
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Engineering
and Computer Science

Te Kura Mātai Pūkaha, Pūrorohiko

Verifying Privacy Preserving

Combinatorial Auctions

by

Ben Palmer

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the requirements

for the degree of

Master of Science

in Computer Science.

Victoria University of Wellington

2009

Abstract

Suppose you are competing in an online sealed bid auction for some goods. How

do you know the auction result can be trusted? The auction site could be per-

forming actions that support its own commercial interests by blocking certain

bidders or even reporting incorrect winning prices. This problem is magnified

when the auctioneer is an unknown party and the auctions are for high value

items. The incentive for the auctioneer to cheat can be high as they could stand

to make a significant profit by inflating winning prices or by being paid by a cer-

tain bidder to announce them the winner. Verification of auction results provides

confidence in the auction result by making it computationally infeasible for an

auction participant to cheat and not get caught. This thesis examines the con-

struction of verifiable privacy preserving combinatorial auction protocols. Two

verifiable privacy preserving combinatorial auction protocols are produced by

extending existing auction protocols.

iv

Acknowledgments

I would like to thank first my supervisors Kris Bubendorfer and Ian Welch for

their help thoughout this thesis. I would also like to thank Wayne Thomson for

his help getting my tests running in the GAF and general help in understanding

the GAF. Finally, I would like to thank my family and my partner Bree Kurtovich

for constant support and ideas.

v

vi

Contents

1 Introduction 1

1.1 The Auction Trust Problem . 2

1.2 Security Goals . 5

1.3 Thesis Goals . 5

1.4 Contributions . 6

1.5 Thesis Organisation . 7

2 Secure Auction Taxonomy 9

2.1 Price Flexibility . 10

2.2 Verifiability . 10

2.2.1 Group Verifiability . 10

2.2.2 Public Verifiability . 12

2.3 Type Flexibility . 13

2.4 Bid Privacy Trust Model . 13

2.4.1 Single Trusted Server . 14

2.4.2 Threshold Trust . 14

2.4.3 Two Party Trust . 15

2.5 Bid Privacy Level . 16

2.6 Bidder Anonymity . 16

2.7 Discussion . 17

3 Background 19

3.1 Zero Knowledge Proofs . 19

3.2 Non-Interactive Zero Knowledge . 21

3.2.1 Proof of Knowledge of a Discrete Logarithm 22

3.2.2 Proof of Equality of Discrete Logarithms 23

3.2.3 Proof an Encrypted Item Decrypts to 1 or Z 25

3.2.4 Proof of Equality of Two Logarithm Lists 26

vii

viii CONTENTS

3.2.5 Publicly Verifiable Shuffle of Encrypted Values 28

3.3 Other Verification Techniques . 29

3.3.1 Cut and Choose Verification 29

3.3.2 Verifiable Secret Sharing . 30

3.3.3 Range Proofs . 31

3.4 The Homomorphic Auction Protocol 31

3.4.1 El-Gamal Encryption System 31

3.4.2 Auction Graphs . 33

3.4.3 Bid Vectors . 33

3.4.4 Finding the Maximum bid for a Node 34

3.4.5 Shift and Randomise . 35

3.4.6 An Example . 36

3.5 Summary . 37

4 Extending Garbled Circuits 39

4.1 Garbled Circuit Auction Protocol . 40

4.2 Algorithms . 41

4.2.1 Table of Definitions . 41

4.2.2 Garbled Circuit Generation 42

4.2.3 Executing a Circuit . 44

4.2.4 Worked Example . 45

4.3 Extending Garbled Circuits . 46

4.3.1 The Combinatorial Auction Circuit 47

4.3.2 The Combinatorial Auction Circuit Creation Algorithm . . . 49

4.4 Verification . 50

4.5 Security Analysis . 51

4.6 Summary . 52

5 Group Verification Protocol 53

5.1 Threat Model . 54

5.2 Security Goals . 54

5.3 Threshold El-Gamal Decryption . 55

5.3.1 Verifiable Threshold El-Gamal Decryption 56

5.3.2 Completeness . 56

5.3.3 Soundness . 56

5.3.4 Zero Knowledge . 57

CONTENTS ix

5.4 Zero Knowledge Proof of a Valid Bid Vector 57

5.4.1 Completeness . 58

5.4.2 Soundness . 59

5.4.3 Zero Knowledge . 60

5.5 Zero Knowledge Proof of the Maximum Bid 60

5.6 Zero Knowledge Proof of Shift and Randomise 61

5.7 Example Verifiable Combinatorial Auction 62

5.8 Summary . 66

6 Public Verification Protocol 67

6.1 Threat Model . 67

6.2 Security Goals . 68

6.3 Zero Knowledge Proof of a Valid Bid Vector 68

6.4 Zero Knowledge Proof of the Maximum Bid 69

6.4.1 An Example . 70

6.4.2 Completeness . 71

6.4.3 Soundness . 71

6.4.4 Zero Knowledge . 72

6.5 Zero Knowledge Proof of Shift and Randomise 72

6.5.1 Completeness . 74

6.5.2 Soundness . 74

6.5.3 Zero Knowledge . 75

6.6 Example Verifiable Combinatorial Auction 76

6.7 Summary . 78

7 Security Analysis 79

7.1 Passive Adversaries . 80

7.2 Active Adversaries . 80

7.3 Colluding Parties . 81

7.4 The Random Oracle Model . 82

8 Results and Analysis 85

8.1 Complexity . 85

8.2 Implementation . 86

8.2.1 Combinatorial Garbled Circuit Auction Protocol 86

8.2.2 Verifiable Homomorphic Auction Protocol 87

8.2.3 Test Environment . 88

x CONTENTS

8.3 Verification Tests . 90

8.4 Verification Performance Results . 91

8.4.1 Number of Bidders . 91

8.4.2 Maximum Price . 92

8.4.3 Key Size . 93

8.4.4 Number of Goods . 94

8.5 Garbled Circuits Performance Results 95

8.5.1 The Number of Bidders . 95

8.5.2 The Maximum Bid . 95

8.5.3 The Number of Goods . 95

8.6 Garbled Circuit Size . 95

8.7 Combined Performance Results . 97

8.8 Analysis of Different Schemes . 100

9 Conclusions and Future Work 103

9.1 Contributions and Conclusions . 103

9.2 Future Work . 105

9.2.1 Improving Performance of Verification Protocols 105

9.2.2 Improved Security Analysis 106

9.2.3 Improved Combinatorial Auction Circuit 106

A Zero Knowledge Proofs 107

A.1 Proof of Knowledge of a Discrete Logarithm 107

A.1.1 Completeness . 107

A.1.2 Soundness . 107

A.1.3 Zero Knowledge . 107

A.2 Proof of Equality of Discrete Logarithms 108

A.2.1 Completeness . 108

A.2.2 Soundness . 108

A.2.3 Zero Knowledge . 108

A.3 Proof an Encrypted Item Decrypts to 1 or Z 109

A.3.1 Completeness . 109

A.3.2 Soundness . 110

A.3.3 Zero Knowledge . 110

A.4 Proof of Equality of Two Logarithm Lists 110

A.4.1 Completeness . 110

CONTENTS xi

A.4.2 Soundness . 111

A.4.3 Zero Knowledge . 111

A.5 Publicly Verifiable Shuffle of Encrypted Values 111

A.5.1 Completeness . 111

A.5.2 Soundness . 112

A.5.3 Zero Knowledge . 112

xii CONTENTS

List of Figures

1.1 Example Combinatorial Auction . 2

1.2 Art Auction . 3

1.3 Privacy Preserving Art Auction . 4

3.1 Ali Baba’s Cave . 20

3.2 Example Auction Graph . 33

3.3 Finding the Maximum Bid for a Link 34

3.4 Shifting and Randomising a Bid Vector 35

3.5 A Simple Example Auction . 36

3.6 After Shifting the Bids for Link 2 . 37

4.1 A Simple Auction Circuit . 40

4.2 Garbled Circuit Parties . 40

4.3 Garbling a Wire . 43

4.4 Garbled Circuit Example . 46

4.5 A Three Good Auction Graph . 48

4.6 Circuits on an Auction Graph . 49

4.7 VPOT protocol . 51

5.1 Simple Threshold Combinatorial Auction 62

5.2 Bid Verification . 63

5.3 Simple Threshold Combinatorial Auction with Encrypted Bids . . . 64

5.4 Shift and Randomise by Group A2 65

6.1 Simple Threshold Combinatorial Auction 76

6.2 Simple Threshold Combinatorial Auction with Encrypted Bids . . . 77

6.3 Simple Threshold Combinatorial Auction after the Shift and Ran-

domise . 78

xiii

xiv LIST OF FIGURES

8.1 UML Diagram of Proofs . 87

8.2 Garbled Circuit Auction Protocol Test Setup 89

8.3 Homomorphic Auction and Group Verification Protocol Test Setup 90

8.4 Number of Bidders vs Time Taken for Auction 92

8.5 Maximum Bid vs Time Taken for Auction 93

8.6 Key Size vs Time Taken for Auction 94

8.7 Number of Goods vs Time Taken for Auction 95

8.8 Number of Bidders vs Time Taken for Auction 96

8.9 Maximum Bid vs Time Taken for Auction 96

8.10 Number of Goods vs Time Taken for Auction 97

8.11 Garbled Circuit Size vs Number of Bidders 98

8.12 Garbled Circuit Size vs Maximum Bid 98

8.13 Garbled Circuit Size vs Number of Goods 99

8.14 Number of Goods vs Time Taken for Auction 99

List of Tables

2.1 Secure Auction Taxonomy . 11

8.1 Complexity . 86

8.2 Verification Tests . 91

8.3 Default Test Parameters . 91

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Online auctions have grown into a widely accepted way of trading goods and

services. Auctions are a high profile method for consumer goods to be traded

with the New Zealand auction site TradeMe having over one million items for

sale, over one and a half million members, and has almost four hundred thousand

visitors every day [50]. Worldwide auction site eBay has 233 million registered

users that trade $1,839 US dollars worth of goods every second [14]. However, its

not just consumer goods that are being traded using online auctions. In the USA,

the Federal Communications Commission uses online auctions to sell licenses

for electromagnetic spectrum [15] and, in the UK, the Office of Communications

intends to use an online auction to sell licenses for 215MHz of spectrum [40].

Online auctions are a pervasive mechanism used by individuals, businesses, and

governments to trade goods and services.

Combinatorial auctions are a special type of auction where bidders can place

bids on combinations of goods as opposed to a single good auction. This en-

ables bidders to take advantage of any synergistic value of goods. In a three good

auction, a bidder could place a bid on good 1 only if they can also get good 2,

so good 1 and good 2 together. Online combinatorial auctions have been used

extensively to allocate truckload transportation in the United States where, by

2003, half a dozen software packages were available to facilitate the combina-

torial auction of trucking routes [12]. These include OptiBid [35], Transportation

Bid Collaborator [27], and others. The average annual value of transportation ser-

vices auctioned in the period from 1997 to 2001 was $175 million US Dollars [12].

Online combinatorial auctions also have been used extensively for industrial pro-

curement auctions. Mars Incorporated found a forty minute auction replaced a

1

2 CHAPTER 1. INTRODUCTION

BobJim Sam

$3 {apples and oranges} $1 {apples}
$1 {oranges}
$1 {Bananas}

Auctioneer

$3 {apples, oranges and bananas}

Figure 1.1: Example Combinatorial Auction

negotiation process that lasted over two weeks and required nine separate plane

trips [12].

Figure 1.1 shows an example of a combinatorial auction where Jim wants ap-

ples only if he can also have oranges, Bob wants any subset of the goods, while

Sam needs all three of the goods. The highest revenue for the auctioneer ($4) is

generated by allocating the apples and oranges to Jim and the bananas to Bob.

1.1 The Auction Trust Problem

Suppose Alice is running a sealed bid auction of artwork for a charity organisa-

tion. She plans to hold the auction on her web site hosted by Sam. Bob and Jim

submit bids to the auctioneer as shown in Figure 1.2.

There are several potential problems with this auction:

• Either Sam or Alice can peek at the bids. Many bidders prefer their bids to

remain private especially in a competitive environment where bids are com-

mercially sensitive information, alternately the bid values could be passed

on to a competing bidder so they can make sure their bid is slightly higher.

• Alice could refuse to count certain bidders in the auction. Alice could act in

collusion with a malicious bidder to make sure a competing bidder never

has a bid counted in the auction.

1.1. THE AUCTION TRUST PROBLEM 3

Figure 1.2: Art Auction

• Alice could arbitrarily choose a winner regardless of the bid values, the

motivation for this is especially high if Alice is colluding with the bidder

chosen as the winner.

• Alice could easily defraud the charity organisation by reporting a reduced

winning price, and taking the difference herself.

A large amount of trust is placed in Alice with no way of checking whether she

has correctly executed the auction. In current systems this trust is often placed in

a central organisation such as TradeMe or the Federal Communications Commis-

sion.

Alice can be prevented from breaking privacy guarantees by using a privacy

preserving auction where the values of bids are hidden using encryption or ob-

fuscation yet can still be compared to find the winner. Figure 1.3 shows Alice

holding a privacy preserving sealed bid auction on her web site hosted by Sam.

Bob and Jim submit encrypted bids to the auctioneer.

In this auction, Alice and Sam are prevented from being able to peek at bids

due to the obfuscation of bid values. This prevents sensitive information leaking

to competing bidders. There has been a large amount of work in the area of secure

auctions, starting with the work by Franklin and Reiter [16]. Auction protocols

have been developed that are capable of conducting auctions involving multiple

goods and bidders all while using cryptographic techniques to keep losing bid

values secret from both auctioneers and other bidders.

4 CHAPTER 1. INTRODUCTION

Figure 1.3: Privacy Preserving Art Auction

The possible auction attacks informally discussed so far can be divided in to

the following categories:

• Insider trading: The auctioneer misuses information about current auction

state (i.e. current valuations) for competitive advantage. This information

could be provided (possibly sold) to a bidder in a sealed bid auction so the

bidder can bid the minimum possible to win.

• Private information revelation: The auctioneer gathers a history of informa-

tion such as minimum bids for use in future auctions. This information may

be used to set unfair reserve prices or sold to some interested party.

• Bid filtering: The auctioneer drops bids based on personal interests.

• Malicious auctioneer: The auctioneer calculates an incorrect auction result.

The auctioneer could announce a bidder as the winner regardless of bid val-

ues, or force the auction to calculate incorrect winning price/s or bidder/s.

Privacy preserving auction protocols address insider trading and private in-

formation revelation. By using encrypted bids that cannot be opened until after

the end of the bid submission phase, the auctioneer is prevented from insider

trading. The auctioneer either cannot open the encrypted bids, or when it can

open the bids, it is too late to use the information on the auction state. Privacy

preserving auctions keep losing bid values secret which prevents information

1.2. SECURITY GOALS 5

revelation other than the information that has to be made public, such as the

winning bidders and prices.

Verification prevents bid filtering and a malicious auctioneer. In a verifiable

auction, bidders check that their bids have been counted in the auction to pre-

vent bid filtering. Bidders can also check that the auction process has executed

correctly to prevent a malicious auctioneer.

1.2 Security Goals

Verification protocols for privacy preserving auctions have the following security

goals:

1. Bidders, auctioneers, or any third party should be able to verify the actions

of the participants in the auction protocol giving a high confidence that the

auction participants have correctly executed the auction.

2. Verification of the auction protocol should reveal no information other than

what is revealed by the auction protocol.

3. It should be computationally infeasible for a bidder to submit an invalid bid

that passes the verification checks.

4. It should be computationally infeasible for an auctioneer to not count all the

bids and pass the verification checks.

5. It should be computationally infeasible for an auctioneer to announce an

incorrect winning bidder(s) or price(s) and pass the verification checks.

1.3 Thesis Goals

The goal of this thesis is to create a verifiable privacy preserving combinatorial

auction protocol. Privacy preserving auction protocols prevent insider trading

and private information revelation and verifiable auction protocols prevent bid

filtering and a malicious auctioneer. Combinatorial auctions are a useful tool

for trading goods and services as shown by the examples presented in the intro-

duction. There has been a significant amount of research work done on secure

auctions starting with the work by Franklin and Reiter [16] and this thesis aims

6 CHAPTER 1. INTRODUCTION

to investigate this work, identify solutions or techniques, and use them to build

a verifiable privacy preserving combinatorial auction protocol.

1.4 Contributions

The main contributions of this thesis are:

1. Producing a taxonomy of current privacy preserving auction protocols pro-

viding a useful way to classify and discuss current solutions. The taxonomy

of cryptographically secure auctions produced for this thesis reveals that

there is no existing privacy preserving auction protocol for combinatorial

auctions. Two possible alternatives suggest themselves:

(a) Extend an existing verifiable privacy preserving auction protocol to

compute combinatorial auctions.

(b) Extend an existing privacy preserving combinatorial auction protocol

to be verifiable.

2. For alternative 1a the existing verifiable privacy preserving auction protocol

by Naor, Pinkas, and Sumner called garbled circuits [36] was identified and

extended to compute combinatorial auctions. This involved:

(a) The creation of a novel Boolean circuit that enables combinatorial auc-

tions to be conducted by the garbled circuits auction protocol. Previ-

ously garbled circuits had only been used to conduct first price and

(M+1) priced auctions,

(b) The implementation of the garbled circuits protocol and the combina-

torial Boolean circuit, and

(c) A performance analysis showing the performance of the garbled circuit

auction protocol when conducting combinatorial auctions.

3. For alternative 1b an existing privacy preserving combinatorial auction pro-

tocol by Suzuki and Yokoo [53] was identified and extended to be verifiable

using zero knowledge proofs. This involved:

(a) The design of a public and group verification protocol using exist-

ing zero knowledge proofs to verify the various steps of the auction.

1.5. THESIS ORGANISATION 7

The public verification protocol makes use of existing zero knowledge

proofs and combines them in a novel way,

(b) The implementation of the group verification protocol and applying it

to an existing implementation of the privacy preserving auction proto-

col,

(c) A security analysis and tests to confirm that the group verification pro-

tocol does indeed detect a party not keeping to the correct auction pro-

tocol, and

(d) A performance analysis showing the overhead of the group verifica-

tion protocol when compared to the performance of the original proto-

col.

1.5 Thesis Organisation

This thesis begins by presenting a taxonomy of existing secure auction protocols

in Chapter 2 to detail the related work in this area. Chapter 3 goes into more

detail about zero knowledge proofs as well as presenting a detailed look at the

auction protocol by Suzuki and Yokoo [53]. The work extending garbled circuits

to compute combinatorial auctions is in Chapter 4. The group verification proto-

col to verify the result of the auction protocol by Suzuki and Yokoo is presented

in Chapter 5. Chapter 6 details the public verification protocol to verify the re-

sult of the auction protocol by Suzuki and Yokoo. An analysis of the security

of these verification protocols is presented in Chapter 7 and an analysis of the

performance of the auction protocols is presented in Chapter 7. Conclusions and

future work complete this thesis in Chapter 8.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Secure Auction Taxonomy

Peng, Boyd, Dawson and Viswanathan have published their view of desirable

properties of privacy preserving online auctions [44] that can be used to classify

and discuss different auction protocols:

• Correctness. The auction winner(s) and the winning price(s) is calculated

correctly.

• Confidentiality. Bids are kept private before the bid opening phase.

• Fairness. A submitted bid cannot be modified, or denied.

• Price Flexibility. Allow bidders to bid any amount between the minimum

and maximum price and not just an item in a limited set of allowed bids.

• Verifiability. The result of the auction can be checked.

• Type Flexibility. The protocol supports a variety of auction types. For ex-

ample, first price or Vickrey auctions.

• Bid Privacy. The losing bids remain confidential, even after the auction has

ended.

• Bidder Anonymity. Identities of losing bidders kept secret.

• Robustness. Any malicious behaviour by any of the auction participants

cannot cause an incorrect auction result.

Using these desirable properties as a guide, a taxonomy of existing privacy

preserving online auctions has been constructed and is shown in Table 2.1. All the

9

10 CHAPTER 2. SECURE AUCTION TAXONOMY

auction protocols studied have implemented the first three items in the list, cor-

rectness, confidentiality, and fairness. The taxonomy examines what other prop-

erties an auction protocol includes as well as how they have been implemented.

The taxonomy presents the auction protocols in chronological order starting with

the original paper by Franklin and Reiter.

2.1 Price Flexibility

The majority of the studied auction protocols do not provide price flexibility [2, 5,

10, 25, 26, 34, 36, 39, 41, 42, 43, 48, 53, 54]. Instead these auction protocols have a

pre-defined set of allowable bid prices for an auction. These prices do not have to

be linearly increasing and can provide higher bid precision for higher bids. It has

been argued that five hundred bid values should be sufficient for any auction [34].

Auction protocols by Franklin and Reiter [16], Kikuchi [31], Cachin [7], and

some of the models presented by Peng, Boyd, Dawson and Viswanathan [44] pro-

vide price flexibility which would provide a greater degree of flexibility to both

the bidders and the auctioneers. An auction protocol that does not implement

price flexibility would be able to emulate the behaviour of one that did simply

by providing enough possible bid prices. For example, in an auction for a good

that is expected to sell for one thousand dollars giving a bid range of one dollar

to three thousand dollars provides a similar degree of freedom to an auction with

full price flexibility. The capability of an auction protocol to provide a large num-

ber of possible bids and the performance cost of doing so seem to be the critical

factors.

2.2 Verifiability

2.2.1 Group Verifiability

Group verifiability allows parties that were taking part in the auction to verify

the auction process. Group verification is a valuable tool that can give auction

participants confidence in the auction result.

The garbled circuit auction protocol by Naor, Pinkas, and Sumner [36] pro-

vides group verification. Bidders are able to verify that the auctioneer computed

2.2. VERIFIABILITY 11

Auction Price Verifiable Support Bid Privacy Bid

Protocol Flex. Grp Pub Combin. Trust Model Level Anon.

Single Thresh 2 Pty 0 1 s *

Franklin [16]

+ Reiter X X X X

HKT [26]

X X

Cachin [7]

2 Server X X X X

Garbled [36, 28]

Circuits X X X

Non [2]

Interactive X X

Polynomial [31]

Protocol X X X X

No [34]

Thresh. Trust X X X

Ext. Poly [48]

Protocol X X X

Homo. [53]

Protocol X X X

Extended [43]

HKT X X X X

Five [44]

Models X X X X X

SGVA [54]

Auction X X X

Yet [25]

Another X X X

Receipt [10]

Free X X X

Comb. [39, 38]

Bidder Res. X X X

GW [42]

Micali X X X

Verifiable [41]

Protocol X X X

Bidder [5]

Resolved X X X

Table 2.1: Secure Auction Taxonomy

12 CHAPTER 2. SECURE AUCTION TAXONOMY

the circuit given to it by the auction issuer, as well as verifying that their bid was

counted in the auction. The auctioneer is also able to verify that the correct circuit

was sent to it by the auction issuer. Group verification is provided using a variety

of techniques including cut and choose verification (discussed in Section 3.3.1).

Lipmaa, Asokan, and Niemi have developed a two party trust auction model

that provides similar group verification to garbled circuits [34]. The auctioneers

can verify that the bidders submitted correct bids, and the auctioneer can verify

the auction authority correctly computed the result to the auction. The group

verification for this protocol is provided using range proofs.

Finally Kikuchi has developed an auction protocol that uses verifiable secret

sharing to provide group verification [31]. Any participant can verify that the

auctioneers have correctly computed the auction result, and the auctioneers can

confirm that the bidders have submitted correct bids.

2.2.2 Public Verifiability

Public verifiability allows any third party to verify the auction process regardless

of whether they were taking part in the auction. Although the main focus of

verification is to give auction participants confidence in the auction result, public

verification could be used by a reputation service that verifies all the auctions and

keeps a reputation score depending on the number of auctions that an auctioneer

or bidder has been involved in that fail the verification.

Brandt’s bidder resolved auction protocol is publicly verifiable [5] using zero

knowledge proofs. Zero knowledge proofs are submitted with every action taken

by the bidders to calculate the auction result so a malicious bidder sending incor-

rect values is caught with a high probability.

Parkes, Rabin, Shieber, and Thorpe use a single auction server and rely on the

public verification of the auction process to assure that the auction server is not

corrupt [41]. This allows them to reduce the amount of communication overhead

of the protocol as the auction is executed entirely on one host.

It is interesting to note that group verification was used in the earlier papers

but on the later papers public verification is used.

