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Abstract  i 

 

Abstract 

The hypothesis that artificial emotion-like mechanisms can improve the adaptive 

performance of robots and intelligent systems has gained considerable support in 

recent years. While artificial emotions are typically employed to facilitate human-

machine interaction, this thesis instead focuses on modelling emotions and affect in a 

non-social context. In particular, affective mechanisms are applied to the problem of 

mobile robot navigation. 

A three-layered reactive/deliberative controller is developed and implemented, 

resulting in several contributions to the field of mobile robot control. Rather than 

employing a reactive layer, a deliberative layer and an interface between them, the 

control problem is decomposed into three different conceptual spaces – position 

space, direction space and velocity space – with a distinct control layer applied to 

each. Existing directional and velocity space approaches such as the vector field 

histogram (VFH) and dynamic window methods employ different underlying 

mechanisms and terminology. This thesis unifies these approaches in order to 

compare and combine them. The weighted sum objective functions employed by 

some existing approaches that inspired the presented directional and velocity control 

layers are replaced by weighted products. This enables some hard constraints to be 

relaxed in favour of weighted contributions, potentially improving a system’s 

flexibility without sacrificing safety (but coming at a cost to efficiency). 

An affect model is developed that conceptualises emotions and other affective 

interactions as modulations of cognitive processes. Unlike other models of affect-

modulated cognition (e.g. Dörner and Hille, 1995), this model is designed specifically 

to address problems relating to mobile robot navigation. The role of affect in this 

model is to continuously adapt a controller’s behaviour patterns in response to 

different environments and momentary conditions encountered by the robot. Affective 

constructs such as moods and emotions are represented as intensity values that arise 

from hard-coded interpretations of local stimuli, as well as from learned associations 

stored in global maps. They are expressed as modulations of control parameters and 

location-specific biases to path-planning. Extensive simulation experiments are 

conducted in procedurally-generated environments to assess the performance 

contributions of this model and its individual components. 
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Introduction  1 

1 Introduction 

Despite decades of optimism, the robotics and artificial intelligence communities have 

thus far been unable to synthesize adaptive capabilities comparable to those possessed 

by humans or even simple animals. Futurists have predicted that strong AI (machine 

consciousness1) is “several decades away” since the 1950s, but over fifty years later it 

remains firmly in the realm of science fiction. Due to the difficulties associated with 

subjective issues such as consciousness, most current research (including this thesis) 

focuses on weak AI applications. Such research typically investigates computational 

mechanisms inspired by psychological and/or neurobiological models, but stops short 

of claiming that these software constructs are conscious in the same manner as 

humans or animals. 

The problem of understanding the human mind has been similarly elusive. 

Fundamental philosophical issues such as the mind-body problem have been subject 

to endless speculation, but remain unsolved. Some critical elements may be missing 

from our picture of the mind. One of these elements may be emotion. Works of fiction 

often depict future artificial intelligences as emotionless beings driven by logic. 

However, as the classical distinction between emotion and cognition becomes 

increasingly nebulous, some authors have hypothesised that emotion may be a 

prerequisite for general intelligence (Minsky, 1986; Damasio, 1994). This view is best 

summarised by Minsky (1986): 

“The question is not whether intelligent machines can have any emotions, but 

whether machines can be intelligent without emotions.” 

Recent years have seen increased interest in the development of robots and intelligent 

systems that possess emotion-inspired software mechanisms. Researchers typically 

focus on the application of emotions to social robotics (e.g. Breazeal, 2004; Broekens, 

2007; Hollinger et al., 2006). In this domain, the natural human tendency towards 

anthropomorphism can be exploited by portraying robotic emotions as facial 

expressions, body language and/or tone of voice. Emotions can also be applied to 

robotics applications other than human-machine interaction (Arkin, 2005). 

Nevertheless, purportedly general-purpose emotion models are often applied in a 

                                                 
1 An in-depth discussion of machine consciousness is given in (Haikonen, 2003). 
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social context, where they influence interactions with humans or other robots. Few 

implementations have been demonstrated that approach the issue from the perspective 

of an individual robot in a non-social context. 

In the biological world, emotion is often viewed as a general facilitator of survival and 

adaptation. Some emotional functions that are beneficial to humans and animals may 

also be applicable to the control of autonomous mobile robots. Like biological 

organisms, mobile robots interact with unpredictable, partially-known, real-world 

environments. They must contend with continuous, noisy, imprecise sensor data, 

rather than discrete labelled and categorised objects. Operating in real-time with 

limited resources, they must make tradeoffs between many competing factors (e.g. the 

need for fast action and careful planning; immediate reward and delayed gratification; 

efficiency and optimality; safety and success). Existing control methods have 

addressed many of these issues, but the general problems associated with mobile robot 

control remain non-trivial. 

A number of control approaches have been developed that allow mobile robots to 

navigate safely and efficiently in various different types of environments. These 

include behaviour-based control methods utilising simple state machines; 

biologically-inspired systems based on artificial neural networks, fuzzy inference 

systems and/or evolutionary algorithms; and search-based motion planners that 

employ detailed world representations. Many successful controllers incorporate 

multiple techniques (e.g. reactive control and deliberative planning), combining their 

strengths and mitigating individual weaknesses. Traditional controllers are typically 

tuned, trained or evolved in a specific type of environment or a set of similar 

environments. At best, a robot is likely to perform sub-optimally if it is placed in an 

environment that differs markedly from the ones in which its controller is configured 

(e.g. if it is moved from a cluttered indoor laboratory to a sparsely occupied outdoor 

setting); at worst, it may fail utterly. Rigidity can be lessened by optimising 

performance in a diverse set of environments, but this may result in a ‘Jack of all 

trades, master of none’ system that compromises performance in one type of 

environment to achieve satisfactory performance in another. 

To address problems related to adaptive control and learning, several mobile robot 

controllers incorporating emotion-like software mechanisms have been developed 

(e.g. Gadanho and Hallam, 2001; Neal and Timmis, 2003). These systems typically 
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employ simple behaviour-based or neural network control architectures that are driven 

by emotions. However, quantitative results are scarce, and it is difficult to envision 

how such simple emotion-based control mechanisms could outperform traditional 

approaches that have proven highly reliable, albeit inflexible. Reliability will likely be 

compromised if a robot’s decisions and actions are completely dominated by 

emotions, causing failures that an ‘emotionless’ robot can easily avoid. 

Performance may be improved by combining traditional control approaches with 

emotion-like computational models that facilitate adaptation. In particular, ‘artificial 

emotions’ could be employed to modify a robot’s behaviour in response to different 

environments and situations that it encounters as it performs its duties. While emotion 

should have a tangible influence over the robot’s actions, in many situations it should 

remain a secondary influence rather than a dominant one. The implementation of such 

complementary systems could not only lead to the improvement of future mobile 

robot controllers, but it may inspire further advances in the ongoing multidisciplinary 

effort to understand and define biological cognition and emotion. 

1.1 Objectives 
The broad objective of this thesis is to address the question of whether computational 

mechanisms inspired by biological emotions can be beneficial to robots beyond the 

social domain. In particular, the thesis will focus on the emotion-based control of a 

mobile robot whose task is to navigate and explore arbitrary flat-surfaced 

environments. Different theories regarding biological and computational emotion will 

be investigated, but an emphasis will be placed on ideas that can be applied to our 

intended application. Given the subjective nature of biological emotions, no claims 

will be made that the software mechanisms investigated are ‘real’ emotions 

experienced by robots in the same manner as humans perceive emotions. The absence 

of such claims does not preclude the usefulness of this approach, however. A loose 

analogy can be made between artificial emotions and artificial neural networks 

(ANNs). ANNs are widely regarded as effective computational mechanisms even 

though few researchers would claim that they bear more than a superficial 

resemblance to their biological analogues. Similarly, this thesis will endeavour to 

determine whether emotion-like states and processes can be useful for the design of 
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robots and intelligent systems, even if they are not the same as their biological 

namesakes. 

A robot controller comprising two main components will be developed and 

implemented. The first component is a cognitive system, represented by a control 

architecture that provides the robot’s underlying navigation capabilities. As the robot 

is expected to respond to environmental dynamics while navigating in a complex 

world, this architecture will combine reactive control and deliberative planning 

approaches. While robustness is a high priority, it is also important for this system to 

be highly flexible, eschewing binary decisions and hard limits in favour of continuous 

weights and other parameters that can be adjusted to suit a wide variety of 

environments and situations. 

The second component is an emotion system that influences the controller’s 

behavioural tendencies in response to different emotion-like states and processes. This 

system will be inspired by biological theories of human emotion. However, the 

emotions represented will not necessarily match their human counterparts, as the 

problem of mobile robot navigation differs from many problems that human emotions 

have evolved to address. Where biological plausibility comes at a cost to practical 

utility, this model will generally favour the latter. 

To assess the model’s effects on robot behaviour, the planning and control 

architecture’s performance while operating in isolation will be compared to its 

performance when it is influenced by emotions. Experiments will be conducted in a 

diverse set of simulated environments with different cognitive and emotional 

components set to varying degrees of activation so that their individual performance 

contributions can be quantitatively measured. 

1.2 Thesis Outline 
• Chapter 2 – The question of what it means to model emotions in software 

agents is addressed, and the concept of affect (encompassing many emotion-

like states and processes) is introduced. Psychological and neurobiological 

perspectives on biological emotions are described. Various different 

approaches for modelling emotions and related states and processes in 

intelligent systems and robots are reviewed. 
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• Chapter 3 – A high level description of the model of robotic affect developed 

for this project is presented. This model interacts with an underlying planning 

and control system by modulating its control parameters. It incorporates 

multiple different affective states, including stimuli, drives, emotions and 

moods as distinct, interacting components. 

• Chapter 4 – MARVIN, the mobile robot that serves as the target platform and 

inspiration for this research, is introduced. The robot’s hardware and software 

are described. A simulated version of MARVIN is developed for the purpose 

of testing our approach. Simulation maps can be generated procedurally, 

resulting in diverse sets of environments in which to conduct navigation 

experiments. 

• Chapter 5 – The underlying planning and control system is implemented. A 

hybrid reactive/deliberative architecture is employed that incorporates three 

distinct control layers. The deliberative layer updates a set of rectangular grid 

maps and plans optimal paths through the global environment. Next, the 

directional control layer obtains a locally-optimal heading that loosely follows 

the planned path and avoids nearby obstacles. Finally, the velocity control 

layer obtains linear and angular velocities that move the robot in the intended 

direction at an appropriate speed while avoiding obstacles. 

• Chapter 6 – Experimental results demonstrating the utility of the planning and 

control system’s main components are presented. By varying certain weights, 

the performance contributions of individual subsystems can be measured. 

• Chapter 7 – Navigation experiments are conducted on the integrated controller 

(without emotional influences). The performance effects of different control 

parameters are assessed so that they can be grouped into different categories 

and modulated appropriately by the affect model. 

• Chapter 8 – Implementation details of the robotic affect model are provided. 

Affective stimuli grow or decay in response to specific eliciting events. Drives 

represent groupings of control parameters that are modulated in a similar 

manner. Emotions bridge the gap between stimuli and drives, and also produce 

location-specific biases to path planning. Moods modulate the overall 

influence certain emotions can exert over the robot’s behaviour. 
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• Chapter 9 – Experimental results showing the performance influences of 

different components of the affect model are presented. ‘Emotional’ 

navigation is compared to ‘emotionless’ navigation by iteratively varying 

weights controlling the contributions of different affective components. 

• Chapter 10 – Results obtained from the fully-integrated affective navigation 

system are shown and discussed. Interactions between different components 

are demonstrated, and a set of experiments are conducted to quantitatively 

assess its performance in different types of environments. Some experiments 

involving extensions to this research (robotic personality and human reactions 

to affective mobile robots) are also conducted. 

• Chapter 11 – The thesis concludes with a summary of the contributions and 

international publications resulting from this research, and a discussion of 

future work. 
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2 Robotic Emotions and Affective Computing 

Emotions have historically been regarded as the antithesis of reason. This belief 

largely stems from the Cartesian dualism philosophies that have dominated Western 

thinking for centuries. Such philosophies tend to view emotions in a negative light, 

regarding them as base instincts that the rational mind should strive to overcome. 

Viewed from this perspective, it would appear counterproductive to attempt to bestow 

machines with emotions. 

Recent years have seen growing acceptance of philosophies that challenge the strong 

division between mind and body. Increasing psychological and neurobiological 

evidence links emotions to functions that were once considered purely cognitive, such 

as problem-solving, learning, memory and perception. This has led some authors to 

conclude that emotions are a prerequisite for intelligence (Damasio, 1999; Minsky, 

1986). A more moderate position adopted by other researchers is that emotions may 

not be necessary for intelligence, but they can be beneficial to adaptive behaviour 

(Picard, 2002; Sloman, 2005). Hence, the idea of applying emotion-like software 

mechanisms to machines deserves serious consideration. 

2.1 Defining Robotic Emotions 
There are no universally-accepted definitions for emotions. As with other subjective 

concepts such as consciousness, emotions are very difficult to define in concrete 

terms. Other emotion-like words such as feelings, moods, attitudes, drives and 

personality traits are similarly nebulous. To some authors, these terms are 

synonymous with emotions, while others regard them as distinct concepts. According 

to authors such as Sloman et al. (2005), it is more useful to regard emotion as a subset 

of the more general category of affect, which includes a wide range of related states 

and processes. Picard (1995) coined the term ‘affective computing’ to describe the 

application of emotions and affect to software systems. 

The conceptual ambiguity is compounded when authors attempt to define emotions in 

the context of software agents and robots. At one end of the spectrum of definitions 

are those that regard emotions as states experienced subjectively by a machine in a 

manner akin to the way humans feel emotions. The problem with such strong 
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definitions is that science is ill-equipped to contend with subjective issues, 

particularly in nonhumans. This problem is similar to that encountered by researchers 

attempting to study animal emotions (Dawkins, 2000). Lacking complex language 

abilities, most animals cannot easily report their subjective feelings and experiences, 

so researchers can only study their behaviours. Certain animal behaviours outwardly 

resemble human emotions. However, to claim that they actually are emotions is to 

assume anthropomorphism. Hence, it is difficult to prove that animals experience 

emotions in the same way as humans, even though it is highly likely that some 

emotions do cross species boundaries. The case for subjectively experienced emotions 

in software agents or robots is even less convincing, because there are fewer 

similarities between humans and computers than there are between humans and 

animals. 

The implementation of subjective emotions is dependent on (and perhaps required for) 

strong AI, machines capable of experiencing the subjective aspect of consciousness 

(Haikonen, 2003). Depending on an author’s philosophical background, the viability 

of this type of implementation ranges from ‘impossible’ (some Western philosophies) 

to ‘already achieved’ (some Eastern philosophies). Regardless, any claims that 

existing robots or software agents can subjectively experience emotions are at present 

not particularly useful from an engineering perspective. 

A more practical approach is to disregard the subjective awareness or representation 

of emotions within the machine, and focus on the portrayal of emotions in a manner 

that is believable to human observers. Thus, emotions are represented within the 

observer, rather than the machine portraying them. By this definition, even inanimate 

objects such as stuffed animals can be said to possess emotions if they are 

convincingly presented. This is the position adopted by many researchers who 

develop robots that interact ‘emotionally’ with humans. From a practical perspective, 

this type of implementation is the easiest to achieve, because it does not require an in-

depth understanding of biological emotions. 

This thesis adopts a moderate position between these two approaches. In the context 

of this research, artificial emotions are not ‘real’ emotions experienced subjectively 

by software agents or robots. Nor are they superficial external responses intended only 

to mimic human emotions. Rather, artificial emotions are software mechanisms 

inspired by theories of biological emotions that enable a machine to adapt to certain 



Robotic Emotions and Affective Computing 9 

situations that arise as it performs its duties. While this definition can apply to models 

that facilitate human-machine interaction, this thesis focuses largely on the effects of 

emotions on general performance. 

2.2 Biological Emotions 
Architectures for autonomous agents and robots currently bear little resemblance to 

the cognitive architectures of biological brains. Thus, until the complexity and 

generalised capabilities of robots and agents improve, there is little incentive to 

attempt to model the full range of biological emotions, or for artificial emotions to 

have as broad an influence over cognitive processes as their real-world counterparts 

(Sloman et al., 2005). Nevertheless, some properties of biological emotions may be 

useful for solving general computational problems encountered by the current 

generation of intelligent systems. 

2.2.1 Psychology Perspective 

Psychological studies of emotion generally consist of surveys of subjective 

experiences, or observations of human or animal behaviours, either in controlled 

experiments or in their natural habitats. Fundamental questions about biological 

emotions that have been studied include: 

• Categorisation – Which emotions (if any) are neurologically distinct and 

universal among human cultures? 

• Elicitation – Is the elicitation of emotions an innate response, a learned 

process or a combination of the two? To what extent does cognition contribute 

to emotional processes? 

• Functions – What are the functional roles of emotions? To what extent do 

emotions influence cognitive processes such as memory and learning? 

2.2.1.1 Categorisation 

There are two main approaches to the categorisation of emotions. The first approach 

is to define a set of primary or basic emotions, each with distinct inputs and outputs, 

based on the theory that some emotions are largely innate, evolutionary in origin and 
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culturally universal. Ekman’s cross-cultural research on human facial expressions 

supports this theory (Ekman, 1993). Results from surveys of many cultures 

worldwide, including remote villages in Papua New Guinea who had been largely 

isolated from the outside world, indicate that humans universally recognise facial 

expressions of anger, fear, happiness, sadness, surprise and disgust. Further evidence 

comes from studies of congenitally blind children which show that even humans who 

are unable to learn by observation of others can exhibit emotional facial expressions 

(Galati et al., 2001). According to Plutchik (2001), emotions should cross species as 

well as cultural boundaries to be defined as basic. Eight different primary emotions 

are grouped into pairs of polar opposites in Plutchik’s (2001) model: anger/fear, 

happiness/sadness, anticipation/surprise and acceptance/disgust. 

Other authors have proposed different lists of basic emotions, and different criteria by 

which they may be defined as basic. Table 2.1 shows some of the disparate lists 

collated by Ortony and Turner (1990). Many categorisations include equivalents of 

fear, anger, happiness and/or sadness (although they are often assigned different 

names), but there is little consensus on the existence and nature of other basic 

emotions. 

 

TABLE 2.1: BASIC EMOTION LISTS 

Reference Basic emotions 

Ekman, Friesen and Ellsworth 
(1982) 

Anger, disgust, fear, joy, sadness, surprise 

Gray (1982) Rage and terror, anxiety, joy 

Anger, contempt, disgust, distress, fear, guilt, 
interest, joy, shame, surprise 

Izard (1971) 

Oatley and Johnson-Laird (1987) Anger, disgust, anxiety, happiness, sadness 

Panksepp (1982) Expectancy, fear, rage, panic 

Acceptance, anger, anticipation, disgust, joy, 
fear, sadness, surprise 

Plutchik (1980) 

Tomkins (1984) Anger, interest, contempt, disgust, shame, 
surprise 

Weiner and Graham (1984) Happiness, sadness 
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Figure 2.1: Russell’s circumplex model represents 
emotions as locations on a 2D graph. The two 
dimensions modelled are pleasantness and activation. 

The second approach is to represent emotions as regions of a continuous n-

dimensional graph, where each dimension consists of a parameter such as valence 

(pleasantness) or arousal (intensity). One example is Russell’s circumplex model 

(Russell, 1980), shown in Figure 2.1. This type of representation generally favours the 

theory that emotions are fluid, learned, culturally relative phenomena. Supporting 

evidence for this theory includes a study by Carroll and Russell (1996) which 

indicates that human interpretation of facial expressions can be influenced by the 

context in which they are presented. Wierzbicka (1992) argues that discrete emotions 

are cultural artefacts, explaining that words for certain emotions do not exist in some 

cultures (for example, the Ilongot and Ifaluk languages do not have a word describing 

anger). 

2.2.1.2 Elicitation 

Another source of contention among emotion researchers is the involvement of 

learning and cognition in the elicitation of emotions. At one end of the spectrum of 

theoretical approaches are somatic theories (e.g. the James-Lange theory), which 

regard emotions as the subjective experience of bodily states. For example, the sight 

of a lion might cause the body to freeze, increase heart rate and dilate the pupils. The 

brain then receives these signals and interprets them as fear. The elicitation of 

emotions is thus viewed as a largely instinctive process, receiving little input from 

cognition. Evidence in favour of this theory includes an experiment by Strack et al. 
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(1988), where subjects viewed a cartoon while artificially inducing facial expressions. 

Subjects who held a pen between their teeth (resulting in a smile) judged the cartoon 

to be more amusing than those who held the pen between their lips (resulting in a 

frown). 

The reverse position is adopted by the Lazarus theory (Lazarus, 1991), which argues 

that the cognitive appraisal of an event comes first, and then triggers the body’s 

physiological response and subjective experience. Thus, emotional elicitation is 

viewed as a deliberative process driven by cognition. Animal behaviour studies have 

shown that there is a correlation between intelligence and emotionality (Ratner, 1989). 

Organisms that possess more sophisticated cognitive faculties exhibit richer and more 

varied emotional responses, and even the most intelligent animals do not express the 

full range of human emotions. For example, chimpanzees experience maternal 

attachments to their young, but show no observable signs of grief when their offspring 

die. 

These approaches are not necessarily mutually exclusive, and some theories seek a 

compromise between the two positions. One early hybrid approach is the two-factor 

theory, which defines emotions as a combination of physiological arousal and 

cognitive interpretation. Bodily signals control the intensity of an emotion, while the 

different categories of emotional states (anger, happiness etc.) are a result of cognitive 

processes that take into account the context of the situation. This theory arose from an 

experiment by Schachter and Singer (1962) in which subjects were injected with 

adrenaline or a placebo and placed in a room with an experimenter who attempted to 

anger or amuse them. Those who were ignorant or misinformed of the drug’s effects 

were more easily influenced by the experimenter’s actions than the placebo group and 

those who had been informed. The results indicate that both arousal and 

environmental cues play a role in emotional elicitation. 

Further evidence for a hybrid approach to emotional elicitation comes from studies on 

fear conditioning, the process by which organisms learn to fear certain stimuli. 

Experiments involving snake fear in primates have shown that the elicitation of fear 

has both learned and innate components (Ohman, 2003). Laboratory-bred infant 

rhesus monkeys initially exhibited no fear of snakes. However, when the infants 

observed video recordings of other monkeys reacting fearfully to snakes, they quickly 

acquired the same phobia. The same effect did not occur when the experiment was 
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repeated with other stimuli, such as flowers. This indicates that while learning is still 

required to associate snakes with the fear response, rhesus monkeys can more readily 

learn to fear snakes than flowers. Other studies have revealed that there is also an 

innate, evolved component to fear conditioning in humans. 

2.2.1.3 Functions 

The functional roles of emotions have been extensively investigated and debated. 

Authors such as Ekman (1992) argue that the primary function of emotion is to 

facilitate social interaction. Emotions are closely related to theory of mind, the ability 

to understand another’s point of view, know their intentions and predict their actions. 

The expression of emotions can be considered a channel of communication that 

conveys social information in parallel with language-based exchanges. Emotional 

expression can evoke complementary emotions in others that reinforce social 

relationships. For example, expression of anger tends to evoke fear responses in 

others, while sadness elicits sympathy (Keltner and Haidt, 1999). 

Social interaction is undoubtedly an important domain in emotion research, but 

emotions are also a source of adaptive behaviour at an individual level. A number of 

studies have investigated the effects of emotions on cognitive functions such as 

attention, memory and learning. It has been hypothesised that arousal directs attention 

towards emotion-eliciting stimuli, improving recollection of those objects, but 

impairing memory of peripheral details (Reisberg and Heuer, 2004). This theory is 

supported by studies of weapon focus, the tendency for eyewitnesses of violent crimes 

to focus their attention on the weapons held by criminals. Thus, witnesses often 

experience impaired recollection of other visual information in the scene, such as the 

perpetrator’s face or clothing (Pickel et al., 2003). 

Memory recall is modulated by a person’s current mood (Parrott and Spackman, 

2000). Moods are comparatively long-term affective states that are less object-specific 

and generally less intense than emotions. There are two mechanisms for this 

interaction. First is mood-dependent recall, the recall of memories that were stored at 

a time when a person’s mood was similar to his or her current mood. Second is mood-

congruent recall, the correlation between a person’s current mood and memories that 

trigger similar emotions, regardless of the mood experienced at the time of storage. In 

an experiment by Snyder and White (1982), happy or sad moods were induced in 
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subjects, who were then asked to recall events from the previous week. Results 

indicated a correlation between the moods of the participants and the valence of the 

memories recalled. 

Emotions can also bias reward processing in learning and decision-making (Baxter 

and Murray, 2002). This facilitates the rapid acquisition of behaviours necessary for 

survival in ancestral conditions. However it can sometimes have an adverse effect 

when emotions are applied to problems beyond those that they evolved to solve. For 

example, emotions can cause investors to acquire impulsive buying/selling behaviours 

that are detrimental to long-term success. 

The affect-as-information model regards the conscious perception of emotions and 

moods as a source of information about non-conscious appraisal processes (Isbell, 

2004). Positive emotions and moods indicate benign environmental conditions, 

increasing the brain’s usage of heuristics such as stereotypes to guide information 

processing. Negative affective states indicate potential problems, reducing the usage 

of previously-acquired categorical information. Evidence supporting this theory 

includes an experiment by Isbell (2004), where subjects were given stereotype 

information about an individual (e.g. classifying her as an introvert or extrovert), 

accompanied by a story about the individual that partially conflicted with the 

stereotypes presented. Judgements of the individual by participants who reported a 

happy mood were influenced more by the stereotype information than those who 

reported an unhappy mood. 

Overall, the vast amount of conflicting evidence shows that the problem of describing 

the interactions between emotions, cognition and behaviour in humans and animals is 

immensely complex. No single theory is likely to be adequate for all domains of 

emotion research. However, one approach that may prove useful in the computational 

domain is to model emotions as modulations of cognitive processes, as proposed by 

Dörner and Hille (1995). 

2.2.2 Neurobiology Perspective 

Much of the research on the neurobiological basis of emotions involves analysing the 

behavioural impairments of humans or animals with lesions (damaged tissue) in the 

brain area under scrutiny. Impairments to a specific emotional function may indicate 
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that the damaged structure normally controls that function. However, sometimes the 

structure merely acts as a connecting pathway between other brain regions that are 

more heavily involved in the process. Chemical or electrical stimulation of the brain 

and neuroimaging techniques such as positron emission tomography (PET) and 

functional magnetic resonance imaging (fMRI) scans can provide further evidence for 

or against a brain structure’s functional role. Nevertheless, results in this field are 

often inconclusive, and many aspects of the brain’s emotional circuits remain unclear. 

Viewed from an evolutionary perspective, brain regions can be grouped into different 

components by the order in which they appeared as the brain evolved. The first 

component, the archipallium (primitive brain), contains structures that reside in the 

brain stem.  Next is the paleopallium (intermediate brain), which contains the limbic 

system, a group of structures that historically has been regarded as the emotional 

centre of the brain. The most recent component, called the neopallium (rational brain), 

or neocortex, is utilised most extensively by higher mammals such as apes and 

humans, and comprises the brain’s outer layers. 

Historically, a clear distinction was drawn between the emotional brain, represented 

by the limbic system, and the cognitive brain, represented by the neocortex. The 

limbic system is a group of inner brain structures that includes the amygdala, 

hippocampus, cingulate gyrus, thalamus and hypothalamus. Emotions were thus 

regarded as evolutionary holdovers from our more primitive ancestors, epiphenomena 

of legacy systems that are no longer necessary in modern humans. However, the idea 

of the limbic system acting as the brain’s ‘emotion centre’ has been criticised in 

recent years as being overly vague and simplistic (LeDoux, 1996). The limbic 

system’s various components do not contribute equally to emotional functions, and 

certain structures outside the limbic system have been shown to possess key roles in 

emotional behaviour. 

One brain structure that has received significant attention from researchers is the 

amygdala. There are actually two amygdalae – one in each brain hemisphere. In 

general, the left amygdala processes verbal stimuli, while the right amygdala 

processes visual stimuli (Buchanan & Adolphs, 2002). The amygdala contributes to 

the ability to make value judgements about other individuals, as evidenced by 

lesioned patients who suffer impairments to this function (Davidson, 2001). It also 

influences the formation of emotional memories (Buchanan & Adolphs, 2002). 
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Patients with lesions in this area experience more difficulty remembering events 

corresponding to a high emotional intensity than normal humans, while their memory 

of normal events remains unchanged. In contrast, damage to the hippocampus, an 

adjacent brain structure, results in uniform degradation of memory performance. 

The amygdala plays a crucial role in fear conditioning, and damage to the amygdala 

can result in overly placid behaviour in the presence of danger. Lesions in this area 

have also been shown to impair the recognition of facial expressions of fear, but not 

other emotions (Davidson, 2001). Two distinct fear circuits are linked to the amygdala 

(LeDoux, 2000). One receives fast, reactive signals from the thalamus, allowing an 

organism to respond quickly to immediate threats. The other consists of slower, more 

refined signals received from the cortex, enabling the organism to act appropriately to 

facilitate long-term survival. 

Another focal area for emotion research is the hypothalamus, a structure responsible 

for maintaining homeostasis, or keeping the body’s physical parameters within 

acceptable margins. It is linked to many of the physiological responses associated 

with emotions, controlling blood pressure, heart rate, thermal regulation, sexual 

arousal, hunger and thirst. It also indirectly contributes to the formation of emotions 

by providing feedback from these physiological responses to other brain structures. In 

an early experiment, removal of the hypothalamus from cats resulted in a 

phenomenon called sham rage, where even in the absence of an external stimulus they 

exhibited the physiological symptoms of extreme anger (Bard, 1928). Later 

experiments demonstrated that electrical stimulation of certain regions of the 

hypothalamus could artificially induce anger and fear responses (Hess, 1957). 

A brain structure that is believed to play a key role in the interaction between 

emotions and cognition is the prefrontal cortex. This structure performs the brain’s 

executive function, prioritising between conflicting goals and modulating social 

behaviour. It plays a role in anticipatory emotions such as anxiety (Simpson et al., 

2001). Lesions in the prefrontal cortex can impair the ability to anticipate future 

positive or negative consequences of decisions (Davidson, 2001). The prefrontal 

cortex is closely related to personality traits, and damage to this area can drastically 

alter one’s personality. This effect was first observed in the famous case of Phineas 

Gage, a railroad construction foreman who in 1848 survived after a metal rod passed 

through the front of his head. 
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Other brain regions that are known to participate in emotional functions include the 

anterior cingulate cortex, cingulate gyrus and nucleus accumbens. The anterior 

cingulate cortex has been implicated in the conscious awareness of emotions. The 

cingulate gyrus contributes to the coordination of external stimuli with positive 

emotional memories, and to emotional responses to pain. The nucleus accumbens is 

linked to positive emotions associated with pleasure, reinforcement learning and 

addiction. 

An ever-expanding list of brain regions linked to emotions reveals that just as there is 

no single brain structure controlling consciousness or memory, there is no single 

structure controlling emotions. Nor are structures within the brain neatly divided 

between those responsible for cognition and those responsible for emotions. Rather, 

the two processes are closely entwined and mutually dependent. 

Fellous (1999) proposes an alternative biological mechanism for this relationship in 

the form of neuromodulators. Similar to neurotransmitters, neuromodulators are 

substances released by neurons that activate or suppress other neurons. However, 

while most neurotransmitters only pass information between two neurons, 

neuromodulators persist in the brain for significant periods of time and modulate 

neural activity over a relatively large area. Since emotions are also sometimes 

regarded as modulatory in nature and possess the properties of temporal persistence 

and diffuse action, Fellous suggests that they can be represented as dynamical patterns 

of neuromodulations. This theory provides a neurobiological foundation for the 

hypothesis that emotions are modulations of cognition and action. 

2.3 Computational Models of Affect 
Computational studies focus on developing models of affective processes, either to 

improve our understanding of biological emotions, or to enhance the performance of 

autonomous agents. These models can range from abstract, general-purpose 

architectures to highly-focussed task-specific implementations. There are significant 

limitations to each approach. Architecture-level models tend to be too broadly defined 

to be readily applied to specific tasks. Conversely, task-level models can be difficult 

to adapt to domains beyond those for which they were intended. Affective models 

outside of the robotics domain are often large-scale general-purpose AI frameworks 
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that emphasise cognitive roles of affect such as goal prioritisation and memory 

management (Aylett, 2006). These types of models typically favour cognitive 

appraisal theories of emotion such as those proposed by Ortony et al. (1988) and 

Lazarus (1984). 

Sloman et al. (2005) regard many emotions as side-effects of the interactions of 

complex cognitive systems, analogous to the ‘thrashing’ that occurs during disk 

maintenance, rather than explicitly programmed discrete states. Sloman’s CogAff 

schema is an attempt to develop a cognitive architecture that possesses the 

foundations necessary to exhibit affective behaviour implicitly. Three architectural 

layers are modelled by the CogAff schema: reactive mechanisms, deliberative 

reasoning and meta-management. A preliminary implementation of this model is 

being developed, called H-CogAff. Nevertheless, as with any highly abstract and 

incomplete description of mental processes, its implementation on a robotic platform 

would pose considerable challenges. Translating high level block diagrams and 

descriptive language into task-specific robotic 

algorithms is a non-trivial task. 

Approaching the problem from a similar angle, 

Minsky’s Emotion Machine model (Minsky, 

2006) makes little distinction between emotional 

and cognitive processes, instead regarding 

individual emotions as different configurations of 

cognitive resources. To Minsky, words such as 

consciousness and emotion are merely ‘suitcase-

words’ describing processes that are too complex 

to understand as a whole. Rather than seek 

simplified explanations for such phenomena, the 

model attempts to decompose them into highly specialised subsystems. Minsky’s 

cognitive architecture contains six layers of increasing abstraction (Figure 2.2). Like 

most architecture-level models, the Emotion Machine model is a broad description of 

the mind, currently lacking the detail necessary for software implementation. 

 Self-Conscious Reflection 

Self-Reflective Thinking 

Reflective Thinking 

Deliberative Thinking 

Learned Reactions 

Instinctive Reactions 
 

 
Figure 2.2: The Emotion Machine 
model’s six processing levels. 

A number of broad, but shallow computational models of emotion have been 

developed based on the ideas of Ortony et al. (1988), including the Oz Project’s Em 

module (Bates, 1994) and the Affective Reasoner (Elliott, 1994). These models 
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attempt to improve the believability of autonomous agents by incorporating large 

numbers of simple emotions and behaviours. Emotions are divided into mutually 

exclusive categories depending on their eliciting stimuli (events, agents or objects). 

Appraisals are largely cognitive, but the influence of emotions on cognition is very 

limited. Instead, these models tend to focus on external displays of emotion and their 

effect on social interaction. 

Grach and Marsella (2004) describe a generic model of emotionally influenced 

cognition, called EMA. The model is based on cognitive appraisal theories and 

utilises the Soar cognitive architecture. Emotions are generated from tables of 

appraisal dimensions (e.g. relevance, desirability, likelihood and causal attribution) 

for past and future events. The model regards coping as the inverse of appraisal – 

reducing the intensity of an emotion by attempting to restore the appraisal variables to 

an equilibrium state. This can involve changing the agent’s actions or changing its 

beliefs about the situation. EMA is specified in fairly abstract terms, making task-

specific adaptations difficult, and it is currently more suited to high-level tasks than 

real-time control of mobile robots. 

One computational model that is closely aligned with our goal is Dörner’s ‘Psi’ model 

(Dörner and Hille, 1995), which utilises emotions to modulate cognitive processes. 

According to Dörner (2003): 

“Affect and emotions naturally replace the knobs, dials, and switches on the 

‘control board’ of an intelligent artefact.” 

Various global parameters are defined that represent broadly-encompassing aspects of 

information-processing systems, including: 

• Arousal – Preparedness for action. 

• Selection threshold – Aversion to choosing new goals. 

• Resolution level – Precision of cognitive processes. 

A set of basic needs are also defined: 

• Existence preservation – Deals with obtaining nourishment and avoiding pain. 

• Species preservation – Concerns matters of sexuality and reproduction. 

• Affiliation – Represents the desire for social interaction. 
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• Certainty – A need for predictability of cause and effect. 

• Competence – Success in problem solving and satisfying other needs. 

Intentions are formed from these needs, and compete with each other for activation in 

a winner-takes-all manner. Global parameters are functions of the need values. For 

example, arousal is calculated from the sum of all needs. Emotions are implicitly 

represented as combinations of these parameters. Anger is represented as high arousal 

(‘tense’), high selection threshold (‘focussed’) and low resolution level (‘careless’). 

Anxiety arises from a combination of high arousal, low selection threshold 

(‘unfocussed’) and high resolution level (‘careful’). Joy emerges from medium 

arousal (‘moderately relaxed’), medium selection threshold and medium resolution 

level. 

This model is being formalised in a software architecture called MicroPsi (Bach, 

2003). MicroPsi is intended as a general-purpose architecture, and few task-specific 

implementation details or results have been presented. 

Approaching the representation of emotions in a similar manner, but from a 

neurobiological perspective, Parussel (2006) implemented a model of artificial 

neuromodulations in a learning agent. Middle-layer neurons are assigned inhibitory or 

excitory receptors that modulate their sensitivity to inputs and/or probability of firing 

in response to modulators secreted by input neurons. Like Dörner, Parussel does not 

explicitly define any specific states or processes as emotions, but argues that they are 

inherently related to these modulations. This approach was tested in simple 

experimental gridworlds, where agents were evolved to maintain two resources 

(‘energy’ and ‘water’). The learning performance of modulating agents compared 

favourably to that of equivalent non-modulating agents. 

Our model is partially inspired by the idea of representing motions as modulations of 

cognitive processes described in Dörner’s and Parussel’s models, but there are many 

points of difference. Unlike these models, in which emotions emerge implicitly from 

modulations, emotions in our model are explicitly defined and trigger parameter 

modulations. The application of our model to a wheeled mobile robot also differs 

from Dörner’s general-purpose cognitive model and Parussel’s relatively simple 

gridworld experiments. The differences are further elaborated in Section 3.2. 
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2.4 Robotic Affect 
Mobile robots generally lack the high-level capabilities to benefit from the general-

purpose cognitive models of affect often favoured outside of the robotics domain. In 

particular, most robots do not possess object recognition capabilities. Their sensors 

are often limited to distance measurements on a 2D plane. Furthermore, even if they 

possess sophisticated sensors such as onboard vision systems, the problem of real-

world object recognition has not been solved in the general case. 

Instead, robotic implementations tend to favour neurophysiological models, and 

typically employ emotions as internal ‘sensors’ that influence action selection (Aylett, 

2006). These models are often inspired by somatic theories of emotion such as that 

presented by Damasio (1994). One of the main functions of this type of affect 

representation is to motivate a robot to respond quickly to certain events without 

waiting for its slower cognitive processes to ponder the situation. Thus, affect is 

regarded as a potential replacement for deliberative processing in robotic controllers. 

Interactions between affect and deliberative processing have received little attention 

in the robotics domain, because they are often viewed as competitors for the same 

role. Nevertheless, deliberative motion planning is an essential component of many 

hybrid mobile robot controllers, and performance would likely suffer if it were 

replaced with a reactive affect model. 

Arkin (2005) defines two important roles for emotions in robots:  

• Social interaction – Simulated emotions can enable robots to behave in a 

socially appropriate manner when interacting with humans.  

• Adaptive Behaviour – Artificial emotions are a source of adaptive behaviour 

that can potentially improve a robot’s general performance.  

2.4.1 Social Interaction 

The robotics community has focused largely on the social aspects of emotions. In this 

domain, a robot’s emotions are generally clearly observable in the form of facial 

expressions, body language and/or tone of voice. While some researchers utilise 

biologically inspired models, many regard the socially relevant effects of emotions as 

more important than the underlying model. Focal areas include the appearance of 
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emotions, the subjective evaluations of humans who interact with emotional robots, 

and the influences of human emotions on robotic behaviour and learning. 

One of the most widely-known examples of emotion-driven sociable robots is the 

‘infant’ head Kismet developed by Breazeal (2003). Kismet’s control architecture is 

partially based on Valásquez’s Cathexis model (Valásquez, 1997). It incorporates 

affective drives as intensity values that are maintained close to a desired operational 

point, and within a bounded range of that point (called the homeostatic regime). A 

drive that exceeds an upper threshold becomes overwhelmed, necessitating a 

decrease, while a drive that falls below a lower threshold are underwhelmed, 

necessitating an increase. Kismet has three drives: social (a need for human-robot 

interaction), stimulation (a need to be stimulated by toys) and fatigue (a need for rest). 

Inspired by Damasio’s somatic marker hypothesis (Damasio, 1994), affective 

appraisals are performed that consider the drive intensities and perceived actions of 

humans or objects interacting with the robot in order to tag stimuli with several 

dimensions of affective information (valence, arousal and stance). The associated 

emotional responses (fear, anger, joy, sorrow, surprise, disgust, interest and calm) 

compete for activation in a winner-takes-all manner. In addition to influencing 

behaviour selection, these basic emotions are portrayed as variations in Kismet’s 

facial expression (Figure 2.3), gaze direction and tone of voice. 

