
An Analysis of Selection in

Genetic Programming

by

Huayang Xie

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Doctor of Philosophy

in Computer Science.

Victoria University of Wellington

2009

Abstract

This thesis presents an analysis of the selection process in tree-based Genetic

Programming (GP), covering the optimisation of both parent and offspring selec-

tion, and provides a detailed understanding of selection and guidance on how to

improve GP search effectively and efficiently.

The first part of the thesis provides models and visualisations to analyse selec-

tion behaviour in standard tournament selection, clarifies several issues in stan-

dard tournament selection, and presents a novel solution to automatically and

dynamically optimise parent selection pressure. The fitness evaluation cost of

parent selection is then addressed and some cost-saving algorithms introduced.

In addition, the feasibility of using good predecessor programs to increase parent

selection efficiency is analysed.

The second part of the thesis analyses the impact of offspring selection pres-

sure on the overall GP search performance. The fitness evaluation cost of off-

spring selection is then addressed, with investigation of some heuristics to ef-

ficiently locate good offspring by constraining crossover point selection struc-

turally through the analysis of the characteristics of good crossover events.

The main outcomes of the thesis are three new algorithms and four observa-

tions: 1) a clustering tournament selection method is developed to automatically

and dynamically tune parent selection pressure; 2) a passive evaluation algorithm

is introduced for reducing parent fitness evaluation cost for standard tournament

selection using small tournament sizes; 3) a heuristic population clustering algo-

rithm is developed to reduce parent fitness evaluation cost while taking advan-

tage of clustering tournament selection and avoiding the tournament size limi-

tation; 4) population size has little impact on parent selection pressure thus the

tournament size configuration is independent of population size; and different

sampling replacement strategies have little impact on the selection behaviour

in standard tournament selection; 5) premature convergence occurs more often

when stochastic elements are removed from both parent and offspring selection

processes; 6) good crossover events have a strong preference for whole program

trees, and (less strongly) single-node or small subtrees that are at the bottom of

parent program trees; 7) the ability of standard GP crossover to generate good

offspring is far below what was expected.

Acknowledgments

Big thanks to my thesis supervisors Dr. Mengjie Zhang and Dr. Peter Andreae.

Mengjie and Peter have provided much help and stimulated my research, each

in a unique way. Mengjie directed my way into the PhD research field and intro-

duced me to the excitement of being an academic researcher, while Peter showed

me how to explore my research topics in a wider and deeper fashion and always

challenged me to take my research a step further.

Thanks to Victoria University for providing the facility and the scholarship

that I need to complete my thesis. In addition, thanks to IEEE CIS, ACM SIGEVO,

EuroGP, Marsden Fund, BuildIT, Education New Zealand, Faculties of Science at

Victoria University, and Victoria University Research Fund for providing me with

a travel fund to enable me attend valuable international conferences.

Great thanks extend to a few peers. Dr. Neale Ranns provided me with his

wonderful GP package (Gouda) and endless technical support. Dr. Ivy Liu, Dr.

Mark Johnston and Simon Doherty always had their doors open to me for any

discussion. Dr. Val Hopper always provided me with a lot of encouragement.

Great thanks also go to people not mentioned here who have contributed to my

research, including anonymous reviewers, our GPEC research group members,

and the technical group in our school.

Last but not least, special thanks to my family for their consistent support

and understanding. During the last three years, they have provided me with a

stable environment and have taken over the majority of my family commitments

to enable me focus on my research.

iii

iv

Publications Produced

In the course of my Ph.D study, I produced several fully-refereed publications,

most of which have been further improved and included in the thesis.

Huayang Xie, Mengjie Zhang, and Peter Andreae. “An Analysis of the Distribution

of Swapped Subtree Size in Tree-based Genetic Programming”. In Proceedings of IEEE

Congress on Evolutionary Computation, pages 2864–2871, IEEE Computer Society Press

(2008).

Huayang Xie, Mengjie Zhang, Peter Andreae, and Mark Johnston. “An Analysis of

Multi-Sampled Issue and No-Replacement Tournament Selection”. In Proceedings of Ge-

netic and Evolutionary Computation Conference, pages 1323–1330, ACM Press (2008).

Huayang Xie, Mengjie Zhang, Peter Andreae, and Mark Johnston. “Is the Not-Sampled

Issue in Tournament Selection Critical?”. In Proceedings of IEEE Congress on Evolutionary

Computation, pages 3711–3718, IEEE Computer Society Press (2008).

Peter Andreae, Huayang Xie, and Mengjie Zhang. “Genetic Programming for Detecting

Rhythmic Stress in Spoken English”. International Journal of Knowledge-Based and Intel-

ligent Engineering Systems, Special Issue on Genetic Programming, Volume 12, Number 1,

pages 15–28, (2008).

Huayang Xie, Mengjie Zhang, and Peter Andreae. “An Analysis of Depth of Crossover

Points in Tree-based Genetic Programming”. In Proceedings of IEEE Congress on Evolution-

ary Computation, pages 4561–4568, IEEE Computer Society Press (2007).

Huayang Xie, Mengjie Zhang, and Peter Andreae. “Genetic Programming for New

Zealand CPI Inflation Prediction”. In Proceedings of IEEE Congress on Evolutionary Compu-

tation, pages 2538–2545, IEEE Computer Society Press (2007).

v

vi

Huayang Xie, Mengjie Zhang and Peter Andreae. “Another Investigation on Tourna-

ment Selection: modelling and visualisation”. In Proceedings of Genetic and Evolutionary

Computation Conference, pages 1468–1475, ACM Press (2007).

Huayang Xie, Mengjie Zhang, and Peter Andreae. “An Analysis of Constructive Crossover

and Selection Pressure in Genetic Programming”. In Proceedings of Genetic and Evolution-

ary Computation Conference, pages 1739–1746, ACM Press, (2007).

Huayang Xie, Mengjie Zhang, and Peter Andreae. “Automatic Selection Pressure Con-

trol in Genetic Programming”. In Proceedings of the Sixth International Conference on In-

telligent Systems Design and Applications, pages 435–440, IEEE Computer Society Press,

(2006).

Huayang Xie, Mengjie Zhang, and Peter Andreae. “A Study of Good Predecessor Pro-

grams for Reducing Fitness Evaluation Cost in Genetic Programming”. In Proceedings

of IEEE Congress on Evolutionary Computation, pages 9211–9218, IEEE Computer Society

Press (2006).

Huayang Xie, Mengjie Zhang, and Peter Andreae. “Population Clustering in Genetic

Programming”. Lecture Notes in Computer Science, Volume 3905, pages 190–201, Springer-

Verlag (2006).

Huayang Xie, Mengjie Zhang, and Peter Andreae. “Genetic Programming for Auto-

matic Stress Detection in Spoken English”. Lecture Notes in Computer Science, Volume

3907, pages 460–471, Springer-Verlag (2006).

Huayang Xie. “Diversity Control in GP with ADFs for Regression Tasks”. Lecture Notes

in Artificial Intelligence, Volume 3809, pages 1253-1257, Springer-Verlag (2005).

Contents

1 An Analysis of Selection 1

1.1 Introduction . 1

1.2 Goals . 3

1.3 Major Contributions . 4

1.4 Thesis Outline . 5

2 Literature Review 7

2.1 Machine Learning . 7

2.1.1 Definitions . 7

2.1.2 Learning data source . 8

2.1.3 Learning paradigms . 9

2.2 Evolutionary Computation . 9

2.2.1 Evolutionary algorithms . 9

2.2.1.1 genetic algorithms 11

2.2.1.2 evolution strategies 11

2.2.1.3 evolutionary programming 12

2.2.1.4 other evolutionary algorithms 12

2.2.2 Swarm intelligence . 13

2.3 GP — A Genetic Search Process . 13

2.3.1 Generating an initial population 14

2.3.2 Evaluating programs . 16

2.3.3 Generating next generation 17

2.4 Parent Selection . 17

2.4.1 Tournament selection . 18

2.4.1.1 selection pressure measurements 18

vii

viii CONTENTS

2.4.1.2 models of sampling behaviour and selection be-

haviour in tournament selection 21

2.4.1.3 variations based on standard tournament selection 22

2.4.2 Other parent selection methods 25

2.4.2.1 fitness proportionate selection 25

2.4.2.2 ranking selection . 26

2.4.2.3 fitness uniform selection 26

2.4.2.4 reserve selection . 27

2.4.2.5 truncation selection 28

2.4.2.6 others . 28

2.5 Fitness Evaluation Cost . 28

2.5.1 Studies in GAs . 29

2.5.2 Studies in GP . 29

2.6 Overview of Genetic Operators . 31

2.6.1 Reproduction . 31

2.6.2 Mutation . 31

2.6.3 Crossover . 32

2.6.3.1 integrating local search metaphors 33

2.6.3.2 focusing on position of crossover point 35

2.6.3.3 fighting code bloat 37

2.6.4 Crossover vs. Mutation . 39

2.7 Typical Problem Domains in GP . 39

2.7.1 Boolean . 39

2.7.2 Symbolic regression . 40

2.7.3 Classification . 40

2.8 Chapter Summary . 41

I Analysing Parent Selection Behaviour 43

3 Tuning Parent Selection Pressure 45

3.1 Introduction . 45

3.2 Chapter Goals . 47

CONTENTS ix

3.3 Assumptions and Definitions . 48

3.4 Analysis of Relationship . 51

3.4.1 Sampling probability modelling 51

3.4.2 Selection probability modelling 52

3.4.3 Loss of program diversity analysis 54

3.4.4 Selection frequency analysis 57

3.4.5 Selection probability distribution analysis 60

3.5 Analysis of the Multi-Sampled Issue 62

3.5.1 No-replacement tournament selection 62

3.5.2 Modelling no-replacement tournament selection 62

3.5.3 Selection behaviour analysis 64

3.5.4 Sampling behaviour analysis 67

3.5.5 Significance in similarity or difference analysis 67

3.6 Analysis of the Not-Sampled Issue 69

3.6.1 Different replacement strategies 70

3.6.2 Modelling round-replacement tournament selection 71

3.6.3 Selection behaviour analysis 73

3.6.4 Experiment design . 76

3.6.4.1 data sets . 76

3.6.4.2 function sets and terminal sets 78

3.6.4.3 fitness function . 78

3.6.4.4 genetic parameters and configuration 79

3.6.5 Experimental results and analysis 80

3.7 Analysis of the High Between-Group Selection 82

3.7.1 Clustering tournament selection 83

3.7.2 Modelling clustering tournament selection 85

3.7.3 The loss of program diversity analysis 85

3.7.4 The selection frequency and the selection probability distri-

bution analyses . 87

3.7.5 Impact on population diversity analysis 91

3.7.6 Overall GP search performance analysis 93

3.8 Chapter Summary . 95

x CONTENTS

4 Improving Parent Selection Efficiency 99

4.1 Introduction . 99

4.2 Chapter Goals . 100

4.3 Utilising the Characteristics of Standard Tourna 101

4.3.1 Ejit . 101

4.3.2 Experiment results . 102

4.4 Analysis of EMS-EA and BC-EA . 102

4.4.1 A brief review of EMS-EA and BC-EA 102

4.4.2 Comparing EMS-EA and BC-EA 106

4.4.2.1 memory usage and search behaviour 106

4.4.2.2 computational saving 106

4.4.2.3 missing element . 107

4.4.3 Experiment results . 108

4.4.4 Efficiency analysis . 110

4.4.5 Limitations of EMS-EA and BC-EA 112

4.5 Comparing Ejit with EMS-EA and BC-EA 112

4.6 Population Clustering . 114

4.6.1 Heuristic estimate of fitness-case-equivalence 115

4.6.2 Fitness evaluation and assignment 117

4.6.3 Experimental results and analysis 117

4.6.3.1 GCGP and EvePar 118

4.6.3.2 HCGP and SymReg 121

4.6.3.3 HCGP and BinCla 122

4.7 Using GPPs to Increase Efficiency . 124

4.7.1 The framework . 124

4.7.2 High level information extraction 126

4.7.3 Experiment design and configuration 127

4.7.3.1 data sets . 128

4.7.3.2 function set . 129

4.7.3.3 terminal sets . 129

4.7.3.4 fitness function . 129

4.7.3.5 other genetic parameters and termination criteria . 130

CONTENTS xi

4.7.3.6 experiment configuration 130

4.7.4 Results and analysis . 130

4.7.4.1 the average GPP ratio 131

4.7.4.2 GPP ratio and tournament size 133

4.7.4.3 GPP ratio and population size 134

4.7.4.4 GPP ratio and problem difficulty 134

4.8 Chapter Summary . 136

II Analysing Impact of Offspring Selection 139

5 Applying Offspring Selection Pressure 141

5.1 Introduction . 142

5.2 Chapter Goals . 143

5.3 Simulations of Constructive Crossover Operators 144

5.4 Experiment Design . 144

5.4.1 Genetic parameters . 145

5.4.2 Experiment configuration . 146

5.5 Results and Discussions: Exp1 . 147

5.5.1 Effectiveness . 147

5.5.2 Efficiency . 149

5.6 Exp2 . 150

5.6.1 Determining time limits . 151

5.6.2 Results . 151

5.6.3 Parent selection pressure: on 152

5.6.4 Parent selection pressure: off 152

5.6.5 Overall . 153

5.6.6 Further discussion . 154

5.7 Chapter Summary . 154

6 Constraining Offspring Search Space 157

6.1 Introduction . 157

6.2 Chapter Goals . 158

6.3 Our Approach . 159

xii CONTENTS

6.4 Experiment Design . 161

6.5 Effectiveness Comparison . 163

6.6 DCP Analysis . 164

6.6.1 Depth ratio analysis via boxplot 165

6.6.1.1 Standard and Partial- Xovers 167

6.6.1.2 Partial, Partial+, and Full Xovers 168

6.6.2 Issues of boxplot analysis . 169

6.6.3 Depth ratio analysis via grayplot 170

6.6.3.1 GP systems using Standard, Partial-, Partial, and

Partial+ Xovers . 171

6.6.3.2 GP system using Full Xover 174

6.6.4 Absolute depth of crossover point analysis via grayplot . . . 175

6.7 SSS Analysis . 178

6.7.1 Subtree size ratio analysis . 179

6.7.1.1 GP system using Standard Xover 179

6.7.1.2 GP system using Full Xover 182

6.7.2 Absolute subtree size analysis via grayplot 183

6.8 Analysis of Root Crossover Events 183

6.8.1 Investigating the effect of high copy rate 186

6.9 Discussion of Impact of Size Limiting on 189

6.10 Chapter Summary . 193

7 Conclusions and Future Work 195

7.1 Conclusions . 195

7.1.1 General Conclusions . 195

7.1.2 Specific Conclusions . 196

7.2 Future Work . 200

7.2.1 Investigating heuristics for developing robust population

clustering algorithms . 200

7.2.2 Investigating a way to determine GPPs 200

7.2.3 Investigating an appropriate offspring search intensity . . . 200

CONTENTS xiii

7.2.4 Investigating correlations between crossover point depth

and substituted subtree size via tree shape analysis 201

7.2.5 Investigating impacts of mutation operators 202

A Proof of Equations 3.16 and 3.21 Being Equivalent 229

B Glossary of Terms 231

xiv CONTENTS

List of Tables

3.1 Ten features in the dataset of BinCla 77

3.2 Performance comparison between the round-replacement and the

standard tournament selection schemes. 80

3.3 Confidence intervals for differences in performance at 95% level. . 81

3.4 Performance comparison between the clustering and the standard

tournament selection schemes. (Some results for the standard tour-

nament selection are repeated from Table 3.2 on page 80.) 93

3.5 Confidence intervals at 99% level for the differences between the

clustering and the standard tournament selection schemes. 94

4.1 Computational savings on not-sampled individual programs (%). . 102

4.2 Performance comparison between tournament sizes 2 and 7 for

poly4 and poly10 problems. 109

4.3 Efficiency comparison between conventional GP, EMS-GP and BC-

GP using tournament sizes 2 and 7 for Poly4 and Poly10 problems.

Note that the total number of evaluations for BC-GP is estimated

according to the best assumptions. 110

4.4 Failure rates (%)for EvePar (Some results for SGP and FCGP are

repeated from Table 3.4 on page 93). 119

4.5 Average number of minimum generations required for finding the

best-of-run for EvePar. The standard deviation follows the ± sign. . 119

4.6 Average total number of fully-evaluated individual programs (103)

for EvePar. The standard deviation follows the ± sign. 119

4.7 Fitness (RMS error) for SymReg (some results for SGP and FCGP

are repeated from Table 3.4 on page 93). 121

xv

xvi LIST OF TABLES

4.8 Average number of minimum generations required for finding the

best-of-run for SymReg. The standard deviation follows the ± sign. 121

4.9 Average total number of fully-evaluated individual programs (103).

The standard deviation follows the ± sign. 121

4.10 Average total number of fitness case evaluations (106) for SymReg. 121

4.11 Fitness (error rate %) for BinCla (some results for SGP and FCGP

are repeated from Table 3.4 on page 93). 123

4.12 Average number of minimum generations required for finding the

best-of-run for BinCla. The standard deviation follows the ± sign. . 123

4.13 Average total number of fully-evaluated individual programs (103)

for BinCla. The standard deviation follows the ± sign. 123

4.14 Average total number of fitness case evaluations (106) for BinCla.

The standard deviation follows the ± sign. 123

4.15 Sample records in a detailed program log file. 126

4.16 Average ratio of GPPs to all programs evaluated (%). 131

5.1 Performance of systems using 3 different crossover modes with/without

selection pressure in Exp1. 147

5.2 The average index of generation where the best-of-run appeared

first time in Sys3 and Sys6 in Exp1. 148

5.3 Performance of systems using 3 different crossover modes with/without

parent selection pressure in Exp2. 151

5.4 Performance of systems with population size of 1000 using 3 dif-

ferent crossover modes. 154

6.1 Performance comparison. 163

6.2 Number of generations required. 164

6.3 Average ratio of the number of each type of root crossover events

to the number of all crossover events involving GPPs for Standard

Xover and Full Xover. 185

6.4 Modified parameters in HighCopy-Full. 188

6.5 Performance measure and generations required in HighCopy-Full. 188

6.6 Performance comparison. 190

List of Figures

3.1 An example of the selection probability distribution measure. . . . 49

3.2 Four populations with different fitness rank distributions. 50

3.3 Trends of the probability that a program is sampled at least once

in the standard tournament selection in the parent selection phase.

(Note that the scales on the x-axes differ.) 52

3.4 Loss of program diversity in the standard tournament selection

scheme on four populations with different FRDs. Note that the

tournament size is discrete but the plots show curves to aid inter-

pretation. 55

3.5 Selection frequency in the standard tournament selection scheme

on four populations with different FRDs. 57

3.6 Selection probability distribution in the standard tournament se-

lection scheme with tournament size 2, 4 and 7 on four populations

with different FRDs. 61

3.7 Loss of program diversity in the no-replacement tournament se-

lection scheme on four populations with different FRDs. Note that

tournament size is discrete but the plots show curves to aid inter-

pretation. 64

3.8 Selection frequency in the no-replacement tournament selection

scheme on four populations with different FRDs. 65

3.9 Selection probability distribution in the no-replacement tournament

selection scheme with tournament size 2, 4 and 7 on four popula-

tions with different FRDs. 66

xvii

xviii LIST OF FIGURES

3.10 Trends of the probability that a program is sampled at least once

in the no-replacement tournament selection in the selection phase.

(Note that the scales on the x-axes differ.) 67

3.11 Confidence level, population size and tournament size. Note that

tournament size is discrete but the plot shows curves to aid inter-

pretation. 68

3.12 Loss of program diversity in the round-replacement tournament

selection scheme on four populations with different FRDs. Note

that tournament size is discrete but the plots show curves to aid

interpretation. 73

3.13 Selection frequency in the round-replacement tournament selec-

tion scheme on four populations with different FRDs. 74

3.14 Selection probability distribution in the round-replacement tour-

nament selection scheme with tournament size 2, 4 and 7 on four

different FRDs. 75

3.15 The symbolic regression problem. 77

3.16 Overview and relationship between the major components. 84

3.17 Loss of program diversity in the clustering tournament selection

scheme on four different FRDs. Note that tournament size is dis-

crete but the plots show curves to aid interpretation. 86

3.18 Selection frequency of the clustering tournament selection scheme

on four populations with different FRDs. Note that the extra dash

line represents tournament size 3. 88

3.19 Selection probability distributions of the clustering tournament se-

lection scheme with tournament size 2, 4 and 7 on four different

FRDs. 89

3.20 Comparison of population diversity maintenance between the clus-

tering tournament selection and the standard tournament selection

for EvePar for four tournament sizes. 91

3.21 Comparison of population diversity maintenance between the clus-

tering tournament selection and the standard tournament selection

for SymReg for four tournament sizes. 92

LIST OF FIGURES xix

3.22 Comparison of population diversity maintenance between the clus-

tering tournament selection and the standard tournament selection

for BinCla for four tournament sizes. 93

4.1 EMS-EA from [146] . 104

4.2 BC-EA from [146] . 104

4.3 Population clustering algorithm. 116

4.4 The structure of the framework. 125

4.5 Fraction of GPPs in a sample run. 127

4.6 Example runs with tournament size 20 for Regression, BUPA, and

Vehicle problems using six different population sizes. 132

4.7 Average GPP ratio against population size for each problem and

tournament size. 133

5.1 Six GP systems according to configurations of selection pressure

on parent selection and offspring selection. 145

5.2 Boxplot of CPU time consumed in systems in Exp1. 149

6.1 Distributions of depth ratios for GPPs involved in crossover along

evolution presented in boxplot. The parent size limit is 31 nodes.

Thick red bars indicate median values. Red plus signs refer to out-

liers. 166

6.2 Different distributions can have the same boxplot result. 170

6.3 Distributions of depth ratios for GPPs involved in crossover along

evolution presented in grayplot and normalised within each gen-

eration. The parent size limit is 31 nodes. Read the left half of each

chart for the early and middle stages. 172

6.4 Distributions of depth ratios for GPPs involved in crossover along

evolution presented in grayplot and normalised within each gen-

eration. The parent size limit is 31 nodes. The plot is against the

number of generations before the last generation. Read the right half of

each chart for middle and later stages. 173

xx LIST OF FIGURES

6.5 Distributions of absolute depths of crossover points for GPPs in-

volved in crossover partitioned by parent depth and rescaled within

each partition. Median values are highlighted by linked squares.

The parent size limit is 31 nodes and the maximum depth which

appeared in the experiments is 21. 176

6.6 Distributions of subtree size ratios for GPPs involved in crossover

along evolution presented in grayplot and normalised within each

generation. The parent size limit is 31 nodes. Read the left half of

each chart for the early and middle stages. 180

6.7 Distributions of subtree size ratios for GPPs involved in crossover

along evolution presented in grayplot and normalised within each

generation. The parent size limit is 31 nodes. The plot is against the

number of generations before the last generation. Read the right half of

each chart for middle and later stages. 181

6.8 Distributions of absolute subtree sizes for GPPs involved in crossover

partitioned by parent size and rescaled within each partition. Me-

dian values are highlighted by linked squares. The parent size limit

is 31 nodes. 184

6.9 Distribution of absolute occurrences of the three types of root crossover

events and the normal crossover event (subtree-subtree) in GPPs

for Standard Xover and Full Xover. 186

6.10 Distribution of the relative ratios of the three types of root crossover

events and the normal crossover event (subtree-subtree) in GPPs to

total crossover events in GPPs for Standard Xover and Full Xover. . 187

6.11 Distributions of absolute depths of crossover points for GPPs in-

volved in crossover partitioned by parent depth and rescaled within

each partition. Median values are highlighted by linked squares.

GPPs of sizes larger than 31 nodes are filtered out. 191

6.12 Distributions of absolute subtree sizes for GPPs involved in crossover

partitioned by parent tree size and rescaled within each partition.

Median values are highlighted by linked squares. GPPs of sizes

larger than 31 nodes are filtered out. 192

LIST OF FIGURES xxi

7.1 A sample program tree with same number of nodes at each depth

(except the root). 201

xxii LIST OF FIGURES

Chapter 1

An Analysis of Selection

This thesis investigates issues of selection in tree-based Genetic Programming

(GP) [93]. GP is a powerful program-induction and search methodology. It is a

form of Evolutionary Algorithms (EAs) based on the Darwinian natural selection

theory. It searches for computer programs to solve a given problem without be-

ing explicitly told how. There are many factors affecting the performance of EAs.

Selection is a key element because other factors, including population diversity,

are the consequential factors of it. How to select states and make movements in

a search space is an important issue in order to build an evolutionary algorithm

to solve a given problem effectively and efficiently. This thesis describes a series

of carefully-designed experiments and analyses that provide a detailed under-

standing of the selection behaviour in a tree-based GP search process and give

guidance on how to improve the effectiveness and efficiency of the GP search.

1.1 Introduction

GP started to receive attention from a wide group of researchers from the early

1990s. Since then, it has been rapidly developed into a popular research field

of artificial intelligence. GP has been recognised as being able to find promising

solutions in many areas, including signal filters [6, 21, 141], circuit designing [37,

95, 151], image recognition [2, 3, 188], symbolic regression [26, 171, 162], financial

prediction [103, 106, 217], and classification [76, 212, 213].

To fulfill a certain task, GP starts with a randomly-initialised population of

1

2 CHAPTER 1. AN ANALYSIS OF SELECTION

programs. It evaluates each program’s performance using a fitness function,

which generally compares the program’s outputs with the target outputs on a

set of training data (“fitness cases”). It assigns each program a fitness value,

which in general represents the program’s degree of success in achieving the

given task. Based on the fitness values, it then chooses some of the programs

using a stochastic selection mechanism, which consists of a selection scheme and

a selection pressure1 control strategy. After that, it produces a new population

of programs for the next generation from these chosen programs using crossover

(sexual recombination), mutation (asexual), and reproduction (copy) operators.

The search algorithm repeats until it finds an optimal or acceptable solution, or

certain stopping criteria are met.

GP search can have two extremes [183] according to the configuration of se-

lection pressure. One extreme, when there is no selection pressure, is completely

stochastic so that the GP search acts just like the Monte Carlo method [159], ran-

domly sampling the space of feasible solutions. The other extreme, when the

selection pressure is very high, is minimally stochastic so that the GP search acts

like a local hill-climbing search method. It is clear that in general the drawback

of the former extreme is its inefficiency and the drawback of the latter extreme

is its possible confinement to local optima or “premature convergence”. There-

fore, an effective and efficient GP search algorithm must balance between these

two extremes. In order to obtain the balanced situation, selection pressure, the

key element in the selection mechanism, must be properly controlled so that the

stochastic elements are maintained at an optimal level.

Selection in GP search consists of parent selection and offspring selection. The

selection of parents has been well explored through the history of the develop-

ment of EAs. Selection pressure is applied to the parent selection process to re-

duce the stochastic element of the GP search and to provide individuals having

good fitness with more chances to be chosen as parents than others. Good ge-

netic material in the chosen parents is expected to be propagated along evolu-

tion in order to speed up population convergence. There is a variety of selection

schemes for parent selection. These selection schemes have their own advan-

1It can be seen as a bias in favour of the fitter individuals. Detailed definition and explanations
can be found in Chapter 2 Section 2.4 on page 17.

1.2. GOALS 3

tages and drawbacks, as well as different flexibilities of the selection pressure

control. However, many GP related research projects and applications either use

a selection mechanism based on empirical search or simply follow others with-

out sufficient justification [5, 7, 115, 181]. Some alternative selection mechanisms

were developed in order to improve originals but their effectiveness was demon-

strated via some experimental results without in-depth analyses [142, 172]. Lack

of understanding of the working of a selection scheme impedes addressing and

eliminating its existing drawbacks, as well as properly manipulating its selection

pressure. Further investigation of parent selection mechanisms is necessary.

The selection of offspring (choosing which offspring to put into the next gen-

eration) was effectively missing in GP search originally because the creation of

offspring was a random process without selection pressure and created offspring

were directly put into the next generation, meaning that “Survival of the fittest”

was not applied to offspring. Recently, researchers noticed that the number of

possible offspring in the immediate neighbourhood of any chosen parents is large,

and a large fraction of these offspring will not constitute improvement over the

parents [133, 134]. Applying selection pressure to the offspring selection process

was therefore suggested. The selection of offspring has received more attention

as shown by a large number of attempts to develop new genetic operators. How-

ever the effectiveness of the use of offspring selection is still under investigation.

It is not clear whether further reducing the stochastic element of the GP search

in the offspring selection process will result in premature convergence or other

undesirable restrictions on the GP search.

1.2 Goals

The major goal of this thesis is to analyse selection behaviour in tree-based GP

in order to understand the requirements for an effective and efficient selection

mechanism and develop improved selection mechanisms, as well as provide use-

ful guidance on constructing further improved selection mechanisms.

The first part of the thesis analyses the parent selection behaviour and inves-

tigates the following research:

4 CHAPTER 1. AN ANALYSIS OF SELECTION

• how parent selection pressure should be properly controlled; and

• how the cost of fitness evaluation in the parent selection process can be

minimised.

The second part of the thesis analyses the impact of offspring selection and

investigates the following research:

• how applying offspring selection together with a parent selection mecha-

nism affects GP search results;

• how parent selection pressure and offspring selection pressure should be

configured in order to significantly improve the effectiveness of GP search;

and

• how the exploration of good offspring search space can be constrained struc-

turally in order to minimise the fitness evaluation cost in the offspring se-

lection process.

1.3 Major Contributions

The thesis makes the following major contributions:

1. An analysis of selection behaviour in one of the most commonly-used par-

ent selection method — tournament selection — in GP shows that in order

to significantly improve parent selection, the key point is to tune parent se-

lection pressure automatically and dynamically along evolution, which can

be done by integrating the characteristics of a population into the tourna-

ment selection, instead of using different sampling replacement strategies.

Part of this work was published in [200, 201, 204, 206, 207].

2. An analysis of the impact of offspring selection on the overall GP perfor-

mance shows that increasing offspring selection pressure can improve GP

search performance but premature convergence occurs more often if parent

selection pressure is not reduced accordingly. It is preferable to apply selec-

tion pressure to offspring selection rather than to the commonly-recognised

parent selection.

1.4. THESIS OUTLINE 5

Part of this work was published in [202].

3. An analysis of program structure in good crossover events shows that the

exploration of good offspring search space for crossover can be constrained

using a combination of unequal-probability depth and small subtree size

strategies.

Part of this work was published in [203, 205].

1.4 Thesis Outline

The structure of the thesis is the following:

• Chapter 2 briefly reviews machine learning, evolutionary algorithms, and

the components of GP. It then focuses on evolutionary paradigm indepen-

dent parent selection mechanisms and tree-based GP specified crossover

operators to review ways of improving the effectiveness and efficiency of

GP search.

• Chapter 3 focuses on one of the most commonly-used selection scheme

in GP — tournament selection — to show how parent selection pressure

should be tuned along the evolutionary process.

• Chapter 4 investigates ways to improve the efficiency of tournament selec-

tion for parents.

• Chapter 5 focuses on crossover and investigates the impact of offspring se-

lection pressure on the overall GP performance as well as the selection pres-

sure configuration between parent and offspring selections.

• Chapter 6 continues to focus on crossover to investigate heuristics for im-

proving the efficiency of searching good offspring by analysing some prop-

erties of good crossover points.

• Chapter 7 draws conclusions and presents directions for future research.

6 CHAPTER 1. AN ANALYSIS OF SELECTION

Chapter 2

Literature Review

This chapter starts with introducing machine learning, then evolutionary algo-

rithms, followed by a brief review of components of GP. It then reviews a generic

and evolutionary algorithm paradigm independent element — parent selection

mechanism — together with a closely-related open issue, fitness evaluation cost.

Finally it focuses on genetic operators, especially the crossover operator in tree-

based GP, to review ways of improving the effectiveness and efficiency of GP

search, particularly integrations of local search metaphors and strategies of con-

trolling positions of possible crossover points.

2.1 Machine Learning

Machine learning is one of the hottest research areas of artificial intelligence. It

has been widely adopted in many real-world applications, including natural lan-

guage processing [117], hand-written character recognition [116], bioinformatics

[13], search engines [105], and robot locomotion [38]. The major focus of machine

learning research is to extract information from data sources automatically, by

computational and statistical methods [11, 65].

2.1.1 Definitions

Researchers give different definitions of machine learning. However the principle

is roughly the same: a computer program processes a given set of examples and

7

8 CHAPTER 2. LITERATURE REVIEW

tries to either describe the known data source in some meaningful ways or de-

velop an appropriate response to unseen cases. Three representative definitions

or descriptions of machine learning are listed below:

Mitchell [126] gives the following definition of machine learning:

“A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P ,

if its performance at tasks in T , as measured by P , improve

with experience E.”

Witten and Frank [197] state that:

“... things learn when they change their behavior in a way

that makes them perform better in the future ...”

Michalski et al. [121] state that:

“Learning denotes changes in the system that are adaptive in

the sense that they enable the system to do the same task or

tasks drawn from the same population more efficiently and

more effectively the next time.”

2.1.2 Learning data source

A data source is a collection of examples. A single item in a data source is called

an instance. There are one or more attributes or features representing the aspect(s)

of an instance. Each attribute can have either a categorical or a numerical value.

In order to conduct training and evaluate the performance of a solution, the

data source is usually split into two subsets: a training data set and a test data set.

The training data set is used to induce an algorithm to learn and the test data set

is used to evaluate how well the algorithm has learned. Sometimes it is split into

three subsets. The third data set is usually called validation data set. The purpose

of using a validation data set is to monitor the training progress and prevent the

training from overfitting. When the data set is too small, the n-fold cross validation

method is used [126]. The m available examples are randomly partitioned into

n disjoint subsets, each of size m/n. Training and testing processes are then run

n times. In each run, a different one of these n subsets is used as the test data

set and all the other subsets are merged and used as the training data set. The

averaged test result is reported as the system performance.

2.2. EVOLUTIONARY COMPUTATION 9

2.1.3 Learning paradigms

According to [85], based on the knowledge provided, there are three main learn-

ing paradigms: supervised learning, unsupervised learning, and hybrid learning. Su-

pervised learning is sometimes referred to as learning with a teacher. The knowl-

edge provided to a learning system includes a correct answer for each input in-

stance. The learning process is continued until the learning system produces an-

swers as close as possible to the given correct answers. Unsupervised learning is

sometimes referred to as learning without a teacher. Instances are grouped into

appropriate categories by analysis. A typical problem dealt with by unsuper-

vised learning is clustering [49, 67]. “Hybrid learning combines both supervised

and unsupervised learning. Part of the solutions (network weights, architecture,

or computer programs) are determined through supervised learning, while the

others are obtained through unsupervised learning.” [85]

There are many machine learning methods in common use, including Bayesian

inference [196], decision trees [154], neural networks [130], support vector ma-

chines [32], and evolutionary computation.

2.2 Evolutionary Computation

Evolutionary computation is a subfield of artificial intelligence. Often it is in-

spired by biological mechanisms of evolution and uses iterative and parallel pro-

cessing to search solutions. It mainly comprises evolutionary algorithms and

swarm intelligence.

2.2.1 Evolutionary algorithms

Evolutionary Algorithms (EAs) are inspired by biological evolution such as re-

production, mutation, recombination, natural selection and survival of the fittest,

that is, the Darwinian natural selection theory. “Survival of the fittest” is the

familiar concept known to drive evolution. What is meant by survival in a qual-

itative and quantitative sense? The answer is that a genotype1 survives across

1The internally coded, inheritable information carried by all living organisms.

10 CHAPTER 2. LITERATURE REVIEW

generations through the production of offspring, and the production of offspring

is coupled to the fitness of the corresponding phenotype2. In nature this coupling

may be achieved by the ability of an individual to defeat its competitors of the

same species in a contest for mating, or by the ability of the individual to obtain

more food or to run and/or hide from predators of other species in order to live

long enough to mate. More often, survival is a combination of many factors, with

only one in common across all species and environments: random chance.

An idea to use Darwinian natural selection theory for automated problem-

solving originated in the 1950s [43]. Since the 1960s, three distinct interpretations

of the idea started to be developed in three different places: Evolutionary Pro-

gramming (EP) was introduced by Lawrence J. Fogel [50]; Genetic Algorithms

(GAs) was introduced by John Henry Holland [74]; and Evolution Strategies (ES)

was introduced by Ingo Rechenberg and Hans-Paul Schwefel [155]. Later on, in

the early 1990s, a fourth stream, genetic programming [93] — a specialisation of

GAs — has emerged.

In addition to being categorised according to actual search techniques, EAs

can also be categorised based on how population is replaced. In general popula-

tion size is kept constant. When reproduction takes place, new individuals must

replace existing individuals. If the number of individuals created is equal to the

population size, then the entire population is replaced and an entire generation

is created. This approach is hence referred to as generational EAs. If on the other

hand, the number of individuals replaced is actually quite small, for example one,

then the new population is actually a mix of new and old generations. This ap-

proach is called steady state EAs [101]. Researchers have done several studies on

their impact comparisons [45, 87, 189].

Since EAs consist of populations of individuals that produce offspring via a

variety of reproductive mechanisms which introduce genetic variation into the

population, it is possible that changing some parameters, including the popu-

lation size, the type and amount of reproductive variation, could significantly

change the search behaviour of an EA on a particular fitness landscape [36]. There

have been a large number of research studies on different methods to automat-

2The outward, physical manifestation of a living organism, including parts of the observable
structure, functions and behaviour.

2.2. EVOLUTIONARY COMPUTATION 11

ically change these parameters as well as understand their interactions for im-

proving the performance of EAs. A comprehensive collection of these studies

can be found in [108].

2.2.1.1 genetic algorithms

In GAs, a candidate solution is called an individual or a chromosome. For a given

problem, variables are encoded into a specified representation, for instance, a

string of binary digits, a string of integers, or a string of floating-point numbers,

and each variable is termed as gene. It is important to choose the “right” repre-

sentation for a given problem. Getting the representation right is one of the most

difficult parts of designing a good genetic algorithm. Through selection and re-

combination genetic material is exchanged among individuals, building blocks3

are expected to be constructed, and finally an acceptable solution is expected to

be found. In addition to the right representation, whether the search of a genetic

algorithm is successful depends on the choice and the probability configurations

of genetic operators, population size, and number of generations etc. Further

information on GAs can be found in [125].

2.2.1.2 evolution strategies

In general, ES is used for continuous parameter optimisation. Its representations

are real valued vectors and do not need an encoding step to map its genotype

space to its phenotype space. ES heavily uses mutation operators, which are

based on Gaussian distribution and can self-adapt the step sizes to evolve in-

dividuals. It selects parents randomly from a population of size µ and combines

two parents to produce only one child. It has two offspring selection methods.

After creating λ children, the best µ of them are chosen based on fitness, either

from the λ offspring only, called (µ, λ) selection, or from the union of parents and

children, called (µ + λ) selection. Further information on ES can be found in [16].

3“Building-blocks” are useful sub-components of an individual. This concept has been dis-
cussed and studied widely. However, there is no universally agreed definition of what kinds of
sub-components can be building-blocks in different EAs.

12 CHAPTER 2. LITERATURE REVIEW

2.2.1.3 evolutionary programming

EP was originally developed to simulate evolution as a learning process aiming

to generate artificial intelligence [43]. Finite state machines were originally used

to represent predictors but nowadays floating-point vectors are used very often.

EP treats every individual in a population as part of a specific species rather than

as different members of the same species. Therefore, EP does not have parent

selection pressure and recombination operators. Every individual in a population

is mutated to produce one child. EP selects µ individuals into the next generation

from the union of parents and offspring (a (µ + µ) method). Further information

on EP can be found in [43].

2.2.1.4 other evolutionary algorithms

learning classifier systems Learning Classifier Systems (LCS) [75] have a close

relationship between reinforcement learning and genetic algorithms. Initially,

LCS consisted of a population of binary rules whose fitness was based on a rein-

forcement learning technique while individuals were evolved by a genetic algo-

rithm. Recently, research has expanded the representation to include real-valued,

neural network, and functional conditions. According to where a genetic algo-

rithm acts, LCS can be categorised into two styles: Pittsburgh and Michigan. A

Pittsburgh-style LCS has a population of separate rule sets, where the genetic al-

gorithm recombines and reproduces the best of these rule sets. A Michigan-style

LCS has only a population of a single rule set where the genetic algorithm focuses

on selecting the best classifiers within that rule set. In general, “learning classifier

system” refers to Michigan-style LCS.

differential evolution Differential Evolution (DE) [176] grew out of Kenneth

Price’s attempts to solve the Chebychev polynomial fitting problem using vector

differences for perturbing the vector population. DE is a very successful method

of using the differential mutation for global optimisation over continuous spaces.

The significant difference between DE and other evolutionary algorithms is its

scheme for generating trial parameter vectors. DE adds a weighted difference

between two population vectors to a third vector. By doing this, no separate

2.3. GP — A GENETIC SEARCH PROCESS 13

probability distribution is required so that the scheme becomes completely self-

organising (see [152] for details).

estimation of distribution algorithms Estimation of Distribution Algorithms

(EDA) [128] are an outgrowth of genetic algorithms. In order to avoid the disrup-

tions of building blocks or partial solutions, EDAs do not use crossover or mu-

tation operators to produce the next generation. Instead they generate the new

population by sampling the probability distribution, which is estimated from se-

lected individuals of the previous generation and is supposed to characterise the

distribution of promising solutions.

For a given problem, in general, all the variables in the problem are assumed

to be independent so that the estimation of the probability distribution from se-

lected individuals can be easily calculated. However, in many real world prob-

lems this assumption seldom holds, leaving how to estimate the probability dis-

tribution from selected individuals as a hot research topic.

2.2.2 Swarm intelligence

Swarm Intelligence (SI) [90] is inspired by many natural examples, including ant

colonies, bird flocking, animal herding, bacterial growth, and fish schooling. An

SI system is typically made up of a population of individuals interacting with

each other and with the environment following simple rules, thus having a col-

lective, decentralised, and self-organised global behaviour. SI is mainly used for

optimisation problems. It incorporates many techniques, including ant colony

optimisation [41], particle swarm optimisation [89], and bacterial foraging opti-

misation [140].

2.3 GP — A Genetic Search Process

Genetic programming is a technique enabling a genetic algorithm to search a po-

tentially infinite space of computer programs, rather than a space of fixed-length

solutions to a combinatorial optimisation problem. These programs often take the

form of Lisp symbolic expressions, called S-expressions. The idea of applying GAs

14 CHAPTER 2. LITERATURE REVIEW

to S-expressions rather than combinatorial structures originated with Stephen F.

Smith [170], and was brought to prominence through the work of Koza [93]. The

S-expressions in GP correspond to programs which a user seeks to adapt to per-

form pre-specified tasks. The fitness of an S-expression may therefore be evalu-

ated in terms of how effectively it performs this task [88]. GP with individuals in

S-expressions is referred to as tree-based GP.

GP also has other categories based on the representations of an individual, for

instance, linear structure GP [14, 47, 135, 136], graph-based GP [62, 70, 124, 143]

and grammar-based GP [193, 59, 137, 198]. Linear structure GP is based on the

principle of register machines, thus programs can be linear sequences of instruc-

tions. Graph-based GP is suitable for the evolution of highly parallel programs

which effectively reuse partial results. Grammar-based GP uses a context free

grammar to define the initial GP structures and restrict crossover and mutation

operations in order to ensure legal programs are always created.

A much more comprehensive field guide to GP can be found in [147]. The rest

of this section reviews GP in a simple and straightforward way.

2.3.1 Generating an initial population

There are three very common methods in tree-based GP to generate an initial

population of programs for GP to use when starting the genetic search process.

They are the grow method, the full method, and the ramped half-and-half method

[93].

Grow method When the grow method is used, each tree of the initial popula-

tion is built using the following algorithm:

1. a random symbol is selected with uniform probability from the function set

to be the root of the tree;

2. if n is the arity of the selected function symbol of a node, then n symbols are

selected with uniform probability from the function set and the terminal set

to be the node’s sub-nodes;

2.3. GP — A GENETIC SEARCH PROCESS 15

3. for each of the n sub-nodes where its symbol is a function, the method is

recursively applied from (2) unless the depth of the sub-node reaches the

predefined limit. Then its sub-nodes will be selected only from the terminal

set.

In the Grow method, the root is selected with uniform probability from the

function set, so that no tree is composed by a single node initially. Given the

maximum tree depth d, nodes with depths between 1 and d-1 are selected with

uniform probability from the function and the terminal set, but once a branch

contains a terminal node that branch will be terminated, even though the maxi-

mum tree depth has not been reached. Finally, nodes at depth d are chosen with

uniform probability from the terminal set.

Since the incidence of choosing sub-nodes from the function set and the ter-

minal set is random throughout the initialisation process4, trees are likely to have

irregular shape, containing branches of various lengths.

Full method Instead of selecting sub-nodes from the function set and the ter-

minal set, the full method creates sub-nodes by choosing a function symbol only

from the function set until the tree depth reaches the predefined limit. Then it

terminates the tree by choosing a terminal from the terminal set. The method

guarantees that every branch of a tree has the maximum depth.

Ramped half-and-half method In order to enhance the diversity in the initial

population, the ramped half-and-half method was introduced in [93] to reduce

the chance of having very similar programs (programs too close to each other) as

in the previous two methods. Let d be the predefined maximum tree depth. The

population is divided evenly among programs to be initialised with trees having

depths equal to 1, 2, ..., d-1, d. For each depth group, half of the trees are created

using the grow method, and the other half using the full method.

4Some GP implementations [165] have biased the selection of functions during subtree gener-
ation toward those with a higher arity.

16 CHAPTER 2. LITERATURE REVIEW

2.3.2 Evaluating programs

A program needs to be evaluated so that its quality of solving a given problem

can be represented. An explicit evaluation function to evaluate programs is called

fitness function, and fitness nowadays often refers to the result of the evaluation,

differing from its original meaning. In almost all research of GP, fitness is used to

determine whether a solution has been found and to select programs for produc-

ing the next generation.

There are several measurements of fitness. “Raw fitness is the measurement

of fitness that is stated in the natural terminology of the problem itself” [93].

It has been widely interpreted as a performance measure. Koza also described

three other alternative measurements of fitness based on the raw fitness, includ-

ing standardised fitness, adjusted fitness, and normalised fitness. The standardised

fitness is used when a better fitness needs to be represented in a lower numer-

ical value. The adjusted fitness and the normalised fitness are used mainly in

fitness-proportional selection (see Section 2.4.2.1 on page 25 for details) but are

not relevant in ranking selection and tournament selection.

The design of the fitness function is critical. For example, for deriving a pro-

gram to fire a gun, only knowing whether the target has been hit is not a helpful

fitness function to guide the next fire to achieve a better result. While knowing

which direction the target was missed can be more helpful, it is still not good

enough for the search process to work out exactly how much should be adjusted

for the next time. But if both the direction and the distance by which the bullet

misses its target are used as the fitness function, the search will be much more

effective and the target will be easily hit.