2.3. TYPE FLEXIBILITY 13

2.3 Type Flexibility

Several different auction types can be used to conduct an electronic auction. Some

of the more popular auction types are:

• First price auction. One good is available. The winning bidder bids the

highest amount for the good, and they pay the price they bid.

• Vickrey auction. One good is available. The winning bidder bids the highest

amount for the good, and they pay the price of the second highest bid.

• (M+1)st price auction. M goods are available. The M winning bidder bid the

M highest amounts for the good, and they pay the price of the M+1 highest

bid. A Vickrey auction is a special type of this auction where M=1.

• Combinatorial auction. N goods are available and bidders can bid on any

combination of the goods. The goods are allocated so as to maximise the

total price.

Some auction schemes support a variety of different auction types. For exam-

ple, the homomorphic auction protocol [53] can support first price, Vickrey, or

combinatorial auctions. Others, like Brandt’s bidder resolved auction, only sup-

port first price or the Vickrey auction [5]. Two of the auction protocols have been

extended to support combinatorial auctions. Brandt’s bidder resolved auction

protocol has been extended to support combinatorial auctions by Nzouonta [39,

38] and Kikuchi’s auction protocol was also extended to support combinatorial

auctions by Suzuki and Yokoo [48]. The original auction protocols both had veri-

fication that was lost when they were extended.

2.4 Bid Privacy Trust Model

To provide privacy in auctions, bids are encrypted or obfuscated in some way so

that losing bid values are kept secret. The trust model used by an auction protocol

is normally one of three basic trust models:

• Single Trusted Server.

• Threshold Trust.

• Two Party Trust.

14 CHAPTER 2. SECURE AUCTION TAXONOMY

2.4.1 Single Trusted Server

The auction protocol by Parkes, Rabin, Shieber and Thorpe uses a single trusted

server that learns all the bid values after the bid submission phase [41]. The auc-

tion protocol concentrates on providing a public verification protocol so that even

if the auctioneer is malicious, bidders will detect if the auctioneer has incorrectly

calculated the auction result. Private information revelation is not prevented in

this auction protocol.

An auction protocol by Baudron and Stern also uses a single server but this

server is prevented from learning the losing bid values as long as it does not

collude with one of the bidders [2]. A malicious auctioneer in this protocol could

also sign up as a bidder and then be able to collude with itself and discover the

losing bid values.

Using a single server is practical as only one auctioneer needs to be found to

host the auction, but it does not provide robustness if the auctioneer fails in the

middle of the auction thus is not often employed.

2.4.2 Threshold Trust

In the threshold trust model, trust is shared among a set of hosts. Unless a certain

number (a quorum) of hosts are corrupt, the privacy of the protocol is preserved.

Threshold trust has been used in a large number of auction protocols [16, 5, 31,

39, 48, 53, 54].

The threshold trust model can be further broken down in to (t, n) threshold

schemes and (n, n) schemes. In (t, n) schemes, a number t out of n total servers

would need to be corrupt to compromise bid privacy. The threshold value t is

normally set to n/2 + 1. Common examples of values for (t, n) would be (2, 3) or

(3, 5). In (n, n) schemes all n hosts need to be corrupt to compromise bid privacy.

The (t, n) threshold model is used in the majority of auction protocols [16, 31,

39, 48, 53, 54] to distribute the trust among a group of n auctioneers. Although

it cannot be ruled out that t of the auctioneers are corrupt, the chances of them

being corrupt can be reduced by careful selection of the auctioneers. The auction-

eers should all be picked from different organisations, and should have different

attributes such as operating systems where possible.

Brandt’s bidder resolved auction model uses a (n, n) threshold trust model

where the trust is shared between the bidders [5]. This means that unless all the

bidders are corrupt bid privacy is preserved. If all bidders are corrupt it is impos-

2.4. BID PRIVACY TRUST MODEL 15

sible to preserve bid privacy as the bidders can share their private information

amongst themselves. This model provides greater security than the (t, n) model,

the bid privacy is preserved if even one of the bidders is honest.

Auction protocols using the (t, n) threshold trust model can achieve greater

robustness than protocols using either the (n, n) threshold trust, a single server,

or two party trust as they can tolerate up to n − t corrupt or failed auctioneers

and still be able to complete the auction. If an auction participant fails for some

reason in an auction protocol using a (n, n) threshold trust model, the auction

would need to restart because an (n, n) threshold trust model requires all n auc-

tion participants to decrypt the result of the auction.

2.4.3 Two Party Trust

In the two party trust model, trust is distributed between two separate parties.

Unless these two parties collude, bid privacy is preserved. The two parties should

be hosted by different organisations.

In the auction protocol of Naor, Pinkas, and Sumner the trust is distributed

between the auctioneer and an auction issuer [36]. The privacy of the bids is

preserved as long as these two parties do not collude. The auction issuer would

be a well known organisation, where as the auctioneer would not necessarily

be trusted by the bidders. This method allows for large numbers of untrusted

auctioneers to run auctions generated by a small number of well known auction

issuers. This is similar to the two party trust model used in an auction protocol

developed by Lipmaa, Asokan, and Niemi [34].

Another two party trust auction protocol uses two auction servers, where to-

gether the two auction servers create a semi ordered list of encrypted bids which

allows the identification of the highest bid [7]. The privacy of the bids is pre-

served as long as the two auction servers do not collude and as long as one of the

auction servers does not collude with a bidder.

It is easier to find two separate servers from separate organisations when us-

ing two party trust than it would be to find the n different servers needed to use

the threshold trust model. For this reason two party trust can be more practi-

cal than the threshold trust model but does not have the same robustness as the

auction cannot complete if one of the two servers fails.

16 CHAPTER 2. SECURE AUCTION TAXONOMY

2.5 Bid Privacy Level

When bid privacy is implemented, it can provide different levels of privacy. These

levels of privacy can be grouped as follows:

• Level 0. No information except the winning bidder and the price they paid

are revealed.

• Level 1. Besides the information leakage of level 0, one other piece of in-

formation is revealed. For example, apart from the information revealed by

level 0, the fourth highest bid could also be revealed.

• Level s. Besides the information leakage of level 0, it is also possible to

recover bid statistics. For example, the maximum bid, the average bid, and

the standard deviation of bids.

• Level *. All of the bids are revealed to the auctioneer after the auction closes.

A bid privacy level of * as provided by two of the auction protocols [16, 41]

prevents insider trading as the auctioneer does not learn the the bid values until

the bid submission phase has finished, but it does not prevent private information

revelation as after the bid submission phase all the bids are revealed.

Both bid privacy level s and 1 prevent insider trading and may prevent pri-

vate information leakage depending on the statistics or piece of information be-

ing revealed. Only the suggested auction protocols by Peng, Boyd, Dawson and

Viswanathan [44] provide bid privacy level s. An auction protocol developed by

Cachin [7] provides bid privacy level 1 as it leaks a partial ordering of the bids

when the two auction servers are computing the result of the auction, however

insider trading is prevented as this partial ordering is only learned after the bid

submission phase has ended.

Bid privacy level 0 is the ideal case and is provided by most of the auction

protocols studied. A bid privacy level of 0 prevents insider trading as well as

private information revelation.

2.6 Bidder Anonymity

Two auction protocols developed by Peng, Boyd, Dawson and Viswanathan [44,

43] implement bidder anonymity. Bidder anonymity is achieved by adding an

2.7. DISCUSSION 17

additional stage to the auction protocol during registration where bidders are

provided with anonymous ids to sign bids with. This stage could be added to the

other auction protocols mentioned above.

If both bidder anonymity and bid privacy are implemented, then no informa-

tion can be learned about losing bidders, not even who was taking part, unless

either the anonymity service or auction protocol is compromised. One of the

biggest problems with providing bidder anonymity is that if there is no way to

trace a bid to a bidder, then the winning bidder can repudiate on their bid. So

bidder anonymity needs to provide some way to link the winning bidder to their

bid if they do not acknowledge it is their bid, as well as stopping losing bidders

from claiming to have submitted the highest bid.

A group signature scheme has been suggested as a method to provide bidder

anonymity [51]. This is generated by two servers so that neither of the servers

knows the true link between bidder and signature. In the case of a bid needing

to be mapped to it’s real bidder, the two servers can co-operate to find the true

identity of the bidder from the bid’s signature.

Another method to provide bidder anonymity is to use use blind signatures

and a registration authority [44]. Bidders are issued a blind signature from the

registration authority, and can generate a pseudonym from this signature. If the

winning bidder does not identify themselves, all other bidders can prove using

a 1 out of n zero knowledge proof that the winning bid is not signed by them,

which will identify the winning bidder. One disadvantage of this scheme is that

if one other bidder refuses to take part in the 1 out of n proof, the winning bidder

cannot be identified.

For bidder anonymity to be effective, the bids must also be submitted through

an anonymous communication channel like a mix-net to prevent the IP address a

bid came from identifying the bidder.

2.7 Discussion

The goal of this thesis is to produce a privacy preserving, verifiable, combinato-

rial auction protocol with a bid privacy level of 0. Verification gives confidence in

the result of the auction and prevents bid filtering and the malicious auctioneer.

Support for combinatorial auctions provides a method to conduct the combinato-

rial auction examples provided in Chapter 1. Bid privacy of level 0 prevents both

18 CHAPTER 2. SECURE AUCTION TAXONOMY

insider trading and private information revelation. None of the auction protocols

studied provides all these properties, but the current auction protocols can be ex-

tended to provide them. The rest of this thesis examines two possible alternatives,

extending a privacy preserving combinatorial auction to provide verification and

extending a verifiable privacy preserving auction protocol to conduct combinato-

rial auctions. The main body of work in this thesis is extending the combinatorial

auction protocol by Suzuki and Yokoo [53] to be verifiable. Adding verification to

this auction protocol makes it verifiable and capable of computing combinatorial

auctions with a bid privacy level of 0 using the threshold trust model. Previ-

ous work in this research group comparing auction protocols has also shown this

auction protocol to have better performance than the polynomial auction proto-

col [6]. Another major component of this thesis is the extension of the garbled

circuits auction protocol to compute combinatorial auctions. This extension will

mean that the garbled circuit auction protocol is verifiable and able to conduct

combinatorial auctions with a bid privacy level of 0 using two party trust. The

garbled circuit auction protocol was chosen as it is an interesting contrast to the

Suzuki and Yokoo auction protocol as it employs two party trust as opposed to

threshold trust and uses a bit representation of bids as opposed to the bid vector

notation.

Chapter 3

Background

Before presenting the verification protocols for the homomorphic auction proto-

col, details of the zero knowledge proofs used to build the verification protocols

are presented as well as the details of the homomorphic auction protocol.

3.1 Zero Knowledge Proofs

Zero knowledge proofs were first introduced by Goldwasser, Micali, and Rack-

off [22] and are used to prove the validity of some assertion, without revealing

any information other than the validity of the assertion. A zero knowledge proof

is a randomised protocol for two parties, a verifier and prover, in which the

prover wishes to convince the verifier of the validity of a given assertion [19].

A zero knowledge proof typically consists of a commitment from the prover, a

challenge from the verifier, and a response from the prover. They have been used

in many areas including smart cards [45], eVoting [11, 24], and electronic auc-

tions [5].

Figure 3.1 illustrates a famous zero knowledge proof known as Ali Baba’s

cave. The prover Alice wants to convince the verifier Bob that she knows the

secret password to open a locked door between R and S. To prove this while not

revealing the secret password used, Alice and Bob conduct the following steps:

• Bob waits at P while Alice goes to either R or S (commitment).

• Bob goes to Q so that Alice may not move from (R) to (S) other than by the

locked door (which she needs to know the secret to pass through) without

him knowing.

19

20 CHAPTER 3. BACKGROUND

Figure 3.1: Ali Baba’s Cave

• Bob chooses either the top (R) or bottom (S) tunnel.

• Bob challenges Alice to come out of the tunnel of his choice (challenge).

Alice can only exit the correct tunnel 100% of the time if she knows the

password.

• If Alice does not know the secret words, there is a 50% chance she will come

out from the wrong tunnel (response).

• Bob can then repeat this process as many times as he wants to convince

himself that Alice knows the secret word, but Bob will never learn the secret

word himself.

Ali Baba’s cave provides a good illustration of a zero knowledge proof. A

zero knowledge proof should have the properties of completeness, soundness,

and zero knowledge. Completeness is the probability that the proof will succeed

if the assertion being proved is valid. Soundness is the probability that the proof

will succeed if the assertion is not valid. Zero knowledge is the property of not

revealing any information other than the validity of the assertion being proved.

Ideally zero knowledge proofs have 100% completeness, 0% soundness, and per-

fect zero knowledge. Most proofs do not meet all these requirements, there is

normally a certain level of soundness greater than 0% which can often be im-

proved by repeating the proof multiple times. Zero knowledge proofs are not a

3.2. NON-INTERACTIVE ZERO KNOWLEDGE 21

proof in the mathematical sense, instead they are constructed in such a way that it

is infeasible for a cheating prover to publish a zero knowledge proof of an invalid

assertion.

The zero knowledge proof in Figure 3.1 has a completeness of 100% because if

Alice knows the secret password, she will always be able to pass the verification.

With a single execution of this proof the soundness is 50% as there is a 50% she

chose the right tunnel to go down and does not need the secret password. If the

proof is executed n times, the soundness is 1/2n.

A zero knowledge proof should yield nothing beyond the validity of the asser-

tion being proved. So anything that is feasibly computable from the proof is also

feasibly computable from the valid assertion. This property for zero knowledge is

formalised using the simulation paradigm. Informally, the simulation paradigm

states that an interactive proof A is zero knowledge on input x if for every feasi-

ble verifier strategy there exists a simulator S that on input x has output that is

indistinguishable from the output of A. The proof A is then zero knowledge as

the simulator S that is indistinguishable from A has no knowledge of anything

other than the input x and the validity of the assertion.

For the zero knowledge proofs presented in this thesis the completeness and

soundness of the proofs are examined. Simulators are also constructed to show

zero knowledge. All the mathematical operations in the next section are com-

puted modulo p in the group of integers Zp closed under multiplication unless

otherwise stated. The notation of E(M) = (A = gr, B = yrM) is used for the

homomorphic El-Gamal encryption, and B/Ax = M for the decryption where g

is a generator for the group Zp, q is some prime where q|p− 1 (q divides p− 1), x

is the secret key, and y = gx is the public key for El-Gamal encryption.

3.2 Non-Interactive Zero Knowledge

Interactive zero knowledge proofs require the prover to answer challenges sent

by the verifier to convince the verifier of the validity of the assertion being proved.

In our setting of auctions this is a disadvantage as it could require provers to in-

teract with verifiers for an indefinite time after the auction has been completed. A

participant in the auction protocol could become disconnected from the network

after the close of the auction or be busy conducting more auctions and be unable

to take part in the interactive verification.

22 CHAPTER 3. BACKGROUND

Non-interactive zero knowledge proofs [4] involve a prover publishing a proof

that can be verified without interaction with the prover. The use of non-interactive

proofs frees up provers to either disconnect from the network or compute other

tasks after the close of the auction while still allowing verifiers to check the result

of the auction. Non-interactive zero knowledge proofs make use of a random

string or hash function available to both the prover and the verifier. In the imple-

mentation of the verification protocol, the cryptographic hash function SHA-512

is used as the hash function or random oracle for the zero knowledge proofs.

The SHA-512 hash function has an output space of 512 bits. When constructing

simulators for non-interactive zero knowledge proofs, it can be assumed that the

simulator can define the output of the random oracle for a certain input[3][24].

When constructing zero knowledge proofs using a random oracle they are secure

in the random oracle model.

The following proofs are used as building blocks for our verification protocols.

They are well known proofs that have been altered for this thesis from being in-

teractive, how they are normally presented, to being non-interactive using ideas

from Damgard [13] and Goldreich [19]. The completeness, soundness, and zero

knowledge of the proofs are presented in appendix A.

3.2.1 Proof of Knowledge of a Discrete Logarithm

The following is a non-interactive proof of knowledge of a discrete logarithm.

The prover and verifier both know v and g, but only the prover knows x such

that v = gx, which is based on Schnorr’s Σ-protocol [45].

The prover, P , conducts the following steps using hash function H :

• P picks a random number z ∈R Zq.

• P computes a = gz.

• P computes c = H(a).

• P computes r = (z + cx) mod q.

• P then publicly publishes the proof transcript a and r.

The verifier, V , conducts the following steps using the same hash function H

and the proof transcript a and r:

• V computes c = H(a).

3.2. NON-INTERACTIVE ZERO KNOWLEDGE 23

• V accepts if gr = avc.

An Example - Proving an encrypted item decrypts to some value

An auctioneer may need to prove that an encrypted item decrypts to Z, but will

not want to reveal it’s secret key as that would enable the verifier to decrypt

any other values encrypted. If the item decrypts to Z, B/Ax = Z and therefore

B/Z = Ax. Now it is proved that the auctioneer knows x such that B/Z = Ax

where the values (A,B) and Z are known to both the auctioneer and the verifier.

This example uses the encryption parameters p = 23, q = 11, x = 2, y = 4, g =

2, and Z = 4. Now when r = 7, E(Z) = (27, 474) = (13, 9) and B/Z = 9/4 =

9 ∗ 6 = 8. Now the auctioneer can prove that B/Z = Ax.

The auctioneer, or prover P , conducts the following steps using hash function

H :

• P picks a random number z = 13.

• P computes a = gz = 1313 = 8.

• P computes c = H(a) = 6.

• P computes r = (z + cx) mod q = (13 + 2 ∗ 6) = 25 mod q = 3.

• P then publishes the proof transcript a and r.

The verifier, V , conducts the following steps using the same hash function H

and the proof transcript a and r:

• V computes c = H(a) = 6.

• V accepts if gr = avc where, in this example, v = B/Z. So V1 calculates

gr = 133 = 12 and avc = 8 ∗ 86 = 12 and checks they are equal.

3.2.2 Proof of Equality of Discrete Logarithms

The following is a non-interactive proof of equality of two discrete logarithms.

The prover and verifier both know v, w, g1 and g2, but only the prover knows x so

that v = gx
1 and w = gx

2 . It is based on a protocol from Chaum and Pederson [9].

This zero knowledge proof is used to conduct verifiable threshold El-Gamal de-

cryption in Section 5.3.1, and to prove the bid vectors are valid in Section 5.4 and

in Section 6.3.

24 CHAPTER 3. BACKGROUND

The prover, P , conducts the following steps using hash function H :

• P picks a random number z ∈R Zq.

• P computes a = gz
1 and b = gz

2 .

• P computes c = H(a + b).

• P computes r = (z + cx) mod q.

• P publishes the proof transcript a, b, and r.

The verifier, V , conducts the following steps using the same hash function H

and the proof transcript a, b, and r:

• V computes c = H(a + b).

• V checks that gr
1 = avc and gr

2 = bwc.

An Example - Raising an encrypted value to a Random Exponent

If an auctioneer raises a publicly known El Gamal encrypted value to a random

exponent, this proof can be used to prove the auctioneer knows the random value

used without revealing it. The original encryption of a value is E(M) = (A,B)

and when it is raised to an exponent e it becomes E(M)e = (Ae, Be) = (Aexp, Bexp).

The original values A,B and the results Aexp, Bexp are known but only the auction-

eer knows e such that Aexp = Ae and Bexp = Be.

This example uses the encryption parameters to p = 23, q = 11, x = 2, y =

4, g = 2, and z = 4. Now when r = 7, E(z) = (27, 474) = (13, 9). Now, say the

auctioneer raises the encryption to power of e = 9. Then (13, 9)9 = (139, 99) =

(3, 2). Now the auctioneer wishes to prove that it knows e without revealing it’s

value.

The auctioneer, or prover P , conducts the following steps using hash function

H :

• P picks a random number z = 15.

• P computes a = gz
1 = 1315 = 18 and b = gz

2 = 915 = 6 and publishes them on

the bulletin board.

• P computes c = H(a + b) = 21.

3.2. NON-INTERACTIVE ZERO KNOWLEDGE 25

• P computes r = (z+cx) mod q = (15+21∗9) = 204 mod q = 6 and publishes

it on the bulletin board.

• P publishes the proof transcript a, b, and r.

The verifier, V , conducts the following steps using the same hash function H

and the proof transcript a, b, and r:

• V computes c = H(a + b) = 21.

• V checks that gr
1 = avc and gr

2 = bwc. So V calculates gr
1 = 136 = 6 and

avc = 18 ∗ 321 = 6 and checks they are equal. V then calculates gr
2 = 96 = 3

and bwc = 6 ∗ 221 = 3 and checks they are equal.

3.2.3 Proof an Encrypted Item Decrypts to 1 or Z

The following is a proof that an encrypted value E(M) = (A = gr, B = yrM)

either decrypts to a 1 or Z. It is based on a protocol from Cramer et al. [11]. This

zero knowledge proof is used to prove the bid vectors are valid in Section 5.4 and

in Section 6.3.

The prover, P , conducts the following steps using hash function H :

• If M = 1 P chooses r1, d1, w at random from Zq and calculates a1 = gr1Ad1 ,

b1 = yr1(B/Z)d1 , a2 = gw and b2 = yw. If M = Z P chooses r2, d2, w at

random from Zq and calculates a1 = gw, b1 = yw, a2 = gr2Ad2 and b2 =

yr2Bd2 .

• P computes c = H(a1 + a2 + b1 + b2).

• If M = 1 P calculates d2 = c − d1 mod q and r2 = w − rd2 mod q. If M = Z

P calculates d1 = ci − d2 mod q and r1 = w − rd1 mod q.

• P publishes the proof transcript a1, a2, b1, b2, d1, d2, r1, and r2.

Now to verify that the encrypted value either decrypts to a 1 or Z, verify V

conducts the following steps using the same hash function H , the encrypted value

(A,B) and the proof transcript a1, a2, b1, b2, d1, d2, r1, and r2:

• V computes c = H(a1 + a2 + b1 + b2).

• V checks that c = d1 + d2 mod q, a1 = gr1Ad1 , b1 = yr1(B/Z)d1 , a2 = gr2Ad2 ,

and b2 = yr2Bd2 .

26 CHAPTER 3. BACKGROUND

An Example - Verifying Correct Values in a Bid Vector

Suppose a bidder is submitting an encrypted bid vector. The number of possible

prices are k = 4, the public keys are p = 23, q = 11, g = 2, Z = 4, y = 4, and the

secret is x = 2. Suppose the bidder is bidding the second possible price, then the

bid vector is, bid = (E(Z), E(Z), E(1), E(1)). If the bid vector is encrypted using

r = 1, r = 2, r = 3, and r = 4 it equals bid = ((2, 16), (4, 18), (8, 18), (16, 3)). To

prove the item is either a 1 or Z the bidder proves the following for every item in

the bid vector which is proved here for the second item:

The prover, P , conducts the following steps using hash function H :

• M = Z so P chooses r2 = 1, d2 = 2, w = 3 at random and computes a1 = 8,

b1 = 18, a2 = 18 and b2 = 8.

• P computes c = H(a1 + a2 + b1 + b2) = 3.

• M = Z so P computes d1 = 1, d2 = 2, r1 = 1, r2 = 1.

• P publishes the proof transcript a1, a2, b1, b2, d1, d2, r1, and r2.

Now to verify that the encrypted value either decrypts to a 1 or a Z, verify

V conducts the following steps using the same hash function H , the encrypted

value (A,B) and the proof transcript a1, a2, b1, b2, d1, d2, r1, and r2:

• V computes c = H(a1 + a2 + b1 + b2) = 3.

• V checks that c = d1 + d2 mod q = 3, a1 = gr1Ad1 = 8, b1 = yr1(B/Z)d1 =

18, a2 = gr2Ad2 = 18, b2 = yr2Bd2 = 8.

3.2.4 Proof of Equality of Two Logarithm Lists

The following is a non-interactive proof of equality of two logarithm lists. The

prover and verifier both know n, v, w, g1, ..., gn and m1, ...,mn, but only the prover

knows x1, ..., xn so that v =
∏n

i=1 gxi

i and w =
∏n

i=1 mxi

i . It is based on a pro-

tocol from Chaum and Pederson [9]. It is used as Proof 4 in the Furukawa and

Sako proof of a valid shuffle of encrypted values [17] which is described in Sec-

tion 3.2.5.

The prover, P , conducts the following steps using hash function H :

• P picks n random numbers z1, ..., zn ∈R Zq.

