
Control of a hierarchical team
of robots for Urban Search

and Rescue

by

Thomas Mirko Roehr

A thesis
submitted to the Victoria University of Wellington

in partial fulfilment of the
requirements for the degree of

Master of Science
in Computer Science.

Victoria University of Wellington
2008

Abstract

Research teams worldwide are researching the application of robots for
Urban Search and Rescue (USAR) operations and some are using teams
of robots. The Mechatronics Research Group of Victoria University of
Wellington is developing a low cost architecture of a team of USAR robots
that is hierarchically structured and can operate autonomously. The ob-
jective of this thesis is to design the autonomous control system for the
proposed architecture.

The overall system design and combination of hardware and software
solutions needs to be evaluated in a realistic environment. The project
could not perform tests in a real environment and developed a realistic
simulation environment instead to allow the evaluation of hardware and
software constraints.

This project successfully developed an incremental mapping algorithm
which served as foundation for distributed path planning, and modified
an existing navigation approach to cope with the main challenges of 3D
operation environments. In order to deal with multiple robots, this thesis
applied a centralised control mechanism and a combination of a global and
local exploration strategy.

This thesis contributes software solutions to operate the low cost robot
architecture and identified weaknesses in the design of the middle tier of
robots. The individual algorithms, and their combination in a major control
system proved to be effective, but not without limitations. Consequently,
this thesis suggests solutions to overcome some of these limitations.

Acknowledgements

This thesis has taken me on a journey into the world of mobile robotics. This
would not have been possible without the support of my supervisors Peter
Andreae and Dale Carnegie. My gratitude goes to both for cooperating
with each other and offering me this unique opportunity. Specifically I
would like to express my sincere appreciation to Peter Andreae for his
continuous support and encouragement throughout this thesis, and to
Dale Carnegie for offering a second point of view and help with clarifying
my ideas.

I want to thank my fellow students Aleks, Adrian and Caleb for help
and distraction at the right time. I am also grateful to Chris for sharing his
ideas, and Praneel for stimulating discussions.

Many thanks to Jason, Scotty, Johnny and all the other people of the
Mechatronics team who offered me a friendly and entertaining work envi-
ronment, and my appreciation to those not named here and who showed
interest in my work.

Finally, I take this opportunity to express my profound gratitude to my
beloved parents, brother and sister for their support from half around the
globe.

ii

Contents

1 Introduction 2
1.1 General research objective . 2
1.2 Thesis objective . 4
1.3 Contributions of this thesis 5
1.4 Thesis structure . 6

2 Background 7
2.1 Search and Rescue . 7

2.1.1 Different types of search and rescue operations 7
2.1.2 Strategies for search and rescue 8
2.1.3 Standards for urban search and rescue robots 9

2.2 Robot perception . 10
2.3 Mapping . 11

2.3.1 Occupancy grid . 12
2.3.2 Elevation maps . 13
2.3.3 Multi-Level-Surface map 13

2.4 Uncertainty . 14
2.5 Simultaneous localisation and mapping 15
2.6 Noisy sensor measurements 16
2.7 Path planning . 17

2.7.1 A* . 18
2.7.2 Dynamic A* . 19
2.7.3 Others . 20
2.7.4 Traversability . 20

2.8 Exploration . 21
2.8.1 Influence Maps . 23

iv

CONTENTS v

2.8.2 Multi-robot collaboration and exploration strategies . 24
2.9 Navigation . 24

2.9.1 Behaviour based reactive methods 24
2.9.2 A list of alternative navigation methods 26

2.10 Simulation frameworks . 31

3 System overview 34
3.1 General design considerations and underlying assumptions 34
3.2 Centralised control to command a team of explorers 35

3.2.1 Tasks of the grandmother robot 37
3.2.2 Tasks of the mother robots 38

3.3 Embedding the control system into a simulation 38
3.3.1 Simulation as part of the system design 39

3.4 Message based communication 41
3.5 A time-based analysis of ExploreTM 44
3.6 Summary . 47

4 Simulation 49
4.1 A description of the simulation framework 50

4.1.1 A special technology addresses concurrency issues . 50
4.1.2 Communication infrastructure 50
4.1.3 Modelling devices and entities 52
4.1.4 Multi robot simulation 53
4.1.5 Special considerations for using a 3D simulation . . . 54

4.2 The modelled world and robot devices 54
4.2.1 The world as a field of rubble and debris 55
4.2.2 Modelling the mother robot 58
4.2.3 Central configuration for simulation and control . . . 62
4.2.4 How realistic is the simulation 64

4.3 Analysis of the robot design 64
4.4 Evaluation of the simulation 68
4.5 Possible solutions and extensions 70
4.6 Summary . 71

CONTENTS vi

5 Localisation 73
5.1 Relative localisation techniques 75

5.1.1 Using odometry for localisation 75
5.1.2 Using an Inertial Measurement System 77

5.2 Absolute localisation techniques 79
5.2.1 Using the Global Positioning System 79
5.2.2 Alternatives to the Global Positing System 80

5.3 Alternative localization methods 80
5.4 Combined solutions . 81
5.5 Limitations . 81
5.6 Suggestions . 82
5.7 Summary . 83

6 Mapping 84
6.1 Mapping with limited perception 85

6.1.1 The perception of the mother robot 85
6.1.2 Long term versus short term mapping 87

6.2 Evaluation of different map representations 87
6.2.1 Occupancy grids as common choice 88
6.2.2 Height field maps are widely applied in games 89
6.2.3 A custom multi-level surface map 89
6.2.4 Discussion of different map representations 89

6.3 Generating data points as local space description 91
6.3.1 Data points from ray casting 91
6.3.2 Data points from shadow projection 93

6.4 Customising the multi-level surface map 94
6.4.1 Three major steps to build the map from data points 95

6.5 Evaluation . 99
6.6 Limitations . 106
6.7 Possible solutions and extensions 109
6.8 Summary . 109

7 Path planning 110
7.1 Creating a graph from a given map 111

7.1.1 Basic considerations 111

CONTENTS vii

7.1.2 Updating . 113
7.2 Selection of an adequate path planner 114
7.3 Performance optimisations . 115
7.4 Cost measures . 116

7.4.1 Traversability . 117
7.4.2 Dealing with unexplored nodes 119
7.4.3 Cost measure . 120

7.5 Evaluation . 121
7.6 Limitations . 125
7.7 Possible solutions and extensions 127
7.8 Summary . 128

8 Navigation 129
8.1 EmotioNav . 129

8.1.1 Calculating an objective value 130
8.1.2 Directional controller 130
8.1.3 Velocity controller . 132

8.2 Challenges of 3D navigation 135
8.2.1 Classifying Obstacles 135
8.2.2 Detecting ramps - false obstacles 137
8.2.3 Traversing drops . 137

8.3 Modifications to EmotioNav 138
8.3.1 Gradient analysis . 138
8.3.2 Modified directional controller 141
8.3.3 Modified velocity controller 144

8.4 Evaluation . 146
8.4.1 Directional controller 146
8.4.2 Velocity controller . 149
8.4.3 General behaviour . 150

8.5 Limitations . 151
8.6 Possible solutions and extensions 152
8.7 Summary . 152

9 Exploration 161
9.1 Partially informed exploration 161

CONTENTS viii

9.1.1 Application of influence maps 165
9.2 Exploration strategies . 167

9.2.1 Global exploration strategy 167
9.2.2 Local exploration strategy 168

9.3 Evaluation . 169
9.4 Limitations . 171
9.5 Possible solutions and extensions 172
9.6 Summary . 173

10 Conclusions 181
10.1 Conclusion . 181
10.2 Future research . 184

10.2.1 Real world application 184
10.2.2 Redesign of the mother robot 185
10.2.3 Navigation in cluttered environments 186
10.2.4 Collaboration . 186
10.2.5 Improvement of the operation interface 186

10.3 Summary . 187

Acronyms 188

Bibliography 189

List of Figures

2.1 Horizontal and vertical surface patches according to [TPB06] 14
2.2 Building a polar histogram from sectors 27

3.1 Assumptions for the operation 36
3.2 Control architecture . 37
3.3 Relationship between control and simulation 39
3.4 Simulation and control of the robots 40
3.5 Message types . 42
3.6 Communication of the mother robot control with the (sim-

ulated) hardware . 43
3.7 Real incoming UDP data package from [Wil07] for high level

hardware control . 44
3.8 Sequence diagram of the control 46

4.1 Communication with port, messages and message handlers 51
4.2 Tire force function . 53
4.3 Field of rubble . 56
4.4 Four different challenges . 57
4.5 Mother robot . 59
4.6 Sensor configuration from [Wil07] 60
4.7 Probability distribution for a long range finder with acti-

vated noise and a current distance reading of 1.5 m 63
4.8 Extract of the configuration file 63
4.9 Modified front sensor configuration 66
4.10 Front and rear body are moving in different directions, while

overcoming obstacles . 68

ix

LIST OF FIGURES x

6.1 Sensor configuration blue squares are part of the sensor ray 86
6.2 Model of single ray sensor . 92
6.3 Occupied and free space blocks with properties 96
6.4 Overlap situations . 98
6.5 Occupied and free space block after robot standing still (at

blue mark) . 100
6.6 Visualisation of occupied blocks after mapping a bridge . . . 101
6.7 Visualisation of occupied space blocks after mapping a field

of rubble . 101
6.8 Number of data points depending on sensor resolution . . . 102
6.9 Performance of the ’perceptual field’ 103
6.10 Performance with variable sensor ray resolution and map

resolution of 625 cm2 . 104
6.11 Performance with variable sensor ray resolution and map

resolution of 100 cm2 . 104
6.12 Size of the partial map in depending on the radius 105
6.13 Performance of the partial map with resolution= 100 cm2 . . 106
6.14 Performance of the partial map with resolution= 625 cm2 . . 107
6.15 Generated measurements after a slow right turn 108
6.16 Generated measurements after mapping with a fast left turn 108

7.1 Connection types between surface patches 112
7.2 Traversability map - darker green values represent lower

traversability . 118
7.3 Traversability on planar surface 119
7.4 Traversability on inclined surfaces - blue patches are not

explored . 119
7.5 Graph update for 100 cm2 resolution 122
7.6 Graph update for 625 cm2 resolution 122
7.7 Grandmother robot planning for multiple mother robots in

the field . 123
7.8 Sensitivity=50 with changing sizes of risk areas 124
7.9 D* Lite path planning . 125
7.10 Traversability of an enclosure 126

8.1 Decline increases maximum step height 136

LIST OF FIGURES xi

8.2 Different robot situations with same perception 137
8.3 Analysis of measurement points 141
8.4 Obstacle line . 143
8.5 Computation of a curvature control point 145
8.6 Curvature diagram including objective value 149
8.7 Directional controller output for standard situations 153
8.8 Directional controller output for standard situations 154
8.9 Situations with incline . 155
8.10 Obstacle at varying side distances 156
8.11 Path following to the target area 157
8.12 Path following to the next exploration frontier 157
8.13 Velocity controller outputs . 158
8.14 Field of rubble and exploration 159
8.15 Problematic section . 159
8.16 Possible asymmetric sensor configuration 160

9.1 Operator actions . 162
9.2 The influence map after marking interest and risk areas . . . 163
9.3 Weighting of influence factors 166
9.4 Coverage and exploration status using different numbers of

mother robots . 175
9.5 Exploration with a different number of mother robots and

operator advice . 176
9.6 Three mother robots in a planar area and field of rubble . . 177
9.7 Exploration of single robot in obstructed terrain 178
9.8 Total influence including the operator’s advice, also show-

ing the paths planned shortly after the advice was given . . 179
9.9 Cube field with rubble surrounded by obstacle wall 180

List of Tables

4.1 Specification of real device . 58
4.2 Sensor configuration in original mother robot design 60
4.3 Changes to the modelled device 65
4.4 Distances after which the robot can distinguish between in-

cline and obstacle . 67
4.5 Tire force function - longitudinal movement 69
4.6 Tire force function - lateral movement 69

7.1 Weight setting to calculate numeric influence 124

8.1 Settings of the directional controller 148
8.2 Parameter setting for the velocity controller 149

xii

The journey is the reward

Chapter 1

Introduction

1.1 General research objective

New Zealanders live under the constant threat of natural hazards [EG08]
and especially earthquakes. The reason is their country’s unique location
at the boundary of the Australian and the Pacific tectonic plates. Although
most of the earthquakes are rather small, it has been estimated that the
chance of a rupture of the Alpine Fault within the next 50 years lies at
65% [Min08]. The risk for the populated region of Wellington is only 10%
and it has been estimated that about 750 people might be trapped in such
an event. However, recent events in China [Wik08] have shown that the
number of victims can be significantly higher in more densely populated
areas. Rescue specialist teams will therefore be required at a number of
affected sites to find victims in the rubble, rescue them and give initial
medical treatment.

In order to support such teams and international equivalents, the
Mechatronics Research Group of Victoria University of Wellington is cur-
rently developing a low cost multi-tier architecture for robots involved
with Urban Search and Rescue (USAR) [WC06]. Though the robots can-
not replace human rescuers, they are able to provide valuable information
about a disaster aftermath area. Even more, they allow early penetration
of the disaster site without putting human rescuers at risk, until the site is
prepared for the rescue teams. Thus, the primary goal of this USAR team
of robots is to locate human victims in a disaster site.

2

CHAPTER 1. INTRODUCTION 3

In order to achieve its goal, the team of robots has to successfully explore
and map the destruction area. Furthermore, the team of robots needs to be
manageable with minimum effort and number of operators, so that it has
to perform its tasks autonomously in order to provide a real value for an
USAR operation.

Efforts to build robot rescue teams are being undertaken world wide,
but financial considerations can play an important role even in catastrophic
events. Hence, for the proposed architecture the aspect of low cost is of
major importance, because the application of low cost devices makes a
potential loss of individual robots affordable. But this aspect will also have
a significant impact on the capabilities of the individual robots.

The proposed robot architecture is based on three different types of
robots: grandmother, mothers and daughters. Each is designed to fulfil
a special task in a search and rescue scenario: the single grandmother for
instance, allows high level and centralised control close to the operating
area of the mother robots. Meanwhile, multiple mother robots are intended
to penetrate into and explore the operation area. Areas inaccessible due to
size constraints of the mother robot can then be investigated by daughter
robots deployed by the mother robots — specifically areas under the main
surface.

A design study has been completed for the real mother robot and cur-
rently a single proof-of-concept of this unit exists. The mother robot is
equipped with a basic set of sensors to allow self-localisation and the sens-
ing of obstacles in its close environment, and therefore fulfils minimum
requirements for autonomous operation. The design for the daughter
robots has not been finalised yet.

The Mechatronics Research Group of Victoria University of Wellington
has recently completed related projects which deal with the investigation
of emotion based navigational control and efficient multi-task allocation
for a group of robots [LJCC07] [LJC07]. This project will embed some
results of this research.

CHAPTER 1. INTRODUCTION 4

1.2 Thesis objective

The objective of this thesis is to advance the current state of the team of
robots for USAR and develop autonomous control for the search team
down to the mother robots. Currently, only a low level control system
exists for the mother robots which allows the manual operation of the
robots. Hence, the primary objective of this thesis is to design a high level
control system for the hierarchy of robots. This control system should allow
for autonomous operation of an individual mother robot and cooperating
ones in an operation area similar to a field of rubble. The construction
of such a system also involves the design of a communication structure
between grandmother and mother robots.

It is critical for the success of this project to deal with the following
challenges:

• Limited (and also unique) navigational capabilities of the mother
robots which heavily influence the selection of current algorithms
and the design of new ones.

• Mother robots will operate in a complex 3D environment with arbi-
trary shaped objects, ramps and drops, while many common solu-
tions for mapping and navigation only address planar environments.

• An exploring unit will initially have no previous information about
the environment and has to work autonomously. Thus, it has to build
its own map of the operation environment.

• With the lack of real world experiments and only one real mother
robot, a simulation is required which needs to be as realistic as pos-
sible to be a valuable development, analysis and evaluation tool.

• Multiple robots will explore at the same time, so that a coordinated
exploration strategy is required.

Autonomous operation is a fundamental problem in the field of robotics
and incorporates a range of research fields. Common and recent advances
in different areas of robotics will be the foundation of this project. Mod-
ifications to existing approaches will focus on advancing the proposed
architecture, but will not aim at completely generalisable solutions.

CHAPTER 1. INTRODUCTION 5

This project represents the first holistic approach towards autonomous
control for the presented robot architecture and will therefore heavily in-
fluence the direction of future research projects. Thus, its design decisions
have to be made carefully to avoid unnecessary and early restrictions for
future projects.

1.3 Contributions of this thesis

This thesis makes following major contributions:

Control

A control system for the hierarchical group of robots consisting of the
grandmother robot and multiple mother robots has been designed, im-
plemented and successfully evaluated. The control system includes new
aspects of area mapping, navigation and exploration in order to address
the special requirements of the robot hierarchy and a cluttered 3D opera-
tional environment. It also presents an approach to including the role of
an operator to monitor, give advice and eventually improve the perfor-
mance of a multi robot USAR operation without breaking the idea of an
autonomously operating team of robots.

Simulation

This project built a reusable and extensible simulation for a multi robot
architecture. This simulation allowed preliminary testing of control al-
gorithms as well as the examination of physical design properties. This
project used the simulation successfully to develop the control system ’Ex-
ploreTM’ and was also able to point out limitations of the current robot
hardware design. Subsequently, improvements have been suggested to
the hardware design which can be realised with minimal effort.

CHAPTER 1. INTRODUCTION 6

General

This thesis represents an holistic approach to building autonomous control
for the hierarchy of robots and provides substantial modules for mapping,
path planning, exploration and navigation. Thus, this project builds the
foundation and context for subsequent and incremental improvements of
this newly built control architecture, as well as an environment to study
alternative hardware designs.

1.4 Thesis structure

Chapter 2 offers an introduction into the background and main techniques
involved in this project. A system overview and essential context for sub-
sequent chapters is given in Chapter 3 and Chapter 4 explains the setup
of a simulation environment. This project justifies its assumption about
localisation in Chapter 5 and introduces an incremental 3D mapping ap-
proach in Chapter 6. This approach serves as a foundation for the concept
of distributed path planning explained in Chapter 7. A description of the
navigational approach EmotioNav and the new modifications are given in
Chapter 8. The final building block is presented in Chapter 9, where the
design of the exploration strategy is outlined. The final conclusions are
presented in Chapter 10.

Chapter 2

Background

This thesis deals with a range of research fields and bases several of its ideas
upon these or thereof derived methods. The following chapter introduces
concepts, ideas and specific techniques which build the foundation of this
thesis or have been a major source of inspiration.

2.1 Search and Rescue

Search and rescue deals with the location, rescue and the initial medical
treatment of victims, who are trapped in areas with limited accessibility.
Most often this involves buildings with structural collapse [FEM08]. Search
and rescue is applicable to multiple hazard scenarios not limited to earth
and land slips, earthquakes and floods.

2.1.1 Different types of search and rescue operations

Search and rescue has come to a new focus of interest in the past few years,
mainly due to the effect of natural disasters and acts of terrorism. Some of
the first systematic approaches toward search and rescue were developed
during the second World War, mainly to find hostile submarines. In later
years the application of search theory resulted in the successful spotting of
a H-Bomb previously lost in the ocean near Spain [Sto75]. These examples
show search and rescue operations with two main characteristics:

1. run on the open sea, i.e. an ”even” surface

7

CHAPTER 2. BACKGROUND 8

2. large and remote search area

The scanning of ocean ground areas is majorly difficult regarding the sens-
ing devices, which are affected by scattering and water as dynamic prop-
agation medium. The application of a systematic search, however, can be
done more easily - considering favourable weather. The reason for that is
an even surface to travel on - the ocean - and a mainly unobstructed field
of search.

Search and rescue operation on land are quite different in that sense,
e.g. finding lost trampers would be a typical example for New Zealand,
because areas can be inaccessible or significantly obstructed. The main
characteristics for these type of land operations are:

1. run in obstructed, often forested areas

2. large and remote search areas

Areas need to be scanned with a large number of human helpers to achieve
a desirable coverage, because many areas cannot be searched with the
help of motorised vehicles or are too forested to be searched with aerial
support. For urban search and rescue operations, in comparison with
these scenarios, the matter of obstruction is also one of the main issues.
Buildings with structural collapse pose a threat to searchers and support
equipment, due to the possible effects of loose components especially in
the likely case of aftershocks following a major earthquake. A smaller area
of search can be seen as advantage, though it usually has the drawback
of greater complexity considering the level of obstruction. Even more, the
area of search can vary significantly from the footprint of a small house, to
the collapsed site of a skyscraper.

2.1.2 Strategies for search and rescue

One of the initial thoughts for large scale search and rescue operations is
the application of an effective strategy to narrow the area of search. For
example, but without scientific foundations, one of the basic rules in search
and rescue on land is the thoroughness of search, i.e. coverage has highest
priority while revisiting of places does not happen [Gal81].

CHAPTER 2. BACKGROUND 9

Theory of search [Sto75], however, provides a mathematical base to de-
velop strategies for searching large scale areas and as such tries to increase
the probability of a successful finding.

In order to build an optimized strategy, information about the last
known location of the item of interest is gathered and modelled in a prob-
ability distribution over the search area. Under consideration of the avail-
able amount of time, a strategy is developed to control the optimal effort.

The findings here will serve as a motivation for a partially informed
exploration strategy as discussed in Chapter 9.

2.1.3 Standards for urban search and rescue robots

As part of the efforts to construct urban search and rescue robots, the US
Department of Homeland Security has developed a catalogue of criteria
[Dep08] for this kind of robot. This catalogue allows the comparison of
robot performances in competitions and at the same time, gives a brief in-
sight into the motivations and real challenges of robotic search and rescue.
The tasks of teams of robots involved in search and rescue defined by the
National Institute of Standards and Technology as part of the Department
of Homeland Security and relevant for this project are:

• negotiating compromised and collapsed structures autonomously

• finding victims (and reporting their condition)

• produce a human readable (practical) map of victim locations

• identify hazards

The aspects mentioned here are mainly part of a pure search task, while
the catalogue definitions are broader and cover the topic of physical rescue
as well.

The Department also stresses that currently performance metrics exist
only for the above mentioned aspects, but future versions of the catalogue
will incorporate metrics for rescue. The following list is an extract of the
performance metrics list [Dep08] considered to be relevant for this project:

CHAPTER 2. BACKGROUND 10

(a) In the category of mobility and locomotion:
Sustained speed, endurance and tumble recovery (considering none,
self-righting and invertible continuous operations) are the main met-
rics. They are measured during the traversal of different terrain types,
e.g. plane but obstructed areas or an inclined terrain.

(b) For the design quality of human-system interaction:
The time for initial training to control the robots and a proficiency
education are measured in hours and years. Furthermore the us-
ability (e.g. remotely controlling the robot) is a metric based on an
effectiveness evaluation, but assistive elements such as automatic
notifications or path tracing are simply tested on their existence.

(c) Sensing metrics:
Performance evaluation in this category concentrate on the fact, that
the robot provides spatial modeling and allows or provides a way-
point annotation.

For performance evaluation, some of these aspects are applied to differ-
ent types of environments or specific situations, e.g. measuring sustained
speed while moving over a step or alternatively over rough, inclined ter-
rain.

The given evaluation gives the basic motivation and criteria to enhance,
develop and measure robotic control and also suggest a basic operator
interface. This project will not be able to extensively measure its approach
against all the given criteria. However, it will provide the simulation
environment to do so.

2.2 Robot perception

Perception is of major importance for a robot to gain information about
its environment. Only once information has been perceived, can it be
processed and analysed to take appropriate actions.

What a robot can perceive is defined by its set of sensors and this
project deals with a robot type which is equipped with infrared range
finders, an inertial measurement unit, wheel encoders, a single camera

CHAPTER 2. BACKGROUND 11

and a localisation unit. Note that out of these sensors, this project will
mainly take the infrared range finders into consideration, while making
assumptions for localisation in general and leaving the integration of the
camera unit completely to other projects. Clearly, augmenting perception
with camera input would be a benefit. Nonetheless, a single camera does
not easily generate depth information and therefore range finders are of
greater importance in the first place.

Robot perception is critical when a robot has to act autonomously, con-
sidering that every action is based on the information perceived. Therefore,
autonomous mobile robots are a great challenge, even more when operat-
ing in complex environments. The robot type in this project has a limited
and unique field of perception, which requires special techniques for com-
pensation to allow its operation in a cluttered environment. The project
implements rather specific techniques to deal with the limitations of the
current hardware platform. That means, that generalisation cannot be
guaranteed and a transfer of these techniques needs thorough evaluation.
This project also tries to keep changes to the actual hardware configuration
to a minimum, with the purpose to keep to overall cost of the units, which
is a major design criteria, down.

2.3 Mapping

Robot mapping describes the process of storing spatial information about
the environment while a robot travels through it. Different techniques ex-
ist for map building. Distance information is necessary and range finder
devices can provide information, so that free space and obstacles can be
detected and classified. In order to store spatial information the robot con-
structs a map. Two different types of map representations exist [Mur00]:

(1) Topological or landmark based map

(2) Metric or continuous-valued map

A topological or landmark based map stores information about significant
points in the environment, i.e. so-called landmarks and keeps track of
their relation to each other. Topological maps are therefore a graph-like

CHAPTER 2. BACKGROUND 12

representation of the world, consisting of nodes and connecting arcs. Topo-
logical maps are also known as the feature-based approach. This method
relies on identification of recognisable landmarks and because no metric
data is stored a unique representation for each landmark has to be found
to allow recognition.

In contrast, the iconic approach works with metric or continuous-
valued maps. These maps offer an exact representation of the environment
often down to a certain resolution. The closed-world assumption [SN04]
applies here, saying that everything not defined as obstacle is free space.
This assumption makes this type of representation more memory efficient.

In addition, grid cell decomposition is widely applied to metric maps,
though by using fixed cell decomposition the advantage of memory effi-
ciency is given away, i.e. larger maps require more cells to be stored in
memory. Also by definition, cell decomposition represents details only
down to a predefined resolution. This can cause details such as narrow
pathways to become lost in this representation, depending on the degree
of resolution.

To reduce memory constraints and allow a human readable map at the
same time, the mapping strategy of this project relies on a metric map with
a customisable resolution (see Chapter 6).

2.3.1 Occupancy grid

Occupancy grids [Elf89] (same meaning as certainty or evidence grids)
belonging to the iconic approach are widely used [LAJ04] [BMF+00]. An
occupancy grid represents the environment with (uniform) grid cells with
a binary state. A value 0 represents the state of an unoccupied cell, while
a value of 1 is translated into an occupied cell, i.e. the cell represents (part
of) an obstacle.

Occupancy grids gained high popularity in the representation of two
dimensional environments. However, they can be expanded to represent
three dimensions. In that case a three dimensional grid is used, where each
cell represents a cube. According to the two dimensional version, the cell
state describes the occupancy.

The approach of this thesis towards mapping will maintain the idea

CHAPTER 2. BACKGROUND 13

of occupancy grids by integrating a representation for free and occupied
space.

2.3.2 Elevation maps

An elevation or height map stores height values for a given area and hence,
allows the computation of surfaces (usually after triangulation). Although
an elevation map does not need to be based on a grid, an underlying grid
simplifies computation. Hence considering an underlying uniform grid,
each cell stores a single height value and achieves a two and a half dimen-
sional representation. Compared to a three dimensional representation,
the third dimension is only represented by a single height value. Effec-
tively, the elevation map can only describe a three dimensional surface,
but not a complete three dimensional structure like a building.

Though measurements of occupied space and free space do not in-
stantly give information about total object heights, a bounded height mea-
sure can be produced. This measure represents a range, e.g. [1.5, 2] rep-
resents knowledge of minimum height of 1.5 m due to occupied space
measurements up to this height and a maximum object height of 2 m due
to free space measurements above 2 m. [MPV00] shows how to build the
final elevation map with this bounded error.

The idea of combining knowledge about occupied space and free space
is the main motivation to make changes to the map representation pre-
sented in the following section.

2.3.3 Multi-Level-Surface map

In order to represent 3D space efficiently, Triebel suggests the Multi-Level
Surface Map (MLS map) [Tri07][TPB06]. A MLS map can represent a three
dimensional space with reduced memory constraints using uniform grid
cells in two dimensions. The third dimension is defined by so called surface
patches. Each patch describes a surface at a certain height accompanied
by a factor of uncertainty. Triebel classifies patches into horizontal and
vertical patches in order to distinguish between plain surfaces and patches
with a certain depth - effectively blocks. The depth value is associated with

CHAPTER 2. BACKGROUND 14

both patch types, but equals 0 for horizontal patches. Figure 2.1 illustrates
this mapping model. The most important feature of this representation is,
that a single cell can contain multiple surface patches.

Figure 2.1: Horizontal and vertical surface patches according to [TPB06]

This grid representation is the base of the mapping algorithm in this
project, but due to some specific constraints this approach will be modified
as discussed in Chapter 6.

2.4 Uncertainty

Imperfect sensors and approximate knowledge about the current sensor
position, e.g. when mounted on a mobile robot leads to measurement
uncertainties. Different compensation techniques exist for dealing with
uncertainty in this context. One commonly used method is the Bayesian
approach. For example the occupancy grid is commonly used in combina-
tion with a binary Bayes filter [TBF05]. To reflect uncertainties each cell of
the occupancy grid is mathematically described by a probability variable
in the range of [0, 1]. Free and occupied cells are represented by a given
single probability value p(x) as follows:

occupied(x) = p(x)

f ree(x) = 1 − p(x)

CHAPTER 2. BACKGROUND 15

The log odds representation simplifies computation, translating the value
from range [0, 1] into range [−∞,+∞] :

l(x) = log
p(x)

1 − p(x)

occupied(x) = 1 −
1

1 + exp(l(x))

An occupancy grid integrates measurement data zt of one cell over time.
With each new sensor measurement comes a probability value pt(x) (or
lt(x) in log odds representation) describing the belief that a specific cell
occupied. Each cell’s occupancy probability value is then updated on
basis of the Bayes rule [RN03] and using the log odds representation:

lt(x) = lt−1(x) + log
p(x|zt)

1 − p(x|zt)
− l0(x)

The probability of a measurement value can be calculated from an inverse
sensor model. This sensor model describes the likelihood of measurements
after the measurement has taken place. Each sensor has its own character-
istics, so that this model is unique for each hardware. The inverse sensor
model can be approximated using neural networks [TBF05].

Though this project does not implement an inverse sensor model, the
implementation includes the above model to provide a measure a certainty
based on default belief about the measurement quality in Chapter 6.

2.5 Simultaneous localisation and mapping

Without the availability of a map a robot will not have any knowledge
about the environment. Furthermore, it cannot know where it is in the
map and eventually has to build its own map, while keeping track of
its relative position. Different approaches have been made to solve the
problem as a whole under the name of simultaneous localization and
mapping (SLAM)[DWB06][BDW06]. In SLAM a robot tries to solve two
tasks at the same time:

(a) find the current position (and orientation) in the environment

CHAPTER 2. BACKGROUND 16

(b) build a map of the environment

Solving the two tasks simultaneously is not trivial, because the environ-
ment is initially unknown, so that probabilistic techniques are essential
for SLAM algorithms [TBF05]. The most common technique applied is
Kalman Filtering [DJ00] or extended versions of it [GL06]. Particle fil-
ters for FastSLAM [TBF05] or information filters offer further alternatives
[FKK+06]. Part of open challenges in this area as defined by Castellanos
et al. [GL06] are large environments and multi-vehicle SLAM. Because of
the complexity of this issue, this project does not address SLAM. The lo-
calisation problem is assumed to be solved by any of the methods given in
Chapter 5 and efforts focus on mapping, path planning and navigation.

