). Only 15 striae were measured, but they nevertheless show two weak modes

oblique to the long axis and 53 % of striae falling between l50o and 180". The striae

show a smaller range in orientations (70') and lower standard deviation of 33'. Two of

the fifteen striae are curved. Clast 4 is an argillite clast from the Ngapotiki Fault and is

the least rounded of the 4 clasts. It is moderately elongate (b:a axial ratio of 0.74) but

shows striae that are remarkably parallel to the long axis (63 % of striae within l0'). It

has the smallest range (54') and standard deviation (1 8") of all four clasts. This clast has

6 o/o cuwed striae.
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Figure 7.19 Striated clasts from the Wellington and Ngapotiki Faults. The half-rose

diagrams represent orientation of striae relative to the long axis of the clast (azimuth of 180").

Striae are $ouped into 5o segments. The black affows indicate average striae orientation. Also

shown is a plot of striae length versus width. Larger, colour images of these and other clasts are

presented in appendix 1, Linear Abrasion Atlas - Tectonic striae.
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Striae length

Striae length is related to clast size. The longest striae (86 mm) and highest average

(17.4 mm) occur on the largest clast (clast I is224 mm long) whereas the shortest

maximum striae length (13.5 mm) and lowest average length (4.9 mm) occur on the

smallest clast (clast 3 is 45 mm long). If the large clast is ignored, the range in striae

lengths for the other 3 clasts is actually low and the averages are reasonably close

(between 4.9 mm and 8.3 mm) (Figurc7.20).

Clast striae length (mm)

30 40 50 60 70

2tl

Clast NO. 1a-axrs1

Clast 1 ezamn)

Clast 2 lrss mm;

Clast 3 1ns.*1

Clast 4 (roo mm)

90800 10 20

Figure 7.20 Striae length, ranges and averages for the four clasts from the Wellington Fault

(clasts 1,2 and 3) and Ngapotiki Fault. The longest striae, greatest range and highest average

occur on the longest clast (clast 1) and the smallest range and lowest average occur on the

smallest clast (clast 3).

Striae width

Striae width shows a similar relationship to size (Figure 7.21). The widest striae (5 mm)

and highest average width (1.7 mm) occur on the largest clast (clast l) and the smallest

maximum width (1.5 mm) and lowest average width (0.6 mm) occur on the smallest

clast (clast 3). Many of the widest striae are compound striae. Again, if the large clast is

ignored, average striae width shown by the other 3 clasts is reasonably close (between

0.6 mm and 0.8 mm) despite significant clast size difference.
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Clast striae width (mm)
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Figu:re 7.21 Stiae width ranges and averages for the four tpctonieally striated elasts. Striae

width is related to clast size,with longer and wider sFiae ocenrring on larger clasts.

Striae width and lenglh

tongshiaeare oftenthe widest striae, but there are exceptions (Figure 7.19). The

widtVlengt! rengEs and averages for the largest sarldstoxe clast (clast 1) and srnallest

clast (clast 3, argillito) af,e yery similar, despite the large differences in actual sfriae

width and lenglhmeasuremeots, indicating they have sirnilar shape. In fact, the $uallest

olast (olast 3) has a slightlyhigher average widthflength ratio than the other three olasts,

suggssting that relatively, it has shortero w,ider striae. It is,'also the most eqBidimensional

elast (Figure 7.22).
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(0.35) of all clasts in all environments studied whereas the smallest clast (argillite) has

tlre highest density of 2.2 striae per cm'. The percentage of background striae also

shows this pattern with the largest clast showing the lowest percent background striae

(40 %) and the smallest clast showing 100 % background striae. Clasts 2 and 3 have

close background striae values of 56 o/o and 52 o/o respectively (Figure 7.23).The

percentage of grid squares showing at least I striation varies from 45 o/o to 78 Yo

indicating that striae are variably distributed across the clast surfaces.

214
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Figure 7.23 Striae density diagram showing the number of striae per cm' for each clast and

the percentage of "background" striae. Striae density is related to clast size and lithology, with

lower striae density occurring on larger clasts.

COMPARISON, DISCUSSION AND CONCLUSION

Clasts from both examples of tectonically sheared conglomerate have similar central

clusters on the clast forms diagrams. Both samples also show bimodal roundness

distributions, although the Ngapotiki Fault sample has more angular clasts (average

roundness of 0.33), than the Wellington Fault sample (average roundness of 0.47). This

is highlighted on the RA-C+o diagram and reflects the rounded character of the original

beach or fluvial clasts as well as an angular component due to tectonic fracturing of

some clasts, and in the case of the Ngapotiki Fault, possibly a few tectonically generated

clasts.

7.4
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Both samples show a similar percentage fractured clasts (Ngapotiki Fault has 2l o/o and

Wellington Fault has 17 %) and these are usually oriented normal to the clast long axes.

There is a large difference in the percentage of striated clasts (Ngapotiki Faulthas 22 Yo

and the Wellington Fault has 43 o/o striated clasts (highest for all environments studied).

This may reflect the focussed deformation along the narrow shear planes in the

Wellington fault as opposed to the wider, pervasive shear zone of the Ngapotiki Fault.

In both cases, striae preferentially occur on argillite clasts.

These results are difficult to compare with other studies of tectonically striated clasts.

The striae described by Clifton (1965) were microscopic and parallel, typically less than

0.5 mm long and 0.05 mm wide forming a "polished" surface, similar in appearance to

slickensides. However, a few were abrasional striae up to and several mm long and up

to 1 mm wide, The striae were generally parallel to fracture planes in the pebbles and

normal to the regional structural trend. This contrasts with the lack of tectonic polish

and much larger striae described on the Wellington and Ngapotiki Fault clasts. [n

addition, the fractures described by Clifton (1965) were usually oriented normal to the

long axis of the clast and to the striae, whereas the examples in this study show

fracturing normal to the clast long axes.

The striated clasts described by Eyles and Boyce 1993, are tectonically produced clasts

that show "flat-iron" or "bullet" and shapes and exhibit unidirectional striae parallel to

the ridges of the clasts. These shapes were not evident in the Ngapotiki and Wellington

Fault clasts as most of these clasts were originally rounded beach or fluvial clasts that

had only been slightly modified by tectonic fracturing.

These results show that a combination of clast shape and striae analysis allows the

distinction between striated clasts in tectonically deformed conglomerates from those in

glacial deposits.
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CHAPTER EIGHT

SUMMARY AND CONCLUSIONS

8.1 INTRODUCTION

This chapter summarises the results of this new investigation of clast striae and clast

shape from both glacial and non-glacial environments. The chapter concludes with an

assessment of our understanding of linear abrasion features and possible avenues for

future research.

8.2 CLAST SHAPE

8.2.1 Form and roundness

Summary form and roundness for all clast samples are presented in Figure 8.1. The

clasts in samples from the Mueller and Murchison Glaciers show central clusters on the

form diagrams with similar average c:a axial ratios of 0.40 and 0.39, roundness averages

of Q.32 and 0.34 (subangular) and show 22 o/o and 28 Yo faceted clasts respectively. The

Lake Pukaki sample has a slightly higher average c:a axial ratio (0.45) and is better

rounded (0.43, subrounded) than the two glacier samples, reflecting the slightly blockier

shapes and better-rounded character of the probable fluvial source of the moraine clasts.

The moraine sample has a higher percentage of faceted clasts (40 %) indicating that

these clasts were more intensely abraded than the clasts in the thin debris bands in the

modem glaciers.
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These results contrast strongly with clasts from the polyhermal Mackay Glacier, which

show distinctly blockier shapes with higher average c:a axial ratios of 0.5 and 0.53,

lower average roundness values of 0.23 (angular) and 0.28 (subangular) and show lower

percentages of faceted clasts (12 % and 22 %). The difference most likely reflects the

isotropic lithologies (granite and dolerite) in contrast to the softer sandstone and argillite

lithologies which could produce more tabular clasts. Altematively, the shape

characteristics may also reflect conditions beneath the glaciers with clasts in the

polythermal glacier being less intensely abraded than those from the temperate glaciers.

The debris-avalanche sample from the Murimotu Formation is distinct because it has

the highest c:a axialratio (0.54), lowest average roundness of 0.16 (very-angular) and

least range in roundness values of all samples in this study. Forty percent of clasts show

flat or undulating fracture faces with distinctly sharp edges that are unrelated to the long

axis. These features reflect both the massive crystalline volcanic source rock with no

natural planes of weakness and the violent processes within the debris-avalanche that

produce frequent clast fracturing but little rounding.

The Murchison rock-fall clast sample is also distinct as it has the lowest average c:a

axial ratio (0.31) of all samples in this study, although it also has a low average

roundness of 0.23 (angular) and 40 % of clasts show flat fracture faces. These results

are also interpreted to be primarily the result of lithologic differences, with the argillite

clasts in the rock-fall deposit preferentially breaking along bedding planes producing

slabby-shaped clasts. However, the rock-fall process does appear to round clast edges

better than the debris-avalanche.

Finally, the tectonically modified clasts from the Ngapotiki and Wellington Faults show

intermediate values for average c:a axial ratios of 0.45 and 0.49 respectively. The

samples both show broad, bimodal roundness distributions but with markedly different

average roundness values (0.33, subangular for the Ngapotiki Fault and 0.48,

subrounded for the Wellington Fault).
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The tectonic clasts from the Ngapotiki and Wellington Faults do not generally show

distinct flat surfaces. However, some clasts are fractured (22 % for the Ngapotiki Fault

and l5 %o for the Wellington Fault), usually perpendicular to the clast long axis. This

results in some clasts becoming more angular than before fracturing, thus producing

distinct bimodal roundness distributions. For the Ngapotiki Fault clasts, these features

are interpreted to represent a combination of subrounded beach clasts but also more

angular tectonically fractured or tectonically produced clasts. In the case of the

Wellington Fault, the higher roundness values reflect the well-rounded fluvial clasts

combined with a component of tectonically fractured angular clasts.
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Figure 8.1 Summary ranges and averages for c:a axial ratios and roundness for all samples

in this studv.
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The shape and roundness characteristics are also displayed on an RA-C+o diagram

(Figure 8.2). The diagram is effective for distinguishing the different environments.

The three temperate glacial samples all plot in the "subglacial" field, as defined from

published data of glacial clasts from temperate and polyhermal glaciers in the Arctic.

The samples for the polythermal Mackay Glacier plot outside this field because of the

blockier shape and lower roundness. The reason for this difference in shape is not clear,

but probably relates either to the particular lithologies present in the Mackay Glacier

samples or possibly a difference in the sub-glacial conditions beneath the Mackay

Glacier from those beneath the polythermal glaciers studied by Bennett et al. (1997)

which are used in the RA-C+o diagram.

The Murimotu debris-avalanche sample plots in a unique position on the RA-Cao

diagram distinct from glacial, rock-fall and tectonic samples, reflecting its exceptionally

blocky and angular character. The Murchison rock-fall sample also plots high on the

diagram because of its high percentage of very-angular and angular clasts, but plots well

to the right, close to the helds defined for supraglacial and scree, reflecting the

unmodified slabby shape of the clasts. The tectonic sample from the Ngapotiki fault

plots between the temperate and polythermal samples because it has intermediate shape

and roundness values and the sample from the Wellington Fault plots lower and further

to the left because of its lack of angular and blocky fluvially shaped clasts.
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RA index versus C4o

and tectonic

.Murimotu Fm
(debris-avalanche)

index for glacial, mass-movement
samples used in this study

Approxlmate fields from
publish€d data

I 
".ruu

I supraglaciat

E suogtaciat

I Glaciofluvial

Wellinoton
Fauit '

20 40 60 B0

C.o INDEX (% clasts with c:a < 0.4)

Figure 8.2 RA-Cao diagram of Benn and Ballantyne (1994), showing values from all

samples in this study. Shaded fields are from published data in Benn and Ballantyne (1994)

and Bennett et al. (1997).

8.3 STRIAE CHARACTERISTICS

Most environments show a wide range in striae characteristics. The percentages of

striated clasts in the samples of modem temperate glaciers are I I o/o and 16 yo, while the

percentage of striated clasts in temperate till is 33 %.ln all examples, the striae

preferentially occur on faceted argillite clasts, and on subangular to rounded clasts. The

percentages support the inference from clast shape that abrasion intensity was

significantly higher within the basal zone that produced the Lake Pukaki moraine than

within discrete debris layers in the modern glaciers. However, these values are within

the broad limits of percentage of striated clasts reported from other known glacial

deposits.
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The polythermal Mackay Glacier shows lower percentages of striated clasts (8 % and 5

o/o) that form preferentially on facets of subrounded and rounded mudstone and some

dolerite clasts. The percentages contrast with the value of 5l %o striated clasts from

basal debris on an iceberg that showed basal grooving (Macpherson 1987), suggesting

that abrasion at the glacier bed is more intense than in thin debris layers that have been

elevated to an englacial position, as discussed in Chapter 4.

Ten percent of clasts in the Murimotu debris-avalanche clasts show striae and they

commonly occur on flat fracture surfaces and only on very angular clasts. The rock-fall

deposit shows a much higher percentage of striated clasts (26 %). They occur only on

flat fracture faces of very-angular to subangular argillite clasts.

The tectonically deformed samples show generally high percentages of striated clasts

(22 % for the Ngapotiki Fault and 43 Yo for the Wellington Fault). The latter is the

highest percentage of all samples in this study. The striae occur on both whole and

tectonically fractured clasts and preferentially on argillite clasts. They occur on

subangular to well-rounded clasts and are often concentrated at the margins of clasts

where the surface curvature increases around the clast end. Occasionally striae form on

the ends of clasts. Abrasion features within the faulted conglomerates studied here are

as common as those from temperate glaciers.

8.3.1 Striae orientation

Striae on clasts from the Lake Pukaki moraine (temperate glacial) show a strong

tendency to be parallel to the long axis of the clast, consistent with observation from

other known glacial deposits. However, there are exceptions, and some clasts show no

preferred orientation particularly if they are nearly equidimensional. These clasts also

show curved striae suggesting that they are more likely to rotate and receive striae of

multiple orientations. The polythermal clasts from Cuff Cape, at the margin of the

polyhermal Mackay Glacier, also show a strong tendency to be sub-parallel to the long

axes. Again, exceptions occur, with some clasts with defined long axis showing striae
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with no preferred orientation, and one almost equidimensional clast showing long axis

parallel striae but also occasional curved striae. Nevertheless, the overall orientation

characteristics of striae on the temperate and polythermal clasts are similar, and

consistent with previous observations of other know glacial striae on clasts.

The debris-avalanche clasts commonly show no preferred striae orientation, or weak

clustering of striae that are usually not related to the clast long axis. Some clasts show

curved striae. Rare examples display parallel striae on a single surface, but again, they

are not related to the clast long axis. Striae occasionally occur on flat faces on the end of

clasts. This is not observed on glacially striated clasts. The Murchison Valley rock-fall

clasts typically show no preferred orientation or weakly clustered striae but they are

unrelated to the clast lone axis. These clasts sometimes show curyed striae.

Finally, striated clasts from the Ngapotiki and Wellington Faults range from long axis

parallel on some elongate clasts to no preferred orientation. However, other variably

shaped clasts show moderately grouped striae oblique to the clast long axis. All the

tectonically striated clasts show at least one curved striation, indicating some rotation

occurred during the striating process.

8.3.2 Striae length and width

Striae length and width raltges and averages for all environments studied are presented

in Figure 8.3 and width/length ratios presented in Figure 8.4. The striae on temperate

striated clasts from the Lake Pukaki moraine are related to the size of the clast with the

Iongest striae and widest striae (and higher average lengths and widths) occurring on

longer clasts. However, striae length is not closely related to striae width. Some longer

striae are wider than average, but this is not consistent. Width/length ratios show the

highest average (relatively shorter and wider striae) occur on the smallest and most

equidimensional clast. The clasts lack the wide compound striae seen in other

environments and show that most striae are actually formed by relatively fine-grained

matrix of the basal debris.
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The clasts from the polythermal Mackay Glacier, show generally shorter and wider

striae. On these clasts there is no clear relationship between striae length or width and

the clast size. The widest striae represent compound striae on some clasts and this gives

high maximum width/length ratios. However, average width/length ratios are close and

only marginally higher than those for temperate striated clasts, indicating that most

striae in both environments are similar except for the few larger compound striae on the

polythermal clasts. The disparity in the relationship between striae size and clast size is

confusing and may simply reflect the low number of clasts studied.

Debris-avalanche striae are generally shorter and wider than glacial striae with higher

average width length ratios. The length has no obvious relationship with clast size or

shape. The clasts all show some compound striae, and width appears to be related to

clast size with the widest striation and highest average width occurring on the largest

clast and smallest maximum width and lowest average on the smallest clast.

Rock-fall striae from the Murchison Valley are also generally shorter than glacial striae,

with one clast showing the lowest average striae length (a.1 mm) of all clasts in all

environments studied, but also showing large variation in width. Some clasts have

compound striae with a maximum width up to 4 mm (on the smallest clast), although

average widths are actually very close and lower than most other environments. Striae

lenglh and width are not related to clast size.

Tectonic striae show a strong relationship between striae length and width and clast size

with the longest striation (86 mm) and widest striation (5 mm) (not the same striation)

measured in this study occurring on the largest tectonic clast. This is also reflected in

the average length and width values, with the highest averages on the largest clast and

lowest average on the smallest clast, Even if the largest clast is excluded, average striae

widths are generally greater than for temperate striae and rock-fall striae, but overlap

with polythermal striae and debris-avalanche striae. Average width/length ratios are

slightly higher than other environments, except debris-avalanche.
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Chapter 8

8.3.3 Striae density

Summary and conclusions

Striae density is measured as striae per cm2 and percentage of "background" microstriae

and these are summarised in Figure 8.5. The density of temperate glacial striae from

clasts from the Lake Pukaki moraine are distinctive because they have the highest striae

per cmt of all environments studied and all clasts examined in detail show 100 %

background striae. This is closely matched by the polyhermal-striated clasts from the

Mackay Glacier, which also show at least 2 striae per cmt and at least 92 % background

striae. Clasts from both environments show striae distributed widely across the surfaces.

The general overlap of these two environments suggests that the striae density

characteristics of temperate and pollhermal striated clasts are essentially the same, and

that basal glacial processes producing striae are similar.

The two mass movement examples have a generally lower striae density than the glacial

clasts. However, there is considerable variability within these samples. The Murimotu

debris-avalanche densities range from L2 to 1.7 striae pe. cmt and background striae

slrows the smallest range of all environments (28 % to 56 %). The striae are often

patchy in their distribution. The Murchison rock-fall clasts show the greatest variability

of all environments ranging from the lowest density of 1.4 to 2.8 striae per cm2 and

background striae ranging from a low of 20 % to 100 %. Striae distribution is inegular

with some clasts showing intensely striated patches whereas others show a more even

distribution.

Tectonic clasts also show striae variable densities from a low of 0.45 striae per cm2

(lowest of all environments (40%background), up to 2.2 stiaec-2 1100 %

background). The striae density is related to the clast size, with larger clasts showing

lower density. The striae distribution is often greatest around the margins of surfaces

where the curvature increased at the clast end.
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Figure 8.5 Density diagram showing the striae per cmt and also the percentage of

background microstriae over the measured surface. The background striae are represented as a

pie graph with the black portion representing the percentage of background striae.