The fitness function can be a single objective method or a multi-objective

method where multiple program properties, including correctness, parsimony,

and efficiency [93, 111, 112], are considered. A single objective fitness function

outputs a single fitness value while a multi-objective fitness function can output

a single fitness value by combining multiple weighted values together, or pro-

ducing a vector of values. Recently, dynamic fitness functions and hierarchically-

defined fitness functions were proposed to guide GP search [100].

It is relatively easy to define a meaningful fitness function when the problem is

2.4. PARENT SELECTION 17

already mathematically formulated. For problems, like robot control, translating

a desired behaviour into an objective function is a formidable task. Therefore,

Tettamanzi [184] introduced a selection scheme based on the idea of competition

in order to evaluate programs without explicitly defining a fitness function.

2.3.3 Generating next generation

GP needs to explore the next generation of programs to carry on the genetic

search. The way GP locates the next population is through the processes of select-

ing parents and producing offspring. It selects programs according to their fitness

and applies genetic operators, including reproduction, mutation, and crossover,

to the selected programs for generating offspring. There is much research on se-

lection strategies and genetic operators. A detailed overview of this can be found

in the next sections, 2.4 and 2.6.

2.4 Parent Selection

A critical issue in the design of a selection technique is selection pressure. Many

definitions of selection pressure can be found from the literature. For instance,

it is defined as the intensity with which an environment tends to eliminate an

organism and thus its genes, or gives it an adaptive advantage [80], or as the

impact of effective reproduction due to environmental impact on the phenotype

[35], or as the intensity of selection acting on a population of organisms or cells in

culture. These definitions originate from different perspectives but they share

the same aspect, which can be summarised as the degree to which the better

individuals are favoured [122]. Selection pressure gives individuals of higher

quality a higher probability of being used to create the next generation so that

EAs can focus on promising regions in the search space [18].

Selection pressure controls the selection of individual programs from the cur-

rent population to produce a new population of programs in the next genera-

tion. This is important in a genetic search process because it directly affects the

population convergence rate. The higher the selection pressure, the faster the

convergence. A fast convergence decreases learning time, but often results a GP

18 CHAPTER 2. LITERATURE REVIEW

learning process being confined in a local maximum or “premature convergence”

[31, 93]. A slow convergence rate generally decreases the chance of premature

convergence but also increases the learning time and may not be able to find an

optimal solution in a preset limited time.

There is a wide range of selection techniques in EAs. There are mainly three

types of selection methods to select candidates for producing offspring in GP.

They are tournament selection, fitness-proportional selection, and ranking selection.

2.4.1 Tournament selection

According to the description given by Goldberg and Deb [57], the initial study of

tournament selection can be traced back to the early 1980s [23]. One form of the

conventional tournament selections introduced in [23] has became the standard.

The standard tournament selection randomly samples k individuals with re-

placement5 from the current population of size N into a tournament of size k and

selects the one with the best fitness from the tournament6.

By using different tournament sizes, the selection pressure can be changed to

influence the convergence of the genetic search process. In general, the larger

the tournament size, the higher the selection pressure. However, when popula-

tion starts to converge, many programs have the same fitness value, the selection

behaviour in standard tournament selection starts to become random [60]. There-

fore, tournament size is not always an adequate measure of selection pressure.

2.4.1.1 selection pressure measurements

In tournament selection, the mating pool consists of winners. The average fitness

in the mating pool is higher than that in the population. The fitness difference

between the mating pool and the population reflects the selection pressure, which

is expected to improve the fitness of each succeeding generation [122].

In biology the effectiveness of selection pressure can be measured in terms

of differential survival and reproduction, and consequently in the change in the

5This can be viewed as making a copy of an individual for a tournament, thus the population
remains unchanged.

6Some implementations return two individuals if the tournament size is far bigger than two,
for instance, the GP C++ Class Library [192].

2.4. PARENT SELECTION 19

frequency of alleles in a population. In EAs, from the literature, there are several

measurements for selection pressure in different contexts, including takeover time,

selection intensity, loss of diversity, and reproduction rate.

Takeover time is introduced by Goldberg and Deb [57] to quantify the selec-

tion pressure. It is defined as the number of generations required to completely

fill a population with just copies of the best individual in the initial generation

when only selection and copy operators are used. For a given fixed-sized popu-

lation, the longer the takeover time, the lower the selection pressure. Goldberg

and Deb estimated the takeover time for standard tournament selection using the

asymptotic expression

1

ln k
(ln N + ln(lnN)) (2.1)

where N is the population size and k is the tournament size. The approximation

improves when N → ∞. However, this measure is static and constrained and

therefore does not reflect the selection behaviour dynamics from generation to

generation in EAs.

Selection intensity is another measure for selection pressure. This was firstly

introduced in the context of population genetics to obtain a normalised and di-

mensionless measure [24], and, later was adopted and applied to GAs [129].

Blickle and Thiele [18, 19] measured it using the expected change of the aver-

age fitness of the population. As the measurement is dependent of the fitness

distribution in the initial generation, they assumed the fitness distribution fol-

lowed the normalised Gaussian distribution and introduced an integral equation

for modelling selection intensity in standard tournament selection.

For their model, analytical evaluation can be done only for smaller tourna-

ment sizes and numerical integration is needed for a larger tournament size. The

model is not valid in the case of discrete fitness distributions. In addition to these

limitations, the assumption that the fitness distribution followed the normalised

Gaussian distribution is not valid in general [150]. Furthermore, because the ac-

tual fitness values are ignored but the relative rankings are used in tournament

selection, the model is of limited use.

20 CHAPTER 2. LITERATURE REVIEW

Loss of diversity is defined as the proportion of individuals in a population

that are not selected during the selection phase [18, 19]. Blickle and Thiele [18, 19]

estimated the loss of diversity in the standard tournament selection as:

k− 1

k−1 − k− k
k−1 (2.2)

However, Motoki [127] pointed out that Blickle and Thiele’s estimation of the loss

of diversity in tournament selection does not follow their definition, and indeed

their estimation is of loss of fitness diversity. Motoki recalculated the loss of pro-

gram diversity in a wholly diverse population , i.e., every individual has distinct

fitness value, on the assumption that the worst individual is ranked 1st, as:

1

N

N
∑

j=1

(1 − P (Wj))
N (2.3)

where P (Wj) = jk−(j−1)k

Nk is the probability that an individual of rank j is selected

in a tournament.

“Reproduction rate” is defined as the ratio of the number of individuals with a

certain fitness f after and before selection [18, 19]. A reasonable selection method

should favour good individuals by giving them a high ratio and penalise bad in-

dividuals by giving a low ratio. Branke et al. [22] introduced a similar measure

which is the expected number of selections of an individual. It is calculated by

multiplying the selection probability of the individual in a single tournament by

the total number of tournaments conducted in the selection phase. This measure

is termed selection frequency in this thesis hereafter rather than reproduction rate,

which has another meaning in GP. Branke et al. provided a model to calculate

the selection frequency for a single individual of rank j in the standard tourna-

ment selection in a wholly diverse population on the assumption that the worst

individual is ranked 1st, as:

N
jk − (j − 1)k

Nk
(2.4)

2.4. PARENT SELECTION 21

2.4.1.2 models of sampling behaviour and selection behaviour in tournament

selection

There are many papers modelling and comparing the selection behaviour of a va-

riety of selection schemes [15, 19, 22, 57, 123, 127]. There are also many dedicated

studies on standard tournament selection [18, 122, 146].

Based on the concept of takeover time [57], Bäck [15] compared several selec-

tion schemes, including tournament selection. He presented the selection proba-

bility of an individual of rank j in one tournament for a minimisation task7, with

an implicit assumption that the population is wholly diverse, as:

N−k((N − j + 1)k − (N − j)k) (2.5)

In order to model the expected fitness distribution after performing tourna-

ment selection in a population with a more general form, Blickle and Thiele ex-

tended the selection probability model in [15] to describe the selection probability

of individuals with the same fitness. The model, though elegant, is somewhat ab-

stract. They defined the worst individual to be ranked 1st and introduced the cu-

mulative fitness distribution, S(fj), which denotes the number of individuals with

fitness value fj or worse. They then calculated the selection probability of indi-

viduals with rank j as:

(

S(fj)

N

)k

−
(

S(fj−1)

N

)k

(2.6)

In order to demonstrate the computational savings in backward-chaining evo-

lutionary algorithms, Poli and Langdon [146] calculated the probability that one

individual is not sampled in one tournament as 1 − 1
N

, then consequently the

expected number of individuals not sampled in any tournament as:

N

(

N

N − 1

)−ky

(2.7)

where y is the total number of tournaments required to form an entire new gen-

eration.

7Therefore the best individual is ranked 1st.

22 CHAPTER 2. LITERATURE REVIEW

There is also some experimental work on analysing the selection behaviour

of tournament selection. Gathercole [53] showed the selection frequency of each

individual and the likelihoods of not-selected and not-sampled individuals in

tournament selection of different tournament sizes through 1000 simulations on

a sample population size of 50. In his simulation, only one child is produced by

crossover or mutation, thus the total number of tournaments required to gener-

ate the next entire population is a function of the crossover rate, the mutation

rate and the population size, instead of being the same as the population size.

His experimental results are interesting, however it is not clear in his simulation

whether sampling tournament candidates was done with or without replacement

and whether the sample population was fully diverse or not.

2.4.1.3 variations based on standard tournament selection

Some interesting but by no means complete alternative tournament selection im-

plementations are briefly reviewed below.

An alternative tournament selection that can tune selection pressure at a fine

level was presented in [57]. In the form of tournament selection, an extra proba-

bility p is introduced. When conducting a tournament between two individuals,

the individual with higher fitness value can be selected as a parent with the prob-

ability p, while the other has the probability 1− p. By setting p between 0.5 and 1,

it is possible to tune the selection pressure continuously between the random se-

lection and the tournament selection with tournament size two. Recently, Hingee

and Hutter [69] showed that every probabilistic tournament is equivalent to a

unique polynomial ranking selection scheme.

Harik [63] demonstrated some interesting work in tournament selection in

the context of GAs. He introduced a restricted tournament selection method in

GAs for two purposes. The first was to preserve and find multiple solutions and

the second was to obtain a particular global solution by taking advantage of the

schema found in multiple local solutions. In the restricted tournament selection,

two parents are randomly selected from a population to produce two offspring.

For each offspring, a number of competitors are randomly selected. The closest

(in terms of distance) competitor to the offspring is chosen and competes to the

2.4. PARENT SELECTION 23

offspring to decide whether the offspring should be kept in the population. The

author claimed that this form of tournament should restrict an entering element

from competing with others too different from it.

Filipović et al. [48] investigated a fine-grained tournament selection method

for a simple plant location problem in GAs. They argued that standard tourna-

ment selection does not allow precise setting of the balance between exploration

and exploitation [18]. In their fine grained tournament selection method, the tour-

nament size is not fixed but close to a pre-set value. They claimed that the fine

grained tournament selection makes the ratio between exploration and exploita-

tion able to be set precisely, and that the method solves the simple plant location

problem successfully.

Luke and Panait [112] developed two modified tournament selection meth-

ods in GP. The methods use buckets to apply lexicographic parsimony pressure

on program selection for problem domains where few individuals have the same

fitness. Each individual in the bucket is treated as if it had the same fitness as

others in the same bucket. They concluded that the methods maintain the same

mean best-fitness-of-run as the Koza-style depth limiting, but produce equivalent

or significantly lower mean tree sizes. They also developed double tournament and

proportional tournament methods in GP [111]. In double tournament, individuals

must pass two layers of tournaments (one by size, one by fitness) to be selected.

In proportional tournament, the tournament sometimes picks winners by size,

and sometimes by fitness, determined by a probability. The two variations were

tested on artificial ant, 11-bit Boolean multiplexer, symbolic regression, and even-

5 parity problems and compared with the depth-limiting bloat control method.

They concluded that the two variations by themselves lowered total tree size only

slightly in comparison to the depth-limiting bloat control method, but when com-

bined with depth limiting the two variations yielded tree sizes at half the normal

size without affecting the effectiveness of the GP system.

Matsui [119] developed two variations of tournament selection to improve

the population diversity in GA. One variation is called correlative tournament se-

lection which is used to select the second parent for crossover. After choosing the

first parent based on the fitness value through standard tournament selection,

24 CHAPTER 2. LITERATURE REVIEW

the Hamming distance to the first parent is used as the selection criteria for the

second parent. The larger the Hamming distance, the higher the selection proba-

bility. The other is called correlative family-based selection which is used to choose

two individuals amongst two parents and two offspring — the family — into the

next generation. After producing two offspring, an individual with the highest

fitness value in the family is selected for survival. The other surviving individ-

ual has the largest Hamming distance to the first surviving individual amongst

the remaining three family members. The author tested the methods on the Royal

Road and the non-stationary knapsack problems and concluded that the methods

could improve the search performance and the genotype diversity in GA.

Poladian [142] argued that building blocks in the best individuals are likely

to be disrupted by crossover and the worst individuals are unlikely to have valu-

able building blocks to contribute in the context of GA. In order to preserve build-

ing blocks, the author explicitly excluded the best and the worst individuals in

tournament and selected the middle-ranked ones for crossover. The method was

tested using tournament size 4 in both generational and steady-state GA on the

hierarchical if and only if function [191] and the one-dimensional Ising spin-glass

model with random coupling coefficients [153]. The method was compared with

three methods that selected two parents completely random, ranked at the top in

the tournament, and ranked at the bottom in the tournament, respectively. The

experimental results demonstrated the benefits of the method.

At approximately the same time as our research was being conducted a re-

lated work, unbiased tournament selection, was published by Sokolov and Whit-

ley [173]. The authors believed that a bias present in standard tournament selec-

tion is the potential for better individuals not to be selected for recombination.

Therefore, they developed their unbiased tournament selection that “lines up

two different permutations of the population and performs a pairwise compari-

son” with a constraint, which forces compared individuals to be distinct. Conse-

quently, their method can ensure that every individual is sampled at least once.

Tournament size 2 was used to test the unbiased tournament selection on three

problems, one with permutation-based solution representation and two under bit

encodings. Although the advantage of a generational genetic algorithm using the

2.4. PARENT SELECTION 25

unbiased tournament selection varied for different population sizes on the three

problems, the authors concluded that the impact of the bias is significant, and the

unbiased tournament selection provides better performance than other selection

methods, including standard tournament selection, a rank based selection and

fitness proportionate selection.

The literature reveals that many alternative tournament selection methods

have been developed since the 1990s. However, their effectiveness is mainly

demonstrated through experiments. The lack of formal models and analyses

makes it difficult to understand the behaviour of these different tournament se-

lection strategies, and to extend and develop new strategies.

2.4.2 Other parent selection methods

2.4.2.1 fitness proportionate selection

Fitness-proportional selection method selects programs according to their rela-

tive fitness values. It was introduced by Holland [74]. Koza used fitness-propor-

tionate selection through his book [93]. In a population P with N programs, each

program i is given a probability of being selected:

pi =
fi

∑N
i=1 fi

(2.8)

where fi is the fitness value of the ith program.

One implementation of the fitness proportionate selection method is roulette

wheel selection. A roulette wheel is divided into N partitions s1, s2, ..., sN , where

each partition si has a size proportional to fi. When there is a need to select a

program, the roulette wheel is turned. If the ball stops in partition si, program i

is selected.

Although this selection method has been widely used, there are several draw-

backs. If differences between high fit and low fit programs are large, the high

fit programs will dominate the process of producing offspring, thus reducing the

population diversity [19]. Furthermore, it is hard to control the selection pressure

in the fitness-proportional selection method.

26 CHAPTER 2. LITERATURE REVIEW

2.4.2.2 ranking selection

Ranking selection was introduced in [58]. It was designed to reduce the side

effect to the population diversity in fitness-proportional selection. The method

sorts programs based on their fitness values. The rank N is assigned to the best

program and the rank 1 to the worst. It then uses a function (either linear [15],

exponential [19], or polynomial [69]) to calculate the selection probability based

on their ranks. An example of a linear function is shown in Equation 2.9:

pi =
1

N

(

1 − η + (2η − 2)
i − 1

N − 1

)

(2.9)

where, i is the rank of a program and N is the population size, η controls the

selection bias to adjust the selection pressure and should meet conditions 1 ≤
η ≤ 2. When η = 1, it gives no selection pressure as the probability is uniform

(1
N

). When η = 2, it gives the highest selection pressure. The probability of the

best program to be selected is η
N

.

An example of an exponential function is shown in Equation 2.10:

pi =
cN−i

∑N
j=1 cN−j

(2.10)

where, i is the rank of a program and N is the population size. c is the selection

bias to adjust the selection pressure and 0 < c < 1. The sum
∑N

j=1 cN−j normalises

pi to ensure
∑N

i=1 pi = 1.

There are also certain drawbacks in this selection method. Firstly, it needs to

sort all programs according to their fitness values. For a very big population, this

can be time-consuming. Secondly, it exaggerates the differences amongst pro-

grams with similar fitness values so that slightly better programs can be selected

more often than other similar ones [194].

2.4.2.3 fitness uniform selection

Fitness uniform selection was introduced in [78]. It was designed to preserve ge-

netic diversity in the steady-state based EAs. Although it is necessary to have

selection pressure towards fitter individuals for optimisation problems, the true

2.4. PARENT SELECTION 27

optimisation goal is usually to collect not a large number of fit individuals but

a single fittest individual. Therefore, with the interest in a single individual of

maximal fitness instead of a population converging to maximal fitness, the fit-

ness uniform selection method generates a random number between the lowest

and highest fitness values of the current population, then selects an individual

whose fitness value is the nearest to the random number. In this way, if the ini-

tial fitness distribution is not uniform, for instance only a couple of individuals

with better fitness and many individuals with worse fitness or vice versa, then

individuals of low populated fitness levels are effectively favoured regardless of

whether the individual’s fitness is better or worse until the population becomes

fitness uniform. Therefore, with the fitness uniform selection takeover [57] never

happens; the searching may waste time on the wrong end of the fitness scale,

which may be beneficial to certain problems.

2.4.2.4 reserve selection

Reserve selection was introduced in [29]. It was designed to preserve possible

building blocks hosted in less-fit individuals in order to prevent premature con-

vergence.

When generating the next generation, offspring are divided into two parts

with predefined sizes. Offspring that are generated through normal fitness-based

selection, crossover and mutation form the first part of the population called

“non-reserved area”. Parents that are used to generate offspring in the non-

reserved area are marked and are not again used as parents to generate offspring

for the other part of the population. The other part is called ”reserved-area”. Off-

spring in this area are generated by selecting parents based on a measure called

“uniqueness” instead of fitness. To calculate the uniqueness of a given parent,

reserve selection sorts the current population based on fitness first. It then as-

signs the absolute difference of the fitness values of two immediate surrounding

individuals of the given parent as the uniqueness to the given parent.

This selection method has been tested in GA on several global optimisation

problem domains [29], including multimodal function optimisation, travelling

28 CHAPTER 2. LITERATURE REVIEW

salesman problem, and multiple sequence alignment, and certain deceptive8 prob-

lems [30], including an order-3 deceptive problem and a highly deceptive 2D

problem. The experimental results demonstrated the effectiveness and robust-

ness of the reserve selection in suppressing premature convergence and solving

deceptive problems, and an enhancement in global optimisation capacity.

2.4.2.5 truncation selection

Truncation selection is most often used in GAs. In truncation selection a popu-

lation is ordered by fitness, and a proportion t (e.g. t = 1/2 or 1/3) of the fittest

individuals are selected and reproduced 1/t times.

2.4.2.6 others

The literature includes many other parent selection methods not completely cat-

egorised in the above selection schemes. Some interesting examples are listed

below:

• Law and Szeto [102] developed two methods to select parents for crossover

based on Hamming distance in GAs.

• Smorodkina and Tauritz [172] and Holdener and Tauritz [73] introduced a

couple of mate selection methods which remove user-defined parameters

at the parent selection stage, by allowing individuals to self-organise into

pairs of mates.

• Chellapilla [28] used an EP-style tournament selection [50] with ten oppo-

nents to select parents for the next generation.

2.5 Fitness Evaluation Cost

Fitness-driven selection methods require fitness values to be calculated in ad-

vance. Fitness evaluation is almost always the most time-consuming operation

8Deception, in general, refers to solutions that lead the search toward poor local optima. De-
ception can occur when very different solutions exist with the same fitness but their recombina-
tion leads to poor fitness. It can also occur when solutions that have relatively good fitness are
not amenable to further improvement [60].

2.5. FITNESS EVALUATION COST 29

in EAs [56, 218]. It is directly connected to the efficiency of the parent selection

phase; the smaller the number of fitness evaluations, the more efficient the parent

selection process. Fitness evaluation cost remains an important selection-related

open issue.

2.5.1 Studies in GAs

Sastry et al. [161] introduced the notion of fitness inheritance and showed some

very promising results in reducing the number of evaluations for the OneMax

problem when the population size is fixed. Kim and Cho [91] used k-means to

cluster the whole population and used Euclidean distance to estimate the fitness

values of other cluster members from the fitness value based on the cluster rep-

resentative for saving the fitness evaluation cost. Their method was tested on

the Griewangk function, the De Jong functions, the Rastrigin function and the

Schwefel function. Jin and Sendhoff [86] also used k-means to cluster the whole

population. Only the chromosome closest to the cluster centre is evaluated. Fit-

ness values of other chromosomes are estimated by a neural network ensemble.

Their approach was tested on the Ackley function, the Rosenbrock function, and

the Sphere function.

2.5.2 Studies in GP

Altenberg [4] and Tackett [178] used a small fraction of training fitness cases

to evaluate a large number of offspring produced by their brood recombination

crossover operator. Giacobini et al. [56] used a statistical method to select a frac-

tion of all fitness cases for evaluating programs in order to reduce the computa-

tional cost. They concluded that once the number of fitness cases is greater than

a threshold, a reliable and stable convergence behaviour can be observed in their

Boolean function and discrete step function problems.

Jackson [84] introduced a fitness evaluation avoidance method to avoid evalu-

ating offspring generated by so-called fitness-preserving crossover. In his method,

all nodes in a program are initially marked as not-visited. When a fitness case is

fed to a fitness function and causes a node of the program to be evaluated, the

30 CHAPTER 2. LITERATURE REVIEW

node is then marked as visited. If a program P1 is selected for crossover and the

root of a sub-tree from another program P2 replaces a not-visited node of P1, then

the generated child cannot act differently from its parent P1, because the inserted

subtree will never be executed. Therefore, there is no need to re-evaluate the fit-

ness of the offspring. The effectiveness of the method depends on the fraction

of nodes in the programs that are not evaluated for any of the fitness cases. For

the Boolean function set that Jackson used, this fraction is high; for function sets

without if or short-circuited Boolean operators, the fraction would be low, and

other techniques for saving fitness evaluation would be needed.

Wong and Zhang [199] introduced a subtree caching using a hashing for equiv-

alence method, which caches program subtrees while taking into account alge-

braic equivalences between these programs, to reduce the fitness evaluation cost.

The researchers tested the method on two symbolic regression problems and four

classification problems and concluded that the method could provide a signifi-

cant reduction in the number of node evaluations and CPU time without deteri-

orating the effectiveness of the system.

Luke et al. [110] proposed a shrinking strategy using a diagonal layout to grad-

ually decrease the population size towards zero during a GP run. The method

employs a large population at the beginning, then reduces the size linearly at

each generation. They concluded that “decreasing the population size is always

as good as, and frequently better than, various fixed-sized population strategies”.

Fernandez et al. [46] developed a method for solving the code bloat prob-

lem9 by taking advantage of the dynamic population. The method removes some

individuals at every generation and compensates for the increase in the size of

other individuals. They claimed that the method can save computing time while

looking for solutions.

Rochat et al. [156] introduced a combination of two techniques, island model

[179] and plague [187], to dynamically change the population size at run time to

reduce the fitness evaluation cost.

9Code bloat refers to a continuous, uncontrollable increase in the size of individuals using
a variable-length representation, including neural networks, finite state automata, and rule sets
[14].

2.6. OVERVIEW OF GENETIC OPERATORS 31

2.6 Overview of Genetic Operators

There are three commonly-used genetic operators: reproduction, mutation, and

crossover. When to apply these operators is controlled by corresponding proba-

bility settings. In some conventional tree-based GP systems, the sum of the repro-

duction, crossover, and mutation probabilities is 100%. Some variants of GP sys-

tems do not follow the convention for their own special purposes. For example,

the crossover and mutation operators are independent of each other so that the

mutation operator is applied regardless of whether a program has also been se-

lected for crossover [52]. These probabilities could also be updated dynamically

in order to impose a constant parsimony pressure on competing tree-schemata

regardless of the complexity of evolved structures [158].

2.6.1 Reproduction

The reproduction operator is the basic engine of Darwinian natural selection and

survival of the fittest [93]. For reproduction, a program is selected from the cur-

rent population and inserted directly without any modification into the next gen-

eration. Elitism [149] is a special reproduction operator. In general, elitism passes

one or more of the best programs of a generation unchanged to the next gen-

eration to prevent evolution from losing the best individuals, whilst programs

copied to the next generation via the reproduction operator are not necessarily

the best programs of the current generation.

2.6.2 Mutation

Mutation is asexual and was categorised as the secondary genetic operator for

modifying program structures in [93]. For mutation, only one parent program is

selected from the population. Standard GP mutation selects a node (also called

mutation point) in a parent program tree, except the root of the tree, randomly.

The subtree rooted by the mutation point is replaced by a newly-generated sub-

tree. The new program is then inserted into the next population. There are many

different forms of mutation operators. Some commonly-used ones include point

mutation, shrink mutation, and hoist or promotion mutation.

32 CHAPTER 2. LITERATURE REVIEW

Point mutation [144] exchanges a randomly-chosen single node in a parent

program with a random node of the same arity to ensure the new program is

syntactically valid and to follow GP schema theory. Shrink mutation [8] replaces a

randomly-chosen subtree in a parent program with a randomly-created terminal

so that the size of the new program is smaller than its parent. Hoist or promotion

mutation [92, 163] creates a new program which is a copy of a randomly-chosen

subtree of a parent program. Thus the new program is also smaller than its parent

and may have a different root node. Topchy and Punch [186] and Smart and

Zhang [166] integrated the gradient local search technique to optimise numeric

leaf values in tree-based GP.

A long list of mutation operators in GP can be found in [147].

2.6.3 Crossover

Crossover (sexual recombination) was categorised as the primary genetic oper-

ator for modifying program structures in [93] and it became the convention in

almost all GP related research after that. Generally, after two programs are se-

lected from the population, standard crossover randomly selects a node in each

program tree except the root of the tree. It then exchanges the two subtrees rooted

by the selected nodes (also called crossover points) between the two parent pro-

gram trees to generate two new programs.

This blind replacement — randomly-chosen crossover points and ignoring the

semantics of the parent programs — can often disrupt beneficial building-blocks

in tree structures. In order to overcome this problem, much research has been

done on understanding and improving the standard crossover operator. Ways to

improve crossover include searching good offspring by integrating local search

metaphors which is time-consuming, and adapting positions of crossover point

which aims to reduce offspring search space. Furthermore, crossover is also mod-

ified for the code bloat problem in GP. The rest of the subsection describes these

aspects.

2.6. OVERVIEW OF GENETIC OPERATORS 33

2.6.3.1 integrating local search metaphors

Tackett [178] designed a brood recombination operator. The operator is inspired

by the fact that animal species produce far more offspring than are expected to

live. It randomly applies crossover N times to two chosen programs to produce

2N offspring. After evaluating all offspring, it puts the best two into the next

generation and discards the rest of the offspring.

The brood recombination operator can be categorised as a partial local search

operator because it looks for the best state in the available states but only looks

at 2N possible successor states. Tackett asked whether the brood recombination

operator reduces the diversity of subtrees, eliminating ones which are unfit in

the current generation but might be useful at a later time. He compared a parent

selection using standard tournament selection of size 6 with a random parent

selection on the basis of using the same set of initial populations. The results

demonstrated the advantage of the brood recombination operator. However, a

difficulty with his conclusion is that the number of random crossover operations

(the brood size factor) is chosen without sufficient regard to parent program sizes,

so that the degree of intensive search within all possible successor states of chosen

parents has not been well investigated.

Lang [97] introduced a headless chicken crossover (HCC) operator which is ap-

plied to a chosen program P and a newly- (also randomly-) generated program

R. The operator repeatedly produces offspring from P by replacing a subtree of

P with a subtree from R until it finds an offspring with better or equal fitness

(problem solving quality) to P.

The headless chicken crossover operator can be categorised as a first-choice

hill-climbing local search [160]. This is because it randomly looks for a state better

than or equal to the current state and stops once it finds such a state rather than

looking at all possible successors. According to [94], Lang’s method is really a

mutation (with hill-climbing) rather than crossover, since only one “parent” is

chosen from the current generation.

Majeed and Ryan [115] introduced a context-aware crossover operator which

identifies all possible contexts in one parent for a randomly-chosen subtree from

the other parent, then evaluates each of them. The context that generates an off-

34 CHAPTER 2. LITERATURE REVIEW

spring with the best fitness is used and the offspring generated is then passed

into the next generation. Fitness proportionate selection and tournament selec-

tion with size 7 are used to select parents in different problems. The authors

claimed that the operator improves both mean best fitness and mean average fit-

ness.

The context-aware crossover operator can also be categorised as a partial local

search operator. From authors’ discussion of future work, it seems that they ex-

perienced a fast population convergence problem and their temporary solution

was to permit only one offspring per crossover.

Hengproprohm and Chongstitvatana [68] developed a selective crossover in

tree-based GP. The selective crossover tests the impact of each subtree in an in-

dividual on the overall fitness of the individual and determines the worst and

the best subtrees. It then performs crossover by substituting the worst subtree of

one parent with the best subtree of the other parent, combining the good subtrees

from both parents to produce the offspring. The selective crossover was tested on

a robot arm control and the artificial ant problems. The results demonstrated the

effectiveness of the method but not the efficiency.

Harries and Smith [64] evaluated more offspring but only accepted new pro-

grams whose fitness values are better than or equal to their parents in a study

of depth-based crossovers. Their search algorithm is a type of stochastic hill-

climbing algorithm because not all possible offspring are evaluated and the fittest

child is not necessarily chosen. Iba and Garis [79] introduced a recombinative

guidance mechanism called smart crossover for GP, and showed the effectiveness

of their approach through various experiments. Briefly, their approach uses S-

value to evaluate performances of subtrees and selects the crossover points based

on the performance evaluation results.

Yuen [208] developed two crossover operators called simple selective crossover

and dominance selective crossover based on the selective crossover in GAs [190] and

the uniform crossover in GP [145]. Mahfoud [114] illustrated the interaction be-

tween directed crossover operators and selection pressure in a context of genetic

algorithms. Terrio and Heywood [182] investigated a family of directed crossover

operators under a steady state selection model.

2.6. OVERVIEW OF GENETIC OPERATORS 35

Other research has shown that the searching performance of an evolutionary

algorithm can be improved when factorial design approaches are integrated into

the crossover operator in GAs [27, 71, 72, 104, 216].

2.6.3.2 focusing on position of crossover point

The standard crossover operator selects nodes for crossover with an implicit bias

towards the leaves of a program tree due to more nodes in that part of the tree

in general [145]. Rosca and Ballard [157] showed that in standard crossover the

average crossover point occurs near leaves for full trees. Soule and Foster [175]

focused on minimal trees10 and presented a model to describe the depth of an

average crossover branch. They then simplified the model for a minimal binary

tree and concluded that crossover branches are roughly one quarter as deep as the

parent tree. They also concluded that depending upon the original structure of

the parent tree, the standard crossover operator can be expected to swap a small,

constant-sized branch in the case of full trees or a relatively large fraction of the

entire tree in the case of minimal trees.

In order to remove the implicit bias toward leaves, Koza [93] introduced an

alternative crossover point selection method which explicitly gives a weak selec-

tion frequency (i.e. 0.1) for leaf nodes. However, O’Reilly and Oppacher [138]

pointed out that the method may still be biased towards leaf nodes under some

circumstances, for instance when leaf nodes comprise less than 10% of the size of

a program tree. In order to determine the effect of modifying the leaf selection fre-

quency, Angeline [8] conducted a set of comprehensive experiments which tested

four fixed and two self-adaptive leaf node selection frequencies on the Boolean

6-multiplexer function, the interlocking spirals problem, and the Wolfe Sunspot

time series modeling problem. His results showed that 1) the optimal leaf se-

lection frequency was problem-dependent and probably unpredictable without

significant understanding of the given problem domain, and 2) simply removing

the leaf selection frequency might be a prudent choice for many problems.

As summarised in [64], the standard crossover operator is also biased towards

the bottom of a program tree. This bias might be a consequence of the depth

10Trees with the minimal number of nodes for their depths.

36 CHAPTER 2. LITERATURE REVIEW

limiting [93], one of the popular bloat control techniques used in much litera-

ture. In order to remove this bias, Harries and Smith [64] proposed a depth-

based crossover where each depth is given an equal probability of being chosen.

Their method first randomly selects a depth then randomly selects a node at that

chosen depth as a crossover point. Later, Ito et al. [81, 82, 83] also presented

some depth control strategies with the purpose of preserving building blocks

for fitness improvement, which could be interpreted as finding good crossover

points. Their crossover point selection process is similar to [64] but instead of

giving an equal probability to each depth, it assigns different selection probabili-

ties to depths with bias towards the root of a program tree. In [81, 82], the depth

selection probabilities are predefined and remain unchanged during evolution.

Shortly after, Ito et al. realised that if the probability was not set properly, or was

not suitable for a particular problem, the depth-dependent crossover might not

work well. Therefore, they extended their work to introduce a self-tuning depth-

dependent crossover operator [83]. In their extended work, each program tree is

randomly assigned a depth selection probability in a predefined range rather than

a fixed value during initialisation. The depth selection probability of a parent is

inherited by its offspring and could be automatically adjusted during evolution

according to their hypothesis that if a program is selected as a parent according to

its fitness, it is likely that the depth selection probability of the program is desir-

able. According to Harries and Smith’s and Ito et al.’s experimental results, ways

of giving equal or unequal probabilities to each depth are demonstrated as both

having some advantages.

O’Reilly and Oppacher [138] introduced a height-fair crossover operator. In

a program tree, all possible subtree heights are recorded and one subtree height

is randomly selected. Then within a group of subtrees of the chosen height, a

random subtree is selected for swapping. Therefore, “the root and leaves of a

subtree may be chosen with equal probability” [138].

Zhang et al. [214] introduced a looseness-controlled crossover operator in tree-

based GP for object classification: a local hill-climbing search is used in construct-

ing good building blocks, a weight called looseness is introduced to identify the

good building blocks in individual programs, and the looseness values are used

2.6. OVERVIEW OF GENETIC OPERATORS 37

as heuristics in choosing appropriate crossover points to preserve good building

blocks. The looseness-controlled crossover operator was tested on a sequence of

object classification problems. The results suggested that the looseness-controlled

crossover operator outperforms HCC (headless chicken crossover), the standard

crossover, and the standard crossover operator with hill climbing on all of the

problems in terms of the classification accuracy. The approach takes slightly

longer than the standard crossover operator, but it significantly improves the sys-

tem efficiency over the HCC method.

Angeline [9] presented two self-adaptive crossover operators in GP. Each node

is randomly assigned a probability of performing a crossover during initialisa-

tion. A roulette wheel selection is used to select a node for crossover according

to the assigned probability. After performing crossover, the probability of every

node in the offspring is updated using a predefined coefficient and a Gaussian

random variable. Therefore, the two so-called self-adaptive crossover operators

appear not to adjust the probabilities on the optimisation of the basis of an indi-

vidual’s fitness.

The one-point and uniform crossover operators [145] and a homologous cross-

over operator [99] can be also viewed as implicitly controlling the depth of the

crossover points.

2.6.3.3 fighting code bloat

The earliest known report of bloating is perhaps in Pitt-approach rule systems

[170]. Bloat then becomes a popular topic in GP because the fitness computation

time is wasted and the readability of solutions is decreased when an increase in

solution size does not correspond with fitness improvement [60].

One contributing factor to code bloat is the standard fitness-based parent se-

lection methods, where parent sizes or structures are generally ignored. Code

bloat has led to a large number of studies involving parsimony pressure [93, 111,

112, 148, 169, 210, 209, 211]. Recently, Poli et al. [149] confirmed that elitism can

have a powerful effect on reducing bloat and larger elite sizes control bloat more

strongly. Another contributing factor to code bloat is the behaviour of the stan-

dard crossover operator [175], resulting in some interesting attempts to develop

38 CHAPTER 2. LITERATURE REVIEW

new crossover operators fighting code bloat.

Platel et al. [39] introduced a new recombination operator called the Maximum

Homologous Crossover (MHC) for linear genetic programming. In contrast to the

conventional crossover operator, the approach attempts to preserve similar struc-

tures from parents, by aligning them according to their homologies. To highlight

disruptive effects of crossover operators, the researchers used the Royal Road

Landscape and tested the homology of the new crossover operator on this land-

scape. Results showed a reduction in the bloat phenomenon and in the frequency

of deleterious crossovers. The approach is in fact a dynamic programming like al-

gorithm to align two programs, and it is likely to have multiple acceptable align-

ment results. An alignment result is randomly chosen if multiple alignments are

present. Then a single point is also randomly chosen and codes below that point

are swapped. Authors claimed that MHC preserves structural and lexical ho-

mology by computing an alignment, which minimises a metric of dissimilarity

between parents. They claimed that MHC can keep safe similar regions of the

parents, in order to favour a kind of “respect” property (the common features

of parents are present in children). We think that since a linear GP program can

be viewed as a Directed Acyclic Graph (DAG), aligning two DAGs and applying

crossover at a single swapping point seems to be unusual.

Terrio and Heywood [181] developed a directed crossover for reducing bloat

in tree-based GP. Crossover points in the method are the nodes whose contri-

butions to the overall fitness of an individual program are maximal. Langdon

[99] introduced a size fair crossover operator and a homologous crossover operator

to preserve tree structures and the sizes of exchanged subtrees for controlling the

code bloat problem. Majeed and Ryan [115] also claimed that the context-aware

crossover operator could reduce bloat in most of their experiments and produce

significantly smaller individuals in most cases.

Manrique et al. [118, 33] developed a grammar-based crossover. The authors

claimed that the grammar-based crossover works with any grammar-based GP

systems, prevents the generation of illegal trees, controls code bloat efficiently,

and explores all nodes in the parents that can generate new legal individuals

leading to sought-after solutions.

2.7. TYPICAL PROBLEM DOMAINS IN GP 39

2.6.4 Crossover vs. Mutation

Crossover was suggested as the primary genetic operator for improving program

structures in tree-based GP [93]. However, the relative effectiveness of crossover

and mutation has been most controversial.

Gustafson [60] summarised that intuitively exchanging subtrees between two

program trees during recombination, regardless of tree shape or content, would

seem unlikely to preserve the semantic meaning of the exchanged subtrees. Thus,

it is not too surprising that subtree crossover has been shown to perform similarly

to mutation variants [10, 113, 139].

Gathercole and Ross [55] pointed out that in crossover, subtree discovery and

movement takes place mostly near the leaf nodes, with nodes near the root left

untouched. Therefore, diversity drops quickly to zero near the root. They claimed

that GP is then unable to create fitter trees via crossover, leaving mutation as the

only (but ineffective) route to discovery of fitter trees. Interestingly, Chellapilla

[28] later demonstrated experimentally that mutation is effective.

However, where and why one is preferable to the other is strongly dependent

on problem domains and parameter settings [113]. Crossover has remained the

dominant genetic operator in deriving optimal solutions in the large number of

attempts since the 1990s.

The debates indicate that crossover should do more than blindly exchange

subtrees. This also implies that offspring selection is crucial, especially in recom-

bination.

2.7 Typical Problem Domains in GP

This section briefly presents only three typical problem domains used in GP re-

search. Other commonly-used problem domains can be found in [93, 14].

2.7.1 Boolean

Multiplexer and Parity are two representative problems in the Boolean problem

domain [93]. Langdon and Poli [100] presented a detailed analysis of Boolean

40 CHAPTER 2. LITERATURE REVIEW

program spaces.

For a n-multiplexer problem, the input consists of i address bits and 2i data

bit, and n = i + 2i. The output of a multiplexer function is the Boolean value

of the particular data bit that is chosen by the value of the address bits of the

multiplexer. For an even-n-parity problem, the input is a string of n Boolean

values, and the output is true if there are an even number of true’s, and otherwise

false. The most characteristic aspect of this problem is the requirement to use all

inputs in an optimal solution and a random solution could lead to a score of 50%

accuracy [60]. Furthermore, optimal solutions could be dense in the search space

as an optimal solution generally does not require a specific order of the n inputs

presented. For both problems, there are a very small number of fitness cases.

2.7.2 Symbolic regression

Symbolic regression differs from conventional linear regression, quadratic regres-

sion, exponential regression, and other conventional types of regression.

In conventional regression, for example, after being giving a set of values of

various independent variable(s) and the corresponding values for the dependent

variable(s), a user first needs to decide whether a suitable model is a linear regres-

sion, a quadratic regression, or an exponential regression, or whether to try to fit

the data points to some other type of function. The user then needs to discover a

set of numerical coefficients for the model involving the independent variable(s)

that minimises errors between the values of the dependent variables(s) computed

with the model and the given target values for the dependent variable(s).

But often, the real problem is to decide what type of model most appropriately

fits the data, not merely computing the appropriate numerical coefficients after

the model has already been chosen. Symbolic regression searches for both models

and appropriate numerical coefficients that go with the models.

2.7.3 Classification

In general, classification means to assign items in a data set to a number of cat-

egories or classes. A classification problem for objects in a particular domain is

2.8. CHAPTER SUMMARY 41

the problem of separating these objects into classes, and giving criteria for de-

termining which particular class a particular object belongs to. In terms of the

number of classes to be classified, classification problems can be categorised into

binary and multi-class classification problems. That is, multi-class classification

problems refer to classification problems with three or more classes of interest, in

contrast to binary classification problems, which have only two classes.

GP was used to discover decision trees and grammars, and also used with a

wrapper11 for binary classification and pattern recognition [93]. It has became

a general method for classification problems as shown by a large amount of

successful research work [77, 164, 174, 177, 180, 195]. For multi-class classifica-

tion problems, translating numeric values into class labels is not straightforward.

There have been many attempts since the 1990s. Gathercole and Ross [54] decom-

posed a multi-class classification problem into a binary classification problem.

Loveard and Ciesielski [109] and Zhang et al. [212] developed a static range se-

lection method. The method partitions the numeric outputs of a GP classifier into

multiple regions, where each region represents one class. Other attempts, includ-

ing dynamic range selection [109], centred and slotted dynamic class boundary

determination methods [215], and probability-based methods [168] are also very

interesting and promising.

2.8 Chapter Summary

This chapter reviewed the fields of machine learning, evolutionary computation,

especially GP and its components, and areas of research — parent and offspring

selection — that closely related to work in this thesis.

The current situation of the research in parent and offspring selection in tree-

based GP is summarised as:

• A variety of parent selection schemes in EAs have been developed and stud-

ied, as well as several selection pressure measurements. However, in GP,

how parent selection pressure should be tuned has not been well addressed.

11This translates the numeric outputs of a GP classifier into class labels based on the sign of the
numeric values.

42 CHAPTER 2. LITERATURE REVIEW

Parent selection pressure control has not been fully understood and has

only been implicitly studied experimentally in some pieces of work, like

changing the sampling process for a tournament [173], changing popula-

tion size [110, 156, 185], and applying parsimony pressure which is origi-

nally used for bloat control [147, 34].

• It is necessary to apply offspring selection and many attempts at offspring

selection have been made. However, the impact of offspring selection on

the overall GP search performance has not been well addressed, nor has the

configuration between parent and offspring selection.

• Many algorithms for saving the fitness evaluation cost in parent selection

have been developed. However, few algorithms exploit the characteristics

of a particular selection scheme for saving the fitness evaluation cost.

• A variety of algorithms for reducing offspring search space have been de-

veloped. However, these algorithms often disagree with each other. For

instance, when choosing good crossover points, reducing or retaining leaf

nodes selection bias are both recommended; assigning equal or unequal

probabilities to each depth in parent program trees both have advantages.

Further investigation in this research area is clearly needed.

This thesis addresses these selection-related open issues in tree-based GP via

a series of carefully-designed experiments and analyses.

Part I

Analysing Parent Selection

Behaviour

43

Chapter 3

Tuning Parent Selection Pressure

This chapter firstly presents an analysis of the standard tournament selection

with mathematical models and visualisations, showing the working of the stan-

dard tournament selection and revealing the impacts of tournament size and

population size on parent selection pressure. It then addresses three issues that

influence the parent selection behaviour in the standard tournament selection.

Concerning the first issue, this chapter discusses the existing tournament selec-

tion but in a less commonly-used form, and concerning the other two issues, this

chapter introduces two new approaches to improving the standard tournament

selection scheme respectively, followed by analyses of their selection behaviours,

to demonstrate how parent selection pressure should be properly controlled.

3.1 Introduction

To determine which parent selection scheme is suitable for a particular evolu-

tionary learning paradigm, three factors need to be considered. The first factor is

whether selection pressure of a selection scheme can be changed easily because

it directly affects the convergence of learning. The second is whether a selection

scheme supports parallel architectures because a parallel architecture is very use-

ful for speeding up learning paradigms that are computationally intensive. The

third factor is whether the time complexity of a selection scheme is low because

the running cost of the selection scheme can be amplified by the number of indi-

viduals involved.

45

46 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

As introduced in the previous chapter, tournament selection is one of the most

commonly-used parent selection schemes in EAs. Standard tournament selection

randomly draws/samples k individuals with replacement from the current popu-

lation of size N into a tournament of size k and selects the one with the best fitness

from the tournament. In general, selection pressure in tournament selection can

be easily changed by using different tournament sizes. Drawing individuals with

replacement into a tournament makes the population remain unchanged, which

in turn allows tournament selection to easily support parallel architectures. Se-

lecting the winner involves simply ranking individuals in a tournament of size

k. Furthermore, in general, since the standard breeding process in GP produces

one offspring by applying mutation to one parent and produces two offspring

by applying crossover to two parents, the total number of tournaments needed

to generate the entire next generation is N . Therefore, the time complexity of

tournament selection is O(kN).

GP is recognised as a computationally-intensive learning method, requiring a

parallel architecture to improve its efficiency. Furthermore, it is not uncommon

to have millions of individuals in a population when solving complex problems

[96], thus sorting a whole population is time consuming. The parallel architecture

support and the linear time complexity have made standard tournament selection

very popular in GP.

Due to the popularity of standard tournament selection in GP, this thesis fo-

cuses on tournament selection to analyse parent selection behaviour and provide

guidance on how to tune the parent selection pressure properly.

According to the literature, there are some possible ways to influence the

parent selection pressure in tournament selection, including changing the sam-

pling process for a tournament [173], changing population size [110, 156, 185],

and changing the tournament size. However, it is still not clear how to make

changes on these elements to control the selection pressure along evolution ef-

fectively. Especially, it is not clear how to set the tournament size for different

sized populations. A common opinion sensed throughout the literature is that

the tournament size configuration should depend on the population size [61].