2.6 Noisy sensor measurements

Sensing devices do not operate perfectly, i.e. produced measurements do
not always reflect the real state of the world, due to noise in the envi-
ronment and also due to certain characteristics of the sensing technology.
Erroneous measurements of an active range sensor (IR) can be caused by
reflective surfaces or ambient lighting conditions and also depend on the
distance to an object [Jon04]. The real world will not deliver perfect mea-
surements as a simulation might do. Therefore the integration of an error
model into the simulation is required for a realistic scenario. Here, the
term noise will refer to noise and sensor error.

Modelling sensor noise

Different ways to simulate noise exists. The most simplistic way is to
base noise simply on random numbers. But usually, when noise cannot
be classified, a specific noise distribution is assumed. For a situation with
no additional information, a Gaussian distribution (normal distribution)
is the common choice. Only looking at the data sheet error specification
of the mother robots hardware devices, supports the application of Gaus-
sian error distribution. The latter one is clearly not the most supportive
argument, because it only characterises the sensor error itself and the noisy

CHAPTER 2. BACKGROUND 17

environment needs to be still accounted for.
Thrun et al. [TBF05], however, suggest a model for range finders,

which takes the existence of four different types of measurement errors
into account:

• small measurement noise

• errors cause by unexpected objects

• errors based on the failure to detect objects

• random noise

They create a probability distribution for each of the mentioned situations
and mix those distributions, to finally reproduce the most likely measure-
ment. This means that the measurement model is based on four different
densities. So instead of using a pure Gaussian distribution, this offers a
better representation of world noise and sensor errors.

In order to produce a noisy measurement, the process takes an actual
real measurement (from the simulation) to create the appropriate mixed
distribution and sample from it. The sample is then the final measurement.

Previous experimentation results from [Wil07] and device specifications
allow the definition of the individual distributions in this project.

2.7 Path planning

As soon as a map of the environment exists a path can be planned to allow
a robot to fulfil specific tasks. Path finding is a well researched area and a
wide selection of search algorithms [RN03] is available.

In general, path planning algorithms can operate with different space
representations. Most representations use cell decomposition with a fixed
number of cells to divide the search space. Most obvious is a decomposi-
tion into uniform grid cells. Skeletonisation of an existing map, can serve
as a preprocessing step and means the reduction of the search space for
the planning algorithm. Clearly, a reduced search space has performance
advantages and offers an easier application of existing path planning al-
gorithms. Visibility graphs, Voronoi diagrams and probabilistic roadmaps

CHAPTER 2. BACKGROUND 18

belong to this category [RN03] and generate road maps [SN04] through
free space. This effort reduces the complexity to find a path so that graph
search algorithms can be easily applied [GMAM06].

2.7.1 A*

A* is the generalisation of the shortest path algorithm or Dijkstra’s algo-
rithm [Mil06]. Also called best first search, A* is a complete algorithm,
i.e. if there is a solution the algorithm will find it. The key part of the
A* algorithm is an estimation function based on an heuristic which is also
admissible. An heuristic estimates the cost of travelling between nodes
and it is admissible if it does not overestimate the costs. The estimation
function f subsequently estimates the total path costs:

f (nstart,ncurrent,ngoal) = c(nstart,ncurrent) +

h(ncurr,ngoal)

where

f (x) estimation function
c(x) cost function
h(x) heuristic, i.e. cost estimation function
nx a graph node

In order to be a so-called optimal algorithm, the overall path costs of
a solution have to be minimal. To achieve this, the algorithm keeps track
of the path cost always knowing the actual costs up to the current node.
The heuristic then estimates the travel costs from the current node to the
goal, i.e. the last and yet unknown path section. Different heuristics can
be applied [Mil06]:

• euclidean distance: most common and either produces the exact or
underestimated cost

• cluster heuristic: region based distance calculation

• null heuristic (always return zero costs) results in the Dijkstra algo-
rithm

CHAPTER 2. BACKGROUND 19

• custom heuristic: application/domain dependant heuristic

Only an underestimating heuristic is guaranteed to provide an optimal
solution. However, overestimating heuristics can be used, but they corrupt
the optimality of A* algorithm. They will not guarantee to find the lowest-
cost path and are likely to create significantly worse results if the heuristic
is not close to optimal [Mil06].

2.7.2 Dynamic A*

Despite its popularity A* has some drawbacks. One of the major disadvan-
tages is its dependency on a static environment. But mobile robots often
have to operate in dynamic environments. In addition imperfect sensors
cause information about the environment to vary. A* is a graph-based
algorithm, i.e. it uses nodes and links with associated costs to find a solu-
tion, but, as previously discussed, arc costs can change and any change or
new information can be critical for a planned path requiring replanning.
To cut down the computational effort for rebuilding the whole graph and
replanning each time a change of costs occurs, dynamic A* (D*) [Ste95]
allows the propagation of changes using the old graph.

A number of extensions to D* exist to address further issues with cell
decomposition, e.g. generate a smoother path in 3D by using interpo-
lation [CFS06] or using multiple resolutions [FS06] to minimise memory
requirements.

D* has been part of the framework GESTALT (Grid-based Estimation of
Surface Traversability Applied to Local Terrain) [MBT+06] to give real time
replanning capability to the Mars rovers. With the same functionality of
D* but with a slightly higher efficiency and a simpler algorithm, Focussed
Dynamic A* Lite (D* Lite) [KL02] is based on lifelong planning A* [KLF04].
A subsequent development is Anytime D* [LFG+05], which combines any-
time and incremental planners, generating suboptimal results under time
constraints.

This project used A* and D* Lite for the current implementation. A*
applies to the centralised planning on the grandmother robot and D* Lite
to the mother robots. Details are provided in Chapter 7.

CHAPTER 2. BACKGROUND 20

2.7.3 Others

Wavefront planner

Wavefront planners are a group of search algorithms which can be eas-
ily applied to regular grids. A wavefront planner such as Trulla [Mur00]
searches the configuration space based on the idea of how heat propa-
gates through a material. Different material properties may allow a faster
progression of heat or might slow it down. Material properties in a path
planner for example, can be a traversability factor, which describes the dif-
ficulty of terrain. Wavefront planners can be computationally expensive,
as they will search in all directions in a similar way to breadth first search.
Breadth first search is a standard graph search algorithm. It does an ex-
haustive search and creating a set a unexplored nodes from all neighbours
of the currently explored nodes, which are then explored before repeating
this process.

Path planning with potential fields

Based on the idea of a potential field in electromagnetism, an artificial po-
tential field represents a map as a field of force vectors which influence the
path finding decisions of the robot. Forces depend on the robot’s current
position in the map [SN04], so that for each map position an influence
vector steers the robot in a certain direction. In order to compute a poten-
tial field, existing obstacles and goal are known influences associated with
values of attraction. The goal point for example, has the highest attraction,
while obstacles will have negative attraction to create repulsion. Poten-
tial fields can be used to create smooth trajectories, but they suffer from
local minima, oscillations and the requirement that behaviours have to be
encoded as potential fields as well.

2.7.4 Traversability

A traversability analysis can add additional information to a map, which
can then subsequently be used for generating more secure paths. Different
methods exists to determine this value: Joho et. al. [JSPB07] are using slope,
roughness and a value to account for neighbouring obstacles. Using a

CHAPTER 2. BACKGROUND 21

Multi-Level-Surface-Grid the slope is calculated by fitting a plane to a (3x3)
section of patches and comparing it to a horizontal plane without elevation.
Roughness takes the differences between the neighbouring cells in this
field of cells into account and uses the averaged sum of squared height
distances between neighbour patches to calculate a numeric measure. The
final traversability value is then computed using linear interpolation and
lies in the range of [0,1]:

traversability = roughness ∗ slope ∗ obstacle

Joho et. al. further convolve the result with a Gaussian kernel while giving
non existing neighbours a traversability value of 0.5. The convolution
causes obstacle growing when a single patch has an assigned traversability
value of 0. Obstacle growing means, that the area of cells occupied by an
obstacle is enlarged by filtering, due to the mathematical properties of the
filter algorithm.

The GESTALT planner [MBT+06] works with similar attributes as the
mentioned approach and fits a plane to an area roughly the size of the robot
determining tilt and roughness of this plane. It is based on the generic
framework described in [USN03]. Additionally, a comparison with the
best plane fit is done, where the best plane is calculated from the weighted
squared means of measurement data in this area. This finally classifies
the area in terms of being impassable or passable with fuzzy degrees
of difficulty. The GESTALT planner uses the traversability analysis as an
additional criteria to decide between a number of generated possible paths.

2.8 Exploration

Exploration of areas can be performed in a number of different ways. The
group of deterministic approaches toward exploration contains strategies
such as seedspreader, star or concentric exploration [SD03]. Nonetheless,
the application of these strategies is constrained to easily traversable ter-
rain, e.g. a plane office space. In rough terrain frequent replanning will
be necessary, because a predetermined path based on partial knowledge
might be too hard to follow or it turns out to be not traversable at all. Enforc-
ing any deterministic strategy would therefore slow down the exploration

CHAPTER 2. BACKGROUND 22

time significantly. Furthermore, the mentioned deterministic approaches
work completely uninformed, so that they cannot be effectively applied to
a group of robots.

One of the most popular strategies, frontier based exploration [Yam97],
is based on the analysis of a grid map to find unexplored but accessible
areas. A robot extracts cells of its internal grid map representation, which
connect to at least one unexplored cell. It then marks each of these cells as
frontier cells, as long as the current cell is not occupied, i.e. is not part of an
obstacle. The result is an unsorted collection of frontier cells, which then
can be grouped into frontier regions. Aiming to reduce the total number
of regions, a threshold (domain dependant and empirical) is applied to the
size of frontier regions. This leaves a set of selectable frontier regions, i.e.
new promising target areas for the robot.

This approach has proven to be effective for a single robot and can
be applied to collaborating robots as well. For a multi robot scenario
some modifications to the frontier based approach can be made to improve
results. For example, each robot will be greedily assigned a frontier region
with the best utility cost tradeoff, so that each robot has a different target
[BMF+00]. A utility cost function can incorporate the euclidean distances
between robot and frontiers, cost from a path planner to reach the frontiers
or the amount of newly explored terrain upon arrival at the assigned
frontier region. Joho et. al.[JSPB07] for example use an approach calculating
the benefit of a number of new viewpoints (frontier regions) and choose
the most promising one.

In general the frontier based approach allows utility measures, but it
needs to associate this measure with frontier cells. Meanwhile a more
general technique is to attach utility to cells and regions, whether they
are part of a frontier or not. On the basis of this utility, path planners
can generate optimised paths to subsequently optimise the exploration of
a region. To compute a combined utility, i.e. one which takes different
criteria into account, influence maps offer a good solution.

CHAPTER 2. BACKGROUND 23

2.8.1 Influence Maps

A powerful tool for real time strategy games are influence maps [Mil06].
Influence maps allow the quick analysis of regional influences and thereby
provide important data for strategic or tactical decisions. Games use in-
fluence maps usually to calculate military strength in a specific area. The
computation of influence is mainly based on a distance measure from the
influencing item:

Φcell =
φn

1 + d
where

Φcell Influence on the current cell
φn Influence of the (source) object n
d Distance between current cell and object

The given case presents an influence with non-linear degradation over
distance. A limited radius of effect can also be taken into consideration
to set a maximum distance for influence. Alternatively to computation
by distance, convolution filters such as Gaussian filters can calculate the
cell influence on states of neighbour cells. But depending on the num-
ber of influences and the map size, convolution can be computationally
inefficient. In general, influence maps in games are seen to be task de-
pendent and need to be tuned to give a benefit to the solution. However,
influence maps offer a simple way to combine different parameters for
tactical and strategic decisions and ease spatial analysis. More advanced
versions of influence maps use value propagation or cellular automata, i.e.
cells influence their neighbours based on a predefined propagation type.
This propagation type defines a rule how a cell is updated, based on its
neighbour cell values.

Influence maps allow an operator to provide additional information to
the central planner in this project. The operator information is combined
with other measurement types into a single utility value and influences the
path planning (see Chapter 7 and Chapter 9).

CHAPTER 2. BACKGROUND 24

2.8.2 Multi-robot collaboration and exploration strategies

Many problems in multi-robot collaboration arise from its distributed na-
ture. But rather than exploring robot cooperation in detail, this project
will use a simpler approach, because the robotic architecture uses a central
computing unit. The grandmother robot will be the central computing
unit and will allow the effective computation of tasks for the group of
robots. This way, a highly sophisticated coordination technique for a fully
distributed system is not required.

The aspect of robot collaboration has its own field of research and the
reviewed papers show some methods addressing simplified coordination.
Fox et al. [BMF+00] use a simple structured approach integrating a cost
function for robots to explore dedicated target areas. This way, the costs
can be optimized by evaluating all robots which are taking part in the
exploration task.

Leung and Al-Jumaily [LAJ04] rely on a similar approach, although
they use a bidding scheme in order to coordinate cooperative behaviour.
Furthermore, a map building process can be supported by actively enforc-
ing an overlapping search of areas for multiple robots, while estimating
relative positions of those robots [FKK+06].

While both methods address fully distributed system, this thesis uses
the given ideas in a system with a central computing unit. The details of
this system are provided in Chapter 9.

2.9 Navigation

Different paradigms for navigation and collision avoidance have been suc-
cessfully applied to robotics. In general, it can be placed on a spectrum
from purely reactive strategies through to deliberative navigation schemes.

2.9.1 Behaviour based reactive methods

One of the main characteristics of purely reactive systems is the direct
interpretation of sensor input. An intermediate knowledge representation
is avoided, so that current sensor data provides the knowledge about the

CHAPTER 2. BACKGROUND 25

environment. Actuation is therefore solely based on current perception
and does not involve any memory. Data processing is effectively done in
the most direct way possible, showing the tight coupling of sensing and
acting.

Behaviours form another important building block of a reactive navi-
gation system. Mainly inspired by animal behaviour, a single behaviour
is a simple rule of action, which is triggered under a certain condition or
stimulus [Ark98]. The advantages of a behavior based system concern:

1. application

2. development

Primarily important is the application of behaviour, which allows action
in dynamic and potentially hazardous environments without any global
knowledge, due to fast response times. Secondly important, behaviour
based systems ease development as they inherently support a modular
design. A modular design facilitates reuse and maintenance, because
functional blocks are easier to identify, allowing faster addition, redesign
and discarding of individual behaviours.

However, overall behaviour is a combination of the different behaviours
involved and as such emergent. Depending on the architecture, it has to be
differentiated between primitive (low-level) and more complex (high-level)
behaviours. Complex behaviours are often built from different primitive
behaviours. Behaviours are often independent and concurrent [Mur00]
and issues such as dominance and cancellation of behaviours have to be
addressed.

Relying on the current local sensing only with avoidance of any in-
termediate representations is the pure behavioural approach. Hybrid so-
lutions are common and this project adapts a hybrid solution previously
developed in this department.

Subsumption architecture and potential fields

Reactive methods are commonly implemented in two different ways:

(i) Subsumption architecture [Bro86]

CHAPTER 2. BACKGROUND 26

(ii) Potential field methods [Ark98]

Within the subsumption architecture behaviours are structured in different
layers, where each layer tries to complete a certain goal. Active behaviours
can use inhibition of stimulus and responses to control other behaviours.
Potential fields meanwhile employ vectors to represent the environment
and behaviours with a magnitude and direction of force. These behaviour
vectors are combined by summing, eventually leading to new behaviours.
Comparing both approaches, they perform equivalently in practice and
neither of these approaches is a completely robust solution [Mur00]. How-
ever, the subsumption architecture is closer to a hardware implementa-
tion allowing parallel processing of individual behaviours, while potential
fields are closer to software implementation [Ark98]. Nevertheless, poten-
tial fields have limitations by becoming stuck in local minima or causing
unstable motion in narrow passages [KB91].

2.9.2 A list of alternative navigation methods

The following section provides a list of alternative navigation methods,
which are part of the implementation in this project in one way or another.
Navigation is based on a method developed in [LJC07]. The method
combines different of the listed navigation methods, but this project also
needs to extend a given navigation method into three dimensions. For that
reason, this project looks at two of the few existing methods operating in
three dimensional concise environments.

Vector field histogram

The Vector Field Histogram (VFH) [BK91] provides a mechanism for ob-
stacle avoidance and goal finding at the same time. It will be one of the
elements of the navigation algorithm for the mother robots. VFH uses
knowledge about the current environment of the robot, where the current
environment is defined by a moving section with the robot in its centre.
An underlying occupancy grid allows the generation of a local occupancy
grid around the robot’s current position (Figure 2.2a). Based on the infor-
mation contained in this local grid, a one dimensional polar histogram of

CHAPTER 2. BACKGROUND 27

(a) Sectors in the grid map (b) Polar histogram for densities

Figure 2.2: Building a polar histogram from sectors

the obstacle densities around the robot centre is generated in a next step
(Figure 2.2b). This polar histogram has a predefined resolution resulting
in sectors. An obstacle density value describes each sector. The obsta-
cle density value is based on a combination of certainty values from the
occupancy grid and a distance measure. Each cell provides a measure:

mi, j = (c∗i, j)
2(a − bdi, j)

where

a, b are positive constants
c∗i, j is the certainty of the cell i,j being occupied

di, j is the distance to cell i,j
mi, j is the magnitude of obstacle influence on cell i,j

The obstacle density for a sector s is then calculated as follows:

hk =
∑

i, j

mi, j

where

Cs describes the set of cells in sector s
mi, j is computed from ci, j ε Cs

After smoothing the polar histogram to compensate for discreteness, it
is analysed to find sections with a low obstacle density to finally process the

CHAPTER 2. BACKGROUND 28

direction of travel for the robot. To identify low obstacle density sections
a threshold is used. One of the drawbacks of VFH is the need to fine-tune
this threshold in challenging environments, e.g. those which are densely
cluttered, otherwise it cannot pass through narrow passages.

The more advanced version VFH+ [UB98] reduces the tuning require-
ments of the initial approach and compensates for kinematic constraints
by introducing further data reduction steps. Overall the algorithm consists
of four main data reduction steps:

1. Generate a primary polar histogram.

2. Translate the primary into a binary polar histogram, where a sector
can be either free or occupied.

3. Mask the histogram where the robot cannot travel due to kinematic
constraints.

4. Select the steering direction based on a cost measure, which takes the
chosen direction and the current position as inputs.

The translation of the primary into the binary polar histogram addresses
the problem of oscillating in narrow pathways and relies on the use of two
threshold parameters:

hb
k,t = 1 if hk > τhigh

hb
k,t = 0 if hk > τlow

hb
k,t = hk,t−1 otherwise

where

hb
k,t binary density value, of section k at time t
τhigh, τlow upper/lower density threshold

The effects of this reduction step are a smoother and more reliable
trajectory as claimed by the authors. Note, that the cost function of the last
step facilitates the integration of behaviours by allowing the properties of
this cost function to change.

In a comparative study with a fuzzy behavioural approach [SDC07] the
authors have found that a vector field (or vector polar histogram) requires

CHAPTER 2. BACKGROUND 29

less programming and implementation effort than the behavioural method,
which needs behaviours explicitly added to the system via individual rules.
Nevertheless, with a laser range finder as a sensing device, the behavioural
approach generated a smoother path and proved therefore better for energy
saving and comfort of travel.

Nearness diagram

Nearness diagram navigation [MM04] is a recent approach to allow goal
driven reactive navigation in cluttered and dense areas. It is one of the
few approaches which addresses the operation in complex three dimen-
sional environments. The approach builds upon a behavioural design.
Minguez et. al. represent a set of situations in a decision tree and build it
upon two main safety areas around the robot: high safety and low safety.
Depending on the sensing of obstacles in each of these areas further criteria
apply. Criterions are descriptions of specific situations and are differenti-
ated in high safety and low safety situations, requiring specific actions to
safely reach a goal. The approach claims to be general, but also provides a
specific application based on sensor information provided as a depth point
map generated by a ring of ultrasonic sensors.

The authors show that the idea of security situations and the use of a rule
based system are capable of dealing with complex environments. Though
this thesis uses reactive navigation, the presented techniques illustrate the
possibility to extend it with a rule based system.

Obstacle avoidance in 3D workspaces

Motivated by robotic rescue in confined areas, [VM06] presents an obsta-
cle avoidance methods for 3D by extending an existing validated approach
from two to three dimensions. The general idea is to split three dimen-
sional space around the robot into quadrants. These quadrants depend
on the current orientation of the robot and the target location. After def-
inition of the quadrants, each is analysed to find movement constraints,
i.e. obstacles. The method uses a rule based system to find the single best
single direction. The rules are based on a small predefined set of situations
and the computation of direction is based on geometrical information only.

CHAPTER 2. BACKGROUND 30

The authors show, that the method works in simulation, but it has not been
tested in a real world scenario.

The current project requires the transfer of a two dimensional naviga-
tion method into 3D and also builds a geometric analysis for navigational
control as described in Chapter 8.

Dynamic window approach

The presented examples so far, focus on the computation of a movement
direction. Nevertheless, velocity control of is of significant importance to
a operation as well. For that purpose this subsection looks at the well
established dynamic window approach [FBT97]. The dynamic window
approach uses the current robot velocity, i.e. linear velocity and rotational
velocity, to compute a set of reachable velocities. The idea behind it, is
that each system has a control loop and therefore a certain amount of time
that a motion command can be applied. Depending on the maximum
achievable acceleration/deceleration and the current velocity, the set of
reachable velocities is limited. The formal constraints are described in
following formulation of the dynamic window Vd:

Vd = (v, ω) | vε[va − v̇t, va + v̇t] ∨ ωε[ωa − ω̇t, ωa + ω̇t]

where

va actual linear velocity

ωa actual angular velocity

v̇, ω̇ linear and angular accelerations

This set of reachable velocities is further analysed to find velocities for
which a collision free trajectory can be predicted for the next control cycle.
After this reduction step an objective function is applied to find the best
velocity, in order to direct the robot to its goal at maximum speed, while
avoiding any detected obstacles.

One of the main elements of this approach is that trajectories are always
curvatures with a radius of:

R =
v
ω

where

CHAPTER 2. BACKGROUND 31

v linear velocity

ω angular velocity and ω , 0

Obstacles on the trajectory of a curvature define, whether the velocity is
admissible or not.

Global dynamic window approach

As an extension to the dynamic window approach the global dynamic
window approach includes a path planner called NF1 [BK99]. The plan-
ner computes the distance to a goal location for every single cell in the
local environment. This information is then used in combination with the
dynamic window to find the best direction and velocity. As soon a path
planning algorithm is in place, it is a straight forward matter to embed it
into the dynamic window approach. Thus, in order to enhance the navi-
gation algorithm with existing map data, this project aims at integrating a
(short range) path planning capability.

2.10 Simulation frameworks

The limited availability of robots often requires a valid simulation to be
used instead during the development phase. Nevertheless, it would also
require significant effort to test all development stages in a real environ-
ment. This is neither cost nor time effective, although it is well known that
better and more realistic results can be expected from a test in real environ-
ment. However, a simulation should be able to produce valid preliminary
results to overcome the first development stages. For that reason this
project evaluated a number of different candidate simulation frameworks.

Most of the simulation frameworks come as an additional package for
complete robotic control packages. Some of the currently available robotic
frameworks which enable high level control are: CARMEN [MRH+02],
Player/Stage [GHH+07], Webots [Cyb07] and Microsoft Robotics Toolkit
(MRT) [Mic06]. CARMEN, Player and Webots provide frameworks with
out of the box solutions for a number of robotic control problems, in-

CHAPTER 2. BACKGROUND 32

cluding path planning, localisation, mapping and communication. Each
framework also supports a range of different hardware devices.

All these frameworks come with a simulation environment. In this
environment a number of already simulated robots exist, e.g. the popular
Pioneer [MOB07], which can directly be used in simulation. MRT offers
a rather plain framework, i.e. no modules for common robotic tasks like
path planning and map building are provided. Implementing solutions
for task specific problems remain the developer’s responsibility.

Most task definitions only require a 2D simulation environment. Oper-
ation in a simulated office space is one example. In this area CARMEN and
Player/Stage compete. But a search and rescue operation requires robots to
move in a more challenging environment, i.e. a heterogeneous, cluttered
environment has to be expected and hence, is not comparable to any office
space scenario.

For that reason, having a 3D simulation environment is essential. Such
a 3D simulation environment including physics simulation is already part
of Webots, MRT and is available as additional project for Player. In order to
allow as much realism as possible, external physics packages are included
in the given frameworks for that purpose, i.e. Ageia in case of MRT and
Open Dynamics Engine (ODE) for Player/Stage and Webots.

A survey of commercial open source simulators [CMBG07] analysed a
large range of simulators by four major criteria:

(a) physical fidelity

(b) functional fidelity

(c) ease of development

(d) cost

Physical fidelity defines how good the simulation can actually present
the real operation environment and mainly concerns the presentation of
rendering capabilities. Functional fidelity describes the degree in which
physics are calculated considering forces such as gravity, motor accelera-
tion and collision and how these affect the movement of a vehicle or parts
of a vehicle. In order to take into account how much effort has to be spent

CHAPTER 2. BACKGROUND 33

to create a feasible operation environment and how easily modification can
be made, ease of development is a further criteria. The last criteria is cost
and it incorporates the time and money necessary for acquiring, installing
and running the simulation.

Overall Player and Webots are considered to be in the midrange of
all four criteria. Player is characterised with low functional fidelity. In
contrast Craighead et. al. describes the physics engine Ageia as ”one of the
highest fidelity engines available”. Therefore MRT shows high ratings for
physical and functional fidelity. Only three available simulators provide a
high level of fidelity, whereas MRT is the only one under consideration for
this project. MRT is also a more resource friendly and well documented 3D
simulation. Consequently, the current implementation is based on MRT.

Chapter 3

System overview

This chapter presents the layout of the centralised control system ’Ex-
ploreTM’, which guides a team of robots through a search and rescue
operation. This chapter provides a general introduction into individual
components and is followed by a detailed discussion of the individual
elements in subsequent chapters.

3.1 General design considerations and underly-

ing assumptions

The control system applies to a hierarchical team of robots, that consists
of a single grandmother robot and multiple mother robots. The system
centralises high level control on the grandmother robot to give guidance
to the exploring mother robots.

The centralisation of control has several advantages over a fully dis-
tributed system. Firstly, compared to a fully distributed system less com-
munication effort has to be spent to organise the group of robots and
achieve decisions, which affect the group as a whole. Secondly, computa-
tional intensive tasks can also be delegated from other robots to the grand-
mother robot, thereby increasing the capacity of the individual exploring
units.

Clearly though, the grandmother robot is a single point of failure in
the present architecture. Therefore, in order to reduce the overall risk
of physical breakdown, the robot will be positioned almost stationary

34

CHAPTER 3. SYSTEM OVERVIEW 35

but close to the operation area. The chosen location has to guarantee
communication with all mother robots in the exploration area during the
operation (see Figure 3.1).

In order to test the system in a simulation environment two major
assumptions are made, based on the given constraints:

(1) The grandmother robot does not penetrate the field of rubble for
search or rescue and therefore does not need a physical simulation.

(2) The grandmother and the mother robots communicate within a wire-
less network with full coverage of the operation area, and commu-
nication between grandmother and mother robots is assumed to be
perfect1.

An additional task of the grandmother robot can be the relaying of mes-
sages between mother robots. However, this is not an element of the
current design. Instead, this project expects more sophisticated wireless
solutions with better hardware and intelligent relaying strategies in the fu-
ture, so that transparent and continuous communication can be achieved
in a real scenario.

The grandmother robot is the general high level manager of the team of
robots in the architecture and it collects data from mother robots to direct
them to new exploration areas. The mother robots are part of the active
search group and explore the operation area autonomously, but based on
the general directives provided by the grandmother robot — referred to as
’missions’.

3.2 Centralised control to command a team of ex-

plorers

To control the team of mother robots from a central device the following
major requirements have to be fulfilled:

• The mother robots need fundamental navigational control to operate
autonomously.

1The actual simulation of multiple robots will run on a single computer.

CHAPTER 3. SYSTEM OVERVIEW 36

Figure 3.1: Assumptions for the operation

• The grandmother robot needs to compute a global exploration strat-
egy for the group of mother robots with individual exploration tasks
for each mother robot.

• Each mother robot has to execute the assigned exploration task au-
tonomously based on a possibly individual local exploration strategy

While the grandmother robot is responsible for computing the global
exploration strategy, mother robots will have a local exploration strategy
which is inherent to the navigational control. The navigational control
is based on Nehmzow’s description of robot navigation [Neh03] and the
ideas of Bekey [BT90] with the following low level control blocks:

• self-localisation

• map building

• path planning

Path planning in this description accounts also for a local (reactive) navi-
gation scheme.

This project does not implement the self-localisation module (refer
Chapter 5) for the control architecture (see Figure 3.2), but focusses on
map building, path planning and navigation and finally applies an explo-
ration strategy.

CHAPTER 3. SYSTEM OVERVIEW 37

Figure 3.2: Control architecture

3.2.1 Tasks of the grandmother robot

The grandmother robot itself does not penetrate into the operation area and
thus, does not have a perceptual unit. It therefore serves primarily as a
data integration platform and maintains a global map of the environment
by integrating data from the mother robots. It does so, by tracking the
mother robots’ positions and states.

The combination of global map and knowledge about the current
mother robot positions enables the grandmother robot to compute an opti-
mised set of missions for the group of mother robots. Each mission defines
a target area for a mother robot to explore and the grandmother robot
also provides the currently known best path to reach this area. This path
is computed on the basis of the accumulated data and thus, can only be
a rather loose guidance for the mother robot — taking into account that
the environment is highly unpredictable and gives higher importance to
current or recent perception than to accumulated and possibly outdated
knowledge. This also incorporates inaccurate localisation, a (low) resolu-
tion based map and a changing, noisy environment; factors which all affect

CHAPTER 3. SYSTEM OVERVIEW 38

the validity of the long term map representation (refer Chapter 6).

3.2.2 Tasks of the mother robots

The main task of the mother robots is exploration and mapping of their
environment. Therefore perception and subsequent map building are of
special importance for the mother robots (Chapter 6).

The mother robots mainly use a reactive navigation scheme to allow for
their operation in cluttered environments. To take advantage of available
map data and planning capabilities, each mother robot can also plan a path
through its local environment. Path planning and the integration into the
navigation module are presented in Chapter 7 and 8.

The global exploration strategy for the group of mother robots is defined
by missions received from the grandmother robots. These missions are
provided by the grandmother robot usually on request — only the very
first mission will be an unrequested assignment. A mission defines an
overall area to explore (currently a circular region), but to explore this area
mother robots apply an individual strategy; the frontier-based exploration
will be used in this project (refer Chapters 2 and 9)

3.3 Embedding the control system into a simula-

tion

Due to a number of reasons, which are outlined in Chapter 4, this project
requires a simulation of the mobile robots. The simulation and its inte-
gration with the control elements of the system are an essential part of
this project, which allows the evaluation of ExploreTM. The relationship
between control and simulation is illustrated in Figure 3.3.

The simulation is based on two major functional elements: physical
simulation of the mother robot and simulation of the current low level
software stack2. Each mother robot needs to be simulated with a device
model — instances are illustrated as ’mr device <id>’ in Figure 3.3. To
simulate the low level software stack, this project reconstructs a reduced

2This term refers to the layer of software that directly connects to the robot hardware.

CHAPTER 3. SYSTEM OVERVIEW 39

Figure 3.3: Relationship between control and simulation

version of the software stack of the actual mother robot — protocol specific
communication details are ignored. This actual software stack operates
on a layer close to the hardware and combines all raw sensor data into a
single packet and also allows the mother robot to perform incoming control
commands. The ’sensor & actuator data processing’ element as shown in
Figure 3.3 simulates this component and also defines the communication
interface for ExploreTM, which is a close match to the real interface.