 
 
Figure 2.3: Kismet, the robotic infant. 

 

The robotic head MEXI (Esau et al., 2007) employs a similar approach, combining 

visual and speech-based emotion recognition capabilities with an internal emotion 
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model that controls the robot’s behaviours, facial expressions and speech utterances. 

This emotion model attempts to increase the value of its single positive emotion 

(happiness), while decreasing its negative emotions (anger, fear and sadness). It also 

attempts to maintain MEXI’s drives at optimal (homeostatic) levels. A behaviour-

based architecture is employed that incorporates both cooperative behaviour 

coordination and competitive winner-takes-all behaviour selection. Emotions and 

drives are utilised to control the gains assigned to different behaviours, affecting their 

relative contributions to motor control. 

An emotion-capable social interaction architecture has been developed for the 

humanoid robot ISAC (Peters et al., 2001). The architecture includes a model of the 

person with whom the robot is interacting (the human agent), and an internal 

representation of itself (the self agent). Human emotions are represented as a single 

parameter, satisfaction, obtained from words with emotional content spoken by the 

person. Separate short-term and long-term memory structures are employed, 

potentially allowing the robot to model mood-congruent memory effects. The 

presented implementation is incomplete and no results are presented. 

Arkin’s TAME architecture (Arkin, 2005) models traits, attitudes, moods and 

emotions for behaviour-based robotic systems. Each category of affective state is 

represented by multiple dimensions of intensity values. Traits are based on the Five-

Factor Model of Personality (McCrae and Costa, 1996) and consist of constant 

behavioural biases along the dimensions of openness, agreeableness, 

conscientiousness, extraversion and neuroticism. Attitudes are learned positive or 

negative biases associated with specific objects. Moods are long-term stimulus-

independent states. Emotions are represented by six intensity values corresponding to 

Ekman’s list of basic emotions (anger, fear, happiness, sadness, disgust and surprise) 

(Ortony and Turner, 1990). Traits and emotions have been partially implemented on a 

Sony AIBO robotic dog (Figure 2.11) for a range of tasks intended to entertain human 

observers (Moshkina and Arkin, 2005). In this implementation traits control global 

parameters, whereas emotions drive action selection. Both are hard coded and task 

dependant. Results consist of feedback from observers on their subjective evaluations 

of the robot. 

Hollinger et al. (2006) utilise an emotion model based on the Mehrabian PAD 

temperament scale to generate robotic behaviours that appear emotional to human 
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observers. Emotions are represented as continuous regions on a three dimensional 

graph (the dimensions are pleasure, arousal and dominance), and control the selection 

of movement and dialogue responses. The focus of this research is on producing 

believable emotional responses rather than the detail of the model itself, and the 

results primarily consist of feedback from onlookers at the AAAI ‘05 Open 

Interaction Challenge. 

Broakens’ EARL framework (2007) utilises emotions detected in human observers as 

positive or negative rewards for reinforcement learning. This improves the learning 

performance of a simulated robot in a continuous gridworld environment. The 

framework also incorporates other social emotion-learning interactions, but few 

implementation details are provided: Detected human emotions can be utilised as 

additional state inputs, metalearning parameters (e.g. exploration/exploitation or 

learning rate) and social inputs to an internal emotion model. Artificial emotions can 

also provide rewards, state inputs and metalearning parameters. Finally, social 

feedback is facilitated by a real-world robotic head capable of portraying emotions as 

facial expressions. 

2.4.2 Adaptive Behaviour 

The problem of synthesising emotion-influenced adaptive behaviour in a non-social 

context poses considerable difficulties. The biological mechanisms underlying 

emotion are not well-understood or universally accepted, hindering attempts to create 

computational equivalents of these mechanisms. There is little consensus over what 

types of actions outside of the social domain should be regarded as emotional. It is 

also difficult to prove that any advantages provided by an emotion mechanism cannot 

be achieved by equivalent non-emotional systems. 

While some authors have argued that artificial emotions can serve a useful role in 

robotics outside of the social domain, few successful implementations have been 

demonstrated. Some robots that utilise emotions as adaptive behaviours are 

nevertheless applied in a social context, interacting with humans or other robots. A 

majority of emotion-based robots employ very simple reactive control architectures, 

lacking the robustness of the hybrid reactive/deliberative architectures commonly 

employed in the general domain of mobile robot navigation. While the influence of 
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emotions on robot learning has been explored, few authors attempt to model the 

ability to learn to experience emotions appropriate to a given situation or 

environment. Quantitative results that demonstrate actual performance improvements 

due to affective processes are scarce, and those that exist tend to analyze the 

performance of an entire system; mechanisms or emotions are often not decoupled to 

analyse their individual contributions to performance. 

Valásquez’s Cathexis architecture (Valásquez, 1997), models Ekman’s set of basic 

emotions (Ortony and Turner, 1990) as ‘proto-specialist’ agents (Minsky, 1986) 

executing in parallel. Secondary emotions are emergent, resulting from the blending 

of multiple basic emotions. Emotions are one of several inputs that control behaviour 

activation. Architectures based on Cathexis have been applied to a number of 

behaviour-based software agents and robots for a range of different applications. 

Michaud et al. (2001) represent emotions as global background states of a hybrid 

deliberative-reactive architecture that change the robot’s goals and modulate the 

parameters of its behaviours. Two dimensions are modelled: joy/sadness and 

anger/fear.  Emotions are derived from changes in the energy levels of the robot’s 

motives. These energy levels are an abstraction of the progress towards the motives’ 

goals. The model has been utilised for a range of tasks, including human-machine 

interaction and autonomous recharging. 

Murphy et al. (2002) utilise artificial emotions to facilitate adaptive behaviour and 

prevent deadlock situations in multi-robot tasks. Emotions are represented as discrete 

states that link progress towards goals to specific actions. The robots are 

heterogeneous, each possessing an independent set of task-specific emotions (e.g. 

happy, confident, concerned and frustrated) with different triggers and responses. For 

example, one robot triggers the happy state when it has no pending requests, and this 

state is tied to a “tell joke” response. Emotions are also linked to control parameters, 

most notably one controlling the robot’s travelling speed. 

Tingley and Browne (2006) employ emotions as abstractions consolidating multiple 

external inputs to directly control autonomous mobile robots in a multi-robot context. 

Five discrete emotions (curiosity, satisfaction, anger, motivation and tiredness) are 

modelled as hard-coded input-output mappings, each with different temporal and 

architectural characteristics. 
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Gadanho and Hallam (2001) employ a recurrent neural network model of emotions 

for behaviour coordination. This model makes a distinction between emotions and 

physiological responses, called feelings. Bodily sensations give rise to domain-

specific feelings (e.g. hunger, pain and restlessness), from which a set of basic 

emotions (anger, fear, happiness and sadness) are derived. Emotions also influence 

feelings via an ‘artificial hormone’ feedback mechanism. The model provides 

reinforcement values to a learning algorithm that coordinates a set of hard-coded 

control behaviours. A subsequent version of the model (Gadanho, 2003) represents 

emotions implicitly in a goal system that interacts with a distinct cognitive system. 

Neal and Timmis (2003) focus on a biologically-inspired model of a single emotion, 

timidity, in order to adapt a neural network-based reactive control system to different 

environments. The timidity mechanism is represented as an ‘artificial endocrine 

system’, which releases hormones dependent on obstacle proximity. Hormones 

directly influence the weights of the robot’s neural network controller, increasing the 

robot’s obstacle aversion in cluttered environments. 

A similar artificial hormone mechanism is modelled by Avila-García and Cañamero 

(2005) to modulate perception and action selection of behaviour-based mobile robots. 

The control architecture contains a small number of simple behaviours (e.g. avoid, 

warm-up, feed and search) coordinated by a motivational state machine. Three 

motivations are defined for a robotic three-resource predator-prey scenario, each 

controlling a single physiological variable. These motivations are temperature (a 

desire to consume a static ‘heat’ resource), energy (a desire to consume a static ‘food’ 

resource) and integrity (a desire to avoid a dynamic ‘predator’, represented by another 

robot). Artificial hormones are represented as second-order modulations of the 

motivational system. Emotions are not explicitly modelled, but rather inferred through 

the robots’ responses to the underlying hormone mechanism. 

2.5 Adaptive Mobile Robot Control 
In this thesis, artificial emotions are applied to a mobile robot controller in order to 

improve its adaptive capabilities. An adaptive controller can be defined as one whose 

parameters are automatically adjusted to suit the changing conditions encountered by 

the system being controlled. Thus, an argument could be made that most adaptive 
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controllers employ mechanisms that are on some level analogous to biological affect, 

even if they are not labelled as such. Nevertheless, it is worth mentioning some 

existing adaptive control approaches that are not directly inspired by emotions or 

related mechanisms. 

A number of adaptive mobile robot controllers are based on potential field or motor 

schema approaches developed by authors such as Arkin (1989). Unlike earlier 

behaviour-based controllers such as Brooks’ (1986) subsumption architecture, these 

controllers typically employ a cooperative behaviour coordination mechanism, where 

multiple behaviours simultaneously contribute to the robot’s motor outputs. 

Behaviours are combined using a weighted vector summation, where the contributions 

of individual behaviours are controlled by their respective weights. Different control 

strategies arise from different combinations of continuous weight values. This 

approach is well-suited to adaptive weight selection via a secondary control layer. 

Ram et al. (1992) employ simple case-based reasoning to adapting the control 

parameters of a schema-based reactive mobile robot controller to different 

environments. A set of discrete navigation strategies is defined, with each strategy 

corresponding to a specific gain configuration for the various behaviours. Some 

examples are ‘clear-field’ (apply high gain to goal-seeking behaviour and low gain to 

obstacle avoidance behaviour) and ‘ballooning’ (high obstacle avoidance gain). A 

given strategy is selected by matching it to the robot’s detected environment. 

Performance of the adaptive controller compares favourably to a controller with static 

parameters. This approach is further developed by Santamaria and Ram (1997), 

employing TD(λ) reinforcement learning (Sutton and Barto, 1998) to map situations 

to parameter configurations. 

Goel et al. (1997) describe an approach that automatically reconfigures the parameters 

of a schema-based controller to facilitate its escape from behavioural cycles caused by 

local minima. Rather than utilising random noise to escape from minima, this 

controller attempts to select appropriate modes of behaviour that are not susceptible to 

causing repetitive motion when subjected to the conditions detected. A model-based 

approach is employed to detect failures (repetitive cycles), perform causal analysis, 

and modify control parameters in response. Results from simulation experiments in 

randomly generated environments indicate that the controller can escape from the 

majority of local minima encountered. 
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Huq et al. (2008) present a fuzzy approach to modulating the behaviours of a schema-

based reactive/deliberative controller. It addresses several problems that occur in other 

schema-based methods: becoming trapped in local minima, failure to travel between 

closely spaced obstacles, and oscillations in the presence of obstacles and narrow 

corridors. The controller incorporates both strategic schemas (global path planning 

using Voronoi diagrams) and reactive schemas (local obstacle avoidance and goal 

seeking). A fuzzy inference system generates weights controlling the contributions of 

individual schemas in a context-dependent manner. This method produces smoother 

motion and/or fewer collisions than an unmodulated controller (with all weights set to 

1) in several real world experiments. 

Beetz and Belker (2000) employ model- and test-based transformational learning to 

adapt the control parameters of a RHINO mobile robot navigation system. RHINO 

combines map-based path planning capabilities with the dynamic window obstacle 

avoidance approach (Thrun et al., 1997). Because it takes into consideration the 

robot’s global environment and its kinematic and dynamic constraints, this is a more 

sophisticated and capable navigation system than purely reactive schema-based 

approaches. The adaptation approach defines a small set of diagnostic rules, or 

situations to which the controller should respond by adapting its parameters. These 

include close obstacles, narrow corridors, high target velocity and sonar crosstalk. 

Experimental results indicate that the learning approach improves performance over 

its original parameter configuration within a single real-world test environment. 

However, it is not tested in any other environments. 

Each of these approaches differs from our own in its underlying controller and/or the 

functional roles of its adaptations. Unlike the majority of these methods, our 

controller is not based on weighted vector summations of schemas, but rather, 

weighted combinations of 360° vector fields and velocity windows, eliminating some 

of the problems caused by excessive data reduction (refer to Chapter 5 for details). 

The approach by Beetz and Belker (2000) is one exception, employing a dynamic 

window method similar to our velocity control layer. However, the functional roles of 

parameter adaptations in the two systems are dissimilar. Those of other approaches 

are also different from ours, to varying degrees. Most similar in motivation to ours is 

the model developed by Huq et al. (2008) – in particular facilitating a robot’s escape 
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from local minima and enabling it to travel between close obstacles (e.g. narrow 

doorways). 

2.6 Summary 
The application of emotions and related affective states to robots is a multidisciplinary 

effort combining research from diverse fields such as psychology, neurobiology, 

artificial intelligence and robotics. A range of different perspectives on biological and 

computational emotions that have inspired this research were described. The current 

state of the art in robotic applications of emotions, affect and adaptive navigation 

were also discussed. 

The next chapter begins the task of developing and implementing a model of robotic 

affect. Although it is inspired by various existing implementations, it differs from 

most of them in some key respects. Unlike the majority of research on robotic 

emotions, this thesis does not focus on social interaction. Instead, the question of 

whether emotions and affect can improve a mobile robot’s adaptive performance in a 

non-social context is addressed. In particular, emotions are applied to a hybrid 

reactive/deliberative planning and control architecture for a range of navigation and 

exploration tasks. Emotions are not modelled as discrete states or internal sensors that 

drive action selection, but as continuous modulations of the robot’s internal 

parameters throughout multiple computational layers. While many behaviour-based 

models regard emotions as potential replacements for deliberation, in this research 

they are utilised to augment the robot’s deliberative capabilities by providing location-

specific biases to path planning. 
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3 Overview of the Robotic Affect Model 

To address the question of whether artificial emotions can improve a robot’s 

performance beyond the social domain, we must first define these emotions in the 

context of our robotic system. This involves the development of a computational 

model inspired by theories of biological emotion. Ideally it will yield behaviours that 

appear non-deterministic1, yet in the long-term are beneficial to the performance of a 

robot. Whether or not these behaviours are interpreted as emotions by human 

observers is of less importance, because the focus of this thesis is on mechanisms that 

provide practical utility rather than aesthetic appeal. Emotions in this framework are 

primarily abstractions that can aid in the design of intelligent systems. Hence, the 

model is intended to be useful from an engineering perspective, rather than merely 

scientifically interesting. Although inspired by biological theories, it is primarily a 

framework for modelling robotic emotions, not human emotions. 

Human emotions do not exist in isolation. They interact with a wide range of 

cognitive processes, as well as other ‘emotion-like’ states such as feelings, drives, 

moods, attitudes and personality traits. Although these related concepts are sometimes 

described by the word ‘emotion’, the term ‘affect’ encompasses the model as a whole, 

and this framework includes stimuli, drives, moods and emotions as distinct, 

interacting components. 

3.1 Robot Control Architecture 
Affect models are inextricably tied to the underlying computational architectures that 

support them (Sloman et al., 2005). Our robot’s implicit cognitive system is 

represented by the hybrid reactive/deliberative control architecture shown in Figure 

3.1. Higher architectural levels have a supervisory role, providing loose goals that can 

be obeyed or overruled by lower level processes as the situation dictates. This allows 

the robot to benefit from the guidance of deliberative planning, while maintaining the 

real-time responsiveness of reactive control. Three control levels are implemented, 

each formulating the navigation problem in a different conceptual space. A 

                                                 
1 A non-deterministic system is less likely to become trapped in repetitive loops. Emotions are arguably no less deterministic 

than other cognitive processes, but they do introduce additional complexity to the behaviour of an intelligent system, which is 
likely to make them appear non-deterministic. 
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deliberative layer is applied in position space, while two reactive layers operate in 

direction space and velocity space. These are similar to the deliberator, sequencer and 

controller layers in standard three-layer architectures (Gat, 1997), except the central 

layer (directional control) includes elements of both a sequencer and controller. 

 
 
Figure 3.1: A representation of the robotic planning and control 
architecture. 

 

This architecture is obviously much simpler than human and animal cognitive 

architectures. Computational models of cognition often include at least one reflective 

or meta-management layer (e.g. Sloman et al., 2005). Minsky (2006) hypothesises 

three reflective layers that represent different aspects of this process (reflective 

thinking, self-reflective thinking and self-conscious reflection). Our architecture does 

not include any explicit reflective layers, although affect does perform some 

performance analysis tasks normally associated with self-reflection. 

The components of this architecture are also vastly simplified compared to their 

biological equivalents. The deliberative layer does not possess the ability to 

distinguish between objects. Instead, it conceptualises the environment in terms of 

discrete cells that are assigned attributes such as free/occupied and 

explored/unexplored. Thus, emotions can be associated with environmental locations, 

but not specific objects. The reactive layers have no predictive ability and limited 
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sense of location, instead relying on instantaneous sensor data and/or local 

representations to choose the robot’s actions immediately prior to their execution. A 

biological ‘reactive’ layer would be closer to our deliberative layer in terms of 

capabilities. 

The reactive and deliberative world representations are loosely analogous to working 

memory and long-term memory, respectively. Representation data are shared 

bidirectionally between the different layers. The deliberative layer utilises local sensor 

data to update its global map, but representation information can also flow down the 

hierarchy. The reactive layers can utilise global map data for obstacle avoidance in 

addition to local sensor data, allowing the robot to avoid certain objects that its 

sensors cannot easily detect. 

Action instructions can only pass downwards through the hierarchy, and they are 

filtered through each control layer in turn. Instructions are not selected by a 

competitive winner-takes-all mechanism. Instead, each architectural layer attempts to 

satisfy the requirements of multiple objectives simultaneously by optimising an 

objective function. Individual objectives such as obstacle avoidance, goal-seeking and 

path-following are assigned weights that control their degree of influence over the 

robot’s actions. A highly weighted objective exerts a greater influence over decision-

making than an objective with a low weight, but neither is excluded from the 

decision-making process. Other parameters such as constraints, thresholds and search 

space granularities also affect the behaviour of these objectives, and can tilt the 

balance in favour of different types of behaviours. 

No single set of parameter values can yield optimal behaviour in all conceivable 

environments and situations. For example, in open environments, large safety margins 

may be preferable, coming at minimal cost to performance and decreasing the 

likelihood of collisions by encouraging the robot to give obstacles a wide berth. If 

those same values are utilised in a confined office-block environment, they may 

prevent the robot from traversing narrow doorways. Performance can potentially be 

improved by modulating the robot’s parameters to suit its current situation and 

environment. Regarding the previous example, safety margins can be maintained at 

high values until the robot encounters a narrow doorway, at which point they can be 

temporarily lowered to allow the robot to traverse it. 
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Ideally, adaptive parameter modulations provide a robot with the ‘mindset’ necessary 

to complete the task at hand. The difficulty with this approach is in determining 

exactly how and when each parameter should be modulated. This is the primary role 

of artificial affect in our architecture. It is a set of abstractions by which the problem 

can be made tractable. 

3.2 The Model of Affect 
Most existing models of affect and emotion are either high-level symbolic 

architectures inspired by cognitive appraisal theories, or neurophysiological models 

inspired by somatic theories (Aylett, 2006). Neurophysiological models are typically 

favoured by robotics implementations, but most examples are ill-suited to the 

navigation approach described. Unlike other ‘emotional robots’, ours does not employ 

a simple behaviour-based architecture. The architecture developed for this research 

includes multiple layers and employs a more continuous approach to decision-making 

than most behaviour-based systems. Thus, emotions cannot simply be employed to 

help choose the robot’s actions or behaviours from a discrete list. 

Some authors argue that emotion is neither a purely cognitive system, nor an entirely 

distinct structure that competes with cognition for activation. An alternative option is 

offered in the form of modulatory representations of affect (Fellous, 2004; Dörner, 

1995). Rather than existing as discrete states that simply trigger behaviours or actions, 

emotions are assigned a broad influence over the manner in which cognitive processes 

are conducted. Fellous (1999; 2004) proposes a biological mechanism – 

neuromodulation – that could account for these types of interactions. 

A promising example of this type of model is Dörner’s ‘Psi’ framework (Dörner, 

1995; Bach, 2003), which represents affect using global parameters that modulate 

information-processing systems. These modulations help allocate cognitive resources 

to suit a given situation and reduce the computational complexity of problem solving. 

Rather than explicitly defining discrete emotional states, emotions emerge implicitly 

from combinations of parameters. 

This approach to affect representation is well-suited to the problem of mobile robot 

control. Most robotic navigation systems have internal parameters that must be tuned 

manually, or by automatic optimisation methods such as genetic algorithms. If the 
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parameters are tuned in a specific type of environment, they may result in 

unsatisfactory performance when the robot is tested in different environments without 

retuning. A modulatory model of affect can potentially improve the adaptive 

performance of a mobile robot by adjusting its parameters to suit the conditions it 

encounters. 

Modulatory emotions need not be represented implicitly, as in Dörner’s framework. 

Rather than emerging from the modulations of global parameters, a discrete set of 

emotion intensities are defined, from which various internal parameter values are 

calculated. Thus, changes in emotion intensities result in parameter modulations, 

instead of modulations representing the emotions themselves. This is more of a design 

decision than a philosophical position concerning biological emotions. It allows 

discrete emotions to be designed to fulfil specific purposes, rather than characterising 

certain nebulous internal responses as emotions following the design of a system. In 

our model, each emotion modulates a number of implementation-specific internal 

parameters to bias an intelligent system towards behaviours that in the long term are 

anticipated to improve aspects of its performance. 

A multi-stage model of affect is employed, utilising the robot’s perceptual and 

representation data to continuously update its parameter values in real-time. Many 

components of this framework are application-specific in that they are intended to 

modulate the parameters of a hybrid reactive/deliberative motion controller, rather 

than a general-purpose cognitive architecture. However, the basic structure of the 

model could be applied to different architectures or applications. 

An overview of the model is shown in Figure 3.2. A set of emotional stimuli are 

derived from a range of sensor and representation data. The stimuli are combined in 

different configurations to form a set of basic emotions. Emotions are also represented 

in spatial maps, so the current emotions elicited by the robot result from a 

combination of the current stimuli and a persistent memory of previous emotions 

perceived in its current position. These maps are passed to the controller as location-

specific biases to path-planning. They also contribute to the temporal persistence of 

emotions, a function proposed by authors such as Rolls (1999). The combined 

innate/learned emotions control a set of drives, each of which is responsible for 

modulating a subset of control parameters. A layer of second-order modulations is 

also modelled in the form of moods, which are global states derived from 
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combinations of emotions over large timescales. They modulate the ranges over 

which control parameters can be varied by drives. 

 
 
Figure 3.2: An overview of our model of affect. 

 

3.3 Stimuli 
Stimuli are internal or external events that trigger behavioural changes. In our 

framework, only stimuli that influence the robot’s drives or emotions are included in 

this category. Although other stimuli are present, they are implicitly acted upon by the 

underlying cognitive system (represented by the navigation architecture in our 

implementation). 

Somatic theories of affect (e.g. Damasio, 1999) regard physiological feelings such as 

pleasure, pain, skin temperature, blood-pressure, heart-rate, and muscle tension as 

important stimuli. The neurophysiological robotic emotion architecture EB (Gadanho, 

2001) makes a distinction between feelings and the sensations (stimuli) that elicit 

them by giving feelings persistence in time via a hormonal feedback mechanism. 

Some biologically-inspired stimuli are included in our model (e.g. pain and fatigue). 

However, the majority of physiological feelings are not applicable to a mobile robot 

that lacks a biological organism’s complex set of bodily senses. 
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Most affective stimuli in our model are simple, hard-coded cognitive interpretations 

of sensor and representation data, rather than bodily sensations obtained directly from 

sensors. Each stimulus is associated with a particular event or performance 

characteristic. Some stimuli are application-specific, and have no biological 

equivalents. The stimuli are: 

• Danger – A collision is likely. 

• Pain – A collision has occurred recently. 

• Stuck – The robot’s motion is repetitive, indicating an obstruction. 

• Achievement – The robot is making satisfactory progress towards its goal. 

• Density – The environment is densely occupied. 

• Learning – World knowledge has increased recently. 

• Mismatch – Internal maps and current sensor readings do not match. 

• Error – Sensor data are inconsistent or anomalous, indicating a possible error. 

• Cost – The best available path is unsatisfactory. 

These stimuli are not modelled as binary states, but rather as continuous intensity 

values that grow and decay at different rates. The specific temporal characteristics of 

each stimulus are dictated by application-specific requirements. For example, danger 

grows and decays rapidly, allowing the robot to modulate its responses quickly to 

reduce the probability and potential consequences of a collision. Conversely, learning 

is slower to grow and decay, limiting the oscillatory motion that might arise from 

constant reprioritisation between exploration and goal-seeking. 

3.4 Drives 
Drives are often regarded as synonymous with motivations, needs or desires2. Drives 

are related to the concept of homeostasis, or maintaining bodily parameters within 

acceptable bounds. In the human brain this role is often attributed to the 

hypothalamus. 

                                                 
2 Although these terms are sometimes used interchangeably, needs can be distinguished from desires by their importance for 

survival. Needs are survival-critical biological drives, such as hunger. Desires are less essential for survival, and thus are 
typically acted upon only when an organism’s needs are satisfied. 
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TABLE 3.1: DRIVES 

Drive Intensity Responses 

Low 

Move slowly, thereby reducing the rate of energy 
consumption, the probability of collisions, and the 
potential damage suffered during any collisions that 
do occur. Speed 

High 
Move quickly, improving the robot’s ability to reach 
the goal position sooner. 

Low 
Reduce safety margins, allowing the robot to traverse 
narrow doorways or other openings. 

Safety 

High 
Maintain high safety margins, reducing the likelihood 
of collision. 

Low 

Choose a detailed computational style, potentially 
improving physical performance and/or collision 
avoidance. 

Efficiency 

High 

Choose a simple computational style, leaving more 
computational resources available for other tasks 
and/or conserving energy by reducing the CPU load. 

Low 
Employ a hybrid reactive/deliberative approach to 
navigation. 

Action 

High 
Disregard deliberative planning, relying on purely 
reactive control methods. 

Low 
Rely on instantaneous sensor data for obstacle 
avoidance. 

Introspection 

High 
Rely more heavily on internal representations than on 
instantaneous sensor data. 

Low 
Assign low importance to the acquisition of new 
world knowledge. 

Exploration 

High 
Favour knowledge acquisition over the exploitation 
of existing world knowledge. 

Robots can possess both survival drives (analogous to needs) such as energy 

maintenance and ‘informational’ or strategic drives (analogous to desires) such as 

exploration (Dörner, 1995). A mobile robot navigation architecture can benefit from 

both types of drives, since it will typically consider both the robot’s survival (e.g. by 

avoiding collisions) and the completion of its assigned task (e.g. point-to-point 

navigation or exploration). In the majority of models, drives elicit emotions, e.g. 

(Breazeal, 2003), or emotions are inferred from their interactions, e.g. (Dörner, 1995; 

Avila-García and Cañamero, 2005). Unlike these approaches, drives are represented 
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in the output stage of our framework, modulating cognitive parameters in response to 

explicitly-defined stimuli, emotions and moods. 

Six basic drives are defined for this research. Each is responsible for modulating a 

distinct set of related cognitive parameters that influence the robot’s decisions and 

actions towards or against a particular ‘mode of behaviour’. The drives and their 

associated responses are given in Table 3.1. Although they are described in terms of 

low and high states, the drives are not represented as binary states. They are 

continuous intensities that control the positions of parameter values within a bounded 

range. 

The first three drives (speed, safety and efficiency) can be categorised as survival 

drives, because they influence the robot’s ability to avoid collisions and conserve 

energy. Conversely, the latter three (action, introspection and exploration) are 

strategic drives, because they influence general behavioural strategies and in most 

cases do not directly impact the robot’s prospects for survival. 

3.5 Emotions 
Although the word ‘emotion’ has been used for a wide range of affective states and 

processes (Sloman et al., 2005), we include only a small number of core states in this 

category. According to Gunther (2004), emotions can be distinguished from other 

states and processes by several features: 

• Intentionality – Emotions are directed at objects (either physical or 

conceptual), whereas feelings and moods are not directed at anything. For 

example, one is not merely angry, but angry at something. Our robot controller 

does not possess the ability to distinguish between physical objects in the 

world, so in our model emotions instead have ‘intentionality’ towards map 

locations. 

• Cognitive preconditions – Emotions require certain cognitive beliefs about the 

world, whereas feelings occur independently of cognition. For example, fear 

requires the belief that a fear-inducing object is dangerous. In our architecture, 

these beliefs are represented implicitly within the stimulus functions. 
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• Charged valences – Emotions are intrinsically positive or negative, unlike 

other cognitive and motivational states. For example, joy and amusement are 

positive, while sadness and fear are negative. This property is represented by 

emotional influences on path planning in our system: emotions apply a 

positive or negative bias to the costs of map nodes in which they are elicited. 

Our emotion model is inspired by theories of basic human emotions proposed by 

authors such as Ekman (1992) and Plutchik (2001), who argue that certain emotions 

are distinct and biologically innate, rather than cultural artefacts. However, not all 

emotional words necessarily represent distinct processes. For example, words such as 

‘terror’, ‘fear’, ‘dread’, ‘caution’ and ‘anxiety’ may represent aspects of the same 

emotion. Thus, discrete categorisations typically define a small set of basic emotions, 

from which a range of secondary emotions are derived. 

Different computational architectures support different classes of emotions (Sloman et 

al., 2004). Given the vast differences between human and robot architectures, there is 

little reason to strictly adhere to human-centric emotion categorisations unless human-

machine interaction is the intended application. A number of robotic implementations 

favour human-centric categorisations such as Ekman’s six basic emotions (e.g. 

Breazeal, 2003). However, when the goal is not simply to mimic human emotional 

responses, some basic emotions defined by psychological models are of limited 

practical value to the current generation of robots. For example, disgust is normally 

associated with taste, smell, cleanliness, aesthetic appeal and morals – concepts that 

are not relevant to the majority of robotic implementations. Conversely, some 

emotions that are not included in most human-centric basic emotion models may be of 

sufficient importance to represent as basic robotic emotions. Hence, the question 

should be, “Which emotions are potentially the most useful to our application?” rather 

than, “Which human emotions are considered basic?” 

In our framework, emotions are an intermediary stage between stimuli and drives. 

Although some stimuli (e.g. fatigue) directly influence drives, most stimuli are 

translated into emotions first. The emotions and their associated stimuli and drives are 

shown in Table 3.2. 
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TABLE 3.2: EMOTIONS 

Emotion Eliciting stimuli Effects on drives 

Anger High stuck, low achievement Low speed, low safety, high 
efficiency 

Fear High danger, high pain 
Low speed, high safety, low 
efficiency 

Happiness High achievement, low density High efficiency, low exploration 

Sadness High pain, high error Low efficiency, high exploration 

Curiosity High learning, low cost High exploration 

Surprise High mismatch 
High exploration, high action, high 
safety 

Confusion High error Low action, high introspection 

Anger arises when the robot perceives obstructions that may prevent it from achieving 

its goals. Typically, the main goal of our mobile robot is to arrive at a particular 

location, and the main impediments to achieving that goal are environmental 

configurations or dynamic obstacles that block its progress (e.g. narrow doorways, 

humans or other robots). Anger temporarily reduces the robot’s safety margins in 

order to bypass an obstruction. Computational resources such as search resolutions 

and memory sizes are decreased, resulting in rougher, more ‘careless’ navigation. 

This is analogous to Dörner’s ‘resolution level’ parameter (Dörner, 1995). Both of 

these modulations increase the likelihood of collisions, so the robot’s speed is lowered 

to compensate. 

Fear results from the prediction of potentially dangerous or painful events. In the 

context of mobile robot navigation, the main survival-threatening event is a collision. 

The most likely cause of a collision is a navigational ‘mistake’ resulting from sensor, 

actuator and/or software limitations. Thus, the greatest danger to the robot is itself. 

Our robot has no predators or prey, so there is no need for the computational 

equivalent of a fight-or-flight response. Instead, fear reduces the robot’s speed, 

favours safety-enhancing behaviours, and devotes more computational resources to 

navigation. This reduces both the likelihood of collisions, and the potential damage 

resulting from any that do occur. 

Happiness arises when the robot is successfully achieving its goal, and when the 

environment is perceived to be a low navigational challenge. Together with sadness, it 



42  Emotion-based Mobile Robot Control 

is assigned the role of modulating the overall levels of computational efficiency to 

match the difficulty of the task at hand. Trivial tasks such as the traversal of obstacle-

free environments can be accomplished without compromising efficiency. Difficult 

tasks generally require the robot to make greater tradeoffs. Happiness also decreases 

the drive to explore the environment, since exploration is less advantageous if the 

robot already possesses sufficient world knowledge to successfully complete the task 

at hand. 

Sadness is caused by potential loss represented by the pain and error stimuli. Overall, 

it results in increased computational effort, and it causes the robot to favour 

exploration of the environment over exploitation of existing world knowledge. This 

enables the robot to find alternative paths that may be superior to the one that resulted 

in sadness. 

Curiosity not regarded as a basic emotion in most human-centric models, but in our 

model it is assigned the role of controlling the bias between exploration and 

exploitation. It is elicited when the rate of knowledge acquisition is high, and 

dampened by low quality planned paths. A high exploration drive can have an adverse 

effect on performance, particularly if the environment is already known, so this 

emotion allows the robot to favour exploration only when it is likely to yield 

additional world knowledge. 

Surprise represents a mismatch between the robot’s predictions and its perceived 

world. It can arise if the robot encounters an unexplored environment, or if it suffers a 

localisation failure. If the robot is in a known environment, hybrid 

reactive/deliberative navigation generally results in superior paths than purely reactive 

control. However, deliberative path planning requires accurate knowledge of the 

environment. Hence, when surprise is elicited, the robot increasingly favours reactive 

approaches to navigation over the hybrid reactive/deliberative method it normally 

employs.  

Confusion is also excluded from the majority of basic emotion models. It occurs in the 

presence of internal inconsistencies caused by sensor limitations or errors. This 

represents a low level of confidence in the robot’s perceptions, so abstract internal 

representations are favoured over sensor data. Confusion discourages the robot from 
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planning actions that previously resulted in collisions, even if its sensors currently 

detect no danger. 

Location-specific intensity values near the robot grow or decay in response to each 

emotion’s associated stimuli. The current intensity value of each emotion is a function 

of both its currently perceived stimuli and these location-specific intensities. The 

resulting emotion maps also yield positive or negative biases to the cost values of 

individual nodes during path planning. Happiness, curiosity and surprise3 have 

positive valence, so they reduce node cost values, increasing the probability that the 

robot will plan a path through those nodes. Conversely, anger, fear, sadness and 

confusion have negative valence, so they increase costs, reducing the ‘attractiveness’ 

of nodes in which they are elicited. In this sense, the emotions are analogous to 

learning rewards and punishments applied to environmental locations. 

3.6 Moods 
Moods can be differentiated from other affective states and processes by their 

temporal characteristics – they persist for longer than stimuli, drives and emotions, 

but they are not as persistent as personality traits. They also have lower activation 

levels and intensities than emotions, and they are generic rather than object-specific 

(Moshkina and Arkin, 2005). 

Few robotic implementations explicitly include moods as distinct affective states. One 

exception is the TAME (Traits, Attitudes, Moods and Emotions) framework 

(Moshkina and Arkin, 2005). Two mood categories are modelled in TAME: positive 

and negative affect (which are largely independent of each other). 

Similarly, positive and negative moods are included in our model, as shown in Table 

3.3. Moods increase when their associated emotions are highly activated for extended 

periods of time, and decrease when their emotions are inactive. They modulate the 

maximum or minimum values of survival drives (safety, speed and efficiency), 

affecting the level of influence emotions have over the robot’s behaviour. Strategic 

drives (exploration, action and introspection) are not constrained by these moods. Nor 

do their primary eliciting emotions (surprise, confusion and curiosity) contribute to 
                                                 

3 The valence of human surprise is not universally positive, but rather dependent on its triggering 
event (Kohler et al., 2003). However in our model it is assigned positive valence for practical reasons: 
to encourage the robot to explore map areas that do not match its sensor data. 



44  Emotion-based Mobile Robot Control 

the modulation of moods. The reason for this is related to implementation details that 

are described in Chapter 8. 

If positive mood has a high intensity and negative mood has a low intensity, the robot 

is more likely to favour fast, safe and computationally efficient parameter values, 

while emphasising reactive rather than deliberative processes, and giving low 

importance to exploration. Conversely, if positive mood is low and negative mood is 

high, the robot increasingly favours slower motion, lower safety margins, and 

computationally-intensive processing styles. It also favours deliberative path planning 

over reactive control, and it is more likely to regard exploration as highly important. 

A high level of both positive and negative mood leads to ‘bipolar’ behaviour, where 

the robot oscillates between highly divergent parameter values depending on its 

momentary affective states. Low positive and negative moods lead to emotionally-

muted behaviour, with emotions having lower overall levels of influence over the 

robot’s decisions and actions. 

 

TABLE 3.3: MOODS 

Mood Activating emotions Drive limits modulated 

Positive Happiness Speed maxima, safety maxima, 
efficiency maxima 

Negative Anger, fear, sadness 
Speed minima, safety minima, 
efficiency minima 

3.7 Summary 
A computational model of affect has been developed that incorporates stimuli, drives, 

emotions and moods as distinct, but highly interconnected states and processes. The 

purpose of the model is to improve the general adaptive performance of an individual 

mobile robot, rather than to facilitate social tasks such as human-machine interaction. 

Unlike many robotic emotion models, this framework operates in conjunction with an 

independent cognitive system, represented by a hybrid reactive/deliberative mobile 

robot navigation architecture. Emotions and other affective states and processes 

modulate the decisions and actions of the cognitive architecture, but they are not the 

primary motivators of behaviours. 
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This chapter gave a high-level description of the robotic affect model. Before any 

further implementation details or results are presented, the mobile robot and 

experimental setup will be described (Chapter 4), and the robot’s underlying planning 

and control architecture will be covered in more detail (Chapters 5-7). 
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4 Mobile Robot Hardware and Software 

The planning and control architecture developed in this thesis is sufficiently generic 

that it can be (and has been) applied to a range of different wheeled mobile robots 

with few modifications (Roehr, 2008; Lee-Johnson et al., 2007). Nevertheless, it is 

designed with a specific robot in mind. Shown in Figure 4.1, the target platform is 

MARVIN (Mobile Autonomous Robotic Vehicle for Indoor Navigation), a custom-

built mobile robot intended for security and public relations applications (Carnegie et 

al., 2004). 

MARVIN’s main task is to autonomously patrol 

indoor office block environments, recording 

individuals with an onboard camera and requesting 

identification. If an individual is authorised to be on 

the premises, the robot can guide him or her to a 

designated location. Conversely, if MARVIN 

determines that an individual is unauthorised, it can 

trigger an alarm. Ideally, the robot will also monitor 

its own power consumption, autonomously docking 

with a recharging station when it detects that its 

batteries are low. The focus of this thesis is not on 

these high-level tasks, but our navigation and control 

architecture provides some of the underlying 

capabilities required to perform them autonomously. 
 

Figure 4.1: MARVIN. 

The architecture is implemented on a simulated version of MARVIN. The robot’s 

physical hardware is briefly discussed insofar as it influences the parameters and 

constraints of the simulated robot. In addition to the robot controller itself, software 

developed for this research includes a graphical user interface, robot simulator and a 

procedural environment generator. 
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4.1 Hardware 
MARVIN’s hardware can be divided into two main components: a base containing 

hardware required for navigation and high-level computation, and an upper body 

whose primary functions are to improve the robot’s aesthetic appeal and facilitate 

human-machine interaction. Since this thesis focuses on the application of affect to 

mobile robot control rather than human-machine interaction, the upper body is of less 

relevance. Nevertheless, the torso and head unit does influence some design decisions, 

so it is briefly discussed for completeness. 

4.1.1 Base Unit 

A small form-factor PC (an Athlon XP 2000+ with 512 MB RAM) housed within the 

base unit is currently the robot’s primary controller. The PC interfaces to the robot’s 

hardware components via a National Instruments PCI-6229M data acquisition card 

(Cawley and Carnegie, 2006) and standard USB ports. As part of an ongoing 

hardware upgrade, graduate student Johnny McClymont is replacing this PC and 

DAQ card with a more powerful notebook PC and a custom microcontroller interface. 

Power is provided by two 12 V flooded lead-acid batteries in series. An ACE-828C 

DC ATX power supply converts the resulting 24 V input into signals appropriate for 

the PC and its peripherals (Lee-Johnson and Carnegie, 2003). 

MARVIN possesses a two-wheeled differential drive system supported by casters at 

the front and rear. The wheels are driven independently by two 24 V DC permanent 

magnet brush motors, which are controlled by a pair of RHINO DS72K H-bridge 

motor drivers from Dynamic Controls Ltd. The motor drivers interface to the PC via a 

custom-built microcontroller board (Cawley and Carnegie, 2006). 