Although standard tournament selection is very popular in GP, it still has

3.2. CHAPTER GOALS 47

some open questions as well as some drawbacks. For instance, because indi-

viduals are sampled with replacement, it is possible to have the same individual

sampled multiple times in a tournament (referred as the multi-sampled issue in this

thesis). It is also possible to have some individuals not sampled at all when us-

ing small tournament sizes (referred as the not-sampled issue in this thesis). Some

researchers believe that the two issues may lower the probability of some reason-

ably good individuals being sampled or selected, while other researchers have an

intuition that they are not important. These views have not yet been sufficiently

proven. In addition, although in general the selection pressure can be changed to

influence the convergence of the genetic search process by using different tourna-

ment sizes, we realised that during population convergence (i.e., groups of pro-

grams having the same or similar fitness values), the selection pressure between

groups increases, resulting in “better” groups dominating the next population

and possibly causing premature convergence (referred as the high between-group

selection pressure issue in this thesis). Therefore, tournament size itself is not ade-

quate for tuning parent selection pressure. There exists a strong demand to clar-

ify the open issues and solve the drawbacks of standard tournament selection

in order to conduct an effective selection process in GP. To do that, a thorough

investigation of tournament selection is necessary.

3.2 Chapter Goals

In order to tune the parent selection pressure, including the initial static config-

uration and the later dynamic control or adjustment, it is necessary to first of all

understand the process of tournament selection, then to understand the changes

in selection process along evolution. In particular, this chapter addresses the fol-

lowing research questions:

1. What is the relationship between tournament size, population size and se-

lection pressure?

2. Are the above open issues in standard tournament selection critical?

48 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

3. How should the standard tournament selection be modified in order to con-

trol the parent selection pressure properly?

Section 2.4.1 (on page 18) reviewed several selection pressure measurements

in tournament selection, as well as the models of its sampling and selection be-

haviours. From those related studies in the last decade or so, it is clear that similar

models are re-presented but used for different research purposes. This thesis ex-

tends some related models for the research goals.

3.3 Assumptions and Definitions

This section presents the assumptions and definitions necessary to model and

analyse tournament selection.

In general, a population can be partitioned into bags consisting of programs

with equal fitness. These “fitness bags” may have different sizes. As each fitness

bag is associated with a distinct fitness rank, we can characterise a population

by the number of distinct fitness ranks and the size of each corresponding fitness

bag, which we term fitness rank distribution (FRD). If S is the population, then we

use the notation N to be the size of the population, Sj to be the bag of programs

with the fitness rank j and |Sj| to be its size, and |S| to be the number of distinct

fitness bags. We denote tournament size by k and rank the program with the

worst fitness 1st. We follow the standard breeding process, that is, one parent

produces one offspring after mutation and two parents produce two offspring

via crossover. Therefore the total number of tournaments is N at the end of gen-

erating all individuals in the next generation. Although tournaments indeed can

be implemented in a parallel manner, we also assume that they are conducted

sequentially so that the number of tournaments conducted reflects the progress

of generating the next generation.

To analyse selection behaviour, we chose two commonly used measures, i.e.,

the loss of program diversity and the selection frequency (see page 20). We also

developed a new measure called selection probability distribution.

The selection probability distribution of a population is defined as consisting

of the probabilities of each individual in the population being selected at least

3.3. ASSUMPTIONS AND DEFINITIONS 49

once in the selection phase. It is illustrated in a three dimensional graph, where

the x-axis shows every individual in the population ranked by fitness, the y-axis

shows the number of tournaments conducted in the selection phase (from 1 to N),

and the z-axis is the selection probability of a program being selected at least once

in a corresponding number of tournaments. Therefore, the measure provides

a full picture of the selection behaviour over the population during the whole

selection phase. Figure 3.1 shows the selection probability distribution measure

for the standard tournament selection of tournament size 4 on a wholly diverse

population of size 40.

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

Figure 3.1: An example of the selection probability distribution measure.

We use these three measures on four populations with four different fitness

rank distributions, namely uniform, reversed quadratic, random, and quadratic fit-

ness rank distributions. The four fitness rank distributions are designed to simu-

late the four stages of evolution. The uniform fitness rank distribution represents

the initialisation stage, where each fitness bag has a roughly equal number of

programs. A typical case of the uniform fitness rank distribution can be found

in a wholly diverse population. The reversed quadratic fitness rank distribution

represents the early evolving stage, where commonly only few individuals have

better fitness values. The random fitness rank distribution represents the middle

stage of evolution, where better and worse individuals are possibly randomly

distributed. The quadratic fitness rank distribution represents the later stage of

50 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

evolution, where a large number of individuals have converged to better fitness

values.

Since the impact of population size on selection behaviour is unclear, we tested

several different commonly-used population sizes, ranging from small to large.

This chapter illustrates only the results for three population sizes, namely 40, 400,

and 2000, for the uniform FRD, the random FRD, and the reversed quadratic and

quadratic FRDs respectively. Note that although the populations with different

FRDs are of different sizes, the number of distinct fitness ranks is designed to

be the same value (i.e. 40) for easy visualisation and comparison purposes (see

Figure 3.2). We also studied and visualised other different numbers of distinct

fitness ranks, including 100, 500 and 1000, and obtained consistent results.

N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD

N = 400, Random FRD N = 2000, Quadratic FRD

Figure 3.2: Four populations with different fitness rank distributions.

3.4. ANALYSIS OF RELATIONSHIP 51

3.4 Analysis of Relationship

This section analyses the relationship between tournament size, population size,

and selection pressure in standard tournament selection. It starts with models

of the sampling and selection behaviours of standard tournament selection, fol-

lowed by the analyses of the loss of program diversity, the selection frequency,

and the selection probability distribution.

3.4.1 Sampling probability modelling

For any program p, let Iy be the event that p is drawn or sampled at least once in

y ∈ {1, ..., N} tournaments. As sampling is independent of the program rank, the

FRD of a population does not have any impact on the sampling behaviour. Since

an individual can be sampled multiple times in a single tournament provided the

tournament size is greater than one, the probability of Iy is:

P (Iy) = 1 −
(

N − 1

N

)yk

= 1 −
[

(

N − 1

N

)N
]

y

N
k

(3.1)

According to Equation 3.1, we can simulate the probability trends of a single

program being sampled at least once in the standard tournament selection. Fig-

ure 3.3 illustrates the sampling probability trends using six different tournament

sizes (1, 2, 4, 7, 20 and 40) in three populations with different sizes (40, 400, and

2000) in the selection phase, as the number of tournaments increases up to the

corresponding population size.

The figure shows that the larger the tournament size, the higher the sampling

probability. Furthermore, the probability of an arbitrary program being sampled

increases with increasing numbers of tournaments. For a given tournament size,

the sampling probability of a program after a given number of tournaments de-

creases with increasing population size.

However, interestingly, for a given tournament size, the trends of sampling

probabilities of a program in the selection phase (along the increments of the

52 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

ba
bi

lit
y

Population size: 40

Tournament size: 1
Tournament size: 2
Tournament size: 4
Tournament size: 7
Tournament size: 20
Tournament size: 40

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

ba
bi

lit
y

Population size: 400

Tournament size: 1
Tournament size: 2
Tournament size: 4
Tournament size: 7
Tournament size: 20
Tournament size: 40

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

ba
bi

lit
y

Population size: 2000

Tournament size: 1
Tournament size: 2
Tournament size: 4
Tournament size: 7
Tournament size: 20
Tournament size: 40

Figure 3.3: Trends of the probability that a program is sampled at least once in
the standard tournament selection in the parent selection phase. (Note that the
scales on the x-axes differ.)

number of tournaments) are very similar in different-sized populations. This is

because (N−1
N

)N is close to a constant e−1 for large N , so sampling probability

depends on y
N

when k is fixed. In other words, it depends on the fraction of

population generated for the next generation when the tournament size is fixed.

Therefore, with the same tournament size, sampling probability for large popula-

tions at a stage of generating a given fraction of the population can be estimated

reliably from experiments on smaller populations at the stage of generating the

same fraction of population.

3.4.2 Selection probability modelling

In general, within a population, some programs share the same fitness value. A

wholly diverse population in which every individual has distinct fitness value is

an uncommon simple situation. This special simple situation may occur when

constructing the initial generation with constraints explicitly applied, and when

the population size is less than the number of possible unique fitness values. Most

3.4. ANALYSIS OF RELATIONSHIP 53

papers in the literature study only the standard tournament selection in a simple

wholly diverse population. In contrast, this thesis focuses on a more general

situation where some programs have the same fitness value and therefore have

the same rank.

Modelling the selection probability of a program ranked jth in a general situa-

tion is difficult because the probability will be affected by the number of programs

with the same rank, the probability of any of these programs being sampled, and

the probabilities of any programs with worse fitness values being sampled. The

rest of this subsection presents the selection probability model, followed by a

proof.

Lemma 1. If Ej,y is the event that p ∈ Sj is selected at least once in y ∈ {1, ..., N}
tournaments, the probability of Ej,y is:

P (Ej,y) = 1 −



1 − 1

|Sj|





(

∑j
i=1 |Si|
N

)k

−
(

∑j−1
i=1 |Si|
N

)k








y

(3.2)

Proof. The probability that all the programs sampled for a tournament have a

fitness rank between 1st and jth (i.e. are from S1, . . . , Sj) is given by

(

∑j
i=1 |Si|
N

)k

If Tj is the event that the best-ranked program in a tournament is from Sj , the

probability of Tj (i.e, the selected program will have rank j) is:

P (Tj) =

(

∑j
i=1 |Si|
N

)k

−
(

∑j−1
i=1 |Si|
N

)k

(3.3)

Let Wj be the event that the program p ∈ Sj wins or is selected in a tournament.

As each element of Sj has equal probability of being selected in a tournament, the

probability of Wj is:

P (Wj) =

(
Pj

i=1
|Si|

N

)k

−
(

Pj−1

i=1
|Si|

N

)k

|Sj|
(3.4)

54 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

Therefore the probability that p ∈ Sj is selected at least once in y tournaments is

P (Ej,y) = 1 − (1 − P (Wj))
y

Replacing P (Wj), we obtain Equation (3.2).

For the special simple situation that all individuals have distinct fitness val-

ues, |Sj| becomes 1 and Equation (3.4) reduces to

P (Wj) =
jk − (j − 1)k

Nk
(3.5)

which is identical or equivalent to models presented in [15, 127].

3.4.3 Loss of program diversity analysis

We calculate the total loss of program diversity using Equation 2.3 (on page 20) in

which P (Wj) is replaced by Equation 3.4. We also split the total loss of program

diversity into two parts. One part is from the fraction of the population that is not

sampled at all during the selection phase. We calculate it also using Equation 2.3

by replacing 1 − P (Wj) with
(

N−1
N

)k
, which is the probability that an individual

has not been sampled in a tournament of size k. The other part is from the fraction

of population that is sampled but never wins any tournament (i.e., not selected).

We calculate it by taking the difference between the total loss of program diversity

and the contribution from not-sampled individuals.

Figure 3.4 shows the three loss of program diversity measures, namely the

total loss of program diversity and the contributions from not-sampled and not-

selected individuals for the standard tournament selection.

Figure 3.4 shows that when the tournament size is 1, the total loss of program

diversity is entirely due to the not-sampled individuals. This is because once

an individual is sampled, it must be selected as a parent as there are no other

competitors in the tournament. However, the contribution from not-sampled in-

dividuals reduces to zero as the tournament size increases. For instance, the con-

tribution from not-sampled individuals is 13.5%, 5.0%, and 1.8% for tournament

sizes 2, 3, and 4 respectively for all different populations. On the other hand, the

3.4. ANALYSIS OF RELATIONSHIP 55

N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

N = 400, Random FRD N = 2000, Quadratic FRD

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

Figure 3.4: Loss of program diversity in the standard tournament selection
scheme on four populations with different FRDs. Note that the tournament size
is discrete but the plots show curves to aid interpretation.

contribution from not-selected individuals becomes larger and completely domi-

nates the total loss of program diversity when the tournament size is greater than

five.

We found that overall there were no noticeable differences between the three

loss of program diversity measures on the four different populations with dif-

ferent FRDs. The loss of program diversity measure in the standard tournament

selection depends almost entirely on the tournament size, and is almost indepen-

dent of the FRD. Therefore, the loss of program diversity measure cannot capture

the effect of different FRDs. Later, we show that FRD is significant to selection be-

haviour, implying that the loss of program diversity is not an adequate measure.

Extra visualisations on other-sized populations and different numbers of dis-

tinct fitness values with the four FRDs support the finding. While it is difficult to

56 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

prove the finding mathematically, the following brief analysis of the contribution

from not-sampled individuals may help explain the finding.

For the standard tournament selection, according to Equation 3.1, the proba-

bility that a program has never been sampled in y = N tournaments is:

(

(

N − 1

N

)N
)

N
N

k

=

(

N − 1

N

)Nk

≈ e−k (3.6)

for large N . The loss of program diversity contributed by not-sampled individu-

als is approximately:

1

N

N
∑

i=1

e−k = e−k (3.7)

which is just a function of the tournament size k. Therefore, the trends of the loss

of program diversity contributed by not-sampled individuals are almost the same

in the four different-sized populations with different fitness rank distributions.

For the total loss of program diversity, we may obtain a function of a similar form

after simplifying or approximating Equation 3.2 on page 53.

It is clear that for the standard tournament selection scheme, tournament size

ranging from 1 to 5 is in fact a double-edged sword. Increasing the sampling

probability using larger tournament sizes will decrease the selection probability.

On the other hand, increasing the selection probability using smaller tournament

sizes will decrease the sampling probability.

Now we have the following two questions from the analyses:

• How can we modify the standard tournament selection scheme to minimise

total loss of program diversity by reducing the loss of program diversity

contributed by not-sampled individuals without increasing the tournament

size?

• Does the reduced loss of program diversity in such a new selection scheme

significantly improve the GP search performance?

These questions will be addressed in Section 3.6 in this chapter.

3.4. ANALYSIS OF RELATIONSHIP 57

3.4.4 Selection frequency analysis

For each of the four populations with different FRDs, we calculate the expected

selection frequency of a program in the selection phase based on Equation 2.4 (on

page 20) and our probability model of a program being selected in a tournament

(Equation 3.4), that is N × P (Wj).

N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

N = 400, Random FRD N = 2000, Quadratic FRD

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

tournament size: 2 tournament size: 4 tournament size: 7

Figure 3.5: Selection frequency in the standard tournament selection scheme on
four populations with different FRDs.

Instead of plotting the expected selection frequency for every individual, we

plot it only for an individual in each of the 40 unique fitness ranks so that plots

in different-sized populations have the same scale and it is easy to identify what

fitness ranks may be lost. Furthermore, we chose three different tournament sizes

(2, 4, and 7) commonly used in the literature, to illustrate how tournament size

affects the selection behaviour, as shown in Figure 3.5. Note that extra visualisa-

58 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

tions on other-sized populations with the given four FRDs are consistent with the

figure.

The figure shows that overall the standard tournament selection favours better-

ranked individuals for all tournament sizes: the expected selection frequencies

for better individuals are higher than for worse individuals. The selection pres-

sure is biased in favour of better individuals as the tournament size increases.

The figure also shows that skewed FRDs aggravate selection bias quite sig-

nificantly. For the reversed quadratic FRD, there are more individuals of worse-

ranked fitness received the selection preference. The GP search will still wander

around without paying sufficient attention to the small number of outstanding

individuals. Ideally, in this situation, a good selection schema should focus on

the small number of good individuals to speed up evolution.

For the quadratic FRD, the selection frequencies are strongly biased towards

individuals with better ranks. The population diversity will be quickly lost, the

convergence may speed up, and the GP search may be confined in local optima.

Ideally, in this situation, a good selection scheme should slow down the conver-

gence.

Interestingly, by comparing the results of the selection frequency measure of

the uniform FRD and the random FRD, we expected to see some differences but

there were not and the shapes were very similar. This may imply that the stan-

dard tournament selection may tolerate the difference between the uniform and

random FRDs, and therefore sometimes take long time to converge. To interpret

this finding, we offer the following analysis.

Let µ be the average number of individuals in each Sj. In the uniform FRD,

for all j ∈ {1, ..., |S|}, |Sj| = µ. While in the random FRD, it has

∑j
i=1 |Si|
j

≈ µ (3.8)

and the approximation becomes more precise when j is close to |S|. As the selec-

tion frequency for a program p of rank j is N ×P (Wj), we simplify P (Wj) for the

3.4. ANALYSIS OF RELATIONSHIP 59

uniform FRD as:

P (Wj) =

(

jµ
|S|µ

)k

−
(

(j−1)µ
|S|µ

)k

µ
(3.9)

=
1

µ|S|k
(

jk − (j − 1)k
)

and for the random FRD as:

P (Wj) ≈

(

jµ
|S|µ

)k

−
(

(j−1)µ
|S|µ

)k

|Sj |
(3.10)

=
1

|Sj||S|k
(

jk − (j − 1)k
)

From Equation 3.9, in the uniform FRD, the selection frequency for an individ-

ual of rank j will be just 1
|S|k−1

(

jk − (j − 1)k
)

, which is independent of the actual

number of individuals of the same rank.

From Equation 3.10, the selection frequency of an individual of rank j in the

random FRD is approximately:

1

|Sj||S|k
(

jk − (j − 1)k
)

× |S|µ =
µ

|Sj|
× 1

|S|k−1

(

jk − (j − 1)k
)

(3.11)

which differs from that in the uniform FRD by a factor of µ
|Sj | . For a random

FRD, µ
|Sj | could be small. Therefore, only slight fluctuations and differences can

be found in the figure of the random FRD under very close inspection while com-

paring with that of the uniform FRD. Ideally, in this situation, a good selection

scheme should be able to adjust the selection pressure distinguishably according

to the changes in the fitness rank distribution. For instance, it should give a rel-

atively high selection preference to an individual in a fitness bag with a smaller

size in order to increase the chance of propagating this genetic material and a

relatively low selection preference to an individual in another fitness bag with a

larger size in order to reduce the chance of the same.

60 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

3.4.5 Selection probability distribution analysis

For each of the four populations with different FRDs, we calculate the selection

probability distribution in the selection phase based on Equation 3.2.

Figure 3.6 illustrates the selection probability distribution using the three dif-

ferent tournament sizes (2, 4, and 7) on the four populations with different FRDs.

Again, we plot it for each of the 40 unique individual ranks.

Clearly, different tournament sizes have a different impact on the selection

pressure. The larger the tournament size, the higher the selection pressure on

individuals of better ranks.

For the same tournament size, we observe that same population size but dif-

ferent FRDs (i.e. the second and the fourth rows in Figure 3.6) may result in

different selection probability distributions, indicating that the parent selection

pressure is also affected by the FRD.

From additional visualisations on other-sized populations with the four FRDs,

we observed that similar FRD but different population sizes result in the similar

selection probability distributions, indicating that population size does not signif-

icantly influence the selection pressure. Note that in general the genetic material

differs between populations of different sizes, and the impact of genetic material

in different-sized populations on the GP search performance varies significantly.

However, understanding that impact is another research topic and is beyond the

scope of this thesis.

This experiment has clarified the relationship between tournament size, pop-

ulation size, and selection pressure in the standard tournament selection:

• Tournament size and population size both affect the sampling probability

of an individual in a single tournament, but the trend is affected only by

tournament size.

• Tournament size affects the selection pressure while population size has lit-

tle impact unless the population size is very small.

• The FRD of a population also affects the selection pressure, but standard

tournament selection is unable to reduce the impact of a given FRD in order

to properly adjust the selection pressure.

3.4. ANALYSIS OF RELATIONSHIP 61

k = 2 k = 4 k = 7

N
=

4
0

,
U

n
if

o
rm

F
R

D

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

N
=

2
0
0
0

,
R

ev
er

se
d

Q
u

ad
ra

ti
c

F
R

D

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

N
=

4
0
0

,
R

an
d

o
m

F
R

D

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty
0.75

10tournaments 100

1.0

00

N
=

2
0
0
0

,
Q

u
ad

ra
ti

c
F

R
D

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

Figure 3.6: Selection probability distribution in the standard tournament selec-
tion scheme with tournament size 2, 4 and 7 on four populations with different
FRDs.

The next three sections will analyse the three open issues (from page 47) in

detail in order to determine how to solve them and whether they are critical to

the parent selection behaviour.

62 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

3.5 Analysis of the Multi-Sampled Issue

As mentioned earlier, the impact of the multi-sampled issue is unclear. This sec-

tion shows that the multi-sampled issue is not a serious problem by analysing

the no-replacement tournament selection, which solves the multi-sampled issue.

This section then compares the no-replacement tournament selection to standard

tournament selection, showing there is no significant difference between them.

3.5.1 No-replacement tournament selection

According to [57], no-replacement tournament selection was introduced at the

same time as standard tournament selection. It is not clear why the no-replacement

tournament selection is less commonly used in EAs. The no-replacement tourna-

ment selection samples individuals into a tournament without replacement, that

is, it will not return a sampled individual back to the population immediately,

thus no individual can be sampled multiple times into the same tournament. Af-

ter the winner is determined, it then returns all individuals of the tournament to

the population.

3.5.2 Modelling no-replacement tournament selection

The only factor making no-replacement tournament selection different from the

standard one is that any individual in a population will be sampled at most once

in a single tournament. Therefore, if D is the event that an arbitrary program is

drawn or sampled in a tournament of size k, the probability of D is:

P (D) =
k

N
(3.12)

If Iy is the event that p is drawn or sampled at least once in y ∈ {1, ..., N} tourna-

ments, the probability of Iy is:

P (Iy) = 1 − (1 − P (D))y = 1 −
(

1 − k

N

)y

= 1 −
[

(

N − k

N

)N
]

y

N

(3.13)

Lemma 2. For a particular program p ∈ Sj, if Ej,y is the event that p is selected at least

3.5. ANALYSIS OF THE MULTI-SAMPLED ISSUE 63

once in y ∈ {1, ..., N} tournaments, the probability of Ej,y is:

P (Ej,y) = 1 −

















1 − 1

|Sj|





















∑j
i=1 |Si|
k









N

k





−





∑j−1
i=1 |Si|
k









N

k





































y

(3.14)

Proof. The probability that all the programs sampled for a tournament have a

fitness rank between 1 and j (i.e. are from S1, . . . , Sj) is given by





∑j
i=1 |Si|
k









N

k





If Tj is the event that the best-ranked program in a tournament is from Sj , the

probability of Tj is:

P (Tj) =





∑j
i=1 |Si|
k









N

k





−





∑j−1
i=1 |Si|
k









N

k





(3.15)

Let Wj be the event that the program p ∈ Sj wins or is selected in a tournament.

As each element of Sj has equal probability of being selected in a tournament, the

probability of Wj is:

P (Wj) =
P (Tj)

|Sj|
(3.16)

Therefore the probability that p is selected at least once in y tournaments is:

P (Ej,y) = 1 − (1 − P (Wj))
y (3.17)

Substituting for P (Wj) we obtain Equation (3.14) as required.

For the special simple situation that all individuals have distinct fitness val-

ues, |Sj| becomes 1. Substituting this into Equations (3.15) and (3.16), we obtain

64 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

the following equation, which is identical to the model presented in [22].

P (Wj) =





j

k



−





j − 1

k









N

k





(3.18)

3.5.3 Selection behaviour analysis

N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

N = 400, Random FRD N = 2000, Quadratic FRD

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

Figure 3.7: Loss of program diversity in the no-replacement tournament selec-
tion scheme on four populations with different FRDs. Note that tournament size
is discrete but the plots show curves to aid interpretation.

The loss of program diversity, the selection frequency, and the selection prob-

ability distribution for the no-replacement tournament selection are illustrated in

Figures 3.7, 3.8, and 3.9, respectively. Comparison results of these figures and

Figures 3.4, 3.5 and 3.6 show that the selection behaviour in the no-replacement

tournament selection is almost identical to that in standard tournament selection.

3.5. ANALYSIS OF THE MULTI-SAMPLED ISSUE 65

N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

N = 400, Random FRD N = 2000, Quadratic FRD

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

tournament size: 2 tournament size: 4 tournament size: 7

Figure 3.8: Selection frequency in the no-replacement tournament selection
scheme on four populations with different FRDs.

With closer inspection of the total loss of program diversity measure, we ob-

served that when larger tournament sizes are used, a slight difference occurs in

the no-replacement tournament selection on the smaller-sized population (the

top-left chart in Figures 3.4 and 3.7), whereas no noticeable difference exists on

other-sized populations. This may be because in the no-replacement tournament

selection, according to Equation 3.13, the probability that a program has never

been sampled in y = N tournaments is:

(

N − k

N

)N

=

(

N
k
− 1
N
k

)
N
k

k

≈ e−k (3.19)

for large N/k. This equation is approximately the same as that in the standard

tournament selection. However, for the smaller-sized population when larger

66 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

k = 2 k = 4 k = 7

N
=

4
0

,
U

n
if

o
rm

F
R

D

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

N
=

2
0
0
0

,
R

ev
er

se
d

Q
u

ad
ra

ti
c

F
R

D

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

N
=

4
0
0

,
R

an
d

o
m

F
R

D

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

N
=

2
0
0
0

,
Q

u
ad

ra
ti

c
F

R
D

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

Figure 3.9: Selection probability distribution in the no-replacement tournament
selection scheme with tournament size 2, 4 and 7 on four populations with dif-
ferent FRDs.

tournament sizes are used, this approximation is not valid. Therefore, the no-

replacement tournament selection strategy does not help the loss of program di-

versity, especially when the size of a population is large.

Similar observations can be obtained by comparing the other two selection

3.5. ANALYSIS OF THE MULTI-SAMPLED ISSUE 67

pressure measures. The results show that if common tournament sizes and pop-

ulation sizes are used, no significant difference in selection behaviour has been

observed between the two tournament selection schemes. Therefore, the next

subsection examines the sampling behaviour to explore the underlying reasons.

3.5.4 Sampling behaviour analysis

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

ba
bi

lit
y

Population size: 40

Tournament size: 1
Tournament size: 2
Tournament size: 4
Tournament size: 7
Tournament size: 20
Tournament size: 40

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

ba
bi

lit
y

Population size: 400

Tournament size: 1
Tournament size: 2
Tournament size: 4
Tournament size: 7
Tournament size: 20
Tournament size: 40

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tournaments

P
ro

ba
bi

lit
y

Population size: 2000

Tournament size: 1
Tournament size: 2
Tournament size: 4
Tournament size: 7
Tournament size: 20
Tournament size: 40

Figure 3.10: Trends of the probability that a program is sampled at least once in
the no-replacement tournament selection in the selection phase. (Note that the
scales on the x-axes differ.)

Figure 3.10 demonstrates the sampling behaviour in the no-replacement tour-

nament selection via the probability trends of a program being sampled using six

tournament sizes in three populations as the number of tournaments increases

up to the corresponding population size. By comparing Figure 3.3 on page 52

and Figure 3.10, apart from the case of population size 40 and tournament size

40, which produces the 100% sampling probability in the no-replacement tourna-

ment selection, there are no noticeable differences between corresponding trends

in the standard and no-replacement tournament selection schemes. The results

are not surprising since both Equations (3.1) and (3.13) can be approximated by

1 − e−k y

N for large N .

3.5.5 Significance in similarity or difference analysis

To further investigate the similarity or difference between the sampling behaviour

in the two tournament selection schemes, we ask the following question: for a

given population of size N , if we keep sampling individuals with replacement,

then what is the largest number of sampling events at a certain level of confidence

68 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

that there will be no duplicates amongst the sampled individuals? Answering

this question requires an analysis of the relationship between confidence level,

population size and tournament size. Equation 3.20 models the relationship be-

tween the three factors, where Nk is the total number of different sampling results

when sampling k individuals with replacement, N !
(N−k)!

is the number of sampling

events such that no duplicate is in the k sampled individuals, and (1 − α) is the

confidence coefficient1.

N !

Nk (N − k)!
≥ 1 − α. (3.20)

Figure 3.11 illustrates the relationship between population size N , tournament

size k, and the confidence level. For instance, sampling 7 individuals with re-

placement will not sample duplicates with 99% confidence when the population

size is about 2000, and 95% confidence when the population size is about 400,

but only 90% confidence when the population size is about 200. We also cal-

culated that when the population size is 40, the confidence level is only about

57% for k = 7. These results explained why we have observed only differences

between the two tournament selection schemes on the smaller-sized population

using larger tournament sizes.

90%

95%
96%

97%

98%

99%

tournament size
0 2 4 6 8 10

po
pu

la
tio

n
si

ze

0

1,000

2,000

3,000

4,000

Figure 3.11: Confidence level, population size and tournament size. Note that
tournament size is discrete but the plot shows curves to aid interpretation.

The results show that for common tournament sizes 4 or less, we would not

expect to see any duplicates except for very small populations. Even for tour-

nament size 7, we would expect only to see a small number of duplicates for

1α is significance level and 100(1 − α)% is the confidence level.

3.6. ANALYSIS OF THE NOT-SAMPLED ISSUE 69

populations less than 200 with 90% confidence. For most common settings of

tournament sizes and population sizes, the multi-sampled issue seldom occurs in

standard tournament selection. In addition, since duplicated individuals do not

necessarily influence the result of a tournament when the duplicates have worse

fitness values than other sampled individuals, the probability of significant dif-

ference between standard tournament selection and no-replacement tournament

selection will be even smaller. Therefore eliminating the multi-sampled issue in

standard tournament selection is very unlikely to significantly change the selec-

tion performance. As a result the multi-sampled issue generally is not crucial to

the selection behaviour in standard tournament selection.

Given the difficulty of implementing sampling-without-replacement in a par-

allel architecture, most researchers have abandoned sampling-without-replace-

ment, and used the simpler sampling-with-replacement scheme, hoping that the

multi-sampled issue is not important. The results of our analysis justified this

choice.

3.6 Analysis of the Not-Sampled Issue

The not-sampled issue aggravates the loss of program diversity. However, it is

not clear how seriously it affects GP search. This section shows that the not-

sampled issue is insignificant as well.

An obvious way to tackle the not-sampled issue is to increase the tournament

size because larger tournament sizes provide a higher probability of an individ-

ual being sampled. However, increasing tournament size will increase the tour-

nament competition level, and the loss of diversity contributed by not-selected

individuals will increase, possibly resulting in even worse total loss of diversity.

The not-sampled issue will be completely solved only if every individual in a

population is guaranteed to be sampled at least once during the selection phase.

However, the sampling-with-replacement method in standard tournament selec-

tion cannot guarantee this no matter how other aspects of selection are changed.

Therefore, a sampling-without-replacement strategy must be used for this pur-

pose. One strategy is the no-replacement tournament selection method. Un-

70 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

fortunately, it still cannot solve the not-sampled issue unless we configure the

tournament size to be the same as the population size. Obviously, applying the

no-replacement tournament selection with such a configuration is not useful as it

is effectively equivalent to always selecting the best of a population.

To investigate whether the not-sampled issue seriously affects the selection

performance in the standard tournament selection, we will firstly develop an ap-

proach that satisfies the following requirements: (1) minimises the number of

not-sampled individuals; (2) preserves the same tournament competition level as

in the standard tournament selection; and (3) preserves selection pressure across

the population at a level comparable to the standard tournament selection. We

will then compare the approach with the standard tournament selection.

3.6.1 Different replacement strategies

A simple sampling-without-replacement strategy that solves the not-sampled is-

sue is to return only the losers to the population at the end of each tournament.

We termed this strategy loser-replacement. By using this strategy, the size of the

population gradually decreases along the way to form the next generation. (At

the end, the population will be smaller than the tournament size but these tourna-

ments can be run at a reduced size.) The loser-replacement tournament selection

will not have any selection pressure across the population. It will be very similar

to a random sequential selection where every individual in the population can be

randomly selected as a parent to mate but just once. The only difference between

the outcomes of the loser-replacement tournament selection and the random se-

quential selection is the mating order. Although the loser-replacement strategy

can ensure zero loss of diversity, it cannot preserve any selection pressure across

population. Therefore, it is not very useful.

To satisfy all the essential requirements, we propose another sampling-without-

replacement strategy. After choosing a winner, all sampled individuals are kept

in a temporary pool instead of being immediately returned to the population. For

this strategy, as long as the tournament size is greater than one, after a number

of tournaments, the population will be empty and tournaments will stop. At that

point, the population is refilled from the temporary pool to start a new round of

3.6. ANALYSIS OF THE NOT-SAMPLED ISSUE 71

tournaments. More precisely, for a population S and tournaments of size k, the

algorithm is:

1: Initialise an empty temporary pool T

2: while need to generate more offspring do

3: if size(S) < k then

4: Refill: move all individuals from T to S

5: end if

6: Sample k individuals without replacement from the population S

7: Select the winner from the tournament

8: Move the k sampled individuals into T

9: end while

We term a tournament selection using this strategy as round-replacement tour-

nament selection. The next subsections analyse this strategy to investigate the

impact of the not-sampled issue.

3.6.2 Modelling round-replacement tournament selection

Assume N is a multiple of k, then after N/k tournaments, the population becomes

empty. The round-replacement algorithm needs to refill the population to start

another round of tournaments. There will be k rounds in total in order to form

an entire next generation. It is obvious that any program will be sampled exactly

k times during the selection phase thus there is no need to model the sampling

probability. The selection probability is given in Lemma 3.

Lemma 3. For a particular program p ∈ Sj, if Wj is the event that p wins or is selected

in a tournament of size k, the probability of Wj is:

P (Wj) =

∑k
n=1

1
n





|Sj| − 1

n − 1









∑j−1
i=1 |Si|
k − n









N

k





(3.21)

Proof. The characteristic of the round-replacement tournament selection is that it

guarantees p will be sampled once in just one of the N/k tournaments in a round.

72 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

According to this, the effect of a full round of tournaments is to partition S into

N/k disjoint subsets. The program p is a member of precisely one of these N/k

subsets. Therefore the probability of it being selected in one tournament in a given

round is exactly the same as in any other tournament in the same round. Further-

more, the probability of it being selected in one round is exactly the same as in

any other round since all k rounds of tournaments are independent. Therefore we

need only to model the selection probability of p in one tournament of one round.

p could be selected if it is sampled in the tournament and no better-ranked pro-

grams are sampled in the same tournament; its selection probability will depend

on the number of other programs having the same rank that are sampled in the

same tournament.

Let Ej be the event that p ∈ Sj is selected in a round of tournaments. The total

number of ways of constructing a tournament containing the program p, n − 1

other programs in the same Sj , and k − n programs in S1, S2, ..., Sj−1 is2:

k
∑

n=1





|Sj| − 1

n − 1









∑j−1
i=1 |Si|
k − n



 (3.22)

As each of the n programs has an equal probability to be chosen as the winner,

and there are





N − 1

k − 1



 ways of constructing a tournament containing p, the

probability of Ej is:

P (Ej) =

∑k
n=1

1
n





|Sj| − 1

n − 1









∑j−1
i=1 |Si|
k − n









N − 1

k − 1





(3.23)

Since there are N/k tournaments in a round and the program p has an equal prob-

ability to be selected in any one of the N/k tournaments, the probability of Wj is:

P (Wj) =
P (Ej)

N/k
(3.24)

thus we obtain Equation (3.21).

2Assuming (a

b
) = 0 if b > a.

3.6. ANALYSIS OF THE NOT-SAMPLED ISSUE 73

Let Tj,c be the event that p is selected at least once by the end of cth round.

As the selection behaviour in any two rounds are independent and identical, the

probability of Tj,c is:

P (Tj,c) = 1 − (P (Ej))
c (3.25)

This equation together with Equation 3.21 will be used to calculate the selection

probability distribution for the round-replacement tournament selection.

3.6.3 Selection behaviour analysis

The loss of program diversity, the selection frequency, and the selection probabil-

ity distribution for the round-replacement tournament selection are illustrated in

Figures 3.12, 3.13, and 3.14, respectively.

N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD

total not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

total not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

N = 400, Random FRD N = 2000, Quadratic FRD

total not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

total not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

Figure 3.12: Loss of program diversity in the round-replacement tournament
selection scheme on four populations with different FRDs. Note that tournament
size is discrete but the plots show curves to aid interpretation.

74 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

N = 400, Random FRD N = 2000, Quadratic FRD

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

tournament size: 2 tournament size: 4 tournament size: 7

Figure 3.13: Selection frequency in the round-replacement tournament selection
scheme on four populations with different FRDs.

In Figure 3.12, the trends of the total loss of diversity is identical to the contri-

bution from the not-selected individuals because individuals are guaranteed to be

sampled: precisely sampled once in a round and k times in total. Therefore, the

round-replacement tournament selection minimises the loss of program diver-

sity contributed by not-sampled individuals while maintaining the same tourna-

ment competition level as that in the standard tournament selection. Again there

are no noticeable differences between the loss of program diversity measures on

different-sized populations with different FRDs.

The loss of program diversity is significantly smaller with the round-replacement

tournament selection than with the standard one for small tournament sizes (k <

4) in all population, but slightly larger for large tournament sizes in the smaller-

sized population.

3.6. ANALYSIS OF THE NOT-SAMPLED ISSUE 75

k = 2 k = 4 k = 7

N
=

4
0

,
U

n
if

o
rm

F
R

D

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

N
=

2
0
0
0

,
R

ev
er

se
d

Q
u

ad
ra

ti
c

F
R

D

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

N
=

4
0
0

,
R

an
d

o
m

F
R

D

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty
0.75

10tournaments 100

1.0

00

N
=

2
0
0
0

,
Q

u
ad

ra
ti

c
F

R
D

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

Figure 3.14: Selection probability distribution in the round-replacement tourna-
ment selection scheme with tournament size 2, 4 and 7 on four different FRDs.

From Figure 3.13, the trends of the selection frequency across each population

are still very similar to the corresponding ones in the standard tournament se-

lection. There is a slight difference in the smaller-sized population. Surprisingly,

we find that Figure 3.13 seems to be identical to Figure 3.8 of the no-replacement

tournament selection. In fact Equations 3.16 and 3.21 are mathematically equiva-

76 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

lent. The proof can be found in Appendix A.

While the selection frequency is the same in the no-replacement and round-

replacement tournament selections, our selection probability distribution mea-

sure reveals the differences. Figure 3.14 shows that the round-replacement tour-

nament selection has some different behaviour from the standard tournament

selection and also from the no-replacement one, especially when the tournament

size is 2. The differences are related to the top ranked individuals, whose selec-

tion probabilities reach 100% very quickly.

The fact that the selection frequency is identical in the no-replacement and

the round-replacement tournament selections but the selection probability distri-

bution is different shows that selection frequency sometimes is not adequate for

distinguishing selection behaviour.

To further investigate whether the different selection behaviour in the round-

replacement tournament selection can improve the GP search significantly, the

next subsections present an experimental analysis of some common problems.

3.6.4 Experiment design

It is clear that inappropriate fitness functions will provide incorrect information

to selection mechanisms and seriously affect their functionality. In order to re-

duce the side effect of inappropriate fitness functions, this thesis uses only prob-

lems from domains where fitness functions are well known.

3.6.4.1 data sets

The experiments involve three different problem domains: an Even-n-Parity prob-

lem (EvePar), a Symbolic Regression problem (SymReg), and a Binary Classifica-

tion problem (BinCla) with increasing difficulties. We chose these three types of

problems in particular because they have received considerable attention as ex-

amples in the literature of GP.

EvePar considers the case of n = 6. Therefore, there are 26 combinations of

unique 6-bit length strings as fitness cases. SymReg is shown in Equation (3.26)

and visualised in Figure 3.15. We generated 100 fitness cases by choosing 100

3.6. ANALYSIS OF THE NOT-SAMPLED ISSUE 77

values for x from [-5,5] with equal steps. For EvePar and SymReg, all fitness

cases are used for training, that is, the test data set is the same as the training data

set.

f(x) = exp(1 − x) × sin(2πx) + 50sin(x) (3.26)

−5 0 5
−200

−100

0

100

200

300

400

x

f(
x)

Figure 3.15: The symbolic regression problem.

BinCla involves determining whether examples represent a malignant or a be-

nign breast cancer. The dataset is the Wisconsin Diagnostic Breast Cancer dataset

chosen from the UCI Machine Learning repository [131]. BinCla consists of 569

data examples, where 357 are benign and 212 are malignant. It has 10 numeric

measures (see Table 3.1) computed from a digitised image of a fine needle aspi-

rate of a breast mass and are designed to describe characteristics of the cell nuclei

present in the image. The mean, standard error, and “worst” of these measures

are computed, resulting in 30 features [131]. The whole original data set is split

randomly and equally into a training data set, a validation data set, and a test

data set with class labellings being evenly distributed across the three data sets

for each individual GP run.

Table 3.1: Ten features in the dataset of BinCla

a radius f compactness
b texture g concavity
c perimeter h concave points
d area i symmetry
e smoothness j fractal dimension

78 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

3.6.4.2 function sets and terminal sets

The function set used for EvePar consists of the standard Boolean operators { and,

or, not } and if function. The if function takes three arguments and returns its

second argument if the first argument is true, and otherwise returns its third ar-

gument. In order to increase the problem difficulty, we do not include the xor

function in the function set.

The function set used for SymReg includes the standard arithmetic binary

operators {+, -, *, / } and unary operators { abs, sin, exp }. The / function returns

zero if it is given invalid arguments.

The function set used for BinCla includes the standard arithmetic binary op-

erators {+, -, *, / }. We hypothesised that convergence might be quicker if using

only the four arithmetic operators, and more functions might lead to better re-

sults. Therefore, the function set also includes unary operators { abs, sqrt, sin }
and if function. The sqrt function automatically converts a negative argument

to a positive one before operating on it. The if function takes three arguments

and returns its second argument if the first argument is positive, and returns its

third argument otherwise. The if function allows a program to contain a differ-

ent expression in different regions of the feature space, and allows discontinuous

programs, rather than insisting on smooth functions.

The terminal set for EvePar consists of n boolean variables. The terminal set

for SymReg and BinCla includes a single variable x and 30 terminals, respectively.

Real valued constants in the range [-5.0, 5.0] are also included in the terminal sets

for SymReg and BinCla. The probability mass assigned to the whole range of

constants when constructing programs is set to 5%.

3.6.4.3 fitness function

For even-n-parity problems, the standard fitness function counts the number of

wrong outputs (misses) for the 2n combinations of n-bit strings and treats zero

misses as the best raw fitness [93]. There is an issue with this fitness function:

the worst program according to this fitness function is the one that has 2n misses.

However, this program actually captures most of the structure of the problem

3.6. ANALYSIS OF THE NOT-SAMPLED ISSUE 79

and can be easily converted to a program of zero misses by adding a not function

node to the root of the program. Therefore, programs with a very large number

of misses are, in a sense, just as good as programs with very few misses.

In this thesis, we used a new fitness function for EvePar:

fitness =







m , if m < 2n−1

2n − m , otherwise
(3.27)

where m is the number of misses.

The fitness function in SymReg is the root-mean-square (RMS) error of the

outputs of a program relative to the expected outputs. Because neither class is

weighted over the other, the fitness function for BinCla is the classification error

rate on the training data set (the fraction of fitness cases that are incorrectly clas-

sified by a program as a proportion of the total number of fitness cases in the

training data set). A program classifies the fitness case as benign if the output

of the program is positive, and malignant otherwise. Note that class imbalance

design in fitness function for BinCla is beyond the scope of this thesis. All three

problems have an ideal fitness of zero.

3.6.4.4 genetic parameters and configuration

The genetic parameters are the same for all three problems. The ramped half-

and-half method is used to create new programs and the maximum depth of

creation is four (counted from zero). To prevent code bloat, the maximum size of

a program is set to 50 nodes during evolution based on some initial experimental

results. The crossover rate, the mutation rate, and the copy rate are 85%, 10% and

5% respectively. The best individual in the current generation is explicitly copied

into the next generation, ensuring that the population does not lose its previous

best solution3. A run is terminated when the number of generations reaches the

pre-defined maximum of 101 (including the initial generation), or the problem

has been solved (there is a program with a fitness of zero on the training data

set), or the error rate on the validation set starts increasing (for BinCla). Three

tournament sizes 2, 4, and 7 are used. Consequently, the population size is set to

3This is referred as elitism [149].

80 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

504 in order to have zero remainder at the end of a round of tournaments in the

round-replacement tournament selection.

We ran experiments comparing the two GP systems using the standard and

the round-replacement tournament selections respectively for each of the three

problems. In each experiment, we repeated the whole evolutionary process 500

times independently. In each pair of the 500 runs, an initial population is gener-

ated randomly and is provided to both GP systems in order to reduce the perfor-

mance variance caused by different initial populations.

3.6.5 Experimental results and analysis

Table 3.2 compares the performances of GP systems using the standard and the

round-replacement tournament selection schemes. The measure for EvePar is

the failure rate, measuring the fraction of runs that were not able to return the

ideal solution. The best value is zero percent, meaning every run is successful.

The measures for SymReg and BinCla are the averages of the RMS error and the

classification error rate on test data over 500 runs respectively, thus the smaller

the value, the better the performance. Note that the standard deviation is shown

after the ± sign.

Table 3.2: Performance comparison between the round-replacement and the
standard tournament selection schemes.

Tournament Selection EvePar SymReg BinCla
Scheme Size Failure (%) RMS Error Test Error Rate (%)

2 99.6 47.4 ± 5.3 8.4 ± 2.7
round-replacement 4 79.4 38.3 ± 8.0 8.6 ± 2.6

7 77.6 40.6 ± 11.4 8.8 ± 2.7
2 100 48.2 ± 5.2 9.2 ± 2.9

standard 4 80.6 37.6 ± 8.3 8.7 ± 2.7
7 82.4 40.9 ± 11.3 8.7 ± 2.7

The results demonstrate that the round-replacement tournament selection has

some advantages. In order to provide statistically sound comparison results, we

calculated the confidence intervals at 95% and 99% levels (two-sided) for the dif-

ferences in failure rates, in RMS errors, and in error rates for EvePar, SymReg and

3.6. ANALYSIS OF THE NOT-SAMPLED ISSUE 81

BinCla respectively. For EvePar, we used the formula

P̂1 − P̂2 ± Z

√

P̂1(1 − P̂1)/500 + P̂2(1 − P̂2)/500 (3.28)

where P̂1 is the failure rate using the round-replacement tournament selection, P̂2

is the failure rate using the standard tournament selection, and Z is 1.96 for 95%

confidence and 2.58 for 99% confidence [20]. For SymReg and BinCla, we firstly

calculated the difference of the measures between a pair of runs using the same

initial population for each of the 500 pairs of runs, then used the formula

x̄ ± Z
s√
500

(3.29)

to calculate the confidence interval, where x̄ is the average difference over 500

values and s is the standard deviation [20]. If zero is not included in the confi-

dence interval, then the difference is statistically significant [20].

Table 3.3 shows the confidence intervals only at the 95% level, since the sta-

tistical analysis results from the two levels are consistent. Significant differences

(either better or worse) are shown in bold. According to the performance mea-

sures, the round-replacement tournament selection is better than the standard

one when the confident interval is less than zero.