The results indicate that there is a clear distinction in striae density between glacial and

non-glacial clasts. Although some overlap occurs, glacial clasts generally show a

distinctly greater density in striae. There is little distinction in striae density between the

various non-glacial environments as there is a large overlap in both striae per cm2 and

background striae.

8.3.4 Conclusions

Striae occur in a wide range of environments from variety of processes. This is not

widely appreciated by Earth scientists. Table 8.1 shows summary clast and striae

characteristics from all the environments studied. The use of form indices and

roundness is useful for characterising clasts and provides a basis for distinguishing

deposits of different origins. However, there is common overlap in summary statistics

between some environments and data are better visualised on covariant RA-C+o

diagrams. Although these were designed by Benn and Ballantyne (1994) to discriminate

between clasts in various glacial sediments, it has proved a useful tool for plotting clast

H
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data from a range of non-glacial environments as well. Temperate glacial clasts plot

predictably in the sub-glacial field, but the examples of polythermal glacial clasts do

not. This may reflect both the difference in lithologies but may also indicate that these

clasts have experienced less basal glacial abrasion. It is not clear whether this is because

the sampled debris layers have been predominantly englacial rather than basal or

whether there is actually a significant difference in the conditions beneath the Mackay

Glacier from those beneath temperate glaciers.

Mass-movement clasts from the two deposits plot separately from each other and are

distinct from all other samples, mainly because of their angularity. Tectonic clasts are

more variable because of the character of the clasts in the deposits prior to being

incorporated within the fault zone.

The percentage of striated clasts in a deposit is not in itself a good indicator of a glacial

origin. The generation of striae is dependent on lithology in all environments. The

relationship between striae, clast faces and roundness is a useful indicator of striae

origin, with temperate and polythermal glacial striae preferentially occurring on

glacially faceted surfaces of subrounded to rounded clasts, whereas mass-movement

striae are found preferentially occurring on fracture faces of the most angular clasts and

occasionally on clast ends. Striae are also found on clast ends in tectonically deformed

deposits. Striae preferentially occur on subrounded and rounded clasts in the tectonic

samples, but these clasts do not have distinctive facets or faces, and the shape depends

largely on the character of the pre-existing conglomerate deposit.

Striae orientation is also a useful oharacteristic. Temperate and polyhermal glacial

clasts show a strong tendency for striae to be sub-parallel to the clast long axis, although

rare exceptions occur. Mass-movement striae are generally less clustered or show no

preferred orientation and are unrelated to the long axis of the clasts. Tectonic striae

show a wide range but are commonly weakly clustered sub-parallel to the long axis and

often concentrated on clast margins.
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Striae size is not particularly diagnostic. On similar sized-clasts, average striae length is

generally similar in all environments, although mass movement striae tend to be slightly

shorter. Average striae width is also similar, with overlap in width measurements

between most environments, although rock-fall striae are slightly nalrower. Striae size

is clearly related to clast size on the temperate and tectonic clasts, but on mass

movement clasts, striae appear to be independent of clast size. Compound striae occur

on clasts in all environments.

Striae density highlights the fact that temperate and polythermal-striated clasts have a

high density of both striae per cm2 and background striae. Other environments show

extremely variable striae density characteristics that overlap with each other

considerably.

Overall, there are some observable and measurable differences in striae formed in

different environments, however striae alone have only limited use in reliably

discriminating between environments. The combination of clast shape and striae

analyses allows striated clasts to be adequately described and provides enough criteria

to make a sound judgement as to whether they are glacial or non-glacial. Documentation

of striae from more examples would be useful for improving the confidence in these

criteria. However, a signihcant advance in describing striae from different environments

is likely to require a refined approach utilising more sophisticated methods of analysis

such as detailed shape analysis on high-resolution digital images.
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8.3.5 Striae survivability and fluvial transport distance

The study of the "survivability" of glacial features of clasts (shape, facets and striae)

during fluvial transport downstream from the Murchison temperate glacier has shown

that these features change progressively and predictably with increasing fluvial transport

distance. This allows transport distance and the proximity to the glacier margin to be

estimated for glaciofluvial deposits in glacial environment reconstructions. The data

from this study indicate that on sandstone and argillite clasts, striae are removed within

7 to2 km of fluvial transport. Therefore, glaciofluvial deposits with striated clasts are

distinctly glacier proximal. Glacially produced facets survive longer, but most are

removed within 4 to 6 km of fluvial transport. Glacial facets become increasingly

difficult to distinguish from other flattish surfaces under increasing fluvial transport but

some appear to survive at least 1l km. While it would be inappropriate to make too

strong a claim from a single study of this sort, the results are considered to indicate at

least the order of distance associated with the changes described here.

8.4 POLAR GLACIAL ABRASION FEATURES

Four types of linear abrasion marks produced by a cold-based glacier at Allan Hills,

Antarctica, have been identified in this thesis. Measurements of abrasion mark shape,

distribution and orientation has allowed the construction of a model of cold-based

glacier abrasion processes and documented a previously unrecognised cold-based

glacier advance 2 km into the present ice-free area of Allan Hills. Abrasions that occur

on wind-polished dolerite clasts are formed by debris being dragged over the clast

surface. However, the clasts were not transported beneath the glacier, but rather abraded

in sittt. Therefore the abrasion marks usually occur on the stoss side of the clasts and are

oriented parallel to the direction of glacier movement rather than the long-axis of the

clasts. In addition, the length and width of the abrasion marks is extremely variable and

depends on the shape of the abrading fragment and the shape of the abraded clast.
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Overall, the discovery of abrasion marks from a cold-based glacier is a significant

advance in understanding polar glacial processes and has provided new criteria for

recognising the passage of cold-based glaciers in polar areas or regions where cold-

based ice may have existed in the past. These results are also presented in Atkins et al.

(2002), included at the end of this thesis.

ACHIEVEMENTS AND FUTURE WORK

This study has provided the first systematic study of linear abrasion features from both

glacial and non-glacial environments. The results have shown that non-glacial striae are

more common than is generally acknowledged and that useful conclusions can be made

on the basis of combined clast shape and striae analyses. The study has also identified

several features of striae indicative of certain environments, which has indicated the

potential for further work to establish better criteria for interpreting striated surfaces in

the geological record. Although the numbers of striated clasts in this study is low, and

therefore the conclusions must be treated as tentative, a new procedure has been

established for the analysis of striae. In doing so, many difficulties were overcome, but

some remain.

In addition, previously unrecognised features of erosion from cold-based glaciers have

been described and criteria provided for recognising cold-based erosion in other

locations. Finally, the survivability of glacial abrasion features of clasts once they have

entered a fluvial system has been assessed, providing a basis for estimating the

proximity of a glaciofluvial deposit to the glacier front.

To develop striae analysis as a more effective palaeoenvironmental tool, future research

could concentrate on producing further systematic descriptions of striae from both

glacial and non-glacial environments. This might involve recording further distinctive

features of striae by extending the "atlas of linear abrasion features", but also is likely to

require a more sophisticated approach, possibly employing computer-based digital

image analysis to recognise more subtle differences in striae shape.
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PHOTOGRAPIIIC ATLAS OF LII{EAR ABRASION FEATURES

trntroducfion

This photogfaphic atlas provides images and notes on of line.ar abrasjon featrrres sludied

in this thesis. It is intended as a visual guide to the mauy eharacleristics of these featmes

fhat are inherently difficult to describe numerieally; It includes examples on seales frorn

metres to millimeffes"

Contents

The atlas oo,mprises five pnrts representing *uee glaeial and trvo nqn.glacial

environments in which linear abrasions form.

Part One: Temperate glacial striae

Examples of striated clasts in debris lay.ers from basal ice in the

Mueller and Murchison Glaoiers and from the Lake Fukalci

morainer trV{t. Cookregion, Nerr Zealand.

Part Two: Polythermal glacial striae

Shiated clast frsm ov€rtumed ice,bergs of the Mackay Glacier

to4.gue and CuffCapeo,Grarrite llarbour" Victoria Lan4

Antarctioa.

Fhotographie Atlas

APPEFI.)IX I
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Part Three: Cold-based linear abrasion features

Examples of abraded bedrock and clasts from Allan Hills,

Victoria Land. Antarctica.

Part Four: Mass movement abrasion features

Examples of striated clasts from a volcanic debris-avalanche, Mt

Ruapehu, New Zealand and a rock-fall in the Murchison Valley,

Mt. Cook region, New Zealand.

Part Five: Tectonic striae

Examples of striated clasts from a tectonically deformed fluvial

deposit, Wellington Fault, New Zealand and tectonically

deformed beach gravel, Ngapotiki Fault, New Zealand.

Methods

Field photographs of bedrock abrasion features were taken with a conventional 35mm

camera using colour positive film.

Images of striated clasts presented in this Atlas were generated with a Canon G2 4.0

million pixel digital camera mounted vertically on a ciunera and lighting stand. The

stand has an adjustable vertical camera mount and bi-directional lighting (Figure 1).

Several removable close-up lenses were utilised depending on the scale of the clast.

Lighting direction and angles vary for each image and were designed to provide the

clearest image of the striae. The lights used were four 75-watt fog lamps (two on each

side on the base plate). These were usually set at 45" and the clast was illuminated from
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one side only. A free-standing light box with nvo LED lights set in flexible arms was

used for very low-angle lighting on some clasts.

Images were manipulated in Corel Photo-paint, Version l0 to enhance image intensity

and contrast.

Figure 1. Camera and lighting stand used to take digital images of clasts. The camera is

mounted vertically and the clast is illuminated from one side.

251
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Parallel fine glacial striae

Image I shows a glacially faceted and

striated argillite clast with a bullet shaped

stoss end and a sharp, broken lee end.

Abundant fine striae occur on the facet,
oriented predominantly parallel to the long
axis ofthe clast. The surface has several
larger striae up to 3 mm wide superimposed
on a "backgfound" of microstriae that are

diffi cult to identify individually.

Striae orientation typically deviates by less

than 15" from the clast long axis, although
rare striae deviate up to 75" degrees (A).

Location: Lake Pukaki moraine, Mt. Cook
region, New Zealand, I 70"1 0'00"44'10'30"

Large and smoll striae

Image 2 shows the obverse facet of the clast
in Image l.

On this surface, many long-axis parallel
striae are clear, as well as larger striae
oriented oblique to the long-axis. One of
these large striae has smaller parallel striae
on the surface (compound striation) (A).

lnset square is enlarged in Image 3.

Location: Lake Pukaki moraine, Mt. Cook
region, New Zealand, 170'10'00"44'10'30"

Closeup of large and small striae

Image 3 shows closeup detail of the surface
of the clast in Image 2.

The large striation shown is 38 mm long and

6 mm wide with jagged sides and bottom.
Some of these larger striae have several fine
parallel striae on their surfaces.

Also visible is the "background" of
microstriae (lower part of image).

Location: Lake Pukakimoraine, Mt. Cook
region, New Zealand, 170'10'00"44o10'30"
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Parallel Jine glacial striae

Image 4 is another example of parallel
glacial striae on a glacially shaped argillite
clast. Most striae are sub-parallel to the long
axis of the clast.

The orientation of some larger striae deviate
from the clast long axis by up to 65'(4).

A "background" of microstriae occurs over
the entire surface of the clast.

Location: Lake Pukaki moraine, Mt. Cook
region, New Zealand, I 70"10'00"44"10'30'

Closeup of parallelfine glacial striae

Image 5 shows a closeup of the surface of
the clast in lmage 4.

Thc large striation in the centre is 30 mm
long and up to 1.5 mm wide and deviates by
about l5' from the long axis of the clast.

The "background" microstriae are clearly
visible at this scale.

Location: Lake Pukaki moraine, Mt. Cook
region, New Zealand, 170"10'00"44o10'30'

Parallel jine glacial striae on a curved
surface

Image 6 shows fine glacial striae oriented
predominantly parallel to the clast long-axis
but on a curved surface rather than a flat
facet. This implies that the striating tools
were held firmly against the clast as they
were dragged over it.

Location: Lake Pukaki moraine, Mt. Cook
region, New Zsaland, 170'10'00"44'10'30"
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Variably oriented striae

Image 7 shows an argillite clast with a

clearly facetcd and striated surface that has

variably oriented striae.

Two thin straight striae up to l5 mm long are

oriented oblique to the long-axis of the clast
and interscct (A).

A "background" of microstriac that have no

prcfened orientation is visible (B)

Location: Lake Pukaki moraine, Mt. Cook
region, Ncw Zealand, 170'10'00"44"10'30"

Lithologic influence on striae

The clast in Image 8 contains a contact
bctween sandstone (light colour) and

argillite (darker) on the same facet.

Fine glacial striac arc obvious on the argillite
portion, but less obvious on the sandstone.

This illustrates how lithology can affect
striae prcservation.

Location: Lakc Pukaki moraine, Mt. Cook,
New Zealand. I 70'l 0'00"44'10'30"

Lithologic influence on striae

Image 9 shows part of a sandstone clast from
the Lake Pukaki morainc.

The recognisable striae are generally larger
than those on argillitc clasts (e.g. Image 8).

Small striae and background microstriae are

not distinguishable on the rough surface
tcxturc duc to the coarser grainsize.

Location: Lake Pukaki moraine. Mt. Cook,
New Zealand, I 70" I 0'00"44o10'30"

#-l t'<
3#':;:

''4Y,;-+!.; .
-l -4
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Random Iy oriented striae

Imagc l0 shows a rounded and

equidimensional (nearly equal long and

intermediate axes) argillite clast.

Striae occur on both sides of the clast and

have no preferred orientation, and some are

curved. These individual large striae occur
against a "background" of microstriae.

The inset square is enlarged in lmage I l.

Location: Lake Pukaki moraine, Mt. Cook
region, New Zealand, 170"10'00"44o10'30"

Closeup of rundomly oriented striae

Image l l shows a closeup of the clast in
Image 10. Straie include:

A large straight striation, l2 mm long and up
to 0.6 mm wide (A).

A curved striation indicating clast rotation
during the striation process (B).

A "background" of randomly oriented
microstriae (C).

Location: Lake Pukaki moraine, Mt. Cook
region, New Zealand, 170"10'00"44"10'30"

Randomly oriented striae

Image 12 shows an argillite clast with a
more defined long axis than the clast is
images l0 and I l. However, this clast also
has random striae orientations.

Individual larger striae are set against a

"background" of microsffiae.

One of the larger striae is slightly curved,
suggesting clast rotation during the striating
process (A).

Location: Lake Pukaki moraine, Mt. Cook
region, New Zealand, I 70"10'00"44"10'30"

20 mm
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Sub-parallel striae with no background
striae

lmage 13 shows a small clast from the
Mueller Glacier. It has a clear facet but
sparse striae.

A slightly curved individual striation (A) is
visible as well as a set of short parallel striae
(B).

The clast does not have a background of
microstriae that is common on the Lake
Pukaki clasts.

Location: Murchison Glacier, Mt. Cook
region, New Zealand, 170"20'08" 43'36' 07 "

Sub-parallel striae with no background
striae

The clast in Image 14 is an argillite clast
from site MH 2 (50 m downstream from the

Murchison Glacier). Several obvious striae
are visible and these are oriented sub-
parallelto the long axis of the clast.

Unlike other glacial examples, this clast has

no "background" of microstriae, probably
due to abrasion during fluvial transport.

The inset square is enlarged in Image 15.

Location: Murchison Glacier, Mt. Cook
region, New Zealand, I 70"20'08" 43o36' 07"

Closeup of sub-parallel striae with no
background striae

This image clearly shows the distinct but
smooth striae on the surface of the clast as

well as the lack of "background" striae that
are typically present on other glacial clasts.

Location: Murchison Glacier, Mt. Cook
region, New Zealand, I 70'20'08" 43"36' 07 "

20 mm
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Large and small striae

Image I shows a faceted mudstone clast
from Cuff Cape. The striae are oriented
predominantly parallel to the long axis of
the clast, but a few deviate up to 70'degrees
from the long axis.

The clast shows a "background" of
"microstriae" accompanied by several larger
individual striae.

The inset square is enlarged in Image 2.

Location: Cuff Cape, Antarctica
I62"30'00"76"59'00"

Closeup of large and small striae

This image shows a close up view of the
clast in Image l.

Several individual striae are oriented
oblique to the long axis of the clast (A).

Compound striae consisting of several
smaller parallel striae are also visible (B).

(A) and (B) are set against a "background"
of microstriae that are parallel to the clast
long axis of the clast (C).

Long-axis parallel striae

lmage 3 shows a striated mudstone clast
from the Mackay Glacier. It has four facets

that show striae. The striae are

predominantly parallel to the long axis.

A "background" of microstriae covers the

surface ofthe clast.

A few larger striae are also visible.

The inset square is enlarged in the Image 4,

Location: Mackay Glacier, Antarctica
I62"30'00"76'57'00"
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Mudstone clast closeup

Image 4 shows a close up of the mudstone
clast in Image 3.

A "background" of microsffiae covering
almost the entire surface is visible at this
scale (A).

Larger striae up to 4 mm wide are
superimposed on this surface (B).

Location: Mackay Glacier, Antarctica
762'30',00"76"57'00"

Sparse large striae

The clast in Image 5 from the MackaY
Glacier shows large individual striae ( up to
27 mm long and 3 mm wide) oriented
parallel to the long axis

Unlike most other clasts, this one does not
display the characteristic "background" of
microstriae.

Location: Mackay Glacier, Antarctica
I62"30'00"76"57'00"

Cuff C ap e dole rite/granite contact

Image 6 shows a glacially faceted clast that
contains a contact between dolerite (grey
area in lowcr part) and granite (lighter,
speckled area).

Striae parallel to the long axis of the clast
are clearly visible on the dolerite portion but
not on the granite, even though the surface
has been abraded. This illustrates the

important influence has lithology striae
generation.

Location: Cuff Cape, Antarctica
162'30',00"76"59'00"

20 mm
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Indistinct striae on glacialfacet

Image 7 shows a medium-fine grained
granite clast from the Mackay Glacier. The
clast shows a clear glacial facet, with
abundant but poorly inscribed striae mostly
parallel to the long axis, although the long
axis is not distinct.

These striae are clearly visible on a facet of
this size but are diflicult to see on smaller
clasts, illrrstrating that lithology and clast
size influence striae character.

Location: Mackay Glacier, Antarctica
162"30'.00-76'57'00"

Long axis parallel striae

Image 8 shows a well developed facet on an

elongate dolerite clast. The surface is
intensely striated with striae oriented ahnost
exclusively parallel to the long axis of the

clast.

Location: Cuff Cape, Antarctica
|6:2',30',00*76"59'00"

Short stri*e with no prefened
orientation

Image 9 shows a clear glacial facet on a
dolerite clast, with striae that are mostly
short and not oriented parallel to the long
axis.

This indicates that clast shape does not
necessarily influence the orientation of the
striae.

Location: Cuff Cape, Antarctica
I62"30'00"76"59'00"
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Parallel striae on equidimensional clast

The clast in image l0 does not have a
distinct long axis. Nevertheless, the striae
are oriented predominantly parallel to the
long axis, suggesting that clast form does
not necessarily influence sfriae orientation.