Motor step functions obtained under load (i.e. driving the robot rather than 

freewheeling), with the motor drivers operating at 100% duty cycle, are shown in 

Figures 4.2 and 4.3. When its motors are driven at full duty cycle, the robot can move 

forward at approximately 1.6 m/s (although for safety reasons this speed tends to be 

impractical indoors). It takes around 2 seconds to accelerate and decelerate between a 

stationary state and these maximum speeds. The robot’s acceleration/deceleration 

(shown in Figure 4.3 filtered by a moving average with a window size of 10 samples) 
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is not uniform throughout the duration of each transition, but its magnitude typically 

varies between 0.4 m/s2 and 1.6 m/s2. 

 
Figure 4.2: Velocity step function. 

 
Figure 4.3: Acceleration step function. 

 

Two HEDS-5700 optical encoders, each attached to a different motor, provide 

odometry information that can be utilised for velocity measurements and localisation. 

Like all odometers, these sensors result in cumulative localisation errors from sources 

such as conversion errors, update rate limitations, wheel slippage and non-constant 

wheel diameters, so they are only useful as a primary means of localisation over short 

distances. Long-term localisation requires that they be utilised in combination with 

exteroceptive sensors. 

MARVIN’s primary means of exteroception are Sharp GP2Y3A003K0F and 

GP2Y0A02YK infrared distance-measuring sensors. The GP2Y3A003K0F sensor 

comprises five separate pairs of infrared emitters and detectors, resulting in an overall 

coverage angle of 25°. It has a detection range of 40-300 cm. The GP2Y0A02YK is a 

single-beam sensor with a detection range of 20-150 cm. Voltage-distance 

relationships for each sensor type taken from their respective datasheets are given in 

Figures 4.4 and 4.5. Due to the nonlinear relationships shown in these graphs, changes 

in distance correspond to smaller changes in voltage as the range increases. Larger 

range measurements are therefore more susceptible to measurement errors and 

electrical interference, resulting in increased sensor noise. Any object closer than a 

sensor’s minimum detection range gives an erroneous measurement, appearing to be 

further from the sensor than its actual distance. It is therefore necessary to position 

each sensor such that objects are unlikely to enter its dead zone. 
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Figure 4.5: GP2Y3A003K0F voltage-
distance relationship (dead zone not shown). 

 
 
Figure 4.4: GP2Y0A02YK voltage-distance 
relationship. 

 

Ten GP2Y3A003K0F sensors are arranged in a ring around the top of the base unit, 

pointing outward from the robot’s centre axis. The 40 cm dead zone is partially 

negated by attaching the sensors to the narrowest end of the base unit. Nevertheless, 

the remaining ~25 cm of dead zone is unsatisfactory. This problem is alleviated by 

attaching a ring of GP2Y0A02YK sensors directly beneath the GP2Y3A003K0F 

sensor ring (at an approximate height of 75 cm), pointing at a 45° angle downwards. 

The GP2Y0A02YK sensor’s effective horizontal distance detection range becomes 

14-75 cm, ensuring that most objects cannot enter its dead zone without having 

already collided with the outer edge of the robot’s chassis. Any measurement over 75 

cm indicates a floor surface lower than the surface upon which MARVIN currently 

resides. This allows the robot to detect uneven floor surfaces and dangerous drop-offs 

such as staircases. 

4.1.2 Upper Body 

MARVIN’s upper body consists of a humanoid torso and head unit that can change its 

posture to portray a limited form of body language. Torso movements and extension 

of the head are driven by four Linak LA12 linear actuators controlled by custom-built 

H-bridge motor drivers (Carnegie et al., 2004). Other head motions are driven by 

three Hitec HS-815 servo motors. All actuator inputs are connected to a Mini SSC II 

controller, which interfaces to the PC’s serial port. Attached to the head unit are a 

spotlight, speaker, microphone and webcam. The spotlight is controlled by the Mini 

SSC II, while the other peripherals connect directly to the PC. 
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The absence of an expressive face is a significant impediment to conveying 

sophisticated human emotions. Nevertheless, variations in spotlight intensity and 

voice parameters in combination with different head and body postures can portray 

certain affective states that are useful to an autonomous security guard. As shown in 

Figure 4.6, the robot can become physically larger and appear more intimidating to 

potential intruders by raising its head and tilting its shoulders forward. Conversely, by 

withdrawing its shoulders and head, MARVIN can adopt a more submissive posture 

in the presence of authorised individuals. 

  
 
Figure 4.6: Example body postures (Carnegie et al., 2004) – (a) intimidating and (b) 
submissive. 

 

4.1.3 Navigational Challenges 

MARVIN’s nominal width of approximately 70 cm can impede navigation in a 

confined office block or laboratory environment, where some doorways may be 

barely wider than the robot. The torso unit may exacerbate the problem by protruding 

beyond the width of the base unit in certain configurations. Its large height (up to 

around 1.8 m, depending on its head extension) can also cause problems, as the 

infrared sensors do not cover the length of the torso and head unit. Hence, the robot is 

vulnerable to collisions with obstacles that reside outside of the sensors’ planes of 

detection (e.g. objects mounted high on walls). The infrared sensors can fail to 

correctly measure the distances of objects constructed from transparent materials (e.g. 

windows and glass cabinets). Additionally, the large bulk and weight of the robot may 

result in considerable damage (both to the robot and to its surroundings) in the event 

of a high-speed collision. MARVIN’s controller must address some of these problems 

to ensure that it can operate safely in complex indoor environments. 
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4.2 Simulated Robot 
For the purposes of robotics research, simulated robots have a number of advantages 

over their real-world counterparts: 

• Downtime – Simulations can be executed any time, whereas real-world robots 

generally suffer long periods of downtime for recharging, maintenance or 

development. Robots are often shared between multiple projects, further 

limiting their availability. This is a significant problem for MARVIN, which is 

an active research platform undergoing continual development. As a result, 

MARVIN is frequently in a non-working state. 

• Focus – In simulation, some robot capabilities can be omitted (e.g. 

localisation) in order to focus on the task under investigation (e.g. reactive 

control). In the real world, the robot will not function correctly unless all 

necessary capabilities are fully implemented. 

• Supervision – Simulation-based experiments can be unsupervised for extended 

periods of time, whereas experiments on real-world robots generally require 

constant supervision and human input. 

• Controllability – Simulated experimental conditions can be precisely 

controlled. Conditions are repeatable to an arbitrary level of precision, and 

they can be iteratively modified. In the real world, experimental conditions 

cannot be controlled or replicated as precisely. 

• Speed – Simulation experiments can be completed faster than real-time. Real-

world completion speed is limited by physical constraints. 

• Safety – Many experiments that can be conducted in simulation are 

impractical in the real world for safety reasons. In particular, any experiments 

where the robot is likely to collide with people or objects are only feasible in 

simulation. 

However, there are disadvantages to simulation-based research: 

• Simulation accuracy – Simulations are only approximations of real-world 

systems, and are no substitute for real world experimentation when 

development surpasses the prototype stage. No simulation can model the full 
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complexity of dynamic real-world environments, especially those that contain 

unpredictable elements such as humans. 

• Complexity – Given that simulations are generally less complex than real-

world environments, the usefulness of some complex behaviours may be 

limited. 

• Sensors – Some sensors are difficult to model in simulation (e.g. image-based 

sensors). However, MARVIN’s primary navigation sensors are infrared 

rangefinders, which are relatively simple to simulate. 

• Computational overhead – Simulations require additional overhead that could 

otherwise be spent on improving a robot’s performance. However, this is not a 

drawback if the robot’s onboard processor is sufficiently slower than the 

computer(s) running the simulation, as is the case for MARVIN. 

The advantages outweigh the disadvantages in the majority of the research planned 

for this project. Thus, the decision was made to develop a simulated version of 

MARVIN and its environment that would serve as the primary research platform. 

A robot’s interactions with the world are 

summarised in Figure 4.7. Changing from a 

real-world implementation to a simulation 

requires the removal of sensor and actuator 

hardware interfaces, and the addition of 

software versions of the sensors and actuators. 

These interact with a simulated representation of 

the robot’s environment. 

Robot Controller

Sensors Actuators

World

 

Robot pose and velocity variables are stored 

independently for both the controller and the 

simulator. When odometer errors are incorporated into the simulation, the robot’s 

internal representations of these variables diverge from their actual values, as they do 

in a real-world robot. Similarly, the controller’s internal representation of its 

environment is separate from the simulated representation. However, in the majority 

of experiments conducted for this research the problem of localisation is disregarded 

 
Figure 4.7: Robot-world interaction. 
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so that we can focus on other issues1. Hence, cumulative odometry errors are typically 

set to zero, and only exteroceptive sensor errors are enabled. 

4.3 Programming Environment 
The robot control software and simulator are developed in MATLAB, a technical 

computing environment for numerical computation, visualisation and high-level 

programming. MATLAB programs can be developed rapidly compared to lower-level 

languages such as C++. MATLAB includes a built-in interpreter, so code does not 

need to be compiled before execution. Very little additional code is required to 

present data graphically onscreen. Its default data element is a dynamic matrix of 64-

bit floating point numbers, and most functions are designed and optimised for matrix 

computations. An extensive library of specialised toolboxes is available for domains 

useful to robotics, such as data acquisition, control systems, optimisation and signal 

processing. 

This high development efficiency comes at a cost to execution speed. MATLAB 

programs are typically much slower than C/C++ executables, particularly if they 

contain many loop structures. To compensate for this, functions written in C or C++, 

called MEX-files, can be executed from within MATLAB. MATLAB’s built-in 

profiler is utilised to measure the relative execution speeds of each function within a 

program, revealing any performance bottlenecks. Bottlenecking functions are then 

rewritten in C as MEX-files, which generally yield orders-of-magnitude performance 

gains. Generally, there are sufficient computational resources at the robot’s disposal 

that we can focus on maximising its physical performance rather than its 

computational efficiency. 

Another disadvantage of MATLAB is its limited multithreading capabilities. While 

recent versions provide support for multi-core CPUs, distributing matrix computations 

across multiple processors, MATLAB programs cannot readily execute multiple loops 

concurrently. This limits its performance in some robotics applications, where 

different sensors, actuators, communications functions and architectural levels ideally 

should be updated at different frequencies. However, this is not a significant 

                                                 
1 This is expected to have a non-trivial influence over the behaviour of the system. For example, because the robot’s position 

is assumed to be accurate, internal maps and deliberative control techniques become more useful, and thus the robot can be less 
dependent on reactive control approaches. 
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drawback for MARVIN, whose sensor and actuator updates can be performed 

independently by the DAQ card and/or microcontrollers. 

4.4 Graphical User Interface 
MARVIN’s pose, sensor readings, internal data and environment are displayed in a 

MATLAB figure window (Figure 4.8). Graphical objects are created using 

MATLAB’s patch and line functions, and their properties are modified using set. This 

is more computationally-efficient than deleting objects and recreating them each time 

their vertices change. 

Pose (position and orientation) is represented by a circle of the robot’s radius and a 

direction arrow. Three pose objects can be displayed: estimated pose, actual pose, and 

target pose. These objects are mouse-movable. Position or direction can be adjusted 

by clicking and dragging the circle or direction arrow, respectively. 

Infrared sensor beams are displayed as lines extending from the sensor locations 

relative to the robot’s actual pose. Estimated obstacle positions are represented as 

points relative to the robot’s estimated pose. Planned paths are displayed as dashed 

lines connecting map nodes. 

The actual environment is represented by polygons and lines, whereas the robot’s 

internal representation of the environment is an occupancy grid map drawn as square 

nodes of varying intensities. Only nodes within distance d of the robot’s estimated 

pose are drawn on-screen because it is very slow to redraw the entire map each screen 

update. 

Clicking the Manual/Auto/Batch button toggles between three main modes of 

operation (when it is toggled the button’s text label changes to represent its new state). 

Manual mode allows the user to move the robot’s estimated, actual and target pose 

objects, and the robot will carry out this single instruction. Auto mode executes a pre-

programmed sequence of instructions. Batch mode can execute multiple instruction 

sequences, iteratively adjusting experimental environments or robot control 

parameters for tuning or testing purposes. 

The main program begins executing when the user clicks the Start button. A timer 

callback is triggered that periodically executes a new control cycle until the 
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instruction is completed or the user clicks the Pause or Stop buttons. The robot’s 

default control period is 100 ms, but the program can execute faster than this real-time 

value. During most simulation experiments the timer is configured so that it executes 

the next control cycle as soon as the previous one is completed. 

 
 
Figure 4.8: MARVIN’s graphical user interface. 

 

The screen update rate can be adjusted by controlling the interval between drawnow 

function calls. More frequent updates result in smoother onscreen motion, but lower 

overall execution speed. Forced screen updates (drawnow) are only necessary when 

the program is running at faster than real-time, because the screen will automatically 

update when MATLAB’s event queue is empty. 

4.5 Program Structure 
Figure 4.9 shows a block diagram of the robot software. When operating in manual 

mode, the program cycles through a single control loop until the robot converges on 

its goal point. In auto mode, this loop is expanded to incorporate additional steps, 

where upon completion of one navigation instruction, another is automatically 
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triggered. Batch mode further expands it to load new environments and/or update 

parameters when an experimental iteration has completed. This is analogous to a set 

of nested while loops, except that each new control cycle is triggered by a timer. 

 
 
Figure 4.9: Block diagram of program structure. 

 

4.6 Simulated Environments 
Simulated environments are represented by 2D polygonal maps containing objects 

stored as sets of vertices (linked corner coordinates). Simulated objects can have a 

number of different properties that affect how they behave, and how easily they are 

detected by the robot’s sensors: 

• Static – Objects with this property do not move, and they are not affected by 

the robot if it collides with them. Walls, doors and most furniture have this 

property. 

• Moveable – These objects do not move unless the robot makes physical 

contact with them, at which time they are pushed away from the robot. A 

moveable object can only be pushed if the direction of movement is not 
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obstructed by another object. Light objects that are not attached to a static 

surface (e.g. boxes and rubbish bins) possess this property. 

• Dynamic – Objects that move of their own volition such as humans or other 

robots have this property. Their movements are also limited by collision 

detection with other objects. 

• Limited visibility – These objects are undetectable, or only partially-detectable 

by the robot’s sensors. They may be transparent or opaque to infrared light 

(e.g. glass cabinets) or sparsely-occupied (e.g. fences), or they might primarily 

occupy an area outside of the robot’s plane of detection (e.g. narrow-legged 

tables). 

• Floor – These represent floor drop-offs such as staircases. They are not 

detected by the robot’s primary set of infrared sensors, but the downward-

directed sensors can detect them. 

4.6.1 Procedural Environment Generation 

Simulated environments can be created manually in order to measure or train the 

robot’s behaviour in highly controlled conditions. However, if a controller is designed 

or trained for optimal performance in a single environment, it is likely to perform 

poorly in other environments. The robot’s general performance can be more 

effectively gauged and improved by utilising a range of different environments. 

Rather than construct a large number of environments manually, which is very time-

consuming, random indoor environments are generated procedurally. 

The procedural environment generation algorithm is shown in Figure 4.10. A tree 

structure is constructed that contains rooms of random dimensions connected by 

randomly-placed doors. Rooms are recursively added to the structure until there are 

no unconnected doors remaining. 

The environment is segmented into blocks representing the smallest room size. The 

default block size is 2×2 m. A grid map containing the room index associated with 

each block is constructed in parallel with the tree structure. Rooms are categorised as 

either corridors, which are one block wide, or offices/laboratories, which are at least 

two blocks wide. A room’s category can affect its object placement rules. 
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If a room of the selected dimensions cannot fit in the available space, rooms of 

decreasing size are compared with the available grid map spaces until one is found 

that fits. 

Place room: 

Randomly select room dimensions. 

If room does not fit, 

Try successively smaller rooms until one fits. 

Determine maximum number of doors to attach to room. 

Repeat until all doors are placed or rejected, 

Randomly select door position. 

If block adjacent to door position is not already occupied by a room, 

Place door. 

Place room (recursion). 

Else, 

Reject door position. 

Place extra doors: 

Repeat n times, 

Randomly select door location from available list. 

Update adjacent rooms. 

Generate wall vertices: 

For each room, 

For each wall, 

Get wall and door endpoints. 

Generate vertices for connecting rectangles. 

Place obstacles: 

Repeat until list of available blocks is empty, 

Randomly select block from list. 

Randomly select object type. 

Randomly select object dimensions. 

Generate object vertices. 

Remove adjacent blocks from list. 

 

 
 
Figure 4.10: Pseudo-code representation of the procedural environment 
generation algorithm. 
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Figure 4.11: Example procedurally-generated environments. 

 

The maximum number of doors allowed for a given room is proportional to its 

perimeter. Doors are only added to walls whose adjacent blocks are not yet occupied 

by other rooms. The order in which doors are placed is random. As each door is 

added, a new room of random dimensions is attached to it, and the process is repeated 

for the new room. If the new room cannot fit in the available space, the door 

connected to it is removed. 

Following room placement, only one path exists from any one room to any other 

room, due to the restriction that each door only be added if a room has not yet been 

placed adjacent to it. While this also holds true for many small real-world 

environments, it does not provide an adequate challenge for path planning. Hence, a 

small number of additional doors are added to the environment, resulting in multiple 

paths between some rooms. 
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Sets of wall vertices are generated from the resulting structure. Their exact 

coordinates depend on pre-defined parameters such as wall and door widths. 

Finally, objects are placed at random positions in each room. In order to prevent 

potential blockages, objects cannot be placed in blocks adjacent to doors or other 

objects. First, an object’s type is randomly selected from the list of objects allowable 

for a particular experiment. Next, an object’s size and other properties are determined 

within certain bounds: 

• Static obstacles are generally rectangular, with randomly-generated positions, 

lengths and widths. In corridors, the maximum length for a static object is half 

the block width and it is always contained within a single block quadrant, to 

allow the robot sufficient space to navigate past it. In rooms, static objects can 

occupy up to a full block. 

• Dynamic and moveable obstacles tend to be circular in order to simplify 

collision detection, and they are limited to less than half a block in width. 

Figure 4.11 shows some examples of environments generated using this method. 

4.7 Simulated Sensors and Actuators 
The simulated version of MARVIN has one set of actuators (the driving motors) and 

three types of sensors (odometers, collision sensors and infrared distance measuring 

sensors). 

4.7.1 Driving Motors 

The simulated motor outputs are the robot’s pose and polar velocities. First, the 

robot’s target linear velocity vT (in m/s) and angular velocity ωT (in radians/s) are 

converted into wheel velocities (vT1, vT2), based on the distance between each wheel 

dw (in m): 
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The simulated motors are driven by a simple PI controller. While a more complex 

controller may produce a more optimal response, it would likely be correspondingly 

more difficult to tune and less computationally efficient. Velocity errors vE are 
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calculated each control cycle as the difference between the measured and target wheel 

velocities. Each wheel velocity vW is a function of its velocity errors vE(k) at various 

integer times k, the proportional constant P and the integral constant I: 

( ))2()1()()()()1( −+−+++=+ kvkvkvIkPvkvkv EEEEWW  (4.2) 

Motor lag is modelled by averaging the current and previous wheel velocities. This is 

only an extremely crude approximation of physical motor properties, and no attempt 

was made to match those of MARVIN, but it is simple and efficient. Gaussian noise is 

also added to the motor output using MATLAB’s randn random number generator 

function, whose output amplitude is modulated by velocity noise constant κv: 
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Static friction is controlled by a pair of constants vmin1 and vmin2. The magnitude of a 

wheel’s velocity cannot not increase above zero until it exceeds vmin1. If a wheel’s 

velocity magnitude drops below vmin2 from a non-zero number, it is set to zero. 

Finally, the linear and angular velocities (v, ω) are obtained: 

2
21 vv

v
+

=  (4.4) 

wd
vv 21 −=ω  (4.5) 

Pose values (x, y, θ) are a function of their previous values, the robot’s polar velocities 

(v, ω), and its control period T: 
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ωθθ T+←  (4.7) 

If the new pose results in a collision (see Section 4.7.3), the change is rejected, and 

the robot’s linear velocity is set to zero. The previous pose values are selected in 

favour of the new ones, then shifted 1 cm away in the direction opposite to that of the 

point of collision. 

4.7.2 Odometers 

The outputs from the simulated odometers are the robot’s internal representations of 

its pose and polar velocities. Due to odometer errors, the measured values can be 

different from the simulated robot’s actual values. 
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Wheel velocities are again obtained from polar velocities using Equation 4.1. The 

measured wheel velocities (vM1, vM2) are a function of systematic error constants (ε1, 

ε2), and a random error constant ε3 multiplied by the Gaussian random number 

generator function randn: 
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Measured linear and angular velocities (vM, ωM) are obtained from the resulting 

measured wheel velocities using Equations 4.4 and 4.5. Similarly, the robot’s 

measured pose values (xM, yM, θM) are obtained by applying Equations 4.6 and 4.7 to 

the measured polar velocities. 

4.7.3 Collision Sensors 

The simulated robot possesses eight collision sensors distributed evenly around its 

chassis, modelled as simple switches that trigger in the event of a collision. These are 

failsafe mechanisms that can help protect the robot from further damage if its other 

sensors and obstacle avoidance software prove inadequate. They are also used to 

record collisions during testing. 

Objects in the robot’s environment are decomposed into line segments representing 

their linked vertices. The collision detection algorithm determines whether these line 

segments occupy the same space as the robot. 

First, for each line segment in the environment, a simple check is performed to 

determine if a circle enclosing it contains or intersects with a circle representing the 

robot: 
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This is a function of line segment’s midpoint (xL,yL) and length lL, and the robot’s 

position (xR,yR) and radius rR. 

Next, if a line segment is not culled, the algorithm checks whether both of the line 

segment’s endpoints are enclosed by the robot’s circle. If not, it checks whether there 

are any points of intersection between the circle and line segment. A collision is 

simulated if either of these conditions is true. The point of collision is given by either 
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the line segment’s midpoint, or the midpoint of the points of intersection, depending 

on which condition is true. 

If any collisions are detected after all line segments in the environment have been 

processed, the sensors closest to the resulting points of collision are activated. 

4.7.4 Infrared Distance Measuring Sensors 

Both types of infrared sensor on MARVIN (Sharp GP2Y0A02YK and 

GP2Y3A003K0F) are modelled using the same algorithm. The only difference 

between them is the number of sensor beams modelled per sensor, and the ranges for 

each beam. 

Each sensor beam is represented by a line segment extending from the 

emitter/detector’s position, with a length bounded by its maximum sensing range. To 

detect objects in a beam’s path, the algorithm calculates the points of intersection 

between the beam’s line segment and each object’s line segments. The measured 

object position is the closest point of intersection, if any exist. 

The distance between the measured object position and the emitter/detector position 

represents the range draw that would be measured in the absence of sensor limitations. 

If draw is smaller than the sensor’s minimum detection range, it is replaced by a new 

range value that is inversely proportional to draw. 

( )( )minmaxrawminminraw dddddd −−+←  (4.10) 

Next, Gaussian noise is added to the range measurement dnoisy using randn: 

( )randndd d ×+= κ1rawnoisy  (4.11) 

The standard deviation of the noise distribution is proportional to the unmodified 

range value draw (by range noise constant κd). Although this model does not capture 

the full complexity of real-world sensor noise, it does approximate the effect where 

the noise intensity increases with range in real infrared sensors. This effect is linked to 

the non-linear shape of the voltage-distance relationship shown in Figures 4.4 and 4.5. 

The voltage variation between points at higher ranges is less than that at lower ranges, 

so noise has a larger influence over the resulting range measurement. 

Due to the large amount of noise on both simulated and real measurements, a sliding 

median average filter is applied to the ranges before they are passed to the robot 
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controller. The filtered value is equal to the median of the five most recent samples. 

Thus, if the control period is set to its default 100 ms and the sensors are sampled 

once per control cycle, the average response time for the infrared distance measuring 

sensors is 250 ms. Figure 4.12 shows the resulting simulated IR sensor readings. 

 
 
Figure 4.12: Simulated infrared distance measuring sensors for the robot in motion. The 
green lines represent the original noise-free, unfiltered ranges. The red asterisks represent 
the estimated obstacle positions after noise and median average filters are applied to the 
sensor readings. 

 

4.8 Summary 
The target platform for this research is MARVIN, a custom-built mobile security 

robot. MARVIN contains a wheeled base unit that enables the robot to navigate in 

flat-surfaced environments and a humanoid torso/head unit that facilitates human-

robot interaction. A simulated mobile robot based on MARVIN has been developed 

for the purpose of testing control software in arbitrary 2D environments. These 

environments can be generated procedurally with a range of customisable properties. 

The next chapter describes the implementation of the mobile robot planning and 

control system that is applied to this simulated version of MARVIN. 
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5 Motion Planning and Control Architecture 

Mobile robot architectures can be broadly categorised by their reliance on 

representations of the environment. They generally reside somewhere along a 

spectrum between two main control methodologies: reactive and deliberative. 

Reactive control methods advocate tightly coupled sensing and actuation, and a 

minimalist approach to world representation. Brooks (1986) argues that the world is 

its own best model, and complex behaviours can emerge from the interactions of 

simple components. Robots with reactive controllers tend to be fast, responsive to 

partially-observable dynamic environments, and tolerant of sensor noise. However, 

they are often unpredictable and prone to becoming trapped in local minima. Complex 

tasks requiring a robot to make long-term predictions or conform to rigid 

specifications generally cannot be accomplished with a purely reactive system. 

Deliberative approaches involve planning a robot’s actions in advance by searching a 

more global representation of the environment. Ideally, the robot’s world 

representation is continually updated to incorporate new data, and its plans are 

adjusted accordingly. This allows a robot to solve certain problems that are beyond 

the reach of the trial-and-error approach employed by reactive systems. 

Computational overheads are unbounded, increasing exponentially as the quantity of 

world information increases. Thus, the design of a deliberative system always 

involves tradeoffs between speed and optimality. Purely deliberative robot controllers 

have traditionally been regarded as slow and unresponsive to environmental dynamics 

(Arkin, 1989). 

Each of these approaches has significant limitations when utilised exclusively. Hence, 

many of the more successful implementations reside closer to the middle of the 

representation spectrum. Some are single-level systems that utilise partial 

environment representations, e.g. (Ulrich and Borenstein, 2000), while others are 

hybrid systems that combine multiple control methodologies, e.g. (Gat, 1992), 

(Conell, 1992). 

A hybrid reactive/deliberative control approach is employed in this thesis. Hybrid 

controllers have been increasingly popular in recent years, as they can mitigate many 

of the weaknesses of single-level systems. One of the key issues of hybrid controller 
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design is management of the interactions between reactive and deliberative 

components. In our architecture, the deliberative controller is assigned a loose 

supervisory role, providing recommendations that can be obeyed or overruled by the 

reactive controller as the situation dictates. This allows the robot to benefit from the 

guidance of deliberative planning, while maintaining the real-time responsiveness of 

reactive control. An overview of the controller is given in Figure 5.1. 

 
 
Figure 5.1: A block diagram representation of the hybrid reactive/deliberative navigation 
system. 

 

In accordance with authors such as Brooks (1986) and Gat (1992), this architecture 

was designed largely from the bottom up, starting with a purely reactive system, then 

incorporating deliberative planning capabilities. However, subsequent sections 

describe the architecture components in a top-down manner. This is because recent 

additions to the reactive layers are dependent on deliberative world representations. 

For example, the map-based obstacle avoidance functions utilise global map data. 

5.1 Deliberative Control 
Reactive obstacle avoidance techniques are susceptible to becoming trapped in local 

minima. This problem is often alleviated by injecting noise into the system, or by 
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detecting and responding appropriately to local minima when they are encountered. 

However, convergence to the goal in a reasonable timeframe can only be guaranteed 

if they are combined with some form of global path planning. Our reactive controller 

is no exception, and its reliability can be improved by the addition of a deliberative 

planner. 

Two main components form the deliberative controller: dynamic mapping and path 

planning. Mapping is performed continuously as the robot explores its environment, 

whereas paths are planned less frequently on a separate timer. 

The problem of localisation is considered ‘solved’ for the purposes of this research, so 

the methods described in this section assume that the robot has accurate knowledge of 

its position in the environment. This is not entirely realistic, as existing simultaneous 

localisation and mapping (SLAM1) approaches have significant limitations. For 

example, when entering a room from two different doorways, many SLAM 

algorithms fail to identify it as the same room each time. Nevertheless, the SLAM 

problem is beyond the scope of this project. 

5.1.1 Mapping 

Path planning typically involves the application of a search algorithm or heuristic to a 

graph structure representing a set of valid paths obtained from a map of the robot’s 

environment. There are two main categories of path planning methods, each tied to 

different types of map representation. 

In cell-decomposition methods, obstacles and free space are divided into discrete cells 

(Hwang and Ahuja, 1992). Valid paths are obtained from the adjacency relationships 

between free cells. Selection of cell sizes is generally a trade-off between path quality 

and computational efficiency. Large environments can result in unacceptably large 

search spaces unless they are partitioned into manageable segments. 

Roadmap methods such as visibility graphs (Nilsson, 1969), Voronoi diagrams 

(Aurenhammer, 1991), freeway nets (Latombe, 1991) and silhouette graphs (Canny, 

1988) generate a set of curves in free space that connect nodes between obstacles. 

These approaches can greatly reduce the search space without impeding path quality, 

but the overhead of generating the roadmaps can negate any computational efficiency 
                                                 
1 Durrant-Whyte and Bailey (2006) give a concise review of SLAM approaches. 
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gains, and they are often best suited to specific types of environments. For example, 

Voronoi diagrams perform well in confined indoor environments, but poorly in open 

outdoor environments.  

5.1.1.1 Occupancy Grid Map 

Our robot’s environment is represented by a rectangular occupancy grid map (Thrun, 

2003). This is selected over roadmap methods and other types of cell decompositions 

because of its simplicity and versatility. An example map is shown in Figure 5.2. 

 
 
Figure 5.2: An occupancy grid map generated during one pass through a simulated 
environment. Darker shades represent increased probability of occupancy. Orange direction 
arrows are placed at 5 second intervals along the path; sparse arrow densities represent 
higher speeds. Start and goal points are represented by the red and yellow circles, 
respectively. 

 

The grid size is set to the robot’s radius (35 cm). This results in a coarse grid 

resolution that facilitates computationally efficient mapping and path planning, but 

nevertheless provides sufficient data for planning purposes. Obstacle avoidance and 

local navigation is largely unimpeded, because it is more dependent on local sensor 

data than on global maps (although both can be taken into consideration). Hence, any 

minor benefits to be gained by increasing the grid resolution are likely not worth the 

cost to computational efficiency. 
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Each node is assigned an occupancy probability po, a unit interval value that 

represents the estimated probability that the node is occupied by an obstacle. 

Occupancy probabilities are updated in real time based on proximities to measured 

obstacles and sensor beams. 

 
 
Figure 5.3: Obtaining occupancy status from sensor 
data. The large blue circle represents the robot. Sensor 
beams are represented by red lines, and obstacle 
positions are marked by small blue circles. Map nodes 
flagged as occupied are dark grey, while unoccupied 
nodes are white.  

Each sensor is represented by a line that extends from its origin to the obstacle 

detected, bounded by a predefined maximum sensor range. Nodes through which a 

sensor beam passes are flagged as unoccupied. Detection of such nodes involves 

calculating the points of intersection between relevant line segments. Several 

optimisations are employed to ensure that only potentially-relevant nodes are 

processed, and that the line segments processed are shared by multiple nodes. Nodes 

within radius r of the robot’s current position (i.e. nodes currently occupied by the 

robot) are also flagged as unoccupied by obstacles. Nodes containing detected 

obstacles are flagged as occupied, superseding any unoccupied status resulting from 

proximity to the robot or its sensor beams. A diagram of this process is shown in 

Figure 5.3 (although the actual robot produces more sensor beams than are shown in 

the diagram). 
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The occupancy status of each flagged node is an instantaneous value (unoccupied = 0, 

occupied = 1) that is incorporated into the node’s occupancy probability calculation. 

This calculation is a weighted average of the occupancy status so(x) and the previous 

occupancy probability po(x) of each node x: 

)()1()()( xpxsxp ooo εε −+←  (5.1) 

The map update weight ε controls the rate at which detected occupancy changes are 

incorporated into the map, balancing the competing demands of speed and stability. 

High values of ε result in faster response to detected obstacles, but increased 

instability. Separate update weights can be employed for increasing and decreasing 

obstacle probabilities. 

5.1.1.2 Other Grid Maps 

Occupancy probability is not the only variable associated with map nodes. Other 

variables such as exploration, danger and emotions are mapped in order to provide 

location-specific biases to the robot’s planning and control systems. 

An exploration map is constructed simultaneously with the occupancy map. The 

purpose of this map is to provide the robot with an incentive to explore regions that 

are not currently known. Each node x is assigned a value pe(x) representing a degree 

of confidence that the node is fully known. Updating pe(x) is accomplished in the 

same manner as for po(x), but growth is applied uniformly to all nodes whose po(x) 

values are updated, rather than being a function of so(x): 

)()1()( xpxp ee εε −+←  (5.2) 

Thus, pe(x) values do not decay in our current implementation. Once explored, a node 

will always be explored. However, in environments where a robot’s existing world 

knowledge may become obsolete, a time dependent decay factor could be introduced. 

Figure 5.4 shows an exploration map acquired simultaneously with the previous 

occupancy map (Figure 5.2). 

A danger map is employed to mark regions that the robot should attempt to avoid. 

These include regions where there are fast-moving obstacles (e.g. humans), objects 

that the robot’s sensors cannot easily detect (e.g. windows), or objects that result in 

severe consequences if the robot should fail to avoid them (e.g. staircases). Map nodes 

can be tagged as dangerous either a priori, or by recording points of collision as they 
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occur. Danger is currently represented as binary (dangerous/safe) states, but it could 

be modified to represent more subtle degrees of danger. The robot is discouraged 

from planning paths through these regions, and these nodes also influence reactive 

obstacle avoidance in certain situations. 

 
 
Figure 5.4: An exploration grid map. Darker shades represent increased confidence of 
knowledge. 

 

Emotions are also associated with map nodes, to provide positive or negative location-

specific biases. These are described further in later chapters. Other types of maps can 

be incorporated as required by a specific application. For example, regions of strategic 

importance to the robot such as patrol routes or off-limit zones could be marked to 

increase or decrease their attractiveness. 

5.1.1.3 Map Fusion 

Grid maps are fused by weighted probabilistic OR calculations. For all nodes x, two 

input map values m1 and m2 are combined into a fused output map value mf : 

)()()()()( 21212211 xmxmWWxmWxmWxm f −+=  (5.3) 

The fused map mf, not the occupancy map, is utilised during path planning. Weights 

W1 and W2 are unit interval values representing the relative contributions of each map. 

The occupancy map is typically assigned a weight of 1, but the weights of other maps 

vary depending on the task at hand. For example, if the exploration map is highly 
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weighted, the robot tends to favour exploration over finding the shortest path. A 

combined occupancy and exploration map is shown in Figure 5.5 (although 

exploration was assigned zero weighting during the acquisition of its component 

maps). To fuse more than two maps (m3-mn), this calculation can be repeated as many 

times as are necessary: 

)()()()()(
...

)()()()()( 3333

xmxmWxmWxmxm

xmxmWxmWxmxm

nfnnnff

fff

−+←

−+←

 (5.4) 

 
 
Figure 5.5: Occupancy and exploration grid maps fused into a single map. Variables: W1 = 1, 
W2 = 0.4. 

 

5.1.2 Path Planning 

The path planner utilises the A* algorithm (Judea, 1984) to find an optimal path 

through the fused grid map. A* is a best-first graph search algorithm that prioritises 

nodes by the estimated quality of their associated paths. A pseudo-code 

implementation of the A* algorithm is shown in Figure 5.6. 

The total path cost f(x) of a node x is dependant on a measured path cost g(x) of the 

best path from the start node to x, as well as a heuristic path cost h(x) of travel from x 

to the goal node: 

)()()( xhxgxf +=  (5.5) 
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Add start node to open list. 

Repeat until goal node is on closed list: 

If open list is empty, return failure. 

Set parent node to node in open list with minimum total path cost. 

Move parent node from open list to closed list. 

For each child node adjacent to parent node: 

If child node is not on either open list or closed list: 

Calculate total path cost of child node. 

Move child node to open list. 

Set selected node to goal node. 

Add selected node to path list. 

Repeat until selected node is start node: 

Set selected node to parent of selected node. 

Add selected node to path list. 

Reverse path list. 
 
 
Figure 5.6: Pseudo-code representation of the A* implementation.  

Measured path cost g(x) is dependant on the cost of the lowest-cost parent node xpar, 

the Euclidian distance dn(x, xpar) between the two nodes, and a cost factor c(x): 

)(),()()( xcxxdxgxg parnpar +=  (5.6) 

In our implementation, c(x) is a continuous value dependant on a filtered map node 

cost mf''(x): 
)(')( xm fBxc =  (5.7) 

Base constant B is an arbitrarily large number (typically B > 103) that affects the 

disparity between cost factors of nodes with different mf' values. 

This contrasts with standard A* path planning methods, where nodes x whose 

occupancy values exceed a threshold are regarded as occupied by obstacles, and are 

therefore not processed during path planning. Although they do not include an explicit 

variable equivalent to c(x), the approach is analogous to assigning c(x) = ∞ to nodes 

that exceed the threshold, and c(x) = 1 to all other nodes, regardless of their mf(x) 

values. A visual comparison between the two approaches is shown in Figure 5.7. 
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Figure 5.7: The relationship between mf'(x) and c(x) 
in our approach, and its analogue in standard A* 
path planning methods.  

Our approach allows any changes in map values to influence path planning, not just 

those that cross a threshold. This is important to our application because path planning 

is not just a function of occupancy probability, but also other factors such as 

exploration and emotions. The subtleties introduced by these other influences would 

be negated if binary thresholds were employed. Due to the exponential nature of the 

relationship, the robot is unlikely to select a node with a high cost when low-cost 

alternatives exist. However if no unobstructed paths exist, the planning algorithm fails 

gracefully by choosing the best of the unfavourable options available. The reactive 

controller prevents the robot from colliding with obstacles even if it is instructed to 

pass through them, and it can sometimes reactively navigate through nodes that the 

planner regards as occupied. 

A smoothing filter is employed to obtain mf''(x) for a given node x from the fused map 

mf': 
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This filter is applied to nodes x1-xn within filter radius rf of node x. The contribution of 

each node is weighted by a function of its Euclidian distance d from node x. The 
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advantage of this approach over a simpler low-pass filter is that it smoothes the edges 

of low-cost regions without reducing the node costs of high-cost regions. This 

encourages the robot to plan paths closer to the centre of free space regions, which 

generally results in smoother paths that only pass near obstacles if no other option is 

available. 

 
 
Figure 5.8: A path planned without map filtering. 

 

 
 
Figure 5.9: A path planned with filter radius rf = 0.7. 
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Figure 5.10: A path planned with filter radius rf = 1.5. 

 

The filter radius rf influences the degree of smoothing, which can directly affect the 

quality of the planned path, as shown in Figure 5.8, Figure 5.9 and Figure 5.10. The 

path shown in Figure 5.8 is a result of unfiltered planning, and it tends to approach 

close to the edges of walls. If a moderate level of filtering is applied, as shown in 

Figure 5.9, the path is relatively optimal. If the map is over-filtered, as shown in 

Figure 5.10, doorways tend to be filtered, resulting in a sub-optimal path. Although 

the smoothing is shown applied to the whole map, the robot actually only applies it to 

nodes that are processed by the path planning algorithm, for computational efficiency 

reasons. 

Heuristic cost h(x) is the Euclidian distance between x and the goal node. This is an 

optimistic estimate; the actual cost is generally larger than the straight-line distance, 

especially once the additional costs of non-zero mf' values are taken into 

consideration. As a result, the algorithm is heavily biased towards optimality rather 

than computational efficiency. This approach is acceptable for our implementation, 

because the limited grid resolution and environment sizes result in small search 

spaces. 

A new path is planned not only upon the receipt of a new instruction, but also 

periodically throughout the journey. This allows the robot to take advantage of any 

world knowledge acquired since the previous plan. Planning is triggered whenever a 
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timer exceeds the replan period tr. Lower values of tr improve the robot’s response to 

detected environmental changes, whereas higher values reduce the computational 

resources allocated to planning. 

5.2 Reactive Control 
Despite the existence of a deliberative path planner, our reactive controller is designed 

to be self-sufficient. In most situations it does not require a path planner to function, 

albeit at a reduced capacity. This is important because deliberative systems cannot 

always be relied upon to provide useful commands. Environments that are highly 

dynamic or sparsely occupied tend to negate the advantages of planning. In the former 

case, the robot’s plans may be obsolete by the time they are executed; in the latter, 

there are few local minima to obstruct a reactive controller. Furthermore, deliberative 

systems are strongly dependent on localisation accuracy. A global map is only useful 

if a robot ‘knows’ its location. Hence, localisation errors are less likely to result in 

critical failures if the reactive system can operate independently when required. 