Table 3.3: Confidence intervals for differences in performance at 95% level.

Tournament size EvePar SymReg BinCla

2 (-0.95, 0.15) (-1.48, -0.24) (-1.05, -0.43)

4 (-6.16, 3.76) (-0.22, 1.57) (-0.32, 0.24)
7 (-9.75, 0.15) (-1.47, 0.85) (-0.25, 0.32)

From the table, for tournament size 2 and for SymReg and BinCla problems,

the improvement of the round-replacement tournament selection is statistically

significant. This observation is similar to the conclusions of Sokolov and Whitley

[173]. However, practically the differences are small.

For tournament sizes 4 and 7, there are no statistically significant differences

between the round-replacement and standard tournament selections. This is be-

cause only 1.8% and 0.09% of the population are not-sampled respectively in the

82 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

standard tournament selection (from Equation 3.1). There is little impact on the

overall performance from the slight differences on the selection probability of the

top-ranked programs.

We also compared the best performance of the round-replacement tournament

selection with the best performance of the standard one for SymReg and BinCla;

the differences were not statistically significant. A possible explanation is that

although every program can be sampled in the round-replacement tournament

selection, not all of these extra sampled programs can win tournaments. In ad-

dition, the number of extra programs which won the tournaments do not neces-

sarily contribute to evolution. Therefore, the overall contribution to the search

performance from these extra sampled programs would be limited.

Sokolov and Whitley’s findings [173] suggested that performance could be im-

proved by addressing the not-sampled issue in GA. Our experiments confirmed

this in GP for some data sets and showed that the improvement was statisti-

cally significant, though not large. However, Sokolov and Whitley considered

only tournament size 2. Our experiments included larger tournament sizes and

showed that there was no statistically significant improvement for the larger tour-

nament sizes. Furthermore, the performance of larger tournament sizes with the

standard tournament selection was as good as or better than the performance of

tournament size 2 with the round-replacement tournament selection. Therefore,

there is no advantage in explicitly addressing the not-sampled issue.

The analysis results show that although the not-sampled issue can be solved,

overall the different selection behaviour provided by the round-replacement tour-

nament selection alone appears to be unable to significantly improve a GP system

for the given tasks. The not-sampled issue does not seriously affect the selection

performance in the standard tournament selection.

3.7 Analysis of the High Between-Group Selection

Pressure Issue

Different sampling-without-replacement strategies appear to have little influence

on the selection behaviour in standard tournament selection. They also have no

3.7. ANALYSIS OF THE HIGH BETWEEN-GROUP SELECTION 83

effect on the high between-group selection pressure issue, which causes the par-

ent selection process to be dominated by a group of very similar programs and ge-

netic diversity to be reduced prematurely. None of the standard, no-replacement,

or round-replacement tournament selection methods can adjust selection bias in

response to the FRD of a population. Since in general they all use a fixed tour-

nament size, a skewed FRD actually aggravates the selection bias (as discussed

on page 58). What is required in these circumstances is a reduction in selection

pressure to allow low ranked programs to be selected to maintain the genetic

diversity.

This is just part of a more general issue: the evolutionary learning process it-

self is very dynamic. At some stages, it requires a fast convergence rate (i.e., high

parent selection pressure) to find a solution quickly; at other stages, it requires

a slow convergence rate (i.e., low parent selection pressure) to avoid being con-

fined to a local maximum. These requirements could be achieved by changing

tournament size dynamically in standard tournament selection. However, stan-

dard tournament selection is not aware of the dynamic requests. In order to pick

the correct tournament size, it should collaborate with an extra component that

can reveal the underlying dynamics and determine the requests. However, such

a component has not been seen so far.

To address these issues, we need to modify the standard tournament selection

to become aware of the dynamics along evolution and to be able to adjust parent

selection pressure accordingly. Since tournament selection uses fitness rankings

to select parents, and population FRDs reflects evolutionary dynamics, we pro-

pose an automatic selection pressure control approach using the knowledge of

the population FRD.

3.7.1 Clustering tournament selection

The proposed approach is called clustering tournament selection. Figure 3.16 gives

an overview of the approach and shows the relationships between the major com-

ponents: population clustering and clustering tournament selection. Other stan-

dard components of GP are not detailed in the figure.

In the approach, the first component is population clustering. Populations are

84 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

 Clustering
tournament selection

P
o
p
u
l
a
t
i
o
n

Population
 clustering

offspring

1)

2)

Figure 3.16: Overview and relationship between the major components.

clustered according to fitness values, and each cluster is then assigned a fitness

value. The second component is a new tournament selection method called clus-

tering tournament selection. Instead of sampling individuals as tournament can-

didates, the clusters are treated as the tournament candidates in the clustering

tournament selection method: the best fitness cluster wins the tournament, and

a program in the cluster is randomly selected to participate in the recombination

process.

For a population S, which has been clustered into a set of |S| clusters accord-

ing to fitness values, the clustering tournament selection algorithm is as follows:

1: for y = 1 to N do

2: Sample k clusters from the |S| clusters with replacement

3: Select the winning cluster from the tournament based on the fitness values

4: Return an individual program randomly chosen from the winning cluster

5: end for

Because the number of clusters in each generation reflects the dynamic evolu-

tionary process, especially the degree of convergence of the population, we expect

the selection pressure can be automatically adjusted along evolution accordingly.

The next subsections will model and analyse selection behaviour of clustering

tournament selection, followed by experiments on EvePar, SymReg and BinCla

to demonstrate the effectiveness of clustering tournament selection.

3.7. ANALYSIS OF THE HIGH BETWEEN-GROUP SELECTION 85

3.7.2 Modelling clustering tournament selection

Lemma 4. Let Sj be the cluster of individuals of rank j in the population. The probability

of the event D that a program p ∈ Sj is sampled at least once in a tournament of size k is

P (D) = 1 − (1 − 1

|S||Sj|
)k (3.30)

Proof. In contrast to the standard tournament selection schemes, the sampling

behaviour in clustering tournament selection is influenced by the size of each

cluster. It is clear that each cluster has the same probability 1/|S| to be sampled.

Individuals in a cluster have equal probability of being sampled, 1/|Sj|. There-

fore, the probability that p is sampled is 1
|S||Sj| . The probability that p is never

sampled into a tournament of size k is (1 − 1
|S||Sj|)

k. Thus, we obtain Equation

3.30.

Lemma 5. Let Sj be the cluster of individuals of rank j in the population, the probability

of the event Ej that a program p ∈ Sj is selected in a single tournament is

P (Ej) =
(j)k − (j − 1)k

|S|k × |Sj|
(3.31)

Proof. According to the algorithm, the number of tournament candidates is effec-

tively reduced from the whole population size N to the number of clusters |S|.
The probability that a cluster ranked j wins a tournament is simply:

(j)k − (j − 1)k

|S|k (3.32)

Since all individuals in the winning cluster have the same probability to be

chosen as a parent, we divide Equation (3.32) by the size of the jth cluster |Sj |
and obtain Equation (3.31).

3.7.3 The loss of program diversity analysis

Figure 3.17 illustrates the loss of program diversity of the clustering tournament

selection on four populations with different FRDs.

86 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

N = 400, Random FRD N = 2000, Quadratic FRD

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

total not-sampled not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s
lo

st
 (

%
)

0

20

40

60

80

100

Figure 3.17: Loss of program diversity in the clustering tournament selection
scheme on four different FRDs. Note that tournament size is discrete but the
plots show curves to aid interpretation.

In the clustering tournament selection, for the uniform FRD, the three loss of

program diversity measures are identical to those of the standard tournament

selection (see Figure 3.4). This is because each cluster contains the same number

of individuals (in this case the number is one) so that the clustering tournament

selection is effectively acting the same as the standard tournament selection.

For the reversed quadratic FRD, the total loss of program diversity is consid-

erably higher compared with that of the standard tournament selection and com-

pared with those for other FRDs. We expect that the lost programs are mainly the

worse-ranked individuals. By ignoring most of the worse-ranked individuals at

this stage, the GP search will be able to concentrate on the promising region so

that the evolution will speed up to save unnecessary cost. The next subsection

will verify the expectation when analysing the selection frequency.

3.7. ANALYSIS OF THE HIGH BETWEEN-GROUP SELECTION 87

For the random FRD, there are only slight differences when comparing with

that in the standard tournament selection.

For the quadratic FRD, the total loss of program diversity in the clustering

tournament selection is greater than that in the standard one when the tourna-

ment size is one, but is considerably lower for other tournament sizes. The re-

duction quickly reaches by about 20% (60% − 40% = 20%) when the tournament

size increases to five. Also we observe that when the tournament size is 3, the

total loss of program diversity becomes the lowest. The figure indicates that the

program diversity is maintained in a better manner than that in the standard tour-

nament selection. It is also what we expected for this type of FRD, as it may slow

down the population convergence to avoid the confinement to local optima.

3.7.4 The selection frequency and the selection probability dis-

tribution analyses

Figures 3.18 and 3.19 illustrate the selection frequency and the selection probabil-

ity distribution of clustering tournament selection on the four populations with

different FRDs. Three tournament sizes are used to demonstrate the influences

from different tournament sizes on the impacts of the clustering tournament se-

lection. These figures show that the two measures provide consistent results.

Therefore, this subsection discusses in detail only the results of the selection fre-

quency as it is easier to understand results presented in 2D than in 3D.

Recall that the tournament size 3 provides the lowest total loss of program

diversity for the quadratic FRD, therefore in addition to the usually used three

tournament sizes, the tournament size 3 is added in this analysis and its impact

is presented in a dash line in Figure 3.18.

The selection frequency trends on the uniform FRD in the clustering tourna-

ment selection are identical to those of the standard tournament selection for the

reason given in Section 3.7.3.

The other three FRDs reveal significant differences when compared with the

standard tournament selection (see Figure 3.5 on page 57).

For the reversed quadratic FRD (representing the early stage of evolution),

88 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

100

200

300

N = 400, Random FRD N = 2000, Quadratic FRD

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

rank
10 20 30 40

ex
pe

ct
ed

 s
el

ec
tio

n
fr

eq
ue

nc
y

0

1

2

3

4

5

6

7

8

tournament size: 2 tournament size: 4 tournament size: 7

Figure 3.18: Selection frequency of the clustering tournament selection scheme
on four populations with different FRDs. Note that the extra dash line represents
tournament size 3.

most of the low fitness ranks have very low selection frequencies so that they are

effectively discarded. This observation supports our expectation in the analysis

of the loss of program diversity in the previous section and meets the desiderata

of a good selection scheme.

For the random FRD (representing the middle stage of evolution), the selec-

tion frequency trends are very ragged instead of the smooth trends we usually

saw in the standard, the no-replacement, and the round-replacement tournament

selections. There is some interesting selection behaviour here. For instance, for

the tournament size 4, the expected selection frequency for an individual pro-

gram of rank 33 is above 7, while the expected selection frequencies for individ-

uals of better ranks are much lower; even one of the best-ranked individuals in

3.7. ANALYSIS OF THE HIGH BETWEEN-GROUP SELECTION 89

k = 2 k = 4 k = 7

N
=

4
0

,
U

n
if

o
rm

F
R

D

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

N
=

2
0
0
0

,
R

ev
er

se
d

Q
u

ad
ra

ti
c

F
R

D

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

N
=

4
0
0

,
R

an
d

o
m

F
R

D

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty
0.75

10tournaments 100

1.0

00

N
=

2
0
0
0

,
Q

u
ad

ra
ti

c
F

R
D

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

Figure 3.19: Selection probability distributions of the clustering tournament se-
lection scheme with tournament size 2, 4 and 7 on four different FRDs.

the population is below 4. From Figure 3.2 on page 50, we can see that |S33| is

only 3 while |Sj|j>33 are much higher. The results show that apart from being

governed by the tournament size, the clustering tournament selection is aware of

the random changes in the FRD and can adjust the selection pressure automati-

cally. It gives a relatively high selection preference to an individual in a fitness

90 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

bag with a smaller size to increase the chance of propagating its genetic material.

It then gives relatively low selection preferences to other better individuals in fit-

ness bags with larger sizes to restrict their propagation. This kind of selection

behaviour is unique to the clustering tournament selection and appears to again

meet the desiderata expectation of a good selection scheme (see the discussion on

page 59).

For the quadratic FRD (representing a converged stage of evolution), the clus-

tering tournament selection significantly reduces the selection frequency of better-

ranked individuals, while increasing the frequency of middle-ranked individu-

als. Therefore, the clustering tournament selection can reduce the chance that

groups of better-ranked individuals dominate the next generation and it is better

able to maintain the population diversity than the standard one.

Note that for the quadratic FRD, tournament size 2 resulted in a strong bias

to worse-ranked individuals, especially the third-ranked ones4; this may be un-

desirable. On the other hand, tournament size 3 provided almost even selection

frequencies on all fitness ranks. This observation may explain why tournament

size 3 provided the lowest total loss of program diversity.

In summary, the analysis results showed that in addition to the usual selec-

tion preference for better individuals governed by tournament size, the clustering

tournament selection tends to give additional selection preference to individuals

in small sized clusters. Furthermore, when most of the population are of worse

fitness ranks and evolution encounters a danger of missing good individuals, it

tends to increase selection bias to better individuals, hoping to quickly drive the

population to promising regions. When the population tends to converge to local

optima and evolution encounters a danger of losing genetic material, it tends to

decrease selection bias to better individuals, hoping to keep the population di-

verse. Therefore, the clustering tournament selection is an automatically biased

parent selection scheme that is needed by the dynamic evolutionary process.

4This is because the ranks 1 to 3 have the same smallest number of individuals (Figure 3.2).

3.7. ANALYSIS OF THE HIGH BETWEEN-GROUP SELECTION 91

3.7.5 Impact on population diversity analysis

The simulations above suggest that the clustering tournament selection can be

aware of the dynamics in evolution, and adjust the parent selection pressure ac-

cordingly. However, parent selection pressure is only one of the many factors

influencing GP search, so the impact of the dynamic parent selection pressure

adjustment needs to be experimentally tested. Therefore, we conducted sets of

experiments based on the same set of problems and the same sets of configura-

tions used in analysing the round-replacement tournament selection, but with

an extra set of experiments using tournament size 3. This subsection analyses

the impact of the clustering tournament selection on the population diversity in

terms of the number of distinct fitness values; the next subsection analyses the

impact on the overall GP search performance.

20 40 60 80 100
0

10

20

30

40

50
k=2

Generation

N
um

be
r

of
 D

is
tin

ct
F

itn
es

s
V

al
ue

s

20 40 60 80 100

k=3

Generation
20 40 60 80 100

k=4

Generation
20 40 60 80 100

k=7

Generation

(a) clustering tournament selection for EvePar

20 40 60 80 100
0

10

20

30

40

50
k=2

Generation

N
um

be
r

of
 D

is
tin

ct
F

itn
es

s
V

al
ue

s

20 40 60 80 100

k=3

Generation
20 40 60 80 100

k=4

Generation
20 40 60 80 100

k=7

Generation

(b) standard tournament selection for EvePar

Figure 3.20: Comparison of population diversity maintenance between the clus-
tering tournament selection and the standard tournament selection for EvePar
for four tournament sizes.

Figures 3.20, 3.21 and 3.22 compare the clustering tournament selection and

the standard tournament selection in terms of population diversity measured by

92 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

20 40 60 80 100

200

300

400

500
k=2

Generation

N
um

be
r

of
 D

is
tin

ct
F

itn
es

s
V

al
ue

s

20 40 60 80 100

k=3

Generation
20 40 60 80 100

k=4

Generation
20 40 60 80 100

k=7

Generation

(a) clustering tournament selection for SymReg

20 40 60 80 100

200

300

400

500
k=2

Generation

N
um

be
r

of
 D

is
tin

ct
F

itn
es

s
V

al
ue

s

20 40 60 80 100

k=3

Generation
20 40 60 80 100

k=4

Generation
20 40 60 80 100

k=7

Generation

(b) standard tournament selection for SymReg

Figure 3.21: Comparison of population diversity maintenance between the clus-
tering tournament selection and the standard tournament selection for SymReg
for four tournament sizes.

the number of distinct fitness values generation by generation using each of the

four tournament sizes for EvePar, SymReg, and BinCla, respectively. The dark

line in each chart represents the mean value over the 500 runs.

It is clear that the clustering tournament selection can quickly increase the

population diversity to a certain level and maintain it stably. The four different

tournament sizes have only small impact on the population diversity: for EvePar

the four trends of the average numbers of distinct fitness values are almost identi-

cal, and for SymReg and BinCla there are only slight drops when the tournament

size increases.

In contrast, the standard tournament selection performs differently, especially

for SymReg and BinCla (chart (b) in Figures 3.21 and 3.22). The population diver-

sity fluctuates along evolution and has larger variation in the 500 runs. It is also

sensitive to tournament size. This comparison demonstrates the advantage of the

clustering tournament selection in maintaining population diversity in terms of

the number of distinct fitness values.

3.7. ANALYSIS OF THE HIGH BETWEEN-GROUP SELECTION 93

20 40 60 80 100
0

50

100

150
k=2

Generation

N
um

be
r

of
 D

is
tin

ct
F

itn
es

s
V

al
ue

s

20 40 60 80 100

k=3

Generation
20 40 60 80 100

k=4

Generation
20 40 60 80 100

k=7

Generation

(a) clustering tournament selection for BinCla

20 40 60 80 100
0

50

100

150
k=2

Generation

N
um

be
r

of
 D

is
tin

ct
F

itn
es

s
V

al
ue

s

20 40 60 80 100

k=3

Generation
20 40 60 80 100

k=4

Generation
20 40 60 80 100

k=7

Generation

(b) standard tournament selection for BinCla

Figure 3.22: Comparison of population diversity maintenance between the clus-
tering tournament selection and the standard tournament selection for BinCla
for four tournament sizes.

3.7.6 Overall GP search performance analysis

Table 3.4 compares the performances of GP systems using the standard and the

clustering tournament selection schemes. Table 3.5 only shows the confidence

intervals of the differences between the performances at 99% level since the sta-

tistical analysis at the 95% and 99% levels gives a similar pattern.

Table 3.4: Performance comparison between the clustering and the standard
tournament selection schemes. (Some results for the standard tournament se-
lection are repeated from Table 3.2 on page 80.)

Tournament Selection EvePar SymReg BinCla
Scheme Size Failure (%) RMS Error Test Error Rate (%)

2 91.4 47.6 ± 5.9 7.4 ± 2.3
3 87.2 39.7 ± 7.6 7.5 ± 2.3

clustering 4 88.0 36.8 ± 7.9 7.7 ± 2.5
7 88.8 33.5 ± 8.3 7.9 ± 2.5
2 100 48.2 ± 5.2 9.2 ± 2.9
3 87.0 39.9 ± 6.6 8.7 ± 2.7

standard 4 80.6 37.6 ± 8.3 8.7 ± 2.7
7 82.4 40.9 ± 11.3 8.7 ± 2.7

94 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

Table 3.5: Confidence intervals at 99% level for the differences between the clus-
tering and the standard tournament selection schemes.

Tournament size EvePar SymReg BinCla

2 (-11.83,-5.37) (-1.54, 0.25) (-2.11, -1.30)

3 (-6.54, 4.14) (-1.31, 0.91) (-1.57, -0.82)
4 (1.49,13.31) (-2.00, 0.47) (-1.40, -0.65)

7 (0.69,12.11) (-8.87, -5.88) (-1.25, -0.48)

For BinCla (the hardest problem), the clustering tournament selection is con-

sistently significantly better than the standard one for all four tournament sizes.

For SymReg, the clustering tournament selection is slightly better than the

standard one using tournament sizes 2, 3, and 4, but significantly better only for

tournament size 7. A large tournament size represents a strong selection bias

towards better individuals and therefore there is a great potential for losing di-

versity. The clustering tournament selection appears to be able to counteract this

potential effectively.

For EvePar (the simplest problem), when the tournament size is 2, the clus-

tering tournament selection is significantly better than the standard tournament

selection. However, when the tournament size is 4 or 7, it is significantly worse

than the standard tournament selection.

The performance reported here shows that when the parent selection pressure

is adjusted according to the dynamics in evolution and the population diversity

is well maintained by the clustering tournament selection, the overall GP search

performance is improved in most problems, but not every case. Possible expla-

nations for the exceptions include:

• Easy problems can be solved easily using high selection pressure so that it

is not necessary to adjust the parent selection pressure.

• Although good parents may be selected, the probability of finding better

offspring in a large offspring space is small so that the advantage of the

clustering tournament selection cannot be properly illustrated.

Therefore, in order to further improve the GP search, other directions, includ-

ing offspring selection, should be considered.

3.8. CHAPTER SUMMARY 95

Although in theory tournament size 3 was shown to have the lowest total loss

of program diversity for the quadratic FRD in the clustering tournament selec-

tion, the experimental results did not show that tournament size 3 is significantly

better than others. This might be because the quadratic FRD will not appear if

the clustering tournament selection is applied from the beginning of a GP search.

3.8 Chapter Summary

This chapter used the loss of program diversity, the selection frequency, and the

selection probability distribution on four populations with different FRDs to sim-

ulate parent selection behaviours in the standard tournament selection, the no-

replacement tournament selection, our round-replacement tournament selection

and our clustering tournament selection. It also provided experimental analyses

of the round-replacement and the clustering tournament selections in three dif-

ferent problem domains. The simulations and experimental analyses provided

additional insight into the parent selection pressure in tournament selection and

the outcomes are as follows.

• The selection pressure is mainly controlled by tournament size and is ag-

gravated by a skewed FRD in standard tournament selection. Population

size seems to have little impact on parent selection pressure under the as-

sumption that the standard breeding process is used. Therefore, when de-

termining tournament size for an intended parent selection pressure, the

actual population size need not to be considered.

• This chapter showed that the multi-sampled issue seldom occurs in stan-

dard tournament selection when common and realistic tournament sizes

and population sizes are used. Therefore, although the sampling-without-

replacement strategy in no-replacement tournament selection can solve the

multi-sampled issue, there is no significantly different selection behaviour

between no-replacement and standard tournament selection schemes. The

results justify the common use of the simple sampling-with-replacement

scheme.

96 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

• The not-sampled issue occurs when smaller tournament sizes are used in

standard tournament selection. Our round-replacement tournament selec-

tion using an alternative sampling-without-replacement strategy can solve

the issue without altering other aspects in the standard tournament selec-

tion. The different selection behaviour in the round-replacement tourna-

ment selection compared with the standard one leads to better GP search

results only when tournament size 2 is used for some problems (ones that

need low parent selection pressure in order to find acceptable solutions).

Overall, solving the not-sampled issue does not appear to significantly im-

prove a GP system: the not-sampled issue in standard tournament selection

is not critical.

• Different sampling replacement strategies have little impact on the par-

ent selection pressure. Eliminating the multi-sampled issue and the not-

sampled issues did not significantly change the selection behaviour in stan-

dard tournament selection and did not tune the selection pressure in dy-

namic evolution.

• The high between-group selection pressure issue has a strong interaction

relationship with the FRD of a population. FRDs change generation by

generation and can be seen as the analogue of the dynamics in evolution.

Using the knowledge of FRD is a promising way to modify the standard

tournament selection in order to tune the parent selection pressure dynami-

cally and automatically. The clustering tournament selection is a such strat-

egy and is worth further investigation. It can significantly improve GP

search performance for some problems, although may not be required for

easy problems (i.e. EvePar). There are likely to be other, more effective

population clustering methods other than merely using the fitness values.

Nonetheless, in light of the results presented in Section 3.7, we hope that

researchers will be encouraged to experiment with the simple population

clustering method in the initial stages of the development of their alterna-

tive parent selection algorithms.

3.8. CHAPTER SUMMARY 97

As tournament selection requires knowledge of only the fitness rank of an in-

dividual and is independent of the representation of the individual [146], we ex-

pect that the results of our tournament selection analyses can be applied directly

to other forms of EAs.

98 CHAPTER 3. TUNING PARENT SELECTION PRESSURE

Chapter 4

Improving Parent Selection

Efficiency

The previous chapter analysed parent selection behaviour in tournament selec-

tion and provided guidance on how to optimise parent selection pressure along

the evolutionary process. This chapter investigates ways to improve parent se-

lection efficiency. It firstly presents two approaches to improving the efficiency

of the standard tournament selection and the clustering tournament selection.

It then introduces a framework for gathering information on good predecessor

programs and shows, via sets of experiments, that only a small fraction of all

evaluated programs contributes to the best program found. It argues that par-

ent selection efficiency may be improved if the good predecessor programs or

corresponding correlates can be identified in advance.

4.1 Introduction

As stated in Section 2.5, fitness evaluation cost is an important selection-related

open issue. The cost needs to be effectively reduced in order to improve the effi-

ciency of GP search. For a generational tree-based GP, the total number of fitness

evaluations in evolution is generally a function of population size, individual

size, number of training fitness cases, and number of generations required to find

acceptable solutions. Therefore, there are several ways to reduce the fitness eval-

uation cost.

99

100 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

One is to improve the search efficiency of EAs so that a smaller number of gen-

erations are required, leading to overall savings on fitness evaluation. Other ways

are to shrink or dynamically change the population size [12, 46, 110, 156, 185] and

to control code bloat [147] to reduce the fitness evaluation cost. In some circum-

stances, approximate fitness values are acceptable. Therefore, fitness estimation

[86, 91], which evaluates only individual representatives, or fitness approxima-

tion [4, 54, 56, 178], which uses only a portion of the given training fitness cases,

are used to reduce the fitness evaluation cost.

Other directions, for instance, fitness caching [62, 199], fitness inheritance

[161], fitness evaluation avoidance [84], and backward-chaining evolutionary al-

gorithms [146], focusing on avoiding unnecessary evaluations, are also very in-

teresting. Some detailed reviews can be found in Section 2.5 on page 28.

4.2 Chapter Goals

Since tournament selection, which is used in this thesis, is a fitness-driven parent

selection method, this chapter investigates ways to improve the efficiency of tour-

nament selection for parents. In particular, this chapter addresses the following

research questions:

• How can the characteristics of the standard tournament selection be ex-

ploited to reduce the fitness evaluation cost in the parent selection phase

without reducing the effectiveness of the GP search?

• How can the fitness evaluation cost be reduced while taking advantage of

the clustering tournament selection?

• Is there any other possible way to minimise the fitness evaluation cost in the

tournament selection for parents?

4.3. UTILISING THE CHARACTERISTICS OF STANDARD TOURNA 101

4.3 Utilising the Characteristics of Standard Tourna-

ment Selection

The loss of program diversity analyses for standard tournament selection in Sec-

tion 3.4.3 and for round-replacement tournament selection in Section 3.6 showed

that the existence of not-sampled individuals is one of the characteristics of the

standard tournament selection for smaller tournament sizes. According to that

analysis, the not-sampled issue is harmless, and, therefore not-sampled individ-

uals can be utilised to reduce the fitness evaluation cost when smaller tournament

sizes are used by avoiding the evaluation of those not-sampled individual pro-

grams.

4.3.1 Ejit

We propose a simple algorithm called Evaluated-just-in-time (Ejit) and expect it to

provide constant savings as long as there exist sufficient not-sampled individual

programs. Briefly, Ejit works in the following way:

1. follow the standard procedure to create programs at a generation g but do

not evaluate them,

2. sample programs at generation g for tournaments,

3. evaluate the sampled programs if they have not been evaluated, then select

the winners as the parents of programs at the next generation.

Clearly, in Ejit, individual programs that have not been sampled at all will

never be evaluated. The fitness evaluations which used to be processed unnec-

essarily for those not-sampled individual programs are therefore avoided. Ac-

cording to the sampling probability model for the standard tournament selection

in Section 3.4.1 on page 51, the expected computational saving is 36.8%, 13.5%,

5.0%, 1.8%, ,0.7%, 0.25%, and 0.09% for tournament size from 1 to 7, respectively.

Clearly, the saving decreases as tournament size increases and becomes very lim-

ited when the tournament size is greater than three.

102 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

4.3.2 Experiment results

To test the efficiency of Ejit, we repeated the same set of experiments described in

Section 3.6.4 using the same sets of GP configuration but with the Ejit algorithm

applied. Table 4.1 shows the computational savings obtained by Ejit. Clearly, the

experimental results support the expected savings estimated from the mathemat-

ical sampling probability model.

Table 4.1: Computational savings on not-sampled individual programs (%).

Tournament Size EvePar SymReg BinCla

2 13.55 ± 0.14 13.57 ± 0.12 13.57 ± 0.14
3 5.01 ± 0.08 5.01 ± 0.09 4.98 ± 0.09
4 1.86 ± 0.06 1.86 ± 0.06 1.85 ± 0.06
7 0.10 ± 0.01 0.09 ± 0.01 0.10 ± 0.01

4.4 Analysis of EMS-EA and BC-EA

After we completed the analysis of Ejit, we found a very closely-related work

from a recent publication, the efficient macro-selection EA (EMS-EA) and the

backward-chaining EA (BC-EA) algorithms [146]. However, our research was

conducted independently.

EMS-EA and BC-EA are closely related to Ejit because they share the same

foundation, utilising the characteristic of having not-sampled individuals. Poli

and Langdon [146] concluded that BC-EA is better than EMS-EA and its efficiency

was demonstrated through sets of experiments using tournament sizes 2 and 3.

The following subsections briefly review and analyse the EMS-EA and BC-EA

algorithms in order to provide some insight into the strength and weakness of

these two algorithms, as well as our Ejit algorithm.

4.4.1 A brief review of EMS-EA and BC-EA

In EMS-EA, the maximum number of generations G has been set, and a sequence

of genetic operators that will be used to create the entire population at each gen-

eration is determined according to the predefined crossover and mutation rates.

4.4. ANALYSIS OF EMS-EA AND BC-EA 103

However, the sequence of genetic operators is just memorised at this stage with-

out execution. For each of the individuals that are required for executing each of

the memorised genetic operators, according to the predefined tournament size,

IDs of a number of parent individuals that need to be sampled into each tour-

nament are also memorised. In other words, tournament selections are virtually

conducted by just memorising the sampled individual IDs, and genetic opera-

tors are also virtually applied by generating random offspring IDs and making

connections between the sampled individual IDs and the offspring IDs. For in-

stance, if the tournament size is k, at a non-initial generation g, each individual

has connections from at most k individuals at the previous generation g−1. How-

ever, it is not necessary that every individual at generation g − 1 is connected to

individuals at generation g, especially when k is small. At the end, a graph struc-

ture that describes the weak ancestral relationship1 between individuals across the

whole virtual evolutionary process is constructed. Then a post-process on the

graph is conducted by starting from the individuals at the last generation and

tracing back to the initial generation, and marking individuals that are not in-

volved in tournaments as neglected. Finally, the real evolutionary process starts

by randomly creating and evaluating the individuals whose IDs are not marked

at the initial generation and performing the memorised genetic operators to gen-

erate offspring whose ID is also unmarked at the next generation, and so on.

Individuals who are marked as neglected will not be created and evaluated, thus

computational savings can be obtained. According to the model given in [146],

EMS-EA can provide about 13.5%, 5.0%, and 1.8% savings for tournament size 2,

3, and 4 respectively. The algorithm is given in Figure 4.1.

In order to more rapidly find better solutions and possibly to further increase

savings, Poli and Langdon then proposed BC-EA. Briefly, BC-EA starts from an

individual at the last generation G and uses the depth-first search to determine

all possible ancestors all the way back to the initial generation. It then creates

and evaluates these ancestors and moves forward to the last generation. The

process then repeats for another individual at the last generation and so on. The

algorithm is given in Figure 4.2.

1This is because not every sampled individual can become a parent due to the selection pres-
sure.

104 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

1: for gen = 1 to G do

2: for ind = 1 to M do
3: op[gen][ind] = choose genetic operator
4: for arg = 1 to arity(op[gen][ind]) do

5: pool[gen][ind][arg] = choose k random individuals drawing from pop[gen−1]
6: end for

7: end for

8: end for

9: Analyse connected components in pool array and calculate neglected array
10: Randomly initialise individuals in population pop[0] except those
11: marked in neglected[0], calculate fitness values, and store them in vector fit[0]
12: for gen = 1 to G do

13: for ind = 1 to M do
14: if not(neglected[gen][ind]) then

15: for arg = 1 to arity(op[gen][ind]) do

16: w[arg]=select winner from pool[gen][ind][arg] based on fitness in fit[gen-1]
17: end for

18: pop[gen][ind]=result of running operator op[gen][ind] with arguments w[1], ...
19: fit[gen][ind] = fitness of pop[gen][ind]
20: end if

21: end for

22: end for

Figure 4.1: EMS-EA from [146]

1: Let r be an individual in the population at generation G
2: Choose an operator to apply to generate r
3: Do tournaments to select the parents:

s1, s2, ... = individuals in generation G − 1 involved in the tournaments
4: Do recursion using each unknown sj as a subgoal. Recursion terminates

at generation 0 or when the individual is known(i.e. has been evaluated before).
5: Repeat for all individuals of interest at generation G

Figure 4.2: BC-EA from [146]

There is a special property in BC-EA. To describe the property in a simpler

form, we make a couple of simple assumptions that are consistent with that in

[146]: assume a two-offspring crossover operator and a one-offspring mutation

operator are used, that N be the population size so that the total number of tour-

naments for selecting parents is also N , and assume the tournament size k = 2.

From the algorithm, if only one individual at the last generation G needs to be

evaluated, assuming the individual is generated by mutation, then two distinct

individuals will need to be sampled and evaluated at generation G − 1. If the

two individuals at generation G − 1 are generated by crossover, then approxi-

mately four distinct individuals will need to be sampled and evaluated at gener-

4.4. ANALYSIS OF EMS-EA AND BC-EA 105

ation G − 2. Therefore, the approximate number of distinct individuals that will

be evaluated in the immediate previous generation grows exponentially until it

hits the upper bound or the initial generation is reached, whichever is earlier. A

simple upper bound for this case based on the model given in [146] is k
k−1

N . It

will be the same as the population size when k = 2 and will be greater than the

population size when k > 2. Therefore, it seems that the simple upper bound

model given in [146] may be inappropriate. We think the upper bound should be

N(1 − (N−1
N

)2N) by taking off the expected number of individuals that will never

be sampled into any tournament, which is N(N−1
N

)2N in this case, from the popu-

lation. We use our upper bound model in the later analysis. The growing period

ge is called the transient period. It can be estimated by the following equation:

ge ≈ log
N/m
k (4.1)

where m is the number of individuals evaluated at generation G.

This special property provides BC-EA the other source of saving compared

with EMS-EA. Individuals that are not sampled during the transient period make

an extra contribution to the saving in BC-EA. The longer the transient period, the

larger the extra saving.

The authors concluded that BC-EA can provide around 20% savings in terms

of numbers of evaluations than a conventional GP when using k = 2 and possibly

over 35% savings for very low selection pressures. The authors also concluded

that BC-EA is superior to EMS-EA due to the following reasons:

• It offers a combination of fast convergence (increased efficiency in terms of

fitness evaluations) and complete statistical equivalence to a standard EA.

• It can be fruitfully applied to large tournament size. “For example, with BC-

EA, tournament size 7, and a population of a million individuals — which

is not unusual in some EAs such as GP — one could calculate 1 individual

at generation 7, 7 individuals at generation 6, 49 individuals at generation 5,

etc. at a cost inferior to that required to initialise the population in a forward

EA.”[146]

The authors pointed out that BC-EA is an area worthy of further investigation.

106 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

4.4.2 Comparing EMS-EA and BC-EA

4.4.2.1 memory usage and search behaviour

In terms of memory used, EMS-EA and BC-EA both need to memorise the in-

dividual IDs involved in tournaments and the sequence of genetic operators.

Furthermore, BC-EA has to use extra memory to store all the fitness values of

individuals that have been evaluated, which is not necessary for EMS-EA.

In terms of search behaviour, BC-EA appears to differ from EMS-EA. The dif-

ference is the order of those memorised components, and consequently the order

in which individuals in the population are evaluated. In EMS-EA, individual IDs

and genetic operators are memorised generation by generation; thus individuals

are evaluated generation by generation. In BC-EA, they are memorised as a result

of a recursive depth-first search; thus individuals evaluated are across different

generations, moving back and forth. Since fitness values in later generations tend

to be better than those in earlier generations, the difference in the order of eval-

uating individuals led to a claim that BC-EA tends to find better solutions faster

than EMS-EA in the early half of a run but slower in the later half [146]. How-

ever, finding better solutions faster in the early half of a run does not necessarily

mean finding acceptable overall solutions faster. Therefore, the overall value of

an algorithm which is able to find better solutions faster in the early half of a run

is questionable.

4.4.2.2 computational saving

In terms of computational saving, BC-EA may be able to provide more savings

than EMS-EA if the following conditions meet sequentially:

• The decision on setting the last generation G is correct.

• The number of individuals m at the last generation that needs to be evalu-

ated for finding an acceptable solution is small so that there exists a transient

period.

However, to properly determine the last generation is not trivial. This is why

another stopping criterion, which is the maximum number of generations with-

4.4. ANALYSIS OF EMS-EA AND BC-EA 107

out improvement (max-gwi) has been introduced [51]. Incorrect decisions on the

last generation will seriously affect the saving ability of BC-EA and reduce its

feasibility. It is quite possible that no acceptable solution can be found by BC-

EA after evaluating all individuals at the predefined last generation, whereas the

conventional EA may be able to find an acceptable solution in a later generation

by using the max-gwi stopping criterion.

The transient period is controlled by the tournament size, the number of tour-

naments required to select a sufficient number of parents, and most importantly

the number of individuals evaluated at the last generation G. The probability

of finding the best individual of a population within a small proportion of the

population at the last generation is the same as the proportion of the population

evaluated. For instance, suppose the last generation G is correctly determined:

if all the fitness values are distinct, then the probability of finding the best of the

population within the first n% of the population evaluated is just n%. This prob-

ability also depends on the proportion of the population having the same best

fitness value. For easy problems, the proportion may be larger, and in such cases,

BC-EA may be able to find the best earlier thus provide more saving (though it

cannot be sure without evaluating all the population).

Furthermore, although the authors claimed that BC-EA can provide saving

even with larger tournament sizes, they assumed a very large population and

also assumed that picking a random individual of the last generation would give

an acceptable solution. Although the authors provided some arguments, these

assumptions are not proven in many cases.

4.4.2.3 missing element

We think that one important comparison is missing in [146]. The authors did not

compare the search performance of using the tournament size 2 or 3 with that of

using larger tournament sizes, for instance 4 or 7.

Sometimes low parent selection pressure cannot reliably drive the search to

find acceptable solutions within a given number of generations whereas high

parent selection pressure can. As a result, when using low parent selection pres-

sure, the total number of generations needed to find an acceptable solution can be

108 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

much larger than when using high parent selection pressure. Although savings

can be obtained from not-sampled individuals at each generation with low parent

selection pressure, overall the total number of individuals evaluated can be much

larger than the number evaluated when using high parent selection pressure. For

this reason, it seems that focusing only on tournament size 2 or 3 to analyse the

saving ability of EMS-EA and BC-EA makes their study incomplete.

To investigate whether a variation of an algorithm can provide extra savings,

it is necessary to not only compare its efficiency with that of the standard algo-

rithm or other variations using the same set of parameters, but also to ensure it

can provide comparable or better problem-solving quality than the standard al-

gorithm or other variations using tuned parameters. It would be inappropriate if

the latter has not been taken into account.

4.4.3 Experiment results

In order to further investigate the saving ability of BC-EA, we followed the in-

structions given in [146] to reproduce the experiments for their two symbolic

regression problems, Poly4 and Poly10 (shown in Equations 4.2 and 4.3). We

constructed two conventional GP systems using tournament sizes 2 and 7 respec-

tively. Four different population sizes (100, 1000, 10000 and 100000) were used

for both Poly4 and Poly10 in [146]. From the four population sizes, we arbi-

trarily picked a population size 1000 for Poly4 and a population size 10,000 for

Poly10. We set the maximum number of generations to 50 and conducted 100 in-

dependent runs. The fitness function, the function set, the crossover rate, and the

mutation rate are the same as those in [146]. We also use the same two-offspring

subtree crossover with uniform random selection of crossover points as in [146].

However, we have not implemented the point mutation operator used in [146].

Our mutation operator is the conventional subtree mutation [93].

f(x1, x2, x3, x4) = x1x2 + x3x4 + x1x4 (4.2)

f(x1, x2, ..., x10) = x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10 (4.3)

4.4. ANALYSIS OF EMS-EA AND BC-EA 109

Table 4.2 shows the performance of using tournament size 2 and 7. For in-

stance, when tournament size 2 is used and the maximum number of generations

G is 50, 42 out of 100 runs can find the optimal solution for Poly4. The average

number of generations processed to find the optimal solution over the 42 runs is

31 (the standard deviation is 11). The average fitness value over the 100 runs is

4.6 (the standard deviation is 4.2). When tournament size 7 is used and G is 50, 83

out of 100 runs can find the optimal solution. The average number of generations

required to find the optimal solution over the 83 runs is 13. The average fitness

value over the 100 runs is 1.3.

Table 4.2: Performance comparison between tournament sizes 2 and 7 for poly4
and poly10 problems.

Problem k G # of Generations Sum of
Success Required for Success Error

poly4 2 50 42 31 ± 11 4.6 ± 4.2
100 74 47 ± 22 1.6 ± 2.9

7 50 83 13 ± 11 1.3 ± 3.0

poly10 2 50 0 – 5.4 ± 1.2
100 7 69 ± 15 4.6 ± 1.8

7 50 11 36 ± 7 4.4 ± 1.9

From the table, it is clear that by using tournament size 7, for both Poly4 and

Poly10, more runs can find the optimal solutions, significantly fewer generations

are required on average, and the fitness value is better on average. Due to the

incomparable problem-solving qualities, it would be pointless to compare the

saving ability between the use of two different tournament sizes. Therefore, we

conducted additional sets of experiments by gradually increasing G for the GP

system using tournament size 2 with the aim of making its average fitness value

comparable with that in the GP system using tournament size 7. When the maxi-

mum number of generations reached 100, the tournament size two systems were

approaching the average fitness values of the tournament size seven systems. The

corresponding performance is also reported in Table 4.2.

110 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

4.4.4 Efficiency analysis

Table 4.3 shows the estimated total number of evaluations conducted in the con-

ventional GP, GP with EMS (EMS-GP), and GP with backward-chaining (BC-GP)

for Poly4 and Poly10 problems. Note that we ignored the cases for G = 50 when

k = 2 as they did not provide comparable problem-solving qualities.

Table 4.3: Efficiency comparison between conventional GP, EMS-GP and BC-
GP using tournament sizes 2 and 7 for Poly4 and Poly10 problems. Note that
the total number of evaluations for BC-GP is estimated according to the best
assumptions.

Problem k G Total # of Evaluations (×106)
Conventional GP EMS-GP BC-GP

poly4 2 100 6.1 5.3 4.7
7 50 1.9 1.9 1.6

poly10 2 100 97.8 84.6 83.9
7 50 48.5 48.4 47.9

For Poly4 with k = 2 and G = 100, the total number of individuals evaluated

in the conventional GP system is approximately (74 × 47 + 26 × 100) × 1000 ≈
6.1 × 106. The total number of individuals evaluated in a GP system with EMS

under the same conditions can be easily estimated as (74×47+26×100)×1000×
(1 − 13.5%) ≈ 5.3 × 106. Although we have not yet implemented a backward-

chaining GP system, we can make an assumption that the optimal solution is the

first individual evaluated at the last generation. Such an assumption is the best

scenario for a backward-chaining GP system. Under this assumption, we esti-

mated the corresponding total number of individuals evaluated in the following

steps:

• calculate the transient period, which is approximately log
1000×(1−13.5%)
2 =

9.75 ≈ 10

• calculate the sum of evaluated individuals within the transient period, which

is approximately 1×(1−210)
1−2

= 1023

• calculate the total number of evaluated individuals in the whole evolution-

ary process, which is approximately 74×1023+(74× (47−10)+26×100)×
1000 × (1 − 13.5%) ≈ 4.7 × 106

4.4. ANALYSIS OF EMS-EA AND BC-EA 111

For Poly4 with k = 7 and G = 50, the total number of individuals evaluated in

the conventional GP system is approximately (83×13+17×50)×1000 ≈ 1.9×106.

From the estimated results above, although a backward-chaining GP system

(BC-GP) in the best scenario can evaluate a smaller number of individuals than a

GP with EMS (EMS-GP) and the conventional GP when tournament size 2 is used,

it needs to evaluate just over twice as many individuals than the conventional GP

using tournament size 7 in order to provide the similar problem-solving quality.

A similar finding for Poly10 is obtained.

We now compared the efficiency between the conventional GP, a GP with EMS

and a backward-chaining GP using the tournament size 7. Based on the model

given in [146], for tournament size 7 only about 0.09% of population will not

be sampled, a GP with EMS will not be able to provide a large saving and will

be effectively the same as the conventional GP, whereas a backward-chaining

GP may be able to provide some saving from the not-sampled individuals in

the transient period. Let us again assume the optimal solution is the first indi-

vidual evaluated at the last generation for BC-EA. For Poly4, the transient pe-

riod is approximately log
1000×(1−0.09%)
7 = 3.55 ≈ 4 generations. Within the last

four generations, a backward-chaining GP needs to only evaluate approximately

1+7+49+343
4×1000

= 10% of the total number of individuals that need to be evaluated in

the conventional GP, obtaining 90% saving in the transient period. For Poly10,

the transient period is approximately 5 generations. Within the last five genera-

tions, a backward-chaining GP needs to only evaluate approximately 6% of the

total number of individuals that need to be evaluated in the conventional GP,

obtaining 94% saving in the transient period. These results seem to support the

claim given in [146]. However, the overall savings in whole evolutionary pro-

cesses obtained by backward-chaining GP compared to the conventional GP are

only 1 − (1.6/1.9)100% ≈ 16% and 1 − (47.9/48.5) ≈ 1% for Poly4 and Poly10, re-

spectively. Furthermore, note that there are two important assumptions: the last

generation is correctly determined and the optimal solution is the first individual

evaluated at the last generation. Since neither assumption is likely to hold, the

saving ability of BC-EA is much less than claimed in [146].

112 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

4.4.5 Limitations of EMS-EA and BC-EA

The ability of EMS-EA to provide computational savings is limited by the tourna-

ment size. More precisely, saving can be obtained only when smaller tournament

sizes are used. For problems that can easily be solved under high selection pres-

sure, there will be no clear saving.

The ability of BC-EA to provide computational savings is limited by three

primitive factors and one derived factor. The three primitive factors are the tour-

nament size, the decision on the last generation, and the number of individuals

that need to be evaluated at the last generation. The derived factor is the length of

the transient period. The transient period will become shorter if more individuals

at the last generation will be evaluated, and will not exist if the full population

of the last generation will be evaluated. In summary, the limitations of BC-EA

include:

• If one wants to use tournaments of sizes more than three and to compute a

large proportion of the final generation, the computation saving provided

by BC-EA may be too limited2 and dependent on the ratio of the transient

period to the total number of generations used.

