Interaction Design and Agile
Development: A Real-World

Perspective

Jennifer Ferreira

A thesis
submitted to Victoria University of Wellington
in fulfilment of the
requirements for the degree of
Master of Science
in Computer Science.

Victoria University of Wellington
2007

Abstract

Although both agile development methods and interaction design aim
to build quality software that meets the user’s needs, each approaches
development from a different perspective. Agile development methods
describe activities addressing the coding (and in some cases the process
management) part of software development, whereas interaction design
methods describe activities for developing that aspect of the software that
will be perceived by the user. Agile development and interaction design
each have little to say about the other, despite the reality that both ap-
proaches are combined in practice. There has been little investigation into
how the two processes work together, and the issues that arise. To aim
for a better understanding of practice, we conducted grounded theory re-
search about real-world software teams who combine interaction design
and agile development. The results provided insights into interaction de-
sign being done up front (before implementation begins), the structure of
the development iterations, the effect of incorporating interaction design
techniques into the agile development iterations, as well as the role of the
interaction designer on agile teams. The analysis also highlighted areas
that may benefit from further research.

Acknowledgments

My thanks goes to:

All the people around the world I've ever talked to about this re-
search — this document owes its existence to your interest and in-
put.

The Agile Alliance for providing funds supporting this research.

My supervisors, James Noble and Robert Biddle, for being so inspi-
rational, encouraging, challenging and intelligent. Thanks also to
Stuart Marshall who provided excellent support.

My friends at Mt. Vic Dojo, the Wellington Gaelic Football players
and the Vic UFO ultimate team for the welcome distraction.

My family.

111

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

Agile software development
Interactiondesign 0oL
Motivation forresearch
Research questions

Roadmap

2 Background

21
2.2
2.3

24

2.5

2.6

Software processresearch
Waterfall shortfalls
Agileastheanswer Lo L
23.1 eXtreme Programming
232 Scrum ...
Interactiondesign o Lo
241 User-centered design and usability
2.4.2 Interaction design techniques
2.4.3 Interaction design and software development
Combining interaction design and agile
development Lo oL
2.5.1 BDUF considered harmful
252 Acomparison
253 Relatedstudies

Summary

11
11
12
14
16
24
27
27
29
31

vi

3 Research Method

3.1
3.2

3.3
34
3.5

3.6

Why is grounded theory appropriate?

Grounded theory
3.2.1 Theoretical sampling
3.2.2 Theoretical saturation
3.2.3 Role of the literature
Theresearcher
The participants
Conducting thestudy
3.5.1 Participant recruitment
352 Interviews
3.53 Dataanalysis
3.54 Theory development
Reliability and validity of the study.

4 Introduction to results

4.1
4.2

4.3
4.4
4.5
4.6

Stages of development
Interaction Design Approaches
421 Designstrategies
422 Implementation strategies

Feedbackand change

Interaction designers on agile teams

Publication of results

Nextsteps

5 Before implementation begins

51
52
53
54
5.5

Gaining a holistic view up front
Studying clientsand users
Designing forchange

Driving the development effort

Advantages of

developmentbegins

interaction design

CONTENTS

CONTENTS

5.5.1 Another notionofup front
56 Summary o
6 Interaction design approaches
6.1 Overview of interaction design approaches
6.2 ComprehensiveDesign
6.2.1 Implementation as Refinement
6.22 Keyconditions
6.3 Evolutionary Design
6.3.1 Implementation as Looking Ahead
6.3.2 Keyconditions
6.4 Parallelisation
6.41 Keyconditions
6.5 Summary
7 Inside iterations
7.1 Development iterations drive usability
testing
7.2 Usability = testing results in changes in
development 0L
7.3 Iterating with working software brings
insights
74 Iteration planning affects interaction design
7.5 Experimentation and adjustment of process
76 Summary
8 Agility and the interaction designer
8.1 Usability has priority
8.2 Interaction design requiresskill
8.2.1 When developers do interaction design
8.2.2 Interaction design skill contributes value
8.3 Interaction design as collaboration

Vil

84
85

87
88
89
93
96
97
102
107
108
113
114

117

118

121

124

126

128
134

viii

CONTENTS

8.3.1 Settingthetarget 147

8.3.2 Maintaining thetarget 149

8.4 Lurking pitfalls of the interaction designerrole 151
8.5 Interaction designer: Shared vs. total control 153
86 Summary 159
Conclusion 161
9.1 Contributions 161
9.2 Returning to the literature 164
9.3 Topics for further discussion 166
9.3.1 Design: Agile values and cost of change 166

9.3.2 Implemented software vs. unimplemented prototype 170

94 Furtherwork. 174
Project profiles 177
Al Pl ..o 177
A2 P2 . e 179
A3 P3 . 180
A4 PdandP5. 182
Interview questionnaires 185
Bl Inmitial 185
B.1.1 Background 185
B.1.2 Requirements 185
B13 Teams 186
B.14 Process 186
B15 Usability 187
B.1.6 Testing and refactoring 187
B.1.7 Users/customers 188

B18 Wrap-up, 188

B2 Revised 189

B.21 Background 189

CONTENTS

B.2.2

B.2.3
B.2.4
B.2.5

ix
Experience with combining interaction design and
agile development 189
Process L. 189
Teams 190
Wrap-up 191

C Participant information and approved HEC application 193

Chapter 1
Introduction

The software industry is well aware that users prefer products that pro-
vide a satisfying, productive experience [16]. Satisfied users are loyal,
translating to increased revenue for the developer company. CIO Insight
reported that of 400 IT executives surveyed, 80% cited customer satisfac-
tion as their top priority [17]. Despite the importance of user satisfaction,
software products that meet the user’s goals and provide a satisfying user
experience are difficult to build — the literature and practice abounds with
methodologies all aiming to take control of the chaos and complexity of
software development to produce good software [20, 54, 59].

Agile development methodologies comprise an approach to develop-
ing software that meets the user’s needs, by having the development team
closely collaborate with a potential user, or customer, and regularly de-
livering working software to the customer. Interaction design presents
another approach where potential users are central to the design of the
user’s interaction with a software product, to ensure a better fit between
the end product and the user’s needs. Unfortunately, agile developers and
interaction designers approach software development from different per-
spectives. Agile development methods describe activities addressing the
coding (or process management) part of software development, whereas
interaction design methods describe activities for developing that aspect

1

2 CHAPTER 1. INTRODUCTION

of the software that will be perceived by the user. Agile development and
interaction design each have little to say about the other, despite the real-
ity that aspects of both approaches are combined in practice. Both agile
development and interaction design have a major role in making good
software, but there has been little investigation or discussion on how the
two processes work together, and the issues that arise. This thesis reports
on our grounded theory study of software teams that use both interaction
design and agile development. Our aim was to better understand practice
and as a result, our study uncovered insights into interaction design being
done up front (before software development begins), the structure of the
development iterations, the effect of incorporating interaction design tech-
niques into the agile development iterations, as well as the role of the in-
teraction designer on agile teams. The author of an article for Interactions
magazine in 2004, speculated that the reason the agile community has fo-
cused little on user interaction design must mean “that either they neglect
the user experience or are focusing on projects with less need for sophisti-
cation in user experience” [4]. The results of this thesis suggest this to be a
false assertion. Evidence from agile practitioners in this and other studies,
suggests the user experience is regarded very highly by the agile commu-
nity and the user experience of the products developed using agile meth-
ods are indeed highly sophisticated. Yet, the lack of guidance for software
development teams combining interaction design and agile development,
means that teams are left to innovate their own approaches. We report
on these approaches in this thesis, but also highlight the issues that may
improve understanding with further study. Section 1.1 introduces agile
development and section 1.2 introduces interaction design. Section 1.3 de-
scribes the motivation for this research, section 1.4 presents the specific
research questions for this study and section 1.5 explains the structure for

the following chapters of this thesis.

1.1. AGILE SOFTWARE DEVELOPMENT 3
1.1 Agile software development

Agile, a term adopted by practitioners in early 2001 [54], is generally used
to refer to the collection of iterative, lightweight development methods
that share a set of values and principles articulated by the agile manifesto
[55]. The values are as follows:

¢ Individuals and interactions over processes and tools
e Working software over comprehensive documentation
e Customer collaboration over contract negotiation

¢ Responding to change over following a plan

These agile values have been formulated to counter the more plan-driven,
overhead rich development methods commonly described as waterfall or
traditional [115]. In waterfall software development processes, develop-
ment activities are performed in sequence, the next activity only com-
mencing once the previous one has completed. Further, the product and
the process is expected to be heavily documented. Developing software in
this way constrains change, in that new things that are learned by the de-
velopment team or the client is incorporated into the product with much
difficulty [54]. Increasingly, practitioners have reported that waterfall soft-
ware development methods are inadequate for dealing with the environ-
ment of change in which much software development occurs today [71,
103, 147]: Besides often being delivered late, these software products were
found to have quality and usability issues [109].

Agile methods were developed to cope with the inevitable changes that
occur over the course of a software development project — requirements
change, technology changes, people are added and taken off the team,
etc. — while still delivering a high quality product [147]. Agile is not
a methodology in itself — there are several distinct methodologies that
Fowler refers to as “philosophies’ of software development [54] with differ-
ent approaches, such as eXtreme Programming (XP) [9, 10], Scrum [124],

4 CHAPTER 1. INTRODUCTION

Crystal Clear [31] and Feature Driven Development (FDD) [107]. Agile
methods emphasise developing a software product incrementally, gaining
feedback from stakeholders after each increment and iteratively incorpo-
rating that feedback back into the subsequent development. Cockburn
notes, “There is no substitute for rapid feedback, both on the product and
on the development process itself” [29]. An important difference in agile
development, compared to the waterfall model, is that the software de-
velopment activities are repeated with each increment and each iteration
deals with only the set of requirements that are known at that time —
allowing feedback to influence the product early on in the development
process and for emergent requirements to be incorporated.

Due to their success, agile methods are fast becoming mainstream in
the software industry. Sections 2.3.1 and 2.3.2 introduce XP and Scrum —
the two agile development methods used by the participants in our study.

At this point, it is necessary to point out the aversion of agilists to the
term process and what it implies. In accordance with the pragmatic aspects
of the values of the agile manifesto given above, Highsmith explains: “Pro-
cess deals with prescription and formality, whereas practice deals with all
the variations and disorderliness of getting work done” [70]. In this thesis,
when the term process appears, it is not intended to refer to the “prescrip-
tion” and ‘formal” aspects of any method, but is rather intended to convey
the collection of software development activities that are realised during

the course of the software development project.

1.2 Interaction design

From Verplank’s use of the term interaction design [144], it has since been
widely adopted by practitioners and researchers [36, 126]. Cooper defines
interaction design as “[referring] to the selection of [software] behavior,
function and information and their presentation to users” [36, p22]. In
this thesis, we broaden Cooper’s definition, so that when we refer to in-

1.2. INTERACTION DESIGN 5

teraction design, we intend to include user research, user modeling and
evaluation of the design, to better distinguish between agile development
activities and activities targeting the user experience. The activities of in-
teraction design result in the user interface (UI) of the software product —
“those points of contact between systems and their users” [34, p5]. The
Human-Computer Interaction (HCI) literature is dominated by the user-
centered design (UCD) approach to interaction design, which advocates
that the end users are an integral part of the design process and should
influence the resulting design [104, 105]. Being user-centered implies a
software product meets the goals of its end users and adheres to the ISO
9241-11 definition of usability:

The extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency and satis-
faction in a specified context of use.

HCT researchers agree that the best way of achieving a product with a
good level of usability is by obtaining accurate and frequent user input
[43, 57, 106, 126]. UCD practitioners obtain user input by means of user
evaluations of designs and improving the design based on user feedback,

thereby refining the design in an iterative fashion.

Importantly, the HCI community have accepted that UCD activities,
such as user evaluations and iterative UI design, occur before the prod-
uct is implemented. Then the interaction designers hand off the design to
the developers who are responsible for implementing the product. Conse-
quently, the UCD approach to software development, similar to the water-
fall approach, depends heavily on the interaction designers having access
to the full set of requirements for a product at the outset of the develop-

ment effort.

6 CHAPTER 1. INTRODUCTION

1.3 Motivation for research

The agile manifesto prefers “Responding to change over following a plan,”
whereas the user-centered approach to interaction design advocates an in-
tensive up-front user research period, followed by iterative evaluations of
designs with users — often referred to as Big Design Up Front (BDUF) [6].
The apparent contradiction between agile values and the BDUF approach
has sparked much debate regarding the place of interaction design within
agile development, notably between Kent Beck, creator of eXtreme Pro-
gramming (XP) and Alan Cooper, creator of Goal-Directed Design [36].
While there was much agreement, the main point of difference was that
Cooper advocated Ul design being done entirely before any development,
using an iterative approach with lightweight prototypes, as working soft-
ware would be too expensive and time-consuming. Beck argued that the
two iterative processes might work together and that use of XP practices
meant that working software would be cost and time effective in compar-

ison with prototypes [97]:

Cooper: “I'm talking about incorporating a new constituency that fo-
cuses exclusively on the behavioral issues. And the behavioral issues

need to be addressed before construction begins. ”

Beck: “The interaction designer becomes a bottleneck, because all the
decision-making comes to this one central point. The process, how-
ever, seems to be avoiding a problem that we’ve worked very hard
to eliminate. The engineering practices of extreme programming are

precisely there to eliminate that imbalance ...”

Agile methods and interaction design do not give any guidance regarding
each other and there has been little investigation or discussion about the
issues that arise from their combination. Both have a major role in making
good software, despite their different perspectives on creating software.
Interaction design focuses on how the end users will work with the soft-
ware and agile development focuses on how the software should be con-

1.4. RESEARCH QUESTIONS 7

structed, or how the development process should be managed.

The way these two perspectives are being combined in practice is still
unclear. Studies dealing with combining interaction design and agile soft-
ware development have been largely anecdotal, and consequently, real-
world agile teams are left to devise their own strategies for combining
agile methods with interaction design.

Only recently, relevant research into practice has emerged (see section
2.5) and this thesis hopes to contribute to the existing research by drawing
on the experience of a diverse group of practitioners in the field.

1.4 Research questions

The aim of this study is to answer the very broad question “How do real-
world agile teams combine interaction design with their agile develop-
ment activities?” We break this question down into:

e How do agile teams sequence their development and interaction de-

sign activities?

e What processes and techniques do agile teams follow when combin-

ing interaction design activities with agile development activities?

e How does agile development affect interaction design when com-

bined, and vice versa?

e What are the effects of agile development on the interaction designer

role?

1.5 Road map

Chapter 2 highlights the characteristics of the software development envi-
ronment, which agile development attempts to address, describes eXtreme

8 CHAPTER 1. INTRODUCTION

Programming and Scrum and compares interaction design and agile de-

velopment.

Chapter 3 discusses the research method followed for this study with a
brief introduction to grounded theory, including the appropriateness of
using the grounded theory approach, details about the researcher and re-
search participants and the validity and reliability of the results.

Chapter 4 describes the large-scale features that characterised our partic-
ipants” approaches to combining interaction design activities with agile
development activities. The introduction given here provides the context
for the discussion throughout the rest of the thesis, with the substantiating
quotes from the participants presented in the following chapters.

Chapter 5 discusses the findings as they relate to the software develop-
ment activities that took place before the implementation stage of the de-
velopment effort began, i.e., up-front.

Chapter 6 focuses on the way the teams organised their interaction de-
sign and agile development activities and their resulting approaches to
interaction design, in terms of the design and implementation.

Chapter 7 shows how agile development iterations were found to be op-
portunities for obtaining feedback and incorporating change in the inter-
action design and presents some of the areas where agile development

enabled the activities of interaction design and vice versa.

Chapter 8 discusses the role of the interaction designer, within the context
of the agile development environment, as it emerged from the interview
data.

1.5. ROAD MAP

Chapter 9 concludes the thesis with the major findings and future work.

Chapter 2
Background

This chapter highlights the characteristics of the software development en-
vironment, which agile development attempts to address. eXtreme Pro-
gramming and Scrum and interaction design are described, and then in-
teraction design and agile development compared. The next chapter dis-
cusses the research method followed for this study.

2.1 Software process research

According to Fuggetta, a software process can be defined as “the coherent
set of policies, organizational structures, technologies, procedures, and ar-
tifacts that are needed to conceive, develop, deploy, and maintain a soft-
ware product” and research in this area assumes that the quality of the
process influences the quality of the resulting product [56].

Developing software is complex [20, 19] and the challenge still remains
to create and organise the development activities in such a way that qual-
ity software is delivered on time and within budget. Over time, numerous
approaches have emerged to manage the software process so that a high
quality product can be achieved more efficiently. Li et al. refer to the col-
lection of these approaches as the “Software Process Spectrum” [85]. At
one end there are lightweight agile methodologies and on the other, heavy-

11

12 CHAPTER 2. BACKGROUND

weight waterfall processes. Light- or heavyweight in this sense referring
to the amount of deliverables, or artifacts, to produce for the benefit of the
management of the software development process — all in an attempt to

instill order on the perceived chaos [33].

2.2 Waterfall shortfalls

Software development processes possessing either or both of two key char-
acteristics can be considered traditional [115]. The first relates to the di-
rection of development: a linear progression from inception to delivery,
resulting in a process that is governed by a plan formulated at the ini-
tial stages of development and rigidly adhered to for the duration of the
project. The second refers to the amount of overhead produced during the
development effort, in the form of documentation or deliverables.

The most well-known of the traditional methods is the waterfall method
— attributed to Dr. Winston W. Royce, despite the fact that he never re-
ferred to the process he described as waterfall and his paper does not sup-
port the idea of the development process as a strict progression from one
step to the next. The waterfall label has remained however, due to the
widely adopted version of Royce’s model where feedback into previous
stages is discouraged and development continues in a linear fashion to
completion, as water flows over a waterfall.

In terms of producing deliverables, Royce’s model is certainly heavy-
weight:

How much documentation? My own view is ‘quite a lot;" certainly
more than most programmers, analysts, or program designers are
willing to do if left to their own devices. The first rule of managing
software development is ruthless enforcement of documentation re-
quirements ... Management of software is simply impossible without

a very high degree of documentation [118].

Royce proposed seven stages of software development [118]:

2.2. WATERFALL SHORTFALLS 13
1. System requirements
2. Software requirements
3. Analysis
4. Program design
5. Coding
6. Testing
7. Operations

The software requirements stage delivers the first document, known as the
‘Software Requirements” document, the program design stage delivers the
‘Test Plan’, the ‘Interface Design Specification” and the ‘Final Design Spec-
ification,” and the final stage the ‘Operating Instructions’ for the system
[118].

While the sequential waterfall approach has afforded project managers
a sense of control [76, 143] and exacted a kind of discipline from those
involved in the development project [118], it has not proven itself a re-
sounding success in the software development arena. Considering the
published figures touting the poor performance of traditional projects in
the mid 1990s, it is not surprising that practitioners were turning their at-
tentions to alternative approaches [55]:

e Rodrigues and Bowers reported on the increasing trend of budget
over-runs of 40-200% [117].

e The Standish Group reported that only 16.2% of software projects in
the United States were completed on time and within their budget
[141].

14 CHAPTER 2. BACKGROUND

e According to the Special Interest Group concerned with the Organi-
sational Aspects of IT (OASIG), in 1996, just 10-20% of software prod-
ucts deployed in the United Kingdom met all their success criteria
[26].

In 1988 Boehm had already recognised the weakness of the waterfall de-
velopment process as forcing the completion and documentation of poorly
understood requirements and design, leading to “large quantities of unus-
able code” [15]. This was found to be especially true in the case of end-user
interactive applications.

2.3 Agile as the answer

Change, speed and uncertainty have proven problematic for projects fol-
lowing the waterfall approach [125]. While Royce advocated restraining
changes from the customer with early commitments [118], agile practition-

ers have responded with more adaptive approaches:

Agility, for a software development organisation, is the ability to
adapt and react expeditiously and appropriately to changes in its en-
vironment and to demands imposed by this environment. An ag-
ile process is one that readily embraces and supports this degree of
adaptability. So, it is not simply about the size of the process, or the
speed of delivery; it is mainly about flexibility [78].

Agile development, unlike the waterfall approach, adapts to change rather
than adhering to a plan conjured up at the outset of the development
project. The mechanism which allows this adaptability is iterative devel-
opment, an established practice of software development since the 1950s
[80]. Iterative development provides agile teams with regular intervals
for obtaining feedback about the process and the product. Based on this
feedback, the team can determine whether the process and the product
are still applicable to the current situation and adjust as necessary [54]. A

2.3. AGILE AS THE ANSWER 15

typical agile development iteration is illustrated in figure 2.1. At the be-
ginning of the iteration a set of requirements, or features, is selected and
prioritised with the customer, after which the developers set about imple-
menting those features. The implementation work only lasts for the length
of one iteration — from one week to one month — at the end of which the
implemented product is evaluated, along with the process. The team as-
sess the accuracy of the work estimates created at the iteration planning
and ask questions such as: “What did the team do well?”; “What can be
improved?”; etc. [42]. If, at the end of the iteration, there are still out-
standing features to be implemented, then the next iteration is planned
and carried out and repeated until the customer agrees that the required
features have been implemented.

The activity sequence of plan-implement-evaluate is apparent in dif-
ferent flavours of agile, for example, eXtreme Programming (XP) [9, 10],
Scrum [124], Crystal Clear [31] and Feature Driven Development (FDD)
[107].

Iteration Planning

feature
unfinished and list
new features

Evaluation

Implementation

working
software

Figure 2.1: Agile Iteration

In agile development the emphasis on documentation is low, in con-

trast to the traditional approach, favouring continual involvement of a

16 CHAPTER 2. BACKGROUND

customer! throughout the development effort — hence, the association of
the term ‘lightweight” with agile methods.

Figures on agile project success and adoption are becoming more preva-
lent in the literature. For example, Larsen, a board member of the Agile
Alliance?, provides evidence that agile methods are becoming more well-
known in industry [81]. Similarly, Ambler, an experienced agile practi-
tioner and author, conducted a survey of agile in practice. With 4,232 re-
spondents, the results indicate that agile methods are gaining acceptance
within the IT industry [3]. The Standish Group produced another report
in 2006 that stated 41% of agile projects succeeded, compared to 16% of
traditional projects [119]. The Standish Report, along with the numer-
ous experience reports in the literature reporting successful agile adop-
tion, suggests that agile software development can be a viable alternative
to the traditional approaches. In sections 2.3.1 and 2.3.2 we describe the
two agile development methods that were followed by the participants in
our study — eXtreme Programming and Scrum — and present published

reports of their success.

2.3.1 eXtreme Programming

eXtreme Programming (XP) is regarded as the most popular agile method
in use today [33, 54]. In 1999 Kent Beck’s influential book: Extreme Pro-
gramming Explained: Embrace Change introduced the software development
world to this agile method with its coherent set of values, principles and
practices. Revised in 2004, in a second edition, Beck states that the goal of
XP is “outstanding software development in an environment of vague or
rapidly changing requirements” [10].

The driving values of XP, which underlie the principles and practices

are:

!The customer may be a potential end user of the product under development or a

business representative from the client company.
http://www.agilealliance.org

2.3. AGILE AS THE ANSWER 17

e Communication In order for the team to cooperate effectively, good
communication is essential. Learning from other team members can

help to avoid mistakes from the past.

e Simplicity Beck asks the question “What is the simplest thing that
could possibly work?” to encourage teams to remove unnecessary
complexity and to concentrate on producing working software that
adhere to today’s requirements, as opposed to implementing fea-

tures that may or may not be required in the future.

e Feedback Not understanding the requirements at the outset of the
project, the team needs to generate feedback cycles that are as short
as possible in order to improve the software and get closer to reach-
ing their goals with that software.

e Courage There are several ways in which the value of courage can
be fostered on an XP team. Team members are encouraged to com-
municate with other team members when they see a better way of
performing some task. Having the courage to speak up in such situ-

ations is seen as valuable.
Beck added a fifth value in the second edition of his book [10]:

e Respect The team members need to respect each other as well as
the project they are working on in order for XP to work. Equality
among team members is particularly vital and no one is seen as more

important.

Each development project is unique and the environment in which it oc-
curs is also unique to every project. For this reason, Beck presents 14 prin-
ciples of XP, grounded in the driving values, for the cases where the team’s
environment is not suitable for adopting a prescribed practice. Teams can
innovate development practices based on the guiding principles: (1) hu-
manity, (2) economics, (3) mutual benefit, (4) self-similarity, (5) improve-
ment, (6) diversity, (7) reflection, (8) flow, (9) opportunity, (10) redundancy,

18 CHAPTER 2. BACKGROUND

(11) failure, (12) quality, (13) baby steps and (14) accepted responsibility.
We will not investigate the principles further here, but will instead focus
on the practices of XP.

XP practices

The practices of XP are considered the embodiment of the driving values
[116], that teams can apply in order to get their work done [9, 70]. The
practices are not new to software development — several practices have
been in existence before the XP methodology had been formulated, but
their effectiveness has been proven in environments of rapidly changing
requirements [8]. Notably, Gilb’s evolutionary delivery of software [60],
which he describes as “actually delivering final results, final requirements
to real users and stakeholders” [32], is central to XP.

Beck’s first edition gives the following twelve practices that structure
the development activities [9]:

1. The Planning Game Prioritise the required features of the system
and, based on the work estimates, select the work for the next incre-

ment.