Location: Cuff Cape, Antarctica
I62"30'00"76"59'00 "

Large compound striae

hnagc I I shows a largc dolerite cobble
showing a bullet nose (right) and a plucked
lee end (left). It displays a densely striated
surface, with striae predominantly parallel to
long axis, although some diverge from the

bullet nose (A).

Large compound striae (up to 20 mm wide
and 60 mm long) occur with finer parallel
striae on the surface (B).

A "background" of microstriae is also

visible. Inset square is enlarged in image 12.

Location: Cuff Cape, Antarctica
I62"30'00" 76"59'00"

Closeup of large compound striae

Image l2 shows a close up of thc clast
surface. The large compound striae have

irrcgular channel shapes and uneven channel
surfaces with several striae making up the

ovcrall abrasion mark (A).

The upper righthand part of the image
shows a broad compound striation that is

curved and almost perpendicular to the long
axis, suggesting clast rotation during the

abrasion process (B).

Location: Cuff Cape, Antarctica
I62"30'00"76"59'00"
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l l f'r:15 Type I: Broadscrapes

Broad (up to 500 mm width,40 mm depth,
1200 mm length), unweathered scrapes

typically consist of many smaller striae or
grooves centimetres or millimetres in width.
Some examples show progressive increase in
depth and width, with an abrupt terminus.
Typically, the abrasion mark has crushed
sandstone remnants of the abrading tool
smeared onto the surface, particularly at the

deepest terminal wall, Occasionally, small
cm-scale "levees" occur along the sides of
the abrasion mark.

Location: Allan Hills, Antarctica,
159"42',20*7 6"41 '51 "

Broad scrapes-closeup

Image 2 shows a closeup of the end of the
broad scrape in Image l. The crushed
remnants of the abrading tool are visible at
the terminal wall.

Location: Allan Hills, Antarctica,
|59"42',20"76"4l'5l "

Type I: Broadscrape

Image 3 shows an example of a tYPe I
abrasion that has a symmetrical shape. (i.e.

does not become progressively deeper and

wider. Here, the abrading tool has contacted
the bedrock surface, and then lifted off
again.

Location: Allan Hills, Antarctica,
159"43',50"76'41',43"
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Type 2: Individual striae and grooves

Variably shaped, unweathered, individual
linear abrasions (scrapes, striae, and
grooves) make up a wide variety of discrete
abrasion marks (typically cm in width and
depth and decimetres long). Where several
marks occur in one location, they are
generally sub parallel. Some show a
progtessive increase in depth and width
whereas others have more symmetrical,
tapered ends. Occasionally, individual marks
occur "in line" to form a trail of marks up to
2 m in length. Some marks have crushed
sandstone remnants of the abrading tool
smeared onto the surface and /or are
bordered by small cm-scale "levees."
Location : Allan Hills, Antarctica,
I59'40'00"7 6'41'54"

Individual striae and grooves

Image 5 shows an example of a type 2

abrasion where several abrasions occur'oin
line" over 2 rn, indicating the abrading tool
made contact several times as it progressed
aoross the surface.

Location: Allan Hills, Antarctica,
I59"38'30"76"41',25"

I ndiv idual striae and gro ov es

Image 6 shows a closeup of a typical type?
abrasion. Width and depth are variable along
the intermittent but distinct abrasion.

Location: Allan Hills, Antarctica,
159'45',30"76'42',58"
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Type 3: Scraped houlders and cobbles

Type 3 abrasion marks are variably shaped,

unweathered scrapes up to several cm wide
(and related striae) that occur on the stoss

side of some weathered dolerite boulders
and cobbles. These are usually lodged
within, or resting on, Sirius diamictite.
Abrasion has removed the characteristic
dark brown desert vamish from the surfaces

of the boulders, making the marks clearly
visible. Some boulders have been
overturned, exposing the non-wind polished
surface undemeath.

Location : Allan Hills, Antarctica,
I59"38'00"76"4I'I5"

Scraped boulders and cobbles

Image 8 shows scraped cobbles on a Beacon
bedrock surface. These clasts have fresh
abrasion marks on the stoss sides and often
concentrated along prominent ridges on the

clasts. The abrasion marks are commonly
oriented sub-parallel to the long axis of the
clast. Ice movement was from bottom to top
in lmage 8.

Location : Allan Hills, Antarctica,
I59'38'00"76"41'15"

Scraped houlders and cobbles

Image 9 shows a type 3 abrasion on a desert

vamished, wind polished dolerite cobble.
The abrasion occurs on a distinct wind
sculpted facet and has cut through the brown
weathered surface leaving a distinct abrasion
mark. It is oriented parallel to the long axis
which also tends to be oriented north south.

Ice flow was from left to right (north to
south).

Location: Allan Hills, Antarctica,
159'40',40"76"42',25"
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Type 3: Scraped boulders and cohbles

Image 10 shows another type 3 abrasion on
a desert vamished, wind polished dolerite
cobble. The abrasion begins on the stoss side
and ends on the highest point ofthe broad
top surface where the abrading tool has

lifted off. Abrasion has cut through the

brown weathered surface leaving a distinct
mark. Ice flow was from left to right (north
to south).

Location : Allan Hills, Antarctica,
159'37'00"76"42',12"

Scraped boulders and cohbles close up

A closeup of the type 3 abrasion in Image l0
shows that it consists of many linear
abrasions created by the ovenidng tool. The
tool is likely to have been another dolerite
clast as all other local lithologies are softer
than the dolerite.

Location: Allan Hills, Antarctica,
I 59*37'00" 76"42',12"

Scraped boulders and cobbles

Image 12 shows an example of type 3

abrasion where the stoss side of a prominent
ridge on the clast has been abraded. The
ridge in this casE is oriented approximately
north-south. The abrading rock has

contacted the stoss side of this clast and has

been dragged up the stoss side and lifted off
at the highest point. lce flow was from left
to right (north to south).

Location: Allan Hills, Antarctica,
|59'42', I0"76"42'38"
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Ty p e 4 : Ridg e-a n d-g ro o ve lineatio ns

Image l3 displays a surface with abraded
patches consisting of many parallel
lineations (mm scale width and depth),
described here as ridge-and-groove
lineations. The surfaces are typically dark
and have a platy appearance with a sheen

similar to slickensides. These abraded
patches occur within thin carbonaceous
layers beneath brecciated sandstone debris
and indicate north to south glacier
movement. These are produced by slip on
the carbonaceous layers due to
glaciotectonic ice loading.

Location: Allan Hills, Antarctica,
159"42'.20"16'4 I '53 "

R idge-an d-g r o ov e line atio n s

Closeup of a slickensided surface showing
mm scale ridges and grooves that are

produccd on the slip plane (A). On the right
is the overlying laycr that has been lifted
from the abraded surface (B).

Location: Allan Hills, Antarctica,
159'42',20"76'41 '53 "

R idg e-an d-g r o ov e I ine atio n s

Image l5 shows anothcr closeup of a ridge-
and-groove surface that has been partially
wcathered. ln the upper centre of the image is
part of the ovcrlying layer still attached onto
the abraded surface.

Location: Allan Hills, Antarctica,
159"42',20"76"4l'53"
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I ndividual rsndomly oriented striae

Image I shows a flat, weathered surface on

thc cnd of an andesitc clast. The striae are

weakly clustered and consist of:

Slightly curved striae up to l2 mm long and

2.5 mm wide (A).

Compound striae (up to 12 mm long,6 mm
wide) consisting of many smaller striae (B).

"Background" microstriae (barely visible)
(<0.2 rnm wide and <2 mm long) (C).

Striae on the ends of clasts only occurs in
debris-avalanche and tectonic environments.
Location: Murimotu Fm, Mt RuaPehu, New
Zealand. I 75"30' 30" 39" I 0' I 0"

Sets of sub-parallel striae

In contrast to Image I, tlre clast in Image 2

shows a large uneven face of an

andesite/dacite clast with frequent
overlapping striae. The striae comprise:

Broad cornpound striae consisting of fine
parallcl striae oblique to thc long axis (A).

Individual striae with multiple orientations
are also present (B).

Insct square enlarged in Image 3.

Location: Murimotu Fm, Mt Ruapehu, New
Zealand. I 75'30'30"39"1 0' I 0"

Closeup of Image 2

A closeup of the inset area in Image 2

shows:

Fine parallcl striae (< 0.5 mrn wide)
fonning compound striation l0 mm wide
(A).

Several individual striae up to 20 mm long
and up to I mrn wide (B).

Location: Murimotu Fm, Mt Ruapehu, New
Zealand, I 75"30'30"39" I 0' I 0"
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Parallel striae on an equidimensional
clast

Imagc 4 shows a weathered flat surface of
an cquidimcnsional andesite clast. The striae

arc up to 25 mrn long and havc variable
widths along a single striation (maximum
width is 2 mm). These striae are parallel to
each other, but not to the long axis (which is

indistinct).

Location: Murimotu Fm, Mt Ruapehu

1 75'30'30"39" I 0' 1 0"

Individual and sployed striae

Image 5 shows a large undulating surlace of
an andesite/dacite clast that displays:

Many individual striae with no preferred
oricntation and also compound striac (A).

Fine striae that splay out toward the clast
margins. This area is enlarged in Image 6'

Location: Murimotu Fm, Mt Ruapehu, New
Zealand, I 75'30' 30"39" I 0' I 0"

Closeup of splayed striae

This image shows the detail of the fine
radiating striae (< 0.05 mm wide and up to
l0 mm long. Arrows indicate the spread of
striae orientations. The reason for this
splayed pattern is not clear.

A larger striation cuts across the splayed
striae (A).

Location: Murimotu Fm, Mt Ruapehu, New
Zcaland. I 75.30'30"39" I 0' I 0"
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Striae on curved surfuces

hnage 7 shows a weathered andesite clast
with individual striae on a smooth curved
surface. These show wide variation with no

prefened orientation.

This illustates that striae do not form
exclusively on flat surfaces.

Location: Murirnotu Fm, Mt RuaPehu

I 75"30'30"39"1 0'I 0"

Small striae und variable orientation

Image 8 shows an andesite/dacite clast with
a flat weathered surface. This surface
contains abundant small striae with a wide
variation in striae orientation and only a

weak preferred orientation, oblique to the

clast long axis.

Inset square is enlarged in Image 9.

Location: Murimotu Fm, Mt Ruapehu

1 75'30'30"39" I0' I0"

Closeup of Image 9

Image 9 shows a closeup of the inset square

in Image 8.

Individual striae are generally less than 5
mm long and 0.5 mm wide although one is
2.5 mm wide (A).

Occasionally, many striae overlap forming
completely abraded patches (B).

Location: Murimotu Fm, Mt RuaPehu

I 75"30'30"39" I 0' I 0"
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Small-scale striae, sub-parallel to the
long axis

Image l0 shows an elongate argillite clast
from a rock-fall scree deposit (MH 4). Most
of the striated rock-fall clasts have flat
surfaces produced by fracturing along
bedding planes.

On this clast, a high density of small striae
occur predominantly aligned parallel to the

long axis of the clast. A "background" of
microstriae occur over most of the clast
surface.

Inset square is enlarged in Image I l.

Location: Site MH 4, Murchison Valley, Mt
Cook. New Zcaland. I 70'19'45"43"36'30"'

Closeup of Image I0

Image I I shows a closeup of the clast
surfacc.

Individual striae up to 5 mm long are visible
(A) against the "background" microstriae.

Most striae are < 3 mm long, although some

larger striae are up to 5 mm long (A).

Most striae are sub parallel to the long axis
of the clast.

Location: Site MH 4, Murchison Valley, Mt
Cook, New Zealand, I 70'1 9'45 " 43"36' 30"

Individual striae and compound striae

The clast in image l2 shows an angular
argillite clast with a typical flat face and

sharp edges.

Many small striae with no preferred
orientation are visible (A).

Also present is a large compound striation
that is l2 mm long and 4 mm wide. This has

smaller parallel striac on the surface (not
visible at this scale) (B).

Location: Site MH 4, Murchison Valley, Mt
Cook, New Zealand, 1 70"19'45"43'36'30"

Hq.*itth-,",ft ;3-"-*,;,
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Parallel striae

lmage 13 shows another striated argillite
rock-fall clast.

It displays several well-defined parallel
striae that are not related to the clast long
axis (A).

Parts ofthe clast show a "background" of
microstriae (B).

Inset square is enlarged in Image 16.

Location: Site MH 4, Murchison Valley, Mt
cook, New Zealand, 170"19'45'n43'36'30"

Closeup of Image 13

Image 14 shows a closeup view of part of
the clast in hnage 14. Two well-defined
parallel striae are visible, the largest is l8
mm long and 0.5 mm wide. These are

oblique to the long axis of the clast.

A "background" of much smaller shiae is
visible around the larger striae.

Location: Site MH 4, Murchison Valley, Mt
Cook, New Zealan d, 17 0' 19' 45"43"36'30 "

Rare small striae

The clast in Image 15 is an example angular
argillite with a flat bedding surface showing
only a few small striae oriented oblique to
the clast long axis. These include:

Short (< 5 mm) individual striae (A).

A wider compound striation that has several
smaller parallel striae (B).

Location: Site MH 4, Murchison Valley, Mt
Cook, New Zealand, I 70" I 9'45" 43"36' 30"
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Long axis parallel striae

Image I shows an angular argillite clast
from the Ngapotiki Fault with a flat planed

and densely striated surface.

Individual striae are indistinct but together
make up a clearly abraded surface with
striae parallelto the long axis of the clast.

Location: Ngapotiki Fault, New Zealand
175"21'I0"41'35'05"

Multiple striae orientations

Image 2 shows a small, almost
equidimensional argillite clast. The surface
has abundant, mostly short striae with no
prefened orientation, The largest striae is l5
mm long, I mm wide and slightly curved
(A).

The curved striac together with the lack of
pret-crred striae orientation, indicates clast
rotation during the striating process and

suggests that equidimensional clasts have

morc variablc striae orientations.

Location: Wellington Fault, New Zealand
I75"05'00"4l'07'00 "

Striae on clast ends

Image 3 shows striae on the end of a sub-

angular argillite clast (A).

Striae are up to 30 mm long and parallel
forming a set 8 mm wide that is parallel to
the long axis of the facet.

Also visible is an individual short, wide
striation almost perpendicular to the main
set of striae and long axis of the face (B).

Striae on clast ends are only observed on

tectonic and debris-avalanche clasts

Location: Ngapotiki Fault, New Zealand
l7 5"21'07"41"35'03 "
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Planed surface and parallel striae
concentrated on clast margin

This sartdstone clast is a well-rounded beach

clast incorporated in the Ngapotiki Fault.

Thc surface displays indistinct parallel striae

that fonn an obvious planed surface.

The abraded surltrcc is curvcd across the

clast (top to bottom of image) but tenninates
abruptly whcrc thc curvature of the surface

increascs.

Location: Ngapotiki Fault, New Zealand
I75"2l'07"41"35'03"

Parallel striae concentrated on clast
margin

Thc clast in hnagc 5 displays t-aint striae

sub-parallcl to the long axis of thc clast, but
concentrated at thc margin of the surface

where the curvaturc of the clast increases
(A).

Also visiblc is extensional open fractures
orientcd approximatcly perpcndicular to thc
striae oricntation and long axis of the clast
(B).

Such fracturcs occur on2lYo of clasts from
this sitc.

Location: Ngapotiki Fault, New Zealand

I 75'21 '07"4 l'35'03 "

Striae concentruted on clast morgin

This argillitc clast from thc Wellington Fault
shows a flat surfacc with well-rounded ends.

A t'cw striae occur ott the flat surf-ace at

variable oricntations. Howcvcr, the

concentration of striac occurs at the extreme
end of thc flat surf-acc wltcrc the curvature
of thc clast incrcascs (A).

This concentration of striae at the margins,
occurs on tcctonic clasts of all sizes.

Location: Wcllington Fault, New Zealand
I75"05'00"4I "07'00"
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Broken ond sftiated clast

Image 7 is a sandstone clast from a fluvial
conglomcrate that has been incorporated
into the Wcllington Fault. The surface

shows striae, sonre oriented parallel to the

long axis of the clast (A), but others at

various orientations up to 90' frorn the long
axis (B),

The clast has been fractured by tectonic
movernent and the break is oriented
approxirnately perpendicular to the long
axis of the clast. No striae occur on the

fracturcd surface.

Location: Wellington Fault. New Zealand
I75"05'00"4I "07'00"

Large striae on cobble

The sandstone cobble in Image 8 is a well-
rounded fluvial clast incorporated into the

Wellington Fault. The clast was oriented
with the long axis parallel to the slip plane

in the outcrop.

Most striac are oblique to tlie long axis.
Some are compound striae with smaller
parallel striae on the surf'ace. Parts of the

surface show "background" microstriae.
This clast has also been fractured
perpcndicular to thc long axis.

Location: Wcllington Fault, New Zealand
I75"05',00"4 |"07'00"

Closeup of large striae

Image 9 shows a closcup of the large striae
in Imagc 8. The striae are up to 86 run long
and 5 mm wide (the largest measured in this
study).

An individual striation that curves by about

60" at one end. This indicates the striating
fragmcnt rotated out of the striation track
(A).

A curved compound (5 mm wide) with
snraller parallcl striae on the surf-ace (B).

A short and wide striation (8 mm long and 4

mm widc) (C).
Location: Wellington Fault, New Zealand
I75"05'00 "4I "07'00"
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Parallel striae oblique to the long axis
on s curved surface

The clast in image l0 has parallel, fine
striae oblique to the long axis of the clast
and are continuous over a curved surface.

Most striae are indistinct but overall make
up a densely abraded surface.

Onc largcr, clear striation is l7 mm long
and 0.5 mm wide and oriented parallel to
the long axis (A).

Location: Ngapotiki Fault, New Zealand
175"21'07"41"35'03"

M ultiple striae orientations

This small argillite clast from the

Wellington Fault has small striae with
multiple orientations despite the clast
having a well-defined long axis.

Location: Wellington Fault, New Zealand
I75"05'00"41"07'00"

Sub-parallel strise on curved surface

This argillite clast from the Ngapotiki Fault
clast that has no flat surfaces, but shows a
few striae that are sub-parallel to the long
axis of the clast (A).

The striae are straight and extcnd over the

curved surface.

