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Abstract

Multiple dispatch uses the run time types of more than one argument to a method
call to determine which method body to run. While several languages over the
last 20 years have provided multiple dispatch, most object-oriented languages
still support only single dispatch — forcing programmers to implement multiple
dispatch manually when required. This thesis presents an empirical study of
the use of multiple dispatch in practice, considering six languages that support
multiple dispatch. We hope that this study will help programmers understand
the uses and abuses of multiple dispatch; virtual machine implementors optimise
multiple dispatch; and language designers to evaluate the choice of providing
multiple dispatch in new programming languages.
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Chapter 1

Introduction

What is the difference between a Turing machine and the modern com-
puter? It’s the same as that between Hillary’s ascent of Everest and the
establishment of a Hilton hotel on its peak.

Alan Perlis, 1982.

High level programming languages provide programmers with powerful ab-
stractions, making the process of developing a program simpler and more un-
derstandable. While the benefits of programming in a high level language are
generally acknowledged, there is little empirical evidence of how much program-
mers actually use particular high level language features. We believe there are
clear advantages to informing the design of future languages about the use of those
features in the real world. Similarly, programming, maintenance and debugging
practice, and even teaching about programming paradigms, would surely benefit
from being based on evidence about how programs are written in practice.

Multiple dispatch is a programming language feature that several object-
oriented languages in the last 20 years have provided. Still, most mainstream
languages used today lack support for multiple dispatch. Our research goal is to
collect evidence about the use of multiple dispatch in practice. We believe this
evidence will be useful for programmers to understand the benefits of multiple
dispatch; virtual machine implementors to optimise multiple dispatch; and lan-
guage designers to evaluate the choice of providing multiple dispatch in new
programming languages.

All object-oriented languages provide single dispatch: when a method is called
on an object, the actual method executed is chosen based on the dynamic type
of the first argument to the method (the method receiver, generally self, or this).
Some object-oriented languages provide multiple dispatch, where methods can be
chosen based on the dynamic types of more than one argument.

1



2 CHAPTER 1. INTRODUCTION

The goal of this thesis is to understand how programmers write programs that
use multiple dispatch when it is available. We ask the question: how much is
multiple dispatch used? — what proportion of method declarations dispatch on
more than one argument.

To that end, we describe a corpus analysis of programs written in six languages
that provide multiple dispatch (CLOS, Dylan, Cecil, Diesel, Nice and MultiJava).
While there are a range of other multiple dispatch languages (e.g. Slate (Salzman
and Aldrich, 2005), Groovy (Subramaniam, 2008), Clojure (Hickey, 2008)), we
focus on these six languages here because we were able to obtain a corpus for each
of these languages.

Contributions

In this thesis, we make the following contributions:

• We design a language independent model of multiple dispatch.

• We develop a suite of language independent metrics, measuring the use of
multiple dispatch;

• We conduct a corpus analysis study using those metrics on a collection of
programs in six multiple dispatch languages.

Outline

This thesis is organised as follows:

• Chapter 2 presents the brief history and an overview of multiple dispatch
including related work.

• Chapter 3 describes a language-independent model of multiple dispatch,
and defines a set of six metrics in terms of that model.

• Chapter 4 presents the corpus we analyse and describes the methodology
we apply to measure multiple dispatch across this corpus.

• Chapter 5 presents the results of our corpus analysis study in multiple
dispatch languages.

• Chapter 6 puts our results in perspective, shows directions for future work
and concludes.



Chapter 2

Background

In this chapter we introduce the concept of multiple dispatch and contrast it to
techniques used to simulate multiple dispatch in languages that support only
single dispatch. We also present an overview of the research surrounding multiple
dispatch by surveying programming languages that include multiple dispatch,
efforts targeted at optimising multiple dispatch, and studies related to the use of
multiple dispatch.

2.1 Multiple Dispatch

Multiple dispatch uses the run time types of all arguments in a method call to
determine which method body to run. In contrast, in single dispatch languages,
such as SIMULA, Smalltalk, C++, Java, and C], only the first argument of a method
call can participate in dynamic method lookup. In Java, for example, the first
argument of a method call is called the receiver object, is written “before the dot”
in a method call (receiver.method(arguments)), and is called “this” inside a method
body. The class of this first argument designates the method body to be executed.
We will refer to a method body as being specialised on the class where it is defined,
and to the class of that first formal parameter as the parameter’s specialiser.

In Java, as in most single dispatch languages, a method’s specialiser is implicitly
defined by the class enclosing the method definition, for example:

class Car extends Vehicle {
void drive () { print(”Driving a car”); }
void collide (Vehicle v) { print(”Car crash”); }

}

In single dispatch languages, every dynamically dispatched method is spe-
cialised on precisely one class so it is easy to think of methods as operations on
classes. Of course, some languages may also have non-dispatched methods (such

3



4 CHAPTER 2. BACKGROUND

as Java static methods) that are not dynamically dispatched at all. Following C++,
Java and C] also support method overloading, where methods may be declared
with different formal parameter types, but only the receiver (the distinguished
first argument) is dynamically dispatched. Given this definition of the Vehicle
class:

abstract class Vehicle {
void drive () { print(”Brmmm!”); }
void collide (Vehicle v) { print(”Unspecified vehicle collision”); }

}

the following code will involve the Car class’s collide(Vehicle) method shown above,
and print ”Car crash”.

Vehicle car = new Car();
Vehicle bike = new Bike();
car.collide(bike);

The method defined in Car is called instead of the method defined in Vehicle,
because of the dynamic dispatch on the first argument — the receiver — of the
message.

Now, in a single dispatch language, the method that prints ”Car crash” will still
be invoked even if the Car class overloaded the collide method with a different
argument:

class Car extends Vehicle {
// ... as above
void collide (Bike b) { print(”Car hits bike”); }

}

but in a multiple dispatch language, the ”Car hits bike” message would be printed.
Getting to the Car.collide(Bike) method from a call of Vehicle.collide(Vehicle) re-

quires two dynamic choices: on the type of the first “this” argument and on the
type of the second (Vehicle or Bike) argument — this is why these semantics are
called multiple dispatch. A method that uses multiple dispatch is often called a
multimethod.

2.1.1 Classes and Multiple Dispatch

Methods in single dispatch languages are usually defined in classes, and the
receiver.method(arguments) syntax for method calls supports the idea that methods
are called on objects (or that “messages are sent to objects” as Smalltalk would put
it). This does not apply to multiple dispatch languages, however, where a concrete
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method body can be specialised on a combination of classes, and so methods are
not necessarily associated with a single class. Some multiple dispatch languages
declare methods separately, outside the class hierarchy, while others consider
them part of none, one or several classes, depending on the number of specialised
parameters. Since method bodies no longer have a one-to-one association with
classes, all parameter specialisers have to be stated explicitly in method body
definitions, as this example in the Nice programming language (Bonniot et al.,
2008) shows:

abstract Class Vehicle;
class Car extends Vehicle {}
class Bike extends Vehicle {}

void drive (Car c) {
/∗ a method specialised on the class Car ∗/
print(”Driving a car”);

}

void collide (Car c, Bike b) {
/∗ a method specialised on two classes ∗/
print(”Car hits bike”);

}

Similarly, while Java method call syntax follows Smalltalk by highlighting the
receiver object and placing it before the method name: myCar.drive(), multiple dis-
patch languages generally adopt a more symmetrical syntax for calls to functions:
collide(myCar, yourBike); or drive(myCar);, often while also supporting Java-style
receiver syntax.

2.1.2 Simulating Multiple Dispatch

Multiple dispatch is more powerful and flexible than single dispatch. Any single
dispatch idiom can be used in a multiple dispatch language — multiple dispatch
semantics are a superset of single dispatch semantics. On the other hand, imple-
menting multiple dispatch idioms will require specialised hand-coding in a single
dispatch language.

Binary methods (Bruce et al., 1995), for example, operate on two objects of
related types. The Vehicle.collide(Vehicle) method above is one example of a binary
method. Object equality: Object.equals(Object), object comparisons, and arithmetic
operations are other common examples.

In a single dispatch language, overriding a binary method in a subclass is
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not considered safe because it violates the contravariant type checking rule for
functions (Cardelli, 1988). In the example above it is unsafe to override the
collide(Vehicle) method in the Vehicle class with collide(Bike) in the Car class. Be-
cause a single dispatch language only considers the runtime type of the first
(receiver) argument in a method call, nothing would prevent dispatching a call to
Car.collide(Bike) when the second argument supplied in the method call is in fact
not of type Bike (but of a supertype, such as Vehicle). This would cause a type error
at runtime. Note that Java avoids such runtime errors by statically overloading
the Vehicle.collide(Vehicle) method; this can cause the incorrect program behaviour
shown in Section 2.1.

To avoid violating the contravariant type checking rule for functions, single
dispatch languages like Smalltalk generally use the Double Dispatch pattern to
implement binary methods, encoding multiple dispatch into a series of single
dispatches (Ingalls, 1986). Double Dispatch is also at the core of the Visitor pattern
(Gamma et al., 1994) that decouples operations from data structures.

For example, we could rewrite the collision example to use the Double Dispatch
pattern in Java as follows:

class Car {
void collide(Vehicle v) { v.collideWithCar(this); }

void collideWithCar(Car c) { print(”Car hits car”); }
void collideWithBike(Bike b) { print(”Bike hits car”); }

}

class Bike {
void collide(Vehicle v) { v.collideWithBike(this); }

void collideWithCar(Car c) { print(”Car hits bike”); }
void collideWithBike(Bike b) { print(”Bike hits bike”); }

}

Calling a collide method provides the first dispatch, while the second call to a
collideWithXXX method provides the second dispatch. The arguments are swapped
around so that each argument gets a chance to go first and be dispatched upon.
External clients of these classes should only call the collide method, while actual
implementations must be placed in the collideWithXXX methods.

The double dispatch idiom is common in languages like Smalltalk where single
dispatch is the preferred control structure. Java’s instanceof type test provides an
alternative technique for implementing multiple dispatch. The idiom here is a
cascade of if statements, each testing an argument’s class, and the body of each if
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corresponding to a multimethod body. To return to the Car and Bike classes:

class Car {
void collide(Vehicle v) {

if (v instanceof Car) { print(”Car hits car”); return; }
if (v instanceof Bike) { print(”Car hits bike”); return; }
throw Error(”missing case: should not happen”);

}
}

class Bike {
void collide(Vehicle v) {

if (v instanceof Car) {print(”Bike hits car”); return; }
if (v instanceof Bike) {print(”Bike hits bike”); return; }
throw Error(”missing case: should not happen”);

}
}

Compared with directly declaring multimethods, either idiom for double
dispatching code is tedious to write and error-prone. Code to dispatch on three
or more arguments is particularly unwieldy. Modularity is compromised, since
all participating classes have to be modified upon introducing a new class, either
by writing new dispatching methods or new cascaded if branches. The cascaded
if idiom has the advantage that it doesn’t pollute interfaces with dispatching
methods, but the methods with the cascades become increasingly complex, and it
is particularly easy to overlook missing cases.

2.2 Multiple Dispatch Research

Despite its advantages over single dispatch (§ 2.1), multiple dispatch is not present
in current mainstream object-oriented languages such as Smalltalk, C++, C] and
Java.

The object concept supported by the languages mentioned above views meth-
ods as operations on particular (classes of) objects. Such an operation always
depends on the type of one single object: it is a property of that type, and it can
be encapsulated inside the object. The single dispatch idiom, where functions
dispatch on a distinct receiver argument, consequently models this approach to
object-orientation. In contrast, multiple dispatch allows operations to depend on
multiple different types of objects, thus defying object-based encapsulation. This
partly explains why traditional object-oriented languages do not support multiple
dispatch.
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Other reasons might be related to the early state of multiple dispatch research
at the time when the above languages were designed. For example, the issue of
independent static type checking of separate code modules has been tackled only
during the late 1990s. Multiple dispatch is less time-efficient than single dispatch,
due to the more complex lookup mechanism which involves evaluating the types
of several arguments instead of just a single one. Therefore, the additional run
time cost of multiple dispatch is acceptable only when multimethods are actually
invoked (following the principle “you don’t pay for what you don’t use”), and
that expense should not exceed the cost of hand-coded double dispatch (simulated
multiple dispatch). Finally, the space efficiency of virtual dispatch tables has only
been the subject of more recent research (§ 2.2.3).

Bjarne Stroustrup, the designer of C++, offers a first-hand account of the
difficulties encountered when evaluating multiple dispatch for C++ (Stroustrup,
1994, Section 13.8). The two main obstacles which, he regrets, kept him from
including multimethods in C++ were that, for one, he couldn’t come up with
a “calling mechanism that was simple and efficient as the table lookup used for
virtual functions [, the C++ equivalent of single dispatch methods].” and second,
difficulties in resolving method ambiguity at compile time. Further he offers the
following thought, which we cite here as it reflects the driving force behind our
research, almost 30 years later: “Multi-methods is one of the interesting what-ifs
of C++. Could I have designed and implemented them well enough at that time?
Would their application have been important enough to warrant the effort?”

2.2.1 Multiple Dispatch Languages

Multiple dispatch was pioneered by CommonLoops (Bobrow, 1983; Bobrow et al.,
1986) and the Common Lisp Object system (CLOS) (Bobrow et al., 1988), both
aimed at extending Lisp with an object-oriented programming interface. The exten-
sions were meant to integrate “smoothly and tightly with the procedure-oriented
design of Lisp” (Bobrow et al., 1986) and facilitate the incremental transition of
code from the procedural to the object-oriented programming style.

The basic idea is that a CLOS generic function is made up of one or more methods.
A CLOS method can have specialisers on its formal parameters, describing types
(or individual objects) it can accept. At run time, CLOS will dispatch a generic
function call on any or all of its arguments to choose the method(s) to invoke — the
particular methods chosen generally depend on a complex resolution algorithm to
handle any ambiguities.

Several more recent programming languages aim to provide multimethods
in more object-oriented settings. Dylan (Feinberg, 1997) is based on CLOS. Dy-
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lan’s dispatch design differs from CLOS in that it features optional static type
declarations which can be used to type generic functions, that is, to constrain their
parameters to something more specific than <object>, the root of all classes in Dy-
lan. Dylan also omits much of the CLOS’s configurability, treating all arguments
identically when determining if a generic function call is ambiguous.

Cecil (Chambers, 1992; Chambers and Leavens, 1995) is a prototype-based
programming language that was the first to implement a modularly checked static
type system for multimethods. Cecil treats each method as encapsulated within
every class upon which it dispatches. This way a method is given privileged access
to all objects of which it is a part. This is different from, for example Java, where
methods are part of precisely one class and also unlike CLOS or Dylan in which
methods are not part of any class.