• The decisions on the last generation G and the number of individuals m

that should be evaluated at the last generation directly affect the ability of

BC-EA to provide computational savings. Making good decisions is very

difficult and becomes the bottleneck of applying BC-EA to real world hard

problems.

4.5 Comparing Ejit with EMS-EA and BC-EA

As presented in the previous sections, Ejit algorithm shares the same foundation

as EMS-EA and BC-EA and is very close to EMS-EA. It is natural to expect Ejit

and EMS-EA to provide a similar amount of savings in terms of the number of

individuals evaluated. EMS-EA will not create and evaluate a program p if all

2This was clearly stated in [146] by the authors themselves.

4.5. COMPARING EJIT WITH EMS-EA AND BC-EA 113

of its direct weak descendants are not sampled. Direct weak descendants are de-

fined as offspring which are produced by winners of the tournaments in which

the program p participated but is not necessarily the winner. Ejit does not make

this check. However, this difference leads only to a negligible difference in sav-

ings between EMS-EA and Ejit because the probability that all of the direct weak

descendants of the program p are not sampled is very small, even for tournament

size 2.

If L is the event that all of the direct weak descendants of the program p are

not sampled, the probability of L is:

P (L) =

(

N − n

N

)kN

(4.4)

where N is the population size, k is the tournament size, and n is the expected

number of all direct weak descendants. To calculate n, we need the probability

that p is sampled in a single tournament, which is (1− (N−1
N

)k). We then multiply

the probability by the total number of tournaments N so that n = N(1 − (N−1
N

)k).

For instance, when k = 2 and N = 1000, P (L) is about 1.8%. When k = 3, P (L)

becomes 0.01%.

It is also natural to expect Ejit and EMS-EA to have the same set of limitations.

However, the Ejit algorithm does have its own features.

When comparing with EMS-EA, Ejit does not require any additional memory

to store the sequences of program IDs and genetic operators from the whole evo-

lutionary process. Consequently, Ejit does not require the post-process to iden-

tify what individual programs will not be sampled. In other words, Ejit does not

spend any overhead on the pre- and post-processes. The decision on which pro-

gram should be evaluated comes up naturally (hence the name of the algorithm).

When comparing with BC-EA, in addition to not requiring any additional

memory, Ejit does not need to choose an appropriate G in order to solve a prob-

lem: it can work well with the max-gwi strategy. Ejit can provide constant savings

at every generation, regardless of the number of generations used. Its efficiency

will never be affected by the length of the transient period and the number of

individuals that need to be evaluated at the last generation G.

114 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

Although Ejit has to create every individual in a population, including not-

sampled individuals which will not be created by EMS-EA and BC-EA, the cre-

ation time is very short and the cost of creating not-sampled individuals is in fact

negligible.

Like EMS-EA and BC-EA, Ejit gives significant savings only for the cases in

which low selection pressure is better for solving given problems and only works

for the standard tournament selection. In the previous chapter, the clustering

tournament selection was demonstrated to be a promising research direction to

improve the standard tournament selection. Ejit, as well as EMS-EA and BC-EA,

will not be able to work with the clustering tournament selection since a popula-

tion needs to be clustered based on fitness values, which requires the population

to be fully evaluated beforehand, not be evaluated just in time. In the next sec-

tion we will investigate other strategies to reduce the fitness evaluation cost in

the parent selection phase which will not have the limitation on tournament size

and can take advantage of the clustering tournament selection.

4.6 Population Clustering

This section presents a simple but novel population clustering algorithm for GP

in order to reduce the fitness evaluation cost while taking advantage of the clus-

tering tournament selection.

Briefly, we cluster the whole population by a heuristic, and select a cluster rep-

resentative for each cluster. The fitness value of the representative is calculated

on all training cases and then directly assigned to other members in the same

cluster in order to reduce the fitness evaluation cost.

The central idea of our approach is based on the observation that two pro-

grams that are equivalent (in the sense that they compute the same function of

their inputs) must necessarily have the same fitness value. If we could identify

clusters of equivalent programs, then it would be necessary only to evaluate the

fitness of one program in each cluster, and use the same fitness value for all the

other programs in the cluster, avoiding the cost of evaluating the fitness of the

other programs in the cluster.

4.6. POPULATION CLUSTERING 115

In fact, it is adequate to put programs into a cluster if these programs com-

pute the same output values on all the given training fitness cases, regardless of

their output values on other inputs, since the fitness of a program depends only

on its outputs on the given fitness cases. We consider such programs “fitness-

case-equivalent”. “Fitness-case-equivalence” is actually more useful than true equiv-

alence since the clusters may be larger, and therefore generate greater saving.

The problem with this idea is that the obvious way of determining fitness-

case-equivalence requires evaluating all the programs on all the fitness cases,

which is the time-consuming computation that we are trying to avoid. Instead,

we use a heuristic estimate of fitness-case-equivalence based on evaluating pro-

grams on a small number of the training fitness cases. This is done by making

the heuristic assumption that programs that generate the same output values on

a small random set of the training fitness cases are likely to be equivalent on all

training fitness cases. The determination of the clusters is woven into the final

fitness evaluation so that no repeated fitness case evaluations are performed.

Once the fitness of each cluster has been computed, the clustering tournament

selection can be used straight away.

The rest of this section describes the details of the heuristic population clus-

tering algorithm, followed by experiments and analyses.

4.6.1 Heuristic estimate of fitness-case-equivalence

At each generation during the evolutionary process, the algorithm starts by treat-

ing the entire population as a single cluster. Then it feeds the first training case

into the programs and partitions the cluster into new clusters based on the pro-

gram outputs. For each newly-formed cluster, the partitioning process is applied

again with the next fitness case until no new cluster is formed. The algorithm

currently assumes that it has seen enough training cases to determine a cluster

once all the programs in a cluster have the same output in two successive train-

ing cases. To reduce the chance of premature stopping where a cluster contains

non-fitness-case-equivalent programs, the algorithm presents the training cases

in a different random order in each generation.

The population clustering algorithm is outlined in Figure 4.3 and illustrated

below using a simple one-variable symbolic regression example.

116 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

+

X X

+

X2X2

* /

X2 X

^

0
X2

^

0

The biggest cluster

x = 2

 feed 1st
fitness case

4 4 4 1 1 1

+

X X X2X2

/

X2 X

^

0
X2

^

0

12 12 8 0.3333 1 1

+

sub-cluster1 sub-cluster2

program
outputs

program
outputs

X X X2X2

/

X2 X

^

0
X2

^

0

20 20 12 0.2 1 1

+

program
outputs

no new clusters formed, stop splitting

x = 6

x = 10

sub-sub-cluster1 sub-sub-cluster4
sub-sub-
cluster2

sub-sub-
cluster3

X X X2X2

/

X2 X

^

0
X2

^

0+

sub-sub-cluster1 sub-sub-cluster4sub-sub-
cluster2

sub-sub-
cluster3

+

+ +

+ +

+*

*

*

 randomise
fitness cases

 feed 2nd
fitness case

 feed 3rd
fitness case

p1 p2 p3 p4 p5 p6

p1 p2 p3 p4 p5 p6

p1 p2
p3 p4

p5 p6

p1 p2
p3 p4 p5 p6

Figure 4.3: Population clustering algorithm.

• initialisation: Treat the initial population consisting of 6 programs as one big

cluster and randomise the order of the fitness cases.

• Iteration 1: Feed the first fitness case x=2 to each program. The program

outputs are 4, 4, 4, 1, 1, and 1 respectively, which leaves us with two sub-

clusters, one with the program output of 4 and the other with 1. The initial

cluster is replaced by the two sub-clusters.

• Iteration 2: Feed the second fitness case x=6 to the programs in each sub-

cluster. The outputs of programs in sub-cluster1 are 12, 12, and 8. There-

fore, the sub-cluster is further partitioned into two sub-sub-clusters, one

with programs with output value 12, the other holding a program with an

output value of 8. Similarly, sub-cluster2 is partitioned into two new sub-

sub-clusters. Now we have four clusters (sub-sub-clusters1, 2, 3, 4).

4.6. POPULATION CLUSTERING 117

• Iteration 3: Feed the third fitness case x=10 to programs in each sub-sub-

cluster. According to the program outputs, the same set of clusters remains.

As no new cluster is formed, the partitioning process completes.

4.6.2 Fitness evaluation and assignment

Upon completing the population clustering, we progress to the fitness evaluation

stage. For each cluster, the program with the least program complexity is chosen

as the cluster representative. In this study, the number of nodes is used as a

proxy for program complexity; that is, the program with the smallest number of

nodes will be selected as a representative for a given cluster. The fitness value of

the cluster representative is calculated from the result of evaluating the program

on all the training cases (cases evaluated during the clustering stage are not re-

evaluated). As all members in a cluster are assumed to be fitness-case-equivalent,

the fitness of each cluster representative is directly assigned to the cluster and to

all the other members of the cluster.

4.6.3 Experimental results and analysis

To test the effectiveness of the heuristic fitness-case-equivalence population clus-

tering algorithm and its impact on the clustering tournament selection, we re-

peated the same set of experiments described in Section 3.6.4 on page 76 using a

GP system in which the population is clustered using the Heuristic fitness-case-

equivalence population clustering algorithm and the parent selection method is

the Clustering tournament selection (HCGP).

The experimental results varied on the three different problems. The next

subsections analyse the performance of HCGP and compare it with two other GP

systems. One is the Standard GP system in which the population is not clustered

and the parent selection is the standard tournament selection (SGP). The other is

a GP system in which the population is clustered based on Fitness and the parent

selection is the Clustering tournament selection (FCGP).

We used three measures for analysing the computational saving, representing

three levels of precision. The first is at the coarse level. It is the minimum number

118 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

of generations required to find the best-of-run in a run. The second is at a finer

level. It is the total number of individual programs that have been evaluated

using all given training fitness cases. The third is at the finest level. It is the total

number of fitness case evaluations in a run (whether for clustering a population

or for calculating the fitness value).

In SGP and FCGP, the second measure is the product of the minimum num-

ber of generations and the population size and the third measure is the product

of the total number of fully-evaluated programs and the size of the training data

set. Since the population size and the size of the training data set are fixed dur-

ing evolution in general, the three measures are effectively the same for SGP and

FCGP. However, in HCGP, the second measure can indicate how often programs

are fitness-case-equivalent and how many clusters will be formed. The third mea-

sure can show the actual savings on the fitness evaluation. Furthermore, the third

measure can be used together with the other two measures to determine the av-

erage number of training fitness cases needed to cluster a population, indicating

how effective the heuristic fitness-case-equivalence population clustering algo-

rithm is.

4.6.3.1 GCGP and EvePar

The initial results for EvePar show that HCGP does not work well. No run could

find an optimal solution. The average misses are 30, 29, and 31 for tournament

sizes 2, 4, and 7 respectively. The effectiveness of HCGP is much worse than that

of SGP. Therefore, although the total number of fitness case evaluations is smaller,

it is not necessary to conduct a further comparison in terms of saving.

For EvePar, the low effectiveness in HCGP may be because two different out-

puts, either true or false, are not sufficient to distinguish two different programs.

This may also indicate that HCGP may not work for other Boolean problems.

To overcome the issue, we developed another population clustering algorithm

for EvePar. It clusters a population according to the program genotype3, group-

ing syntactically-identical programs. After that, any program in a cluster can be

treated as the clustering representative as all programs in the cluster are exactly

3It is used according to the term genotype diversity introduced in [60, 98].

4.6. POPULATION CLUSTERING 119

the same.

We then repeated the set of experiments for EvePar using a GP system with the

Genotype population clustering and the Clustering tournament selection (GCGP).

Table 4.4 illustrates the effectiveness of GCGP. Tables 4.5 and 4.6 show the sav-

ing ability of GCGP. Note that the third measure is omitted. This is because in

GCGP it is not necessary to feed any fitness cases to programs for clustering a

population, thus the second and the third measures are effectively the same.

Table 4.4: Failure rates (%)for EvePar (Some results for SGP and FCGP are re-
peated from Table 3.4 on page 93).

Tournament Size SGP FCGP GCGP

2 100 91.4 99.8
4 80.6 88.0 79.2
7 82.4 88.8 73.6

Table 4.5: Average number of minimum generations required for finding the
best-of-run for EvePar. The standard deviation follows the ± sign.

Tournament Size SGP FCGP GCGP

2 76.7 ± 19.7 63.9 ± 25.6 76.5 ± 19.8
4 70.2 ± 21.5 60.6 ± 26.2 72.2 ± 20.8
7 62.6 ± 24.5 59.3 ± 26.1 61.6 ± 22.7

Table 4.6: Average total number of fully-evaluated individual programs (103) for
EvePar. The standard deviation follows the ± sign.

Tournament Size SGP FCGP GCGP

2 38.7 ± 9.9 32.2 ± 12.9 37.7 ± 9.8
4 35.4 ± 10.8 30.6 ± 13.2 35.4 ± 10.2
7 31.5 ± 12.4 29.9 ± 13.1 29.9 ± 11.0

For SGP, the best problem-solving quality (80.6% failure rate) is given by tour-

nament size 4. For GCGP, the best problem-solving quality (73.6% failure rate) is

given by tournament size 7, which is significantly better than SGP using tourna-

ment size 4 as the confidence interval at 95% level is (-12.19, -1.81). The advan-

tage of the clustering tournament selection has been further demonstrated on this

problem.

Since the best problem-solving quality in FCGP is not better than that in SGP,

the following analyses on the computational saving will only focus on SGP and

GCGP.

120 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

Comparing the total number of fully-evaluated individual programs (or the

total number of fitness cases evaluations) between best cases for SGP and GCGP,

the saving is 1−(29.9/35.4)×100% = 15.5%. However, this is not a fair comparison

because GCGP achieved much better problem-solving quality. To make the test

fairer, we reduced the number of generations for GCGP until its average problem-

solving quality matched that of SGP (72 generations). The performance savings

were then increased to 30% 4.

The substantial saving results from two sources. One is the effectiveness of the

clustering tournament selection, which shortens the search time. The other is the

genotype population clustering algorithm, which avoids the fitness evaluation

on identical programs. To determine how much of the savings are contributed by

the genotype population clustering algorithm, we calculated the average number

of fully-evaluated individual programs at each generation for GCGP with tour-

nament size 7: 24.7×103

50.8
≈ 486. This result also represents the average number

of clusters per generation. Compared with 504 individual programs evaluated at

each generation in SGP, the saving in terms of the number of fully-evaluated indi-

vidual programs per generation in GCGP is 3.6%. Although this amount of sav-

ing is small, it is considerably greater than the 0.10% savings due to not-sampled

individuals when tournament size is 7 as used by Ejit. This result, together with

the significantly better problem-solving quality, further supports the claim that

the clustering tournament selection can maintain the population diversity and

improve the search performance.

The efficiency of the genotype population clustering algorithm is highly de-

pendent on the probability of having syntactically-identical programs. For prob-

lems that require floating point numbers in solutions, the probability of having

lots of syntactically-identical programs will be very small, thus the genotype pop-

ulation clustering algorithm may not be able to provide noticeable savings. Al-

though its apparent efficiency could be “improved” by increasing the population

size, decreasing the program size, and tuning other parameters to deliberately

4With the maximum number of generations set to 72, GCGP with tournament size 7 provides
80.2% failure rate. The average number of minimum generations required for finding the best-
of-run is 50.8 and the average total number of fully-evaluated individual programs is 24.7 × 103.
Therefore, the saving given by GCGP is about 1 − (24.7/35.4)× 100% = 30.2%.

4.6. POPULATION CLUSTERING 121

produce lots of syntactically-identical programs, such “fiddling” would repre-

sent an improper evaluation.

4.6.3.2 HCGP and SymReg

Table 4.7 illustrates the effectiveness of HCGP on SymReg and Tables 4.8, 4.9, and

4.10 show the saving ability of HCGP in terms of the three measures for SymReg.

Table 4.7: Fitness (RMS error) for SymReg (some results for SGP and FCGP are
repeated from Table 3.4 on page 93).

Tournament Size SGP FCGP HCGP

2 48.2 ± 5.2 47.6 ± 5.9 46.8 ± 5.7
4 37.6 ± 8.3 36.8 ± 7.9 36.6 ± 7.9
7 40.9 ± 11.3 33.5 ± 8.3 34.0 ± 7.9

Table 4.8: Average number of minimum generations required for finding the
best-of-run for SymReg. The standard deviation follows the ± sign.

Tournament Size SGP FCGP HCGP

2 91.6 ± 10.8 88.9 ± 14.0 90.1 ± 12.8
4 91.9 ± 12.1 91.7 ± 10.6 91.9 ± 10.9
7 88.4 ± 19.6 92.8 ± 9.8 91.3 ± 11.7

Table 4.9: Average total number of fully-evaluated individual programs (103).
The standard deviation follows the ± sign.

Tournament Size SGP FCGP HCGP

2 46.2 ± 5.4 44.8 ± 7.0 43.0 ± 6.2
4 46.3 ± 6.1 46.2 ± 5.3 43.1 ± 5.3
7 44.6 ± 9.9 46.8 ± 4.9 42.0 ± 5.6

Table 4.10: Average total number of fitness case evaluations (106) for SymReg.

Tournament Size SGP FCGP HCGP

2 4.62 ± 0.54 4.48 ± 0.70 4.31 ± 0.62
4 4.63 ± 0.61 4.62 ± 0.53 4.32 ± 0.53
7 4.46 ± 0.99 4.68 ± 0.49 4.21 ± 0.56

The effectiveness of HCGP is very close to that of FCGP (the difference is in-

significant) and is better than that of SGP for all three different tournament sizes.

122 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

The results show that the heuristic fitness-case-equivalence population clustering

algorithm can cluster populations as accurately as using the fitness values for this

problem.

Since HCGP and FCGP have very similar best problem-solving qualities, we

can compare the total number of fitness case evaluations to show that HCGP can

provide 1 − (4.21/4.68) × 100% ≈ 10.0% saving over FCGP. In order to calculate

the savings more precisely, we reduced the maximum number of generations for

FCGP until its average fitness matched that of HCGP (96 generations). The saving

by HCGP was then reduced but still over 7.0%.

Based on the average minimum number of generations, the average number

of fully-evaluated programs, the population size, and the size of the training data

set, we calculated that the average number of training fitness cases fed to every

program in order to cluster a population is only 2.43. As the problem-solving

qualities of HCGP and FCGP are very similar, the result shows that the heuristic

fitness-case-equivalence population clustering algorithm is very effective for this

problem.

4.6.3.3 HCGP and BinCla

Table 4.11 illustrates the effectiveness of HCGP on BinCla and Tables 4.12, 4.13,

and 4.14 show the saving ability of HCGP in terms of the three measures for

BinCla.

The effectiveness of HCGP is better than that of SGP but worse than that of

FCGP for all three different tournament sizes. Although it appears that HCGP

can provide 12% savings over FCGP from Table 4.14, the comparison is unfair.

After reducing the maximum number of generations for FCGP until its average

fitness matched that of HCGP, HCGP did not provide any savings over FCGP.

A possible explanation for HCGP not working very well for BinCla is as fol-

lows.

The heuristic estimate of fitness-case-equivalence algorithm works well and

has been demonstrated in SymReg. However, the ability to find fitness-case-

equivalence efficiently does not provide any advantage for BinCla. This is be-

cause deciding which class a given fitness case belongs to is determined only by

4.6. POPULATION CLUSTERING 123

the sign of the program output (positive or negative) rather than the actual pro-

gram output. Therefore, HCGP produced too many small clusters for BinCla,

most having only one member. In SGP, the population can be viewed as 504 clus-

ters with one member in each cluster, whilst in FCGP, the population can have

up to 569/3 ≈ 189 clusters. In HCGP, the average number of clusters is 436, close

to the population size. This may explain why HCGP is only slightly better than

SGP but worse than FCGP. The results suggest that a fuzzier estimate of fitness-

case-equivalence should be used for BinCla.

Table 4.11: Fitness (error rate %) for BinCla (some results for SGP and FCGP are
repeated from Table 3.4 on page 93).

Tournament Size SGP FCGP HCGP

2 9.2 ± 2.9 7.4 ± 2.3 8.4 ± 2.6
4 8.7 ± 2.7 7.7 ± 2.5 8.4 ± 2.5
7 8.7 ± 2.7 7.9 ± 2.5 8.3 ± 2.6

Table 4.12: Average number of minimum generations required for finding the
best-of-run for BinCla. The standard deviation follows the ± sign.

Tournament Size SGP FCGP HCGP

2 57.6 ± 29.0 42.7 ± 29.3 52.5 ± 27.5
4 46.6 ± 29.4 37.1 ± 28.4 42.4 ± 27.3
7 40.2 ± 29.2 35.0 ± 27.8 35.1 ± 26.1

Table 4.13: Average total number of fully-evaluated individual programs (103)
for BinCla. The standard deviation follows the ± sign.

Tournament Size SGP FCGP HCGP

2 29.0 ± 14.6 21.5 ± 14.8 24.6 ± 13.2
4 23.5 ± 14.8 18.7 ± 14.3 19.4 ± 12.8
7 20.3 ± 14.7 17.7 ± 14.0 15.5 ± 11.8

Table 4.14: Average total number of fitness case evaluations (106) for BinCla. The
standard deviation follows the ± sign.

Tournament Size SGP FCGP HCGP

2 5.51 ± 2.77 4.08 ± 2.80 4.68 ± 2.51
4 4.45 ± 2.80 3.55 ± 2.72 3.69 ± 2.44
7 3.84 ± 2.79 3.35 ± 2.66 2.95 ± 2.25

124 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

The analysis results show that HCGP has some saving potential but has no

clear advantage over FCGP, and that GCGP worked well for EvePar but may not

work well for problems that require real numbers presented in solutions. Devel-

oping a more robust and real number-tolerant fuzzy population clustering algo-

rithm together with the clustering tournament selection is a promising direction

for improving the efficiency of parent selection and is worth further investigation.

The results in the previous sections have shown that Ejit and the population

clustering algorithms have advantages for improving parent selection efficiency

but also limitations. It is possible to further improve the parent selection effi-

ciency.

4.7 Using GPPs to Increase Efficiency

Ejit, as well as EMS-EA and BC-EA, have explored ways of reducing fitness eval-

uations by identifying programs that are not sampled. Not-sampled programs

certainly do not contribute to the best-of-run program but the fraction of not-

sampled programs is small. It is likely that there are more programs that do not

contribute to the best-of-run programs. The section defines programs that are

ancestors of the best program found as Good Predecessor Programs (GPPs), and hy-

pothesises that there is a small fraction of programs in evolution that are GPPs.

Since only GPPs are worthy of evaluating, if the hypothesis is true and if GPPs

could be identified in advance, then the cost of fitness evaluation would be min-

imised. This section does not propose a method for identifying GPPs but rather

presents some experiments to analyse the feasibility of using GPPs to increase

parent selection efficiency.

This section first develops a framework to locate GPPs and gather sufficient

information of GPPs from the evolutionary process, then analyses the output of

the framework.

4.7.1 The framework

The GPP set of a single GP run is the collection of all GPPs of the best program

generated in a GP run. It consists of all programs in each generation that are

4.7. USING GPPS TO INCREASE EFFICIENCY 125

ancestors (according to the genetic operators of crossover, mutation, and repro-

duction) of the program with the best fitness value.

The framework constructs the GPP set by recording program ancestry during

evolution, and then tracing the best program found in a GP run all the way back

to the initial population. The resulting GPP set is then analysed to extract high

level important information in order to answer research questions. Figure 4.4

illustrates the relationships among the three components of the framework.

 Low Level

Information

GPP Set

Information Extraction Engine

Algorithm

Framework Foundation

 High Level

Information

Figure 4.4: The structure of the framework.

A comprehensive log system is used as the framework foundation to record

all necessary low level information into a detailed program log file. Each entry

in the log file contains the following information which can be used to provide

evidence for the analysis:

• program ID

• the generation in which it was created

• how the program was created/generated (new, crossover, mutation, or re-

production)

• IDs of its parents (if any)

• its size (number of nodes)

• its fitness value

• the program as a LISP expression

Table 4.15 shows a few example records of a detailed program log file. The

following is a brief interpretation focusing only on how programs are generated.

126 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

Table 4.15: Sample records in a detailed program log file.

ID Gen How Parents Size Fitness Program
1 0 new -1:-1 4 34.75 If(x,3.60,x)
2 0 new -1:-1 7 37.20 If(Sin(x),x,Mul(x,x))
...

...
...

...
...

...
...

105 1 repd 2:-1 7 37.20 If(Sin(x),x,Mul(x,x))
106 1 xovr 1:76 6 28.57 If(x,Add(1.74, x), x)

...
...

...
...

...
...

...
218 2 muta 105:-1 8 39.74 If(Sin(x),Abs(x),Mul(x,x)))

Other information can be easily understood. Programs with IDs 1 and 2 at the

initial generation were randomly created (and therefore had no parents). Pro-

gram 105 was generated in the 1st generation by reproducing Program 2 from

the initial generation (and therefore has only one parent). Program 106 was gen-

erated by applying crossover to Programs 1 and 76 from the initial generation.

Program 218 at 2nd generation was generated by mutating Program 105 from the

1st generation.

The log system also keeps track of the ID of the best program found along the

evolutionary process. The best program can appear at any generation from the

initial to the last. Where there is more than one program with the same fitness

value, the system records only the first one found since this will be in the earliest

generation. For simplicity the best program is selected only on the basis of its

fitness value.

Once a run is completed, the algorithm constructs the GPP set by a depth first

search through the log file, starting at the record of the best-of-run program and

following links to parent programs, adding all the programs it finds to the GPP

set.

4.7.2 High level information extraction

While the GPP set supports the extraction of much more high level information,

in this study, we extracted only the number of GPPs at each generation in order

to identify the fraction of programs that are directly involved in producing the

best program.

4.7. USING GPPS TO INCREASE EFFICIENCY 127

Figure 4.5 shows the number of GPPs across all generations in a sample run

in our experiments. The sample run was configured with a maximum generation

of 200 and a population size of 200. The x-axis shows the generation number

and the y-axis shows the fraction of GPPs. In this run, the best program was

found in generation 196. (Note that the evolution process was not terminated

until generation 200, but no improvement was found in the last four generations.)

In the initial generation, the number of GPPs of the best program is roughly

a quarter (26%) of the population. After a little fluctuation, the fraction of GPPs

quickly climbed up to a peak of almost a half (47%) in generation 35. The fraction

constantly fluctuates during evolution, but tends to shrink towards the end of the

evolution.

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

 50

26%

Generation

F
ra

ct
io

n
 o

f
G

P
P

s
(%

)

47%

200

Figure 4.5: Fraction of GPPs in a sample run.

In this sample run, over 50% of the programs at each generation did not

contribute to the final best program, and therefore evaluating their fitness was

“wasted”. This suggests that there is considerable opportunity for reducing the

cost of fitness evaluation if we could identify these non GPPs. Of course, a sin-

gle run is not necessarily indicative of typical behaviour, and the next section

describes further experiments on a range of problems.

4.7.3 Experiment design and configuration

Obtaining a robust measure of the fraction of GPPs in a population needs a range

of quite different GP scenarios. The experiments used a symbolic regression

128 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

problem, a binary classification problem, and a multi-class classification prob-

lem from different domains and with increasing levels of difficulty (low, medium

and high). It is also necessary to identify the effect of the GP parameters on the

fraction of GPPs. There are many possible parameters that could be investigated.

The experiments focused on two parameters — tournament size and population

size — because they are more likely to influence the fraction of GPPs.

The experiments covered four different tournament sizes — 20, 10, 4, and 1,

and six different population sizes — 100, 200, 500, 1000, 2000, 5000. Note that

tournament size 1 is equivalent to the random selection, meaning no selection

pressure.

4.7.3.1 data sets

The symbolic regression problem (Regression) is shown in equation (1). The ex-

periments generated 100 fitness cases by assigning equally-spaced real numbers

in (-10,10] to x.

f(x) =







x2 − x , x ≥ 0

sin(x) + 1
x

, x < 0
(4.5)

The binary classification problem involves determining whether examples rep-

resent a normal liver or a liver disorder. The dataset is the BUPA Liver Disorders

dataset (BUPA) chosen from the UCI Machine Learning repository [131]. BUPA

consists of 345 data examples, each described by six numeric features.

The multi-class classification problem involves classifying four types of ve-

hicles: opel, saab, bus and van. The dataset is called Vehicle Silhouette (Vehicle),

which was also chosen from the UCI Machine Learning repository. Vehicle con-

sists of 846 data examples, each described by 18 numeric features.

For each classification problem, the data set is split randomly and equally into

a training data set, a validation data set, and a test data set with class labellings

being evenly distributed across the three data sets for each individual GP run.

4.7. USING GPPS TO INCREASE EFFICIENCY 129

4.7.3.2 function set

The function set for the three problems is listed below (see page 78 for detailed

explanations)

Function Set = {+,−, ∗, /, if, abs, sqrt, sin} (4.6)

The +, −, and ∗ operators have their usual meanings — addition, subtrac-

tion, and multiplication. The / operator represents “protected” division which is

the usual division operator except that a division by zero gives a result of zero.

Each of these four functions takes two arguments. The if function takes three

arguments: if the first argument is positive, the if function returns its second ar-

gument; otherwise, it returns its third argument. The remaining unary functions

also have their usual meanings. Note that zero will be returned if the sqrt function

encounters an invalid argument.

4.7.3.3 terminal sets

There are three terminal sets, one for each problem, with a different number of

variables or features in each set. The terminal set for Regression includes a single

variable x. The terminal set used in BUPA includes six numerical features. The

terminal set used in Vehicle includes 18 numerical features extracted from images

of the types of vehicles. More details about those features can be found in [131].

Each terminal set also includes real valued random constants in the range [-5.0,

5.0].

4.7.3.4 fitness function

The fitness function in SymReg is the root-mean-square (RMS) error of the out-

puts of a program relative to the expected outputs. The fitness function for the

classification problems is the classification error rate on the training data set. All

problems have an ideal fitness of zero.

For the liver disorder binary classification problem, if the output of a program

on a fitness case is negative, the program classifies the fitness case as disorder;

130 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

otherwise, as normal.

The vehicle multi-class classification problem uses the following classification

rule [167], where r is the program output.

class =































opel , r ≥ 10

saab , 0 ≤ r < 10

bus , −10 ≤ r < 0

van , r < −10

(4.7)

It is likely that the rule is not optimal. However, it is not the focus of this

study to optimally set the rule in order to find an optimal solution of the vehicle

problem.

4.7.3.5 other genetic parameters and termination criteria

The ramped half-and-half method is used to create new programs with the max-

imum depth of four. The crossover rate, the mutation rate, and the reproduction

rate are 85%, 10%, and 5% respectively. Also the best of a population is copied

once to the next generation. A run is terminated when the number of generations

reaches the pre-defined maximum of 200, or the problem has been solved (there

is a program with a fitness of zero on the training data set), or the error rate on

the validation set starts increasing (for classification problems).

4.7.3.6 experiment configuration

There were six population sizes and four tournament sizes for each of the three

problems, giving 72 experiments in total. Each experiment repeated the evolu-

tionary process 100 times randomly and independently, giving a total number of

7200 runs.

4.7.4 Results and analysis

This section presents the experimental results. The analysis considered the ra-

tio of GPPs to the total evaluated programs in a GP run to investigate whether

there is only a small fraction of programs relating to the success of finding the

4.7. USING GPPS TO INCREASE EFFICIENCY 131

best program during evolution. The analysis also considered the relationships

between the GPP ratio and the three factors — tournament size, population size,

and problem difficulty — to investigate whether the GPP ratio is influenced by

any of these factors. Note that the Bivariate Correlation Analysis [107] is used to

provide empirical evidences for supporting or rejecting those relationships. The

test calculates a correlation coefficient (r ∈ [−1, 1]) between two variables. r = −1

suggests two variables have a perfect negative correlation, r = 1 suggests a per-

fect positive correlation, and r = 0 suggests no correlation at all. The confidence

level is calculated from the probability value (p). The analysis adopted the com-

monly used 95% confidence level, meaning that p does not exceed 0.05.

4.7.4.1 the average GPP ratio

Table 4.16 gives detailed results summarising the mean and standard deviation

(shown after the ± sign) of the GPP ratio over 100 runs of each of the 72 exper-

iments. The table is organised into four parts according to the four tournament

sizes. Within each part, population sizes are shown as rows and problems are

shown as columns. For example, the first cell of the top-left part of the table

shows that, for the symbolic regression problem with a tournament size of 20 and

a population size of 100, on average, only 15.13% of programs are GPPs amongst

the total evaluated programs.

Table 4.16: Average ratio of GPPs to all programs evaluated (%).

Pop Regression BUPA Vehicle Regression BUPA Vehicle
Size tournament size 20 tournament size 10
100 15.13 ± 7.89 10.70 ± 6.99 12.52 ± 6.95 16.95 ± 7.69 13.25 ± 8.04 15.64 ± 7.28
200 13.62 ± 7.06 10.33 ± 6.03 11.55 ± 6.38 15.09 ± 7.02 12.47 ± 6.04 13.09 ± 6.14
500 9.25 ± 4.71 7.72 ± 4.14 8.91 ± 4.77 12.50 ± 5.19 9.78 ± 3.98 11.11 ± 4.28
1000 8.90 ± 4.18 6.86 ± 3.44 6.68 ± 2.98 11.95 ± 4.46 8.14 ± 3.47 10.35 ± 3.67
2000 6.85 ± 3.55 5.48 ± 3.17 4.92 ± 2.37 9.40 ± 4.01 7.99 ± 2.62 9.25 ± 2.47
5000 3.89 ± 3.22 3.99 ± 2.14 4.35 ± 1.77 6.46 ± 3.88 7.42 ± 2.53 8.86 ± 2.11

tournament size 4 tournament size 1
100 23.30 ± 7.41 18.69 ± 7.60 22.53 ± 7.65 30.78 ± 14.20 30.97 ± 14.81 33.30 ± 13.09
200 23.40 ± 5.68 19.82 ± 6.71 22.41 ± 5.44 29.41 ± 15.62 29.29 ± 13.17 32.67 ± 12.91
500 23.20 ± 4.97 19.11 ± 5.17 21.31 ± 4.50 26.49 ± 15.55 28.74 ± 14.91 27.86 ± 15.92
1000 22.90 ± 4.15 18.81 ± 4.94 21.01 ± 4.56 23.76 ± 16.64 24.04 ± 15.45 31.56 ± 14.05
2000 19.20 ± 6.05 19.56 ± 4.64 21.71 ± 3.53 25.03 ± 16.36 26.22 ± 14.18 30.95 ± 15.09
5000 16.38 ± 6.77 18.38 ± 4.85 21.44 ± 3.42 21.10 ± 15.94 23.02 ± 15.41 32.51 ± 14.02

132 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

Figure 4.6 illustrates several randomly-chosen sample runs from the experi-

ments of the three problems for each of the six population sizes with the arbitrarily-

chosen tournament size of 20. There are six charts in the figure corresponding to

the six different population sizes respectively. Each chart shows a run for each of

the three problems, where the dash line stands for Regression, the thin solid line

stands for BUPA, and the thick solid line stands for Vehicle.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
 o

f
G

P
P

s
(%

)

Population size 100, Tournament size 20

Regression
BUPA
Vehicle

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
 o

f
G

P
P

s
(%

)

Population size 200, Tournament size 20

Regression
BUPA
Vehicle

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
 o

f
G

P
P

s
(%

)

Population size 500, Tournament size 20

Regression
BUPA
Vehicle

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
 o

f
G

P
P

s
(%

)

Population size 1000, Tournament size 20

Regression
BUPA
Vehicle

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
 o

f
G

P
P

s
(%

)

Population size 2000, Tournament size 20

Regression
BUPA
Vehicle

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
 o

f
G

P
P

s
(%

)

Population size 5000, Tournament size 20

Regression
BUPA
Vehicle

Figure 4.6: Example runs with tournament size 20 for Regression, BUPA, and
Vehicle problems using six different population sizes.

From a preliminary consideration of this data, it is clear that many of the eval-

uated programs do not contribute to the best program in a run. For random se-

lection (tournament size of 1) the GPP ratio can frequently rise to about 46%5, but

5The highest average ratio marked bold in the table is 33.30% and the corresponding standard
deviation is 13.09%. Supposing the GPP ratio follows the normal distribution, statistically about
84.1% of runs have the GPP ratio below 33.30% + 13.09% ≈ 46%.

4.7. USING GPPS TO INCREASE EFFICIENCY 133

with some parent selection pressure (tournament size of 4), this drops to below

30%, even with small population sizes. With large populations and high parent

selection pressure (large tournament sizes), the GPP ratio dropped below 10% for

most runs. Therefore, there are many programs whose fitness was evaluated “un-

necessarily”. Being able to identify these programs before evaluating their fitness

could reduce the total fitness evaluation cost very significantly.

It is also clear that the GPP ratio varies with different parameters. To explore

the effect of tournament size, population size, and problem difficulty, Figure 4.7

presents a plot of the GPP ratios against population size for each problem cate-

gory and for each tournament size. Further examination of this data led to the

relationships discussed below.

100 200 500 1000 2000 5000
0

5

10

15

20

25

30

35

Population size

A
v

er
ag

e
ra

ti
o

 o
f

G
P

P
s

to
 a

ll
 p

ro
g

ra
m

s
ev

al
u

at
ed

Regression

Tournament size 20 Tournament size 10 Tournament size 4 Tournament size 1

100 200 500 1000 2000 5000
0

5

10

15

20

25

30

35

Population size

Bupa

100 200 500 1000 2000 5000
0

5

10

15

20

25

30

35

Population size

Vehicle

Figure 4.7: Average GPP ratio against population size for each problem and tour-
nament size.

4.7.4.2 GPP ratio and tournament size

The four lines in each graph of Figure 4.7 clearly show that the GPP ratio de-

creases with increasing tournament size for all problems and all population sizes.

Bivariate Correlation Analysis gives a strong negative correlation (r = −0.852)

between tournament size and the GPP ratio, and the correlation is significant at a

0.01 level. Hence the relationship between the GPP ratio and tournament size is

statistically supported.

This is because bigger tournament sizes decrease the chance of any low fitness

program winning a tournament and contributing to the next generation. The

ancestors of the next generation are likely to be confined to a small set of high

134 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

fitness programs, many of which will win multiple tournaments and dominate

the new population, and hence constrain the set of GPPs to be small relative to

the whole population.

Interestingly, of the four different tournament sizes, the results demonstrate

that size 4 has a special characteristic: the GPP ratios across different population

sizes in experiments with the tournament size 4 are more stable than those in ex-

periments with other tournament sizes on all three problems. This suggests that a

tournament size around 4 may be able to provide a more consistent evolutionary

process, regardless of population size, than any of the other tournament sizes.

This is probably why tournament size 4 has been very commonly used in many

applications.

4.7.4.3 GPP ratio and population size

The relationship between the GPP ratio and population size is not as clear as that

between the GPP ratio and tournament size from Figure 4.7. Bivariate correlation

gives a correlation coefficient of −0.219 and the significance level is 0.065, indi-

cating a less robust negative correlation between the GPP ratio and population

size. However, the negative correlation between the GPP ratio and population

size is much stronger for larger tournaments (20 or 10) across all three problems.

For the smaller tournaments (4 or 1), the lines are either fluctuating or almost flat.

The results suggest that there is a negative correlation between the GPP ratio and

population size but the correlation is masked at small tournament sizes.

This might be because larger populations can provide more diverse genetic

material, which helps the search find solutions within smaller number of genera-

tions, leading to lower ratios of GPPs. However further investigation needs to be

carried out.

4.7.4.4 GPP ratio and problem difficulty

As stated in section 4.7.3, Regression, BUPA and Vehicle represent three levels

of difficulties — low, medium and high. Figure 4.7 shows no clear relationship

between the GPP ratio and problem difficulty. Furthermore, Bivariate Correlation

Analysis yields a correlation coefficient of 0.044 (where 0 means no correlation at

4.7. USING GPPS TO INCREASE EFFICIENCY 135

all) and insignificant at the 0.717 level (where the significance level should be less

than 0.05). Therefore no correlation was suggested between the GPP ratio and

problem difficulty in our experiments.

The result is surprising. Assuming a given problem is very easy and a perfect

solution can be found in the initial population of size 1000, the GPP ratio will be

0.1%. On the other hand, assuming a given problem is very hard and the search

keeps finding better solutions but fails to find the optimal solution when reaching

the predefined maximum number of generations, the GPP ratio will be certainly

higher than 0.1%. Therefore, the problem difficulty should have impact on the

GPP ratio.

Possible explanations for the result are:

• The three problems represent only a small sample of coarse levels of prob-

lem difficulties, and may not be sufficient to yield a sound correlation.

• The correlation with problem difficulty may be masked by other factors,

including other uninvestigated genetic parameters, effectiveness of fitness

functions, and effectiveness of genetic operators.

Therefore further experiments are required to determine whether there is any

correlation between problem difficulty.

The analysis of the ratio of the GPPs shows that a small fraction of programs

amongst the total evaluated programs in a run are ancestors of the best pro-

gram. With high selection pressure and large population sizes, the fraction can be

smaller than 4% of total programs in some cases. Even with no selection pressure,

the fraction can be as low as 33% in average. The results show that it is worth try-

ing to identify and use GPPs to significantly reduce fitness evaluation cost in the

parent selection phase.

As GP is a stochastic search algorithm, we do not expect to find clear rules for

identifying GPPs. While identifying GPPs prior to the fitness evaluation is diffi-

cult, it might be feasible to identify correlates of GPPs and develop mechanisms

to use the correlates in the parent selection phase.

136 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

4.8 Chapter Summary

This chapter has investigated ways to improve the efficiency of tournament se-

lection for parents. It introduced Ejit, which was based on the not-sampled char-

acteristic of the standard tournament selection, followed by an analysis of its lim-

itations. It presented a simple but novel population clustering algorithm — the

heuristic fitness-case-equivalence population clustering algorithm — for GP in

order to take the advantage of the clustering tournament selection. The effective-

ness as well as the limitations of the algorithm has been illustrated through the

experimental analyses. The limitations of Ejit and the population clustering algo-

rithm motivated another thought about minimising the fitness evaluations in the

tournament selection for parents. Therefore, this chapter also conducted an initial

analysis on the feasibility of using GPPs to minimise the fitness evaluation cost

in the tournament selection for parents. The detailed outcomes are as follows.

• Ejit avoids the evaluations of not-sampled individuals to reduce the fitness

evaluation cost for standard tournament selection. Unlike EMS-EA and BC-

EA, it does not require any extra memory, or any pre- or post-processes. In

Ejit, the decision on which program should be evaluated arises naturally

from using a passive evaluation order. Ejit is expected to provide savings

about 37%, 14%, 5%, 1.8% and 0.7% for tournament size 1 to 5 respec-

tively. The expectation was verified by the experiment results. Although

Ejit works only with standard tournament selection and provides only lim-

ited saving for larger tournament sizes, its features make it significantly at-

tractive for hard problems that require very low parent selection pressure.

• The potential of usefulness of the heuristic fitness-case-equivalence popu-

lation clustering algorithm has been illustrated via the SymReg problem.

However, this did not work well for BinCla because it is not necessary to

precisely cluster a population into fitness-case-equivalences. Developing a

more robust (or fuzzier) fitness-case-equivalence population clustering al-

gorithm together with the clustering tournament selection is a promising

direction to improve the efficiency of the tournament selection for parents

and is worth further investigation.

4.8. CHAPTER SUMMARY 137

• The heuristic fitness-case-equivalence population clustering algorithm seems

to be inappropriate for EvePar and other Boolean problems, where there are

only two program outputs (true or false) that are not sufficient for clustering

a population properly. To overcome the problem, the genotype population

clustering algorithm has been proposed and tested. The experimental re-

sults show that with the genotype population clustering algorithm, not only

can the clustering tournament selection be used to significantly improve the

search performance under high parent selection pressure, but also the sav-

ing on the number of fully-evaluated programs can be considerably greater

than Ejit for large tournament sizes. The literature reveals there are many

other genotype related measurements [25, 44, 60, 120, 132] that can be used

to cluster a population, and that are worthy of further investigation.

• A framework was developed to gather information on GPPs. A series of

experiments was conducted to test the hypothesis that only a small fraction

of programs amongst the total evaluated programs in a run are ancestors

of the best program. The analysis of the ratio of the GPPs shows that with

high parent selection pressure and large population sizes the hypothesis

clearly holds. The number of GPPs is smaller than 4% of the total evalu-

ated programs in some cases. The analysis of the relationships between the

GPP ratio and three factors —tournament size, population size, and prob-

lem difficulty — show that the GPP ratio is strongly influenced negatively

by tournament size, and also by population size but less strongly, but is not

influenced by problem difficulty.

It was surprising that there was no evidence for a correlation between the GPP

ratio and problem difficulty in the experiments. Future work could choose more

problems representing finer difficulty levels in order to further investigate the

relationship between the GPP ratio and problem difficulty.

While it seems that so far it would be challenging to develop a new approach

that can identify the GPPs directly in advance, thus avoiding the fitness evalu-

ations on non-GPPs, it would be worth making further effort to explore ways

to identify the correlates of GPPs, as once it can be done, the fitness evaluation

138 CHAPTER 4. IMPROVING PARENT SELECTION EFFICIENCY

cost can be reduced as much as possible without affecting the effectiveness of the

current GP system.

Part II

Analysing Impact of Offspring

Selection

139

Chapter 5

Applying Offspring Selection

Pressure

The first part of this thesis focused on tournament selection to investigate strate-

gies to control parent selection pressure and ways to reduce the computational

cost in the parent selection phase. The second part of this thesis focuses on off-

spring selection to investigate impacts of offspring selection on the overall GP

search performance and heuristics for constraining offspring search space based

on program structure.

This chapter firstly makes the assumption that there exist constructive opera-

tors, which can result in good offspring directly without extra computational cost,

and therefore introduce offspring selection pressure and reduce the stochastic na-

ture of GP. It then presents a set of experiments to investigate the impact of such

constructive operators on the overall GP performance and to investigate how to

properly configure the selection pressure between the parent and offspring selec-

tion.

Since only simulations of constructive operators using local search are used

rather than real constructive operators themselves, this chapter then considers

the extra computational cost required in the simulated constructive operators and

presents another set of experiments to investigate whether the extra cost is worth-

while in the context of a resource-limited GP search, and how intensive the local

search should be.

141

142 CHAPTER 5. APPLYING OFFSPRING SELECTION PRESSURE

5.1 Introduction

In the standard GP algorithm, there is no offspring selection; selection pressure is

applied only in the selection of parents and the offspring produced is put into the

next generation without selection. With the standard breeding process of the GP

algorithm, exploring new states in the “neighbourhood”1 search space of current

states can be viewed as a set of random walks.

However, the number of possible offspring in the immediate neighbourhood

of any chosen parents is large, and a large fraction of these offspring will not

constitute improvement over the parents [133, 134]. Therefore, even an increased

number of usages of good parents under high parent selection pressure could still

be insufficient to provide a good chance of finding good offspring.