2. Small releases Iteratively add to the features in the system in short

cycles.

3. Metaphor Base development and communication about the devel-
opment work on a shared ‘story” or metaphor.

4. Simple design Create the simplest system that will work, removing

complexity as soon as it is discovered.

5. Testing All code has to pass automated unit tests before becoming
part of the overall system and the customer accepts the system when

it passes all functional, or acceptance, tests.

6. Refactoring Improve the design of the current system.

2.3. AGILE AS THE ANSWER 19

7.

10.

11.

12.

Pair programming Two people write code together at a single ma-

chine, collaborating on all aspects of the programming effort.

Collective ownership The whole team can make improvements and

changes to the code base.

Continuous integration Every few hours changes should be inte-
grated into the larger system. This helps minimise the time required

to integrate changes, as the changes are likely to be smaller.
40-hour work week Limit work hours so as not to work overtime.

On-site customer Ideally an end user, the customer is in the same
location as the development team, able to answer queries as they

arise.

Coding standards A consistent standard that the whole team can

adhere to when coding.

The following practices are taken from the second edition of Beck’s book,

which are not only considered a refinement of the practices in the first

edition, but also practices that development teams new to XP can start
with [10]:

1.

Sit together When working, the team sits within eye contact of each
other, surrounded by artifacts displaying project status. Usually this
implies the team is small enough in order for every person to fit in

the same room.

Whole team Every individual’s contribution, in terms of knowledge,
skills and perspective, influences the success of the project. There-
fore, the sense of “team” is required for trusting, collaborative work

to occur.

Informative workspace The workspace should make visible the sta-
tus of the project, support communication within the team about the

20

CHAPTER 2. BACKGROUND

project, provide a space where people can be comfortable and have

positive social interactions.

. Energized work The team should only be working the number of

hours they can productively focus on their work.

. Pair programming Similar to the practice as explained in the first

edition.

. Stories(Also known as User Stories) are created by the development

team and the customer to illustrate how a user might use the system
under development. Kent Beck requires that user stories are

e Testable —You can write automatic tests to detect the presence
of the story.

e Progress —The customer’s side of the team is willing to accept
the story as a sign of progress toward their larger goal.

e Bite-sized —The story should be completable within the itera-

tion.

e Estimable —The technical side of the team must be able to guess
how much of the team’s time the story will require to get work-

ing.

. Weekly cycle Work should be planned only for the next week.

. Quarterly cycle Quarterly reflection about the team, the project and

its progress aligns well with other business activities that occur quar-
terly, however, any natural timescale that the team can agree on will
suffice. The intention is to allow a large enough interval for progress

to occur and still have regular opportunities to evaluate the situation.

. Slack Including minor tasks in the development plan that have little

impact on the system if they are not implemented, provides a buffer

2.3. AGILE AS THE ANSWER 21

to the development and increases the team’s chances of completing

the more important tasks on time.

10. Ten-minute build Building the system and running all of the tests
should take ten minutes at the most.

11. Continuous integration Similar to the practice as explained in the
first edition.

12. Test-first programming Before writing any code, developers should
create an automated test. Testing is an effective way of determining
concisely what needs to be implemented, writing tests signal charac-
teristics of the system design — tests should be easy to write, builds
trust among the developers that all the code produced passes the re-
quired tests and helps developers to focus on completing a specific
task instead of wasting time playing with possible solutions.

13. Incremental design System design is not discouraged in XP per se,
it is simply not considered useful when it is completed before im-
plementation begins. Instead, making constant improvements to the
design as the system is implemented incrementally, helps keep the
cost of change low. Improving system design via refactoring is a
well-known technique employed by XP teams.

Clearly, the practices are not only intended to structure software devel-
opment activities, but also to structure the environment in which these
activities take place. Cockburn’s description of XP in action, from the de-

velopers’ perspective, presents a context in which XP teams do their work:

It calls for all the developers to sit in one large room, for there to be a
usage expert or ‘customer’ on the development staff full time, for the
programmers to work in pairs and develop extensive unit tests for
their code that can be run automatically at any time, for those tests
always to run at 100% of all code that is checked in, and for code to

be developed in nano-increments, checked in and integrated several

22 CHAPTER 2. BACKGROUND

times a day. The result is delivered to real users every two to four

weeks.

In exchange for all this rigor in the development process, the team
is excused from producing any extraneous documentation. The re-
quirements live as an outline on collections of index cards, and the
running project plan is on the whiteboard. The design lives in the
oral tradition among the programmers, in the unit tests, and in the
oft-tidied-up code itself. [31, p29]

Key roles

The XP team are considered stakeholders in the development project, i.e.,
they share equal responsibility and accountability for the project’s out-
come. The roles are also not rigid and any team member can contribute
in the best way they can albeit in several different roles [9, 10]. Therefore,
there may be more than one individual in each role and one individual
may have more than one role on the team. Beck identifies four key roles:

customer, programmer, coach and tracker:

e Customer Understands the domain for which the software is be-
ing developed, understands what generates business value for the
client company, can recognise when the software system delivers
that value and can prioritise the requirements [11]. Further, the cus-
tomer is ideally on-site and accessible to the rest of the development

team throughout the development effort.

e Programmer Or Developer, has the skills to translate the require-
ments into code that passes all tests and adheres to a simple design.

e Coach Understands XP and software development and can guide

and mentor the team.

o Tracker Keeps track of the schedule and the team’s progress.

2.3. AGILE AS THE ANSWER 23

In the second edition of Beck’s book, there is acknowledgment of an Inter-
action Designer role, which is expected to work closely with the customer
role, however, there is little guidance on how XP supports their work or
how interaction design informs XP — other than the conjecture that “In-
teraction designers specify a little bit up front and continue to refine the
user interface throughout the life of the project” [10].

XP success stories

XP was first used on the Chrysler Comprehensive Compensation (C3)
project to rewrite the Daimler-Chrysler payroll package [140, 148]. Since
its initial success, XP has been successfully applied to numerous software
development projects. There has been reported success of XP adoption
by development teams ranging in size — from small teams [82], through
medium sized teams [72], to large [75, 88] and distributed teams [18, 67].
Software projects in different application domains (for example web-based
application development [67], maintenance environments [111] and finan-
cial services [103]) and at different stages of completion (greenfield de-
velopment [114], existing project extension [82]) have employed XP and
achieved their success criteria. The current consensus appears to be that
XP can be applied to a wide range of software development projects in
various environments of vague and changing requirements, as long as
there is buy-in from all people involved in the development effort. Al-
though XP was initially developed for small to medium-sized projects, the
numerous successful adoption experiences in the industry has prompted
software companies to extend the application of XP to large scale develop-
ment projects and there is evidence in the literature that in order to do this
XP is often adjusted. Practices may be added or changed to suit the needs
of a large development team [79], which agrees with Beck’s vision of the
future of XP [7]:

[..] it is and should always be an evolving fabric of mutually

24 CHAPTER 2. BACKGROUND

supporting practices. These practices will continue to evolve,
perhaps radically, over the next few years.

2.3.2 Scrum

Named after the scrum in the sport of rugby, which is “a tight forma-
tion of forwards who bind together in specific positions when a scrum-
down is called,” [58] Scrum follows XP in popularity [3]. First observed
by Takeuchi and Nonaka [138], Scrum is fully described in Schwaber and
Beedle’s book published in 2001 [124]. Instead of defining how software
should be built, Scrum is an empirical approach that accepts software de-
velopment as a non-linear, ill-defined activity requiring frequent inspec-
tion and adaptation. Schwaber describes Scrum as “operating at the edge
of chaos,” which aims to “operate adaptively within a complex environ-
ment using imprecise processes” [122]. Due to the unpredictable nature of
software development, Scrum consists of activities that manage tasks such
as backlog, work, risk, issues, problems and changes so that after each it-
eration the delivered solution, as a product of time, cost, functionality and
quality, is the best one possible [123]. The implementation activities con-
cerned with building the product are decided on by each individual team
for each project.

The structure of Scrum

Scrum consists of three main phases, of which only the first and last are
defined processes [122]:

1. Pregame The Pregame phase is defined in terms of planning and
system design activities. In the same way that a list of user sto-
ries are created in XD, a list of backlog items are created in Scrum,
which define the features of the product that will be iteratively im-
plemented during the Game phase. Estimation of releases and deliv-
ery of the final product are also created, along with other administra-

2.3. AGILE AS THE ANSWER 25

tive project management issues, such as the verification of manage-
ment approval and funding and risk management. A certain level of
domain analysis is performed in order to ensure domain models are

current and up to date.

2. Game The Game phase is concerned with implementation activi-
ties and is further broken up into iterative development units called
sprints. Sprints usually last about one month, during which daily

Scrum Meetings are held to determine [12]:

e What items were completed since the last Scrum Meeting.
e What issues or blocks have been found that need to be resolved.

e What new assignments make sense for the team to complete
until the next Scrum Meeting.

At the end of the sprint, the product is demonstrated to the customer
during a Demo session, after which the backlog items are reorganised
and a new sprint is started. Scrum has no prescribed implementation
practices for the Game phase, and teams have been known to apply
the XP implementation strategies [1, 77].

3. Postgame The Postgame phase, or Closure, occurs when the product
is considered ready to be released to the client. Closure tasks include

integration testing and finalising documentation.

Key roles

Sutherland summarises the three key roles in the Scrum team as follows
[134]:

e Product Owner Defines the features of the product, decides on re-
lease date and content, is responsible for the profitability of the prod-
uct (ROI), prioritises features according to market value, can change

26 CHAPTER 2. BACKGROUND

features and priority every 30 days and accepts or rejects work re-
sults.

e Scrum Master Ensures that the team is fully functional and produc-
tive, enables close cooperation across all roles and functions and re-
moves barriers, shields the team from external interferences and en-
sures that the process is followed. Invites to daily scrum, iteration

review and planning meetings.

e Team Cross-functional, seven plus/minus two members, selects the
iteration goal and specifies work results, has the right to do every-
thing within the boundaries of the project guidelines to reach the
iteration goal, organises itself and its work and demos work results

to the Product Owner.

Scrum success stories

Despite the numerous reports of cervical spine injuries inflicted by rugby
scrums, the Scrum development approach has enjoyed success in high
profile companies such as Fuji-Xerox, Canon, Honda, NEC and Hewlett-
Packard, as reported by Takeuchi and Nonaka [138]. Sutherland reported
on introducing Scrum to projects of varying sizes and concluded that Scrum
can apply in any development environment [133]. Some of the most recent
success stories in the literature are: Sutherland, Jakobsen and Johnson re-
porting on Scrum success on large defense and health care projects [135],
Cloke reporting on successful Scrum adoption at Yahoo! Music [27] and
Smits and Pshigoda reporting on a company that provides IT Infrastruc-
ture management support and its transition to Scrum in a distributed team
environment [131]. In all these experience reports, Scrum is clearly seen
as a means to increased productivity, lower defects and scalability on soft-

ware projects.

2.4. INTERACTION DESIGN 27
2.4 Interaction design

Defining design is highly dependent on context and varied [139, 152]. In
HCI research the word is often preceded by other terms such as user inter-
face, or user experience [57]. Even in the context of HCI, understanding of
these concepts is not homogenous and with each term comes an attempt to
describe a different perspective on designing a software system for users.
Winograd gives an in-depth explanation of interaction design [149] but for
the purposes of this thesis we will use the definition based on Cooper, al-
ready stated in section 1.2: “the selection of [software] behavior, function
and information and their presentation to users,” [36, p22] including user

research, user modeling and evaluation of the design.

2.4.1 User-centered design and usability

Models of interaction assume that the user has certain goals that they wish
to achieve with a software system [43, p104]. Interaction design is directed
toward designing a user interface that successfully translates between the
software system and the user. Therefore, when designing interaction, de-
signers take into account users’ needs, which tend to change with differ-
ing experience levels, cognitive and physical abilities, work environments,
personalities, culture and age [127].

The term ‘user-centered design” became widely used after the publi-
cation of Norman and Draper’s book entitled: User-Centered System De-
sign: New Perspectives on Human-Computer Interaction [106]. In prac-
tice, the emphasis on users implies that creators of a software product need
to research the users of their product and their needs, model information
about the users and then iteratively evaluate the product with those users.
The resulting usability of the product will depend on how easy it is to learn
to use, how efficiently users can complete their tasks, the ease with which
users can remember how to use the product, the amount of errors they
make in using the product and how satisfied they are with the overall ex-

28 CHAPTER 2. BACKGROUND

perience [102].

Experts have suggested measurable qualities of interaction design that
determine how usable a software product is. These qualities help to spec-
ify an objective measure of usability that can be determined during usabil-
ity testing. Shneiderman and Plaisant propose [127, p16]:

e Time to learn

e Speed of performance

e Rate of errors

e Retention over time

e Subijective satisfaction
Constantine and Lockwood present a similar list [34, p7]:

e Learnability

e Rememberability

e Efficiency in use

e Reliability in use

e User satisfaction

Based on the above qualities, usability of an interaction design can be seen
to depend on whether the user can perform their tasks with the system and
whether they have a pleasant experience in doing so. If any of the qualities
listed above are not met, for example, if it is difficult to remember how to
carry out a task when coming back to the system after a long absence, the
usability is adversely affected.

Investing in usability requires scarce resources and software develop-
ment companies consider investing to be worthwhile if the effect on their

2.4. INTERACTION DESIGN 29

Return on Investment (ROI) is positive. Studies have shown that invest-
ment in the usability of a product can lead to significant positive effects
on ROI: Withrow et al. compared usability studies of a redesigned state
government web portal to a previous version, and estimated that the new
version generates an extra $552,000 per year [150]; Cisco improved the
navigation in the user interface of their intranet system and estimated that
more productive users saved the company $3 million and the standards
established during this effort have cut development time and saved $45.7
million [83]; Wixon and Jones report that Digital Equipment Corporation
(DEC) estimated an 80% increase in revenue to be attributable to usabil-
ity improvements [151]; The Nielsen Norman Group have performed re-
search into the effect of ROI on usability investments for web sites and
concluded that a 10% investment results in a 135% improvement of the
desired metrics [101].

2.4.2 Interaction design techniques

User-centered design suggests that techniques for researching the users
of the product and their needs, modeling information about the users, as
well as iteratively evaluating the product with those users, are central to
the design process [106]. Organisations and researchers have established
standards and guidelines to which interaction designers may refer when
real users are not available. In practice, if a development effort includes
no explicit techniques dealing with the interaction design of the product
under development, the interaction design emerges as a by-product of de-

velopment, and results in a product with poor usability [47, 112].

User research

As part of capturing the requirements for a software project, interaction
designers may obtain data from surveys, interviews, or in-situ observation

sessions [126].

30 CHAPTER 2. BACKGROUND

Modeling users

Using the data gathered during the user research activities, the interaction
designer may model the information about the users using personas (user
archetypes) [36] or scenarios (narrative descriptions of user tasks within a
context) [22].

User evaluation

Once an interaction design has been constructed, regardless of the fidelity,
interaction designers may have users evaluate the usability of their de-
signs in several ways. One way may be to have the user walk through a
design, known as a walkthrough or user review, where the design may be
in the form of a prototype [34]. Another evaluation technique is known as
storyboarding [43]. As in the film industry, storyboards provide snapshots
of sequences of interaction.

For evaluating an implemented interaction design a laboratory evalu-
ation session can be used to control interaction with the implementation
for collecting statistical data about the structure, semantics and procedures
within the user interface [34].

Design rules

Users are not always accessible during software development and interac-
tion designers may have to rely on other sources of information on which
to base their design decisions. One source is design rules that are sup-
ported by psychological, cognitive, ergonomic, sociological, economical
or computation theory [43]. Design rules may be national or international
standards as set by organisations for interaction designers to comply with.
Design rules may also be guidelines regarding data entry, data display,
sequence control, user guidance, data transmission and data protection
[130]. Jakob Nielsen has famously collected and distilled ten design rules,

or heuristics, to which interaction designers can refer during their design

2.4. INTERACTION DESIGN 31

process [98]. For example, the heuristic “Visibility of system status” implies
that the system should always keep users informed about what is going
on, through appropriate feedback within reasonable time.

An evaluation method based on heuristics, is known as heuristic eval-
uation [100] — a usability inspection method in which usability experts
inspect the user interface and evaluate how well it adheres to a set of
heuristics. A study by Nielsen has shown that a team of four or five eval-
uators, along with Nielsen’s ten usability heuristics, can identify approx-
imately 75% of a software system’s usability issues [98]. Further, a study
by Nielsen has shown heuristic evaluation to have a benefit-cost ratio of
48:1 [99].

2.4.3 Interaction design and software development

Like Norman [105], influential interaction design gurus Cooper [35] and
Constantine and Lockwood [34] advocate interaction design activities such
as user research, user modeling and prototyping, as occurring “up front’
on a software development project, i.e., before the coding activities begin.
Cooper sees interaction design as part of the planning aspect of software
development [97]:

I'm advocating interaction design, which is much more akin to re-
quirements planning than it is to interface design [..] the behavioral

issues need to be addressed before construction begins.

This is also the generally accepted view of the place of interaction design
in practice. The assumption within this view is that all requirements for
the system are known up front:

For user interfaces, the architecture — the overall organization, the
navigation and the look-and-feel — must be designed to fit the full
panoply of tasks to be covered [33].

As a result, the interaction designers complete the user research, modeling
and prototyping in a user-centered way, up front, so that the complete

32 CHAPTER 2. BACKGROUND

design can be implemented by the developers. In this way interaction
design becomes a plan-driven approach to software development.

2.5 Combining interaction design and agile

development

The way in which interaction design and agile development should work
together has been discussed surprisingly little. One important early excep-
tion was the debate between Kent Beck and Alan Cooper [97]. This debate
explicitly addressed the issue of when interaction design should occur rel-
ative to software development. In the debate Cooper argues that all the
interaction design should be done before any coding, but Beck strongly
disagrees, saying that the interaction designer becomes a bottleneck for
the development team (see section 1.3).

2.5.1 BDUF considered harmful

The Portland Pattern Repository® describes BDUF: “The term Big Design
Up Front is commonly used to describe methods of software development
where a ‘big” design is created before coding and testing takes place.” Fix-
ing the requirements up front in the form of a design belongs to the realm
of predictive methods [52, 53] — precisely the approach to software devel-
opment that agile methods were intended to counter. The agile manifesto
includes the preferences: “Working software over comprehensive docu-
mentation”and “Responding to change over following a plan,” which are
intended to discourage fixing requirements with plans and documenta-
tion, since it has been shown that the more the design is determined up
front, the more expensive it is to change in the future [14]. Further, when
change is inevitable, the time and effort put into creating the big design up
front is seen as wasted [9, 87].

Shttp://c2.com

2.5. COMBINING INTERACTION DESIGN AND AGILE DEVELOPMENT33

Interaction design | Agile development

Similarities | 1. Focus on the user | 1. Focus on the customer
2. Iterative 2. Iterative

Differences | 1. Holistic 1. Incremental

2. Specialised skills | 2. Team of generalists

Table 2.1: Comparing interaction design and agile development

There is a clear contradiction in approach between interaction design-
ers who mirror Cooper’s sentiment and agile proponents who consider
up-front interaction design as BDUF, leaving the topic of how interaction

design and agile development should be combined wide open.

2.5.2 A comparison

To aim for a better understanding of how interaction design and agile de-
velopment might work together, we propose some observations gleaned
from the literature about their superficial similarities and differences —
summarised in Table 2.1.

The agile value of “Customer collaboration over contract negotiation”
mentioned above, along with two of the twelve agile principles [55],

Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.

..and ...
Business people and developers must work together daily through-

out the project,

emphasises close collaboration with the customer and business people
throughout the agile development effort. Interaction design’s focus on
the user, through user-centered design, shows great potential for success-
fully combining interaction design and agile development [93]. Cooper
suggests that the interaction designer acts a bridge between the customer
and the developers, or programmers [97]:

34 CHAPTER 2. BACKGROUND

During the design phase, the interaction designer works closely with
the customers. During the detailed design phase, the interaction de-

signer works closely with the programmers.

A study by Héitinen suggests that the interaction designer should be in the
XP customer role [69] and Martin, Biddle and Noble found that this could
be the case in practice [91].

A closer examination of the relation between the customer and agile
development, and the user and interaction design, reveals a difference in
perspective from which the user and customer is approached. Whereas
agile development involves the customer to ensure all the required func-
tionality has been implemented, interaction design adds the dimension of
user satisfaction, i.e., does the user have a satisfying experience interacting
with the product.

The iterative approach to development is another obvious similarity.
Iteration has always been a characteristic of user-centered design and a
central feature of the codification of approach in ISO standard 13407 Human-
centered design processes for interactive systems [45, 73]. As discussed in sec-
tion 2.3, iterative agile development implies that the software is developed
starting with a set of requirements that are implemented and evaluated
within a relatively short period of time, before adding the next set of re-
quirements. Iterative interaction design, as discussed in section 2.4, takes
place as a design, perhaps in the form of a prototype, is evaluated with a
user and then redesigned and re-evaluated until consensus is reached that
the design meets the user’s needs.

On the surface, the iterative approaches of both agile development and
interaction design seem to be similar, but as with the seemingly similar
focus on the user and customer, the iterative approach of agile develop-
ment and interaction design masks an underlying difference. Interaction
design and agile development differ in the artifact that each iterates on.
Interaction design iterates on a representation (usually a prototype) of the
product under development, whereas agile development iterates on the

2.5. COMBINING INTERACTION DESIGN AND AGILE DEVELOPMENT35

actual product. This observation leads to the discussion of the first point of
difference as listed in table 2.1, and the point debated by Beck and Cooper
[97].

Interaction designers understand that much of the work driving the de-
velopment of the product takes place before the product is implemented.
Therefore, interaction designers assume that all the requirements are known
up front and consequently, their design incorporates all the tasks that users
will require when using the product. This can be referred to as a holistic
approach [37]. Agile development, on the other hand, encourages devel-
opers to begin implementation at the start of the development project, ac-
knowledging that every requirement will not be known up front, and that
new requirements may emerge during the software development effort —
hence the need for an iterative approach, to allow new requirements to be
built into the product. This is known as incremental development [65].

The final difference listed in table 2.1, relates to the composition of soft-
ware development teams. Interaction design skill is understood to reside
with interaction designers, who are trained in the techniques of interaction
design discussed in section 2.4.2. Developers who are skilled at coding
software are not necessarily also trained in interaction design techniques.
While possessing both skills is not an impossibility, anecdotal evidence
suggests that it is rare to find people who do both well at the same time.
Cooper compares developers, unskilled in interaction design, yet doing

interaction design, to carpenters designing houses:

If carpenters designed houses, they would certainly be easier or more

interesting to build, but not necessarily better to live in [35, p23].

Agile development prefers teams composed of generalists [70, 93]. Al-
though the agile team members have roles, these are not seen as rigid and
team members contribute in the best way they can.

Interaction design and agile development have much in common — an
appreciation for the importance of evaluation of customer satisfaction and
how an iterative approach is the best way to accomplish this — however

36 CHAPTER 2. BACKGROUND

even the superficial similarities revealed some differences when probed
turther.

2.5.3 Related studies

Despite the differences, there are notable studies of teams successfully
combining interaction design and agile development:

Jeff Patton describes how interaction design and agile development can
work together. The agile development activities were directed by the arti-
facts created by the interaction design process (Constantine’s Agile Usage-
Centered Design approach [33]), which was seen to benefit the overall de-
velopment effort [109, 110].

Beyer, Holtzblatt and Baker [13] show how the Contextual Design ap-
proach to interaction design naturally fits with agile development. This
approach advocates understanding end users and the scope of the product
under development before development begins, with an iterative interac-
tion design process taking place before implementation begins.

Lynn Miller describes experiences in managing projects where the in-
teraction design was of critical importance to the software [96]. The ap-
proach sees the interaction design and the programming done in parallel,
but one iteration out of phase. In this way, the interaction designers were
doing detailed design for the iteration that the developers would do next,
and doing evaluation of the iteration that the programmers did last.

Desirée Sy describes a similar approach [137]. During the team’s adop-
tion of an agile development process, the user-centered design activities
were adjusted and improved. In this report, the interaction designers
designed the Ul, such that they were designing features that developers
would be implementing in the next iteration, while ensuring that the im-
plemented interaction design did not ‘drift” away from the specification in
the current iteration

Chamberlain, Sharp and Maiden [23] use a field study to ground their

2.6. SUMMARY 37

introduction of a broad framework for how interaction design and agile
development can work together. In particular, their study shows, and
their framework explains, how the general values and practices typical
in interaction design and in agile development are quite similar and can
assist teams in working together, but that efforts must be made to ensure
balance, appropriate resource management, participation and a coherence
of purpose.

MclInerney and Maurer [93] conducted a mini study of user-centered
design specialists on agile development teams. This study identified pos-
sible implications that agile development could have on UI design, namely,
that UI design may have to focus on a small piece of the whole applica-
tion at each iteration, that Ul design may be more of a team effort and
that the Ul designer is continually involved in discussions during devel-
opment. The user-centered design practitioners in this study were very
positive about working alongside agile teams.