Diesel (Chambers, 2006) is a descendant of Cecil and shares many of its multiple
dispatch concepts. The main differences to Cecil are Diesel’s module system
(unlike Cecil, Diesel method bodies are separate from the class hierarchy and
encapsulated in modules) and explicit generic function definitions (which bring it
closer to CLOS). As in Dylan and Cecil, message passing is the only way to access
an object’s state. Diesel uses a modular type system initially designed by Millstein
and Chambers (1999) for the Dubious language.

The Nice programming language (Bonniot et al., 2008) strives to offer an
alternative to Java, enhancing it with multimethods and open classes. In Nice,
operations and state can be encapsulated inside modules, as opposed to classes.
Message dispatching is based on the first argument and optionally on any other
arguments.

MultiJava (Clifton et al., 2000) extends Java with multimethods and open
classes. MultiJava retains the concept of a privileged receiver object to associate
methods with a single class for encapsulation purposes, however, the runtime
selection of a method body is no longer based on the receiver’s type alone. Rather,
any parameter in addition to the receiver can be specialised by specifying a true
subtype of the corresponding static type or a constant value. The MultiJava
compiler mjc, translates MultiJava source code into standard Java bytecode. For
methods that specialise additional parameters, it introduces cascaded sequences
of instanceof tests (or equality comparisons, for value dispatch).

There are of course many other multiple dispatch languages. Kea (Mugridge
et al., 1991) was the first statically typed language with multiple dispatch. Slate (Salz-
man and Aldrich, 2005) integrates Self-like prototype-based programming with
multiple dispatch to propose a new object model. Some more recent programming
languages are designed with multiple dispatch already on-board, among them
Perl 6 (Randal et al., 2004, Section 8.6.2), Clojure (Hickey, 2008) and Groovy (Subra-
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maniam, 2008, Section 4.7). Scala (Odersky et al., 2004) supports a form of pattern
matching that can be used to dispatch on arbitrary predicates.

2.2.2 Multiple Dispatch Extensions

Several popular single dispatch languages (Perl (Conway, 2000), Python (Mertz,
2003), Ruby (Cyll, 2005), C++ (Pirkelbauer et al., 2007)) have been extended
to support multiple dispatch, often by means of libraries. Smalltalk has been
extended with multiple dispatch (Foote et al., 2005) using its reflective facility.
Fickle (Drossopoulou et al., 2001), a statically typed, class-based object-oriented
language with support for object reclassification has been extended with multiple
dispatch and first class relationships (Sinha, 2005).

Java has been augmented with multiple-dispatch and similar facilities using
several different approaches. Parasitic Multimethods (Boyland and Castagna,
1997) is an earlier extension to Java that provides multiple dispatch. Methods
which are defined using the parasitic keyword override less specific methods. A
modified compiler translates code that uses the extended semantics into standard
bytecode by introducing type testing statements (instanceof) to determine the
runtime types of all arguments in a method call, thereby dispatching to the most
specific parasite.

The Walkabout (Palsberg and Jay, 1998) uses the reflection interface of Java 1.1
and later to simplify the implementation of the Visitor pattern. Walkabouts greatly
improve extensibility by eliminating the need for visitable classes to implement a
visit() method and allowing the addition of visitable classes without modification
of existing visitors. As the authors note, however, the use of reflection to invoke
the appropriate visit method makes this approach impractically slow.

The Runabout (Grothoff, 2003) improves upon the Walkabout approach in
terms of performance: Where the Walkabout uses reflection to invoke visit meth-
ods, the Runabout dynamically generates (and caches) bytecode that will invoke
the appropriate visitor. This makes the dispatch performance of the Runabout
comparable to that of the classic visitor pattern and typically exceeds that of
instanceof tests.

Dutchyn et al. (2001) modified the Java virtual machine to treat static overload-
ing as dynamic dispatch in classes that implement the provided MultiDispatchable

marker interface.

Millstein et al. (2003) have evolved MultiJava into Relaxed Multijava (RMJ)
which essentially allows the programmer to write code in a more flexible style,
without sacrificing static type checking.

Predicate dispatching generalises multiple dispatch to include field values and
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pattern matching (Chambers and Chen, 1999), while aspect-oriented program-
ming (Kiczales et al., 1997, 2001) is based around pointcuts that can dispatch on
almost any combination of events and properties in a program’s execution.

2.2.3 Multiple Dispatch Efficiency

Most language implementations summarised in the previous section include
efficiency evaluations of the respective implementation. Additionally, space and
time efficiency of method dispatch has been the subject of a large body of research
(Chambers and Chen, 1999; Driesen et al., 1995; Naik and Kumar, 2000; Kidd,
2001; Zibin and Gil, 2002). Cunei and Vitek (2005) include a recent comparison of
the efficiency of a range of multiple dispatch implementations such as the Visitor
pattern, the Runabout and MultiJava.

2.2.4 Empirical Multiple Dispatch Studies

Studies investigating the practical use of multiple dispatch are less widespread
than multiple dispatch implementations — Kempf, Harris, D’Souza, and Snyder’s
early 1987 study of the CommonLoops language (a CLOS predecessor) is one
notable exception. One of that study’s goals is to assess how useful generic
functions and multimethods are for developers, by measuring how often these
constructs are used in the implementations of CommonLoops itself and a window
library called BeatriX.

Finally, this thesis is part of a larger project that compares the use of multiple
dispatch to the use of techniques that simulate multiple dispatch (§ 2.1.2) in
Java. In their project, Muschevici, Potanin, Tempero, and Noble (2008) ask a
complementary question: how much could multiple dispatch be used? — that is,
what proportion of methods that simulate multiple dispatch could be refactored
to use multiple dispatch if it was provided by the language.
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Chapter 3

Model

In this chapter we introduce a language-independent model for dynamic dispatch.
We then describe six multiple dispatch languages in terms of that model. Finally,
we use the model to define metrics for multiple dispatch. The model and metrics
we designed allow us to reason about the application of the multiple dispatch
paradigm in a language-independent way.

3.1 Modelling Dynamic Dispatch

The model shown in Figure 3.1, is designed to allow us to compare multiple
dispatch consistently across different programming languages. The model’s ter-
minology has been chosen to match general usage, rather than following any
particular programming language. Section 3.3 will use the model to define the
metrics that can be used across a range of programming languages. We now
present the main entities of the model in turn.

Generic function A generic function is a function that may be dynamically
dispatched, such as a CLOS generic function, a Smalltalk message, a MultiJava
method family, or Java method call. Each generic function will have one or more
concrete methods associated with it: calling a generic function will invoke one (or
more) of the concrete methods that belong to that function. Generic functions are
identified by a name and a signature. Some languages allow a generic function to
be defined explicitly (e.g. CLOS’s defgeneric, Dylan’s define generic and Diesel’s
fun), whereas in other languages (such as MultiJava or Cecil) they are implicit and
must be inferred from method definitions.

Some languages also automatically generate generic functions as accessors to
all field declarations. Because we wish to focus on programmer specified multiple

13
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Generic Function Concrete Method

Name

SpecialiserSignature

dispatches to(CM)→ 

1

1

specialised
(spec)↓

*

1

1..*

1..*

belongs to (GF)  
←

Figure 3.1: A Model for multiple dispatch. GF refers to generic function, CM refers
to concrete method, and spec refers to specialiser.

dispatch methods, we omit automatically generated accessors from our analysis.

Name Generic functions and concrete methods are referred to by their names. In
our model, a name is always “fully-qualified”, that is, if a namespace is involved
then that information is part of the name. To avoid ambiguity, our analyses always
compute fully-qualified names where necessary.

Signature The permissible arguments to a generic function are defined by that
function’s signature, and all the concrete methods belonging to a generic function
must be compatible with that signature. In languages with only dynamic typing, a
generic functions signature may be simply the number of arguments required by
the function: some language’s signatures additionally support refinements such as
variable length argument lists or keyword arguments. In languages with (optional
or mandatory) static type systems, a generic function’s signature will also define
static types for each formal argument of the function.

Some languages have implicit parameters (such as the “receiver” or “this”
parameter in traditional object-oriented languages such as SIMULA, Smalltalk,
Java, C++, C#). In our model, these parameters are made explicit in the signature
(hence our use of the term “function”). In the case of traditional object-oriented
languages, the receiver is the first formal parameter position.

Concrete method A concrete method gives one code body for a generic function
— roughly corresponding to a function in Pascal or C, a method in Java or Smalltalk,
or CLOS method. As well as this code, a concrete method will have a name and
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an argument list — the argument list must be compatible with the signature of
its generic function (as always depending on the rules of a particular language).
A concrete method may also have a specialiser for each formal argument position.
The rules of each language determine the generic function(s) to which a given
concrete method belongs.

Specialiser Formal parameters of a concrete method can have specialisers. Spe-
cialisers are used to select which concrete method to run when a generic function
is called. When a generic function is called, the actual arguments to the call are
inspected, and only those concrete methods whose formal specialisers match those
arguments can be invoked in response to the call. Specialisers can describe types,
singleton objects, or sets of objects and types (details depend on the language in
question).

Some concrete method parameters may have no specialiser (they are unspe-
cialised) — the method is applicable for any argument values supplied to those
parameters. In contrast, in a class-based object-oriented language, every instance
method will belong to a class, and its distinguished first “receiver” argument
will be specialised to that class. For example, this is true for every non-static,
non-constructor method in Java; Java statics and constructors are not specialised.

Dynamic specialisers are closely related to generic function signatures in stati-
cally typed languages: whenever a generic function is called, its actual arguments
must conform to the types described by its signature. Depending on the language,
specialisers may or may not be tied into a static type system.

Dispatch When a generic function is called at run time, it must select the concrete
method(s) to run. In our model, this is a dynamic dispatch from the generic function
to its concrete methods. If this dispatch is based on the type of one argument, we
call it single dispatch; if on the type of more than one argument, multiple dispatch. If
a generic function has only a single concrete method, then no dynamic dispatch is
required: we say the function is monomorphic or statically dispatched.

3.2 Modelling Programming Languages

To ground our study, we now describe how the features of each of the languages we
analyse are captured by the model. The crucial differences between the languages
can be seen as whether they offer static typing, dynamic typing, or optional (static)
typing; the number of generic functions per method name; and whether a concrete
method can be in more than one generic function. These details are summarised
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in Figure 3.2, which also gives an overview of terminology used by each language,
with Java and Smalltalk for comparisons.

CLOS CLOS (Bobrow et al., 1988) fits quite directly into our model. CLOS
generic functions are declared explicitly, and then (concrete) methods are declared
separately; both generic functions and methods lie outside classes. Each generic
function is identified by its name (within a namespace), so all methods of the
same name belong to the same generic function. CLOS requires “lambda list
congruence”: all methods must agree on the number of required and optional
parameters, and the presence and names of keyword parameters (Lamkins, 2004).

Dylan Dylan’s dispatch design (Feinberg, 1997) is similar to CLOS in most
respects, including concrete methods being combined via explicit generic function
definitions, and similar parameter list congruency conditions. Dylan supports
optional static type checking, and specialisers and static type declarations are
expressed using the same syntax. When defining a concrete method, the type
declarations serve as dynamic specialisers if they are more specific than the types
declared by the generic function.

Cecil Cecil (Chambers, 1992) generic functions (multimethods) are declared im-
plicitly, based on concrete method definitions, and each concrete method is con-
tained within one generic function. Unlike CLOS, a generic function comprises
concrete methods of the same name and number of arguments: generic functions
with the same name but different parameter counts are independent. Like Dylan,
Cecil supports optional static type declarations, but unlike Dylan, different syntac-
tic constructs are used to define static type declarations and dynamic specialisers.
A parameter can incur a static type definition, specialisation, or both.

Diesel Diesel (Chambers, 2006) is a descendant of Cecil, however generic func-
tions are declared explicitly (called functions). Each Diesel function can have a
default implementation, which in our model corresponds to a concrete method
with no specialised parameters. Additional concrete methods (simply called
methods) can augment a function by specialising any subset of its parameters.
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Nice Nice (Bonniot et al., 2008) is a more recent multiple dispatch language
design based on Java. A Nice generic function (method declaration) supplies a
name, a return type and a static signature. Different concrete methods (method
implementations) can exist for a declaration. When defining a concrete method, the
parameter type declarations serve as dynamic specialisers if they are different to
(that is more specific than) the types stated in the method declaration.

MultiJava MultiJava (Clifton et al., 2006) is an extension of Java that adds the
capability to dynamically dispatch on other arguments in addition to the receiver
object. A generic function (also called method family) consists of a top method, which
overrides no other methods, and any number of methods that override the top
method. Any method parameter can be specialised by specifying a true subtype
of the corresponding static type or a constant value.

Multiple dispatch subsumes single dispatch: where in multiple dispatch lan-
guages, any argument to a function can be used to dispatch, in single dispatch
languages it is only the first parameter that can be dispatched on. To compare the
multiple dispatch languages described above to mainstream languages, we use
our model to additionally describe Smalltalk and Java.

Smalltalk Smalltalk is a single dispatch language which introduced the terms
message, roughly corresponding to implicitly defined generic function, and method
for concrete method. Smalltalk is dynamically typed, and every message is single
dispatched (even the equivalent of constructors and static messages, which are
sent dynamically to classes). Every method name (or selector) defines a new generic
function, and the names encode the number of arguments to the message.

Java Java is a single dispatch statically typed class-based language; it uses the
term “method” for both generic functions (method call) and concrete methods
(method bodies). Generic functions are defined implicitly, and depend on the names
and the static types of their arguments.

3.3 Metrics

Our study approaches multimethods and multiple dispatch from a programmer’s
point of view by analysing source code available publicly, mostly under open-
source licenses. We focus on method definitions which we examine statically.
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Abbr. Name Basis Description

DR Dispatch Ratio generic function number of methods in
the generic function

CR Choice Ratio concrete method number of methods in
the same generic func-
tion

DOS
Degree of Specialisation

concrete method
number of specialisers

DOSG generic function

RS
Rightmost Specialiser

concrete method rightmost specialised
argument positionRSG generic function

DOD Degree of Dispatch generic function number of specialisers
required to dispatch to
a concrete method

RD Rightmost Dispatch generic function Rightmost Specialiser
required to dispatch to
a concrete method

Figure 3.3: Metrics

To study multiple dispatch across languages we define metrics based on our
language independent model. Figure 3.3 summarises the metrics we define in this
section.