One approach to overcoming this problem is to increase the chance of gener-

ating improved offspring from parents by using customised constructive genetic

operators that avoid generating worse offspring altogether. However, designing such

operators can be difficult and is likely to be domain-dependent.

An alternative, simpler, and domain-independent approach is to allow the

selected parents to produce more offspring via crossover or mutation and to inte-

grate variants of local search techniques into a many-offspring breeding process

to search for good offspring [64, 97, 114, 115, 178, 182], replacing the standard

breeding process by the many-offspring breeding process. The crossover and

mutation operators in the many-offspring breeding process are not strictly con-

structive operators. At most they can be viewed as simulated constructive op-

erators that produce the same outcomes as constructive operators but will have

to generate a large number of poor offspring in the search for good offspring in

successor states.

However, the use of simulated constructive operators in the breeding process

alters the standard GP search algorithm by increasing the selection pressure to-

wards good offspring and further reducing the stochastic nature of the GP search.

Although there are some promising results of the use of simulated constructive

operators from the literature, it is still not exactly clear how increasing selection

1The distance between these states may be very large.

5.2. CHAPTER GOALS 143

pressure in the breeding process affects the overall GP search performance. This

is because, in general, increasing selection pressure tends to confine the search

process, speed up the loss of population diversity, and lead the search to prema-

ture convergence or other undesirable situations. It is necessary to explore the

actual effect of the offspring selection in combination with parent selection.

The key element in simulated constructive operators is local search. The more

intensive the local search, the greater the selection pressure in the choice of off-

spring, and the smaller the stochastic element in the breeding process: a very

intensive search can generate the best possible offspring of given parents; a less

intensive search that only considers part of the neighbourhood will have a greater

stochastic element and may generate offspring that are good but not the best pos-

sible. From the literature, most approaches use partial local searches that consider

only subsets of the immediate neighbourhood of the chosen parents. Therefore,

it is important to understand what would happen if extending this to a complete

local search that considers all possible offspring.

As discussed in Chapter 2 (on page 39), crossover has remained the dominant

genetic operator in deriving optimal solutions. As a result, the second part of

this thesis will focus on crossover when conducting investigations and analyses

related to offspring selection.

5.2 Chapter Goals

This chapter aims to determine whether it is worth trying to design constructive

operators, and how offspring selection will affect the GP search performance.

There is no question that an intensive local search for good offspring of given

parents is expensive and will take resources away from exploring more possible

parents and more generations of programs. Therefore, in addition, this chapter

addresses the effectiveness of a many-offspring breeding process as a technique

in its own right as part of the GP process. It explores whether the cost of such

a local search can be worthwhile in the context of a resource-limited GP process,

and investigates the appropriate intensity of a local search in the breeding process

to maximise the performance of a GP system.

144 CHAPTER 5. APPLYING OFFSPRING SELECTION PRESSURE

5.3 Simulations of Constructive Crossover Operators

Investigating the research questions requires building at least two simulations

of a constructive crossover operator which embody different intensities of local

search. One simulation mimics an “ideal” constructive crossover operator that

produces the best offspring for a given pair of parents. The simulation consid-

ers all possible ways of recombining two chosen parents to produce all possible

offspring, then evaluates them, and keeps two offspring with the best fitness val-

ues but throws away the others. We refer to it as Full Xover. It is similar to the

brood recombination crossover [178] but does not have a brood size to restrict

the search of good offspring. A second simulation mimics a partial constructive

crossover operator that produces good offspring but not necessarily the best for

a given pair of parents. It chooses a crossover point randomly in one parent P1

but considers all nodes in the other parent P2 to produce possible offspring, then

evaluates them, and keeps the top two. It is similar to the context-aware crossover

operator [115] but has no constraint on depth while choosing possible crossover

points in P2. We refer to it as Partial Xover. Both simulations focus on optimising

the immediate offspring’s fitness — problem-solving quality — but Partial Xover

contains some stochastic elements while Full Xover completely eliminates them.

5.4 Experiment Design

To investigate the effect of including offspring selection pressure in GP search,

our experiments consider six different combinations of selection pressure illus-

trated in Figure 5.1. The selection of parent programs has two options, either

without selection pressure by using a random parent selection process, or with

selection pressure, as in the standard GP algorithm. The selection of offspring

in the breeding process can have three levels of selection pressure: no selection

pressure in the standard breeding process, or weak selection pressure using Par-

tial Xover, or strong selection pressure using Full Xover.

The experiments explore the consequences of the six different combinations

on three different domains — EvePar, SymReg, and BinCla (see page 76 for details

5.4. EXPERIMENT DESIGN 145

random
parent selection

standard
breeding process

+

parent selection
with

selection pressure

standard
breeding process

+

p
ar

en
t

se
le

ct
io

n

offspring selection

O
ff

OnOff

O
n

random
parent selection

+
many-offspring
breeding process

with weak
selection pressure

random
parent selection

+
many-offspring
breeding process

with strong
selection pressure

parent selection
with

selection pressure

+
many-offspring
breeding process

with weak
selection pressure

parent selection
with

selection pressure

+
many-offspring
breeding process

with strong
selection pressure

Figure 5.1: Six GP systems according to configurations of selection pressure on
parent selection and offspring selection.

about the problems, the fitness functions, and the terminal and function sets.).

5.4.1 Genetic parameters

The genetic parameters are the same for all three problems. The ramped half-and-

half method is used to create new programs with the maximum depth of four.

The population size is 100. The crossover rate and the reproduction rate are 95%

and 5%. For ease of analysis, the mutation operator is not used. The maximum

size of a program is 50 nodes based on some initial experimental results.

Standard tournament selection is used to select parents. Selection pressure on

the parent selection is switched on or off by setting the tournament size to 4 or 1

respectively. Tournament size of 4 is chosen based on empirical search. We expect

these settings to provide a neutral environment when conducting performance

comparisons. We also apply a selection policy for selecting parents and selecting

offspring in Partial Xover and Full Xover. The selection policy consists of three

measures: fitness value, number of nodes, and depth of tree. The three measures

are applied sequentially in order to select a program with a shallower tree depth

and a smaller number of nodes if its fitness value is the same as its competitors.

146 CHAPTER 5. APPLYING OFFSPRING SELECTION PRESSURE

5.4.2 Experiment configuration

We performed two sets of experiments with different termination criteria. The

first set of experiments (Exp1) treats the simulated constructive crossover oper-

ators as if they were real constructive operators, so that the cost of performing

the local search for the best offspring is ignored. The runs are terminated when

the number of generations reaches the pre-defined maximum of 51 (including the

initial generation), or the problem has been solved.

Computational resources include memory and CPU time. The simulated con-

structive crossover operators do not require extra memory but do require a large

amount of CPU time to generate and test offspring. As a result, the second set

of experiments (Exp2), takes into account the cost of the local search, and termi-

nates the runs when the total CPU time (seconds) exceeds a pre-defined limit, or

the problem has been solved. The time limits were determined from analysis of

the results in Exp1.

We ran experiments comparing GP systems with and without parent selection

pressure using the standard crossover operator, the simulated partial crossover

operator and the simulated ideal crossover operator respectively for each of the

three problems. Each experiment repeated the whole evolutionary process 100

times independently.

In Exp1, an additional termination criterion is applied to BinCla as an overfit-

ting prevention strategy. We split the original BinCla data randomly and equally

into a training data set, a validation data set and a test data set. Selection of the

best program in a population is based on its fitness on the training data set as the

fittest program in the corresponding generation. The fitness values of the best

program on the training data set and the validation data set within a moving

window of size 15 are monitored to detect overfitting. The window size of 15

is chosen based on empirical search. A run terminates when the training fitness

of the latest generation in the window has not been improved over the window.

The run also terminates when the validation fitness of the latest generation in the

window is not better than that of the earliest generation in the window, indicating

an occurrence of overfitting. For a run which stops according to the strategy, we

examine the window and select a generation where the fitness on the validation

5.5. RESULTS AND DISCUSSIONS: EXP1 147

set is the best in the window. The corresponding test fitness value is used as the

performance measure of the run.

For Exp2, the search is expected to continue until it exceeds the given CPU

time. The earlier stopping strategy used in Exp1 for preventing overfitting would

be inappropriate in Exp2. As cross validation is a common technique to reduce

the dangers of overfitting [160], 10-fold cross validation is used for BinCla with

attempts to ensure class labels are evenly distributed. The performance measure

of a run is the average of the best test fitness value over 10 folds.

5.5 Results and Discussions: Exp1

5.5.1 Effectiveness

Table 5.1: Performance of systems using 3 different crossover modes
with/without selection pressure in Exp1.

GP Parent Xover EvePar SymReg BinCla
Systems Selection Mode Failure RMS Error Test Error Rate (%)

Sys1 standard 100% 62.5 ± 3.5 16.4 ± 7.3
Sys2 On partial 88% 58.5 ± 3.3 10.9 ± 4.7
Sys3 full 77% 58.8 ± 5.7 9.7 ± 4.3
Sys4 standard 100% 65.4 ± 1.0 16.2 ± 6.3
Sys5 Off partial 91% 55.4 ± 2.9 8.5 ± 2.6
Sys6 full 0% 37.2 ± 5.7 6.7 ± 2.4

Table 5.1 shows the performance measures of the first set of experiments.

When parent selection pressure is switched on, GP systems using Partial and Full

Xover (Sys2 and Sys3) outperform the GP system using the standard crossover

operator (Sys1). The performances in Sys2 and Sys3 are noticeably different in

EvePar but quite similar in SymReg and BinCla.

From the results, it seems that reducing stochastic elements in the breeding

process does not have negative effects and the constructive crossover operator

is effective. This observation matches those made by proponents of a many-

offspring breeding process.

However, interesting results are obtained after comparing the performances

of the GP systems with and without parent selection pressure:

148 CHAPTER 5. APPLYING OFFSPRING SELECTION PRESSURE

• Sys1 and Sys4, using the standard crossover operator, have the similar worst

performance on all three problems.

• For EvePar, Sys2 and Sys5 have similar failure rates, but Sys2 is slightly

lower than Sys5. Sys6 using Full Xover without parent selection pressure is

much better than Sys3. All 100 runs successfully found the optimal solution

in Sys6.

• For SymReg and BinCla, Sys5 and Sys6 are better than Sys2 and Sys3 re-

spectively.

• Overall, the best performance is obtained by Sys6 using the simulated ideal

constructive crossover operator without parent selection pressure.

These results suggest that premature convergence may occur more often in

Sys3 than that in Sys6. To confirm this, we examined the index of the generation

where the best-of-run appeared for the first time for Sys3 and Sys6. The results are

illustrated in Table 5.2. We realised that, for instance in EvePar, the index in Sys3

(µ = 14, σ = 7) is much earlier than that in Sys6 (µ = 21, σ = 6), indicating that

the GP system with parent selection pressure causes the search to end up with

premature convergence more often if stochastic elements are completely removed

in the breeding process. Similar phenomena occurred in SymReg and BinCla as

well.

Table 5.2: The average index of generation where the best-of-run appeared first
time in Sys3 and Sys6 in Exp1.

GP Systems EvePar SymReg BinCla

Sys3 14 ± 7 12 ± 6 6 ± 4
Sys6 21 ± 6 47 ± 4 16 ± 6

The maximum number of generations stopping criterion in Exp1 can be seen

as setting a limited number of movements in a search process. In this situation, it

is better to carefully make a wise movement for each step. The problem-solving

quality can be significantly improved generation by generation by always mov-

ing to the fittest status, indicating that the hill-climbing metaphor can be applied

in the GP search algorithm to improve its performance. If we could have an ideal

5.5. RESULTS AND DISCUSSIONS: EXP1 149

constructive crossover operator (not a simulated one so that there is no expen-

sive cost of generating and testing poor offspring), we should certainly use it

to replace the standard blind random crossover operator, and most importantly,

we should certainly remove selection pressure from the parent selection. On the

other hand, if we do not have the ideal constructive crossover operator and have

to use the expensive generate-and-test process to find good offspring, but the

effectiveness is critical and the efficiency can be less important, we should also

replace the standard breeding process and turn off the parent selection pressure.

5.5.2 Efficiency

1 2 3 4 5 6

0

100

200

300

400

500

600

700

800

900

C
P

U
 ti

m
e

(s
ec

)

 standard partial ideal standard partial ideal
 selection pressure: on selection pressure: off

1 2 3 4 5 6

0

200

400

600

800

1000

1200

1400

C
P

U
 ti

m
e

(s
ec

)

 standard partial ideal standard partial ideal
 selection pressure: on selection pressure: off

EvePar SymReg

1 2 3 4 5 6

0

500

1000

1500

2000

C
P

U
 ti

m
e

(s
ec

)

 standard partial ideal standard partial ideal
 selection pressure: on selection pressure: off

BinCla

Figure 5.2: Boxplot of CPU time consumed in systems in Exp1.

Figure 5.2 shows the boxplots of CPU time consumed by 100 runs in each of

the GP systems for the three problems. It is clear that the systems using Full

Xover required much more CPU time than the others as they needed to evaluate

a huge number of offspring.

In EvePar, 77 runs in Sys3 using the Full Xover with parent selection pressure

switched on must keep searching until the 51st generation, while all runs in Sys6

150 CHAPTER 5. APPLYING OFFSPRING SELECTION PRESSURE

with parent selection pressure switched off stop early as optimal solutions are

found. Therefore it is not surprising that runs in Sys3 consumed much more time

than those in Sys6.

In SymReg, as all runs stop at the 51st generation, we expected a similar

amount of CPU time consumed for runs in systems using the same crossover

mode. However, runs in Sys3 surprisingly consumed less time than those in

Sys6. We then calculated the number of programs evaluated during evolution

in Sys3 and Sys6 and found that the number of evaluated programs in Sys3

(µ = 1.00 × 106, σ = 0.58 × 106) is much smaller than that in Sys6 (µ = 2.14 × 106,

σ = 0.27 × 106). This is because parent selection pressure forces the search to

focus on fit and smaller size programs. The positive effect is that the system

controls the code bloat by effectively filtering out programs containing introns.

Therefore, in Sys3, with smaller program size, the number of offspring evaluated

is also smaller than that in Sys6 because the local search space is much smaller

with smaller programs, resulting in less CPU time used. However, a side effect is

that the system also abandons currently unfit subprograms that possibly will be

useful later and reduces the population diversity.

In BinCla, due to the use of the overfitting preventing strategy, runs often stop

before the 51st generation. The average total number of generations used over 100

runs in Sys3 (µ = 19, σ = 3) is much smaller than that in Sys6 (µ = 29, σ = 6).

When considering the problem-solving quality of Sys3, the smaller number of

generations used is possibly due to the early occurrences of local optima. There-

fore it is not surprising that runs in Sys3 consumed less CPU time than those in

Sys6.

5.6 Exp2

The comparisons and suggestions in terms of the effectiveness made above are

based on the assumption that we have a constructive crossover operator which

can directly produce a better or the best offspring without extra computational

cost. Thus the actual computational resources required by the simulated con-

structive operators were irrelevant. The second set of experiments are intended

5.6. EXP2 151

to investigate the value of the many-offspring breeding process in the absence of

a real constructive crossover operator, and have to take this cost into account.

5.6.1 Determining time limits

Sys6 took the largest amount of CPU time in Exp1. To determine appropriate time

limits for the runs in the second set of experiments, we identified the maximum

CPU time taken by Sys6 for each of the problems in the first set of experiments,

ignoring the outlier runs. On the basis, the CPU time limits in Exp2 are 400,

1200, and 2000 seconds for each run in EvePar, SymReg, and BinCla, respectively.

For BinCla, as 10-fold cross validation is used, each fold is assigned an equal

amount of CPU time (200 seconds). As a 16.40% classification error rate is the

worst performance on average in Exp1, the value is used as the threshold in the

pruning algorithm in Exp2.

5.6.2 Results

Table 5.3 shows the performance measures of the second set of experiments. For

EvePar, runs may terminate before completely consuming the given upper bound

CPU time as a result of finding optimal solutions. Therefore, an additional mea-

sure, actual time, is used for EvePar to measure the actual CPU time in seconds

consumed in total. For SymReg and BinCla, there is no optimal solution found

and all runs terminate when exceeding the allowed CPU time, so the actual time

measure is omitted.

Table 5.3: Performance of systems using 3 different crossover modes
with/without parent selection pressure in Exp2.

GP Parent Xover EvePar SymReg BinCla
Systems Selection Mode Failure Actual Time RMS Error Test Error

Sys1 standard 66% 299 ± 154 53.1 ± 7.6 8.5 ± 1.1
Sys2 On partial 68% 288 ± 167 58.6 ± 3.6 7.1 ± 1.0
Sys3 full 78% 338 ± 122 58.0 ± 5.8 7.2 ± 1.0

Sys4 standard 90% 370 ± 94 52.3 ± 5.2 6.9 ± 0.8
Sys5 Off partial 0% 21 ± 15 38.9 ± 5.0 4.1 ± 0.6
Sys6 full 4% 140 ± 86 37.3 ± 5.6 4.2 ± 0.6

152 CHAPTER 5. APPLYING OFFSPRING SELECTION PRESSURE

5.6.3 Parent selection pressure: on

When selection pressure is applied to the parent selection, surprisingly, the stan-

dard crossover operator is better than the simulated constructive crossover opera-

tors in EvePar and SymReg, and has only a slightly lower performance in BinCla.

This observation suggests that if sufficient search time is given, when selection

pressure is applied to the parent selection for crossover, there is no advantage in

using a many-offspring crossover to replace the standard blind random crossover

operator. In other words, the standard crossover operator works quite well in com-

parison to a simulated constructive crossover operator using local search.

This observation is different from the observation in Exp1 in the case of a real

constructive crossover operator. A possible explanation is that the selection pres-

sure on the parent selection removes some stochastic elements and then forces

the search to focus on a smaller region. When stochastic elements, which are nec-

essary in order to find global optima, are further removed in the many-offspring

breeding process, the search will eventually end up at local optima. In contrast,

the standard breeding process keeps some stochastic elements which help the

search escape local optima in a limited amount of search time.

5.6.4 Parent selection pressure: off

When parent selection pressure is switched off, Sys5 and Sys6 both produce sig-

nificant performance improvements. In EvePar, Sys5 outperforms the other two,

not only by the zero percent failure rate, but also by the much shorter CPU time

consumed (about 21 seconds on average). Note that the failure rates in Sys6 are

different between Exp1 and Exp2. This is possibly because some outliers in Exp1

require more CPU time to complete their search but the CPU time set in Exp2

terminates those outliers before they find optimal solutions. In the other two

problems, Partial Xover and Full Xover have similar performance.

The results suggest that when stochastic elements are fully preserved in select-

ing parents, it is necessary to conduct an intensive search in the successor states of

chosen parents in order to remove the stochastic elements and make good move-

ments so that the search will act differently from a completely random search.

5.6. EXP2 153

The results for EvePar suggest using Partial Xover instead of Full Xover. One

possible explanation is that for the search to make as many movements as pos-

sible within the given time frame, it would be better merely to look at a subset

of all possible movements so that a larger number of less perfect movements can

reach the goal faster than a smaller number of perfect movements. But the subset

has to be sufficient large to cover most important movements. The results sug-

gest Partial Xover may lead the search into an optimal subset of successor states.

From the exploration vs. exploitation [42] point of view, Full Xover spends most

of its time exploiting the known genetic material and less time exploring other

potential useful search space. Therefore, if a tight time-frame is given, it may of-

ten fail. To confirm this, we chose a new boundary of 55 seconds, which is only

about two standard deviations away from the mean in Sys5, and re-examined

the failure rates in Sys5 and Sys6. With the new time boundary, Full Xover rose

from 4% to 89% runs, exceeding the time limit without finding optimal solutions,

while Partial Xover had only about 4% runs that failed. The standard crossover

is exactly opposite to Full Xover. It puts too much effort into exploring the search

space and little effort into exploiting the known genetic material; thus it also fails.

5.6.5 Overall

From comparing the performances of GP systems with and without selection

pressure applied to parent selection, we conclude that for EvePar, the perfor-

mance of Sys4 is the worst, but for SymReg and BinCla, it is slightly better than

or comparable with Sys1, Sys2, and Sys3 where parent selection pressure was

turned on. This observation suggests that, if enough search time is given, a ran-

dom (beam) search on parent selection can have a similar problem-solving quality

to GP systems with selection pressure applied to the parent selection.

We also conclude that Sys5 and Sys6 are outstanding in all six systems. The re-

sults strongly suggest that if we intend to use a many-offspring crossover instead

of the standard one, we should remove the selection pressure from the parent

selection to avoid premature convergence in order to gain further performance

improvement.

154 CHAPTER 5. APPLYING OFFSPRING SELECTION PRESSURE

Table 5.4: Performance of systems with population size of 1000 using 3 different
crossover modes.

GP Parent Xover EvePar SymReg BinCla
Systems Selection Mode Failure Actual Time RMS Error Test Error

Sys1 standard 20% 125 ± 155 45.2 ± 7.0 5.3 ± 0.7
Sys2 On partial 10% 70 ± 113 45.5 ± 4.7 4.0 ± 0.7
Sys3 full 46% 381 ± 45 40.8 ± 4.4 4.0 ± 0.5

5.6.6 Further discussion

It might be argued that it is not necessary to turn off the parent selection pressure

when using a many-offspring breeding process, since the population diversity

could be easily maintained by increasing the population size while keeping se-

lection pressure on the parent selection. To verify whether this argument is true,

we conducted another set of experiments for Sys1, Sys2, and Sys3. In the third

set of experiments, the population size was increased from 100 to 1000; other pa-

rameters and stopping criteria, including the CPU time settings, were the same

as those in Exp2. Table 5.4 lists the results.

By comparing the performances of corresponding GP systems in Tables 5.3

and 5.4, it is clear that the problem-solving qualities are improved with a larger

population size. However, by also considering the performances of Sys5 and Sys6

in Table 5.3, it is clear that, within the same CPU time limit, the improvements

obtained by increasing the population size by a factor of 10 are not as significant

as, or are very similar to, those obtained by just switching off parent selection

pressure.

Note that population diversity could be maintained by mutation. Using a high

mutation rate such as 20% might provide different results. It would be necessary

to consider mutation operators in further work.

5.7 Chapter Summary

Stochastic elements exist in both the parent selection process and the breeding

process. Some stochastic elements need to be removed in order to distinguish

the genetic search algorithm from a random search algorithm. On the other hand

some stochastic elements must be retained in order to prevent the genetic search

5.7. CHAPTER SUMMARY 155

from being confined in local optima or converging prematurely.

Selection pressure on the parent selection removes some stochastic elements.

After local search techniques are integrated into the breeding process, stochastic

elements are further eliminated. The change was suggested as effective in the

literature [64, 97, 114, 115, 178, 182]. However, this chapter obtained different

results after investigating six GP systems involving two simulations of construc-

tive crossover operators with/without parent selection pressure. The detailed

outcomes are follows:

• Increasing the selection pressure towards good offspring is better than ran-

domly generating offspring. It is worth trying to develop constructive op-

erators. However, the parent selection pressure should be reduced in order

to take the advantage of the offspring selection and to significantly improve

the GP search. Otherwise, premature convergence may often occur. Our

experimental results show that it is better to apply selection pressure to off-

spring selection than to parent selection.

• In the context of a resource-limited GP process, if stochastic elements are

minimised or optimised in the parent selection process, for instance tun-

ing the tournament size, it is better to keep some stochastic elements in the

breeding process, for instance using the standard blind random crossover

operator. On the other hand, if stochastic elements are minimised or op-

timised in the breeding process, for instance performing enough intensive

searching in successor states of chosen parents, then it is better to keep some

stochastic elements in the parent selection process, for instance selecting

parents randomly for crossover. Stochastic elements cannot be removed in

both parent selection process and breeding process.

• The effectiveness of a many-offspring breeding process as a technique in its

own right as part of the GP process has been demonstrated in the context of

a resource-limited GP process when the parent selection pressure is turned

off. Further, using a larger population size with parent selection pressure is

not better than using smaller population size without parent selection when

using either Partial or Full Xover.

156 CHAPTER 5. APPLYING OFFSPRING SELECTION PRESSURE

• When no selection pressure is applied to parent selection, a proper level of

local search intensity can be expressed by Partial Xover instead of the ex-

haustive Full Xover in our experiments. Further investigations are required

in order to make a more general conclusion.

Overall, if offspring selection is applied, no matter whether real constructive

crossover operators or their simulations are used, the parent selection pressure

needs to be reduced in order to obtain significant search performance improve-

ment.

This chapter investigated only the crossover operator in the context of many-

offspring breeding. In the future, similar studies on mutation, as well as the use

of a combination of crossover and mutation, should be conducted in order to

provide a complete picture.

From the literature, the commonest method for searching good offspring is

generate-and-test, which is very expensive. In order to make the use of offspring

selection more beneficial, it would be really useful to have heuristics that can be

applied to reduce the offspring search space. The next chapter will address this

topic.

Chapter 6

Constraining Offspring Search Space

This chapter continues to focus on crossover to investigate heuristics for improv-

ing the efficiency of searching good offspring. It firstly presents several simula-

tions of the optimal crossover operator. It then analyses these simulations with

a focus on the depth of crossover point and the substituted subtree size to deter-

mine whether any patterns exist. Finally it presents some heuristics that could be

used to reduce the offspring search space.

6.1 Introduction

The previous chapter showed that performing offspring selection with a bias to-

wards better fitness offspring after randomly selecting parents was preferable to

other combinations of parent and offspring selection strategies. However, the

offspring search space for a given pair of parents could be enormously large. In

the case of crossover, the size is limited — its maximum is just the product of

the numbers of nodes in each parent — but finding good crossover points is still

very expensive. In the literature, a common approach to finding good crossover

points is the generate-and-test method. The method is really time consuming

and takes lots of resources on a large fraction of poor offspring, although some

researchers proposed to use a fraction of training data for offspring fitness evalu-

ation [4, 178, 56]. Therefore, it is necessary to develop some good heuristics that

can be used to locate good crossover points, or at least eliminate bad crossover

points, with minimal cost in the large offspring search space of given parents.

157

158 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

One possible kind of heuristic is to constrain the syntax and types of swapped

subtrees [33, 40, 59, 66, 118] so that offspring search space can be reduced. An-

other approach is to apply constraints based on program structure, as in the large

number of studies related to depth and size controlling strategies in crossover

since the 1990s (see page 35). From the literature, while existing depth or size

control strategies can sometimes improve the GP performance, the number of

such different strategies is large and identifying a good strategy for efficiently

narrowing the set of candidate crossover points remains a challenging problem.

This chapter investigates heuristics for locating good crossover points from

a different angle. A desired characteristic of a really effective and efficient GP

search algorithm is that its GP search path can always reach the optimal solution

for a given problem and the path is the shortest. Therefore, in order to effec-

tively reduce the offspring search space, we should analyse the characteristics of

the optimal crossover operator that always chooses the crossover leading most di-

rectly to the optimal solution. We expect the behaviour patterns of the optimal

crossover operator to provide the best insight into good heuristics on program

structure for selecting crossover points in ordinary crossover operators.

Note that the optimal crossover operator should differ from the ideal construc-

tive crossover described in the previous chapter. An optimal crossover operator

produces good offspring in a global-wise manner, while an ideal constructive

crossover operator produces good offspring in a stepwise manner, that is, it con-

centrates on producing only good immediate offspring, which may not necessar-

ily lead to optimal solutions most directly.

6.2 Chapter Goals

This chapter focuses on two aspects of program structure, including the depth

of crossover point (DCP) and the substituted subtree size (SSS), and aims to in-

vestigate general heuristics for efficiently finding good offspring by constraining

crossover point selection structurally through the analysis of the characteristics

of optimal crossover operators.

The chapter firstly analyses the DCP in good crossover events and particularly

6.3. OUR APPROACH 159

addresses the following research questions:

• How should the DCP be adjusted in order to significantly improve GP per-

formance?

• Is there a certain range of depths where crossover points fall such that good

offspring can be consistently produced and consequently the overall GP

search performance can be optimised?

The chapter then examines the distributions of SSS in good crossover events

to investigate whether there are any patterns of the substituted subtree sizes.

In particular, it investigates whether good crossover events consistently involve

subtrees within certain size ranges. This is important because if such ranges of

subtree sizes exist, higher priorities can be assigned to subtrees whose sizes are

within the ranges and lower priorities can be assigned to subtrees with other

sizes. When searching in the offspring space for given parents, the search path

can follow the priorities to find good offspring instead of searching randomly or

exhaustively.

6.3 Our Approach

Ideally, to answer the research questions, we should analyse the behaviour of the

optimal crossover operator. However, the optimal crossover operator cannot be

implemented. The conceptually simplest simulation of the optimal crossover op-

erator is to perform an exhaustive search of all possible crossovers in an evolution

from an initial population and identify all the crossovers on the paths leading to

the optimal solution. This set of crossovers would contain all the steps that the

optimal crossover operator would follow, and we could then analyse DCP and

SSS on these steps.

However, an exhaustive search of all sets of crossovers is completely infeasi-

ble, even for the most trivial of problems. We therefore investigate a sequence of

approximations to the simulation of the optimal crossover operator. Each approx-

imation considers a large set of possible crossovers of each pair of parents, and

greedily chooses the best offspring. At the end of a run, we identify the parents

160 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

and crossovers that contributed to the best solution found, on the assumption

that these are close to the crossovers that would be performed by the optimal

crossover operator. Our analysis will search for patterns in these crossovers.

Our simulated optimal crossover operators are inspired by brood recombi-

nation [178]. The operators produce offspring but consider a large number of

the possible crossover positions, including the root node, in two chosen parents

to produce children. For each parent, the operators then evaluate the children

that were obtained by substituting a subtree from the other parent into this par-

ent and retain the best-performing one, as measured by fitness. Therefore, the

two retained children would not necessarily be a pair of children produced by

swapping subtrees. This is also the reason that this chapter uses a more general

term substituted subtrees instead of the commonly used swapped subtrees. Since the

simulations consider only the fitness of the immediate offspring rather than the

fitness of the best descendant, they can be only approximations to the optimal

crossover operator.

The degree of approximation varies with the fraction of possible crossover

positions that are considered, which we refer to as the search intensity of the op-

erator. Obviously, Standard Xover has the lowest possible search intensity. The

simulated optimal crossover operator that considers all possible crossover po-

sitions (n × m if the parents have n and m nodes respectively) has the highest

search intensity (Full Xover). The other approximations choose only some of the

possible crossover positions in the two parents (P1 and P2):

• Partial+ Xover, which considers every node in P1 combined with
√

m
2

random

nodes from P2, and every node in P2 combined with
√

n
2

random nodes from

P1 to generate n
√

m+m
√

n
2

offspring.

• Partial Xover, which considers one randomly-chosen node in P1 combined

with every node from P2 to generate m offspring.

• Partial– Xover, which considers one randomly-chosen node in P1 combined

with
√

m
2

random nodes from P2 and one randomly-chosen node in P2 com-

bined with
√

n
2

random nodes from P1 to generate
√

m+
√

n
2

offspring.

If the two parents have the same size of n nodes, then the search intensities of

6.4. EXPERIMENT DESIGN 161

Full Xover, Partial+ Xover, Partial Xover, and Partial– Xover are 1, 1√
n

, 1
n

, and 1
n
√

n

respectively.

In this study, we split crossover events into four categories since the root of

a program tree is a potential crossover point. The first category is subtree-subtree,

which is the normal strict subtree to strict subtree replacement in crossover in

tree-based GP. The second category is root-root, where the offspring is produced

by using P2 to replace P1 or vice versa. It means that the crossover is effectively

the same as the copy operator. We term this type of crossover operation as copy-

like crossover operation. The third category is root-out, where the offspring is

produced by using a strict subtree from P2 to replace the entire P1 or using a

strict subtree from P1 to replace the entire P2. This is effectively the same as

promotion mutation in [163]. The fourth category is root-in, where the offspring is

produced by using the entire P2 to replace a strict subtree of P1 or using the entire

P1 to replace a strict subtree of P2. We term the three types of crossover events

involving parent program roots as root crossover events although they would not

be categorised as crossover according to the usual definition of crossover.

6.4 Experiment Design

Our experiments used the three problems, namely EvePar, SymReg, and BinCla,

which have been used in the previous chapters of this thesis. More details about

these three problems, the data sets, the fitness functions, the terminal sets, and

the function sets can be found on page 76.

The genetic parameters were the same for all three problems. The ramped

half-and-half method was used to create new programs with the maximum depth

of four. The crossover rate and the copy rate were 95% and 5% respectively. Note

that for ease of analysis, the mutation operator was not used. The parent selection

scheme is tournament selection.

The population size was set to 500. To prevent code bloat, it is important to

limit the size of program trees. Because we investigated the effect of depth of

crossover points, we did not use the usual limit of a maximum tree depth, but

162 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

instead limited the total number of nodes in trees. We used a limit of 31 nodes1.

These two parameters are based on empirical search for the given problems. Note

that hereafter, unless otherwise noted, the size of a program refers to the number

of nodes in the program.

We selected parent programs and offspring in the four approximations to the

optimal crossover operator based primarily on the fitness values. For competitors

having the same fitness value, we preferred the one with a shallower tree depth

and a smaller number of nodes.

We constructed five GP systems using Standard Xover and each of the four

approximations. Note that when the root of a parent program is a potential

crossover point, a GP system using Full Xover will ensure every individual in

the next generation is no worse than its parents, so the fitness of the generations

is non-decreasing.

The tournament size was set to four when using Standard Xover, based on

empirical search. It was set to one when using Full Xover in order to avoid pre-

mature convergence caused by parent selection pressure, based on our previous

work shown in Chapter 5. We also set the tournament size between one and four

for the other three systems according to their different search intensities, respec-

tively one, two, and two for Partial+, Partial, and Partial–, to get the best results

for each system.

The actual implementation of tournament selection used in the experiments

is the round-replacement tournament selection (see Section 3.6.1 on page 70) in-

stead of the standard tournament selection. This is because although there is no

significant difference between the round-replacement strategy and the standard

tournament selection for larger tournament sizes, the round-replacement tourna-

ment selection has some advantages for smaller tournament sizes.

An evolutionary process is terminated when the number of generations reaches

the pre-defined maximum of 51 (including the initial generation), or the problem

has been solved (there is a program with a fitness of zero on the training data set),

or the error rate on the validation set starts to increase (for BinCla).

We ran experiments using the five GP systems for each of the three problems.

1Discussions of a large size limit will be covered in Section 6.9.

6.5. EFFECTIVENESS COMPARISON 163

For each experiment, we repeated the entire evolutionary process 50 times, inde-

pendently.

6.5 Effectiveness Comparison

The first step of the analysis compares the problem-solving quality of the five

GP systems in order to identify which approximation is closest to the optimal

crossover operator. We intentionally ignore the computational cost of fitness

evaluation, even though it is clear that the number of evaluations will vary enor-

mously across the different crossover operators, resulting in significantly differ-

ent computational cost. However, the different crossover operators are merely

different simulations of the optimal crossover operator, and the differing compu-

tational costs are associated with the differing accuracies of the simulations rather

than the actual computational cost if an optimal crossover operator were avail-

able. Therefore, the exact computational cost of fitness evaluation is not relevant

for this analysis.

Table 6.1 compares the performances of the five GP systems and Table 6.2 lists

the number of generations required in each experiment. The measures used here

are the same as those described on page 80. Briefly, the measures are the number

of failures, the RMS error, and the classification error rate on test data over 50

runs for EvePar, SymReg, and BinCla respectively.

Table 6.1: Performance comparison.

Xover EvePar SymReg BinCla
Mode Failure RMS Error Test Error Rate (%)

Standard 50 45.4 ± 6.5 5.2 ± 1.6
Partial– 48 39.1 ± 8.9 4.8 ± 1.5
Partial 19 22.4 ± 10.6 4.7 ± 1.5

Partial+ 0 6.5 ± 6.9 4.4 ± 1.3
Full 1 1.6 ± 2.3 4.5 ± 1.5

The tables show that the overall problem-solving quality increases as the search

intensity increases, along with the decreased parent selection pressure. For EvePar,

systems using Partial+ and Full Xover were approximately equally effective. Al-

most all runs in the two systems produced an optimal solution, but Full Xover

required significantly fewer generations and is therefore the best approximation

164 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

Table 6.2: Number of generations required.

Xover Mode EvePar SymReg BinCla

Standard 38 ± 9 45 ± 6 18 ± 13
Partial– 38 ± 8 46 ± 5 16 ± 10
Partial 25 ± 8 40 ± 6 12 ± 9

Partial+ 22 ± 5 48 ± 2 13 ± 10
Full 12 ± 2 30 ± 4 7 ± 4

to the optimal crossover operator for EvePar. For SymReg, it is clear that Full

Xover outperformed others. For BinCla, systems using Partial+ and Full Xover

were as good as or better than the others. In addition, Full Xover required fewer

generations and is therefore the best approximation to the optimal crossover op-

erator for BinCla. Note that these performance comparison results assume the

appropriate choice of parent selection pressure configuration. Without random

parent selection, the greedy one-step search of Full Xover may lead GP search

into local optima (see page 147).

Also note that, in the experiments, Full Xover — the ideal constructive crossover

operator — happened to be the best approximation to the optimal crossover op-

erator. This may be due to several reasons, including no use of mutation, ap-

proximations at coarser levels, random parent selection, and other GP parameter

configurations. It would be necessary to do a further investigation to determine

the cause.

6.6 DCP Analysis

The next step of the analysis identifies patterns in DCP in the evolutionary pro-

cess leading to the best solutions. We first extract an approximation to the pro-

grams that would have been generated by the optimal crossover operator, and

then analyse the depths of the crossover points in the parents of each of these

programs.

Our logging system records every generated program along with an ID and,

if it is generated by crossover, the IDs of its parents, the position of the crossover

point in each of its parents, and the height of each of its parents. At the end of

6.6. DCP ANALYSIS 165

a run, we locate the best solution found in the run and then trace its ancestry all

the way back to the initial population, collecting all its ancestors. This ancestral

tree of GPPs (see page 124) represents the best approximation to the evolution

that would have been generated by an optimal crossover operator. Note that

as the root of a program tree can also be involved, a program can be generated

from replacing the entire parent P1 by the entire P2 or a strict subtree of P2. In

this case, P1 will not be considered as a GPP and the corresponding back tracing

branch will be terminated. Finally, we analyse the DCP in all the GPPs that were

generated by crossover.

Two measures are considered in the DCP analysis. One is called depth ratio.

The other is the absolute depth of crossover point.

Depth ratio is the height of a crossover point in a parent above the lowest

leaf nodes as a fraction of the depth of the lowest leaf node: (1 − d
D

) where d is

the depth of crossover point from the root and D is the maximum depth of the

parent tree. Therefore, a large value indicates that the crossover point is close

to the root of a tree (so a large fraction of the tree is being substituted), while a

small value indicates that the crossover point is close to the bottom of a tree. For

instance, if the maximum depths of two parents are 4 and 6 respectively, and the

crossover points are at depth 0 and 6 respectively, then the corresponding depth

ratios of crossover points are 100% and 0%, reflecting that the crossover point in

the first parent is the root node of the whole program tree and that in the second

parent is one of the bottom nodes of the whole program tree. Note that programs

in the initial population do not have a depth ratio since the initial population is

randomly generated.

6.6.1 Depth ratio analysis via boxplot

This section presents visualisations using boxplots of the distribution of depth

ratios in a population at each generation along evolution. Figure 6.1 illustrates

the distributions of depth ratios by generation along evolution in 50 runs for the

five GP systems (five rows) on the three problems (three columns). Thick red

bars indicate median values. Red plus signs refer to outliers. The plot starts from

generation one.

166 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

EvePar SymReg BinCla

S
ta

n
d

a
rd

1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations
1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations
1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations

P
a

rt
ia

l–

1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations
1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations
1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations

P
a

rt
ia

l

1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations
1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations
1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations

P
a

rt
ia

l+

1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations
1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations
1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations

F
u

ll

1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations
1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations
1 10 20 30 40 50

0

20

40

60

80

100

D
ep

th
 r

at
io

 (
%

)

Generations

Figure 6.1: Distributions of depth ratios for GPPs involved in crossover along
evolution presented in boxplot. The parent size limit is 31 nodes. Thick red bars
indicate median values. Red plus signs refer to outliers.

6.6. DCP ANALYSIS 167

6.6.1.1 Standard and Partial- Xovers

The distribution of depth ratios at a generation in Standard Xover is predictable

since the crossover point selection has strong correlation with the program tree

shapes in the population. For instance, when creating GPPs in the first genera-

tion, the median value at the left-most box of each of the three charts at the first

row was zero, suggesting that at least 50% of crossover events occurred at the bot-

tom of their parent program trees for all three problems. This is because although

the population initialisation method was the ramped half-and-half method, the

maximum depth was set to only four (counted from zero), resulting in limited

possible tree variations and a very large number of full trees in the initial popu-

lation.

When using Standard Xover, an interesting case for SymReg is that the upper

quartile of the distribution of depth ratios for producing GPPs at generation 1

reached the roots of parent program trees (i.e. root crossover events), while it

was only around 65% for EvePar and BinCla. A possible reason is related to

the arities of functions included in the function set, which directly affected the

program tree shape. The function sets for EvePar and BinCla both included the

three-arity if function, binary functions and unary functions, while the function

set for SymReg included only four binary functions and three unary functions.

By analysing the tree shape of GPPs at the initial populations for SymReg, we

found that over 67% of GPPs had depths of only one or two. Half of these depth

one GPPs had only one node at depth one and the other half had two nodes

at depth one. With choosing crossover points randomly, this would result in at

least 25% of crossover events occurring at the roots of parent program trees. The

same shape analysis for EvePar and BinCla did not show a similar tree shape

distribution as in SymReg. The other interesting finding is that at the middle and

later stages of evolution, the bottoms of parent program trees appear to receive

little selection preference, which is inconsistent with [64]. Our initial explanation

was that this might be because, unlike [64], the experiments did not control code

bloat by limiting the maximum program depth, but it will be necessary to conduct

further investigation.

When using Partial- Xover, the distribution of depth ratios is very similar to

168 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

that of Standard Xover for all the three problems respectively. A possible expla-

nation is that the maximum of 31 nodes in an individual gives an upper bound

of three crossover points for each parent program in Partial- Xover. This small

increase of number of crossover point selections appears unable to change the

distribution of depth ratios significantly compared with Standard Xover.

6.6.1.2 Partial, Partial+, and Full Xovers

As the search intensity increases significantly, the distributions of depth ratios

change noticeably for all the three problems. For Full Xover the distributions are

also noticeably different between the three problems.

At the early stage of evolution, the depth ratio is increasingly biased towards

the roots of parent programs for EvePar and BinCla as the search intensity in-

creases, and the bias becomes much stronger in Full Xover. For instance, for

EvePar almost all crossover points in the early generations are the roots of par-

ent programs, indicating that most of the parents cannot produce any offspring

that is better than themselves. Therefore, instead of leading the search to a worse

search space by choosing inappropriate crossover points for a given pair of par-

ents, simply retaining the corresponding search space by keeping parents in the

next generation seems to be a wise choice. However, the pattern is less clear for

SymReg.

At the middle and later stages of evolution, the depth ratio appears to be al-

most evenly distributed for SymReg and BinCla as the search intensity increases,

and the depth ratio is biased towards the roots of parent programs in Full Xover.

However, the pattern is less clear for EvePar. These results suggest that an effec-

tive depth-control strategy is problem-dependent and is also evolutionary stage-

dependent.

Since Partial and Partial+ Xovers are able to improve the GP search perfor-

mance noticeably for SymReg, the corresponding evenly-distributed depth ratios

at the middle stage of evolution appear to be evidence supporting the assignment

of equal probabilities to different depths.

Furthermore, we found that the distributions of depth ratios in the first four

GP systems are very similar to each other for SymReg and BinCla. However,

6.6. DCP ANALYSIS 169

the different performance changes in the four GP systems for SymReg and Bin-

Cla provided an interesting finding. For SymReg, large performance changes

occurred in the four GP systems, indicating that when selecting crossover points,

a slight change in average depth may be associated with a remarkable improve-

ment. In contrast to SymReg, the differences in performance between the four

GP systems for BinCla are not as significant, while the depth ratio distributions

have more variations in BinCla than in SymReg. This observation suggests that

sometimes there may be only slight performance improvement associated with

changes in average depth. To explore possible reasons, problem difficulty may

need to be taken into account. BinCla, on the one hand, seems to be a simple

problem as about 95% test accuracy can be reached by the GP system using Stan-

dard Xover. On the other hand, it seems to be very hard to do significantly better

than 95% because Full Xover can obtain only less than 1% improvement after

putting in a large amount of effort.

In summary, the results of depth ratio analysis via boxplot demonstrate that dis-

tributions of crossover points that give higher weight to nodes close to the root

of the tree than Standard Xover are associated with better performance but it is

not straightforward to develop the most effective depth-control strategy, which

is clearly problem-dependent and evolutionary stage-dependent. We also do not

know how much the intensive search strategies contribute to the performance

and whether depth control by itself is sufficient.

6.6.2 Issues of boxplot analysis

The above analyses via boxplot may have two issues. One issue is related to the

boxplot technique itself. Boxplot as a visualisation technique sometimes does not

provide sufficiently detailed information. It has a many-to-one mapping prob-

lem. For instance, three different distributions shown in a histogram can have

the same boxplot results (see Figure 6.2). It is not clear whether similar cases

occurred in our experiments, leading to some misinterpretations.

The other issue is related to the way depth ratios were plotted against gener-

ations. We plotted depth ratios against this number of generations since the first

170 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

Value

F
re

qu
en

cy

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

Value

F
re

qu
en

cy

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

Value

F
re

qu
en

cy

X
X

X
X

XXz
?

�
�

�
�

��9

1 2 3 4 5 6 7 8 9
Value

Figure 6.2: Different distributions can have the same boxplot result.

generation, which should work well in general. However, as the best solution in

a run may appear at any generation, the last generation, where the best-of-run so-

lution appears first time, varies from run to run. Furthermore, there are very few

GPPs in the last several generations of any run — only one GPP at the last gener-

ation and no more than 16 GPPs at the fifth-to-last generation in a run. Therefore,

the data for generations at the right end of the plots may be based on very few

GPPs.

Therefore, in order to expose more details of the distributions, we visualised

depth ratios using another technique we called grayplot and also plotted the re-

sults against the number of generations before the last generation.

6.6.3 Depth ratio analysis via grayplot

The grayplot is a kind of histogram in which the frequencies are represented by

areas of different gray levels. Since we are particularly interested in the frequen-

cies of depth ratios of 0% and 100%, we used a histogram with non-uniform bin

sizes to record the frequencies for depth ratios at each generation along evolution

over 50 runs.