2.6 Summary

This chapter highlighted the characteristics of the software development
environment, which agile development attempts to address. eXtreme Pro-
gramming, Scrum and interaction design were described, along with the
consideration of the place of interaction design within software develop-
ment. Interaction design and agile development were compared to high-
light the similarities and differences that may affect the way in which they
are combined in practice. Finally, studies in the literature of agile teams

combining agile development and interaction design were described.

Chapter 3

Research Method

This chapter explains the research method that was used for this study.
We begin with discussing the appropriateness of using the grounded the-
ory approach and why we chose it. We then give a brief introduction to
grounded theory, along with details about the researcher and research per-
spective. The participants are introduced in section 3.4. We also illustrate
the data gathering and analysis methods and discuss aspects of the study
that affect the validity and reliability of the results.

3.1 Why is grounded theory appropriate?

There has been little investigation or discussion on how interaction design
and agile development work together, and therefore little guidance for our
research question: “How do real-world agile teams combine interaction

design with their agile development activities?” Creswell states that

[..] the qualitative study approach is considered an appropriate me-
thod when little is known about the phenomenon under investiga-
tion and the concepts are immature due to lack of theory and previ-
ous research and a need exists to explore and describe the phenom-
ena [39, p145].

39

40 CHAPTER 3. RESEARCH METHOD

With no established theories or practices in this area, we decided a quali-
tative approach would be most suited to this research. Further, qualitative
research methods are “designed to help researchers understand people
and the social and cultural contexts within which they live” [94], whereas
quantification of textual data loses sight of these contexts and phenomena
[74].

Our research being in the context of software development, where ag-
ile methods and interaction design are seen to be strongly people-oriented
[28, 54], we followed the suggestions of Duvall [44] and Lings and Lun-
dell [89], who identified the grounded theory approach as appropriate for
studying the socio-technical aspects of software development.

Due to limited time for this study, a full grounded theory study where
theoretical saturation is reached in every core category, was not attempted.
Similar to Charmaz’s observations of many grounded theory researchers,
we concentrated instead on building a rich description of the phenomena
under study [24] — in our case, interaction design and agile development
in practice. Instead of testing or confirming existing theories, we concen-
trated on defining relationships in the data as they emerged from the data.

There is a growing body of literature where grounded theory is being
employed in studies about the people-aspect of software:

1. Grounded theory and agile development research
Recent studies by Whitworth and Biddle [145, 146] used the grounded
theory approach to investigate social aspects of agile teams. The XP
Customer Role has been investigated involving a grounded theory
analysis by Martin, Biddle and Noble [91].

2. Grounded theory and methodology research
Hansen and Kautz concluded that the use of grounded theory can
provide valuable results in research regarding information systems
development methodology [68]. Cockburn employed grounded the-
ory techniques in his PhD research addressing the relationship be-

3.2. GROUNDED THEORY 41
tween people and methodology [30].

3. Grounded theory and human-computer interaction research
Singh, Bartolo and Satchell applied grounded theory to discover-
ing a software system’s user requirements from a social perspective
[129], while Swallow, Blythe and Wright used the grounded theory
approach for analysing user experience evaluations of smart phones
[136].

3.2 Grounded theory

We adopted grounded theory — a qualitative research method that pro-
motes the generation of theory from data [64, 113, 25]. Theory here “con-
stitutes an integrated framework that can be used to explain or predict
phenomena” [132]. The theory is said to ‘emerge’” from the analysis of
data obtained from interviews, observation sessions, etc., and is, there-
fore, ‘grounded’ in reality. Glaser further explains that grounded theory is
“the generation of emergent conceptualizations into integrated patterns,
which are denoted by categories and their properties” [63]. These patterns
are achieved by rigorously applying the analysis techniques which involve
the analyst continuously asking questions such as Who? When? Where?
etc. and making comparisons of categories.

Once the research questions for the study have been established, the
coding of the data begins. Coding allows the tabulation, interpretation and
analysis of data [40] and Strauss and Corbin distinguish between three
types: open, axial and selective coding. Open coding allows the researcher to
break the data up into discrete concepts that are named based on the phe-
nomenon identified. These are referred to as ‘categories’. Axial coding is
a process of connecting these categories and establishing cause-and-effect
relations between them. During selective coding, the relations are refined
and a theory evolves [132].

42 CHAPTER 3. RESEARCH METHOD

Another essential aspect of grounded theory analysis is memoing —
recording ideas about relations and other coding decisions throughout the
data collection and coding process. Memos play a vital role in structuring
the categories and, eventually, the theory itself. Glaser [62] and Strauss
and Corbin [132] stress the importance of performing memoing through-
out the entire study.

It is worth noting that the steps described here are not required to be
performed sequentially. At times during the analysis, open and axial cod-
ing may be taking place at the same time, while memoing is ongoing from

the start of the study to its conclusion.

3.2.1 Theoretical sampling

As the study unfolds, based on the categories that emerge from the data,
the researcher determines what data to collect next. This is known as theo-

retical sampling. Glaser explains:

Theoretical sampling is the process of data collection for generat-
ing theory whereby the analyst jointly collects, codes, and analyzes
...data and decides what data to collect next and where to find them,
in order to develop ...theory as it emerges. This process of data col-
lection is controlled by the emerging theory, whether substantive or
formal [61, p45]

Generally, the categories with the greatest explanatory power are pursued
in subsequent data collection, so that they may be further developed and
refined [108].

3.2.2 Theoretical saturation
Theoretical saturation is a point in data analysis where

[..] no additional data are being found whereby the (researcher) can

develop properties of the category. As he sees similar instances over

3.3. THE RESEARCHER 43

and over again, the researcher becomes empirically confident that
a category is saturated ...when one category is saturated, nothing
remains but to go on to new groups for data on other categories, and

attempt to saturate these categories also [64, p65].

At the point of theoretical saturation in the core categories, theoretical

sampling stops.

3.2.3 Role of the literature

In grounded theory, the role of existing literature is two-fold:
1. To focus the research questions; and
2. Provide a source of data to compare the emerging theory to.

The relevant literature helps to formulate the research questions and frame
them in a way that they give the researcher the flexibility and freedom to
explore the phenomenon in depth [61, 132].

Comparing concepts from the data with the literature for conflicts and
agreements, further enhances the findings. When the emerging data dis-
agrees with existing literature, researchers have the opportunity to estab-
lish unique features of already existing phenomena in their field of re-
search. When the emerging data is similar to the discussions in the exist-
ing literature, this may tie together underlying similarities in phenomena

not usually associated with each other [46].

3.3 The researcher

Of utmost importance has been to ensure that it is the

[..] participant’s perspective on the social phenomenon of interest
that should unfold as the participant views it and not as the researcher
views it [90, p101].

44 CHAPTER 3. RESEARCH METHOD

The life experience of the researcher will, inevitably, influence the researcher’s
interpretation of the data [39], therefore my professional and educational
background is explained in this section.

I hold a BSc(Hons) in Computer Science and a BCA in Economics and
Econometrics, both from Victoria University of Wellington, New Zealand.
Courses taken for the computer science degree included basic and ad-
vanced programming techniques, software engineering and user interface
design. My honours research focused on user interface design and its re-
lation to the theory of Peircean semiotics. I have experience developing a
database application for the editor of the Foreign Policy Journal, to man-
age submissions to the journal and other editorial responsibilities. During
the development of this application, I was the sole developer. I had com-
plete freedom in terms of the interaction design and development method-
ology. My most recent employment was as an assistant developer on the
Research and Development team of a large international market research
company. In this position I developed XML-based templates for generat-
ing and charting survey results, which required a good knowledge of XML
and statistical analysis techniques. I did extensive programming in Visual
Basic and .NET developing customised reporting solutions for statistics re-
searchers and developing automated solutions for manual reporting pro-
cesses. For two years I have been an active member of the agile software

development community.

3.4 The participants

This study involved thirteen participants working on eleven projects in
different countries around the world — Canada, USA, Finland, New Zealand
and Ireland. Participants were members of co-located agile software de-
velopment teams ranging in size from five to twelve, including interaction
designers. Teams in this size range would be considered small to medium.

On average, participants had two years experience with combining agile

3.4. THE PARTICIPANTS 45

development and interaction design and were between three months and
three years into their projects at the time of the interviews. We interviewed
participants on XP and Scrum teams and therefore, when we refer to agile
development in this thesis, this is based on the notions of agile develop-
ment in terms of XP and Scrum. Table 3.1 summarises the information

about the teams and their projects, described below:

P1

The first two participants, working on project P1, develop and market
web-based software to support IT managers and development profession-
als. Based in the United States, P1 is an XP project, where the team consists
of ten engineers and one product manager/user interface designer. We in-
terviewed the Engineering Manager and Product Manager/User Interface
Designer from P1. At the time of the interviews, P1 involved redesigning
and enhancing an existing product. Their Product Manager/User Inter-
face Designer described the project as follows:

“There are several features we added and several things that we wanted
to do with the product. And one thing we noticed was that perfor-
mance was really bad, it was built upon a really terrible code base.
It was just all hacked together. User interface was terrible and, you
know, the user interactions were very cumbersome. So we decided
from that generation of product that we were gonna rewrite and start
from scratch. We took everything that we wanted out of the old
product and built it the way we really wanted the product to end up

... During this process we adopted the XP methodology.” — Product
Manager/UI Designer, P1

P2

P2 is based in Ireland. Participants on P2 develop and sell stand-alone

software to support wealth management. P2 involves an XP team that

46 CHAPTER 3. RESEARCH METHOD

includes four engineers, one domain expert/on-site customer and two in-
teraction designers. Their Project Manager and one of the Interaction De-
signers provided interviews and described their project and its status at
the time of the interviews:

“We’ve been focusing on sort of single-user client systems.” — Project
Manager, P2

“There are smaller projects as well and we have our bigger, our over-
riding kind of application building, which is our wealth planner ap-
plication, which we’ve been working on for two years and we have
our first customer for that now and we’re releasing that in a few
weeks. And we're a certain of a way through developing. It’s quite

big, so it’s an ongoing project.” — Interaction Designer, P2

P3

P3 is based in New Zealand and its XP team develop software that con-
trols fruit sorting machines. Their team consists of five developers, one
of whose main interest is interaction design. We interviewed two devel-
ops on this team, including the developer with an interest in interaction
design. Their main project was described as follows:

“Our central control program controls fruit sorting machines and
does all the controlling of the machine and talking to all the censors
that are gathering information about the fruit’s colour, and things
like that, and gathering this all together and presenting that informa-
tion to our customer, so our customer can make choices about how
they’re going to sort their fruit into different packages and what not.”

— Developer, P3

P4

At the time of the interview, the participant (an interaction designer) on
P4 was employed by a software consulting company based in Finland,

employing Scrum to develop

3.4. THE PARTICIPANTS

P5

“A [web-based] system to manage teaching in the ...just a bit lower
than university level school, meaning that with this system they de-
cide what courses are given at what point of time during the semester
and who’s going to teach them. Kind of try to optimize this so that
the workload for students would be manageable and the workload
for the teachers would be manageable. And they also keep their cur-
riculums in the same system, so they have all this information avail-
able ...so they can kind of instantiate for the next school year what
courses they’re going to give ...I don’t think that it's going to end
very soon because it’s really huge and a very important piece of soft-
ware and it has been going on now for one and a half years.” —

Interaction Designer, P4

47

P5’s team consisted of five developers and was part of the same company

as P4 in Finland. We interviewed the team lead/developer on the team,

who worked across several projects:

P5 worked on developing a new web-based application, using Scrum.

Pé6

“I'm currently working on one of our bigger clients where we have a
team of about five developers working across different projects. We
do maintain a constant presence with our customer doing smaller

day to day things.” — Developer, P5

The developer we interviewed on P6 is part of an XP team in a small com-

pany in Canada that develops phone communication systems which in-

tegrate with other messaging software. Within the team there were no

definitive roles, other than programmer, however, the participant we in-

terviewed assumed most of the responsibility for interaction design. The

participant described the customer requirements and the team’s adoption

of XP for the project as follows:

48 CHAPTER 3. RESEARCH METHOD

“We had a large customer that deployed their system in two physical
locations providing several hundred phones ...So they would come
and say, “We need our software to do this, we need the menu to look
like that, we need to have these features’ ...and then it is up to sys-
tems engineering to figure out how to give them that. It is kind of
a very, very rudimentary provision of services ...we weren’t doing
anything remotely approaching agile or extreme, and we introduced
a lot of the programmer-centric principles of extreme programming
— test-driven design, some pair-programming ... We've introduced
user stories, we're going to be doing iterations soon. We are tracking
estimates and we are tracking velocity and getting an understand-
ing of what that means, and understanding what the team can com-

plete.” — Developer, P6

P7

We interviewed two developers (Developerl and Developer2) on P7, an-
other project based in Canada. The team on this project employed the

Scrum method and their web-based project was described as follows:

“We’re looking at a business tool that’s used by business users who
are building marketing campaigns for running on their websites. It’s
not a new product, it’s a new aspect to our product that we work on.
It’s not like replacing an old tool. It's a new functionality that wasn’t

there before.” — Developer1, P7

When questioned about the nature of the roles in the team, Developer2

responded:

“They’re grey. We do have them but the team is dynamic enough
that day in day out they kind of know what their responsibilities are
...depending on the exact set of requirements we’re trying to deal
with...So wehaveroles ...but in reality it’s mostly about what needs

to get done and who is the best person to do that.” — Developer2, P7

3.4. THE PARTICIPANTS 49

P8

The participant from P8 was the project manager for three XP projects in
Canada and discussed aspects of all three during the interview. For conve-
nience these projects will be collectively referred to as P8, however, to aid
the discussion here, we will distinguish between them as P8.1, P8.2, P8.3.
A brief description of the three follow:

“[P8.1] has to do with companies or individuals that want to create
a business ... There’s a current system that exists ...and it’s been out
there for about seven years. It’s got somewhere about 900,000 trans-
actions per year. The other project that I'm dealing with is [P8.2].
So, people who are lobbying for certain causes have to register them-
selves and have to follow certain regulations whenever they talk to
people that are part of the government . ..So the number of transac-
tions ... from about 6000 transactions per year it’ll go to about 60,000
to 100,000 transactions per year ... The third project that I'm working
on is [P8.3], they provide insurance on small loans for small busi-
nesses ... And they have something like about 15,000 registrations,
or loans, that they actually cover per year, and they expect that to
increase because of new products that they're taking out.” — Project

Manager, P§

For all three projects, the ratio of interaction designers to developers on
the XP team

“[Depends] on the size of the development team, how fast the client
wants to move. We figure it takes about one interaction designer
for two developers. So, we kind of have a 50% ratio there ... for ex-
ample, the [P8.1] project we have six developers, one architect, two
interaction designers and one dedicated QA person and plus a dedi-
cated project manager ... the [P8.3] have a small team of one database
specialist, ...one interaction designer and two to three developers
...[P8.2], we have two interaction designers, four developers.” —

Project Manager, P8

50 CHAPTER 3. RESEARCH METHOD

P9

The final participant was a developer on P9, a project based in the US.
They developed web-based software for conducting on-line surveys, as
well as reporting the results. The participant explained:

“Web data collection framework. .. [which] allows for a group of em-
ployees within the company that have minimal programming knowl-
edge to create and deploy questionnaires to our clients...It provides
our clients with the ability to track survey participation when a sur-
vey is live, conduct e-learning, or take additional questionnaires, down-
load reports and or create reports based on collected data.” — Devel-

oper, P9

The roles in the team were well-defined and were divided into a project
manager, a group responsible for requirements gathering, developers and
a data visualisation specialist. The interaction design was the responsibil-
ity of the data visualisation specialist, whose role was described as:

“Someone not dedicated to the [development] team, but part of a
general pool of data visualisation experts. The lead developer col-
laborates closely with them up front to explain the deliverable, and
provide some fundamental Ul constraints that need to be adhered to.
The outcome from this person is the Ul — typically as a set of images,

or storyboard.”— Developer, P9

3.5 Conducting the study

According to Fontana and Frey, interviewing is “one of the most common
and powerful ways in which we try to understand our fellow human be-
ings” [51]. We chose to use semi-structured interviews with questions that
were open-ended, could be fully expanded at the discretion of the inter-
viewer and interviewee and could be enhanced by further probing [121,
p149].

3.5. CONDUCTING THE STUDY 51

Our interviews were conducted with volunteers from real-world soft-
ware development teams. These interviews were voice-recorded and then
transcribed line-by-line. The analysis of the transcripts followed the
grounded theory approach, which included open coding, axial coding, se-
lective coding and memoing. This process is explained in section 3.5.3.
During the analysis process, the concepts related to our initial research
questions emerged from the data. Through constantly comparing between
concepts as they emerged, we attempted to discover the relations between
them and in so doing, build a description of interaction design and agile
development in practice.

3.5.1 Participant recruitment

The participants were recruited through networking with members of the
agile software development community, as well as approaching software
development companies who practiced agile development methods with
significant interaction design. Participation was voluntary and secured
on an individual basis. Participants signed confidentiality agreements to
protect their identities and all identifying information has been removed
from the illustrating quotes. The information provided to participants is
included in appendix C and includes the ethics approval document, which

was required by the university’s Human Ethics Committee (HEC).

3.5.2 Interviews

All interviews were conducted at a location which was most convenient
both for the researcher and the participant, and was agreed upon on a
case by case basis. The interviews were face-to-face and one-on-one, ex-
cept for the interviews with P2, which was conducted over the telephone
with both participants present, and P9, where the participant responded
in writing. The questionnaire was intended to probe the participant about
their process of combining interaction design with agile development, and

52 CHAPTER 3. RESEARCH METHOD

the challenges they faced. The aim was to inquire into how and when cer-
tain activities, relating to interaction design, were performed with respect
to the agile development activities. To address our research question, our

interview questions centered around

e How the interaction design and agile development activities were

organised at different stages of the development effort,

e How the teams obtained feedback about their interaction design within
the structure of the agile development iterations and incorporated
that feedback into subsequent development and

e How the interaction designer role related to the agile development
team.

The questions were open-ended. The questions included in the question-
naire were obtained from analysing existing literature addressing inter-
action design and agile development, and formulated with the research
questions in mind. The first interview questionnaire is attached in ap-
pendix B.1. According to the principle of theoretical sampling (section
3.2.1), it is considered good practice to revise and adapt the interview
questions for subsequent interviews, based on the results of the analysis
of the first interviews. The revised interview questionnaire is presented in
appendix B.2 and pursues the core categories relating to interaction design
activities that take place before development begins, how they fit into the
structure of the agile development iterations and the place of the interac-
tion designer on the development team.

The interviews were voice-recorded with the participant’s permission
and then transcribed line-by-line. All interview transcriptions were re-
turned to the respective participant for their feedback regarding the accu-
racy of the transcription, then corrected if necessary. The interviews lasted
approximately 44 minutes on average.

3.5. CONDUCTING THE STUDY 53

3.5.3 Data analysis

Coding the data The first step once the interviews had been transcribed
and verified to be correct by the participants, was to code the data. It was
found that during open coding, the context in which the sentences were
spoken was preserved when coding the data sentence by sentence — even
a collection of sentences. This turned out to be helpful in the axial cod-
ing stage. A list of codes was maintained in order to lighten the memory
load of the coder. During open coding codes were added to this list as
they emerged. Once all the interview data had been assigned codes, du-
plicate codes or codes with similar meanings could easily be identified by
referring to the list of codes. Duplicate codes were eliminated and similar
codes were merged into a single code. This list contained 402 codes and
a random extract appears in figure 3.1. Extracts from the interviews were
entered into a database application using the form depicted in figure 3.2.
Discrete fragments of the interview transcriptions were entered into the
‘Excerpt’ field and the codes associated with that fragment were entered
into the ‘Category’ field. In this way more than one code or category could
be associated with one fragment, while information about the participant
and the location of the fragment in the interview transcription document
could be preserved. There were definite advantages in storing the inter-
view and coding information in the form of a database, namely that the
database application could assign unique identifiers automatically to in-
terview fragments and could filter entries according to criteria and then
export those entries in a table form, which was found to be useful for the
axial coding process.

Axial coding organised the related codes into a number of higher level
conceptual categories and established relationships between them. The
context provided by the sentences were especially helpful for consider-
ing categories in relation to other categories and discovering the nature of
those relationships.

Memoing In figure 3.2 the field called ‘Comment” was used to note any

54 CHAPTER 3. RESEARCH METHOD

ideas about possible relationships, reflections and tentative hypotheses
that occurred during analysis. Another example is shown in figure 3.3.

3.5.4 Theory development

As a means of capturing the development of theory, a separate document
was created where the categories of each interview were incrementally
added and the memos incorporated — starting with the structure pro-
vided by the categories of the first interview and adapting the existing
structure to take the categories emerging from subsequent interviews into
account. The participant quotes were selected at this time as illustration of

the main categories that emerged.

3.6 Reliability and validity of the study

There are many factors that can threaten the validity and reliability of qual-
itative data [95]. Validity in grounded theory studies are achieved by ad-
hering to the prescribed grounded theory techniques as outlined in sec-
tion 3.2, particularly through constant comparison. According to Glaser,
findings that are grounded will also necessarily be valid [63]. Further,
Glaser proposes two criteria against which the quality of an emergent the-
ory should be evaluated [61]. The first is that the theory should fit the
data, which means that the categories should emerge from the data —
without the researcher forcing data to fit conceptual categories that can
not be found in the data. The second criteria is that the results explain the
core problems and processes in the relevant area, that may be useful for
practitioners in that area.

The following points outline the risks we identified and the measures
to address each risk to increase the accuracy of the data and reduce re-

searcher bias:

3.6. RELIABILITY AND VALIDITY OF THE STUDY

%] Microsoft Excel - Catepories

=

E_'J File Edt Miew Insert Format Tools Data Window Help - &
i x
RN N, DY IR IR T
R e’ i R e | o | [By i | ¥ Rephy with Changes . e
A7 hd A Development toolg *

A [
1 |Codes [v
76 .Dew.rel.upers try to understand customer's dornain \fl
77 |Developers wiite user storias fram ideas
78 |Development process ™7
79 [Development tools * |
80 |Development tools built up over time

Development tools must be cheap
Development toals must be easy to use
Different teams working on the same sysiem
Digarvantanes of ignoring interaction design
Migadvantage of not having holigtic waw
Discussion

Dizcussion and debate is good

Domain expert

Domain expert tests every few days

Dornain expert develops acceptance tests
Oomain expert is also the customer

End usar**

Estimates ™

Ewaluating interactions

Ewzluating usability

Everything in the system is linked to user tasks
Eulsting system

Experience of developers will improve usgability
Expert review

Feedback gathering

Feedback not direct to develogers

First release

Front end difficult to test
Functinnality aver uszhility

4« » whOriginal / Anahvsis J Hisrarchy €] |
Rzady

}|Front end dificult to apply XP principles - simple design & refactor

TN

sil”

Figure 3.1: Code list

55

56

CHAPTER 3. RESEARCH METHOD

M)

=2 frm_Interviewd nalysis

4 ID 7]
Company P2
Excerpt They come from ourworkshop, We gatherthe uger
stories via that.
Category ‘Workshops, understanding users, user stories, wi
requirements
Comment
Speaker interaction designer
Lines 4%
Record: @E 17 [I]@} of 463

Figure 3.2: Coding

Lkt

. []:D=[295[|[P3 Even 1f you can't Evaluate Wxth a uger, [think it still giver you an idea about whether it |

will work or not At least yeu can see potential problems based on experience, standards, and
conventions
[up front ui design -» gives an idea of whether it will work or not, see potential problems -
= gven if tasting with users not possible > based on -» experience. standards. and
conventlons'l
[ID=127] P1]I've talked to other people — they teld me the same thing - that UI designers hate this
thought TT designers like to think, like, thiz is the overall thing, this iz the whole architecture, this is
everything And, just, like, doing a little bit at a tizne, and not thinking about the rest it's something, I
mean, [interaction designer] had a lot of problems initially but we really had to tell him a couple of
titnes, “This screen that wou did for us, this iz for ten user stories, all we implement iz two.”
just leave the se elements in there and just not make them worle and he hated it at the beginning.

[UI designer hates -> not having overall view, working iteratively. concentrating enly on a

small set of features at a time -> problems in the beginning][development team wanted a
Ul with all implemented features [working at all times]]
o [ID=123] P1] Initially what you get iz, pretty much for the whole releas

the user stories that we need or that we are planning to implement, 50 I make a UL for all these fifteen

user stories. And then we started cutting out features, changing Features along the line, so I think

that's something that we have finally convinced him to do, so don’t start with this holizstic wiew when

we know that we will have to change it anyway. To make it in small steps it actually saves you time.
A5 long as you have your owerall, kind of, goal in mind, like this was the design that we thonght for

thic swhele Featnre ca lrind aFthe TTT raetamhar in thic race TH o carmethinm that wen dan’t wreite dern

Figure 3.3: Memoing

Touwcan't

Comment [26]: XF deszgn
tiatesy —all tests mrming. 5o
having minplemated featme:
itting inthe 1 meant exbraneons |
lements: 3P principle: simple
Zesign, See book sxrame.