3.3.1 Dispatch Ratio (DR)

We are most interested in measuring the relationships between generic functions
and concrete methods. We define CM(g) as the set of concrete methods belonging
to a given generic function g. The number of concrete methods that belong to
a generic function g gives the basic metric Dispatch Ratio DR(g) = |CM(g)|. DR
measures, in some sense, the amount of choice offered by a generic function:
monomorphic functions will have DR(g) = 1, while polymorphic functions will
have DR(g) > 1.

We are usually not interested in the measurements from the above metrics
(Figure 3.3) for individual generic functions or concrete methods, but rather we
want to know about their distribution over a given application, or even collection
of applications. We can report the measurements as a frequency distribution,
that is, for a value dr, what proportion of generic functions g have DR(g) = dr.
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Frequency distributions provide information such as: what proportion of generic
functions have exactly one concrete method.

We use the basic DR metric to define an average Dispatch Ratio across each
application. The average Dispatch Ratio DRave, that is the average number of
concrete methods that a generic function would need to choose between is:

DRave =

∑
g∈G DR(g)

|G|

where G is the set of all generic functions. The intuition behind DRave is that if you
select a generic function from a program at random, to how many concrete methods
could it dispatch?

3.3.2 Choice Ratio (CR)

Because a generic function with a DR > 1 necessarily contains more methods
than a monomorphic generic function, we were concerned that DRave can give
a misleading low figure for programs where some generic functions have many
more concrete methods than others.

For example, consider a program with one generic function with 100 concrete
methods, DR(g1) = 100, and another 100 monomorphic methods DR(g2..101) = 1.
For this program, DRave = 1.98, even though half the concrete methods can only
be reached by a 100-way dispatch.

To catch these cases, we define the Choice Ratio of a concrete method m to be
the total number of concrete methods belonging to all of the generic functions to
which m belongs:

CR(m) = |
⋃

g∈GF (m)

CM(g)|

Note that this counts each concrete method only once, even if it belongs to multiple
generic functions. An application-wide average, CRave can be defined similarly:

CRave =

∑
m∈M CR(m)

|M|

whereM is the set of concrete methods. The intuition behind CRave is that if
you select a concrete method from a program at random, then how many other
concrete methods could have been dispatched instead of this one? For the example
above CRave = 50.5.
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3.3.3 Degree of Specialisation

Degree of Specialisation of a Concrete Method (DOS)

The Degree of Specialisation of a concrete method simply counts the number of spe-
cialised parameters:

DOS(m) = |spec(m)|

where spec(m) is the set of argument positions of all specialisers of the method m

(we will later write speci(m) for the i’th specialiser). DOS can also be extended to
an average, DOSave in the obvious manner, over all concrete methods.

Dynamically specialising multiple method parameters is a key feature of mul-
tiple dispatch: DOS measures this directly. Functions without dynamic dispatch,
like Java static methods, C functions, or C++ non-virtual functions, will have
DOS = 0. Singly dispatched methods like Java instance methods, C++ virtual
functions, and Smalltalk methods will have DOS = 1. Methods that are actually
specialised on more than one argument will have DOS > 1.

Degree of Specialisation of a Generic Function (DOSG)

The Degree of Specialisation of a generic function counts the specialisers of that generic
function.

DOSG(g) = |P |, where i ∈ P iff ∃m ∈ CM(g) such that i ∈ spec(m)

Specialisers for formal parameters of a generic function are inferred from the
concrete methods that belong to it: if at least one concrete method in the generic
function has a dynamic specialiser at a certain position, then the same parameter
position of the generic function is considered specialised.

We define this metric in addition to the per concrete method DOS metric for
accuracy: we compare DOSG measurements with those furnished by the Degree of
Dispatch (DOD) metric (§ 3.3.5), which is also defined in terms of generic functions.

DOSG can also be extended to an average, DOSG,ave over all generic functions.

3.3.4 Rightmost Specialiser

Rightmost Specialiser of a Concrete Method (RS)

Programmers read method parameter lists from left to right. This means that a
method with a single specialiser on the last (rightmost) argument may be qualita-
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tively different to a method with one specialiser on the first argument. To measure
this we define the Rightmost Specialiser:

RS(m) = max(spec(m))

If a method has some number of specialised parameters (perhaps none) fol-
lowed by a number of unspecialised parameters, then RS = DOS; where a method
has some unspecialised parameters early in the list, and then some specialised
parameters, RS > DOS. The capability to specialise a parameter other than the
first distinguishes multiple dispatch languages from single dispatch languages.
RS can, for example, identify methods that use single dispatching (DOS=1) but
where that dispatch is not the first method argument. Once again, we can define a
summary metric RSave by averaging RS over all concrete methods.

Rightmost Specialiser of a Generic Function (RSG)

Similarly to the Rightmost Specialiser of a concrete method, we define the Right-
most Specialiser of a generic function as the rightmost specialised parameter position
of that function:

RSG(g) = max(RS(m)), where m ∈ CM(g)

By averaging RSG over all generic functions, we can define RSG,ave.

3.3.5 Degree of Dispatch (DOD)

The Degree of Dispatch is the number of parameter positions required for a generic
function to select a concrete method. The key point here is that specialising
concrete method parameters does not by itself determine whether that parameter
position will be required to dispatch the generic function. This is because all the
concrete methods in the generic function could specialise the same parameter
position in the same way. Similarly, if only one concrete method specialises a
parameter position, that position could still participate in the method dispatch
even if no other concrete method specialises that parameter — the other concrete
methods acting as defaults.

The DOD metric counts the number of parameter positions where two (or more)
concrete methods in a generic function have different dynamic specialisers. In
general, these are the positions that must be considered by the dispatch algorithm.
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DOD(g) = |P |,
where i ∈ P iff ∃m1, m2 ∈ CM(g)

such that speci(m1) 6= speci(m2)

Where the Degree of Specialisation (DOSG) measures the number of parame-
ters of a generic function which the programmer has designed dispatch-able (by
specialising them), the Degree of Dispatch counts only those parameters on which
the generic function actually has the potential to dispatch upon.

We can once again define a summary metric DODave as the average over all
generic functions. If DRave and CRave measure the amount of choice involved in
dispatch, then DODave measures the complexity of that choice.

3.3.6 Rightmost Dispatch (RD)

Finally, by analogy to RS, we can define RD as the rightmost parameter a generic
function actually dispatches upon.

RD(g) = max(P ),
where i ∈ P iff ∃m1, m2 ∈ CM(g)

such that speci(m1) 6= speci(m2)

RD is to RS as DOD is to DOS: the “DO” versions count specialisers of methods,
or dispatching positions of generic functions, while the “R” versions consider only
the rightmost position. RD for a generic function will usually be the maximum RS
of that function’s methods, unless every concrete method in the generic function
specialises the rightmost parameter in the same way. For a whole application, we
can report RDave as the average RD across all generic functions.

3.4 Example

To illustrate the metrics, consider the following simple multiple dispatch example
written in Dylan, which defines a range of binary methods for the type hierarchy
<sports−car> extends <car> extends <vehicle>.

This example defines two generic functions (collide and pileup) with two and
four concrete methods respectively. The values for the metrics relevant to each
declaration are in the comments above them.

define class <vehicle> (<object>) ... ;
define class <car> (<vehicle>) ... ;
define class <sports−car> (<car>) ... ;



24 CHAPTER 3. MODEL

// DR = 2, DoD = 1, RD = 2, DoS(g) = 2, RS(g) = 2
define generic collide(v1 :: <vehicle>, v2 :: <vehicle>);
// CR = 2, DoS = 1, RS = 1
define method collide(sc :: <sports−car>, v :: <vehicle>) ... ;
// CR = 2, DoS = 2, RS = 2
define method collide(sc :: <sports−car>, c :: <car>) ... ;

// DR = 4, DoD = 3, RD = 3, DoS(g) = 3, RS(g) = 3
define generic
pileup(v1 :: <vehicle>, v2 :: <vehicle>, v3 :: <vehicle>);

// CR = 4, DoS = 2, RS = 3
define method
pileup(sc :: <sports−car>, v :: <vehicle>, c :: <car>) ... ;

// CR = 4, DoS = 2, RS = 2
define method
pileup(sc :: <sports−car>, c :: <car>, v :: <vehicle>) ... ;

// CR = 4, DoS = 3, RS = 3
define method
pileup(c :: <car>, c :: <car>, c :: <car>) ... ;

// CR = 4, DoS = 0, RS = 0
define method
pileup(v :: <vehicle>, v :: <vehicle>, v :: <vehicle>) ... ;

DR is 2 for collide and 4 for pileup because that is the number of concrete methods
each of these generic functions contains. Obviously, each of the concrete methods
has a respective CR of 2 and 4. However the difference can be observed if we try
and count the DRave and CRave for this Dylan example. DRave = (2 + 4)/2 = 3 is
the Dispatch Ratio for this program that examines each generic function. CRave =

(2+2+4+4+4+4)/6 = 3.33 is the Choice Ratio for this program that examines each
concrete method. This means that the choice of alternative concrete methods for
each method is larger than the average number of methods per generic function.

DOS is calculated for each concrete method by examining the number of
specialisers, while RS records the position of the rightmost specialiser (accounting
in particular for the second concrete method collide that does a single dispatch on a
second argument). Averages for DOS and RS give us (1 + 1 + 2 + 2 + 3 + 0)/6 = 1.5

and (1 + 2 + 3 + 2 + 3 + 0)/6 = 1.83 respectively.

Finally, DOSG, RSG, DOD and RD are measured at the level of generic functions.
DOSG measures the number of a generic function’s parameter positions that are
specialised by at least one of its concrete methods. RSG captures the rightmost
of these positions. DOD records the number of a generic function’s parameters
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that can be potentially used to dispatch upon. Finally, RD records the rightmost
position used by such a parameter. Their averages are: DOSG,ave = (2 + 3)/2 = 2.5;
RSG,ave = (2 + 3)/2 = 2.5; DODave = (1 + 3)/2 = 2; and RDave = (2 + 3)/2 = 2.5.
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Chapter 4

Methodology

In this Chapter we first motivate Corpus Analysis, the research methodology un-
derlying our study (§ 4.1). We then present our corpus, a collection of applications
written in multiple dispatch languages (§ 4.2). We proceed to describe the analysis
techniques and tools we developed to apply the metrics presented in Section 3.3 to
the data collected from the corpus (§ 4.3). Finally, we demonstrate the customised
approaches we use to extract and store the information relevant to our research
goals from the corpus into an intermediate processing format (§ 4.4).

4.1 Corpus Analysis

The Software Corpus Analysis approach uses an automated process to measure
certain artifacts in a body of programs (in the form of their source code or any
compilation stage). Assuming that the studied body (corpus) is representative
of how the language is used in general, one can derive a set of rules or patterns
governing that language.

A large amount of research in software engineering has focused on developing
models and methodologies of how software should be written to meet certain
quality criteria such as re-usability, maintainability and cost-effectiveness. Corpus
Analysis is an approach that measures attributes of software as it actually is. By un-
derstanding the shape of existing software, we can learn about the characteristics
of good software.

Software Corpus Analysis is a widely used empirical research method. There
are many recent examples addressing program topology (Potanin et al., 2005;
Baxter et al., 2006), mining patterns (Fabry and Mens, 2004; Gil and Maman, 2005),
object initialisation (Unkel and Lam, 2008), aliasing (Potanin et al., 2004; Ma and
Foster, 2007), dependency cycles (Melton and Tempero, 2007), exception handling
(Cabral and Marques, 2007), inheritance (Tempero et al., 2008), non-nullity (Chalin

27
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and James, 2007) and visualisation (Noble and Biddle, 2002).

We adopt the corpus analysis approach to study the use of multiple dispatch.
Given that, using a multiple dispatch language, programmers can freely choose
whether to use either multiple dispatch or another technique, we want to know
how much multiple dispatch is used in practice in a set of languages. Corpus
analysis can answer this question by measuring — across a given corpus — the
proportion of method declarations that dispatch on more than one argument.

There are of course alternative approaches to studying the use of multiple
dispatch. They range from manually analysing selected source code artifacts,
surveying practitioners about their perceived usage of multiple dispatch to using
multiple dispatch languages in teaching and as part of class projects. These ap-
proaches are valuable and we acknowledge their potential to complement corpus
analysis: they can help verify our results and answer further questions, such as
when and why is multiple dispatch used. For some examples, corpus analysis
can draw attention to interesting code portions in a program, which can then
be examined manually in order to understand the kind of problems they solve.
A study involving in-field interviews could reveal the level of awareness practi-
tioners have of multiple dispatch and its potential. Any discrepancies between
the findings from our study and the subjective value attributed to multiple dis-
patch by practitioners could help improve software engineering pedagogy. Class
projects involving a multiple dispatch language and a single dispatch language as
a control could provide further insight into the relative value of multiple dispatch
in practice.

Our Corpus Analysis of multiple dispatch is a first step in a line of research
aimed at understanding how much value is gained from the use of multiple
dispatch in practice.

4.2 Corpus

For this study we have gathered a corpus of nine applications written in six
languages that offer multiple dispatch1 (Figure 4.1).

Most applications in this corpus are compilers for the respective language —
they are all too often the only applications of significant size that we could obtain.
This fact certainly introduces a degree of bias to our analysis. An additional
reason that limits the generalisability of our results comes from the nature of these
compilers being mostly academic projects: the development processes undertaken

1The multiple dispatch corpus is available from http://homepages.mcs.vuw.ac.nz/

˜muscheradu/mdip/.

http://homepages.mcs.vuw.ac.nz/~muscheradu/mdip/
http://homepages.mcs.vuw.ac.nz/~muscheradu/mdip/
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at universities cannot be regarded as representative for software development at
large.

CLOS is notably distinct with respect to the availability of large projects and the
corpus could be expanded by several CLOS projects. We opted to cover a broad
spectrum of languages rather than weighting this study towards one language
because we are interested in measuring multiple dispatch across languages. We
note that this corpus contains a single application per language (with exceptions
of CLOS with three and Dylan with two applications): this largely reflects the fact
that multiple dispatch languages are not in wide use today.

All of the languages studied here come with more or less extensive standard
libraries. Our measurements of each application include the contribution due to
the libraries.

As is often the case when measuring real code, we have to make assumptions
about exactly what to measure. One assumption is with respect to the auto-
generated field accessors some languages provide (see Figure 3.2). As our interest
is in how programmers interact with language features, we do not measure these
accessors, nor do we measure other compiler-generated artefacts.