3.2. NON-INTERACTIVE ZERO KNOWLEDGE 27

• P computes a1, ..., an where ai = gzi

i and b1, ..., bn where bi = mzi

i .

• P computes c = H(a1 + ... + an + b1 + ... + bn).

• P computes r1, ..., rn where ri = (zi + cxi) mod q.

• P publishes the proof transcript a1, ..., an, b1, ..., bn and r1, ..., rn.

The verifier, V , conducts the following steps using the same hash function H

and the proof transcript a1, ..., an, b1, ..., bn and r1, ..., rn:

• V computes c = H(a1 + ... + an + b1 + ... + bn).

• V checks that
∏n

i=1 gri

i = vc
∏n

i=1 ai and
∏n

i=1 mri

i = wc
∏n

i=1 bi.

An Example - Checking shuffled items use the same matrix and random inte-

gers for both A and B

If an auctioneer does a verifiable shuffle of bid vectors, it needs to prove that for

each of the shuffled items the same random integer and permutation matrix were

used. A shuffled value can be written as

(AShuffledi, BShuffledi) = (gri

n
∏

j=1

A
Mji

j , yri

n
∏

j=1

B
Mji

j)

where ri is the random integer used in the re-encryption of this item, and Mij is

a permutation matrix for the shuffle. The auctioneer needs to prove that for each

AShuffledi and BShuffledi the same ri and Mij were used.

This can be proved for a two item bid vector by setting v = AShuffledi,

w = BShuffledi, n = 3, g1 = g, g2 = A1, g3 = A2, m1 = y, m2 = B1, m3 =

B2, x1 = ri, x2 = M1i, and x3 = M2i. Then let (Ai, Bi) = ((8, 3), (13, 8)) and

(AShuffledi, BShuffledi) = ((4, 16), (18, 8)) where ri = 6, 3, and

M =

(

0 1

1 0

)

Now the auctioneer wishes to prove that it knows r1 and Mij without revealing

their values.

The auctioneer, A, conducts the following steps using hash function H :

• A picks random numbers z1 = 15, z2 = 7, and z3 = 4.

• A computes a1 = gz1

1 = 215 = 16, a2 = gz2

2 = 87 = 12, a3 = gz3

3 = 134 = 18.

28 CHAPTER 3. BACKGROUND

• A then computes b1 = mz1

1 = 415 = 3, b2 = mz2

2 = 37 = 2, b3 = mz3

3 = 84 = 2.

• A computes c = H(a1 + a2 + a3 + b1 + b2 + b3) = 10.

• A computes r1 = (z1 + cx1) mod q = (15 + 10 ∗ 6) = 75 mod q = 9.

• A computes r2 = (z2 + cx2) mod q = (7 + 10 ∗ 0) = 7 mod q = 7.

• A computes r3 = (z3 + cx3) mod q = (4 + 10 ∗ 1) = 14 mod q = 3.

• P publishes the proof transcript a1, ..., an, b1, ..., bn and r1, ..., rn.

The verifier, V , conducts the following steps using the same hash function H

and the proof transcript a1, ..., an, b1, ..., bn and r1, ..., rn:

• V computes c = H(a1 + a2 + a3 + b1 + b2 + b3) = 10.

• V checks that
∏n

i=1 gri

i = vc
∏n

i=1 ai. So V calculates
∏n

i=1 gri

i = 29 ∗ 87 ∗ 133 =

6 ∗ 12 ∗ 12 = 13 and vc
∏n

i=1 ai = 410 ∗ 16 ∗ 12 ∗ 18 = 13 and checks they are

equal.

• V checks that
∏n

i=1 mri

i = wc
∏n

i=1 bi. So V calculates
∏n

i=1 mri

i = 49 ∗37 ∗83 =

13∗2∗6 = 18 and wc
∏n

i=1 bi = 1610 ∗3∗2∗2 = 18 and checks they are equal.

3.2.5 Publicly Verifiable Shuffle of Encrypted Values

Several methods have been suggested for verifying a shuffle of El-Gamal en-

crypted values. These include methods by Groth [23], Neff [37], and Furukawa

and Sako [17]. This project uses the Furukawa and Sako [17] algorithm.

Both the Groth [23] and Neff [37] algorithms are based on the principle that

a polynomial remains the same under a permutation of it’s roots. Using this

principle, they are able to prove that a correct shuffle has been done without

revealing what that shuffle is.

The Furukawa and Sako [17] algorithm is an interactive verification algorithm

that uses a permutation matrix to prove in zero knowledge that the shuffle was

done correctly without revealing the actual permutation used. A permutation of

shuffled values involves a set of initial encrypted values (A,B), a set of shuffled

and randomised values (AShuffled,BShuffled), and a permutation π. This per-

mutation can then be represented as a matrix Mij where i, j = 1, ..., n. The proof

of the shuffle then involves proving:

3.3. OTHER VERIFICATION TECHNIQUES 29

• Proof 1: Given Ai and AShuffledi, AShuffledi can be expressed as

AShuffledi = gri

n
∏

j=1

A
Mji

j

using integers r1, ..., rn and a permutation matrix Mij that satisfies the con-

dition
n
∑

h=1

MhiMhj =

{

1 mod q if i = j

0 mod q if i 6= j

• Proof 2: Given Ai and AShuffledi, AShuffledi can be expressed as

AShuffledi = gri

n
∏

j=1

A
Mji

j

using integers r1, ..., rn and a permutation matrix Mij that satisfies the con-

dition
n
∑

h=1

MhiMhjMhk =

{

1 mod q if i = j = k

0 mod q otherwise

• Proof 3: The integers r1, ..., rn and the matrix Mij used in Proof 1 and Proof

2 are the same.

• Proof 4: For each pair (AShuffledi, BShuffledi) the same integers r1, ..., rn

and matrix Mij have been used.

Proof 1 and Proof 2 are proved using a series of products. Proof 3 is proved by

applying the same integers and matrix to an independent set of randomly chosen

basis that will need to be chosen at the commencement of the auction and known

to the auctioneer. Proof 4 is proved using the proof of equality of two logarithm

lists from Section 3.2.4 to prove the equality of AShuffledi = gri
∏n

j=1 A
Mji

j and

BShuffledi = yri
∏n

j=1 B
Mji

j . The completeness, soundness, and zero knowledge

of this proof are presented in the appendix A.5. This zero knowledge proof of a

correct shuffle of encrypted values is used in the public verification protocol in

Section 6.4.

3.3 Other Verification Techniques

3.3.1 Cut and Choose Verification

The Naor, Pinkas, and Sumner garbled circuit auction scheme uses a cut and

choose verification of the garbled circuit sent by the auction issuer to the auction-

30 CHAPTER 3. BACKGROUND

eer [36]. This involves the auction issuer sending n > 1 copies of the garbled

circuit to the auctioneer who opens n − 1 of the garbled circuits, asks the auc-

tion issuer to remove the garbling, and then verifies that the circuit does in fact

compute the correct auction result. In this scenario the probability of an incorrect

circuit being detected is (n− 1)/n.

A similar technique to this could possibly be used to verify a set of auction-

eers. Say the bidders decide on a certain index, say n < m, and they run the

auction m times with only the n-th run being the ’official’ auction. Then the bid-

ders could reveal their bid values for the m-1 auction runs that were not ’official’

and verify that the auctioneers are correctly computing the auction result. Unfor-

tunately, this scheme relies on none of the bidders colluding with the auctioneers

and telling them which auction is the ’official’ run.

A drawback of this verification process is that it can be quite expensive, using

garbled circuits it will involve sending multiple garbled circuits to the auctioneer,

with every garbled circuit potentially being quite large [36](the actual sizes of the

circuits used to conduct combinatorial auctions are presented in Section 8.6).

3.3.2 Verifiable Secret Sharing

Verifiable secret sharing was first developed to allow entities receiving shares of

a secret to verify that the dealer had given them a correct share of the secret, and

to allow the verification that shares being used in the reconstruction of the secret

were also correct.

Kikuchi makes use of verifiable secret sharing to allow bidders to verify auc-

tioneers, as well as to allow auctioneers to verify the bidders [31]. The auctioneer

can verify that the share of a bid they have been sent by a bidder is correct. The

auctioneer then publishes the sum of all the shares of bids, and the bidders can

verify that the auctioneer has correctly computed the sum of the shares.

Publicly verifiable secret sharing allows anyone to verify the shares of a secret.

The main advantage of publicly verifiable secret sharing is that verification is not

restricted to dealers or secret share holders, but can be carried out by any third

party [46].

3.4. THE HOMOMORPHIC AUCTION PROTOCOL 31

3.3.3 Range Proofs

Lipmaa has developed a large amount of work on range proofs and their applica-

tions to auctions and e-voting [33]. Lipmaa then extended this work and used it

to create a secure sealed bid auction scheme [34]. The auction scheme represents

bids using homomorphic encryption and range proofs are used to first prove that

the bid is constructed correctly, that is bid = Bi where i <= V + 1. V is set to the

maximum possible bid.

This range proof is then extended to provide a method to allow one of the

parties in the two party trust model to verify the result of the auction is cor-

rect. Given a coin-extractable doubly homomorphic encryption scheme (like the

Damgard-Jurik cryptosystem) you can prove that a value X is the second largest

amount from a set of encrypted values [34].

3.4 The Homomorphic Auction Protocol

This section presents a brief overview of the auction protocol by Suzuki and

Yokoo [53] which is used as the homomorphic auction protocol in this thesis. This

protocol is capable of computing the outcome of single good or combinatorial

auctions while keeping losing bid values secret. The outcome can be computed

by either a single auctioneer or a group of auctioneers using threshold encryption

techniques. In this thesis the threshold version of the auction scheme is used ex-

clusively. This is because the threshold scheme provides greater protection of the

privacy of losing bid values by spreading the trust over a group of auctioneers

rather than a single auctioneer. If a single auctioneer is used, it would be possible

for that auctioneer to decrypt all the bid values if it was malicious. When using

a threshold scheme, at least t parties in a (t, n) secret sharing scheme must be

malicious to be able to decrypt losing bid values.

3.4.1 El-Gamal Encryption System

The homomorphic auction protocol makes use of the El-Gamal asymmetric ho-

momorphic encryption system [18] to encrypt bids. Asymmetric encryption uses

a public key for encryption and a private key for decryption. Any party can en-

crypt a message using the public key of the recipient but only the recipient who

knows the private key can decrypt the message. Homomorphic encryption is a

32 CHAPTER 3. BACKGROUND

form of encryption where an algebraic operation can be performed on the plain-

text of an encrypted item by performing an algebraic operation on the cipher-text.

In the El-Gamal encryption scheme performing a multiplication of cipher-texts

performs a multiplication of the underlying plain-texts.

The El-Gamal encryption scheme uses two large primes number p and q where

q|p − 1, the cyclic group of integers Zp closed under multiplication, and a gener-

ator of the group g as public values known to all parties. A secret key x for a

participant is chosen randomly from the range 0, ..., q − 1 and the public key is

calculated as y = gx. An El-Gamal encryption involves choosing a random value

r and calculating the encryption of a value m as E(m) = (gr, yrm) = (A,B). The

decryption of E(m) is computed by calculating D(E(m)) = B/Ax = yrm/grx =

grxm/grx = m.

An example of El-Gamal encryption is now given where p = 23, q = 11, g = 2,

and x = 4 and all operations are done on the group Z23. All operations are done

modulo p unless otherwise stated. The public key is calculated by computing y =

gx = 24 = 16. Suppose the message m = 6 is being encrypted using random value

r = 7. The encryption is calculated E(m) = (gr, yrm) = (27, 167 ∗ 6) = (13, 16). To

decrypt this, calculate B/Ax = 16/134 = 16/18 = 16 ∗ 9 = 6. Division is done by

multiplying the dividend by the multiplicative inverse of the divisor. In this case

the multiplicative inverse of 18 mod 23 = 9.

Using El-Gamal encryption a new randomised ciphertext can be created by

multiplying the original ciphertext by an encryption of 1. If the decisional Diffie-

Hellman (DDH) problem is infeasible, one cannot determine whether a cipher-

text is a randomised ciphertext of the original or not. Using the values from the

above example, suppose there is an El-Gamal encrypted value of M = 6, E(M) =

(13, 16). Now 1 can be encrypted using the random value r = 3 and the same keys

as above by computing E(1) = (gr, yrM) = (23, 163 ∗ 1) = (8, 2). If E(M) multi-

plied by E(1) it gives Product = (13, 16)∗(8, 2) = (12, 9). The value Product can be

decrypted by calculating D(Product) = B/Ax = 9/124 = 9/13 = 9∗−7 = 6. E(M)

and Product look like totally different cipher-texts and it is not known whether

the original plain-texts are the same without decrypting them. This randomi-

sation technique is used in the shift and randomise step of the auction protocol

described in Section 3.4.5.

3.4. THE HOMOMORPHIC AUCTION PROTOCOL 33

3.4.2 Auction Graphs

Combinatorial auctions can be represented by auction graphs where nodes rep-

resent goods, edges between nodes represent the allocation of a subset of goods,

and each complete path through the graph represents an allocation of the goods.

Node 1
{G1,G2,G3}

Node 7
{}

Node 2
{G2,G3}

Node 3
{G1,G3}

Node 5
{G2,G3}

Node 6
{G3}

G1

Bidd
er

 1
: $

4

Bidd
er

 2
: $

5
G2,G3

Bidder 1: $2

Bidder 2: $8

G1,G2,G3
Bidder 1: $20
Bidder 2: $16

G2

Bidder 1: $6

Bidder 2: $5

G1,G3Bidder 1: $4Bidder 2: $7

Node 4
{G1,G2}

G3Bidder 1: $1
Bidder 2: $7

G1,G2

Bidder 1: $16

Bidder 2: $8

G
1

B
idder 1: $4

Bidder 2: $5

G2
Bidder 1: $6
Bidder 2: $5

G
3

Bi
dd

er
 1

: $
1

Bi
dd

er
 2

: $
7

Figure 3.2: Example Auction Graph

Figure 3.2 provides an example auction graph for three goods G1, G2, G3 with

two bidders. Each edge is labelled for the subset of goods it represents along

with the bids of the two bidders for that allocation. A complete path through

the graph is an allocation of goods and the auctioneer needs to find the optimal

path through the graph to compute the auction. An optimal path is a complete

path where there are no other paths that provide greater value. The optimal path

is shown in this graph as the thinner red line. The optimal allocation for this

auction is to allocate G3 to bidder 2 for $7 and G1, G2 to bidder 1 for $16 for

a total of $23. There may be more than one optimal path in a graph, but there

should be no other paths that have a greater value.

3.4.3 Bid Vectors

Bids in the homomorphic auction protocol are represented by encrypted bid vec-

tors. The bid vectors are composed of a series of encryptions of a publicly known

value Z followed by encryptions of 1. The value of the bid vector is indicated by

34 CHAPTER 3. BACKGROUND

the number of Z values encrypted. For example, a bid of value 3 and length 6 is

represented by the bid vector E(Z), E(Z), E(Z), E(1), E(1), E(1) and a bid vector

of value 2 and length 5 is E(Z), E(Z), E(1), E(1), E(1). The bid vectors length

must be at least as long as the maximum bid value for a complete allocation.

3.4.4 Finding the Maximum bid for a Node

To find the maximum bid value for a node while keeping losing bid values secret

the auctioneers compute the product of all the bids for on the incoming edges for

a node on the auction graph. This product is then decrypted item-wise from right

to left until the first value that does not equal one is decrypted.

Node
1

Node
2

Bid 1: E(Z),E(Z),E(Z),E(1),E(1),E(1)

Bid 2: E(Z),E(Z),E(1),E(1),E(1),E(1)

Bid 3: E(Z),E(Z),E(Z),E(Z),E(1),E(1)

Product: E(Z3),E(Z3),E(Z2),E(Z),E(1),E(1)

A2:
Auctioneer

Group
For Node 2

Figure 3.3: Finding the Maximum Bid for a Link

Figure 3.3 illustrates this process for the auctioneer group at Node 2 to find the

maximum bid for the node. The auctioneers first compute the item-wise product

of all the bid vectors on the incoming links. This can be done by any auctioneer

due to the homomorphic nature of the encryption. The auctioneers then publish

their shares of the decryption of the item on the far right of the product vector and

use Lagrange interpolation to decrypt once t (from the (t, n) threshold encryption

scheme) shares of the decryption have been published. They will then repeat this

decryption from right to left until they find an item in the product vector that

does not equal 1. In this example, the item in the fourth place of the product

vector will decrypt to Z and so the auctioneers know that the maximum bid for

this node is 4 and learn nothing about the values of the losing bids.

3.4. THE HOMOMORPHIC AUCTION PROTOCOL 35

3.4.5 Shift and Randomise

Once the auctioneers have found the maximum bid m for the node, they shift

and randomise any bid vectors on the outgoing links of the auction graph to

add the maximum bid value to these bid vectors. The auctioneers first shift the

bid vectors on the outgoing links right by m places and add m encryptions of

Z which adds the value of m to the bids vectors. The auctioneers then create a

bid vector composed entirely of encryptions of 1 and multiply the shifted vector

by this randomising vector. Multiplying the items in the shifted bid vectors by

encryptions of 1 randomises the vector so the value of m remains hidden and

prevents other parties from counting the new items in the shifted vectors. Due

to the homomorphic nature of the encryption, multiplying by encryptions of 1

preserves the value of the shifted bid vector.

Node 2

Link 1

Link 2

A2:
Auctioneer

Group
For Node 2

A3:
Auctioneer

Group
For Node 3

Node 1 Node 3

Bid:

E
A3 (Z),E

A3(Z),E
A3 (1),E

A3(1),E
A3 (1)Maximum Bid fo

r L
ink 1 is

2

Group A2 Add 2
encryptions of Z

encrypted with the public
key of group A3

Group A2 Randomise
the vector by multiplying

each item by an
encryption of 1

EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(1)

EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(1)
 EA3(1),EA3(1),EA3(1),EA3(1),EA3(1) x

EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(1)

Group A2 Publish the
result back to the link

Link 2

Node 3

Shifted and Randomised Bid:

E
A3(Z),E

A3(Z),E
A3 (Z),E

A3(Z),E
A3 (1)

Figure 3.4: Shifting and Randomising a Bid Vector

Figure 3.4 illustrates the process of shifting and randomising a bid vector. The

auctioneers in group A2 have already computed the maximum bid for node 2 and

36 CHAPTER 3. BACKGROUND

now shift and randomise the bid on link 2 by the value m = 2. The auctioneers

first shift the original bid vector right by 2 places and add 2 encryptions of Z.

They then multiply the shifted bid vector by a vector of encryptions of 1 and

publish it on link 2.

3.4.6 An Example

To calculate the result of an auction the auctioneers use the techniques in the ear-

lier sections to find the optimal path for the auction graph. They then back track

through the optimal path to find the optimal bids on the edges of the optimal

path.

Node 3

Node 2

Node 1
Link 3: Goods 1 AND 2

Link 1: G
ood 1

Link 2: Good 2

EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(1)
EA3(Z),EA3(Z),EA3(1),EA3(1),EA3(1),EA3(1)

EA2(Z
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
)

EA2(Z
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
)

A2:
Auctioneer

Group
For Node 2

A3:
Auctioneer

Group
For Node 3

E
A3 (Z),E

A3 (1),E
A3(1),E

A3 (1),E
A3 (1),E

A3 (1)

E
A3 (Z),E

A3 (Z),E
A3(1),E

A3 (1),E
A3 (1),E

A3(1)

Figure 3.5: A Simple Example Auction

Figure 3.5 shows an example auction graph with encrypted bid vectors pub-

lished to the links of the graph. To compute the result of the auction the auction-

eers will complete the following actions:

• The auctioneers in group A2 find the maximum bid for node 2 by multiply-

ing the bids on the incoming links together and decrypting them from right

to left until the first item is found that does not decrypt to 1. The optimal

value for this node optimal2 = 1.

• The auctioneers in group A2 shift and randomise the bid vectors for link 2

by the value optimal2.

3.5. SUMMARY 37

Node 3

Node 2

Node 1
Link 3: Goods 1 AND 2

Link 1: G
ood 1

Link 2: Good 2

EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(1)
EA3(Z),EA3(Z),EA3(1),EA3(1),EA3(1),EA3(1)

EA2(Z
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
)

EA2(Z
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
)

A2:
Auctioneer

Group
For Node 2

A3:
Auctioneer

Group
For Node 3

E
A3 (Z),E

A3 (Z),E
A3 (1),E

A3 (1),E
A3 (1),E

A3 (1)

E
A3 (Z),E

A3 (Z),E
A3 (Z),E

A3 (1),E
A3 (1),E

A3 (1)

Figure 3.6: After Shifting the Bids for Link 2

• Figure 3.6 shows the auction graph once the auctioneers in group A2 have

shifted the bid vectors for link 2 by the value optimal2 = 1.

• The auctioneers in group A3 now multiply the the bid vectors on the incom-

ing links 2 and 3 together to form a product bid vector. The auctioneers in

group A3 decrypt the items in the product bid vector from right to left until

the first item that does not decrypt to 1 is found to find the optimal value

for this node optimal3 = 4. As this is the final node in the auction graph this

is the optimal value for the auction.

• The auctioneers in group A3 now trace back the optimal value to find the

winning bids. This is done by decrypting the bid vectors on the incom-

ing links at the index optimal3 to find the bid that decrypts to Z at this in-

dex. In this case the bid from bidder 1 on link 3 decrypts to Z at the index

optimal3 = 4. This means that the winning bid for the auction is bidder 1 on

link 3 for goods 1 and 2 together.

3.5 Summary

This chapter has presented background work that is used in the rest of this thesis.

It began by presenting the concepts of zero knowledge proofs and non-interactive

38 CHAPTER 3. BACKGROUND

zero knowledge proofs that are used to construct the group verification protocol

in Chapter 5 and the public verification protocol in Chapter 6. A number of well

known zero knowledge proofs have been presented. The zero knowledge proof

of equality of discrete logarithms presented in Section 3.2.2 is used to conduct

verifiable threshold El-Gamal decryption in Section 5.3.1 and to prove the bid

vectors are valid in Section 5.4 and in Section 6.3. The zero knowledge proof an

encrypted item decrypts to 1 or Z in Section 3.2.3 is used to prove the bid vectors

are valid in Section 5.4 and in Section 6.3. The public verification protocol uses the

zero knowledge proof of a correct shuffle of encrypted values from Section 3.2.5

to prove that a bid vector from a set encrypted bid vectors is the maximum bid in

Section 6.4.

The rest of this chapter has detailed the homomorphic auction protocol by

Suzuki and Yokoo [53]. The individual constructions and steps of the auction

protocol are explained before presenting a complete example auction. This is

important background work for this thesis as both the group verification protocol

and the public verification protocol add verification to the homomorphic auction

protocol and so an understanding of the auction protocol is necessary to construct

and understand the verification protocols.

Chapter 4

Extending Garbled Circuits

Garbled circuits are a verifiable privacy preserving auction protocol first sug-

gested by Naor, Pinkas, and Sumner [36]. They make use of the cryptographic

technique of garbled circuits introduced by Yao [52]. Garbled circuits use a two

party trust model with an Auction Issuer and an Auctioneer. As long as these

two parties do not collude the auction is privacy preserving.

A contribution of this thesis is the construction of a novel circuit that can com-

pute combinatorial auctions taking as inputs the number of bidders, the maxi-

mum price, and the number of goods. In previously published work, garbled

circuits had only been used to compute (M+1)st price auctions. A circuit is a net-

work of Boolean gates with a set of inputs, a set of intermediate gates, and a set of

outputs gates. When the parameters of the function are presented bit wise to the

input gates, the intermediate gates are used to compute the values of the output

gates which are the result of the function the circuit is computing.

Figure 4.1 shows a circuit that is being used for a trivial auction with one

good, two bidders and two bits representing the price. The input of the circuit is

the bids for the two bidders represented by two bits. The outputs are two Boolean

values that indicate whether bidder one or bidder two was the winner and two

Boolean values that indicate the maximum or winning price. The example in

Figure 4.1 shows bidder two winning the auction with a maximum price of 11

which is three. To further illustrate consider another example. Bidder one bids

two so has input 10 and bidder two bids one and so has input 01. In this case, the

output is Bidder 1 Winner = 1, Bidder 2 Winner = 0, Maximum Price Bit 1 = 1, and

Maximum Price Bit 2 = 0.