We used 12 bins. The first bin counts the depth ratio of exactly 0% and the last

bin counts the depth ratio of exactly 100%. The second bin counts the depth ratios

6.6. DCP ANALYSIS 171

between (0%, 10%], the third bin counts the depth ratios between (10%, 20%], and

so on, and the 11th bin counts the depth ratios between (90%, 100%). For each

generation, we normalised the frequency in each bin by the sum of frequencies

in all bins at the same generation, thus the normalised frequency in each bin is

within [0, 1]. It is likely that the number of bins is not optimal, and we could

follow [17] to develop an optimisation method for choosing the number of bins.

This, however, is beyond the scope of this thesis.

Different gray levels map to different normalised frequencies, where black

maps to the normalised frequency one and white maps to the normalised fre-

quency zero. Therefore, the darker the area, the higher the frequency. Note that

normalising frequencies in this way means that care should be taken when in-

terpreting gray levels at a generation where the total number of data samples is

relatively small.

Figure 6.3 illustrates the distributions of depth ratios for each generation,

while Figure 6.4 illustrates the distributions also for each generation but counted

back from the last generation. Note that it is not necessary for the index of the

last generation to be the same as the predefined maximum number of genera-

tions. However, for easy reading, we deliberately adjusted the index of the last

generation in a run to be the predefined maximum generation so that the right-

most column in each chart always has 50 data samples (as there is one GPP at the

last generation in each of the 50 runs).

As a result, a suitable way to interpret the information presented in these two

figures is to read the left half of each chart in Figure 6.3 for the early and middle

stages of evolution and the right half of each chart in Figure 6.4 for the middle

and later stages of evolution.

The rest of this section partitions the five GP systems into two groups and

analyses the changes of the distributions of depth ratios for all three problems in

each group.

6.6.3.1 GP systems using Standard, Partial-, Partial, and Partial+ Xovers

The first group consists of the four GP systems using Standard, Partial-, Partial,

and Partial+ Xovers. For the four GP systems, information of the distributions

172 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

EvePar SymReg BinCla

S
ta

n
d

a
rd

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations
D

ep
th

 r
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l–

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l+

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

F
u

ll

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

0 0.2 0.4 0.6 0.8 1

Figure 6.3: Distributions of depth ratios for GPPs involved in crossover along
evolution presented in grayplot and normalised within each generation. The
parent size limit is 31 nodes. Read the left half of each chart for the early and middle
stages.

6.6. DCP ANALYSIS 173

EvePar SymReg BinCla
S

ta
n

d
a

rd

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l–

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l+

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

F
u

ll

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

D
ep

th
 r

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

0 0.2 0.4 0.6 0.8 1

Figure 6.4: Distributions of depth ratios for GPPs involved in crossover along
evolution presented in grayplot and normalised within each generation. The
parent size limit is 31 nodes. The plot is against the number of generations before the
last generation. Read the right half of each chart for middle and later stages.

174 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

presented in grayplots is consistent with that presented in the boxplots but clari-

fies it in several important ways:

• For Standard Xover, the bottoms of parent program trees did receive no-

ticeable selection at a similar degree to other low depth ratios at the middle

and later stages of evolution for all the three problems, although the depth-

limiting code bloat control strategy was not used.

• The depth ratios were almost evenly distributed at the middle and later

stages of evolution when using Partial and Partial+ Xovers for SymReg but

not for BinCla (as in boxplots).

Furthermore, from Figures 6.3 and 6.4, in the middle and later stages of evo-

lution, the selection preference changes with increasing search intensity from

mainly below the depth ratios of 50% to a wider range but with different pref-

erences. However, the depth ratios in the (30%, 50%] range still received higher

preference than other ranges.

6.6.3.2 GP system using Full Xover

The distributions of depth ratios in the GP system using Full Xover significantly

differ from those in the other GP systems. The grayplots provide more precise

information about the distributions than the boxplots.

It is clear that the roots of parent program trees consistently received much

higher selection preference than nodes at other depths across the whole evolu-

tionary process for all the three problems.

However, from the last row of charts in Figure 6.4, the distributions of depth

ratios (except the depth ratio of 100%) in the middle and later stages of evolu-

tion are different between the three problems. For EvePar, depth ratios in the

(30%, 50%] range received higher selection preference. For BinCla, in addition to

the depth ratios in the (30%, 50%] range, the bottoms of parent program trees also

received higher selection preference. For SymReg, depth ratios in the (70%, 90%]

range received higher selection preference. According to the ways of calculating

and partitioning depth ratios, the pattern suggests that GPPs in SymReg may be

6.6. DCP ANALYSIS 175

much deeper than those in EvePar and BinCla. To verify the finding, it is neces-

sary to conduct further analysis of absolute depth of crossover points.

In summary, not only did the depth ratio analysis via grayplots support the

findings obtained via boxplots, it also provided more details of depth ratio pref-

erences than the boxplots.

6.6.4 Absolute depth of crossover point analysis via grayplot

Note that in the Figures 6.3 and 6.4, the depth ratios in the (0%, 10%], (50%, 60%],

and (90%, 100%) ranges have a very low frequency. This is probably an artifact of

the way the histogram bins were chosen. For example, if the height of all GPPs at

a generation is less than 10, then the depth ratios will never be in the (0%, 10%) or

(90%, 100%) ranges, regardless of where crossover points are. In addition, GPPs

at different evolutionary stages for different problems have different heights that

influence depth ratios. Therefore, further analysis of absolute depth of crossover

point is required to clarify the findings. This section visualises and analyses the

distributions of absolute depth of crossover points via grayplot.

For each experiment, we plotted distributions of DCPs (across all generations)

against the depth of parent GPPs in grayplot. Figure 6.5 illustrates the distribu-

tions in the five GP systems for each of the three problems. In each chart, the

x-axis is the depth of the parent program tree. The y-axis is the absolute depth of

crossover point where depth zero is deliberately set at the top in order to match

the plots in Figures 6.1, 6.3 and 6.4. The top horizontal line of data in the figure

represents the root crossover events and the diagonal line of data (where x = y)

represents crossover events involving the bottoms of parent program trees. Since

the median value tends to be less affected by outliers than the mean, Figure 6.5

also shows median values in linked squares to assist the visualisation.

It is clear that when a parent has zero depth (a single node program), the ab-

solute depth of crossover point must be zero as well. Therefore, the small square

at the topmost left corner in each chart is 100% dark. It is also clear that across

the five GP systems the parent program depths in SymReg are larger than those

in EvePar and BinCla. This might be because 75% of functions in SymReg are

unary functions; thus with the same number of nodes, trees in SymReg may be

176 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

EvePar SymReg BinCla

S
ta

n
d

a
rd

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

P
a

rt
ia

l–

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

P
a

rt
ia

l

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

P
a

rt
ia

l+

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

F
u

ll

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

Figure 6.5: Distributions of absolute depths of crossover points for GPPs in-
volved in crossover partitioned by parent depth and rescaled within each par-
tition. Median values are highlighted by linked squares. The parent size limit is
31 nodes and the maximum depth which appeared in the experiments is 21.

6.6. DCP ANALYSIS 177

sparser and deeper than those in EvePar and BinCla. This observation confirmed

the explanation of Full Xover having a higher preference of the (70%, 90%] range

in SymReg than EvePar and BinCla.

In the GP systems using Standard Xover for all the three problems (the first

row of charts in the figure), the bottom of shallow parent programs (less than five

depths) received stronger selection preference than deep parents. Recall that we

found the bottoms of parent program trees received noticeable selection prefer-

ence at the middle and later stages of evolution from the DCP analysis via gray-

plot. This observation may suggest that the fraction of shallow parent programs

was larger than deep parents at the middle and later stages of evolution. Also,

as the depths of parent programs increase, the range of the absolute depths of

crossover points starts to spread out randomly, shown by a wide area with similar

gray levels on and above the diagonal line in the charts, but with a bias towards

the bottoms of parent program trees, shown by the median value line being close

to the diagonal line in the charts. This pattern might suggest that GPPs of the

same depth may have different tree shapes but the number of nodes close to the

bottoms of program trees are larger than that at any one of the other depths.

As the search intensity increases, especially when Full Xover is used, the ab-

solute depths of crossover points become biased towards the roots of parent pro-

gram trees. This is shown by 1) the gray levels at the top horizontal line being

much darker than those at other areas, and 2) the median value line being close

to and even overlapping the top horizontal line of data in the charts. This pattern

applies to all three problems with some slight variations, which may be caused

by not having enough sample data in some groups of GPPs. For instance, in the

Full-Xover-BinCla chart, the number of GPPs of depth 13 is only six, of which

two GPPs have crossover points at depth zero, two GPPs have crossover points

at depth 10, one GPP has a crossover point at depth four, and another GPP has a

crossover point at depth eight, resulting in the median value of six.

The patterns of absolute depth of crossover point presented in this figure together

with the patterns of depth ratios obtained in previous sections suggest that:

• An effective depth-control strategy is problem-dependent and evolutionary

178 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

stage-dependent. Applying the same control scheme for any problem and

through the whole evolutionary process would not provide the most effec-

tive GP system. As tree shape is a consequence of different problems and

different evolutionary stages, it should be taken into account when devel-

oping an effective depth-control strategy.

• Crossover point selection preference is strongly biased to roots of parent

trees. This suggests that if parents could not find any better offspring after

several tries, simply choosing the root as the crossover point to effectively

retain parents in the search space may be more beneficial than selecting an

inappropriate crossover point which may lead the search to a worse space.

An appropriate offspring search intensity is worth further investigation.

• Crossover point selection preference is also biased to the bottoms of par-

ent program trees but less strongly than roots, and the preference becomes

biased to some ranges of depths between root and bottom as the depth

of the parent trees increases. This suggests that unequal-depth-selection-

probability strategies with a consideration of parent tree depth is a better

practice than equal-depth-selection probability strategies.

6.7 SSS Analysis

The previous section analysed the depth of crossover point. Except for the strong

preference for root nodes, it is not clear whether depth control by itself is suffi-

cient because the size of the subtree rooted at a crossover point at a given depth

could vary. Knowing distributions of the sizes of the substituted subtrees could

be useful for developing robust heuristics for selecting good crossover points.

This section conducts the analysis of substituted subtree sizes (SSS).

The section applies the same methodology used in the DCP analyses to the

SSS analyses based on two measures: subtree size ratio and absolute subtree size.

6.7. SSS ANALYSIS 179

6.7.1 Subtree size ratio analysis

The subtree size ratio is the number of nodes in the subtree rooted at a crossover

point in a parent as a fraction of the total number of nodes of the parent. Ac-

cording to the results of the DCP analysis, the frequencies of single-node subtrees

and whole program trees are worthy of attention in the SSS analysis. To make it

easier to identify single-node subtrees, we subtracted 1 from both the subtree and

parent sizes so that a single-node subtree always resulted in a subtree size ratio

of 0%. For the special case of a single-node parent, the ratio is defined to be 100%.

Figure 6.6 illustrates the distributions of subtree size ratios by generation along

evolution in 50 runs for the five GP systems (five rows) on the three problems

(three columns). The plots start from generation one. Figure 6.7 shows the distri-

butions against the number of generations before the last generation (the genera-

tion where the best-of-run solution appears first time).

6.7.1.1 GP system using Standard Xover

For Standard Xover, it is clear that leaf nodes have the highest selection prefer-

ence along evolution for all the three problems. Another interesting pattern in

Standard Xover is that there are some selection preference for the root nodes but

only in the early stage of evolution for all the three problems. This pattern may

be due to GPPs of shallow and sparse tree shapes, which give the roots relatively

high selection probabilities. These appeared relatively often in the early stage of

evolution but seldom after that.

To verify the hypothesis, we conducted a simple program tree shape analy-

sis. In each generation, we firstly grouped GPPs based on their maximum depth,

then partitioned the GPPs in each group by their sizes and calculated their fre-

quencies for each size. As Standard Xover chooses crossover point uniformly, we

can calculate the probability that the roots of GPPs are chosen as crossover points

based on these frequencies and the sizes of GPPs.

The analysis shows that there were very few GPPs whose maximum depth is

just one or two from generation 8 for all the three problems. The result indicates

that program trees become deep and bushy when the evolutionary process moves

180 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

EvePar SymReg BinCla

S
ta

n
d

a
rd

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations
R

at
io

 (
%

)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l–

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l+

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

F
u

ll

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

0 0.2 0.4 0.6 0.8 1

Figure 6.6: Distributions of subtree size ratios for GPPs involved in crossover
along evolution presented in grayplot and normalised within each generation.
The parent size limit is 31 nodes. Read the left half of each chart for the early and
middle stages.

6.7. SSS ANALYSIS 181

EvePar SymReg BinCla
S

ta
n

d
a

rd

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l–

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

P
a

rt
ia

l+

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

F
u

ll

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

Generations

R
at

io
 (

%
)

1 10 20 30 40 50

 100

(90,100)

 (80,90]

 (70,80]

 (60,70]

 (50,60]

 (40,50]

 (30,40]

 (20,30]

 (10,20]

 (0,10]

 0

0 0.2 0.4 0.6 0.8 1

Figure 6.7: Distributions of subtree size ratios for GPPs involved in crossover
along evolution presented in grayplot and normalised within each generation.
The parent size limit is 31 nodes. The plot is against the number of generations before
the last generation. Read the right half of each chart for middle and later stages.

182 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

on, resulting in the roots of program trees having a very low probability of being

selected as crossover points. This simple program tree shape analysis verified the

pattern found in Standard Xover.

As the search intensity increases, the roots of GPPs receive a higher selection

preference, not only in the early stage of evolution, but also extended to middle

and even later stages of evolution. In contrast, the selection preference for leaf

nodes decreases. Since we are particularly interested in the pattern in Full Xover,

the next section skips Partial-, Partial, and Partial+ Xovers and focuses only on

Full Xover.

6.7.1.2 GP system using Full Xover

For Full Xover, in EvePar, the subtree size ratios during the early stage of evolu-

tion are almost 100%, meaning the roots of GPPs (including single-node GPPs)

are selected most of the time. This is consistent with the findings obtained in the

DCP analysis. In addition, close to 50% of substituted subtrees are leaf nodes in

the later stage of evolution. In Figure 6.4, the non-root nodes were spread out

among the depth ratios from 0% to 50%; Figure 6.7 makes it clear that they were

almost all leaf nodes, though at different depths in the tree.

In SymReg, the substituted subtrees during the early stage of evolution are

mainly entire program trees or single-node subtrees with a slight bias to single-

node subtrees. In the middle and later stages of evolution, the pattern continues

though less strongly as small non-root and non-leaf subtrees raise to about 20%.

By examining the corresponding charts in Figures 6.3 and 6.4, we can see that

these small subtrees may appear at any depth.

In BinCla, the substituted subtrees during the early stage of evolution are also

mainly the entire program trees or single-node subtrees but with a clear bias to

the entire program trees and the pattern remains in the rest of evolution. By

examining the corresponding charts in Figures 6.3 and 6.4, we can see that some

of these leaf nodes appear around the middle depth of parent program trees.

The patterns discovered in the above SSS analyses suggests that the distribu-

tions of substituted subtree size ratios are more consistent across the problems

than the distributions of depth ratios, but are still somewhat evolutionary stage-

6.8. ANALYSIS OF ROOT CROSSOVER EVENTS 183

dependent. When designing a good crossover point selection strategy, combining

both subtree size and depth should be able to provide better performance than

using either alone.

6.7.2 Absolute subtree size analysis via grayplot

Figure 6.8 illustrates the distributions of absolute subtree size for GPPs involved

in crossover in the five GP systems for each of the three problems. In each chart,

the x-axis is the size of the parent program tree. The y-axis is the absolute subtree

size. Therefore, the bottom horizontal line of data in the figure represents the

leaf nodes being selected as crossover points and the diagonal line of data in the

figure represents the roots of parent program trees being selected.

Standard Xover randomly selects subtrees for crossover; the result is that the

distribution of SSS is governed merely by the shape of parent program trees. As

expected, there is a strong preference for small subtrees, especially subtrees of size

one: since the number of leaf nodes is generally about 50% of the total number

of nodes in a program tree, leaf nodes have a higher probability of being selected

[145]. Also as expected, there is a preference for smaller GPPs among the root

nodes (the diagonal line of data in the figure) because the root is more likely to be

selected in small trees.

As the search intensity increases and fitness is taken into account, the distri-

bution changes. Small subtree sizes are still common; however the proportion

of root crossover events increases. In the last row where Full Xover is used, the

preference for roots is much higher than in other rows. The median values are no

longer stuck on the subtree size of one but move towards the roots.

6.8 Analysis of Root Crossover Events

The roots of program trees were very frequently used for crossover by Full Xover.

Because the three different kinds of root crossover events (root-root, root-in, and

root-out) represent very different kinds of modifications to program, it is im-

portant to look at this category more carefully: root-root events are effectively

copying one of the parents; root-in events insert a whole program into the other

184 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

EvePar SymReg BinCla

S
ta

n
d

a
rd

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

P
a

rt
ia

l–

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

P
a

rt
ia

l

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

P
a

rt
ia

l+

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

F
u

ll

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

Figure 6.8: Distributions of absolute subtree sizes for GPPs involved in crossover
partitioned by parent size and rescaled within each partition. Median values are
highlighted by linked squares. The parent size limit is 31 nodes.

6.8. ANALYSIS OF ROOT CROSSOVER EVENTS 185

program; and root-out events extract a subtree as a new program.

Table 6.3 shows the average ratio of the number of each type of root crossover

events to the number of all crossover events involving GPPs, across 50 runs. This

is presented for Standard Xover and Full Xover on the three problems.

The relatively low ratio of root-out operations in all cases suggests that sub-

trees alone seldom outperform their parents2.

Table 6.3: Average ratio of the number of each type of root crossover events to
the number of all crossover events involving GPPs for Standard Xover and Full
Xover.

Xover Mode Xover Type EvePar SymReg BinCla

root-root 2.4 ± 1.2 2.1 ± 0.4 4.5 ± 4.1
standard root-in 7.9 ± 3.0 5.4 ± 0.8 17.3 ± 16.3

root-out 4.3 ± 2.1 1.8 ± 0.4 2.9 ± 3.1
root-root 66.6 ± 3.0 31.1 ± 1.5 34.7 ± 16.6

full root-in 14.9 ± 2.1 12.2 ± 2.6 21.6 ± 14.2
root-out 0.1 ± 0.3 2.0 ± 0.4 4.0 ± 3.8

From the table, when Standard Xover is used, there are not many copy-like

crossover operations. This is unsurprising due to its uniform random selection of

crossover points: the probability of the root of a parent being selected is relatively

low and the probability of the roots of two parents both being selected is even

lower. Note that for BinCla, since there was a larger proportion of GPPs of size

two, the ratios of root-root and root-in operations are both higher than that for

EvePar and SymReg.

In Full Xover, where the crossover operator is deterministic, a large proportion

of crossover operations are the same as copy operations. Nordin et al. demon-

strated that most crossover events in Standard Xover produce offspring with less

than half of the fitness of their parents [133, 134]. Our analyses show that even

using the best approximation of the optimal crossover operator, there are, on av-

erage, 67%, 31%, and 35% crossover events involving GPPs in EvePar, SymReg,

and BinCla respectively, in which no possible offspring are better than the par-

ents3. This result demonstrates that the ability of standard GP crossover to gen-

2This result also suggests that promotion mutation [163] might have advantages in some cases
but its effectiveness would be uncertain because in general its execution is controlled randomly,
not deterministically.

3Note, this assumes the use of a size-limiting bloat control strategy.

186 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

erate good offspring is far below what was expected.

Furthermore, the relatively large proportions of root-in crossover events for

the three problems show that good offspring can often be produced by using

one parent program to replace a subtree of the other. This would suggest that

the common technique of not including the root as a potential crossover point is

counter-productive. As mutation operators were not used in the experiments, a

further investigation is necessary to verify the finding.

6.8.1 Investigating the effect of high copy rate

It might be argued that similar search performance could be achieved by increas-

ing the copy rate deliberately while decreasing the crossover rate. We conducted

experiments to test this. In order to determine what the copy rate should be, it

was necessary to explore how the three types of root crossover events and the

normal crossover event are distributed in different-sized parent programs.

Figures 6.9 and 6.10 illustrate the distribution of the three types of root crossover

events and the normal subtree-subtree crossover event in terms of absolute occur-

rences and relative ratios over the 31 different-sized parent programs respectively

for Standard Xover and Full Xover.

EvePar SymReg BinCla

S
ta

n
d

a
rd

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Parent Size

O
cc

ur
re

nc
e

root−root
root−in
root−out
normal

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Parent Size

O
cc

ur
re

nc
e

root−root
root−in
root−out
normal

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Parent Size

O
cc

ur
re

nc
e

root−root
root−in
root−out
normal

F
u

ll

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Parent Size

O
cc

ur
re

nc
e

root−root
root−in
root−out
normal

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

4

Parent Size

O
cc

ur
re

nc
e

root−root
root−in
root−out
normal

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

Parent Size

O
cc

ur
re

nc
e

root−root
root−in
root−out
normal

Figure 6.9: Distribution of absolute occurrences of the three types of root
crossover events and the normal crossover event (subtree-subtree) in GPPs for
Standard Xover and Full Xover.

6.8. ANALYSIS OF ROOT CROSSOVER EVENTS 187

EvePar SymReg BinCla

S
ta

n
d

a
rd

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Parent Size

R
at

io
(%

)

root−root
root−in
root−out
normal

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Parent Size

R
at

io
(%

)

root−root
root−in
root−out
normal

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Parent Size

R
at

io
(%

)

root−root
root−in
root−out
normal

F
u

ll

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Parent Size

R
at

io
(%

)

root−root
root−in
root−out
normal

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Parent Size

R
at

io
(%

)

root−root
root−in
root−out
normal

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Parent Size

R
at

io
(%

)

root−root
root−in
root−out
normal

Figure 6.10: Distribution of the relative ratios of the three types of root
crossover events and the normal crossover event (subtree-subtree) in GPPs to
total crossover events in GPPs for Standard Xover and Full Xover.

The figures show that the absolute occurrences of the three types of root crossover

events and the normal crossover event vary with different-sized parent programs,

but the relative ratios do show some patterns. It appears that when Standard

Xover is used, the distributions are very similar for different problems. The per-

centage of root crossover events is not large. Most of the root crossover events

occur on smaller-sized parent programs. This is understandable as the smaller

size the parent is, the higher probability the root is chosen. The distributions

are theoretically predictable since in a program the probability of a node being

chosen as a crossover point is just a function of the program size.

When Full Xover is used, the copy-like crossover operations are significantly

biased to smaller-sized parent programs but also occur very often, about 30%

to 40%, on larger-sized parent programs. EvePar’s distribution is quite smooth.

SymReg’s distribution is mostly constant. BinCla’s distribution fluctuates be-

tween parents of sizes in the range from 20 to 30 but the fluctuation is around

40%. Another interesting finding is that most of the root-in crossover events in-

volve parent programs of sizes less than 20. This might be a consequence of the

size-limiting bloat control method, which prevented crossover from using pro-

grams of large sizes. However, it might be also because these small-sized parents

are probably good high-level features or building blocks. It would be very inter-

188 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

Table 6.4: Modified parameters in HighCopy-Full.

EvePar SymReg BinCla

Crossover Rate 55% 65% 65%
Copy Rate 45% 35% 35%

esting to investigate the underlying reasons further.

When designing further investigations of the utility of increasing the copy

rate, we took into consideration the results of the previous chapter, which showed

that the parent selection pressure should be turned off when applying high off-

spring selection pressure (i.e. applying the Full Xover) in order to avoid being

confined in local optima. Therefore, our further investigation used a baseline of

the GP system using Full Xover with the low copy rate (LowCopy-Full) and a

tournament size of one. We compared this to another GP system HighCopy-Full,

which had a higher copy rate and a lower crossover rate. The parameters were

modified according to the approximate lower bound of the portions of the copy-

like crossover events, namely 40%, 30% and 30% for EvePar, SymReg, and BinCla

respectively. Details are shown in Table 6.4.

We conducted the same experiments on the three problems using HighCopy-

Full. Table 6.5 shows its performance measures and the average number of gen-

erations required.

Table 6.5: Performance measure and generations required in HighCopy-Full.

EvePar SymReg BinCla

Performance 4 4.5 ± 4.8 4.6 ± 1.5
Generations Required 14 ± 2 28 ± 5 7 ± 4

From the table, the performance measure of HighCopy-Full was slightly worse

than that of LowCopy-Full for EvePar and SymReg but was similar to that for Bin-

Cla (compared to Table 6.1). The numbers of generations required in HighCopy-

Full were similar to that in LowCopy-Full (compared to Table 6.2). We also vi-

sualised the distributions of absolute subtree sizes of GPPs and the distributions

of the three types of root crossover events and the normal crossover event in

HighCopy-Full and observed that they were very similar to that in LowCopy-

Full respectively.

6.9. DISCUSSION OF IMPACT OF SIZE LIMITING ON 189

The results showed that HighCopy-Full could provide comparable perfor-

mance to LowCopy-Full but was more efficient than LowCopy-Full. By reducing

the crossover rate, some of the time-consuming copy-like crossover operations

were replaced with low-cost copy operations. However, some other crossover

operations were also replaced with copy operations due to random decisions on

performing crossover on chosen parents. In order to effectively and efficiently

determine whether none of the offspring is better than their parents so that a di-

rect copy operation can be performed, other directions should be taken, such as

examining the performance profiles of chosen parents before crossing them over.

6.9 Discussion of Impact of Size Limiting on

Crossover Point Selection

In our experiments, the crossover point selections are affected by the size-limit

method used for controlling the code bloat issue in GP. When parent sizes are

close to even half the predefined size-limit, the position of the node selected in

one parent may constrain the positions of possible crossover points in the other.

Although Full Xover is supposed to explore all possible crossover points in

a given pair of parents, the actual number of crossover points considered will

generally be smaller. In contrast, the impact of the size-limit method on the

crossover point selection in Standard Xover should be smaller since the proba-

bility of choosing a node close to the root of a parent tree is low. Therefore, the

observations and findings obtained from the experiments with the size-limit of

31 nodes are artificially biased, and the bias increases as the search intensity in-

creases. The question is whether this bias is significant.

To answer this question and to verify the outcomes obtained, we conducted

additional sets of experiments without using the size-limit. Certainly, the code

bloated in the new experiments, especially for Full Xover. To deal with this, we

terminated a run when the size of each program in a population was significantly

bigger than 31 (for instance, 127 nodes) and the situation lasted for ten genera-

tions. Finally we measured the performance in the new experiments and anal-

ysed the DCP and the SSS of GPPs whose sizes are no more than 31 nodes.

190 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

Table 6.6 shows the performance measures in the new experiments for the

three problems respectively. For EvePar and SymReg, the performance trends

in GP systems using different crossover modes are consistent with these in the

experiments with the size-limiting. For BinCla, a slight difference exists between

the two sets of experiments. The test error rate comparison result between the GP

systems using Partial- and Partial+ Xovers in the new experiments are opposite to

that in the experiments with the size-limiting, but the differences between them

are very small. Overall, the performance trends in two sets of experiments are

consistent.

Table 6.6: Performance comparison.

Xover EvePar SymReg BinCla
Mode Failure RMS Error Test Error Rate (%)

Standard 48 38.3 ± 8.2 5.3 ± 1.6
Partial– 34 21.7 ± 7.2 4.4 ± 1.5
Partial 4 6.1 ± 3.4 4.7 ± 1.4

Partial+ 0 1.3 ± 1.9 4.9 ± 1.5
Full 0 0.1± 0.1 4.5 ± 1.3

Figures 6.11 and 6.12 illustrate the distributions of absolute depths of crossover

points and absolute subtree sizes for GPPs involved in crossover in the five GP

systems for the three problems. GPPs whose sizes are larger than 31 nodes are

filtered out. The frequency calculation and the rescale method are the same as

those used in the previous DCP and SSS analyses for the experiments with the

size-limiting.

By comparing these two figures with Figures 6.5 and 6.8 respectively, we no-

ticed some variations between them. However, the variations are very small,

especially in Full Xover, and mainly related to few outlier parent programs of the

largest depth or size, giving limited impact on the overall consistency between

the two sets of experiments.

In summary, the distributions of absolute depths of crossover points and ab-

solute subtree sizes obtained in the two sets of experiments are consistent. The

impact of the size-limiting method on the findings obtained is negligible.

6.9. DISCUSSION OF IMPACT OF SIZE LIMITING ON 191

EvePar SymReg BinCla

S
ta

n
d

a
rd

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

P
a

rt
ia

l–

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

P
a

rt
ia

l

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

P
a

rt
ia

l+

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

F
u

ll

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

Parent Depth

D
ep

th
 o

f C
ro

ss
ov

er
 P

oi
nt

0 5 10 15 20

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

Figure 6.11: Distributions of absolute depths of crossover points for GPPs in-
volved in crossover partitioned by parent depth and rescaled within each parti-
tion. Median values are highlighted by linked squares. GPPs of sizes larger than
31 nodes are filtered out.

192 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

EvePar SymReg BinCla

S
ta

n
d

a
rd

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

P
a

rt
ia

l–

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

P
a

rt
ia

l

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

P
a

rt
ia

l+

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

F
u

ll

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Parent Size

S
ub

tr
ee

 S
iz

e

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

Figure 6.12: Distributions of absolute subtree sizes for GPPs involved in
crossover partitioned by parent tree size and rescaled within each partition. Me-
dian values are highlighted by linked squares. GPPs of sizes larger than 31 nodes
are filtered out.

6.10. CHAPTER SUMMARY 193

6.10 Chapter Summary

This chapter conducted analyses of the depth of crossover point and the substi-

tuted subtree size in GPPs to investigate general heuristics for reducing the off-

spring search space. It presented four approximations of the optimal crossover

operator and identified the most effective one based on the experiments on three

problems in different domains. The DCP and SSS analysis results from the GP

systems using the standard crossover and the four simulations of the optimal

crossover operators, especially Full Xover, provided the following findings and

heuristics:

• When the root of a program tree is allowed to be a crossover point, the

analyses of the best approximation show that good crossover events have a

strong preference for whole program trees, and (less strongly) single-node

or small subtrees that are at the bottoms of parent program trees. There-

fore, a good depth control strategy should have unequal rather than equal

probabilities.

• The distributions of subtree size ratios are more consistent across different

problems than the distributions of depth ratios, but are still evolutionary

stage-dependent, as are the depth ratios. Taking into account both depth

and subtree size in designing crossover point selection strategies should

provide better performance in reducing offspring search space than should

using either alone.

In addition, this chapter also provided some other interesting findings from

the analysis:

• If a pair of given parents could not produce better offspring after a suffi-

cient number of tries, a GP system should retain parents in the search space

rather than select compromised crossover points that may lead the search

nowhere.

• From the literature, the standard crossover operator has been shown to be

destructive but there is no clear quantitative description of how destructive

194 CHAPTER 6. CONSTRAINING OFFSPRING SEARCH SPACE

it is. In our experiments, according to the analyses of Full Xover, the ability

of standard GP crossover to generate good offspring has been quantified for

given problems and is far below what was expected.

• Having the root as a potential crossover point and assigning it a high selec-

tion probability is beneficial because it enables an entire program tree to be

used as a building block or a high-level new feature in other programs.

Note that all these findings are based on the experiments using the size-limiting

bloat control method. Although this chapter has demonstrated that the impact of

the size-limiting bloat control method appears to be very small, it would still be

useful to test these findings using different bloat control methods as listed in [34].

Furthermore, as in the previous chapter, mutation operators were not used

in all experiments. It would be necessary to verify the findings by including

mutation operators, as well as disallowing roots to be potential crossover points,

in the future.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Genetic programming, one of the metaheuristic search methods in evolutionary

algorithms, is based on the Darwinian natural selection theory. “Survival of the

fittest” has driven EAs since the 1950s and many selection mechanisms have been

developed. However, how to select parent states and how to move within the

immediate neighbourhood search space of given parent states remain important

open issues. The overall goal of the thesis was to analyse selection behaviour for

building an effective and efficient tree-based GP system.

This thesis has achieved its overall goal. It provided a detailed understanding

of selection through analyses of the selection process in tree-based GP, covering

both parent and offspring selection. It developed three novel methods and of-

fered some guidance on improving GP search effectively and efficiently.

7.1.1 General Conclusions

The thesis showed that population size is not a factor when determining tourna-

ment size for an intended parent selection pressure. It clarified that the multi-

sampled and the not-sampled issues are not critical in standard tournament se-

lection. It showed that a promising way to tune parent selection pressure dy-

namically and automatically along evolution is to use the knowledge of FRD of

a population, instead of using different sampling replacement strategies. It ob-

195

196 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

served that premature convergence occurs more often when stochastic elements

are removed from both parent and offspring selection processes, and concluded

that it is better to apply high offspring selection pressure while using low parent

selection pressure.

The thesis also developed three novel methods. The clustering tournament

selection method can tune parent selection pressure automatically and dynami-

cally along evolution. The Ejit (evaluated-just-in-time) method can save fitness

evaluation cost for standard tournament selection using small tournament sizes.

It is a natural, simple and effective method requiring neither extra memory nor

any pre- or post- processes like EMS-EA or BC-EA. The heuristic fitness-case-

equivalence population clustering method can also save fitness evaluation cost

and exceeds the limitations of Ejit. It can take advantage of the clustering tourna-

ment selection and is independent of tournament sizes.

Furthermore, the thesis indicated that a significant reduction in fitness eval-

uation cost in the parent selection phase could be achieved if correlates of GPPs

(good predecessor programs) can be identified. It also observed that good cross-

over events have a strong preference for whole program trees, and (less strongly)

single-node or small subtrees that are at the bottom of parent program trees. It

suggested that considering both depth and subtree size should be able to pro-

vide better performance in reducing offspring search space than should the use

of either alone.

7.1.2 Specific Conclusions

The five research questions given in Chapter 1 (on page 3) are answered below:

1. How should parent selection pressure be properly controlled?

As tournament selection is the most commonly used parent selection scheme

in GP, answering this question requires an understanding of the relationship

between population size, tournament size, and selection pressure, as well as

the multi-sampled, the not-sampled, and the high between-group selection

pressure issues in standard tournament selection.

The thesis conducted an extensive analysis via modelling and visualisation

7.1. CONCLUSIONS 197

to reveal the working of standard tournament selection. It showed that se-

lection pressure is controlled mainly by tournament size and is aggravated

by a skewed FRD (fitness rank distribution), but is independent of popula-

tion size. As a result, it is not necessary to take into account population size

when designing an intended parent selection pressure.

The thesis investigated the multi-sampled and the not-sampled issues in

standard tournament selection through simulations and experiments and

showed that these two issues are not critical to the selection behaviour in

standard tournament selection. Different sampling replacement strategies

have little impact on the parent selection pressure and cannot tune selection

pressure in dynamic evolution.

The thesis analysed the high between-group selection pressure issue in stan-

dard tournament selection and showed that it is part of the general dynamic

evolutionary learning process. Parent selection pressure needs to be con-

trolled dynamically and automatically along evolution in order to improve

the search performance. The thesis developed the clustering tournament se-

lection method that takes knowledge of FRD at each generation and tunes

parent selection pressure to meet the requirements of the dynamic evolu-

tionary learning process.

2. How can the cost of fitness evaluation in the parent selection process be

minimised?

The thesis showed that the not-sampled characteristic of standard tourna-

ment selection (with low selection pressure) can be used to reduce the fit-

ness evaluation cost in the parent selection phase through a novel, passive,

and simple evaluation algorithm called Ejit. The thesis also showed that

population can be clustered to reduce the fitness evaluation cost while tak-

ing advantage of the clustering tournament selection and avoiding the lim-

itation of using small tournament sizes as in Ejit. Furthermore, the thesis

conducted an initial analysis on the feasibility of using GPPs to minimise

the fitness evaluation cost and indicated that the efficiency of parent selec-

tion could be improved as much as possible if correlates of GPPs can be

198 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

identified.

3. How does applying offspring selection together with a parent selection

mechanism affect GP search results?

The thesis conducted two sets of experiments to investigate the impact of

offspring selection on the overall GP search performance in the context of

using only crossover operators. Six different combinations of parent and

offspring selection pressure configurations were tested. The thesis showed

that applying selection pressure towards good offspring is better than no

offspring selection pressure, but GP systems end up with premature conver-

gence more often when applying high offspring selection pressure together

with parent selection pressure.

4. How should parent selection pressure and offspring selection pressure

be configured in order to significantly improve the effectiveness of GP

search?

Applying selection pressure means reducing stochastic elements in GP search.

Based on the experimental results for answering the previous research ques-

tion, the thesis showed that stochastic elements cannot be removed in both

the parent selection process and the breeding process. Increasing offspring

selection pressure must be coupled with a decreased parent selection pres-

sure. The total amount of stochastic elements in GP search must be kept at

a certain level. The thesis showed that it is preferable to take stochastic el-

ements away from offspring selection instead of from parent selection. The

thesis also showed that a good practice of configuring parent and offspring

selection pressure is to have high offspring selection pressure and low par-

ent selection pressure.

5. How can the exploration of good offspring search space be constrained

structurally in order to minimise the fitness evaluation cost in the off-

spring selection process?

The thesis focused on two aspects of program structure — the depth of

crossover point and the substituted subtree size — to analyse good crossover

7.1. CONCLUSIONS 199

events which were extracted from several simulations of the optimal cross-

over operator. When the root of a program tree is allowed to be a potential

crossover point, the thesis showed that good crossover events have a strong

preference for the root, and (less strongly) single-node or small subtrees that

are at the bottom of parent program trees. The thesis also showed that the

distributions of subtree size ratios are more consistent across different prob-

lems than the distributions of depth ratios, but that both are evolutionary

stage-dependent. Therefore, a good heuristic for efficiently searching good

offspring is to combine both unequal-probability depth and small subtree

size strategies to reduce crossover search space.

The thesis also obtained several other interesting findings from the analyses

which are highlighted below:

• It is well-known that the standard crossover operator can be destructive in

GP. The thesis demonstrated that even using the best approximation of the

optimal crossover operator, in over 30% of crossover events (over 60% for

some problems) involving GPPs, none of the possible offspring was bet-

ter than the parents. These results showed that the ability of standard GP

crossover to generate good offspring is far below what was expected and it

is even more destructive than is generally recognised.

• According to the usual definition of crossover, the root of a program tree

is excluded from potential crossover points. The thesis showed that hav-

ing the root as a potential crossover point and assigning it a high selection

probability is beneficial because it enables an entire program tree to be used

as a building block or a high-level new feature in other programs.

• When stochastic elements are preserved in parent selection, the thesis showed

that if a pair of given parents could not produce any better offspring after a

sufficient number of tries, a GP system should retain the parent states in the

search space instead of directing the search to worse states.

200 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Future Work

This section highlights the most significant directions for future work.

7.2.1 Investigating heuristics for developing robust population

clustering algorithms

Chapter 3 showed a promising method for optimising parent selection pressure

dynamically and automatically. In order to use the method, the population must

be clustered in advance. Some problems may require clustering populations

based on exact program structure and content; some problems may require clus-

tering populations based on fitness precisely; and some problems may require

clustering populations based on fitness in a fuzzier manner. An interesting di-

rection for future work is to investigate heuristics to guide and develop robust

population clustering algorithms for different kinds of problems.

7.2.2 Investigating a way to determine GPPs

Chapter 4 analysed the feasibility of using GPPs to increase parent selection ef-

ficiency and showed that the number of GPPs is smaller than 4% of the total

evaluated programs in some cases. The parent fitness evaluation cost could be

reduced as much as possible without affecting the effectiveness of GP search if

GPPs could be identified in advance. Although it is challenging to identify GPPs

directly without evaluating populations, an attractive idea for future work is to

find correlates of GPPs in order to identify them with minimal cost.

7.2.3 Investigating an appropriate offspring search intensity

Chapter 5 showed that a good practice for optimising GP search performance is

to combine high offspring selection pressure with low parent selection pressure.

It is fine to set parent selection pressure as low as random but it is not necessary to

use the highest offspring search intensity to search every immediate neighbour-

hood state of given parents, especially in a resource-limited GP search. Chapter

5 showed that a good practice is to search in a subset of all possible immediate

7.2. FUTURE WORK 201

neighbourhood states. Implementing this will require investigating appropriate

levels of offspring search intensity in the context of a resource-limited GP process.

7.2.4 Investigating correlations between crossover point depth

and substituted subtree size via tree shape analysis

For a binary tree, no matter whether it is a full tree or not, the number of leaf

nodes is always around 50% of the total number of nodes. However, leaf nodes

can appear at any depth if the tree is not a full balanced tree. For trees includ-

ing unary functions and functions with more than two arguments, the situation

becomes more complicated. Therefore, for improving the standard crossover, ad-

justing the depth of crossover point by assigning probabilities (equal or unequal)

to each depth without considering the shape of a program tree would not be sen-

sible, and may produce the same outcome as does the standard crossover.

If

x If y

Sqrt Abs Sin

x y z

Figure 7.1: A sample program tree with same number of nodes at each depth
(except the root).

For instance, for the parent program tree shown in Figure 7.1, if the root is

not a possible crossover point, using the standard crossover, each node has the

same probability of being selected as the crossover point and the probability of

selecting a leaf node is 50%. If equal probability is assigned to each depth, then all

nodes (except for the root) will still have the same probability of being selected,

producing the same outcome as the standard crossover. If different probabili-

ties are assigned to different depths, for instance giving even heavier weights to

202 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

higher nodes in a program tree, this should normally reduce the probability of

selecting leaf nodes. However, in this shape tree, if giving 45% to depth one, 30%

to depth two, and 25% to depth three, it even increases the probability of selecting

leaf nodes (55%) compared with the standard crossover.

Therefore, future work needs to analyse tree shape to further investigate corre-

lations between the depths and the substituted subtree sizes of preferred crossover

points in order to clarify factors to guide crossover point selection.

7.2.5 Investigating impacts of mutation operators

Chapter 5 and Chapter 6 both focused only on crossover to investigate research

questions. It might be possible to obtain different experimental results and find-

ings if taking into consideration mutation operators. To verify the findings and

conclusions presented in Chapters 5 and 6, future work should conduct further

experiments using different mutation operators with various mutation rates.

Bibliography

[1] ABRAMOWITZ, M., AND STEGUN, I. A., Eds. Handbook of Mathematical

Functions. Dover, New York, 1965.

[2] AGNELLI, D., BOLLINI, A., AND LOMBARDI, L. Image classification: an

evolutionary approach. Pattern Recognition Letters 23, 1-3 (2002), 303–309.

[3] AKYOL, A., YASLAN, Y., AND EROL, O. K. A genetic programming clas-

sifier design approach for cell images. In Proceedings of the 9th European

Conference on Symbolic and Quantitative Approaches to Reasoning with Uncer-

tainty, ECSQARU (Hammamet, Tunisia, Oct. 31 - Nov. 2 2007), K. Mellouli,

Ed., vol. 4724 of Lecture Notes in Computer Science, Springer, pp. 878–888.

[4] ALTENBERG, L. Emergent phenomena in genetic programming. In Proceed-

ings of the Third Annual Conference on Evolutionary Programming (1994), A. V.

Sebald and L. J. Fogel, Eds., World Scientific, pp. 233–241.

[5] ANDRE, D. The evolution of agents that build mental models and create

simple plans using genetic programming. In Genetic Algorithms: Proceedings

of the Sixth International Conference (ICGA95) (Pittsburgh, PA, USA, 15-19

July 1995), L. Eshelman, Ed., Morgan Kaufmann, pp. 248–255.

[6] ANDREAE, P., XIE, H., AND ZHANG, M. Genetic programming for detect-

ing rhythmic stress in spoken english. International Journal of Knowledge-

Based and Intelligent Engineering Systems. Special Issue on Genetic Program-

ming. 12, 1 (2008), 15–28.

[7] ANDREWS, M., AND PRAGER, R. Genetic programming for the acquisition

of double auction market strategies. In Advances in Genetic Programming,

K. E. Kinnear, Jr., Ed. MIT Press, 1994, ch. 16, pp. 355–368.

203

204 BIBLIOGRAPHY

[8] ANGELINE, P. J. An investigation into the sensitivity of genetic program-

ming to the frequency of leaf selection during subtree crossover. In Genetic

Programming 1996: Proceedings of the First Annual Conference (Stanford Uni-

versity, CA, USA, 1996), J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.

Riolo, Eds., MIT Press, pp. 21–29.

[9] ANGELINE, P. J. Two self-adaptive crossover operators for genetic pro-

gramming. In Advances in Genetic Programming 2, P. J. Angeline and K. E.

Kinnear, Jr., Eds. MIT Press, Cambridge, MA, USA, 1996, ch. 5, pp. 89–110.

[10] ANGELINE, P. J. Subtree crossover: Building block engine or macromuta-

tion? In Genetic Programming 1997: Proceedings of the Second Annual Confer-

ence (7 1997), pp. 9–17.

[11] ANGLUIN, D. Computational learning theory: survey and selected bibliog-

raphy. In Proceedings of the twenty-fourth annual ACM symposium on Theory

of computing (Victoria, British Columbia, Canada, 1992), ACM, pp. 351–369.

[12] BALAZS, M. E., AND RICHTER, D. L. A genetic algorithm with dynamic

population: Experimental results. In Late Breaking Papers at the 1999 Ge-

netic and Evolutionary Computation Conference (Orlando, Florida, USA, 13

July 1999), S. Brave and A. S. Wu, Eds., pp. 25–30.

[13] BALDI, P., AND BRUNAK, S. Bioinformatics: The Machine Learning Approach,

2 ed. MIT Press, 2001.

[14] BANZHAF, W., NORDIN, P., KELLER, R., AND D. FRANCONE, F. Genetic

Programming – An Introduction; On the Automatic Evolution of Computer Pro-

grams and its Applications. Morgan Kaufmann, San Francisco, CA, USA,

1998.

[15] BäCK, T. Selective pressure in evolutionary algorithms: A characteriza-

tion of selection mechanisms. In Proceedings of the First IEEE Conference on

Evolutionary Computation. (1994), pp. 57–62.

[16] BEYER, H.-G. The theory of Evolution Strategies. Springer, 2001.

BIBLIOGRAPHY 205

[17] BIRGE, L., AND ROZENHOLC, Y. How many bins should be put in a regular

histogram. European Series in Applied and Industrial Mathematics: Probability

and Statistics 10 (2006), 24–45.

[18] BLICKLE, T., AND THIELE, L. A mathematical analysis of tournament selec-

tion. In Proceedings of the Sixth International Conference on Genetic Algorithms

(1995), pp. 9–16.

[19] BLICKLE, T., AND THIELE, L. A comparison of selection schemes used in

evolutionary algorithms. Evolutionary Computation 4, 4 (1997), 361–394.

[20] BOX, G., HUNTER, S., AND HUNTER, W. G. Statistics for Experimenters:

Design, Innovation, and Discovery, 2nd ed. John Wiley, 2005.

[21] BRAMEIER, M., BANZHAF, W., AND INFORMATIK, F. A comparison of

linear genetic programming and neural networks in medical data mining.

IEEE Transactions on Evolutionary Computation 5 (2001), 17–26.

[22] BRANKE, J., ANDERSEN, H. C., AND SCHMECK, H. Global selection meth-

ods for SIMD computers. In Proceedings of the AISB96 Workshop on Evolu-

tionary Computing (1996), pp. 6–17.