The following paragraphs briefly present each application in our corpus, giving
a rough idea about its scope, development history and size. Figure 4.2 shows the
relative sizes of applications at a glance, measured in terms of generic functions
and concrete methods. We do not give the lines of code (LOC) measurement as
it can be misleading for applications written in languages that can mix object-
oriented and functional code (such as CLOS and Dylan).

4.2.1 CMUCL (CLOS)

The first of three Common Lisp applications in our corpus, CMUCL is a free
implementation of the Common Lisp programming language as defined by ANSI
(American National Standards Institute, 1996). It has been in development since
the early 1980’s at the Computer Science Department of Carnegie Mellon Univer-
sity. The package includes a compiler and an extensive library (CMUCL Main-
tainers, 2008). CMUCL auto-generates a large number of generic functions, which
we exclude from our analysis (§ 4.4.1). We examined version 19d and found it to
define 271 generic functions and 550 concrete methods.
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Language Application Domain Version Concrete
methods

Generic
functions

CLOS CMUCL compiler 19d 550 271

CLOS SBCL compiler 0.9.16 861 363

CLOS McCLIM toolkit/
library

0.9.5 4419 1906

Dylan OpenDylan compiler 1.0beta5,
SVN rev. 11779

5389 2143

Dylan Gwydion compiler 2.5.0pre3,
SVN rev. 11733

6621 3799

Cecil Vortex compiler 3.3 15212 6541

Diesel Whirlwind compiler 3.3 11871 5737

Nice NiceC compiler 0.9.13 1615 1184

MultiJava LocStack framework 0.8 735 491

Figure 4.1: Applications in multiple dispatch corpus.

4.2.2 SBCL (CLOS)

Steel Bank Common Lisp (SBCL) is an open source/free compiler and runtime
system for ANSI Common Lisp. SBCL was forked from CMUCL in 1999 and has
evolved independently since then. The system is described to be simpler than
CMUCL, partly because some extensions were removed, partly due to ample refac-
toring (SBCL Maintainers, 2008). We found this fact reflected in SBCL’s smaller
size, compared to CMUCL (before excluding auto-generated class predicates): the
version we examined (0.9.16) has 363 generic functions and 861 concrete methods.

4.2.3 McCLIM (CLOS)

McCLIM is an open source implementation of the Common Lisp Interface Manager
specification (McKay and York, 2001), a toolkit for writing graphical user interfaces
in Common Lisp. It runs on top of several Lisp implementations, including
CMUCL and SBCL. The project initiated in 2000 by merging several developers’
individual efforts to write a free implementation of CLIM; by the end of 2002 it
was considered “almost feature complete” by its developers (Strandh and Moore,
2002). McCLIM is the largest Common Lisp project in our corpus, containing 1906
generic functions and 4419 concrete methods.
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Figure 4.2: Relative size of applications in corpus

4.2.4 Open Dylan (Dylan)

OpenDylan, also known as Functional Developer, is a fully-featured development
environment originally created in the early 1990’s at Apple with the objective
of combining the best qualities of Common Lisp with the advantages offered by
static languages like C++ (Feinberg, 1997). Only the command line version of the
compiler, known as the minimal console compiler currently runs on GNU/Linux, the
platform we used for our analysis. The version we inspected (1.0 beta5; obtained
from the SVN repository on 27-April-2008) has 2143 generic functions and 5389
concrete methods.

4.2.5 Gwydion (Dylan)

Gwydion Dylan includes a Dylan-to-C (d2c) compiler originally created at Carnegie
Mellon University, mostly by developers who had previously worked on the CMU
Common Lisp (CMUCL) project. d2c uses gcc as the back-end for generating native
code. The current release 2.4.0 is considered a technology preview by its maintain-
ers (Gwydion Dylan Maintainers, 2008) due to limitations that make it hard to use
for production development, such as the lack of incremental compilation (“d2c
generates fast code slowly”), uncomfortable debugging and slightly incomplete
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support for the Dylan language specification. We analysed a pre-release of version
2.5 which we obtained from the SVN repository on 12-March-2008. Including
contributions of various libraries, this version has 3799 generic functions and 6621
concrete methods.

4.2.6 Vortex (Cecil) and Whirlwind (Diesel)

Vortex and Whirlwind are compiler front-ends developed by the Cecil Group (Cecil
Group, 2008) at the University of Washington’s Department of Computer Science
and Engineering. They are written in Cecil and Diesel respectively and are de-
signed to plug into the Vortex compiler back-end. We use release 3.3 of the Vortex
compiler infrastructure and count 6541 generic functions and 15212 concrete meth-
ods in the Cecil code, versus 5737 generic functions and 11871 concrete methods
in Diesel source.

4.2.7 The Nice Compiler (Nice)

The Nice language and compiler was developed as part of an academic project on
object-orientation at Institut National de Recherche en Informatique et en Automa-
tique (INRIA) in Rocquencourt, France(Bonniot et al., 2008). Presently (version
0.9.13), it is not considered feature complete. The compiler and Nice standard
library itself are written partly in Java (such as the ML-Sub type system (Bour-
doncle and Merz, 1997)) and partly in Nice. For a crude idea about proportions
it is useful to remark that the project includes some 35,000 lines of Java code and
23,000 lines of Nice code. For our analysis we only consider the contribution made
by native Nice code, which we found to define 1184 generic functions and 1615
concrete methods.

4.2.8 The Location Stack (MultiJava)

The MultiJava-based Location Stack (Hightower, 2002) is a framework for process-
ing measurements from a heterogenous network of geographical location sensors.
Its development began as part of the Portolano project on ubiquitous computing
at the University of Washington; the efforts have been since carried forward into
the PlaceLab project at Intel Research Seattle, though PlaceLab has abandoned
MultiJava in favour of more mainstream Java. We base our analysis on the latest
release 0.8, counting 491 generic functions and 735 concrete methods.
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4.3 Analysis

The first step towards measuring the use of multiple dispatch across a corpus is to
use the model from Chapter 3 and identify how generic functions and concrete
methods are defined in each of the six languages.

For each language, the task is to collect and store the information related to all
concrete entities found within applications in our corpus. In practice, we need to
develop a language-specific technique to identify generic functions, their concrete
methods and the specialisers of each method, as found in the source code. This
information has to be stored in a unified, language independent format and made
available for further analysis. We refer to the information we collect and store for
each application as a sample.

All this information is already available to a compiler after parsing the source,
since the compiler itself is in charge of assigning a particular generic function to
each call-site, and possibly optimising dynamic dispatch.

Consequently, we focus our attention on the compilers for the given languages.
By relying on a compiler’s parser to identify generic functions, we are able to
obtain the most accurate information. This kind of information is generally not
made available externally, which is why, in some cases, we had to modify the
compilers in order to supplement their output during the compilation process.

Given the diversity of programming languages (and hence compilers) used
in our corpus, we needed to develop a customised approach for each of them.
Fortunately, all compilers we use come with source code and their authors were
very helpful in directing us to the sections in the source code we needed to change.

The compilers for CLOS, OpenDylan, Cecil and Diesel provide an interface for
introspection of the project being compiled. For these languages, it proved to be
most practical to write small utilities that use this interface. We run these in the
context of a project being compiled to query information built in memory by the
compiler. The CLOS metaobject protocol (MOP) (Kiczales et al., 1991) falls in this
category. The MOP provides a particularly elegant way to inspect the structure of
a loaded program with respect to static information including class inheritance
relationships, generic function and methods, as well as dynamic information about
instances and data.

The next section describes the intermediate format used to store the raw data
we obtain by compiling each application in the corpus, followed by a section
presenting the tool we have developed for multiple dispatch corpus analysis.
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sample ::= "{", { generic-function-entry, "," }, "};" ;

generic-function-entry ::= string, "=>", "{", body, "}" ;

body ::= "specialisers", "=>", specialiser-vectors,

[ ",", "static types", "=>", string-vector ] ;

specialiser-vectors ::= "[", { string-vector, "," }, "]" ;

string-vector ::= "[", { string, "," }, "]" ;

string ::= "’", name, "’" ;

name ::= { all-characters - "’" } ;

all-characters ::= ? all visible characters ? ;

Figure 4.3: Grammar for the intermediate format used to collect data from applica-
tions in the corpus.

4.3.1 Intermediate Format

We modify each compiler to save the compilation output to a file in an intermediate,
language independent format. Each output file contains structural data describing
an application’s generic function definitions: their names, the static types of their
formal parameters and the specialisers defined by concrete methods.

The intermediate format uses nested Perl hash tables. The context-free gram-
mar for our intermediate format is specified in Figure 4.3. Note that for legibility,
the grammar presented here does not allow whitespace, yet our format allows
whitespace under the rules of the Perl language.

Each generic function is identifiable inside the outer hash table by a unique key
consisting of the function’s qualified name and (when the language requires it)
the number of formal parameters. In turn, each generic function element defines
a hash table that stores arrays of specialiser vectors (’specialisers’ key). Each of
these specialiser vectors stores strings corresponding to the specialisers defined
by each concrete method. All specialiser vectors have the same size, with empty
strings for non-specialised argument positions. Some languages support static
type definitions; we record these in an array referenced by the ’static types’ key.

The following example illustrates the format described above by showing the
data obtained by compiling the Dylan example discussed in Section 3.4. Note that
the Dylan language does not allow generic functions with the same name but a
different number of parameters, therefore the function name alone can serve as a
unique key.



4.3. ANALYSIS 35

{
’vehicle−simulation:collide’ => {

’static types’ => [ ’<vehicle>’, ’<vehicle>’ ];
’specialisers’ => [

[ ’<sports−car>’, ’<vehicle>’ ],
[ ’<sports−car>’, ’<car>’ ]

],
},
’vehicle−simulation:pileup’ => {

’static types’ => [ ’<vehicle>’, ’<vehicle>’, ’<vehicle>’ ];
’specialisers’ => [

[ ’<sports−car>’, ’<vehicle>’, ’<car>’ ],
[ ’<sports−car>’, ’<car>’, ’<vehicle>’ ],
[ ’<car>’, ’<car>’, ’<car>’ ],
[ ’<vehicle>’, ’<vehicle>’, ’<vehicle>’ ]

],
}
};

4.3.2 Multiple Dispatch Corpus Analysis Tool (MuDiCAT)

We developed a program to analyse the raw data we obtain through the language-
specific front-ends (§ 4.4). This section states the requirements of the analysis tool,
presents our design and overviews some implementation aspects.

Requirements

Overall, the Multiple Dispatch Corpus Analysis Tool serves the purpose of measur-
ing the data recorded from applications using the metrics introduced in Section 3.3.
The results from these measurements have to be stored and visualised.

MuDiCAT reads in records (produced by the various language-specific front-
ends) in the format defined in Section 4.3.1 into an in-memory object which we
refer to as a sample. A sample has to be measured in terms of all metrics defined in
Section 3.3.

A metric based on generic functions computes a value for each generic function
in the sample. Similarly, metrics based on concrete methods compute a value for
each concrete method. A metric makes these results available and also provides
them as a distribution, that is a collection of tuples containing all measured val-
ues along with their frequency across the entire sample. Additionally, a metric
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+measure(Sample)
+calc()
+calc_distribution()
+calc_average()

name
label
values
distribution
average

Metric

+calc()
+calc_distribution()
+calc_average()

 

Degree of Dispatch

+calc()
+calc_distribution()
+calc_average()

 

Degree of Specialisation

+calc()
+calc_distribution()
+calc_average()

 

Dispatch Ratio

+read_data()
+read_metadata()
+write_to_file(data, metadata)
+substract(Sample)

data
metadata

Sample

 

 

Presentation

+calc()
+calc_distribution()
+calc_average()

 

Rightmost Specialiser (GF)

+calc()
+calc_distribution()
+calc_average()

 

Degree of Specialisation (GF)

+calc()
+calc_distribution()
+calc_average()

 

Choice Ratio

+calc()
+calc_distribution()
+calc_average()

 

Rightmost Specialiser

+calc()
+calc_distribution()
+calc_average()

 

Rightmost Dispatch

0..*

1

+print()
+println()
+close()

file_name

Plain Text File

+print()
+println()

 

LaTeX File

+present(Metric, Presentation)

 

Main

1..*

1..*
measures ➽

Figure 4.4: Class diagram for the Multiple Dispatch Corpus Analysis Tool

computes an average from the values measured across the sample.
Distribution and average of each processed sample have to be stored to plain-

text files suitable for visualisation via gnuplot2 as well as in files conforming to
LATEX table syntax, suitable for inclusion into documents.

Design

Figure 4.4 shows the class diagram of our analysis tool. A Sample contains a
table with the raw data collected through the respective language-specific front-
end from one application in the corpus, as well as meta-information such as the
name and version of the application this data was collected from. Sample also
implements a subtraction operation that subtracts a set of generic functions from a
given superset, as this is required for the McCLIM application using the technique
described in Section 4.4.1.

A Metric operates upon a Sample to compute a value for each generic function

2Gnuplot plotting utility: http://www.gnuplot.info/

http://www.gnuplot.info/
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or concrete method. These values are used to calculate a distribution and an
average value. Each Metric subclass individually implements these methods
according to the definition for the respective metric. We save computed values,
distributions and averages through different Presentation objects to plain text files,
suitable for further processing (such as visualisation) through, e.g. gnuplot, as
well as to LATEX tables suitable for inclusion into documents.

Implementation

We chose to implement the analysis back-end in Perl for practical reasons: on
one hand, we are familiar with this language; on the other hand, as a dynamic
language, Perl allows the rapid prototyping/exploratory programming style we
deem most suitable with the research nature of this project.

The raw data recorded by language-specific front-ends is saved to files using a
Perl hash table syntax (described in Section 4.3.1). We choose this approach instead
of inventing our own record format so that we can rely on the Perl compiler to
read and parse the recorded data.

At this stage, the project contains 20 Perl modules, 14 classes, and around 100
unit test cases for the Test::More Perl testing framework. We use about a dozen
auxiliary modules from the Perl library (CPAN) for various tasks such as unit
testing, I/O, logging/tracing (Log::Log4perl, Data::Dumper), extended regular ex-
pressions (Regexp::Common), and multiple dispatch methods (Class::Multimethods).

4.4 Language-specific Analysis Front-ends

This section goes into the details of each language and the customised approaches
we use with the respective compilers to collect the raw data for our analysis.