The controller must manage competing objectives such as goal seeking, obstacle 

avoidance, speed and stability. The relative importance of these objectives may 

change depending on the robot’s task and environment. Hence, one of our primary 

considerations is flexibility. Whereas many controllers are heavily reliant on 

thresholds to constrain decisions for computational efficiency reasons, this controller 

usually favours continuous values over binary decisions. A number of weights and 

parameters can be adjusted dynamically depending on the intensities of the robot’s 

affective states and processes. The affect model is described further in subsequent 

chapters. 

The controller is divided into two stages. First, it seeks an appropriate direction that 

approaches the goal location or planned path while attempting to avoid obstacles, 

oscillations and local minima. Second, it finds a pair of velocities that move the robot 

in the target direction at an appropriate speed while avoiding obstacles. 

5.2.1 Directional Control 

One of the main inspirations for our directional control method is the vector field 

histogram (VFH) obstacle avoidance technique (Borenstein and Koren, 1991). In its 
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original implementation, VFH is applied to a probabilistic occupancy grid map 

constructed from sonar sensor data. Direction space is discretised into a polar 

histogram of candidate sectors. Each sector is assigned a polar obstacle density 

derived from the certainty values of the cells it encompasses. The obstacle densities 

are smoothed, and a threshold is employed to sort the sectors into peaks and valleys. 

The robot attempts to travel through the centre of the valley closest to the direction of 

the target point. 

The VFH+ method (Ulrich and Borenstein, 1998) improved on VFH in a number of 

ways. Obstacles are padded by a circle of the robot’s radius, explicitly preventing the 

robot from attempting to pass through openings that are too narrow. Hysteresis is 

applied to the sorting threshold, preventing oscillations as the robot passes regions 

close to the threshold. Sectors that are blocked by obstacles in other sectors are 

masked, taking into account that wheeled robots tend to move in circular arcs rather 

than straight lines. A target direction is selected for the robot by applying a weighted 

sum objective function to each valley. In addition to the direction of the target point, 

the objective function takes into account the current wheel orientation and the 

previously-selected target direction. 

5.2.1.1 Objective Function 

Like VFH and its subsequent refinements, the method utilised by our controller 

involves the construction of a polar histogram, but many other implementation details 

are markedly different. Rather than separating obstacle avoidance from other 

objectives such as goal seeking, all objectives are integrated into a single weighted 

product objective function. Given a goal location and/or planned path, the directional 

controller obtains a locally-optimal target heading θT by applying the objective 

function f(θ) to a discrete list of candidate headings θ: 

)(maxarg ),[ θθ ππθ fT −∈=  (5.9) 

The objective function f is a combination of individual objectives f1–fn modulated by 

weights W1–Wn (where f1–fn and W1–Wn are unit interval variables):  

( )( ) ( )( ) ( )( )nn fWfWfWf −−××−−×−−= 11...1111 2211  (5.10) 

This form has some advantages over the weighted sum utilised by methods such as 

VFH+ (and various velocity-space approaches discussed in Section 5.2.2): 
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These advantages are revealed in Figure 5.11 and Figure 5.12, which show the outputs 

of two-input objective functions of each form. Input f1 represents an important 

objective, while input f2 represents an objective of lower importance. 

 
Figure 5.11: Weighted sum objective 
function with W1 = 1, W2 = 0.5. 

 

 
Figure 5.12: Weighted product objective 
function with W1 = 1, W2 = 0.5. 

The weighted sum objective function (Equation 5.11, Figure 5.11) allows less 

important objectives to influence the output even when a more important objective 

indicates that a particular decision is highly unfavourable. This can result in the robot 

choosing dangerous actions under certain circumstances. For example, the function f1 

shown in Figure 5.11 might represent obstacle avoidance, while f2 could represent 

goal seeking. In that scenario, a ‘dangerous’ option of f1 = 0 and f2 = 1 produces a 

higher objective value (f = 0.33) than a ‘safe’ option of f1 = 0.4 and f2 = 0 (f = 0.27). 

Thus, the ‘dangerous’ option is favoured by the controller, even though it is 

significantly more likely to result in a collision than the ‘safe’ option. 

In contrast, the weighted product objective function  (Equation 5.10, Figure 5.12) 

employed by our controller enables an important objective to negate the possibility of 

the robot choosing a highly unfavourable option (as long as other more favourable 

options exist), while still allowing less important objectives to exert a high level of 

influence over options it regards as moderately unfavourable. In the scenario 

described above, the ‘dangerous’ option would yield f = 0, while the ‘safe’ option 

would result in f = 0.2 and would therefore be selected. A large number of low-

weighted objectives can be incorporated into the system without adversely affecting 

the contributions of the most important objectives. The weights are typically limited 
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to 0.99 or less (i.e. close to 1, but not equal to 1), so that if a highly important 

objective determines that all available options are completely unacceptable, the other 

objectives remain able to contribute to the robot’s decisions. 

5.2.1.2 Avoidance Function 

The most important component of the objective function is the avoidance function 

a(θ), which favours directions with more distant obstacles. Whereas VFH utilises 

obstacle density values derived from an occupancy grid, our controller rates each 

polar sector by the distance to its closest obstacle obtained from absolute obstacle 

coordinates. This method does not take sensor uncertainties into account. However, it 

allows the robot to respond quickly to obstacles. Unlike VFH, sectors are not assigned 

binary peak/valley status. Instead, obstacle distances are converted into continuous 

values representing estimated safety. 

Infrared sensor ranges and any measured points of collision are converted into 

absolute obstacle positions, which are stored in a buffer containing the previous n 

obstacle measurements. The value of n can be adjusted to change the bias between 

computational efficiency and control performance. 

The robot is roughly circular, so for simplicity it is represented as a point object, and 

each obstacle is represented by a circle of radius ro. Typically, ro is equal to the 

robot’s radius, but lower values may allow the robot to enter narrow doorways, and 

higher values may improve safety. The points of intersection between each circular 

obstacle and a line extending out from the robot’s position in direction θ are 

calculated (Figure 5.13). 

If this method is applied to a robot whose chassis cannot be approximated by a circle, 

the circular obstacles can be replaced by polygonal objects constructed from a base 

shape rotated to match the robot’s current orientation. The radius ro can be replaced 

by a scale factor employed to grow or shrink the obstacles. 
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Figure 5.13: Unfiltered avoidance vector 
field (red lines) with circular obstacles (blue 
circles). 

The value of a(θ) is calculated from the distance do(θ) between the robot’s position 

and the closest point of intersection, normalised by the maximum sensing range 

do(max): 
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The resulting values are filtered over all angles θ to reduce the attractiveness of 

directions that pass near obstacles, compelling the robot to give obstacles a wide berth 

and favour the centre of corridors and doorways. The original VFH method utilised a 

simple weighted moving average low-pass filter. VFH+ enlarges obstacles by the 

robot’s radius as a replacement for this filter. However, as shown in Figure 5.13, 

enlargement alone does not prioritise between directions that pass extremely close to 

an obstacle and those that are further away. In this example, one vector that passes 

between two adjacent obstacles is assigned equal priority to those that are nowhere 

near obstacles. 

Hence, both filtering and enlargement are employed in our controller. The low-pass 

filter utilised by VFH has the disadvantage that it smoothes both valleys and peaks. 

This may occasionally provide the robot with insufficient incentive to avoid brushing 
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the corners of obstacles. A superior approach for our implementation is to utilise a 

filter that only smoothes the edges of peaks, not valleys2. 

Given a vector field h with n vectors, the filter applied to each element k is given by: 
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The number of contributing elements m in each direction from element k is a (rounded 

down) function of smoothing factor s and the total number of vectors n: 

( )snfloorm =  (5.14) 

Figure 5.14 and Figure 5.15 show vector fields resulting from smoothing factors of 

0.1 (which smoothes up to 10% of the vector field in each direction) and 0.2, 

respectively. Increasing s encourages the robot to approach the centres of peaks, 

resulting in improved safety. However, large values (e.g. Figure 5.15) may discourage 

the robot from traversing narrow doorways or other ‘bottleneck’ regions. 

 
 
Figure 5.15: Filtered avoidance vector field 
with s = 0.2. 

 
 
Figure 5.14: Filtered avoidance vector field 
with s = 0.1. 

 

                                                 
2 Our representation of peaks and valleys is opposite to VFH, because we measure obstacle distance, 
not obstacle density. 
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5.2.1.3 Map-based Avoidance Function 

The sensor-based avoidance function enables the robot to avoid obstacles detected by 

its sensors, but certain objects may be transparent or may reside outside of its plane of 

detection, essentially rendering them ‘invisible’ to the robot. To help address this 

problem, a map-based avoidance function is incorporated into the system. Most 

aspects of this objective are the same as its sensor-based equivalent, but instead of 

obtaining obstacle positions from sensor readings, it constructs virtual obstacles from 

the robot’s internal maps. 

Of the available grid maps, only the occupancy map and danger map are utilised by 

this function. They are combined using Equation 5.3 to obtain a fused map mf. Nodes 

x within a radius r of the robot’s current position whose mf(x) values exceed a 

threshold pT are regarded as virtual obstacles. A virtual obstacle’s position is given by 

the centre coordinates of its map node. Once a list of virtual obstacles is obtained, the 

vector field is constructed in an identical manner to the sensor-based avoidance 

function. 

5.2.1.4 Goal Seeking Function 

If it only had avoidance functions, the robot would wander aimlessly through free 

space. Additional objectives are necessary to provide goal-directed behaviour. One of 

these is the goal seeking function g(θ), which gives preference to directions θ that are 

closer to the direction θg of the goal point (Figure 5.16). The value of g(θ) is given by: 

( )
π

θθ
θ gadjust

g
−

−= 1)(  (5.15) 

The adjust function ensures that angles always reside within the interval [-π, π). 

Avoidance and goal seeking objectives, once combined into a single objective 

function using Equation 5.10, are sufficient to produce simple reactive navigation in 

sparse environments. Figure 5.17 shows a vector field combining those shown in 

Figure 5.14 and Figure 5.16. In this example, the vectors pointing southeast are 

clearly favoured over all others, due to the absence of obstacles in the goal direction, 

so that would be the direction selected by the robot. 
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Figure 5.17: Combined avoidance and goal 
seeking vector field. Variables: avoidance 
weight W1 = 1, goal seeking weight W2 = 0.7, 
s = 0.1. 

 
 
Figure 5.16: Goal seeking vector field – 
vector size increases with proximity to target 
angle. 

 

5.2.1.5 Angular Inertia Function 

Additional objectives are required to facilitate reactive navigation in cluttered 

environments. One of these is the angular inertia function i(θ), which favours smaller 

changes in direction. This prevents the robot from oscillating between multiple 

directions that are otherwise equally favourable. It also allows the robot to escape 

from some local minima by increasing its ‘persistence’ in attempting to move around 

obstacles. The value of i(θ) is dependent on the previous target direction θT(prev): 

( )
π

θθ
θ )(1)( prevTadjust

i
−

−=  (5.16) 

5.2.1.6 Wander Function 

The combination of avoidance, goal seeking and angular inertia objectives allow the 

controller to function similarly to other directional controllers such as VFH. The robot 

can avoid most static obstacles, and it can find its way to the goal location in many 

environments. Nevertheless, it is prone to becoming trapped in local minima. This 

basic functionality is extended by the wander function w(θ), which facilitates the 

robot’s escape from local minima, providing an alternative direction to pursue if the 

goal point is currently inaccessible. A new favoured direction θw is randomly 
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generated every 15 seconds. θw is limited to a three-quarter-circle range (by setting 

constant α = 0.75) centred on θg: 

( )( )2
12 −+= randadjust gw παθθ  (5.17) 

Limiting the range of possible directions causes the robot to travel in the general 

direction of the goal-point over time (and rarely directly away from it). This range is 

also large enough to allow the robot to escape from almost any local minimum, given 

sufficient time. The value of w(θ) is calculated from θw using Equation 5.15 

(substituting θw for θg). 

5.2.1.7 Path Following Function 

Once combined using Equation 5.10, the avoidance, goal seeking, angular inertia and 

wander functions form a reactive controller that can navigate through relatively 

complex environments without the aid of deliberative path planning. However, 

planning can improve the controller’s reliability and speed of goal convergence. Path 

following function p(θ) is the interface between deliberative path planning and 

reactive control. It favours directions that move the robot towards the planned path (or 

along the path, if the robot is already following it). 

First, the distance from the robot’s position to each node on the path is calculated, and 

the closest node is selected (Figure 5.18). Next, the direction θp of a node that is 

distance dL ahead of the selected node is obtained. The value of dL affects how closely 

the robot adheres to the planned path. Finally, p(θ) is calculated from θp in the same 

manner as g(θ) is from θg and w(θ) is from θw. 

Closest
node

Robot

Target
node

Planned path

 
Figure 5.18: Obtaining a target direction θp from 
the planned path. 
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5.2.1.8 Goal Proximity Modulations 

As the robot nears its goal position, the weight of the goal seeking objective is 

increased, while avoidance, angular inertia and wander weights are reduced. Without 

this condition, the robot sometimes fails to approach a target position that resides near 

a wall or other obstacle, because obstacle avoidance is normally the dominant 

response. At other times the robot might circle a goal point due to the influence of the 

angular inertia and wander functions, which rarely turn it directly towards the goal. 

If the distance dg to the goal point is within threshold distance dg(max) = 1.5 m, the goal 

seeking weight Wg is increased linearly as a function of the normalised distance: 
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The other weights Wn are reduced linearly: 
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5.2.1.9 Capabilities and Limitations 

The resulting directional controller is extremely flexible, and it can be tuned to 

approach the navigation problem using a number of different strategies, depending on 

its task, its environment and the resources at its disposal. Other behaviours such as 

wall-following or autonomous docking can be incorporated into the system simply by 

adding new objectives to the objective function. It is also possible to add multiple goal 

positions or paths. 

In this respect, the control method resembles a traditional behaviour-based system 

such as Brook’s subsumption architecture (e.g. Brooks, 1986). The subsumption 

architecture decomposes the control problem into discrete layers operating in parallel. 

A winner-takes-all approach to behaviour selection is employed, with high level 

layers overriding low level ones. In contrast, our system has the advantage that 

multiple behaviours simultaneously contribute to motor outputs without conflict. 

One moderately similar approach is Arkin’s motor schema behaviour coordination 

mechanism (Arkin, 1989), which allows multiple behaviours to simultaneously 

contribute to a robot’s motor outputs by performing a weighted summation of their 

output vectors. However, motor schemas each produce a single output vector, rather 
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than a vector field. This is considerably less information with which to make an 

informed decision. The approach suffers from the same problems as other artificial 

potential field navigation methods, such as a tendency towards oscillatory and 

unstable motion in narrow corridors (Borenstein and Koren, 1991). 

Our directional controller produces a locally-optimal direction for the robot to travel. 

For this direction to result in actual motion, it must be converted into appropriate 

motor outputs. Many directional obstacle avoidance approaches do not thoroughly 

consider a robot’s motion dynamics when computing its wheel velocities, limiting 

their high-speed performance in dynamic environments (Fox et al., 1997). Linear 

velocity is typically a function of the magnitude of a directional controller’s output 

vector, causing a robot to slow down when it approaches an obstacle head-on 

(Borenstein and Koren, 1991). However, this does not take into consideration a 

robot’s current velocity, motion constraints, or curved trajectories. 

In contrast, our planning and control architecture includes an additional stage that 

gives velocity control similar treatment to directional control. The difference is the 

conceptual space in which the problem is addressed. 

5.2.2 Velocity Control 

To obtain a pair of locally-optimal velocities for the robot, the reactive control 

problem is reformulated as an optimisation in velocity space. The robot’s kinematic 

and dynamic constraints are taken into account, limiting the controller’s choice of 

velocities at any given time to those that the hardware can actually achieve. This 

approach allows robots to travel at higher speeds than purely directional methods, and 

it is particularly useful for low-cost robots with limited motor torques (Fox et al., 

1997) or for robots with tricycle or quad-wheel drive systems that are unable to 

perform stationary turns (Lee-Johnson et al., 2007). Two of the most significant 

examples of this approach are the curvature-velocity (Simmons, 1996) and dynamic 

window (Fox et al., 1997) obstacle avoidance frameworks. 

The curvature-velocity method (Simmons, 1996) represents the robot’s trajectory 

associated with each pair of velocities as a circular arc, or curvature. Obstacles are 

also represented as circles. The distance to collision along a given curvature can be 

calculated from the points of intersection between circles. A piecewise curvature-
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distance function is pre-calculated for each obstacle. The resulting set of curvature 

intervals and obstacle distances are utilised to solve a constrained optimisation 

problem in velocity space. An objective function f associated with velocity couplet 

(v,ω) is calculated from a linear weighted sum of three objectives: 

)(),()(),( 321 ωαωααω headvdistvspeedvf ++=  (5.20) 

The weights are α1, α2 and α3. The function speed favours higher linear velocities, 

while dist favours larger distances to collision, and head favours headings closer to 

the direction of the goal point. 

One problem with this method is that it assumes the robot will continue along the 

selected curvature for some time. However, the robot may only be on the curvature 

for a single control cycle before choosing a different one. A robot travelling at high 

speeds may be limited to small directional changes at any given time. By only 

considering curvatures available in the next control cycle, the robot is likely to miss 

openings or continue towards obstacles even if there are clear paths around them. This 

shortcoming is addressed by two approaches that combine directional and curvature-

velocity methods. The lane-curvature method (Ko and Simmons, 1998) constructs 

lanes of free space parallel to the goal heading. Curvatures that turn the robot towards 

free lanes are favoured by the controller. Similarly, the beam-curvature method 

(Benayas et al., 2002) constructs radial beams of free space that are favoured during 

curvature selection. 

The dynamic window approach (Fox et al., 1997) solves the optimisation problem by 

searching a discrete rectangular set of admissible linear and angular velocities. These 

velocities form a window centred on the robot’s current velocities, with borders 

defined by the robot’s velocity and acceleration constraints. The search space is 

further reduced by eliminating velocities that are likely to result in a collision. This 

approach employs the same basic objective function as curvature-velocity method. In 

its original implementation, each obstacle is represented as a line segment whose 

length is a function of its distance from the robot and the sensor coverage angle. The 

estimated distance to collision is computed from a line-curvature intersection. 

One extension to the dynamic window method incorporates map data in addition to 

sensor measurements to facilitate the avoidance of obstacles that cannot be easily 

detected by laser, infrared and ultrasonic sensors (Fox et al., 1998). Others focus on 
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applying the dynamic window approach to the problem of global motion planning 

(Brock and Khatib, 1999), (Ögren and Leonard, 2005). However, these methods are 

not purely reactive in the strictest sense, so they are beyond the scope of this section. 

5.2.2.1 Objective Function 

Our velocity controller utilises an objective function with the same basic form as that 

of the directional controller, shown in Equation 5.10. The target linear velocity vT and 

target angular velocity ωT are obtained by applying the objective function f(v,ω) to a 

discrete set of admissible velocities (v,ω): 
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The constraints v1, v2, ω1 and ω2 are the minimum and maximum linear and angular 

velocities achievable given the robot’s current velocities, acceleration constraints and 

global velocity limits. They form the boundaries of a rectangular dynamic window. 

Unlike the original dynamic window method, hard constraints are not uniformly 

placed on velocities if they will inevitably lead to a collision. Hard constraints can 

lead to problems if a situation arises where all available velocities are considered 

dangerous (e.g. a person suddenly moves in front of the robot while it is travelling at 

high speed). In such situations, it is advantageous to be able to choose the ‘best bad 

option’ (e.g. lower the robot’s speed to v1 and turn sharply away from an obstacle to 

lessen or avoid the impact). Unlike the dynamic window method’s weighted sum 

objective function, our weighted product objective function effectively prevents 

subordinate objectives (e.g. speedup) from causing the robot to select an action when 

a dominant objective (e.g. obstacle avoidance) indicates that the action is highly 

unfavourable (refer to Figure 5.11 and Figure 5.12 for details). This is functionally 

similar to a hard constraint during normal operation, but it allows for graceful failure 

in extreme situations. 

5.2.2.2 Avoidance Functions 

The objective function includes both sensor-based and map-based obstacle avoidance 

functions, but aside from the method employed to obtain obstacle positions (described 

in Section 5.2.1.3), they are functionally identical. Like the curvature-velocity and 
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dynamic window methods, the robot’s anticipated trajectory is represented as a 

circular arc. However, unlike those methods, each candidate velocity couplet is not 

rated by the collision-free arc distance of a whole curvature.  

Instead, a curvature segment is constructed from the robot’s anticipated trajectory 

over a finite time interval (t1,t2), and the distance between this curvature segment and 

its closest obstacle is calculated (Figure 5.19 and Figure 5.20). The obstacle’s radius 

is not subtracted from this distance, because it is taken into consideration by a 

subsequent calculation (Equation 5.22). This approach is employed because the robot 

is generally on a given curvature for a small interval of time before moving onto a 

different one, so a large portion of the curvature is of little relevance to the selection 

of velocities in the current control cycle. Methods that consider arc distances to 

collision over an entire curvature may select certain inferior curvatures that pass very 

close to an obstacle in the short term, and reject superior ones that are safer in the 

short term (but more dangerous if the robot stays on them). By measuring obstacle 

distances only for the portion of the curvature that is considered relevant, the robot is 

more likely to select safe velocities in certain situations. 

Robot
pose

time = t
1

time = t
2

d
o
(v,ω)

Obstacle
position

 
 
Figure 5.19: Obtaining obstacle distance from the 
curvature segment (red line) and obstacles. The current 
position of the centre of the robot (and its current 
heading) is marked by the red triangle. The dashed blue 
circles represent the obstacle sizes if they are enlarged 
by the robot’s radius. 
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Figure 5.20: A smaller obstacle distance resulting from 
a less optimal curvature.  

The size of a curvature segment is determined by the values of t1 and t2. The time t1 is 

typically set to one control period (0.1 s). There is little reason for it to be any lower, 

because the robot is considering its future positions, not its current one. If it is higher, 

the robot will ignore a larger portion of the curvature when making its decision. The 

more important parameter is t2, which directly affects the quality of the trajectory 

followed by the robot. If it is too high, the robot will be overly conservative in its 

decisions, rejecting some valid curvatures. Too low, and it may fail to take into 

account the time required to slow down and avoid a collision. 

An angular avoidance value aω(v,ω) is obtained from the distance do(v,ω) to the 

obstacle closest to the curvature: 
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Figure 5.21: Obtaining the angular avoidance value 
from the measured obstacle distance. 

 

Figure 5.21 shows the structure of this relationship. An implicit obstacle radius is 

represented by rv (a separate variable from its directional equivalent ro). The distance 

dv(max) is the threshold beyond which changes in do(v,ω) cease to have an effect (also 

separate from its directional equivalent do(max)). Curvatures that pass through obstacles 

(i.e. those with an obstacle distance less than the radius rv) are represented in the 

linear section of the piecewise function. The constant κ controls the maximum 

objective value of these curvatures. It is typically a non-zero value so that the best 

velocities can be selected even if all available curvatures pass through an obstacle. A 

value of κ = 0.05 is sufficient to allow graceful failure in extreme situations, without 

adversely affecting performance during normal operation. The nonlinear section of the 

piecewise function results in a sharp discontinuity that separates curvatures that are 

highly likely to result in a collision from those that are not. A strong aversive response 

accompanies curvatures that pass very close to obstacles, with aversion greatly 

decreasing as the obstacle distances approach a ‘safe zone’. 

Next, a linear avoidance value av(v) is obtained in order to reduce the appeal of high-

speed trajectories that pass close to obstacles. A favoured maximum linear velocity 

vmax is calculated from aω(v,ω) and the linear velocity limit vL: 

Lvvav ),(max ωω=  (5.23) 

The square-root relationship is employed to ensure that severe reductions are only 

applied to curvatures that are very close to obstacles. If a candidate velocity exceeds 

the favoured maximum vmax, the reduction of av(v) is proportional to the separation 

between the two values: 
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The combined avoidance function a(v,ω) is the product of aω(v,ω) and av(v): 

)(),(),( vavava vωω ω=  (5.25) 

Figure 5.22 shows avoidance values obtained in a large velocity space for the obstacle 

configuration shown in Figure 5.19 and Figure 5.20. At any given moment, the 

robot’s current velocities and acceleration constraints limit the available velocities to a 

small subset of those shown. All possible trajectories pass relatively close to 

obstacles, so the robot cannot approach the maximum speed (1 m/s) without risking a 

collision. Right turns are generally favoured over left turns, due to the three obstacles 

on the robot’s left. 

 
 
Figure 5.22: Avoidance function applied to a large velocity space. Variables: 
t1 = 0.1 s, t2 = 1.0 s, κ = 0.05, dv (max) = 1 m. 

 

5.2.2.3 Goal Seeking Function 

The avoidance function includes no incentive to follow a goal direction or favour 

higher speeds over lower ones, so it is unable to produce viable motion on its own. 

The next main component of the objective function is the goal seeking function 
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g(v,ω), which encourages the robot to move in the directional controller’s favoured 

direction. 

First, an angular goal seeking value gω(ω) is obtained that favours angular velocities 

that turn the robot towards the target heading θT received from the directional 

controller: 
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The angle θP(ω) is the robot’s predicted heading for a given angular velocity ω after 

time t3, given the robot’s current heading θC: 

3)( tCP ωθωθ +=  (5.27) 

Thus, the time t3 directly influences the relationship between gω(ω) and ω. Low 

values of t3 result in little variation in gω(ω) with different ω values when the heading 

error is high, causing gω(ω) to have a comparatively low influence on velocity 

selection. However, when the heading error is high, low values of t3 cause the robot to 

fine-tune its heading precisely to match the target heading. In both situations, the 

reverse is true for high values of t3. 

Second, a linear goal seeking value gv(v) is obtained that favours smaller linear 

velocities (and therefore near-stationary turns). A favoured maximum linear velocity 

vmax is derived from the linear velocity limit vL and angular error: 
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Velocity reductions are proportional to the heading error until the angular error 

exceeds a threshold controlled by the turning factor β, at which point vmax reaches 

zero. The value of β determines the strength of the incentive to slow down when the 

robot is not facing the intended direction. Low values result in erratic motion as the 

robot constantly stops to make course corrections. Higher values generally yield 

smoother motion, but if β is too high, the resulting large circular turns can cause 

significant deviations from the expected path and potential failure to converge on the 

goal point. Smaller linear velocities resulting from low β values are also advantageous 

for preventing the robot from overshooting doorways. 
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Equation 5.24 is employed to obtain gv(v) from vmax (replacing av(v) with gv(v)). 

Finally, the angular and linear goal seeking values are combined to form the overall 

goal seeking function g(v,ω): 

)()(),( vggvg vωω ω=  (5.29) 

 
 
Figure 5.23: Goal seeking function. Variables: θT = -0.1π, t3 = 1 s, β = 0.4. 

 

 
 
Figure 5.24: Objective function combining avoidance and goal seeking 
functions. Variables: Sensor-based avoidance weight Wv1 = 1, goal seeking 
weight Wv3 = 0.9.  
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By applying the goal seeking function to a target heading of -0.1π radians, we get the 

form shown in Figure 5.23. In this example, the heading error is relatively small, so 

only the highest linear velocities are assigned reduced priority due to gv(v). An 

objective function resulting from a combination of avoidance and goal seeking 

functions is shown in Figure 5.24. The function retains much of the avoidance 

function’s shape, but angular velocities are prioritised by their proximity to the 

optimal value of ω = -0.1π rad/s. 

5.2.2.4 Speedup Function 

An objective function that includes both avoidance and goal seeking functions causes 

the robot to favour obstacle-free trajectories that move it in the goal direction. 

However, the robot is unlikely to start moving, because the safest trajectories tend to 

be those that result in no forward motion. A general incentive to move is provided by 

the speedup function s(v), which favours high linear velocities. Candidate linear 

velocities are biased according to the following equation: 

Lv
vvs =)(  (5.30) 

 
 
Figure 5.25: Objective function combining avoidance, goal seeking and 
speedup functions. Variables: Sensor-based avoidance weight Wv1 = 1, goal 
seeking weight Wv3 = 0.9, speedup weight Wv4 = 0.5. The velocities that yield 
the highest objective function value are selected for the motor outputs. 
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Robot trajectory

 
 
Figure 5.26: Robot’s trajectory if it maintains velocities 
of v = 0.42 m/s, ω = -0.37 rad/s for 1 second.  

Figure 5.25 shows an objective function containing avoidance, goal seeking and 

speedup functions applied to the previous scenario. By reducing the appeal of the 

lower velocities, the robot is finally compelled to move forward in addition to 

avoiding obstacles and orienting itself towards the goal direction. The optimal 

velocities in this example result in the trajectory shown in Figure 5.26. 

5.2.2.5 Distance-to-Goal Function 

Avoidance, goal seeking and speedup functions are sufficient to produce viable 

motion throughout most of a journey. A problem arises when the robot approaches the 

goal point, however. Lacking an incentive to slow down when it reaches its target, the 

robot tends to overshoot or circle the goal point. This problem is solved by the 

distance-to-goal function d(v), which facilitates convergence to the goal point by 

reducing the robot’s speed. The corresponding maximum linear velocity is a function 

of the distance dg from the target position: 
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The objective value d(v) is obtained from vmax by Equation 5.24 (replacing av(v) with 

d(v)). 

5.2.2.6 Goal Proximity Modulations 

Like the directional controller, the velocity modulates certain control weights as the 

robot nears its goal position. The goal seeking weight is increased by Equation 5.18 

and the speedup weight is reduced by Equation 5.19. Failure to modulate the goal 

seeking weight in this manner renders low values unviable. The robot tends to fail to 

converge on the goal point, because the avoidance function’s incentive to turn the 

robot away from obstacles outweighs the goal seeking function’s incentive to 

approach the goal. Similarly, if the speedup weight is not modulated, high values 

cause the robot to fail to converge on the goal point. This is because the speedup 

function’s incentive to choose higher speeds outweighs the distance-to-goal function’s 

incentive to slow down. 

5.2.2.7 Capabilities and Limitations 

At the core of the velocity controller is an objective function with the same form as 

that utilised by the directional controller. Essentially, it provides a unified approach to 

solving problems in two different conceptual spaces. Of the two systems, the 

directional controller has a more global perspective (although it is still highly reactive 

compared to a deliberative planner). It can consider larger displacements in time and 

space, but it ignores robot motion dynamics and thus cannot ensure safety. 

Conversely, the velocity controller has a much narrower conceptual view, focusing on 

motion that the robot can achieve safely over a very short time interval. This is not 

necessarily an inherent limitation of velocity space methods in general. Our velocity 

controller actually has a narrower perspective than most other velocity space methods 

because it is not utilised in isolation, but rather in combination with the directional 

controller. 

Neither controller on its own is ideal for producing optimal collision-free motion in 

dynamic environments. However, once combined, the two systems form a robust and 

flexible reactive navigation system. The lane-curvature method (Ko and Simmons, 

1998) and beam-curvature method (Benayas et al., 2002) also combine directional and 



Motion Planning and Control Architecture  101 

velocity space techniques, but these approaches are quite different from the one 

employed in this thesis. They are essentially single-level velocity space methods that 

incorporate directional control elements. In contrast, our controller incorporates 

directional and velocity space approaches as distinct components, each with 

independent obstacle avoidance capabilities. 

This approach results in various redundancies, which can be advantageous to a robot 

controller. Redundancies can facilitate adaptation by allowing a robot to select 

alternative problem solving strategies, should an individual strategy fail. For example, 

if the directional controller’s obstacle avoidance function prevents it from traversing a 

narrow doorway, its safety margins or weights could be lowered, causing the robot to 

rely more heavily on the velocity controller for obstacle avoidance. 

5.3 Summary 
A hybrid reactive/deliberative planning and control architecture has been developed 

that supports point-to-point navigation and exploration in arbitrary flat-surfaced 

environments. It combines deliberative mapping and path planning capabilities with 

two distinct reactive navigation approaches – directional and velocity space control. 

The architecture is highly flexible, enabling the robot to adaptively and continuously 

adjust its navigation strategies to suit its environment, task, momentary situation and 

the resources at its disposal. This flexibility arises from various planning and control 

parameters that can be modulated to influence the robot’s behaviour either subtly or 

overtly as required. 

In this chapter, few specifics have been presented regarding the exact values of the 

robot’s planning and control parameters. In part, this is because many of them are not 

constants; they are variables modulated by the robot’s affective system. Chapters 6 

and 7 will show the effects of various parameters on the robot’s performance in a 

range of simulation experiments. This will allow us to group them into different 

categories indicating which parameters should be kept constant, which ones can be 

modulated, and to what effect. 
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6 Basic Navigation Experiments 

The various components of our planning and control architecture have been described 

in Chapter 5. To demonstrate the effectiveness of this architecture and verify the 

contributions of the various components, a series of experiments are conducted in a 

range of procedurally-generated environments. Control layers are tested from the 

bottom up, starting with the velocity controller, followed by the directional controller, 

and finally the deliberative path planner. This typically involves varying control 

weights to incrementally increase or decrease the contributions of individual 

components. 

Attempting to thoroughly test all configurations under all conceivable conditions 

would be a computationally intractable problem. Instead, individual weights are 

varied incrementally, while the remainder of weights and other parameters are kept 

constant in configurations that are anticipated to produce satisfactory performance. 

A set of 20 environments is generated procedurally. Different environments are 

utilised for each of the 20 individual test runs within a given experiment, but those 

same 20 environments are reused in the other experiments, to ensure consistency 

between them. Under each different weight configuration, the robot is instructed to 

navigate between the same two points (beginning with a heading of 0 radians). All 

internal data, such as maps or variable states are reset at the beginning of each 

experimental run – nothing is retained. Performance characteristics such as collision 

rate and time taken to reach the goal are recorded for each experimental run. If the 

robot fails to reach the goal within 10 minutes, it times out. In that situation a failure 

is recorded, the goal completion time is set to 10 minutes, and the experimental run is 

not repeated. 

6.1 Velocity Control 
To test the velocity controller independently from the higher control layers, the 

direction of the goal point is passed directly to its goal seeking function (whereas 

normally a translated direction would be received from the directional controller). The 

velocity controller’s goal seeking weight Wv3 and speedup weight Wv4 are varied, 
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while the remainder of the robot’s weights and parameters are kept constant at values 

shown in Table 6.1. 

 

TABLE 6.1: PARAMETERS – VELOCITY CONTROLLER EXPERIMENTS 

Symbol Name Value Justification 

Wv1 Sensor-based 
avoidance weight 

0.99 Highest allowable value, to 
minimise collisions. 

Wv2 
Map-based 
avoidance weight 0 Weight is irrelevant because there 

is no deliberative map. 
High enough to outweigh the 
speedup weight after goal 
proximity modulations. 

Wv5 
Distance-to-goal 
weight 0.9 

High enough to produce smooth 
motion; low enough to be 
computationally efficient. Odd 
numbers to ensure that the robot’s 
current velocities are included 
(refer to Section 7.3.1). 

(nv,nω) 
Size of dynamic 
window (rows,  
columns) 

(9, 9) 

vL: An estimate of the highest safe 
value in a static indoor 
environment. ωL: Limited in order 
to minimise disturbances due to 
sensor filtering. 

(vL,ωL) Velocity limits 
(linear, angular) 

(1 m/s, 
0.2π rad/s) 

High enough to allow rapid 
response to environment; low 
enough to limit internal stresses 
and to be achievable by the robot’s 
drive system. 

(amax,αmax) 
Acceleration 
limits (linear, 
angular) 

(0.5 m/s2, 
π rad/s2) 

(amin,αmin) 
Deceleration 
limits 

(-0.5 m/s2, 
-π rad/s2) 

Same as above. 

no 
Obstacle buffer 
size 5 A compromise between safety and 

efficiency. 
High enough to prevent most 
collisions; low enough not to 
significantly inhibit motion. 

(t1,t2) 
Avoidance 
curvature times (0.1 s, 1 s) 

A compromise between optimal 
low/high heading error response. t3 Goal seeking time 1 s 

ro Obstacle radius  0.35 m Set to the robot’s radius. 

dv(max) 
Maximum 
obstacle distance 
(velocity control) 

1 m 
Encourages robot to keep away 
from obstacles without inhibiting 
motion. 

β Turning factor 0.4 
A compromise between motion 
smoothness and deviation from the 
current position while turning. 

In the first experiment, the goal seeking weight Wv3 is set to 0 while the speedup 

weight Wv4 is iteratively varied. With Wv3 = 0, the robot moves aimlessly throughout 
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the environment. It gives no preference to any particular direction, instead choosing 

trajectories purely on the basis of collision avoidance (due to the sensor-based 

avoidance function) and maintaining higher linear velocities (due to the speedup 

function). However, if it randomly approaches within 1.5 m of the goal point, Wv3 

increases due to goal proximity modulations, causing the robot to converge on the 

goal. This allows the robot to achieve some success at goal convergence even with no 

incentive to reach it for most of the journey. 

Low values of Wv4 (particularly those lower than 0.4) tend to prevent the robot from 

traversing doorways, as the incentive to select higher velocities is insufficient to 

overcome the avoidance function’s incentive to slow down near obstacles (Figure 

6.1). High values allow the robot to traverse doorways, but result in a higher incidence 

of collisions, because the robot approaches closer to obstacles before the avoidance 

function’s incentive to slow down can overcome the incentive for speed (Figure 6.2). 

Medium values (around 0.5) are the most optimal, allowing the traversal of doorways, 

but coming at minimal cost to safety (Figure 6.3). Figure 6.4 shows the overall 

increase in collision rate as Wv4 increases. When Wv4 > 0.7, the robot’s motion is 

highly unsafe, resulting in numerous collisions. 

 
 
Figure 6.1: Robot’s path with Wv4 = 0.3. The environment shown covers a 20 m × 12 m area. 
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Figure 6.2: Robot’s path with Wv4 = 0.5. 

 

 
 
Figure 6.3: Robot’s path with Wv4 = 0.9. 

 

Collisions per minute are recorded rather than total number of collisions, due to the 

variable completion times for individual experimental runs. For example, a robot that 

takes 10 minutes to reach its goal and undergoes 4 collisions is considered ‘safer’ than 

one that reaches the goal in 5 minutes and sustains 3 collisions. 
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Figure 6.4: Mean collisions per minute for 20 
experimental runs per Wv4 value. Zero 
collisions occurred when Wv4 < 0.4, so those 
data points do not appear on the logarithmic 
scale. 

In the second experiment, Wv3 is varied, while Wv4 is kept constant at 0.5 (a value that 

is high enough to allow traversal of doorways, but low enough to minimise the 

likelihood of collision). Figure 6.5 shows the resulting success rate, or percentage of 

environments in which the robot reaches the goal before the timeout. The success rate 

quickly decreases as Wv3 increases, and no successes are achieved when Wv3 > 0.1. 

While goal seeking prevents the robot from wandering aimlessly, it also causes the 

robot to stop moving when certain obstacle configurations block its path to the goal 

(Figure 6.6). 
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Figure 6.5: Mean success rate for 20 
experimental runs per Wv3 value. 
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Figure 6.6: Robot’s path with Wv3 = 0.1. 

 

The complex indoor environments in which these experiments are conducted 

generally pose too great a navigational challenge for the velocity controller on its 

own. Goal-directed behaviour is the responsibility of the higher control levels, so it is 

unsurprising that the velocity controller performs poorly in this area. 

6.2 Directional Control 
The directional controller is dependent on the velocity controller in that it cannot 

produce motor outputs on its own. However, it can be analysed somewhat 

independently by disabling the velocity controller’s avoidance functions. This 

produces similar behaviour to a single-stage directional controller, even though it is 

not explicitly single-stage. Table 6.2 shows the parameter values employed in these 

experiments, in addition to (or modified from) those shown in Table 6.1. 

First, the weight Wθ5 controlling the angular inertia objective is iteratively varied from 

0 to 1, while the goal seeking weight Wθ4 = 0.5, and the wander weight Wθ6 = 0 (to 

eliminate its contribution to behaviour) are kept constant. 
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TABLE 6.2: PARAMETERS – DIRECTIONAL CONTROLLER EXPERIMENTS 

Symbol Name Value Justification 

Wv1 Sensor-based 
avoidance weight 
(velocity) 

0 To test the directional controller 
independently by disabling the 
velocity controller’s obstacle 
avoidance capabilities. 

Wv3 
Goal seeking weight 
(velocity) 0.99 

To make the velocity controller 
rigidly obey the directional 
controller. 

Wv4 
Speedup weight 
(velocity) 0.5 A compromise between safety and 

goal-directedness. 
Wθ1 Sensor-based 

avoidance weight 
(directional) 

0.99 Highest allowable value, to 
minimise collisions. 

Wθ2 Map-based avoidance 
weight (directional) 

0 Weight is irrelevant because there 
is no deliberative map. 

Wθ3 Path following 
weight (directional) 

0 To disable the contribution of 
deliberative path planning. 

Wθ4 Goal seeking weight 
(directional) 

0.5 A medium value that provides 
adequate goal seeking incentive 
without jeopardising safety. 
High enough to produce smooth 
motion; low enough to be 
computationally efficient. 

nθ 
Number of vectors in 
vector field 50 

do(max) 
Maximum obstacle 
distance (directional) 3 m Set to the sensor range. 

s Smoothing factor 0.1 
Encourages robot to stay away 
from obstacles without inhibiting 
motion. 