39

40 CHAPTER 4. EXTENDING GARBLED CIRCUITS

Bidder 1
Bid Bit 1

Bidder 2
Bid Bit 1

Maximum
Price Bit 1

Maximum
Price Bit 2

Bidder 1
Bid Bit 2

Bidder 2
Bid Bit 2

Bidder 1
Winner

Bidder 2
Winner

=1
=1

&

=1

=1

& &

&

=1

=1 =1

& & & &

0 1 11

111

&

&

&

&

=1

0

Figure 4.1: A Simple Auction Circuit

4.1 Garbled Circuit Auction Protocol

Figure 4.2 shows the parties involved in the garbled circuits auction protocol. The

protocol preserves the communication pattern of non-electronic auctions so the

bidders and the client only need to have a connection to the auctioneer, and the

auctioneer is the only party that needs a connection to the auction issuer.

Client
Auctioneer /

Circuit Executor

Auction Issuer /
Circuit Creator and Garbler

Bidder

Bidder

Bidder

Figure 4.2: Garbled Circuit Parties

The basic steps of an auction using the garbled circuit protocol are:

• The client contacts the auctioneer with details of the auction they wish to

run.

4.2. ALGORITHMS 41

• The auctioneer advertises details of the auction including the number of

goods, number of prices, and the auction issuer being used.

• The auction issuer constructs a garbled circuit for the auction based on how

many bidders, goods, and the number of bits in the price as well as a map-

ping from the garbled outputs of the garbled circuit to the actual outputs of

the auction and sends them to the auctioneer.

• The auction issuer, auctioneer, and bidders use a protocol called verifiable

proxy oblivious transfer (VPOT) [28] which results in the auctioneer learn-

ing the garbled values of the inputs, and the auction issuer and bidders

learning no new information.

• The auctioneer executes the garbled circuit using the garbled input and de-

codes the output using the output mapping sent by the auction issuer.

4.2 Algorithms

4.2.1 Table of Definitions

The following terms are used in the description of garbled circuits:

• Client: The entity that requests the auctioneer to conduct an auction.

• Auctioneer: Takes the details from the client and runs the auction. Commu-

nicates with the auction issuer to get the garbled circuit and garbled input

values.

• Auction Issuer: Assists in running the auction. Should be from a separate

organisation than the auctioneer. Garbles circuits and then assists the auc-

tioneer in learning the garbled inputs.

• Bidder: Bids on items in the auctions.

• Auction Circuit: Circuit composed of Boolean gates that can be used to com-

pute the result of an auction.

• Node: Boolean gate in an auction circuit.

• Wire: Link between two nodes of an auction circuit. A wire can have a value

b of 0 or 1.

42 CHAPTER 4. EXTENDING GARBLED CIRCUITS

• W 0 and W 1: Multi-bit random values that are used to represent the 1 and 0

value of a wire.

• c: Result of a random permutation π of a wires value b.

• < W b, c >: Garbled value of a wire. Formed by concatenating W b for the

value b of the wire with the result of the permutation of the value b, c.

• g: The node function which calculates the output of the node based on the

inputs. For example, for an AND gate g(0, 1) = 0 and g(1, 1) = 1.

• Gate Table: Each node in the auction circuit has a gate table that maps the

garbled inputs to a garbled output.

• Output Mapping: Table that maps the garbled outputs to actual outputs.

Each output wire has an output mapping.

• Pseudo Random Function F (a, b): Pseudo random function F takes a as a

seed and b as an argument and returns a random value. The SHA-1 hash

function is used to represent this function.

4.2.2 Garbled Circuit Generation

To garble a circuit, the auction issuer executes the following algorithm on the

nodes and wires of the auction circuit.

Algorithm GarbleCircuit

Input: AuctionCircuit AC, RandomFunction F

Output: GateTable GT, OutputMapping OM

1. (∗ Assign random values to the wires ∗)

2. for ∀wire i ∈ AC

3. Randomly generate W 0
i and W 1

i corresponding to 0 and 1.

4. Choose a random permutation over {0,1}, πi : bi → ci.

5. (∗ Construct function tables for every node ∗)

6. for ∀ node k ∈ AC with input nodes i,j

7. for ci ← 0 to 1

8. for cj ← 0 to 1

9. GT (k)(ci, cj)←

10. GetGTV alue(i, j, k)

4.2. ALGORITHMS 43

11. (∗ Construct output mapping ∗)

12. for ∀ output wire k ∈ AC

13. OM(k, 0)←< W 0
k , πk(0) >

14. OM(k, 1)←< W 1
k , πk(1) >

Algorithm GarbleCircuit garbles an auction circuit. The first step is to assign

random values to every wire of the auction circuit. Every wire has a random

value corresponding to 0 and 1 (W 0,W 1) assigned to it as well as a random per-

mutation of its output π : b → c that permutes the wires value b to c. Figure 4.3

shows the random values W 0 and W 1 assigned to a wire as well the permutation

from b→ c. It shows the garbled values at the bottom of the image, showing how

these are created by concatenating the random values and the permutation.

Permutation

b c

1

0

0

1

Actual Value Random Value Wb

0

1

W0 = 1101101

W1 = 1001111

Random Values

Garbled Values

b

0

1

Garbled Value <Wb,c>

11011011

10011110

Figure 4.3: Garbling a Wire

For every node in the auction circuit a table is constructed that, given the gar-

bled input of the node, outputs the garbled output of a node. If the node is an

output node, an output mapping is also produced mapping the garbled output of

the node to the actual output. These steps can only be performed with the knowl-

edge of the random values assigned to all the wires. The algorithm GetGTValue

details the calculation done for an entry in the gate table. The tables for each node

and the output mappings are then sent to the auctioneer to execute the circuit.

Algorithm GetGTValue

Input: InputNode i, InputNode j, OutputNode k

Output: bit [] Value

1. V alue←

2. {(W
g(bi,bj)
k , ck)⊕ (F (W bi

i , cj))⊕ (F (W
bj

j , ci))}

44 CHAPTER 4. EXTENDING GARBLED CIRCUITS

4.2.3 Executing a Circuit

The following algorithm is executed by the auctioneer after it has received the

GateTable and OutputMapping arrays from the auction issuer. The auctioneer

will also have received the garbled inputs after completing the VPOT protocol

with the bidders and auction issuer.

Algorithm ExecuteCircuit

Input: AuctionCircuit AC, GateTables GT, OutputMapping OM, GarbledInputs

GI, RandomFunction F

Output: ActualValues AV

1. (∗ Reset All Nodes ∗)

2. for ∀ Nodes k ∈ AC

3. Computed(k)← false

4. (∗ Compute All Nodes ∗)

5. repeat

6. for Node k with input nodes i and j

7. if ((Computed(i) ∩ Computed(j)) ∪ i, j ∈ GI)

8. GarbledOutputk ←

9. GetGO(i, j, k,GT)

10. Computed(k)← true

11. until All Nodes have been Computed

(∗ Convert Garbled Output to Actual Output ∗)

12. for ∀ output nodes o

13. if (GarbledOutputo = OM(o, 1))

14. then AV (o)← 1

15. else AV (o)← 0

Algorithm ExecuteCircuit executes a garbled circuit given the auction circuit,

gate tables, output mapping, garbled inputs, and random function. It loops

through all the nodes in the auction circuit until they have all been computed.

The gate tables are used to compute the garbled output of a node k with input

wires i and j. Inputs i and j will have garbled input values of < W bi

i , ci > and

< W
bj

j , cj >. From the garbled inputs the values ci, cj , W bi

i , and W
bj

j can be ex-

tracted from the concatenated garbled inputs. Then the garbled output can be

computed using algorithm GetGO. Algorithm GetGO uses the entry in the gate

table for ci and cj as well as the output of the random function with seed W bi

i and

4.2. ALGORITHMS 45

input cj and with seed W
bj

j and input ci. The output mapping is used to convert

the garbled output to the actual output for an output node.

Algorithm GetGO

Input: InputNode i, InputNode j, Node k, GateTables GT

Output: bit [] GarbledOutput

1. GarbledOutput←

2. F (W bi

i , cj)⊕ F (W
bj

j , ci)⊕GT [k](ci, cj)

4.2.4 Worked Example

Figure 4.4 illustrates a trivial garbled circuit with an AND and an OR gate. Both

the AND and the OR gate have one bit inputs and outputs. This circuit has three

inputs and one output.

The auction issuer has executed the GarbleCircuit algorithm to produce the

’Random Values and Permutation Assigned to Wires’ table shown in Figure 4.4

that contains the random values assigned to each wire in the example as well as

the permutation. These random values are kept private by the auction issuer and

not revealed either to the auctioneer or to the bidders. The auction issuer also

produces the ’Gatetables’ and the ’Garbled Output to Output Mapping’ shown

in Figure 4.4 using the GarbleCircuit algorithm. The garbled value of a wire is set

to < W b, c > so for wire Z the garbled value of 0 is < 01, 0 >= 010 as shown

in Figure 4.3. The ’Random Function F’ shown in Figure 4.4 is a public function

available to both the auctioneer and the auction issuer.

To execute the circuit in 4.4 the auctioneer would take the following steps:

• Find out the garbled input values. In this example we will set Input 1=1,

Input 2=1, and Input 3=0. Given these example inputs, the output of the

circuit should be 1. The garbled input value for V is 001, for W is 010, and

for Y is 010. The garbled input value is the garbled value of the wire for

the input value of the wire. So as Input 1 = 1, the garbled value for V is

< W 1, c1 >= 001.

• Now the gates are executed. To execute the AND gate the garbled inputs

and the gatetable are used. The output is 001⊕ 111⊕ 100 = 010.

• Now the OR gate is executed. The output is 101 ⊕ 001 ⊕ 001 = 101. Using

the garbled output to output mapping, the output of the garbled circuit is 1.

46 CHAPTER 4. EXTENDING GARBLED CIRCUITS

C iC j Output

OR Table

00

01

10

11

101

110

000

100

C iC j Output

AND Table

110

010

001

001

00

01

10

11

Garbled Output Output

101

010

1

0

Input 1

Input 2

Input 3

&
(AND)

=1
(OR)

V

W X

Y
Z Garbled

Output

Seed F(seed,0) F(seed,1)

00
01
10
11

111
001
000
110

011
100
101
010

Random Function F
Wire W0 W1 C0 C1

V

W
X

Y
Z

1000

01 10

10
10
11
01

01
01
00

0
0

0
0 1

1
1
1

Random Values and Permutation
Assigned to Wires

Gatetables

Garbled Output to
Output Mapping

Figure 4.4: Garbled Circuit Example

This is a small example that shows how a garbled circuit works. A circuit that

executes an auction has thousands of gates depending on the parameters of the

circuit.

4.3 Extending Garbled Circuits

The main contribution of this thesis to improving the garbled circuits auction pro-

tocol is an algorithm for the construction of an auction circuit that can compute

the result of a combinatorial auction. While this is not a modification to the pro-

tocol itself, it is a construction that allows us to conduct combinatorial auctions

using the garbled circuits protocol. Previously published work has used garbled

circuits to conduct single good auctions only.

Auction circuits for the garbled circuit auction protocol need to be constructed

dynamically based on the number of bidders, the maximum price, and the num-

ber of goods for the auction. A circuit for computing the result of an auction with

ten bidders will have more gates than a circuit for conducting an auction with five

4.3. EXTENDING GARBLED CIRCUITS 47

bidders. An algorithm is needed that can return a combinatorial auction circuit

for computing the result of an auction taking as inputs the number of bidders,

the maximum price, and the number of goods.

The design and implementation of the combinatorial auction circuit began

by looking at implementations of single good auction circuits. Kurosawa and

Ogata [32] have constructed an algorithm for constructing auction circuits that

compute first or second price single good auctions efficiently. These auction cir-

cuits take the bids from every bidder as input and output the winning bidder and

the winning price for the auction. The auction circuit constructed is composed of

NOT, AND, OR, XOR, and SELECT nodes. A SELECT gate has three inputs, if

the first input is true it outputs the second input, and if the first input is false it

outputs the third input. A SELECT gate is not a true Boolean gate, but it can be

implemented using AND and OR gates and makes construction of circuits eas-

ier. The first price auction circuit is used as a building block for constructing the

combinatorial circuit.

A basic add circuit was also constructed that given two bit-wise values as

input, outputs the sum of these two values. This circuit was based on the Boolean

gates used in a digital adder circuit for addition of binary values [30].

4.3.1 The Combinatorial Auction Circuit

To develop an algorithm to dynamically construct an auction circuit based on

the number of bidders, goods, and the maximum price, the first step is to show

how an auction circuit might be constructed that could compute the outcome of a

combinatorial auction. Using the single good auction circuit and the add circuit,

the actions in the homomorphic auction protocol can be computed. The single

good circuit computes the maximum bid for a set of bids and the add circuit can

be used to conduct the shift and randomise operation to add the maximum bid

for a node to the bids on the outgoing links for that node.

The homomorphic auction protocol uses an auction graph to represent combi-

natorial auctions as shown in Figure 4.5 and described in Section 3.4.2. Using the

auction graph and the circuits for computing the maximum bid for an auction

and for adding two values together an auction circuit to compute the optimal

value for a combinatorial auction was designed and implemented.

For every node in the auction graph the single good auction circuit is used

to compute the maximum bid for the bids on the incoming links. Then the add

48 CHAPTER 4. EXTENDING GARBLED CIRCUITS

Node 1
{G1,G2,G3}

Node 7
{}

Node 2
{G2,G3}

Node 3
{G1,G3}

Node 5
{G2,G3}

Node 6
{G3}

G1 G2,G3

G1,G2,G3

G2 G1,G3

Node 4
{G1,G2}

G3 G1,G2

G
1

G2

G
3

Figure 4.5: A Three Good Auction Graph

circuit is used to add this maximum value to all the bids on the outgoing link.

Figure 4.6 shows the auction graph from Figure 4.5 with auction circuits in place

to construct our combinatorial auction circuit. Every link has a maximum bid

circuit attached to it that outputs the maximum bid for that link. Every node

except the last node in the graph has an adder circuit that adds the maximum

bid for the incoming link to the bids on the outgoing link. The last node has a

final maximum bid circuit that outputs the optimal value for the combinatorial

auction.

A combinatorial auction circuit has now been developed that can output the

optimal value for the auction graph, but it also needs to output what bidders

won what goods and the price for each bidder. Every maximum bid circuit can

output not only the maximum bid for that link but also the maximum bidder.

At every link in the graph the maximum bid circuit outputs what bidder won the

subset of goods represented by this link and what price they bid. These values are

combined for every link in a path by OR’ing together the outputs of every link.

The outputs of every path are AND’ed with the output of the final maximum bid

circuit and OR’ed together over all the paths. Every winning bidder and price not

on the optimal path is reset by AND’ing it with the output of the final maximum

bid circuit which outputs 0 for every path except the optimal one.

4.3. EXTENDING GARBLED CIRCUITS 49

Node 1
{G1,G2,G3}

Node 7
{}

Node 2
{G2,G3}

Node 3
{G1,G3}

Node 5
{G2,G3}

Node 6
{G3}

G1 G2,G3

G2 G1,G3

Node 4
{G1,G2}

G3 G1,G2

G
1

G2

G
3

Max Bid
Circuit

Max Bid
Circuit

Max Bid
Circuit

Max Bid
Circuit

Max Bid
Circuit

Max Bid
Circuit

Max Bid
Circuit

Max Bid
Circuit

Max Bid
Circuit

Max Bid
Circuit

Add
Circuit

Add
Circuit

Add
Circuit

Add
Circuit

Add
Circuit

Max Bid
Circuit

Figure 4.6: Circuits on an Auction Graph

4.3.2 The Combinatorial Auction Circuit Creation Algorithm

Now the design of an auction circuit to compute the outcome of combinatorial

auctions was complete, the next step was to write an algorithm that outputs

a combinatorial auction circuit based on the number of bidders, the maximum

price, and the number of goods. Based on the input parameters, the algorithm

first constructs an auction graph that represents the auction. Figure 4.5 shows

an example auction graph for 3 goods. The algorithm then constructs the auc-

tion circuit by iterating through the auction graph and constructing sub-circuits

of maximum bid circuits for every link in the auction graph and add circuits for

every node. The inputs and outputs of these sub-circuits are connected in such a

way that the circuit computes the result of the combinatorial auction as described

in the previous section. This algorithm has been implemented in Java and the

circuit created as a Java object. Using this algorithm the garbled circuits auction

protocol can be used to conduct combinatorial auctions, something that was not

possible based on the original garbled circuits paper.

50 CHAPTER 4. EXTENDING GARBLED CIRCUITS

4.4 Verification

Naor, Pinkas, and Sumner suggest several verification techniques to cover some

of the potential problems with this protocol [36]. The problems addressed by the

verification process are:

• A malicious auction issuer sending a garbled circuit to the auctioneer that

does not correctly compute the result of the auction and could declare an

arbitrary bidder as the winner. If the auction issuer sends x different copies

of the garbled circuit to the auctioneer who, with the help of the auction is-

suer, opens and checks x-1 of the circuits to make sure they correctly execute

the auction, then an auction issuer who is sending corrupt circuits could be

found with probability (x− 1)/x.

• A malicious auction issuer can change bids when using the original proxy

oblivious transfer (POT) protocol of the original garbled circuit auction pro-

tocol. This is addresses by using the verifiable proxy oblivious transfer

(VPOT) protocol that was suggested by Juels and Szydlo [28].

• A malicious bidder could submit an invalid bid. An invalid bid would be

found by the VPOT protocol and could be replaced with a place sitting bid

of 0 without restarting the auction.

• A malicious auctioneer could alter the bid values as they come through from

the bidders before they forward them on to the auction issuer. If the auction

issuer publishes a hash of all the bid values it receives via the auctioneer,

bidders can check if the correct hash values for their bids are present.

• The auctioneer could execute another circuit rather than the one sent by

the auction issuer. This can be detected if the auction issuer publishes a

signed translation table that provides the possible outputs of the circuit put

through a one way function. The bidders or auctioneer can then check that

the outputs the auctioneer lists put through the same one way function are

present in the translation table.

These techniques can be used to provide a group verification process for the

garbled circuits auction protocol as long as the auctioneer and auction issuer do

not collude.

4.5. SECURITY ANALYSIS 51

4.5 Security Analysis

Garbled circuits are privacy preserving as long as the auction issuer and auction-

eer do not collude. It is secure against a passive adversary when the adversary

is either a bidder, auctioneer, or the auction issuer. The protocol can be extended

to detect active adversaries who are not keeping to the correct protocol using the

verification techniques in the previous section.

In a secure garbled auction, the auctioneer should not be able to work out the

intermediate values of the circuit. The random permutation of wire i, πi : bi → ci,

prevents the auctioneer from learning these intermediate values as it will know

the ci value but has no way of knowing what bi value it maps to.

If the auctioneer knows the garbled inputs and output of a node, it cannot

find out the other garbled output of the node. The random function F masks the

other values and makes them appear random.

If the number of outputs of a node is greater than 1 a different input to the

random function must be used for each output. If an identifier I is assigned

to each node then FW (c, I) can be used for masking instead of FW (c) [36]. This

results in a separate gate table for every output node.

Auction Issuer Auctioneer Bidder

Knows: Knows: Knows:

Learns:
Garbled value of 1 and 0

Nothing

Nothing
Learns: Learns:

Nothing

Bid Value (1 or 0)

Garbled Input Value of Bid

Figure 4.7: VPOT protocol

The auctioneer should also be prevented from learning the actual input val-

ues of the bidders.The verifiable proxy oblivious transfer protocol (VPOT) [29] is

a multi party protocol involving the bidder, auctioneer, and auction issuer and is

illustrated in Figure 4.7. The auction issuer knows the garbled value of the input

wires, the bidders knows the actual input, and the auctioneer learns the garbled

value of the input only. The VPOT protocol prevents the auctioneer or auction

issuer from learning the actual inputs of the bidder, as well as providing veri-

fication that the bidder, auctioneer, and auction issuer carried out the protocol

correctly.

52 CHAPTER 4. EXTENDING GARBLED CIRCUITS

4.6 Summary

This chapter has introduced garbled circuits and the garbled circuit auction pro-

tocol by Naor, Pinkas, and Sumner [36]. The construction of a Boolean circuit

to compute the result of combinatorial auctions has then been detailed. Using

the combinatorial auction circuit developed in this chapter, the garbled circuit

auction protocol is able to compute the result of combinatorial auctions where

previously it had only been used to compute the results of first price and (M+1)

priced auctions.

Chapter 5

Group Verification Protocol

The garbled circuits auction protocol of the previous chapter uses two party trust.

Greater robustness can be achieved by using a threshold trust model where a

group of auctioneers conducts the auction protocol and the protocol can still

complete if one of the auctioneers fails or is malicious. the homomorphic auc-

tion protocol by Suzuki and Yokoo [53] is a threshold trust auction protocol that

can conduct combinatorial auctions and keep losing bid values secret but is not

verifiable. Verification of the homomorphic auction protocol provides auction

participants with greater confidence in the result of the auction. The first itera-

tion of our verification protocol for the homomorphic auction protocol is a group

verification protocol. A group verification protocol can only be verified by par-

ticipants taking part in the protocol. In this case, the auctioneers all provide zero

knowledge proofs of the actions they take to execute the auction protocol and

they can verify the actions taken by other auctioneers. If an auctioneer detected

one of the other auctioneers deviating from the correct behaviour for the auction

protocol, they could publish information on the deviating auctioneer publicly.

A malicious auctioneer could claim that a correct auctioneer has behaved in-

correctly when it has not. To prevent this, at least a quorum of auctioneers is

required to claim that an auctioneer has deviated from the auction protocol. This

quorum value is the same value used in the threshold encryption. This means

that unless at least a quorum of auctioneers are malicious, losing bid values are

kept secret and bidders can have confidence that the auction protocol executed

correctly unless indicated otherwise by the auctioneers. In the case of quorum

auctioneers indicating that one of the actions taken by one of the auctioneers has

failed the verification, the auction protocol can either continue ignoring any val-

53

54 CHAPTER 5. GROUP VERIFICATION PROTOCOL

ues returned by the offending auctioneer, or the auction result can be invalidated

and the auction started again.

5.1 Threat Model

The provers and verifiers in our verification protocol are assumed to be polynomially-

bounded active adversaries that may try and prove incorrect assertions. For ex-

ample, an active adversarial prover may try and convince an honest verifier that

they have correctly computed an incorrect auction result. It is assumed that any

number of polynomially-bounded active adversaries may be colluding together

to disrupt the verification protocol as long as there are less than the quorum or

threshold value t used in the (t, n) threshold scheme. Different parties may col-

lude, so a bidder and an auctioneer may collude together.

It is assumed that any party can get a copy of any public message sent between

the auction participants and use it to try and break the verification protocol. The

verification protocol does not address the case where a malicious party controls

the communication channel and prevents messages from reaching a particular

participant effectively performing a denial of service attack on that party, alters

the messages in transit, or replays messages. Altered messages will likely fail ver-

ification and could be used to reduce the confidence in an honest prover, however

schemes such as digital signatures of messages can be used to prevent this kind

of attack but are outside the scope of this thesis.

5.2 Security Goals

The security goals for the verification protocol are now reviewed in the context

of a group verification protocol for the homomorphic auction protocol.

1. Auctioneers should be able to verify the actions of the other participants

in the auction protocol giving a high confidence that they have correctly

executed the steps in the auction protocol.

2. Verification of the auction protocol should reveal no information other than

what is revealed by the auction protocol.

3. It should be computationally infeasible for a bidder to submit an invalid bid

that passes the verification checks.

5.3. THRESHOLD EL-GAMAL DECRYPTION 55

4. It should be computationally infeasible for an auctioneer to not count all

the bids and pass the verification checks. For the homomorphic auction

protocol, it should be computationally infeasible for an auctioneer to not

count a bid when calculating the maximum bid for a node and to pass the

verification checks.

5. It should be computationally infeasible for an auctioneer to announce an

incorrect winning bidder(s) or price(s) and pass the verification checks. For

the homomorphic auction protocol, it should be computationally infeasi-

ble for an auctioneer to do an incorrect shift and randomise, or incorrectly

compute the optimal path once the optimal value is found and to pass the

verification checks.

5.3 Threshold El-Gamal Decryption

Threshold El-Gamal encryption is used in the homomorphic auction protocol so

that a single auctioneer cannot decrypt all the losing bids for a link in the auc-

tion graph. The El-Gamal secret key is shared among a group of n members x→

(x1, ..., xn) using Shamirs secret sharing scheme [47]. Encryption still involves us-

ing a public key y = gx and a random value r to calculate (A,B) = (gr, yrM). To

perform a threshold decryption of a value when using a (t, n) threshold encryp-

tion scheme requires a group I of participants with at least t members. Every

participant in I knows the indexes i of the other members in the group. In a (3, 5)

sharing scheme the group I could be made of parties with indexes 2, 3, and 5.