Location: Ngapotiki Fault, New Zealand
17 5"21'07"41"5'03 "
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LOCATION; MUELLER GLACIER, NEW ZEALAND COLLECTION : lOO CLASTS FROM BASAL ICE
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LOCATION: MURCHISON GLACIER. NEWZEALAND COLLECTION : 100 CLASTS FROM BASAL lcE
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LOCATTON , MURCHTSON VALLEY, MT COOK
COLLECTION : MH 2, 50 CLASTS (50 m€trss downstrsam from MH 1)
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NO. UTIIOLOGY AXIS LENGT II AVK AXIAL RATI AKUMETIN
ROUNDNESS

FACEIt' 5 | t(At ./40

A c/A B/A

SANI.]S IONE 30 ZJ 't6 237 3 083 U3 YES NO 0

t SAND 42 36 17 0.4u 0 04 YE NO 0 o

SAN 02s 063 0.1 NO 1 1

4 77 61 4l 079 06 NO
SANDSTONE 7 04 N N 0 I

26 17 0.50 NO NO 0 0

7 SANDSTONE 30 'i9 15 ?1-3 05 063 u.4 YES NO 0 o

a TONF a7 t3 0.35 u7b 03 NO N 0 1

I SANDS]ONE 303 045 063 uti NO 0 0

t0 34 24 69 007 NO 0

11 SANDSTONE 34 1S !l 1.3 g.3z 0.56 04 YES 0 1

12 SANDSTONE 41 J 037 s5 0.5 o I
13 SANDSTONE 10 203 ?7 089 N NO 1

14 SANDS I ONE 60 36 24 40 0.40 uou YES 0 1

15 SANDSTONE 51 327 0 N N 1

Iti SANDS IONI l6 47 4E 076 o.2 YES N 1 0

1t SANDSTONE 45 30 7 0.51 0.67 0.3 NO u 0

18 SANDSTONE 45 l 30 67 n84 NO 0 0

19 35 27 i0 0.37 N N I

2t) SANDS I ONI 41 20 :t2 7 4g 0.90 0.4 YES N 0 0

21 SANOSTONE 44.O 0.49 0.82 04 YE NO u 0

22 SANDSTONE 6U 26 033 0.43 g2 YES YES

SANDSTONE 34 10 2.O 029 065 0 N YES 1

24 T 24 15 1Z r7.0 0.50 63 0.3 YES NO 0 0

25 ANDSI ONI ti6 50.0 0 o.tt 0.3 YES N u 0

26 iTONE 41 17 13 237 dl 0 N N

27 SANUS I ONt 2A 7 0.57 {J.ifb 0.6 YE N t) t)

28 SANDSTONE 39 1S 0.33 0.68 YES NO 0

NE 59 53 u6 034 090 NO NO

30 SANDSTONE 7 2t.3 62 07s N NO 0 0

37 27 032 04 N NO

32 SANTJS I ONE 17 .32 07u NO N

SANDST 22 20 05 I 04 io NO 0

34 SANDSTONE ?4 I 13 u.4 04 NO N 0

ANOSTONE ta 243 o.72 NO N 0

17 t1 1t 0 i!8 074 0.4 NO 0

37 20 7 180 u: 01 N NO

38 AR LLII E 3tl ZI u 2'1.7 0.90 u.4 YES 0

3S d6 2A 20 13 04 6t N NO 0

40 SANDSI '15 0.41 I N N

41 ANDSTONE 1?O o47 0.65 NO N 0 o

42 SANDSTONE 46 048 065 NO 0

43 SANDSTONF 2 2l .u 06s 4 o2 NO 0

44 SANDS I O u 22 70 0.34 N 1

20 12 '10 '14.0 060 0.5 YE N (, U

46 SANDS I ONh 37 21 0 034 0.66 06 YE NO 0 I

47 ARGILLITE 6 16.3 o21 6 YES NO 1

4E SANDSTONE '17 243 0.52 o.70 YE N 0 U

49 SAND 50 27 034 054 0 I
SANDSTON 26 1U 37 0.96 03 NO 0 1

AGE 40,0 zE.t 1l 0.43 9.72 U.J6 ,IA {A !A
TOTAL NA NA NA NA NA NA 10 1l

.a JO 6 z2 {5

SUMMARY STATISTICS

LITHOLOGY NU. .t STRIAE v. FACETS r.
SANDSTONE 4E 96.{J 3 35.4

ARGILLITE 2 4O 500 1t u.u

TOlAL 19

ROUNDNESS TOTAL CLA!'I li Y. tsAl ./. FAc. STRIAE % STRI
3 6 0 0.0 00

0 E t6 2 5 2 25.0
0 6 154
04 t8 32 7 0 00
0.5 E U 0

0.6 o 50 0 0

o7 0 LI 0 0

0 0 0 0 o
0 0 0 0 0 II

19

ROUNDNESS SANOSTONE % ssT ARGILLITE % ARG
01 0 00
o2 00
03 13 0
04 l5 3t 1

o5 4 6 0
10 l 0
0 0 0

OE 0 0 0

0o 0 0 0 0
48



Appendix 2, Temperate glacial clast data

LOCATION, MURCHISON VALLEY, MT COOK
COLLECTTON : MH 3, 50 CLASTS (650 metres downstream from MH l)

278

NO. LIfHOLOGY AXIS LENGTH AVR AXIAI RATIOS AKUMEEIN
ROUNDNESS

FACETS STRIAE c4u
B c/A E'A

1 SANDSTONE 41 14 2b.u u.34 o71 03 N NO

JF 40 16 0.2s 04 N NO 0 1

SANDSIONE 55 21 3s0 038 0.53 0.J NO 0 ,1

34 19 od? 076 04 YE] 0 0

SANDSTONE 36 2D 37.0 {J 36 065 YE N u 1

SANDSTONE 27 19 11 18-0 041 070 o2 NO t 0

SANDSTONE 31 24.t) u.52 I 0:r NO NO 0

a 60 40 34 477 0.57 0.42 0s NO NO 0

I ARGILLITE 61 30 1T 360 D2a 04s u.3 NO NO t
't0 SANDSTONE 35 2A 10 24.3 o29 080 NO I

11 SANDSTONE 70 34 42.O u 3l 0.49 03 YE NO 1

'12 SANDSTONE 45 32 0 71 0.4 NO 0

SANIISYONF 34 ) 25.O u.35 08s NO NO
'14 SANDSTONE 't6 273 039 061 u NO NO 1

SANDSTONE 44.7 062 o.2 N NO

16 SANDSTONE 31 22 14 223 0.45 N NO
't7 SANDSTONE 67 46 :16 493 054 0.67 u5 NO NO 0 0

ARGILLITE 16 E 20./ o.21 o42 04 YE|' YES 0 'I

'19 SANDSTONE 30 520 038 056 tt? NO NO 'I

SANDSTONE 60 :ll o52 087 0.6 NO 0 0

19 14 050 068 0.3 0 0

22 SANDSTONF 21 l4 190 0.64 0q5 04 NO 0 0

SANOliIONT 67 24 38_0 0.:t4 u.3ei 03 YES NO u

SANDSTONF 40 32 42.3 073 NO 0

42 397 0.54 oaa 03 NO NO

SANDSTONE 74 44 580 059 0,7ti o2 NO N

SANDSTONE 35 24 363 0d8 04 N

SANDSTONF 42 31 t6 29.7 a 74 N o

29 44 24 39.0 03 N

30 SANDSTONE {:{ 347 o2 N NO

3t SANDSTONE 4t al a46 o57 087 n3 NO NO 0 u

32 SANDSTONE 30 0.32 0.57 02 YES NO I

33 SANOSTONE 67 30 447 045 0.55 U3 NO NO 0 0

34 SANDSTONE 58 3l 17 u.zg U5J 04 YES NO 0

SANDSTONE 75 44 1 o44 04 YES NO 0

36 SANDSTONE 32 1b 8 18 7 o25 u.50 o2 NO NO 1

SANDSTONF s4 60 44 66.0 od7 064 L'3 NO N 0

36 SANDSTONb 52 42 553 o7) 0 NO 0 0

SANDSTONE 47 o.32 u.t 4 06 NO NO

40 ARGILLITE 44 045 0.73 NO NO 0 0

ARGII I ITE 25 12 030 0 NO NO 0

5ANI. 2l t9-7 0ad 05 NO NO 0

43 SANDSTONE E3 s77 04? 03 NO NO o

44 SANDSTONE 50 15 J 1.3 0.30 058 0.3 YES NO 0 I

45 SANDSTONE 45 '.1f 337 o.42 04 N NO

a6 SANDST 54 42 dl 0 050 0.3 N NO

SANDSTONE 31 22 l6 :/39 0s2 0 71 {J4 NO NO 0 o
45 13 280 058 03 NO 0 1

41 34 15 04 N N(t 0 0

5n sAND5 I UNh 74 31 o.42 o74 0-3 N NO 0 0

AVLi 51.1 3d.f 21,r J5-t o.12 0.49 o.J5 NA NA NA NA

TOTAL NA NA NA NA NA NA NA 1 22

% 16 16 11

SUMMARY STATISTICS

LITHOLOGY
SINDEi6NE

NO. U. STRIAE .h

45 90.0 00 7 156
ARGILLITE 5 10.0 1 2U0 1 200

TOTAL 50 1

ROUNDNESS TOTAL CUsI!j '/. FACETS U. FAC STRIAE % STRI
0 0 u (l 0 0

1 0

20 2U 0

u4 3 25 1

0 0 0
06 0 0

o7 0 o 0 0
08 0 0 tl 0 0

09 0 0 0 0 0

50 8 1

ROUNDNTss SANDSTONE ./. ARGILLITE % ARG
0.1 u 0 0
o2 E 0
03 16 40 4tt

U 1t ,| 20
13 2 40

06 0 0
o.7 0 0 0
08 0 0 0
u.9 0 0 0 0

45



Appendix 2, Temperate glacial clast data

LOCATION , MURCHISON VALLEY SITE 4, MT, COOK
COLLECTION : MH 4, 50 CLASTS FROM ROCK-FALUSCREE DEPOSIT

279

NO LITHOLOGY ilts LtsNg I AVR AXIAL RATIOli FLAT STRTAE t<A G4U

A E C C'A B'A FACES

SANDSTONE 53 4a 18 383 0.34 o2 NO NO 1

SANDSTONE 27 0t6 0.60 u.z NO NO 1

SANDSTONF 50 20 35 {J 040 o70 03 NO NO

SANDSIONT 90 45 22 523 o24 0.50 o2 YE NO

5 SANDSTONF 23 1U 018 0 4l 03 NO

ARGILLI I E 56 18 55.3 020 061 04 YES NO 0

ARGILLITE 20 r8 7 0.20 067 tJ.z YES YE

8 SANDSTONE 460 0.33 o2 NO

o SANDSTONE 40 15 283 0.34 0.75 o3 NO N

't0 ARGILLITE E 22.7 o21 0.58 D.2 NO YE 1

ARGILLITE 37 2t) 7 24.7 0.46 u54 02 YES U

SANDSTONE ?o 8 u.1 036 o2 N

't3 ARGILLITE 37 12 23.7 0. 059 o4 YE YE U

ARGILLITE 15 o 187 0,17 0.43 YES YES

ARGILLII E 65 40 5 36.7 0.08 0.62 0.1 YES YES

SANDSTONE 50 27 15 30.7 0.30 0.54 YES NO 0

ARGILLITE 25 11 10 t7 3 040 {J ba 03 NO NO

ARGII I ITE 2g 173 o.77 r.2 NO NO

sANU!; I Ul 12 30 25 32.',t 0,60 0.71 o2 YES NO 0

ARGILLN 6E 49 J5 440 o.22 o72 01 NO YES

SANDSIONE 24 32.U o20 040 0.'| NO NO

ARGILLII 5S 5l 7 39,0 086 0l NO YES

23 SANI]SI L7 24 o51 o77 03 NO NO 0

ARGILLITE 00 2t) 243 u06 0.33 01 YES YES 1

SANDSIONT 25 27.3 0.58 06s o2 YES N I 0

SANDSTONE +4 30 270 016 0.68 n? NO N

27 SANDSTONE 43 1S o44 o74 u.J N 0

SANDSIONE bu 51 44.3 0.37 0.85 o.2 YES NO I

ARGILLITE 4S 29 'tz 30.0 o24 059 o.2 YES YES 1 1

30 ARGILLITE 27 14 o uzz 0.52 03 YES YES I

31 ARGILLITE l9 10 0.26 04s 03 YES 1

SANDSTONE 30 12 213 040 073 03 NO N

SANDSTONE 20 11 059 o.2 NO 1 '|

SANDSTONE 37 2l 10 247 o.27 073 D2 YES NO 1

SANDSTONE 26 18 1A.t 046 069 U3 NO NO 0

SANDSTONE 52 30 14 320 o2t 0n8 o2 NO NO 1

SANOSTONE 40 33 24 323 060 0.63 0.2 YE NO I

SANDSTONE 2n t0 23.O 051 o2 NO I

ARGILLITE r05 a7 27 730 0.ztt 0.83 03 YES YE|' 1

SANDSTONE 40 16 15 237 038 040 0 NO NO

SANDST 46 24 12 0.2tt os2 0 NI NO 1

S, 38 347 039 UbU o2 t\ N(

SANDS d6 046 0-76 03 NO N 0

SANDSTONE 3S 26 17 27.3 04 067 o2 NO NO

SANDSTONE 24 17 u.44 0.62 o2 YE5 NO 0

4B SANDSTONE 12 t1 15.3 048 052 tJ2 NO NO

ARGILLITE 30 22 200 ozl 073 o2 YE5 NO

4A 30 ?17 030 NO h

4S SANOSTONE 45 26 2fo o.22 NO N

SANDSTONE 28 10 10 18.0 036 u.5 / )3 NO NO

AVERAGE 26-g 13.7 29.7 0-31 0.6f 0.23 NA NA NA NA

TOTAL NA NA NA NA NA NA NA zg t3 30

v. 40 za 64 TN

SUMMARY STATISTICS

LITTIOLO(;Y NO. STf(IAts % FACES Ac

SANDSTONE 33 MU 0 00 8 242

ARGILLITE 17 340 12 /u tt

TOTAT 50 ta 20

ROUNDNESS TOTAL CLAS]lj FA % FACES STIIIAts % STRI

01 l0 4

o2 '11 l4
0.3 30 3 27

o4 100 50

05 0 o 0 {l

06 0 0 0

0.7 0 u o 0

08 0 0 0 0 0

09 0 o 0 0 o

2U 13

ROUNDNESs % SST ARGILLI T E

01 1 23.5
o2 20
o3 11 294

0 0

0.5 0 0

06 0 o

07 0 0

0.E 0 0 U

0s o 0 0
17



Appendix 2, Temperate glacial clast data

LOCATION , MURCHISON VALLEY, MT COOK
COLLECTION : MH 5, 50 CLASTS (2200 metros downstream from MH 1)

280

NO. LII HULU$T AVR AXI.AL RATIOS KRNESI' FAgEIS R/A it0

A E c c/A BIA

SANDSTONE 27 zo 035 o47 07 NO 0
) SANDSTONE 26 34.3 g.47 u.tt:l 0.4 NO 0 0

SANDSTONE 52 3t7 0d0 0.6 t) 0

4 SANDSTONE 86 49 79.3 057 088 0.3 N NO u
66 41 28 450 o.42 0.62 o4 NO NO 0 0

SANDS] 1L 317 028 0.62 0.5 NO NO 0 I

7 SANDST 46 24 :ih :l 045 NO 0 0

I ARGILLITE 27 11 't4 0 o4l o7 N NO I

a SAND$TONE 30 19 10 19.7 0.33 05 N NO 0 1

t0 SANDSTONE 1l 207 034 059 NO NO 1

11 SANDSTONE 323 0.28 0.4 YES NO 0 1

SANDSTONE U4 a1 61 0 049 0.6s IJI NO NO 0

l3 SANDSTONE 56 46 36 4bu 064 082 04 NO NO 0 0

SANDSTONE 32 15 237 u47 08 NO NO

't5 SANDSTONE t8 0E6 o.4 NO NO 0

16 110 s0 46 o12 oa2 05 NO 0 0

1t SANDSIONF 41 21 19 270 04b o 5l o7 N N( o

1E

SANDSIONE
20 17 243 o47 03 NO N 0

1S 't9 273 051 $.70 u.3 NO N 0 0

20 SANDSTONE 45 32 0 51 071 0.4 YES NO 0

21 TONE oo 28 447 o42 u.7s u.c YES NO 0 U

22 SANDSTONE 77 56 760 05s o7 NO NO 0

23 SANDSTONE )8 1t 230 037 0.s3 NO N 0 ,l

2A SANDSTONE 55 4',] 3U L?O 055 0.75 0.5 N 0
'25 SANDSTONF 41 33.0 084 04 N o 0

26 SANDSIONE 523 050 03 N NO

SANDSTONE 5U 283 o.44 u.b NO NO 0

2E SANDSTONE a2 677 04s 099 0.3 A NO 0 0

29 SANDSTONE 53 o47 053 03 NO 0 0

30 SANDSTONE 62 36 41.0 u,40 0.58 0.3 I NO 0 0

3l ARGILLITE 42 3 10 25U 0.24 05 YE5 NO 0

SANDSTONE 64 420 0.4 NO NO 0

33 SANDSTONE 73 21 440 o37 o44 NO NO 0

34 SANDSTONE 41 64.3 tJ.43 058 04 YES NO 0 0

SANT'STONF 47 35 Jb7 060 D74 03 NO NO 0

36 SANDS I ONb 73 34 543 o47 tl77 o7 NO o 0

37 ARGILLITE 41 to 277 0.stt N NO U

SANDSTONE 75 in o2a 063 NO 0

JA SANDSTONE 45 1l 030 079 0.5 NO 0

40 ARGILLI I I 54 t7 34.3 0.41 0.50 0.3 YES NO 0 0

41 SANDSTONF 40 3t 060 o77 05 NQ NO o

ARGILLII E 83 577 0.4u 069 05 YES NO 0

SANDSTONE 73 30 o21 0 4'l 03 NO 0

44 SANDSTONE 48 45 l 401 094 03 NO 0 0

45 ARGILLITE 1C 270 u.5'l 06 N 0

SANDSTONE 45 330 o.42 o.7 tl NO NO

SANDSTONE 56 42 o52 o75 U NO N 0

SANDSTONE 80 o24 045 0.: N 1

49 SANDSTONE 44 I 04E t)a N NO

50 SANDSTONE 54 47 427 0.50 067 UO NO NO U 0

AVERAGE 56.7 3E-5 24-5 JS,A 0.67 Q.47 {A

TOTAL NA NA NA NA NA NA NA 0 u 15

"/t
18 0 30

SUMMARY STATISTICS

LITHOLOGY NO. .h .,/" %

sANUS | (Jn ttl EE.O 0 u.u 136

ARGILLITE o 12.0 0 0.0 5UU

TOTAL 5U 0 I

TOTAL CLASTS ./. FACETS A. FAC 5I RIA
0.1 0 0 0
o2 1 0 0
03 2h 0 0

06 10 20 4 o o
3 0

0 t0 0
D7 7 l4 0 0 0

08 1 0 0 0

0.9 0 0 0 0
g 0

SANDSTONE % ssr % ARG

01 0 0 0
D2 'I 0 0
03 12 17

04 10 lt
05
06 3 7
07 6 14 t7

c 0 0
44 6



Appendix 2, Temperate glacial clast data

LOCATION, MURCHISON VALLEY, MT COOK
COLLECTION : MH 6, 50 CLASTS (2450 motres downstream from MH 't)