3.6. RELIABILITY AND VALIDITY OF THE STUDY 57

e Risk: Small, unrepresentative sample
Measure: Although our sample was not large, we attempted to in-
clude a variety of participants. Our participants were based in differ-
ent countries around the world, developing software for a range of
different domains on a variety of project sizes. We interviewed pro-
fessional software developers instead of university students. Com-
pared to other grounded theory researchers who have used six par-
ticipants in their studies [5, 84, 95], this study interviewed thirteen
participants. The experience of developing grounded theory for this
thesis has been akin to that of Martin and Turner who state that “By
the time three or four sets of data have been analysed, the major-
ity of useful concepts will have been discovered” [92]. Participants
interviewed were either on XP or Scrum teams. The agile develop-
ment methods known as XP and Scrum adhere to the values of the
agile manifesto' and, therefore, the findings of this research should
be transferable to similar development methods that adhere to these

values.

e Risk: Inaccurate recording of data
Measure: The interviews were voice recorded to ensure accuracy
and completeness of the data. The interview transcriptions and find-

ings were then verified with participants.

e Risk: Forcing the data
Measure: We took care for the theory to emerge from the data, so
that it was grounded, rather than forced to fit preconceived frame-
works. This was achieved by rigorously adhering to the grounded

theory techniques.

e Risk: Interviews only
Measure: Not only the interview transcriptions, but also the results

Thttp://www.agilemanifesto.org

58

CHAPTER 3. RESEARCH METHOD

of the analysis were returned to the participants for their review. The
results of this study were presented at the major international ag-
ile development conferences where the results were favourably ac-

cepted by practitioners and academics.

Table 3.1: The participants

Team | Agile | Country # Participants | |
P1 XP USA 2 I

I
P2 XP Ireland 2 I

I
P3 XP New Zealand | 2 I
P4 Scrum | Finland 1 I
P5 Scrum | Finland 1 I
P6 XP Canada 1 I
P7 Scrum | Canada 2 I
P8.1 | XP Canada 1 I
P8.2 | XP Canada 1 I
P83 | XP Canada 1 I
P9 XP USA 1 I

* The project manager was th

Chapter 4
Introduction to results

In this chapter we describe the large-scale features that characterised our
participants’” approaches to combining interaction design activities with
agile development activities. The introduction given here provides the
context for the discussion throughout the rest of the thesis, with the sub-
stantiating quotes from the participants presented in the following chap-
ters.

The motivation for this research was to aim for a better understanding
of how interaction design and agile development were being combined by
agile teams in practice, including how practitioners were performing the
interaction design activities, relative to the agile development activities.

Through the participant interviews, we discovered that agile teams
were broadly following similar patterns of combining interaction design
and agile development, irrespective of their agile development method-
ology. From the data it became evident that the teams organised their

activities according to two stages of the development effort:

e Before implementation began and once the development project was
considered started, or up-front, and

e Once implementation had begun.

Within these stages, approaches to the design and implementation of the

61

62 CHAPTER 4. INTRODUCTION TO RESULTS

interaction design emerged as the combination of a design strategy, in which
the interaction was designed, and an implementation strategy, in which the
interaction design was implemented as functional software.

There were also insights into the value of doing some interaction de-
sign up front (before implementation begins), despite popular opinion that
doing this contradicts agile values. We investigated the effects that the iter-
ations of the agile development process and the interaction design process
had on each other, as well as the role of the interaction designer on agile

teams.

4.1 Stages of development

From the data we observed two main stages into which the software de-
velopment activities of our participants could be divided. The first was the
stage before implementation began. At this time, the development project
was considered started, however, no coding activities had begun. We refer
to this stage as ‘Before Development Begins’. The activities taking place at
this stage were aimed at researching the scope of the product under devel-
opment and researching the potential users. The second stage of software
development was the implementation stage. At this time the implementa-
tion activities, activities related to coding the software, dominated. These

stages were observed in the case of all teams.

4.2 Interaction Design Approaches

Within the stages of development distinct strategies for designing and im-
plementing the interaction design emerged. We refer to these strategies
as Interaction Design Approaches. The interaction design and agile develop-
ment activities of the teams grouped into four different approaches, which
were combinations of strategies for dealing with the design of the interac-

tion design, and strategies for its implementation as functional software.

4.2. INTERACTION DESIGN APPROACHES 63

P2 P4 5 P& P3 F1 Pz F7 P&
P s Sc P P e P s P
Comprehensive Design Evalutionany Design Design strategy
Refinement Parallelisation Looking Ahead Implementafion strategy
Fz P4 P& Pa P3 P& P1 P7 P8
¥P Sc XP XP ¥P Bc ¥P Se XP

Figure 4.1: Teams and their interaction design approaches

We represent these approaches in figure 4.1. There emerged two strategies
for dealing with the design aspect of the interaction design: Comprehen-
sive Design and Evolutionary Design. We refer to these strategies as de-
sign strategies. There emerged three strategies for dealing with the inter-
action design once implementation had begun: Refinement, Parallelisation
and Looking Ahead. We refer to these strategies as implementation strate-
gies. The four combinations of design and implementation strategies are
represented in figure 4.1 as:

64 CHAPTER 4. INTRODUCTION TO RESULTS

1. Comprehensive Design with Refinement,
2. Comprehensive Design with Parallelisation,
3. Evolutionary Design with Parallelisation, and

4. Evolutionary Design with Looking Ahead.

4.2.1 Design strategies

As explained in section 2.4, user research is traditionally an interaction de-
sign activity and all participants performed this interaction design activ-
ity up front. Where the teams diverged in their design strategy was in the
amount of interaction design completed before implementation began and
the way design and implementation of the interaction design progressed
once implementation had begun.

One group of participants completed a high percentage of the interac-
tion design up front, which was implemented during the agile develop-
ment iterations. These teams understood interaction design to be a sep-
arate process to agile development, and that the two should occur in se-
quence. Teams who subscribed to this view completed their UI design
such that it was a representation of the entire system under development.
When a complete design is created before implementation begins and that
design is used to guide the rest of the development activities, practition-
ers refer to this as doing Big Design Up Front (BDUF). Practitioners intend
BDUF to mean any comprehensive design done up front — whether for
coding or interaction design. In this thesis, we will refer to the BDUF
strategy of interaction design as Comprehensive Design to refer to the strat-
egy where a comprehensive design is completed for the interaction design,
but not for the coding aspect of the software. Figure 4.1 shows that teams
P2, P4, P5, P6 and P9 followed the Comprehensive Design strategy.

The other view held by participants was that the interaction design
and agile development processes should be merged into one process. This

4.2. INTERACTION DESIGN APPROACHES 65

view considers the ideal combination of the processes as one where in-
teraction design blends into agile development and the interaction design
activities are interleaved with the agile development activities throughout
development. Participants who subscribed to this view produced a Ul de-
sign that only implemented the features from previous iterations and the
features that had been selected for a set number of iterations ahead. These
teams performed initial design activities in order to get started, but did
not complete a comprehensive design before implementation began. In-
stead, the design was allowed to evolve during the implementation stage.
When a system is designed in this way, Fowler refers to this as Evolution-
ary Design [52]: “Essentially evolutionary design means that the design
of the system grows as the system is implemented,” and in a conversation
with Bill Venners, “You begin by coding a small amount of functionality,
adding more functionality, and letting the design shift and shape” [142].
In this thesis, we will adhere to Fowler’s term and refer to the strategy
where an interaction design grows as the system is implemented, as Evo-
lutionary Design. Figure 4.1 shows that teams P1, P3, P7, and P8 followed
the Evolutionary Design strategy.

4.2.2 Implementation strategies

As explained in chapter 2, agile development iterations consist of activ-
ities that can be grouped into planning, implementation and evaluation
activities. Although each team carried out planning, implementation and
evaluation activities, the way the team organised the sequence of these ac-
tivities with interaction design activities, depended on factors such as the
amount of interaction design completed up front and the degree of sepa-

ration that could be attained between development of the front end and
the back end.

Based on the participants’ responses we identified the implementation
strategies by asking the following questions:

66 CHAPTER 4. INTRODUCTION TO RESULTS

e What work occurs before implementation begins?

e What drives development?
- What are the plans for the iteration based on?

- What do developers refer to when implementing the UI?

e What constitutes the work of the interaction designers when the de-

velopers are doing implementation work?

Based on the answers to the above questions we could distinguish be-
tween three implementation strategies — Refinement, Parallelisation and
Looking Ahead.

Refinement

The most popular implementation strategy among our participants who
followed the Comprehensive Design strategy, was what we refer to in this
thesis as Refinement. This was followed by teams P2, P4, P6 and P9. The
term for this implementation strategy is taken directly from the partici-
pants’ own words for their descriptions of their activities. For example,
the developer from P6 talks of the agile development iterations “as a re-
finement process.”

For teams who followed the Refinement strategy, interaction design
was seen to occur before implementation began, followed by the agile de-
velopment process. Developers matched their implementation to the Ul
design specification during the agile development iterations and changes
to the Ul design were expected to be mainly due to implementation issues
encountered by the developers. These were usually minor design changes
required to implement the design with the technology being used to de-
velop the product. Thus, the comprehensive Ul design created up front
was refined during the iterations, successively transforming it into an ‘im-

plementable” interaction design.

4.2. INTERACTION DESIGN APPROACHES 67

Parallelisation

Only two teams in our study followed the strategy we will refer to as Par-
allelisation. Both teams had a different design strategy. P5 followed Com-
prehensive Design and P3 followed Evolutionary Design. Again the term
for this strategy is taken from the participants’ responses. For example, the
developer from P5 explaining that interaction design “is done in parallel
to the development.”

Applying the Parallelisation strategy appeared to be independent of
whether or not a comprehensive interaction design had been created up
front, and more related to whether the product and the implementation
technology allowed a separation between the front end (UI) and the back
end (system code). Parallelisation of the interaction design and agile de-
velopment relied on the underlying system code remaining unaffected by
interaction design changes and vice versa. As the developers iteratively
implemented the system, the UI was iteratively designed and evaluated
separately. The interaction design was not seen to drive development.
Instead, user stories or small chunks of formulated tasks taken out of a
requirements specifications document determined the work to be done in
the development iteration. Due to the limited reliance of the two processes
on each other to progress, the number and timing of their iterations were
also independent of each other. As a result, the interaction design and im-
plementation required synchronisation at some point during development
for evaluation of the whole system to take place.

Looking Ahead

Three out of the four teams in our study who followed the Evolutionary
Design strategy, followed what we refer to in this thesis as the Looking
Ahead strategy. These were teams P1, P7 and P8. The term for this imple-
mentation strategy is also taken from the participants” own words for their
descriptions of their activities. For example, the Project Manager from P8

68 CHAPTER 4. INTRODUCTION TO RESULTS

explains that the interaction designer de-risks the implementation process
“because they’re looking at it [the product] from a little further away.”
The Looking Ahead strategy was characterised by the interaction de-
signers creating a design for a fixed number of iterations ahead (usually
one to two iterations ahead) of what the developers were implementing in
the current iteration. So, interaction design and agile development were
occurring simultaneously, however, as the agile development iterations
progressed, so the Ul was iteratively designed to stay ahead of the im-
plementation. For these teams, after any number of agile development
iterations, the UI design covered only the features that had been selected
to be implemented up until the iteration they were designing for. Unlike
the Refinement strategy, where all the interaction design activities took
place before implementation began, the Looking Ahead strategy allowed
more interaction design activities to be interleaved with the development
activities. For example, the interaction designers could iteratively evaluate
UI designs with users before they were implemented in subsequent itera-
tions. In this way, interaction designers were looking ahead of the devel-
opers at what issues user evaluations were elucidating about the system
under development, before those issues became part of the implemented

system.

Combinations with design strategies

Apart from the teams who followed the Parallelisation implementation
strategy, the rest of the teams’ implementation strategies, were dependent
on their design strategies. Figure 4.1 shows that teams who followed the
Comprehensive Design strategy, only followed Refinement or Parallelisa-
tion as implementation strategies, whereas teams who followed the Evolu-
tionary Design strategy, followed Looking Ahead or Parallelisation. None
of the teams combined Comprehensive Design and Looking Ahead nor
did they combine Evolutionary Design with Refinement. While the combi-
nation of Evolutionary Design with Refinement suggests that it would be

4.3. FEEDBACK AND CHANGE 69

difficult to carry out in practice, combining Comprehensive Design with
the Looking Ahead strategy would certainly be possible, albeit a great
waste of resources spent on completing a Comprehensive Design in the

tirst place.

4.3 Feedback and change

Regardless of whether the teams were XP or Scrum teams, the agile devel-
opment iterations were found to be opportunities for obtaining feedback
about the interaction design and incorporating changes back into the in-
teraction design. We examined how teams obtained feedback about their
interaction design within the structure of their agile development itera-
tions and how that feedback was incorporated into subsequent develop-
ment. Four strong themes emerged from our data (chapter 7 details these

points):
1. Development iterations drive usability testing
2. Usability testing results in changes in development
3. Iterating with working software brings insights

4. Iteration planning affects interaction design

These points show a coherent picture of how interaction design and ag-
ile development can work together for considerable advantage. Iterations
can be seen as driving usability testing, which in turn affects subsequent
development. Teams discovered insights into design and technology lim-
itations as they implemented the system and iteration planning affected
interaction design in terms of what Ul features were implemented in an
iteration.

Feedback and change was not only encountered in the product under
development, a re-occurring theme in the interview data was the exper-
imentation and adjustment of the development process itself. All teams

70 CHAPTER 4. INTRODUCTION TO RESULTS

were constantly calibrating their development process to better meet the
end user’s goals and increase the overall productivity of the interaction
designers and developers on the project. Combining interaction design
and agile development activities during the development effort was seen

as a learning experience that teams were becoming better at over time.

4.4 Interaction designers on agile teams

The final research question for this study concerned the interaction de-
signer role. The participants” emphasis on the importance of creating us-
able software and their acknowledgment that interaction design requires
skills that are different from programming skills, emerged from the in-
terview data. The interaction designer role contributed these interaction
design skills to the agile team, which was understood to add great value to
the overall development effort. A major insight obtained from the partici-
pants was that interaction design in an agile context is considered a collab-
orative effort between interaction designers and developers. Whether in-
teraction designers created a comprehensive Ul design before developers
began implementation, or only a subset of the final UI design, implemen-
tation activities provided insights into the interaction design that required
agreement between the developers and interaction designers before the
implementation or the design could be changed. Another major insight
was that the amount of collaboration between interaction designers and
developers depended on whether the teams considered themselves com-
posed of generalists or specialists. Teams of generalists encouraged feed-
back from all team members, whereas teams composed of specialists re-
quired each role to limit feedback on issues outside their area of expertise.

4.5. PUBLICATION OF RESULTS 71

4.5 Publication of results

The results discussed in chapters 5 to 8, have been published and pre-
sented at various conferences. A combination of the results in chapters
5 and 6 were presented at the 8th International Conference on Agile Pro-
cesses in Software Engineering and eXtreme Programming, held in Como,
Italy, on June 18-22, 2007 [50]. The results from chapter 7 were presented
at the Agile 2007 Conference held in Washington, DC, USA, on August 13—
17, 2007 [48]. The results from chapter 8 were published by the 5th New
Zealand Computer Science Research Student Conference held in Hamil-
ton, New Zealand, on 10-13 April, 2007 [49].

4.6 Next steps

The rest of this thesis illustrates the findings already framed in this chapter,
using quotes taken directly from the interview transcriptions. The quotes
are labeled with a combination of the speaker’s team and the quote’s asso-
ciated key taken from the quotes database (see chapter 3), for example,
[P1.108]. We also include the speaker’s information: Their role on the
team, and their team name, for example, Developer2, P2. Table 3.1 pro-
vides all roles interviewed and associates each participant with their team
name.

As the ensuing discussion regarding the development activities of indi-
vidual teams is rather fragmented, appendix A provides a more coherent
and sequential description of teams P1 to P5’s development activities.

Chapter 5
Before implementation begins

This chapter discusses our findings as they relate to the software develop-
ment activities that took place before the implementation stage of the de-
velopment effort began, i.e., up-front. Participants agreed that doing some
interaction design before implementation began was essential in order to
begin their development project. Activities that took place at the up-front
stage, were concerned with obtaining information about the end users,
modeling information about those end users and creating design artifacts
based on that knowledge. A UI design specification was one of the de-
sign artifacts produced by the teams. Although all participants performed
some interaction design up front, participants held contrasting opinions
as to the amount of Ul design that should be completed before implemen-
tation begins. These views influenced the teams’ design strategy of their
Interaction Design Approach, and is discussed in the next chapter.

The design artifacts played a role in estimating the work for the itera-
tion and breaking up the development work into coherent elements that
could be implemented iteratively. As these activities were performed up
front, it became clear that the interaction designers established a solid di-
rection for the product with input from their stakeholders and end users,
and that the resulting product, based on the Ul design created by the in-
teraction designers, was expected to be usable and meet all the goals of

73

74 CHAPTER 5. BEFORE IMPLEMENTATION BEGINS

its end users. The information obtained and modeled up front was also
found to drive the subsequent agile development activities.
In chapter 6 we examine the teams” Interaction Design Approaches in

the context of the agile development activities.

5.1 Gaining a holistic view up front

On all projects in this study, an overall view of the scope of the project was

known:

[P7.567] “We definitely knew what our problem was up front in this
project. We definitely knew what we needed in the end to be able
to claim victory in our project. We had a definite set of ideas and

concepts around what this project was all about.” — Developer2, P7

[P3.239] “You can not get around the finding out what it has to do
aspect and then you can evolve your actual design off of that as you

go.” — Developer1, P3

Participants stated that gaining a holistic view up front clarified what

needed to be implemented and guided development:

[P8.627,628] “It’s good to be able to sit down and be able to have
a whole, like a global view ...get a sense of, globally, what are we
trying to achieve and coming up with a concept across the whole

system.” — Project manager, P§

[P3.294] “Up-front design gives you a clearer picture of what you're
actually trying to implement and that makes it easier to make quick
changes before you start implementing.” — Developer2, P3

[P1.153] “It’s hard to have a holistic view of the application when
you haven’t followed out all its framework: How am I gonna handle
bread crumbs, how am I gonna handle, you know, main navigation,
how am I gonna handle, like, user profile stuff ...So I created a re-
ally basic framework in the navigation model and then I just started

working on tools.” — Product manager/UI designer

5.2. STUDYING CLIENTS AND USERS 75

[P1.186] “If it’s a big product, you can’t just design things piecemeal,
like, XP implements things in little, small work units, you know, and
you gotta have a holistic view, otherwise everything’s gonna be frag-
mented and you won't have any cohesion. There won’t be any con-
sistency or anything if you just kinda do it as you go.” — Product
manager/UI designer

Participants agreed that some role in the team should have this holistic

view in order to direct the overall UI of the product coming together:

[P6.479] “Facing the whole thing put together and going, ‘Ok, put
that user interface together, put that user interface together, they’re
both cool on their own but they don’t gel properly, they don’t work
right together. One uses these words and the other one uses those

7

words.” ” — Developer, P6

5.2 Studying clients and users

Participants talked about their close collaboration with stakeholders such
as clients and users of the product under development. By meeting with
stakeholders during walk-throughs, surveys, workshops and site visits be-
fore development began, the interaction designers could elicit the system
requirements from end users and gain a better understanding of their char-
acteristics and work environments. The participant from P4 mentioned
that requirements gathering focused on requirements that would affect
the Ul design:

[P3.212] “We use informal conversation with the customer, so some-
one tries to understand the domain that they’re working in, what the
problems are and why they’re trying to achieve what they’re doing.”
— Developer1, P3

[P4.336] “We are looking only for things [requirements] that would

matter from the user interface design point of view. All the other

76 CHAPTER 5. BEFORE IMPLEMENTATION BEGINS

technical requirements and such have been collected previously.” —

Interaction designer, P4

Another team attempted to get input from as wide a range of stakeholders

as possible:

[P2.16] “We’ll hold a workshop with the project sponsors, we’d have
them with end users of the product, we’d have them with IT people,
with the actuaries in the company, with the compliance people, as
many as we can who will have input into the product or are using it
in some form, or who are developing it in some form.” — Interaction

designer, P2

Personas and scenarios, both well-known HCI techniques, were found
useful by the teams for modeling the user’s goals in such a way that the

team could construct UI designs that met these goals:

[P1.118,119] “I mean that was for the UlI, but also for the user stories,
one of the most important things to do. To really have these personas
...always knowing for who do we implement this. Who is the main

user for this feature.” — Engineering manager, P1

[P2.66] “We design personas up front for our projects and we identify
what their goals are, in using the product. We have to make sure
that when we're testing the product, we meet all their goals.” —

Interaction designer, P2

[P2.18] “We write our user stories through what are called scenarios.
Before they ever become user stories on a card for the development

team, we do them via scenarios.” — Interaction designer, P2

Therefore, the product implemented based on the up-front design artifacts

were expected to have a good level of usability built in:

[P2.70] “The usability will be built into the design of the screens,

which the developers have.” — Interaction designer, P2

5.2. STUDYING CLIENTS AND USERS 77

[P7.552] “We're given these wireframes ...so we all think that what
we’re doing is usable and good and pretty and things like that.” —
Developer1, P7

Participants were convinced that doing up-front design and having inter-
action designers interact with stakeholders up front was the right thing to
do, due to the positive feedback from their customers:

[8.670] “My boss wasn't fully convinced that it was the right thing
to do to put UI people in front of the client and after about three
months, the client walked in one day and ...I quickly mentioned this
is the first project that we actually deal with an interaction designer
up front and her comment was, ‘This is the only project where you're
doing this? Why aren’t you doing this on all of your projects?” ...and
she said this was the best one. She said, ‘I wouldn’t work in any other
way and I don’t understand why you guys would work any other

way.” ” — Project manager, P8

[P2.29,74] “And it’s just what we believe in — we believe in agile de-
velopment, we believe in interaction design and we combine the two
together. So I can’t imagine us going away from those processes in
the future ...it’s so intuitive how to use our software, it’s just very,
very simple and straight-forward ...So that’s all because of the de-
signers’” up-front work, because of up-front design and also because
of the agile process we use. For me, personally, there is a huge dif-
ference in the satisfaction of our clients for this company than in pre-
vious companies I've worked for. And this is just phenomenal.” —

Interaction designer, P2

The only exception to doing user studies was the team where the develop-

ers were users of their own product:

[P1.108] “Our customers are our product managers. I know for many
teams where it’s the same, they just have the problem that their prod-

uct manager wouldn’t use the application, so their product manager

78 CHAPTER 5. BEFORE IMPLEMENTATION BEGINS

kind of has to approximate, Ok, I think they will do this and this and

this.” For us it’s really not.” — Engineering manager, P1

[P1.180] “The other thing that kinda helps is, and this is not a sub-
stitute for usability testing, but we’re also active users of the prod-
uct, ‘cause we use it internally for our own development. It’s a little
easier for us to empathise with the users because it’s like, you im-
plement this feature, now I can’t use my bug submissions the way I
want to. So, it’s a lot easier “cause there’s people internally, like QA, I
can bounce ideas off. And they go “You're gonna make my life hell if

s

you do that.” ” — Product manager/Ul designer, P1

5.3 Designing for change

Participants found that creating some design artifacts — either in the form
of personas and scenarios, high-level navigation maps or pen and paper
prototypes representing the actual Ul — were essential. Having the Ul
100% complete was not necessary, as inevitable changes discovered during

implementation should be accommodated in the design:

[P4.343] “What we currently try to do here at [Organisation], or what
I try even sometimes to force through, is that UI design should be
completed at least ninety five percent of the whole system before
starting the implementation at all because otherwise it’s simply not

going to work.” — Interaction designer, P4

[P1.111] “The UI designer actually can get away with not putting all
the details and everything into it. Many things just work out during
the iteration planning or during development ... he [the UI designer]
doesn’t have to make this absolute, final, ultimate thing that is then
given to someone. You can get away with a seventy to eighty percent

implementation.” — Engineering manager, P1

A UI that was not completely 100% specified up front left room for inter-
action design decisions to be made during implementation. All partici-

5.4. DRIVING THE DEVELOPMENT EFFORT 79

pants in the study mentioned the fact that there were inevitable changes
to the interaction design during development, such as implementation is-
sues or issues that were not identified up front. Therefore, an incomplete
UI design allowed adapting to newly discovered technology limitations,
changes due to refactoring and changes due to newly discovered techno-
logical needs:

[P5.412] “[Change is] driven by the needs of the system or new things
learned during the project and risks that didn’t get identified in the
beginning.” — Developer, P5

[P4.368] “Although everyone says that the user interface is not in a
straight link with the implementation, that’s not true. If there is a
major refactoring of the user interface, it’s going to affect very much

the implementation and it’s very costly.” — Interaction designer, P4

[P4.340] “It’s not realistic and not a good way of working to try to
specify things to the nitty gritty detail, meaning that there will al-
ways be some kind of feedback from the developers when they find
out that, ‘Hey, this is difficult to do,” or “‘Have you thought of this
kind of a situation, which came up now while trying to implement
this?” They give a seed for a need for redesign or completing the
design, which is not sensible to do beforehand, because there are so
many of these exceptional situations that the user interface designer
would never guess, because he would need to know the internals of

the system.” — Interaction designer, P4

5.4 Driving the development effort

With the exception of P3 and P5, the design artifacts created up front were
found to drive the development of the product, both in terms of planning
the development activities and developers having to match their imple-
mentation to the design artifact. Work estimates could be created, based
on the combination of the user stories and the UI design, and the list of

80 CHAPTER 5. BEFORE IMPLEMENTATION BEGINS

features to be implemented in the iterations could also be created from the
Ul design:

[P1.177] “In the iteration planning meeting, we’ll hand the cards to
the engineering manager and he’ll go through and get the estimates
...while he’s getting engineering estimates, I really have to think
about it because they’re, you know, giving estimates and we’re mak-
ing our plan based on this [UI design], and they don’t want to work
80 hours a week.” — Product manager/UI designer, P1

[P4.338] “So we’re kind of using the user interface design as the re-
quirement for the developers ...and based on that user interface de-
sign it’s possible to break it into backlog items in Scrum and give
estimates of how long this is going to take ...from my point of view,
the user interface design quite heavily leads the release planning.” —

Interaction designer, P4

Matching the implemented interaction design with the interaction design
artifact was seen as the responsibility of the developers, which the interac-
tion designers would check informally during the development iterations,

or more formally during acceptance testing;:

[P7.552] “Making sure it works would be one good thing, trying to
make it match the wireframes as much as possible.” — Developer1,
P7

[P1.171] “We’ve got a room — the observatory room — we’ve got two
projectors side by side, we’ll pull up the html mock-up and then we’ll
pull up the actual application page. We have this manual acceptance
process, so if anything’s off, it’s unaccepted and it goes back to the

engineer.” — Product manager/Ul designer, P1

As a result, the design artifacts played a role in the communication be-
tween the interaction designers and developers throughout development,
as features of the design were discussed and clarified for implementation:

5.5. ADVANTAGES OF INTERACTION DESIGN BEFORE DEVELOPMENT BEGINSS81

[P4.371] “We currently have the PowerPoint for the HTML prototype,
and what we do is we give them [developers] a printout of that so
that we can discuss and communicate with those prints. They [de-
velopers] can circle things on that piece of paper around "What does

this do?” and write comments and so on.” — Interaction designer, P4

[P7.538] “These are just still wireframes. We talk about, “‘What hap-
pens when you click here?” and then we have discussions ...They
don’t show workflows and a lot of it relies on us to communicate
with the people who have made those wireframes or have the exper-

tise.” — Developer1, P7

5.5 Advantages of interaction design before

development begins

The participants were clear about the advantages of doing interaction de-
sign before implementation began. Among the teams three advantages
directly attributed to up-front design before implementation begins, were
identified:

1. Saves cost and time
2. Increases user satisfaction
3. Increases usability testing productivity

Cost and time For teams P4 and P5, up-front design was seen to contribute
to cost and time savings by ensuring better project estimation and priori-

tisation:

[P4.369] “Based on the user interface design, you can make very spe-
cific estimates of how much work is it going to take to implement
this .. .it’s possible to make sophisticated judgments about what we

should do first, how much this is going to take, what creates added

82 CHAPTER 5. BEFORE IMPLEMENTATION BEGINS

value for the user, which things should we tackle first, give very good

and exact work estimates.” — Interaction designer, P4

Participants also noted that up-front design helped designers come up
with the best possible design, while keeping to the customer’s budget:

[P4.369] “If you do an up-front user interface design you can com-
municate to the customer how much it’s going to cost, how much it’s
going to take to build the whole system, so the customer can again
tell back that ‘Ok, I don’t have so much money,” so we can try and
prioritise and say that ok, with this much money, we think that the
best bang for buck is to cut it over here that is either underneath the
budget or just a little bit above it, so that they can then try to adjust
it.” — Interaction designer, P4

Negotiations with the customers before development begins prevents this
from becoming a potential bottleneck during implementation. Partici-
pants explained how negotiations with customers about the interaction
design during the implementation stage, could hold up the development

work:

[P4.338,347] “We make a deal with the customers, ‘This is the amount
that we think this is going to take,” and then once they say ‘Go,” we
start implementing that ... We try to actually push this so that this
would have been done before hand, so that the features that the de-
velopers were working with, the work would have not ended and we
would not have needed to put this project on hold, but our situation
was such that our customers did not believe that this was going to

happen.” — Interaction designer, P4

[P5.426] “We had just one person responsible for creating the HTML
prototype ...if you consider the responsibility of making these changes
it’s kind of within this one person and he has to have this tight inter-
action with the customer, then that interaction might become a little
of a bottleneck.” — Developer, P5

5.5. ADVANTAGES OF INTERACTION DESIGN BEFORE DEVELOPMENT BEGINS83

User satisfaction In teams P1, P2 and P6 up-front design was seen to have
a positive impact on the final product’s user satisfaction and consistency:

[P2.73] “Well, I think from my experience, when I worked in com-
panies other than this company, I was involved in user interface, and
we weren’t putting in nearly as much effort into the [up-front] design
of the software and I have to say that the user satisfaction, our scores
were very low. Not only that, but there was weeks and weeks and
weeks of training on the systems in order to be able to understand

how to use them.” — Interaction designer, P2

[P1.155,187] “Just create some up front consistency, like, what do but-
tons look like, where are they placed, what do tables look like, how
do users interact with tables, what do forms look like, how do you get
from a table to a form and then back to the table, like, basic interaction
models. So, kinda like a style guide ...So, having that up-front con-
sistency in designing the behaviour into it.” — Product manager/UI

designer, P1

This was especially true when teams could demonstrate some mock-up

for requirements verification before implementation:

[6.475] “I very quickly mock up something that usually has a scripted
set of behaviours . .. so that way our systems engineering guys who’d
gather the requirements can actually pick up a real application and
play with it and see, 'Ok, well, do I like the layout? Do I like the size
of it, how it looks on the screen? Do I like how it’s displaying the
information? Do I like how that transition works?” that sort of thing

YA/

...And then they usually say ‘I like this, or I don’t.” ” — Developer, P6

Usability testing productivity Team P4 credited up-front design with in-
creasing the productivity of usability testing:

[P4.386] “That [usability testing the final product] would find out the

small stones in your shoe, because we believe that big stones in front

84 CHAPTER 5. BEFORE IMPLEMENTATION BEGINS

of your shoe have been removed mostly by the user interface de-
signer doing design up front and iterating and evaluating the design

with the users.” — Interaction designer, P4

5.5.1 Another notion of up front

Creating an interaction design during the stage before implementation be-
gins is one notion of creating a design up front. Another is the case where
interaction designers do interaction design before it is implemented in the
next iteration. In this case, participants identified a further two advan-
tages to creating an interaction design before the developers implement
it as functional software in subsequent iterations. These are advantages
as a result of the interaction design being done before that interaction de-
sign is implemented, rather than completing all interaction design before

implementation begins:
e Mitigates the risks of the developers” work
e Anchors the Ul design

De-risking development work The interaction design work performed
up front by team P5 and P8 was seen to de-risk the work of the developers

later in the development effort:

[P8.658] “I think, the more forward thinking they [interaction design-
ers] do, the more they de-risk what’s happening now because they're
looking at it from, like a little further away and they’re saying, "This

7o

is coming down the line..” ” — Project manager, P§

[P5.458] “It can take a while to work through all the pages and while
developing, we may run into problems two to three weeks into the
development iteration. This is a problem schedule-wise, as the later
the changes propagate into the schedule, the bigger the impact they

have on the overall development effort.” — Developer, P5

5.6. SUMMARY 85

Anchoring UI design With concrete design artifacts such as pen and pa-
per prototypes and wireframes, P7 found that the UI design can be an-
chored. This provided a stable guide for the Ul implementation, as seen
in section 5.4. Design artifacts also helped to reduce the probability that
one group changed the Ul design without communicating with the other

group:

[P7.560] “They [interaction designers] change things ... Now that we
have the wireframes ... Not as frequently anymore. At the beginning,

it was really hard.” — Developer1, P7

There were also benefits for the communication between designers and
developers, as artifacts helped to ground their understanding;:

[P7.561] “I talk about these wireframes like they’re the word of god
—but it’s nice ‘cause I have something to reference, right. Before we

had nothing and we’d be like, ‘Is this what you mean?” ‘No.

Developer, P7

5.6 Summary

This chapter discussed our findings as they relate to the software develop-
ment activities that took place up-front in the development effort. There
was agreement among the teams that the period of time before implemen-
tation began was the most suitable for activities related to understanding
the end user and obtaining an overall view of the project under develop-
ment. These were seen to be essential activities to begin the development
effort. Participants believed that the holistic view gained during up-front
design helped clarify ideas on what had to be implemented. Up-front Ul
design was considered beneficial when it was allowed to change during
the implementation stage and often ended up driving the rest of the de-
velopment activities. Finally, we discussed the advantages that were ex-
perienced by participants as a consequence of doing interaction design

86 CHAPTER 5. BEFORE IMPLEMENTATION BEGINS

up-front. Further discussion of the Interaction Design Approaches is con-
tinued in chapter 6.

Chapter 6
Interaction design approaches

The previous chapter explained that the teams in our study considered
some up-front interaction design work essential to start the development
effort. This chapter continues the discussion, with a focus on the way the
teams organised their interaction design and agile development activities.
We explain the teams’ Interaction Design Approaches, i.e., how they ap-
proached their interaction design in terms of its design and its implemen-
tation. Within the data, distinct patterns of interaction design emerged.
These patterns were essentially strategies the teams employed in order to
deal with the design aspect of the interaction design and its implementa-
tion.

The combination of a team’s design strategy with their implementation
strategy is what we refer to as the Interaction Design Approach, as out-
lined in chapter 4. For the design aspect, two strategies emerged, while
three strategies emerged for how teams dealt with the implementation of
the interaction design. In the following sections we discuss the combina-
tions that were observed in our data, introduced in chapter 4, focusing
tirst on the activities that defined the design strategies and then on how
the interaction design activities were combined with the planning, imple-
mentation and evaluation activities of the agile development iterations —
defining the implementation strategies. In chapter 7 we discuss how in-

87

88 CHAPTER 6. INTERACTION DESIGN APPROACHES

teraction design and agile development were seen to work together for

considerable advantage to the overall development effort.

6.1 Overview of interaction design approaches

The first Interaction Design Approach, discussed in section 6.2, combines
Comprehensive Design with Refinement. These teams understood inter-
action design to occur before the agile development process begins, and
therefore, created a comprehensive interaction design before implementa-
tion began. They designed their Ul such that it was a representation of the
entire system under development, which was then implemented during
the agile development iterations.

The second approach, discussed in section 6.3, combines Evolutionary
Design with Looking Ahead. These teams merged the interaction design
and agile development processes so that the interaction design activities
were interleaved with the agile development activities throughout the de-
velopment effort. Participants who subscribed to this view produced a Ul
design that only implemented the features from previous iterations and
the features that had been selected for a set number of iterations ahead. In
this way, the Ul design was allowed to evolve during the implementation
stage.

The third and fourth approaches are combinations of each of Compre-
hensive Design and Evolutionary Design with Parallelisation. These are
discussed in section 6.4. Their Ul design and evaluation activities and the
implementation activities were performed in parallel. As the developers
were implementing the system, the UI was iteratively designed and eval-
uated separately.

As table 6.1 shows, the team’s agile development methodology ap-
peared to have no identifiable relationship with their Interaction Design

Approach.

6.2. COMPREHENSIVE DESIGN 89

Team | Agile | Design Strategy Implementation Strategy
P1 XP Evolutionary Design Looking ahead

P2 XP Comprehensive Design | Refinement

P3 XP Evolutionary Design Parallelisation

P4 Scrum | Comprehensive Design | Refinement

P5 Scrum | Comprehensive Design | Parallelisation

P6 XP Comprehensive Design | Refinement

P7 Scrum | Evolutionary Design Looking ahead
P8 XP Evolutionary Design Looking ahead

P9 XP Comprehensive Design | Refinement

Table 6.1: Teams and their Interaction Design Approach

6.2 Comprehensive Design
P2, P4, P5, P6 and P9 were teams that performed Comprehensive Design:

[P2.3,5] “The way it generally works from the top is our domain
guy/customer will have a vision. Marketing will go off and verify
the vision, basically to see if it’s viable, identify the market gap, or
whatever. It will then be passed down to the interaction designers
who will then come up with a design for an actual product that we're
going to develop. And that’s when it starts sinking down to our level.
We'll start having planning meetings and stuff like that. Come up
with the actual schedule for putting the project together. That’s when
XP really takes off.” — Project Manager, P2

[P9.700] “Lots of mock ups, and story-boards for what the user ex-
perience would look like [designed before development begins].” —

Developer, P9

Quote P2.3,5 above indicates a preference to have the UI designed com-
pletely before implementation began and then handed off to the develop-
ers to implement. The number of features included in the UI design, i.e.,

90 CHAPTER 6. INTERACTION DESIGN APPROACHES

the coverage of features in the Ul design, included the entire list of features

envisioned by the team at the outset of the project:

[P2.23] “Before it gets into development, the user interface is more or
less, 90% defined. So there wouldn’t be that many changes once it

goes into the development iterations.” — Interaction designer, P2

The participant from P4 explicitly talked about removing UI design from
the agile development iterations:

[P4.337] “What we're trying to do is actually get the user interface
design out of the iteration cycle, so that we would have specified
the functionality and how the user interface exactly works and the
iterative part would be actually implementing that.” — Interaction

designer, P4

This hints at a view of interaction design and agile development as two
separate processes, belonging to distinct domains. The Interaction de-
signer on team P2 communicated the sentiment that practitioners are not

encouraged to contribute outside of their domain:

[P2.31,56] We as designers have great respect for what the developers
do and the developers have great respect for us. Even with great com-
munication going, we’d never assume to make a suggestion about
something we don’t know very much about ...I can’t imagine why a
developer would be designing screens because their training lies in a
whole different area to me, and their skill set lies in a different area
so I just don’t understand how companies can do that.” — Interaction

designer, P2

An important insight was that interaction design performed before imple-
mentation began was seen by participants to be different to up-front code
design. For example, up-front code design was seen by participants to
produce costly waste, whereas being able to refine the Ul design with the

customer up front to make sure it is correct, was considered essential:

6.2. COMPREHENSIVE DESIGN 91

[P2.57] “The kind of issues that you get in up-front code design are
not the issues you get in up-front Ul design at all. Code design comes
out of just the amount of waste you get from people doing two, three
jobs. Do the same job two or three times in different forms. You might
have something described on paper, then you might have something
described in boxes and arrow diagrams, then you might eventually
start hand coding it then you’d probably have to fix it later because
you don’t have any tests, that kind of thing. There’s an awful lot
of waste involved in that, which is the main thing XP was trying to
fix in the first place, but with regards to up front interaction design,
you know, putting together screens, in Photoshop or whatever and
iteratively running it by customers and things, to make sure that the
design itself is correct. So it’s a whole different domain, basically.” —

Developer, P2

[P4.400] “We're not writing a specification that is not true, we're try-
ing out the system in the cheapest possible way in a very agile fash-
ion but we're doing it with pen and paper and it’s to build a system.
This pen and paper thing is not design up front, it’s defining what
the system is in a faster and a cheaper way. If it would be as cheap
to implement the system at the same time, well then go for it. But if
I can draw in five minutes so much user interface that it takes two
months to implement, I really do not think that that is the best way

to tackle things.” — Interaction designer, P4

Participants agreed that up-front interaction design does not clash with
the agile principles which discourage up-front design, as long as it is iter-

atively refined with feedback from evaluation:

[P2.14] “So ultimately what we do is we build a certain amount of our
product using our product visionary, and then we go in and refine the

rest with our clients.” — Interaction designer, P2

[P2.53,57] “Personally, I don’t think XP warns about doing up-front
design. I think it warns about doing a huge amount of code design
up front. I think there’s a difference.” — Developer, P2

92 CHAPTER 6. INTERACTION DESIGN APPROACHES

[P3.238] “XP says nothing about finding out what you’ve got to do
up front. Just make sure you put it through a feedback cycle.” —
Developer1, P3

[P5.439] “And then at that point, when it [UI design] is passed to
the person who does the HTML prototype .. .it’s an iterative process
with the customer because he has to come up with a consistent look

and feel.” — Developer, P5

Once the Ul design had been established in the period before development
began, the UI design was not expected to undergo any major redesign dur-
ing implementation, as the interaction designers created the best design
up front. The anticipated changes in the UI design were expected to be
minor issues regarding implementing the design utilising the technology

with which the product was being developed:

[P2.24] “Very little change [during implementation] really because

we put so much effort into the design.” — Interaction designer, P2

[P4.397] “If there’s a good design for that, there’s a reason why the
design is good and there is no reason for the implementer to create
something else, if what’s a good design is buildable.” — Interaction

designer, P4

Of the Comprehensive Design teams, only P2 mentioned testing with users

once implementation began:

[P2.76] “We try and do user testing a good bit before we were having

our final release” — Interaction designer, P2

P4, and P6 did not perform formal usability evaluations with users, due to

a lack of customer interest in usability testing:

[P4.378] “You have to have in the budget usability tests and so on.
Currently that’s not realistic with most of these pieces of software.
And the customers themselves are not even very interested in that.”

— Interaction designer, P4

6.2. COMPREHENSIVE DESIGN 93

[P6.511] “Not intentionally not interested, they’re not focused in that
direction. So yes they’re not interested, but it’s not a conscious omis-

sion.” — Developer, P6

For P2 and P4, users were involved in Ul design evaluations which oc-

curred up-front:

[P4.350,352] “We create a design, test it ourselves, find that this is
simply, “We think that this would work,” and then we try to evaluate
it with users and when we find out the problems, then we do redesign
and then evaluate again ... User testing takes place up front, because
it has turned out that that kind of iterating with built code is most

expensive.” — Interaction designer, P4

The participant from P4 clearly indicated that evaluating with users before

implementation begins removes the major usability flaws in the UI design:

[P4.386] “Usability testing the final product would be very reasonable
because that would find out the small stones in your shoe, because
we believe that big stones in front of your shoe have been removed
mostly by the user interface designer doing design up front and it-
erating and evaluating the design with the users.” — Interaction de-

signer, P4

6.2.1 Implementation as Refinement

As the interaction design was either created by skilled interaction design-
ers, or refined with end users before implementation began (or both), P2,
P4, P6 and P9 considered the implementation of their Comprehensive De-
sign as a process of refinement. Figure 6.1 shows the structure of the agile

iteration in the Refinement strategy.

Planning

Planning, in terms of work estimates and prioritisation of features for im-

plementation in the iterations, were based on the interaction design. After

94 CHAPTER 6. INTERACTION DESIGN APPROACHES

the overall interaction design had been created, the work of implementing
the design was broken up into components that could be implemented

iteratively:

[P4.337,356] “Based on that user interface design it’s possible to break
it into backlog items in Scrum and give estimates of how long this is
going to take, and then we make a deal with the customers ...the
user interface design quite heavily leads the release planning.” —

Interaction designer, P4

[P6.471,480] “So there is a specifications document for the big stuff,
and it’s vague enough that we can refine it as we go along, via stories.
So we can actively transform that into stories in our queue ...They
want to write big documents so we let them write big documents and

then we fracture them.” — Developer, P6

Implementation

The developers matched their implementation of the interaction design
with the Ul design artifact produced by the interaction designers up front.
The work of implementing the UI was not distinguished from other sys-

tem implementation work:

[P4.337] “So we’re kind of using the user interface design as the re-

quirement for the developers.” — Interaction designer, P4

@ Implernentation evaluation

teration

Figure 6.1: Refinement Strategy

6.2. COMPREHENSIVE DESIGN 95

[79.700] “The UI mock-ups are completed by the data-visualisation
expert and lead developer, before implementation begins and the de-
velopers implement the mock-ups (in terms of what the Ul should
look like) and the functional document in terms of how the Ul should

behave.” — Developer, P9

[P6.480] “We wouldn’t implement the UI and then later implement
the back end. It would just be all put together.” — Developer, P6

At this stage of the iteration, coding was the main activity. The UI design
work consisted of small adjustments to the interaction design to allow for
it to be implemented, but was considered a small percentage compared to

the Ul design performed up front:

[P4.340] “There will always be some kind of feedback from the devel-
opers when they find out that, "Hey, this is difficult to do,” or "Have
you thought of this kind of a situation, which came up now while
trying to implement this?” They give a seed for a need for redesign or
completing the design ... So the five percent that these developers do
— they do not do the design — they give ideas of where more design

is needed.” — Interaction designer, P4

P2’s interaction designers performed their own interaction design evalua-

tions of the implemented interaction design on a daily basis:

[P2.69] “The designers test it on a day to day basis, give feedback
back to the development team to ensure if anything was missing, that
we’d write a card for it and it will be captured.” — Interaction designer,
P2

Interaction designers also performed informal evaluations by checking the
developers” implementation of the interaction design as they worked, to
ensure the implementation matched the interaction design specification:

[P4.384] “We also do this unofficially that they [developers] say, ‘Well,
look, come and check this out,” so we go and check it during the

implementation.” — Interaction designer, P4

96 CHAPTER 6. INTERACTION DESIGN APPROACHES

Evaluation

Evaluation of the implemented interaction design occurred at the same
time as evaluation of the whole product. Acceptance testing was thought

to be the most convenient time to do this:

[P2.80] “You only really need to unit test the system that’s building
your UL So the data that describes what the Ul is going to look like
doesn’t need to get tested in anything other than acceptance tests.”

— Developer, P2

Evaluation of the usability of the product could consist of more formal
testing with customers, if the project allowed the time for it, but this was
not scheduled as part of the agile iteration:

[P4.385] “One thing we could do, but we probably won't, since our
customers haven’t been very interested in such things, would be to
usability test the final product.” — Interaction designer, P4

Large interaction design fixes resulting from the evaluations were written
as new user stories on user story cards (carded) and could be incorporated

into future iterations:

[P2.75] “We mainly card them and negotiate between the developers,
ourselves and the domain expert when we put those fixes in, which

iteration those fixes will go into.” — Interaction designer, P2

6.2.2 Key conditions

From the above discussion we infer that inherent in the Interaction Design
Approach that combines Comprehensive Design with Refinement are two
key conditions that allow teams to develop software using these strategies:

e Interaction design and agile development are different processes that

should remain separate, and

6.3. EVOLUTIONARY DESIGN 97

e Changes to the interaction design once implementation has begun

will be minimal.

Participants saw a clear boundary between the interaction design process
and their agile development process. Approximately 90% of the interac-
tion design was seen to occur up front, followed by the agile develop-
ment process, which iteratively implemented the UI design. User involve-
ment also occurred largely up front, as the Ul was iteratively designed
and redesigned with user input. Due to the view of ‘separateness’, inter-
action designers and developers were expected to work within their own
domains and input from the developers was expected to be minimal —
mostly drawn from a technical domain outside of interaction design. As
a result, the role of the developers with respect to interaction design was
seen as that of implementer — their implementations being driven by the
interaction designs produced by the interaction design ‘experts’.

The development iteration cycled through planning, implementation
and evaluation activities, but there was little or no interaction design work
being done. The anticipated changes to the UI design during implemen-
tation, were minor design changes required to implement the design with
the technology being used to develop the product. Design during the ag-
ile iteration was only required when these technical impossibilities were

encountered by the developers.

6.3 Evolutionary Design

P1, P3, P7 and P8 were teams that performed Evolutionary Design, where
the complete Ul design was not seen as being ‘handed over’ to the devel-

opers to implement, and was never talked about in this way:

[P1.111] “It’s not that the UI designer has to come up with the full UI
design, everything final, all Java Scripts and everything in it. Then

goes to the engineers and says ok, implement this and then sees it

98 CHAPTER 6. INTERACTION DESIGN APPROACHES

four months later and has to, like, look through it, how does it work?”