4.4.1 Common Lisp Compilers – CMUCL and SBCL

The metaobject protocol is part of the Common Lisp Object System (CLOS) (Bo-
brow et al., 1988), which in turn is part of the Common Lisp ANSI standard.
We use the metaobject protocol to collect information about all generic func-
tion, method and specialiser objects in a compiled project. Our implementation,
which is based on an example in Kiczales et al. (1991, Chapter 2), walks the
class hierarchy tree starting at the root class (Common−Lisp:T) and collects the
generic function objects that specialise (via method definitions) on each class.
Calling (method (generic−function−methods gf)) produces the methods defined by
the given generic function gf. Subsequent calls to (method−specializers method) for
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each method returns its specialisers. Accessor methods which are auto-generated
are detected as they subclass standard−accessor−method and are excluded from
counting.

Using this technique in CMUCL, we found that a large proportion of generic
functions have a remarkably symmetrical shape. Our investigations showed that
CMUCL auto-generates generic function predicates for every class in the system.
These predicates are used internally to test whether an object is an instance of the
corresponding class, and each of them implements two concrete methods: one is
unspecialised and the other is specialised on the particular class. The following
function recorded in intermediate format (§ 4.3.1) is such an example:

’common−lisp−user:(class−predicate number)’ => {
’specialisers’ => [

[ ’’ ],
[ ’common−lisp:number’ ],

],
}

Generic functions of the kind shown above are single-dispatch — they have
a Dispatch Ratio DR = 2 and a Degree of Dispatch DOD = 1. As they are auto-
generated by the CMUCL compiler, we exclude them from our analysis, which
brings the number of generic functions in our CMUCL sample down by about
40%.

To measure McCLIM we load it into the SBCL compiler environment and use
the metaobject protocol as described above to recount generic functions in the sys-
tem. We separate generic functions defined in the McCLIM source from the rest of
the SBCL system by subtracting the set of generic functions we had recorded before
loading McCLIM from the current set. For the case of overlapping functions, that
is when SBCL and McCLIM both contribute concrete methods to the same generic
function, we exclude the method contributions due to SBCL from accounting. As
a side note, we found that McCLIM adds new concrete methods to 33 generic
functions already defined in SBCL; among these are 67 additional implementations
of common−lisp−user:print−object and 160 of common−lisp−user:initialize−instance.

Consider now this example of a generic function containing two concrete
methods, taken from the McCLIM source.

(defgeneric display−drei−contents (stream drei syntax) (...))
(defmethod display−drei−contents (

(stream clim−stream−pane)
(drei drei)
(syntax fundamental−syntax)) (...))

(defmethod display−drei−contents (
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(stream clim−stream−pane)
(drei drei)
(syntax lisp−syntax)) (...))

According to the documentation, the above generic function is designed to
contain methods that display the buffer contents of an object of type Drei to some
output surface (stream) using a certain syntax. A Drei instance in general can be
any type of editor (e.g. an input-editor, a text editor gadget or a simple pane). In
this example the generic function contains two concrete methods which specialise
all three parameters. Note that in this case only the third parameter (syntax) is
specialised in different ways across the two methods.

The CLOS introspection front-end records the relevant information from the
previous code example in a Perl data structure as shown below. All names are
recorded fully-qualified, with the name of the module prepended. According to
the rules of the language, the two methods are recognised as part of the given
generic function because they are defined as having the same name. Hence, the
qualified name of the generic function is enough to uniquely identify this generic
function and its methods during further processing.

’common−lisp−user:display−drei−contents’ => {
’specialisers’ => [

[
’clim:clim−stream−pane’,
’drei:drei’,
’drei−lisp−syntax:lisp−syntax’

],
[

’clim:clim−stream−pane’,
’drei:drei’,
’drei−fundamental−syntax:fundamental−syntax’

]
]

};

4.4.2 Gwydion Dylan

Gwydion’s d2c compiles each Dylan source module into a C source file. Each
generic function, whether implicit or explicitly declared, is mapped to a C func-
tion (labelled <original name> ROOT). Methods of that same generic function
are mapped to a couple of C functions labelled METH GENERIC <number> and
METH <number> where each METH GENERIC includes a call to a METH.
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At runtime, a lookup function (gf call lookup FUN) will be called with a pointer to
the ROOT function whenever there is need to dispatch dynamically. The ROOT

function will then select and call the appropriate METH GENERIC function, which
in turn will call its corresponding METH function.

We extract information about generic functions and methods by parsing the
generated C code. This turned out to be the easiest approach since generated code
has by its nature a very systematic layout. Gwydion does generate getters and
setters for all slots defined in a class; these are annotated “internal” in the C code
and we exclude them from counting.

The following example taken from the Gwydion Dylan library shows the three
stages: Dylan source code, C code and the data we extract from the C code.

define sealed generic binary−logxor (x :: <general−integer>, y :: <general−integer>)
=> res :: <general−integer>;

// in num.dylan
define inline method binary−logxor (a :: <integer>, b :: <integer>)

=> res :: <integer>;
...

end;

// in bignum.dylan
define inline method binary−logxor

(a :: <extended−integer>, b :: <extended−integer>)
=> (res :: <extended−integer>);
...

end;
define inline method binary−logxor

(a :: <extended−integer>, b :: type−union(<integer>, <double−integer>))
=> res :: <extended−integer>;
...

end;

As described above, d2c compiles each of the concrete methods defined above
into two C functions, one calling the other. Here are the C functions for the method
binary−logxor(a :: <integer>, b :: <integer>).

/∗ generic−entry for binary−logxor{<integer>, <integer>} ∗/
descriptor t ∗ dylanZdylan visceraZbinary logxor METH GENERIC 7(...) {

...
L result0 = dylanZdylan visceraZbinary logxor METH 7(...);

}
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/∗ Define Method binary−logxor{<integer>, <integer>} ∗/
/∗ binary−logxor{<integer>, <integer>} ∗/
long dylanZdylan visceraZbinary logxor METH 7(...) {...}

The Gwydion-specific analysis front-end extracts the information contained in
the C code and saves it in a Perl data structure, as shown below.

’dylan::dylan viscera::binary logxor’ => {
’specialisers’ => [

[ ’<integer>’, ’<integer>’ ],
[ ’<extended−integer>’, ’<extended−integer>’ ],
[ ’<extended−integer>’, ’type−union(<double−integer>, <integer>)’ ]

],
’static types’ => [ ’<general−integer>’, ’<general−integer>’ ]

};

Note that, in contrast to CLOS, Dylan allows programmers to specify types
for parameters in a generic function definition; these are checked statically. We
record them in an additional static types array as part of the generic function data
structure (see § 4.3.1). When assessing whether a method specialises a particular
parameter, we compare the static type and specialiser – only if they differ (as is
the case with all methods in this example), we consider the method to specialise
that parameter. Also notable in this example is how Dylan allows to specialise
parameters on non-class types, such as type unions.

4.4.3 Open Dylan

We use the “environment protocol”, a library of the OpenDylan language that
provides a convenient interface for meta-level introspection at compile-time. A
small Dylan tool loads the “minimal console compiler” project into memory and
triggers parsing of its source code. We then use environment protocol API calls
to obtain a list of all generic functions along with their parameter types for each
module. Subsequently, we query each generic function for its methods and each
method for the list of its specialisers.

OpenDylan generates accessor methods for all slots of a class. We detect these
accessors by first walking the class hierarchy to collect references to all slot objects.
Then, on each slot object, we call slot−getter and slot−setter; these functions return
accessor method objects, which we exclude from counting.

The approach we use with OpenDylan is notably different from how we handle
code written for the Gwydion Dylan compiler. We have considered using a single
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approach to compile both Dylan applications but this was not successful because
of the differences in the libraries each language variant includes. It is however
possible to compile simpler projects, such as the example discussed in Section 3.4
using either compiler. We did this and were able to verify that, when using
the same input, both Gwydion and OpenDylan approaches produce equivalent
outputs. We therefore omit giving an additional code example for OpenDylan.

4.4.4 The Vortex Compiler Infrastructure for Cecil and Diesel

Vortex is a compiler back-end that supports different language front-ends as plug-
ins. By coincidence, the Cecil front-end is also named Vortex; Whirlwind is the
Diesel front-end. The Vortex back-end includes the Cecil evaluator, an interactive
environment similar to a Lisp read-eval-print loop (REPL). Through the Cecil
evaluator, various kinds of introspection are possible on the global data structures
describing the program being compiled, such as browsing the class hierarchy, and
inspecting methods and fields.

To collect the information from Cecil and Diesel applications (Vortex and Whirl-
wind) we use the Cecil evaluator. In the course of developing the Vortex back-end,
its authors have written a small utility that dumps the class structure and method
groups of the project being compiled after the source code has been processed
by the language front-end and transformed into the Vortex RTL intermediate
language. The Vortex developers have provided us with this utility, which we
modify to output information in our simple language independent format (§ 4.3.1)
and to exclude auto-generated field accessor methods based on the fact that these
method objects inherit from field method decl.

Note that we can use the same approach for collecting data from both Cecil
and Diesel applications, as the information available at the Cecil evaluator has
already been translated from each language into a shared internal format, which
we translate into our Perl-based format.

For an example, consider the implementation of the division operator in the
Cecil standard library (which in reality is spread over seven Cecil source files):

implementation / (l@:num,r@:num):float {...}
implementation / (l@:int, r@:int):int {...}
implementation / (l@:integer,r@:integer):integer {...}
method / (l@:big int, r@:big int):big int {...}
method / (l@:float,r@:float):float {...}
method / (l@:single float, r@:single float):single float {...}
method / (l@:double float, r@:double float):double float {...}
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Using the method keyword declares a method signature and implementation
while implementation only introduces the declaration of a method implementation
whose signature has been introduced earlier.

Now compare the above code example to the implementation of the division
operator in the Diesel standard library, again spread across seven different Diesel
source files: Note that Diesel supports explicit generic functions; they are defined
using the keyword fun.

public fun / (:‘T <= num, :T):T (∗∗ no itc ∗∗);
method / (l@num, r@num):float {...}
method signature / (l@int, r@int):int {...}
method signature / (l@integer, r@integer):integer {...}
method / (l@big int, r@big int):big int {...}
method signature / (l@float, r@float):float {...}
method signature / (l@single float, r@single float):single float {...}
method signature / (l@double float, r@double float):double float {...}

Since Cecil and Diesel standard libraries appear to define the exact same
concrete methods for the division operator (a fact that makes us speculate that the
Diesel stdlib has been, at least in parts, automatically translated to Diesel from the
Cecil library), this is how we (separately) record the information for each of the
generic functions shown above:

’/(a,b)’ => {
’specialisers’ => [

[ ’num’, ’num’ ],
[ ’int’, ’int’ ],
[ ’integer’, ’integer’ ],
[ ’big int’, ’big int’ ],
[ ’float’, ’float’ ],
[ ’single float’, ’single float’ ],
[ ’double float’, ’double float’ ],

]
}

4.4.5 The Nice Compiler

Nice has the notion of method declarations, which corresponds to the generic func-
tion entity in our model (§ 3.1). A Nice method declaration has a name and a
signature which consists of a return type and a list of parameter types. A method
declaration can be associated with a set of implementations, (corresponding to
concrete methods) which have no return type, but bear a name (the same as the
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declaration’s), a list of (optionally typed) parameters (of the same length as the
declaration) and a block of code. Parameter types specified by a method declara-
tion act as static types, while the types declared for the parameters of a method
implementation act as specialisers.

A method declaration can override a previous method declaration by specify-
ing a more specific return type and/or more specific parameter types. In such a
case, all implementations of the overriding declaration will be also implementa-
tions of the overridden declaration.

The overriding declaration has to be explicitly declared as such (using the
override keyword) in order to avoid a compiler warning. While the method
overriding concept allows Nice concrete methods to be part of multiple generic
functions, we found this feature used only in two cases in the Nice compiler source;
one of them is shown in the following example taken from the syntax analysis
module.

?Expression analyse(?Expression, Info);
analyse(?Expression e, info) {...}
override Expression analyse(Expression, Info);
analyse(TypeConstantExp e, info) {...}
analyse(ConstantExp c, info) {...}
analyse(TupleExp e, info) {...}

The method analyse is first declared to return an object of type ?Expression and
takes two arguments of types ?Expression and Info. In Nice, a ? indicates that a type
may be null — by default, Nice types are non-null. A second declaration of analyse

overrides the first by specifying a (more specific) non-null type for the return
value and first argument. As a consequence, of the four method implementations
(concrete methods) shown here, the three who satisfy the parameter types of both
method declarations are assigned to both method declarations (generic functions).

We modified the Nice compiler to write out the desired information as a Perl
data structure. Here is the output for this example:

’analyse(?bossa.syntax.Expression, bossa.syntax.Info)’ => {
’static types’ => [ ’?bossa.syntax.Expression’, ’bossa.syntax.Info’ ],
’specialisers’ => [

[ ’?bossa.syntax.Expression’, ’bossa.syntax.Info’ ],
[ ’bossa.syntax.TypeConstantExp’, ’bossa.syntax.Info’ ],
[ ’bossa.syntax.ConstantExp’, ’bossa.syntax.Info’ ],
[ ’bossa.syntax.TupleExp’, ’bossa.syntax.Info’ ]

]
}
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’analyse(bossa.syntax.Expression, bossa.syntax.Info)’ => {
’static types’ => [ ’bossa.syntax.Expression’, ’bossa.syntax.Info’ ],
’specialisers’ => [

[ ’bossa.syntax.TypeConstantExp’, ’bossa.syntax.Info’ ],
[ ’bossa.syntax.ConstantExp’, ’bossa.syntax.Info’ ],
[ ’bossa.syntax.TupleExp’, ’bossa.syntax.Info’ ]

]
}

The two declared generic functions are identified by their name and static parame-
ter types. The first generic function has a set of four specialiser vectors while the
second one has only three vectors — these are a subset of the specialiser vectors of
the first generic function. Note that the concrete methods shown in this example
only ever specialise the first of two parameters of the generic functions.

As Nice does not generate accessors for fields, we do not need to worry about
these.

4.4.6 The MultiJava Compiler

MultiJava shares with Cecil and Nice the property of having implicit generic
functions, that is, no generic function construct exists as a first-class element of
the language. A MultiJava generic function (sometimes referred to as a method
family) consists of a top method (a possibly abstract method which overrides no
other method) and all methods that override the top method (Clifton et al., 2006).
The Multijava compiler groups methods together into families to form generic
functions for dynamic dispatch.

We found that the most feasible approach for analysing MultiJava code was to
hack mjc, the MultiJava compiler, to gather the information we need and output it
in the intermediate format expected by our analysis tool (§ 4.3.1).

MultiJava, like Java, does not generate getters and setters for fields, which
means that we don’t need to treat accessor methods any differently than other
methods.