With the angular inertia function disabled (by setting Wθ5 = 0), even small concave 

regions become significant obstructions. There is no incentive for the robot to 

maintain its heading, so it is highly prone to oscillatory behaviour. In the environment 

shown in Figure 6.7, there are two regions where the robot becomes trapped. 

Eventually it manages to escape from the first, but it is unable to escape the second 

minima before the 10 minute timeout is triggered. 

With angular inertia strongly enabled, the robot favours maintaining its current 

heading over approaching the goal. It tends to continue along its path until it reaches 

an obstacle, whereupon it generally turns towards the goal. In many environments, 

this type of behaviour is sufficient to escape from local minima and converge on the 

goal. The environment in which it previously failed is one such example (Figure 6.8). 
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Figure 6.7: An unsuccessful path with Wθ5 = 0. 

 

 
 
Figure 6.8: A successful path with Wθ5 = 0.8. 

 

However, in certain other environments, angular inertia can cause the robot to become 

trapped in an infinite cycle, preventing it from ever reaching the goal. One type of 

environmental feature that can cause this is a room containing a central obstacle 

whose doorways face away from the goal point, such as that shown in Figure 6.9. This 

induces a circular pattern of motion that the robot is unable to escape. 
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Figure 6.9: An unsuccessful path with Wθ5 = 0.8. 

 

In general, the completion time (Figure 6.10) decreases as Wθ5 increases, reaching a 

minimum of 349 s when Wθ5 = 1. The success rate (Figure 6.11) shows a 

corresponding increase, reaching a maximum of 65% when Wθ5 = 1. However, this 

improvement comes at a significant cost to safety, increasing the collision rate (Figure 

6.12). This is because the incentive to maintain the current heading increasingly 

overcomes the incentive to turn away from obstacles. 

Greater success can be achieved by reducing Wθ5 to 0.5, and enabling the wander 

objective by setting its weight Wθ6 to a non-zero value. As this objective is assigned a 

higher level of influence, the robot’s behaviour becomes increasingly stochastic. This 

allows it to escape from virtually any local minima, given sufficient time. Although 

the favoured direction of the wander objective at any given time is random, the range 

of possible directions is centred on the goal direction. Furthermore, the goal seeking 

objective is not disabled. Thus, the robot’s movement remains biased towards the goal 

point even when the wander objective is strongly enabled. 
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Figure 6.10: Mean completion time for 20 
experimental runs per Wθ5 value. 
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Figure 6.11: Mean success rate vs. Wθ5. 

 

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
Weight vs. Mean Collisions per Minute

Weight

C
ol

lis
io

ns
/m

in

 
Figure 6.12: Mean collisions per minute vs. 
Wθ5. 

As shown in Figure 6.13, the wandering robot is able to escape from the region that 

traps the inertia-driven robot. The obvious disadvantage of the wander objective is 

that the robot can sometimes take a long time to reach its goal, due to its randomness. 

The environment shown in Figure 6.14 is one example where it fails to reach the goal 

before the 10 minute timeout. 

The completion time shows a steady decrease as Wθ6 increases (Figure 6.15). It 

reaches a minimum of 272 s when Wθ6 = 1, significantly lower than the best mean 

completion time of the inertia-driven robot. The success rate (Figure 6.16) reaches a 

peak of 85% at Wθ6 = 0.7 – 0.8. This is significantly higher than the robot is able to 

achieve with angular inertia alone. Again, the improvement to completion time and 

success rate is accompanied by an increased number of collisions (6.17). 
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Figure 6.13: A successful path with Wθ6 = 0.8. 

 

 
 
Figure 6.14: An unsuccessful path with Wθ6 = 0.8. 

 

Overall, the directional controller is relatively successful at goal-directed behaviour 

even with deliberative capabilities disabled. However, its high-speed obstacle 

avoidance capabilities are inferior to those of the velocity controller. 
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Figure 6.15: Mean completion time for 20 
experimental runs per Wθ6 value. 
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Figure 6.16: Mean success rate vs. Wθ6. 

 

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14
Weight vs. Mean Collisions per Minute

Weight

C
ol

lis
io

ns
/m

in

 
Figure 6.17: Mean collisions per minute vs. 
Wθ6. 

6.3 Two-stage Reactive Control 
The advantages of employing a two-stage directional/velocity space method over a 

purely directional controller are best demonstrated by showing the effects of the 

velocity controller’s avoidance weight Wv1 and goal seeking weight Wv3 on 

performance. Based on the results of the previous experiment, the directional control 

weights absent from Table 6.2 are set as follows: Wθ5 = 0.5, Wθ6 = 0.75. 

First, Wv1 is varied, while Wv3 is set to 0.75 (a satisfactory value, as shown in the 

subsequent experiment). Under conditions that produce adequate goal seeking 

behaviour, the directional controller’s incentive to stay away from obstacles is too 

low, resulting in numerous collisions (Figure 6.18). However, when the velocity 

controller’s avoidance function is strongly enabled in conjunction with the directional 
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controller, satisfactory goal seeking performance can be achieved without the high 

collision count (Figure 6.19). 

 
 
Figure 6.18: The robot’s path with Wv1 = 0. 

 

 
 
Figure 6.19: The robot’s path with Wv1 = 1. 
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Figure 6.20: Mean completion time for 20 
experimental runs per Wv1 value. 
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Figure 6.21: Mean success rate vs. Wv1. 
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Figure 6.22: Mean collisions per minute vs. 
Wv1. 

A slight increase in completion time is observed as Wv1 increases (Figure 6.20), as a 

result of the increased tendency to slow down rather than risk collisions. The 

fluctuations in success rate (Figure 6.21) can largely be attributed to the highly 

stochastic behaviour resulting from the wander function, but a slight overall decrease 

is apparent. However, the decrease in the number of collisions by several orders of 

magnitude (Figure 6.22) indicates that the safety improvements of the velocity 

controller’s avoidance function outweigh the minor cost to performance. 

Second, Wv3 is varied, while Wv1 = 0.99 (to maximise safety). With the directional 

controller present, the velocity controller’s goal seeking function has a very different 

effect on performance than that obtained with the velocity controller functioning in 

isolation (Figure 6.5). Direction inputs are no longer likely to be pointing towards 

obstacles (due to the influence of the directional controller’s avoidance function), so 

the robot rarely becomes obstructed by them. Increasing Wv3 actually results in a 
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general improvement to completion time (Figure 6.23) and success rate (Figure 6.24), 

rather than having an adverse effect on performance. 

A better combination of performance and safety can be achieved by the velocity 

controller and directional controller acting in unison than either approach can produce 

independently. Although there is some crossover between the two layers, the 

directional controller provides superior local goal-directed behaviour, while the 

velocity controller produces smoother motion and superior obstacle avoidance. 
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Figure 6.23: Mean completion time for 20 
experimental runs per Wv3 value. 
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Figure 6.24: Mean success rate vs. Wv3. 

 

6.4 Hybrid Reactive/Deliberative Control 
The deliberative controller is enabled by setting the path following weight Wθ3 to a 

non-zero number. The new constant parameter values are shown in Table 6.3, in 

addition to the values previously shown in Table 6.1 and Table 6.2. 

Initially, the directional controller’s weights associated with reactive navigation are 

disabled (Wθ4 = 0, Wθ5 = 0, Wθ6 = 0), while the path following weight Wθ3 is iteratively 

increased. This experiment is performed first with pregenerated occupancy grid maps 

of the environments, and then it is repeated without them. In the latter case, the robot 

constructs its occupancy grid map autonomously as it explores the environment. 
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TABLE 6.3: PARAMETERS – HYBRID CONTROLLER EXPERIMENTS 

Symbol Name Value Justification 

Wp1 Occupancy weight 1 This is the primary contributor to 
path planning, so it is generally 
kept at the maximum value. 

Wp2 Danger weight 0 Not relevant in the environments 
utilised for these experiments. 

Wp3 Exploration weight 0 Not tested in these experiments. 
A relatively slow update rate that 
ensures stability. Increase and 
decrease rates are equal. 

(ε1,ε2) 
Occupancy update 
factors 

(0.01, 
0.01) 

ε3 Exploration update 
factor 

0.01 Ensures that a node has been well-
explored before it reaches a value 
of 1. 

dl Look-ahead distance 0.7 m The length of two horizontally or 
vertically aligned map nodes. 
Provides high incentive to adhere 
to planned path, without being so 
high as to induce oscillations. 

rf Map filter radius 0.7 m Set to twice the robot’s radius, or 
two map nodes. Ensures that paths 
do not pass too close to walls, 
without eliminating too much 
detail. 

B Planning base 10000 Yields a large separation between 
high and low cost values, but 
maintains reasonable consistency 
between similar values. 

tr Replan threshold time 5 s Provides relatively rapid response 
to map updates without being 
computationally inefficient. 
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Figure 6.26: Success rate vs. Wθ3. Figure 6.25: Mean completion time for 20 

experimental runs per Wθ3 value. 
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Regardless of whether the robot has prior knowledge of the environment, the addition 

of deliberative planning has a positive effect on performance, as shown in Figure 6.25 

and Figure 6.26. When path-following is strongly enabled, the robot achieves a  

95-100% success rate under both conditions. The best mean completion time is 57 s 

for known environments and 98 s for initially-unknown environments, both 

significant improvements over the best results obtained by the reactive system. 

Figure 6.27 shows an optimal path that can be achieved in a known environment. 

When the environment is initially unknown, the robot’s path is typically less optimal 

(Figure 6.28), but nevertheless superior to those achieved by reactive control alone. 

There are rare problems that can occur, however. 

The robot occasionally encounters an environmental configuration where it repeatedly 

fails to turn into a doorway (Figure 6.29). When the doorway opening is detected by 

the directional controller, the robot passes the opening too quickly to turn into it. This 

is caused by the combination of high speeds and high safety margins employed in this 

experiment. Lower speeds would allow the robot to slow down sufficiently to turn 

towards the openings, while lower safety margins would enable the directional 

controller to detect them sooner. However, such changes would also impact 

performance and safety, as will be demonstrated in Chapter 7. 

 
 
Figure 6.27: A known environment traversed with Wθ3 = 0.8. 
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Figure 6.28: An initially-unknown environment traversed with Wθ3 = 0.8. 

 

 
 
Figure 6.29: An initially-unknown environment traversed with Wθ3 = 0.7. 

 

Another problem that occurs even more rarely is that the robot stops moving if it 

encounters certain obstacle configurations from certain angles. This is a result of a 

conflict between the directional and velocity controllers. The directional controller 

instructs the robot to move in a particular direction, but the velocity controller 

determines that the direction is unsafe, and due to a confluence of competing goals, it 
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chooses to neither move, nor turn. Because movement ceases, the only changes to 

sensor data are due to noise, so the obstructed state persists unless the noise provides 

sufficient incentive to overcome the obstruction. 

In the next experiment, weights associated with reactive navigation are varied, while 

Wθ3 = 0.75 (a value that results in satisfactory performance, according to the results of 

the previous experiment). The reactive weights are controlled by a multiplier M, 

which is iteratively increased from 0 to 1 (Wθ4 = 0.5M, Wθ5 = 0.5M, Wθ6 = 0.75M). 

When M = 1, the weights result in satisfactory reactive performance, according to 

previous results. However, when these weights are strongly enabled in conjunction 

with path following, they result in a decrease in performance. The completion time 

shows a general, but erratic, increase as M increases. In the majority of cases, the 

direction selected by the path following function is superior to the ones chosen by the 

reactive control functions, so there is little reason to enable reactive goal-directed 

behaviours when the deliberative planner is functioning correctly. 
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Figure 6.30: Mean completion time for 20 
experimental runs per M value. 

Reactive navigation is not necessarily obsolete because there may be situations where 

it provides superior performance to hybrid reactive/deliberative navigation. However, 

these results suggest that it is better to enable the reactive navigation functions only 

when required, rather than for them to be operating simultaneously with path 

planning. 
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6.5 Summary 
Some basic navigation experiments have been conducted in a single set of 

procedurally-generated indoor environments that demonstrate the capabilities of the 

three main planning and control layers. These experiments involved varying certain 

weights to partially or fully disable or enable specific components. Thus, the 

quantitative effects of these components on performance were measured under 

varying degrees of activation. 

While certain weights were varied, the majority of the robot’s parameters were 

maintained at constant values intended (but not proven) to provide satisfactory 

performance. In the next chapter, different parameter configurations will be tested in a 

wider range of environments. This is necessary in order to categorise parameters by 

their effects on performance, so that they can be linked to the robot’s drives, and 

ultimately modulated by the model of robotic affect. 
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7 Parameter Characterisation 

Chapter 6 demonstrated the basic functionality of the robot’s different control layers.  

By changing various control weights, the level of influence of certain functions was 

altered, and their effect on performance measured. Next, the behavioural changes that 

arise from varying other planning and control parameters will be quantitatively 

analysed. This allows the parameters to be sorted into different categories, based on 

their primary influence on performance. Each category corresponds to a different 

drive, which controls the robot’s bias towards or against a particular ‘mode of 

behaviour’. 

Experiments that require equivalent conditions share common sets of environments, to 

ensure consistency between them. However, due to the diverse requirements of the 

experiments, there are a number of environment sets, each with different properties. 

For example, one set of static environments has wide doorways and narrow walls (set 

B, utilised throughout Chapter 6), while another set has random door and wall sizes. 

The environment sets are shown in Table 7.1. 

 

TABLE 7.1: ENVIRONMENT SETS 

Environment 
set 

Wall/door sizes Dynamic obstacles Undetectable 
obstacles 

A None No No 
B Constant No No 
C Random No No 
D Constant Yes No 
E Random Yes No 
F Constant No Yes 
G Random No Yes 

Default parameter values obtained from Chapter 6 are shown in Table 7.2. Except 

where otherwise stated, this is the parameter configuration employed throughout this 

chapter. While some of the default values are sub-optimal according to results 

presented in this chapter, they are functional and serve as an adequate starting-point. 

Typically, a small number of parameters are varied to test their performance 

characteristics, while the remainder are maintained at these constant values. 
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TABLE 7.2: DEFAULT PARAMETER VALUES 

Parameter Value Parameter Value 

Wv1 0.99 (nv,nω) (9, 9) 
Wv2 0 no 5 
Wv3 0.75 (t1,t2) (0.1 s, 1 s) 
Wv4 0.9 t3 1 s 
Wv5 0.5 ro 0.35 m 
Wθ1 0.99 dv(max) 1 m 
Wθ2 0 β 0.4 
Wθ3 0.75 nθ 50 
Wθ4 0 do(max) 3 m 
Wθ5 0 s 0.1 
Wθ6 0 (ε1,ε2) (0.01, 0.01) 
Wp1 1 ε3 0.01 
Wp2 0 dl 0.7 m 
Wp3 0 rf 0.7 m 
(vL,ωL) (1 m/s, 0.2π rad/s) B 10000 
(amax,αmax) (0.5 m/s2, π rad/s2) tr 5 s 

(amin,αmin) 
(-0.5 m/s2, -π 
rad/s2) 

  

7.1 Safety Parameters 
This category includes safety margins and other parameters that directly influence the 

bias between safety and goal completion. They are important candidates for adaptive 

modulation, because certain extreme environments and situations are expected to 

require the robot to disregard its safety in order to achieve its goals, but under more 

benign conditions the robot can be successful without compromising its safety 

standards. 

These parameters are tested in environment set C, which contains doorways and walls 

with random widths. Some doorways are very narrow, with the minimum width being 

80 cm, only 10 cm wider than the robot itself. Under these conditions, the default 

safety parameters limit the robot’s ability to reach the goal point, so reducing their 

bias towards safety can improve performance, at the cost of increasing the collision 

count. 
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7.1.1 Obstacle Radius 

Both the velocity controller and directional controller enlarge obstacles by a radius ro, 

either implicitly or explicitly. By default, this is set to the robot’s radius, or 0.35 m. If 

the robot’s sensors were 100% accurate and covered 100% of the environment, this 

would be sufficient to effectively eliminate all collisions with stationary obstacles. In 

practice, collisions can still occur due to sensor and control limitations, but they are 

very rare in static environments. However, if this radius is employed in environment 

set C, the enlargement of the sides of narrow doorways tends to block the robot’s path 

through them. This impedes its progress towards the goal point, or prevents it 

altogether (Figure 7.1). Reducing ro increases the size of narrow doorway openings, 

allowing the robot to more easily traverse them (Figure 7.2). 

To test the overall effects of different ro values in these environments, ro is 

incrementally varied from 0.1 m to 0.4 m, and the resulting performance 

characteristics are recorded. The completion times (Figure 7.3) and success rates 

(Figure 7.4) are significantly improved for lower ro values. A 95-100% success rate is 

achieved when ro < 0.25 m. This improvement does come at a cost to safety, resulting 

in an increasing collision rate (Figure 7.5) that exceeds 0.5 collisions per minute when 

ro < 0.2 m. 

 
 
Figure 7.1: Robot’s path with ro = 0.35 m. 
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Figure 7.2: Robot’s path with ro = 0.25 m. 

 

These results indicate that there are no ro values that optimise both safety and 

performance in environments with narrow doorways. The robot must make a tradeoff 

between the two requirements. However, the results may be improved if ro is 

maintained at high values during normal operation, and only lowered when the robot 

needs to pass through a narrow doorway. 

0.1 0.15 0.2 0.25 0.3 0.35 0.4
50

100

150

200

250

300

350

400

450
Obstacle Radius vs. Mean Completion Time

Radius (m)

T
im

e 
(s

)

 
Figure 7.3: Mean completion time for 20 
samples per ro value. 
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Figure 7.4: Mean success rate vs. ro. 
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Figure 7.5: Mean collisions per minute vs. ro. 

7.1.2 Smoothing Factor 

The smoothing factor s determines the degree of filtering applied to the obstacle 

distance vector field by the directional controller. It represents the portion of the 

vector field smoothed in either direction from a given vector, so the percentage 

smoothed is actually double the value of s. High s values increase the range of 

influence of obstacles over nearby avoidance vectors, encouraging the robot to give 

obstacles a wider berth. 

To establish a reasonable performance baseline, the obstacle radius ro is set to 0.25 m 

(rather than its default 0.35 m) during this experiment. The smoothing factor s is 

incrementally increased to measure its effects. In a similar manner to increasing the 

obstacle radius, this should improve safety at a cost to performance. However, in 

practice, both performance and safety are improved. When s is low, the robot tends to 

become obstructed by certain obstacle configurations such as doorway corners (Figure 

7.6). Large values help prevent this from happening, resulting in smoother, safer and 

faster progress towards the goal (Figure 7.7). 
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Figure 7.6: Robot’s path with s = 0. 

 

 
 
Figure 7.7: Robot’s path with s = 0.5. 

 

The mean completion time (Figure 7.8) shows no consistent trend until around  

s = 0.3, but it begins to decrease after that point. This trend continues until s reaches 

its maximum of 0.5 (which represents 100% coverage of the vector field). The 

number of collisions per minute (Figure 7.9) decreases until s = 0.2, and remains 

largely static thereafter. 
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The reason for the improvement to performance is likely related to the cause of the 

robot’s obstructed states that occur in these environments. As previously mentioned in 

Chapter 6, occasionally a conflict occurs between the two reactive control layers when 

the directional controller instructs the velocity controller to move the robot in a 

direction that it considers unsafe. Various components of the velocity controller’s 

objective function counterbalance each other to produce linear and angular velocities 

of zero. The resulting obstructed state can persist for some time, because the robot is 

stationary and cannot acquire new sensor data that might free it from the obstruction. 

Increasing the smoothing factor decreases the likelihood of this conflict occurring by 

encouraging the directional controller to select directions that are further from 

obstacles. The lower incidence of obstructed states yields a slight, but tangible 

improvement to performance, counteracting any performance decrease that might 

arise by reducing the favourability of vectors that pass through doorways. 
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Figure 7.8: Mean completion time for 20 
samples per s value. 
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Figure 7.9: Mean collisions per minute vs. s. 

 

7.1.3 Avoidance Curvature Time 

The avoidance curvature time t2 controls the size of a circular arc generated by the 

velocity controller’s avoidance function for each velocity couplet. A given curvature 

is favoured by the avoidance function if it is considered safe for the robot to stay on it 

for the duration t2. 
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Figure 7.10: Robot’s path with t2 = 0.1 s. 

 

 
 
Figure 7.11: Robot’s path with t2 = 1.0 s. 
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Figure 7.12: Robot’s path with t2 = 2.0 s. 

 

To test the effects of different values of t2 on performance, a navigation experiment is 

conducted with ro = 0.25 m and s = 0.5 (values that result in relatively optimal 

behaviour in these environments, according to the results of previous experiments). 

Small values of t2 mean that only the short term ramifications of selecting a particular 

curvature are considered by the controller when choosing velocities. This can lead to 

unnecessary collisions, because the robot fails to slow down and turn away early 

enough when it detects an obstacle in its path (Figure 7.10). Larger t2 values cause the 

robot to respond earlier to perceived obstacles, which can prevent potential collisions 

(Figure 7.11). However, if t2 is too large, the robot can become overly conservative in 

its selection of velocities, preventing it from traversing some doorways (Figure 7.12). 

Overall, the mean path time (Figure 7.13) remains steady until around t2 = 0.9 s, and 

begins increasing thereafter. Similarly, a near-100% success rate (Figure 7.14) is 

maintained until around t2 = 1.1 s, after which it reduces sharply. The collision count 

(Figure 7.15) shows a different trend, decreasing until around t2 = 1.1 s, and becoming 

relatively constant thereafter. There is clearly an optimal region around t2 = 1.0 s that 

achieves the benefits of both high performance and high safety. Only small changes 

within the interval [0.9, 1.1] appear worthwhile, because large deviations from this 

optimal region adversely influence either performance or safety for no discernable 

benefit. 
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Figure 7.13: Mean completion time for 20 
samples per t2 value. 
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Figure 7.14: Mean success rate vs. t2. 
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Figure 7.15: Mean collisions per minute vs. 
t2. 

7.2 Speed Parameters 
The speed category includes kinematic and dynamic constraints affecting the 

velocities contained within the dynamic window. The best way to improve safety in 

environments containing moving obstacles is to reduce the robot’s velocity. Lower 

velocities afford the robot more time to avoid collisions, and also reduce the potential 

damage resulting from any collisions that do occur. 

7.2.1 Linear Velocity Limit 

The robot’s global maximum velocity is controlled by the linear velocity limit vL. This 

is distinct from the local maximum linear velocity represented in the dynamic 

window, which constrains the velocities that can be selected in the next control cycle. 
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The local maximum cannot exceed vL, but it is primarily a function of the robot’s 

current velocity and acceleration/deceleration limits. 

 
 
Figure 7.16: A dynamic environment traversed with vL = 0.6 m/s. The cyan circles represent 
the initial positions of simulated humans. 

 

 
 
Figure 7.17: A dynamic environment traversed with vL = 1.2 m/s. 

 

A range of vL values are tested in two different environment sets: A and C. 

Environment set D contains simulated humans moving at 0.8 m/s. At 5 second 

intervals, each human randomly selects a new direction from four options: towards the 
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robot, away from the robot, clockwise or anticlockwise around it. If a simulated 

human is moving towards the robot and gets closer than 0.2 m, he/she will stop. 

However, if the robot is unable to slow down or avoid the human, it will still collide 

with him/her. 

While it would be reasonable to expect that higher velocities should result in the robot 

reaching its goal sooner, in practice this is not always the case. Sometimes the robot 

must wait for an area to be mapped before a path can be planned around it, and/or 

wait for a simulated human to move out of a doorway. Dynamic obstacles can also 

interfere with the mapping process, resulting in unpredictable occupancy probabilities. 

Furthermore, higher speeds increase the likelihood that the robot will overshoot a 

doorway, rather than smoothly turn into it. In the environment shown in Figure 7.16 

and Figure 7.17, the robot’s path when vL = 0.6 m/s is shorter than its path when  

vL = 1.2 m/s, somewhat compensating for the lower average speed. 

Figure 7.18 and Figure 7.19 compare the system’s performance and safety over a 

range of values in both environment sets. The mean completion time (Figure 7.18) 

initially shows an overall improvement as vL increases, until around vL = 0.7 m/s. In 

the dynamic environments, a gradual increase occurs over the remainder of the range 

tested, whereas in the static environments, completion time is largely constant over 

the interval [0.7, 1.2] m/s, and increases sharply thereafter. The rapid increase can 

likely be attributed to obstructed states, which occur more frequently at higher speeds. 

It does not appear in the dynamic environments because simulated humans tend to 

‘push’ the robot free from obstructions. 

Any performance improvements attributed to higher velocities come at a cost to 

safety, as indicated by the higher collision counts as vL increases (Figure 7.19). In the 

static environments, a very small number of collisions occur over the entire interval, 

although there appears to be a marginal increase when vL > 0.8 m/s. The dynamic 

environment yields a significant increase in collisions when vL > 0.7 m/s, because the 

robot is unable to slow down or turn away in time to avoid simulated humans that 

unexpectedly move into its path. From these results, there appears to be little incentive 

to set vL to values greater than 0.7 m/s, as they tend to impede both safety and 

performance. 
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Figure 7.18: Mean completion time for 20 
samples per vL value. 
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Figure 7.19: Mean collisions per minute vs. 
vL. 

7.2.2 Linear Deceleration Limit 

The linear deceleration limit amin is a constraint that determines the lowest linear 

velocity available to the dynamic window, given the robot’s current linear velocity. 

This is distinct from the acceleration limit amax because some mobile robot drive 

systems may not accelerate and decelerate at the same rate, and it is not necessarily 

optimal for the robot to accelerate and decelerate equally. It may be useful to maintain 

a soft limit that is more severe than a robot drive system’s hard limits. Lower 

magnitudes of amin (and amax) may reduce wheel slippage and limit the forces exerted 

on the robot’s internal components. However, they are also likely to reduce the 

robot’s responsiveness to environmental dynamics. 

As shown in Figure 4.3, the physical robot’s deceleration can be as low as -1.6 m/s2, 

but only over a small section of the response curve. Throughout the later portions of 

the curve, it increases to around -0.5 m/s2. Thus, by default, amin = -0.5 m/s2. Different 

amin values are tested in environment C, to determine whether it may be worthwhile to 

modulate amin in situations where the robot’s safety is compromised. Figure 7.20 

shows the effects of amin on the collision count. In general, collisions occur less 

frequently as amin is reduced, but improvements to safety are less apparent when amin < 

-0.5 m/s2. These results suggest that while situational reductions to amin may improve 

safety, any improvements will be minor. 
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Figure 7.20: Mean collisions per minute vs. 
amin. 

7.3 Efficiency Parameters 
Efficiency parameters are those that affect the amount of data that is processed by the 

controller. Smaller, more granular internal representations yield higher computational 

efficiency, but lower optimality, which may reduce performance and/or safety. If 

navigation is a robot’s primary function, improving its computational efficiency is 

likely to lower the energy consumption of its onboard processor(s), increasing battery 

life. Conversely, if navigation is just one of many processes running in parallel, more 

computational resources will become available to the other processes. 

Experiments with these parameters require a measure of execution speed. This takes 

the form of execution time ratio, which is the ratio between time represented in the 

simulation, and the actual time taken to execute the code. The resulting values are 

highly system dependent, and also dependent on implementation details such as the 

programming language utilised, the overhead of the simulation, and the attention paid 

to efficiency-optimisations when writing the code. Thus, the actual values should be 

viewed as mere indicators, less important than the trends. To maintain consistency 

between these experiments, they are conducted on the same PC, an Athlon 64 3500+ 

with 2 GB RAM running Windows XP. 

7.3.1 Dynamic Window Sizes 

The dynamic window is a two-dimensional rectangular search space of size nv×nω, 

where nv is the number of linear velocities represented in the window, and nω is the 
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number of angular velocities. Varying one or both of these parameters affects the 

efficiency of the velocity controller by changing the number of objective values that 

are calculated. 

Both parameters are independently varied between 3 and 15 in environment set B. 

Only odd numbers are utilised, to ensure that there is always a central element 

representing the robot’s current velocity. This is a result of the method utilized to 

discretise the velocity space – an equal number of velocities are represented above 

and below the current velocity. Figure 7.21 shows the resulting execution time ratio 

for each parameter varied. It increases linearly as nv or nω increases, so reducing either 

of them from their default values clearly improves computational efficiency. This 

improvement comes at no discernable cost to completion time (Figure 7.22), which 

remains relatively constant, with only minor fluctuations that can be attributed to 

random noise. Similarly, the collision count remains close to zero throughout the 

range of different window sizes. 
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Figure 7.21: Mean execution time ratio for 
20 samples per dynamic window size. 
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Figure 7.22: Mean completion time vs. 
dynamic window size. 

Regardless of the granularity of the dynamic window, its outer velocities are 

predominantly the ones selected by the controller. The situations where an inner 

velocity may be preferable appear to be sufficiently rare or insignificant as to have no 

detectable influence on performance. It is possible that a controller with less severe 

kinematic and dynamic constraints than ours would be more likely to select velocities 

further from the edges of the dynamic window, and that those velocities might allow it 

to improve performance. But since the different sizes have no discernable effect on 

safety or performance in our robot, there is little reason to utilise anything other than 

the most efficient size (3×3). There are no obvious advantages to increasing them over 
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these minimums, so the dynamic window sizes appear to be poor candidates for 

adaptive modulation. 

7.3.2 Vector Field Size 

The directional controller’s objective function is applied to a vector field of size nθ. 

Computational efficiency should be improved if nθ is lowered, but this may come at a 

cost to performance due to the reduced optimality of a more granular representation. 

For example, fewer direction vectors may yield a reduced likelihood that one of them 

will pass through narrow doorways, reducing the robot’s ability to converge on the 

goal point. 

Vector sizes nθ between 6 and 60 are tested in environment set B. Based on the results 

of the previous experiment, the dynamic window size is set to its minimum (and 

optimal) size of 3×3. The resulting relationship between nθ and the mean execution 

time is approximately linear, as shown in Figure 7.23. Changing the vector field size 

also has a tangible effect on the mean completion time (Figure 7.24), which reduces 

as nθ increases, although only when nθ ≤ 26. There is little reason to set nθ to a value 

significantly higher than 26, because it no longer provides discernable gains to 

performance. The collision count remains near zero throughout the entire range, so no 

relationship between nθ and safety emerges from this experiment. 
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Figure 7.23: Mean execution time ratio for 
20 samples per nθ value. 
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Figure 7.24: Mean completion time vs. nθ. 
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7.3.3 Obstacle Buffer Size 

Detected obstacle positions are stored in a FIFO buffer for no control cycles. In a 

single control cycle, sensor noise, filtering delays and/or dead zones can make an 

obstacle appear further away than it actually is. Also, the corners of some objects 

might be smoothed off if they fall between sensor beams. By considering not only 

currently detected obstacles, but also previous ones, the limitations of discrete, 

imperfect sensors can be reduced, potentially improving safety. However, this comes 

at a cost to computational efficiency, due to the increase in the amount of data 

processed by each reactive control layer. 
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Figure 7.25: Mean execution time ratio for 
20 experimental runs per no value. 
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Figure 7.26: Mean completion time vs. no. 
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Figure 7.27: Mean collisions per minute vs. 
no. 

Due to the emphasis on safety, this parameter is tested in environment set C with 

obstacle radius ro = 0.25 m and smoothing factor s = 0.5, values that previously 

produced relatively optimal behaviour in these environments. Based on the results of 

the previous two experiments, the dynamic window size is set to 3×3, and the vector 
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field size is 30. The mean execution time ratio increases linearly with no (Figure 7.25). 

Completion time also shows a general increase (Figure 7.26), although it is subject to 

large fluctuations. This is countered by an overall decrease in the number of collisions 

for no ≤ 7 (Figure 7.27). Thus, a tradeoff must be made between safety and 

efficiency/speed. 

7.3.4 Replan Period 

The replan period tr controls how often paths are planned while the robot is navigating 

from point to point. Decreasing tr generally has a positive effect on performance, 

resulting in lower completion times (Figure 7.28). In this implementation, the A* 

algorithm is applied to a very small map, so it is relatively efficient. In theory, higher 

tr values should improve computational efficiency, but in practice efficiency is only 

measurably impacted when tr = 0 s (Figure 7.29), as this causes replanning to be 

performed every control cycle. Thus, a relatively low replan period can be utilised 

(e.g. tr = 2 s) without noticeably affecting efficiency. These results are acquired in 

environment set B with a dynamic window size of 3×3, and a vector field size of 30. 
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Figure 7.28: Mean completion time for 20 
samples per tr value. 
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Figure 7.29: Mean execution time ratio vs. tr. 

 

7.4 Exploration Parameters 
This category includes parameters that influence deliberative maps constructed by the 

robot. In particular, the robot must choose whether to explore the environment and 

acquire new world knowledge, or to exploit its existing knowledge to plan an optimal 

path to the goal point. Furthermore, if the robot is exploring a region of the 
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environment that it has not encountered before, its map update rules may be different 

than they otherwise would be. 

7.4.1 Exploration Weight 

The path planner’s exploration weight Wp3 controls the bias between exploration and 

exploitation. Unmapped areas of the grid map are assigned occupancy values of  

po = 0.2.1 Once the robot begins to explore an area, free space nodes tend towards  

po = 0, while occupied nodes tend towards po = 1. Thus, the robot’s default behaviour 

(when Wp3 = 0) is to favour known free space nodes (with po ≈ 0) over unexplored 

nodes (with po = 0.2). When Wp3 is increased, the cost of known free space nodes 

begins to meet, and then exceed the cost of unexplored nodes. This results in an 

increasingly strong bias to explore the environment and update the map, rather than to 

exploit existing map data to reach the goal quickly. 

To measure the effects of Wp3 on performance, an experiment is conducted where the 

robot is instructed to travel back and forth between two points in environment set B, 

for a total of three traversals of each map. When Wp3 is set to low values, the robot 

typically finds a satisfactory path to the goal, and follows the same path thereafter 

(Figure 7.30). Conversely, when exploration is strongly enabled by setting Wp3 to high 

values, the robot has a significant disincentive to repeat paths previously travelled, so 

it covers a larger portion of the map (Figure 7.31). 

In general, increasing Wp3 yields a corresponding increase in the robot’s coverage of 

the environments (Figure 7.32). This trend continues until around Wp3 = 0.7. Coverage 

increases come at a cost to completion time (Figure 7.33), due to the more indirect 

paths chosen by the robot as it explores the environments. Completion times are more 

adversely affected when Wp3 > 0.5. At this point, the difference in cost between 

occupied and free-space nodes is less than 0.5 in fully-explored areas. The cost factor 

of occupied nodes therefore becomes only 100 times greater than that of unoccupied 

nodes (as a comparison, it is 10000 times greater when the cost difference is 1). The 

robot’s path planning capabilities thus become increasingly degraded. When  

Wp3 > 0.7, the cost factor gain is reduced to less than 15.8, so the resulting planned 

                                                 
1 The obvious initialisation value is 0.5. However, unless the exploration weight exceeds this value the 
robot will not favour exploration over following the shortest path, and higher weights degrade the 
quality of planned paths.  
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paths often pass through walls and other obstacles, sometimes causing the robot to 

become permanently obstructed. Ideally, the combined contributions of the 

exploration and emotion maps (described in Chapter 8) should be kept less than 0.5. 

 
 
Figure 7.30: Occupancy grid map and robot’s path with Wp3 = 0. 

 

 
 
Figure 7.31: Occupancy grid map and robot’s path with Wp3 = 0.5. 
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Figure 7.32: Mean exploration coverage for 
20 samples per Wp3 value. 
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Figure 7.33: Mean completion time vs. Wp3. 

 

7.4.2 Map Update Rate 

The rate at which the occupancy grid map is updated from instantaneous sensor data 

is controlled by the update rates ε1 and ε2. Reductions in occupancy are affected by ε1, 

while increases are affected by ε2. The ratio between ε1 and ε2 influences the robot’s 

implicit bias towards either ensuring that free space nodes are assigned low po values, 

or ensuring that occupied nodes are assigned high po values. If ε1 >> ε2, static 

obstacles may not be clearly represented on the map, resulting in planned paths that 

pass through walls (Figure 7.34). Conversely, if ε1 << ε2, a dynamic obstacle may 

persistently appear as an occupied region even after it has moved to a different 

location (Figure 7.36). The default configuration, ε1 = ε2, typically results in 

satisfactory paths in dynamic environments (Figure 7.35). 

The performance characteristics of different update ratios are measured by keeping ε1 

= 0.01, and varying ε2. This experiment is conducted in environment sets B and D, 

representing static and dynamic environments. Both environment types show similar 

trends. The mean completion time (Figure 7.37) decreases rapidly as ε2 approaches ε1, 

but once ε2 exceeds ε1 it remains relatively constant (with minor fluctuations). 
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Figure 7.34: Occupancy grid map and robot’s path with ε1 = 0.01, ε2 = 0.001. 

 

 
 
Figure 7.35: Occupancy grid map and robot’s path with ε1 = 0.01, ε2 = 0.01. 
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Figure 7.36: Occupancy grid map and robot’s path with ε1 = 0.01, ε2 = 0.1. 

 

There appears to be little reason to change these values from their defaults if they are 

to be constant parameters. However, it may be advantageous to increase ε2 while the 

robot is exploring a newly discovered area, and reduce it towards its default (0.01) 

once the area has been explored. Unexplored nodes are initialised to po = 0.2, so under 

normal conditions it takes longer for a node to converge on an occupied state (po = 1) 

than it does to converge on an unoccupied state (po = 0). Modulating ε2 based on 

exploration requirements may help the robot build its map more rapidly without 

adversely affecting stability. 
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Figure 7.37: Mean completion time for 20 
samples per ε2 value. 
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7.5 Action Parameters 
Action parameters control the bias between reactive and deliberative navigation 

strategies. Under normal conditions, obstacle avoidance guided only by deliberative 

path planning produces the best performance and safety. However, there are situations 

where an emphasis on deliberative navigation could be inferior to a more reactive 

approach. In particular, while a robot is building its map, planned paths are often sub-

optimal, passing through walls and other obstacles. 

7.5.1 Directional Control Weights 

Some relatively optimal weight configurations were obtained for both reactive and 

deliberative control in chapter 6. Acceptable reactive performance can be achieved 

with Wθ3 = 0, Wθ4 = 0.5, Wθ5 = 0.5 and Wθ6 = 0.75, while a good configuration for 

deliberative control is Wθ3 = 0.5, Wθ4 = 0, Wθ5 = 0 and Wθ6 = 0. Enabling reactive goal 

seeking capabilities simultaneously with deliberative path following decreased the 

robot’s performance. Instead, it is envisaged that the weights should be modulated 

between these two configurations to suit the robot’s momentary requirements. 

7.5.2 Look-ahead Distance 

Another way to shift the bias between reactive and deliberative control is to change 

the look-ahead distance parameter dL. Increasing dL causes the controller to target a 

point further along the planned path. When dL exceeds the total path length, the 

directional controller’s path-following function produces the same output as its goal 

seeking function. 

Figure 7.38 shows that the best completion times are normally achieved when  

dL = 1.05 m, which is equivalent to the distance between three horizontally or 

vertically aligned nodes. These results are obtained in environment set B. In situations 

where the robot’s deliberative capabilities are compromised, it may be advantageous 

to increase dL, shifting the robot’s behaviour towards the reactive end of the spectrum.  
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Figure 7.38: Mean completion time for 20 
experimental runs per dL value. 

7.6 Introspection Parameters 
This category includes parameters that control the influence of internal 

representations over both reactive obstacle avoidance and deliberative planning. 

Certain situations may render the robot’s sensors unreliable for collision avoidance 

(e.g. sensor failures or undetectable obstacles). Occupancy and danger grid maps can 

provide additional information that facilitates collision avoidance, and enables the 

robot to retain some level of functionality in situations that would otherwise result in 

failures. 

These parameters are tested in environment set F, which includes static environments 

containing objects that the robot’s sensors cannot detect. Real-world objects that may 

have this property include transparent objects such as windows, and objects that reside 

outside of the sensors’ planes of detection. For testing purposes, the environments are 

known to the robot (fully mapped) at the onset of each experiment, and map nodes 

corresponding to undetectable obstacles are tagged as dangerous. The alternative 

would be to allow the robot to explore and tag the dangerous areas itself (by colliding 

with the undetectable obstacles), but this would require multiple passes through each 

environment (and numerous collisions) to achieve equivalent results. 

7.6.1 Map-based Avoidance Weights 

The strengths of the reactive controllers’ map-based avoidance responses are 

regulated by weights Wv2 and Wθ2. Increasing these weights increases the robot’s 
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reactive aversion to map nodes that are occupied or tagged as dangerous (either a 

priori, or as a result of collisions). 

 
 
Figure 7.39: Robot’s path with Wv2 = 0 and Wθ2 = 0. The green rectangles represent 
undetectable objects. 