— Engineering manager, P1

[P7.531] “If people are gonna ask you what your product is going to
be in a year’s time you can’t really tell them. Our design is like a

living breathing thing, it changes all the time.” — Developer1, P7

Instead, the Ul was designed in increments, incorporating only features in

the UI design that could be implemented in a single iteration:

[P3.231,234] “We sort of have a longer term plan of what we want to
achieve, and then every week we recap that and look at what we’re
going to put into this week as the work for the week, so we discuss
any bugs or issues that are out there and put those into the work
... The idea is to just try and keep the software in a workable state all
the time.” — Developer1, P3

[P7.571] “The first week of every sort of sprint, we’d ask, “‘What do we
need to do in terms of design to further our understanding of what
needs to be built.”” — Developer2, P7

[P1.99,111,129] “’Cause the Ul is designed, at least until the next iter-
ation. Sometimes we don’t have the UI for the full next release, just
for the next iteration ...these are all the user stories that we need or
that we are planning to implement, so I make a Ul for all these fifteen

user stories.” — Engineering manager, P1

Since the interaction design at each iteration was not necessarily what the
interaction design would eventually be, participants referred to an over-
all idea or metaphor that guided the evolution of the interaction design

toward a coherent implementation:

[P1.129] “As long as you have your overall, kind of, goal in mind,
like this was the design that we thought for this whole feature, so
kind of the UI metaphor in this case. It's something that you don’t
write down, it’s not written down, the screen has to look like this and
so on. It’s kind of an idea, ok, ultimately, it should look like this or it
should behave like this.” — Engineering manager, P1

6.3. EVOLUTIONARY DESIGN 99

Participants included the experience of the team and existing design stan-

dards as mechanisms that guided evolution of the interaction design:

[P1.130] “In the end we have things like experience from previous
projects, we have things like design factors. Every now and then
you just know, ok, this is the direction I should take.” — Engineering

manager, P1

[P3.295,325] “ At least you can see potential problems [with the inter-
action design] based on experience, standards and conventions ...I
think that you can get it right based on experience ...a lot of patterns
and standards and conventions exist. You're not always inventing

something new.” — Developer2, P3

The Evolutionary Design strategy ensured that only the features that de-
livered business value at that particular time were implemented in the
interaction design. Further, Evolutionary Design allowed feedback from

evaluation activities to influence and change the interaction design:

[P1.204] “And with XP it’s like, these are my cards, this is what I
need to design for. I don’t care about the next release. I'm not even
thinking about that. And nine times out of ten for us, if we did try to
think about the next release then when we designed it for that then
we didn’t end up implementing those features anyway.” — Product

manager/Ul designer, P1

[P3.239] “With the user interface you gather as much information as
you need to do some kind of real thing and then you put it through
an iteration ...back into real code and then you've got something
that people can play with and look at and then you can go through
another iteration or another cycle of ‘Is that any good? What should
we be thinking about there?” ” — Developer1, P3

[P3.291] “We have parts of the user interface we know needs im-
provement, and a lot of that is based on the feedback that we get,

so then we will schedule it in.” — Developer2, P3

100 CHAPTER 6. INTERACTION DESIGN APPROACHES

[P7.576] “Every couple of months those user feedback sessions go on
and they are used as input into our media people, into our user expe-
rience people and then they feed back into our design.” — Developer2,
p7

Releasing real working software into its context of use in order, to at least
deliver some functionality was seen as acceptable. User feedback would

then be received and acted on once the software had been in use:

[P3.256] “Some stuff we’ve done we’ve gone, Well, we're so distant
from these particular users, we think we understand the problem,
we’ve created the user interface, let’s just release it, and it might be
difficult for them to use, but we can get back to them and ask them
how they found it and get feedback that way, by releasing the soft-
ware, effectively. At the minimum they get the functionality. It gives
us another feedback loop that we can go to those users and say ‘Does

it work for you or doesn’t it work for you?” ” — Developer1, P3

Whereas teams following the Comprehensive Design strategy considered
up-front user involvement as an opportunity for evaluating the complete
interaction design, the Evolutionary Design teams required just enough
user involvement in order to obtain interaction design information to start
the implementation, since the interaction design evolved during imple-

mentation:

[P3.239] “With the user interface you gather as much information as
you need to do some kind of real thing and then you put it through an
iteration ... There shouldn’t be any up front design of the underlying

code architecture.” — Developer, P3

For Evolutionary Design teams, evaluating with users took place during
implementation, using working software. The implemented interaction
design was expected to be improved on with user or customer feedback:

[P3.259] “It’s not the best user interface but it delivers a piece of func-
tionality for now and we can work on improving it later.” — Devel-
operl, P3

6.3. EVOLUTIONARY DESIGN 101

[P8.644] “After the user acceptance testing, we find that it often goes
back to the developers or the interaction designers because of, “Yeah,

we don’t like the way it was implemented.” ” — Project manager, P8

A unique feature of one of the XP teams in this study, P1, was the view that
there must exist some way to apply the XP practices to Ul design. P1 ex-
pected that the ability to do this would improve the overall development
effort:

[P1.202] “If you can take the XP process and somehow apply that
to the user interface design process, I think that will improve things

vastly.” — Product manager/UI designer, P1

Although it was not clearly understood how the XP practices should be

applied to interaction design:

[P1.114] “I think that the paradigm that you have in XP where you
say, implement it as simply as possible and refactor it and through the
refactoring you generate a good framework. I think that paradigm
works fantastic on the back end, works fantastic with integrated sys-
tems. I think on the front-end, then again maybe I'm wrong, maybe I
just haven’t seen it yet implemented properly, but I think on the front

end you have a much, much harder time.” — Engineering manager, P1

For team P1 the ideal combination of interaction design activities with ag-
ile development activities was one where all the agile development activ-
ities that apply to the coding part of development are also applied to the
interaction design part. This differs to other Evolutionary Design teams
(P3, P7 and P8) who agreed that the interaction design activities should be
interleaved with the agile development activities. Despite P1’s different
view, in practice, P1’s interaction design and agile development activities

were organised in a similar way to P7 and P8.

102 CHAPTER 6. INTERACTION DESIGN APPROACHES

6.3.1 Implementation as Looking Ahead

Three of the nine teams in our study developed their product according
to the Looking Ahead strategy when coordinating their interaction design
and agile development iterations: P1, P7 and P8. The up-front strategy of
these teams was characterised by Evolutionary Design as described above.
Figure 6.2 shows the structure of the agile iteration in the Looking Ahead
strategy. As the participant from P8 explains, the interaction designer de-
signed the interaction for a fixed number of iterations ahead of what the

developers were implementing in an iteration:

[P8.643] “Ul is working on the third iteration, so they’re always look-
ing ahead at what’s coming, and I'll even say three, four, while the de-
velopers are actually really focusing on [second iteration].” — Project

manager, p8

[P7.530] “So our requirements are fixed for what we want to have
achieved at the end of the sprint, but aren’t fixed on the sprint to

sprint basis.” — Developer1, P7

Planning

Planning the work for the iteration was based on the prioritised features

for the iteration:

Foriteration x)

Ul design
‘lmpememato‘n

| |
I
iteration

Where xy e {1,2,.}

Figure 6.2: Looking Ahead Strategy

6.3. EVOLUTIONARY DESIGN 103

[P1.117] “In release planning when we make our high level estimates,
usually it doesn’t have too much to do with the UL” — Engineering

manager, P1

[P1.160,177,178] “When it actually comes into the actual iteration plan-
ning then we’ll go through it [UI design] again. We get more granular
point estimates and there I'll also take feedback ...if there’s some-
thing that needs to be changed, or someone has a better idea, it’s like,
it doesn’t change everything ...they’re, you know, giving estimates
and we’re making our plan based on this. ..so we’ll say, we can do 14
points in an iteration, you know, we got 20 points, OK, what are we
gonna do. So we’d leave these out and these two need to be rethought
about a little bit anyway, so we’ll do most of them and we’ll put these
in a little pile and then we’ll put these in the next time and then we’ll

continue.” — Product Manager/UI Designer, P1

[P7.529] “We have a solution spec, which has all the use cases and
things like that in place. It’s supposed to be our overall product be-
cause our overall product will be able to achieve all of those things.
But when we try to break down into our thirty day chunks we look
at one scenario in particular, not necessarily out of the solution spec,
and then we pull out the requirements from that scenario. 'Ok, so
what do we have now, this is the scenario we want to work towards,
what’s missing, what’s the gap?” And then we’'ll take those items and
plan with those. And if we can contain them all that’s great and if we
can’t, we modify the scenario until it’s something we can achieve in
the thirty days.” — Developer1, P7

[P7.532] “When we’re doing our planning meetings, we look at the
items that we have on the backlog for the current sprint and we ask
ourselves, 'Ok what do the users need to be designed?” ” — Devel-
operl, P7

Interaction design changes, based on stakeholder feedback, could also be
prioritised and incorporated into the work for the iteration:

104 CHAPTER 6. INTERACTION DESIGN APPROACHES

[P7.576,586] “Because again, every 30 days we have a planning ses-
sion that includes those people as well, so they are allowed the op-
portunity to put their criticism on the table and say, ‘This is what I
think needs to be done, to be changed.” ... And after that we look at
all the listed items we have on the backlog we have, and roll in all the
feedback we’ve got from that demonstration and feedback session.
And then we plan, based on that, what the next one should contain.
What the highest priority items are, what makes the most amount of

sense to implement.” —Developer2, P7

Implementation

The developers matched their implementation with that of the interaction

design for that iteration:

[P8.638] “The developers, when they are assigned a user story, for
example, user has to be able to search by using the corporation num-
ber or something like that, they’ll go to the interaction designer, talk
to the interaction designer about what are the mock-ups, what does
each field mean and each label and stuff like that, and also what are

the user acceptance tests around that.” — Project manager, P8

During the iteration once the developers had completed a user story, they
approached the interaction designers — either ad hoc or at a daily meet-
ing — so the interaction designers could verify that the implementation

matched the Ul design specification:

[P8.648] “Throughout the iteration there’s little spots where every
time that a developer finishes a user story, then there’s a bit of testing
of the UI ... the interaction designer provided the requirements to the
developer, the developer says, ‘I'm done,” so the interaction designer

says, ‘Well, show me that you've done what I've asked you.

Project manager, P8

[P7.583] “We have a daily meeting with those stakeholders [interac-

tion designers] as well, saying ‘I have an issue: what you gave me,

6.3. EVOLUTIONARY DESIGN 105

I just can’t implement,” and that sort of feedback happens almost
daily.” — Developer2, P7

The implementation activities were similar to teams employing the Refine-
ment strategy, however, as quotation P8.643 above mentioned, there were
also interaction design activities being performed at the same time. As the
implementation activities were taking place, the Ul was being designed

for future iterations.

Evaluation

As with Refinement, the interaction design was evaluated at the end of the

iteration during XP’s acceptance testing or Scrum’s demonstration session:

[P1.101] “There [during acceptance testing] we walk through and
there we actually don’t mind giving a feature back to engineers, say-
ing that it has to be implemented again, or it has to be changed be-
cause of usability. Sometimes the feature actually works, it’s there
but then we see it there and we're like no. It may be the order, it
might be the screen flow, the navigation or something and we’re like,

no it really doesn’t work well.” — Engineering manager, P1

[P7.526] “Every thirty days we have something that we demonstrate
and we can play with and we can show and it’s working code. I think
that’s really neat, and it’s tested.” — Developer1, P7

[P8.649] “Towards the end of the iteration, I'd say the last couple of
days, and the beginning of, the days of the next iteration, the inter-
action designers are testing the amalgamation, the combination, the

integration of all of these other user stories” — Project manager, P8

Evaluation with the client was a regular occurrence for P7 and P8 and was

scheduled for the end of every iteration. The client was evaluating the

working software the developers had implemented in the last iteration:
[P7.586] “We have a demo to all the stakeholders inside and outside

our organisation, whoever they may be, for that particular month’s

worth of work.” — Developer2, P7

106 CHAPTER 6. INTERACTION DESIGN APPROACHES

[P8.650] “The client is really testing the UI for usability and they’ll of-
ten tell you they’re not testing the Ul, they’re testing the application,
but really if there’s something wrong with the UI they will tell you,
‘The color’s not right, the label’s not ok.” There’s testing with users

at the end of every iteration.” — Project manager, P8
All evaluation of the interaction design was a manual process:

[1.100] “I think the closest that we have to a usability testing is that
we accept all the features manually, so we have to just stay in the
acceptance meeting then we walk through the feature manually, see

if it works.” — Engineering manager, P1

[P7.543] “UI testing happens with the other testing that goes on. We
haven’t automated it yet. Most of our testing of the runtimes are
automated. We don’t have a tool or we haven’t used a tool yet to

automate our Ul testing.” — Developer1, P7

Large interaction design fixes resulting from the evaluations were writ-
ten as new user stories and could be incorporated into future iterations,
whereas smaller adjustments were fixed right away — similar to the Re-

finement team:s:

[P1.102] And then usually we make a decision on the fly, or, yeah, we
just give it back [to the engineers] and we change it, or we make it

another user story. And it’s a very ad hoc decision.

[P7.545] “Most of the fixes [resulting from Ul testing] are things not
working, so we generally are able to fix them before the end of the
sprint. The fixes such as, I don’t know, we need to add search func-
tionality or things like that would be almost backlog items, so they’d
be added to the backlog and then revisited when we’re planning for

the next sprint, prioritised and stuff.” — Developer1, P7

Issues other than the visible and interactive aspects of the interaction de-
sign would be identified and improved during implementation:

6.3. EVOLUTIONARY DESIGN 107

[P7.589] “Testing, in terms of functional capabilities, performance,
the more underlying type things, that happens within the month
as the product’s being built. So our implementers will see a perfor-
mance problem or something, “This table just gets too big I can’t even
build a scroll bar that you can go up and down in, cause there’s over
amillion entries.” They’ll raise fundamental concepts like that as they

see them.” — Developer2, P7

6.3.2 Key conditions

From the above discussion we infer that inherent in the Interaction De-
sign Approach that combines Evolutionary Design with Looking Ahead
are two key conditions that allow teams to develop software using these

strategies:

¢ Interaction design and agile development can occur simultaneously,

and

e User/client feedback drives the interaction design work and subse-

quent software implementation.

Interaction design and implementation iterations were occurring simulta-
neously and the interaction designers did not ‘hand off” a complete inter-
action design to the developers. Instead, the interaction design evolved
along with the implementation, in a way that the interaction design was
not only iteratively implemented, but also iteratively designed iteration
by iteration.

The interaction design included features for one or two iterations ahead
of the design being implemented. When the development iteration was at
the implementation stage, the interaction design iteration was at the de-
sign stage, and the interaction designers were designing for future devel-
opment iterations. Therefore, the developers were only implementing the
design that the interaction designers had created for that iteration, adding
the features that had been selected for implementation in that iteration,

108 CHAPTER 6. INTERACTION DESIGN APPROACHES

to the interaction design. Proceeding in this way allowed feedback from
user evaluations scheduled for the end of the implementation iterations to

influence the subsequent interaction design and implementation.

6.4 Parallelisation

P3 and P5 followed a somewhat different strategy to the other teams in our
study. Their UI design and evaluation activities and the implementation
activities were performed in parallel. As the developers were implement-
ing the system, the Ul was iteratively designed and evaluated separately:

[P5.426] “We’ve driven the project so that the customer develops the
idea and the user interface designs by themselves, and not leaking
any information out of it before they get it ready, and then after that
we usually end up in a bit of a hurry in developing the HTML proto-
type, and also developing the system in parallel.” — Developer, P5

[P3.289] “We’d first make a few design sketches. We quite like to start
with either pen and paper or PowerPoint. That can go on at the same

time as doing the coding.” — Developer2, P3

As can be seen from P5’s quote above, this team had a comprehensive
design handed to them by another team to implement, however, P5 also
developed their own HTML prototype. This prototype was created in par-
allel with the system implementation. P5 was the only team to combine
a Comprehensive Design strategy with a parallelisation implementation
strategy.

P3 followed a Parallelisation implementation strategy and evolved the
Ul along with the system — in a similar way to teams who combined Evo-
lutionary Design with the Looking Ahead strategy. The difference with
combining Evolutionary Design with Parallelisation was that the interac-
tion design iterations were not required to keep up with the development
iterations and the interaction design did not necessarily undergo further

design at every iteration:

6.4. PARALLELISATION 109

[P3.290] “Yeah, we can do several coding iterations and not worry
about the Ul and can come back to it. After we’ve done sketches and
we’ve designed something and we’ve had the latest review, it can just
sit there while we’re working on the code and we might go back to
it.” — Developer2, P3

[P3.328] “With faster and quicker iterations in agile maybe ... With
the user interface it takes longer to get feedback, so it doesn’t always

line up.” — Developer2, P3

One of the participants from P3 pointed out the importance of maintaining
separation between the Ul design and the system code:

[P3.289] “We want to write really good code, so it’s really easy to
switch the user interface. It’s not too locked to the code, so we keep
different layers. We like to keep the code separate from the user in-
terface so if it changes ideally you can just plug in another one.” —

Developer2, P3

Figure 6.3 shows the structure of the agile iteration in the Parallelisation

strategy.

—
(U\ design evaluation
(For iteration y) -

Iteration

planning Implementation W
For iteration x) >_/

e

iteration

WWhere xy e {12,.}

Figure 6.3: Parallelisation Strategy

110 CHAPTER 6. INTERACTION DESIGN APPROACHES

Planning

Planning in the Parallelisation strategy is noticeably different to the Re-
finement and Looking Ahead strategies, in that the UI design had little or

no role during the planning activities:

[3.235] “The interaction design is not explicitly planned for; it’s just

done as part of the iteration.”

[P5.411] “No we didn’t use user stories ...we drove down to the ac-
tual task level with the planning of each iteration ...and reformu-
lated concrete tasks that would be easy to manage within iterations

and easy for the customer to accept and test.” — Developer, P5

[P5.427] “The work phase of creating the prototype is outside of the
iteration planning because the work is not cut out in tasks, which re-
flect actual requirements, they're just like getting pages ready for the
development team, or to enable them to start working on different

parts of the system.” — Developer, P5

Just as with the Refinement and Looking Ahead strategies, user feedback
provided changes that were scheduled into the work for the following it-

erations:

[P5.445] “ After the initial release, there is a lot of input from the users.
This input is reacted on fast and the changes are made accordingly.”
— Developer, P5

[P3.291] “We have parts of the user interface that we know needs
improvement, and a lot of that is based on the feedback that we get,

so then we will schedule it in.” — Developer2, P3

Implementation

The interaction design occurred at the same time as the implementation
of the system. Development progress was not dependent on the design of
the UI and UI design progress was not dependent on the system imple-

mentation:

6.4. PARALLELISATION 111

[P5.412] “The HTML prototype is done in parallel to the develop-

ment.” — Developer, P5

P3.289] “You might see how it [the UI] looks and you go back and
change it and then leave it for a while.” — Developer2, P3

[P3.290] “Yeah, we can do several coding iterations and not worry
about the Ul and can come back toiit...it can just sit there while we're

working on the code and we might go back to it.” — Developer2, P3

As the developer from P3 describes in the above quotes, a result of Par-
allelisation is that at any time during the development effort, the UI de-
sign may not correspond with the implemented system, i.e., the features
included in the UI design may not be the set of features that are imple-

mented in the system.

Evaluation

Evaluation of the interaction design was not a planned activity for P3 and
P5. Acceptance testing or demonstration sessions were not explicitly seen
as opportunities to test the interaction design, but happened to provide

interaction design feedback.

[P5.449,450] “UI testing is basically done after development during
the acceptance testing phase. We have no set [Ul] test cycle.” —
Developer, P5

[P3.260] “We do acceptance tests, basically just to say that the user
interface hasn’t changed, the implementation of the user interface

hasn’t changed. ” — Developer1, P3

UI testing for P3 occurred in a more ad hoc manner — testing a feature
as it was completed by the developers, as part of the code testing, but not

necessarily at every iteration:

[P3.254] “You'll design something and pin someone down, as part of

your normal work.” — Developer1, P3

112 CHAPTER 6. INTERACTION DESIGN APPROACHES

[P3.289] “You write something, unit test it and change it, you go back
and you acceptance test it, you go back, or you put it on the test
simulator on the machine and see how it works and then use the
user interface and you might see how it looks and you go back and

change it and then leave it for a while.” — Developer2, P3

Due to the nature of this implementation strategy, there was the need for a
synchronisation point where the Ul design became integrated with the im-
plemented system. P3 found acceptance testing to be a convenient point.
P5 talked about a stabilisation sprint held towards the end of the release

cycle:

[P5.453] “We reserve time towards the end of the planned release cy-
cle for a stabilization sprint for more extensive system testing to take

place.” — Developer, P5

[P3.254] “The task based testing we generally try and plan for that
and try and fit that in at some stage and that can actually be quite
different from the time you do the work.” — Developer1, P3

Fixes resulting from the evaluations were treated in the same way as the

teams doing Refinement and Looking Ahead:

[P3.255] “Sometimes the fixes are simple and sometimes we'll just
make them. If there’s reasonably significant changes we want to
make, they just get planned out as new stories, basically.” — De-

veloper1, P3

P3’s developers obtained feedback by visiting their users on-site. These

visits were not scheduled as part of the iterations, but occurred regularly:

[P3.262] “We don’t do it [follow up with users] as a formal process,
we do it as an informal process. All our software developers tend to

go on-site to visit real users.” — Developer1, P3

6.4. PARALLELISATION 113

6.4.1 Key conditions

From the above discussion we infer that inherent in the development strate-
gies that combine Comprehensive Design and Evolutionary Design with
Parallelisation are two key conditions that allow teams to develop soft-

ware using these strategies:

e Interaction design and agile development progress independently,
and

e Changes to either the interaction design or the system implementa-

tion can be incorporated with little difficulty.

The interaction design and agile development iterations occurred in par-
allel. There was little or no reliance on each other in order to progress and
the number and length of the interaction design and agile development
iterations were also independent of each other. The interaction design
was said to undergo several iterations in the same amount of time it re-
quired one implementation iteration to complete. Therefore, the iterations
rarely matched up. Interaction design did not drive development as in the
Refinement and Looking Ahead strategies. Instead, user stories or small
chunks of formulated tasks taken out of a requirements specifications doc-
ument — prioritised during the planning stage — determined the work to

be done in a development iteration.

The interaction design was designed and evaluated separately from the
agile development iteration. During implementation in the iteration, there
were no planning or evaluation activities specifically for the interaction
design. The interaction design and implementation were synchronised at
some point during development, for example, before acceptance testing,

where the interaction design and implementation were integrated.

114 CHAPTER 6. INTERACTION DESIGN APPROACHES

6.5 Summary

Our data produced four different approaches to design and implementa-
tion of the interaction design. We refer to these four approaches as the In-
teraction Design Approaches, which consisted of a design strategy and an
implementation strategy. There emerged two design strategies among the
teams: Comprehensive Design and Evolutionary Design. For teams who
performed Comprehensive Design, interaction design happened mostly
up front and then the agile development process implemented the de-
sign during the development iterations. Participants who subscribed to
this view, completed their Ul design such that it was a representation of
the entire system under development. Teams who preferred Evolutionary
Design considered the ideal combination of interaction design and agile
development as a process where interaction design is blended into agile
development — the interaction design activities were interleaved with the
agile development activities throughout the development effort. Partic-
ipants who subscribed to this view produced a Ul design that only im-
plemented the features from previous iterations and the features that had
been selected for a set number of iterations ahead. We note that teams who
performed Comprehensive Design did not understand it to mean that they
had to forego iterative Ul design; they still believed in iteratively refining
their design with stakeholders up-front. Similarly, teams who performed
Evolutionary Design did not believe that they had to give up doing any
up-front Ul design whatsoever.

There emerged three implementation strategies from the data: Refine-
ment, Looking Ahead and Parallelisation. The Refinement and Looking
Ahead Strategies were a direct result of the teams” design strategy. Those
teams who performed Comprehensive Design followed their design strat-
egy with Refinement as implementation strategy, while those teams who
performed Evolutionary Design combined this with the Looking Ahead
strategy. Two of the teams in our study performed their interaction design

6.5. SUMMARY 115

activities in parallel with the agile development activities. This was re-
ferred to as the Parallelisation strategy and did not appear to be dependent
on the type of design strategy — one team performed Comprehensive De-
sign, while the other performed Evolutionary Design. All four Interaction
Design Approaches emerged as a consequence of the issues that develop-

ing software using these strategies addressed.

Chapter 7
Inside iterations

In the same way as the iterations in agile development are seen as oppor-
tunities for feedback and change regarding the code of the system [71],
so we discovered that the agile development iterations were also oppor-
tunities for obtaining feedback and incorporating change in the interac-
tion design. This chapter discusses how the teams in our study obtained
feedback about their interaction design within the structure of their ag-
ile development iterations, and how that feedback was incorporated into
subsequent development. Iterations were seen as driving usability test-
ing, which in turn affected subsequent development. Teams discovered
insights into design and technology limitations as they implemented the
system, and iteration planning affected interaction design in terms of what

features were implemented in an iteration.

Feedback and change was not only encountered in the product under
development. A re-occurring theme in the interview data was the exper-
imentation and adjustment of the development process. All teams were
constantly calibrating their development process to meet the end user’s
goals better and to increase the overall productivity of the interaction de-
signers and developers on the project. The following points show a co-
herent picture of how interaction design and agile development can work

together for considerable advantage.