Every member of I then follows the following steps to calculate Ax used in the

decryption where m = B/Ax:

• Every member i calculates and publishes among the group zi = Axi .

• All members compute on their own the λ-coefficients of the Lagrange inter-

polation of the indexes i in the group I .

• Every member can then compute on their own

Ax =
∏

i∈I

zλi

i =
∏

i∈I

(Axi)λi = A
P

i∈I λixi = Ax

using Lagrange interpolation to calculate x =
∑

i∈I λixi.

56 CHAPTER 5. GROUP VERIFICATION PROTOCOL

• The decryption can then be completed by all the members on their own

calculating M = B/Ax as in standard El-Gamal decryption.

When every member of the group I correctly follows the protocol the decryp-

tion will succeed and correctly decrypt the cipher-text.

5.3.1 Verifiable Threshold El-Gamal Decryption

When using threshold El-Gamal decryption, if one of the members of the group

publishes an incorrect zi value the correct plain-text will not be decrypted. If the

individual public keys of the secret keys (y1 = gx1 , y2 = gx2 , ..., yn = gxn) can

be published with the group public key y, the members in the group doing the

decryption I can publish zero knowledge proofs that they correctly computed

the zi values. Every member i will publish a zero knowledge proof of equality of

logarithms from section 3.2.2 by publishing a proof that they know the value xi

such that yi = gxi and zi = Axi .

By publishing a zero knowledge proof that the zi value is correctly computed,

a malicious participant publishing incorrect zi values will be detected with a high

probability and can be removed from the group. As long as less than t partici-

pants of the secret sharing scheme are malicious, the decryption can be carried

out correctly even in the presence of malicious participants.

5.3.2 Completeness

Each participant in the group doing the decryption has to publish a proof of

equality of discrete logarithms. As the proof of equality of logarithms is shown to

be complete in Section A.2.1, the verifiable threshold El-Gamal decryption must

also be complete. To put it another way, suppose the verifiable threshold decryp-

tion was not complete, then one of the proof of equality of discrete logarithms

must not be complete, but these are known to be complete.

5.3.3 Soundness

Suppose a cheating prover is trying to publish a proof that they know a value xi

where yi 6= gxi or zi 6= Axi . This is analogous to the situation of a cheating prover

in the proof of equality of logarithms as shown in Section A.2.2 so the soundness

is 1/q.

5.4. ZERO KNOWLEDGE PROOF OF A VALID BID VECTOR 57

5.3.4 Zero Knowledge

To check the zero knowledge property of the proofs of equality used in threshold

decryption, a simulator S can be constructed that completes the following steps

on common input p, q, g, the encrypted item (A,B), the set of participants I , the

shares z1, ..., zn, and the public keys y1, ..., yn in the random oracle model:

• For every item i in the set of participants I , S does the following:

– S outputs the transcript of the simulator for the equality of logarithms

shown in Section A.2.3 using as input p, q, g, A, yi, and zi which has

output ai, bi, ri.

The verifier then checks that for every item in the set of participants I , gri = aiy
ci

i

and Ar = biz
ci

i .

5.4 Zero Knowledge Proof of a Valid Bid Vector

A valid bid vector should be of the form:

bidvalid = E(Z), E(Z), E(Z), E(1), E(1), E(1)

All the items in the bid vector should be encryptions of 1 or the publicly known

value Z. A bid vector should also contain no gaps where an encrypted 1 is be-

tween two encrypted Z values. An invalid bid vector with a gap would be of the

form:

bidgap = E(Z), E(Z), E(1), E(Z), E(1), E(1)

To assist in the zero knowledge proof of a valid bid vector an alternate form

of the bid vector is used. Suppose every item i in the alternate bid vector alt for a

value v is calculated with the formula:

alti =

{

E(Z) if i = v

E(1) otherwise

So a bid vector of length 6 and value 3 would be

E(1), E(1), E(Z), E(1), E(1), E(1).

To prove in zero knowledge that a bid vector in the alternate form is valid, we

publish proofs that every item in the bid vector is a 1 or a Z. The product of all the

58 CHAPTER 5. GROUP VERIFICATION PROTOCOL

items in the bid vector is then computed and is proved to decrypt to Z. The bid

vector is then converted to standard form using a technique called integrating a

bid vector [1].

When the bidders publish their alternate form bid vectors, they also publish

a proof an encrypted item decrypts to 1 or Z from section 3.2.3 for every item in

the vector. The auctioneers can then verify that every item in the alternate form

bid vector is an encryption of 1 or Z.

The auctioneers each independently compute the product of all the items in

the bid vector. This product can be computed by any party due to the homo-

morphic nature of El-Gamal encryption. The auctioneers publish their shares of

the decryption of the product as well as zero knowledge proofs that their shares

are correctly computed as shown in Section 5.3.1. The auctioneers can then ver-

ify that the product of the items was correctly computed and, using Lagrange

interpolation, that the product of the items decrypts to Z.

Now that zero knowledge proofs that the alternate form of the bid vector is

valid have been constructed, the alternate bid vector is integrated to convert it to

the standard form of the bid vector used in the homomorphic auction protocol.

To integrate a bid vector one of the auctioneers computes the following function

on the items of the alternate bid vector alt of length l starting with the item l and

going down to item 1 to get the standard bid vector bid:

bidi =

{

alti if i = l

alti ∗ bidi−1 otherwise

This formula converts the alternate form of the bid vector to the standard form

of the bid vector and is verifiable due to the homomorphic nature of El-Gamal

encryption.

5.4.1 Completeness

There are four steps in this zero knowledge proof that need to be shown to be

complete:

• The proofs published by the bidders that every item in the alternate bid vec-

tor is an encryption of a 1 or a Z were shown to be complete in Section 3.2.3.

• Computing the product of the items is complete due to the homomorphic

nature of El-Gamal encryption. It is simply a multiplication of items in the

bid vector.

5.4. ZERO KNOWLEDGE PROOF OF A VALID BID VECTOR 59

• When computing and publishing shares of a threshold decryption the pub-

lished proofs are proofs of the equality of discrete logarithms which were

shown to be complete in Section 3.2.2.

• Converting the alternate vector into standard form is complete due to the

homomorphic nature of El-Gamal encryption.

5.4.2 Soundness

The soundness of the zero knowledge proofs used is examined in four steps:

• The proofs published by the bidders that every item in the alternate bid

vector is an encryption of a 1 or a Z are shown in Section 3.2.3 to have a

soundness of 1/q.

• Computing the product of the items in the alternate form of the bid vector

is completely sound as any party can repeat the multiplication of the items

and confirm this has been done correctly. Unless the verifier has an error in

their computation, they will always catch a cheating auctioneer in this step.

• When computing and publishing shares of a threshold decryption the proofs

published are proofs of equality of discrete logarithms which were shown

in Section 3.2.2 to have a soundness of 1/q.

• Converting the alternate vector into standard form is completely sound as

any party can repeat the multiplication of the items and confirm this has

been done correctly.

If an invalid bid vector has been proven to be valid then one of two things

must have happened. Either the bidder publishing the vector has managed to

publish a proof that an item is an encryption of a 1 or a Z when it is not, or the

decryption of the shares published by the auctioneers is shown to decrypt to Z

when it does not.

In the first instance a bidder could prove an item decrypts to 1 or Z when it

does not with probability 1/q. Even if the bidder managed to achieve this for one

item in the bid vector, when the auctioneers decrypt the product of the items it

will no longer equal Z so the bidder would have to change two items in the bid

vector and set them so that the product of the items in the bid vector is still Z. The

60 CHAPTER 5. GROUP VERIFICATION PROTOCOL

chance of a bidder being able to prove that two items in the bid vector decrypt to

1 or Z when they do not is 1/2q.

In the second instance, the chance of an auctioneer in the group being able to

publish an incorrect share that would cause a problem in the decryption while

still proving it is correct is again 1/q. If more than one auctioneer was malicious,

all the malicious auctioneers would have to publish proofs that their shares are

correct when they are not, again with a chance of 1/q for each share. This is true

even if more than the threshold of auctioneers is malicious.

5.4.3 Zero Knowledge

To check the zero knowledge property of this proof, a simulator S can be con-

structed that completes the following steps on common input p, q, g, y,

AlternateBid = ((A1, B1), ..., (An, Bn)), the share values z1, ..., zn, the public keys

y1, ..., yn, the set of participants I , and Z in the random oracle model:

• S completes the steps of the simulator in Section 3.2.3 for every item (Ai, Bi)

in the alternate bid vector AlternateBid with inputs p, q, g, y, Ai, Bi, and Z.

• S computes the product Prod of all the items in AlternateBid.

• S completes the steps of the simulator in Section 5.3.4 with input p, q, g,

(Ai, Bi), I , z1, ..., zn, and y1, ..., yn.

• S computes the standard bid vector Bid from AlternateBid.

• S outputs the proof transcripts from the previous steps, Prod, and Bid.

5.5 Zero Knowledge Proof of the Maximum Bid

To calculate the maximum bid for a set of goods, the product of all the bid vec-

tors is taken. This product vector is then decrypted from right to left to find the

first value in the product vector that does not decrypt to 1. This reveals the max-

imum bid while keeping private the values of the lower bids. To prove in zero

knowledge to the group of auctioneers conducting the auction that this is done

correctly, all members of the group will need to compute the product vector on

their own. They can then decrypt the items from right to left and publish zero

knowledge proofs that this decryption has been done correctly using verifiable

5.6. ZERO KNOWLEDGE PROOF OF SHIFT AND RANDOMISE 61

threshold El-Gamal decryption in Section 5.3.1. Every member of the group can

then each independently verify the shares they have received from the other auc-

tioneers and decrypt the values in the bid vector with a high certainty that this

decryption is the correct plain-text.

As this proof is composed of only verifiable decryptions of items, the com-

pleteness, soundness, and zero knowledge properties are the same as for verifi-

able decryption.

5.6 Zero Knowledge Proof of Shift and Randomise

Once the maximum bid m on a link in the path has been calculated, the bid vec-

tors in the next link are shifted right by m places which are taken by encrypted Z

values. The shifted bid vector is then randomised and published. The auctioneer

that calculates the shifted and randomised bid vector of length l can prove this

has been done correctly in zero knowledge by conducting the shift and randomise

using the following steps:

• The auctioneer calculates m encryptions of Z to shift the bid vector and

publishes zero knowledge proofs that these m items are encryptions of Z.

The auctioneer publishes zero knowledge proofs of equality of logarithms

by publishing a proof that they know the value r such that A = gr and

B/Z = yr.

• The auctioneer then shifts the new bid vector right by m places and adds

the m encryptions of Z that they have proved in zero knowledge decrypt to

Z and publishes this shifted bid vector to the other auctioneers in the group.

• Auctioneer calculates l encryptions of 1 and publishes zero knowledge proofs

that these l items are encryptions of 1. The auctioneer publishes l zero

knowledge proofs of equality of logarithms by publishing proofs that for

every item l they know the value r such that A = gr and B = yr.

• The auctioneer then publishes these l encryptions of 1 to the other auction-

eers.

• The auctioneer can then calculate and publish the shifted and randomised

bid vector by multiplying the items in the shifted vector by the l encryptions

of 1.

62 CHAPTER 5. GROUP VERIFICATION PROTOCOL

As this proof is composed of proof of equality of discrete logarithms the com-

pleteness, soundness, and zero knowledge properties are the same as for the zero

knowledge proof of equality of discrete logarithms shown in Appendix A.2.

5.7 Example Verifiable Combinatorial Auction

Figure 5.1 illustrates a simple threshold combinatorial auction for two goods with

two bidders. There is a group of auctioneers responsible for calculating the auc-

tion result at each node other than the start node of the graph. In this example, a

(2, 3) threshold scheme is being used. The correct winner of the auction is bidder

one with a price of 5 for goods one and two together.

Node 3

Node 2

Node 1
Link 3: Goods 1 AND 2

Link 1: G
ood 1

Link 2: Good 2

Bidder 1 Bids 5
Bidder 2 Bids 2

Bidder 1
 Bids 1

Bidder 2
 Bids 1

Bidder 1 Bids 1

Bidder 2 Bids 2

A2:
Auctioneer

Group
For Node 2

A3:
Auctioneer

Group
For Node 3

Figure 5.1: Simple Threshold Combinatorial Auction

To perform a group verification that the auction has correctly taken place the

following actions are executed in conjunction with the actions executed to calcu-

late the winner of the auction. If a problem is reported to a public bulletin board

by at least t auctioneers from the (t, n) threshold scheme, then the auction has

failed verification.

1. Bids are encrypted and published in alternate form for every link using the

public key of the link. Bidders also publish zero knowledge proofs that they

are valid. Auctioneers for the link check alternate form bid vectors before

5.7. EXAMPLE VERIFIABLE COMBINATORIAL AUCTION 63

converting them to the standard bid vector form. The process for publishing

and verifying the bid for bidder one on link three is shown in figure 5.2 and

is divided in to five steps:

A3:
Auctioneer

Group
For Node 3

EA3(1),EA3(1),EA3(1),EA3(Z),EA3(1),EA3(1)

L = 6 zero knowledge proofs that the items
in the bid vector are encryptions of 1 or Z

Each auctioneer verifies the L proofs that
the items encrypt 1 or Z.

Each auctioneer calculates the product of
all the bid vector items

EA3(1)xEA3(1)xEA3(1)xEA3(Z)xEA3(1)xEA3(1)
=EA3(Z)

Auctioneers verifiably decrypt this product,
publishing zero knowledge proofs of correct

decryption.

Finally, the bid can be converted in to
standard form and published on the link

EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(1),EA3(1)

Bidder

Figure 5.2: Bid Verification

• The bidder encrypts the bid vector for the value it wants to bid for this

link or combination of goods with the public key of the group of auc-

tioneers responsible for the link. In our example, group A2 is respon-

sible for link two, and group A3 is responsible for links one and three.

When encrypting every item in the alternate bid vector the bidder also

constructs a zero knowledge proof that the item it is encrypting de-

crypts to a 1 or a Z. This encrypted alternate bid vector as well as the

zero knowledge proofs are sent to the auctioneer group.

• The auctioneers in the group verify the zero knowledge proofs that

each item is a 1 or a Z sent by the bidder with the bid.

• Each auctioneer computes the product of all the items in the alternate

bid vector. This can be done correctly by any auctioneer due to the

homomorphic nature of the encryption.

• The auctioneers then each do a verifiable decryption of the product of

the items of the bid vector. If the decrypted product does not decrypt

to Z then this is not a valid bid vector.

64 CHAPTER 5. GROUP VERIFICATION PROTOCOL

• If this is a valid bid vector, it can be converted in to standard form

by an auctioneer and published on the link. Any other auctioneer can

check this has been done correctly due to the homomorphic nature of

the encryption.

2. Once encrypted bids have been submitted and verified, the auction graph

appears as in Figure 5.3.

Node 3

Node 2

Node 1
Link 3: Goods 1 AND 2

Link 1: G
ood 1

Link 2: Good 2

EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(1)
EA3(Z),EA3(Z),EA3(1),EA3(1),EA3(1),EA3(1)

EA2(Z
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
)

EA2(Z
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
)

A2:
Auctioneer

Group
For Node 2

A3:
Auctioneer

Group
For Node 3

E
A3 (Z),E

A3 (1),E
A3(1),E

A3 (1),E
A3 (1),E

A3 (1)

E
A3 (Z),E

A3 (Z),E
A3(1),E

A3 (1),E
A3 (1),E

A3(1)

Figure 5.3: Simple Threshold Combinatorial Auction with Encrypted Bids

3. The auctioneers in group A2 find the optimal value for their link and then

shift and randomise the bids on link 2 by this amount. Zero knowledge

proofs are published to the group to prove this has been done correctly. The

actions taken by the auctioneers are shown in Figure 5.4 and can be divided

in to three steps:

• The auctioneers first compute the product of all the bid vectors. This

can be computed by any party due to the homomorphic nature of the

encryption by multiplying the individual items in the bid vector. The

first items in both bid vectors are multiplied together and so on until

the last items.

• From right to left, the items in the product bid vector are decrypted to

find the first item that does not decrypt to 1. Auctioneers can check

5.7. EXAMPLE VERIFIABLE COMBINATORIAL AUCTION 65

Node 2

Node 1

Link 1
: G

ood 1

EA2(Z
)xE

A2(1
)xE

A2(1
)xE

A2(1
)xE

A2(1
)

EA2(Z
)xE

A2(1
)xE

A2(1
)xE

A2(1
)xE

A2(1
)

A2:
Auctioneer

Group
For Node 2

EA2(Z
2)xEA2(1)xEA2(1)xEA2(1)xEA2(1)

Node 3

Node 2

A3:
Auctioneer

Group
For Node 3

EA3(Z)xEA3(1)xEA3(1)xEA3(1)xEA3(1)

EA3(Z)xEA3(Z)xEA3(1)xEA3(1)xEA3(1)

EA3(Z)xEA3(Z)xEA3(1)xEA3(1)xEA3(1)

EA3(Z)xEA3(Z)xEA3(Z)xEA3(1)xEA3(1)
E

A3 (Z)xE
A3 (Z)xE

A3 (1)xE
A3 (1)xE

A3 (1)

E
A3 (Z)xE

A3 (Z)xE
A3 (Z)xE

A3 (1)xE
A3 (1)

1

2

3

Figure 5.4: Shift and Randomise by Group A2

the decryption is done correctly by doing a verifiable decryption of the

items.

• One of the auctioneers then shifts and randomises the bid vector for

the next link. In this example, for each of the bid vectors for link 2, the

auctioneer will encrypt a Z value with the public key for group A3 and

publish a zero knowledge proof to the other auctioneers that the item

is an encryption of Z. The auctioneer will then shift the bid vectors

for link 2 right by one item and add the new encryption of Z to the

left hand side of the vector. Finally, the auctioneer will randomise the

shifted bid vector by creating l = 5 encryptions of 1 using the public

key of group A3, publish zero knowledge proofs to the other auction-

eers that these items are an encryption of 1, and multiply the shifted

bid vectors by the encrypted 1 values to randomise them and hide the

number of items in the bid vector that have been shifted.

4. The auctioneers in group A3 find the optimal value for the auction. The

66 CHAPTER 5. GROUP VERIFICATION PROTOCOL

product of all the bid vectors for link 2 and link 3 are multiplied together

to generate a product vector. The auctioneers for the group A3 will then

decrypt the items in the product vector from right to left to find the first

item that does not decrypt to 1. This value will be the optimal value of this

auction, in this auction the optimal value is 4. The decryption is done using

verifiable decryption so the other auctioneers of the group can check the

share of the decryption published by the other auctioneers.

5. The auctioneers in group A3 find the optimal bid on the optimal path. To

find the optimal bid, the auctioneers will decrypt the individual bid vectors

at the index of the optimal value one by one to find the first bid vector that

decrypts to Z. In this example, the auctioneers would decrypt the shift and

randomised bids for link 2 as well as the bid vectors for link 3 at the index

of the optimal value 4. Only the bid vector from bidder one on link 3 would

decrypt to a Z at index 4 showing that the optimal bid is bidder one for

goods 1 and 2. When the decryption is being done, zero knowledge proofs

of correct decryption can be published to the group A3 to provide confi-

dence that the decryption has been done correctly and a correct optimal bid

found.

6. The result of the auction is publicly published and the winners notified.

5.8 Summary

This chapter has shown the group verification protocol for the homomorphic auc-

tion protocol. The threat model and security goals for the group verification pro-

tocol were detailed with the protocol needing to be complete, sound, and zero

knowledge. Details were presented on verifiable threshold El-Gamal decryption,

the individual actions taken in the homomorphic auction protocol, and a simple

example was given. Using the group verification protocol, bidders can have con-

fidence in the auction result as long as less than the threshold t of auctioneers

for each group are malicious. The group verification protocol also increases the

robustness of the protocol as the auctioneers can find invalid bid vectors before

the protocol starts and remove them as well as being able to verify that the de-

cryption shares published by other auctioneers have been performed correctly to

prevent the subvertion of the decryption process.

Chapter 6

Public Verification Protocol

The second iteration of our design for a verification protocol for the homomor-

phic auction protocol is a public verification protocol. Public verification allows

any third party to verify the auction even if they did not participate in the auction

process. By allowing any party to verify the auction and not just the auctioneers

taking part, the verification process is not affected by the number of malicious

auctioneers. Even if more than the threshold value t auctioneers are malicious

there is still a low chance they could incorrectly execute the auction protocol and

publish zero knowledge proofs that are accepted. This is in contrast to the previ-

ous group verification protocol which depended on less than the threshold value

t of auctioneers being malicious for the verification protocol to work.

The threat model for our verification protocol is restated before presenting the

zero knowledge proofs that the bids are valid followed by zero knowledge proofs

of the maximum bid and the shift and randomise action. Finally, these proofs are

put together and an example is presented of a public verification of a simple two

good combinatorial auction.

6.1 Threat Model

It is assumed that the provers and verifiers in our verification protocol are poly-

nomially bounded active adversaries that may try and prove incorrect assertions.

For example, an active adversarial prover may try and convince an honest verifier

that they have correctly computed an incorrect auction result. It is assumed that

any number of polynomially-bounded active adversaries may be colluding to-

gether to disrupt the verification protocol regardless of the threshold value. This

67

68 CHAPTER 6. PUBLIC VERIFICATION PROTOCOL

is in contrast to the group verification protocol where it is assumed that less than

the threshold value t of auctioneers are malicious. Different parties may collude,

so a bidder and an auctioneer may collude together. It is assumed that any party

can get a copy of any public message sent between the auction participants and

use it to try and break the verification protocol similarly to the group verification

protocol in Section 5.1.

6.2 Security Goals

The security goals for the verification protocol are now reviewed in the context

of a public verification protocol for the homomorphic auction protocol.

1. Any party regardless of whether they took part in the auction should be

able to verify the actions of the participants in the auction protocol giving

a high confidence that they have correctly executed the steps in the auction

protocol.

2. Verification of the auction protocol should reveal no extra information other

than what is already revealed by the auction protocol.

3. It should be computationally infeasible for a bidder to submit an invalid bid

that passes the verification checks.

4. It should be computationally infeasible for an auctioneer to not count all the

bids and pass the verification checks. For the homomorphic auction proto-

col, it should be computationally infeasible for an auctioneer to not count a

bid when calculating the maximum bid for a node and pass verification.

5. It should be computationally infeasible for an auctioneer to announce an

incorrect winning bidder(s) or price(s) and pass the verification checks. For

the homomorphic auction protocol, it should be computationally infeasible

for an auctioneer to do an incorrect shift and randomise, or incorrectly com-

pute the optimal path once the optimal value is found and pass verification.

6.3 Zero Knowledge Proof of a Valid Bid Vector

The same zero knowledge proofs and techniques that have been used to prove

a bid is valid in the group verification protocol in section 5.4 can be used in the

6.4. ZERO KNOWLEDGE PROOF OF THE MAXIMUM BID 69

public verification protocol.

Bids are publicly published in the alternate version along with zero knowl-

edge proofs that every item in the bid vector decrypts to a 1 or a Z. The product

of all the items in the alternate bid vector is calculated and the auctioneers pub-

licly publish their shares of the decryption of this product along with zero knowl-

edge proofs that their share is correct. Any party can then check the decryption

equals Z using LaGrange interpolation. The alternate bid vector can then be con-

verted in to a standard bid vector, an action that any party can verify due to the

homomorphic nature of El-Gamal, and publicly published.

6.4 Zero Knowledge Proof of the Maximum Bid

To calculate the maximum bid for a node, the auctioneers compute the item wise

product of all the bid vectors on the incoming edges. This can be done due to the

homomorphic nature of the encryption. The auctioneers then decrypt the items

in the product vector from right to left until the first item that does not decrypt

to 1 using the verifiable decryption from Section 5.3.1 where the zero knowledge

proofs that the decryption is done correctly are only published to other auction-

eers in the group. The first item that does not decrypt to 1 is the maximum bid

value m for the node. Once the maximum value m has been found, the auction-

eers decrypt all the individual bid vectors at index m to find the maximum bid

vector Bidmax using the verifiable decryption from Section 5.3.1 where the zero

knowledge proofs that the decryption is done correctly are again only published

to other auctioneers in the group.