 

 
 
Figure 7.40: Robot’s path with Wv2 = 0.4 and Wθ2 = 0.4. 
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Figure 7.41: Robot’s path with Wv2 = 0.8 and Wθ2 = 0.8. 

 

If these weights are disabled (Figure 7.39), there is nothing to prevent the robot from 

colliding with the objects it cannot detect. Increasing the weights causes the robot to 

give these objects a wider berth (Figure 7.40), but it also becomes increasingly 

conservative in its avoidance of visible objects. The coarse resolution of the grid maps 

results in situations where the sensor-based obstacles and map-based obstacles are 

aligned in such a way as to block certain doorways. The problem is exacerbated by 

higher weights, where the robot’s aversion to mapped obstacles approaches that of 

sensor obstacles (Figure 7.41). 

This results in an overall trend where the mean completion time increases with the 

weight values (Figure 7.42). The mean number of collisions per minute significantly 

decreases for weights > 0.3, and it approaches zero for weights > 0.5 (Figure 7.43). 

There is no constant weight configuration that optimises both performance and safety; 

the robot must select which to favour. 

The problems with higher avoidance weights in this experimental scenario could be 

reduced if the map-based avoidance function only attempted to avoid obstacles on the 

danger map (rather than a fused occupancy and danger map). However, that would 

decrease safety in other scenarios (e.g. if sensor failures occur). There also remain 

situations where such an implementation would result in obstructions (e.g. if the robot 

collides with the side of a doorway, the point of collision is marked on the danger map 
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and can cause the same obstructions as occupancy maps). A superior solution is to 

activate the map-based avoidance weights only when necessary, as will be described 

further in subsequent chapters. 
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Figure 7.42: Mean completion time for 20 
experimental runs per map-based avoidance 
weight. 
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Figure 7.43: Mean collisions per minute vs. 
map-based avoidance weight. 

 

7.6.2 Danger Weight 

The weight Wp2 biases planned paths to avoid map nodes tagged as dangerous. This is 

expected to improve safety and prevent the robot from planning paths that are 

unviable (e.g. through doorways blocked by undetected obstacles). It only affects 

deliberative planning, not the reactive controllers, so it does not prevent collisions. 

Nonetheless, the number of collisions should be lowered if the robot follows paths 

that are further from dangerous locations. Figure 7.44 shows the mean collisions per 

minute that result from various Wp2 configurations (with Wv2 = 0 and Wθ2 = 0). A 

significant decrease in collisions occurs between Wp2 = 0.1 and Wp2 = 0.2, but the 

collision count remains relatively constant thereafter, and never drops below 1 

collision per minute. 

By default, this weight is disabled, because it is likely counterproductive for the 

planner to avoid all locations marked as dangerous. For example, if the robot collides 

with a dynamic obstacle while passing through a doorway, the point of collision 

would be tagged as dangerous. If Wp2 is high, this could prevent paths from being 

planned through that doorway even after the obstacle has moved away. A preferable 

approach is to activate Wp2 only when required. This is further explained in Chapter 8. 
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Figure 7.44: Mean collisions per minute for 
40 experimental runs per Wp2 value. 

7.7 Summary 
The performance characteristics of various planning and control parameters have been 

quantitatively analysed. Parameters are grouped into different categories based on 

their behavioural influences. Optimal values and ranges can be derived from these 

results that will determine whether and how each parameter should be modulated to 

improve navigational performance and/or safety. 

The next chapter will describe the implementation of our robotic affect model, which 

has the role of modulating these parameters to improve the robot’s long-term survival 

and adaptive capabilities. 
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8 Robotic Affect Implementation 

In Chapters 6-7, some behaviour and performance changes that result from parameter 

variations were presented. It was shown that certain tradeoffs are necessary between 

competing requirements such as goal convergence, collision avoidance, computational 

efficiency and knowledge acquisition. These tradeoffs should take into account many 

different types of situations and environments that the robot may encounter. No single 

set of parameters is optimal in every conceivable situation; the robot must sometimes 

compromise its performance in one state to provide satisfactory performance in 

another. 

Our model of affect is intended to manage some of these tradeoffs by continuously 

adapting the robot’s parameters to suit its perceived internal and external world. The 

affective system interacts with a distinct cognitive system (represented by the 

planning and control architecture). As inputs it receives certain sensor data and 

representation information created by the various control layers, and it generates 

appropriate parameter configurations and path planning biases in response. As 

explained in Chapter 3, the model comprises four main components: stimuli, drives, 

emotions and moods. Now that the underlying planning and control architecture and 

experimental results have been presented, this chapter describes the implementation 

details of these components and their various interconnections. 

8.1 Affective Stimuli 
Stimuli in our system represent events that trigger adaptive control parameter 

modulations. They are unit interval intensity values that grow or decay in response to 

the presence or lack of certain eliciting events. Some stimuli (e.g. danger) are 

continually active and varying in intensity, while others (e.g. error) are dormant 

during normal operation, only activating in situations that require the robot to change 

its behaviour. 

Raw stimuli S are normalised so that they increase and decrease appropriately within 

the interval [0, 1]. Normalised stimuli Snorm result from linear transformations 

bounded by upper and lower thresholds Smin and Smax: 
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Distinct normalisation thresholds are derived for each stimulus, depending on its 

typical raw output range. Certain stimuli (e.g. stuck) are also inverted (i.e. 0↔1 and 

the direction reversed). Normalised stimuli Snorm are unit interval variables, so 

inverting a stimulus is a simple subtraction: 

normnorm SS −←1  (8.2) 

Next, the normalised stimulus values Snorm are filtered to produce damped values Sdamp 

using a simple weighted average function: 

( ) dampnormdamp SSS αα −+← 1  (8.3) 

The damping factor α controls a stimulus’s temporal characteristics. Separate 

damping factors are employed for the growth (α1) and decay (α2) of each stimulus. For 

example, some stimuli require rapid growth but slow decay (represented by high α1 

and low α2), while the reverse is true for other stimuli. 

8.1.1 Danger 

For a mobile robot, the primary danger is that it may collide with obstacles, resulting 

in damage to itself and/or its environment. Hence, in our implementation, the danger 

stimulus is a function of obstacle proximities. It utilises the obstacle distance vector 

field produced by the directional controller. The distance associated with each vector 

is taken into consideration, as well as its direction relative to the front of the robot. 

Obstacles close to the front of the robot are considered more dangerous than those 

behind it, so the distance do of each vector is increased by a function of the angle 

between it and the frontal direction θF: 

π
θθ

κ
θ

θ θ

−
+= F

D

o
o d

d
D

(max)

)(
)(  (8.4) 

This results in a modified vector field Do that is biased towards directions near the 

front of the robot (Figure 8.1). Increasing the direction factor κθ causes Do to be more 

heavily biased towards frontal directions (Figure 8.2). The threshold distance dD(max) 
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alters the level of influence that obstacle distance has over the vector field. Lower 

values decrease the perceived danger of nearby obstacles (Figure 8.3). 

 
 
Figure 8.1: Modified vector field (blue) with 
κθ = 0.5 and dD(max) = 3 m. The normalised, 
but otherwise unmodified obstacle distance 
vector field (red) is superimposed on top of 
it. The robot’s heading is directly east. 

 
 
Figure 8.2: Modified vector field with  
κθ = 0.7 and dD(max) = 3 m. 

 
 
Figure 8.3: Modified vector field with   
κθ = 0.5 and dD(max) = 2.5 m. 

 

The raw value of the danger stimulus Sdanger is a function of the minimum of the 

vector field Do: 

( oDmin1 )−=dangerS  (8.5) 

The normalisation thresholds of this stimulus are simply 0 and 1, as it already 

typically resides in the intended interval. Growth is less severely damped than decay, 
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to allow a rapid response to perceived threats, while preventing the stimulus from 

oscillating rapidly between high and low values. 

8.1.2 Stuck 

The stuck stimulus detects obstructed states that are preventing the robot from 

achieving its goals. In the context of navigation, this is represented by a lack of goal-

directed movement. The stimulus can be triggered if the robot literally comes to a 

standstill, but it can also result from repetitive motion that fails to make sufficient 

progress in any direction (either towards the goal point or otherwise). Cyclical or 

otherwise repetitive motion indicates a potential infinite loop that the robot should 

attempt to escape. 

A raw stimulus variable Sstuck is obtained that represents the robot’s overall speed over 

time interval t = [t0, tn]: 
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The magnitude of each linear velocity vector v(ti) is the robot’s speed at time ti, while 

the direction is its heading at time ti. Hence, the upper term is an approximation of the 

robot’s total displacement during time tn. The value of tn influences the amount of 

time the robot must linger in a given location before it detects an obstructed state. If tn 

is low, the stuck stimulus is more transient, whereas higher values slow down its 

response. 

Mobile robots rarely move in straight lines for significant periods of time, so the raw 

Sstuck value represents a speed that is typically lower than the robot’s average speed. It 

is normalised to cover the interval [0, 1], and inverted using Equation 8.2 so that 

higher speeds correspond to lower Sstuck intensities. Normalisation and inversion result 

in a variable that is usually 0, but which increases towards 1 when the robot’s overall 

velocity (the raw Sstuck value) drops below a threshold. 

A very low growth factor is applied to this stimulus, while its decay is undamped. 

This reduces the rate of false-positives when detecting obstructed states. The robot 

must consistently fail to escape an obstruction before it determines that a behavioural 

change is required. 
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8.1.3 Pain 

Pain can be viewed as a mechanism that discourages an adaptive system from 

repeating or continuing actions that cause it physical harm. For mobile robots, the 

most obvious source of pain is a collision. Since a robot typically does not have 

nerves, it cannot easily detect physical damage (unless the damage can be inferred 

from measurably diminished capabilities). Instead, our implementation of pain is a 

simple abstraction that increases when a collision occurs, and decreases over time. 

The raw Spain stimulus is proportional to the robot’s linear velocity v at the time of 

collision: 

⎩
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=
0
v

S pain   (8.7) 
otherwise

collision if

Higher levels of pain result from high-speed collisions, because the risk of physical 

damage is increased. It does not account for the relative speeds or masses of objects 

with which the robot collides, however. This simple abstraction could be extended by 

incorporating an actual measure of the forces involved during a collision, but it would 

require additional hardware (e.g. accelerometers) and software. 

The stimulus is normalised so that a relatively high-speed collision yields an Spain 

intensity of 1. It is filtered such that increases are undamped, but decreases are highly 

damped. Thus, pain instantly increases when a collision occurs, but it decays slowly 

in the absence of collisions. 

8.1.4 Achievement 

Achievement is a measure of progress towards the robot’s goal. Navigation progress 

is expressed in the form of a speed that considers only the robot’s overall movement 

towards or away from the goal point. The raw stimulus Sachieve obtains this speed from 

the initial distance to the goal point dg(t0), the current distance dg(tc), the time t0 when 

the navigation instruction was received, and the current time tc: 
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Motion tangential to the direction of the goal point does not contribute to the speed, 

because it does not affect the current distance to goal dg(tc). Normalisation of Sachieve 

causes appropriate velocities to span the interval [0, 1]. Growth and decay of this 
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stimulus are damped to limit its transient behaviour following a transition from one 

navigation instruction to the next. 

8.1.5 Density 

The density stimulus is an estimate of the obstacle density of explored space. From a 

navigation perspective, a high obstacle density generally indicates a more challenging 

environment. The raw stimulus Sdensity is a weighted average of occupancy 

probabilities po(xi) of nodes x1-xn stored in the occupancy grid map, where the weights 

are exploration probabilities pe(xi) obtained from the exploration grid map: 
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Different environments tend to produce relatively small deviations in Sdensity. Hence, 

even though it is already a unit interval variable, Sdensity requires normalisation to 

cover the entire interval [0, 1]. The normalisation thresholds are tuned to account for 

the Sdensity ranges produced by the robot’s intended environments. Density is 

undamped, because its global nature renders it comparatively unsusceptible to 

oscillatory behaviour. 

8.1.6 Learning 

This stimulus is an estimate of the rate of knowledge acquisition. In our navigation 

architecture, this does not relate to formal learning methods such as reinforcement 

learning. Rather, it involves dynamically updating the robot’s deliberative maps to 

incorporate new environmental and representation data. This knowledge is 

represented quantitatively in the form of the exploration grid map. 

Raw stimulus variable Slearning is the mean of all exploration probabilities pe in a given 

map divided by the time te spent exploring the map: 

e

e
learning t

p
S =  (8.10) 

This is typically a very small number even under ideal conditions (travelling rapidly 

through a previously-unexplored environment), so to cover the appropriate interval, 

Slearning is normalised using a very low upper threshold. Since it is a function of data 
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averaged over an entire map, the stimulus is not prone to rapid fluctuations, so it does 

not require any damping. 

8.1.7 Mismatch 

The mismatch stimulus indicates a perceived discrepancy between the robot’s stored 

knowledge about its local environment and its current sensor data. This can occur if 

the environment has not yet been explored, or if the occupancy grid map is 

sufficiently inaccurate due to environmental dynamics or localisation failures. 

A raw stimulus Smism is obtained by comparing instantaneous occupancy status so(xi) 

of nodes x1-xn (where n denotes the number of nodes updated from sensor data) to 

their stored occupancy probabilities po(xi): 
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Nodes whose occupancy status so(xi) is higher than their occupancy probabilities po(xi) 

are weighted higher than others, to reduce the influence of free space nodes. The 

weight w(xi) is set to one of two unit interval constants Wm1 and Wm2 (where  

Wm1 < Wm2) depending on whether or not so(xi) is greater than po(xi): 
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Figure 8.4 shows a portion of an occupancy status map obtained from instantaneous 

sensor data, while the corresponding occupancy grid map is represented in Figure 8.5. 

The resulting magnitude of the difference between them for each node is shown in 

Figure 8.6. Sensor noise and filtering delays typically result in a significant amount of 

disagreement between the two representations even if the environment has been fully 

mapped. However, it tends to be greater when the robot is exploring a previously-

unmapped area. 
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Figure 8.5: Example of occupancy 
probabilities. 

 
 
Figure 8.4: Example of occupancy status. 

 
 
Figure 8.6: Magnitudes of the differences 
between occupancy status and probabilities.  

The stimulus is heavily normalised because its raw value typically occupies a 

relatively small interval. Increases to Smism are undamped, while decreases are 

damped, as the stimulus is otherwise susceptible to oscillatory behaviour. 

8.1.8 Cost 

Cost is a stimulus that increases if the paths planned by the robot are of low quality. 

Low quality paths are paths that travel through undesirable nodes. Such paths are only 

utilised if there are no desirable options available. This could be caused by 

environmental features (e.g. if a dynamic obstacle blocks a doorway for a sufficient 

duration to increase the occupancy probabilities of nodes in the doorway). It may also 

result from certain internal configurations (e.g. highly weighted danger, exploration 

and/or emotion maps producing very high node costs), or a combination of the two. 
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Low quality paths are often unviable (e.g. passing through walls), so the robot should 

adjust its planning weights to reduce the contributions of non-occupancy grid maps. 

The raw stimulus Scost is the highest cost value from the set of nodes mp contained 

within the planned path: 

( )pcost mS max=  (8.13) 

Each member of mp is the same node cost that is utilised to plan the path, so it is fused 

from all grid maps and filtered to take into account the costs of surrounding nodes. 

The stimulus is normalised such that the lower threshold represents a maximum 

acceptable cost, and the upper threshold represents the cost of a completely unviable 

path. Hence, the normalised stimulus ordinarily has an intensity of 0, but it increases 

upon detection of a low-quality path. Decreases are damped to reduce any rapid 

fluctuations that may occur if the replanning rate is very high. 

8.1.9 Error 

Although its name implies a general error detection mechanism, this stimulus is 

presently only employed to detect internal conflicts between different sensing 

modalities. Its scope is further constrained by the fact that only two types of 

exteroceptive sensors are currently modelled in our simulation: infrared distance-

measuring sensors and collision sensors. Thus, the stimulus simply responds to 

collisions with obstacles that are not detected by the infrared sensors. This situation 

typically arises due to sensor failures or limitations (such as an inability to detect 

objects outside of a certain plane of detection, or objects constructed from transparent 

materials). 

If a collision occurs, the raw stimulus Serror is equal to the distance dc between the 

position of the collision sensor triggered by the collision and the closest obstacle 

position measured by the infrared sensors: 
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otherwise
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This raw value is normalised using a lower threshold that represents the minimum 

distance required for the sensors to ‘definitely agree’, and an upper threshold 

representing a distance above which the sensors ‘definitely disagree’. Increases to 

Serror are undamped to facilitate a rapid response to perceived sensor inconsistencies, 
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while decreases are highly damped so that the robot continues to act to prevent further 

collisions with undetectable obstacles. 

8.1.10 Stimulus Parameters 

Specific parameter values for each stimulus are presented in Table 8.1. These 

parameter values are typically obtained by manual observation and adjustment to 

produce the intended response, rather than by quantitative analysis of their effects on 

the robot’s performance. They are small components of a secondary system which 

itself exerts a relatively subtle influence over the robot’s behaviour. Small incremental 

changes are not typically measureable over noise (but large changes are measureable, 

as shown by the results in Chapters 9 and 10). Thus, the parameter values should be 

regarded as adequate, but not necessarily optimal. Individual justifications for these 

parameters are provided in the preceding sections. The damping factors assume a 

control period of 0.1 s, and would need to be adjusted accordingly for different 

sampling intervals. 

 

TABLE 8.1: STIMULUS PARAMETERS 

Normalisation 
Thresholds Damping Factors 

Stimulus 

Smin Smax α1 α2 

Other 
Parameters 

Danger 0 1 0.1 0.05 κθ = 0.5 
dD(max) = 1.5 m 

Stuck 0.1 m/s 0.2 m/s 0.005 1 tn = 30 s 
Pain 0 m/s 0.5 m/s 1 0.01  
Achievement 0.1 m/s 0.4 m/s 0.1 0.01  
Density 0.15 0.25 1 1  
Learning 0 0.002 1 1  

Mismatch 0.3 0.35 1 0.05 Wm1 = 0.5 
Wm2 = 1 

Cost 0.5 0.7 1 0.01  
Error 0.3 m 0.5 m 1 0.01  

 

8.2 Drives 
Drives modulate the robot’s planning and control parameters in response to emotions 

and moods. Each drive is responsible for a subset of parameters that cause similar 

behavioural changes. The values of parameters governed by a given drive are assigned 
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positions on a spectrum between two opposing ‘modes of behaviour’ (e.g. 

exploration/exploitation). These positions are determined by a unit interval variable D 

representing the intensity of the parameters’ governing drive. 

The conversion from a drive intensity D to a parameter value P is typically a simple 

linear mapping from an input variable with interval [0, 1] to an output variable with 

interval [P1, P2] or [P2, P1] (if P2 < P1). However, linear conversion is not ideal for 

certain parameters. A modified drive intensity D' is utilised to enable curved input-

output relationships in addition to linear ones. The shape of the function is defined by 

the modulation exponent X: 
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As the magnitude of X increases above 1, the relationship becomes increasingly 

curved, as shown in Figure 8.7. 

 
 
Figure 8.7: Examples of drive/parameter relationships with different P1, P2 and X values. 

 

The modified value D' is applied to the conversion from drive to parameter value P: 

( ) 21 ''1 PDPDP +−=  (8.16) 

In Chapter 7, individual parameters associated with each drive were analysed, and 

their quantitative effects on performance were identified. Appropriate modulation 
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ranges for each parameter derived from these experimental results are shown in Table 

8.2. 

These can be divided into survival and strategic drives. Survival drives (safety, speed 

and efficiency) must constantly make tradeoffs between the robot’s competing needs. 

Thus, they are rarely set to 0, and their modulations are naturally centred on an 

equilibrium position of 0.5. Conversely, strategic drives (exploration, action and 

introspection) are more situational in their applications, and they may be inactive for 

significant durations. Hence, the strategic drives are considered at equilibrium when 

set to 0, and they are increased above that equilibrium position only when necessary. 

 

TABLE 8.2: DRIVE PARAMETERS 
Modulation range  

Drive Parameter 
P1 (D = 0) P2 (D = 1) 

Modulation 
exponent 

Wv1 0.9 0.99 0 
Wv4 0.6 0.4 0 
ro 0.25 m 0.35 m 0 

Safety 

t2 0.9 s 1.1 s 0 
Speed vL 0.4 m/s 1.0 m/s 0 

no 7 1 0 
nθ 30 10 0 Efficiency 
tr 0.1 s 2.0 s 0 
Wp3 0 0.4 0 Exploration ε2 0.01 0.02 0 
Wθ3 0.75 0.25 10 
Wθ5 0 0.5 -1.5 
Wθ6 0 0.75 -1.5 Action 

dL 1.05 m 2.45 m 10 
Wv2 0 0.9 0 
Wθ2 0 0.99 0 Introspection 
Wp2 0 1 0 

8.2.1 Safety 

Safety drive Dsafety influences trade-offs between ensuring that the robot’s motion is 

collision-free and overcoming environmental challenges to converge on the goal 

point. Velocity controller avoidance weight Wv1 is decreased proportionately with 

Dsafety, to allow the robot more freedom in choosing velocities in borderline situations 

(where collisions are unlikely, but possible). Experimental results in Section 6.3 show 

that a value of 0.9 does not significantly increase the collision count compared to a 
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value of 0.99, but it does improve performance slightly. Speedup weight Wv4 increases 

as Dsafety diminishes, encouraging the robot to select higher linear velocities. This can 

improve the robot’s ability to traverse narrow doorways, but it comes at a slight cost 

to stability and safety. Values in the range 0.4 – 0.6 typically result in viable, 

collision-free motion. If Wv4 is outside of this range, the robot either becomes so 

easily obstructed that it rarely converges on the goal point, or its safety is severely 

compromised. 

Obstacle radius ro is decreased proportionately with Dsafety, enlarging the perceived 

size of openings such as doorways, enabling the robot to traverse them more readily. 

Although the minimum radius of 0.25 m is less than that of the robot, the results in 

Section 7.1.1 show that this value does not result in constant collisions. The robot 

favours directions and velocities that are further from obstacles regardless of their 

perceived size. Nonetheless, ro is in principle a hard limit that might otherwise prevent 

certain collisions. Curvature time t2 has a narrow viable range of 0.9 – 1.1 s, as shown 

in Section 7.1.3, but modulations are enabled within this range. Increasing Dsafety, 

yields a proportionate increase to t2, causing the robot to slow down or turn away 

from obstacles earlier upon encountering them. This may prevent some collisions, but 

it can restrict the velocity controller’s options to the point where it becomes 

obstructed. 

8.2.2 Speed 

Speed drive Dspeed controls two important kinematic/dynamic constraints applied to 

the velocity controller. First is the linear velocity limit vL, which represents the 

maximum linear velocity allowed by the robot, disregarding its dynamic constraints. It 

is increased proportionately with Dspeed over the range 0.4 – 1.0 m/s. In theory, higher 

vL values yield faster goal convergence. However, in practice, performance 

improvements arising from higher speeds suffer from significant diminishing returns, 

depending on the robot’s environment, as shown in Section 7.2.1. Cluttered indoor 

environments rarely allow a robot to achieve its maximum speed. Furthermore, 

navigational problems due to higher speeds (e.g. missed turns into doorways) tend to 

outweigh any short-term improvements. Sparsely occupied outdoor environments 

generally allow the robot to benefit more from higher speeds. Regardless, the robot 
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suffers from an increased risk of collisions at higher speeds, and the potential damage 

sustained during a collision also increases. 

8.2.3 Efficiency 

Efficiency drive Deffic modulates parameters controlling the level of computational 

effort applied to navigation. Obstacle buffer size no decreases as Deffic increases, 

reducing the amount of obstacle data processed by the reactive control layers. Results 

presented in Section 7.3.3 show that this produces faster execution speeds at a 

potential cost to safety. A range of 1 – 7 is selected because the collision rate shows 

an improvement over this range, but it becomes largely constant when no > 7. 

Similarly, vector field size nθ is inversely and linearly related to Deffic. As shown in 

Section 7.3.2, decreasing nθ tends to negatively impact goal convergence while 

linearly improving computational efficiency. It is modulated over the range 10 – 30 

because values lower than 10 yield unacceptable performance characteristics, while 

values higher than 30 decrease efficiency while providing no discernable 

improvements to goal convergence. 

Increases to the replan period tr are proportional to rises in Deffic, as less frequent 

replans in theory yield improved efficiency. In practice, this only holds true for  

tr < 2 s, so tr is modulated over the range 0.1 – 2 s (where the default control period is 

0.1 s). A very small improvement to convergence speed is apparent over this range 

(Section 7.3.4), so the costs and benefits of changing tr are relatively minor. 

8.2.4 Exploration 

Exploration drive Dexplore represents the dichotomy between exploration (obtaining 

new world knowledge to improve long-term prospects) and exploitation (utilising 

existing world knowledge to maximise short-term rewards). Two parameters 

modulated by this drive are the planning exploration weight Wp3 and the occupancy 

growth rate ε2. Exploration weight Wp3 increases linearly with Dexplore over the range  

0 – 0.4. Experimental results in Section 7.4.1 show that Wp3 growth within this range 

yields a consistent improvement to exploration coverage, while also decreasing 

convergence speed (due to less direct paths to the goal being planned). Values greater 

than 0.5 tend to degrade the quality of planned paths, sometimes preventing the robot 
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from reaching the goal. However Wp3 is limited to values lower than 0.4 so that once 

the exploration map is fused with emotion maps (described in Section 8.3.2 below), 

their combined maximum value is around 0.5. 

Occupancy growth rate ε2 is modulated over the range 0.01 – 0.02 by Dexplore. At is 

peak, the growth rate is double the decay rate ε1. Performance improvements resulting 

from constant values within this range are unclear according to the results in Section 

7.4.2 (nor are any significant decreases apparent). Nevertheless, in theory, the robot 

may benefit slightly from temporary increases to ε2 while it is constructing its map 

(and experimental results show that it is unlikely to adversely affect performance). 

Hence, it is proportionately linked to Dexplore. 

8.2.5 Action 

Action drive Daction tilts the balance between reactive control and deliberative control 

by increasing either the directional controller’s path following weight Wθ3 or its goal 

seeking, angular inertia and wander weights Wθ4, Wθ5, and Wθ6. Experimental results 

in Sections 6.2 and 6.4 show that the robot’s performance is improved when either 

Wθ3 is set to 0.75, or when Wθ5, and Wθ6 are set to 0.5 and 0.75, respectively. If Daction 

were to vary the weights linearly, both sets of weights would be significantly lower 

than their optimal values near the centre of the transition, potentially resulting in 

decreased performance. Instead, the ‘primary’ weight(s) are maintained close to their 

peak values until ‘secondary’ weight(s) have increased to the levels required to 

assume control over the robot’s behaviour and become ‘primary’. This behaviour is 

achieved using modulation exponents of -1.5 and 10 (depending on the direction of 

modulation). 

The look-ahead distance dL is also assigned a non-zero modulation exponent (E = 10) 

so that it increases very slowly until the robot is heavily biased towards reactive 

control, as performance is otherwise unnecessarily reduced. 

8.2.6 Introspection 

Introspection drive Dintro controls the balance between reactive and deliberative world 

representations utilised for obstacle avoidance. Parameters affected include the 

velocity and directional controllers’ sensor-based (Wv1 and Wθ1) and map-based (Wv2 
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and Wθ2) avoidance functions. As Dintro grows, Wv2 and Wθ2 are increased linearly over 

the ranges 0 – 0.9 and 0 – 0.99, respectively. The different ranges are selected for 

practical reasons; if Wv2 ≈ Wθ2, the robot tends to become obstructed by undetectable 

obstacles when it gets too close to them. This is caused by a conflict between the 

directional and velocity controllers previously described in Section 7.6.1 (in relation 

to the equivalent sensor-based avoidance functions). 

The final parameter to be modulated by Dintro is the danger weight Wp2, which controls 

the contribution of the danger grid map to path planning. When moderately activated, 

this can prevent collisions with unseen obstacles, as shown in Section 7.6.2. However, 

it could potentially cause doorways to become blocked (from the perspective of the 

path planner) if it were constantly enabled. Hence, it grows linearly within the range  

0 – 1 in response to increases of Dintro. 

8.3 Emotions 
A set of discrete emotions is implemented to control the robot’s drives appropriately 

in response to its various stimuli. While they may bear only a superficial resemblance 

to biological emotions with the same names, the emotional labels are useful for 

encapsulating certain types of adaptive behaviour. 

The emotions modelled in our system can be divided into two interacting components. 

First are global emotions, which are short-term intensities elicited by certain 

combinations of stimuli. Second are mapped emotions, which are associated with 

specific locations in the environment. Separate emotion intensity values are stored for 

each map node, enabling location-specific parameter modulations and biases to 

deliberative path planning. The robot’s drives are controlled by weighted 

combinations of both global and mapped emotions. 

8.3.1 Global Emotions 

Each global emotion EG is a function of multiple affective stimuli. The mechanism 

employed to combine stimuli is a dynamic weighted sum that can perform different 

‘logical’ operations on the inputs. This function resembles a simplified Sugeno fuzzy 

inference system (Sugeno, 1985) containing a single linear membership function and 

an independent if-then rule for each input. The membership function for an input Ii is 
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represented by minimum and maximum weights Wi(min) and Wi(max), which determine 

the weight Wi if Ii is ‘disabled’ and ‘enabled’, respectively. Four different fuzzy 

operations are represented by logic tag Li: 

• Li = 0: If Ii is high, output EG is high. 

• Li = 1: If Ii is high, EG is low. 

• Li = 2: If Ii is low, EG is high. 

• Li = 3: If Ii is low, EG is low. 

The input Ii can be inverted such that a higher value yields a lower output EG. This 

yields a factor Fi that is utilised in the final calculation: 
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A multiplier Mi is also calculated from input Ii and exponent Xi: 
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The weight Wi is a function of thresholds Wi(min) and Wi(max), and multiplier Mi: 

( ) (max)(min)1 iiiii WMWMW +−=  (8.19) 

Once weights Wi and factors Fi have been calculated for all indices i, the output EG is 

obtained using a weighted average calculation: 
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Figure 8.8 shows an example of the output generated by a two-input dynamic 

weighted sum function. The first input is considered dominant, while the second input 

can increase the minimum value of the output. However, second input values near the 

middle of its [0, 1] interval (e.g. 0.5) also decrease the output’s maximum value, 

which is not intended (ideally, it should remain constant). This disturbance can be 

reduced by increasing the value of Xi, but it also changes the shape of the function 

when the first input is lower (Figure 8.9). 

In order to eliminate the high-end disturbance without adversely affecting the low-

end, the contribution of the second input is reduced when the first is highly weighted. 
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A dominant input i = D is indicated by a Wi(min) value of 1. If none of the inputs satisfy 

this criterion, none are considered dominant and this step is omitted. The multipliers 

Mi of all other inputs are modified by the following equation: 
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The result is a form such as that shown in Figure 8.10, which has the desired output 

characteristics over the full dominant input range. 

Figure 8.8: Example unmodified dynamic 
weighted sum function. Wmin = (1, 0),   
Wmax = (1, 1), X = (0, 0), L = (0, 0). 

Figure 8.9: Example unmodified dynamic 
weighted sum function. Wmin = (1, 0),  
Wmax = (1, 1), X = (0, 2), L = (0, 0). 

 

Figure 8.10: Example modified dynamic 
weighted sum function. Wmin = (1, 0),  
Wmax = (1, 1), X = (0, 2), L = (0, 0). 

 

Specific weights and logic tags for each stimulus-to-emotion conversion are shown in 

Table 8.3. The linkages and parameters utilised in our implementation are not the only 

valid options. Human-like emotions may require more complex context-dependent 

interconnections, while robot performance equivalent to ours may be achieved by a 

simpler configuration (e.g. one stimulus per emotion). Our configuration can be 
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regarded as a compromise between the requirement for ostensibly nondeterministic 

behaviour, and the need for demonstrable performance improvements. 

 

TABLE 8.3: GLOBAL EMOTION PARAMETERS 
Membership function 

Emotion 
Eliciting 
Stimulus 

Exponent 
Wmin Wmax 

Logic tag 

Stuck 1 1 0 0 Anger 
Achievement 0 0.5 0 1 

0 0 Danger 1 1 Fear 

Anger (Figure 8.11) arises if the stuck stimulus is high (indicating a current obstructed 

state), but it is reduced if achievement is also high. Thus, anger is generally lower if 

the robot has recently made rapid progress. It cannot reach its maximum intensity 

unless it continues to fail to converge on the goal. This helps prevent the robot from 

reducing its safety margins further than are necessary. 

Fear (Figure 8.12) is a function of the danger and pain stimuli. Danger indicates that a 

collision is likely to occur, while pain signifies a recent collision. Although biological 

pain is more often connected to anger than fear (Izard, 1993), it is counterproductive 

in our implementation for a robot to increase an emotional state that disregards safety 

at a time when safety has already been sufficiently compromised to allow a collision. 

Happiness (Figure 8.13) is elicited by a high achievement stimulus, which occurs 

when overall progress towards the goal point is rapid. This is an indication that 

navigation through the current environment is unproblematic. Happiness is also 

inversely dependent on the density stimulus. High occupancy densities signify a 

potential navigational challenge, lowering happiness. Both stimuli are assigned equal 

weights, as they are both useful indicators of the level of computational effort the 

robot should devote to navigation. 

Pain 0 2 0 0 
Achievement 1 1 0 0 Happiness 0 1 Density 0 1 
Pain 0.2 1 2 0 Sadness 2 0 Error 0.2 1 

0 0 Learning 1 1 Curiosity Cost 0 4 2 1 
Mismatch 1 1 0 0 Surprise 

Confusion Error 1 1 0 0 
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Figure 8.11: Anger elicited by stuck and 
achievement stimuli. 

 

Figure 8.12: Fear elicited by pain and 
danger stimuli. 

Figure 8.14: Sadness elicited by error and 
pain stimuli. 

Figure 8.13: Happiness elicited by 
achievement and density stimuli. 

 

Figure 8.15: Curiosity elicited by learning 
and cost stimuli. 

 

Sadness (Figure 8.14) is induced by the pain and error stimuli, both of which are 

caused by collisions in our implementation. While pain is dependent on the robot’s 

speed immediately prior to a collision, error is a measure of how closely a point of 

collision matches obstacle positions measured by the robot’s primary sensors. Thus, 
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sadness is caused by a failure to avoid a high-speed collision (due to control 

limitations) and/or a failure to detect an imminent collision (due to sensor limitations). 

Curiosity (Figure 8.15) increases due to the learning stimulus, and decreases in 

response to the cost stimulus. Learning is a global estimate of the exploration rate of a 

whole environment. Hence, curiosity is the only emotion whose primary stimulus 

does not change significantly depending on the robot’s location. Its main response is 

to modulate the exploration drive. When this drive is highly activated, the quality of 

the robot’s paths may be degraded. Thus, heavy reductions are applied to curiosity if 

the cost stimulus determines that the planned path is unviable. 

Surprise occurs due to a perceived mismatch between reality and predictions, 

represented by the mismatch stimulus. In practical terms, it means that the robot’s 

local sensor data do not match its occupancy grid map, so either the environment is 

not accurately known, or the robot’s localisation information is incorrect. Thus, a 

temporarily reduced emphasis on deliberative planning may be beneficial. 

Confusion is dependent on the error stimulus, indicating that the robot’s sensors are 

unreliable for obstacle detection. It therefore becomes necessary to rely more heavily 

on deliberative internal representations to prevent further collisions. 

8.3.2 Mapped Emotions 

Mapped emotions are associated with specific grid map nodes. Each mapped emotion 

grows or decays in nodes x1-xn close to the robot’s current position. Over time, the 

intensity values eM(xi) of a node xi tends towards the robot’s equivalent global 

emotion intensity EG. The rate of growth or decay is a function of a node’s Euclidean 

distance d(xi) from the robot’s position, and a damping factor γ (again assuming a 

control period of 0.1 s): 
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Nodes close to the robot’s position are more strongly influenced by EG than nodes 

further away (Figure 8.16). The radius of influence is represented by rM. Enlarging rM 

increases the influence exerted on more distant nodes, and it also expands the total 

number of nodes affected. The damping factor γ is substituted with a distinct growth 

factor γ1 or decay factor γ2, whose selection depends upon whether or not eM(xi) < EG. 
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These factors control the overall increase and decrease of eM(xi) values, regardless of 

their positions relative to the robot. 

Robot
position

r
M

 
 
Figure 8.16: Updating an emotion map from a global 
emotion intensity.  

Emotion maps can be utilised as path planning biases in an identical manner to the 

exploration and danger grid maps. Positive and negative emotions are analogous to 

attractive and repulsive forces applied to specific map regions. Negative emotions 

increase the cost of nodes where they are strongly elicited. They are fused together by 

Equations 5.3 and 5.4. Positive emotion maps are also fused with each other and the 

resulting intensities are inverted such that higher intensities reduce node costs. Next, 

the negative and positive maps are fused to form a single emotion map. During this 

fusion, the positive emotion map is weighted by the robot’s current positive mood, 

while the negative emotion map is weighted by its negative mood (these moods are 

described in the Section 8.4). Both mood contributions are also modulated by the 

inverted cost stimulus, limiting emotional influences to planning when they adversely 

influence the quality of planned paths. Finally, the fused emotion map is multiplied by 

the exploration map, preventing negative biases (due to low positive emotions) from 

being applied to nodes that the robot has not yet explored. The fused map’s overall 

contribution to path planning is governed by the weight Wp4. 
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Local emotion intensities EM are obtained from the emotion maps using a weighted 

average scheme. The weight applied to an individual node xi is dependent on its 

proximity to the robot’s position: 
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This is essentially a reversal of the emotion mapping process represented in Equation 

8.19. Similarly, nodes close to the robot exert a stronger influence over EM than more 

distant nodes, and the range of influence is controlled by rM. 

Although EM is a function of EG, the two emotion intensities can have very different 

values, particularly if small damping factors γ1 and γ2, or a large radius rM are 

employed. The global intensity EG is dependent only on currently perceived stimuli, 

whereas EM is a function of previous emotion intensities elicited in the robot near its 

current position. These are combined by a simple weighted average to form an overall 

intensity E that interacts with the robot’s drives: 

( ) MG EEE ϕϕ −+← 1  (8.24) 

Increasing the global/map weight φ shifts the balance towards EG and away from EM. 

This generally improves the robot’s responsiveness to a given stimulus, but it 

decreases its ability to adapt to different environments over time. 

Table 8.4 shows the individual parameters assigned to each emotion. By default, the 

radius rM is set to 1 m for all emotions. Lower values may negate the benefits of some 

mapped emotions (e.g. the robot may not attempt to turn away from an unseen 

obstacle until it arrives at the exact same position where it previously collided with 

the obstacle). Higher values can also have undesirable consequences (e.g. the robot 

might respond to an event that occurred on the opposite side of a wall from its current 

position). 

These parameters are chosen based on the individual requirements of each emotion. 

Some emotions (e.g. anger) are greatly dependent on mapped emotions to perform 

optimally and thus are assigned low φ values (and in the case of confusion, a value of 

zero). These emotions generally also have lower γ2 values to preserve mapped 

intensities. Conversely, others (e.g. surprise) are more reliant on rapid responses to 
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immediate stimuli than on mapped information, and thus are assigned higher γ2 and φ 

values. 

 

TABLE 8.4: MAPPED EMOTION PARAMETERS 

Damping Factors 
Emotion 

γ1 γ2 

Global/map 
weight 

Anger 0.1 0.001 0.1 
Fear 0.1 0.01 0.5 
Happiness 0.1 0.01 0.5 
Sadness 0.1 0.001 0.1 
Curiosity 0.1 0.1 0.5 
Surprise 0.1 0.1 0.5 
Confusion 0.1 0.0001 0 

8.3.3 Emotional Responses 

The combined emotion intensities E are utilised to control the affective drives. 

Emotions modulate drives in the same manner as stimuli elicit global emotions. The 

same dynamic weighted sum function is employed (Section 8.3.1). Table 8.5 shows 

the function’s parameters assigned to each emotion-drive combination. 

 

TABLE 8.5: EMOTIONAL RESPONSE PARAMETERS 
Membership function 

Drive 
Eliciting 
emotion Wmin Wmax 

Exponent Logic tag 

Anger 1 1 0 1 
Fear 0 0.25 0 0 Safety 
Surprise 0 3 3 0 
Anger 0 1 2 1 Speed Fear 1 1 0 1 
Anger 0 0.25 0 0 
Fear 0 0.25 0 1 
Happiness 1 1 0 0 Efficiency 

Sadness 0 3 2 1 
Happiness 0 0.25 0 1 
Sadness 0 0.25 0 0 
Curiosity 1 1 0 0 Exploration 

Surprise 0 1 2 0 
Surprise 1 1 0 0 Action Confusion 0 1 2 1 

Introspection Confusion 1 1 0 0 
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Examples of the resulting relationship between the efficiency drive and two of its 

eliciting emotions are given in Figures 8.17 and 8.18. Efficiency is a function of four 

input dimensions, so its entire state space cannot be represented graphically. Instead, 

these figures show the outputs resulting from variations of the two most important 

inputs (happiness and sadness) when the other inputs (anger and fear) are set at values 

that produce minimum (Figure 8.17) and maximum (Figure 8.18) outputs. 