117

118 CHAPTER 7. INSIDE ITERATIONS

7.1 Development iterations drive usability

testing

One of the strong themes that emerged from the data was the relationship
between iterations and usability testing. In section 2.4, usability testing
was described as testing how easy it is for the end users to work with the
software to achieve their goals. This is a well established part of the disci-
pline of human-computer interaction, and there are a variety of techniques
that are employed. Usability testing is an organised means of obtaining
usability feedback about a system and when it is missing, the interaction
design suffers:

[P6.490] “It [up-front interaction design] is helpful for getting a gen-

eral idea, but I'm really missing the feedback. We do get some, like I

said, from our QA and sometimes from the training courses, but no,

we need more feedback on, I think it’s obvious in our application be-

cause it’s lacking a grand experience, it’s lacking a grand story.” —

Developer, P6

Teams performed usability testing with users using unimplemented forms
of the interaction design, before the design was implemented:

[P3.294] “[Up-front] I prefer to do sketches and then if you can show
the sketches to customers and users and do paper prototyping then
that’s fabulous.” — Developer2, P3

[P4.352] “Yes user testing takes place up front ...you can test with
lightweight, hand-drawn paper prototypes. That’s so much cheaper
than building the same system and working code.” — Interaction de-
signer, P4
Teams relied on inspections by the interaction designers during imple-
mentation to ensure usability goals were being met:
[P2.67] “We also have a list of about fifty usability heuristics that have

to be passed and then we also have standard navigational design

rules that have to be met as well.” — Interaction designer, P2

7.1. DEVELOPMENT ITERATIONS DRIVE USABILITY TESTING 119

[P2.69] “The designers test it on a day to day basis, give feedback
back to the development team to ensure if anything was missing, that
we’d write a card for it and it will be captured.” — Interaction designer,
P2

[P4.382] “What we're currently doing at least, is that we check the
user interface from time to time, so that it’s actually implemented
according to the spec. That is not done in a very systematic way.” —

Interaction designer, P4

[P8.624] “So, every time a developer finishes a user story he can sub-
mit it to a repository, he’s got to show it to the interaction designer.
If there’s two interaction designers, as long as he shows it to one of
them. And then they say, “Yeah, ok, I agree that we met the user
story,” or that, “"We need to change some stuff.” Obviously it’s very

quick. It takes ten, fifteen minutes sometimes.” — Project manager, P8

While some approaches can work with lightweight non-functional proto-
types, and some focus on inspection of whether principles and guidelines
are followed, the ultimate determination of usability involves actual users
working with actual software. The complexity of human behaviour is such
that this step cannot successfully be pre-determined, automated, or sim-
ulated. The completion of iterations were seen as valuable opportunities
to test the usability of the real working software at an earlier point than

would have otherwise been possible:

[P4.391] “We try to do that [walkthrough] at least once before the

thing is launched.” — Interaction designer, P4

[P7.544] “We've done one [test with end users], right at the begin-
ning, I think after our first sprint, we did one usability session.” —
Developer1, P7

Moreover, usability testing was seen as fitting in well with the agile con-
cept of acceptance testing, or demonstration sessions, with the customer.
Since customers were not always the end users, this meant that it was the

business representatives feeding back usability information to the team:

120 CHAPTER 7. INSIDE ITERATIONS

[P2.72] “We're trying writing the interaction ATs [acceptance tests]
with the component and all the tests for it at the same time, so a big
old vertical slice right there. So in this way we’d be hoping to make
sure that whatever build the designers get back is essentially another
chunk of the story. Making it easier for them to test and get a good
feel of what it does and what it’s about, stuff like this.” — Developer,
P2

[P2.70] “Through the interaction ATs, so that’s mainly how they im-
plement the usability as such, through the interaction ATs.” — Inter-
action designer, P2

[1.100,101] “I think the closest that we have to a usability testing is
that we accept all the features manually, so we have to just stay in the
acceptance meeting then we walk through the feature manually, see
if it works, and there we actually don’t mind giving a feature back to
engineers, saying that it has to be implemented again, or it has to be
changed because of usability. Sometimes the feature actually works,
it’s there but then we see it there and we're like no. It may be the
order, it might be the screen flow, the navigation or something and

we're like, no it really doesn’t work well.” — Engineering manager, P1

Even when the focus was not on usability testing, the customer naturally
gave usability feedback during demonstration sessions:

[P8.650] “The client is really testing the UI for usability and they’ll of-
ten tell you they’re not testing the Ul, they’re testing the application,
but really if there’s something wrong with the UI they will tell you,
‘The colour’s not right, the label’s not ok.” ” — Project manager, P§

Releasing the software to end users may also generate feedback and be-
come a kind of usability testing, where usability feedback from users using

working software, can be incorporated into the next iterations:

[P3.256] “Some stuff we’ve done we’ve gone, “Well, we’re so distant

from these particular users, we think we understand the problem,

7.2. USABILITY TESTING RESULTS IN CHANGES IN DEVELOPMENT121

we’ve created the user interface, let’s just release it,” and it might be
difficult for them to use, but we can get back to them and ask them
how they found it and get feedback that way, by releasing the soft-
ware, effectively. At the minimum they get the functionality. It gives
us another feedback loop that we can go to those users and say ‘Does

it work for you or doesn’t it work for you?” ” — Developer1, P3

[P5.445] “ After the initial release, there is a lot of input from the users.
This input is reacted on fast and the changes are made accordingly.”

— Developer, P5

But iterations also bring confusion. If usability testing is seen as valuable
only when the complete system can be tested, it may not be clear where
in the iterative development process it can be performed. As two partici-

pants noted:

[P1.98] “I think I wouldn’t know when, in our process to perform
usability testing. ‘Cause the Ul is designed, well, up front, at least "til
the next iteration. Sometimes we don’t have the UI for the full next
release, just for the next iteration. Then it gets implemented, accepted

and then we are done.” — Engineering manager, P1

[P3.266] “I think putting those feedback loops in to work out whether
usability is good, is very hard. It's very difficult to organise.” —
Developer1, P3

7.2 Usability testing results in changes in

development

The nature of usability testing is that it frequently finds aspects of the
interaction design that need changing in order to improve usability. In
particular, the complex nature of human behaviour means that this is,
to some extent, unavoidable, because it is simply not possible to predict
how users will behave in new circumstances. So whereas software testing

122 CHAPTER 7. INSIDE ITERATIONS

can sometimes identify mistakes in programming, and whereas customers
can sometimes change their requirements, usability testing can result in
changes even in the absence of mistakes or changes in requirements. This
is one reason an iterative process has been universally accepted for inter-

action design:

[P3.278] “We had the requirements and the spec and we built that and
then they [customers] were like, ‘Oh but we would like this maybe.’
We try to incorporate as much of that into the changes.” — Devel-
oper2, P3

[P7.539] “When we demonstrate our scenarios at the end of the sprint,
our media designer will be like, "That’s not how I think it should
work.” Or our usability expert will be like, “That won’t make sense.”
Even if it's exactly what they put down on paper, things make more
sense when you're actually using working code.” — Developer1, P7

While the iterations in agile development are seen as opportunities for
early usability testing, so are subsequent iterations seen as opportunities

to change the software to accommodate the results of the testing;:

[P7.595] “If you implement even a smaller subset of an overall design,
customers will have issues with what you've built and not like things.
So you may as well let them feed the usability design that gets rolled
in every month.” So I think it’s almost better that you defer that and
let the iterations and feedback take care of that.” — Developer2, P7

[P2.75] “We mainly card them [fixes] and negotiate between the de-
velopers, ourselves and the domain expert when we put those fixes

in, which iteration those fixes will go into.” — Interaction designer, P2

[P2.47] “Generally if there is a Ul issue, it would fall into the category
of any other development issue. We want to change X, y and z, so
if it does turn out to be expensive like we want a whole new chart
that does all these things in 3d and does all these extra fancy bells
and whistles and things like that, which is very expensive, then we

have to go away and have a huddle about it and see if we can come

7.2. USABILITY TESTING RESULTS IN CHANGES IN DEVELOPMENT123

up with a score, you know, come up with a price. And that will get
incorporated into the development iteration in much the same way
as any other changes. So we’d have a card following that request that
we stick up on the board, and then we’d reshuffle all the other cards.”

— Developer, P2

[P3.291] “We have parts of the user interface that we know needs im-
provement, and a lot of that is based on the feedback that we get,
so then we will schedule it in ... We’ll do testing of it and incorpo-
rate those tests. We’ve done that in iterations. We’ve done testing,

incorporate changes and then try it again.” — Developer2, P3

[P3.155] “Sometimes the fixes are simple and sometimes we'll just
make them. If there’s reasonably significant changes we want to
make, they just get planned out as new stories, basically.” — De-
veloper1, P3

Even with the more informal approach to usability testing, where inter-
action designers focused on the issue of conformance to the design speci-
fication, it did appear that this process was not simple. Although the de-
velopers approached the interaction designers with queries about how the
user interaction should work, this unofficial approach appeared to allow
problematic software to be deployed. The participant from P4 reflected
that more systematic usability testing following iterations might indeed
by beneficial:

[P4.385] “But we also would need a more systematic approach to
usability testing because more often than not it happens that they
[developers] have completed something and they have forgotten to
ask about something and then after a while we notice that we get
these strange bug reports from customers and then we realise that
‘Oh crap, this is something totally different than what we made.” We
try to avoid that beforehand but one thing we could do, but we prob-
ably won’t since our customers haven’t been very interested in such

4

things, would be to usability test the final product. ” — Interaction

designer, P4

124 CHAPTER 7. INSIDE ITERATIONS

7.3 Iterating with working software brings
insights

The previous section described that when clients and users were using real
working software, they suggested changes, despite the implemented in-
teraction design agreeing with the interaction design specification. Stake-
holders interacting with working software were seen to provide better
feedback to the development team:

[P3.239] “With the user interface you gather as much information as
you need to do some kind of real thing and then you put it through
an iteration ...then you've got something that people can play with
and look at and then you can go through another iteration or another
cycle of “Is that any good? What should we be thinking about there?”
So you've got real working software that people can reflect on a lot
better.” — Developer1, P3

[P6.475] “So what I do now is that I very quickly mock up something
that usually has a scripted set of behaviours ...it didn’t work on real
data, but it was a real application, so that way our systems engineer-
ing guys who’d gather the requirements can actually pick up a real
application and play with it and see, ‘Ok, well, do I like the layout?
Do I like the size of it, how it looks on the screen? Do I like how
it’s displaying the information? Do I like how that transition works?’
that sort of thing. And then they usually say ‘I like this,” or ‘I don’t.”
" — Developer, P6

As the system under development became an implemented product, there
were further insights on the part of the developers and interaction design-
ers as they worked with the software. One insight relates to the developers
uncovering limitations in the implementation technology, which affected

the implementation of the interaction design:

[P1.106] “Sometimes even during development people realise, ‘Oh
this and this doesn’t work.” ” — Engineering Manager, P1

7.3. ITERATING WITH WORKING SOFTWARE BRINGS INSIGHTS 125

[P7.583] “As you implement you'll either find limitations in the tech-
nology you're using that just don’t allow certain behaviour or certain

interaction.” — Developer2, P7

Another insight relates to the fact that what had been specified for the
interaction design during the design stage, did not always translate well

to an implemented interaction design:

[P7.582] “The implementer sees a problem that no one thought of
because they see it on such a fine detailed view that they bring up a

design limitation of some kind.” — Developer2, P7

The implementation activities also revealed that interaction designers would
over-specify on paper what the developers could tackle in an iteration:

[P1.127] “Doing a little bit at a time, and not thinking about the rest
it's something, I mean, [interaction designer] had a lot of problems
initially but we really had to tell him a couple of times, “This screen
that you did for us, this is for ten user stories, all we implement is
two. You can’t just leave these elements in there and just not make

them work,” ” — Engineering manager, P1

[P7.547] “We wanted to replace current functionality with the tool,
and they [interaction designers] had all these grand notions of where
we're going with it. And it’s really pretty and fun but we just couldn’t
contain it in the sprint.” — Developer1, P7

The final insight into interaction design as a result of working with imple-
mented software, relates to the coding activities informing the interaction
design. As developers improved their code via refactoring, this refactor-
ing in some cases also affected the interaction design, and improved the

interaction design:

[P3.315] “If the code is improved then that can in certain aspects affect
the user interface as well ... If you have code that is really coupled to

the functionality in the user interface it can be a pain to make changes

126 CHAPTER 7. INSIDE ITERATIONS

... If you refactor in a way that makes the system run more efficiently
and the user interface run more efficiently, then that’s good.” — De-

veloper2, P3

[P2.82] “If you still have to make code changes when a new require-
ment comes in then you're not finished, essentially. Sometimes a re-
quirement will come in that means we have to change something or
add on an extra widget. Or something like that that was made avail-

able by refactoring the UI code.” — Developer, P2

7.4 Iteration planning affects interaction design

Another theme that emerged in our interviews relates to iteration plan-
ning — determining whether elements of the interaction design would
be implemented in the iteration. Implementing the interaction design de-
pended on two activities occurring during planning meetings: breaking
the system up into “chunks” and negotiating between stakeholders which
chunks to implement. Although the interaction designer may have made
some investment in the overall interaction design as a lightweight pro-
totype, participants understood that in order for the system to be imple-
mented iteratively, the prototype had to be broken up into coherent chunks
that could be implemented within the time of one iteration:

[P1.178] “So we’ll say, we can do 14 points in an iteration, you know,
we got 20 points, OK, what are we gonna do. So OK, we’d leave these
out and these two need to be rethought about a little bit anyway, so
we’ll do most of them and we’ll put these in a little pile and then we’ll
put these in the next time and then we’ll continue. So, for the next
iteration planning, we’ll take those two that didn’t get implemented

and we’ll add some more to it.” — Product manager/UI designer, P1

[P4.338] So we're kind of using the user interface design as the re-
quirement for the developers ...after we’ve made the interface de-

sign and based on that user interface design it’s possible to break it

7.4. ITERATION PLANNING AFFECTS INTERACTION DESIGN 127

into backlog items in Scrum and give estimates of how long this is
going to take, and then we make a deal with the customers, ‘“This is
the amount that we think this is going to take,” and then once they

say ‘Go,” we start implementing that.” — Interaction designer, P4

[P3.231] “Every week we recap that and look at what we’re going
to put into this week as the work for the week, so we discuss any
bugs or issues that are out there and put those into the work. So once
we’ve planned it out, then generally during the week it’s up to the
individuals to work on that software.” — Developer1, P3

One participant highlighted a potential pitfall with breaking work into
chunks. From an interaction design point of view, it was important that
the chunks represented a coherent, complete functionality of the system:

[P4.354] “Well, this is a result of using Scrum, that I would myself,
as a user interface designer, prefer that we’d have, so that the release
would be more tied to the fact that the functionality is ready because
the users can not do very much with the feature unless it is com-

plete.” — Interaction designer, P4

Further, the negotiation between different stakeholders determined what

elements of the interaction design were developed as functional software:

[P1.177] “And then after that [the UI designer doing a walk through
of the cards in the iteration planning meeting], we’ll hand the cards to
the engineering manager and he’ll go through and get the estimates,
and he goes through the cards yet again. It’s kind of a laborious pro-
cess, but, while he’s getting engineering estimates, I [the UI designer]
really have to think about it because they’re, you know, giving es-
timates and we’re making our plan based on this, and they don’t
wanna work 80 hours a week. So, more detailed questions come
up during that time. So we get all the estimates and then between
the engineering manager and myself, and sometimes [another devel-
oper], we figure out what’s gonna be done in an iteration.” — Product

manager/Ul designer, P1

128 CHAPTER 7. INSIDE ITERATIONS

[P7.586,587] “First we have a demo to all the stakeholders inside and
outside our organisation, whoever they may be, for that particular
month’s worth of work. And after that we look at all the listed items
we have on the backlog we have, and roll in all the feedback we’ve
got from that demonstration and feedback session. And then we
plan, based on that, what the next one should contain. What the
highest priority items are, what makes the most amount of sense to
implement ...It’s a very heated debate sometimes what makes it into
the next month and what doesn’t. But at least all stakeholders are
considered and they all, at the end, should buy into, ‘'This is the best

we can do.” ” — Developer2, P7

Section 6.4 mentioned that when interaction design occurred inde-
pendently of the implementation, as in the Parallelisation strategy,
the interaction design specification played a smaller role in the plan-
ning activities than for other implementation strategies: [P5.427] “The
work phase of creating the prototype is outside of the iteration plan-
ning because the work is not cut out in tasks, which reflect actual

requirements.” — Developer, P5

The result was that the interaction design did not necessarily match the im-
plemented features in the system code, and therefore, the planning meet-
ings for the development iterations had little effect on the iterative pro-
gression of the interaction design.

7.5 Experimentation and adjustment of process

Both the agile development and interaction design processes have had to
be adjusted in order to make them work together, to better suit the team
and to smooth out the bottlenecks that arose from their combination. Par-
ticipants explained that their processes were constantly being tweaked:

[P2.51] “The development process —it’s always in development, we’re
always tweaking it and changing it, trying to make it better. So, pretty

7.5. EXPERIMENTATION AND ADJUSTMENT OF PROCESS 129

much anywhere a bottleneck sits, ‘cause bottlenecks shift. As soon as
you deal with one bottleneck you’ll find another one and they keep

moving along the way.” — Developer1, P2

One interaction designer challenged the unfavourable view of up-front
design during agile development and succeeded in adjusting the team’s
implementation process to better suit interaction design. He attributed his
ability to bring about change to his knowledge of interaction design and
the authority he had, as a result of his knowledge, within the team:

[P4.398,401] “[the process inside this company] is a thing that has
changed very much and I have changed it. So what I started to do,
and will continue to do, is try to make this change in the process.
So this is rather new and it has been quite difficult to put design up
front ...I've been giving internal training here about what this means
— that user interface design is not in those terms design up front, it’s
designing the system ...I'm not the guy you can just walk over, or
my colleague. So we really know what we’re doing, we really know

what we’re trying to accomplish.” — Interaction designer, P4

More evidence of experimentation is clearly seen in another participant’s
discussion about creating acceptance tests — when to write them so that
there is a better match between the build and the interaction designers’
tests, and therefore, easier for the designers to do their testing:

[P2.72] “So we tried stuff like writing the interaction ATs last. That
didn’t work very well. So we tried writing the interaction ATs up
front and we also tried writing the interaction ATs separately from
whatever component it is we're trying to test. That was not working
so well either, so we're trying writing the interaction ATs with the
component and all the tests for it at the same time, so a big old vertical
slice right there. So in this way we’d be hoping to make sure that
whatever build the designers get back is essentially another chunk of
the story. Making it easier for them to test and get a good feel of what
it does and what it’s about, stuff like this.” — Developer, P2

130 CHAPTER 7. INSIDE ITERATIONS

Participants attributed the success of the combination of interaction de-
sign and agile development on everyone involved being open-minded
and flexible.

[P2.93] “I think interaction design and agile work very well together.
But I'm not sure if it’s just because we have a very open-minded set

of programmers here. ” — Interaction designer, P2

It was clear that both designers and developers had something to learn
about the other’s domain, and without open-mindedness from all sides,
making the needed adjustments would not have been possible. As seen in
quote P4.398,401, the developers learned that interaction design up front is
not always reckless and against the values of agile development, and that
interaction designers found some interaction design up front necessary.
Interaction designers learned about effective communication with the de-
velopers, in terms of conveying the logic of the UI design — for which

there was no concrete artifact to represent it:

[P7.538,548] “There’s a lot more interpretation in terms of how they
[wireframes] behave ’cause these are just still wireframes. We talk
about, "‘What happens when you click here?” ... The wireframes only
can convey so much. They don’t show workflows and a lot of it relies
on us to communicate with the people who have made those wire-
frames or have the expertise, and we try and do that.” — Developer1,
p7

[P6.473] “We just had to do mock-ups, which I felt was quite unsatis-
factory, because I was trying to communicate how the user interface

would behave and not what it would look like.” — Developer, P6

Overall, the process and the team were seen as improving with time, with

fewer and fewer bottlenecks impeding development:

[P1.146] “It's been, you know, iteratively getting better and better. We
started out really rough and crude ...we wanted to get it right.” —
Product manager/UlI designer, P1

7.5. EXPERIMENTATION AND ADJUSTMENT OF PROCESS 131

The team needed time to experiment with their ideas and learn from their

mistakes:

[P3.250] “I think we’re in a spot where we kind of know what we
need to be doing. It’s just a matter of doing it and having more time
to play with some of the ideas that we have...There’s experimentation
that we really need to do and learn from our own mistakes, type of

thing.” — Developer1, P3

[P7.563,564] “I think our process works well, or I'll say at least better
than what we’ve done in the past ...our particular rendition of how
we do things, works better than what we’ve done ... We can be doing
even better than what we are now. And I think it’s again something

you evolve, you try it.” — Developer2, P7

Across all teams, there emerged two main goals, toward which all change
and adjustment in the development process was geared:

e Better meeting the user’s goals

e Increasing the productivity of both the developers and designers

User goals

[P3.247] “we’re slowly getting an impression of where we should be
heading with it ... we're slowly getting to the point where we under-
stand where we want the usability to be at, in a sort of subjective way.
And that probably will be our goal ...It’s really people’s emotional
reactions to the software we want now, we want them to feel that it’s
a good tool and they don’t really have usability issues - they don’t
complain about usability issues. I think that’s kind of where our goal

is.” — Developer1, P3

The participants interviewed, valued the user experience of their prod-
ucts and adjusted their development processes in order to better meet end

132 CHAPTER 7. INSIDE ITERATIONS

users’ goals. Their teams valued having access to the customer, improv-
ing the quality of their interaction with the customer, and obtaining their
feedback:

[2.60,68] “From our point of view, when users use our software, we
want them to be wowed by it, you know, we want them to be as-
tounded by how simply it meets their goals, how simply it allows
them to get their work done ...In the beginning it may have been
hard to meet the user’s goals. In the beginning we might not have
defined them well enough because it was hard to access the customer
in the very beginning, but now, one thing we are doing is meeting the

goals of our users.” — Interaction designer, P2

[P8.661] “We needed more client interaction, we needed to talk in the
client’s language and not in UML or anything like that. So I think a
lot changed.” — Project manager, P8

[P3.262] “All our software developers tend to go on-site to visit real
users. We try to keep a nice feedback loop. We can’t see every user
but we make sure that people experience people in the real environ-
ment, get to talk to them and ask them questions.” — Developer1,
P3

Developer and designer productivity

The teams also aimed to improve the productivity of their developers and
interaction designers. Productivity gains were experienced when bottle-
necks were eliminated from the process and developers and designers

could proceed with their work:

[P1.172] “It’s gotten a lot better lately because we’ve just gotten a lot
better at this [acceptance testing]. Initially, user stories would go back
to the engineers, like, five, six times, and that was definitely a huge
bottleneck because we have this backlog of unaccepted user stories.
So it was kind of a problem.” — Product manager/UI designer, P1

7.5. EXPERIMENTATION AND ADJUSTMENT OF PROCESS 133

[P1.174] “Typically, before the iteration there has been some up front
design done. As much as possible we try to get stuff done as early as
possible. So, we can do these high-level estimates and get those out
of the way. We actually try to do that while we're in the development
cycle for the current release. So we’ll try and front-load it as much
as we can ‘cause we don’t want to be the bottleneck and engineering
wants to book releases back to back and not have a lot of lag time. So,
as much as we can, we'll try to flesh out the user stories and the user

interfaces at that time.” — Product manager/UI designer, P1

[P4.337,338] “What we're trying to do is actually get the user inter-
face design out of the iteration cycle, so that we would have specified
the functionality and how the user interface exactly works and the it-
erative part would be actually implementing that ... because the idea
of trying to come up with the user interface design while doing the
same piece of software has proven that it is simply impossible.” —

Interaction designer, P4

The same participant supported their team’s change to a Comprehensive
Design strategy with their experience that the negotiations with customers
about the interaction design during the agile iterations held up develop-

ment work:

[P4.338,347] “we make a deal with the customers, ‘This is the amount
that we think this is going to take,” and then once they say ‘Go,” we
start implementing that. Doing user interface design inside these it-
erations has proven that it’s simply not possible ... We try to actually
push this so that this would have been done before hand, so that
the features that the developers were working with, the work would
have not ended and we would not have needed to put this project on
hold, but our situation was such that our customers did not believe
that this was going to happen.” — Interaction designer, P4

Developers and interaction designers experimented with tools and tech-
niques to find the best fit between the work they were trying to do and the

134 CHAPTER 7. INSIDE ITERATIONS

cost of using those tools or techniques. The timing of when to use which
technique was also mentioned:

[P2.72] “So we tried stuff like writing the interaction ATs last. That
didn’t work very well. So we tried writing the interaction ATs up
front and we also tried writing the interaction ATs separately from
whatever component it is we're trying to test. That was not working
so well either, so we’re trying writing the interaction ATs with the
component and all the tests for it at the same time, so a big old vertical
slice right there. So in this way we’d be hoping to make sure that
whatever build the designers get back is essentially another chunk of
the story. Making it easier for them to test and get a good feel of what
it does and what it’s about, stuff like this.” — Developer, P2

[P3.237] “Mainly we’ve played with those [UI design] techniques and
over time certain ways of using them and at certain times don’t tend
to work and some work better ... part of it is working out what valu-
able information you get from it, so sometimes things like paper pro-
totyping is not at all helpful because the information it’s trying to
give you is not what you need — like if you're looking for something

a little more specific.” — Developer1, P3

7.6 Summary

In this chapter we concentrated on how teams obtained feedback about in-
teraction design within the structure of agile development iterations. Our
study identified several themes that emerged in combining interaction de-
sign and agile development:

e Development iterations drive usability testing
e Usability testing results in changes in development

e Iterating with working software brings insights

7.6. SUMMARY 135

e Iteration planning affects interaction design

These points show a coherent picture of how the processes can work to-
gether for considerable advantage. Agile development iterations were
found to be opportunities for generating feedback about the interaction
design and for incorporating that feedback back into the interaction de-
sign. Further, iterations were seen as driving usability testing, which in
turn affected subsequent development. Teams discovered insights into
design and technology limitations as they implemented the system, and
iteration planning affected interaction design in terms of what features
were implemented in an iteration.

Experimentation and adjustment of the development process was a re-
occurring theme in the interview data and was geared toward better meet-
ing the end user’s goals and increasing the overall productivity of the in-
teraction designers and developers on the project.

Chapter 8

Agility and the interaction

designer

This chapter discusses the role of the interaction designer on an agile team,
as it emerged from the interview data. Two major insights obtained from
participant data were that interaction design in an agile context is consid-
ered a collaborative effort between interaction designers and developers,
and that the amount of collaboration depends on whether the teams con-
sider themselves as composed of generalists or specialists. Based on these

insights, we discuss the implications for the interaction designer role.