3.3.1 Simulation as part of the system design

MRT provides the simulation environment in this project (refer Chapter 2)
and allows the substitution of simulated devices for real devices. It also
allows modularisation using loosely coupled modules and thus, communi-
cation between modules is message based. Figure 3.4 separates elements
into simulation and control and gives an insight into the actual imple-
mentation, where services and the MRT specific physical simulation are
separate. This project uses services to implement generic robot control,
but also to enhance the simulation. Services that are a part of the control
of the mother robots combine the functionality of the developed control
algorithms in this project, and in addition provide communication and
synchronisation mechanisms (refer Chapter 4) — each of the illustrated
rectangular elements represents a service instance.

CHAPTER 3. SYSTEM OVERVIEW 40

Figure 3.4: Simulation and control of the robots

Each mother robot is represented by a physical entity in a physics en-
gine within the simulation. In order to fully model the mother robot as
developed in [Wil07], an additional ’mother robot <id>’ service performs
the mentioned ’sensor & actuator data processing’ (see Figure 3.3), handles
simulation specific details and communicates with the simulated mother
robot entity. Thus, this service mediates between the control services and
the simulated entity, and finally allows the control services to work inde-
pendently from the robot simulation. The control and its implementation
are therefore generalisable — only the message types passed between the
control and hardware devices need to match for a transfer to the real de-
vice,.

In order to ease this transfer, the implementation follows closely the ex-
isting hardware communication protocol definition [Wil07]. This protocol
mainly defines the sensor data the mother robot provides. Nevertheless,
the current implementation contains (temporary) extensions, where neces-
sary; changes are required for additional package content after introducing
new sensors or in order to forward debug information from the simulation
environment.

The choice of a robotic framework requires some commitments in terms
of the technologies to use. The general intent of a robotic framework is
to ease the developer’s life and MRT does so. Nevertheless, it has to

CHAPTER 3. SYSTEM OVERVIEW 41

be clear that the usage of such a framework also raises constraints and
enforces the application of specific techniques. For this implementation
it has implications on the communication and the way of dealing with
concurrency, which are not easily transferable to other platforms (operation
systems apart from Microsoft Windows). These implications are discussed
in Chapter 4.

However, the framework allows a faster implementation in general
and matches the design approach. The service oriented nature of the
MRT framework supports the idea of a centralised operating grandmother
robot, which can be seen as a service provider for the group of mother
robots. Eventually, the design of an effective and clear communication is
facilitated.

3.4 Message based communication

Although control is centralised, the team of robots is still distributed and
thus relies on the exchange of messages to transmit information. Three
main communication nodes exist:

1. an operator

2. the grandmother robot

3. the mother robot

Future designs will need to expand this model to include the daughter
robots as further communication nodes.

Figure 3.5 visualises the message types including their direction of
flow. The diagram abstracts the most important communication elements,
while the implementation actually splits some message types into more
specialised types.

• influence map: allows operators to influence and monitor operations

• state update: provides the known position and orientation of the
mother robots, based on the best knowledge of the grandmother
robot

CHAPTER 3. SYSTEM OVERVIEW 42

Figure 3.5: Message types

• heartbeat: contains information about the current position and orien-
tation of the mother robots

• map update: transfers an update (subsection) of a larger map

• mission request: triggers a mission update for the group of robot. This
is a functional message type and contains no payload.

• mother robot update: transfers the current mission to the individual
mother robot

The focus of ExploreTM is autonomous control, so that an operator
should be mainly observing. Messaging between operator and grand-
mother robot is therefore limited. The grandmother also serves as a buffer
and relay to direct information from the mother robots to the operator, be-
cause direct communication between mother robots and the operator can-
not be guaranteed. The State update message, for example, is forwarded
to the operator and contains information about the current positions of
mother robots in the field.

Operators can provide information via an influence map, which is only
sent to the grandmother robot. On the grandmother robot, this influence
map is then augmented with map information from the mother robots
(refer Chapter 7 and 9 for details). The operator will regularly receive
an enriched map and more frequently a general state update from the
grandmother robot to monitor progress of the operation.

The outlined communication between the grandmother robot and mother
robots characterises the grandmother robot’s initial more passive, observ-
ing role. Nonetheless, it provides additional functionality to the mother

CHAPTER 3. SYSTEM OVERVIEW 43

robots. So the mother robots will actively send timestamped heartbeat
messages, containing information such as their current position and orien-
tation. The grandmother, however, will send updates to the mother robots
usually only on request. A single request of one mother robot will trigger a
mission update for the whole group. This is necessary in order to maintain
an optimised global strategy. Influenced by the current mother robot posi-
tions and the current exploration status of specific areas it is more efficient
to send all robots their currently best missions, than just sending the one
robot to its best mission.

At a more detailed level, the map updates are separated from heartbeat
messages so that they can be less frequently sent. The reason for this
separation lies in higher preparation cost of the map updates.

Figure 3.6: Communication of the mother robot control with the (simu-
lated) hardware

In order to communicate with the hardware, a mother robot requires
only two different messages types (see Figure 3.6). The mother robot
(intelligence service) reasons with the sensor updates received from the
hardware and generates a velocity command for the mother robot drive
(see Figure 3.7).

Not only communication between robots builds on messages, but also
the robot internal communication. Using messages for internal calls in-
stead of direct methods or function calls is mainly done to avoid issues
with multiple synchronisation technologies (see also Chapter 4).

An understanding of this message based approach is also essential
to follow causalities and timing. The communication between hardware
(simulation) and mother robot intelligence serves as an example:

CHAPTER 3. SYSTEM OVERVIEW 44

typedef struct _AT91S_UPD_DataIn {

unsigned short RT_ID; /* heartbeat */

unsigned char master; /* Master status */

unsigned char supply; /* PSU control */

unsigned char R_motors; /* Motor A value */

unsigned char L_motors; /* Motor B value */

unsigned char camAng; /* Camera servo angle */

} AT91S_UDP_DataIn, *AT91PS_UDP_DataIn;

Figure 3.7: Real incoming UDP data package from [Wil07] for high level
hardware control

The hardware sends state updates to the intelligence service at a fre-
quency of 5 Hz. A message handler within the intelligence service will
trigger subsequent actions once the update is received and effectively all
following actions are bound to the sensor update frequency. In order to
achieve better computational efficiency3 specific actions are only called af-
ter a number of sensor updates. Thus, the sensor update frequency is the
fundamental timing parameter the control is built upon.

3.5 A time-based analysis of ExploreTM

To allow a better understanding of the internal control structure Figure 3.8
illustrates a high level sequence diagram. For reasons of clarity the diagram
abstracts some details, which will be discussed in this section.

Every time the mother robot’s intelligence service receives a sensor
update, it generates an internal map and control request. This request
triggers the following actions:

1. A point cloud (or set of vertices) of the location environment is com-
puted from current sensor data

2. The point cloud is integrated into the map of the mother robot

3. The graph structure of the map, which is used for path planning, is
updated

3Efficiency is essential for the simulation in this project to allow multi robot scenarios.

CHAPTER 3. SYSTEM OVERVIEW 45

4. A velocity command is computed taking into account current and
previous sensor data

This process guarantees that the mother robot operates with the most recent
sensor input for navigation.

In order to keep the grandmother robot informed about the position
of the exploring unit, each mother robot sends heartbeat messages to the
grandmother robot — with a basic sensor update frequency of 5 Hz the
current setting generates updates at every two seconds.

Because map updates are computationally costly and in a real scenario
affect communication bandwidth, mother robots generate map updates
for the grandmother robot at a lower frequency (currently every 15 s). In
addition map updates are actually partial map updates, because a mother
robot considers only the area that might have changed during past the past
travel. The grandmother robot will update a graph structure from its global
map after receiving a certain number of map updates — the graph update
is usually triggered when every mother robot has sent a map update.

When a single mother robot requests a mission, the grandmother gen-
erates an optimised mission set for all mother robots and updates the states
of the mother robots — the state includes the current mission.

The operator influences exploration by sending information contained
in an influence map to the grandmother robot. This additional information
is merged with the grandmother robot’s current influence map which is
based on the global map data. The grandmother robot sends state updates
of the group of robot and its influence map at regular intervals back to the
operator interface to allow for continuous monitoring.

Tuning parameters of the control system

The sensor update frequency is the fundamental timing variable and other
timing parameters are set relative to it:

• sensor update frequency

• heartbeat rate

• map update rate

CHAPTER 3. SYSTEM OVERVIEW 46

Figure 3.8: Sequence diagram of the control

CHAPTER 3. SYSTEM OVERVIEW 47

The graph rebuild rate can also be defined for the grandmother robot.
In addition to the timing parameters, the message size of the map

update can be influenced by setting a limiting radius around the robot’s
current position, so that only a map update of that specified section around
the robot is forwarded. But the radius and the map update frequency are
not independent, considering that the grandmother robot should receive
updates which cover all explored regions. For that reason, the following
constraint should be satisfied:

m
fs

vmax + rs ≤ R

where

fs sensor update frequency in 1
s

m map update rate (dimensionless factor)
vmax maximum velocity of the robot in m

s

R map radius in m
rs the robot’s sensing radius in m

This constraint considers the maximum travelled distance plus the sens-
ing distance and therefore ensures that a map update includes all recent
updates of a travelled region. The current implementation does not en-
force this constraint, but an alternative implementation could monitor this
constraint and trigger an update when it is violated.

3.6 Summary

This chapter presented the overall system design based on a centralised
control built around the grandmother robot. It introduced the individual
elements of control and differentiated between the requirement for the
individual mother robot and the group as a whole. The main and defining
elements of the architecture are:

• participating communication partners: operator, grandmother robot
and mother robots

• variety of message types: as trigger only or with payload

CHAPTER 3. SYSTEM OVERVIEW 48

• timing structure: relative to the sensor update frequency

Chapter 4

Simulation

Development in the area of mobile robotics simulations is often supported
by a simulation, because it is significantly cheaper and allows much faster
and more flexible experimentation than using physical robots. For this
particular project, a simulation was essential because there is only one
physical mother robot at present and it is only partially functional, so it
could not be used for real experiments. Thus, one goal of building the
simulation was to have a simulation available for future projects.

MATLAB [Mat08] has been the simulator of choice for recent projects.
In these cases simulation was 2D and robots ran only in planar environ-
ments such as office spaces. This is not adequate for search and rescue
environments which are cluttered, non planar, and contain not only walls
and obstacles, but also holes and drops — a 3D simulation is required.
Such a simulation can also be used for other two dimensional simulations,
although only with a higher computational overhead.

A useful simulation must satisfy a range of constraints, concerning
accuracy and representing 3D, due to the nature of the application. The
robots will negotiate a field of rubble and interact closely with the environ-
ment. That requires an accurate simulation to imitate physical behaviour of
objects. In general, the requirements to implement a realistic environment
can be large considering the detailed simulation of forces. Consequently,
setting up a realistic simulation environment is a demanding task.

MRT was chosen for this project from a selection of toolkits for robotic
control (see Section 2.10).

49

CHAPTER 4. SIMULATION 50

4.1 A description of the simulation framework

MRT has a mature 3D simulation, which was the main reason to choose it
over all other frameworks. For simulation purposes, MRT interfaces with a
third party physics engine [AGE07], which is one of the most sophisticated
in the industry [CMBG07]. The physics engine allows collision detec-
tion and computes realistic collision behaviour. Furthermore, customised
robots can be modelled with a high degree of accuracy, e.g. parameters
such as the wheel friction, suspension and mass can be set. Such parame-
ters can be experimental values derived from the real world, thus creating
a simulated world close to the real one. These aspects are important pre-
requisites for simulating robot movement in cluttered environments.

In general, the framework is highly adaptable and enables the creation
of a realistic approximation of a real world robot. But because MRT is just
a framework, some effort is required to design services, message types and
the individual robot models (also called entities) including their specific
sensor devices.

4.1.1 A special technology addresses concurrency issues

Since an exploration team consists of multiple robots, concurrency issues
for the control model and the simulation arise. MRT assists using a tech-
nology called Concurrency and Coordination Runtime (CCR) [Mic07] and
allows the abstraction of concurrency issues. This technology eases con-
currency handling, but does not free a developer from a sensible design to
avoid performance bottlenecks. As one of its features, CCR allows the ex-
clusive execution of a program section. The consequence of an uninformed
use of this feature can be fatal, wasting a huge amount of computing capac-
ity. In addition, a mixture of CCR and classic synchronization techniques
such as monitors or locks should be avoided. However, this is not always
possible, so that special care has to be taken when mixing the models.

4.1.2 Communication infrastructure

The communication infrastructure of MRT is built around a service based
model. The main idea behind this model is the separation of functionality

CHAPTER 4. SIMULATION 51

and encapsulation into single units called services. Each such service can
handle inbound and outbound communication through so-called ports
and associated message handlers.

Figure 4.1: Communication with port, messages and message handlers

A service supports specific message types which can be received on a
single port. A message can be forwarded to a message handler, which has
been attached to the port. Once the port receives a message it forwards
it to the message handler, which specifically deals this type of message.
Messages are the essential elements of this communication between ser-
vices — they can contain payload data or just trigger some action, so that
a variety of message types can be defined.

A loosely coupled system is the main result of communicating only
via messages. Hence, components (services) can be substituted as long as
they satisfy the interface requirements of the service in terms of sent and
received message types.

For the robot simulation, a number of custom messages define the
communication model between grandmother and mother robot, as shown
in Chapter 3. For example, in order to send a partial map update from
the mother robot to the grandmother robot, a special message type carries
map data. While the abstract design of the messages is mainly generic,
the implementation has to be specific to MRT. This approach is structured
and allows transparent handling of low level communication issues, which
would arise with alternatives such as a purely socket based approach.

CHAPTER 4. SIMULATION 52

4.1.3 Modelling devices and entities

MRT provides a small standard set of modelled robots, which can be used
in simulation. In addition, it provides a general implementation of a
differential drive plus several simulated sensors such as a webcam and
a laser range finder. Due to the unique design of the mother robot and
specific sensor units, this project could only take advantage of few of them
and had to build customised models for the others.

In order to simulate a device, two main actions have to be taken:

1. creating a three dimensional representation of the device/entity

2. reproducing inherent functionality of a device

Creating an initial representation of elements like wheels, joints and rigid
body elements is straight forward and can be defined based on the specifi-
cations of already existing devices. Nevertheless, further customisation is
essential, e.g. for a wheeled robot, the detailed representation of the wheel
have a significant impact on the quality of the simulation.

In MRT (as a wrapper around the physics engine), wheels can be pa-
rameterized with a so-called tire force function. The tire function as shown
in Figure 4.2 visualises four out of five overall parameters:

e Extremum slip

e∗ Extremum value

a Asymptote slip

a∗ Asymptote value

The function defines how much force a tire can transfer, until the tire
starts to slip. A further associated parameter is ’stiffness’ and it describes
how much weight a tire can carry. The tire force function can be applied
independently for forward and sideways forces acting on a tire.

Representing the functionality of sensors of differential drives is com-
plex and needs close interaction with the physics engine. To generate
realistic output from the range finder, for example, the physics engine
provides the infrastructure to calculate the distances between devices and
objects.

CHAPTER 4. SIMULATION 53

Figure 4.2: Tire force function

Although the real robot require specific elements to handle the com-
munication between sensors and the robot, in the simulation, the details
of device specific communication can be ignored and the main focus put
on the actual functionality. A service can represent a sensing device by
encapsulating the details of (serial) communication along with the sens-
ing device. As already mentioned, this simplifies the transition from real
world to simulation and vice versa, because the service simulating the
sensor can be used interchangeably with the service for the real device.

4.1.4 Multi robot simulation

In general, simulating a group of robots is not much different from simu-
lating a single robot — once the model for a single robot is established, the
model can be reused. However, each robot needs to be uniquely address-
able in order to be controlled from the grandmother robot.

Furthermore, the simulation and control of each individual mother
robot is based on a group of interdependent services. In order to automate
the activation process of services in this simulation, a numeric identifier
allows for a consistent naming scheme: ’motherrobot-¡id¿-¡modulename¿’.

CHAPTER 4. SIMULATION 54

4.1.5 Special considerations for using a 3D simulation

After building a simulation for a 3D environment, it is up to the control
elements to account for the third dimension in mapping, planning and
navigation. The additional dimension compared to 2D, however, has an
impact on the computational requirements. The simulation has to compute
physics for all dynamic devices and objects in the environment. This
challenge is even higher in a cluttered environment, because of the large
number of individual objects.

In this project, multiple robots operate simultaneously. But clearly, the
simulation of a group of robots requires significantly more resources than
the simulation of a single robot, considering that each robot performs path
planning, mapping and navigation individually. A dedicated physics card
can ease this challenge, but was not available in this project.

The control algorithm requires additional resources, so that a scenario
with two concurrently operating robots can require up to 80 per cent of
the processing capacity of a 3 GHz Dual Core PC with 2GB of memory,
depending on the tuning parameters of the control. For that reason, some
effort of this project aims at reducing the performance requirements of
simulation and control algorithms.

4.2 The modelled world and robot devices

This section describes the three major elements developed for the simula-
tion:

(i) world model: the operation environment of the robot

(ii) robot model: the representation of the robot itself, including sensors,
communication and part of the software stack

(iii) configuration interface: a interface to facilitate configuration of the
simulation and allow quick setup of tests

The control software for the robots is not considered part of the sim-
ulation environment: the control software is the central element which
is tested in the simulation and as such not part of the simulation itself.

CHAPTER 4. SIMULATION 55

Therefore, the term ’simulation environment’ only refers to the modelled
environment and the hardware parts including their low level communi-
cation.

4.2.1 The world as a field of rubble and debris

The application of USAR robots target mainly sites with structural collapses
which result in a field of rubble and debris. Based on an analysis of a variety
of disaster site images, this project identified the following set of unique
challenges within a site:

• overcoming a field of rubble and specifically dealing with major
drops

• moving on an inclined surface (on different grounds)

• detecting enclosures

The challenge of detecting enclosures arises from the idea, that an au-
tonomously operating robot should be able to signal its own emergency
status to an operator. This would allow the operator to take adequate ac-
tion such as temporarily controlling the robot manually. These challenges
also provide a basis for measuring performance according to the published
performance guide for Urban Search and Rescue robots by the US Depart-
ment of Homeland Security [Dep08]. In order to validate the functionality
of the robot and its algorithms, the robots must be confronted with a num-
ber of unique challenges, i.e. dealing with one of the above challenges at
a time, as well as combined challenges dealing with a overall mixture of
these challenges.

Creating challenges

To create an environment full of rubble the simulation places a number
of variable sized blocks over a predefined area. A random process with
an underlying Gaussian distribution controls height, width and length
parameters of the blocks, so that a variety of blocks is produced. The
same random process determines positions for the blocks in a predefined
area. By placing the blocks initially well above ground, they fall onto each

CHAPTER 4. SIMULATION 56

other creating a random environment, which includes unstable parts and
holes (which will be important for subsequent projects introducing smaller
mobile robot units).

Figure 4.3: Field of rubble

In order to generate other challenges like enclosures or drops, MRT
also allows the creation of surfaces using an elevation map instead of just
dropping blocks. This allows fast generation of varying surfaces with
particular desired properties.

Elevation maps cannot be used to build structures such as bridges (part
of the drop challenge) which need further description of free space sections.
Generation of such challenges requires the manual, i.e. programmatic in-
sertion of additional objects or structures defined in an external 3D designer
tool. Figure 4.4 presents four different challenges, each addressing one of
the mentioned challenges.

While this thesis was being written, Microsoft published a preview of
its new version of the robotics framework. This new version also integrates
a feature which allows the fast creation of building structures. Combined
with the presented approach of creating a field of rubble, this should be
able to create an even more realistic search environment and more complex
challenges.

CHAPTER 4. SIMULATION 57

(a) Ramp (b) Bridge

(c) Drop (d) Enclosure

Figure 4.4: Four different challenges

CHAPTER 4. SIMULATION 58

4.2.2 Modelling the mother robot

The mother robot consists of different elements which need simulation:

• a rigid body

• a single joint

• wheels

• sensors

• low level/control software

This project models the mother robot as closely as possible. The real
mother robot is described in [Wil07]. Table 4.1 lists the key features of the
specification of the real mother robot:

Weight (front/rear) 7.4/6.4 kg
Bodysize (front = rear) 25 × 40 × 10 cm

Wheel radius 15 cm

Max velocity
0.35-0.5 m

s

depending on battery load
Max acceleration 0.4 m

s2

Table 4.1: Specification of real device

Implications of the mother robot design

A major feature of the mother robot is the split chassis design. The front
and the rear body are only connected by a cylindrical joint with one degree
of freedom (see Figure 4.5). This design allows the front and rear body to
twist, with the intention to facilitate the negotiation of obstacles. The de-
gree of freedom for the joint is limited by four (physical) stopper elements.

Compared to a robot with only a single rigid body, the specific design
of the mother robot increases the complexity for the simulation and control
in two ways. Firstly, the project had to create a customised model which
could take little advantage of the design of other already modelled robots.

CHAPTER 4. SIMULATION 59

(a) real device (b) simulated device

Figure 4.5: Mother robot

Furthermore, the placement of sensors has to be more precisely specific, be-
cause sensors can be either attached to the front or the rear body. Secondly,
because the control had to take into account the different orientations of
front and rear body.

In addition to these challenges, the robot’s symmetrical design allows
operation after it has been flipped over. Because of the way that the
physics engine models wheels1, this feature cannot be directly supported.
Therefore a specially designed monitor function detects a flip and triggers
appropriate changes to allow for continuous operation.

The ability to flip is a feature which addresses endurance and tum-
ble recovery as described in Section 2.1.3. To fully guarantee continuous
operation after a flip (upside down), navigation and mapping algorithms
require knowledge about the current orientation.

Range finder simulation

The majority of sensing devices of the mother robots are range finders
[Wil07], which use single ray sensing. These are infrared range finding
devices which come in two different forms: (a) single and (b) array. The

1In MRT’s physics engine Ageia, wheels are modelled as single vectors, sliding on the
ground. To cope with complex terrain, the model has to use eight superimposed ’wheels’
with different orientations

CHAPTER 4. SIMULATION 60

infrared sensor arrays of the mother robot provide five readings, where all
these readings lie in the same plane and have a spanning angle of 25◦. The
single sensor provides one reading. Both device types have a maximum
sensing range and a minimum range — the first 20 cm in the case of the
1.2 m maximum range cannot be measured correctly, or 40 cm with the
3 m maximum range. False sensor readings can be caused by obstacles in
the minimum range and can have a negative influence on the performance
of the robot. However, for this project mainly a blind section with no
measurements is assumed (refer Chapter 6).

Table 4.2 and Figure 4.6 illustrates the sensor configuration of the cur-
rent hardware (the rear sensors are missing in this illustration, but were
part of the initial design).

Front
2×single 1.2 m

2×array 3 m
Side 2×single 1.2 m
Rear 2×single 3 m

Table 4.2: Sensor configuration in original mother robot design

Figure 4.6: Sensor configuration from [Wil07]

Infrared range finders are similar to laser range finders, because both
measure distance with a single sensing ray. However, the infrared sensors
provide fewer readings and also less accurate ones than a laser range finder.

This project modified an existing module which simulates a laser range
finder to model the infrared sensors. The modifications to the laser range

CHAPTER 4. SIMULATION 61

finder module include resolution, ranging distance and opening angle,
which were derived from the data sheet of the real infrared sensor devices.
To simulate the inaccuracy of the infrared sensing devices, it is possible
to activate an optional noisy sensor model, which is based on the mixed
distribution model discussed in Chapter 2.

The simulation simplifies localisation

The simulation can provide information about the global position and
attitude of entities at every time step. Therefore an explicit model of local-
isation sensors, i.e. a Global Positioning System (GPS) sensor or similar,
is unnecessary. The knowledge about position and orientation after every
control interval allows the modelling of an Inertial Measurement System
(IMS), which includes accelerometers and gyroscopes. However, the local-
isation techniques are in place to provide exactly this: information about
position and orientation. So it is not a matter of modelling these units,
but to estimate the error they produce and Chapter 5 offers a broader
presentation of this issue.

Noise will always affect localisation and as an example of how to model
noise, this project integrates odometry error into the simulation. The odom-
etry error will not be relevant for the design of ExploreTM, but only serves
as example on how to achieve a more realistic sensor simulation.

The main sensors for odometry data are wheel encoders, which provide
the distance of travel for a wheel. They operate with a certain resolution
and thus integrate a small error over time. Based on the knowledge of
travelled distance, the current position can be inferred from a previously
known positions. The model as described in 5.1.1 initially provides exact
localisation, but it also can incorporate an error, controlled by a single
parameter per wheel based on experimental values of the real device. This
parameter specifies the error as a fraction of distance travelled. When noise
is activated in the simulation, this parameter is a sample from a Gaussian
distribution with a mean of 0.6% and a standard deviation of 0.2%.

CHAPTER 4. SIMULATION 62

4.2.3 Central configuration for simulation and control

Using MRT has a steep learning curve due to the involvement of various
technologies. To make it easier for other users of the system, I introduced
a central configuration file to allow users to choose an environment, place
the robots in it and configure the specific control parameter of ExploreTM
without having to learn all the details of MRT.

The central configuration file can be modified to create different config-
urations and scenarios for multiple robots. Hence, it allows an easier setup
method for testing and enables novices also to use the simulation. Change-
able parameters of the configuration correspond to one of the following
categories:

(a) robot

(b) terrain

(c) control

(d) physics

(a) Within the robot category, initial positions and missions are set, so
that the number of robots and their starting positions can be controlled.
In addition, the definition of initial missions allows the test of reaching
specific areas.

(b) Terrain settings allow the selection of a specific challenge the robot
has to face. The field of rubble is generated randomly, while all other
challenges are predefined.

(c) The control section offers the most complex setup. It contains all the
tuning parameters outlined in Section 3.5 and the relationship between
map update, sensor frequency and subsequent tasks is defined here.

(d) The physics section addresses limitations of the simulation engine,
which require a specific setup. This section allows also the activation of
noise for range finders based on the references given in Chapter 2 (see

CHAPTER 4. SIMULATION 63

Figure 4.7) and, as mentioned, for odometry. Note, that in this project no
algorithms are in place to filter noise.

These settings are all combined in a single XML formatted file and
Figure 4.8 shows an example.

Figure 4.7: Probability distribution for a long range finder with activated
noise and a current distance reading of 1.5 m

Figure 4.8: Extract of the configuration file

CHAPTER 4. SIMULATION 64

4.2.4 How realistic is the simulation

Research for robots which has been done solely with simulation does not
easily transfer to real robots and the final solution can perform good in
simulation, but badly in a real world scenario. The reason is usually a lack
of environment noise. To avoid failing in the real world, the simulation
should contain a realistic noise model. Due to its simplicity, the most
common approach for modelling noise is Gaussian. The Gaussian model
is not the ideal model for real noise and alternative approaches have used
mixed distribution models with success (refer Chapter 2).

For the simulation of sensors this project includes a noise model with a
mixed distribution. For some parts, such as localisation, assumptions are
made to limit expected variance in the sensor data. But to meet these as-
sumptions in a real environment, additional filter mechanisms are required
(refer Chapter 5).

For an application to a real world robot, a robot needs configuration
and calibration for the specific sensors. That includes a deep experimental
analysis to find the characteristics of attached sensors. Learning an inverse
sensor model from sensor data and a known environment with a neural
net [TBF05] represent one possible approach.

Every hardware platform has its own characteristics and this adaption
process is essential for an application in the real world. Thus, configuration
and calibration is a necessity for a real world robot, but can be ignored in
a simulation.

4.3 Analysis of the robot design

Part of the current project was an analysis of dynamic, static and simulated
situations. The results of the analysis led to a change of the current robot
design and sensor configuration2. The changes to several parameters are
outlined in Table 4.3 and in addition two vertically mounted long range
(3 m) infrared sensor array were added to the front of the robot.

2While a real implementation of a robot is not powered from an everlasting energy
source, this project ignores the issue of battery discharge and uses the specifications for a
fully charge battery for the simulated robot operation.

CHAPTER 4. SIMULATION 65

In a previous project, the mother robot was tested in a real environment
[Wil07], and video capture were obtained. Due to the fact that the real
robot’s gearboxes are currently broken, the real life experience is based on
these short video captures which show following situations:

1. moving over a field of rubble

2. moving over an obstacle to show the body joint functionality

3. moving straight ’into’ a wall and flipping the robot

The video captures were too short and too constrained to provide a useful
analysis of the robot’s behaviours (though they were still useful to calibrate
the simulation).

original changed
Wheel radius 15 cm 20 cm
Max velocity 0.5 m

s 1 m
s

Max acceleration 0.4 m
s2 0.5 m

s2

Table 4.3: Changes to the modelled device

Analysis showed that the original configuration did not perform as
expected in simulation. Some of the problems identified in the analysis
were:

• physically constrained to traverse steps higher than 17 cm

• unable to autonomously overcome obstacles higher than 10 cm safely

• heavily limited to detect steps, inclines and potential drops with
range finders mounted all in one horizontal plane

The presented changes, especially the enlarged wheels, allow a more con-
sistent behaviour for overcoming higher obstacles. The addition of two
vertical sensors arrays allows the robot to detect steps, inclines and small
drops to the front of the robot, while the symmetrical design is still main-
tained to support inverse operation. Figure 4.9 shows the new sensor
configuration.

CHAPTER 4. SIMULATION 66

Figure 4.9: Modified front sensor configuration

With the new configuration the robot can negotiate obstacles up to a
height of 15 cm, but has some persisting problems with large obstacles and
steep angles of attack. The closer the obstacles come to a height of 20 cm,
the more unpredictable behaviour the robot motion gets. The reasons for
that can be divided into three categories:

1. limitations of the simulation

2. limitations of the control algorithm

3. limitations of the actual robot model (hardware design)

The limitations of the hardware platform are either related to perception
and sensors, or to motion. Some of the identified limitations of the hard-
ware platform led to the changes listed in Table 4.3 and adding two vertical
infrared sensors array offers better robot perception. But the robot’s per-
ception is far from a desirable state for a robot moving in a cluttered field.
Even with the enhancements the robot is unable to differentiate between
a drop or a long stretched declining surface. Perception of the robot is
therefore still limited and has a significant impact on the performance and
selection of strategy for mapping, path planning and navigation.

With the modified sensor configuration the detection of surface incli-
nation is still limited to a small angular range to the front of the mother
robot, where the range finders are mounted vertically.

Thus, to distinguish between ramps and non traversable obstacles the
mother robot has to approach the obstacles closely, depending on the max-

CHAPTER 4. SIMULATION 67

maximum traversable slope step = 0.2 m step = 0.15 m
30◦ 0.35 m 0.26 m
25◦ 0.43 m 0.32 m
20◦ 0.55 m 0.41 m
15◦ 0.75 m 0.55 m
10◦ 1.13 m 0.85 m

Table 4.4: Distances after which the robot can distinguish between incline
and obstacle

imum incline the robot has to deal with. The robot platform can deal with
an inclination of up to 30◦, but it has to approach a not yet classified obsta-
cle until it can distinguish between ramp or non-traversable obstacle with
its planar mounted range finders. The maximum traversable incline and
the maximum traversable step define how close the mother robot needs to
approach a potential ramp (refer Table 4.4). Then the mother robot either
reaches the inclination of a ramp and the changed attitude of the robot
allows a new interpretation of the range finder measurements, or the robot
faces a non-traversable obstacle/ramp.

A further issue arises from the skid steering drive in combination with
the twisting body design. The simulation shows that a mother robot which
tries to negotiate an obstacle with a steep angle of contact, usually fails to
overcome obstacles larger than 15 cm.

The reason can be partially found in the observation of the following
situation: the robot is moving on a plane and only one wheel is in contact
with an obstacle. The resulting motion twists the front body and the rear
body. Because the front body moves on top of an obstacle with one wheel,
the joint is lifting while following a curve as a result of the twisted front
body. The effect is that the rear body is twisted away from the original
direction of motion (of the front body). This makes it more difficult for the
rear wheels to climb up the obstacle. Figure 4.10 illustrates the effect.