Figure 8.17: Efficiency drive elicited by 
happiness and sadness, with anger = 0 and 
fear = 1.  

Figure 8.18: Efficiency drive elicited by 
happiness and sadness, with anger = 1 and 
fear = 0. 

8.4 Moods 
Moods are highly damped functions of emotions, so they grow and decay at much 

slower rates than other affective states. Again, the dynamic weighted sum function is 

employed to obtain moods from emotions. Table 8.6 shows the damping factors and 

function parameters for positive and negative moods. The damping factors again 

assume a control period of 0.1 s. Positive mood is only dependant on happiness, while 

negative mood is a function of anger, fear and sadness. Figures 8.19 and 8.20 show 

the undamped negative emotion intensity resulting from two input emotions, with the 

remaining input set to its minimum and maximum values, respectively. 
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TABLE 8.6: MOOD PARAMETERS 

Membership 
function 

Damping 
factors Eliciting 

emotion 

Logic 
tag 

Expon. Mood 

α1 α2 Wmin Wmax 

Positive 0.002 0.001 Happiness 1 1 0 0 
Anger 0.2 1 2 0 
Fear 0.2 1 2 0 Negative 0.002 0.001 
Sadness 0.2 1 2 0 

Figure 8.19: Negative mood elicited by anger 
and fear, with sadness = 0. 

Figure 8.20: Negative mood elicited by anger 
and fear, with sadness = 1. 

 

The purpose of these moods is to constrain the robot’s emotional responses to levels 

that are appropriate to its environment. They modulate the maximum or minimum 

values of survival drives (safety, speed and efficiency), affecting the level of influence 

emotions have over the robot’s behaviour. Positive mood Mpos varies each drive’s 

upper limit Dmax between 0.5 and 1, while negative mood Mneg modulates the lower 

limit Dmin between 0.5 and 0: 
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Each emotion-generated survival drive DE is mapped from the interval [0, 1] to the 

interval [Dmin, Dmax], to produce a final drive intensity D: 

( ) EDDDDD minmaxmin −+=  (8.27) 

Strategic drives (exploration, action and introspection) are not constrained by moods. 

Unlike survival drives, their ‘default’ position is 0, and restricting their dynamic range 

is generally counterproductive. Exploration and action are typically most active when 
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the robot encounters a new environment, at which time its moods and emotions have 

not yet adapted to the environment. If the environment is fully known, optimal 

performance is generally achieved if they are set to 0. Introspection can be highly 

active at any time, but preventing it from spanning the full interval [0, 1] can 

significantly impede performance and/or safety. 

8.5 Summary 
The robotic affect model outlined in Chapter 3 has been implemented on the 

simulated mobile robot. Implementation details for the model’s various components 

(stimuli, drives, emotions and moods) emerged from the methodology and results 

presented in Chapters 5-7. Stimuli and mapped emotions are functions of specific 

internal representations described in Chapter 5, such as obstacle distance vectors and 

grid maps. Drives modulate parameters introduced in Chapter 5, and the parameter 

categorisations and modulation ranges are derived from results presented in Chapters 

6-7. Emotions and moods choose appropriate drive modulations in response to 

different combinations of stimuli and mapped emotions. 

The parameters and interconnections shown in this chapter are not necessarily the 

only viable options, but experimentation (shown in subsequent chapters) has shown 

them to produce advantageous responses. In the next chapter, the performance 

contributions of the implemented model’s individual components will be measured in 

simulation experiments. 
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9 Affective Navigation Experiments 

Now that the implementation details of the model of robotic affect have been 

described in Chapter 8, this chapter provides quantitative results that show the 

performance influences of its various components. This is accomplished by disabling 

portions of the model and iteratively changing variables controlling the contributions 

of the components under consideration. 

Default affective parameters were provided in Chapter 8. These parameter values are 

utilised throughout this chapter, except where otherwise stated. Performance effects 

resulting from variations of these parameters are generally not shown for two reasons. 

First, the affect model possesses even more tuneable parameters than the underlying 

planning and control architecture (although many are set to ‘obvious’ values such as 0 

or 1), and there is insufficient time or space to thoroughly test every configuration. 

Second, it is applied to a relatively well-optimised system, so the performance effects 

of individual parameters are often very subtle and obscured by noise. 

9.1 Constant Drives 
Performance characteristics resulting from individual parameter variations were 

shown in Chapter 7. This section demonstrates the effects of changing these 

parameters collectively by varying the robot’s drive intensities over the range 0 – 1. 

They are not modulated by the robot’s momentary affective states, but maintained at 

constant values during each experimental run. Any drives that are not the focus of a 

given experiment are set to their defaults (0.5 for survival drives, 0 for strategic 

drives). 

9.1.1 Safety 

The safety drive is tested in environment set C, containing random width doorways 

and walls. Set C is chosen because it provides a reasonable challenge, but lacks the 

added complexity of environmental dynamics or undetectable objects. Narrower 

doorways in these environments can only be traversed if the robot’s safety margins 

and related parameters are relaxed. The completion time (Figure 9.1) shows a small 

increase until the safety drive intensity Dsafety > 0.5, whereupon it increases rapidly. 
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Similarly, the success rate (Figure 9.2) remains at 100% until Dsafety > 0.5, and it drops 

towards 50% thereafter. Increasing the safety drive intensity reduces the likelihood of 

collisions (Figure 9.3). A significant reduction in collisions occurs while Dsafety < 0.3 

and thereafter it decreases at a slower rate. Thus, the optimal value in these 

environments appears to be around 0.5, but minor improvements to goal convergence 

or collision likelihood may be achieved by shifting the drive away from this 

equilibrium position in response to the robot’s current situation. 
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Figure 9.2: Mean success rate vs. Dsafety. 
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Figure 9.1: Mean completion time for 20 
experimental runs per Dsafety value. 
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Figure 9.3: Mean collisions per minute vs. 
Dsafety. 

9.1.2 Speed 

The effects of the speed drive on performance are largely dependent on the types of 

environments in which it is tested. In environment set E (containing dynamic 

obstacles and random width doorways and walls; representing a significant challenge 

for high speed navigation) the robot’s average velocity (Figure 9.4) increases with 
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higher speed drive intensities, but this increase begins to level off when Dspeed > 0.5, 

as environmental obstructions and finite dynamic constraints often prevent the robot 

from reaching its highest velocities. Initially, the completion time (Figure 9.5) 

decreases with the speed intensity, but increases when Dspeed > 0.5, as the robot starts 

to overshoot some doorways rather than turn into them. Collisions occur more 

frequently at higher speed intensities (Figure 9.6), and any collisions that do occur are 

likely to cause more damage. 
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Figure 9.4: Mean velocity for 20 
experimental runs per Dspeed value. 
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Figure 9.5: Mean completion time vs. Dspeed. 
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Figure 9.6: Mean collisions per minute vs. 
Dspeed. 

Conversely, environment set A is sparsely occupied and thus a minimal challenge to 

navigation (an example is shown below in Section 9.2.1), so there is little incentive to 

choose lower velocities. The robot’s average velocity (Figure 9.4) increases almost 

linearly with Dspeed, and higher speeds do not adversely impact completion time 

(Figure 9.5). No collisions occur regardless of the value of the Dspeed (Figure 9.6). 
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This drive is optimal at around 0.5 in environment set E, but in environment set A the 

highest values (close to 1) are optimal. 

9.1.3 Efficiency 

Environment set C is again utilised to test the efficiency drive, for the same reason as 

described for the safety drive. Higher efficiency decreases the execution time ratio 

(Figure 9.7) due to the reduced quantity of data processed during each control cycle. 

The lower vector field and obstacle buffer sizes increase the probability that the robot 

will fail to detect or respond appropriately to an obstacle, resulting in a higher number 

of collisions (Figure 9.8). This ‘less careful’ approach also reduces the number of 

delays and obstructions affecting the robot, reducing its completion time (Figure 9.9) 

and increasing the success rate (Figure 9.10). 
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Figure 9.10: Mean success rate vs. Deffic. 
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Figure 9.9: Mean completion time vs. Deffic. 
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Figure 9.7: Mean execution time ratio for 20 
experimental runs per Deffic value. 
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Figure 9.8: Mean collisions per minute vs. 
Deffic. 
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Overall, the efficiency drive behaves similarly to the safety drive in that it affects the 

trade-off between goal convergence and collision likelihood, but it also significantly 

affects processing speed. Unlike the safety drive, the physical performance/safety 

effects can be regarded as side-effects of changes in computational effort rather than 

the main purpose of the efficiency drive. 

9.1.4 Exploration 

In the absence of emotional influences, the effects of increasing the exploration drive 

are approximately the same as those of increasing the exploration weight directly as 

shown in Chapter 7. As a result of higher exploration intensities, the robot explores a 

greater proportion of its environment (Figure 9.11), but this comes at a cost to 

completion time (Figure 9.12), particularly during early iterations. These results are 

obtained from three traversals of each environment in set B (chosen because it 

represents a medium-level challenge) for every datum shown. 
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Figure 9.11: Mean coverage for 20 
experimental runs per Dexplore value. 
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Figure 9.12: Mean completion time vs. 
Dexplore. 

9.1.5 Action 

Constant action intensities greater than 0 are of little value to the robot, as it is 

generally only useful for brief durations while the robot is exploring new areas where 

its deliberative maps cannot be relied upon. Increasingly random motion produced by 

the reactive control functions tends to increase completion time (Figure 9.13), and at 

higher extremes, success rate (Figure 9.14), while most other performance 
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characteristics remain unchanged. These results are also obtained in environment set 

B. 

 

9.1.6 Introspection 

Different constant introspection intensities are tested in environment set G, which 

contains unseen obstacles and random-width doorways and walls. The unseen 

obstacles are marked on the danger map prior to this experiment. Overall, while 

higher introspection intensities significantly reduce the likelihood of collisions (Figure 

9.15), they also reduce the likelihood that the robot will reach its goal in a timely 

manner (Figures 9.16 and 9.17). The reasons for this have already been described in 

Chapter 7. 
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Figure 9.15: Mean collisions per minute for 
20 experimental runs per Dintro value. 
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Figure 9.16: Mean success rate vs. Dintro. 
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Figure 9.13: Mean completion time for 20 
experimental runs per Daction value. 

 
Figure 9.14: Mean success rate vs. Daction. 
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Figure 9.17: Mean completion time vs. Dintro. 

 

9.2 Survival Drives, Emotions and Moods 
The first set of affective components to be quantitatively analysed are the emotions 

anger, fear, happiness and sadness and the survival drives (safety, speed and 

efficiency). These components are interdependent, and their performance 

characteristics when functioning in isolation do not necessarily reflect those resulting 

from their integration into the combined system. Hence, these emotions and drives are 

analysed in combination, while the robot’s moods and other affective parameters are 

iteratively varied. 

9.2.1 Global Emotions 

Mapped anger, fear, happiness and sadness can be disabled (with respect to parameter 

modulations) by setting their mapped/global weights φ to 1. This prevents the robot 

from considering previously elicited emotions EM when calculating its current 

emotion intensities E. Instead, they are entirely dependent on the global intensities EG, 

functions of currently perceived affective stimuli. 

The architecture’s performance under varying degrees of emotional activation is 

measured by manually adjusting its positive and negative moods between 0 and 1. 

Over this range, the robot’s behaviour changes from ‘emotionless’ (with its survival 

drives set to constant values of 0.5) to ‘bipolar’ (where survival drives are modulated 

within the entire interval [0, 1] depending on the robot’s momentary emotional 

intensities). 
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Figure 9.19: Path travelled when positive and negative moods = 1. 

 
 
Figure 9.18: Path travelled when positive and negative moods = 0. 
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Figure 9.21: Path travelled when positive and negative moods = 1. 

 
 
Figure 9.20: Path travelled when positive and negative moods = 0. 

 

 

This experiment is first conducted in environment set C, containing random width 

walls and doorways, some of which are only slightly wider than the robot. When the 

moods are set to low intensities, the robot can usually reach the goal point, although it 

often takes a long time to traverse the narrowest doorways. Such doorways may 

require rare combinations of robot position, heading, velocities, and sensor noise to be 
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perceived as viable openings. Occasionally (e.g. Figure 9.18), these doorways prove 

to be insurmountable obstructions. With high moods, very few doorways cannot be 

traversed by the robot, as it tends to reduce the safety drive to its minimal level once 

its progress has been obstructed for sufficient time to maximise its anger intensity. 

Under these conditions, the robot is eventually able to traverse the doorway that 

obstructed the ‘emotionless’ robot (Figure 9.19). One disadvantage, insofar as global 

emotions are concerned, is that the ‘emotional’ robot can become temporarily 

obstructed by certain doorways that are easily traversed by an ‘emotionless’ robot 

with nominally lower safety margins (e.g. Figures 9.20 and 9.21). 

Both fear and anger decrease the speed drive. Given the frequency of their elicitation 

in these challenging environments, the robot’s velocities are often lower than those 

produced in the absence of emotional influences. Hence, the robot’s mean velocity 

decreases as its ‘emotionality’ increases (Figure 9.22). Coupled with the situational 

delays (described above), this tends to counteract the reductions in convergence time 

resulting from the decrease in the number of permanently obstructed states (also 

described above). Thus, although the success rate (Figure 9.23) grows from around 

95% to nearly 100%, the mean completion time (Figure 9.24) remains largely 

unchanged (barring minor fluctuations due to random noise). 

The collision count (Figure 9.25) appears to decrease until the moods are around 0.6, 

and it increases thereafter. This suggests that higher moods cause the robot to 

‘overcompensate’ for obstructed states. Its safety margins may be lowered to the point 

where the additional collisions sustained while the robot is ‘angry’ outweigh the 

reduction in collisions while it is ‘not angry’. In general, these environments can be 

regarded as a significant navigational challenge, so the robot’s happiness intensity 

tends to be low (and its sadness intensity is high following collisions). This tends to 

result in lower efficiency, so the execution time ratio increases with mood (Figure 

9.26). 
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Figure 9.22: Mean velocity for 20 
experimental runs per mood intensity. 
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Figure 9.24: Mean completion time vs. mood 
intensity. 
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Figure 9.26: Mean execution time ratio vs. 
mood intensity. 
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Figure 9.25: Mean collisions per minute vs. 
mood intensity. 
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Figure 9.23: Mean success rate vs. mood 
intensity. 
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Figure 9.28: Path travelled when positive and negative moods = 1. 

 
 
Figure 9.27: Path travelled when positive and negative moods = 0. 

 

 

The experiment is repeated in environment set A, representing open environments 

with sparsely distributed obstacles (Figures 9.27 and 9.28). These environments are 

very unchallenging; collisions do not occur, and the robot can easily find a clear path 

to the goal. Anger, fear and sadness intensities tend to be very low (and usually 0), 

while happiness quickly converges on 1 after the robot begins moving, due to its 
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unobstructed path to the goal. Correspondingly, speed, safety and efficiency tend 

towards their maximum intensities. 

 

0 0.2 0.4 0.6 0.8 1
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
Weight vs. Mean Velocity

Weight

V
el

oc
ity

 (
m

/s
)

 
Figure 9.29: Mean velocity for 20 
experimental runs per mood intensity. 
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Figure 9.31: Mean execution time ratio vs. 
mood intensity. 
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Figure 9.30: Mean completion time vs. mood 
intensity. 

Increasing the mood intensities has a universally positive effect on performance in 

these environments. The robot’s mean velocity increases due to the higher speed drive 

(Figure 9.29), while the completion time decreases (Figure 9.30). The execution time 

ratio decreases due to the higher efficiency drive (Figure 9.31). Over the entire range 

of mood values, the success rate and collision count remain at 100% and 0, 

respectively, indicating that the value of the safety drive is largely irrelevant in such 

simple environments. 

The results obtained in these two environment sets show that the tested global 

emotions and drives can alter the robot’s response to different environmental 

conditions in a manner that is beneficial to its overall performance. Performance can 
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be further improved by allowing mapped emotions to exert an influence over these 

responses. 

9.2.2 Mapped Emotions 

When utilised in isolation, global emotions are limited by the absence of long-term 

memory. This is particularly apparent for our implementation of anger. By 

temporarily lowering the safety drive, global anger can enable the robot to overcome 

most obstructions. To prevent ‘false positive’ incidences of anger that may 

unnecessarily jeopardise the robot’s ability to avoid collisions, the growth rate of 

anger is relatively slow (and the decay rate is very fast). An undesirable consequence 

of this slow growth is that it takes some time for the safety drive to lower sufficiently 

to allow the robot to traverse narrow doorways. Regardless of the number of times it 

encounters the same doorway, the robot must wait for its anger to build before it can 

traverse it. For example, in Figure 9.32, the robot becomes obstructed by a doorway 

during its fifth pass through the environment (the previous four traversals are omitted 

from the figure, as they would otherwise obscure the fifth one). 

 
 
Figure 9.32: Path travelled when φ = 1. 
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Figure 9.36: Mean execution time ratio vs. φ. 
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Figure 9.35: Mean collisions per minute vs.  
φ. 
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Figure 9.34: Mean completion time for 20 
experimental runs per φ value. 

 
 
Figure 9.33: Path travelled when φ = 0. 
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Mapped emotions allow the robot to instantly adapt its emotion intensities to match 

those that were previously elicited near its current location. For anger, this means that 

the robot’s safety drive rapidly lowers as it approaches a doorway that previously 

obstructed its progress, allowing it to traverse the doorway without delay. Figure 9.33 

shows the robot’s fifth pass through an environment when it utilises mapped emotions 

exclusively. The doorway that delayed the robot’s progress when it was reliant on 

global emotions is no longer a significant obstruction. 

Various performance characteristics are measured while the weight φ controlling the 

relative contributions of mapped and global emotions is varied between 0 (fully 

mapped) and 1 (fully global). Positive and negative moods are both kept constant at 

0.5, a value that allowed reasonably significant modulations in the previous 

experiments without decreasing the collision count. The completion time (Figure 

9.34) is noticeably lower when the robot is more heavily reliant on mapped emotions, 

primarily due to the decreased delays associated with anger. This effect is more 

noticeable during later iterations, once the mapped emotions have been updated to suit 

the environments. Improvements to completion time comes at no apparent cost to the 

collision count (Figure 9.35), which remains largely constant, aside from a slight peak 

at the middle of the range that can likely be attributed to noise. 

A decrease in the execution time ratio (Figure 9.36) occurs if mapped emotions are 

highly enabled, indicating higher computational efficiency, particularly during later 

iterations. This is caused by the higher levels of happiness resulting from faster goal 

convergence. Higher efficiency may be undesirable, however, as it generally comes at 

a cost to safety and performance in challenging environments. There remains a high 

risk of collisions in these environments even after the robot’s convergence speed 

increases. Hence, although anger clearly benefits from low φ values, it may be 

beneficial for the equivalent parameter for happiness to have a higher value. 

Mapped emotions can also be utilised as planning biases, increasing or decreasing the 

costs associated with their nodes. Experiments in three different environment sets (A, 

B and G) are conducted while the overall contribution of mapped emotions to path 

planning is varied by iteratively increasing the weight Wp4. 

The resulting effects on performance are heavily dependent on the type of 

environment in which the experiment is conducted. The example shown in Figures 
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9.37 and 9.38 represents a relatively challenging environment with numerous narrow 

doorways. As a result, the robot’s happiness intensity tends to be low (due to its slow 

overall progress), while anger is frequently high (Figure 9.39). This results in a strong 

negative bias to many nodes through which the robot has previously passed. Ideally, 

this encourages the robot to search for alternative paths that may be more suitable. 

However, in this example the alternative paths are not superior to those previously 

travelled, so the robot simply behaves as if a high exploration bias has been applied to 

path planning. Conversely, in the environment shown in Figure 9.40, the robot has no 

difficulty converging on the goal point, so its happiness intensity is generally high 

(Figure 9.41) and anger low. Thus, the robot’s initial path is deemed successful, so it 

adheres to it thereafter. 

 
 
Figure 9.37: Path travelled when Wp4 = 0. 
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Figure 9.38: Path travelled when Wp4 = 0.5. 

 

 
 
Figure 9.39: Corresponding anger map. 
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Figure 9.40: Path travelled when Wp4 = 0.5. 

 

 
Figure 9.41: Corresponding happiness map. 
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Figure 9.42: Mean exploration coverage for 
20 experimental runs per Wp4 value. 

0 0.1 0.2 0.3 0.4 0.5
20

40

60

80

100

120

140

160

180

200
Weight vs. Mean Completion Time

Weight

T
im

e 
(s

)

 

 
Open environments
Static environments
Random environments

 
Figure 9.43: Mean completion time vs. Wp4. 

Overall, the mapped emotions yield increased coverage of simulated office-block 

environments (sets A and B), but this comes at a cost to completion time due to the 

less direct paths being chosen (Figures 9.42 and 9.43). In open environments (set A), 

the exploration coverage and completion time remain largely unchanged over the Wp4 

range, because the first path travelled yields maximal happiness and minimal anger 

and sadness, and thus the robot has little incentive to seek alternative paths. 

9.2.3 Moods 

The effects of dynamic moods on performance are measured by iteratively increasing 

a weight limiting (or multiplying) their intensities. If this weight is set to 1, mood 

intensities rarely exceed 0.5. Thus, the weight is varied over the range 0 – 2 so that 

moods can occupy the intended unit interval (but they are not allowed to exceed 1). In 

this experiment the contribution of mapped emotions to parameter modulations are 

enabled, but their contributions to path planning are disabled. 

A slight decrease in the average completion time (Figure 9.44) occurs as the moods 

are more highly enabled, and this decrease is more substantial during the final two 

iterations once the emotion maps have been updated. This is accompanied by a minor 

increase in success rate from 96% to around 98% (Figure 9.45), and an apparent 

increase in the number of collisions per minute (Figure 9.46). The execution time ratio 

(Figure 9.47) also increases, but the level of growth is lower in later iterations, where 

the robot encounters fewer obstructions and thus possesses greater happiness and 

positive mood intensities. 
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Figure 9.46: Mean collisions per minute vs. 
mood weight. 
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Figure 9.47: Mean execution time ratio vs. 
mood weight. 
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Figure 9.44: Mean completion time for 20 
experimental runs per mood weight. 
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Figure 9.45: Mean success rate vs. mood 
weight. 

Next, the mood weights are set to constant values of 1 (a compromise between goal 

convergence and collision likelihood), and Wp4 is varied over the range 0 – 1. Unlike 

in the previous experiments with mapped emotions, mood intensities modulate the 

contributions of mapped emotions to path planning. Positive mood controls the 

contribution of happiness, while negative mood does the same for sadness, fear and 

anger. The cost stimulus also regulates the contributions of moods to planning so that 

emotional influences are only utilised when they are unlikely to be detrimental to 

performance. 

With static moods, higher Wp4 values in environment set C yielded greater exploration 

coverage, but this came at a significant cost to completion time. When emotional 

influences to path planning are regulated by moods and the cost stimulus, this cost is 

significantly reduced. The system becomes self-limiting; high Wp4 values often 

produce paths that result in a high cost stimulus, and the stimulus subsequently 
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reduces the emotional contribution, lowering the incentive to find superior paths. 

Hence, the exploration coverage (Figure 9.48) reaches a maximum of around 0.71 

when Wp4 ≈ 0.5, and remains largely constant thereafter. Average completion time 

(Figure 9.49) is relatively constant, with a minor increase over the middle of the range 

that could be attributed to noise. The completion time recorded during the final two 

iterations (once the environments have been largely explored) shows a possible minor 

decrease, although the large fluctuations make this potential trend unclear. 

When properly regulated, emotional influences to path planning appear to have a 

generally beneficial influence on performance. However the effect of a given Wp4 

value is likely to be different when it is utilised in combination with the exploration 

map (whose contribution to planning is controlled by the exploration drive, 

demonstrated in Section 9.3.1). In sparsely occupied environments (e.g. set A) the two 

influences are expected to partially cancel each other out, whereas in challenging 

environments (e.g. set C) they are likely to be additive. Quantitative effects of the 

combined system are shown in Chapter 10. 
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Figure 9.48: Mean exploration coverage for 
20 experimental runs per Wp4 value. 
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Figure 9.49: Mean completion time vs. Wp4. 

9.3 Strategic Drives and Emotions 
Next, the performance contributions of the three remaining emotions (curiosity, 

surprise and confusion) and the strategic drives (exploration, action and introspection) 

are measured. Because of their reduced interdependencies, these components can be 

more easily decoupled from the rest of the model to analyse their performance 
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contributions independently. They are not entirely independent from the other 

emotions and drives, however (e.g. surprise heavily influences the safety drive). 

9.3.1 Curiosity, Surprise and Exploration 

The exploration drive is primarily modulated by curiosity and surprise, so an 

experiment is conducted with these emotions enabled while varying the maximum 

exploration intensity. Happiness and sadness, which normally exert small influences 

over exploration, are disabled (set to 0) so that the effects of the primary influences 

(curiosity and surprise) can be analysed independently. Environment set B is utilised 

for this experiment, and the robot is instructed to travel back and forth through each 

environment for a total of five iterations. 

With exploration disabled (Figure 9.50), the robot strongly favours paths previously 

travelled. When the weight controlling its maximum intensity is set to 1 (Figure 9.51), 

the robot initially favours exploration over following the shortest path, so a large 

proportion of the environment is covered during early iterations. Curiosity (the 

dominant influence) is self-limiting (due to its cost stimulus); it is only allowed to 

achieve its maximum intensity during early iterations, and only when the resulting 

planned paths are viable. Once the environment has been largely explored, the rate of 

knowledge acquisition (learning stimulus) slows, causing curiosity and exploration to 

subside. 

Overall, the proportion of the environment explored grows as the weight controlling 

the maximum exploration intensity increases (Figure 9.52). This comes at a cost to the 

completion time averaged over all iterations (Figure 9.53), due to the longer paths 

chosen during early iterations. However, if we consider only the final two iterations 

(after the majority of environmental learning is completed) this cost is greatly 

reduced. 
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Figure 9.51: Path travelled and occupancy grid map when the exploration weight = 1. 

 
 
Figure 9.50: Path travelled and occupancy grid map when the exploration weight = 0. 
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Figure 9.53: Mean completion time vs. 
exploration weight. 
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Figure 9.52: Mean coverage for 20 
experimental runs per exploration weight. 

9.3.2 Surprise, Action and Safety 

The emotion surprise and its connected drives (action and safety) are tested by 

varying a weight controlling the influence of these drives in environment set B. 

Although confusion can normally influence the action drive, there are no undetectable 

objects or sensor failures to elicit it in these environments. Anger and fear are set to 

constant values of 0.5 and 0, respectively, so that surprise is the only source of 

modulations for the safety drive, and these modulations remain centred around 0.5. 

This experiment is conducted once under normal conditions, then with the robot’s 

dynamic mapping capabilities disabled and an incorrect map represented. 

With mapping enabled and functioning correctly, there are few advantages to 

increasing the robot’s reliance on reactive navigation strategies, so no tangible 

performance improvements are apparent. However, the decrease in performance that 

resulted from simultaneously enabled reactive and deliberative navigation strategies 

previously shown in Section 6.4 is eliminated. Instead, the mean completion time 

(Figure 9.54) and success rate (Figure 9.55) remain largely constant regardless of the 

strength of action drive modulations. This is because the contributions of purely 

reactive control inputs are only temporarily activated while the robot explores new 

locations. Once it has the world knowledge required to produce satisfactory planned 

paths, they are effectively disabled. 
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Figure 9.55: Mean success rate vs. action 
weight. 
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Figure 9.54: Mean completion time for 20 
experimental runs per action weight. 

The advantages of surprise only become apparent in the second experiment, where the 

robot’s occupancy grid map incorrectly represents the entire environment as free 

space. The mean completion time decreases as the contribution of the action drive 

increases (Figure 9.54), and the success rate tends towards a maximum of around 60% 

(Figure 9.55). With this contribution entirely disabled, the robot is reliant on the path 

following function. Due to the empty grid map, planned paths often pass through 

walls, so the robot is highly susceptible to becoming trapped by local minima (Figure 

9.56). When the action drive is sufficiently enabled for reactive navigation to become 

the dominant strategy, the robot can often escape from these local minima due to the 

increased contributions of the angular inertia and wander functions (Figure 9.57). 

If the safety drive is set to 0.5 in environment set B, the collision rate is essentially 

zero when the robot employs a hybrid reactive/deliberative navigation strategy. 

However, purely reactive navigation responds poorly to such low safety margins. This 

is best illustrated by the example shown in Figure 9.58, where the robot enters the gap 

between the wall and the object in the lower right corner of the environment. The gap 

is little wider than the robot, so it sustains numerous collisions and becomes trapped 

in the resulting local minimum. When the safety drive is modulated by surprise (and 

deliberative mapping is disabled), the resulting safety margins are often high enough 

to dissuade the robot from attempting to enter such a narrow opening (Figure 9.59). 
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Figure 9.57: Path travelled when the action weight = 1. 

 
 
Figure 9.56: Path travelled when the action weight = 0. 
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Figure 9.59: Path travelled when the safety weight = 1. 

 
 
Figure 9.58: Path travelled when the safety weight = 0. 

 

 

9.3.3 Confusion and Introspection 

Confusion and introspection are tested in environment set G, which contains 

undetectable objects. The positions of these obstacles are initially unknown to the 

robot, so the robot constructs a danger map by recording points of collision. 
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Initially, mapped confusion is disabled (by setting a weight controlling its 

mapped/global bias to 1) and the contribution of the introspection drive is varied. 

When this contribution is low (Figure 9.60), the robot tends to collide multiple times 

with each unseen obstacle. Conversely, when it is high (Figure 9.61), confusion is 

only activated following a collision with an unseen obstacle, so it does not prevent all 

 
 
Figure 9.61: Path travelled when the introspection weight = 1. 

 
 
Figure 9.60: Path travelled when the introspection weight = 0. 
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collisions. Nevertheless, once a collision does occur, the robot’s aversion to mapped 

obstacles and points of collision increases, encouraging it to give them a wide berth. 

This causes a general decrease in collisions as the contribution of introspection 

increases (Figure 9.62). However, the minimum of around 2 collisions per minute 

remains unacceptably high. The improvement comes at minimal cost to completion 

time (Figure 9.63). 
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Figure 9.63: Mean completion time vs. 
introspection weight. 
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Figure 9.62: Mean collisions per minute for 
20 experimental runs per introspection 
weight.

Next, introspection is maximally enabled, while a weight controlling the bias between 

mapped confusion and global confusion is varied from 0 (entirely mapped) to 1 

(entirely global). Five passes (iterations) through the environment are executed in 

each experimental run, to allow the robot time to update its confusion and danger 

maps. When mapped confusion is disabled, the robot tends to collide with each 

undetectable obstacle in its path at least once. In the example shown in Figure 9.64 

global confusion induces cyclical motion, causing multiple collisions during each 

iteration. When the robot collides with an obstacle, its aversion to mapped obstacles 

increases and it turns away. However, when confusion and introspection fade, it turns 

back towards the obstacle and collides with it again, restarting the process. These 

problems are reduced by mapped confusion, which typically prevents the robot from 

colliding with unseen obstacles with which it has previously collided (Figure 9.65). 
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Figure 9.65: Path travelled when φ = 0. 

 
 
Figure 9.64: Path travelled when φ = 1. 

 

 

Figures 9.66 and 9.67 show the resulting collision rate and completion time as the 

weight is varied. Data shown represent the average of all iterations, and of only the 

final two iterations. A general improvement in collision rate (at minimal cost to 

completion time) is apparent in both cases as the robot becomes more heavily reliant 

on mapped confusion, but the lowest collision rates (approximately 0.5 collisions per 
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minute) occur during the later iterations, once the robot has more extensively updated 

its danger and confusion maps. Figure 9.68 shows this general improvement as the 

robot learns about its environment. The improvement is more pronounced with 

mapped confusion (weight = 1) than global confusion (weight = 0). 
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Figure 9.68: Mean collisions per minute for 
20 experimental runs per iteration. 
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Figure 9.67: Mean completion time vs. φ. 
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Figure 9.66: Mean collisions per minute for 
20 experimental runs per φ value. 

9.4 Summary 
Navigation performance contributions of various affective components have been 

presented. The purpose of these components is to adapt the robot’s parameters to 

respond appropriately to its environment, and to cope with certain situations it 

encounters without compromising its performance during normal operation. Results in 

this chapter show that many affective components are successful in that regard, 

yielding performance that compares favourably with navigation using constant 

parameters. 
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The next chapter includes an analysis of the robot’s behaviour when these 

components are enabled simultaneously. Some extensions to the model and its 

application will also be investigated. 
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10 Integrated Navigation Experiments 

Chapter 9 demonstrated the contributions of various individual affective components 

to navigation performance, but it did not address the behaviour of the fully integrated 

model. In most complex systems the behaviour of a component functioning in 

isolation does not necessarily reflect its behaviour when operating in unison with 

other components. This is also true for the affect model. Some components may 

interact in an unpredictable manner, while others are expected to perform functions 

that can overlap (e.g. curiosity and mapped emotions). It is worthwhile to assess the 

system’s performance with all of these components simultaneously enabled so that 

any emergent behaviours or internal conflicts can be investigated. 

10.1 Demonstration 

 
 
Figure 10.1: Path travelled through an environment in set G. 

 

Before we begin a performance analysis, the interactions between the different 

affective components are demonstrated during five traversals of one of the 

environments in set G (which contains undetectable obstacles and random width 

doorways and walls). This environment is selected as a representative example 

because it elicits the full range of affective responses and presents a significant 
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navigational challenge. All stimuli, emotions, moods and drives are enabled in this 

experiment. The resulting path travelled by the robot is shown in Figure 10.1. 

During the robot’s journey, the intensities of all of its stimuli, emotions, moods and 

drives are recorded. Figure 10.2 shows the resulting emotion intensities and each of 

their eliciting stimuli. These intensities are not only a function of the affective stimuli, 

but also of previous emotions elicited in the robot’s current location. Thus, while the 

stimuli shown in Figure 10.2 always elicit emotional responses, subsequent emotional 

responses can occur in their absence. 

 
 
Figure 10.2: Interactions between stimuli and emotions for an environment in set G. 

 

Anger is increased by the stuck stimulus and reduced by achievement. Whenever the 

robot becomes obstructed (e.g. by a narrow doorway), the stuck stimulus begins to 

increase, which causes growing anger. Both the stimulus and emotion quickly subside 

once the robot escapes the obstruction. In this example, brief obstructions occur on a 
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number of occasions, but one obstructed state persists for an extended period of time 

when the robot is unable to turn into the doorway in the northeast corner of the map. 

This obstruction is exacerbated by the nearby undetectable obstacles, as the robot 

increases its map-based avoidance weights in their presence to prevent further 

collisions with them. Anger arises at several points despite a lack of a stuck stimulus, 

when the robot is near locations where anger was previously elicited and applied to 

the anger map. The robot’s progress is generally not sufficient to consistently produce 

high achievement in this environment. Hence, its contribution is minimal. 

Fear is elicited by danger (a function of local obstacle proximities) and pain (a 

function of collisions). The environment is very confining, so the danger stimulus is 

frequently highly activated throughout the journey. Collisions (and therefore pain) 

begin to occur when the robot encounters the undetectable obstacles and certain 

narrow doorways. 

Happiness is increased by achievement and decreased by density, which is an estimate 

of the average occupancy probability of the entire explored space. Since the 

environment is relatively cluttered, density remains consistently high. Combined with 

the rarely-elicited achievement stimulus, this generally produces low levels of 

happiness. 

Sadness is a function of the pain and error stimuli. In this example, the robot collides 

with unseen obstacles three times, eliciting both pain and error. The other two 

collisions are with doorway corners and thus elicit only pain. 

Curiosity is a function of the learning stimulus. Learning is initially high due to the 

high rate of knowledge acquisition during exploration, but it slowly decreases once 

the majority of useful information has been acquired. Surprise visibly decreases when 

the cost stimulus increases, so that high exploration tendencies are only allowed when 

they do not significantly degrade the quality of paths planned. 

Surprise is primarily dependent on the mismatch stimulus. The environment is 

initially unexplored, so mismatch is frequently high during the first traversal through 

the environment, and again when it travels rapidly through other unexplored areas. 

Surprise is generally not highly elicited when the robot lingers in an area for a 

sufficient duration to allow its map to align with local sensor data. 
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Confusion increases largely due to the error stimulus. Once the robot begins to collide 

with undetectable obstacles, confusion starts to have a significant effect over the 

robot’s behavior, causing its obstacle avoidance and planning systems to rely more 

heavily on internal representations that incorporate mapped points of collision. 

Although it cannot prevent initial collisions with obstacles that the robot cannot 

detect, confusion dissuades the robot from repeating them. 

 
 
Figure 10.3: Survival drives bounded by positive and negative moods for an environment in 
set G.  

 
Figure 10.4: Unbounded strategic drives for an environment in set G. 

 

 

Negative mood is a function of anger, fear and sadness, while positive mood is only 

dependent on happiness. The three survival drives (safety, speed and efficiency) 

constrained by these moods are shown in Figure 10.3, along with their mood-based 

limits. Moods grow and decay over a significantly longer timescale than their eliciting 

emotions. These moods are initialised to 0.5, so the drives initially vary within the 

range 0.25 – 0.75. Positive mood gradually declines due to the robot’s slow progress, 

until it begins to converge on the goal more rapidly in later iterations. Negative mood 

tends to be dominated by anger, which is the only contributing emotion that tends to 

persist at very high levels for extended periods of time. Hence, negative mood 
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increases when the robot becomes severely obstructed, slowly decreasing the limit 

constraining its safety drive until it can escape the obstruction. 

The three strategic drives (shown in Figure 10.4) are not constrained by moods, so 

they can always span the full interval [0, 1]. These interactions can be approximated 

as direct mappings between emotion-drive pairs (curiosity-exploration, surprise-action 

and confusion-introspection), even though exploration and action receive inputs from 

multiple emotions. 

A second demonstration is conducted in one of the environments in set A (Figure 

10.5), which represents a very unchallenging navigation scenario. The resulting 

stimuli, emotions, moods and drives are shown in Figures 10.6-10.8. 

 
Figure 10.5: Path travelled through an environment in set A. 

 

 

In this environment, there are no narrow openings or narrow maze-like paths to 

obstruct the robot’s progress, and few obstacles to pose a danger to high-speed travel. 

Hence, the achievement stimulus remains high throughout each journey, while stuck, 

danger, pain, error and density are typically low, or zero (Figure 10.6). As a result, 

happiness tends towards its maximum value, while anger, fear and sadness tend 

towards low or minimum values. This results in a gradual increase of positive mood, 

and a decrease of negative mood (Figure 10.7). Once the robot has traversed the 

environment five times, they have almost reached their maximum and minimum 

points, respectively. Among the remaining stimuli and emotions, learning and 
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curiosity are the only ones that remain high for a significant duration. The five 

traversals are completed too quickly for the learning stimulus to subside, so the 

robot’s exploration drive remains high throughout the demonstration (Figure 10.8). 

This is somewhat countered by the mapped emotions’ strong bias towards paths that 

have previously elicited happiness, so the robot tends to adhere to the two ‘primary’ 

paths between the goal points. 

 
Figure 10.6: Interactions between stimuli and emotions for an environment in set A. 
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Figure 10.7: Survival drives bounded by positive and negative moods for an environment in 
set A. 

 

 
Figure 10.8: Unbounded strategic drives for an environment in set A. 

 

 

10.2 Performance Analysis 
A quantitative analysis of the integrated affect model’s contributions to adaptive 

performance is conducted by comparing the robot’s behaviour in two different 

configurations. In the first configuration, the drive parameters are maintained at 

constant values, representing a robot without affective influences. Survival drives are 

set to their equilibrium position of 0.5, while strategic drives are set to 0. All emotions 

and moods are set to 0. In the second configuration, affective parameter modulation is 

fully enabled as demonstrated in the previous section, affording the robot its full range 

of emotional responses. 

To thoroughly assess performance, these experiments are repeated in a diverse 

selection of environment sets. Five experimental runs are performed for each of the 20 

environments in a given set, producing 100 samples per configuration/environment set 

combination. The robot is instructed to travel back and forth between two points, for a 

total of nine traversals (iterations) per experimental run. At the beginning of each run, 
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the robot’s map and other parameters are reset to their initial conditions, so it must 

explore and adapt its parameters while it traverses the environment. 

10.2.1 Environment Set A 

In environment set A (example paths are shown in Figures 10.9 and 10.10), the 

configuration with parameters modulated by the affect model outperforms the one 

with constant parameters in every respect (except collisions, as none occur in both 

cases). As shown in Section 10.1, the robot generally elicits high intensities of 

happiness and low levels of fear, anger and sadness. Thus, its speed limit is relaxed, 

and it reduces the amount of data processed each control cycle, yielding lower 

completion times (Figure 10.11), higher average velocities (Figure 10.12) and lower 

execution time ratios (Figure 10.13). The robot’s incentive to explore the environment 

(due to curiosity) tends to outweigh its incentive to adhere to successful paths (due to 

mapped happiness), resulting in higher exploration coverage (Figure 10.14). The 

effects of an increased exploration drive are most apparent in the second iteration, 

where the affective robot is sometimes slower than the non-affective robot to 

converge on the goal (Figure 10.11). 