To publicly prove in zero knowledge that a bid vector Bidmax is the maximum

bid from the set of bid vectors, one of the auctioneers from the group uses a pub-

licly verifiable shuffle of encrypted values from section 3.2.5. The bid vectors are

all shuffled using the same permutation that is known to the auctioneer that does

the shuffle but remains unknown to everyone else. This permutation is chosen

so that the first item in the shuffled vector is the mth item from the original bid

vector. The auctioneers for the group then publicly publish their shares of the

decryption of the first items in the shuffled bid vectors along with zero knowl-

edge proofs that these shares are correct from Section 5.3.1. Any party can then

compute the Lagrange interpolation on the shares to decrypt the items. The first

item in the maximum bid vector Bidmax should decrypt to Z while the first items

70 CHAPTER 6. PUBLIC VERIFICATION PROTOCOL

for all the other bid vectors decrypt to 1. As all the other bids are shown to de-

crypt to 1 and it can be verified that the shuffle of the encrypted values was done

correctly this verifies that all the bids have been counted in the auction and that

the winning bid is the maximum bid. Because of the shuffle applied to the bid

vectors, this verification process reveals no information about the bids other than

what can already be deduced from the assertion that Bidmax is the maximum bid.

The shuffle applied to the bid vectors hides the value of the maximum bid.

If there is a tie for the maximum bid and the shuffled first item of more than

one bid decrypts to Z, it can be proved that it is one of the set of maximum bids

by performing the following steps for every bid vector Othermax with a shuffled

first item that decrypts to Z:

• Calculate the product of all the items in Othermax. For example, if the vector

is E(Z), E(Z), E(1) the product will be E(Z2).

• The auctioneers for the group now divide the product of all the items in

Bidmax by the product computed in the previous step.

• The auctioneers then publicly publish their shares of the decryption of the

result from the division in the previous step together with zero knowledge

proofs that these shares are correct from Section 5.3.1. Any party can then

compute the Lagrange interpolation on the shares to decrypt the items.

• If the decryption of the division is 1 then the vector Othermax is equal to the

vector Bidmax.

These steps will only need to be performed in the case that there is a tie-break

and more than one maximum bid.

6.4.1 An Example

Suppose there are three bids:

• Bid 1: E(Z), E(Z), E(Z), E(1).

• Bid 2: E(Z), E(Z), E(1), E(1).

• Bid 3: E(1), E(1), E(1), E(1).

6.4. ZERO KNOWLEDGE PROOF OF THE MAXIMUM BID 71

Bid 1 is the maximum bid. To prove this one of auctioneers applies a permu-

tation to the bids say π = (3, 4, 1, 2). After this permutation, the three bids will be

as follows:

• Bid 1: E(Z), E(1), E(Z), E(Z).

• Bid 2: E(1), E(1), E(Z), E(Z).

• Bid 3: E(1), E(1), E(1), E(1).

The auctioneer that performed the shuffle then publishes a zero knowledge

proof that the permutation was correctly applied and that the same permutation

was applied to all the bid vectors. The auctioneers then publish shares of the

decryption of the first items in the shuffled vectors along with proofs that these

shares are correct. Using the shares, a verifier can check that the first item in the

shuffled Bid 1 vector decrypts to Z, while the first item in the other bid vectors

decrypt to 1. As the vectors have been shuffled this reveals no other information

other than the maximum bid to any verifiers.

By using the zero knowledge proof of the maximum bid for a node, both the

auctioneer and any verifying party will learn the index of the bidder that bid the

maximum amount on this link. This is extra information that, unless this link is

on the optimal path, would normally remain unknown. To prevent this infor-

mation leakage, the auction protocol can be run in an anonymous fashion where

bidders use pseudo names to submit bids and the true identity of the bidders

remain secret unless they try and repudiate on their bid. Various techniques for

providing bidder anonymity were briefly described in Section 2.6.

6.4.2 Completeness

The completeness of this proof can be divided in to two sections. The complete-

ness of the zero knowledge proof of the shuffle and the completeness of the ver-

ifiable threshold decryption applied to the first items in the shuffled bid vectors.

The completeness of the shuffle is shown in Section 3.2.5 and the completeness of

the threshold decryption of items is shown in Section 5.3.1.

6.4.3 Soundness

Again, the soundness of this proof can be divided in to the soundness of the

shuffle and the soundness of the decryption. From Sections 3.2.5 and 5.3.1 the

72 CHAPTER 6. PUBLIC VERIFICATION PROTOCOL

soundness of this proof is shown to be 1/q.

6.4.4 Zero Knowledge

To check the zero knowledge property of this proof, a simulator S can be con-

structed that completes the following steps on common input p, q, g, y, the bid

vectors from the incoming links, the shuffled bid vectors, the share values z1, ..., zn

for each decryption of the first items in the shuffled bid vectors, the public keys

y1, ..., yn, and the set of participants I used in the decryption in the random oracle

model:

• S outputs the transcript of the simulator of the verifiable shuffle from [17]

with the modifications from Section A.5.3.

• S outputs the transcript for the verifiable threshold El-Gamal shown in Sec-

tion 5.3.4 on input p, q, g, the first item in the shuffled bid vector (A,B), I ,

z1, ..., zn, and y1, ..., yn for every shuffled bid vector.

This simulator does not work in the case that Bidmax is one of a set of max-

imum bids. A simulator for this situation would need some extra steps where

the simulator would calculate the product of the other maximum bid vectors

Othermax and then would divide these by the product of Bidmax. The simula-

tor would then need to output a transcript that the shares published to do this

decryption were correct again using the steps shown in Section 5.3.4.

6.5 Zero Knowledge Proof of Shift and Randomise

Once the auctioneers for a node have published a zero knowledge proof of the

maximum bid Max with value m, they will have to shift and randomise the bids

on the outgoing links. To shift and randomise a bid vector Old of length l, one

of the auctioneers will need to make m encryptions of Z, shift the bid vector Old

right by m places inserting the new encryptions of Z and randomise the vector

by multiplying every item in the bid vector by different encryptions of the value

1 to create New.

The public zero knowledge proof that this has been done correctly is divided

in to two parts. The first part of the proof involves the auctioneers proving that

the new shifted bid vector New is a valid bid vector. In the second part of the

6.5. ZERO KNOWLEDGE PROOF OF SHIFT AND RANDOMISE 73

proof, the auctioneers publish proofs that New has the same value as Old shifted

right by the amount of Max.

Before proving the new shifted bid vector New is valid, it is converted from

the standard form to the alternate form presented in Section 5.4. The alternate

form bid vector Alt is formed item wise by computing from right to left:

Alti =

{

Newi if i = l

Newi/Newi+1 otherwise

So if, for example, New = E(Z), E(Z), E(Z), E(1), E(1), E(1) then the conver-

sion will produce Alt = E(1), E(1), E(Z), E(1), E(1), E(1) which is the bid vector

New in the alternate format. Anyone can verify this step has been done correctly

as both the bid vector New and the alternate form Alt are publicly published and

the computation can be checked due to the homomorphic nature of the encryp-

tion.

To publish a zero knowledge proof that the bid vector Alt is valid one of the

auctioneers conducts a random verifiable shuffle of the items in Alt using the

’publicly Verifiable Shuffle of Encrypted Values’ from section 3.2.5. After shuf-

fling the values in Alt, the auctioneers publish their shares of the decryption of

every item in the shuffled alternate form bid vector along with zero knowledge

proofs that the shares are valid using the techniques from Section 5.3.1. A verifier

can then verify the shares and use Lagrange interpolation to decrypt the items in

the shuffled alternate bid vector. Every item in the shuffled alternate bid vector

should decrypt to 1 except for the one Z. This decryption of the items in the shuf-

fled vectors reveals no information about the values of bids as the shuffle hides

the position of the Z value in the alternate bid vector.

Finally, one of the auctioneers publishes the product of all the items in the vec-

tor New as ProductNew. They also publish the product of the items in the vector

Old multiplied by the product of all the items in the vector Max as ProductOldMax.

Any party can verify that these products have been correctly computed due to the

homomorphic nature of the encryption. One of the auctioneers then computes

result = ProductNew/ProductOldMax. The auctioneers then publish their shares of

the decryption of result along with zero knowledge proofs that these shares have

been correctly computed. any party can then verify the shares published by the

auctioneers and that result decrypts to 1 using Lagrange interpolation. If result

decrypts to 1, then the number of encrypted Z values in the vector New is equal

to the number of encrypted Z values in the vectors Old and Max. If all the bid

74 CHAPTER 6. PUBLIC VERIFICATION PROTOCOL

vectors are valid this proves that the resulting vector New is the result of a shift

and randomise on Old by the value of Max.

6.5.1 Completeness

The completeness of this proof is examined in two sections. The first section

addresses the completeness of the proof that New is a valid bid vector, then the

completeness of the proof that New is equal to Old shifted right by the value of

Max is addressed.

The first step of the proof that New is a valid bid vector is complete as it is

multiplication of encrypted values. The completeness of the verifiable shuffle is

shown in Section 3.2.5. The decryption of all the shuffled items in the shuffled

vector is also complete as shown in Section 5.3.1.

The completeness of the calculation of the products of New and Max and Old

are complete as it is multiplication of encrypted values. The calculation of

result = ProductNew/ProductOldMax

is also complete as it is again multiplication of encrypted values. The complete-

ness of proving that result decrypts to 1 follows from the completeness of the

verifiable decryption shown in Section 5.3.1.

6.5.2 Soundness

The soundness of the proof is examined in two steps starting with the proof that

the bid vector New of length l is a valid bid vector and then looking at the proof

that result decrypts to 1.

Suppose a cheating prover wants to construct a bid vector that will be ac-

cepted as a valid bid vector when it is not valid. Given that every item in the

alternate bid vector is decrypted to check if it is a 1 or a Z where only one Z

can be present for it to be valid, one approach for the cheating prover is to try

and construct New in such a way that after it is converted in to alternate form

every item still decrypts to 1 except for one Z while not being a valid bid vector.

As the item at index l in the alternate vector is just the item at index l from the

vector New, then the lth item of New, Newl, must be E(Z) or E(1). The item at

index l − 1 in the alternate bid vector is Altl−1 = Newl−1/Newl. If Newl = E(Z)

then Altl−1 must be equal to E(1) as only one Z is allowed in the alternate bid

6.5. ZERO KNOWLEDGE PROOF OF SHIFT AND RANDOMISE 75

vector, but if Altl−1 = E(1) and Newl = E(Z) then Newl−1 = Newl ∗ Altl−1 =

E(Z) ∗ E(1) = E(Z) so Newl−1 must be E(Z) for all subsequent items in the bid

vector. If Newl = E(1) then Altl−1 can be equal to E(Z) or E(1) which means

that Newl−1 can be equal to E(Z) or E(1). This argument can be continued for all

items in the bid vector New to show that New must be a valid bid vector if the

decryption is done correctly.

If a cheating prover wants to do an incorrect decryption of a shuffled item

to show it decrypts to a 1 or a Z when it does not, or to change the items when

doing the shuffle so that the items in Alt and the shuffled Alt are different then

they have to cheat the proof of equality of logarithms or the verifiable shuffle

of encrypted items. The chance of doing this is 1/q as shown in Sections 3.2.5

and 5.3.1 respectively.

The calculation of the products of New and Max and Old are sound as they

are multiplication of encrypted values. The calculation of

result = ProductNew/ProductOldMax

is also sound as again it is a multiplication of encrypted values. If a cheating

prover wants to show that result decrypts to 1 when D(result) 6= 1, they will

have to publish an incorrect share that still passes the verifiable decryption proof.

The chance of doing this is 1/q as shown in Section 5.3.1.

6.5.3 Zero Knowledge

Given the shifted and randomised bid vector New, the alternate form bid vector

Alt, the shuffled alternate bid vector ShuffledAlt, p, q, g, the public keys y1, ..., yn,

the shares of the decryption for the items in ShuffledAlt, and the shares of the

decryption for result, z1,result, ..., zn,result the zero knowledge property of this proof

can be checked by constructing a simulator S that completes the following steps

in the random oracle model:

• S outputs the transcript of the simulator for the verifiable shuffle from [17]

with the modifications from Section A.5.3 on the input of Alt and ShuffledAlt.

• For each item i in ShuffledAlt, S outputs the transcript of the simulator

from the verifiable threshold El-Gamal shown in Section 5.3.4 on input p, q,

g, ShuffledAlt,i, I , z1,i, ..., zn,i, and y1, ..., yn.

76 CHAPTER 6. PUBLIC VERIFICATION PROTOCOL

• S then outputs the transcript of the simulator from the verifiable threshold

El-Gamal shown in Section 5.3.4 on input p, q, g, result, I , z1,result, ..., zn,result,

and y1, ..., yn.

6.6 Example Verifiable Combinatorial Auction

Figure 6.1 illustrates a simple combinatorial auction for two goods with two bid-

ders as used in Section 5.7. There is a group of auctioneers responsible for calcu-

lating the auction result at each node other than the start node of the graph. In

this example, a (2, 3) threshold scheme is being used. The correct winner of the

auction is bidder one with a price of 5 for goods one and two together.

Node 3

Node 2

Node 1
Link 3: Goods 1 AND 2

Link 1: G
ood 1

Link 2: Good 2

Bidder 1 Bids 5
Bidder 2 Bids 2

Bidder 1
 Bids 1

Bidder 2
 Bids 1

Bidder 1 Bids 1

Bidder 2 Bids 2

A2:
Auctioneer

Group
For Node 2

A3:
Auctioneer

Group
For Node 3

Figure 6.1: Simple Threshold Combinatorial Auction

To perform a public verification that the auction has correctly taken place the

following actions are executed in conjunction with the actions executed to calcu-

late the winner of the auction. Any party can verify the proofs that are published

to a public bulletin board.

1. Bids are encrypted and published in alternate form for every link using the

public key of the node responsible for the link. Bidders publicly publish

zero knowledge proofs that every item in the alternate bid vector decrypts

to a 1 or a Z. The auctioneers for the node compute the product of the

6.6. EXAMPLE VERIFIABLE COMBINATORIAL AUCTION 77

items in the alternate bid vectors and publish zero knowledge proofs that

the products decrypt to Z before converting them to the standard bid vector

form.

Node 3

Node 2

Node 1
Link 3: Goods 1 AND 2

Link 1: G
ood 1

Link 2: Good 2

EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(1)
EA3(Z),EA3(Z),EA3(1),EA3(1),EA3(1),EA3(1)

EA2(Z
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
)

EA2(Z
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
)

A2:
Auctioneer

Group
For Node 2

A3:
Auctioneer

Group
For Node 3

E
A3 (Z),E

A3 (1),E
A3(1),E

A3 (1),E
A3 (1),E

A3 (1)

E
A3 (Z),E

A3 (Z),E
A3(1),E

A3 (1),E
A3 (1),E

A3(1)

Figure 6.2: Simple Threshold Combinatorial Auction with Encrypted Bids

2. Figure 6.2 shows the auction graph after the encrypted bids have been sub-

mitted and converted in to standard form.

3. The auctioneers in group A2 then compute the maximum bid for node 2

and shift and randomises the bids on the outgoing link 2 by the maximum

bid amount and publishes zero knowledge proofs that this has been done

correctly for every bid that is shifted and randomised.

4. Figure 6.3 shows the auction graph after the bids for link 2 have been shifted

and randomised.

5. The auctioneers in group A3 then compute the maximum bid m for node 3

which is the optimal path and publish zero knowledge proofs that this was

done correctly.

6. The auctioneers in group A3 decrypt the bids on the incoming links at posi-

tion m and publish proofs that this was done correctly to the bulletin board

using the technique from Section 5.3.1.

78 CHAPTER 6. PUBLIC VERIFICATION PROTOCOL

Node 3

Node 2

Node 1
Link 3: Goods 1 AND 2

Link 1: G
ood 1

Link 2: Good 2

EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(Z),EA3(1)
EA3(Z),EA3(Z),EA3(1),EA3(1),EA3(1),EA3(1)

EA2(Z
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
)

EA2(Z
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
),E

A2(1
)

A2:
Auctioneer

Group
For Node 2

A3:
Auctioneer

Group
For Node 3

E
A3 (Z),E

A3 (Z),E
A3 (1),E

A3 (1),E
A3 (1),E

A3 (1)

E
A3 (Z),E

A3 (Z),E
A3 (Z),E

A3 (1),E
A3 (1),E

A3 (1)

Figure 6.3: Simple Threshold Combinatorial Auction after the Shift and Ran-

domise

6.7 Summary

This chapter presented a public verification protocol for the homomorphic auc-

tion protocol. We have restated the threat model and security goals for the public

verification protocol, which are similar to those in the group verification proto-

col. While the group verification protocol relies on less than the threshold t of

auctioneers for each group being malicious, the public verification protocol can

detect malicious auctioneers even when all the auctioneers in a group are mali-

cious. The public verification presented in this chapter will be computationally

expensive. The proofs of the maximum bid and shift and randomise require a

verifiable shuffle to be performed on each vector where each shuffle requires 18n

modular exponentiations where n is the length of the bid vector. The public ver-

ification of the auction provides any third party with confidence in the auction

result.

Chapter 7

Security Analysis

Throughout this thesis arguments have been made on the completeness, sound-

ness, and zero knowledge of the zero knowledge proofs being used in the pub-

lic and group verification protocols. These arguments apply when the proofs

are used individually but what happens in the auction protocol where different

types of proofs are combined and computed multiple times. For example, an auc-

tioneer in the group verification protocol will have to prove for every decryption

required in the protocol that their share is correctly computed. Will the combina-

tion of all these proofs enable an attacker to extract information about the secret

key of the auctioneer?

The original definition of zero knowledge and the simulator presented in Sec-

tion 3.1 is not zero knowledge under sequential composition. A stronger notion

of the simulator for zero knowledge called black-box simulation is zero knowl-

edge under sequential composition. A black-box simulator requires the existence

of a universal simulator that given any verifier can simulate the interaction be-

tween the prover and the verifier [20]. As our proofs are non-interactive zero

knowledge, the transcript involves a message sent from the prover to the veri-

fier containing the proof transcript followed by a one bit output from the verifier

specifying whether the proof was accepted or not. The simulators constructed

throughout this thesis are black-box simulators as the simulator constructs the

proof transcript from the prover to the verifier and can then run the verifier on

the transcript to see if it accepts the proof transcript or not. This is possible be-

cause the verifier is entirely deterministic and has no random value, otherwise

the simulators would need adapting to be black-box simulators. It is worth not-

ing that all known zero knowledge protocols are in fact black-box simulator zero

79

80 CHAPTER 7. SECURITY ANALYSIS

knowledge [21].

7.1 Passive Adversaries

A passive adversarial prover has few options, as by definition they cannot devi-

ate from the protocol. A passive adversarial auctioneer for a particular node in

the auction graph will learn the maximum bid value for that node, but this is a

limitation of the homomorphic auction protocol and not linked to the verification

scheme.

A verifier that is honest but curious may record all the transcripts of the proofs

it verifies and use this information to try and extract extra information. Since

the zero knowledge proofs presented in this thesis are black-box simulator zero

knowledge they are closed under sequential composition. As these proofs are

closed under composition, an honest but curious verifier could gain no extra in-

formation by recording the transcripts of all the proofs that they have taken part

in.

7.2 Active Adversaries

A prover that is an active adversary may try and convince a verifier of the validity

of a false assertion. To do this the prover must be able to construct a proof that

is not sound. The soundness of the zero knowledge proofs presented has been

examined and the chance of a prover being able to prove an invalid statement is

1/q where q is a parameter of the El-Gamal encryption used. The smallest key

size used is 128 bits long and so |q| = 128. This makes the probability of the

prover presenting a proof of an invalid assertion 1/2128. Given that the number of

possible keys for the El-Gamal encryption is 2128 the possibility that an auctioneer

could break the encryption used on the bids and decrypt all the bids on the same

link is the same as the probability of an auctioneer being able to present a proof

of an invalid assertion that is accepted by a verifier.

When conducting zero knowledge proofs, a verifier that is an active adversary

may try and formulate challenges for the prover in such a way that it can learn

more than the validity of the assertion being proved. If a verifier was to succeed

in learning more information then the proof would not be zero knowledge.

Zero knowledge proofs such as the proof of knowledge of a discrete logarithm

7.3. COLLUDING PARTIES 81

and the proof of equality of discrete logarithms have the property of witness ex-

traction. In a proof of knowledge of a discrete logarithm the prover knows a

secret value x such that y = gx where y and g are publicly known. The proof

transcript, or the data transferred, consists of three values; a the commitment, c

the challenge, and r the response. If the same commitment value is used for two

proofs, but a different challenge and response are issued a witness to the knowl-

edge being proved can be extracted. Given two proof transcripts with values a,

c1, r1 and a, c2, r2, and it is known that gr1 = avc1 and gr2 = avc2 dividing one by

the other gives:

gr1/gr2 = avc1/avc1

gr1−r2 = vc1−c2

loggv = r1 − r2/c1 − c2 = x

Clearly, this should be avoided where a verifier can extract the secret value from

the prover. As the challenge c is being generated from the random oracle on input

a, there is no way for the random oracle to provide two different answers to the

same challenge as the cryptographic hash function used is deterministic. This

means the proofs should never provide enough information to allow a malicious

party to extract a witness to the proof of knowledge.

7.3 Colluding Parties

Suppose some parties in the protocol were colluding to try and subvert the auc-

tion protocol. What would be the effect on the verification protocols? There are

four main possibilities. A bidder could be colluding with an auctioneer, a prover

and verifier could be colluding, a group of auctioneers could be colluding to-

gether, and a group of auctioneers could be colluding with a group of bidders.

Suppose a bidder and an auctioneer were colluding to try and accept a bid that

was not valid. In the group verification protocol, to be accepted the bid would be

required to pass the verification on at least the threshold amount t of auctioneers.

This would require t auctioneers to be corrupt and the group verification proto-

col is only correct as long as less than t auctioneers are malicious. In the public

verification protocol the collusion of a bidder and an auctioneer would be of no

advantage when trying to get an invalid bid accepted as any other third party can

also verify the proof and will see that the bid is invalid.

82 CHAPTER 7. SECURITY ANALYSIS

When using the public verification protocol, a verifier and a prover could col-

lude to accept a proof that is incorrect. For example, suppose there is an auction

where there is one verifier that checks the auction that is colluding with one of

the auctioneers. If one of the auctioneers did an incorrect shift and randomise

and the verifier incorrectly reported that the zero knowledge proof for the shift

and randomise was accepted when it was not, any other parties relying on the

output verifier would have a misplaced confidence in the auction result. Any

party that wants to verify the result should compute the verification themselves

and not rely on the output of another verifier as they could be providing false

information.

Suppose a group of auctioneers were colluding to try and subvert the auction

protocol. In the group verification protocol, it would require a group of at least

the size of the threshold of auctioneers to successfully subvert the auction process.

A group of auctioneers with less members than the threshold would be detected

by the honest auctioneers. In the public verification protocol, a group of auction-

eers colluding would still have to publish proofs that would be accepted by a

third party verifier that would require them to publish zero knowledge proofs of

an incorrect assertion. The chance of being able to prove an incorrect assertion

is 1/q where q is a parameter of the El-Gamal encryption. The only benefit of

having a group of auctioneers colluding would be the increased computational

power when doing a brute force attack. If a bidder was also to collude with the

group of auctioneers it would have the same effect as the bidder would still need

to publish zero knowledge proofs that were accepted by the threshold number of

auctioneers in the group verification protocol or, in the public verification proto-

col, by a third party verifier.

7.4 The Random Oracle Model

This thesis has presented non-interactive zero knowledge proofs that are secure

in the random oracle model, but how secure is the random oracle model? This

is a question that has received much attention in current research work. On the

one hand there is the result that there exist signature and encryption schemes that

are secure in the random oracle model but for which any implementation of the

random oracle results in an insecure scheme [8]. This implies not just a weak-

ness with the hash function used but a weakness in the random oracle model as

7.4. THE RANDOM ORACLE MODEL 83

the schemes are insecure under any implementation of the hash function. On the

other hand, the random oracle model has been used to construct practical secure

schemes where there is no currently known exploit [8]. The main conclusion of

this work points to the random oracle model being a useful tool for constructing

practical proofs that can eliminate a broad range of attacks but it is not a guaran-

tee that no attacks exist.