CHAPTER 4. SIMULATION 68

Figure 4.10: Front and rear body are moving in different directions, while
overcoming obstacles

4.4 Evaluation of the simulation

Though a simulation is a great way to provide initial results, it has some
limitations.

The physics configuration including the wheel parameters could only
be empirically set by trying to imitate the real behaviour of the robot as
seen on the videos mentioned in Section 4.3. The parameters of the tire
function have a great impact on this behaviour. Because a longitudinal
and lateral tire function can be defined, a good combination of both had
to be found to achieve a realistic behaviour for overcoming obstacles and
skid steering at the same time. The values chosen for these functions are a
result of an empirical tuning process with the main criteria:

• allowing a point rotation of the robot, without twisting the body

• stable overcoming of obstacles up to a height of 15 cm

• overall impression of motion consistent with the real device

Given the limited amount of video of dynamic behaviour of the real robot,
the current values can only be an approximation.

CHAPTER 4. SIMULATION 69

Extremum slip 2.5
Extremum value 0.7
Asymptote slip 3.5

Asymptote value 0.01
Stiffness 1500

Table 4.5: Tire force function - longitudinal movement

Extremum slip 2.5
Extremum value 0.05
Asymptote slip 3.5

Asymptote value 0.01
Stiffness 15000

Table 4.6: Tire force function - lateral movement

MRT does not use the full flexibility of the physics engine at the moment.
This is mainly due to the indirect access to the physics engine through
MRT. By providing only a reduced interface to the underlying physics
engine, some advantages of the high fidelity engine seem to be lost 3.
During the development of this thesis, updates to MRT already addressed
some of these issues and others might be resolved in future versions of
MRT by having a broader API. Most of the limitations of this simulation
environment are common to many others, because simulated physics are
not perfect and a lack of noisy environments will remain. Though this
project has shown how to implemented noisy elements for the simulation,
it is far from complete.

This project embeds ExploreTM in a communication infrastructure
which is specific to MRT. Thus, trying to expand the current work to
other platforms (such as Linux), requires a deeper analysis of the involved
message types. That means that further development is initially bound
to MRT. This is a well known and accepted limitation, because MRT of-
fers other advantages, which speed up implementation and ease overall
development.

3The underlying API offers a more complex parameter setting.

CHAPTER 4. SIMULATION 70

The computational resources for this project are currently limited and
require efficient algorithms with a careful setting of control parameters to
allow for a multi robot simulation. The control interval and map size are the
major factors to be mentioned here. The anticipated control interval by the
previous project [Wil07] is 40−100 ms. However, an investigation showed
that the infrared range finder arrays only have a response time of 175 ms.
This project adopts a common control interval of 200 ms (control frequency
of 5 Hz). But even this cycle might not always be maintained by the
simulation, given a large number of simulated mother robots; this project
addressed this issue by using the independent simulation time instead of
real time and triggers sensor updates only based on the simulation time.

4.5 Possible solutions and extensions

Simulation

Further effort should be taken to improve the simulation. The use of the
physics simulation in a more direct form should be considered, although
the simulation of sensor devices would then have to be addressed sepa-
rately.

Clearly, the better the characteristics and specification of the real device
are known, the better the modelled device will be in simulation. More
information should be derived from (field) experiments to improve the
matching of the kinematics of the real model with the simulated robot.
Experimental values can enhance the error model of sensing devices and
to improve the kinematic simulation the evaluation of damping and friction
coefficients can be sensible, though considered to be of lower priority.

Robot design

Perception is one of the greatest challenges this robot design offers. With
the current set of sensors, and even with the ones added by this project,
perception is very limited. In order to operate in a highly cluttered en-
vironment and maintain the low cost property of the robot design at the
same time, a better solution has to be found. Investing in a larger set of in-

CHAPTER 4. SIMULATION 71

frared sensors is an option, but would require additional micro-controllers
to maintain a control cycle of 5 Hz.

The mother robot’s current design lies within the requirement of the
Department of Homeland Security, but having an four wheel drive control
would be a clear advantage for the wheeled robot, although also a funda-
mental change of the moving platform can be considered. Currently, the
current skid steering device limits motion to rather simple terrain struc-
tures and has negative implications for localisation. It could also lower the
impact of steep angles of contact between wheels and obstacles. Choosing
different wheel sizes with greater width offers a quick fix to create better
suspension and grip, but it will worsen the properties of skid steering —
wheels with steering angles would be required.

4.6 Summary

The implementation of a simulation has brought valuable results for cur-
rent and future development of the robot:

• A valid and faithful simulation has been implemented including the
design of a robot model and specific sensor models. It allows easy
reconfiguration and testing of multi robot cooperation with this robot
model, which will ease further research with this robot model.

• Major shortcomings of the robot design have been identified and this
project addressed those issues with changes in the sensor configura-
tion and the wheel design.

• This project suggested and implemented some noise models to en-
hance further research with this simulation environment. However,
these models are not used in subsequent evaluations of the control
model.

• A simple configuration interface guarantees a quick start with the
simulation for beginners and simplifies testing.

It is important to deal with the limitations of the simulation, but iden-
tifying shortcomings of the control algorithm and the hardware model is

CHAPTER 4. SIMULATION 72

the major focus and provides valuable input for further research and de-
velopment. The limitations of the control algorithm and its modules will
therefore be addressed separately in the following chapters.

Chapter 5

Localisation

Localisation is the task of estimating the current position of a robot and
is an essential task to allow mobile robots to operate autonomously. For
the simulation, no localisation is necessary, because the exact position of
the robot is known. However all real localisation techniques have errors,
and therefore the simulation should have a realistic error added to the
actual position. This chapter describes the possible localisation techniques
in order to arrive at a reasonable error estimate.

Active and passive localisation techniques exist to allow the computa-
tion of a position estimate, in order to obtain a good estimate of the current
position. Active techniques influence the control of a robot and force an
active pursuit of known landmarks in an environment. On the other hand,
passive localisation techniques rely solely on previous and current sensor
inputs. This means that the accuracy of internal and external sensor mea-
surements are crucial for a good performance. To provide internal sensor
measurements, inertial navigation systems (see Section 5.1.2) can be used,
while such systems as the GPS make use of external resources by gener-
ating a position estimate from data produced by orbiting satellites, but its
accuracy is highly dependant on the signal receiver quality.

For both approaches, the application of multiple robots increases the
complexity, because localisation needs to be valid for the whole group of
robots. The error of the relative positions between robots has to be low
enough to allow a valid working of mapping and other high level control
algorithms such as path-planning. A suggested solution for the multi robot

73

CHAPTER 5. LOCALISATION 74

scenario is to actively rendezvous two different robots [BMF+00]. In this
case, each robot will have its own prior hypothesis about the current posi-
tion. By meeting other robots, their different hypotheses can be compared
and be utilised for a correction of the position estimate.

[TBF05] represent localisation challenges with three different scenarios:

Tracking: a robot has to track its movement path

Global localisation: The general global position has to be found

Kidnapping problem: After losing localisation information caused by
erroneous hardware or such, a robot has to recover and find the global
position again

The search and rescue scenario causes the worst kind of localisation
problem, i.e. the kidnapping problem. Drops might exist in the environ-
ment as well as unstable elements which the robot needs to traverse. A
robot moving in such area can experience unexpected and sudden position
changes. Odometry (see Section 5.1.1) will be useless in such situations
and only an inertial measurement system (see Section 5.1.2) can help as
an internal sensor. However, the reception of GPS signal or similar would
ease the situation, by providing an upper bound for the localisation error.

If a map exists from the environment, a solution might be found using
Markov Localisation [TBF05]. Unfortunately, the presence of a valid map
cannot be expected in a search an rescue mission, which will take place in
collapsed buildings or similar disrupted and irregular structures.

In combination with mapping, the problem of localisation is commonly
found in literature as Simultaneous Localisation and Mapping (SLAM).
Navigation is possible without localisation [SZ06], but this does not allow
a valid map to be built a the same time. Because map building is essential
for path planning and effective exploration techniques, localisation is nec-
essary and the usage of probabilistic methods have created a number of
solid approaches to address the issue of SLAM [DWB06][BDW06]. Most
of the technologies addressing SLAM deal with it in only two dimensions.
This constrains their application to planar environments such as indoors;
approaches that are generalisable to three dimensions increase complexity
and require more computing resources to achieve a tolerable accuracy.

CHAPTER 5. LOCALISATION 75

The current project does not intend to solve the localisation problem
with SLAM techniques, but a localisation error in the mapping and control
algorithm has to be considered. The following sections evaluate existing
and upcoming techniques, which can be part of an implementation to
provide a position estimate. The chapter will conclude with a final error
estimate.

5.1 Relative localisation techniques

Relative localisation techniques provide localisation information relative
to a known starting point. These techniques also fall under the well known
category of dead reckoning. One of the best examples for dead reckoning
is the navigation with a compass. The target coordinates relative to the
starting position are known, but the path has to be found by keeping track
of the past distance and the heading information.

5.1.1 Using odometry for localisation

Odometry data for localisation is generated from wheel encoders. A model
for a differential drive is given by Siegwart [SN04], where the current
position can be inferred from an initial position and collected odometry
data:

position =

x
y
θ

 +

∆s cos(θ + θ/2)
∆s sin(θ + θ/2)

∆θ

where

∆s = ∆sr+∆sl
2

∆θ = ∆sr−∆sl
b

b = distance between wheels
∆sr,∆sl travelled distance of the right/left wheel

The accuracy of these data depends on the resolution of odometry
encoders. In general, odometry data has a questionable usefulness. Errors
accumulate with time and the final error can be � 100% [TBF00]. The

CHAPTER 5. LOCALISATION 76

reason for this high error lies in a multitude of influences on the accuracy
of odometry, i.e.:

• resolution of encoders

• alignment of wheels, i.e. calibration

• variance in wheel radius, i.e. variances of the hardware properties

• contact point of the wheel

• ground characteristic, i.e. friction coefficients

These errors can be grouped into systematic errors, which can be reduced
or even eliminated by calibration, and nondeterministic errors — unpre-
dictable influences of the environment. In addition, the robot movement
has a direct influence on the integration error. Because the mother robot
operates with a skid steering system, turns especially worsen results. Be-
side turns, the ranging of a robot is affected by drift, i.e. different errors
of the left and right wheel imply a change of orientation, when there may
none. Overall, skid steering causes odometry data to be highly inaccurate.

The current implementation includes a model of odometry error, which
focusses on a general ranging error. The error is based on the assumption
that the errors of the left and right wheels are independent and the vari-
ance is proportional to the absolute value of the travelled distances. The
covariance matrix for the model of odometry is as follows:

Σ∆ =

 kr 0
0 kl

Σ∆

 ∆sp
r

∆sp
l

 = ∆sr

∆sl

where

kr, kl error constant for right and left wheel
∆sp

r ,∆sp
l noise free distance measurement for right and left wheel

Based on the experiments of [VDLM06], errors in the range of 0.4% per
metre travelled are realistic. For a noise model, a random process selects

CHAPTER 5. LOCALISATION 77

error constants kn from a Gaussian distribution around 0.6%. This slightly
higher value is justified by the skid steering. A standard deviation of 0.2%
applies as well. Each wheel has a separate error model.

5.1.2 Using an Inertial Measurement System

IMS [TW97][GWA01] are widely known and used in the field of robotics
to estimate position and attitude. Their application is often found in aerial
vehicles. The general IMS consists of accelerometers and gyroscopes. Ac-
celerometers belong to the category of Micro-Electro-Mechanical Systems
(MEMSs) and give information about the current acceleration a of the de-
vice. The acceleration is measured for a specific axis and relative to the
gravitational force. Meanwhile, gyroscopes measure the rate change ω of
a given axis, which is usually measured in degrees per second.

There are two different methods to mount an inertial measurement
system and each have a different reference frame for subsequent compu-
tations:

(i) platform based

(ii) strapdown

Characteristics of platform IMS

The platform based IMS uses accelerometers and gyroscopes which are
gimballed. Gimbals provide (relative) independence from the movement
of the vehicle which contains this system. Hence, platform based IMS
provide data in the global (world) frame.

Characteristics of strapdown IMS

The far cheaper and technically easier solution is a strapdown IMS, which
is commonly used in mobile robotics. A strapdown IMS is rigidly at-
tached to the body of the moving device. Therefore all measurements of
a strapdown IMS are done with respect to the body frame of the moving

CHAPTER 5. LOCALISATION 78

device1. But position and orientation data of the robot needs to be pro-
vided with reference to the global frame to be useful for mapping. Thus,
any strapdown IMS measurements have to be converted into the global
frame, requiring complex computations. Due to its fixed position on the
robot, a strapdown system also needs to be able to measure higher turn
rates[TW97]. Therefore IMS components have to be carefully selected, also
depending on the expected motion patterns of the robot.

Accuracy of IMS

The accuracy of an IMS is affected by a number of factors:

• proper mounting and calibrating of the device

• temperature (affects gyroscopes)

• operational limits (e.g. maximum measurable turn rates), exposure
to vibrations and shocks during operation

• magnetic fields in the operation environment

Other influencing factors are also the travelled distance and the accu-
racy of knowledge about the initial position.

Compensation for the above influences starts with a thorough testing of
every device, in order to determine specific characteristics, i.e. the system-
atic errors. Either complex and quite specific methods compensate each
of these errors or systems of the same type use a general compensation
technique. Such a general compensation technique can use bias, a scale
factor error, and temperature as inputs. Initial errors propagate and in-
crease the position error with every calculation over time, especially when
a transformation into the global frame has to take place. This adds to the
complexity, so that ”a simple rigorous calculation of errors is not usually
practical” [TW97]. For that reason an important factor for all IMS is the
initial alignment and knowledge about the initial position of the device.
Better knowledge about the initial position creates a better posterior posi-
tion estimate. Hence, in a real scenario of an IMS application - effort has to

1In order to allow an easy conversion from the body frame in the world frame, the IMS
has to be properly aligned to the vehicles moving axis

CHAPTER 5. LOCALISATION 79

be spent on an initial alignment and calibration routine. A design of such
initial alignment and calibration has to consider the main error sources
such as:

• fixed bias

• scale factor

• correlation / sensitivity towards movements on an axis which is not
the measured one

• vibro-pendulous errors

Some of these errors can have a time dependence e.g. day to day or
switch-on-to-switch-on intervals. Others can have changing values based
on thermal-effects. Overall all those effects have to be considered in order
to reduce the initial error of an IMS. For USAR situations it is important
that the setup phase for each device is as short as possible but also as
accurate as possible. In a simulation the issues of an initial setup can be
ignored, because the modelled device represents a perfect setup.

Murphy [Mur00] provides with ”0.1 percent of the distance travelled”
an example for the achievable accuracy of an Inertial Navigation System
(INS), that operates on base of an IMS.

5.2 Absolute localisation techniques

5.2.1 Using the Global Positioning System

The GPS offers a way of absolute localization [DJ00] in contrast to the
relative localisation of an INS. GPS relies on a system of 24 satellites orbiting
the earth and a GPS signal receiver, which has to be (most often) in a line
of sight of at least three satellites. Four ”visible” satellites provide a better
position estimate. GPS comes with different options to increase accuracy.
One is Differential Global Positioning System (DGPS) which is designed
to provide position and velocity data better than an accuracy of horizontal
±5 m and vertical ±10 m [YMD08]. Depending on the receiver quality

CHAPTER 5. LOCALISATION 80

(and thus increasing costs) more correction data are utilised to improve
the position data and higher accuracy can be achieved 2.

5.2.2 Alternatives to the Global Positing System

European Satellite Navigation System

The European Satellite Navigation System Galileo [Eur08] will offer an
alternative to the GPS in the near future and is based on a network of
30 satellites. Though not yet in a state of commercial use, the Galileo
system promises equal or even higher localisation accuracy compared to
the GPS, especially for non-equatorial countries. Additionally, Galileo
will provide a qualifier for the integrity of the current signal, allowing a
classification of the received localisation information. The Galileo project
also claims the complementary use with the GPS statement as one of the
main advantages. The combined use will offer better coverage due to the
denser satellite infrastructure and increased precision and reliability. The
stated future goal is an accuracy smaller than 5 m. A combined system
covers even high latitude areas such as Antarctica, which have far worse
accuracies otherwise because GPS is equatorial.

Augmentation services

Satellite-Based Augmentation Systems (SBAS) are regionally applied sys-
tem to increase the accuracy of systems such as GPS and Galileo. DGPS
and the European Geostationary Navigation Overlay Service (EGNOS) are
examples for SBAS [ESA08]. EGNOS is designed to achieve accuracies
down to 2 m.

5.3 Alternative localization methods

IMS and GPS are not the only approaches towards localisation. Current
research uses the signal strength within wireless networks to find a position
estimate. But determining the position with wireless sensors, requires a

2The ’Crescent Vector OEM Board’ [Gro07] for example offers submetre accuracy for
95% of the time

CHAPTER 5. LOCALISATION 81

good coverage of the target site and beacons might have to be manually
inserted. Additionally, the relative positions of the static wireless devices
has to be accurately known. Experimental studies show an achievable
accuracy of about half a metre [HSS03], with an experimental setup based
on an intact office space.

5.4 Combined solutions

A combined solution can help to reduce the overall uncertainty. A common
technique is the combination of IMS and GPS. The error between the two
different measurement systems is the input to a filter mechanism, e.g. a
Kalman filter [ZM00] which helps to find the best estimate.

IMS and GPS updates are received at different frequencies — the GPS
updates are usually received at a lower rate. Therefore the IMS has to
work independently over a smaller time frame until a GPS update has been
received and serves therefore as the main technique for position estimation.
As soon as a GPS update has been received, the position estimate can be
corrected. For the correction, the absolute position received from the GPS is
fed into the mentioned filter mechanism. Depending on the receiver, DGPS
alone can provide a bounded-error position estimate with an accuracy
below 5 m [Wil07]. This error is bounded, because in contrast to IMS the
GPS provides an absolute position. However, the combination of INS and
DGPS has shown in theory [YS07][CGB01] and practice [KLC+03][Cra97]
(operation time < 1 h) an achievable accuracy below 0.5 m, given regular
DGPS updates.

5.5 Limitations

For a real application in a field of rubble, other aspects have to be taken into
consideration. Robot movement is expected to have sudden changes, due
to uneven surfaces including drops. This degrades the quality of the data
from the relative localisation systems: acceleration and turn rates have to
be within the maximum specification limits of the IMS hardware. This
project refers the solutions of these problems to future projects and will

CHAPTER 5. LOCALISATION 82

assume error free IMS data and thus accurately known orientation and
attitude.

5.6 Suggestions

Though the most common solution is the combination of GPS and INS,
no study could be found for a GPS/INS system operating in rough terrain;
an overall performance study accompanied by a terrain analysis in order
to compare expected acceleration and turn rates to real ones would give
more insight into the accuracies to expect.

A performance boost can be expected as soon as the Galileo project
becomes operational, thus complementing the existing GPS. In any case,
the expected error will be bounded. Eventually probabilistic methods
should be used to improve the overall system performance.

A SLAM system such as FastSLAM [MTKW02] uses a landmarks based
mapping approach and can estimate the robot position with an error be-
low 0.4 m depending on the number of found landmarks. Combining
SLAM with an absolute positioning system leads to a constrained SLAM
approach. Lee et. al [KWLG07] have already shown how to constrain
SLAM with a previously known roadmap, which suggests that FastSLAM
in combination with GPS can be a desirable solution.

Another alternative is the application of relative localisation by con-
structing a local wireless network [Yan07]. This network can provide in-
formation about relative positions of robots within the area. With wireless
devices on the robots, position estimation might be done with triangu-
lation, as long as the number of robots is equal to or higher than three.
However, signal coverage in a cluttered environment has to be taken into
account and an implementation of a wireless network will likely only
serve as additional correction information to an estimate from the global
positioning system.

CHAPTER 5. LOCALISATION 83

5.7 Summary

This chapter presented different localisation techniques: relative, absolute
and combined ones. It pointed towards practical solutions of the locali-
sation problem and presented their individual error estimates. While the
device characteristics and the filter algorithm are important for achieving
good results in a real scenario, this project will only include a realistic
estimate of the expected localisation error.

Based on the analysed techniques, this project estimates an achievable
upper bound for the localisation error of 30 cm with a medium cost receiver.
Advancing technology will improve the tradeoff between receiver cost and
quality and will make this localisation error also realistic for a low cost
device. This project assumes the distribution of this error to be Gaussian
rather than bounded. Due to the properties of the Gaussian distribution
and based on the three standard deviation rule, 99.7% of these errors lie
within the boundary of three standard deviations of the mean. The error is
modelled therefore by a Gaussian with a standard deviation of σ = 10 cm.

Chapter 6

Mapping

One of the core tasks to allow for robot planning is a robot’s ability to
map an environment. This chapter evaluates some existing techniques
and describes how this project solves the mapping task for the search and
rescue scenario.

Initially a search and rescue robot brought to a new disaster site will
not have any information about its environment. It may be possible for
a human operator to provide blueprints of the building, but this will not
be useful. An existing map needs translation into the robot’s internal
representation of the world and results in an increased setup time for the
robots. This measure is without any predictable benefit for the search
operation, because a given map (building blueprint or similar) cannot
fully represent the current environment and is often not up to date or just
inaccurate. More importantly, with the current application being Urban
Search and Rescue the operation area is expected to have changed in a
major sense.

Therefore, the robot must be able to construct its own map of the site and
gather as much information about the environment as possible. To do so,
the robot can rely on camera or range finder input or solely use the position
estimate to memorise any region travelled so far as being accessible. So by
just interacting with the environment, the robot gains some - even though
limited - knowledge. Clearly, the application of cameras or range finders
will significantly improve the quality and quantity of information and
allow safer navigation.

84

CHAPTER 6. MAPPING 85

For map building it is important for the robot to determine its (three
dimensional) position, be it absolute or relative to a constructed map as in
SLAM. This project assumes the localisation problem has been solved by
one of the techniques discussed in Chapter 5.

The mother robot’s main perceptual input comes from range finders
and it will use the gathered spatial information to build a 3D map of its
environment. The type of range finders has a significant impact on how
accurate this map will be:

• Laser Range Finder (LRF) are often used when an exact three dimen-
sional knowledge about the environment is required. However, LRF
are costly and quite large.

• Infrared rangefinders are cheap and are similar to single ray laser
rangefinders in the sense that they use a single sensor ray. But their
range is lower compared to the LRF and they suffer more from noise.
The infrared rangefinders of the mother robot also have a minimum
range, so that they cannot sense obstacles which are too close to the
robot and instead might produce false sensor readings.

• Ultrasonic devices operate with a wide beam. The received informa-
tion is often more difficult to process, because these devices suffer
significantly from noise and lower resolution.

The requirement for a 3D map and the use of statically mounted infrared
finders has implications on the design of the mapping strategy, which will
be part of the discussion in the following sections.

6.1 Mapping with limited perception

6.1.1 The perception of the mother robot

The perception of a robot depends on the number and configuration of its
sensors. The mother robot uses a set of infrared sensors to provide spatial
information [Wil07]. The configuration consists of high sensor density at
the front and a low density at the rear of the robot. While the original device
uses sensors which are only horizontally mounted, this project added a pair

CHAPTER 6. MAPPING 86

of vertically mounted array sensors to the front of the robot model, in order
to enhance the perception. As a reminder, Figure 6.1 shows the sensor rays
of the robot on a plane.

Figure 6.1: Sensor configuration blue squares are part of the sensor ray

The spatial information gained from the range finders at every update
is augmented with inferred data, based on the fact that the body of the
robot fills free space at the current position.

Sensors and inference produce individual position updates, which clas-
sify occupied or free space. But under realistic conditions this data will be
erroneous, because:

1. limited achievable precision, current mounting and calibration of
infrared sensor affect measurement quality

2. specular reflections in the environment cause false range readings

3. the localisation error causes measurements and inferences to be as-
sociated with wrong positions

Though this project does not use techniques to address these issues di-
rectly, it integrates a value of belief and a value of variance with each
sensor update. Belief describes the probability that the current measure-
ment is classified correctly to be a measurement of occupied or free space.
Variance describes the current localisation error of the measurement. Belief
and variance are currently set to default values but allow an easier imple-
mentation of compensation techniques in future projects. Belief is set to a
standard of 0.95. Variance is set to σ2 = 0.01 m based on the reasoning in
Chapter 5.

CHAPTER 6. MAPPING 87

6.1.2 Long term versus short term mapping

Mapping usually refers to the process of building a permanent map. How-
ever, the project also uses a short term local representation of the space
around the robot based on the range finder measurements in the previous
n control intervals. This representation is needed for reactive navigation
(see Chapter 8). A set of temporary valid spherical coordinates (a so called
point cloud) represents the sensor updates and thus the world from a robot
egocentric viewpoint. This point cloud is the robot’s temporary knowledge
of the environment, which navigation (see Chapter 8) uses for reasoning.
The point cloud is updated every control interval. Its points only represent
the end points of the sensor rays and they have to lie within a moving cir-
cular region (or sphere in 3D) with diameter dw (typically dw=6 m) around
the robot’s centre. They are kept only for a maximum time tm (typically
tm=1 s).

Obstacles are typically detected at long range. Nevertheless, a complex
environment and the limited number of statically mounted range finders
can also cause late detections and sensor data can be erroneous when
obstacles are too close. This project assumes that an improved mounting of
sensor devices and appropriate filter mechanisms prevent the integration
of falsely generated measurements into the long term map. This results in a
blind zone for the long term mapping process. However, because a general
knowledge of close obstacles should be available for reactive navigation,
the project assumes the distance to close obstacles (below minimum range)
to be the minimum sensor range. This last assumption applies to the short
term mapping only.

6.2 Evaluation of different map representations

Mapping a cluttered environment cannot work properly with a two di-
mensional representation such as a simple occupancy grid. The reason lies
in the higher complexity of the space. Accessibility of specific positions
can depend on the direction of travel, for example a higher platform might
be inaccessible from one side, but accessible through a steady slope from
another side. For that reason an evaluation of different available mapping

CHAPTER 6. MAPPING 88

solutions follows. The evaluation takes the following criteria into account:

1. complexity

2. memory footprint

3. extensibility

4. usability (features)

6.2.1 Occupancy grids as common choice

The occupancy grid is one of the most commonly used techniques for
mapping in two dimensions and occupancy grids can be expanded to
three dimensions (see Chapter 2). Occupancy grids are extensible to a
great degree, because they provide a good representation of space down
to a certain resolution. Being a rather basic data structure, occupancy
grids allow flexible postprocessing. Furthermore the initial integration
of rangefinder data is a straight forward task, because every cell is di-
rectly addressable. It also offers the inherent integration of localisation
errors, considering that probability values describe cell occupancies. But
being such a basic data structure requires further (complex) processing
techniques in order to allow for path planning or other evaluations.

Though occupancy grids are initially easy to implement, the memory
footprint may be large. A naive implementation has to deal with a three
dimensional block of cells, which represent either free or occupied space.
High grid resolution set a large memory requirement for a limited 3D
space. The choice of resolution applies to all three dimensions and involves
a trade off between accuracy and performance (memory constraints); a
resolution of about 15 × 15 × 15 cm3 is a common choice, so that a small,
fully explored map of 50×50×3 m3 would create about 2 million individual
cells. There are other ways to reduce this memory requirement using
dynamic initialisation techniques, octrees [Wat93] or custom strategies.
But an implementation will clearly suffer from increasing complexity to
reduce this memory footprint.

CHAPTER 6. MAPPING 89

6.2.2 Height field maps are widely applied in games

Height field maps or elevation maps are common to games. The strength of
elevation maps lies in an effective representation of a two and a half dimen-
sional space with a very small memory footprint. Furthermore, elevation
maps allow a bounded representation of space based on measurements
of occupancy and free space. Such a representation can be a good solu-
tion for a robot architecture like ExploreTM, considering that robots send
map data frequently to a central unit. In order to create a map to do path
planning, elevation maps offer a proven solution, being part of most three
dimensional games.

The disadvantage of using a height-field is obvious: the representation
is limited to two and a half dimensions, so that a robot cannot deal with
any environments which have any kind of multiple layers, i.e. alternating
free or occupied space within the vertical direction.

6.2.3 A custom multi-level surface map

MLS maps are a recent development and offer a representation for three
dimensional environments with much lower memory constraints than al-
ternative approaches. MLS maps can represent a three dimensional envi-
ronment and also integrate a factor of uncertainty. They include a slightly
higher complexity to make an intelligent use of robot size constraints and
representing space efficiently. The application of this representation in
combination with a laser range finder has proven to be successful [TPB06]
with exploration tasks.

6.2.4 Discussion of different map representations

The specific exploration purpose makes a high resolution map desirable
but not essential. All three representations have an underlying 2D Grid
in common and resolutions of 100 cm2 and 625 cm2 is assumed for the
comparison.

All measurements include a localisation error, which will be even
harder to eliminate for a representation in three dimensions. Incremental
map building is an essential element of design of ExploreTM and means

CHAPTER 6. MAPPING 90

that multiple robots are involved in building the overall global map on
the grandmother robot. The mapping strategy has also to allow for future
projects and techniques which reduce the incorporated localisation error
from multiple robots.

For the sake of a responsive simulation, and eventually a system ar-
chitecture which operates without significant delay, only a few reasonable
options exist:

(A) Three dimensional occupancy grids appear to be the most resource
consuming choice, while dealing with a probability value of a huge number
of cells. Though resulting memory constraints can be addressed in general
by octrees, the association of probabilities with individual cells interferes
with this countermeasure.

(B) The lowest resources are consumed by height-field/elevation maps
and they fulfil the requirement of resolution and memory constraints easily.
Nevertheless, the two and a half dimensional representation creates a major
limitation for upcoming projects.

(C) As described above, MLS maps offer the most promising features,
which the current project requires. They even relax the resolution con-
straint and offer an unlimited degree of resolution for a third dimension
(as do height field maps). This map representation has also been success-
fully applied to incremental mapping [TPB06] and overall offers the most
practical solution to the mapping requirements.

For the given reasons, this project implements a mapping algorithm
on the idea of multi-level surface maps. MLS maps are built upon a
(horizontal) two dimensional grid filled with specific elements to describe
the third (height) dimension of each grid cell. In the following, the term
’grid’ refers to this underlying two dimensional grid (of MLS maps).

CHAPTER 6. MAPPING 91

6.3 Generating data points as local space descrip-

tion

The mapping systems contain two core modules. The first module pro-
cesses sensor readings into a description of local space around the robot;
the second updates a global map with the latest local data. The global map
is a customised version of the MLS map.

The ’perceptual field’ translates the individual range finder readings,
which the hardware provides into a set of three dimensional data points
describing free and occupied space around the robot.

The module bases its translation on instances of a single ray sensor
model. Each single ray sensor model needs the following individual set-
tings:

• mounting position of the robot, i.e. relative to the robot centre

• orientation, i.e. direction of the sensing ray

• minimum/maximum range

The sensor model allows the translation of a range finder reading either
into world coordinates, which are needed to build a long term map, or
into a set of local coordinates relative to the current robot centre. The latter
allows an easier computation of reactive behaviours.

6.3.1 Data points from ray casting

A method similar to ray casting, which is popular in computer graph-
ics [Wat93], computes the sensor data points. The following procedure
produces data points with absolute positions:

1. transform the sensor model (orientation and position) into the coor-
dinate frame of the robot

2. follow the ray direction from the sensor position with step size k and
create a datum point at each step

CHAPTER 6. MAPPING 92

Figure 6.2: Model of single ray sensor

Figure 6.2 visualises the data point generation process, where data points
lie on the solid black line between sensor and endpoint.