The following example illustrates MultiJava programming practice and shows
how method definitions are grouped together into method families by mjc.

public class Species {
public void encounter (Species s) {}

}

public class Bunny extends Species {
public void encounter (Species@Lion l) { System.out.println(”run away”); }
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public void encounter (Species@Bunny b) { System.out.println(”mate”); }
}

public class Lion extends Species {
public void encounter (Species@Bunny b) { System.out.println(”eat”); }
public void encounter (Species@Lion l) { System.out.println(”fight”); }
public void encounter (Bunny b) { System.out.println(”guzzle”); } // unsafe!

}

public static class Main {
public static void main() {

Species s1 = new Bunny();
Species s2 = new Bunny();
Species s3 = new Lion();
Species s4 = new Lion();

s1.encounter(s2); // mate
s1.encounter(s3); // run away
s3.encounter(s1); // eat
s3.encounter(s4); // fight

}
}

The methods defined above are recorded in intermediate format as shown below.

’Species/encounter(Species,Species)’ => {
’static types’ => [ ’java.lang.Object’, ’Species’ ],
’specialisers’ => [

[ ’Species’, ’Species’ ],
[ ’Bunny’, ’Lion’ ],
[ ’Bunny’, ’Bunny’ ],
[ ’Lion’, ’Bunny’ ],
[ ’Lion’, ’Lion’ ]

]
}

’Main/main(Main)’ => {
’static types’ => [ ’Main’ ],
’specialisers’ => [ [’Main’] ]

}

’Lion/encounter(Lion,Bunny)’ => {
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’static types’ => [ ’java.lang.Object’, ’Bunny’],
’specialisers’ => [ [’Lion’, ’Bunny’] ]

}

The above example shows how the encounter binary methods are grouped
together into a single generic function and the parameter specialisers (specified
after the @ keyword) are recorded to two-element arrays. Note that the first formal
parameter to a method in (Multi)Java is implicitly the class enclosing the method’s
definition — our language-independent format makes this explicit.

The static main method is being assigned to a generic function with a single
concrete method and thus a Degree of Dispatch of 1. The method’s vector of
specialisers is identical to the generic function’s vector of static types, leading to
a Degree of Specialisation of 0 for the concrete method. For having a single
unspecialised concrete method, the generic function incurs a Degree of Dispatch
of 0, which effectively means that associated method calls are not dynamically
dispatched.

The third encounter method defined in the Lion class uses standard Java method
overloading semantics to statically overload encounter in the Species class. This
practice is unsafe, as it violates the contravariant typechecking rule for functions
(§ 2.1.2). MultiJava’s ability to statically overload methods, due to being backward-
compatible with standard Java, prevents the above method from being part of the
same generic function with methods defined using multimethod syntax. We note
that this behaviour is different from other languages we study: where Dylan, Cecil
and Diesel multimethods subsume statically overloaded functions, in MultiJava
(and Nice) there are two distinct features programmers can use in parallel. The
MultiJava compiler does however warn that statically overloaded methods can be
rewritten as multimethods.

4.5 Summary

This Chapter describes the analysis methodology at the core of our study. The
approach we adopt is one of corpus analysis, an approach that focuses on assessing
the usage of language features by analysing a corpus of existing software. Our
corpus includes nine programs, written in six different languages; this corpus
limits the generalisability of our analysis by consisting mostly of compilers.

For the analysis we developed a set of tools which we use to measure the
programs in our corpus in two phases: language-specific front-ends gather raw
data from each program and store it in an intermediate format. The Multiple
Dispatch Corpus Analysis Tool then measures the data obtained in the first phase
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using the metrics introduced in Section 3.3. The results from these measurements
are stored and visualised in ways that facilitate their comparison and discussion.



Chapter 5

Results

In this chapter we present the results we obtain from the metrics we introduced in
Chapter 3 using the methodology described in Chapter 4 to the nine applications
which make up our corpus.

The presentation is structured into three sections: Ratios (§ 5.1) summarises
the results from the basic Dispatch Ratio (DR) and Choice Ratio (CR) metrics;
Specialisation (§ 5.2), presents the results we obtain from the Degree of Speciali-
sation (DOS, DOSG) and Rightmost Specialiser (RS, RSG) metrics; and Dispatch
(§ 5.3), which covers the Degree of Dispatch (DOD) and Rightmost Dispatch (RD)
metrics.

The result averages for the metrics we use are summarised in Figure 5.1. Fig-
ure A.1 of the appendix presents all values we measured across the corpus in a
single table.

The final section (§ 5.4) explores the hypothesis that some of our results might
be distributed according to power laws, thus making these distributions scale free.
We investigate the possibility and explain the implications.

5.1 Ratios

In this Section we present the results from the basic Dispatch Ratio (DR) and
Choice Ratio (CR) metrics, which measure basic relations between generic func-
tions and concrete methods.

49
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5.1.1 Dispatch Ratio

The Dispatch Ratio distribution for all applications is shown in Figure 5.2. All
applications follow a similar distribution with 58–93% of generic functions having
a single concrete method. The shares for generic functions with two (2–24%), three
(1–8%), and more methods decrease rapidly.

The generic function with the most concrete methods (print string(a)) has 825
definitions in Vortex. This concrete method shows up among the top polymor-
phic functions in several other applications (e.g. Whirlwind: 462, SBCL: 136,
OpenDylan: 128, LocStack: 61). Other generic functions with a high degree of
polymorphism include binary operators such as the equality test for two objects
(Vortex: 257 definitions, Whirlwind: 213, OpenDylan: 58, Gwydion:42), ’less than’
and addition operators.

The DRave values for the applications in our corpus are shown in Figure 5.1.
Six of the applications have a DRave measurement of at least 2, indicating that for
every generic function, on average a dispatch decision must be made between two
concrete functions.

5.1.2 Choice Ratio

The results for CRave in Figure 5.1 show considerable variance. On average, any
concrete method in Vortex is part of a dispatch decision with 60 or so other
methods, whereas for the NiceC it would be only with 3.5 other methods. This
is somewhat surprising for NiceC, which is the only language model we study
with a concept of overridable method declarations that allows the same concrete
method to be part of multiple generic functions. In reality we found only two Nice
generic functions that take advantage of this feature. We discuss Nice’s method
overriding concept and show an example in Section 4.4.5.

Figure 5.3 shows the Choice Ratio distribution for each application separately.
The first thing to note is that most concrete methods (25 – 63%) have a Choice Ratio
of 1, indicating that each is the sole method in a monomorphic generic function.

We note further that a relatively high proportion of concrete methods have
choice ratios of nine and higher. This factor can be attributed to some generic
functions with a high degree of polymorphism, that is, a large number of concrete
methods. However rare these generic functions are, the concrete methods they contain
are not as rare, as they occur in large numbers. For example, if a single generic
function has a DR of 100, then there will be at least 100 concrete methods with
CR ≥ 100. The strength of the Choice Ratio metric is the ability to expose this
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Figure 5.2: Dispatch Ratio (DR) frequency distribution, expressed as a percentage
of all generic functions with a given DR measurement.

correlation.

5.2 Specialisation

This section presents the results from the Degree of Specialisation metrics, mea-
sured per concrete method (DOS) and per generic function (DOSG).

5.2.1 Specialisation of Concrete Methods

Figure 5.4a shows, for each application, what proportion of concrete methods
have a given DOS measurement. At the top are the highest DOS values mea-
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Figure 5.3: Choice Ratio frequency distribution, expressed as a percentage of all
concrete methods with a given CRmeasurement.
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sured for the respective application. While it is quite common for methods to
specialise up to three parameters, we found generic functions that specialise seven
(OpenDylan, make−source−location), eight (Whirlwind, resolve8) and 20 (Gwydion,
parser:production 113) parameters. The range of proportions of generic functions
with no specialisation varies considerably across the applications.

The results for the RS metric are shown in Figure 5.4b. Comparing RS to
DOS in Figure 5.5, we see that some applications (OpenDylan, SBCL, McCLIM)
have significantly higher values for Rightmost Specialiser RS than they do for
Degree of Specialisation DOS. This means that some methods’ parameter list
must have some non-specialised parameters “to the left of” specialised parameters.
Since these methods’ parameters are not ordered based on their specialisation,
we hypothesise that programmers make use of the greater flexibility in ordering
parameters to enhance code readability. In other applications (Gwydion, CMUCL,
Vortex, NiceC), RS and DOS values seem to mostly equal each other. This reflects
the fact that for most methods, specialised parameters come first and are then
followed by unspecialised parameters. The RS distribution for McCLIM shows
the most pronounced deviation from the DOS distribution, as we measure 15%
less methods with RS = 1 than with DOS = 1. For RS = 2 the relation is inverted,
12% more methods having RS = 2 than DOS = 2.

Figure 5.6 shows scatter plots that account for the relation between DOS and
RS for each concrete method. It reveals certain differences between applications:
While the values for RS in CMUCL, SBCL and LocStack only exceed DOS values
by 1, at least one concrete method in McCLIM has DOS = 1 and RS = 6, meaning
that the method only specialises its sixth parameter. We can find a similar case for
Whirlwind, with a method that specialises its seventh parameter only.

5.2.2 Specialisation of Generic Functions

The Degree of Specialisation and Rightmost Specialiser distributions of generic
functions (DOSG and RSG) show similar pictures as their per concrete method
siblings (Figure 5.7).

5.3 Dispatch

In this section we first present the results from the Degree of Dispatch (DOD) and
Rightmost Dispatch (RD) metrics. We then compare DOD with Dispatch Ratio
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Degree of Specialisation (DoS) and Rightmost Specialiser (RS)
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Degree of Specialisation (DoS) vs. Rightmost Specialiser (RS)
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cialiser (RS) values for all concrete methods in each application.
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Figure 5.7: a: Degree of Specialisation (DOSG), and b: Rightmost Specialiser (RSG)
frequency distributions of generic functions across applications. The lowest block
in each stack (grey) is the proportion with DOSG/RSG measurement of 0, the next
block (green) is the proportion with 1, and so on. The value at the top of each stack
indicates the highest DOSG/RSG measured for this application.
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and Degree of Specialisation values and demonstrate their relationships.

5.3.1 Degree of Dispatch

Figure 5.8a shows the Degree of Dispatch (DOD). Excluding NiceC and LocStack,
most applications have similar levels (2.7–6.5%) of multiple dispatch (DOD >

1), and single dispatch (14–32%). NiceC has the lowest proportion of multiple
dispatch (1.0%) among the analysed applications, even though we have excluded
that part of the source written in Java. LocStack closely follows with 1.4%.

Across the entire corpus, the share of generic functions that are not required
to dispatch dynamically ranges from 62% to 93%; this corresponds nicely with
the proportions of generic functions having a single concrete method and thus a
Dispatch Ratio of 1.

On average, across all measured applications, we found that around 4% of
generic functions utilise multiple dispatch (DOD > 1) and around 22% utilise
single dispatch (DOD = 1).

Figure 5.8b shows the Rightmost Dispatched parameter (RD). This generally
follows DOD, although the proportions are often a little higher for RD ≥ 2 (see
Figure 5.9). This shows that a significant number of single-dispatched generic
functions have their dispatch decision made on the second or beyond argument
supplied in the call.

We repeat a portion of Figure 5.1 below to show the averages of the Degree of
Dispatch and Rightmost Dispatch metrics. As can be seen, RD is generally a little
larger than the Degree of Dispatch (DOD): RD ≥ DOD by definition (because
dispatch must occur on the RD’th argument, but there could be arguments to the
left of it that do not dispatch). RS is higher than DOS for the same reason.

Gwydion OpenDylan CMUCL SBCL McCLIM Vortex Whirlwind NiceC LocStack

DODave 0.20 0.39 0.42 0.42 0.45 0.36 0.32 0.15 0.08
RDave 0.24 0.48 0.45 0.45 0.54 0.41 0.37 0.15 0.11

The scatter plots in Figure 5.10 show the relation between DOD and RD mea-
surements for all generic functions. These plots clearly demonstrate the value
of the RD metric, as it is able to capture conditions when functions dispatch on
a single parameter found as far right as the sixth (McCLIM) or seventh (Vortex,
Whirlwind) position in the functions formal parameter list. Such generic functions,
although they are technically single dispatch, cannot be implemented as is in a
single dispatch language, because in single dispatch languages functions only
dispatch upon the first argument in a call.
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Figure 5.8: a: Degree of Dispatch (DOD), and b: Rightmost Dispatch (RD) fre-
quency distributions of generic functions across applications. The value at the top
of each stack indicates the highest DOD/RD measured for this application.
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Degree of Dispatch (DoD) and Rightmost Dispatch (RD)
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Figure 5.9: Degree of Dispatch (DOD) and Rightmost Dispatch (RD) distributions
compared for 0 ≤ DOD|RD ≤ 5.



62 CHAPTER 5. RESULTS

Degree of Dispatch (DoD) vs. Rightmost Dispatch (RD)
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Figure 5.10: Degree of Dispatch (DOD) values plotted against Rightmost Dispatch
(RD) values for all generic functions in each application.
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5.3.2 Dispatch Ratio and Degree of Dispatch

The proportion of generic functions with DOD = 0 exactly matches the proportion
of generic functions with DR = 1 for seven out of the nine applications (see
leftmost data points in Figure 5.11). A monomorphic function will never need
to dispatch dynamically (its DOD is always 0) because there are no alternative
implementations to choose from. We infer that the set of monomorphic generic
functions is contained in the set of non-dispatched generic functions (these have
DR = 1).

Conversely, all polymorphic generic functions will have a Degree of Dispatch
of at least 1. This seems logical, since most of the languages we analyse will not
allow two concrete methods of the same generic function to have the same set of
specialisers; in other words, two concrete methods have to specialise at least one
parameter position differently, to allow the dispatch mechanism of the language
to choose the single, most applicable method from the two given definitions.

The exception here is Common Lisp, where it is perfectly legal to have several
most applicable methods, given that these have different qualifiers (none, one
or more of BEFORE, AFTER, AROUND). Common Lisp qualifiers prescribe how
methods can be combined together to one runnable entity. CMUCL and McCLIM
make some use of this method combination capability, which explains why the
proportion of functions with DOD = 0 is slightly lower than the proportion of
monomorphic generic functions (DR = 1): a relatively small number of generic
functions have DOD = 0 even though they have multiple concrete methods. These
methods’ specialiser vectors are identical, but their qualifiers differ — which
technically means that they are not designed as alternatives to each other. Rather,
these methods are designed to be combined to a single runnable entity — meaning
that there is no need for the dispatch mechanism to select one most-applicable
code body from a set of alternatives. CMUCL has one generic function with this
property (representing 0.2% of total), and McCLIM has 72 (3.2%).