281

NO- UTHOLOGY A,XI5 LENU I AVR STRIAE ttA

A B c crA I BrA I

SANDSTONE E9 IO 660 NO 0

z SANDSTONE 43 2A 16 ?43 NO 0

ARGILLI I E 6d NO 0

4 SANDSTONE 45 3S 0,{ NO IJ 0

SANDSIONL 3S t5 26.3 NO 0

SANDSTONE 270 u5 | NV
SANDSTONE 33 21 0.48 | 0.64 | 06 

|
NO NO

SANDSTONE 44 NO 0 0

0 SANDSTONE 52 26 2U 327 03 NO NO

10 SANDSTONE 90 47 03 NO NO 0 0

1t SANDSTONE a4 46 N( NO 0

SANDSTONE 3S 27 340 05 N NO 0

13 SANDSTONE 38 IE 26.0 U6 NO NO 0

ld ARGILLITE ti0 443 NO 0

SANDSTONE 42 22 31 3 04 N 0

ARGII I ITE 36 35 10 270 N NO I

17 SANDSTONE 60 40 0.67 I 088 | NO NO 0

18 SANDSIONE 37 15 05 YES NO 0 1

19 SANDSTONE 61 27 22 367 036 | 044 | o) NO N( 1

20 SANDSTONE 40 33 30 34.3 05 NO N 0

SANDSTONE 40 20 JI N NO 0

22 ARGII I. ITE 47 24 277 o7 N o ,|

SANDSTONE a2 lti 27.7 0 NO NO 1

24 SANDSTONE 45 23 34.3 03 YES NO U

SANDSTONE 23 46 0.32 | 063 I NO NO 1

SANDSTONE 46 0.5 NO NO 0 (,

SANDSTONE 42 24 03 YES NO 0

SANDS I ONE 16 NO NO

29 ARGILLITE 44 15 N 0 1

30 SANDSTONE 1tt ?AO 06 N 0

3l TONE 16 32.U u2 NO NO 1

SAND 36 25 14 0.3s | 06e I YES NO 0

33 SANDSTONE 54 45 23 4At NO NO

34 SANOSTONE 40 29 17 247 N N 0 0

SANDSTONE 29 12 247 ol N

SANDSIONE
SANDSTONE

22 13 16 0 59 | 0.64 N 0

37 51 36 NO NO

38 ARGILLITE 2t t3 03 NO N U

39 SANDSTONE 35 20 253 05 N 0

40 SANDSTONE 70 44 22 453 01 N NO 1

4l SANDSTONE 29 03 NO NO 0

42 SANDSTONE ZU 240 057 04 NO NO 0

43 SANDSTONE 48 383 0.54 06 NO NO 0

44 SANDSIONE 77 50 64.7 065 087 NO N() 0 0

45 SANDSTONE 32 15 24.t) oa7 07E NO NO 0

46 SANI]STONE EI 6'l.0 080 NO NO 0

47 SANDSTONE 31 2!2 t5 227 0.46 0 71 05 YES NO 0

48 SANDSTONE 44 ?5 20 2S.t 045 057 NO NO

49 SANDSTONE 3l ?1 '16 0.64 NO NO

SANDSTONE 31 19 18 0.58 0 6'l 04 NO NO

AVERAGE 47.4 J4-b 2't.E 34.7 0.48 0.73 o.43 NA NA

TOTAL NA NA NA NA NA NA NA 7 0
14 0

SUMMARY STATISTICS

LITHOLO(jY NO % SIRhts FACETS

SANDSTONE {4 880 0 00 7 159

ARGILLITE 6 120 0 0.0 0 00

IOIAL 50 7

TOTAL CTA!iIS FACETS .hFAC STRIAE ./. rRl

o 0 o 0

o2 t0 0 o

03 7 29 0

04 3

0.5 t1 '18

06 0 0
o7 0 0 0

u.6 1 0 0 0

0.9 0 0 0 o 0 0
0

ROUNDNESS SANDI'I UNE % ssT ARGILLITE % ARG

0 ots 0

u. 1t 4 o

03 lt 4 33

o4 I 2V.A 50

0.5 It 250 0

06 205 0 0

o7
08 0 0
09 0 o n

44 o



Appendix 2, Temperate glacial clast data

LOCATTON, MURCHTSON VALLEY, MT COOK
COLLECTION : MH 7, 50 CLASTS (3550 metres downstream from MH 1)

282

NO. LITIIOLOGY AXIS LENGI H AVR FACETS STRIAE RA c40

A a c/A B/A

1 SANDST 27 22 o44 NO NO 0

7S 5S0 0.40 u9b I UJ NO NO 0 I

SANDSTONI 42 550 0.63 NO NO

SANDSTONE 66
^2

683 043 NO NO 0 0

SANDSTONE 45 34 22 o40 o76 0-3 NO 0 0

SANDSTONE 43 34 46.1 068 06 N( 0 0

SANDSTONE 10 237 o.21 0.65 0.3 N D I

a SANDSTONE 44 35 048 0.80 0,3 NO N 0

SANDSTONE t 4',I-0 055 04 NO NO

'10 SANDSTONE 110 35 69.0 o.32 04 NO NI 1

SANDSTONE 50 45 086 0.90 ot NO N 0

SANDSTONE 27 2.O 0.59 079 NO NO 0 0

SANDSTONE 40 26 035 05 YE NO 0 1

SANOSTONE 40 4E.0 06 NO NO ,|

SANDSTONE 't5 290 0.41 03 NO NO 0

SANDSTONE 70 3L 517 0.49 o7 0:l NO NO

SANDSTONE 46 40 '16 34.0 035 {J.4 NO NO 0

SANDSIONb 44 3S 473 075 NO NO

SANDSTONE 76 46 46 567 0.61 0.63 06 NO 0

2U SANDSTONE 85 42 3n 049 0.3 YES N 0 l

SANDSTONE 7( d8 51 3 0.51 08 N n 0 0

ARGILLITE 3{J 14 247 0 7'1 0.4 N NO

23 SANDSTONE 60 22 037 o72 NO 0 1

24 60 57 40 043 04 NO 0 0

ARGILLI I 260 g.1t 0 NO 0

2B NE 053 NO

SANDSTONE E6 65 673 059 ot6 NO NO

2A SANDSTONE 64 41 45.7 0s0 064 05 NO NO 0 0

2i 1g 247 0.54 n57 0 N NO 0

30 SANDSTONE 4l 25 2\) ?87 04s 061 N NO 0

31 SANDS 4t 3 |t.52 070 04 NO 0

32 E3 '17 423 O.ZU 033 o2 NO NO I

SANDSTONE E3 EO 2U 6't 0 o24 0.gti 02 N NO

SANDS I ONE 67 46 26 46.3 o39 06s 05 NO t)

35 SANDSTONE 16 41 0 u.25 070 NO NO

36 SANDSTONE 46 3l 400 0.67 0 N N 0

37 SANDSTONE 62 ltt 367 o52 o3 N N

SANDS tONE 60 33 447 068 NO N 0

SANDSTONE 51 47 4t 0 0.49 os2 0 NO NO 0

SANDSTONE 447 0.48 0.64 0 NO r\ n 0

41 SANDSTONE 3l 27 t6 047 0 NO N u

42 SANDSTONE 057 073 NO N 0

SANDSTONE 36 ?9 22 06r n al 04 NO NO 0

SANDSTONE 79 t, o57 067 0 NO o 0

SANDSTONE 40 24 21 053 0 riu NO NO

46 SANDSTONE 27 16 05s NO N 0

SANDSTONE E5 43 0 o72 05 N 0 0

SANDSTONE s7 045 058 N NO 0

49 SANDSTONE 92 54 757 050 O.EE 04 NO NO 0

50 SANDSI UNE 130 60 4S tg.l 0.38 0.46 u.4 YES NO U 'I

AVERAGE 6t,s 12.4 2E.5 41.4 0.71 0.43 NA NA NA NA

TOTAL NA NA NA NA NA NA NA 0 2 t6

% 6 0 ta 1Z

SUMMARY STATISTICS

LITHOLOGY NO_ l/. ST R1AE v.
SANDSTONE 4E 96.0 0 0.0

ARGILLI I E 2 4.0 0 o.u 0 0.0

TOTAT 50 0 3

ROUNDNESS TOTAL .h FACETS U. rAC IIAE % STRI

0l o 0 0 0 0

o? 2 0 0 0

03 15 7 0
8 0

5 t8 1l 0
6 'lb 0 0 0

o7 0 0 0

0.6 0 0 0 0 0

09 u 0 0 0 o

50 3 (,

ROUNTJNESs ; ssT qRGILLIIE 7. AXG
0l o 0

2 2 4 0 0
14 29 50

U4 1 50

6 17 0 0
s 0

o7 I 0
8 4

0 0
48



Appendix 2, Temperate glacial clast data 283

LOCATION, MURCHTSON VALLEY, MT COOK
COLLECTION : MH 8,50 CLASTS (3800 metros downstream from MH 1)

NU LITHOLOGY AXIS LENGTH AVR AXIAL RATIOS KRNEiis FACETS RA c40

A B C'A B'A

SANDSTONE 50 29 17 034 056 0.7 NO NO 0 1

54 31.7 o3s NO NO 0 1

SANDS]ONE 20 277 0.56 07 NO 0

SANDSTONE 3l 260 0.65 0.87 6 NO N

SANDST 41 30 059 073 N 0 0

6 SANI 41 3'l 3l.u o61 076 0 N NO 0

SANDSTONE 41 JO 27 347 0.66 05 N 0 0

SANDSTONE 36 '11 0 3'l 0.5E OU NO N u

SANDSTONE 22 17 26.U 0.44 u.50 06 YES NO 0

1U SANDSTONE 27 16 046 o.77 0.ri NO NO u

t1 SANDSTONE 45 340 0.41 078 NO NO

12 SANDSTONE 42 3l 337 U.EU NO NO n

34 26 1S 076 QI NO NO u

42 24 6 24.7 0.19 0,57 YES NO 1

15 ARGILLITE 37 323 0.68 095 U5 NO NO

16 SANOSTONE 6 o22 0E3 NO NO U

17 SANDSTONE 50 05{ 0.4 NO 0 0

1A SANDSTONE 35 22 230 0.34 07 N n

l9 SANIISTONE 43 4rl7 0.E3 0.6 NO NO

20 50 333 0.66 070 {J.4 NO 0

21 44 563 098 NO 0 U

22 SANDSTONE 75 62 55 640 0.73 04 N 0 0

23 SANDSTONF l4 040 069 ot NO N

24 ARGILLI I h 11 24 069 o.7 1 N 0

SANDSTONE ?4 ts 24.7 o77 05 NO 0

zo SANDSIONE 37 34 277 0.32 05 N NO 0

27 SANDSTONE 0E5 04 NO NO 0

2A SANDSTONE 20 14 039 0.56 05 YES NO

29 SANDSTONE 3g 15 038 064 06 NO NO

30 SANDSTONE 3o 22.3 0.50 073 NO 0 U

SANNSTONF 19 203 06 N NO 0

32 SANDSIONb 2L 1S '14 0.58 0.79 05 NO NO o

33 SANDSTONE 17 15 13.7 088 0.5 NO NO 0 0

34 SANDSTONE 4A 21 347 o73 o7 NO NO 0

J9 SANDSTONE 45 3U 3?3 0.64 u.u4 04 YES NO 0 0

SANDSTONE 1q t3 267 o?7 040 0.7 NO NO u 1

37 SANDSTONE 41 2A 15 o.3t 0.68 04 YES NO 1

38 SANDSTONE )6 13 o17 D74 NO NO 0 1

39 SANDSTONE t3 u45 NO NO 0 0

40 SANDSTONF 45 16 277 036 o4 NO 0 1

41 SANDSTONE 27 17 18.7 o44 063 o7 NO NO 0

SANOSTONE ?A 20 26J 0.57 06s 0.4 NO NO o

SANDSTONE 23 19 187 na3 NO 0 1

14 160 031 04 N 0 1

45 SANDSTONE 3t 21 19 247 0 61 064 N 0

46 SANDSTONE 2n 18.0 055 091 u.4 NO NO 0

4t SANDSTONE r 23 tl 217 035 o 74 NO 0

48 1S )20 o47 0.59 o7 N NO 0

4S SA 35 26 14 040 o 74 NO NO I

50 ARGILLI I h t3 zu.r 043 063 U NO NO

AVERAGE 38.6 27.4 ta.3 24.1 o.4t 0.55 NA NA NA NA

TOTAL NA NA NA NA NA NA NA 0 0 19

,|l 10 0 0 3E

SUMMARY STATISTICS

LITHOLOGY NO. T. STRIAE .t FACETS T.

SANDSTONE 40 920 0 0.{J t09
ARGILLITE 1 6U u 00 0 00

TOTAL 50 J

ROUNDNESS TOTAL CLASTS A. FASEI 5 ./. FAC STRIAE 7.SIKl
01 0 0 U o0 00
o2 0 t) 00

0 0 t 00
o4 12 24 17 0 uu
05 t3 2 U 0

t1 0

24 0 0

06 0 0 0

09 0 0 o 0
U

0.1 0 0 0

o2 0 o 0
3 z 0

i1 4

0.5 6

06
07 25
08 1 0 0
0q 0 0

46



Appendix 2, Temperate glacial clast data

LOCATTON, MURCHTSON VALLEY, MT COOK
COLLECTION : MH 9, 50 CLASTS (6200 mstres downstream from MH 1)

284

NO. LITHOLOGY AXI!' LENGTH AVR AXIAL RATIOS KI(NI FACETS STRIAE Rrl G,lo

A B c crA BTA

1 SANDSTONE 41 4/t 0 063 0.73 o.3 NO NO 0

SANDSTONF 34 21 050 0.8'1 0.5 NO 0 0

36 24 37,3 069 NO 0 0

SANDSTONE 40 0 N 0

SANDSTONE 4a 46 420 067 {J.9b N NO

SANDSTONE 45 24 0 0.4 YES NO 0 0

SANDSTONE 4t 32 22 o.47 0( 0.7 NO NO

SANDSTONE 45 30 25 JJ.J 056 u.7 NO NO 0 u

SANDSTONE 44 29 32.O 066 NO NO 0

10 SANDSTONE 35 27 o7 0.97 o7 NO NO 0

11 SANDSTONE 42 24 20 2A.t n4a 057 06 NO NO 0 U

SANDSTONE 27 l7 26.0 07s 07 NO NO 0

SANDSTONE a an 380 046 05 NO 0

SANDSTONE 30 23 200 o.23 NO N

SANDSTONE 45 30 0.53 067 0. NO N 0

SANDSTONE 3l 17 15 23.0 046 NO NO 0

SANDSTONE 54 36 397 0.54 0.tii' 06 NO NI 0 0

30 22 045 061 0.6 NO N 0 u

19 SANDS I ONE 59 ?a t 6.0 0.34 04s YE5 NO 0 I

20 SANDSTONE 40 20 '16 0.45 0-50 0.5 YES N 0

SANDSTONE 15 05u 07 N 0 0

22 SANbSTONE 40 30 l9 ?97 0.75 N NO

23 3t 30 17 NO NO 0

24 lB 20 zSJ 048 NO NO 0

25 SANDSTONE 3E7 040 071 NO NO 0

SANDSTONE 25 0.45 057 NO 0

SANDSTONE 4{J U 050 0El 05 NO N 0

2A SANDSTONE 29 22 24.7 0.63 083 06 NtJ NO 0 0

29 SANDSTONE 44 21 31 7 0.4E 06 NO NO 0

SANDSTONT to 38 0{ 0.4 NO NO U

SANDSTONE ?? t'l n 056 NO NO

SANDSTONE 42 36 350 0.64 u.u6 05 NO 0 0

SANDI
40 2'l 15 38 053 NO NO

34 L4 31 26 0.70 NO NO 0

SANDSTONE 44 31 3',].0 070 NO NO 0

SANDSTONE 37 25 0.54 05 NO NO

SANDSIONE a9 z9 JO. / 05s 065 0.6 NO NO 0

38 SANDSTONE 30 17 47 083 06 NO NO (,

SANDSTONE 32 1g 297 084 05 NO NO 0 0

40 SANT'STONE 19 200 050 0.79 06 NO 0 0

4l SANTJSiONE AE 14 031 0.71 NO Nl I

42 SANDSTONE 26 39 o47 NO N

SANDSTONE 40 22 293 06s 06 NO NO 0 (,

44 SANOSTONE 34 ?1 0.62 f)7n o7 NO l 0 0

45 SANDSTONE 7 22 28.0 o.t t o7 NO 0 0

46 SANDSTONE t5 247 0.41 050 ol NO N u 0

47 SANDSTONE 30 2U 18 227 0.6u 067 06 NO NO 0 0

48 30 16 12 040 0.53 o6 NO 0 1

49 19 040 n6 NO NO

50 SANDSIONI 16 30.0 0.04 NO NO l

AVERAGE 29.7 zu.6 0.48 0.71 0.57 NA NA NA NA

TOTAL NA NA NA NA NA NA NA 3 0

'/c
6 0

SUMMARY STATISTICS

Lt I H(,LUSr
sAND-floNE

NO STRIAE ./. FACETI '/t

50 100 0 0 UU 3 60
ARGILLITE 0 0.u 0 00 00

TOTAL 50 (, 3

ROUN] TOTAL CLASTS L FACETS ./. STRIAE 7.5IRl

0 0 0 0
0 0 0 0

I 0 0 0

o4 12 1 0 0

05 1f 34 u
13 '2s, 0 0
11 22 0 0

0 0 0

09 0 0 0 0

5U 3

IT9UNU SANDSTONE %:tst ARGILUTE %ARG
01 0 0 0 0

0 U 0
1 0

12 0 o
1 34 0 u

06 0 0
o7 1 22 0 0
08 o 0

os 0 0

50



Appendix 2, Temperate glacial clast data

LOCATION, MURCHISON VALLEY, MT COOK
COLLECTION : MH'lO, 50 CLASTS ( 11000 motres downstream from MH 1)