84 CHAPTER 7. SECURITY ANALYSIS

Chapter 8

Results and Analysis

This chapter presents a complexity analysis of the group and public verification

protocols. The details of the implementation of the group verification protocol

and the garbled circuits auction protocol are then discussed. Performance results

are then presented for the group verification protocol, the original homomorphic

auction protocol, and the garbled circuits auction protocol. These results are then

analysed and the three auction protocols are compared based on their perfor-

mance and security properties.

8.1 Complexity

To compare the performance of the public and group verification schemes for the

homomorphic auction protocol their complexity can be examined based on the

number of exponentiations needed to complete them. This complexity is based

on computing the proofs and does not include the verification process. It is as-

sumed that there are 2g links in the graph where g is the the number of goods,

b is the number of bidders, n is the number of auctioneers, and l the maximum

bid for a link. Table 8.1 presents the upper bound of the complexity of the two

schemes.

As can be seen from the table, the upper bound on the number of modular

exponentiations for the public verification is significantly more than for the group

verification. This shows that the public verification protocol will be significantly

more expensive in terms of both computation and communication than the group

verification protocol. The public verification protocol would in all likelihood only

be used in auctions of very high value goods such as auctions for radio spectrum.

85

86 CHAPTER 8. RESULTS AND ANALYSIS

Proof Group Public

Valid Bids 2gb(7 + 2n) 2gb(7 + 2n)

Max Bid 2g2ln 2gb(18l + 2)

Shift and Randomise 2g4bl 2gb(20n + 2nl)

Find Winning Bids 2g2bn 2g2bn

Total 2g+2b(7 + 4n + 4l) + 2ln 2g+2b(9 + 24n + 18l + 2ln)

Table 8.1: Complexity

8.2 Implementation

All implementation was done in Java with the following sections detailing the

implementation of the protocols and the testing environment.

8.2.1 Combinatorial Garbled Circuit Auction Protocol

The circuits are implemented as a class with an array of node objects where a node

is a representation of a Boolean gate. To execute a circuit, the circuit object loops

through the array of node objects until they have all been executed. A node object

will only execute if all of it’s parent node objects have executed or it is an input

node, as described in Section 4.2.3. A circuit object can be created by any party in

the garbled circuit auction protocol by using an implementation of the algorithm

described in Section 4.3.2 and can be garbled using an implementation of the

algorithm described in Section 4.2.2. The VPOT protocol was also implemented

which is used by the auctioneer to find the garbled inputs to the garbled circuit.

The implementation of VPOT was based on the protocol described in a paper by

Juels and Szydlo [28].

The auction issuer, auctioneer, and bidder were then implemented as separate

processes. The auctioneer starts the auction and requests a garbled circuit object

from the auction issuer passing it the number of bidders, number of goods, and

the maximum bid for the auction. The auction issuer creates a garbled circuit

object, and returns this along with the output mapping for the circuit to the auc-

tioneer. The auctioneer, auction issuer, and bidder all execute the VPOT protocol

to find the garbled input values to the garbled circuit. Finally the auctioneer ex-

ecutes the garbled circuit using the algorithm described above and publishes the

output of the garbled circuit when translated by the output mapping. The bid-

der process is able to spawn multiple threads to represent different bidders. This

8.2. IMPLEMENTATION 87

+Prove()
+Verify() : boolean(idl)

-ProofNumber : long(idl)
-ProofType : long(idl)

Proof

+Prove()
+Verify() : boolean(idl)

KnowledgeOfLogarithmProof

+Prove()
+Verify() : boolean(idl)

EqualityOfLogarithmsProof

+Prove()
+Verify() : boolean(idl)

CorrectShuffleProof

+Prove()
+Verify() : boolean(idl)

ItemDecryptsTo1OrZProof

+Prove()
+Verify() : boolean(idl)

PlaintextEqualityProof

+Prove()
+Verify() : boolean(idl)

EqualityOfLogarithmListProof

Figure 8.1: UML Diagram of Proofs

makes it be possible to test the auction protocol with a large number of bidders

as a thread per bidder has less system requirements than a process per bidder.

As part of his masters thesis Wayne Thomson has designed and implemented

a generalised auction framework (GAF) [49]. GAF provides a framework to im-

plement auction protocols and compare their performance. Wayne has ported

my implementation of the extended garbled circuit auction protocol to the GAF

as a test case for his framework.

8.2.2 Verifiable Homomorphic Auction Protocol

The group verification protocol was first implemented as a prototype that was

able to verify the result of a two good homomorphic auction whose result and

process were hard coded. To create the prototype, the zero knowledge proofs

used in the verification protocols were implemented using an abstract base class

called Proof that all the individual proofs extend as shown in Figure 8.1. The

implementation of the proofs made extensive use of the Java class BigInteger

for the modular arithmetic required for the zero knowledge proofs. The proofs

have been implemented as described in Chapter 3 with the random oracle imple-

mented using the secure Java MessageDigest SHA-512 implementation.

After successful testing of the prototype group verification protocol, it needed

to be applied to a full implementation of the homomorphic auction protocol in

a real system. Wayne has implemented a threshold version of the homomorphic

88 CHAPTER 8. RESULTS AND ANALYSIS

auction protocol in GAF. I have extended Wayne’s implementation of the homo-

morphic auction protocol to implement the group verification protocol.

This involved four main changes:

• Bidder Behaviour: Bidders were extended to publish proofs that every item

in the bid vector they have constructed is a 1 or a Z.

• Auctioneers Finding the Optimal Value: Auctioneers were extended to pub-

lish zero knowledge proofs that their shares of the decryption of the product

of the bids on incoming links are valid. When doing the decryption, auc-

tioneers verify the proofs of the shares before doing the decryption.

• Auctioneers Doing Shift and Randomise: Auctioneers were extended to

publish zero knowledge proofs that the shift and randomise operation was

done correctly and these are verified by the other auctioneers.

• Auctioneers Finding the Optimal Path: Auctioneers were extended to pub-

lish zero knowledge proofs that their shares of the decryption when finding

the optimal path are valid. When doing the decryption, auctioneers verify

the proofs of the shares before doing the decryption.

8.2.3 Test Environment

With the original homomorphic auction protocol, the group verification protocol,

and the garbled circuits auction protocol in the same framework tests can be run

to compare the protocols while they are executing in a similar environment with

similar communication overheads.

Figure 8.2 shows the testing setup for the garbled circuit auction protocol. The

garbled circuit auction protocol has three main components, the auctioneer, the

auction issuer, and the bidders. The first test server in the setup ran the GAF com-

ponent the auction composer that is used to control the auction and run a group

of test cases. The second test server ran the auctioneer. The third test server ran

the auction issuer. The fourth test server ran the GAF components bid publisher,

result publisher, and the auction publisher. These components are used by GAF

to signal events in the auction. For example, the auction publisher publishes the

result of the auction to any registered listeners. Two bidders were run on each

test server and these bidders are able to use multiple threads to simulate multiple

bidders if more than eight bidders are required in an auction, my testing went up

8.2. IMPLEMENTATION 89

Result
Publisher

Test Server 2

Auctioneer

Bidder

Bidder

Auction
Publisher

Bidder

Bidder

Auction
Issuer

Test Server 4

Bidder

Bidder

Test Server 3

Bidder

Bidder

Test Server 1

Auction
Composer

Bid Publisher

Figure 8.2: Garbled Circuit Auction Protocol Test Setup

to one hundred bidders. Bids in the garbled circuit auction protocol were chosen

at random from any value less that the maximum bid. The values of bids does

not affect the running time of the garbled circuit auction protocol as the size of the

circuit and the auction running time are only affected by the number of bidders,

the size of the maximum bid, and the number of goods.

Figure 8.3 shows the testing setup for the homomorphic auction protocol and

the group verification protocol. Both of these protocols have several main com-

ponents, the auctioneer who runs the auction, the evaluators who calculate the

result of the auction, and the bidders. The number of evaluators is at least equal

to the size of the threshold scheme used. In our test we used a (2, 3) thresh-

old scheme and four evaluators. Only three of these evaluators will be used in

any one auction, there is an extra evaluator available in case one fails. The first

test server in the setup ran the GAF components the auction composer and the

bid publisher as well an auction evaluator. The second test server ran the GAF

component bid publisher and an auction evaluator. The third test server ran the

auctioneer. The fourth test server ran an auction evaluator. The fifth test server

ran the GAF component auction publisher as well as an auction evaluator. Two

bidders were run on each test server in the same way as in the garbled circuits

auction protocol and these bidders are able to use multiple threads to simulate

multiple bidders. The bids in the homomorphic auction protocol and the group

verification protocol were chosen differently to the bids in the garbled circuit auc-

tion protocol. The bids were chosen to be randomly either one or two. The reason

90 CHAPTER 8. RESULTS AND ANALYSIS

Result
Publisher

Test Server 2

Auction
Evaluator

Bidder

Bidder

Auction
Publisher

Test Server 5

Bidder

Bidder

Auction
Evaluator

Test Server 4

Bidder

Bidder

Auction
Evaluator

Test Server 3

Bidder

Bidder

Auctioneer

Test Server 1

Auction
Composer

Auction
Evaluator

Bid Publisher

Bidder

Bidder

Figure 8.3: Homomorphic Auction and Group Verification Protocol Test Setup

for this is that for both the homomorphic auction protocol and the group verifica-

tion protocol the execution time of the auction is affected by the values of the bids.

When calculating the maximum bid for a link, the product vector is decrypted

from right to left. If the maximum bid being decrypted is high, less decryption

need to be done to find the value and so this will be quicker than if the bid is

low. This is especially true for the group verification protocol where more proofs

of equality will need to be calculated and published for low value bids. The low

values were chosen so the results show the lower bounds on performance.

8.3 Verification Tests

In some runs of the auction protocol, some of the provers cheat to make sure that

the verification schemes detect parties that do not adhere to the auction protocol.

These tests check whether the group verification protocol can detect invalid bids,

incorrect decryption shares published by auctioneers, and an auctioneer incor-

rectly doing a shift and randomise. The tests are repeated three times and the

number of deviations the verification schemes detect are recorded.

8.4. VERIFICATION PERFORMANCE RESULTS 91

Problem Detected by Group

Invalid Bid 3 of 3

Invalid Decryption Share 3 of 3

Invalid Shift and Randomise 3 of 3

Table 8.2: Verification Tests

8.4 Verification Performance Results

The computers used for the performance tests were Dell Optiplex GX755s with an

Intel Core 2 Duo processor and 2048MB DDR SDRAM. Each test was run thirty

times and the average time was taken. A default key size of 128 bits was chosen

for the homomorphic auction protocol and the group verification protocol to try

and make them comparable, in terms of their privacy preserving properties, to

the garbled circuit auction protocol which uses a random function with an output

of 128 bits. In the following tests one parameter of the auction protocol is varied

and the performance is tested. All other parameters remain the same. The default

values for the parameters are:

Parameter Setting

Number of Bidders 10

Maximum Bid 16

Number of Goods 3

Key Size (for the verification protocols only) 128

Table 8.3: Default Test Parameters

All tests record the total auction time. For the garbled circuit auction protocol

this includes the time taken to generate and garble the circuit as well as the time

taken to compute the VPOT protocol to find the garbled inputs of the circuit. For

the group verification protocol this includes the time taken by bidders to encrypt

and submit bids as well as the time taken by the auctioneers to calculate the result

of the auction, publish zero knowledge proofs that their actions are correct, and

verify the actions of the other auctioneers.

8.4.1 Number of Bidders

Figure 8.4 shows the effect on auction time of increasing the bidders. Increasing

the number of bidders causes linear growth in the time taken to compute the

92 CHAPTER 8. RESULTS AND ANALYSIS

Figure 8.4: Number of Bidders vs Time Taken for Auction

auction. This is because increasing the number of bidders increases the work

done to compute the auction protocol linearly. The group verification protocol

adds a significant overhead to the original protocol but still has a largely linear

growth. The extra overhead is mainly due to the extra proofs and verification

that needs to be done to prove all the bidders are submitting valid bid vectors as

well as the extra proofs that need to be computed to calculate the optimal path

through the graph once the optimal value has been found.

The group verification result for forty bidders seems to show a greater than

linear growth. This is caused by the standard deviation of the results for forty

and fifty bidders being quite broad. The larger spread of values for forty and fifty

bidders could have been caused by other background processes running on the

test PCs or by the bidder test PCs having a more variable execution time due to

the increased memory demands of the extra proofs and extra threads required for

more bidders.

8.4.2 Maximum Price

The effect on auction time of increasing the maximum bid is shown in Figure 8.5.

Increasing the maximum bid results in exponential growth of the time taken to

compute the auction result. This is true for both the original homomorphic auc-

tion protocol and the group verification protocol. The group verification protocol

has a slowing exponential growth where the effects of increasing the maximum

8.4. VERIFICATION PERFORMANCE RESULTS 93

Figure 8.5: Maximum Bid vs Time Taken for Auction

price from 16 to 64 seems to have more effect than increasing it from 64 to 256.

It is worth noting that the maximum bid was measured in powers of two so the

bid vector lengths tested were 16, 32, 64, 128, and 256 so as to be comparable to

the garbled circuit results. Using a linear scale for the tests for the maximum bid

would provide more data points to more closely examine the slowing exponential

growth.

8.4.3 Key Size

Figure 8.6 shows the effect of increasing the key size used in the El-Gamal en-

cryption on the auction time. The time taken increases exponentially as the key

size is increased. This is due to the extra computation requirements of operating

on the larger encrypted values. The original homomorphic auction protocol does

not seem to increase when using a key size from 128 bits to 384 bits and only

seems to experience exponential growth for key sizes greater than 384. A mini-

mum overhead created by the communication costs of the protocol may influence

the time taken to compute the auction more than the computational requirements

of computing with larger numbers up to a key size of 384. This is also reflected

in the group verification protocol where the exponential growth seems to happen

for key sizes greater than 256. As there is more computation done on the larger

numbers in the group verification protocol it would have an affect on the auction

time for smaller key sizes than the original homomorphic auction protocol.

94 CHAPTER 8. RESULTS AND ANALYSIS

Figure 8.6: Key Size vs Time Taken for Auction

8.4.4 Number of Goods

Figure 8.7 shows the effect of increasing the number of goods on the auction time.

Both the original homomorphic auction protocol and the group verification pro-

tocol have exponential growth in auction time as goods are increased. This is due

to the increase in the number of allocations and hence the auction graph increas-

ing exponentially with the number of goods. With 2 goods there are 4 possible

allocations but when the number of goods is increased to 3 there are 8 possible

allocations. This is known as the combinatorial auction problem (CAP) which is

NP complete and exponential. The original homomorphic auction protocol seems

to be exponential with an increasing slope as more goods are added. Although a

straight line in this graph would be expected as the goods increase, the increase

could be added due to some inefficiency in the original homomorphic implemen-

tation such as an inefficient graph creation algorithm that results in extra time

taken for each good added. This effect is also shown in the results for the group

verification protocol where the time taken grows exponentially with an increase

for every good added. As this occurs in the homomorphic auction protocol is

does not seem to be a product of the group verification protocol. There is no re-

sult for the group verification protocol for five goods as the Java version used was

restricted to a maximum of 734MB of memory per process and the evaluators for

the group verification protocol require more memory.

8.5. GARBLED CIRCUITS PERFORMANCE RESULTS 95

Figure 8.7: Number of Goods vs Time Taken for Auction

8.5 Garbled Circuits Performance Results

8.5.1 The Number of Bidders

The time taken to complete the auction increases linearly as the number of bid-

ders increases as shown in Figure 8.8. This is due to the linear growth in the

number of nodes in the circuit needed to compute the auction.

8.5.2 The Maximum Bid

Figure 8.9 shows the time taken to complete the auction when the maximum bid

is increased. Increasing the number of bits in the price by one bit increases the

maximum price by a power of two.

8.5.3 The Number of Goods

Figure 8.10 shows the time taken to complete the auction increasing exponentially

as the number of goods increases.

8.6 Garbled Circuit Size

One of the drawbacks often mentioned about garbled circuits is the size of the

garbled circuit that is sent from the auction issuer to the auctioneer. The authors

96 CHAPTER 8. RESULTS AND ANALYSIS

Figure 8.8: Number of Bidders vs Time Taken for Auction

Figure 8.9: Maximum Bid vs Time Taken for Auction

8.7. COMBINED PERFORMANCE RESULTS 97

Figure 8.10: Number of Goods vs Time Taken for Auction

of the original paper suggest that the garbled circuits may need to be sent on CD

or DVD rather than over the network due to their size [36]. To calculate the size of

the auction circuit, the number of two input gates is recorded and multiplied by

4 and then by 128. This is because for every two input gate there are four entries

in the gate table and every entry is the size of the output of the random function

which in this case is 128 bits. The size of the output mapping is not included in

this calculation.

Figure 8.11 shows the size of the garbled circuit increasing linearly as the

number of bidders increases. The size of the garbled circuit is proportional to

ln(Maximum Bid) as shown in Figure 8.12. Figure 8.13 shows the size of the gar-

bled circuit increasing exponentially as the number of goods increases.

The size of the garbled circuits in these tests would not require a CD or DVD to

be sent from the auction issuer to the auctioneer. For example, for an auction with

3 goods, a maximum price of 16, and 100 bidders the size of the garbled circuit is

about 6MB. It is worth noting that construction of a more compact combinatorial

auction circuit with less nodes would decrease the size of the garbled circuit to be

sent.

8.7 Combined Performance Results

Figure 8.14 shows the time taken to compute the auction for the original homo-

morphic auction protocol, the group verification protocol, and the garbled cir-

98 CHAPTER 8. RESULTS AND ANALYSIS

Figure 8.11: Garbled Circuit Size vs Number of Bidders

Figure 8.12: Garbled Circuit Size vs Maximum Bid

8.7. COMBINED PERFORMANCE RESULTS 99

Figure 8.13: Garbled Circuit Size vs Number of Goods

Figure 8.14: Number of Goods vs Time Taken for Auction

100 CHAPTER 8. RESULTS AND ANALYSIS

cuits auction protocol. The homomorphic auction protocol has the best perfor-

mance although if the trend of increasing exponential growth continues the gar-

bled circuit auction protocol may be quicker for larger numbers of goods. The

group verification protocol has the worst performance of the three auction pro-

tocols, but is comparable to garbled circuits especially when computing auctions

for two or three goods.

8.8 Analysis of Different Schemes

In this chapter the performance of the original homomorphic auction protocol,

the group verification protocol, and the garbled circuit auction protocol have been

shown. The group verification protocol takes the longest time of the three pro-

tocols and the original homomorphic auction protocol takes the least. Although

the group verification protocol adds a significant overhead to the homomorphic

auction protocol it also increases the robustness of the protocol by allowing the

auction protocol to complete even in the presence of less than t malicious auc-

tioneers. If a malicious auctioneer is a common problem, the group verification

protocol may have better performance than the original protocol as the original

protocol would either return an incorrect auction result or need to restart if a mali-

cious auctioneer was present. The group verification protocol is also more robust

than the garbled circuits protocol where if one of the two parties is malicious or

fails the auction would need to be restarted.

The garbled circuit auction protocol has better performance than either the

original homomorphic auction protocol or the group verification protocol when

a large maximum bid is required. The bid vector notation used in the homomor-

phic auction protocol causes an exponential increase in the time taken to com-

pute the auction whereas the garbled circuits auction protocol experiences a lin-

ear growth in the time taken to compute the auction when the maximum bid is

increased by a factor of 2. For auctions where a high bid granularity is required

the garbled auction protocol may be the best choice. It is worth noting that the

maximum bid for an auction is divided by the number of goods for all three auc-

tion protocols. This is because for an auction with say three goods, the longest

path through the auction graph would be the allocation of each good individu-

ally. If each individual good had the maximum bid value bid for it, the total at

the end of the auction would be three times the maximum bid. For this reason the

8.8. ANALYSIS OF DIFFERENT SCHEMES 101

actual maximum bid for an auction is MaxBidactual = MaxBid/NumberofGoods.

The garbled circuit auction protocol uses a random function to mask the in-

termediate values of the circuit and provide privacy. To increase the size of the

output of this function would require changes to the protocol and a change of

the hash function being used. The homomorphic auction protocol and the group

verification protocol can increase the key size used and to protect the privacy

of bids in the auction as a parameter. This means that both the homomorphic

auction protocol and the group verification protocol are more flexible with their

privacy level provided and so for auctions that require a different levels of pri-

vacy the homomorphic auction protocol or group verification protocol would be

better choices than the garbled circuit auction protocol.

The group verification protocol has stronger verification properties than the

garbled circuit protocol. The chance of an active malicious auctioneer being able

to force an incorrect auction result undetected by the group verification protocol

is 1/q. For the garbled circuits, the chance of a malicious auction issuer being able

to force an incorrect auction result when using the cut and choose verification

check that the garbled circuit sent by the auction issuer to the auctioneer is valid

is 1/n where n is the number of circuits sent by the auction issuer to the auction-

eer. For 1/n to be equal to 1/q the auction issuer would need to send q copies of

the garbled circuit to the auctioneer. If each circuit is 6MB and q is a 128 bit num-

ber the auction issuer would need to send 6 ∗ 2128MB of data to the auctioneer

which is clearly infeasible. The increased time taken to compute the group veri-

fication protocol gives stronger verification properties and so more confidence in

the auction result. In auctions where strong verification properties are required

the group verification protocol would be the ideal choice. Providing strong verifi-

cation also encourages more bidders to take part and so can increase the revenue

from sellers which would encourage more sellers to take part. If sellers also have

confidence in the auction result it can encourage more sellers to take part as the

problem of the malicious auctioneer has been minimised.

102 CHAPTER 8. RESULTS AND ANALYSIS

Chapter 9

Conclusions and Future Work

Online auctions have become a widely accepted way of trading goods and ser-

vices. One outstanding local example is the New Zealand auction site TradeMe

which features over a million listings with more than one and a half million reg-

istered users. However, such single good auctions are limited in their ability to

express alternatives, compromises or synergy between several goods being auc-

tioned, that is, the net worth of certain goods may increase when combined with

other goods. Online combinatorial auctions have been used extensively to allo-

cate truckload transportation and for industrial procurement auctions.

A significant problem with using auctions is the reliance on the trustworthi-

ness of the auctioneer. There is often no means of checking whether the auction-

eer has correctly executed the auction without making all bids public, and bid

information is potentially commercially sensitive. In current systems this trust

is often placed in a central organisation such as TradeMe or the Federal Com-

munications Commission. However, cryptographic techniques can be utilised to

provide even stronger guarantees and assurances. The auctioneer can be pre-

vented from breaking privacy guarantees by using a privacy preserving auction

where the values of bids are hidden using encryption or obfuscation yet can still

be compared to find the winner.

9.1 Contributions and Conclusions

The first contribution of this thesis is a taxonomy reflecting the current state of

research into cryptographically secure auctions. In developing this taxonomy it

became clear that there was no existing auction scheme that was both verifiable

103

104 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

and capable of supporting combinatorial auctions. Two alternative solutions be-

came clear; an existing verifiable auction scheme could be extended to support

combinatorial auctions, or an existing combinatorial scheme could be extended

to add verifiability. This thesis has explored both of these alternatives.

The second contribution of this thesis was therefore to extend an existing ver-

ifiable privacy preserving auction protocol by Naor, Pinkas, and Sumner [36] to

conduct combinatorial auctions. A new auction circuit was designed and imple-

mented to extend the garbled circuits auction protocol to support combinatorial

auctions. Previously published work had only used the garbled circuit auction

protocol to conduct single good (M+1)st price auctions. The construction of the

auction circuit involved combining previous work in construction of circuits with

some of the techniques used in the homomorphic auction protocol to create an

algorithm for constructing a circuit composed of Boolean gates to conduct a com-

binatorial auction based on the number of bidders, goods, and the maximum bid.

These combinatorial garbled circuits have been shown to be a reasonable size

(6MB for an auction with 3 goods, a maximum price of 16, and 100 bidders) to

send over the network, a previous criticism of the garbled circuit auction proto-

col.

The third and most significant contribution of this thesis was to add verifica-

tion to an existing privacy preserving combinatorial auction protocol by Suzuki

and Yokoo [53]. In particular, a group and public verification protocol for the

homomorphic auction protocol was developed. The verification protocols use

zero knowledge proofs to verify the actions taken to compute the auction. The

verification protocols have been shown to be secure in the random oracle model.

The group verification protocol achieves it’s security goals by using zero knowl-

edge proofs to check the actions taken by other parties in the auction protocol.