The advantage of this procedure lies in its independence from any
underlying map representation and it therefore has a higher computa-
tional efficiency. Other existing strategies, e.g. the so called beam sensor
model [TBF05], are intertwined with an underlying grid structure. Such
an approach needs to iterate over a large number of cells and verify any
intersection with the sensor ray. With the procedure presented, however,
the properties of the sensing ray can directly output data points. A pa-
rameter k defines the sensor ray resolution so that the performance of this
procedure can be controlled.

However, it is arguable that a loss of information occurs while using
a fix step size. Some grid squares along the path of the ground projected
sensor ray may be left out - e.g. the gray shaded squares in Figure 6.2. The
reasoning to stick with this approach even for an underlying grid map is
based on the following observations:

• grid cells which are left out usually have only a short intersecting
line with the projection of the sensing ray

• grid cells that lie centered on the ground projected sensing ray have a
longer intersection and might also contain multiple data point mea-
surements from a single device

• the step size can be arbitrarily reduced to meet a desired specification

CHAPTER 6. MAPPING 93

Therefore the length of each cell intersection with the ground projected
sensing ray can be interpreted as a degree of confidence that this cell has
actually been measured. Hence, this method only leaves out cells that fall
below a confidence threshold — directly depending on the parameter k.

6.3.2 Data points from shadow projection

A robot fills free space with its physical body. Therefore, the robot’s po-
sition allows inference of a section of actual free space. In order to derive
data points from this information, so called shadow projection is applied
[Hei93]. A number of grid cells around the robot are tested whether they
fall under the robot’s body and the height of the robot body at that posi-
tion is computed. The front body might be articulated relative to the rear
body. Hence, the following algorithm applies to each of the body parts
individually — represented by the term ’robot body’ used in the following.

The shape of the robot is well known. When the robot’s body is parallel
to the ground this knowledge allows to test whether a grid cell is under a
robot’s body — testing the grid coordinates x and z values eliminates data
points which are outside of the robot’s body shape. To take advantage
of this simple test, the algorithm operates in the coordinate frame of the
robot. In this coordinate frame the robot’s body lies in the horizontal plane
and can be represented by:

y = 0

where y represents the height axis 1.
Each grid cell is represented by a vector ~cg in the global coordinate

frame. In order to compute the vertical position of the robot’s body above
ground, the algorithm uses a grid cell at ground level y = 0. The algorithm
transforms (translation to the robot centre, followed by a rotation around
the centre) this global vector into the coordinate frame of the robot:

~cr = Tg
r~cg

where
1The same definition of coordinate system as the simulation applies, i.e. y-axis is the

vertical axis.

CHAPTER 6. MAPPING 94

~cg global coordinate

~cr coordinate in robot frame

Tg
r transformation matrix from global to robot frame

A normalised gravity vector

~g =

0
−1
0

is also transformed into the robot frame, i.e. ~gr. As a result the following
equation describes the shadow projection of the robot in the coordinate
frame of the robot:

~cr + β~gr =

x
0
z

Parameter β defines the distance of the robot’s body, which lies at y = 0 in
the coordinate frame of the robot, to the grid cell representing the actual
ground plane. Thus solving the equation for β leads to the actual height
level of the robot’s body.

Data points derived with this method only provide information about
free space. The wheels touch the ground during most of the operation, but
the robot is not safe from falling and jumping. Thus, the assumption that
the robot always has a stable ground does not hold.

6.4 Customising the multi-level surface map

The limited perception of the robot demands a customised version of the
MLS map. When using a laser range finder for perception, a large number
of data points describe wide areas of the environment. The use of statically
mounted infrared sensors allows a frequent but much smaller stream of
data points. Therefore they only describe a limited area of the environment.
In addition, sensors are rigidly attached to the mother robot, so that the field
of perception is strongly limited by the current position and orientation of
the robot. Therefore the map building process for the mother robot has to

CHAPTER 6. MAPPING 95

be incremental. To cope with an incremental process, this project adapts
the multi surface map.

For a maximum gain of knowledge, data points provide information
about free and occupied space. This reflects the idea of bounded height
field maps as described in Chapter 2. Therefore, instead of using horizontal
and vertical surface patches like the original MLS map approach does, each
grid cell contains a set of free space blocks and occupied space blocks.
Blocks have three main properties: centre height, expansion and a surface
level. While centre height and the symmetric height expansion of the block
around the centre height are the same for free and occupied space blocks,
the surface level represents a bound on where the robot could be positioned
(see Figure 6.3). For a free space blocks it is the ’bottom’ of the region of
free space and the surface level of an occupied space block is the ’top’ of
the region. The surface level is defined to be:

sb = hb + eb

and for a free space blocks
sb = hb − eb

where

sb surface level of block

hb centre height of block

eb block expansion

The following sections describe the process of creating this customised
MLS map from the local space representation (data points).

6.4.1 Three major steps to build the map from data points

The implementation aims at an online mapping algorithm, which provides
the most accurate map at the current time. Processing the simulation on
a single computing device sets memory constraints, ruling out a mapping
algorithm which accumulates a large number of data points before pro-
cessing them. Regularly reducing the overall number of data points is

CHAPTER 6. MAPPING 96

Figure 6.3: Occupied and free space blocks with properties

essential to deal with the memory constraint and avoid a loss of informa-
tion. This requirement can be relaxed in a real application, where multiple
computing units, i.e. one for each robot, are available.

The reduction process uses a model similar to the database scheme
Insert-Update-Commit to compact data points frequently to generate ’true’
measurements on the grid cell level. An update of the MLS map follows
at larger intervals based on the mentioned measurement. The frequency
of the update is determined by the map update frequency setting and a
maximum threshold of measurements per cell.

Compacting data on the grid cell level

Due to the sensor model presented in Section 6.3.1, a grid cell may accu-
mulate a number of data points per cell during a single control interval.
The compacting of these measurement happens within one control loop
and is based on a strategy which resembles the general database update
strategy: insert, update and a final commit. For the insert step, data points
from the local space are simply associated with a specific global grid cell.
The update step compacts measurements of the same type, so that data
points within a certain interval hm are greedily merged into a single datum
point — this project uses an interval of hm = 15 cm based on the anticipated
localisation error. The set of data points generated by the ’perceptual field’

CHAPTER 6. MAPPING 97

and hence also the merge data points have the following properties:

• height µ

• position variance σ2

• belief p

In order to merge a set of data points this project uses the original MLS map
approach [Tri07] and applies a Gaussian update. This update procedure
allows to take the current position variance into account and computes the
mean of the height plus the position variance from the set of data points:

µ1:n =
σ2

nµ1:n−1 + σ2
1:n−1zn

σ2
1:n−1 + σ

2
n

σ2
1:n =

σ2
1:n−1σ

2
n

σ2
1:n−1 + σ

2
n

where

zn current measurement to be integrated

σ2
n position variance of the measurement

µn height of the measurement

n current index of the measurement in the cluster

Position variance is also used in the way the original MLS map defines it,
i.e. position uncertainty affecting all three dimensions equally.

The belief of occupancy is computed using Bayesian representation of
probability as commonly done in occupancy grids (see Chapter 2), but in
the current implementation data points of occupied space in an interval
overrule all previous free space measurements. This is due to the nature of
the previously outlined ray casting algorithm, which generates a greater
number of free space measurements and might hide an obstacle otherwise.

The final outcome is a limited number of measurements per grid cell
per control cycle — maximum of one per interval height hm.

CHAPTER 6. MAPPING 98

Transforming data points into blocks within grid cells

The next step transforms previously compacted data points into space
blocks. This step is performed when an update of the map is requested or
the number of compacted data points exceeds a threshold.

The process creates an occupied or free space block from each measure-
ment. The resulting set of occupied and free space block is then further
reduced by merging neighbouring blocks of the same type. The process
finishes with a resolution step to solve issues with overlapping blocks of
different types.

The conflict resolution process for overlapping blocks covers the fol-
lowing situations illustrated in Figure 6.4.

(a) No overlap (b) Partial overlap (c) Full overlap

Figure 6.4: Overlap situations

In the case of no overlap no action follows. Conflicting blocks resolve
partial overlaps by adapting the centre height and expansion using the
closest reasonable assumption, i.e. each block reduces the expansion in
equal terms until no overlap exists. The situation of a total overlap, i.e. a
free block is larger than a single occupied block and vice versa, is dominated
by occupied space blocks. An occupied space block always replaces a free
space block.

The transformation of data points is an important update step and
reduces the amount of memory which would be needed to store data
points. Because memory is constrained a general threshold m for the
maximum number of measurements per cell exists.

CHAPTER 6. MAPPING 99

Integration of new blocks into the existing grid cell data

The last step to create the custom MLS map integrates the newly created
blocks into the grid. This is a merging process of new blocks into existing
grid cell data and relies on the same strategy as described in the previous
section.

In order to add a single block, the process searches for an existing block
that is closer than a certain threshold. This threshold defines a lower bound
for the robot which can only move through a gap of this height. This project
uses a threshold of 0.7 m. If a block is close enough, the new block and the
existing one are merged. Otherwise the new block is just added to the grid
cell.

This process applies equally to occupied and free space blocks. Though
free space blocks do not necessarily require this merging process equal
treatment facilitates an implementation. The final mapping result is not
affected because occupied space will dominate free space blocks.

6.5 Evaluation

The mapping process is a core element of ExploreTM. It has to deal with
the large amount of incoming data efficiently to be applied as a real time
mapping strategy. In addition to that, this project requires that the perfor-
mance allows multi robots to run in parallel in simulation. The computing
device for the simulation has a 3 GHz Dual Core Processor, 2 GB of RAM
and a 256 MB graphic card. For the purposes of this project the absolute
timing constraint is important to allow an operation with a control interval
of 200 ms.

The evaluation is divided into three parts:

(1) validation of the perceptual field

(2) validation of map construction and evaluation of the final map

(3) performance evaluation

(1) The perceptual field (Section 6.3) has been verified with unit testing
and generation of visual data as already shown in Figure 6.1. Part of this

CHAPTER 6. MAPPING 100

verification process was an alignment of the coordinate systems of simu-
lation and ExploreTM, so that the sensor definitions within the perceptual
field correspond to their placement in the model. The algorithm includes
the orientation of the robot and the relative articulation of the rear body
with respect to the front body into the computation. It thus allows normal
and inverted operation of the robot.

Figure 6.5: Occupied and free space block after robot standing still (at blue
mark)

(2) The current implementation provides a representation of the world
within the limits of resolution and a default localisation error which affects
the height measurement. Figures 6.6 and 6.7 visualise the created occupied
space blocks after mapping, where Figure 6.6 represents a mapped multi
layered terrain. Figure 6.5 shows a map description resulting with free
space blocks and illustrates the mapping results of a robot which has not
moved.

The map overlays the obstacles so that the accuracy can be estimated.
Figure 6.7 contains several spots where the map shows a larger obstacle
than actually exists. This is the result of the localisation error combined
with a missing upper bound given by free space blocks.

(3) The mapping algorithm uses various three dimensional operations to
infer the global sensing point of each sensor. The current design reduces
those to a minimum to achieve good performance. The final performance of
the perceptual field is measured for a set of 26 sensors (14 have a maximum
range of 1.2 m and 12 a maximum range of 3 m) and a resolution k of
the sensor ray in between 0.005 m and 0.001 m (Section 6.3). Figure 6.8

CHAPTER 6. MAPPING 101

Figure 6.6: Visualisation of occupied blocks after mapping a bridge

Figure 6.7: Visualisation of occupied space blocks after mapping a field of
rubble

shows the relationship between the sensor resolution and the maximum
number of data points produced for this configuration. The perceptual
field produces the maximum number of data points for each selected sensor
resolution after receiving only maximum sensor readings as input.

Figure 6.9 shows the time performance of the perceptual field. This
performance is essential for all map representations and affects not only
the MLS map. The performance of the perceptual unit is consistently below
7 ms and below 1 ms for k > 0.025. The performance improves for areas
with higher obstacle densities, where sensors provide shorter readings.

Each individual mapping solution will add further costs to the ’per-
ceptual field’ performance. The remaining performance evaluations of

CHAPTER 6. MAPPING 102

Figure 6.8: Number of data points depending on sensor resolution

mapping consider only the current MLS map implementation. To allow an
integration of multiple grid based mapping algorithms into ExploreTM,
the implementation uses a generic description of a grid and its cells. This
generalisation increases the overhead for serialisation and decreases the
overall performance, so that a less generic implementation could provide
better performance results if needed. Therefore, the performance tests can
be interpreted as an upper bound.

Two performance values are generated which represent the situations of
travelling planar surfaces and a field of rubble. The first value is computed
from the robot moving on a planar surface for 8000 simulated control cycles
and sets an upper bound. The second value represents a lower bound and
is produced from random sensor readings, so that fewer data points are
generated (random sensor readings means that the rays are shorter on
average, than in the planar case).

The resolution of a map in the current implementation can be chosen
from a discrete set in the range of 1 mm2 up to 1 m2. Evaluations con-
centrate on 100 cm2 and 625 cm2 grid resolutions and show the tradeoff
between accuracy and computing resources. This tradeoff has to consider

CHAPTER 6. MAPPING 103

Figure 6.9: Performance of the ’perceptual field’

the performance of the map building process and the limitations arising
for the transfer of partial maps, which will be sent from the mother robot
to the grandmother robot.

Figures 6.11 and 6.10 show the performance of the mapping with
100 cm2 and 625 cm2 resolution. The compacted measurements stored
in a cell are automatically transformed into space blocks when a thresh-
old m of 30 or 100 is reached. The threshold m will only be reached in
an application of ExploreTM when the map is not used for continuous
planning operations. Thus, it provides a security measure in situations
were the map is not updated in regular intervals. The evaluation shows
that a lower threshold only shows a slightly better performance and hence,
the threshold hardly has any influence on the performance of the current
implementation.

The comparison between the sensor resolutions show that the higher
resolution of 100 cm2 has a small performance advantage for sensor ray
resolutions below 0.02 m, but the 625 cm2 map resolution shows a small
advantage for sensor ray resolutions above this value. However, the differ-
ences are not significant and this project gives therefore a general recom-

CHAPTER 6. MAPPING 104

(a) Threshold= 30 (b) Threshold= 100

Figure 6.10: Performance with variable sensor ray resolution and map
resolution of 625 cm2

(a) Threshold= 30 (b) Threshold= 100

Figure 6.11: Performance with variable sensor ray resolution and map
resolution of 100 cm2

CHAPTER 6. MAPPING 105

mendation to use a sensor ray resolution of k = 0.025 m and a compacting
threshold of m = 30, so that a general map building performance below
10 ms can be expected.

The generation of a partial map during the movement of the robot can
be a frequent task - controlled by the tuning parameters of ExploreTM
(Chapter 3). The parameters for the partial map are resolution (defined by
the original map) and size (radius). This influences the performance of the
simulation and can limit the number of robots which operate at the same
time. To generate a partial map, the relevant grid cells are updated before
the partial map is built, so that only the most recent data are integrated
into this data structure. Figure 6.12 shows the results of a test, which runs
outside of MRT to avoid any side effects. It simulates 32,000 control cycles
(about 100 min of operation given a control frequency of 5 Hz), where
50% of the time the robot receives readings of a planar environment and
otherwise random readings, and extracts a partial map from the final map.

Figure 6.12: Size of the partial map in depending on the radius

Figures 6.13 and 6.14 illustrate the costs involved to compute the partial
map and prepare for serialisation for two different map resolutions. It is

CHAPTER 6. MAPPING 106

not surprising that the increase of costs to generate maps with a higher
resolution is non-linear. The analysis of the performance results suggests a
selection of the low resolution in a multi robot simulation. The higher res-
olution can be used as well, but the configuration of the tuning parameters
is far more restricted because the serialisation time is in the same range
as the desired control interval. From this data the current project recom-
mends the application of a 625 cm2 resolution and a grid size of 250 × 250
cells.

Figure 6.13: Performance of the partial map with resolution= 100 cm2

6.6 Limitations

This project does not solve simultaneous localisation and mapping. In-
stead, the current approach uses an absolute position measure to build a
map upon. The position of the robot is thus valid for a predefined control
interval, so that over time a discrete set of positions is generated. The
range finder produces measurements sequentially, i.e. the measurement
takes place over a certain amount of time. Therefore the measurement

CHAPTER 6. MAPPING 107

Figure 6.14: Performance of the partial map with resolution= 625 cm2

result will be affected by any motion during the control interval. With the
current assumption of a fixed position, mapping results with motions will
suffer from distortions. Figure 6.15 shows the direct measurement results
of a set of sensors, mounted in a horizontal plane, after performing a slow
right turn to swipe the obstacle with the sensors. Figure 6.16 shows the
measurement results after a subsequent quick left turn. The effect is a vis-
ible drag of measurement – a small one from the right turn, a larger from
the fast left turn. This effect adds to any existing localisation error and in-
creases - due to geometric properties - with the distance of a measurement
point to the robot centre. It will be possible to account for these map-
ping errors in the context of controlled motion. However, in a cluttered
environment containing drops, motion can consist of a number of fast,
highly rotational and unpredictable motion patterns. Therefore multiple
compensation techniques will be necessary to deal with this limitation.

The application of infrared sensors creates strong constraints on the
mother robot’s perception and is the main reason to customise the map-
ping algorithm. Thus, the algorithm tries to infer as much knowledge as
possible from the range finder information. The simulation runs on a single

CHAPTER 6. MAPPING 108

Figure 6.15: Generated measurements after a slow right turn

Figure 6.16: Generated measurements after mapping with a fast left turn

computer and the need for a multi robot simulation increases the memory
requirement. For that reason, this mapping strategy can potentially used
with less effort in a real application.

The mapping algorithm focusses on the representation of a 3D world by
storing all collected information about free and occupied space. However,
the handling of uncertainty of sensor measurements needs further eval-
uation and improvement. This also affects the merging of two different
maps which is handled under the assumption that the localisation error is
smaller than the resolution, so that the effects are ignored.

As with many other map representations and algorithms, the presented
approach does not address the mapping of dynamic objects. This is a

CHAPTER 6. MAPPING 109

critical limitation in a multi robot scenario, where two robots could possibly
map each other as part of the environment.

6.7 Possible solutions and extensions

Integration of uncertainty as an effect of a noisy environment is one of
the main open issues. A solution to this problem starts with implement-
ing the inverse sensor model to generate an occupancy belief of sensor
measurements. This belief can then be part of the filter mechanisms. The
implementation of a map merging process with uncertain localisation is a
subsequent task and [TPB06] shows an approach.

In order to address the mapping of dynamic objects several options
exist. Limiting the problem to the moving robots, a global knowledge
of each robot’s position can be used to define temporary non-mapping
zones. Another solution is the extended application of occupancy belief
of current and previous measurements, so that space blocks of the current
map might change their type back from occupied back to unoccupied or
be just invalidated.

6.8 Summary

A mapping algorithm for 3D has been implemented on the base of MLS
maps and a core ’perceptual field’ module. The current algorithm can deal
with requirements which arise from a strongly incremental data collecting
process. The implementation also allows a flexible usage of maps with dif-
ferent sizes and resolutions. The algorithm has been shown to be effective
and fast enough to allow real time mapping. Therefore, the implementa-
tion not only provides a foundation for the operation and data integration
for the mother robots, but also for the daughter robots.

Chapter 7

Path planning

Navigation in ExploreTM consists of four different elements: local reactive
navigation and local path planning on the mother robots and global path
planning and application of a global exploration strategy on the grand-
mother robot.

The grandmother robot combines the information from all exploring
robots and enhances the overall search process, so that the team of robots
can gather information more efficiently. Planning on the grandmother
robot for the group of mother robots is intended to avoid overlaps of
exploration activity due to the limited capability of the mapping process
to consider dynamic objects. Therefore the grandmother robot directs the
mother robots and suggests paths to reach new exploration areas. These
paths should maximise the tradeoff between utility of exploration and
travel risk until the robots reach their final exploration area.

Mother robots will mainly operate in previously unknown terrain,
where reactive navigation has to deal with low level obstacle avoidance.
The mother robots use the suggested path from the grandmother robot
as guidance. But to immediately take advantage of collected information,
local path planning complements the navigation capabilities of the mother
robots.

Chapter 6 discussed the creation of a valid map of the environment.
Path planning uses the information in this map, but has to build a graph
structure from it first. This graph has to fulfil the following requirements:

110

CHAPTER 7. PATH PLANNING 111

1. represent uni-directionally traversable sections

2. include unexplored areas

3. support frequent (map) updates

Every new incoming measurement updates the map structure; to allow
path planning with current data, the graph needs to reflect this change.
Therefore this project has to cope with map updates at high frequency
(5 Hz). Furthermore, the path planners frequently access the graph, so
that the graph is a performance bottleneck for the planning algorithms. A
tradeoff between the accuracy of the graph and performance can be made,
but is not straight forward. The quality of the graph is essential to the path
planning process, so that every limitation of the graph will also affect path
planning.

7.1 Creating a graph from a given map

In general path planning can be done by directly interacting with a map
built from an environment. However, for efficiency reasons path planning
is often done on a graph. This project builds and uses a graph on all robots,
grandmother and mother robot. But to support local path planning on the
mother robots, frequent map updates have to considered and ExploreTM
uses a tight coupling between the map and the graph data structure to
achieve the required performance.

7.1.1 Basic considerations

A MLS map has an underlying grid and (in this project) contains space
blocks. A graph in ExploreTM, built from a MLS map, consists of ’graph
nodes’ and ’graph node buckets’. There is a ’graph node bucket’ cor-
responding to each grid cell and a ’graph node’ corresponding to each
surface patch of an occupied space block (for cells with no occupied space
block, the surface of the lowest free space block is used). Each graph
node contains a link to its ’bucket’, the corresponding surface patch, a
traversability measure and connections to its neighbour surface patches.
These connections to neighbours depend on movement constraints of the

CHAPTER 7. PATH PLANNING 112

mother robot. The constraints are illustrated and classified in Figure 7.1.
The graph building process is the only module in ExploreTM which evalu-
ates the relationship between neighbouring patches. It determines whether
a connection should exist and classifies the connection as:

ClimbDrop: Bidirectional traversal is possible. The robot can manage to
climb up to a certain height, here hb = 0.2 m

DropOnly: Unidirectional traversal only. The robot can manage drops
up to a height hd without damage (hd = 2 m estimated).

Blocked: Due to the total size of the robot it can only pass through holes
of a certain height hh, here hh = 0.7 m, or climb up a certain height hb.

To take advantage of this classification in a later stage (refer Section 7.4.1),
the graph building process stores the classification with each connection.
Beside this information, a connection also contains a reference to its start
and end node, plus an absolute cost measure (refer Section 7.4).

(a) ClimbDrop (b) DropOnly &
Blocked

(c) Blocked

Figure 7.1: Connection types between surface patches

The graph building process considers complex constraints such as the
evaluation of the situation shown in Figure 7.1c, so that a path planner can
work more efficiently. Exceeding a maximum drop height of a connection
classified as ’DropOnly’ could result in damage for the robot and sets a
threshold to change the connection classification to ’Blocked’. Nonetheless,

CHAPTER 7. PATH PLANNING 113

this project does not include this threshold into the graph building process.
The traversability measure of a graph node (Section 7.4.1) will include this
threshold because it is a less complex constraint. This measurement allows
a more flexible (and dynamic) adaptation of the drop threshold.

The graph building process does not incorporate the full description
of the mother robot’s kinematic constraints. It is limited by the resolution
of the map and does not take into account the robot’s footprint. Hence,
path planners have to include a cost measure which considers the robot’s
footprint size.

For the final construction of the graph, the map structure has further
properties that must be represented:

1. Neighbouring grid cells can have multiple connections between sur-
face patches.

2. Each surface patch can have only one outgoing connection for each of
the possible eight neighbour directions1.

3. Unexplored grid cells

The final result of the graph build process is a directed labeled graph,
where the label on an edge includes a classification of the connection.

7.1.2 Updating

The implementation of ExploreTM takes advantage of the close connection
between a map and its corresponding graph. Requesting an update of the
graph will trigger an update of the underlying map first. The map will
update each grid cell that contains new data and then the graph will update
only the graph node buckets that correspond to an updated grid cell. For
each of these graph node buckets, the graph nodes will be reconstructed,
as well as their links to any graph nodes in the neighbourhood.

1Since the robot cannot travel to two different levels at the same time, it does not make
sense to have more than one connection.

CHAPTER 7. PATH PLANNING 114

Optimistic planning

Chapter 6 described the creation of occupied and free space blocks. In
both cases, the perception of the mother robots is too limited to provide an
exact height measure. A free space block provides an upper bound for the
surface level, while an occupied space block provides a lower bound. In
order to deal with this limitation the planner uses an optimistic planning
approach. The graph building process evaluates each grid cell of the MLS
map and uses the surface level descriptions of the occupied space blocks,
if at least one such block exists. If a grid cell contains only a free space
block, the construction of the graph assumes the surface level of the free
space block is traversable. This bears the risk that the surface level does not
exist and that there is a drop instead. Thus, this approach has to be called
optimistic as long as the perception of the mother robots is not enhanced
significantly.

7.2 Selection of an adequate path planner

Chapter 2 showed that A* and D* Lite are both good algorithms for path
planning and both path planners will find the currently best path to a goal.
The performance properties of A* and the easy integration of different
cost measures mean that it is a good general path planner. However,
D* Lite can reuse information generated in previous searches as long as
the goal remains the same. This allows D* Lite to outperform A* over
subsequent searches [KL02]. Nevertheless, A* is less complex and requires
less expensive computation and comparisons: both planners use keys to
order their priority queue, but a key in D* Lite is based on two values,
while a A* uses a single value. Therefore A* can outperform D* Lite on
searches where the path planner constantly plans to new goals.

The design of ExploreTM design does not use a constant replanning
process on the grandmother robot. The grandmother robot computes a
new mission set and suggests paths only on request. The newly generated
set of missions for the robots will also greatly differ from any previous set,
so that starting locations of the robots and the assigned target locations will
have changed. Thus, for the general mission planning on the grandmother

CHAPTER 7. PATH PLANNING 115

robot, the path planner operates infrequently and the map can be treated as
static (though it will be updated in between planning by new information
from mother robots). Therefore ExploreTM uses A* to plan paths on the
grandmother robot.

Mother robots frequently update their maps because they receive new
data at every control interval. Planning within a control interval would be
ideal but would require a fast path planner. Because each mother robot has
a goal point set by the grandmother robot or its local exploration strategy
(see Chapter 9) it will replan to the same goal until the goal is reached.
Therefore D* Lite is used in the mother robots.

7.3 Performance optimisations

The implementation of A* and D* Lite is initially straightforward, but re-
quires optimisation to achieve good performance. The implementation of
both algorithms is based on similar properties, so that this project could
optimise both path planners in a similar way. The number of search nodes
can be huge and requires an efficient priority queue with an efficient mod-
ify operation. No memory management is implemented in ExploreTM, so
that the size of the search nodes affects the performance (due to necessary
memory allocation). The priority queue uses the standard heap implemen-
tation of a complete, partially ordered, binary tree with enqueue, dequeue
and also a modify priority operation. To implement the modify operation
efficiently, each node includes a reference to its current index within the
heap. The modify operation can therefore address the node with constant
costs.

The search operates with two data structures: the graph node and a
’search node’ associated with this graph node. To reduce size each search
node contains only a reference to its associated graph node and its index
within the priority queue. The referenced graph node stores search specific
properties.

As a result of the optimisation the implementation guarantees the fol-
lowing operation costs:

1. Access of a search node property in O(1)

CHAPTER 7. PATH PLANNING 116

2. A priority queue with enqueue in O(log n), dequeue in O(log n) and
modify in maximum O(log n)

Lazy initialisation

Because graph nodes store search information (for efficiency), each graph
node has to be initialised with this information at the beginning of each
search. For efficiency, initialisation takes place for nodes only when the
algorithm needs them. By generating a unique identifier for each search,
stored in the nodes used in the current search, the algorithm is able to
detect if a node needs reinitialisation.

D* Lite specific update

Compared to A*, the D* Lite implementation introduces more complexity
and the implementation of an update mechanism is essential for the D* Lite
algorithm. Nodes which have changed need to be invalidated or better
still be updated to allow a propagation of changes. ExploreTM therefore
maintains a queue of graph nodes which have been updated. This queue
has to be processed before each run of the D* Lite algorithm.

The path planner will run at every control cycle to enhance the naviga-
tion of the mother robot. Fortunately, this characteristic limits the possible
number of grid cells which require an update. In addition, the number of
nodes within the grid cells depends on the environment but a maximum
average of three is expected. This expectation is founded on the kinematic
constraints of the mother robot and the required passage height hh, so that
three nodes will cover a minimum height of 3 · hh = 2.1 m. That finally
means that an expected upper performance bound for the update of cells
can be determined.

7.4 Cost measures

Path planning in this project requires planning through known and un-
known terrain and includes partial information for planning through un-
explored environments. The heuristic cost measure applied in this project

CHAPTER 7. PATH PLANNING 117

will be based on Euclidean distance, whereas the final path depends on a
variety of parameters described in Chapter 9. One of these parameters to
mention here is traversability. The path finder mission has shown that an
embedded traversability map [MBT+06] can enhance navigation. Inspired
by these kind of projects, traversability in this project will be used to define
the costs of traversing sections and is an important measure for computing
traversable paths. Traversability is closely related to the definition of the
graph structure. This measure builds the foundation for the cost measure
in path planning and will be explained in the following subsection.

7.4.1 Traversability

The traversability factor, as already mentioned in Chapter 2, is a value
between 0 and 1, where a lower value means less traversable terrain. To
classify terrain into different degrees of traversability, the graph represen-
tation contains height information about nodes and their neighbourhood.

To integrate the idea of traversability this project implements a ’traver-
sability analyser’ [USN03]. The analyser uses a single node of the graph
and computes an estimation of traversability for the given node, based
on its connections to neighbour nodes. The implementation applies a
traversability definition mainly derived from [JSPB07] and describes a
patch p with the two parameters slope τs(p) and roughness τr(p). It also
integrates a threshold for drops, so that traversability is set to zero once a
drop exceeds the threshold. The current threshold is 2 m and is based on
the maximum estimated drop height a robot can traverse without damage.
The measure of roughness uses the squared height difference between
neighbouring nodes:

τr(p) = max

0, 1 −
1

N ·H2

N∑
i=1

(∆hi(p))2

where

∆hi(p) height difference of the ith outgoing connection of patch p
H2 maximum possible squared height difference,

i.e. the squared drop threshold
N maximum number of outgoing connections

CHAPTER 7. PATH PLANNING 118

The traversability analyser also computes the slope parameter (different
to the original approach) by combining the number of precomputed edge
classifications for ClimbDrop (nClimbDrop), DropOnly (nDrop) and unexplored
connections (nUnexplored). It considers the maximum number of possible
outgoing connections nmax = 8. Although not a computation of slope in the
original sense the classifications represent a fuzzy description of the slope
of an edge. Classification are combined into a single measure using the
following equation:

τs(p) =
nClimbDrop + 0.5 · nUnexplored + 0.2 · nDrop

nmax

The weighting factors have been empirically set and are derived from
the fact that any unidirectional terrain reduces traversability and missing
knowledge contributes to a normalised value of τsp = 0.5.

The final traversability value is τ(p) = τs(p) · τr(p). Unexplored nodes
will have a constant traversability value of 0.5. Figure 7.2 shows the
traversability of surface patches around an obstacle. Figure 7.3 shows the

Figure 7.2: Traversability map - darker green values represent lower
traversability

(mostly) explored surface patches in a planar environment, which are part
of the graph. Note, that most of the patches with higher surface levels
in the planar areas represent surface patches from free space blocks and
represent areas which the robot has swiped with sensors, but not traversed.
Figure 7.4 illustrates the traversability analysis for a path under a bridge.

CHAPTER 7. PATH PLANNING 119

Figure 7.3: Traversability on planar surface

Figure 7.4: Traversability on inclined surfaces - blue patches are not ex-
plored

7.4.2 Dealing with unexplored nodes

To allow planning through unexplored terrain with the given graph struc-
ture, assumptions have to be made for connections between explored and
unexplored regions.