285

NO LITHOLOGY AXS LE AVR AXIAL RATIOS I KRNE FACETS SIRIA C,l0

A E G ctA ETA

SANDSTONE 21 0.4'l 06 N h 0

SANDSTONE 37 32 t2i 07 0.66 N N

3 SANDSTONE 3S 06s 090 0 'lo N 0

4 SANDSTONE ?7 24 0 o 05 NO 0 0

5 SANDSTONE 67 u (t7 N 0 0

6 SANDS I 40 { 038 o.7 NO N t)

7 SANDSTONE 42 4.3 06u 0.86 YES NO 0

8 SANDS I ONh 45 49 0s8 07 ') N 0

SANDST ub3 07l 7 NO NO 0

10 SANDSTONE 48 36 0 0.75 N NO

sAt 3? 4 075 E1 05 NO N 0

SANDS I 20 36.0 0s3 o7 NO u

l3 SANDSTONE 't9 t3 1.7 {J 39 06 YES NO 0

14 5l 30 19 12 040 063 NO NO

15 SANDSTONE 25 28.7 a2 058 07 ro N 0 0

'16 46 35 04 oa5 N( NO 0

SANDSTONE 34 31 ?73 50 0 05 N o 0

l8 SAND{ 43 20 16 037 47 NO N I

tq SANDSTONE 27 ) 06 N 0

20 SANDSTONE 4. 417 rJ.56 04 NO NO 0

21 SANOSTONE 40 23 0.73 n4 N N

22 SANDS 27 14 zl 73 NO N

,a SANDSTONE 49 20 34.3 06s 5 NO 0 0

SANDSTONE l 7) 76 88 05 N( NO 0

SANDSTONE l 040 o74 N NO 0 1

26 SANDST 42 0 076 OE NO N U

SANDSTONE 28,7 05 NO NO 0

?a SANIJS I ON 2d t8 l4 058 0.75 N NO 0

29 SANDST 36 17 i0 o.47 069 0tt YES N 0 u

30 SANDSIOI 26 t5 038 65 N NO 0

31 SANDSTONE J7 18 059 N 0

32 SANDSTONE 37 27 15 26.3 0.4 t 0.73 0 YES NO 0 0

38 23 15 039 0.61 NO NO 1

36 SANDSTONE 23_t o74 0E9 U to NO

SANDST 24 16 73 0 o57 0.6 to N 0

36 SANDSTONE 46 40 20 43 06 NO NO 0

SANDSTON] 13 034 0.61 N N 0

38 SANDST 42 l 'ts 0€ 06 NO N

39 SANDSTONE 19 o41 0s6 4 NO 0 0

40 SANDS] '1 tt o4 u76 07 N 0 0

41 SANDST 40 l 4 3t.3 75 o NO NO 0

42 SANDSTONE 50 (, nd6 5 t t,

43 SANDSTONE 31 l6 197 0.39 05 N

44 SANDSTONE 30 3 57 0.E6 o5 NO 0 0

45 SANDS'T 21 8 163 I 0s5 0.6 N NO 0

46 SANL 40 l, ?70 04u N 0

SANDSTONE 't6 10 02s o4t n7 N NO 0 I

4

SANDSTONE 15 23.7 50 067 NO 0 0

SA.NDSTONE 27 3E 073 0.ti NO N

50 NDSTONE 37 2U 24.t u.4 054 0.4 NO

AVERAGE J9.t 8.0 1E.8 za.7 .,t9 o,72 U !A ,IA

TOTAL NA NA NA NA NA NA NA 0 0 15

%
E 0 0 30

SUMMARY STATISTICS

LITHOLTJGY NO. 7. STTIIAE FACEIS %

SANDSTONE 50 100 0 0 00 4 6.0

ARGILLI I E 0 00 o 0.0 0 00
TOTAL 50 0

ROUNDNESIi TOTAL CLASTS FACTTS %FAC I STRIAE % STRI

0.1 0 0 0 00
o.2 0 0 0 00
03 0 0 0 0

10 0 0

(, l4 2A 0

0 18 36
07 12 24 0 0.0

08 I 0 0 00
0s 0 0 0 00

50 4 u

ROUNDNESS SANDSTONE ./" ssT ARGILLITE %ARG
01 U 0 0

o.z 0 0 0
0.3 0 0
04 0 0 0
05 14 0

IE 0
7 0 0

0 0
09 0 0 0

0 U
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LOCATION: LAKE PUI(Al(l MORAINE, NEW ZEALAND COLLECTION : 100 CLASTS FROM TILL
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Appendix 2, Temperate glacial striae data

LOCATION, LAKE PUKAKI MORAINE, NEW ZEALANO

COLLECTIoN : SELECTED STRIATEo CLAST 1

287

LNHOLOGY:
LENGTX OF LONG (Al Axlsl
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Appendix 2, Temperate glacial striae data

LOCATION. LAKE PUKAXI MORAINE, NEWZEALAND
COLLECTIOiI : SELECTED STRIATED CLAST 2

288

LTTHOLOGY:
LENGTH OF LONG IA) AXIS:
LEilGTH OF INTERMEOhTE {B) AXIS:

B'A AX!T! RA'IO:
KRUi'B€IN FOUNDilESSI

ARGILLTI€
46 mm
a5 mm
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Appendix 2, Temperate glacial striae data

LOCATION. LAKE PUKAKI MORAINE, NEWZEALAND

COLLECTION: SELECTED STRIATED CLAST 3

289

UTHOLOGYT
LENGTH OF LO'{C (A) AXI6:
LENGTH OF INTERMEOIA'E (8) AXIS:
BIA ATAL RATO:
KRUMBEIN ROUNDNESS:
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Appendix 2, Temperate glacial striae data

LOCATION. LAKE PUKAKI MORAINE, NEWZEALANO

COLLECTIoN : SELECTED STRIATEo CtAsT.

290

LITHOLOGY:
LENGTH OF LONG {A} AXIS:
L€NGTH OF IItT€RilEDhTE (B) AXIS:
g,A AXIAL RATO:
KRUMEEIN ROUNDNESS:

ARGILI"ITE
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Appendix 3, Polythermal glacial clast data

COLLECTION : l0o CLASTS FROM BASAL ICE (MK l, INNER BERG)

291

LoCATIONT MACI(AY GLACIER. ANTARCTICA
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Appendix 3, Polythermal glacial clast data 292

LoGATION: MAC}(AY GLACIER. ANTARCTICA COLLECTTON : loo CLASTS FROM BASAL ICE (Ml( 2, OUIER BERG)
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Appendix 3, Polythennal glacial striae data

LOCATION: CUFF CAPE. ANTARCTICA

COLLECTION : SELECTEo STRIATEo CL^sT I

LITHOLOGY: MUDSTONE

LENGTH OF LONG (A) AxlS: 93 nm
LENgtx oF IilTERMEDI TE (B) AxlS: 6{ mm

E/AAXIALRAIIO: 069
KRUMBEIN ROUNONESS: 0.1

STRIqE ORENTATON HALF ROSE DI,AGRAM
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Appendix 3, Polythennal glacial striae data

LocATtON: CUFF CAPE, ANTARCTICA
COLLECTION : SELECTED STRIATED CLAST 2

LI'HoLoGY: DOLERITE

LENGTXOFLOilG(A)AX6: 250 nm
LENGTII OF INTERMEDIATE (A) AXIS: I25 MM

B,AAXULRATDI O5O

KRUMSEIiI ROUilDNESS: 0 3

STRIAE ORIENTATION HALF ROSE DIAGRAM
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Appendix 3, Polythermal glacial striae data

LOCATION: CUFF CAPE, ANTARCTICA

COLLECTION : SELECTED STRIATED CLAST 3

295

UTHOLO6Y:
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Appendix 3, Polythermal glacial striae data

LOCATIoN: CUFF CAPE, ANTARCTICA

COLLECTION : SELECTEo STRIATED cLAST 'l
LITHoLocY: DoL€RlrE
LENGTB OF LONG (A) Axts: t33 mm

L€NGIH OF INTERMEDI{TE (Bl AX|S: 120 mm

eA AXIAL RATIO: 0.90

KRUMSEII{ ROUNDilES9: 0.4

STRIAE ORIENTATON HALF ROSE DIAGRAM
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Appendix 4, Cold-based glaeial linear abrasion data

LOCAT|oN , ITANHAUL BAV ANO ODELL GLACIER IllARGlt{S, ALLiAil HlLLs, A}ITARCTICA

BATA FROIII COLD-BINSED LINEARABRASIOIq ON BEOROCK
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Appendix 4, Cold-based glacial linear abrasion data

LOCATION , MANHAUL BAY AND ODELL GLACIER MARGINS, ALLAN HILLS, AI{TARCTICA

DATA FROM COLD.BASED LINEAR ABRASTONS ON BEDROCK
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Appendix 5, Mass movement clast data (debris-avalanche)

LOCATION, MURIMOTU FORMATION, NEIV ZEALAND COLLECTION : 100 CLASTS FROM OEBRIS'AVALANCHE DEPOSTT
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Appendix 5, Mass movement (debris-avalanche) striae data

LOCATION: MURIMOTU FORMATION, NEW ZEALAI{D

COLLECTION : SELECTED DEBRIS-AVALANCHE STRIATEO CLAST 1
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Appendix 5, Mass movement (debris-avalanche) striae data

LOCATION: MURIMOTU FORMATION, NEW ZEALANO

COLLECTION : SELECTED DEBRTS.AVALANCHE STRIATED CLAST 2
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Appendix 5, Mass movement (debris-avalanche) striae data

LOCATION: MURTMOTU FORMATION, NEUIZEALAND

COLLECTION ; SELECTED DEBRIS'AVALANCHE STRIATED Ct ST 3
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Appendix 5, Mass movement clast data (rock-fall) 304

LOCATTON . MURCHISON VALLEY SITE 4, NEWZEALAI{D COLLECTTON; 50 CLASTS FROM ROCK FALUSCREE DEPOSIT
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Appendix 5, Mass movement clast data (rock-fall) striae data

LOCATIoN: SITE MH4. MURcHISON VALLEY' NEVI, ZEALAND

COLLECTION : SELECTED ROCX-FALL STRJATED CLAST I
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Appendix 5, Mass moventent clast data (rock-fall) striae data

LOCATION: SITE MH4, MURCHISON VALLEY' NEW ZEALAND

COLLECTIoN : SELECTED ROCXFALL STRIATED CLA:iT 2
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Appendix 5, Mass movement clast data (rock-fall) striae data

LOCAnON: SITE MH 4. MURCHISON VALLEY, NEW ZEALANO

COLLECTION : SELECTED ROCK.FALL STRIATED CIAST 3
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Appendix 6, Tectonic clast data 308

LOCATION: NGAPOTIKI THRUST, NEWZEALAND COLLECTION : r0O CLASTS FROM FAULT PLANE AAOVE AEACH BOULDERS
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Appendix 6, Tectonic clast data 309

LOCATION: WELLINGTON FAULT, NEw ZEALANO COLLECTION : 100 CLASTS FRoM FAULT PLANE
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Appendix 6n Tectonic striae data

LOCATIoN: WELUNGToN FAULY' NEw ZEALAND

COLLECTION : SELEGTEO STRIATED CLAST 1
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Appendix 6, Tectonic striae data

LOCATION: WELLINGTON FAULT, NEW ZEALAND

COLLECTION r SELECTED STRIATED CLASr 2
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Appendix 6, Tectonic striae data

LOCATION: WELLTNGTON FAULT, NEWZEALAND

COLLECTION : SELECTEO STRIATED CLAST 3
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Appendix 6, Tectonic striae data

LOCATIoN: NGAPonK FAULT, NEW ZEALANO

COLLECTION I SELECTED STRIATED CLAST 4
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CAPE ROBERTS PROJECT, ANTARCTICA

Introduction

The Cape Roberts Project (CRP) was a multinational co-operative drilling programme

that recovered almost 1500 m of Cenozoic strata from three drillholes (CRP-1, CRP-

ZIZA andCRP-3) on the western margin of the Victoria Land Basin, Antarctica. One of

the primary goals of the project was to obtain a palaeoclimatic record of the Ross Sea

region to better understand ice sheet history. The recovered strata represent sediments

from 34 Ma to 17 Ma,overlain by a thin Pleistocene sequence. The lower 300 m of the

CRp-3 core shows mostly shallow marine sandstone deposition, with little indication of

a glacial influence. However, a repeated glacial advance and retreat signal is

increasingly clear higher in the core, with the onset of direct glacial deposition

becoming well-developed in the upper part of CRP-3 and the overlying CRP-2/2A core

(cape Roberts science Team, 1999;2000). These cycles are thought to represent the

sedimentary response to orbitally induced oscillations in the East Antarctic Ice Sheet

(Naish et al., 2001b). Overall the core documents climatic deterioration from cool

temperate conditions and the initiation of glaciation in the earliest Oligocene, to

increasingly colder conditions through the early Miocene (Raine and Askin, 2001) and a

subsequeut change to permanent polar conditions seen today'

The cores were divided into several recurrent lithofacies from which process and

palaeoenvironmental interpretations were made and depositional models developed.

This provided the basis for recognising the depositional cyclicity and a sequence

stratigraphy interpretation, which divided the cores into unconformity-bound

depositional sequences. These are thought to represent the accumulation of sediment

Cape Roberts Project

APPENDIX 7
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during cycles of glacier advance and retreat (Fielding et al., 2001, Naish et al., 2001a).

The sequences are typically bounded by sharp erosional surfaces that represent glacial

erosion surfaces, either from glacier movement across the seafloor during glacial

lowstand or the more distal effects of glacier advance. Coarse-grained units such as

diamictite or conglomerate reflecting ice contact or glacier proximal deposition, usually

overlie the erosional surfaces. These in turn are usually overlain by generally upward

fining successions of various finer grained facies representing marine deposition during

sea level transgression/ highstand and glacial retreat. Understanding the origin of the

coarse-grained units is critical to the overall interpretation. The origin of abrasion

features on the clasts was considered to be of particular value in estimating proximity to

glacier ice.

Clast studies

Clast shape and fabric studies were carried out on whole-round core samples from the

coarse-grained units from the Cape Roberts cores using the method outlined in Chapter

2. ln addition, an apparatus and method of measuring three-dimensional fabric from

drillcore was devised (see Chapter 2). The results were combined with the distribution

of striated clast and out-sized clasts from finer-grained facies to assess the contribution

and character of glacially derived sediment. The results are documented in Talarico et

al. (2000) and Atkins (2001) and are not repeated here. However, a brief comparison

with the clast shape and striae data from the modern Mackay Glacier is presented here

because the Mackay Valley and Glacier have existed throughout most of the Cenozoic

and therefore is likely to have been the primary sediment source for the strata at Cape

Roberts (Powell et aI.,2000)

The eoarse-grained facies were divided into diamictite, conglomerate and pebbly

sandstone facies. The diamictites were interpreted as representing either subglacial

deposits or debris flows with iceberg rainout. Conglomerates were interpreted to

represent fluvial discharges or mass flows that had redeposited fluvial gravels. Pebbly
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sandstones were interpreted as marine-deposited sands with iceberg rainout introducing

clasts (Cape Roberts Science Team, 2000).

Shape and roundness data for CRP-2/2A and the modern Mackay Glacier samples from

overturned icebergs are summarised on RA-Cqo diagram in Figure 1. There is poor

distinction between the different facies on the basis of clast form and roundness (Atkins,

2001). Samples described as diamictites do not consistently fall within the subglacial

field and conglomerates do not plot near the glaciofluvial field. Most of the samples

from CRP-2/2A show less blockiness and angularity than the modem Mackay Glacier

clasts suggesting that the modern samples have experienced less basal glacial transport

than clasts in the cores.

RA index versus C40 index for samples from
CRP zlzAand the MackaY Glacier

: Approrlm.t. ncld3 ttofi
I lublllhed drtr

I s",*n
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I EE srr'96o"'

I I] Gtaconuvrot
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louter nerg16

o 101.67
o44 1

20 40 60 80

C.n INDEX (% clasts with c:a 3 0.4)

Figure I RA-C40 diagram of Benn and Ballantyne (1994), showing values from all CRP-

Zl1Aandthe Mackay Glacier. CRP-212A sample numbers refer to depth below sea floor' RA

index is the percentage ofangular and very angular clasts and C+o index is the percentage of

clasts with a c:a axial ratio of < 0.4. Shaded fields are from published data in Benn and

Ballantyne (1994) and Bennett et al. (1997).
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The CRP-2/2A samples that plot closest to the modem samples are all from above 125

metres below sea-floor (mbsf) within the Miocene strata. This possibly indicates there

was a change toward blockier, less modified clast shapes as the climate became

increasingly cooler and the Mackay Glacier changed from temperate to polythermal.

This is a tentative interpretation because there are only a small number of samples

considered and it may simply indicate that the upper few samples were sourced from

debris that was transported higher in the glacier and received only limited basal

abrasion.

Nine of the ten samples from CRP-3 were classified as conglomerates and all plot much

lower on the diagram. This reflects the overall slightly higher roundness and lack of

angular clasts in these samples. Several samples plot within the subglacial field, with

others plotting lower in the glaciofluvial field. The only diamictite sample (94.96) plots

higher on the RA axis but is still outside the subglacial field and is well below clasts

from the modern Mackay Glacier. These data show there are a variety of shapes in the

conglomerate facies, but all are quite unlike modern debris from the Mackay Glacier.

3r7
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RA index versus C40 index for samples
from CRP-3 and the MackaY Glacier
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Figure 2 RA-C40 diagram of Benn and Ballantyne (1994),showing values from all CRP-3

and the Mackay Glacier. CFJ-3 sample numbers refer to depth below sea floor RA index is the

percentage of angular and very angular clasts and Cae index is the percantage of clasts with a c:a

axial ratio of < 0.4. Shaded fields are from published data in Benn and Ballantyne (1994) and

Bennett et al. (1997).

Facets were recorded on at least 30 %o of clasts in the CRP-2/2A clast samples (except

one). Slightly fewer but still usually more than 25 Yo were recorded on the cRP-3

samples. This is generally higher than the number of faceted clasts found in the modern

Mackay Glacier sitmples (12 % and22 %). This is consistent with the modern glacier

clasts being less rounded and slightly blockier than the cape Roberts clasts, and

suggests that the modern samples have experienced less basal hansport than the Cape

Roberts clasts, even those in the lower part of CRP-3'



Appendix 7

Striated clasts

Cape Roberts Project

Only 32 striated clasts were recovered from the Cape Roberts cores. These were mostly

fine-grained sedimentary and occasionally dolerite clasts from both the whole-round

clast samples and from finer-grained facies from throughout the core. Striated clasts

were considered to represent clasts that had undergone basal glacial transport and were

deposited at the drillsite either by direct glacial deposition (in the diamictite facies) or

by ice-rafting and vertical rainout from icebergs into finer-grained facies. Striation from

non-glacial processes was considered unlikely. Despite the very low number of striated

clasts, the distribution is sporadic, but persistent throughout much of the cores and this

was used to infer a persistent glacial influence during most of the time represented by

the cores (Atkins, 2001).

The striae vary greatly in character but most are faintly inscribed and often solitary

(Figure 3-A). Occasionally, many striae occur on a single facet and these may vary

between multiple orientations (Figure 3-B), and parallel orientation (Figure 3-C). One

clast from the top few metres of the core shows long axis parallel striae on curved

surfaces and displays a pervasive background of microstriae (Figure 3-D). While the

numbers of striae were too few to allow detailed striae analysis, these general

characteristics are consistent with those on striated clasts from modern overturned

icebergs on the Mackay Glacier. The exception is clast D in Figure 3, which shows

striae that are likely to have been created within a deforming fine-grained matrix.

319
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Figure 3 Examples of striated clasts from the Cape Roberts cores' A) A solitary large

striation on a dolerite clasr from a conglomerate unit (357.7 mbsf, CRP-UZA). B) Striae with

multiple orientations on a mudstone clast within a mudstone unit (199.6 mbsl CRP-3)' C)

parallel srriae on a dolerite clasr from a pebbly sandstone unit (595-45 mbsf, CRP-AZA)'D) A

striated mudstone clast showing long axis parallel striae superimposed on a background of

"microstriae" from a diamictite unit (l1.0 mbsf, CRP-2)'
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Several of the conglomerate samples from both CP J-212A and CRP-3 displayed faceted

and striated clasts. This, combined with the shape characteristics suggests that the clasts

within the conglomerates have not experienced significant fluvial transport. Based on

the results of the striae survivability study in the Murchison Valley, New Zealand, it is

suggested that the striated clasts travelled no more than2 km from the glacier margin'

The conglomerates without striated clasts, but with faceted clasts were probably

transported less than 5 km.