[23] BRINDLE, A. Genetic algorithms for function optimisation. PhD thesis, Depart-

ment of Computing Science, University of Alberta, 1981.

[24] BULMER, M. The Mathematical Theory of Quantitative Genetics. Oxford Uni-

versity Press, Oxford, UK, 1980.

[25] BURKE, E., GUSTAFSON, S., AND KENDALL, G. A survey and analysis of

diversity measures in genetic programming. In Proceedings of Genetic and

Evolutionary Computation Conference (2002), pp. 716–723.

[26] CASTILLO, F., KORDON, A., SWEENEY, J., AND ZIRK, W. Using genetic

programming in industrial statistical model building. In Genetic Program-

ming Theory and Practice II, U.-M. O’Reilly and et al, Eds. Springer, 2006,

ch. 3, pp. 31–48.

206 BIBLIOGRAPHY

[27] CHAN, K. Y., AYDIN, M. E., AND FOGARTY, T. C. New factorial design the-

oretic crossover operator for parametrical problem. In Genetic Programming,

Proceedings of EuroGP’2003 (2003), C. Ryan, T. Soule, M. Keijzer, E. Tsang,

R. Poli, and E. Costa, Eds., vol. 2610 of LNCS, Springer, pp. 22–33.

[28] CHELLAPILLA, K. Evolving computer programs without subtree crossover.

IEEE Transactions on Evolutionary Computation 1, 3 (Sept. 1997), 209–216.

[29] CHEN, Y., HU, J., HIRASAWA, K., AND YU, S. Gars: an improved genetic

algorithm with reserve selection for global optimisation. In Proceedings of

Genetic and Evolutionary Computation Conference (2007), pp. 1173–1178.

[30] CHEN, Y., HU, J., HIRASAWA, K., AND YU, S. Solving deceptive problems

using a genetic algorithm with reserve selection. In Proceedings of IEEE

Congress on Evolutionary Computation (2008), pp. 884–889.

[31] CIESIELSKI, V., AND MAWHINNEY, D. Prevention of early convergence in

genetic programming by replacement of similar programs. In Proceedings of

the 2002 Congress on Evolutionary Computation (2002), IEEE Press, pp. 67–72.

[32] CORTES, C., AND VAPNIK, V. Support-vector network. Machine learning 20

(1995), 273–297.

[33] COUCHET, J., MANRIQUE, D., RIOS, J., AND RODRIGUEZ-PATON, A.

Crossover and mutation operators for grammar-guided genetic program-

ming. Soft Computing - A Fusion of Foundations, Methodologies and Applica-

tions 11, 10 (2007), 943–955.

[34] DA SILVA, S. G. O. Controlling Bloat: Individual and Population Based Ap-

proaches in Genetic Programming. PhD thesis, University of Coimbra, 2008.

[35] DARK, G. On-line medical dictionary, 2005.

[36] DE JONG, K. Parameter setting in eas: a 30 year perspective. In Parameter

Setting in Evolutionary Algorithms. Springer, 2007, pp. 1–18.

[37] DE SA, L. B., AND MESQUITA, A. Evolutionary synthesis of low-sensitivity

equalizers using adjacency matrix representation. In Proceedings of the 10th

BIBLIOGRAPHY 207

annual conference on Genetic and evolutionary computation (Atlanta, GA, USA,

12-16 July 2008), M. Keijzer, G. Antoniol, C. B. Congdon, K. Deb, B. Doerr,

N. Hansen, J. H. Holmes, G. S. Hornby, D. Howard, J. Kennedy, S. Kumar,

F. G. Lobo, J. F. Miller, J. Moore, F. Neumann, M. Pelikan, J. Pollack, K. Sas-

try, K. Stanley, A. Stoica, E.-G. Talbi, and I. Wegener, Eds., ACM, pp. 1283–

1290.

[38] DE SANTOS, P. G., GARCIA, E., AND ESTREMERA, J. Quadrupedal Locomo-

tion: An Introduction to the Control of Four-legged Robots, 1 ed. Springer, June

2006.

[39] DEFOIN PLATEL, M., CLERGUE, M., AND COLLARD, P. Maximum homol-

ogous crossover for linear genetic programming. In Genetic Programming,

Proceedings of EuroGP’2003 (2003), C. Ryan, T. Soule, M. Keijzer, E. Tsang,

R. Poli, and E. Costa, Eds., vol. 2610 of LNCS, Springer, pp. 194–203.

[40] D’HAESELEER, P. Context preserving crossover in genetic programming.

In Proceedings of the 1994 IEEE World Congress on Computational Intelligence

(Orlando, Florida, USA, 27-29 1994), vol. 1, IEEE Press, pp. 256–261.

[41] DORIGO, M. Optimization, Learning and Natural Algorithms. PhD thesis,

Politecnico di Milano, Italy, 1992.

[42] EIBEN, A. E., AND SCHIPPERS, C. A. On evolutionary exploration and

exploitation. Fundamenta Informaticae 35, 1-4 (1998), 35–50.

[43] EIBEN, A. E., AND SMITH, J. E. Introduction to Evolutionary Computing.

Springer, 2003.

[44] EKáRT, A., AND NéMETH, S. Z. Maintaining the diversity of genetic pro-

grams. In Proceedings of the 5th European Conference on Genetic Programming

(London, UK, 2002), Springer, pp. 162–171.

[45] ENACHE, R., SENDHOFF, B., OLHOFER, M., AND HASENJÄGER, M. Com-

parison of steady-state and generational evolution strategies for parallel ar-

chitectures. In Parallel Problem Solving from Nature – PPSN VIII (2004), X. Yao

et al., Eds., Lecture Notes in Computer Science 3242, Springer, pp. 253–262.

208 BIBLIOGRAPHY

[46] FERNANDEZ, F., TOMASSINI, M., AND VANNESCHI, L. Saving computa-

tional effort in genetic programming by means of plagues. In Proceedings

of the 2003 IEEE Congress on Evolutionary Computation (Canberra, 8-12 Dec.

2003), R. Sarker and et al, Eds., IEEE Press, pp. 2042–2049.

[47] FERREIRA, C. Gene expression programming: a new adaptive algorithm

for solving problems. COMPLEX SYSTEMS 13 (2001), 87.

[48] FILIPOVIć , V., KRATICA, J., TOs̆Ić, D., AND LJUBIć, I. Fine grained tour-

nament selection for the simple plant location problem. In 5th Online

World Conference on Soft Computing Methods in Industrial Applications (2000),

pp. 152–158.

[49] FISHER, D. H., PAZZANI, M., AND LANGLEY, P., Eds. Concept Forma-

tion: Knowledge and Experience in Unsupervised Learning. Morgan Kaufmann,

1991, ch. 1, p. 12.

[50] FOGEL, L. J., OWENS, A. J., AND WALSH, M. J. Artificial Intelligence through

Simulated Evolution. John Wiley, 1966.

[51] FRANCONE, F. D. Discipulus Owner’s Manual. Freely available on the Web

at the page http://www.aimlearning.com/TechnologyOverview.

htm, 2000.

[52] FRANCONE, F. D. Discipulus owner’s manual, 2004.

[53] GATHERCOLE, C. An Investigation of Supervised Learning in Genetic Program-

ming. PhD thesis, University of Edinburgh, 1998.

[54] GATHERCOLE, C., AND ROSS, P. Dynamic training subset selection for

supervised learning in genetic programming. In In Yuval Davidor, Hans-Paul

Schwefel, and Reinhard Manner, editors, Parallel Problem Solving from Nature III

(1994), Springer-Verlag, pp. 312–321.

[55] GATHERCOLE, C., AND ROSS, P. An adverse interaction between crossover

and restricted tree depth in genetic programming. In Genetic Programming

1996: Proceedings of the First Annual Conference (Stanford University, CA,

BIBLIOGRAPHY 209

USA, 28–31 July 1996), J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.

Riolo, Eds., MIT Press, pp. 291–296.

[56] GIACOBINI, M., TOMASSINI, M., AND VANNESCHI, L. Limiting the num-

ber of fitness cases in genetic programming using statistics. In PPSN VII:

Proceedings of the 7th International Conference on Parallel Problem Solving from

Nature (London, UK, 2002), Springer, pp. 371–380.

[57] GOLDBERG, D. E., AND DEB, K. A comparative analysis of selection

schemes used in genetic algorithms. Foundations of Genetic Algorithms

(1991), 69–93.

[58] GREFENSTETTE, J. J., AND BAKER, J. E. How genetic algorithms work: A

critical look at implicit parallelism. In Proceedings of the 3rd International Con-

ference on Genetic Algorithms (1989), J. D. Schaffer, Ed., Morgan Kaufmann

Publishers, pp. 20–27.

[59] GRUAU, F. On using syntactic constraints with genetic programming. Ad-

vances in genetic programming: volume 2 (1996), 377–394.

[60] GUSTAFSON, S. M. An Analysis of Diversity in Genetic Programming. PhD

thesis, University of Nottingham, 2004.

[61] HADJAM, F. Z., MORAGA, C., AND BENMOHAMED, M. Cluster-based evo-

lutionary design of digital circuits using improved multi-expression pro-

gramming. In Proceedings of Genetic and Evolutionary Computation Conference

(2007), pp. 2475–2482.

[62] HANDLEY, S. On the use of a directed acyclic graph to represent a popula-

tion of computer programs. In Proceedings of the 1994 IEEE World Congress on

Computational Intelligence (Orlando, Florida, USA, 27-29 June 1994), vol. 1,

IEEE Press, pp. 154–159.

[63] HARIK, G. R. Finding multimodal solutions using restricted tournament

selection. In Proceedings of the Sixth International Conference on Genetic Algo-

rithms (San Francisco, CA, 1995), Morgan Kaufmann, pp. 24–31.

210 BIBLIOGRAPHY

[64] HARRIES, K., AND SMITH, P. Exploring alternative operators and search

strategies in genetic programming. In Proceedings of the Second Annual Con-

ference on Genetic Programming (Stanford University, CA, USA, 13-16 1997),

Morgan Kaufmann, pp. 147–155.

[65] HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, 2 ed. Springer-Verlag, Dec.

2008.

[66] HAYNES, T. D., SCHOENEFELD, D. A., AND WAINWRIGHT, R. L. Type

inheritance in strongly typed genetic programming. Advances in Genetic

Programming: volume 2 (1996), 359–376.

[67] HENERY, R. Classification. In Machine Learning, Neural and Statistical Clas-

sification, D. Michie, D. Spiegelhalter, and C. Taylor, Eds. Ellis Horwood,

1994, ch. 2, p. 6.

[68] HENGPROPROHM, S., AND CHONGSTITVATANA, P. Selective crossover in

genetic programming. In ISCIT International Symposium on Communications

and Information Technologies (ChiangMai Orchid, ChiangMai Thailand, 14-

16 Nov. 2001).

[69] HINGEE, K., AND HUTTER, M. Equivalence of probabilistic tournament

and polynomial ranking selection. In Proceedings of IEEE Congress on Evolu-

tionary Computation (2008), pp. 564–571.

[70] HIRASAWA, K., OKUBO, M., KATAGIRI, H., HU, J., AND MURATA, J. Com-

parison between Genetic Network Programming (GNP) and Genetic Pro-

gramming (GP). In Proceedings of the 2001 Congress on Evolutionary Compu-

tation (2001), vol. 2, pp. 1276–1282.

[71] HO, S.-Y., AND CHEN, J.-H. A ga-based systematic reasoning approach

for solving travelling salesman problems using an orthogonal array-based

crossover. In Proceedings of The Fourth International Conference/Exhibition on

High Performance Computing in Asia-Pacific Region (Beijing, 2000), pp. 659–

663.

BIBLIOGRAPHY 211

[72] HO, S.-Y., SHU, L.-S., AND CHEN, H.-M. Intelligent genetic algorithm

with a new intelligent crossover using orthogonal arrays. In Proceedings of

the Genetic and Evolutionary Computation Conference (1999), vol. 1, pp. 289–

296.

[73] HOLDENER, E. A., AND TAURITZ, D. R. Learning offspring optimising

mate selection. In Proceedings of Genetic and Evolutionary Computation Con-

ference (2008), pp. 1109–1110.

[74] HOLLAND, J. H. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, 1975.

[75] HOLLAND, J. H. Adaptation. Progress in Theoretical Biology 4 (1976).

[76] HONG, J.-H., AND CHO, S.-B. Lymphoma cancer classification using ge-

netic programming with snr features. In Proceedings of 7th EuroGP Confer-

ence (2004), pp. 78–88.

[77] HOWARD, D., ROBERTS, S. C., AND BRANKIN, R. Target detection in

SAR imagery by genetic programming. Advances in Engineering Software

30 (1999), 303–311.

[78] HUTTER, M. Fitness uniform selection to preserve genetic diversity. Tech.

Rep. IDSIA-01-01, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale,

Manno(Lugano), CH, Jan. 2001.

[79] IBA, H., AND DE GARIS, H. Extending genetic programming with recom-

binative guidance. In Advances in Genetic Programming 2, P. J. Angeline and

K. E. Kinnear, Jr., Eds. MIT Press, Cambridge, MA, USA, 1996, ch. 4, pp. 69–

88.

[80] ISCID. Iscid encyclopaedia of science and philosophy, 2006.

[81] ITO, T., IBA, H., AND SATO, S. Depth-dependent crossover for genetic pro-

gramming. In Proceedings of the 1998 IEEE World Congress on Computational

Intelligence (Anchorage, Alaska, USA, 5-9 May 1998), IEEE Press, pp. 775–

780.

212 BIBLIOGRAPHY

[82] ITO, T., IBA, H., AND SATO, S. Non-destructive depth-dependent

crossover for genetic programming. In Proceedings of the First European

Workshop on Genetic Programming (Paris, 14-15 Apr. 1998), W. Banzhaf,

R. Poli, M. Schoenauer, and T. C. Fogarty, Eds., vol. 1391 of LNCS, Springer,

pp. 71–82.

[83] ITO, T., IBA, H., AND SATO, S. A self-tuning mechanism for depth-

dependent crossover. In Advances in Genetic Programming 3, L. Spector, W. B.

Langdon, U.-M. O’Reilly, and P. J. Angeline, Eds. MIT Press, Cambridge,

MA, USA, June 1999, ch. 16, pp. 377–399.

[84] JACKSON, D. Fitness evaluation avoidance in boolean GP problems. In Pro-

ceedings of the 2005 IEEE Congress on Evolutionary Computation (Edinburgh,

UK, 2-5 Sept. 2005), D. Corne and et al, Eds., vol. 3, IEEE Press, pp. 2530–

2536.

[85] JAIN, A. K., MAO, J., AND MOHIUDDIN, K. M. Artificial neural networks:

A tutorial. IEEE Computer 29, 3 (1996), 31–44.

[86] JIN, Y., AND SENDHOFF, B. Reducing fitness evaluations using cluster-

ing techniques and neural networks ensembles. In Genetic and Evolutionary

Computation Conference (2004), vol. 3102 of LNCS, Springer, pp. 688–699.

[87] JONES, J., AND SOULE, T. Comparing genetic robustness in generational

vs. steady state evolutionary algorithms. In Proceedings of the 8th annual

conference on Genetic and evolutionary computation (2006), pp. 143–150.

[88] JUELS, A., AND WATTENBERG, M. Stochastic hillclimbing as a baseline

method for evaluating genetic algorithms. Tech. Rep. CSD-94-834, Depart-

ment of Computer Science, University of California at Berkeley, USA, 18

1995.

[89] KENNEDY, J., AND EBERHART, R. Particle swarm optimisation. In Pro-

ceedings of IEEE International Conference on Neural Networks (1995), vol. 4,

pp. 1942–1948.

BIBLIOGRAPHY 213

[90] KENNEDY, J., AND EBERHART, R. C. Swarm Intelligence. Morgan Kauf-

mann, 2001.

[91] KIM, H.-S., AND CHO, S.-B. An efficient genetic algorithms with less fit-

ness evaluation by clustering. In Proceedings of IEEE Congress on Evolution-

ary Computation (2001), IEEE, pp. 887–894.

[92] KINNEAR, JR., K. E. Fitness landscapes and difficulty in genetic program-

ming. In Proceedings of the 1994 IEEE World Conference on Computational In-

telligence (Orlando, Florida, USA, 1994), vol. 1, IEEE Press, pp. 142–147.

[93] KOZA, J. R. Genetic Programming — On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, 1992.

[94] KOZA, J. R. A response to the ML-95 paper entitled “Hill climbing beats

genetic search on a boolean circuit synthesis of Koza’s”. Distributed 11 July

1995 at the 1995 International Machine Learning Conference in Tahoe City,

California, USA, 11 July 1995.

[95] KOZA, J. R., III, F. H. B., ANDRE, D., AND KEANE, M. A. Genetic Pro-

gramming III: Darwinian Invention and Problem Solving, 1st ed. Morgan Kauf-

mann, May 1999.

[96] KOZA, J. R., KEANE, M. A., STREETER, M. J., MYDLOWEC, W., YU, J.,

AND LANZA, G. Genetic programming IV: Routine Human-Competitive Ma-

chine Intelligence. Kluwer Academic, 2003.

[97] LANG, K. J. Hill climbing beats genetic search on a boolean circuit synthe-

sis of Koza’s. In Proceedings of the Twelfth International Conference on Machine

Learning (Tahoe City, California, USA, July 1995), Morgan Kaufmann.

[98] LANGDON, W., AND POLI, R. Fitness causes bloat: Mutation. In Pro-

ceedings of the First European Workshop on Genetic Programming (Paris, 14-15

1998), W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty, Eds., vol. 1391,

Springer-Verlag, pp. 37–48.

214 BIBLIOGRAPHY

[99] LANGDON, W. B. Size fair and homologous tree genetic programming

crossovers. In Proceedings of the Genetic and Evolutionary Computation Con-

ference (1999), vol. 2, pp. 1092–1097.

[100] LANGDON, W. B., AND POLI, R. Foundations of Genetic Programming.

Springer, Berlin, 2002.

[101] LANGDON, W. B., AND QURESHI, A. Genetic programming - computers using

natural selection’ to generate programs. University College London, Gower

Street, London WC1E 6BT, UK, 1995. Research Note RN/95/76.

[102] LAW, N. L., AND SZETO, K. Adaptive genetic algorithm with mutation

and crossover matrices. In Proceedings of the International Joint Conference on

Artificial Intelligence 2007 (2007), pp. 2330–2333.

[103] LEE, W.-C. Genetic programming decision tree for bankruptcy prediction.

In Proceedings of the 2006 Joint Conference on Information Sciences, JCIS 2006

(Kaohsiung, Taiwan, ROC, Oct. 8-11 2006), Atlantis Press.

[104] LEUNG, Y. W., AND WANG, Y. P. An orthogonal genetic algorithm with

quantization for global numerical optimization. IEEE Transactions on Evo-

lutionary Computation 5, 1 (February 2001), 41–53.

[105] LEVENE, M. An Introduction to Search Engines and Web Navigation. Pearson,

2005.

[106] LI, J., AND TSANG, E. P. K. Reducing failures in investment recommen-

dations using genetic programming. In Computing in Economics and Finance

(Universitat Pompeu Fabra, Barcelona, Spain, 6-8 July 2000).

[107] LINDEMAN, R. H., MERENDA, P. F., AND GOLD, R. Z. Introduction to Bi-

variate and Multivariate Analysis. Scott, Foresman and Company, 1980.

[108] LOBO, F. G., LIMA, C. F., AND MICHALEWICZ, Z., Eds. Parameter Setting

in Evolutionary Algorithms, vol. 54 of Studies in Computational Intelligence.

Springer, 2007.

BIBLIOGRAPHY 215

[109] LOVEARD, T., AND CIESIELSKI, V. Representing classification problems in

genetic programming. In Proceedings of the Congress on Evolutionary Compu-

tation (2001), vol. 2, IEEE Press, pp. 1070–1077.

[110] LUKE, S., BALAN, G. C., AND PANAIT, L. Population implosion in genetic

programming. In Proceedings of the 2003 conference on Genetic and Evolution-

ary Computation (2003), vol. 2724 of LNCS, Springer, pp. 1729–1739.

[111] LUKE, S., AND PANAIT, L. Fighting bloat with nonparametric parsi-

mony pressure. In Proceedings of Parallel Problem Solving from Nature (2002),

vol. 2439 of LNCS, Springer, pp. 411–421.

[112] LUKE, S., AND PANAIT, L. Lexicographic parsimony pressure. In Proceed-

ings of the Genetic and Evolutionary Computation Conference (2002), pp. 829–

836.

[113] LUKE, S., AND SPECTOR, L. A revised comparison of crossover and muta-

tion in genetic programming. In Proceedings of the 3rd annual conference on

genetic programming (1998), pp. 208–213.

[114] MAHFOUD, S. W. Crowding and preselection revisited. In Parallel problem

solving from nature 2 (Amsterdam, 1992), R. Männer and B. Manderick, Eds.,

North-Holland, pp. 27–36.

[115] MAJEED, H., AND RYAN, C. A less destructive, context-aware crossover

operator for gp. In Proceedings of EuroGP 2006 (2006), vol. 3905 of LNCS,

Springer, pp. 36–48.

[116] MAKHOUL, J., STARNER, T., SCHWARTZ, R., AND CHOU, G. On-line cur-

sive handwriting recognition using speech recognition methods. In Pro-

ceedings of IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (1994), vol. 5, pp. 125—128.

[117] MANNING, C. D., AND SCHUTZE, H. Foundations of Statistical Natural Lan-

guage Processing. MIT Press, 1999.

216 BIBLIOGRAPHY

[118] MANRIQUE, D., MARQUEZ, F., RIOS, J., AND RODRIGUEZ-PATON, A.

Grammar based crossover operator in genetic programming. In Proceed-

ings of the 1st International Work-Conference on the Interplay Between Natural

and Artificial Computation, Part II (2005), pp. 252–261.

[119] MATSUI, K. New selection method to improve the population diversity in

genetic algorithms. In Proceedings of 1999 IEEE International Conference on

Systems, Man, and Cybernetics (1999), IEEE, pp. 625–630.

[120] MATTIUSSI, C., WAIBEL, M., AND FLOREANO, D. Measures of diversity for

populations and distances between individuals with highly reorganizable

genomes. Evolutionary Computation 12, 4 (2004), 495–515.

[121] MICHALSKI, R. S., CARBONELL, J. G., AND MITCHELL, T. M. Machine

Learning, An Artificial Intelligence Approach. Tioga Publishing Company, Cal-

ifornia, 1983.

[122] MILLER, B. L., AND GOLDBERG, D. E. Genetic algorithms, tournament

selection, and the effects of noise. Tech. Rep. 95006, University of Illinois at

Urbana-Champaign, July 1995.

[123] MILLER, B. L., AND GOLDBERG, D. E. Genetic algorithms, selection

schemes, and the varying effects of noise. Evolutionary Computation 4, 2

(1996), 113–131.

[124] MILLER, J. F., JOB, D., AND THOMSON, P. Cartesian genetic programming.

In Proceedings of EuroGP 2000 (2000), vol. 1802 of LNCS, Springer, pp. 131–

132.

[125] MITCHELL, M. An Introduction to Genetic Algorithms. MIT Press, 1996.

[126] MITCHELL, T. M. Machine learning. McGraw Hill, 1997.

[127] MOTOKI, T. Calculating the expected loss of diversity of selection schemes.

Evolutionary Computation 10, 4 (2002), 397–422.

[128] MÜHLENBEIN, H., AND PAASS, G. From recombination of genes to the es-

timation of distributions i. binary parameters. In Proceedings of the 4th Inter-

BIBLIOGRAPHY 217

national Conference on Parallel Problem Solving from Nature (1996), Springer-

Verlag, pp. 178–187.

[129] MUHLENBEIN, H., AND SCHLIERKAMP-VOOSEN, D. Predictive models

for the breeder genetic algorithm, I: continuous parameter optimization.

Evolutionary Computation 1, 1 (1993), 25–49.

[130] MULLER, B., REINHARDT, J., AND STRICKLAND, M. T. Neural Networks:

An Introduction, 2nd ed. Springer, Berlin Heidelberg, Germany, 1995.

[131] NEWMAN, D., HETTICH, S., BLAKE, C., AND MERZ, C. UCI repository of

machine learning databases, 1998.

[132] NGUYEN, T. H., AND NGUYEN, X. H. A brief overview of population

diversity measures in genetic programming. In Proceedings of the Third

Asian-Pacific workshop on Genetic Programming (Military Technical Academy,

Hanoi, VietNam, 2006), T. L. Pham, H. K. Le, and X. H. Nguyen, Eds.,

pp. 128–139.

[133] NORDIN, P., AND BANZHAF, W. Complexity compression and evolu-

tion. In Genetic Algorithms: Proceedings of the Sixth International Confer-

ence (ICGA95) (Pittsburgh, PA, USA, 15-19 1995), L. Eshelman, Ed., Morgan

Kaufmann, pp. 310–317.

[134] NORDIN, P., FRANCONE, F., AND BANZHAF, W. Explicitly defined introns

and destructive crossover in genetic programming. In Proceedings of the

Workshop on Genetic Programming: From Theory to Real-World Applications

(1995), J. P. Rosca, Ed., pp. 6–22.

[135] OLTEAN, M. Multi-expression programming. Tech. rep., Babes-Bolyai

Univ, Romania, 2006.

[136] OLTEAN, M., AND GROSAN, C. Evolving evolutionary algorithms using

multi expression programming. In Proceedings of the 7th European Conference

on Artificial Life (2003), vol. 2801 of LNAI, Springer, pp. 651–658.

[137] O’NEILL, M., AND RYAN, C. Grammatical evolution by grammatical evo-

lution: The evolution of grammar and genetic code. In Genetic Programming

218 BIBLIOGRAPHY

7th European Conference, EuroGP 2004, Proceedings (Coimbra, Portugal, 5-7

Apr. 2004), M. Keijzer, U.-M. O’Reilly, S. M. Lucas, E. Costa, and T. Soule,

Eds., vol. 3003 of LNCS, Springer-Verlag, pp. 138–149.

[138] O’REILLY, U.-M., AND OPPACHER, F. Program search with a hierarchical

variable length representation: Genetic programming, simulated annealing

and hill climbing. Lecture Notes in Computer Science 866 (1994), 397–406.

[139] O’REILLY, U.-M., AND OPPACHER, F. A comparative analysis of gp. In

Advances in Genetic Programming 2, P. J. Angeline and K. E. Kinnear, Jr., Eds.

MIT Press, 1996, ch. 2, pp. 23–44.

[140] PASSINO, K. M. Biomimicry of bacterial foraging for distributed optimiza-

tion and control. IEEE Control Systems Magazine 22, 3 (2002), 52–67.

[141] PENA-REYES, C. A., AND SIPPER, M. Evolutionary computation in

medicine: an overview. Artificial Intelligence in Medicine 19, 1 (2000), 1–23.

[142] POLADIAN, L. Excluding the best and worst individuals from parent se-

lection. In Proceedings of 2007 IEEE Congress on Evolutionary Computation

(2007), IEEE, pp. 400–406.

[143] POLI, R. Parallel distributed genetic programming. Tech. rep., School of

Computer Science, University of Birmingham, 1996.

[144] POLI, R., AND LANGDON, W. B. Genetic programming with one-point

crossover and point mutation. Tech. Rep. CSRP-97-13, University of Birm-

ingham, UK, 1997.

[145] POLI, R., AND LANGDON, W. B. On the search properties of different

crossover operators in genetic programming. In Genetic Programming 1998:

Proceedings of the Third Annual Conference (22-25 July 1998), pp. 293–301.

[146] POLI, R., AND LANGDON, W. B. Backward-chaining evolutionary algo-

rithms. Artificial Intelligence 170, 11 (2006), 953–982.

[147] POLI, R., LANGDON, W. B., AND MCPHEE, N. F. A field guide to genetic

programming. Published via http://lulu.com and freely available at

BIBLIOGRAPHY 219

http://www.gp-field-guide.org.uk, 2008. (With contributions by

J. R. Koza).

[148] POLI, R., AND MCPHEE, N. F. Covariant parsimony pressure in genetic

programming. Tech. Rep. CES-480, Department of Computing and Elec-

tronic System, University of Essex, 2008.

[149] POLI, R., MCPHEE, N. F., AND VANNESCHI, L. Elitism reduces bloat in

genetic programming. In Proceedings of the 10th annual conference on Genetic

and evolutionary computation (2008), ACM Press, pp. 1343–1344.

[150] POPOVICI, E., AND JONG, K. D. Understanding EA dynamics via pop-

ulation fitness distributions. In Proceedings of the Genetic and Evolutionary

Computation Conference 2003 (2003), pp. 1604–1605.

[151] POPP, R. L., MONTANA, D. J., GASSNER, R. R., VIDAVER, G., AND IYER,

S. Automated hardware design using genetic programming, VHDL, and

FPGAs. In IEEE International Conference on Systems, Man, and Cybernetics

(San Diego, CA USA, 11-14 Oct. 1998), vol. 3, IEEE, pp. 2184–2189.

[152] PRICE, K., STORN, R., AND LAMPINEN, J. Differential Evolution - A Practical

Approach to Global Optimization. Springer, 2005.

[153] PRUGEL-BENNET, A., AND SHAPIRO, J. L. Analysis of genetic algorithms

using statistical mechanics. Phys. Rev. Lett. 72, 9 (1994), 1305–1309.

[154] QUINLAN, J. C4.5: Programs for machine learning. Morgan Kaufmann, 1993.

[155] RECHENBERG, I. Evolutionsstrategie – Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Fromman-Holzboog, 1973.

[156] ROCHAT, D., TOMASSINI, M., AND VANNESCHI, L. Dynamic size popula-

tions in distributed genetic programming. In Proceedings of the 8th European

Conference on Genetic Programming (Lausanne, Switzerland, 2005), vol. 3447

of Lecture Notes in Computer Science, Springer, pp. 50–61.

220 BIBLIOGRAPHY

[157] ROSCA, J. P., AND BALLARD, D. H. Causality in genetic programming.

In Proceedings of the sixth international conference on genetic algorithms (1995),

Morgan Kaufmann, pp. 256–263.

[158] ROSCA, J. P., AND BALLARD, D. H. Rooted-tree schemata in genetic pro-

gramming. Advances in genetic programming: volume 3 (1999), 243–271.

[159] RUBINSTEIN, R., AND KROESE, D. Simulation and the Monte Carlo Method,

second ed. John Wiley and Sons, 2007.

[160] RUSSELL, S. J., AND NORVIG, P. Artificial Intelligence — A modern approach,

2nd ed. Pearson Education, New Jersey, US, 2003.

[161] SASTRY, K., GOLDBERG, D. E., AND PELIKAN, M. Don’t evaluate, inherit.

In Proceedings of the Genetic and Evolutionary Computation Conference (San

Francisco, California, USA, 2001), L. Spector and et al, Eds., Morgan Kauf-

mann, pp. 551–558.

[162] SCHMIDT, M. D., AND LIPSON, H. Learning noise. In Proceedings of the 9th

annual conference on Genetic and evolutionary computation (London, 7-11 July

2007), D. Thierens, H.-G. Beyer, J. Bongard, J. Branke, J. A. Clark, D. Cliff,

C. B. Congdon, K. Deb, B. Doerr, T. Kovacs, S. Kumar, J. F. Miller, J. Moore,

F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stutzle, R. A.

Watson, and I. Wegener, Eds., vol. 2, ACM Press, pp. 1680–1685.

[163] SCHOENAUER, M., LAMY, B., AND JOUVE, F. Identification of mechanical

behaviour by genetic programming part II: Energy formulation. Tech. rep.,

Ecole Polytechnique, 91128 Palaiseau, France, 1995.

[164] SHERRAH, J. R., BOGNER, R. E., AND BOUZERDOUM, A. The evolutionary

pre-processor: Automatic feature extraction for supervised classification

using genetic programming. In Proceedings of 2nd International Conference

on Genetic Programming (1997), pp. 304–312.

[165] SINGLETON, A. GPQUICK: A Simple Genetic Programming

System in C++. http://www-cgi.cs.cmu.edu/afs/cs/project/ai-

repository/ai/areas/genetic/gp/systems/gpquick/0.html.

BIBLIOGRAPHY 221

[166] SMART, W., AND ZHANG, M. Applying online gradient descent search to

genetic programming for object recognition. In CRPIT ’04: Proceedings of

the second workshop on Australasian information security, Data Mining and Web

Intelligence, and Software Internationalisation (Dunedin, New Zealand, Jan.

2004), J. Hogan, P. Montague, M. Purvis, and C. Steketee, Eds., vol. 32 no.

7, Australian Computer Society, Inc., pp. 133–138.

[167] SMART, W., AND ZHANG, M. Applying online gradient descent search to

genetic programming for object recognition. Australian Computer Science

Communications (Data Mining, CRPIT 32) 26 (January 2004), 133–138.

[168] SMART, W., AND ZHANG, M. Probability based genetic programming for

multiclass object classification. In Proceedings of the 8th Pacific Rim Interna-

tional Conference on Artificial Intelligence (2004), pp. 251–261.

[169] SMITH, P. W. H., AND HARRIES, K. Code growth, explicitly defined in-

trons, and alternative selection schemes. Evolutionary Computation 6, 4

(Winter 1998), 339–360.

[170] SMITH, S. F. A Learning System Based on Genetic Adaptive Algorithms. PhD

thesis, University of Pittsburgh, 1980.

[171] SMITS, G., KORDON, A., VLADISLAVLEVA, K., JORDAAN, E., AND

KOTANCHEK, M. Variable selection in industrial datasets using pareto ge-

netic programming. In Genetic Programming Theory and Practice III, T. Yu,

R. L. Riolo, and B. Worzel, Eds., vol. 9 of Genetic Programming. Springer,

Ann Arbor, 12-14 May 2005, ch. 6, pp. 79–92.

[172] SMORODKINA, E., AND TAURITZ, D. Toward automating EA configura-

tion: the parent selection stage. In Proceedings of IEEE Congress on Evolution-

ary Computation (2007), pp. 63–70.

[173] SOKOLOV, A., AND WHITLEY, D. Unbiased tournament selection. In

Proceedings of Genetic and Evolutionary Computation Conference (2005), ACM

Press, pp. 1131–1138.

222 BIBLIOGRAPHY

[174] SONG, A., CIESIELSKI, V., AND WILLIAMS, H. Texture classifiers gener-

ated by genetic programming. In Proceedings of the Congress on Evolutionary

Computation (2002), IEEE Press, pp. 243–248.

[175] SOULE, T., AND FOSTER, J. A. Code size and depth flows in genetic pro-

gramming. In Genetic Programming 1997: Proceedings of the Second Annual

Conference (Stanford University, CA, USA, 13-16 1997), J. R. Koza, K. Deb,

M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Eds., Morgan

Kaufmann, pp. 313–320.

[176] STORN, R., AND PRICE, K. Differential evolution - a simple and efficient

adaptive scheme for global optimization over continuous spaces. Tech.

Rep. TR-95-012, International Computer Science Institute, Berkeley, CA,

1995.

[177] TACKETT, W. A. Genetic programming for feature discovery and image

discrimination. In Proceedings of 5th International Conference on Genetic Algo-

rithms (1993), pp. 303–309.

[178] TACKETT, W. A. Recombination, selection, and the genetic construction of com-

puter programs. PhD thesis, University of Southern California, Los Angeles,

CA, USA, 1994.

[179] TANESE, R. Distributed genetic algorithms. In Proceedings of the Third Inter-

national Conference on Genetic Algorithms (1989), J. D. Schaffer, Ed., Morgan

Kaufmann Publishers, pp. 434–440.

[180] TELLER, A., AND VELOSO, M. A controlled experiment: evolution for

learning difficult image classification. In Proceedings of 7th Portuguese Con-

ference on Artificial Intelligence (1995), pp. 165–176.

[181] TERRIO, M., AND HEYWOOD, M. I. Directing crossover for reduction of

bloat in GP. In IEEE CCECE 2003: IEEE Canadian Conference on Electrical and

Computer Engineering (12-15 May 2002), W. Kinsner, A. Seback, and K. Fer-

ens, Eds., IEEE Press, pp. 1111–1115.

BIBLIOGRAPHY 223

[182] TERRIO, M. D., AND HEYWOOD, M. I. On naive crossover biases with re-

production for simple solutions to classification problems. In Proceedings of

Genetic and Evolutionary Computation Conference, Part II (Seattle, WA, USA,

26-30 June 2004), K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Dar-

wen, D. Dasgupta, D. Floreano, J. Foster, M. Harman, O. Holland, P. L.

Lanzi, L. Spector, A. Tettamanzi, D. Thierens, and A. Tyrrell, Eds., vol. 3103

of Lecture Notes in Computer Science, Springer, pp. 678–689.

[183] TETTAMANZI, A., AND TOMASSINI, M. Soft Computing: Integrating Evolu-

tionary, Neural, and Fuzzy Systems. Springer, Berlin Heidelberg New York,

2001.

[184] TETTAMANZI, A. G. B. Genetic programming without fitness. In Late Break-

ing Papers at the Genetic Programming 1996 Conference Stanford University July

28-31, 1996 (Stanford University, CA, USA, 28–31 July 1996), J. R. Koza, Ed.,

Stanford Bookstore, pp. 193–195.

[185] TOMASSINI, M., VANNESCHI, L., CUENDET, J., AND FERNANDEZ, F. A

new technique for dynamic size populations in genetic programming. In

Proceedings of the 2004 IEEE Congress on Evolutionary Computation (2004),

IEEE Press, pp. 486–493.

[186] TOPCHY, A., AND PUNCH, W. F. Faster genetic programming based on

local gradient search of numeric leaf values. In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO-2001) (San Francisco, Califor-

nia, USA, 7-11 July 2001), L. Spector, E. D. Goodman, A. Wu, W. B. Lang-

don, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and

E. Burke, Eds., Morgan Kaufmann, pp. 155–162.

[187] VANNESCHI, L. Theory and Practice for Efficient Genetic Programming. PhD

thesis, Faculty of Sciences, University of Lausanne, Switzerland, 2004.

[188] VANYI, R. Practical evaluation of efficient fitness functions for binary im-

ages. In Applications of Evolutionary Computing, EvoWorkshops2005: Evo-

BIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC (Lausanne,

224 BIBLIOGRAPHY

Switzerland, 30 Mar.-1 Apr. 2005), F. Rothlauf and et al, Eds., vol. 3449 of

LNCS, Springer, pp. 310–324.

[189] VAVAK, F., AND FOGARTY, T. C. Comparison of steady state and genera-

tional genetic algorithms for use in nonstationary environments. In In IEEE

International Conference on Evolutionary Computation (1996), pp. 192–195.

[190] VEKARIA, K. P. Selective Crossover As an Adaptive Strategy for Genetic Algo-

rithms. PhD thesis, University College, London, 1999.

[191] WATSON, R., HORNBY, G. S., AND POLLACK, J. B. Modelling building-

block interdependency. In Proceedings of PPSN V (1998), pp. 97–106.

[192] WEINBRENNER, T. GPC++ - Genetic Programming C++ Class Library,

1997.

[193] WHIGHAM, P. A. Grammatically-based genetic programming. In Proceed-

ings of the Workshop on Genetic Programming: From Theory to Real-World Appli-

cations (Tahoe City, California, USA, 9 July 1995), J. P. Rosca, Ed., pp. 33–41.

[194] WHITELY, D. The genitor algorithm and selection pressure: Why rank-

based allocation of reproductive trials is best. In Proceedings of the 3rd Inter-

national Conference on Genetic Algorithms (1989), J. D. Schaffer, Ed., Morgan

Kaufmann Publishers, pp. 116–121.

[195] WINKELER, J. F., AND MANJUNATH, B. S. Genetic programming for object

detection. In Proceedings of 2nd International Conference on Genetic Program-

ming (1997), pp. 330–335.

[196] WINKLER, R. L. Introduction to Bayesian Inference and Decision, 2nd ed. Prob-

abilistic, 2003.

[197] WITTEN, I. H., AND FRANK, E. Data Mining: Practical Machine Learn-

ing Tools and Techniques with Java Implementations. Morgan Kaufmann, San

Diego, CA, 2000.

BIBLIOGRAPHY 225

[198] WONG, M. L. Evolving recursive programs by using adaptive grammar

based genetic programming. Genetic Programming and Evolvable Machines 6,

4 (Dec. 2005), 421–455.

[199] WONG, P., AND ZHANG, M. Scheme: Caching subtrees in genetic pro-

gramming. In Proceedings of IEEE Congress on Evolutionary Computation

(2008), pp. 2683–2690.

[200] XIE, H., ZHANG, M., AND ANDREAE, P. Automatic selection pressure

control in genetic programming. In Proceedings of the sixth International con-

ference on Intelligent Systems Design and Applications (2006), IEEE Computer

Society Press, pp. 435–440.

[201] XIE, H., ZHANG, M., AND ANDREAE, P. Population clustering in genetic

programming. In Proceedings of the 9th European Conference, EuroGP 2006

(2006), vol. 3905 of LNCS, Springer, pp. 190–201.

[202] XIE, H., ZHANG, M., AND ANDREAE, P. An analysis of constructive

crossover and selection pressure in genetic programming. In Proceedings

of Genetic and Evolutionary Computation Conference (2007), pp. 1739–1746.

[203] XIE, H., ZHANG, M., AND ANDREAE, P. An analysis of depth of crossover

points in tree-based genetic programming. In Proceedings of IEEE Congress

on Evolutionary Computation (2007), pp. 4561–4568.

[204] XIE, H., ZHANG, M., AND ANDREAE, P. Another investigation on tourna-

ment selection: modelling and visualisation. In Proceedings of Genetic and

Evolutionary Computation Conference (2007), pp. 1468–1475.

[205] XIE, H., ZHANG, M., AND ANDREAE, P. An analysis of the distribution of

swapped subtree sizes in tree-based genetic programming. In Proceedings

of IEEE Congress on Evolutionary Computation (2008), IEEE Press, pp. 2864–

2971.

[206] XIE, H., ZHANG, M., ANDREAE, P., AND JOHNSTON, M. An analysis of

multi-sampled issue and no-replacement tournament selection. In Proceed-

226 BIBLIOGRAPHY

ings of Genetic and Evolutionary Computation Conference (2008), ACM Press,

pp. 1323–1330.

[207] XIE, H., ZHANG, M., ANDREAE, P., AND JOHNSTON, M. Is the not-

sampled issue in tournament selection critical? In Proceedings of IEEE

Congress on Evolutionary Computation (2008), IEEE Press, pp. 3711–3718.

[208] YUEN, C. C. Selective crossover using gene dominance as an adaptive

strategy for genetic programming. Msc intelligent systems, University Col-

lege, London, UK, Sept. 2004.

[209] ZHANG, B. T., AND MUHLENBEIN, H. Evolving optimal neural networks

using genetic algorithms with Occam’s razor. Complex System 7 (1993), 199–

220.

[210] ZHANG, B. T., AND MUHLENBEIN, H. Balancing accuracy and parsimony

in genetic programming. Evolutionary Computation 3, 1 (1995), 17–38.

[211] ZHANG, B. T., OHM, P., AND MUHLENBEIN, H. Evolutionary induction of

sparse neural trees. Evolutionary Computation 5, 2 (1997), 213–236.

[212] ZHANG, M., CIESIELSKI, V., AND ANDREAE, P. A domain independent

window-approach to multiclass object detection using genetic program-

ming. EURASIP Journal on Applied Signal Processing 2003, 8 (2003), 841–859.

[213] ZHANG, M., GAO, X., AND LOU, W. Gp for object classification: Brood size

in brood recombination crossover. In The 19th Australian Joint Conference on

Artificial Intelligence (2006), vol. 4303 of LNAI, Springer, pp. 274–284.

[214] ZHANG, M., GAO, X., AND LOU, W. A new crossover operator in genetic

programming for object classification. IEEE Transactions on Systems, Man

and Cybernetics, Part B 37, 5 (Oct. 2007), 1332–1343.

[215] ZHANG, M., AND SMART, W. Multiclass object classification using genetic

programming. In Applications of Evolutionary Computing, EvoWorkshops2004

(2004), vol. 3005 of LNCS, Springer, pp. 369–378.

BIBLIOGRAPHY 227

[216] ZHANG, Q., AND LEUNG, Y. W. An orthogonal genetic algorithm for mul-

timedia multicast routing. IEEE Transactions on Evolutionary Computation 3,

1 (April 1999), 53–62.

[217] ZHANG, W., MING WU, Z., AND KE YANG, G. Genetic programming-

based chaotic time series modeling. Journal of Zhejiang University Science 5,

11 (2004), 1432–1439.

[218] ZIEGLER, J., AND BANZHAF, W. Decreasing the number of evaluations in

evolutionary algorithms by using a meta-model of the fitness function. In

Genetic Programming, Proceedings of EuroGP’2003 (2003), C. Ryan and et al,

Eds., vol. 2610 of LNCS, Springer, pp. 264–275.

228 BIBLIOGRAPHY

Appendix A

Proof of Equations 3.16 and 3.21

Being Equivalent

Proof. Equations 3.21 can be simplified to:

P (Wj) =

∑k
n=1

1
n

(|Sj |−1)!

(n−1)!(|Sj |−1−n+1)!





∑j−1
i=1 |Si|
k − n









N

k





=

∑k
n=1

(|Sj |−1)!

n!(|Sj |−n)!





∑j−1
i=1 |Si|
k − n









N

k





=

∑k
n=1

1
|Sj |

|Sj |!
n!(|Sj |−n)!





∑j−1
i=1 |Si|
k − n









N

k





=

∑k
n=1





|Sj|
n









∑j−1
i=1 |Si|
k − n









N

k



 |Sj|

229

230APPENDIX A. PROOF OF EQUATIONS 3.16 AND 3.21 BEING EQUIVALENT

After applying the relation
∑a

b=0





x

b









y

a − b



 =





x + y

a



 [1] (page 822),

we can further simplify the equation to

=





|Sj| +
∑j−1

i=1 |Si|
k



−





|Sj |
0









∑j−1
i=1 |Si|
k









N

k



 |Sj|

=





∑j
i=1 |Si|
k



−





∑j−1
i=1 |Si|
k









N

k



 |Sj|

which is the same as Equation 3.16.

Appendix B

Glossary of Terms

BC-EA Backward-Chaining Evolutionary Algorithm

DCP Depth of Crossover Point

Ejit Evaluated-just-in-time, a simple algorithm for saving the
fitness evaluation cost in standard tournament selection us-
ing small tournament sizes

EMS-EA Efficient Macro-Selection Evolutionary Algorithm

FCGP a GP system in which the population is clustered based on
Fitness and the parent selection is the Clustering tourna-
ment selection

FRD Fitness Rank Distribution

GCGP a GP system with the Genotype population clustering and
the Clustering tournament selection

GPP Good Predecessor Programs

HCC Headless Chicken Crossover

HCGP a GP system in which the population is clustered using the
Heuristic fitness-case-equivalence population clustering al-
gorithm and the parent selection method is the Clustering
tournament selection

SSS Substituted Subtree Size

Xover Crossover

231