Travel from unexplored regions into known terrain opens up different
options — at least when a multitude of surface levels exists. In that case
the unexplored node at the boundary has as many incoming connections
as neighbouring nodes in a specific direction. Creating all of those con-
nections will violate the constraint of one connection per direction. To
keep this constraint for unexplored regions, this project assumes that com-
ing from an unexplored region the travel is most likely to be continued
on the highest neighbouring surface patch2. Connections from neighbour

2This project expects the highest neighbouring surface to be the main travel surface

CHAPTER 7. PATH PLANNING 120

nodes to the unexplored node do not violate the constraint, so that connec-
tions can be established in the standard way by assuming that no height
difference exists to the exploration node.

7.4.3 Cost measure

Traversability is a major element of the costs to traverse a node. However,
path planning can combine objectives, e.g. the traversal of a node can
be rewarded under certain circumstances. This allows the maximisation
of the information gain of every robot action. Chapter 9 will therefore
introduce factors which influence the exploration task. Path planning
uses the definition of traversal costs from one node to another combined
with a single normalised influence value i(n). This integration allows path
planning to be influenced by additional factors of travelling between two
nodes, although traversability remains the most significant factor. The cost
measure is currently calculated as follows:

c(ns,nt) =

ς (2 − i(ns) − i(nt))
d(ns,nt)
τ(ns)

if τ(ns) , 0,

+∞ otherwise

where

ns,nt start and target node
i(x) normalised influence value of node x
d(x, y) Euclidean distance between nodes x and y (3D)
τ(x) traversability of node x
ς sensitivity constant, currently ς=100

Path planning costs must depend on both the effort required to move
from the current position to a target position, and the value of the move.
The effort depends on the Euclidean distance between the positions and
the traversability of the current position — clearly, a lower traversability
has to increase path costs. The influence measure represents the value of
traversing a specific node; the cost measure therefore includes the influence
values of the current and target positions. Because of the normalisation of
influence values, the cost function includes a sensitivity constant to allow
tuning of the contribution of the influence values.

within a disaster site.

CHAPTER 7. PATH PLANNING 121

7.5 Evaluation

The evaluation of the graph building process and path planning is based
on two steps:

(1) time performance evaluation of graph building process and path
planning with A* and D* Lite

(2) validation of the cost measures

(Test 1) A unit test simulated the motion of the mother robot over 1600
control intervals (>5 min operation time) in a planar environment and let
it constantly plan from the current position to a fixed target point. The
average path length was 7 m. While the A* path planner took an average
of 76.5 ms the D* Lite path planner required only 21.5 ms for the same
task. These times include initialisation, search and path building process.
The evaluation shows that the path planner implementation fulfils the
anticipated performance characteristics [Ste95].

Planning on the grandmother robot is not time critical, i.e. it does not
need to plan paths for the group of mother robots within a single control
interval. However, the amount of time spent should be reasonable, i.e.
within few seconds. This total time is influenced by the number of robots
n the grandmother has to plan for, but will be mainly linear as a result of
performing A* search n times (Chapter 9).

Computation time is limited on the mother robots. Applying the D* Lite
planner within a single control interval required performance optimisation
of the graph build process to allow a frequent graph update. Figures 7.5
and 7.6 show the performance results for updating the graph during 6400
simulated control cycles with the robot moving in a 10×10 m2 field while re-
ceiving random sensor measurements. The map update is limited around
the robots position by radius r, so that the algorithm touches as few cells
as necessary. The performance heavily depends on the selected resolution,
though both tested map building processes – with 100 cm2 and 625 cm2 res-
olution – operate within the given performance constraints. However, for
a multi robot simulation this project recommends a resolution of 625 cm2.

CHAPTER 7. PATH PLANNING 122

Figure 7.5: Graph update for 100 cm2 resolution

Figure 7.6: Graph update for 625 cm2 resolution

(Test 2) The grandmother path planning can be visualised through the
operator interface (see Chapter 9). Figure 7.7a illustrates the outcome
of path planning for two robots to assigned regions of interest. Areas
of higher interest are marked with a darker green and areas of high risk
tend to white. The two planned paths avoid the risk regions, but due to the
properties of the path plan the path is still close to the risk region. Lowering
the sensitivity value ς causes the planner to ignore the influences, which
results in planning through risk areas as illustrated in Figure 7.7b. Hence,
the sensitivity factor influences the maximum region of risk areas which
can be traversed.

Figure 7.8 illustrates the effects of a subsequent increase of the risk

CHAPTER 7. PATH PLANNING 123

(a) Sensitivity ς = 100 (b) Sensitivity ς = 50

Figure 7.7: Grandmother robot planning for multiple mother robots in the
field

area size, with a constant sensitivity factor ς = 50. A modulation of
this sensitivity value might be incorporated to allow a more flexible path
planning, but is not part of this project.

The D* Lite path planning is illustrated in Figure 7.9, where the planner
computes a path over the edge of an abyss (red dotted line in Figure 7.9a).
This points again to the weaknesses of perception which also affect path
planning. The robot cannot detect the drop properly, so that the com-
putation of traversability and subsequent path planning cannot provide
any advantage. But path planning still adds value to navigation through
cluttered areas (Figure 7.9b).

The application of a traversability measure also represent the founda-
tion to detect enclosures (Figure 7.10) — one of the challenges of USAR as
identified in Chapter 4.

Current parameter setting This chapter introduced a traversability mea-
sure to allow path generation. This traversability measure is applied in
combination with the normalised influence value to control the path costs.
While the main influence of the traversability measure has been shown in
Section 7.4.1, it is also included in the single influence value. However, for
this evaluation a weighted sum was used to compute the single value from

CHAPTER 7. PATH PLANNING 124

(a) Small (b) Medium

(c) Large

Figure 7.8: Sensitivity=50 with changing sizes of risk areas

the individual influences and traversability has a low associated weight
as shown in Table 7.1. These weight parameters have been set empirically
and need more evaluation for future research.

influence weight
traversability 0.1
interest 0.5
exploration status 1
general risk 0.9

Table 7.1: Weight setting to calculate numeric influence

CHAPTER 7. PATH PLANNING 125

(a) Planning at an abyss - red dots visualise the path

(b) Planning through densely cluttered areas

Figure 7.9: D* Lite path planning

7.6 Limitations

This chapter described a planning approach which uses an optimistic free
space assumption and contains a general travel risk, which is not elimi-
nated by path planning. Nevertheless, this does not change the properties
for path planning, which could be used in the same way once the per-
ception of the robot is enhanced and surface levels can be detected with
greater reliability.

This project customises the graph to the current configuration of the
mother robots by using a number of thresholds reflecting the kinematic
constraints. To generalise the path planner for different types of robots, the
graph building process would need to remove the robot specific thresholds.
But this could only be done by applying different cost measures for each
robot, which would introduce more complex computations of travel costs
and decrease the performance of the path planners.

CHAPTER 7. PATH PLANNING 126

(a) Enclosure (b) Traversability map

Figure 7.10: Traversability of an enclosure

The implemented graph update is disruptive by releasing all connec-
tions of nodes within a grid cell (for a MLS map) which receives an update.
This increases the number of graph nodes which need an update before
path planning with D* Lite can be done. This update method currently
offers a performance within the requirements, but other implementations
can reevaluate this design to increase performance if necessary.

Without using any methods for obstacle enlargement or region grow-
ing the path planner will tend to take paths close to any risk regions or
obstacles (see Figure 7.7a). A possible countermeasure is a filter mecha-
nism to propagate low traversability values within the graph. However,
this requires a further preprocessing step before path planning and might
also affect the planning through narrow passages. Alternatively to a filter,
the definition of a region can be easily done by an operator (Chapter 9) by
including a ’keep out’ area in the definition of risk regions.

This project makes an assumption when planning paths from unex-
plored terrain to explored terrain. This does not have a major impact on
the planning in the current project, because the test environments are not
heavily layered. Nevertheless, this assumption will need reevaluation as
soon as a similar path planning strategy has to be applied to the daughter
robots which are intended to operate in a more layered terrain. The pre-

CHAPTER 7. PATH PLANNING 127

sented limitation is also related to the constraint of directing the robots to
a specific point in the 3D map.

7.7 Possible solutions and extensions

Tuning and optimisation of the path planners can be a goal of future
projects. There are already a number of ways to optimise D* Lite listed in
[KL02], which have not been applied yet in order to keep the complexity of
the implementation low and because the performance improvement could
not be estimated.

One improvement of the path planner would involve a more sophisti-
cated environment analysis of the given map. Instead of relying only on
a cost measure and traversability value, the setup of a hazard detection
with a more detailed definition of keep out area for the robot could be
considered.

In combination with the environment analysis or as a separate exten-
sion, more flexible path planning should be enabled. A dynamic change of
the cost measure would allow an expansion of the risk measure. Request-
ing a path could incorporate a fuzzy degree of risk taking in planning.
Such planning can range from complete avoidance of unexplored and un-
safe areas to a full risk taking approach, which ignores any threshold for
drops in the environment. The following degrees of risk in combination
with exploration serve as an example classification:

(A) no loss of a device is tolerable, i.e. the robot should get as quickly
and as securely as possible to the target destination

(B) the robot should get to the goal in a bounded time and switch to
exploration of type (A) after a timeout. Exploration activity is rather
conservative and safe.

(C) A robot explores as much as possible on the way to the target, i.e.
the planned path leads through mainly unexplored areas: this path-
planning approach gives very low priority to reaching the target
destination safely.

CHAPTER 7. PATH PLANNING 128

7.8 Summary

This chapter presented the essential elements of path planning in Ex-
ploreTM. It discussed the necessary generation of a graph data structure
and explained its properties that represent kinematic constraints of the
robots. This project selected path planners for planning on the grand-
mother and mother robot and optimised them to fulfil the performance re-
quirements. In addition a cost measure based on influence and traversabil-
ity was introduced, which can be modulated through a sensitivity factor.

Chapter 8

Navigation

The mother robots need to be able to navigate safely in a 3D environment
to perform exploration properly. This chapter describes the challenges of
mother robot navigation in 3D environments and an approach to solving
them. This project builds on a novel navigation approach described by
Lee-Johnson [LJ08][LJC07], further referred to as ’EmotioNav’, which uses
emotion based parameter modulation. There are special properties of the
mother robot and the 3D environment which mean that EmotioNav does
not work unmodified. This chapter describes modifications to EmotioNav
to overcome these problems.

8.1 EmotioNav

Local path planning on the mother robot incorporates the current research
efforts of EmotioNav. Navigation in EmotioNav is based on the combi-
nation of the well known VFH+ and the dynamic window approach (see
Chapter 2), which serve as a directional and a velocity controller respec-
tively. VFH+ is applied to evaluate a number of candidate directions which
the robot can follow and is thus the directional controller of EmotioNav.
The output of the directional controller is a recommended direction for
the robot. The dynamic window approach serves as velocity controller
and if possible follows the recommendation of the directional controller.
It therefore evaluates a set of curvatures — pairs of linear and angular ve-
locities. This section first describes the main elements of EmotioNav. This

129

CHAPTER 8. NAVIGATION 130

description is followed by the requirements for change and a presentation
of the modifications introduced in this project.

8.1.1 Calculating an objective value

Both controllers of EmotioNav rely on the maximisation of a multiplica-
tive objective function which combines different influencing factors. This
objective function is similar to the inverse cost function of the VFH+ ap-
proach and allows the evaluation of candidate directions or velocities.
Each influencing factor is represented by a normalised value and also has
an associated weight in [0, 1]. The combination of the influencing factors
is based on the following equation:

O =
n∏

i=0

(1 − wi(1 − oi))

where

O total objective value
oi individual objective value
wi weight associated with an individual objective

Weights for this objective function are typically chosen between 0 and
0.99, so that all objectives can influence a decision. Nevertheless, a weight
wn can be set to 1 when needed, so that an individual objective on can
lead to a total objective value of zero. Compared to the weighted sum
function used in the VFH approach the author of EmotionNav claims that
such function prevents a situation where multiple but lesser weighted
objectives can overrule a single, though higher weighted objective value.

Objective functions of EmotioNav use angular differences of current
and possible directions. Such angular differences are adjusted to the small-
est angular difference according to the unit circle, so that they are bound
to the interval of [−π,+π].

8.1.2 Directional controller

The directional controller of EmotioNav is based on VFH+ but instead
of using an occupancy grid to compute its vector field histogram it uses

CHAPTER 8. NAVIGATION 131

sensed obstacles distances. To allow the point size treatment of the robot,
EmotioNav incorporates obstacle enlargement of VFH+, though followed
by an additional low pass filter. It then follows the suggestions of Ul-
rich et. al. [UB98] and includes a greater variety of objectives:

1. avoidance

2. goal seeking

3. angular inertia

4. wander

5. path following

Avoidance Obstacle avoidance is the most important aspect of naviga-
tion. EmotioNav computes an objective value for a candidate direction θ
based on the following equation:

a(θ) =

d0(θ)
dmax

if d0(θ) < dmax

1 otherwise

where

d0(θ) distance to closest obstacle in direction θ
dmax maximum sensing range

Goal seeking Goal oriented navigation favours directions that are close
to the target direction and penalises others.

g(θ) = 1 −
|θ − θg|

π

where θg is the goal direction.

Angular inertia The objective of angular inertia favours directions close
to the current one. Significant changes of the travel direction without any
change of other objectives are therefore prevented, so that the robot will
operate on a smooth path.

i(θ) = 1 −
|θ − θc|

π
where θc is the current direction.

CHAPTER 8. NAVIGATION 132

Wander The ’wander’ objective allows the robot to navigate in a random
direction, helps to escape local minima, and supports an explorative be-
haviour of a robot. At every time interval tr=15 s a random direction is
generated. To keep the focus on the goal the random direction is computed
from a limited angle interval centred around the goal direction:

w(θ) = 1 −
|θ − θw|

π

whereθw is sample from a uniform distribution in the interval [θg−απ, θg+

απ], with α as a parameter between 0 and 1.

Path following Global knowledge can enhance navigation by suggesting
a path to follow. The incorporation of this path into navigation is addressed
by the ’path following’ objective. EmotioNav first searches for the closest
node of the suggested path. Once this closest node has been found a
target node is computed. This target node lies a distance dp f from the
closest node along the path towards the goal. Path following steers the
robot to the computed target node and computes a separate path following
direction θp f for that purpose.

p f (θ) = 1 −
|θ − θp f |

π

8.1.3 Velocity controller

The velocity controller of EmotioNav uses the Dynamic Window Approach
and selects its final linear and angular velocity pair (v, ω) from a set of can-
didates. The evaluation of these candidates relies on various objectives.
In general the velocity controller takes a candidate velocity pair and pre-
dicts the motion of the robot over a time frame — typically less than two
control intervals. The controller analyses the predicted path by computing
the minimum distance to any detected obstacle. This process eliminates
candidate velocities which lead into a collision from the further process
and ranks the rest based on various objectives.

Part of the various objective computations is a function to compute
a general objective from a linear velocity v. The result depends on the

CHAPTER 8. NAVIGATION 133

general maximum achievable velocity vL set from hardware limits and a
velocity threshold vth:

Ov(v, vth) =

vL−v

vL−vth
if v > vth

1 otherwise
(8.1)

Avoidance The avoidance function considers the path of motion defined
by the curvature resulting from a velocity pair (v, ω) and computes the
minimum distance dmin to obstacles over this course of motion.

The velocity controller uses knowledge about obstacle positions to com-
pute the minimum distance to any obstacles once the mother robot moves
on a specific curvature. A number of control points ~ci represent the curva-
ture at times ti = mi · T. Values of mi are chosen to represent a specific time
interval and result in a curvature segment which commonly starts after
one control interval T.

The minimum obstacle distance dmin(v, ω) is the minimum distance from
any of the control points to any obstacle.

With knowledge about the minimum obstacle distance the obstacle is
enlarged by the robot radius ro to compute the objective value.

av,ω =

κdmin(v,ω)

ro
if dmin(v, ω) < ro

κ + (1 − κ)
√

dmax(v,ω)−ro
dmax−ro

else if dmin(v, ω) < dmax

1 otherwise

The parameter κ is set to κ = 0.05 and represents the maximum objective
value for curvatures that (theoretically) intersect with obstacles.

The objective av,ω is a risk evaluation of obstacles and for a specific
curvature. To produce the final avoidance objective value, a value av is
computed, so that the linear velocity is considered in this evaluation also:

av = Ov(av,ω,
√

av,ω · vL)

The final avoidance objective value is a combination of both previously
described values and thus increases any (negative) influence of obstacles
within a critical distance to the computed curvature:

a(v, ω) = av,ωav

CHAPTER 8. NAVIGATION 134

Goal seeking The velocity controller receives a target heading θdc from
the directional controller. The candidate velocity pair which most closely
matches this heading after one control interval will be favoured. Linear
and angular velocities are analysed separately and the predicted heading
is calculated from the angular velocity ω.

gω = 1 −
|θdc − (θc + ωT)|

π
Depending on the angular error a threshold for the linear velocity is

set, so that high turn rates and high velocities are penalised:

vmax =

(
1 − |θdc−θc|

βπ

)
vL if |θdc − θc| > βπ

vL otherwise

To combine the influence of the angular and linear velocity the final
objective value remains a result of:

g(v, ω) = gω(ω)Ov(v, vmax)

Distance to goal The distance of the robot to a goal location dg can have
an influence on the velocity. Once the robot is closer than a distance dgth

to a goal location, the robot reduces its maximum velocity to avoid to
overshoot.

vmax =

dg

dgth
vL if dg < dgmax

vL otherwise

The distance objective is then:

d(v, ω) = Ov(v, vmax)

Speed up The speed up function of EmotioNav favours high linear ve-
locities up to the maximum velocity vL:

s(v, ω) =
v
vL

CHAPTER 8. NAVIGATION 135

8.2 Challenges of 3D navigation

Because this project deals with 3D navigation of a wheeled robot, the main
challenges of 3D navigation had to be identified. In the context of the
limited capabilities of the mother robot, the main challenges are obstacles,
ramps and drops.

8.2.1 Classifying Obstacles

The mother robot has the ability to negotiate obstacles, as long as they are
not too high. But the classification of an actual obstacle as traversable or
not depends on the current position of the robot and thus is not determined
by an absolute height difference of neighbouring terrain locations. Factors
such as current incline of terrain, attitude of the robot, and, in the case of
the mother robot, a front body twisted with respect to the rear body can
have an influence on the classification of obstacles. The following analysis
will explain why the current attitude of the mother has to be an essential
part of an analysis of the environment to allow the correct classification of
obstacles as traversable or not traversable.

On an incline

The ability of the mother robot to traverse terrain changes, when its op-
erates on inclined surfaces, due to slip, a different influence of gravity,
and range finder data which is harder to interpret. Figure 8.1 illustrates
the situation for the wheeled mother robot on an incline. When following
a declining path, gravity and geometric configuration help the robot to
overcome obstacles in the forward direction. However, when the robot
has to climb a surface, the actual maximum height of traversable obstacles
shrinks. This analysis assumes that this maximum height is defined by the
vertical tangent to the wheels; a validation with the real mother robot is
required before including this aspect into an implementation.

CHAPTER 8. NAVIGATION 136

Figure 8.1: Decline increases maximum step height

Local map ambiguity

The identification of obstacles results from an interpretation of the current
range finder measurements and possibly previous ones (see Chapter 6),
although with the risk of introducing errors through inaccurate localisa-
tion. The mother robot interprets its local map. This local map contains
range finder measurements relative to the robot’s centre ignoring the cur-
rent attitude of the robot. Therefore, different situations can create the
same local map. Figure 8.2 illustrates three situations with the same local
maps, though the interpretation of obstacles should differ. The mother
robot must therefore interpret its local map, taking into account the robot’s
attitude.

Twisted front to rear body

Any significant articulation of the front body with respect to the rear
body increases the robot’s challenge to interpret the environment and also
changes its capability to overcome obstacles — previously traversable ob-
jects might be non traversable when the robot is twisted. In addition, the
result of a velocity command is rather unpredictable in such situations
considering the differential drive of the mother robot plus the limitations
described in Chapter 4.

Angle of attack Whether an obstacle is traversable or not also depends
on the angle of attack. This results to a main part from the limitation

CHAPTER 8. NAVIGATION 137

(a) Ramp upwards (b) Planar (c) Ramp downwards

Figure 8.2: Different robot situations with same perception

pointed out in Chapter 4 and is a result of a drive with fix wheel directions
and the twisted body design.

8.2.2 Detecting ramps - false obstacles

Ramps, if not too steep, are generally traversable. However, a sensor
configuration in one plane — such as the original one of the mother robot
— cannot detect ramps except in special cases. Range finder measurements
must cover a vertical range of the environment to allow the detection of a
ramp. Since the range finders are rigidly attached to the mother robot, the
robot needs to change its attitude to create such a set of measurements. This
is impossible in situations where the robot approaches a ramp from a planar
surface and sweeps its sensors over the ramp with a rotational motion,
or passes a ramp sideways. Therefore as explained in Chapter 4, either
the sensor configuration has to be adapted to allow a more sophisticated
interpretation of the environment or the robot has to approach possible
obstacles until the robot is close enough to be able to differentiate between
a ramp and an obstacle.

8.2.3 Traversing drops

Even though drops can be traversed, they pose a threat to a robot. The
height of drops might be unknown and the effect of control commands is
unpredictable once the robot has entered a drop. In a worst case scenario
the robot ends up in a state which prevents any further operation. A
general robust hardware design can lower the risk of breakage, but the
loss of control remains.

CHAPTER 8. NAVIGATION 138

8.3 Modifications to EmotioNav

EmotioNav is primarily designed for planar environments; adapting it
to 3D environments involves modifying the avoidance function and its
embedded detection of obstacles.

This project adds an additional stage that does a gradient analysis of
range finder measurements to compute obstacle positions and to compute
a traversability measure. These are used in a modified version of the
directional and velocity controller. It also adapts the existing obstacle
enlargement for the mother robot.

8.3.1 Gradient analysis

Short term mapping as presented in Chapter 6 generates a point cloud;
plane fitting or other more sophisticated methods from object reconstruc-
tion promise accurate measures of point cloud analysis. Nonetheless,
reactivity of the mother robot is essential and this project suggests a more
simplistic analysis of the collected data to allow navigation in 3D.

This project builds a polar histogram which consists of sectors with a
changeable resolution (currently 5◦), so that a discrete number of sections
exists. The gradient analysis is performed for each section, estimates the
slope in the selected section and estimates the traversability in this direc-
tion. It also computes a minimum distance to non traversable obstacles
in this section and takes into account the maximum step height and the
maximum gradient that the mother robot can overcome.

Gradient analysis is performed on the local map of the mother robot.
This local map ignores the current orientation of the robot (unless the robot
is completely flipped, in which case the map will be adjusted with a back
rotation to keep the correct reference to the gravity vector — required for
the gradient analysis).

To facilitate processing of range finder measurements that build the
local map, the measurements are augmented with their spherical coordi-
nates — adding elevation and azimuth with respect to the robot’s current
position. The attitude of the robot gives further information about the
ground underneath and allows a computation of slope in each direction

CHAPTER 8. NAVIGATION 139

from the robot centre. Each section is therefore also characterised with a
base gradient gb.

In order to compute a traversability measure τ the gradient analy-
sis generates the following values, which are mainly derived from the
traversability description in Chapter 2:

(1) actual mean slope τs for each section

(2) roughness τr

(3) slope τs

(4) minimum distance to non traversable obstacle do

(1) The measurement points illustrated in Figure 8.3 allow the computa-
tion of a slope estimate τsi for individual segments i taking into account
the base gradient of a section:

τsi = arctan(
∆hi

∆di
) + gb

where

∆hi vertical extent of segment i
∆di horizontal extend of segment i

(2) After computation of the individual slope estimates, a mean slope
τs for a section is derived from all slope segments and the measure of
roughness τr is computed:

θr = 1 −
1

2Nπ

N∑
i=1

(τs − τsi)
2

(3) The gradient analysis computes the normalised slope measure τs for
the current section and differentiates between inclines and declines:

τs =

1 − τs

τsmax
if τs >= 0

1 − η τs
τsmin

if τs < g

1 otherwise

CHAPTER 8. NAVIGATION 140

where

τsmax maximum traversable slope, here 20◦

τsmin maximum decline, here -45◦

η drop aversion parameter in the range of [0, 1]

In order to compute a slope for the first segment (from 0 to 1 in Fig-
ure 8.3), this project considers that a wheel will contact an obstacle or ramp
at a radius of at least 25 cm from the centre of the robot.

The drop aversion parameter η influences the sensitivity towards de-
clining surfaces and is per default set to η = 0.5. Declining surfaces can
have an maximum decline of τsmin , which is assumed to be −45◦. However,
the mother robot only allows a drop detection up to hdrop = 0.47 m. This
height derives from a sensing range dmax = 3 m, the sensor mounting height
hs = 0.2 m measured from the travel surface of the robot, and the maximum
angle of the sensing ray (12.5◦):

hdrop = dmax · tan 12.5◦ − hs

The drop detection height is far less than the maximum estimated drop
height (2 m) and thus, does not have significance in the current project.

(4) A single segment can be steeper than the maximum traversable slope
and therefore represents a step. If this step exceeds the maximum step
height that the mother robot can traverse, the gradient analysis classifies
it as a non traversable obstacle. When such a non traversable obstacle has
been detected, the minimum obstacle distance do is updated to the distance
between the segment start and the robot centre.

This process ignores negative steps or rather drops, otherwise the
mother robot would not be able to drive on a declining surface.

Final value The final traversability τ for a section is the product of the
individual traversability value for roughness and slope (see Chapter 2), so
that:

τ = τr · τs

CHAPTER 8. NAVIGATION 141

Remarks In some cases free space measurements (from a range finder
showing maximum sensing distance) can be dropped from the analysis.
In this project the current inclination of the mother robot sets an upper
threshold for any free space measurements. Hence, free space can only
classify drops but not (false) obstacles. In addition, subsequent free space
measurements are reduced to the measurement which produces the min-
imum or better maximum negative slope — computed with respect to
the last occupied space measurement in between the current free space
measurement and the robot.

Figure 8.3: Analysis of measurement points

8.3.2 Modified directional controller

VFH+ is the foundation of the directional controller of EmotioNav and in-
cludes obstacle enlargement to compute its polar histogram. While Emo-
tioNav performs circular obstacle enlargement, this project uses a more
conservative approach for obstacle enlargement for the mother robot. This
section will explain how obstacle enlargement is performed in this project
and how the existing objective avoidance is adapted to include the newly
developed gradient analysis. It will also note minor changes to the path
following objective.

CHAPTER 8. NAVIGATION 142

Obstacle enlargement

The directional controller of EmotioNav uses radius roe for obstacle enlarge-
ment. This radius is based on the circular approximation of the robot’s
actual extent plus a security distance to obstacles. After obstacle enlarge-
ment and the incorporation of a security distance the algorithm can treat
the mother robot as a point size object.

An enlargement angle γ is calculated from the enlargement radius and
the minimum distance of an detected obstacle to the robot centre:

γ = arcsin
roe

do
;

where

roe obstacle enlargement radius (includes security distance)
do distance of obstacle from to robot centre

This enlargement angle will cover a number of sections in the polar his-
togram — the neighbourhood of the section where the gradient analysis
detected an obstacle. Though the robot is assumed to be roughly circular
the minimum obstacle distance doi of a specific section i in the neighbour-
hood is updated according to an obstacle line fitted to the enlarged section
(see Figure 8.4). This results in an easier to compute and more conservative
distance measure:

doi =
do

cosα
where

doi minimum obstacle distance limited to [0, dmax]

This approach can also be somewhat justified with the actual rectan-
gular footprint of the robot and the requirement to face its travel direction
with either its rear or back.

Avoidance objective

Gradient analysis allows the estimation of traversability in a specific di-
rection, but it does not consider a neighbourhood of sections like obstacle
enlargement. The avoidance function of EmotioNav takes the minimum

CHAPTER 8. NAVIGATION 143

Figure 8.4: Obstacle line

obstacle distance after obstacle enlargement into account. Thus, the avoid-
ance function of this project uses a conservative approach to combine the
results of gradient analysis and obstacle enlargement to guarantee safe
travel:

a(θ) = min
(
τ,

d0(θ)
dmax

)
where

d0(θ) closest obstacle in direction θ
dmax maximum sensing range

Path following objective

Path following is applied to either follow the suggested path from the
grandmother robot or follow a current path computed to the local en-
vironment. The mother robot uses a following distance of dp f0=3 m for
the suggested path. Once the mother robot reaches the target area and
starts its exploration mission (refer Chapter 9) a shorter following distance
of dp f1=1 m applies to path planning — it then follows the continuously
planned path through the local environment. The difference in the path
following distances reflects the fact that path planning through the local
environment is based on more current data and therefore more reliable.

CHAPTER 8. NAVIGATION 144

Low pass filtering

Low pass filtering is part of navigation with VFH and also EmotioNav and
intends to smooth the final objective function. Combined with a minimum
function it reflects the importance of negative objective values. The low
pass filter applied in this project is a weighted average filter to update the
final objective values O′n for each section n:

O′n = min(On,

∑m
i=−m(m + 1 − |i|) ·On+i

m(m + 2) + 1
)

where m determines the size of the low pass filter in number of sections
(2m + 1).

8.3.3 Modified velocity controller

Similar to the directional controller, the modified controller needs modifi-
cation because the robot in this project is different to the one considered for
EmotioNav. Hence, this project adapted the computation of the curvature
pairs and some of the objective functions that are part of EmotioNav. These
changes will be described in the following subsections.

The velocity controller of EmotioNav relies on knowledge about ob-
stacle positions. The directional controller is executed before the velocity
controller and in this project the identified obstacles are stored with their
polar coordinates — with respect to the local map of the mother robot. The
velocity controller can then access this information to compute a velocity
pair (v, ω).

With the dynamic window approach as the foundation of the velocity
controller only velocity pairs are evaluated, which can be reached from the
current velocity setting. The velocity pair (v = 0, ω = 0) is part of every
evaluation and represents the possibility of an emergency stop. Due to
inertia this command might not result in an actual immediate stop, but it
allows a reevaluation of the situation in the next control cycle to find the
best solution. EmotioNav also incorporates the security distance to avoid
a collision with obstacles in such cases.

CHAPTER 8. NAVIGATION 145

Curvature segment

The computation of the control of the curvature segment is done for multi-
ples of the control interval ti = mi ·T, where mi εM = {1, 2, 5, 9, 14} has been
defined for the mother robot’s control interval T = 0.2 s, representing the
potential movement for the next 2.8 s. The values of m are motivated to
give higher importance (and therefore higher resolution) to closer curva-
ture segments, while also including a further look ahead. The velocity pair
(v,ω) allows the computation of the radius of a curvature rc =

v
ω . Thus, for

each control interval ti a control point exists, which lies on this curvature.
Figure 8.5 illustrates the computation of control points. For ω , 0 and
α = ωt follows:

cti =
v
ω

1 − cos 2ωti

0
sin 2ωti

Figure 8.5: Computation of a curvature control point

Goal seeking objective

This project corrected obvious errors in the known function of EmotioNav,
because its setting of the velocity threshold resulted in a negative velocity

CHAPTER 8. NAVIGATION 146

threshold:

vmax =

[
1 − (1 − β) |θdc−θc|

π

]
vL if |θdc − θc| > βπ

vL otherwise

g(v, ω) = gωOv(|v|, vmax)

Speed up objective

The speedup objective of EmotioNav cannot be applied to the mother robot,
because the mother robot has a field of perception with higher density to
the front and only sparse information about the side and rear environment.
Therefore, the mother robot should prefer forward motion. Nonetheless,
backward motion cannot be excluded and even helps to avoid collisions or
in situations where a point turn is unfavourable. The modified speed up
function accounts for this situation and deals with positive and negative
linear velocities:

s(v) =

0 if v = 0 and ω = 0
1
2 (1 + v

vL
) otherwise

8.4 Evaluation

EmotioNav has been developed and tested in 2D environments. An eval-
uation of this project has to show a valid reimplementation and confirm
the effective modification improving the robot’s behaviour in 3D environ-
ment. The main focus is the ability of the mother robot to differentiate
non-traversable and traversable terrain.