For Dispatch Ratios higher than 1 and Degrees of Dispatch higher than 2, the
correlation is less obvious, with the share for DR = 2 being consistently and
considerably lower than the share for DOD = 1 (as can be seen from Figure A.1:
for example, Gwydion has roughly 7% of generic functions with a DR of 2 while
double that proportion have DOD = 1).

The above relationship is reversed for DR > 3 and DOD > 2, from which
point on the Degree of Dispatch stays consistently below the Dispatch Ratio (see
Figure 5.11). In other words, the Degree of Dispatch distributions consistently
lean to the left of the Dispatch Ratio distributions; also, the “tail” of the Dispatch
Ratio distribution curve is much longer (which Figure 5.11 doesn’t show). The
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Dispatch Ratio (DR) and Degree of Dispatch (DoD)
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Figure 5.11: Degree of Dispatch (DOD) and Dispatch Ratio (DR) distributions
compared, with DR vertically aligned with DOD = DR − 1 to reflect the fact that
monomorphic generic functions do not dispatch dynamically.
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explanation for this phenomenon is simple: although we found generic functions
with a large number of concrete methods (i.e a DR as large as many hundreds, see
“Max” column in Figure A.1), the corresponding DOD is much lower (the highest
DOD measured across the whole corpus is 8). This shows to some extent that two
guidelines for good program design are being followed by a) using polymorphic
functions to confine the complexity of a program and b) keeping a function’s list
of parameters short to prevent losing their count1.

Figure 5.12 shows the relation between DR and DOD metrics from a different
perspective. The dots represent the intersection between DR and DOD values
for each generic function across the corpus, on a per-application basis. The re-
sulting plots reflects the fact that, although both of these metrics measure generic
functions, they do so along two different dimensions: DR measures the degree of
polymorphism, expressed by the number concrete methods in a generic function,
while the DOD’s upper boundary is set by the length of the list of parameters to
that function.

5.3.3 Specialisation and Dispatch

Figure 5.13 compares DOSG and DOD distributions. It shows that the dispatch
metrics DOD and RD are generally below the specialiser metrics DOSG and RSG,
because generic functions dispatch on specialised positions, but not all specialised
positions will dispatch if all concrete methods specialise the same argument po-
sition in the same way. Indeed, this appears to be the case in Gwydion Dylan
leading to the large values in Figure 5.7, such as a maximum 20 specialisers: many
of these specialisers are common to all the methods in the generic function, and
are in effect acting as static (non-dispatching) type declarations for those method
arguments. At the other extreme range Whirlwind and NiceC, where it appears
(Figure 5.13) that dispatch occurs on nearly each specialiser that is defined. In
other words, if methods of a generic function specialise a parameter position, then
they nearly always do it using different specialisers. This again hints at different
programming styles. What is surprising is that Vortex (written in Cecil) rather
resembles Gwydion Dylan in specialising many argument positions of a generic
function in the same way, while Whirlwind (written in Diesel) strictly specialises
only those parameter positions it needs to dispatch on.

1Alan Perlis pointedly addressed both these concerns in his Epigrams on Programming: “6.
Symmetry is a complexity-reducing concept (co-routines include sub-routines); seek it everywhere.”
and “11. If you have a procedure with ten parameters, you probably missed some.” (Perlis, 1982)
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Dispatch Ratio (DR) vs. Degree of Dispatch (DoD)
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Figure 5.12: Degree of Dispatch (DOD) values plotted against Dispatch Ratio (DR)
values for all generic functions in each application.
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 Degree of Specialisation (DoSG) and Degree of Dispatch (DoD)
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Figure 5.13: Degree of Specialisation of a generic function (DOSG) and Degree of
Dispatch (DOD) distributions compared for 0 ≤ DOSG|DOD ≤ 5.
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Figure 5.14: Dispatch Ratio (DR) distribution of all generic functions in the corpus,
plotted on logarithmic scales.

5.4 Power Laws

Among related studies of corpus analysis, some have sought to provide evidence
that many important relationships between software artifacts follow a power law
distribution (Wheeldon and Counsell (2003); Potanin et al. (2005); Baxter et al.
(2006)). The lines shown in Figure 5.2 for the Dispatch Ratio distribution are
reminiscent of logarithmic curves. This observation prompts us to investigate the
possibility of the Dispatch Ratio following a power law distribution.

As the curves seem fairly close to each other, we first plot all values on the
same log-log scale (Figure 5.14). To reduce the noise caused by high DR values,
which are, by their nature, very rare, the array of measured DR values is first
transformed into a vector of consecutive ranks. The strong indication of a straight
line is further evidence of the possibility that power laws are being followed.

Figure 5.15 shows separate logarithmic plots for each application’s Dispatch
Ratio distribution. While most distributions are indeed reminiscent of straight
lines, there is considerable spread between how close the applications follow a
power law: Gwydion, Vortex and Whirlwind fit the power law distribution quite
closely, while NiceC and LocStack hardly follow a straight line. Baxter et al. (2006)
came to similar results in their large-scale analysis of Java code. They surmise
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that certain attributes of the application’s code (such as its design or domain) may
affect the resulting distribution.

All samples show a considerable spread for higher ranks, which reflects the
fact that many generic functions with a high Dispatch Ratio have a low frequency
of one, two or three. In other words, generic functions with a certain very high
number of concrete methods (i.e. several hundred) rarely occur more than once in
an application.
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Dispatch Ratio (DR) Rank vs. Frequency (log-log scale)
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Figure 5.15: Dispatch Ratio (DR) distributions of each application, plotted on
logarithmic scales.



Chapter 6

Conclusions

In this Chapter we summarise the contributions of our research, discuss our
findings and look at potential directions for future work.

6.1 Contributions

This thesis presents an empirical study of multiple dispatch in object-oriented
languages. To our knowledge it is the first cross-language corpus analysis of
multiple dispatch. It is at the same time part of a larger research project that
compares the use of multiple dispatch to the use of techniques that simulate
multiple dispatch in Java (Muschevici et al., 2008). The main contributions of
this study are a language-independent model for multiple dispatch; a suite of
metrics to measure the use of multiple dispatch; and finally the results we obtain
by measuring a corpus in six multiple dispatch languages, which together provide
a quantitative assessment of the use of multiple dispatch in practice. The following
three sections summarise these contributions.

6.1.1 A Language-independent Model for Multiple Dispatch

We have developed a model of multiple dispatch that unifies language-specific
concepts to support reasoning about multiple dispatch in a language-independent
way. The model (represented in Figure 3.1) defines five main entities: A generic
function is a function that may be dynamically dispatched. Each generic function
dispatches to one or more concrete methods. Concrete methods specify their applica-
bility by defining specialisers for any of the function’s formal parameters. A generic
functions and its associated concrete methods are referred to by a name and share
a signature defining the number of permissible arguments and, if applicable, the
static types for each formal argument of that function.

71
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6.1.2 A Metrics Suite for Measuring Multiple Dispatch

We defined six metrics to measure multiple dispatch: the Dispatch Ratio and
Choice Ratio measure basic relations between generic functions and concrete
methods. The Degree of Specialisation and Rightmost Specialiser both capture
the use of formal parameter specialisers in methods and generic functions. The
Degree of Dispatch and Rightmost Dispatch determine the number and position of
formal parameters needed for a generic function to dispatch to a concrete method.

6.1.3 An Evaluation of the Use of Multiple Dispatch in Practice

We presented the values measured according to each metric for a corpus of nine
programs written in six multiple dispatch languages: CLOS, Dylan, Cecil, Diesel,
Nice and MultiJava, thus providing quantitative evidence of the use of multiple
dispatch in practice.

In answer to our introductory question how much is multiple dispatch used?,
we found that around 4% of generic functions utilise multiple dispatch and around
22% utilise single dispatch. Determining how much these results generalise —
i.e., how well these measurements represent the use of multiple dispatch in other
applications and languages — necessarily requires further study, but we expect
these results to provide a benchmark for comparison.

6.2 Discussion

There are a number of inferences which can be drawn from the results presented
in Chapter 5. Perhaps the most obvious is that many of the metric values are low.
Every language we measured had more than 55% monomorphic generic functions;
less than 7% of functions dispatch on two or more arguments (Figure 5.8). This is
reflected in Dispatch Ratio DRave values: no language had more than 2.5 concrete
methods for each generic function; on average, a function dispatches only on 0.1
to 0.7 arguments (Figure 5.1, DODave values).

6.2.1 Monomorphic vs Polymorphic Functions

It seems that in all of our studied languages, there will be many generic functions
that do not dispatch: static methods, constructors, but also auxiliary methods,
methods that provide default argument values in languages without variable
argument lists or keyword arguments. On the other hand, there will be a significant
number of generic functions that do dispatch to three or more different concrete
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methods — and the methods belonging to those functions make up a substantial
fraction of the program’s methods.

The Template Method pattern (Gamma et al., 1994), for example, will con-
tribute to this effect, as only “hook methods” should be overridden in subclasses,
while methods providing abstract, concrete, and primitive operations will not be
overridden.

Our metrics cannot say anything about how important multiple dispatch
(or even single dispatch) is to program design: simply that many methods are
monomorphic, and most of the remainder are single dispatch. Those dispatching
methods may be crucial to the functioning of a particular program — as well as
Template method, many other patterns (Visitor, Observer, Strategy, State, Compos-
ite) are about scaffolding a well-chosen dynamic dispatch with lots of relatively
straightforward non-dispatching code.

Another point here is that a language specification does not dictate a program-
ming style. Just supporting multiple (or even single) dispatch in a programming
language doesn’t mean it will be used in programs, the Nice compiler being a
prime example.

6.2.2 Style

Our metrics, besides furnishing absolute numbers, can be interpreted together to
identify attributes of programming style in the applications we study.

Use of Specialisers

By comparing DOSG and DOD metrics in Figure 5.13, we can single out two
applications that use specialisation strictly for the purpose of dynamic dispatch
(Whirlwind and NiceC); across the rest of the corpus, there seem to be much less
generic function parameters that are dispatched upon than specialised parameters.
We surmise that in general, specialisers are used descriptively: programmers
specify specialisers for each parameter for documentation purposes, even though
these parameters are not required for method dispatch.

From various discussions with users of CLOS and Dylan1, specialising param-
eters is often seen as the way to document the scope of a method by stating the
types of objects it is designed to handle. How and which specialisers are used to
dispatch is not the programmers focus of attention. This is regarded as the key
advantage of multiple dispatch over hand-coded alternatives (instanceof-tests,
double dispatch pattern). Those alternatives are low-level techniques, as they force

1in person and on the #Lisp and #Dylan IRC channels
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developers to focus on how to simulate multiple dispatch. Multiple dispatch is a
high-level language feature because it doesn’t deflect the programmers attention
from the actual programming problem.

Specialisation Patterns

Comparing RS and DOS distributions in Figure 5.5 we find that for some applica-
tions (mainly Gwydion, CMUCL, Vortex) these distribution closely follow each
other, while for OpenDylan, SBCL and McCLIM there is a larger proportion of
methods with RS > DOS. From these observations we can tell that Gwydion,
CMUCL and Vortex tend to specialise parameters left-to-right, then following with
unspecialised parameters; the applications that fall into the second group do not
order parameters based on specialisation.

Dispatch

Comparing RD and DOD metrics in Figures 5.1 (averages), 5.9 (distributions) and
5.10 (values) we see that some applications (primarily McCLIM, and OpenDylan,
but also Gwydion, Vortex and Whirlwind) have significantly higher values for
Rightmost Dispatched parameter RD than they do for Degree of Dispatch DOD.
This means that some generic functions’ argument lists must have some non-
dispatching parameters “to the left of” the dispatching parameters — a contrast
to single-dispatch languages where the dispatch is always on the single leftmost
parameter. For example, programs could contain two-argument generic functions
which dispatch on the second argument but not on the first.

In the case of McCLIM, this must partly be explained by the fact that the CLIM
Standard (McKay and York, 2001) explicitly requires some types of generic func-
tions to dispatch on their second arguments (setfs and mapping functions). More
generally, multiple dispatch gives more options to API designers, who can choose
argument order to reflect application semantics rather than be restricted by having
to place a dispatching argument first. In single dispatch languages, code can
fall into a “Object Verb Subject” order: rectangle.drawOn(window). Here, Rectangle

must come first, purely because the code needs to dispatch on Rectangle to draw
different kinds of figures. In multiple dispatch languages, this could equally be
written window.draw(rectangle) matching the “Subject Verb Object” word order com-
monly used in English, or perhaps “Verb Subject Object” draw(window,rectangle).
Multiple dispatch languages offer this flexibility, even where only single dispatch
is required, and our metrics demonstrate that programmers take advantage of this
flexibility.
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6.2.3 A Critical Perspective

The corpus we use in this study may appear relatively small when compared to
corpora used in studies taking similar methodological approaches (Baxter et al.
(2006); Tempero et al. (2008); the Java study of Muschevici, Potanin, Tempero,
and Noble (2008)). This largely reflects the fact that multiple dispatch languages
are not in wide use today. For most languages covered, we only analyse a single
application (the exceptions are CLOS with three and Dylan with two applications).
Furthermore, most applications are compilers and their standard libraries. There-
fore we cannot claim that our results are representative for the use of multiple
dispatch in any of these languages.

Our study provides “hard evidence” in terms of concrete numbers that account
for the use of multiple dispatch in existing programs. Still, these numbers only
express measurements based on the information furnished by compilers through
their respective interfaces.

Finally, the strength of our approach comes from its diversity. Our study anal-
yses a broad range of six languages and eight compilers, yet when comparing
the results among each other, their similarity is striking. Function polymorphism,
as measured by the Dispatch Ratio metric, is distributed in all applications ac-
cording to the same logarithmic curve (Figure 5.2); methods generally specialise
one single parameter (Figure 5.4); and the proportions of static (non-dispatched),
single-dispatch and multiple dispatch functions uniformly follow the same distri-
bution across the whole corpus (Figure 5.8). This common result across a range
of languages, libraries, applications, implementations and analysis instruments
increases our confidence in the large-scale findings of our study.

6.3 Evidence Based Language Design

I have always remark’d, that the author proceeds for some time in the
ordinary ways of reasoning. . . when all of a sudden I am surpriz’d to find, that
instead of the usual copulations of propositions, is, and is not, I meet with no
proposition that is not connected with an ought, or an ought not.

David Hume, A Treatise of Human Nature, 1739.