The group verification protocol reveals no information other than that which is

revealed by the original auction protocol. It has been shown that it is compu-

tationally infeasible for either a bidder or an auctioneer to publish a valid zero

knowledge proof of an incorrect action. The chance of a prover being able to

cheat the zero knowledge proofs is 1/q where q is a parameter of the El-Gamal

encryption and |q| ≥ 128. The public verification protocol achieves it’s security

goals by giving any third party a mechanism to check the actions taken by parties

in the auction protocol. The public verification protocol does reveal what bidder

made the highest bid but this can be hidden by using a bidder anonymity scheme.

Again, it has been shown that it is computationally infeasible for either a prover

9.2. FUTURE WORK 105

to publish a valid zero knowledge proof of an incorrect action with the chance of

a cheating prover proving an invalid assertion as 1/q. The verification protocols

make it computationally infeasible for a malicious auctioneer to subvert the auc-

tion process preventing the malicious auctioneer and bid filtering. By preventing

the malicious auctioneer and bid filtering the verification protocols provide a high

degree of confidence in the result of an auction to both bidders and sellers. The

verification protocols also increase the robustness of the homomorphic auction

protocol by giving auctioneers the ability to detect and ignore invalid decryp-

tion shares published by other auctioneers where they would have resulted in an

incorrect decryption.

Both the group verification protocol and the garbled circuit auction protocol

have been implemented and tested. While the group verification protocol has

added a significant overhead to the performance of the original homomorphic

auction protocol and is slower than the garbled circuit auction protocol, it has

strong verification properties that can give bidders and sellers confidence in the

result of the auction protocol. The group verification protocol has stronger verifi-

cation than the garbled circuit auction protocol where the amount of data needed

to be sent to perform the cut and choose verification to the same soundness level

would be prohibitive. The group verification protocol can be computed in a rea-

sonable (45 seconds for an auction with 3 goods, a maximum price of 16, and 10

bidders) time and is a practical auction protocol for real world auctions that im-

proves on the security properties of the original homomorphic auction protocol.

9.2 Future Work

9.2.1 Improving Performance of Verification Protocols

The group and public verification protocols presented in this thesis are compu-

tationally expensive. This is particularly true of the public verification protocol.

Work could be done to find quicker ways to prove the actions taken by the auc-

tioneer, particularly the zero knowledge proof of shift and randomise. If a public

verification protocol could be found that did not make such extensive use of the

verifiable shuffle of encrypted items, the performance could be greatly increased.

106 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.2.2 Improved Security Analysis

Although a security analysis has been presented for the zero knowledge proofs

used in this thesis, it would be more convincing if the verification protocols could

be shown to be provably secure by comparison with known hard problems. An-

other option to provide greater confidence in the security of the verification pro-

tocols would be to run them in a state checker that could check for any possible

states that leak information or allow a malicious auctioneer to pass the verifica-

tion.

9.2.3 Improved Combinatorial Auction Circuit

The combinatorial auction circuit presented in this thesis, while novel and inter-

esting, may be able to be optimised to increase the performance of the garbled

circuits auction protocol as well as reducing the amount of data that needs to

sent over the network.

Appendix A

Zero Knowledge Proofs

A.1 Proof of Knowledge of a Discrete Logarithm

A.1.1 Completeness

This proof is complete as

gr = gz+cx mod q = gzgcx = avc

It is correct to take r mod q as by definition of g, gq = 1 so gq+2 = 1 ∗ g2 = g2 =

gq+2 mod q.

A.1.2 Soundness

Suppose the prover is cheating and trying to convince the verifier that x satisfies

v = gx when v 6= gx. If a cheating prover chooses r at random and correctly

guesses the output of the random oracle c it can set a = grv−c. If it then outputs

the transcript a, r the verifier will accept because avc = grv−cvc = gr. The chance

of a cheating prover correctly guessing the output of the random oracle is 1/q as

there are q different possibilities for the value a that is the input of the random

oracle. A cheating prover could do a brute force over all possible options for the

output of the random oracle in at most q steps, which is the same as the amount

of work required to break the El-Gamal encryption.

A.1.3 Zero Knowledge

To check the zero knowledge property of this proof, a simulator S can be con-

structed that completes the following steps on common input p, q, g, and v in the

107

108 APPENDIX A. ZERO KNOWLEDGE PROOFS

random oracle model:

• S chooses r and c at random and computes a = grv−c.

• S sets the output of the random oracle on input a to c.

• S outputs transcript a, r.

The verifier then checks that gr = avc which holds because

avc = grv−cvc = gr

A.2 Proof of Equality of Discrete Logarithms

A.2.1 Completeness

This proof is complete as

gr
1 = gz+cx mod q = gz

1g
cx
1 = avc

and

gr
2 = gz+cx mod q

2 = gz
2g

cx
2 = bwc

A.2.2 Soundness

Suppose the prover is cheating and trying to convince the verifier that x satisfies

v = gx
1 and w = gx

2 when v 6= gx
1 or w 6= gx

2 . If a cheating prover chooses r at

random and correctly guesses the output of the random oracle c it can set a =

grv−c and b = gr
2w

−c. If it then outputs the transcript a, b, r the verifier will accept

because avc = gr
1v

−cvc = gr
1 and bwc = gr

2w
−cwc = gr

2. The chance of a cheating

prover correctly guessing the output of the random oracle is 1/q.

A.2.3 Zero Knowledge

To check the zero knowledge property of this proof, a simulator S can be con-

structed that completes the following steps on common input p, q, g1, g2, w, and v

in the random oracle model:

• S chooses r and c at random and computes a = gr
1v

−c and b = gr
2w

−c.

• S sets the output of the random oracle on input a + b to c.

A.3. PROOF AN ENCRYPTED ITEM DECRYPTS TO 1 OR Z 109

• S outputs transcript a, b, r.

The verifier then checks that gr
1 = avc and gr

2 = bwc which holds because

avc = gr
1v

−cvc = gr
1

and

bwc = gr
2w

−cwc = gr
2

A.3 Proof an Encrypted Item Decrypts to 1 or Z

A.3.1 Completeness

To show completeness the values c = d1 + d2 mod q, a1 = gr1Ad1 , b1 = yr1(B/Z)d1 ,

a2 = gr2Ad2 , and b2 = yr2Bd2 are all checked to hold for both M = 1 and M = Z.

If M = 1:

d2 = c− d1 mod q so c = d1 + d2 mod q

a1 = gr1Ad1

b1 = yr1(B/Z)d1

a2 = gr2Ad2 = gw−rd2Ac−d1 = gwA−(c−d1)Ac−d1 = gw

b2 = yr2Bd2 = yw−rd2yrd2 = ywy−rd2yrd2 = yw

If M = Z:

d2 = c− d1 mod q so c = d1 + d2 mod q

a1 = gr1Ad1 = gw−rd1Ad1 = gwg−rd1grd1 = gw

b1 = yr1(B/Z)d1 = yw−rd1(B/Z)d1 = ywy−rd1(B/Z)d1 = ywy−rd1yrd1 = yw

a2 = gr2Ad2

b2 = yr2Bd2

So the proof is complete.

110 APPENDIX A. ZERO KNOWLEDGE PROOFS

A.3.2 Soundness

Suppose the prover is cheating and trying to convince the verifier that (A,B)

decrypts to 1 or Z when it does not. If a cheating prover chooses d1, r1, r2 at

random and correctly guesses the output of the random oracle c it can set d2 =

c− d1 mod q, a1 = gr1Ad1 , b1 = yr1(B/Z)d1 , a2 = gr2Ad2 , and b2 = yr2Bd2 . If it then

outputs the transcript (A,B), a1, b1, a2, b2, d1, d2, r1, r2 the verifier will accept. The

chance of a cheating prover correctly guessing the output of the random oracle is

1/q.

A.3.3 Zero Knowledge

To check the zero knowledge property of this proof, a simulator S can be con-

structed that completes the following steps on common input p, q, g, y, A, B, and

Z in the random oracle model:

• S chooses r1, r2, d1 and d2 at random.

• S computes c = d1 + d2 mod q.

• S computes a1 = gr1Ad1 , b1 = yr1(B/Z)d1 , a2 = gr2Ad2 , and b2 = yr2Bd2 .

• S sets the output of the random oracle on input a1 + a2 + b1 + b2 to c.

• S outputs transcript (A,B), a1, b1, a2, b2, d1, d2, r1, r2.

The verifier then checks that c = d1 + d2 mod q, a1 = gr1Ad1 , b1 = yr1(B/Z)d1 ,

a2 = gr2Ad2 , and b2 = yr2Bd2 .

A.4 Proof of Equality of Two Logarithm Lists

A.4.1 Completeness

This proof is complete as

n
∏

i=1

gri

i =
n
∏

i=1

gzi+cxi mod q
i =

n
∏

i=1

gzi

i gcxi

i = vc

n
∏

i=1

ai

and
n
∏

i=1

mri

i =
n
∏

i=1

mzi+cxi mod q
i =

n
∏

i=1

mzi

i mcxi

i = wc

n
∏

i=1

bi

A.5. PUBLICLY VERIFIABLE SHUFFLE OF ENCRYPTED VALUES 111

A.4.2 Soundness

Suppose the prover is cheating and trying to convince the verifier that x1, ..., xn

satisfies v =
∏n

i=1 gxi

i and w =
∏n

i=1 mxi

i when v 6=
∏n

i=1 gxi

i or w 6=
∏n

i=1 mxi

i . If

a cheating prover chooses r1, ...rn at random and correctly guesses the output of

the random oracle c it can set a1 = gr1

1 v−c, b1 = mr1

1 w−c, ai = mri

i and bi = mri

i for

i = 2, ..., n. If it then outputs the transcript a1, ..., an, b1, ..., bn, r1, ..., rn the verifier

will accept. The chance of a cheating prover correctly guessing the output of the

random oracle is 1/q.

A.4.3 Zero Knowledge

To check the zero knowledge property of this proof, a simulator S can be con-

structed that completes the following steps on common input p, q, g1, ..., gn, m1, ...,mn,

w, and v in the random oracle model:

• S chooses r1, ..., rn and c at random and computes a1 = gr1

1 v−c and b1 =

mr1

1 w−c.

• S computes ai = gri

i and bi = mri

i for i = 2, ..., n.

• S sets the output of the random oracle on input a1 + ...an + b1 + ... + bn to c.

• S outputs transcript a1, ..., an, b1, ..., bn, r1, ..., rn.

The verifier then checks that
∏n

i=1 gri

i = vc
∏n

i=1 ai and
∏n

i=1 mri

i = wc
∏n

i=1 bi

which holds because

vc

n
∏

i=1

ai = vcv−c

n
∏

i=1

gri

i =
n
∏

i=1

gri

i

and

wc

n
∏

i=1

bi = wcw−c

n
∏

i=1

mri

i =
n
∏

i=1

mri

i

A.5 Publicly Verifiable Shuffle of Encrypted Values

A.5.1 Completeness

This poof is complete as stated in [17]. If the prover knows a permutation matrix

Mij and integers ri such that (AShuffledi, BShuffledi) = (gri
∏n

j=1 A
Mji

j , yri
∏n

j=1 B
Mji

j)

112 APPENDIX A. ZERO KNOWLEDGE PROOFS

for i = 1, ..., n, it is able to provide values that satisfy the 6 equations checked by

the verifier.

• Proof 1 is checked by equations 2 and 6.

• Proof 2 is checked by equations 2, 4, and 5.

• Proof 3 is checked by equations 1 and 3, as well as the set of randomly

chosen basis.

• Proof 4 is checked using a series of ’Proof of equality of two logarithm lists’

proofs. This step is complete due to the completeness of the ’Proof of equal-

ity of two logarithm lists’ proof.

This proof has been adapted to be non-interactive by changing how the chal-

lenge values ci for i = 1, ..., n are generated. Instead of being generated randomly

by the verifier, these values are now generated by inputting the commit values to

a hash function. This does not affect the completeness property because the proof

is complete for any values of ci in Zq which still holds when ci is generated by a

hash function.

A.5.2 Soundness

A cheating prover can convince a verifier that an incorrect shuffle was done cor-

rectly by knowing non-trivial integers a1, ..., an such that
∏n

i=1 gai

i = 1 or by guess-

ing the output of the hash function. The probability of a cheating prover knowing

a1, ..., an is 1/q. The probability of guessing the output to the hash function is 1/q.

This gives the shuffle protocol a soundness of 1/q.

A.5.3 Zero Knowledge

The zero knowledge property of this proof is shown in [17]. The proof has been

adapted to be non-interactive which requires one modification to the simulator

constructed to show zero knowledge in the random oracle model. When the chal-

lenge values are chosen randomly from Zq, the simulator will need to set the out-

put of the hash function to the challenge values on the input of the commit values.

This addition gives us a simulator for the verifiable shuffle which shows it is zero

knowledge.

A.5. PUBLICLY VERIFIABLE SHUFFLE OF ENCRYPTED VALUES 113

The zero knowledge property of the ’Proof of equality of two logarithm lists’

used is shown above by the construction of a simulator.

114 APPENDIX A. ZERO KNOWLEDGE PROOFS

References

[1] ABE, M., AND SUZUKI, K. M+1-st price auction using homomorphic en-

cryption. In PKC ’02: Proceedings of the 5th International Workshop on Practice

and Theory in Public Key Cryptosystems (London, UK, 2002), Springer-Verlag,

pp. 115–124.

[2] BAUDRON, O., AND STERN, J. Non-interactive private auctions. In FC’01:

Proceedings of the 5th Annual Conference on Financial Cryptography (February

2001), P. Syverson, Ed., Lecture Notes in Computer Science, Springer-Verlag.

[3] BELLARE, M., AND ROGAWAY, P. Random oracles are practical: A paradigm

for designing efficient protocols. In CCS ’93: Proceedings of the 1st ACM con-

ference on Computer and communications security (New York, NY, USA, 1993),

ACM, pp. 62–73.

[4] BLUM, M., FELDMAN, P., AND MICALI, S. Non-interactive zero-knowledge

and its applications. In STOC ’88: Proceedings of the twentieth annual ACM

symposium on Theory of computing (New York, NY, USA, 1988), ACM Press,

pp. 103–112.

[5] BRANDT, F. How to obtain full privacy in auctions. International Journal of

Information Security 5, 4 (September 2006), 201–216.

[6] BUBENDORFER, K., AND THOMSON, W. Resource Management Using Un-

trusted Auctioneers in a Grid Economy. In proceedings of the Second IEEE

International Conference on e-Science and Grid Computing (E-SCIENCE) (Ams-

terdam, Holland, December 2006).

[7] CACHIN, C. Efficient private bidding and auctions with an oblivious third

party. In CCS ’99: Proceedings of the 6th ACM conference on Computer and com-

munications security (New York, NY, USA, November 1999), ACM, pp. 120–

127.

115

116 REFERENCES

[8] CANETTI, R., GOLDREICH, O., AND HALEVI, S. The random oracle method-

ology, revisited. J. ACM 51, 4 (2004), 557–594.

[9] CHAUM, D., AND PEDERSEN, T. P. Wallet databases with observers. In

CRYPTO ’92: Proceedings of the 12th Annual International Cryptology Conference

on Advances in Cryptology (London, UK, 1993), Springer-Verlag, pp. 89–105.

[10] CHEN, X., LEE, B., AND KIM, K. Receipt-free electronic auction schemes

using homomorphic encryption. In ICISC ’03: International Conference on

Information Security and Cryptology (November 2003), pp. 259–273.

[11] CRAMER, R., GENNARO, R., AND SCHOENMAKERS, B. A secure and op-

timally efficient multi-authority election scheme. In EUROCRYPT ’97: Pro-

ceedings of the workshop on the theory and application of cryptographic techniques

on Advances in cryptology (London, UK, 1997), vol. 1233, Springer-Verlag,

pp. 103–118.

[12] CRAMTON, P., SHOHAM, Y., AND STEINBERG, R., Eds. Combinatorial Auc-

tions. MIT Press, 2006.

[13] DAMGARD, I. On sigma-protocols. http://www.daimi.au.dk/∼ivan/

Sigma.pdf.

[14] EBAY. ebay company information. http://pages.ebay.co.uk/

aboutebay/thecompany/companyoverview.html.

[15] FEDERAL COMMUNICATIONS COMMISSION. About auctions. http://

wireless.fcc.gov/auctions/default.htm.

[16] FRANKLIN, M., AND REITER, M. The design and implementation of a se-

cure auction service. In Proceedings IEEE Symposium on Security and Privacy

(Oakland, Ca, May 1995), IEEE Computer Society Press, pp. 2–14.

[17] FURUKAWA, J., AND SAKO, K. An efficient scheme for proving a shuffle. In

CRYPTO ’01: Proceedings of the 21st Annual International Cryptology Conference

on Advances in Cryptology (London, UK, 2001), Springer-Verlag, pp. 368–387.

[18] GAMAL, T. E. A public key cryptosystem and a signature scheme based on

discrete logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology

(New York, NY, USA, 1985), Springer-Verlag New York, Inc., pp. 10–18.

REFERENCES 117

[19] GOLDREICH, O. Zero-knowledge twenty years after it’s invention., 2004.

[20] GOLDREICH, O., AND KRAWCZYK, H. On the composition of zero-

knowledge proof systems. SIAM J. Comput. 25, 1 (1996), 169–192.

[21] GOLDREICH, O., AND OREN, Y. Definitions and properties of zero-

knowledge proof systems. Journal of Cryptology 7, 1 (1994), 1–32.

[22] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowledge complex-

ity of interactive proof systems. SIAM Journal of Computing 18, 1 (1989), 186–

208.

[23] GROTH, J. A verifiable secret shuffle of homomorphic encryptions. In PKC

’03: Proceedings of the 6th International Workshop on Theory and Practice in Public

Key Cryptography (London, UK, 2003), Springer-Verlag, pp. 145–160.

[24] GROTH, J. Non-interactive zero-knowledge arguments for voting. In ACNS

’05: Applied Cryptography and Network Security (2005), pp. 467–482.

[25] HAM, W., KIM, K., AND IMAI, H. Yet another strong sealed-bid auctions.

In SCIS ’03: Proceedings of the Symposium on Cryptography and Information Se-

curity (January 2003), pp. 11–16.

[26] HARKAVY, M., TYGAR, J. D., AND KIKUCHI, H. Electronic auctions with

private bids. In WOEC’98: Proceedings of the 3rd conference on USENIX Work-

shop on Electronic Commerce (September 1998), pp. 61–74.

[27] I2. i2 website. http://www.i2.com/.

[28] JUELS, A., AND SZYDLO, M. A two-server, sealed-bid auction protocol.

In FC ’02: Proceedings of the 6th Annual Conference on Financial Cryptography

(2002), pp. 72–86.

[29] JUELS, A., AND SZYDLO, M. A two-server, sealed-bid auction protocol.

In FC ’02: Proceedings of the 6th Annual Conference on Financial Cryptography

(2003), Springer-Verlag, pp. 72–86.

[30] KATZ, B. F. Digital Design: From Gates to Intelligent Machines (Electrical and

Computer Engineering Series). Charles River Media, Inc., Rockland, MA, USA,

2005.

118 REFERENCES

[31] KIKUCHI, H. (m+1)st-price auction protocol. In FC ’01: Proceedings of the 5th

International Conference on Financial Cryptography (February 2001), Springer-

Verlag, pp. 351–363.

[32] KUROSAWA, K., AND OGATA, W. Bit-slice auction circuit. In ESORICS ’02:

Proceedings of the 7th European Symposium on Research in Computer Security

(London, UK, 2002), Springer-Verlag, pp. 24–38.

[33] LIPMAA, H. On diophantine complexity and statistical zero-knowledge

arguments. In ASIACRYPT ’03: 9th International Conference on the Theory

and Application of Cryptology and Information Security (London, UK, 2003),

Springer-Verlag.

[34] LIPMAA, H., ASOKAN, N., AND NIEMI, V. Secure vickrey auctions without

threshold trust. In FC’02: Proceedings of the 6th Annual Conference on Financial

Cryptography (March 2002), Springer-Verlag, pp. 85–101.

[35] MANHATTEN ASSOCIATES. Manhatten associates website. http://www.

manh.com/.

[36] NAOR, M., PINKAS, B., AND SUMNER, R. Privacy preserving auctions and

mechanism design. In EC ’99: Proceedings of the 1st ACM conference on Elec-

tronic commerce (November 1999), ACM, pp. 129–139.

[37] NEFF, C. A. A verifiable secret shuffle and its application to e-voting. In CCS

’01: Proceedings of the 8th ACM conference on Computer and Communications

Security (New York, NY, USA, 2001), ACM Press, pp. 116–125.

[38] NZOUONTA, J., SILAGHI, M.-C., AND YOKOO, M. Secure computation for

combinatorial auctions and market exchanges. In AAMAS ’04: Proceedings

of the Third International Joint Conference on Autonomous Agents and Multi-

agent Systems (Washington, DC, USA, July 2004), IEEE Computer Society,

pp. 1398–1399.

[39] NZOUONTA, J. D. An algorithm for clearing combinatorial markets. Mas-

ter’s thesis, Florida Insitute of Technology, 2003.

[40] OFFICE OF COMMUNICATIONS (OFCOM). 2.6 ghz spectrum award

consultation. http://www.ofcom.org.uk/media/mofaq/rcomms/

26ghzfaq/.

REFERENCES 119

[41] PARKES, D. C., RABIN, M. O., SHIEBER, S. M., AND THORPE, C. A. Practi-

cal secrecy-preserving, verifiably correct and trustworthy auctions. In ICEC

’06: Proceedings of the 8th international conference on Electronic commerce (New

York, NY, USA, August 2006), ACM Press, pp. 70–81.

[42] PENG, K., BOYD, C., AND DAWSON, E. A multiplicative homomorphic

sealed-bid auction based on goldwasser-micali encryption. In ISC (Septem-

ber 2005), pp. 374–388.

[43] PENG, K., BOYD, C., DAWSON, E., AND VISWANATHAN, K. Robust, privacy

protecting and publicly verifiable sealed-bid auction. In ICICS ’02: Fourth In-

ternational Conference on Information and Communications Security (December

2002), pp. 147–159.

[44] PENG, K., BOYD, C., DAWSON, E., AND VISWANATHAN, K. Five sealed-bid

auction models. In ACSW Frontiers ’03: Proceedings of the Australasian informa-

tion security workshop conference on ACSW frontiers 2003 (Adelaide, Australia,

2003), pp. 77 – 86.

[45] SCHNORR, C. P. Efficient identification and signatures for smart cards. In

EUROCRYPT ’89: Proceedings of the workshop on the theory and application of

cryptographic techniques on Advances in cryptology (New York, NY, USA, 1990),

Springer-Verlag New York, Inc., pp. 688–689.

[46] SCHOENMAKERS, B. A simple publicly verifiable secret sharing scheme and

its application to electronic. In CRYPTO ’99: Proceedings of the 19th Annual

International Cryptology Conference on Advances in Cryptology (London, UK,

1999), Springer-Verlag, pp. 148–164.

[47] SHAMIR, A. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[48] SUZUKI, K., AND YOKOO, M. Secure combinatorial auctions by dynamic

programming with polynomial secret sharing. In Sixth International Financial

Cryptography Conference (FC-02) (March 2002), Springer-Verlag, pp. 44–56.

[49] THOMSON, W. Gaf: A framework for secure combinatorial auctions. Mas-

ter’s thesis, Victoria University Wellington, tba.

[50] TRADEME. Trademe site statistics. http://www.trademe.co.nz/

Community/SiteStats.aspx.

120 REFERENCES

[51] TREVATHAN, J., GHODOSI, H., AND READ, W. Design issues for electronic

auctions. Tech. rep., James Cook University, 2004.

[52] YAO, A. C. Protocols for Secure Computations. In proceedings of the 23rd An-

nual IEEE Symposium on Foundations of Computer Science (Chicago, IL, USA,

1982), pp. 160–164.

[53] YOKOO, M., AND SUZUKI, K. Secure multi-agent dynamic programming

based on homomorphic encryption and its application to combinatorial auc-

tions. In proceedings of the First International Conference on Autonomous Agents

and Multiagent Systems (AAMAS-2002) (New York, NY, USA, 2002), ACM,

pp. 112–119.

[54] YOKOO, M., AND SUZUKI, K. Secure generalized vickrey auction without

thirdparty servers. In proceedings of the 8th International Financial Cryptogra-

phy Conference (FC-2004) (Florida, USA, 2004).