8.4.1 Directional controller

Gradient analysis

The gradient analysis introduces a major enhancement to EmotioNav and
this section presents the output of the directional controller for a mother
robot in different situations to show the working of the modifications. The
output of the directional controller is evaluated using a diagram which

CHAPTER 8. NAVIGATION 147

presents the normalised objective values for the local map of the robot
from direction from 0◦ to 360◦.

Standard situations are analysed: Figure 8.7a represents the common
situation where the robot travels on a flat surface. The current forward
orientation can be derived from the angular inertia function (180◦), which is
equal to the direction of the goal. The avoidance function is not influenced
by any obstacles in contrast to Figure 8.7b, where the robot, which currently
sits on a flat surface, faces an edge and no range finder hits an obstacle.
This situation can be also interpreted as a maximum upcoming decline of
12.5◦ (the drop aversion parameter is set to η = 0.5).

Travel on an inclined surface can be difficult for the mother robot, which
is designed to negotiate up to a maximum incline of 30◦. A decline does not
change the behaviour of the directional controller as shown in Figure 8.8a
compared to a flat surface. However, drops are only detected relative to
the current position of the robot — otherwise the robot will already be
moving in the drop section. The mother robot moves upwards on a ramp
by avoiding the steepest incline. Depending on the current goal, the robot
will avoid the straight path over the ramp (see Figure 8.8b) and influenced
to traverse it with multiple curves.

To access a steep ramp comes at higher costs for the mother robot
and alternative directions are preferred — illustrated by Figure 8.9a for
a traversable ramp close the maximum traversable incline. It is also im-
portant that the mother robot can travel downwards on a ramp and that
upcoming ground is not an obstacle. In Figure 8.9b the controller output
shows deceased traversability at the right side, where its sensor hits an
obstacle, but the main travel direction is considered as being traversable.

The sensed distance is of main importance for the gradient analysis to
be able to differentiate between obstacles and ramps. Thus, the directional
controller results in significant different outputs in cases of a close and a
distant obstacle (see Figure 8.10).

Path following

The mother robot can apply path following for the suggested path from
the grandmother robot and the continuously planned path through the

CHAPTER 8. NAVIGATION 148

local environment. Because the main properties for the path following
behaviour are the same, this project validates path following by tracing
the initial path of the robot to reach a target area. Figure 8.11 shows the
environment which the robot has to explore and the subsequent results.
The path which the grandmother robot suggested is visualised as a light
red line. The mother robot tries to follow this path, but has to avoid
obstacles at the same time — explaining the deviations in the exploration
path of the mother robot. Path following ends when the robot starts its
frontier based exploration (the solid red dot in the operation monitor of
Figure 8.11b illustrates the next frontier region for the mother robot).

Continuous path planning with D* Lite intends to improve navigation
of the mother robot. Evaluation shows that this approach does not hold for
ramps which are steeper than the maximum traversable incline of the robot.
The current graph building process does not account for subsequent steps
and thus the suggested computed traversability measure allows paths
with a slope of τp ≈ 39◦ considering a maximum step height of 0.2 m and
a resolution of 625 cm2. However, the scenario in Figure 8.12 validates
that continuous path planning still improves reactive navigation for steep
sections.

Note that the evaluation in Chapter 9 relies on the directional controller
setting listed in Table 8.1 and thus also validates the successful integration
of continuous path planning into navigation.

objective weight
avoidance 0.99
angular inertia 0.2
goal seeking 0
wander 0
path following 0.5

Table 8.1: Settings of the directional controller

CHAPTER 8. NAVIGATION 149

objective weight
avoidance 0.99
goal seeking 0.5
distance 0.2
speed up 0.2

Table 8.2: Parameter setting for the velocity controller

8.4.2 Velocity controller

For evaluation of the velocity controller a two dimensional curvature di-
agram is computed, which represents velocity pairs and obstacles. Fig-
ure 8.6 illustrates the model. Obstacles are represented as additional blue
circles — the curvatures are heavily enlarged to allow a better visualisa-
tion and analysis. Therefore the obstacle size is schematic and does not
represent a 1:1 relation to curvature sizes.

Figure 8.6: Curvature diagram including objective value

The evaluation in this section is based on a goal in the forward direction
of the mother robot and EmotioNav parameters are set to values listed in
Table 8.2.

Figure 8.13 presents four standard situations of the mother robot when
the mother robot is currently stopped and computes the next velocity com-
mand, and further two situations when the mother robot is in motion. In
the first example in 8.13a the mother robot’s environment is free of obsta-
cles. The velocity controller clearly favours forward velocities which lead

CHAPTER 8. NAVIGATION 150

into the direction of the goal. As soon as an obstacle exists (Figure 8.13b)
the velocity controller favours velocity pairs which lead away from the
obstacle. By analysing the current local map the robot can only detect
obstacles to its front, side and rear. Being surrounded by obstacles the
distance to obstacles becomes more relevant. Close side obstacles for ex-
ample are then treated as a greater threat than distant (1 m) obstacles at the
front of the robot (Figure 8.13c). Therefore even a straight forward path in
direction of the front obstacles can be still considered.

The influence of the dynamic window becomes obvious, when the
mother robot has a current forward velocity (0.5 m

s in Figure 8.13e). The
robot selects the best option from its reachable velocities and tries to avoid
any obstacles (here at 1 m distance). Figure 8.13f shows the mother robot
at the same speed but with closer front obstacles. The robot is forced to
perform an emergency stop because the optional forward velocities have
worse objective values.

The presented ’snapshot’ evaluation of standard situations shows the
ability of the velocity controller to interpret situations correctly and com-
pute appropriate control commands. Nevertheless this behaviour has to be
validated with a constantly operating robot in simulation. The following
section will therefore discuss the robot’s overall navigation behaviour in
simulation.

8.4.3 General behaviour

Testing the mother robot in cube fields (see Figure 8.11a) showed that ob-
stacle avoidance has been successfully implemented with the current mod-
ifications. The selected security distance is the main parameter to control
when the robot commences its avoidance behaviour. In cases where the
security distance is low (≤ 0.2 m) the mother robot can suffer from cutting
corners, while considering only the current range finder measurements.
Nonetheless an application of the mother robot in a field of rubble requires
low security distance settings and simulation shows that currently colli-
sions cannot be completely avoided in such environments with the mother
robot — a result of the low sensor density at the sides and a local map
which currently keeps none of the previous measurements. But the overall

CHAPTER 8. NAVIGATION 151

hardware design of the robot and its ability to operate inversely allow more
tolerance to such behaviour.

The operation in a field of rubble sets a challenge for the mother robot,
but with a modified EmotioNav the mother robot manages to explore major
obstructed areas autonomously (see Figure 8.14) and becomes stuck only
in rare cases. Then the manual interaction of the operator is required to
free the robot. An example of a critical section is highlighted in Figure 8.15.
One of the highlighted obstacles is thin and lifted. Initially, this increases
the difficulty of detecting the obstacle. Furthermore, the object is light and
likely to change position during contact with the mother robot, but the
robot is yet not able to deal with dynamic objects properly.

8.5 Limitations

One of the major aspects of EmotioNav is parameter setting. This project
embedded the infrastructure of EmotioNav into ExploreTM and allowed
the activation of a parameter set at the start of the simulation. There-
fore, the current navigation behaviour can be improved in situations of
enclosures or other situations where the routes to a goal are heavily con-
strained. Though path planning can cope with some of these situations it
becomes clear that path planning needs further extensions to cope with non
traversable ramps and has to embed the maximum incline of the mother
robot. Given such changes have been made, the influence of path planning
has to rise dynamically in situations where the robot is stuck in order to
take advantage of long term knowledge by increasing the confidence into
the planned escape route.

The task to classify real obstacles is challenging for the mother robot.
Hence, the mother robot can collide with obstacles and especially when
using only a small security distance. This project introduces a parameter
to influence drop avoidance, but this measure is currently not applicable
due to limited field of perception. Thus, the ability to distinguish between
a drop and a ramp remains a challenge — the mother robot cannot identify
a high drop properly without having moved through it.

CHAPTER 8. NAVIGATION 152

8.6 Possible solutions and extensions

The requirements for a successful detection of inclines suffers from the
planar orientation of the majority of the mounted range finders. In order
to ease detection of ramps the symmetric sensor configuration has to be
reconsidered. An alternative configuration is suggested in Figure 8.16, but
the illustrated design might result in an earlier obstacle detection on side
of the robot and thus might set a preference to a left or right hand turns to
avoid obstacles.

EmotioNav comes with a large number of parameters and creates a
challenge to find the right set of parameters for specific situations. To cope
with specific situations the inclusion of a behavioural system with a rule
base can be a possible solution. It could compensate for special weaknesses
of the robotic platform and problems in specific situations, e.g. when the
robot is somewhere stuck. Though generic solutions are desirable a rule
base system can help to overcome initial problems until a generic solution
has been found.

8.7 Summary

This chapter described the foundation of the navigational approach Emo-
tioNav and its two main components — the directional controller and
the velocity controller. It illustrated the necessary modifications to apply
EmotioNav for operation in 3D environments, which included a solution
to compute slope from current sensor data. The modifications also account
for the kinematic capabilities of the mother robot.

The evaluation has shown that an application of EmotioNav in 3D
environments is possible, but depends on the ability of the mother robot
to classify non traversable obstacles. With the employed modification to
EmotioNav the mother robot manages to explore major areas of a field of
rubble autonomously. However, operator interaction can be still required
in rare cases when the robot got stuck.

CHAPTER 8. NAVIGATION 153

(a) Travel on a flat surface

(b) Facing an edge

Figure 8.7: Directional controller output for standard situations

CHAPTER 8. NAVIGATION 154

(a) Travel on a declining surface

(b) Travel on an inclining surface

Figure 8.8: Directional controller output for standard situations

CHAPTER 8. NAVIGATION 155

(a) Steep ramp ahead (b) Downwards ramp

(c) Steep ramp directional controller results

(d) Downwards ramp directional controller results

Figure 8.9: Situations with incline

CHAPTER 8. NAVIGATION 156

(a) Distant obstacle (b) Close obstacle

(c) Distant obstacle directional controller results

(d) Close obstacle directional controller results

Figure 8.10: Obstacle at varying side distances

CHAPTER 8. NAVIGATION 157

(a) Environment to explore (b) Exploration path

Figure 8.11: Path following to the target area

(a) Robot in a drop (b) Planned path to frontier

Figure 8.12: Path following to the next exploration frontier

CHAPTER 8. NAVIGATION 158

(a) No obstacles (b) Obstacle at left hand side

(c) Surrounded by obstacles (d) Close obstacles at the front

(e) Distant obstacles at front (f) Close obstacles at front

Figure 8.13: Velocity controller outputs

CHAPTER 8. NAVIGATION 159

(a) Explored area without complica-
tions

(b) Traversability of explored area

(c) Operation area

Figure 8.14: Field of rubble and exploration

Figure 8.15: Problematic section

CHAPTER 8. NAVIGATION 160

Figure 8.16: Possible asymmetric sensor configuration

Chapter 9

Exploration

The goal of the mother robots is the exploration of an environment to
search for victims. Exploration can be done in a variety of ways on a
spectrum of manual to fully autonomous. This project tries to achieve
autonomous exploration with the design of two exploration strategies for
the grandmother and mother robots — the global and local exploration
strategies.

This chapter presents the details of the global and local exploration
strategies within ExploreTM, which provides the control mechanisms for
the hierarchy of robots.

9.1 Partially informed exploration

The general approach to investigating the operation area is based on par-
tially informed exploration. The grandmother robot and mother robots
will not have any prior information about the terrain to explore, but their
operators might have. The operators will likely have a general idea about
the structure of the terrain, which includes knowledge about areas which
either promise a higher success rate to find victims or which just pose a
threat to the continuous operation of the robots - this assumes previous
experience of an operator and remains a subjective aspect. However, this
project allows operators to encode their knowledge about the environment
and provide advice for the grandmother robot.

In addition, the exploring robots will accumulate knowledge about the

161

CHAPTER 9. EXPLORATION 162

search area and send it at regular intervals (refer Chapter 3) to the grand-
mother robot. The grandmother collects and combines this information
and uses it to optimise the global exploration strategy.

The design of the communication structure for operator, grandmother
and mother robots allows the exploration strategy to be influenced by sub-
jective and collected information. This project selected five different types
of influencing factors which can be transmitted between these communi-
cation partners:

(i) degree of interest to explore a region

(ii) risk of operation

(iii) traversability

(iv) current state of the robots

(v) exploration status

(a) Defining interest (b) Defining risk

Figure 9.1: Operator actions

Operators can define the risk and interest for specific areas before or
during the search operation (see Figure 9.1). This sets an initial focus for
the search, and specific areas can be treated with preference. Some areas
can also incur a higher risk of losing the exploring robots. Therefore,

CHAPTER 9. EXPLORATION 163

defining higher risk areas allows this to be taken into account during an
operation.

The risk measure aims at increasing the probability of a longer opera-
tional state of the robots. These two influencing factors, interest and risk,
are generic and apply for wide open search strategies as well as for con-
fined spaces. An example of an influence map is presented in Figure 9.2
— darker green values represent a higher utility of exploring the region.

Figure 9.2: The influence map after marking interest and risk areas

The measure of traversability classifies explored areas (refer to Chap-
ter 7); a default value applies to unexplored areas. This traversability
classification allows path planning through unexplored terrains and al-
lows the generation of an optimised path through known terrain.

A description of state accounts for temporary (in)capabilities of individ-
ual robots. Though the group of mother robots consists of homogenous
devices with equal capabilities, the performance can vary during an oper-
ation. For example, battery discharge can limit the reach of an individual
mother robot. Other factors such as the state of wheels or gearboxes, espe-
cially after drops in the environment, can also play a major role in limiting

CHAPTER 9. EXPLORATION 164

the speed or the reach of a robot. This project uses Euclidean distance from
the robot’s position to a target location to derive a utility measure of the
location due to the state. Currently, the state influences only the selection
of target areas, but not path planning, because path planning already in-
cludes a distance measure. The integration of the robot’s actual hardware
state will be a subject for future projects.

Exploration status is a normalised measure to describe the degree of ex-
ploration of a grid cell, i.e. 0 for an unexplored cell and 1 for a fully explored
cell. In the MLS map, vertical space is actually unconstrained, so that a
grid cell should never reach the exploration status of 1. However, this
project expects a maximum height to be covered, so that the exploration
status for a grid cell (given the cell has been explored at all) is currently
computed in terms of the cell density as follows:

(1) Calculation of a cell density value ϕ

ϕ =

∑n
i=0 2σn

hmax − hmin

where

n number of space blocks in grid cell
2σn vertical extent of a space block with index n
hmin, hmax lowest/highest height level of all space blocks

in current grid cell

(2) Exploration status ε:

ε = min(1, ϕ2 1 + nocc + α · n f ree

E[N] + 1
)

where

n f ree,nocc number of free or occupied space blocks
α constant, currently α = 0.4
E[N] expected maximum number of blocks per cell,

currently E[N] = 3

CHAPTER 9. EXPLORATION 165

The density parameterϕ is a normalised value which describes the ratio
between the height covered by space block descriptions and the maximum
height difference covered by these blocks. The exploration status combines
the density and the number of blocks in the cell. Note, that the expected
number of blocks takes into account the kinematic constraints of Chapter 6.
The final exploration function weights the free space block count by a
constant α<1. This reflects the assumption that knowledge about occupied
space represents a higher quality of exploration than knowledge about free
space blocks — a safely traversable area has at least a single occupied space
block representing ground. The added pseudo count (+1 in numerator and
denominator) rewards the initial exploration of a cell — even if just a free
space block was computed.

The presented equations are an initial effort to provide a 3D exploration
status for a 2D map to allow a map presentation in a 2D operator interface.
As such it requires further evaluation to show the usefulness for multi-
layered 3D environments. An evaluation could not be performed in this
project due to time constraints.

9.1.1 Application of influence maps

This project uses so-called influence maps (see Chapter 2) for computation,
storage and exchange of factors which can influence the global exploration
strategy of the team of robots. Therefore, the grandmother robot maintains
an influence map that is associated with the graph structure.

The influence map in this project is a 2D grid map and the stored
values represent the five influence values associated with each grid cell of
the graph (refer Chapter 7). The integration of these values into a planning
operation requires the computation of a single, normalised value for each
cell to represent the desirability or utility of visiting this cell.

Before computing this single value, some of the influence factors are
rescaled. Rescaling allows an individual non linear weighting to be applied
to individual factors, e.g. by using a degradation function for the state
(with Euclidean distance as its input value).

The objective function as described in Chapter 8 is reused to compute
the final influence value that represents the utility of a cell, and weights

CHAPTER 9. EXPLORATION 166

Influence type weight rescaling
Interest: 0.5 none
Risk: 0.9 1 - <value>
Exploration: 1 1 - <value>
State: 0.5 1

1+
√
|3−<value>|

Traversability: 0.5 none

Figure 9.3: Weighting of influence factors

are associated with each type of influence. The weights are currently set
to stress the importance of the exploration status as the main goal of the
mother robot and also to give risk significant influence. Note that when
a cell is fully explored the total influence will equal zero, independent of
other influence factors. The associated weights and any value rescaling
are listed in Figure 9.3. The weights could also be a subject to modulation
in subsequent projects.

This project uses an influence map with a fixed grid size to keep the
memory footprint of the influence map small. Therefore the influence map
uses a lower resolution than the graph. The current implementation uses
an influence map size of 200 × 200 cells, so that the minimum resolution
and therefore a lower bound for the influence map is 1.56 m2, considering
the currently supported maximum size of the grid being 1000 × 1000 cells
with a resolution of 625 cm2.

As a result of the different resolutions between global map and influ-
ence map, a single value in the influence map represents the utility of a
neighbourhood of grid cells. To compute the influence from traversability
and exploration status, the worst case assumption applies; the influence
is computed based on the lowest traversability and the lowest exploration
status of a neighbourhood of grid cells, thus leading to a conservative
planning approach. Note that the traversability value of each grid cell is
computed under the same assumption but from the nodes contained in the
cell.

CHAPTER 9. EXPLORATION 167

9.2 Exploration strategies

The overall exploration strategy of the team of robots consists of global and
local exploration strategies. The global exploration strategy is computed
on the grandmother robot and assigns missions (centres of target regions)
to the mother robots. Each of the mother robots then tries to fulfil their
assigned mission using the local exploration strategy. As soon as a single
mother robot has completed its mission, the overall process is restarted
and the grandmother assigns new missions to all the mother robots (refer
Chapter 3).

Due to time constraints this project did not try to find optimal explo-
ration strategies, but implemented simple (placeholder) solutions for the
global and local exploration strategies instead.

9.2.1 Global exploration strategy

The goal of the global exploration strategy is to allocate a mission to each
mother robot that optimises the influence value, the spread of the regions,
and avoids conflicts between the robots. The global exploration strategy
also suggests an optimised path to each of the mother robots to reach the
assigned target area.

Allocation of the mission set

The grandmother has to compute a set of missions for the team of mother
robots and the allocation process of the mission to the mother robots in-
cludes the information provided by the influence map. The global explo-
ration strategy uses following optimisation process:

1. Build a candidate set of missions for each mother robot and evaluate
their total region influence with respect to each robot

2. Find the top k missions for each mother robot, where k = max(20, 3 ·
nmr) and nmr is the number of mother robots

3. Create a candidate set of all mission combinations (only from the
top k missions) for the team of robots, but ignoring the individual
allocation to robots

CHAPTER 9. EXPLORATION 168

4. Select the best mission combination for the team of robots

5. Allocate the missions to the individual mother robots, so that the sum
of distances between missions and mother robots is minimised

6. Plan path for each robot and its allocated mission

7. Identify conflicts between the computed paths

8. Resolve conflicts (not implemented)

In order to find the top k missions for each mother robot, the grand-
mother analyses the influence map for each of the mother robots and also
creates a list of candidate regions for each. The computation of these can-
didate regions uses a moving window approach (often applied in image
processing). The window has a total size of 64 m2 and is moved with a
step size of 4 m to find the most attractive regions for a mother robot.

The identification of possible path conflicts between the mother robots
is straight forward by analysing the distance between planned paths. Nev-
ertheless, this project does not implement the final conflict resolution step
which could be done by changing the mission allocation (based on the
knowledge about conflicting ones) and repeating the process until no con-
flicts exist.

9.2.2 Local exploration strategy

Each mother robot uses the local exploration strategy to fulfil the mission
received from the grandmother robot. A mission represents a target area
to explore and is defined by a centre coordinate and a radius. A mother
robot will apply its local exploration strategy to this area.

Frontier-based exploration [Yam98] has been selected by this project
as the local exploration strategy for all mother robots. This strategy will
prefer large and open frontiers with minimum obstruction by obstacles.
First of all, the continuous graph update process marks explored grid cells
as frontier cells when they have at least one unexplored neighbour grid cell.
This labelling allows the mother robot to select the best frontier region after
performing the following process to compute a list of candidate regions:

CHAPTER 9. EXPLORATION 169

(i) Region growing (currently by factor 3 for an individual cell) is per-
formed on cells with a traversability value smaller than 0.2 (i.e. obstacles)
and frontier cells that are found to be obstacles are removed from the
frontier.

(ii) Each frontier cell is assigned to an individual frontier region. These
regions are greedily merged, as long as their centres are no more than 0.5 m
apart from each other.

(iii) The new frontier regions are clustered with a standard hierarchical
clustering method [Mac03]. The clustering process stops when the centres
of all regions are at least 2 m apart from each other.

(iv) Frontier regions with fewer than the average number of cells per
region are removed from the list of frontier regions, as are regions outside
the mission target area or closer than 1.5 m

(v) The closest remaining frontier region will be explored.

A mother robot will apply its local exploration strategy as long as the
mission is considered to be not fulfilled. To evaluate this criteria the
exploration status of an area may be constantly evaluated, and a mission
could be considered fulfilled when a certain percentage of the region has
been explored. In this project, however, an exploration mission is fulfilled
when no new frontier can be found in the region. In addition, separate
timeout thresholds are part of the global and the local exploration strategies
to either recompute the overall mission (6 min) or a target frontier (1 min).

9.3 Evaluation

As mentioned, the currently employed strategies are suboptimal and should
be viewed as placeholder strategies which can serve as basis for subsequent
developments. The performance of the exploration strategy will also suffer
from the current limitations of navigation such as the missing modulation

CHAPTER 9. EXPLORATION 170

of navigational parameters. Nevertheless, this project performed a simple
evaluation of the fundamental characteristics of the strategies to show the
overall validity of the approach to include operator advice, and also points
to individual aspects and elements to consider for improving the strategies
in future projects.

The main criteria for an exploration strategy is the ratio between cov-
erage and exploration time. The performance was measured for a team
of mother robots exploring a planar environment, which is surrounded by
an obstacle wall. The scenario allows a maximum of 56 % (about 2185 m2)
of the total area (about 3900 m2) to be explored by the mother robots. The
global strategy in this evaluation will assign missions with a radius of 10 m
and the initial mission assignment is manually triggered at the start of each
operation, but it does not include operator advice.

A single robot needed about 1 h to achieve an area coverage close
to the maximum possible and three mother robot required about 0.5 h
to explore the same area (Figure 9.4). The analysis of exploration times
between a single and three exploring mother robots confirms, that the
current combination of global and local exploration strategy is suboptimal.
Note that the percentage of coverage of the area (cells which have been
seen) is higher than the actual degree of exploration, which is based on
the newly introduced measure to compute the exploration status (in which
space known to be occupied results in a higher degree of exploration than
empty space).

An autonomously operating team of mother robots is able to cover
large parts of an area without any direction. Due to current characteristics
and limitations of the exploration strategy the robots will spend more time
getting around obstructed areas of the presented scenario, which results
in a better exploration of these areas (for example Figure 9.5). Thus, the
operation environment affects the exploration time. Figure 9.6 illustrates
the increase of exploration time for a field of rubble with a team of three
mother robots. A few tests have also been performed with a single mother
robot in a cube field plus added rubble (Figure 9.7). These test have
indicated that an exploration of such an area involves an increase of time by
a factor >1.6 compared to an operation in a planar environment. However,
due to time constraints this finding could not be further validated.

CHAPTER 9. EXPLORATION 171

While the exploration strategies are suboptimal, an operator can in-
fluence the operation and thus increases the efficiency of the operation.
Figure 9.8a illustrates the coverage and exploration for an initially undi-
rected exploration. After about 10 min the mother robots do not gain
significant new information about the area and the intervention of an op-
erator (Figure 9.8b), and the setting of a new interest region help to refocus
the exploration and increase the area coverage of the team of mother robots.

9.4 Limitations

Multiple mother robots do not share their maps and only the grandmother
robot can access all information about the environment, so that the ex-
ploration of the mother robots can partially overlap; even once they have
gotten to the target regions the mother robots might have to go outside the
target area because the direct path to a frontier is obstructed.

An advanced centralised exploration strategy has to deal with multi-
ple robots and needs to organise them so that the search activity does not
interfere but is complementary. A centralised approach gives the oppor-
tunity to control the individual behaviour of the robots to a great degree,
but this project takes a changeable and unpredictable environment into ac-
count and allows the mother robots to follow their individual exploration
strategy. Furthermore, the global map with data from all robots is only
maintained on the grandmother robot and currently not propagated to the
mother robots. This aspect and the missing conflict management result in
a suboptimal strategy that does not prevent the overlap of search activities.

In addition, the current selection of frontier regions as part of the local
exploration strategy can be improved. Though region growing is enabled
for obstacles, Figure 9.9 shows a frontier line (green) that extends between
an obstructed section (red) and the unexplored area (black). This can
result in the selection of frontier regions that cannot be reached. Simply
increasing the obstacle growth factor can help, but might also lead to
narrow passages being hidden.

An individual mother robot will trigger an mission assignment for
whole team of robots when no frontier cell can be found or the completion

CHAPTER 9. EXPLORATION 172

of the mission takes too long. However, for some missions, although the
target is not explored well, no frontier can be found, because the area has
a high coverage already or is largely obstructed. Currently this triggers an
immediate new request of a mission assignment which can lead to looping.

Subsequent global strategies should therefore incorporate a more so-
phisticated analysis of the exploration area to avoid such situations. In
particular, the project uses 2D influence maps and a 2D operator interface,
and the current local exploration strategy uses a 2D measure of cover-
age. A successful 3D exploration strategy must take multiple terrain levels
into account and the data structures and exploration strategies need to be
adapted.

9.5 Possible solutions and extensions

The accessibility of global knowledge for the mother robots needs to be
improved and several options exists. In general, either detailed map in-
formation could be forwarded or only influence map could be used to
transport information. To share detailed map information with the team
of robots, the grandmother robot can forward the most current global
map to the mother robots at regular intervals or the mother robots them-
selves could broadcast their most recent findings. Clearly, this places high
demands on the communication channel bandwidth and thus the use of in-
fluence maps only should be investigated. Sharing global knowledge aims
at increasing the efficiency of the team of mother robots and the overlap of
search could then be avoided without a centralised conflict management
on the grandmother robot.

Influence maps should be forwarded to the mother robots in any case
as a next logical development step. This will allow an improved local
exploration with the selection of exploration regions, which promise to be
of higher value for the total operation.

With an enhanced operator interface the current representation of influ-
ence map can be expanded to three dimensions. Such an extension of the
data structure should not significantly increase the memory requirements
as long as dynamic allocation techniques are applied since the maximum

CHAPTER 9. EXPLORATION 173

number of nodes (surface patches) per grid cell is almost always less than
four.

The exploration of a static environment can be performed by visiting
locations once (though revisiting might be an advantage as well), but
changing environments might require areas to be revisited. Therefore, the
exploration status and eventually the map data itself of a single cell could
be timestamped, so that exploration status and map data might decay to
eventually influence the mother robots to revisit areas.

The sensor information that can be retrieved from the mother robots
is limited. To gain more information from the mother robot, an (online)
analysis of velocity and IMS data history could be performed. Such an
analysis might lead to a more sophisticated terrain classification and allow
an estimate of the time needed for the exploration of close regions. This
information could subsequently be used to optimise the overall exploration
strategy; using this data to optimise velocity control could be a further
benefit.

The current implementation of the local exploration strategy provides
tools for a more advanced analysis of frontier regions using image process-
ing techniques for the computation of so-called moments. Frontier region
have a more sophisticated geometric description through characteristics
such as elongation, compactness and eccentricity. Currently frontier re-
gions are clustered based on the distances of frontier cells to the region
centre. As an extension of the current project, the optimisation process
could take a geometrical analysis into account to improve clustering and
selection of frontier regions for the group of robots.

9.6 Summary

This chapter presented this project’s approach to applying an exploration
strategy for a group of robots. The exploration strategy can integrate prior
information and uses influence maps as its main data structure, so that
prior and current information can be combined. Consequently, the global
exploration strategy is affected by different influencing factors, which allow
an optimisation of the search. The local exploration strategy uses frontier-

CHAPTER 9. EXPLORATION 174

based exploration, but is also influenced by navigation strategy and the
parameter settings of EmotioNav.

The combination of global and local exploration strategy defines the
overall exploration strategy of the mother robots. The presented evaluation
indicates that such combination is effective, but currently lacks efficiency
and thus should be a subject of future research efforts.

CHAPTER 9. EXPLORATION 175

(a) Coverage

(b) Exploration

Figure 9.4: Coverage and exploration status using different numbers of
mother robots

CHAPTER 9. EXPLORATION 176

(a) Three mother robots

(b) Single mother robot

Figure 9.5: Exploration with a different number of mother robots and
operator advice

CHAPTER 9. EXPLORATION 177

(a) Coverage

(b) Exploration

Figure 9.6: Three mother robots in a planar area and field of rubble

CHAPTER 9. EXPLORATION 178

(a) Cube field plus rubble

(b) Exploration time of a single mother robot

Figure 9.7: Exploration of single robot in obstructed terrain

CHAPTER 9. EXPLORATION 179

(a) Effects of operator influence

(b) Operator influence

Figure 9.8: Total influence including the operator’s advice, also showing
the paths planned shortly after the advice was given

CHAPTER 9. EXPLORATION 180

Figure 9.9: Cube field with rubble surrounded by obstacle wall

Chapter 10

Conclusions

This chapter outlines the contributions of this thesis and presents the con-
clusion from the current project. This chapter will also provide directions
for future research.

10.1 Conclusion

The aim of this thesis was to provide a centralised control mechanism for a
team of robots, specifically the grandmother and mother robots of [Car07].
To achieve this goal, it was necessary to set up a simulation which allowed
the test of the individual control elements: mapping, path planning and
navigation, as well as exploration techniques.

Simulation This thesis set up a simulation, created a model of the mother
robot, embedded it into a simulation and tested it in a variety of operation
environments. The simulation allowed the study of the dynamics and
limitations of the mother robot including its control software and provided
a powerful tool to improve the robots, so that it could meet challenges of
USAR.

The simulation in this project was enhanced to easily set up a multi-
robot team consisting of grandmother and multiple mother robots, so that
a study of the control algorithm ’ExploreTM’, its individual modules and
collaborative properties was facilitated. Used throughout this project, the
enhancements allowed a more efficient development and evaluation of

181

CHAPTER 10. CONCLUSIONS 182

algorithms for search and rescue operations.
The simulation has shown to be faithful in most situations and was ap-

plicable throughout the development of the control algorithm. By leading
to the identification of major limitations in the current hardware design of
the mother robots, the simulation has proven to be an essential part of the
development process. With the ability to make immediate configuration
changes, the simulation is therefore a valuable and low cost tool to identify
early design limitations.