Moods and mapped emotions take some time to converge on their final values, so 

initially the two systems are more similar in behaviour (aside from the affective 

system’s explorative tendencies). As time progresses, the systems become more 

divergent, and the affective system becomes more clearly advantageous. 
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Figure 10.9: Set A – Example path resulting from constant parameters. 

 

 

 
Figure 10.10: Set A – Example path resulting from affective parameter modulation. 
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Figure 10.11: Set A – Mean completion time 
for 100 experimental runs per iteration. 
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Figure 10.12: Set A – Velocity. 
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Figure 10.13: Set A – Execution time ratio. 
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Figure 10.14: Set A – Exploration coverage. 

 

10.2.2 Environment Set B 

Operating in set B (Figures 10.15 and 10.16), the system with constant parameters 

initially outperforms one with affect-modulated parameters. However, once its moods 

and mapped emotions have stabilised and the area has been explored, the affective 

system gains the performance advantage. These environments present a moderate 

navigational challenge, so happiness tends to be lower than in sparsely occupied 

environments, while fear and anger are sometimes higher (sadness remains low, due 

to the absence of collisions). 
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Figure 10.15: Set B – Example path resulting from constant parameters. 

 

 

 
Figure 10.16: Set B – Example path resulting from affective parameter modulation. 
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Figure 10.17: Set B – Mean completion time 
for 100 experimental runs per iteration. 
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Figure 10.18: Set B – Velocity. 
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Figure 10.19: Set B – Collisions per minute. 
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Figure 10.20: Set B – Execution time ratio. 
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Figure 10.21: Set B – Exploration coverage. 

Initial high levels of curiosity result in a significant time investment (Figure 10.17) 

during early iterations (particularly the second one). The affective system tends to 

settle on slightly higher velocities than the static one (Figure 10.18). Combined with 

the additional world knowledge gained through increased exploration (Figure 10.21), 
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this yields improved completion times during later iterations (Figure 10.17). Two 

collisions occurred during these experiments under the constant parameter 

configuration, while the affective configuration resulted in none (Figure 10.19). The 

nominally higher safety drive produced by the affective system may have contributed 

to this improvement. Affective parameter modulation initially results in higher 

execution time ratio than constant parameters (Figure 10.20), due to initial slow 

progress during exploration of a new environment. As the robot’s progress improves, 

the exploration time ratio converges to around the same level as the static system. 

This is loosely analogous to the tendency for humans to apply greater effort and 

concentration to new tasks, while devoting less attention to those tasks once they have 

been repeated multiple times and formed more efficient neural connections. 

10.2.3 Environment Set C 

Set C (Figures 10.22 and 10.23) reveals some potential problems with the integrated 

affective system. While the experiments with survival drives and their associated 

emotions shown in Section 9.2 indicated that they have a slight positive overall effect 

on performance in these environments, the addition of other emotional influences 

appears to have cancelled the improvements out. In particular, gains to completion 

time in early iterations are likely nullified by the combination of emotion maps and a 

high exploration drive (Figure 10.24). The affective system also generally favours 

slightly lower velocities than the static system (Figure 10.25). Both completion times 

and velocities appear to converge in the final iterations, and thus the robot’s 

performance becomes similar. Extending the duration of the experiments from five 

iterations (in Section 9.2) to nine has also revealed a tendency for increased collision 

likelihood in later iterations (Figure 10.26). 
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Figure 10.22: Set C – Example path resulting from constant parameters. 

 

 

 
Figure 10.23: Set C – Example path resulting from affective parameter modulation. 
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Figure 10.24: Set C – Mean completion time 
for 100 experimental runs per iteration. 
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Figure 10.25: Set C – Velocity. 
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Figure 10.26: Set C – Collisions per minute. 
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Figure 10.27: Set C – Execution time ratio. 
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Figure 10.28: Set C – Exploration coverage. 

 

By the final iterations, mapped anger is often high throughout large portions of each 

environment, which may be causing the robot to ‘overreact’ by excessively lowering 

its safety drive. This could be improved by increasing the decay rate of mapped anger, 

but it may come at a cost of increased obstructions. Execution time ratios (Figure 
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10.27) are consistently higher for the affective system, as the navigational challenge 

of these environments is typically high, and thus goal convergence is comparatively 

slow. One performance characteristic that is consistently improved by the affect 

model is exploration coverage (Figure 10.28). 

10.2.4 Environment Set D 

The simulated humans in set D (Figures 10.29 and 10.30) can sometimes obstruct 

doorways, forcing the robot to either wait for them to move out of the way or find an 

alternative path. Due to the presence of exploration and emotion maps, the affective 

system is more likely to seek alternative paths than the static system. Another obvious 

effect of the simulated humans is the increased number of collisions compared to 

environment set B (which has similar characteristics but lacks the simulated humans). 

After the initial exploratory period, the affective system generally achieves slightly 

lower completion times than the unmodulated system (Figure 10.31). The difference 

between the two systems is smaller than that obtained in set B primarily due to more 

conservative velocities being selected by the affect model in response to increased 

fear and anger in the presence of environmental dynamics (Figure 10.32). Collisions 

occur at similar rates for the two systems (Figure 10.33); a minor improvement in the 

total number of collisions produced by the affect model is largely obscured by random 

fluctuations. Execution time ratios (Figure 10.34) and exploration coverage (Figure 

10.35) are higher in the configuration modulated by affect. 
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Figure 10.29: Set D – Example path resulting from constant parameters. 

 

 

 
Figure 10.30: Set D – Example path resulting from affective parameter modulation. 
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Figure 10.31: Set D – Mean completion time 
for 100 experimental runs per iteration. 
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Figure 10.32: Set D – Velocity. 
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Figure 10.33: Set D – Collisions per minute. 
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Figure 10.34: Set D – Execution time ratio. 
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Figure 10.35: Set D – Exploration coverage. 

 

10.2.5 Environment Set E 

In set E (Figures 10.36 and 10.37), the simulated humans can actually be beneficial to 

some aspects of performance. While simulated humans sometimes block the robot’s 
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path, in the same manner as they also do in set D, they can also ‘push’ the robot 

through narrow doorways that it might otherwise have difficulty traversing. 

 
Figure 10.36: Set E – Example path resulting from constant parameters. 

 

 

 
Figure 10.37: Set E – Example path resulting from affective parameter modulation. 
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Figure 10.38: Set E – Mean completion time 
for 100 experimental runs per iteration. 
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Figure 10.39: Set E – Velocity. 
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Figure 10.40: Set E – Collisions per minute. 
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Figure 10.41: Set E – Execution time ratio. 
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Figure 10.42: Set E – Exploration coverage. 

 

In terms of performance, these two effects tend to largely cancel each other out, 

resulting in completion times (Figure 10.38) that are similar to those obtained in set C 

(which lacks the simulated humans). Following initial exploration, affective 
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modulation appears to achieve slightly lower completion times than constant 

parameters. The average velocities of the two systems converge on similar values 

(Figure 10.39). Again, a large number of collisions result from simulated human 

interference, but the affective system has little influence over this collision rate 

(Figure 10.40). Execution time ratios (Figure 10.41) and exploration coverage (Figure 

10.42) remain higher in the affective configuration. However, even the non-modulated 

system produces relatively high exploration coverage, due to the combination of 

obstructive doorways and environmental dynamics. 

10.2.6 Environment Set F 

When the robot is tested in set F (Figures 10.43 and 10.44), the constant parameter 

configuration yields a very high collision rate. It does not utilize its map-based 

avoidance function, so the robot repeatedly collides with the same objects. While this 

function could be constantly enabled, it would degrade performance during normal 

operation. This problem is reduced by affective modulation, and in particular 

confusion/introspection, which highly activates the map-based avoidance function 

only in regions where the robot has previously collided with unseen obstacles. Thus, 

the robot starts to avoid unseen obstacles after it has collided with them. 

Affective parameter modulation improves most performance characteristics in these 

environments once the robot has had time to explore and adapt. Completion times 

(Figure 10.45), velocities (Figure 10.46), execution time ratios (Figure 10.48) and 

exploration coverage (Figure 10.49) show similar trends to those obtained in set B, 

although the affective system tends to choose slightly more conservative parameter 

values in response to the increased number of collisions, particularly during early 

iterations. Collision rates are initially very high, but they subside as the robot adapts 

to its environment (Figure 10.47). While the static system rarely produces averages of 

less than 2 collisions per minute, the affective system’s collision rate consistently 

decreases as the robot adds new points of collision to its danger map and updates its 

confusion map. 
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Figure 10.43: Set F – Example path resulting from constant parameters. 

 

 

 
Figure 10.44: Set F – Example path resulting from affective parameter modulation. 
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Figure 10.45: Set F – Mean completion time 
for 100 experimental runs per iteration. 
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Figure 10.46: Set F – Velocity. 
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Figure 10.47: Set F – Collisions per minute. 
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Figure 10.48: Set F – Execution time ratio. 
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Figure 10.49: Set F – Exploration coverage. 

10.2.7 Environment Set G 

Environment set G (Figures 10.50 and 10.51) also includes unseen obstacles, but it is 

otherwise similar to set C. Overall, completion times (Figure 10.52), velocity (Figure 
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10.53), execution time ratios (Figure 10.55) and exploration coverage (Figure 10.56) 

show similar trends to those resulting from set C. 

 
Figure 10.50: Set G – Example path resulting from constant parameters. 

 

 

 
Figure 10.51: Set G – Example path resulting from affective parameter modulation. 
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Figure 10.52: Set G – Mean completion time 
for 100 experimental runs per iteration. 
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Figure 10.53: Set G – Velocity. 
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Figure 10.54: Set G – Collisions per minute. 
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Figure 10.55: Set G – Execution time ratio. 
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Figure 10.56: Set G – Exploration coverage. 

A slightly larger gap exists between the completion times of the affective and static 

systems as a result of a slightly higher number of obstructed states caused by 

increased map-based avoidance weights. Nevertheless, they again converge towards 

similar levels during the final iterations. As with set F, the affect model produces a 
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dramatic reduction in the number of collisions (Figure 10.54), and this reduction 

improves consistently as the robot continues to traverse the environment. 

10.2.8 Results Comparison 

Results from the different environment sets are summarised in Tables 10.1 and 10.2. 

Performance characteristics averaged from all nine iterations are shown, as well as 

those from the final two iterations of each experimental run. These final iterations are 

relevant because they reveal the robot’s capabilities after it has had sufficient 

opportunity to explore and adapt to the environment. Exploration coverage is a sum 

rather than an average of multiple iterations, so only one value is shown per 

environment/configuration combination. 

 

TABLE 10.1:  PERFORMANCE CHARACTERISTICS – CONSTANT  PARAMETERS 

Env. 
set 

Iteration Time (s) Velocity 
(m/s) 

Collisions
/minute 

Execution 
time ratio 

Coverage 

All 39 0.51 0 0.20 
A 

Final 38 0.51 0 0.20 
0.57 

All 68 0.46 0.0058 0.29 
B 

Final 64 0.46 0 0.29 
0.60 

All 105 0.41 0.079 0.30 
C 

Final 101 0.41 0.085 0.30 
0.67 

All 81 0.44 0.28 0.32 
D 

Final 74 0.44 0.20 0.32 
0.65 

All 106 0.41 0.27 0.32 
E 

Final 94 0.41 0.29 0.32 
0.75 

All 76 0.45 2.6 0.29 
F 

Final 69 0.46 2.1 0.29 
0.66 

All 101 0.39 6.0 0.29 
G 

Final 96 0.40 6.0 0.30 
0.64 
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TABLE 10.2: PERFORMANCE CHARACTERISTICS – AFFECTIVE PARAMETER 
MODULATION 

Env. 
set 

Iteration Time (s) Velocity 
(m/s) 

Collisions
/minute 

Execution 
time ratio 

Coverage 

All 33 0.59 0 0.18 
A 

Final 32 0.62 0 0.17 
0.69 

All 72 0.46 0 0.30 
B 

Final 59 0.47 0 0.29 
0.77 

All 115 0.39 0.10 0.32 
C 

Final 100 0.39 0.14 0.33 
0.77 

All 86 0.43 0.25 0.34 
D 

Final 72 0.44 0.15 0.33 
0.80 

All 108 0.40 0.27 0.34 
E 

Final 89 0.41 0.38 0.33 
0.82 

All 82 0.46 0.67 0.30 
F 

Final 67 0.47 0.16 0.30 
0.81 

All 123 0.37 1.00 0.32 
G 

Final 98 0.38 0.60 0.32 
0.80 

 

Overall, the benefits of affective parameter modulation outweigh its costs in five out 

of the seven environment sets tested (A, B, D, F and G). The two systems yield 

similar performance in set E, while set C favours the system with constant parameters. 

While different configurations of constant parameters may close the gap between the 

two approaches in a single environment set, the navigation requirements of different 

types of environments are sufficiently unique that no single set of parameters is likely 

to be optimal for all of them. Additional tuning may further improve the model’s 

performance in certain situations, but the presented results give an indication of its 

potential as an adaptation mechanism. 

10.3 Extensions 
Now that the completed system has been demonstrated and tested, some extensions to 

this research are briefly investigated in preliminary experiments. 



242  Emotion-based Mobile Robot Control 

10.3.1 Distribution of Dataset 

This thesis focuses on revealing trends in the performance data, rather than absolute 

quantitative values. Absolute values are largely dependent on domain-specific 

variables relating to the robot and its environment, whereas many trends are more 

general. The large number of experiments involved also makes it impractical to 

present a detailed statistical analysis for every result. Thus, the mean of each 

performance characteristic was presented rather than the full distribution or error bars. 

As with any summarising statistic, the mean hides some information contained within 

the dataset, so a more detailed analysis could be advantageous. 
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Figure 10.59: Distribution of completion 
times for all environments in set C. 
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Figure 10.60: Distribution of collision rates 
for all environments in set C. 
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Figure 10.58: Distribution of collision rates 
for a single environment in set C. 
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Figure 10.57: Distribution of completion 
times for a single environment in set C (200 
experimental runs). 

 

Figures 10.57 and 10.58 show example distributions obtained by repeating an 

experimental run 200 times in a single environment from set C (selected because it 

presents a medium-level challenge). Figures 10.59 and 10.60 show distributions 
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resulting from repeated experiments in the full set of 20 environments in set C (for the 

same total of 200 experimental runs). 

A relatively narrow distribution of completion times occurs in the single environment 

(Figure 10.57), due to the very similar paths travelled by the robot each time (Figure 

10.61). The distribution is skewed towards lower values because the robot generally 

makes rapid progress towards the goal, but it occasionally becomes delayed by a 

narrow doorway. This non-normal distribution is particularly apparent for collision 

rate (Figure 10.58). The likelihood of a collision occurring during a given 

experimental run is low, but the potential consequences of a real-world collision are 

severe (e.g. damage to the robot or its environment). This is one reason for choosing 

the mean rather than median as the primary means to summarise data (the median 

collision rate is zero in many experiments). 

In multiple environments the results are spread over a larger range, and the 

distribution is again skewed towards lower values (Figures 10.59 and 10.60). Twelve 

experimental runs result in the robot timing out without reaching the goal. This yields 

a recorded completion time of 600 seconds, even though the actual completion time is 

effectively infinite. 

 
 
Figure 10.61: Four repeated experimental runs through an environment in set C, each 
represented by direction arrows of different colours. 
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While it is impractical to present this quantity of information for each result (since 

each histogram shown is reduced to single points on the graphs in this thesis), future 

research is likely to have a narrower focus than this thesis, and thus could benefit 

from a more complete representation of the dataset. Due to the non-normal 

distributions involved, simple standard deviations or error bars are not ideal metrics 

for the statistical analysis of this dataset. It may be more beneficial to present the data 

in its raw form (e.g. distribution histograms). 

10.3.2 Human Influences 

The previous navigation experiments have been conducted without considering 

human interactions with affective robots. The simulated humans in these experiments 

simply move randomly. However, real humans may be influenced by robot behaviour 

that they perceive as emotional. This could potentially be exploited by a robot to 

improve its ability to complete navigation tasks. 

One example of a potentially advantageous interaction involves the emotion anger. In 

our implementation, the primary role of anger is to respond to perceived obstructed 

states by reducing safety-enhancing, but convergence-impeding behavioural 

tendencies. However, in environments populated by humans, anger can be assigned an 

additional role: communicating its difficulties to people nearby. In public venues, 

curious humans are likely to stand around a robot, impeding its progress. In such an 

event, the robot’s anger will slowly build, and it could communicate its changing state 

through audio messages of increasing insistence (and decreasing politeness), such as: 

• Low anger:  “Please allow me to pass.” 

• Medium anger: “You’re blocking the corridor.” 

• High anger: “Get out of my way!” 

Additionally, a robot such as MARVIN can adopt a more aggressive body posture that 

may be more likely to compel a human to comply with its instructions. 

As a preliminary test of this idea, the experiment conducted in environment set E is 

repeated, but the behaviour of the simulated humans is modified. If the robot’s anger 

intensity exceeds 0.75 in this modified experiment, a simulated message is triggered, 

causing any humans within 5 m of the robot to attempt to move away from it. While 
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this response is highly simplified compared to the varied responses of real humans 

(who may choose to ignore an instruction to move away from the robot), it should 

give an indication of some of the effects of this approach on robot performance. 

The resulting completion times and collision rates are compared with the previous 

experimental results (both with and without affective parameter modulation) in 

Figures 10.62 and 10.63. A tangible reduction in collisions is apparent when human 

responses to anger are simulated (Figure 10.62), because the robot is less likely to 

attempt to force its way past obstructing humans. Completion times are increased by 

this modification (Figure 10.63). This is likely because the presence of simulated 

humans actually help the robot pass through some narrow doorways, and this potential 

advantage has been removed. 
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Figure 10.62: Human influences – Collisions 
per minute for 100 experimental runs per 
iteration.  
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Figure 10.63: Human influences – 
Completion time. 

Another possible application of affective influences on robot behaviour is revealed by 

this experiment. Instead of merely requesting that all humans move out of the way 

when it becomes obstructed, the robot could request a human’s assistance. Most 

humans would intuitively understand that moving behind the robot might encourage it 

to pass through a doorway, while moving in front of it would block its path. Hence, 

this request could be as simple as: “I’m stuck. Please help.” In this manner, some of 

the difficulties associated with navigation in populated environments could be turned 

into advantages. 
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10.3.3 Robotic Personality 

Modulating a robot’s underlying planning and control architecture parameters can 

significantly alter its behavioural tendencies. Similarly, the responses of the affect 

model can be altered by changing its internal parameters. Such parameters include the 

growth and decay rates of different affective states and the weights associated with 

various interconnections between them. Because they are largely time-invariant and 

influence a robot’s ‘emotional’ behaviour, these parameters can be regarded as 

analogous to biological personality traits. 

Robotic models of affect generally do not include explicitly defined personality traits, 

with the exception of the TAME framework (Moshkina and Arkin, 2005), which 

employs a taxonomy based on the Five-Factor Model of Personality (McCrae and 

Costa, 1992). Personality traits based on the Five-Factor Model can be related to 

various affective states included in our model (shown in Table 10.3). 

 

TABLE 10.3: PERSONALITY TRAITS 

Personality trait Human tendencies Affective weights 

Openness Intellectual curiosity, 
acceptance of novelty 

Exploration 

Agreeableness 
Compassion, cooperation 
with others 

N/A 

Conscientiousness 
Self-discipline, ambition, 
planning 

Action, introspection 

Extraversion 

Positive emotions, to 
seek stimulation and 
social interaction 

Positive mood 

Neuroticism Negative emotions Negative mood 

 

Two personality traits that may be useful in our system are extraversion and 

neuroticism. Extraversion can be represented by the weight controlling the intensity of 

positive moods, while neuroticism can be represented by the equivalent weight for 

negative moods. Two different weight combinations are tested in environment set C, 

resulting in the paths and mood/drive plots shown in Figures 10.64-10.67. The first 

configuration (Figures 10.64 and 10.66) represents high neuroticism and low 

extraversion, while the second (Figures 10.65 and 10.67) represents low neuroticism 

and high extraversion. The ‘neurotic’ personality quickly escapes from obstructed 
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states by lowering its safety drive. Conversely, the ‘extraverted’ personality is 

relatively ineffective in this environment, as it is unable to respond adequately to 

these obstructed states. 

 
 
Figure 10.64: Path travelled by a ‘neurotic’ robot (negative mood weight = 1.5,  
positive mood weight = 0.5). 

 

 
 
Figure 10.65: Path travelled by an ‘extraverted’ robot (negative mood weight = 0.5,  
positive mood weight = 1.5). 
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Figure 10.66: Moods and survival drives of ‘neurotic’ robot (negative mood weight = 1.5, 
positive mood weight = 0.5). 

 

 
 
Figure 10.67: Moods and survival drives of ‘extraverted’ robot (negative mood weight = 0.5, 
positive mood weight = 1.5). 

 

This simple experiment does not reveal much about the system that is not already 

known, but it could be useful to represent these weights and other parameters to 

personality traits, particularly if the model is extended into other domains such as 

human-robot interaction and multi-robot systems. 

10.4 Summary 
This chapter presented experimental results obtained from the fully-integrated 

affective planning and control architecture. Dynamically changing intensities of 

different affective states were demonstrated, showing their behaviour in example 

environments. The affective system was compared to an equivalent system operating 

with constant parameters. To thoroughly assess the performance contributions of the 

affect model in different situations, these experiments were repeated in a wide range 

of different environment sets. Results indicate that the affective system outperforms 

its static equivalent in a majority of test scenarios. 
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Experiments involving several extensions to this research were also conducted. First, 

we presented a more complete statistical distribution of results for experiments in 

single and multiple environments. Next, we investigated the effects of feedback 

between robotic emotions, human responses and robot performance. Finally, a brief 

investigation of possible explicit representations of robotic personality traits in our 

model was conducted. 
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11 Conclusions 

The concepts of affect and emotion have traditionally been associated with sociable 

robotics, because many of the social aspects of emotion are clearly apparent or 

implicitly understood. In contrast, this thesis described the development and 

implementation of a mobile robot control architecture that incorporates emotion and 

other affective states as general adaptation mechanisms to improve its performance in 

a non-social context. Affect is not the dominant motivator of a robot’s actions, but 

rather, a secondary influence that continuously modulates the decisions and actions of 

its cognitive systems. 

11.1 Planning and Control System 
Cognition is implicitly represented by a hybrid reactive/deliberative planning and 

control system. This controller is applied to the problem of mobile robot navigation 

and exploration in arbitrary flat-surfaced environments. Three distinct control layers 

are modelled, and each layer formulates the problem in a different conceptual space. 

Deliberative mapping and path planning systems operate in a discretised Cartesian 

space representing the robot’s global environment. A rectangular occupancy grid map 

is updated in real-time based on each node’s proximity to sensor beams, obstacles and 

the robot. Path planning is accomplished by an A* algorithm (Judea, 1984) modified 

to incorporate continuous cost values derived from multiple fused grid maps (e.g. 

occupancy, exploration, danger and emotions) rather than binary occupied/free-space 

representations sorted by thresholds. By incorporating a number of different grid 

maps into its deliberative systems, the planner can take into consideration goals other 

than simply finding the shortest path between two points. 

Next, the local environment is represented as a polar histogram inspired by the vector 

field histogram (VFH) obstacle avoidance method (Borenstein and Koren, 1991), and 

a locally optimal heading is obtained for the robot. Alternative navigation strategies 

emerge from different weighted combinations of objectives such as sensor-based 

obstacle avoidance, map-based avoidance, path following and reactive goal seeking. 

Unlike traditional behaviour-based approaches (e.g. Brooks, 1986), this approach 

allows competing objectives to simultaneously contribute to decision making, and 
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their relative contributions can be smoothly adapted to suit a given task and 

environment. 

Finally, inspired by velocity space obstacle avoidance approaches such as the 

curvature velocity (Simmons, 1996) and dynamic window (Fox et al., 1997) methods, 

the local navigation problem is applied to a rectangular space containing candidate 

linear and angular velocities. This search space is bounded by the minimum and 

maximum velocities achievable given the robot’s kinematic and dynamic constraints. 

Outputs are again selected by incorporating weighted contributions of multiple 

objectives. 

The navigation approaches that inspire this system typically focus on computational 

efficiency and robustness. Thresholds and hard constraints are often employed to limit 

computational complexity and to prevent a robot from performing actions that are 

expected to result in a collision. Redundant systems may be viewed in a negative light 

due to their increased potential for conflicts and squandered CPU cycles. In contrast, 

the emphasis of this project is on flexibility and adaptation, which has yielded some 

innovations that may contribute to the improvement of future mobile robot navigation 

algorithms. 

This system integrates two distinct reactive navigation styles – directional and 

velocity space control – in a manner that differs from previous implementations. The 

lane-curvature method (Ko and Simmons, 1998) and beam-curvature method 

(Benayas et al., 2002) are both examples that incorporate directional and velocity 

space elements, but they are essentially implemented as single layers. In contrast, the 

directional and velocity controllers of our system are modelled as distinct stages that 

can to some extent operate independently when required. Results indicate that 

combining the two approaches in this manner can be beneficial to performance, as 

they possess complementary strengths and weaknesses. The directional controller 

provides superior goal-directed performance, while the velocity controller greatly 

reduces the likelihood of high-speed collisions. 

The original directional and velocity space approaches had little in common. Some 

progress has been made towards unifying them so that they can be more easily 

compared and combined. To that end, both layers employ weighted product objective 

functions of the same basic form. In principle, this objective function offers some 
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advantages over the weighted sum functions utilised approaches such as VFH+ 

(Ulrich and Borenstein, 1998), curvature velocity (Simmons, 1996) and dynamic 

window (Fox et al., 1997). It helps negate the possibility of the robot choosing a 

highly unfavourable option (for example, prioritising goal seeking over obstacle 

avoidance when such an action would result in a collision), but it nevertheless allows 

even low-priority objectives to influence the robot’s behaviour. 

The underlying control architecture developed for this research has subsequently been 

utilised in two other projects. Doctoral candidate Praneel Chand implemented an early 

version on multiple heterogeneous real-world and simulated mobile robots for his 

research on multi-robot coordination (Lee-Johnson et al., 2007). Some of these robots 

possess differential drive systems similar to the simulated version of MARVIN 

utilised in this research, but the architecture was also successfully applied to a pair of 

real-world tricycle mobile robots that steer by rotating their rear wheels. Masters 

student Thomas Roehr implemented a more recent version on a simulated mobile 

robot intended for research on urban search and rescue applications (Roehr, 2008). 

Chand utilised a MATLAB simulator based on the one outlined in this thesis and 

developed a real world robot controller in C++, whereas Roehr employed the 

commercial simulator Microsoft Robotics Studio. The implementation of this 

approach on multiple different hardware and software platforms is an important 

validation of its suitability as a general control approach for wheeled mobile robots. 

11.2 Affective Navigation 
Being highly flexible, this controller enables the robot to adjust its navigation 

strategies to suit its environment, task, momentary situation and the resources at its 

disposal. This flexibility arises from numerous weights and other parameters that can 

be adapted to modify the robot’s behaviour either subtly or overtly as required. 

Results show that there are many situations where the robot must make tradeoffs 

between competing performance characteristics. No single set of parameters can yield 

optimal behaviour in all conceivable environments and situations. Instead, planning 

and control parameters are modulated by the affect model to facilitate behavioural 

changes that are likely to be beneficial to performance. 



254  Emotion-based Mobile Robot Control 

This model is inspired by theories proposed by authors such as Dörner and Hille 

(1995) that represent emotions as continuous parameter modulations rather than 

cognitive epiphenomena or discrete states in a state machine. Affective stimuli, 

emotions, moods and drives are modelled as continuous intensities that interact to 

produce these parameter modulations. Stimuli are derived from various sensor and 

representation data. Each stimulus represents an internal or external event such as an 

obstructed state or collision for which an affective response is deemed advantageous 

by the system designer. The stimuli are combined by a dynamic weighted sum 

function to form a small set of basic emotions, based on theories that some biological 

emotions are distinct and hardwired, rather than cultural artefacts (e.g. Ekman, 1992). 

Activated emotions are functions of both current stimuli and previous emotions 

elicited near the robot’s current location. These previous emotions are stored in grid 

maps, which are also passed to the deliberative controller as location-specific biases to 

path-planning. Current emotion intensities control a set of drives, each of which is 

responsible for modulating a subset of related control parameters. Drive intensities are 

constrained by moods, changing the degree of influence that some affective processes 

exert over the robot’s behaviour. 

The development and implementation of this model has yielded several contributions 

to the emerging field of emotion-based robotic control. Although some existing 

models share certain similarities to ours, none resemble it in its entirety. The domain 

to which the model is applied (mobile robot navigation) is very different from that of 

the majority of robotic implementations, which tend to focus on social aspects of 

emotion and affect. The few implementations that apply affect to mobile robot 

controllers in a largely non-social context (e.g. Tingley and Browne, 2006; Neal and 

Timmis, 2003; Gadanho and Hallam, 2001) typically employ simple (reactive) 

behaviour-based architectures and/or simple affective interactions (e.g. emotion-

driven action selection). In contrast, the architecture to which this model is applied is 

a robust multilayered system capable of successful navigation and exploration in 

complex environments even without the aid of emotional influences. The affect model 

is assigned the ambitious task of improving the performance of this already well-

optimised system. 

An important focus of this research involved conducting experiments in a range of 

procedurally-generated environments to assess the quantitative performance 
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contributions of affective parameter modulation. Results of these experiments indicate 

several situations in which this approach can improve performance. The affective 

robot can adjust the amount of computational effort applied to a navigation task 

depending on its perceived difficulty. It can vary its speed and/or safety parameters in 

response to the navigational challenges it encounters. In environments where its map 

is inaccurate or its sensors cannot always be relied upon, the robot can adjust the bias 

between reactive and deliberative control approaches and/or environment 

representations. Affect also adapts the robot’s incentive to explore its environment 

while it navigates from point to point. 

While no claims are made that the model outperforms other adaptive control 

approaches in these individual areas, this thesis shows that it can be successfully 

applied to a broad range of control problems. Other adaptive mobile robot controllers 

(the majority of which are not inspired by emotions or affect) typically focus on a 

narrower set of problems and are applied to much simpler underlying controllers (e.g. 

purely reactive schema-based methods). 

From this research, one can speculate on some of the general functional roles of 

emotion and affect in intelligent systems. One of these roles is behaviour 

prioritisation, or assigning higher priority to behaviours that are likely to improve 

performance or survival. While some computational architectures employ a simple 

switch that is triggered when a parameter crosses some threshold, it can be beneficial 

to model smoother transitions such as the shifting weights utilised in our architecture. 

Another related function is resource management, or limiting the cognitive resources 

applied to a problem so that they do not exceed those required for the task at hand. In 

systems where behaviours are represented as binary influences 

(activated/deactivated), this may simply involve disabling unused behaviours. 

However, in architectures such as ours where competing behaviours are 

simultaneously activated, such an approach is less feasible. Instead, the computational 

complexity of lower priority subsystems should be reduced in a continuous manner, 

e.g. by reducing the resolutions of their search spaces. 

Modulatory affective influences can be regarded as a form of ‘intelligent noise’, or as 

a compromise between deterministic and stochastic behaviour. Like random noise, 

affective mechanisms can help an intelligent system escape from some repetitive 

cycles. Increased response variation may yield increased flexibility, allowing an 
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affective system to remain functional when presented with unexpected circumstances. 

Unlike purely random noise, affective mechanisms can be selectively biased towards 

responses that in the long term are beneficial to survival and goal completion. They 

are not always beneficial, but through careful implementation their potential negative 

effects can be reduced. This tilts the robot’s behaviour back towards determinism – an 

emotional response can be more easily controlled than a purely random response. 

Nevertheless, affective responses are sometimes difficult to predict and control. 

Intelligent system designers must inevitably make trade-offs between flexibility and 

stability, and affect may improve the former at a cost to the latter. 

11.3 Future Work 
During the navigation experiments described in this thesis, the robot was assumed to 

know its location at all times. If the system were demonstrated in long-term 

experiments on a real-world mobile robot without the aid of external systems such as 

GPS or active landmarks, odometry errors would accumulate to the point where it 

fails to converge on the goal point. Figure 11.1 shows a distorted grid map generated 

during a single traversal of a simulated environment with systematic odometry errors 

enabled. Subsequent traversals soon render the controller non-functional. Hence, it 

could benefit from the implementation of a simultaneous localisation and mapping 

(SLAM) algorithm (for a review of various successful approaches, see Durrant-Whyte 

and Bailey, 2006). Furthermore, emotion-influenced localisation may be an 

interesting and fruitful avenue for future research. 

One advantage of the planning and control approach employed in this research is that 

each layer is highly extensible. The deliberative layer can be extended by 

incorporating additional maps into the path planning process. Task-specific areas of 

strategic importance can be positively or negatively biased to encourage or dissuade 

the robot from planning paths through them. For a security robot such as MARVIN, 

biased regions could represent efficient patrol routes or known hotspots for 

unauthorised activities. The reactive layers can each be extended by adding new 

objectives to their objective functions. This is particularly useful to the directional 

controller, which can simultaneously pursue multiple paths and/or goal points, 

assigning different weights to each. 
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The map-based avoidance functions implemented in both the directional and velocity 

control layers presently utilise thresholds to mark map nodes as either occupied or 

unoccupied. They could be improved if this binary representation were replaced with 

a more continuous approach that takes into consideration subtler differences between 

node costs. This may help prevent certain obstructions that currently occur, and it 

could also allow the reactive layers to respond to location-specific emotional 

influences (e.g. avoiding regions associated with sadness). 

 
 
Figure 11.1: Example occupancy grid map generated when a systematic error of 0.5% is 
applied to the robot’s right odometer. 

 

Connections between the various affective components of our architecture are 

hardwired. A simple form of learning is implemented in the form of emotion maps 

that are updated over time, but the robot cannot adapt its responses to a given emotion 

or mood. The input-output mappings produced by the dynamic weighted sum function 

can be represented by equivalent Sugeno fuzzy inference systems (Sugeno, 1985). 

Although less computationally efficient than the current implementation, they can be 

trained by neuro-adaptive learning techniques. Future investigations of these and other 

computational mechanisms to adaptively connect and combine affective components 

may yield further insights into the interactions between affect and learning. 

Preliminary experiments involving two other possible extensions to this research were 

described in Chapter 10. An experiment was conducted investigating the navigation 

performance effects of simulated human responses to the portrayal of robotic anger. 
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Further experiments could be performed to examine the influences of other emotions 

and human reactions. Given the unpredictable nature of real human responses, 

simulations are no substitute for real-world experiments in populated environments, 

but this was not feasible due to time and resource constraints. 

Another experiment briefly illustrated the behaviour of different ‘robotic 

personalities’, represented by distinct affective parameter configurations.  Explicitly 

defined personality traits are of limited value to an individual robot in a non-social 

context, but they may become useful if this research is extended to other domains. In 

humans, different personality types are generally suited to different roles, so the 

inclusion of a diverse range of personalities may improve the long-term survival 

prospects of a community. Hence, explicit representations of personality traits could 

be well-suited to the domain of multi-robot systems, where distinct personalities could 

be tailored or evolved to suit each robot’s role within the group. Similarly, social 

robots could be assigned personality traits that suit individual humans with whom 

they interact. 

11.4 International Publications 
A paper describing an earlier version of the underlying navigation system 

implemented in this project (and in the multi-robot coordination project undertaken by 

Praneel Chand) was presented in: 

• C.P. Lee-Johnson, P. Chand, and D.A. Carnegie, “Applications of an adaptive 

hierarchical mobile robot navigation system,” Proc. Australasian Conference 

on Robotics and Automation, Brisbane, Australia, 2007. To be reprinted in 

Amazing Strides in Robotics, ICFAI University Press. 

Several international conference/journal publications have emerged from the research 

on affective parameter modulation of mobile robot controllers: 

• C.P. Lee-Johnson and D.A. Carnegie, “Towards a computational model of 

affect for the modulation of mobile robot control parameters,” Proc. Third 

International Conference on Autonomous Robots and Agents, pp 367-372, 

Palmerston North, New Zealand, December 2006. 
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• C.P. Lee-Johnson and D.A. Carnegie, “Emotion-based parameter modulation 

for a hierarchical mobile robot planning and control architecture,” Proc. 

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 

2839-2844, San Diego, CA, 2007. 

• C.P. Lee-Johnson and D.A. Carnegie, “Mobile robot navigation modulated by 

artificial emotions,” IEEE Transactions on Systems, Man and Cybernetics, 

Part B: Cybernetics (in press). 

• C.P. Lee-Johnson and D.A. Carnegie, “Robotic emotions: navigation with 

feeling,” Handbook of Research on Synthetic Emotions and Sociable 

Robotics:  New Applications in Affective Computing and Artificial 

Intelligence, J. Vallverdú and D. Casacuberta, Eds. Information Science 

Reference (in press). 

11.5 Summary 
Original contributions made by this thesis include: 

• Directional and velocity space control approaches were employed as distinct 

layers that each contribute to reactive control, unlike existing methods which 

typically employ a single reactive control layer. 

• The weighted product objective function employed by the reactive layers is a 

potential improvement over existing weighted sum objective functions. 

• Some thresholds employed by existing controllers such as VFH and curvature 

velocity are replaced by weights and continuous parameters, facilitating 

adaptation at a cost to computational efficiency. 

• The application of artificial emotions and affect to mobile robot navigation 

differs from most models, which are typically applied in the social domain. 

• Rather than modelling emotions as discrete states within a state machine, as do 

many existing models, they are secondary behavioural influences represented 

in our model as parameter modulations. 

• Even disregarding the affective labels employed by our model, parameter 

modulation of the multilayered controller outlined in this thesis is an original 
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contribution. The underlying controller is significantly more complex than 

schema-based/potential field methods traditionally employed by adaptive 

controllers, but it retains the adaptive potential of those methods. 

The research undertaken for this thesis has contributed to a growing body of evidence 

in support of the broader argument that affective computing is not merely beneficial to 

human-machine interaction, but also to the general problem of synthesizing adaptive 

behaviour. By modelling affective processes as parameter modulations, system 

designers can merge the robustness of traditional ‘cognitive’ systems with the 

adaptive properties attributed to biological emotions. The effectiveness of this 

approach as a mobile robot control mechanism also supports the work of authors such 

as Fellous (1999) who have advocated that human emotions may be represented as 

continuous patterns of neuromodulations. 

Furthermore, this thesis has demonstrated some practical innovations that may be 

utilised to improve mobile robot planning and control systems. The focus of this 

research was on designing emotion-like mechanisms that are beneficial to a mobile 

robot controller, so extensive quantitative results have been gathered to verify the 

approach. In many experimental scenarios, a controller modulated by affect 

outperformed one operating without affective influences. These results show that 

emotion-like mechanisms can be successfully utilised to adapt a mobile robot 

controller to different environments and situations. Affective systems such as the ones 

demonstrated in this thesis may be crucial components of future general-purpose 

robotic systems, enabling them to operate safely and efficiently in highly complex, 

partially-observable real-world environments. 
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Appendix A: Terms and Abbreviations 

Adaptive control – A control approach whose parameters can be adjusted dynamically 

in response to changing conditions. 

Affect – An external manifestation of emotion, mood or related state. 

Cognition – High-level mental functions such as awareness, perception, memory and 

learning. 

DAQ – Data Acquisition. 

Deliberative control – A control approach that employs global world models to plan 

future actions. 

Drive – An affective state corresponding to a need or desire that motivates a 

behavioural response. 

Emotion – A short-term affective state that possesses intentionality towards specific 

conceptual or real objects. 

Exteroceptor – A sensor that measures an aspect of the environment external to the 

robot. 

Feeling – A physiological response to affect, such as a change in heart-rate, skin 

conductivity and temperature. 

GPS – Global Positioning System. 

Interoceptor – A sensor that measures an internal property without requiring feedback 

from the external environment. 

IR – Infrared. 

Mood – A long-term, non-specific affective state. 

Personality – A permanent (or very long term) affective characteristic. 

Reactive control – A control approach that favours local sensor data and fast response 

to environmental dynamics. 

SLAM – Simultaneous Localisation And Mapping. 

Stimulus – An event that elicits a behavioural response. 
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Strong AI – A machine possessing the subjective aspects of consciousness. 

TD – Temporal Difference (learning). 

Valence – Intrinsic attractive (positive) or aversive (negative) property of an object, 

event or situation. 

VFH – Vector Field Histogram. 

Weak AI – A computational model inspired by theories of biological intelligence. 
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Appendix B: DVD Contents 

The DVD attached to this thesis contains the following: 

• Electronic copy of thesis 

o Microsoft Word format 

o PDF format 

o Figures 

• Experiments 

o Environment data 

o Experimental data 

o Video samples 

• Source code 

• Datasheets 
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