Hume’s Law states that normative (prescriptive) statements — in this case,
statements about how programs ought to be written — cannot be justified exclu-
sively by descriptive statements. Our corpus analysis is descriptive: it tells us
about how programs are written, but cannot (on its own) tell us about whether
that is a “good” way to write programs, or whether language designers should
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consider multiple dispatch (or even single dispatch) as a language feature worth
retaining. In this thesis, we do not try to make any of these claims — we do
not even claim whether high or low values for metrics are desirable: our metrics
characterise program structures: they do not attempt to measure program quality.

Nonetheless, there seem to be clear advantages to informing the design of
future languages with evidence drawn by something other than anecdote, per-
sonal experience or small-scale observational studies. Similarly, maintenance and
debugging tasks — and even teaching about programming paradigms — would
surely benefit from being based in evidence about the world as it is, as well as the
world as we would like it to be!

6.4 Future Work

Our study is but a beginning in a line of research aiming at the question how
much value is gained in practice by the use of multiple dispatch?, and we hope
our work will inspire more studies. This section lists possible directions for future
research in this area.

6.4.1 Method Calls and Dynamic Aspects of Multimethods

Our quantitative study of multiple dispatch approaches the use of multimethods
from a static point of view. We focus on method definitions which we examine at
compile-time. We do not examine method calls or dynamic aspects of a program,
such as the frequency of method calls through a call site or the frequency of
invocations per method. Consequently, we would like to see these aspects covered
in future studies.

6.4.2 Object-Orientation and Beyond

While single dispatch naturally fits the class- or object-based method encapsulation
approach of mainstream programming languages, multiple dispatch seems to be
the natural solution for a different category of problems. These problems occur
whenever a behaviour depends on the types of multiple objects being used together
(combined), and cannot be regarded as an invariant property of a single type of
object, as are methods according to the object-oriented paradigm (Booch, 1982).

Clifton et al. (2006, Section 5.1) present anecdotal evidence for some program-
ming scenarios where multiple dispatch is used in MultiJava projects. These
include binary methods, event handling, tree traversals, and finite state machines.
Our study complements their findings by providing quantified evidence that
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multiple dispatch is used for solving existing programming problems. However,
further qualitative studies are needed to identify and classify the real-world prob-
lems for which multiple dispatch provides an adequate solution — and for which
traditional object-oriented languages do not.

6.4.3 Java Method Overloading

One aspect to consider about this study is that most languages examined here are
primarily dynamic, in the sense that even if they support static type declarations,
these are purely optional. Java, C++ and C], on the other hand, have a mandatory
prescriptive static type system which can be used to overload method definitions.
Dispatch to these overloaded methods occurs at compile time, which, as the
examples in Section 2.1 show, can lead to incorrect behaviour. Due to its error
potential, method overloading is generally considered bad programming style
and discouraged (Bloch, 2001; Bloch and Gafter, 2005; Lea, 2008).

Because the multiple dispatch facility of the languages covered in this study
subsumes static overloading of methods, we cannot tell how many program-
ming problems that are solved using multiple dispatch in these languages are
customarily solved for example in Java using static method overloading. We
note however that Nice and MultiJava, the two languages which support both
Java-like static overloading and dynamically dispatched multimethods, exhibit a
significantly lower proportion of multiple dispatch (1.0–1.4%) than applications in
other languages (on average 4.9%), as measured by the Degree of Dispatch metric.

We hope to see studies of method overloading in Java. Such studies could
reveal the extent to which method overloading is used in existing programs and
strengthen the case for multiple dispatch as a safe, upward compatible alternative.
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Appendix A

Results

Figure A.1 contains the frequency distributions measured by each metric. The
“Max.” column gives the highest value measured for the given application. Subse-
quent columns show the absolute number and proportion (in percent) of measured
subjects (generic functions or concrete methods) with the measurement given in
the corresponding column header. The last column shows the sum for subjects
with a metric value of 9 or higher.
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Application Metric Max. 0 %0 1 %1 2 %2 3 %3 4 %4 5 %5 6 %6 7 %7 8 %8 9+ %9+

Gwydion DR 204 0 0.00 3167 83.36 261 6.87 135 3.55 66 1.74 38 1.00 29 0.76 28 0.74 14 0.37 61 1.61
Gwydion CR 204 0 0.00 3167 47.83 522 7.88 405 6.12 264 3.99 190 2.87 174 2.63 196 2.96 112 1.69 1591 24.03
Gwydion DOS 20 380 5.74 2404 36.31 2071 31.28 912 13.77 365 5.51 95 1.43 180 2.72 54 0.82 84 1.27 76 1.15
Gwydion DOSG 20 355 9.34 1536 40.43 952 25.06 216 5.69 301 7.92 54 1.42 171 4.50 54 1.42 84 2.21 76 2.00
Gwydion RS 20 380 5.74 2331 35.21 2072 31.29 877 13.25 450 6.80 64 0.97 162 2.45 4 0.06 185 2.79 96 1.45
Gwydion RSG 20 355 9.34 1499 39.46 970 25.53 129 3.40 385 10.13 23 0.61 153 4.03 4 0.11 185 4.87 96 2.53
Gwydion DOD 4 3167 83.36 528 13.90 99 2.61 4 0.11 1 0.03 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Gwydion RD 6 3167 83.36 405 10.66 176 4.63 36 0.95 12 0.32 2 0.05 1 0.03 0 0.00 0 0.00 0 0.00

OpenDylan DR 362 0 0.00 1459 68.08 312 14.56 125 5.83 78 3.64 56 2.61 26 1.21 5 0.23 18 0.84 64 2.99
OpenDylan CR 362 0 0.00 1459 27.07 624 11.58 375 6.96 312 5.79 280 5.20 156 2.89 35 0.65 144 2.67 2004 37.19
OpenDylan DOS 7 349 6.48 3684 68.36 1172 21.75 153 2.84 11 0.20 19 0.35 0 0.00 1 0.02 0 0.00 0 0.00
OpenDylan DOSG 7 130 6.07 1538 71.77 425 19.83 39 1.82 8 0.37 2 0.09 0 0.00 1 0.05 0 0.00 0 0.00
OpenDylan RS 7 349 6.48 3231 59.96 1503 27.89 255 4.73 23 0.43 27 0.50 0 0.00 1 0.02 0 0.00 0 0.00
OpenDylan RSG 7 130 6.07 1360 63.46 568 26.50 68 3.17 13 0.61 3 0.14 0 0.00 1 0.05 0 0.00 0 0.00
OpenDylan DOD 4 1459 68.08 545 25.43 126 5.88 11 0.51 2 0.09 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
OpenDylan RD 5 1459 68.08 401 18.71 239 11.15 37 1.73 6 0.28 1 0.05 0 0.00 0 0.00 0 0.00 0 0.00

CMUCL DR 29 0 0.00 176 64.94 55 20.30 13 4.80 10 3.69 6 2.21 1 0.37 0 0.00 1 0.37 9 3.32
CMUCL CR 29 0 0.00 176 32.00 110 20.00 39 7.09 40 7.27 30 5.45 6 1.09 0 0.00 8 1.45 141 25.64
CMUCL DOS 3 49 8.91 372 67.64 118 21.45 11 2.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
CMUCL DOSG 3 11 4.06 222 81.92 34 12.55 4 1.48 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
CMUCL RS 4 49 8.91 351 63.82 123 22.36 24 4.36 3 0.55 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
CMUCL RSG 4 11 4.06 210 77.49 44 16.24 5 1.85 1 0.37 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
CMUCL DOD 3 177 65.31 77 28.41 13 4.80 4 1.48 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
CMUCL RD 4 177 65.31 72 26.57 16 5.90 5 1.85 1 0.37 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

SBCL DR 136 0 0.00 231 63.64 77 21.21 23 6.34 10 2.75 6 1.65 0 0.00 2 0.55 3 0.83 11 3.03
SBCL CR 136 0 0.00 231 26.83 154 17.89 69 8.01 40 4.65 30 3.48 0 0.00 14 1.63 24 2.79 299 34.73
SBCL DOS 3 63 7.32 647 75.15 140 16.26 11 1.28 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
SBCL DOSG 3 10 2.75 311 85.67 38 10.47 4 1.10 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
SBCL RS 4 63 7.32 570 66.20 194 22.53 31 3.60 3 0.35 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
SBCL RSG 4 10 2.75 245 67.49 102 28.10 5 1.38 1 0.28 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
SBCL DOD 3 231 63.64 115 31.68 13 3.58 4 1.10 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
SBCL RD 4 231 63.64 106 29.20 20 5.51 5 1.38 1 0.28 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

McCLIM DR 160 0 0.00 1103 57.87 448 23.50 148 7.76 78 4.09 33 1.73 32 1.68 7 0.37 9 0.47 48 2.52
McCLIM CR 160 0 0.00 1103 24.96 896 20.28 444 10.05 312 7.06 165 3.73 192 4.34 49 1.11 72 1.63 1186 26.84
McCLIM DOS 5 343 7.76 3153 71.35 747 16.90 166 3.76 9 0.20 1 0.02 0 0.00 0 0.00 0 0.00 0 0.00
McCLIM DOSG 6 121 6.35 1596 83.74 167 8.76 18 0.94 3 0.16 0 0.00 1 0.05 0 0.00 0 0.00 0 0.00
McCLIM RS 6 343 7.76 2499 56.55 1266 28.65 207 4.68 58 1.31 36 0.81 10 0.23 0 0.00 0 0.00 0 0.00
McCLIM RSG 6 121 6.35 1253 65.74 469 24.61 47 2.47 8 0.42 4 0.21 4 0.21 0 0.00 0 0.00 0 0.00
McCLIM DOD 5 1175 61.65 614 32.21 108 5.67 8 0.42 0 0.00 1 0.05 0 0.00 0 0.00 0 0.00 0 0.00
McCLIM RD 6 1175 61.65 491 25.76 196 10.28 33 1.73 5 0.26 2 0.10 4 0.21 0 0.00 0 0.00 0 0.00

Vortex DR 825 0 0.00 4441 67.89 1038 15.87 402 6.15 221 3.38 113 1.73 68 1.04 58 0.89 28 0.43 172 2.63
Vortex CR 825 0 0.00 4441 29.19 2076 13.65 1206 7.93 884 5.81 565 3.71 408 2.68 406 2.67 224 1.47 5002 32.88
Vortex DOS 6 1839 12.09 10900 71.65 2255 14.82 200 1.31 15 0.10 2 0.01 1 0.01 0 0.00 0 0.00 0 0.00
Vortex DOSG 6 1737 26.56 4140 63.29 584 8.93 68 1.04 10 0.15 1 0.02 1 0.02 0 0.00 0 0.00 0 0.00
Vortex RS 8 1839 12.09 10668 70.13 2271 14.93 285 1.87 79 0.52 64 0.42 4 0.03 1 0.01 1 0.01 0 0.00
Vortex RSG 8 1737 26.56 4060 62.07 592 9.05 114 1.74 28 0.43 5 0.08 3 0.05 1 0.02 1 0.02 0 0.00
Vortex DOD 4 4441 67.89 1843 28.18 232 3.55 24 0.37 1 0.02 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Vortex RD 7 4441 67.89 1629 24.90 367 5.61 81 1.24 18 0.28 2 0.03 2 0.03 1 0.02 0 0.00 0 0.00

Whirlwind DR 462 0 0.00 4180 72.86 823 14.35 282 4.92 158 2.75 55 0.96 45 0.78 39 0.68 25 0.44 130 2.27
Whirlwind CR 462 0 0.00 4180 35.21 1646 13.87 846 7.13 632 5.32 275 2.32 270 2.27 273 2.30 200 1.68 3549 29.90
Whirlwind DOS 8 5065 42.67 5354 45.10 1288 10.85 149 1.26 13 0.11 0 0.00 1 0.01 0 0.00 1 0.01 0 0.00
Whirlwind DOSG 8 4055 70.68 1432 24.96 213 3.71 26 0.45 9 0.16 0 0.00 1 0.02 0 0.00 1 0.02 0 0.00
Whirlwind RS 8 5065 42.67 4871 41.03 1499 12.63 347 2.92 52 0.44 30 0.25 4 0.03 1 0.01 2 0.02 0 0.00
Whirlwind RSG 8 4055 70.68 1244 21.68 319 5.56 79 1.38 24 0.42 11 0.19 2 0.03 1 0.02 2 0.03 0 0.00
Whirlwind DOD 8 4180 72.86 1331 23.20 196 3.42 22 0.38 7 0.12 0 0.00 0 0.00 0 0.00 1 0.02 0 0.00
Whirlwind RD 8 4180 72.86 1141 19.89 305 5.32 74 1.29 22 0.38 11 0.19 2 0.03 1 0.02 1 0.02 0 0.00

NiceC DR 24 0 0.00 1025 86.57 91 7.69 33 2.79 10 0.84 5 0.42 3 0.25 3 0.25 2 0.17 12 1.01
NiceC CR 24 0 0.00 1025 63.47 182 11.27 99 6.13 40 2.48 25 1.55 18 1.11 21 1.30 16 0.99 189 11.70
NiceC DOS 3 1131 70.03 440 27.24 42 2.60 2 0.12 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
NiceC DOSG 3 1016 85.81 153 12.92 13 1.10 2 0.17 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
NiceC RS 4 1131 70.03 420 26.01 58 3.59 4 0.25 2 0.12 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
NiceC RSG 4 1016 85.81 148 12.50 15 1.27 4 0.34 1 0.08 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
NiceC DOD 3 1025 86.57 147 12.42 10 0.84 2 0.17 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
NiceC RD 4 1025 86.57 143 12.08 13 1.10 2 0.17 1 0.08 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

LocStack DR 61 0 0.00 458 93.28 9 1.83 6 1.22 1 0.20 3 0.61 1 0.20 2 0.41 0 0.00 11 2.24
LocStack CR 61 0 0.00 458 62.31 18 2.45 18 2.45 4 0.54 15 2.04 6 0.82 14 1.90 0 0.00 202 27.48
LocStack DOS 3 92 12.52 553 75.24 73 9.93 17 2.31 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
LocStack DOSG 3 92 18.74 385 78.41 12 2.44 2 0.41 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
LocStack RS 3 92 12.52 553 75.24 30 4.08 60 8.16 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
LocStack RSG 3 92 18.74 385 78.41 8 1.63 6 1.22 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
LocStack DOD 2 458 93.28 26 5.30 7 1.43 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
LocStack RD 3 458 93.28 19 3.87 8 1.63 6 1.22 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

Figure A.1: Metrics: frequency distributions
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