Conclusion

Although the Mackay Glacier is the most likely source of sediment for the strata cored

at Cape Roberts, the clast shape characteristics from the cores differ from the modem

clasts within debris layers of the Mackay Glacier. The clasts from conglomerate beds in

CRp-3 show much greater rounding, but all of these deposits display faceted clasts and

some show striae. This indicates that the clasts were glacially sourced and did not

experience significant fluvial transport, supporting their interpretation as glacier

proximal mass flows or short transport fluvial discharges' The clasts in CRP-2i2A show

more variable shape characteristics with little distinction between diamictite,

conglomerate and pebbly sandstone facies. The samples above 125 mbsf plot the closest

to the modern glacier samples, tentively suggesting a possible change toward blockier

and more angular clasts during the Miocene as the Mackay Glacier likely changed from

temperate to polythermal conditions. Striae alone are too few to allow confident

interpretation of their origin. However, in the context of high latitude deposition and

abundance of other indicators such as out-sized clasts, the striae are interpreted to be

glacial.
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Glacial Influence from Clast Features in Oligocene and Miocene Strata
Cored in CRP-212A and CRP-3, Victoria Land Basin, Antarctica
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Abstract - Clasts from the Cape l{oberts Pro.iect corc's CRP-2/2A and CRP-.1
provide indications of glacially inlluenced depositional envir'onments in Oligocene
and Miouc'ne strata in the u'estcrn Victoria Land Basin. Arttarctica. CRP-l/lA is
intcrpreted lo reprc'scnt stlonglv glacially influcrrccd. uncortfornrity bound
depositional sL-quenccs producsd by repeated rdvlnce and retrert ol'I'loating and
gloundc'd icc rcross tlrc'shcll'. A sirnilar interprctltion is extcnded to thc upper -i30
neters ol the CRP-3 core. but thc lowe'r pilrt ()l'thc core rr.'cords shallorv nrarint'
deposition with signil'icuntly lcss -qluciill inl'luence. Clrst shape analysis l'rom
sclL'cted coarsc-grainctl lacics throushrrut lhc cored intcrvll indicltes thirt nlost
clasts irre glacially sourccd. with littlc distinction betuccn diumictite and conglomcratic facies. Tlrrce
dinrensionrrl cllst lirhric analysis l'ronr units imnrediatc'ly atrrrve sequence l'roLrndarics gencr:rllv display rvcak
or rundonr l'nbrics anrl drl nol suggest thut _sroundccl icc lctually reuched the drillsitc at thcse intervals.
Striated and outsizetl clasts prescnt in linc-graine-d litlrotlcies throughout thc corc's provide litrtlrer evidc'nce
ol'sub-glacially trunsportcd sedinrcnt nnd iceherg ratiing. The distrihution of thcse striated and out-sizcd
clasts indicatc thut a signil'icant glacill inlluence persisted tlrrough lnosl ul'the time represented by tlre ctrres
r,vith glacicrs acti',ely ualving at sea-lcvel introducirrg icc-herg ratied glacill dcbris evc'u irt thc carliest
Oligocene.

I}ACKGROUND

The Cape Roberts Pro.ject (CRP) is au

international drilling effort. u'ith orre ol'the prinrary
objectives being to obtain a palleoclimatic lristory of
the Ross Sca region to bettr-'r unrlcrstund ice shcct
history. The background and details ol' the prtl.ject
golls are' outlinecl in the Initial report of CRP-2/2A
(Cape Roberts Scic'nce Tcarn. 1999). Alnrost 1500 nr

ol'strata was recovered on thc western nrargin of the

Victoria Land Basin fionr three drill holes. This paper

reports on the t-eaturc-s of clasts f'ronr two ol' these.
CRP-I/2A and CRP--1. rc'presenting strata deposited in
the C)ligocene and Early I\'liocene (-l-l-l9 Mu). CRP-3
cored 820 metres (rn) cll'the oldest Ce'nozoic strata irr

this part of tlrc basin (3-1-31 Ma). Thc- corc records
mostlv shallow urarine deposition with only' nrinor
indications of glacially intluenced sediment in the
lower 300 nr. but a repeirted glacial advance and
retreat signal becorring increasingly clu-ur in thc' uppcr
part indicating the onset ol' direct glacial deposition.
The -elacial fluctuations are evidcnt throughout the

600 nr of ovc'rlying slralil ol' CRP-li2A recording the

period lbr ll-19 Ma (Cape Roberts Sciencc Tearn.
1999). The strata in CRP-2/2 and (lRP-.1 are divided
into lithostratigruphic units and sub-units on the hasis

ot'lithological changes. Facies analysis of the
sequence identified fl number of recurrcnt lithotacies
on the basis ol' Iithology. bed contlcts and thickness.
seclinre'ntary structures and colour. Twelve such
lithol'ncies are recognisc'd in CRP-2/2A and ten in
CRP-1. Frorn these. process and palaeo-c'nvironrttental

intcrpretations of'the sedirnents wcre made and
prelirninary depositional nrodcls developed. This
litlrostratigraphic and facies analysis provided the

basis tirl recognising depositional cyclicity and was

uscd to c()nstruct a sequcnce stratigraphic
interprelation ol'cach drillcore . This followed the

approach adopted hy Fielding et tl.. (1998) and
divicles the drillcores into unconformity-boLrnd
depositional sequcnces. CRP-2/IA was divided into
2-5 sequences, ancl CRP--3 was divided into 2,3

scquences down to 413().27 rnetrcs below sea l'loor
(nrbsl') (Cape Roberts Science Teum. 1999). These are

thought to represent the' accunrulutirln of sedirnent
during cycles of glacier ldvance and rctreat and rnay

also occur in concelt with relative sea-level changes.

These sL'quences are typically hounded by sharp
erosion surtaces thut nrark abrupt tircics diskrcations
and represent glacial surfaces ol'erosion either by
nlovernent of groundecl ice across the sea floor or
rnorc distal efflects ol'glacier advance. These are
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disaggregLrted using clriscls to expose individual
whole clasts (uncut by coring) itt a trranner sintilar to
that outlined b-v Hicock (20(n). Three dinrc'nsional
clast tabric ditta was collected lrv rccording tlre trentl
of the a-axis (lttng irxis) ol'each clast with I
pr'otuctor. The plLrn-ue trvas ttteustlred r,l'ith a stundard

gcological c()nlpass inclintlmeter. Nonc ol' the santplcs

was oriented with rcspcct to n()rth bccause nt'r

aziruuth could be detertnined at thc drill site. The

lithology ol'each rvlrole clast gleater thln 0.5

centinretres in diattrc-ter was deterntined. Lengths ol'

tlre three orthogonal txes (a. h ancl c) werc nleilsurccl

using standlrd nrctric callipers to invcstigate cla$t

shape. Clast roundness rvls cxlttttined usin-r: tlte visual

roundness chalt ol' Krurrrbein ( l9.l | ). Krunrbein
t'ouudrress values correspond to Powers ( 1953)
roundness classes as I'trllows: very an-{ular' 0.0-0. l7:
angular 0. |7-0.2-5: strbangular 0.15-0'3-5: sublounded
0.3-5-0.-19: rounderd 0.4t)-0.7: well rutrnded ().7-1.().

Clasts were also exantitted fol surfucer feillurc's such

as face'ts lnd striao. In addition ttl the wholc rotrnd
cure sarrtples. lhe clistribution of stri:lled clasts and

out-sized clasts tlrrouglrout the cntire cores werL'

rrbttinecl l'rottl corc exatnitratiott at'td core btlx ittrltgcs.

Out-siz-ed clasts arc del'ined ns clasts 0. 1 tn or ntore

in diarnetr-'r and rt lcast 100 tinrcs tlre dilttneter ol'the
enclosirtg sedintc'nt. Dr.'finitiotrs of siliciclastic
sedinrents in the CRP cores are outlined irr Harnbrcl'
et rl.. ( 1997). Dinnrictite is dcfirred us u poorly sorlcd

terrigcnous sedinrent rrn'ith lrctwcen l0 and 90 pcrccnt

sand and betu'ecn latrd 3(l pcrcent clasts.
Conglclrnerate conluins -srcaler tltan -l{) pcrcent clasts.

ln lhc' study tll' clitst rnorphologl, it is usct'uI to
vien,clasl shapc as the suntllliltion ol'three
inclc'penclcnt properties: f'tlrttt. rottnclttess and surf'ace

texture (Barrett. 1980). Thcsc ltave cotnntonly been

regarded us good indicators of transport mechanisnls

'Iith. ) - l.,isl ol rrlrolc tountl cote siltnplc ntlrtlhqts attd t['ptlr in

rttclers lrukrt scu I'ltxrr (rtrbsl'). uitlt litcicr nuntlrcl lru'clch :lnt;tlc.

(Kuhn et .r1.. 1993). and n,idely used in the analysis

ol con-ulonrerates and diantictites to help distin-tlrrish

those of -elacial tlri-ein l'rtlm tltosc ol'non-glacial
origin and to ditTerentiate between diffbrent glacial

lircies (Hall. l9tt9). Fornr is the- gross overall shape of
a clast and is displayed on tcrnary particle-fornr
dia.urants following Bcnrt irnd Ballantyne (199'l). This
plots thc' b/a and c/a lxial ratit>s of clasts and divides

thc-nr into three basic shapes: l) Blocks lsplreres). 2)

Slabs (cliscs) and -1 ) Elongate (rodsi. Clast
morpholo-uy is further explored ttsing ctlvariant pltlts

ol'clast firrrn atrd routtdness tirllowing the nrc'thod of
Benn and Ballantyne (199.11. Tltis plots the Cr,, index
(percelltage of clasts with c/it axial ratio of < 0.4)
a,qainst the RA indc-x (percenta-9e tll'an-[ulu and very

angular clasts) and prtlr,idcs superitlr data visuirlisirtion

than thc nrore trilditional splrericit-v" and rttundness
plots (Bc"nnett c't al.. 1997). Clasts thilt have

cxpc'rienced "active" glacial transport ofien have high

c/a uxial ratios ancl lounded cdges and "passively"

trarrsported clitsts are trttlre angular tnd have low c/a

a.rial ratios.

Clust lirbric has bcerr used [r-v- manv workers to

rssist in the interprctation of clast-rich seditnents.

particulirrly those of glacial origin. spct:ifically ttr

infcr the nrode of deposition nnd to define glacial
I'low directions (i'.1;. Dtlnrack & Lawson. 198-5:

Dowcleswell et al.. 1985: Dowdesrvell & Sharp.
1986). Fubric data are nonnally displaycd ott lower
henrisphere. equal area lSchnridt) steleollet plot that

allou.'s a visual anulysis o1'data clustering tlr rttodality.

In rdclitiort. the orientation tcnsor or eigenvalue
nrethod is widely uscd ttt analyse l'abric data and

cssentially suuttnarise lhbric strengtlt. Bcnn (1994b)

intrtlduced the powerlirl "eigenl'altte riltios" ternary
diagranr l'or unalysin-9 tlhric data and is supc'riol' to

othcr types ol'eigenvaltrc'plol because it ftlcuses
attention on l'abric shape. thereby l'acilitating
intcrprc'tation (Bennett et al.. 1999). This rncthod is
cnrployed hele.

RESULTS

Several lithologies ilre [epresented by the clasts.

Crunitoid and doleritc clasts are dominant in all
sarnples with rtrinor sedintentary. volcunic and

metamorphic clasts present ttlso. Lithologies of the

typcs in thc CRP cotes ltave little inlluence on clast

shlpe or rourldrtess (Benrrett et al.. 1997: Dowdeswell
ct al.. lt)t1,5: Kuhn c't al.. 199-j) und therelbre resulLs

ll'onr dil'l'erent litholtlgies are not treated separately

here. Huwever. surl'itce I'ealures are strongly
influencccl by lithology and given particular attention

bel<lw.

l'orrn
Fornr is displayed on ternarY particlc diagrants in

l'igure l. Tlre results slrow that all sarrtples cotttaitt a

No. Samplc dcpth (ntbsf) l'acirs nunrber
('RP I l.\ Surrtplc I J9.60-+9,S0 1

C'ttP I l'\ Sanrplc ! |(lI.(t7-|0I.l{5 7

('ltP I lA Slrnplc i lll.rr)-lll.7q 5

C ll.P I lA Srrrrnlc-l I l+.el- | t5.ql q.l 0
( l{l} : l,\ Srnrplu 5 l-'1-l. fi()-l-l.l.r )l
( RP I lA Sirnrpl!'h 15l t? :15 I 7

( ltP I l.\ Satutrlc 7 l7 Ii +t! 6

( llP I l.\ Suntrlc lr .it{7.01-,i}i7.,il t0
('t{P JA Srrttplc') .{06.ti0-.107.0e 7

(.RP Sirrnnlq ll) +-+ I -t,l I

('ltP JA Silttplc I I +9{l l0--1q0.-19 1

('tt P A Sanrtrl!'l Slli..ll--51s.('l 1

( t{P Sanrnlc I 9-1.9(r-r)-i. I 6
('Rl' Srrrrrnlc l l-l().1i- lJ6.{7 {l
('RI' Slrrrplc l | 51.:i- | 52.x(l {l

(.RP Stnrtrlc J l9 l5-l I e.+7 0

('RP
(.RP

I Sanrplc 5
I Srntnlc (t

195..1-i-:q5.5j _
15()..le-.1-i0.tt-i
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ral'tcd debris. In dianrictitc units (lircics 6 and 7) ottt-

sizecl clasts lltity l'L'prcsent icc-contitct clcpo.sition suclr

as suhglacial till or by raittout ol'iceberg rll'ted
clebris. palticularly in the strittilictl diarnictites (frtcies

6). As these are -ulacialll' r'clated p[ocL-sscs. out-sizcrd

clasts in tlrese I'acies have becn included in thc

distribution. The distribution ol' out-sizcd clasts
indicates that significant icc-r-al'tirrg occurred
throughout nlost ()l'the tinre rcpresettted lry thc' cotcs'

Tlrrec dituetrsiottul clast fahric analysis frottt
c()arse gruined l'acies is a ttscl'tt I Ittethod ol'

investigatin-rt clast oricntation thirt nluy indicirtc
whcther or tlot grounclcd icc exlenclcd otrt ttt tlrc
drillsite during eustatic ltlwstand. l-lou'cvcr. ttluttv

rcsearchcrs ltave contntettted on thc problelns inlolr.'ed

with interpleting fabric drrtl (t'..r;. Dorvdcswell und

Sharp. l9tl6: Benn. lc)t)-ltr: Hicock ct al.. l9c)(r:

Bennctt c't al.. 1999). Fol cxarttple . Hicock ct al'.
(I996) advocated llre use of Schnridt plots in
con.iunclion witlt cigertvlrltre anull'sis. Thcy stress thal

multiplc e ritc'ria ntust be cunsidercd whe n drawin-u

conclusit)us on till gencsis and that clnst I'abric aklne

is not al'rlc to discrinrinatcr bL't$'eL'n dil'l'erc.nt
glucigenic l'acies. Plohlcnrs itrc c(ttrlPotlltdecl rvhcn

otterrptin-q clast f abric analvsis in drillcrlres. Otir-'lt.

verl' lrlrv nurttbers ttl' whole clitsts arc' availabic and

othcl criteriit such its glilci()tectonic structut'es ltrc llt)t
visible ()n cote scalc. ln ldclititln. only split ctlre thces

are usually availirble. prornpting s()tllc t() ittlc'llrlll tw()

dinrcnsional ltrbric stLrdies (c.g. Hunltrre,v-. lt)ll9). For

the' CRP cttres. tlrtee dintetrsiotritl clust lnbric anitlvsis
was possihlc fiortt thc- u'hole rtlttntl core suntples. hut

nrany ol' thc rlther linrittrtions ap1tl1. rtrcaning that thL'

l'ablic data, in partictrlal ei-ucnvalucs. nlust l)e vicwetl
cautiously. Although the clatil are sinrpll' too liruited
to inf'er specil'ic gcncsis ol' coarse--urairred flrcic's and

eigenvulues only provide a hlsic guicle to flhric
strength. stereopltlts artd eigcnvalucs urr- considcrc'd

herc to provide a indicatirln (or lack oI) ol'ice
gfounding at uny of thesu'intervals. Alral-vsis tll'
stcre()pl()ts sh<lw that nttne of the tlrrec clitnensiortirl

clast lirbrics lrlve ti-ehtly clrrstelcd data ancl eigenvalue

rurios lrighlight tlrc- itbscnce o1' highll' r'ltlngate. low
isotropy fabrics irtdicativu' trl- strt.rglacial tills tlr'

grounded ice at lltc drillsirc.

CONCLUSIONS

Clitsts ll'orn sclected coarse-gt'aincd itrtervals in the

Mioccne/Olig()cc'r're slriltil itl the Cape RobL'l'ts c()rc's

slrow I'eatures intlicuting subglacial lrttnspol't histtlries

untl conl'ittn that tntlst clast-riclr sedimcnls itl'c
glaciully derived. Thcle is little rcul dil'tclencc itt clitst

shlpe betwcen tlilntictitcs and conglottlcrates und thc

pl"esence ol'subglacillly clerived lircetts attd slriue ott

sottlc clasts within c<lngltrtucralcs (tacic's c) lnd l0).
intlicatcs the clasts lravc not cxperiencccl signilicant
l'luvitl tt'ansporl and that corrglolncrates arc glacict'

:t-1

proxirrtitl lrigh-clensity Initss l'ltlw s or vcrv shtlrt
tral'rsp(!rt subglitcial tlischar ges.

Three dirrtensional clast latrlics llrni the drillcores

nlust bL'lt'catqd citutiottslv. but wcak l() randolll
oricntations do not stlg-gL'st iec gt'rlttrrded at the

drillsitc. altltough othcr elidettcc (r'an dc-r Meer.

1000) indiciltr' peri()ds trl' srrtundetl ice in thc Late

Oligocene and Earl-"" Miocc'nc.

Out-siz.ecl clasts ancl strialed clasts irt l'ine-grained

lithofacies reprc'scnt dropsttlttes sourced frttttt icu'-

bergs. 'Ihc distribution of thcse striuted und oLrt-sizcd

clasts irrdicate thnt l glacill inl'luence wus signil'icunt

rncl persistcttt rltrrirtg tnosl ol' tltc' tirnc rcpresented lry

thc corcs uith glaciers ilctil'ely calving at scil-level

irttroducing ice-ber-u ralicd gllciul cleblis into the Rtlss

sca rcgion cvr'lt in the le'r-"- clr'liesl Oligoce'ttc.

AC'KN()Wl-EDCEI\lEN.IS - Thc Crtpc Robetts drilling
tci.un lrc lckttorvlcdgctl lirt' their \tll)!'rh cl[()rt: itr rcetrl'c'ry
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ABSTRACT
Here we report previously undescribed features of erosion and deposition by a cold

(polar) glacier. A recent study challenged the assumption that cold glaciers neither slide

nor abrade their beds, but no geological evidence was offered. The features we describe

include abrasion marks, subglacial deposits, glaciotectonically deformed substrate' isolated

btocks, ice-cored debris nrounds, and boulder trains, all products of a recent cold ice

advance and relreat. Mapping these features elsewhere in Antarctica will docunrent recent

shifts in the East Antarctic lce Sheet margin, providing new insight on regional mass-

balance changes.

Keywords: col<l-based glaciers, abrasion. Allan Hills, Antarctic ice sheet. glacial deposition.