Hardware Design This thesis identified major limitations of the mother
robots. The change of the hardware design was beyond the intended scope
of this project, but was necessary to improve the mapping ability and in-
crease robustness of the mother robot to allow operation in challenging
environments. Financial costs and the requirement of symmetry for in-
verse operation have a great influence on the design of the mother robot
and this thesis introduced changes to the hardware design which can be
implemented with minimal costs and effort.

The limited perception still sets a challenge for autonomous operation
and has severe implications for navigation in complex environments. Even
with the modified range finder configuration of this project, the mother
robot remains limited to the detection of small drops in the environment
and the inclusion of the mounted camera will not change this situation.
The navigation mechanism therefore requires an operation of the mother
robots on the basis of optimistic assumptions, so that the mother robots
can either explore their environment at increased risk or limit their field of
action. With greater risk taking, the final performance of a mother robot
relies to a large part on the sturdiness of the device.

Hence, from a variety of evaluations it can be concluded that the de-
sign of the mother robots needs reevaluation from a holistic viewpoint
to allow safer and more predictable autonomous operation in cluttered
environments.

System design This project served as an holistic approach to develop and
validate a design for autonomous control for a hierarchy of robots. This
thesis suggested a general high level control structure for the team of robots

CHAPTER 10. CONCLUSIONS 183

and provided the design for a message based system for communication
between the different team members. It also implemented a solution to
include operator advice into an autonomous control structure. Though the
individual elements of control have to deal with the specific limitations of
the hardware platform, the overall system design has been shown to be a
successful and effective approach to allow for autonomous operation and
exploration with the grandmother and mother robots.

Control algorithm The control system ’ExploreTM’ is a result of this the-
sis and combines new and existing algorithms for mapping, path planning,
navigation and exploration. ExploreTM allows autonomous operation of
the individual mother robot and autonomous control of the team of robots
based on a single grandmother and multiple mother robots. It also fulfils
one of the major requirements of USAR robots by accounting for inverted
operation. All algorithms have been evaluated in simulation to show that
they fulfil the time performance constraints for application on the mother
robots. The following paragraphs will address the individual algorithms
of the control framework.

Mapping Chapter 6 presented a novel approach for mapping that is
based on MLS maps. It uses descriptions of not only occupied but also
free space and allows the current robots to operate with a small set of
range finders by using incremental data collection. Though mapping of
3D environments usually sets high computational constraints, this thesis
shows in Chapter 6 that resourceful 3D mapping can be performed with
the low cost mother robot under some assumption about localisation. This
can be done with sufficient accuracy for subsequent planning operations.

Path planning This thesis presented a distributed path planning ap-
proach in Chapter 7 and adopted a traversability measure to provide a
fuzzy terrain classification which included the kinematic constraints of the
mother robots.

Classification and path planning depend on the quality of the mapping
results, but terrain classification showed good results, so that effective
path planning through the mapped 3D environments was possible. The

CHAPTER 10. CONCLUSIONS 184

evaluations in this thesis lead to the conclusion that the real mother robot
will be able to perform continuous path planning during autonomous
operation. The results of Chapters 8 and 9 also confirm that for the mother
robot a hybrid solution for navigation including a path planner is a feasible
and valuable alternative to a purely reactive approach.

Navigation With modifications to the existing EmotioNav, this thesis
makes a significant contribution to allow operation of the mother robots
in a 3D environment. The modified navigation described in Chapter 8 en-
ables the mother robot to operate autonomously and under a limited threat
of failure in a complex environment such as a field of rubble. While oper-
ating on inclining and declining surfaces, it will still be able to distinguish
traversable and non-traversable terrain.

Exploration An exploration strategy for the team of robots has been
implemented in Chapter 9 which takes partial information about the en-
vironment into account. This thesis suggests combing global exploration
strategy for the team of robots with a commonly used local exploration
strategy. The implemented exploration strategy is a valid, though as ex-
pected, a suboptimal strategy for the team of robots. However, Chapter 9
successfully confirmed that autonomous and effective exploration for the
hierarchy of robots can be achieved with the overall system design.

10.2 Future research

This thesis presented limitations of the current hardware and newly de-
veloped algorithms, and presented possible solutions to remove those
limitations or expand on the current state. Future research projects could
address one or more of the illustrated ideas, but the following presentation
gives a summary of the main research directions for future developments.

10.2.1 Real world application

As a result of the currently broken real mother robot, this project based
much of its hardware analysis on a mother robot which performed in

CHAPTER 10. CONCLUSIONS 185

simulation. Due to known limitations of the simulation it is of major im-
portance to validate the findings and evaluate their impact on autonomous
operation of the mother robots in a real world scenario.

Applying the presented software solutions to the real mother robot
requires further efforts implementing filter techniques. The current map-
ping techniques operate on the assumption of no horizontal localisation
error. Thus, while mapping is the central algorithm of ExploreTM, one
of the solutions discussed in Chapter 5 to achieve a low localisation error
needs to be implemented. Further, the integration of multiple maps on the
grandmother robot needs to cope with the remaining localisation error.

The issue of sensor noise needs to be generally addressed by evolving
a faithful sensor model for the employed devices, and neural nets offer
a solution. A final mapping solution should include current advances in
SLAM and consider an application of constrained SLAM.

10.2.2 Redesign of the mother robot

To allow flexible and safe operation of the mother robots, the hardware
design is fundamental. Safe operation results from an optimal use of
available range finders and the sturdiness of the robotic platform. To deal
with drops in the environment and to negotiate a cluttered environment
three issues have to be resolved:

The drive The wheeled mother robot still has problems negotiating ’tra-
versable’ obstacles, depending on the angle of attack, current velocity and
other influencing factors. A better suspension or even a change of the
operation platform should be evaluated to increase the stability of the
mother robots during operation and to gain a more predictable control
command output in problem situations.

Sensor configuration As one of the major limitations, the perception
of the robot needs to be improved to allow operation and mapping. To
operate the mother robot in a hostile environment the sensor configuration
needs to allow the detection of significant drops and a simplified detection
of ramps. This can either be achieved by optimising the current sensor

CHAPTER 10. CONCLUSIONS 186

configuration, or expanding on the existing one. A simplified detection of
ramps has already been suggested in Chapter 8 but might require a change
of paradigm away from the vertically symmetric mother robot design.

Split robot body The split robot body design has negative implications
for traversing obstacles in the simulation, as well as chances of ending up
stuck in a twisted state. The seriousness of this finding has to be verified
in a real scenario and if the issues can be confirmed, an evaluation has to
show whether the navigational control can cope with this limitation or if a
redesign is required.

10.2.3 Navigation in cluttered environments

EmotioNav has been included into this thesis and has been modified to
work in three dimensions. Future research should look at an integration
of emotions and parameter modulation as well as researching the effect
of a 3D operation environment. However, determining whether this adds
value in the USAR application is important.

10.2.4 Collaboration

To ensure the survival of victims in a USAR operation, time is a critical
factor. The controlled application of a team of robots helps to speed up
the overall time to find victims, but more efficient exploration techniques
have to be developed. Exploration of an area will profit from an improved
communication between team members and an increase of information
exchanged. The current project has set an exploration model in place as a
base on which future research should study and develop more intelligent
solutions for a collaboration of the team of robots for search in cluttered
environments.

10.2.5 Improvement of the operation interface

Though autonomous operation is the ultimate goal, it is important for
an operator to be able to monitor and map an environment as well as
override the current autonomous control. Because the robots operate with

CHAPTER 10. CONCLUSIONS 187

3D data and positions can be on different levels in a MLS map, a human
operator needs to be able to visualise situations in 3D. Thus, an interface
is needed which visualises the current 3D map data in an appropriate way
to the operator. This approach has to consider limited network bandwidth
and computational constraints of the grandmother robot as well as the
capabilities of the operator’s device.

10.3 Summary

This thesis is a significant contribution towards the overall development
of a hierarchical team of USAR robots at Victoria University of Wellington.
With ExploreTM, this thesis introduced a variety of algorithms to solve the
challenges of mobile robotics arising from the need of autonomous opera-
tion in a 3D application environment with a low cost robotic architecture.
These algorithms eventually allowed the successful implementation of an
autonomous control mechanism for the grandmother and mother robots.
This thesis also established a powerful tool for the analysis and research of
robot hardware and software design in a safe and low cost environment.
This tool simplifies evaluation and tuning of the implemented parameter-
ized solutions to a major degree, and will serve as an ideal entry point
for the subsequent development of the robot architecture consisting of
grandmother, mother robots and daughter robots.

One paper has been published in the development process of this project
[RCA07] awarded with the ”Best poster award” on ENZCON 2007. This
success reflects the fact that this project has in many cases exceeded the
project objectives by contributing in the areas of both hardware and soft-
ware design for the hierarchy of robots as well as providing a flexible tool
for future research.

Acronyms

CCR Concurrency and Coordination Runtime

DGPS Differential Global Positioning System

EGNOS European Geostationary Navigation Over-
lay Service

GPS Global Positioning System

IMS Inertial Measurement System
INS Inertial Navigation System

LRF Laser Range Finder

MEMS Micro-Electro-Mechanical System
MLS map Multi Level Surface Map
MRT Microsoft Robotics Toolkit

ODE Open Dynamics Engine

SBAS Satellite-Based Augmentation Systems
SLAM Simultaneous Localisation and Mapping

USAR Urban Search and Rescue

188

Acronyms 189

VFH Vector Field Histogram

XML Extensible Markup Language

Bibliography

[AGE07] AGEIA, Ageia physx, ”http://www.ageia.com”, July 2007, last
accessed on 14/7/07.

[Ark98] Ronald C. Arkin, Behavior-based robotics, 1rst ed., MIT Press,
1998.

[BDW06] Tim Bailey and Hugh Durrant-Whyte, Simultaneous localisation
and mapping (slam): Part ii state of the art, IEEE Robotics &
Automation Magazine 13 (2006), no. 2, 108–117.

[BK91] J. Borenstein and Y. Koren, The vector field histogram-fast obsta-
cle avoidance for mobile robots, Robotics and Automation, IEEE
Transactions on 7 (Jun 1991), no. 3, 278–288.

[BK99] O. Brock and O. Khatib, High-speed navigation using the global
dynamic window approach, Robotics and Automation, 1999. Pro-
ceedings. 1999 IEEE International Conference on 1 (1999), 341–
346 vol.1.

[BMF+00] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun,
Collaborative multi-robot exploration, Proceedings ICRA ’00 IEEE
International Conference on Robotics and Automation, vol. 1,
24-28 April 2000, pp. 476–481.

[Bro86] R.A. Brooks, A robust layered control system for a mobile robot,
IEEE Journal of Robotics and Automation (now IEEE Interna-
tional Conference on Robotics and Automation) RA-2 (1986),
no. 1, 14–23.

190

http://www.ageia.com

BIBLIOGRAPHY 191

[BT90] G.A. Bekey and R. Tomovic, Biologically based robot control, Pro-
ceedings of the Twelfth Annual Intl. Conference of the IEEE,
1-4 Nov 1990, pp. 1938–1939.

[Car07] Dale A. Carnegie, A three-tier hierarchical robotic system for urban
search and rescue applications, Proceedings of the 2007 IEEE In-
ternational Workshop on Safety, Security and Rescue Robotics,
September 2007.

[CFS06] Joseph Carsten, David Ferguson, and Anthony (Tony) Stentz,
3d field d: Improved path planning and replanning in three dimen-
sions, Proceedings of the 2006 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS ’06), October
2006, pp. 3381 – 3386.

[CGB01] G. Chen and D.A. Grejner-Brzezinska, Land-vehicle navigation
using multiple model carrier phase dgps/ins, American Control
Conference, 2001. Proceedings of the 2001 3 (2001), 2327–2332
vol.3.

[CMBG07] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, A survey of
commercial & open source unmanned vehicle simulators, Robotics
and Automation, 2007 IEEE International Conference on (10-
14 April 2007), 852–857.

[Cra97] Michael Cramer, Gps/ins integration, ”http://www.ifp.
uni-stuttgart.de/publications/phowo97/cramer.pdf”,
1997, last accessed on 03/07/08.

[Cyb07] Cyberbotics, Cyberbotics - professionel mobile robot simulation,
”http://www.cyberbotics.com”, July 2007, last accessed on
12/07/07.

[Dep08] Department of Homeland Security, Department of homeland se-
curity, national institute of standards & technology - urban search
and rescue robot performance standards, ”http://www.isd.mel.
nist.gov/US&R Robot Standards/”, February 2008, last ac-
cessed on 20/02/08.

http://www.ifp.uni-stuttgart.de/publications/phowo97/cramer.pdf
http://www.ifp.uni-stuttgart.de/publications/phowo97/cramer.pdf
http://www.cyberbotics.com
http://www.isd.mel.nist.gov/US&R_Robot_Standards/
http://www.isd.mel.nist.gov/US&R_Robot_Standards/

BIBLIOGRAPHY 192

[DJ00] Gregory Dudek and Michael Jenkin, Computational principles
of mobile robotics, Cambridge University Press, 2000.

[DWB06] Hugh Durrant-Whyte and Tim Bailey, Simultaneous localisation
and mapping (slam): Part i the essential algorithms, IEEE Robotics
& Automation Magazine 13 (2006), no. 3, 99–110.

[EG08] Earthquake Commission and GNS Science, Geonet, ”http:
//www.geonet.org.nz/about/”, April 2008, last accessed
26/04/08.

[Elf89] A. Elfes, Using occupancy grids for mobile robot perception and
navigation, IEEE Computer, vol. 22, June 1989, pp. 46–57.

[ESA08] ESA, Egnos european geostationary navigation overlay service,
”http://www.esa.int/esaNA/GGG63950NDC egnos 0.html”,
February 2008, last accessed 02/02/08.

[Eur08] European Commision, Galileo european satellite navigation
system, European Commision ”http://ec.europa.eu/dgs/
energy transport/galileo/index en.htm”, February 2008,
last accessed on 2/2/08.

[FBT97] D. Fox, W. Burgard, and S. Thrun, The dynamic window approach
to collision avoidance, Robotics & Automation Magazine, IEEE
4 (Mar 1997), no. 1, 23–33.

[FEM08] FEMA, Department of homeland security federal emergency man-
agement agency (fema) - urban search and rescue, ”http://
www.fema.gov/emergency/usr/”, March 2008, last accessed
01/03/08.

[FKK+06] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stew-
art, Distributed multirobot exploration and mapping, IEEE Pro-
ceedings, vol. 94, July 2006, pp. 1325–1339.

[FS06] David I. Ferguson and Anthony Stentz, Multi-resolution field d,
IAS, 2006, pp. 65–74.

http://www.geonet.org.nz/about/
http://www.geonet.org.nz/about/
http://www.esa.int/esaNA/GGG63950NDC_egnos_0.html
http://ec.europa.eu/dgs/energy_transport/galileo/index_en.htm
http://ec.europa.eu/dgs/energy_transport/galileo/index_en.htm
http://www.fema.gov/emergency/usr/
http://www.fema.gov/emergency/usr/

BIBLIOGRAPHY 193

[Gal81] F.E. Gallas, Land search and rescue, Federated Mountain Clubs
New Zealand, 1981.

[GHH+07] B. Gerkey, R. Hedges, A. Howard, K. Stoy, and R. Vaughan,
The player/stage project, ”http://playerstage.sourceforge.
net”, July 2007, last accessed 11/07/07.

[GL06] Shuzhi Sam Ge and Frank L. Lewis, Autonomous mobile robots:
Sensing, control, decision-making and applications, Boca Raton,
FL: CRC/Taylor & Francis, 2006.

[GMAM06] S. Garrido, L. Moreno, M. Abderrahim, and F. Martin, Path
planning for mobile robot navigation using voronoi diagram and
fast marching, Proceedings 2006 IEEE/RSJ Intl. Conference on
Intelligent Robots and Systems, October 2006, pp. 2376–2381.

[Gro07] Precision Products Group, Hemisphere gps, ’http://www.
hemispheregps.com’, June 2007, last accessed 01/06/08.

[GWA01] Mohinder S. Grewal, Lawrences R. Weill, and Angus P. An-
drews, Global positioning systems, inertial navigation, and inte-
gration, A John Wiley & Sons, Inc. Publication, 2001.

[Hei93] Loren Heiny, Advanced graphics programming using c/c++, Wi-
ley, 1993.

[HSS03] Andrew Howard, Sajid Siddiqi, and Gaurav S. Sukhatme, An
experimental study of localization using wireless ethernet, Proceed-
ings fo the 4th International Conference on Field and Service
Robotics, July 2003.

[Jon04] Joseph L. Jones, Robot programming - a practical guide to
behaviour-based robotics, McGraw-Hill, 2004.

[JSPB07] Dominik Joho, Cyrill Stachniss, Patrick Pfaff, and Wolfram
Burgard, Autonomous exploration for 3d map learning, Fachge-
spräche Autonome Mobile Systeme (AMS) (2007).

[KB91] Y. Koren and J. Borenstein, Potential field methods and their in-
herent limitations for mobile robot navigation, Proceedings of the

http://playerstage.sourceforge.net
http://playerstage.sourceforge.net
http://www.hemispheregps.com
http://www.hemispheregps.com

BIBLIOGRAPHY 194

IEEE Conference on Robotics and Automation, 1991, pp. 1398–
1404.

[KL02] S. Koenig and M. Likhachev, Improved fast replanning for robot
navigation in unknown terrain, Robotics and Automation, 2002.
Proceedings. ICRA ’02. IEEE International Conference on 1
(2002), 968–975 vol.1.

[KLC+03] Seong-Baek Kim, Seung-Yong Lee, Ji-Hoon Choi, Kyoung-
Ho Choi, and Byung-Tae Jang, A bimodal approach for gps and
imu integration for land vehicle applications, Vehicular Technol-
ogy Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th 4 (2003),
2750–2753 Vol.4.

[KLF04] Sven Koenig, Maxim Likhachev, and David Furcy, Lifelong
planning a*, Artif. Intell. 155 (2004), no. 1-2, 93–146.

[KWLG07] Sardha Wijesoma Kwang Wee Lee and Javier Ibanez Guzman,
A constrained slam approach to robust and accurate localisation
of autonomous ground vehicles, Robotics and Autonomous Sys-
tems 55 (2007), no. 7, 527–540.

[LAJ04] C. Leung and A. Al-Jumaily, A hybrid system for multi-agent
exploration, Proceedings 2004 IEEE International Conference
on Fuzzy Systems, vol. 1, July 2004, pp. 209–213.

[LFG+05] Maxim Likhachev, David Ferguson, Geoffrey Gordon, An-
thony (Tony) Stentz, and Sebastian Thrun, Anytime dynamic
a*: An anytime, replanning algorithm, Proceedings of the Inter-
national Conference on Automated Planning and Scheduling
(ICAPS), June 2005.

[LJ08] Christopher P. Lee-Johnson, Emotion-based parameter modula-
tion for a mobile robot planning and control system, Ph.D. the-
sis, Victoria University of Wellington, 2008, Submitted in July
2008.

BIBLIOGRAPHY 195

[LJC07] Christopher P. Lee-Johnson and Dale A. Carnegie, Emotion-
based parameter modulation for a hierarchical mobile robot plan-
ning and control architecture, Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference on (Oct.
29 2007-Nov. 2 2007), 2839–2844.

[LJCC07] Christopher P. Lee-Johnson, Praneel Chand, and Dale A.
Carnegie, Applications of an adaptive hierarchical mobile robot
navigation system, Proceedings of the 2007 Australasian Con-
ference on Robotics & Automation (Matthew Dunbabin and
Mandyam Srinivasan, eds.), 2007.

[Mac03] David J. C. MacKay, Information theory, inference, and learning
algorithms, Cambridge University Press, 2003.

[Mat08] Mathworks, Matlab - the language of technical computing, ”http:
//www.mathworks.com/products/matlab/”, March 2008, last
accessed on 28/03/08.

[MBT+06] Mark Maimone, Jeffrey Biesiadecki, Edward Tunstel, Yang
Cheng, and Chris Leger, Intelligence for space robotics, ch. Chap-
ter 3 Surface navigation and mobility intelligence on the Mars
Exploration Rovers, pp. 45–69, TSI Press, 2006.

[Mic06] Microsoft, Microsoft robotics studio, ”http://msdn2.
microsoft.com/en-us/robotics/default.aspx”, 2006,
last accessed 20/03/08.

[Mic07] , Ccr introduction, ’http://msdn.microsoft.com/
en-us/library/bb648752.aspx’, Aug 2007, last accessed
05/05/08.

[Mil06] Ian Millington, Articificial intelligence for games, 1rst ed., Mor-
gan Kaufmann, 2006.

[Min08] Ministry of Civil Defence & Emergency Management, New
zealand search & rescue - urban search and rescue, ”http://www.
usar.govt.nz”, March 2008, last accessed 01/03/08.

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://msdn2.microsoft.com/en-us/robotics/default.aspx
http://msdn2.microsoft.com/en-us/robotics/default.aspx
http://msdn.microsoft.com/en-us/library/bb648752.aspx
http://msdn.microsoft.com/en-us/library/bb648752.aspx
http://www.usar.govt.nz
http://www.usar.govt.nz

BIBLIOGRAPHY 196

[MM04] Javier Minguez and L. Montano, Nearness diagram (nd) navi-
gation: collision avoidance in troublesome scenarios, Robotics and
Automation, IEEE Transactions on 20 (Feb. 2004), no. 1, 45–59.

[MOB07] MOBILEROBOTS, Mobilerobots, ”http://www.activrobots.
com”, September 2007, last accessed on 01/09/07.

[MPV00] Mauro Di Marco, Domenico Prattichizzo, and Antonio Vicino,
approximation of uncertain height fields for outdoor navigation, Pro-
ceedings of the 39th IEEE Conference on Decision and Control,
2000, pp. 839–844.

[MRH+02] M. Montemerlo, N. Roy, D. Hahnel, C. Stachniss, S. Thrun, and
J. Glover, Carmen - the carnegie mellon robot navigation toolkit,
”http://carmen.sourceforge.net”, 2002, last accessed on
10/07/07.

[MTKW02] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, Fast-
SLAM: A factored solution to the simultaneous localization and
mapping problem, Proceedings of the AAAI National Confer-
ence on Artificial Intelligence (Edmonton, Canada), AAAI,
2002.

[Mur00] Robin R. Murphy, Introduction to ai robotics, 1rst ed., MIT Press,
Cambridge, Massachusetts, London, England, 2000.

[Neh03] Ulrich Nehmzow, Mobile robotics a practical introduction, 2nd
ed., Springer, 2003.

[RCA07] Thomas M. Roehr, Dale A. Carnegie, and Peter Andreae, De-
veloping a robust control system for a team of autonomous mobile
robots, Proceedings of the Fourteenth Electronics New Zealand
Conference, 2007, pp. 273–278.

[RN03] Stuart Russell and Peter Norvig, Artificial intelligence - a modern
approach, 2nd ed., Prentice Hall Series in Artificial Intelligence,
Prentice Hall, Upper Saddle River, New Jersey 07468, 2003.

http://www.activrobots.com
http://www.activrobots.com
http://carmen.sourceforge.net

BIBLIOGRAPHY 197

[SD03] R. Sim and G. Dudek, Effective exploration strategies for the con-
struction of visual maps, Proceedings 2003 IEEE/RSJ Intl. Confer-
ence on Intelligent Robots and Systems, vol. 4, 27-31 October
2003, pp. 3224–3231.

[SDC07] Dongqing Shi, D. Dunlap, and E.G. Collins, A comparison be-
tween a fuzzy behavioral algorithm and a vector polar histogram al-
gorithm for mobile robot navigation, Computational Intelligence
in Robotics and Automation, 2007. CIRA 2007. International
Symposium on (20-23 June 2007), 260–265.

[SN04] R. Siegwart and I. R. Nourbakhsh, Introduction to autonomous
mobile robots, MIT Press, 2004.

[Ste95] A. Stentz, The focussed d* algorithm for real-time replanning, Pro-
ceedings 1995 Intl. Joint Conference on Artificial Intelligence,
August 1995, pp. 1652–1659.

[Sto75] Lawrence D. Stone, Theory of optimal search, Academic Press,
1975.

[SZ06] A. Sgorbissa and R. Zaccaria, Nav: Navigation without localiza-
tion, Proceedings 2006 IEEE/RSJ Intl. Conference on Intelligent
Robots and Systems, October 2006, pp. 1761–1766.

[TBF00] Sebastian Thrun, Wolfram Burgard, and Dieter Fox, A real-time
algorithm for mobile robot mapping with applications to multi-robot
and 3d-mapping, Proceedings of the 2000 IEEE International
Conference on Robotics & Automation, April 2000, pp. 321–
328.

[TBF05] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics, MIT
Press, Cambridge, Massachusetts, London, England, 2005.

[TPB06] Rudolph Triebel, Patrick Pfaff, and Wolfram Burgard, Multi-
level surface maps for outdoor terrain mapping and loop closing,
Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Oct 2006, pp. 2276–2282.

BIBLIOGRAPHY 198

[Tri07] Rudolph Triebel, Three-dimensional perception for mobile robots,
Ph.D. thesis, Alberts-Ludwigs-University Freiburg, May 2007.

[TW97] D.H. Titterton and J.L. Weston, Strapdown intertial navigation
technology, IEEE Radar, Sonar, Navigation and Avionics Series
5, Peter Peregrinus Ltd., 1997.

[UB98] I. Ulrich and J. Borenstein, Vfh+: reliable obstacle avoidance for
fast mobile robots, Robotics and Automation, 1998. Proceedings.
1998 IEEE International Conference on 2 (16-20 May 1998),
1572–1577 vol.2.

[USN03] Christopher Urmson, Reid Simmons, and Issa Nesnas, A
generic framework for robotic navigation, IEEE Aerospace Con-
ference 2003, March 2003.

[VDLM06] Kimon P. Valavanis, Lefteris Doitsidis, Matt Long, and
Robin Roberson Murphy, A case study of fuzzy-logic-based robot
navigation, IEEE Robotics and Automation Magazine 13 (2006),
no. 3, 93–107.

[VM06] D. Vikerimark and J. Minguez, Reactive obstacle avoidance for
mobile robots that operate in confined 3d workspaces, Electrotech-
nical Conference, 2006. MELECON 2006. IEEE Mediterranean
(16-19 May 2006), 1246–1251.

[Wat93] Alan Watt, 3d computer graphics, 2nd ed., Addison-Wesley,
1993.

[WC06] David A. Williamson and Dale A. Carnegie, Embedded platform
for search and rescue application, Proceedings of the Intl. Confer-
ence on Autonomous Robots and Agents, 2006, pp. 373–378.

[Wik08] Wikipedia, Sichuan earthquake, ”http://en.wikipedia.org/
wiki/2008 Sichuan earthquake”, May 2008, last accessed on
03/08/08.

[Wil07] David A. Williamson, The development of a mother agent for a
hierarchical multi-robot urban search and rescue system, Master’s
thesis, Victoria University of Wellington, 2007.

http://en.wikipedia.org/wiki/2008_Sichuan_earthquake
http://en.wikipedia.org/wiki/2008_Sichuan_earthquake

BIBLIOGRAPHY 199

[Yam97] Brian Yamauchi, A frontier-based approach for autonomous ex-
ploration, IEEE International Symposium on Computational
Intelligence in Robotics, 10-11 July 1997.

[Yam98] , Frontier-based exploration using multiple robots, Proceed-
ings of the Second International Conference on Autonomous
Agents, May 1998.

[Yan07] Xi Peng Yang, Developing a real time tracking solution in wlan,
Master’s thesis, Victoria University of Wellington, 2007.

[YMD08] Jack Yeazel, Joe Mehaffey, and Dale DePriest, gpsin-
formation.net, ”http://www.gpsinformation.net/main/
altitude.htm”, January 2008, last accessed 06/01/08.

[YS07] Qingmei Yang and Jianmin Sun, A location method for au-
tonomous vehicle based on integrated gps/ins, Vehicular Electron-
ics and Safety, 2007. ICVES. IEEE International Conference on
(2007), 1–4.

[ZM00] Paul Zarchan and Howard Musoff, Fundamentals of kalman fil-
tering - a practical approach, Progress in Astronautics and Aero-
nautics, vol. 190, American Institute of Aeronautics and As-
tronautics, Inc., 2000.

http://www.gpsinformation.net/main/altitude.htm
http://www.gpsinformation.net/main/altitude.htm

	Introduction
	General research objective
	Thesis objective
	Contributions of this thesis
	Thesis structure

	Background
	Search and Rescue
	Different types of search and rescue operations
	Strategies for search and rescue
	Standards for urban search and rescue robots

	Robot perception
	Mapping
	Occupancy grid
	Elevation maps
	Multi-Level-Surface map

	Uncertainty
	Simultaneous localisation and mapping
	Noisy sensor measurements
	Path planning
	A*
	Dynamic A*
	Others
	Traversability

	Exploration
	Influence Maps
	Multi-robot collaboration and exploration strategies

	Navigation
	Behaviour based reactive methods
	A list of alternative navigation methods

	Simulation frameworks

	System overview
	General design considerations and underlying assumptions
	Centralised control to command a team of explorers
	Tasks of the grandmother robot
	Tasks of the mother robots

	Embedding the control system into a simulation
	Simulation as part of the system design

	Message based communication
	A time-based analysis of ExploreTM
	Summary

	Simulation
	A description of the simulation framework
	A special technology addresses concurrency issues
	Communication infrastructure
	Modelling devices and entities
	Multi robot simulation
	Special considerations for using a 3D simulation

	The modelled world and robot devices
	The world as a field of rubble and debris
	Modelling the mother robot
	Central configuration for simulation and control
	How realistic is the simulation

	Analysis of the robot design
	Evaluation of the simulation
	Possible solutions and extensions
	Summary

	Localisation
	Relative localisation techniques
	Using odometry for localisation
	Using an Inertial Measurement System

	Absolute localisation techniques
	Using the Global Positioning System
	Alternatives to the Global Positing System

	Alternative localization methods
	Combined solutions
	Limitations
	Suggestions
	Summary

	Mapping
	Mapping with limited perception
	The perception of the mother robot
	Long term versus short term mapping

	Evaluation of different map representations
	Occupancy grids as common choice
	Height field maps are widely applied in games
	A custom multi-level surface map
	Discussion of different map representations

	Generating data points as local space description
	Data points from ray casting
	Data points from shadow projection

	Customising the multi-level surface map
	Three major steps to build the map from data points

	Evaluation
	Limitations
	Possible solutions and extensions
	Summary

	Path planning
	Creating a graph from a given map
	Basic considerations
	Updating

	Selection of an adequate path planner
	Performance optimisations
	Cost measures
	Traversability
	Dealing with unexplored nodes
	Cost measure

	Evaluation
	Limitations
	Possible solutions and extensions
	Summary

	Navigation
	EmotioNav
	Calculating an objective value
	Directional controller
	Velocity controller

	Challenges of 3D navigation
	Classifying Obstacles
	Detecting ramps - false obstacles
	Traversing drops

	Modifications to EmotioNav
	Gradient analysis
	Modified directional controller
	Modified velocity controller

	Evaluation
	Directional controller
	Velocity controller
	General behaviour

	Limitations
	Possible solutions and extensions
	Summary

	Exploration
	Partially informed exploration
	Application of influence maps

	Exploration strategies
	Global exploration strategy
	Local exploration strategy

	Evaluation
	Limitations
	Possible solutions and extensions
	Summary

	Conclusions
	Conclusion
	Future research
	Real world application
	Redesign of the mother robot
	Navigation in cluttered environments
	Collaboration
	Improvement of the operation interface

	Summary

	Acronyms
	Bibliography