INTRODUCTION
It is commonly assumed that basal sliding and abrasion take place

only beneath glaciers that are warm based, whether temperate or sub-

polar (e.g.. Jackson, 1997; Benn and Evans, 1998; Siegert' 2001)' and

that signiticant erosion and deposition do not occur beneath cold-based

glaciers, which are frozen to their beds. This has evcn led to the vicw

that landscapes are actually protected beneath cold ice (e.g., Sugden et

al., l99l; Naslund, 1997; Stroeven and Kleman, 1999)'

The possibility of erosion, entrainmcnt, and deposition by cold

glaciers was proposed by Boulton's (1972) theoretical work: by Hold-
srvorth (1974) on the basis of field obscrvations beneath Meserve GIa-

cier. Antarctica; by Shreve (1984) on the basis of thcoretical work; and

by others on the basis of theoretical and experimental work (Fowler'

1986; Cuffey et a1..2000; Martini et a1.,2001). Direct observation of
basal sliding and debris entrainment at subf'reezing temperatures ol -5
"C was claimed by Echelneyer and Wang (1987). Cuffey ct al. (1999'

2000) found cvidencc of active entrainment and sliding at -17'C
beneath Mescrve Glacier, Antarctica, and suggested that it is time to

abandon the assumption that cold-based glaciers do not slide and

abrade. None of these studies has reported ancient cold-based glacial

featurcs that have survived to thc present day. In this paper we describe

and interpret the geological evidence oferosion and deposition exposed

by the retreat of a cold-based glacicr in thc Allan Hills, Antarctica.

ALLAN IIILLS ETWIRONMBNT
The Allan Hills (76"42'5, 159"40'E) form a wishbone-shaped

nunati* Iocated high (1600-2100 m above sea level) in the Trans-

antarctic Mountains in south Victoria Land near the edge ol'the present

East Antarctic lce Sheet (Fig. l). The center o[ the wishbone is oc-

cupied by the Manhaul Bay Glacier (infbrmal name). -3 km across.

6 km long, and 200 m thick. The glacier is lbd by ice flowing north

on either side of Allan Hills, turning south around the tips oi the wish-

bone. The ice between the arms of the wishbone is wind-sculpted "hlue
ice" typical of ablation that has been measured as 5 cm/yr in icc fields

several kilomel.ers west (Faure and Buchanan, 1987). The mean annual

temperature (MAT) is -30 "C (Robin, 1983). Ice movcment at the

southem margin has not been measured, but is presumed to he close

to zero because the sigmoidal cross section of the ice front reveals that

the ice flront is retreating. This inference is confirmed by the preser-

vation of soft, crushed sandstone smeared on a bedrock ridge that pro-

trudcs from the ice and by the presence of bedrock striae within a few

mcters of the present margin.

The bedrock of Altan Hills comprises flat-lying Pcrmian and Tri-

assic sandstones, shalcs, and coal measures of the Beacon Supergroup'

^a9 !$i ^a ,ge "+"
"c"" 

$6D- \ig .bo

76'42S

Ftgure 1. Map of central Allan Hllls, Antarctica, showing dlstrlb_u!!9n
ofleatures recordlng former extent of Manhaul Bay and Odell Gla'
ciers. lce-cored debris cones are plotted as solid dots. Dark shadlng
shows dlstribution of much older Slrius dlamictite. Llght, transpar-
ent shadlng and rose diagrams dlsplay distribution and orlentatlon
of abrasion marks and breccia-debris tralls around lce margins'
Large dark arrows lndlcate lce advance dlrectlon of Manhaul Bay
and Odell Glaclers lnto present lce-free areas' Contours ln meters
above sea level.

e) 2002 Ceological Society of America. For permission to copy, contact Copyright Permissions, CSA, or editing@geosociety.org

Geologt,: July 2002; v.30: no.7:p.659462',;1 figuresl Data Repository item 2002070.
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Figure 2. Examples of eroslonal features around margln of Manhaul
Bay Gtacier. A: Type 1 abrasion. Large broad scrape consistlng ol
multiple grooves on Beacon sandstone. Example becomes deeper
and wider with abrupt terminus and has remnants of abrading tool
on surface. Arrow indlcates ice-movement direction. Hammer is 33
cm long. B: Type 3 abrasion. Unweathered scrapes on weathered,
wind-polished dolerite boulder in Sirius diamictite' Many ol these
boulders have been overturned. Arrows indicate direction of ice
movement,

intruded by sills and thin dikes of Jurassic Ferriu Dolerite (Ballance

and Wattcrs, l97 I ). Patches of Sirius Croup diamictite mantle the Bea-

con strata in thc central area. Although these deposits have not been

dated dircctly, othcr Sirius dcposits and rock surt-aces in the Dry Val-

leys region south ol'Allan Hills have yielded ages as old as l0 Ma.

with volcanic-ash deposits as old as l5 Ma (Summerfield et al.' 19991'

The nature ol'the surfaccs and the preservation of the ashes indicate

that the landscape has undergonc persistent polar desert conditions

dominatcd by wind erosion since those times.

Thc present Manhaul Bay Clacicr is estirnated er-s .-200 m thick

in the nriddle, rvith basal tcmperaturcs of - -24 'C (estimatcd fi'orn

the MAT of -30 "C and the graph of Robin. 1955, Fig. 3;. The l'eaturcs

that we dcscribc next occur on rock platforms and ridges beyond thc

rnargin ol'the glacier. and have been exposed by glacial rctrcat. Thcsc

l'eatures lbrmed bcncath ice that we estimate to bc of similar thickncss

and low basal temperature.

COI,D.I}ASED EIIOSIONAI, FEATURtrS AT AI,I,AN TIILLS
Erosional I'eatures are represented principally by abrasion marks,

which occur on Beacon sandstone surfaccs and on thc upper surlace

of Sirius diamictite, close to thc margins of the Manhaul Bay and Odcll

Glaciers (Fig. l). Abrasion marks are most common witlrin scveral

meters of thc ice cdge and rare beyond 50 m. The marks are variable

in shape, sizc, and grouping, and are unlike the more consistcnt, uni-

form sets of parallcl striae and grooves tbund cornmonly on bcdrock

abraded by warm-based sliding icc. Abrasion marks at Allan Hills can

be divided into lbur types as described ncxt.

Type l: llroad Scrapes
Bmad (to 500 mrn width, 40 mm depth, 1200 mm length), un-

weathcred scrapcs typically consist of many smaller striae or groovcs

centimctcrs or millimeters in width. Some examples (Fig. 2A) show

progressive increase in depth and width with an abrupt terminus. Typ-

ically the abrasion mark has clushcd sandstone remnants of the abrad-

ing tool snrcarcd onto thc surlacc, particularly at thc deepest ternrinal

wall. Occasionally. small centimctcr-scale "levees" occur along thc

sidcs of the abrasion rnark. These marks are close to the present margin

of tlre Manhaul Bay Clacier and indicate ice movement from north to

south.
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I'ype 2: Individual Striae and Grooves
Variably shaped, unweathcred individual linear abrasions (scrapcs,

striac, and grooves) make up a wide variety of discrete abrasion marks

(typically centimeters in width and depth and decimetcrs long). Where

several marks occur in one location, they are generally subparallel.

Some show a progressive increase in depth and width (nailhead)'

whcreas others have more symmetrical, tapered ends. Occasionally.

individual marks occur in line to form a trail of marks to 2 m in length.

Somc marks have crushed sandstone rcmnants of the abrading tool

smeared onto the surface and/or are bordered by small centimeter-scale

levees. These abrasions are common near the present margins of Man-

haul Bay and Odell Glaciers and rarely f'arther inland from the ice'

protccted bcneath brecciatcd sandstone debris.

Type 3: Scraped Boulders
Variably shaped, unweathered scrapes to sevcral centimeters wide

(arnd rclated striae) occur on thc stoss sidc of somc weathered dolerite

boulclers lodged witlrin, or resting on, Sirius diamictitc. Abrasion has

removcd the characteristic dark brown desert varnish tiom the surlaces

of the boulders, making the marks clearly visible (Fig. 2B). Some boul-

<Jers have been overturned, exposing the non-wind-polishcd surface

unclcrneath. These distinctive overturncd and abraded boulders were

found over a wide arr'a in the central Allan Hills, and to 1800 m south

(inland) of thc present Manhaul Bay Glacier ntargin (Fig. l).

Type 4: Ridge and Groove Lineations
Localized surlaces display abraded patches with many parallel line

lincations (millinteter scalc widrh and depth), described here as ridge

and groove lincations. The surfaces are typically dark and have a platy

appearance and a sheen similar to stickensides. These abraded patches

occur within thin carbonaceous layers beneath brecciated sandstone

debris and indicate north to south Slacicr movement- These patches

occur over a wide arca in the central All:ur Hills within the Manhaul

Bay Glacier advance limit shown in Figure I'

COLD-I}ASED DEPOSITIONAL FEATUR,ES A'T ALLAN
IIILI,S

In addition to crosional features. lour depositional features attri-

buted to cold-bascd icc are recognized at Allan Hills'

Type l: Sandstone and Siltstone Breccia

The sandstone and siltstone breccias are unlithified, poorly com-

pacted deposits, typically <30 cm thick and (3 m across' consisting

ol variably crushed or brecciated Beacon sandstone and siltstone. Some

deposits have bcen extensively crushed, but olten contain blocks to 40

cnr in cliameter. Deposits are cotnmonly attached to vcrtical walls of
Bcacon cscarpments that tace the Present Manhaul Bay and Odell Cla-

cicrs. Breccia deposits are typically elongated and taper inland from

glacier margins (Fig. 3At). In places Beacon rocks havc been partially

brecciatcd and thrust onto the adjacent bedrock immediately inland.

The breccia extends 2.5 km south ol', and at least 100 m higher in

elevation than, the present ice margin of the Manhaul Bay Clacier.

Type 2: Isolated Boulders
Sandstone boulders to 3 m in diametcr arc scattcred widely over

Bcacon plattbrnrs ol the central Allan Hills and as far south as Trudge

Vallcy. Sonrc boulders form poorly dcfincd boulder trains indicating

ic:e movcment to the south. Scveral boulder trains are visible trailing

rcSn Urara Rcpository itern 2002070, Acltlitional images of erosion and

clcposition by colcl ice at Allan Hills, Antarctica' is available on rcquesl from

Documcnts Secretary, ClsA, PO. Box 9140, Boulder, CO 80301-9140' USA'
editing@gcosociety.org, or at www.geosociety.orgy'pubs/li2002 htm.
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Manhaul Bay Glacier
(cold-based ice)

(B) Rotat6d and d€99sd
blocks causing abEsion

(a) Brscciated sandstone
'plastsrcd" on e€carPmsnls

(A) Bl@ks of bedrock \

Figure 3. Examples of depositional features (see text footnote 1)' A:

Ty-pe 1 deposition. Brecciated sandstone plastered onto bedrock es-

ciipment. Breccia is smeared into debris trails in directlon of ice

advance (arrow). Hammer is 33 cm long' View looking south from
Manhaul bay Giacier. B: Type 4 deposition. Vlew ol southern end of
bedrock ridle (mlddle disidnce) from southwest. Manhaul Bay Gla'

"ier lriaOfJ left) overtopped ridge from north' Large volume ol
crushed sandstone debrii occurs on lee side of ridge and faint boul-
der trains trail south into Trudge Valley (arrows).

southward I'rom an area of rubble on thc southcm (lec) side of a protn-

inent ridgc, ancl cxtencl into Trurlge Vulley *2250 m south ol'Manhaul

Bay Clacier.

'Iype 3: lce-Cored Debris Cones

Icc-cored debris cones to 3 m high and 7 m in diameter occur on

bedrock platlbrms and in a low valley south of Manhaul Bay Glacier'

tn cach case the icc-corcd cone is completely covered by loosc Beacon

debris ranging from sand to boulders. The cones occur as much as

1000 m inland fiom thc present margin of Manhaul Bay Clacicr'

Type 4: Sandstone Debris on Lee Slopes

Crushed beclrock tlcbris ranging in sizc from sand to boulders

occurs on the southcrn sides ol'bedrock ridges and escarpments or on

rhe northcrn walls of bcdrock depressions. Thr,' dcbris has a chaotic

appearance antl thins away from the landfbrm. The scale ol'the dcbris

piles varies lrom so'eral tens of meters (Fig. 38) Lo <l m' Debris

pilcs are wiclesprcad within the advancc limit ol'Manhaul Bay Glacicr

and consistcntly rest against the lee sides ofbedrock highs. Extensional

tiactures in the southcrn edgcs of bedrock ridges or in thc northern

edges ol escarplrlents are associated with these sandstone debris de-

posits. Fractures are typically orientcd subparallel to the ice margin

and vary in length and width dcpcnding on the scale of thc outcrop'

ln places. it is possiblc to scc whcre blocks of bedrock have been

liactured ancl tilted south, then added to the debris piles'

IN'I'ERPRETA'TION OF' EROSIONAL AND DEPOSITIONAI,

I'EATURES
Broad scrapcs (type I abrasion marks) and individual striae and

grooves (type 2 abrasion marks) arc interprcted to be the result of

debris within thc ice being dragged along the bedrock by either basal

slip or tbrward rotational movement (created by thc striator projccting

into thc dclbrming ice mass) This principle was suggested by Drewry

(1986). Bccause the abracling particles were rnost likcly to be the same

lithology as the bcdrock, therc was little hardness contrast' and abra-

sions tcn<.I to be broad and shallow and comnlonly have rcmnants ol'

the sandstone striator on thc abradcd surtace or as low levces on thc

sides. This is particularly noticeable on abrasions that progressively

deepen and tlten terminate abruptly, indicating that thc striator disin-

tegrated under dry simple shear with no nreltwalcr to wash away the

levces (Fig. 2A). Examplcs that havc more symmetrical tapercd cnds
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Flgure 4. Schematic model of processes beneath cold-based ice at

Atian ttitts. Vertical profile indlcates assumed ice velocity within gla-

cier. Erosion followed by entrainment occur by (A) plucking stoss

iioes of outcrops, (B) drigging blocks along bedrock surface either

Uy stiOing or ritatibri ot ctast by velocity gradient above bed' and

fil of""io-t"ctonic extension producing fractures and differential slip

ii6rig weaL layers producing abraded, slickenside surfaces' Depo-

silioi occurs 6y (ai in situ brecclation of bedrock or plastering en-

irjineo substrate bnto bedrock escarpments proiectlng into ice

mass,(b)accumuIationolgIaciotectonica||ybrecciatedsubstrateon
i;;;aE of bedrock ridgel and escarPments, and (c) form€tion oJ

ice-cored debris cones and lowering of plucked blocks onto bedrock
platforms during ice relreat.

suggest that the striator contactcd the bed bricfly, but lilted off again'

Occasionally, sevcral of these abrasions occur in line over l-2 m where

thc striator touchecl the bedrock surlace several timcs on its journcy

A similar process is infcrred tbr the short incgular abrasional markings

on wind-potished boulders (type 3 abrasion marks) (Fig 28) Ditfer-

cntial icc movcmcnt closc to the glacier bed initially dragged the stri-

ating tool over the boulders ancl then overturned thenr. Type 4 ahrasion

is interyretccl as a glaciotectonic structure lbrmcd by differential slip

on thin, weak carbonaceous shale layers within thc Beacon strata in

response to increased shcar stress from loading as ctlld ice moved over

bcdrock promontorics'

Sanclstone ancl siltstonc breccia (type I deposition) appears to be

the result of in situ brecciation of bedrock escarpments rvhere shear

stress tiom overriding ice is focused on eur upglacier edge, causing

failure ancl crushing of the rock, or where already entrained debris is

trappecl by the edge and plastcred on. some dehris being deposited

I'artlter as debris trails in the direction of icc n.rovcmcnt (Fig. 3A). We

suggest that this type of deposit constitutes a simple form of glaci-

otcctonite (Pedcrsen, 19891 Bcnn and Evans, 1998) or a cold-based

dcformation till (Drcirnanis, 1989). The orientation of these trails is

consistcnt with abrasion t'eatures al the salne location. lsolated blocks

(type 2 cleposition) were plucked lionr bcdrock escarpments' trans-

poited passively within rhe icc, and lowered onto bedrock surfaces

during ice rctr.cat. we founcl no abrasion marks on these scattcred

blocks or on thc surrounding substrate, as rnight be expected if the

boulder were dragged by basal glacial ice. Ice-cored debris concs (type

3 deposition) arc interpreted as remnant features lrom loose debris that

fell or was pushed onto thc surlace of the Manhaul Bay Glacier, ther-

mally protecting tlre ice as the glacier ablatcd back to the present mar-

gin. Type 4 deposition is inferretl to have taken place on the lee slopes

of riclges and escarpmcnts, with glaciotectonic tensional ltacturing ta-

cilitating erosion of thc unsupported lec sides of the landforms (Fig'

3B). The accumulaiion of rock debris thcrc may havc formed by sand-

stone blocks falling oll'. or being toppled over by, the retreating glacier

margin. Figurc 4 is a simple schematic model that we have developed

to explain thcsc ohscrvations.



R.ECENT GLACIAL TIISTORY O['ALLAN IIILLS
Orientations of abrasion marks (types l and 2) and debris trails

(type I depositional feature) were measured within 50-100 m of the

ice margin of Maurhaul Bay Clacier. The measurements are displayed

as mirror-image rosc <liagrams in Figure I and show a splaycd pattern

radiating from beneath thc glacier. AII indicate movement from north

to south (inland). The solid lines in Figure I represent the maximum

advance positions for the margins of the Manhaul Bay and Odcll Gla-

r:iers, delineated by the most inland positions of overturned and abrad-

cd boulders and sandstone breccia (type I deposition). A reconstruction

of the longitudinal profile of the Manhaul Bay Glacier, following the

rnodern prolile to the limit shown, indicates that a maximum ice thick-

ness of -200 m was attained at the present southem ice margin.

On the basis ol fresh striae cutting through desert varnish on ro-

rtated boulders, the unweathered appearance ofglaciat scrapes, grooves,

and striae on rock ledges closc to the ice margins, and piles of fresh,

lar sandstone blocks (type 4 deposition) covering empty glaci-

ic fractures, we suggcst that thc features described here formed

ng the Last Clacial Maximum. This was the last time the East

,ntarctic lce Sheet was more extensive in this region (Hughes' 1998;

iegert,200l; Denton and Hughes.2002). We assume that a more

Manhaul Bay Clacier produccd many abrasion features over

extensive bedrock platforms it once covered, but that nearly all of

have been destroyed by wind crosion, apart from those most

ly exposed by ice ablation or protectcd by debris.

The recent advance of the Manhaul Bay Glacier, the limit and

of which have been reasonably well defined, must have been

jentirely cold based. This has produced a range ofglacial erosional and
l,r^^^";,i^-.t f'narrrrac rhrt rli ffpr cianificentlv frnm lhnse madp hvldepositional t'eatures that dilfer signilicantly from those made by

iwarm-based glaciers.

These features have been used to dcfine the limit of the southward

advance ol'cold ice 2 km into the present icc-free area of the ccntral

Allan Hills during the Last Glacial Maximum. This advance over-

topped landlbrms to 100 m above the present ice limit. Such an ice

advance requircs that the adjacent outlet glaciers tlowing north past

Allan Hills (Fig. l) were higher by a similar amount' Thcse newly

recognized cold glacier features provide criteria for mapping the tbrmer

Last Glacial Maximum extent of ice throughout thc Transantarctic

Mountains and elsewherc in Antarctica.
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