8.1 Usability has priority

All teams were convinced that developing usable products was a major

priority:

[P3.244,246] “We have it [usability] in our company vision, or busi-
ness plan, usability is one of those issues we need to focus on.” —
Developer1, P3

The teams showed that they had definite aims for their software in terms

of the user experience:

137

138

The benefits from usable products were not only experienced by the end
users, but also by the developer company. For the company, usable prod-
ucts had a positive impact on their Return on Investment and repeat busi-
ness. For the participants, usability was seen to involve caring about solv-
ing users’ goals and creating a good user experience. Good usability was
considered to depend on how well the team understood the goals of the

CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

[P2.60,70] “From our point of view, when users use our software, we
want them to be wowed by it, you know, we want them to be as-
tounded by how simply it meets their goals, how simply it allows
them to get their work done. And we also have the belief that good
design is invisible. When you're using the software you shouldn’t ac-
tually notice design. It should just be “My god I can sell my product
this way, my god it’s allowing me to open the report and customise
it the way I want.”... the usability will be built into the design of the

screens.” — Interaction designer, P2

[P3.247,299] “We want them to feel that it’s a good tool and they don’t
really have usability issues — they don’t complain about usability
issues. I think that’s kind of where our goal is ...we don’t have a
formal usability plan, but we have values that we are striving and

working towards.” — Developer1, P3

[P3.302] “I wouldn’t say that they’re [usability goals] achieved, be-
cause that word indicates that they’re perfect in our system, but we're

striving for them.” — Developer2, P3

[P4.376] “[With interaction design] there are two things. One is utility,
which is you can do it with this piece of software, and that is the
primary thing that we try to accomplish. The second thing we try
to accomplish is usability and in usability, because we build tools for
people, we pick first efficiency and learnability comes only after that.

That is the way we design things well.” — Interaction designer, P4

customer and how well their product met those goals:

[P2.91] “Putting the front end together is really just the final part of

the process. It’s going in and talking to the customers, understanding

8.1. USABILITY HAS PRIORITY 139

what their needs are, understanding what will fit into their current
sales process. There’s no point in going ahead and building a tool
that actually won't fit into any of their current processes. You have
to really understand what they’re doing, how they work, what their
future direction is so that what we’re bringing into them fits very
comfortably into their system that they’re using, or into their sales
process, or into their environment, or into their future directions, or
otherwise it'll just be a tool. And we won't get that user satisfaction
that we’re looking for or repeat business. So it’s more than just about
screen design, it’s just the whole process of understanding what a
customer needs and making sure that we meet all the different goals

that they have.” — Interaction designer, P2

The only instance where usability of the product was seen to be secondary
was in the case of P3, who considered the functionality their product pro-
vides to their users as the most important, highly valuable (compared to
usability of those functions) and in some instances superior to the compe-
tition’s. Therefore, it was their opinion that it is only necessary to spend
that amount of resources on usability that ensures competitive advantage
— even if that means that some usability issues still exist in the product.
The team did intend to fix the usability issues in subsequent releases:

[P3.245] “With our system the functional aspect of the software is
hugely valuable and in some cases our software does what other peo-
ple’s software can’t and if it was the hardest thing to use, they would
employ the smartest person they could find to use it, and they would

save themselves millions of dollars.” — Developer1, P3

[P3.246] “The big thing with these kinds of products is you're really
looking to be competitive, so, all you have to be is more competitive
than your competition, so, there’s a certain amount of usability that
we want in our software and we want to make it reasonably easy but
there’s no point in investing in making it perhaps as usable as some of
the consumer products out there because we get no more competitive

advantage. We want to invest to make sure that we’re getting a good

140

8.2

CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

return for our money and leverage as much stuff as possible, but we
probably wouldn’t go to the extent of some of the laboratory testing
some people are getting into these days, tracking eye movements to
get the finer details. And we could probably make our product a lot
more usable if we went to that degree, but we’re looking for sort of a
low lying fruit. Because you know there are a lot of mistakes in our
usability and fixing those up and having feedback and processes to
test that, we could get a lot of benefit just from that.” — Developer1,
P3

Interaction design requires skill

The second insight into interaction design in an agile development con-

text, was interaction design being considered by the team as more than

adding a front end to a system — more than a mere add-on to a product.

In particular, interaction design was seen to improve understanding of the

users, their goals, and the context in which the product was to be released.

Teams who followed a Comprehensive Design strategy, valued the oppor-

tunity to design the functionality of the whole system in a fast and cheap

way:

[P2.91] “Putting the front end together is really just the final part of
the process. It’s going in and talking to the customers, understanding
what their needs are, understanding what will fit into their current
sales process. There’s no point in going ahead and building a tool
that actually won't fit into any of their current processes. You have
to really understand what they’re doing, how they work, what their
future direction is so that what we’re bringing into them fits very
comfortably into their system that they’re using, or into their sales
process, or into their environment, or into their future directions, or
otherwise it'll just be a tool. And we won’t get that user satisfaction
that we’re looking for or repeat business. So it’s more than just about

screen design, it’s just the whole process of understanding what a

8.2. INTERACTION DESIGN REQUIRES SKILL 141

customer needs and making sure that we meet all the different goals
that they have.” — Interaction designer, P2

[P2.90] “It’s essential. For anything that isn’t going to be exclusively
used by programmers, you're going to need someone who knows
how to put a UI together. And not just because it will be pretty and
easy to use and stuff like that but because the kind of bottlenecks
and kind of delays and waste you get without having someone who
knows how to put a front end together will add to the cost at the end
of the day.” — Developer, P2

[P4.335,396] “It [interaction design] is more about designing func-
tionality than only the user interface, but it’s very easy to design the
whole functionality of the system, since it has no kind of motor un-
derneath that would not be linked to the user’s tasks. Everything
serves the users and the system, so the functionality is the most easy
to design through user interface design ...It almost insults me to say
that we’re trying to do something hi-fi. The fact that user interface
design, or the user interface, is something that you can just add on to
the system. Because what we do is we actually design the function-
ality of the system and that’s definitely not an add on, it’s definitely
the system we’re designing — from the user’s point of view, not of

course the things under cover.” — Interaction designer, P4

Interaction designers were seen to possess an intrinsic knowledge about
usable design, interaction design techniques, as well as using and inter-
preting feedback from usability testing:

[P2.27] “It’s just basically good common sense, good design rules and
as I said, a lot of influence from the Cooper book About Face 2.0.” —

Interaction designer, P2

[P6.488] “The benefit of having somebody who’s been trained in the
patterns, who can recognise it and go, ‘Look, you know what, that’s
just going to cause this reaction.” So, like, in programming, we have

design patterns that are based on certain architecture, so obviously

142

CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

user experience is just as easily related to architecture, so, even if
they’re not codified there’s probably a pattern that somebody like

that can recognise.” — Developer, P6

[P2.67] “We have a lot of goals and heuristics that have to be met and
at this stage it’s ingrained, you just know, you don’t have to go and
physically check through a list. You just know, by using it, by looking
at a screen you know whether it’s right or wrong.” — Interaction

designer, P2

[P1.190]"I started out trying to design backwards from Jakob Nielsen’s
usability heuristics. People don’t really do that a lot, but I just try
to keep those things in mind. I had some usability activities that I
wanted to accomplish, I had some goals.” — Product manager/User

interface designer, P1

[P1.130] “We have things like experience from previous projects, we

have things like design factors.” — Engineering manager, P1

Individuals in the interaction designer role were also seen to possess the

necessary skills to elicit requirements and feedback from the users, dur-

ing user research activities, and for modeling the knowledge about those

users, in the form of personas and scenarios:

[P2.66,18] “We design personas up front for our projects and we iden-
tify what their goals are, in using the product. We have to make sure
that when we’re testing the product, we meet all their goals ...In in-
teraction design we write our user stories through what are called
scenarios. Before they ever become user stories on a card for the de-
velopment team, we do them via scenarios.” — Interaction designer,
P2

[P1.122,151] “We created some personas. And so our personas repre-
sent different users of our system ... And for the UI designer, I mean,
he really had to think, ok, now I have these, let’s say fifteen user sto-
ries for our task manager; seven of them are for the developer, three

are for the project manager, five are for the business analyst. So then

8.2. INTERACTION DESIGN REQUIRES SKILL 143

it would be up to the product manager to make sure, ok, which of
these individuals has the full feature set — there’s nothing missing.
And then for the UI designer, he just took these stories and then,
again, really, with the persona in mind, try to implement it as quick

as possible.” — Engineering manager, P1

[P1.118]“I mean that was for the UI, but also for the user stories, one
of the most important things to do. To really have these personas
... It helped us a lot for the Ul just for the simple fact that every now
and then we're talking about a certain user story how to implement
it. It just helped us to go back to the user story and see, ok, for which
personas or which user is this — is this for a developer, is this for a
manager, is this for a QA person, for a business analyst. The imple-
mentation, and even the UI implementation, changes. Thinking, oh,
ok, for a developer you can have a very technical screen with lots of
data — developers don’t mind. But if it’s someone as simple-minded
as me, as a director or even higher, people on that level want to have
a much simpler UI they don’t want to have lots of detail.” — Engi-

neering manager, P1

[P2.16,17,20] “We'll hold a workshop with the project sponsors, we’d
have them with end-users of the product, we’d have them with IT
people, with the actuaries in the company, with the compliance peo-
ple, as many as we can who will have input into the product or
are using it in some form, or who are developing it in some form.
They come from our workshop. We gather the user stories via that
...Sometimes we would try and sit with an end user and do maybe
cognitive walkthroughs, where we get the user to talk through what
they’re doing in their current day to day with their current piece of
technology. We try to understand how they currently use technology
and their frustrations with it.” — Interaction designer, P2

In one case, the interaction designer was the customer proxy:

[P1.199] “I end up being, like, a proxy for the customer. So I'm tak-

ing into account customer requests and things like that, and some

144

8.2.1

Participants felt that interaction design work should not be done by devel-
opers, due to their training and background being in a different domain:

Developers who were not trained in interaction design techniques at times

CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

feedback.” — Product manager/User interface designer, P1

When developers do interaction design

[P1.201] “And I don’t think the user interface designers should be
engineers, ‘cause I think that’s an inherent problem because if you're
focused on writing code and not building user interfaces, that would

change things.” — Product manager/User interface designer, P1

[P2.56] “I can’t imagine why a developer would be designing screens
because their training lies in a whole different area to me, and their
skill set lies in a different area so I just don’t understand how compa-

nies can do that.” — Interaction designer, P2

[P2.64] “Programmers do not make good designers, they just don't.
Anytime I design anything at all it always comes out in horrible blues
and greens and there’s not an awful lot I can do about that, and pro-
grammers being very logical people, you know, will always say that
if they haven’t any experience of design then it just doesn’t exist. You
know, it is very difficult to get people out of their own little world,

that way.” — Developer, P2

[P2.97] “The Ul doesn’t naturally fall inside my domain, it isn’t some-
thing I naturally do well. I can make Uls at the drop of a hat but
they won’t look good, they won’t be in any way what the customer

wanted, so why am I doing it?” — Developer, P2

[P6.509] “Maybe more people need user experience designers — even
if they were programmers — because that’s somebody focusing their
brain in a different direction, and it may just be that somebody can’t

wear both of those hats.” — Developer, P6

thought that usability was not their responsibility:

8.2. INTERACTION DESIGN REQUIRES SKILL 145

[P7.602] “They’re not held accountable for the usability portion of it
... as their traditional role dictates, they’re implementers. They’re not
business experts, they’re not usability experts. They don’t necessarily
have fine details as to what their end consumer’s going to do day in

day out with this product.” — Developer2, P7

[P1.188] “The guy who’s coding, you know, he’s not a user inter-
face expert. He doesn’t know a lot about usability testing. Probably
doesn’t think it’s his responsibility.” — Product manager/User interface

designer, P1

Participants felt that developers should not be designers, as developers
tended to miss the subtle interaction design issues that interaction design-

ers are trained to recognise:

[P1.173,201] “The implementation of the design was difficult and some-
times people inadvertently cut corners, like, they’d look at it and to
their eyes it would be good enough and then, from a designer’s per-
spective, it’s like no that’s not, you know, that radio button isn’t se-
lected by default, or, like that text string is misspelt, or you're using
the wrong term there ... They probably didn’t even see it. So it’s just
complexity of the Ul itself ...I don’t think the user interface designers

should be engineers.” — Product manager/User interface designer
[P3.300] “There still can be team members who look at a screen and

say, ‘Well, this is really easy and straight forward to use,” and then
you're [an interaction designer] like “‘No.” ” — Developer2, P2

8.2.2 Interaction design skill contributes value

Participants valued interaction designers for bringing a different type of
skill and knowledge to the team — skills that the developers did not have.
Therefore, teams unanimously agreed that interaction designers were a

valued role and that they should be part of the team:

[P2.28] “We have four developers and two Ul specialists, so I defi-

nitely do support the idea of having them [interaction designers] in a

146

CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

team ...I can’t imagine us not having interaction designers involved

in the design of the product.” — Interaction designer, P2

[P8.656] “The [user] satisfaction is very high, customers” expectations
are being met, and I'd say the main reason is because on that we
team we probably have the two best interaction designers.” — Project
Manager, P8

8.3 Interaction design as collaboration

Throughout the interview data, there emerged an awareness within the
teams that agile development influenced the interaction designer role in
ways that were considered different to the traditional view of the role.
The frequent and open communication between interaction designers and
developers during the development effort, resulted in an activity which
was seen as more collaborative and receptive to developer feedback than

traditional interaction design:

[P1.106] “But it’s a fantastic thing; you have these sometimes very
opinionated discussions up front and sometimes even during devel-
opment. I mean, people realise, ‘Oh this and this doesn’t work,” and
then they go to the UI designer. You know, it’s just two different
opinions: you can do this or this. I think it’s fantastic.” — Engineer-

ing manager, P1

[P1.111] “The other thing, I think, you don’t need that many UI de-
signers in XP because the relationship between the UI designer and
the developer is just very different. It’s not that the UI designer has to
come up with the full UI design, everything final, all JavaScripts and
everything in it. Then goes to the engineers and says, ‘Ok, implement
this,” and then sees it four months later and has to, like, look through
it how does it work? With us it is much more, like, day to day com-
munication. The Ul designer actually can get away with not putting
all the details and everything into it. Many things just work out dur-

8.3. INTERACTION DESIGN AS COLLABORATION 147

ing the iteration planning or during development.” — Engineering

manager, P1

[P1.112] “In the future comes the developer and he says, 'Ok, maybe
we actually do it like this, maybe we use that colour, or maybe we
just do this element or that element.” And that was something that
[interaction designer] really had to get used to. He initially found
it as a loss of control. He doesn’t control everything in the UL” —

Engineering manager, P1

[P3.297] “We see each other every day and we sit all together and
even working on different projects and different stories, we talk to
each other all the time, ask each other’s opinions for the user interface

and the code.” — Developer, P3

8.3.1 Setting the target

Interaction designers across all projects were setting the standard for the
usability of the product for the rest of the team, whether in the form of

usability goals, values or UI design specifications:

[P1.187] “So, what I would try to do is get a high level understanding
of what the product’s gonna be, and I'd probably try to work some
things out. Just create some up front consistency, like, what do but-
tons look like, where are they placed, what do tables look like, how
do users interact with tables, what do forms look like, how do you
get from a table to a form and then back to the table, like, basic inter-
action models. So, kinda like a style guide.” — Product manager/User

interface designer, P1
[P4.358] “For design we start with pen and paper. We do paper pro-

totypes ... What we try to accomplish currently is that we get this
HTML directly to the implementers.” — Interaction designer, P4

The UI design, whether in the form of a prototype or a specifications doc-
ument, was an important tool for creating work and cost estimates used

in the planning of the implementation of the subsequent releases:

148 CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

[P4.356] “From my point of view, the user interface design quite heav-

ily leads the release planning” — Interaction designer, P4

[P5.427,428] ”So the work of the prototype has to be planned so that
we can discuss what parts of the system should be developed first, so
the development team can start working on themSo we try to come
up with a list of actual features that are broken down into individual
tasks that then can be estimated and it follows a basic Scrum process,
from then on, that developers give estimates and then at least the cus-
tomer’s project manager, and preferably also the business people are
present when doing prioritisation within the different features. And
then based on the estimates given on the different tasks involved in
each requirement, a list of tasks or backlog for that sprint is forged out
and then everybody gets to pick their own tasks and work is started.”
— Developer, P5

After the tasks had been formulated and written on to story cards, the
interaction designer was involved in negotiations about which cards were

to be implemented in an iteration:

[P2.43] “We would negotiate between the developers and the domain
expert if whether any new cards would go into the iteration.” —

Interaction designer, P2

[P1.177] “And then after that [the interaction designer doing a walk
through of the cards], in the iteration planning meeting, we’ll hand
the cards to the engineering manager and he’ll go through and get
the estimates, and he goes through the cards yet again. It’s kind of
a laborious process, but, while he’s getting engineering estimates, I
really have to think about it because they’re, you know, giving es-
timates and we’re making our plan based on this, and they don’t
wanna work 80 hours a week. So, more detailed questions come
up during that time. So we get all the estimates and then between
the engineering manager and myself, and sometimes the engineer-
ing manager, we figure out what’s gonna be done in an iteration.” —

Product manager/User interface designer, P1

8.3. INTERACTION DESIGN AS COLLABORATION 149

8.3.2 Maintaining the target

During the development effort, it was usually the responsibility of the in-
teraction designer to continually verify that what the developers were im-
plementing was acceptable in terms of usability. During the development
iterations, the interaction designer was required to be on hand to answer
developer queries about the design and identify usability issues missed by

the developers:

[P4.343] “There is a need for a Ul designer even still while the soft-
ware is being implemented because you get these kinds of feedback
and problems and technical limitations and redesigns neededand the
user interface designer should be, if possible, part of the team.” —

Interaction designer, P4

[P4.382,384] “What we're currently doing at least, is that we check
the user interface from time to time, so that it’s actually implemented
according to the spec. That is not done in a very systematic way. They
[developers] say, “Well, look, come and check this out,” so we go and

check it during the implementation.” — Interaction designer, P4

[P7.577] “I would say the user experience person is officially the one
who's responsible for saying, "Yes or no,” a good interaction versus a

bad interaction.” — Developer2, P7

[P4.384] “We also do this unofficially that they [developers] say, ‘Well,
look, come and check this out,” so we go and check it [UI design]

during the implementation.” — Interaction designer, P4

[P1.106]“During development. I mean, people realise, oh this and
this doesn’t work and then they go to [the interaction designer].” —

Engineering manager, P1

When the team was constrained by resources such as time, the interaction
designer became the main driver for usability — by trying to incorporate
as much usability techniques into the allowed time frame:

150

During implementation, the interaction designer may have opportunities
to test the user interface during acceptance testing. The interaction de-
signer may also accompany the rest of the team in a manual walk-through
of the features, concentrating on identifying usability issues. If any testing
with users had to be performed during the implementation process, the
interaction designer was responsible for running those testing sessions:

CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

[P3.273,298] “If sales go out and sell a feature and then we have to
deliver it within a time frame and then that’s the time you've got. But
I try to do as much as I can and I try to incorporate as much usability
as I can ...I think the benefits of usability are clearly seen and, of
course we should do more and it would be great if we had more time
...you only have that much time and that much resources. You try to

do the best with what you've got.” — Developer2, P3

[P2.43,58] “We have acceptance tests written by the designers, we
have acceptance tests written by the domain expert ... We specify
how the interaction navigation works via acceptance tests. So that’s
really how we specify the navigation, the rules, the error checking

and all that.” — Interaction designer, P2

[P1.100] “We accept all the features manually, so we have to just stay
in the acceptance meeting then we walk through the feature manu-

ally, see if it works.” — Engineering manager, P1

[P4.390] “We try and do the evaluations — it’s kind of a walkthrough.
We have paper prototypes, written-in data and then we have a goal
or task and then we simulate how the user interface works for the
user. Sometimes we ask them “What would you press here?” but
that’s not actually required in those cases. We're not interested in
those kinds of learnability issues, we're mostly interested in missing
functionality or if we understood any concepts wrong. We call this a
utility walkthrough. It's not a term form the literature, we just devel-
oped it on our own. ... We try to do that [utility walkthrough] at least

once before the thing is launched, but sometimes there is no budget

8.4. LURKING PITFALLS OF THE INTERACTION DESIGNER ROLE151

for that, so we just have to go on with what we have.” — Interaction

designer, P4

Along with the developers, the interaction designers decided on whether
a build was complete, or whether more design or redesign was necessary:

[P2.42] “And the designers take builds every morning. Because we
have a very tight development cycle, we have builds hourly. So we
take the builds every morning, check the cards that were done yes-
terday and the designers can sign off on those cards to make sure
they’re happy with the changes that were made. And so we can kind
of go back and forth between each other until we’re both happy.” —

Interaction designer, P2

[P4.383] “What it should do is we should get some kind of a ticket,
I mean, this ticket in our problem handling system, kind of the bug
database, so that it’s kind of moved that I've now done this feature
and that it’s assigned to the user interface designer, so that he or she
should check it through before it’s said that this is now ready.” —
Interaction designer, P4

[P1.101] “There [during acceptance testing] we walk through and
there we actually don’t mind giving a feature back to engineers, say-
ing that it has to be implemented again, or it has to be changed be-
cause of usability. Sometimes the feature actually works, it’s there
but then we see it there and we're like no. It may be the order, it
might be the screen flow, the navigation or something and we're like,

no it really doesn’t work well. ” — Engineering manager, P1

8.4 Lurking pitfalls of the interaction designer

role

We identified two situations that could potentially pose challenges and be
somewhat problematic for the interaction designer role. The first concerns

152 CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

the case where interaction designers are also developers and the second
pertains to the authority of the interaction designer on the team. In both
cases the designs produced by the interaction designer may be compro-

mised unless attention is specifically given to these situations:

When Ul designers are developers it was found to be important to con-
sciously try not to think about implementation details when designing the
UI — that resources and technical issues do not constrain interaction de-

sign:

[P3.286] “Maybe a disadvantage of being a programmer and an inter-
action designer is that you get too close to the programmatic side of
thinking and maybe too understanding of the constraints in resources

and technical issues.” — Developer2, P3

[P3.229] “We would go for the simplest to implement Ul rather than
perhaps the most usable UL.” — Developer1, P3

The team must also take care that interaction design issues do not get pri-

oritised away in favour of coding issues:

[P3.281,282] “I think it’s [the UI and its code] owned by the team but
valued differently. It's everybody’s responsibility, but with the differ-
ent backgrounds and focuses and interests, people will value it more
or less ...I think it’s necessary to have that specialised [interaction]
knowledge in the team because, I think, if you don’t have it it’s easy
to get the attitude that it’s just basically common sense. They get

prioritised away.” Developer2, P3

The level of authority of the interaction designer within the team could
determine the success with which the interaction designs are accepted by
the other team members. One participant related a story contrasting his
experience with that of another interaction designer who did not have his

level of expertise in interaction design:

8.5. INTERACTION DESIGNER: SHARED VS. TOTAL CONTROL 153

P4.401] “I've been developing design methods with my wife at the
university, evaluation methods and such, I'm not they guy you can
just walk over, or my colleague. So we really know what we’re doing,
we really know what we’re trying to accomplish, so you can’t just
push us around, which was the casewe had in this company one girl
that did user interface design with no training but someone had to do
it. She was very easy to push around and redesign the user interfaces
after she’d done them because she had no authority. She knew that
this is not her field of expertise, she could not hang on very tightly to
what she had done. She knew that this might not be the best thing.
Whereas we know that what we do is absolutely great so there’s no

'I/

walking over us!” — Interaction designer, P4

8.5 Interaction designer: Shared vs. total control

At this point the generalist/specialist aspect of agile teams should be noted.
The literature suggests that agile teams are ideally generalists, i.e., they
possess a wide range of skills rather than one narrowly defined area of
expertise [70, 93]. If this view extends to the interaction designer and de-
veloper roles as well, then agile team members with interaction design
skills along with technical development skills would be preferred over
exclusively specialised interaction design skills or exclusively specialised
development skills. In our study we encountered evidence of both agree-
ment and disagreement with this view. Table 8.1 shows which teams dis-

tinguished between the roles of developer and interaction designer.

P3 and P6, both XP teams, were the only teams who explicitly stated that
there were no distinctions between the roles of interaction designers and
developers in their teams, i.e., they were all considered developers. How-
ever, as will be evident in the rest of the discussion, P1 strongly tended

toward a generalist approach and so when reference to generalist teams

154 CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

Team | Agile | Interaction Design Approach Roles
P1 XP Evolutionary Design with Looking Ahead | yes
P2 XP Comprehensive Design with Refinement yes
P3 XP Evolutionary Design with Parallelisation no

P4 Scrum | Comprehensive Design with Refinement yes
P5 Scrum | Comprehensive Design with Parallelisation | yes
P6 XP Comprehensive Design with Refinement no

pP7 Scrum | Evolutionary Design with Looking Ahead | yes
P8 XP Evolutionary Design with Looking Ahead | yes

P9 XP Comprehensive Design with Refinement yes

Table 8.1: Team and Roles

are made in later discussion, this will include P1. A participant from P3

explained the preference for generalists:

[P3.222] “I tend to avoid the word specialist because I don’t want
somebody who's a specialist. I want an expert on the team rather
than a specialist. So I expect them to understand the code and what

not.” — Developer1, P3

The same participant went on to state that the whole team had been sent

on an interaction design course to raise their awareness of usability issues:

[P3.224] “And we’ve also done some training for everyone on inter-
action design ...that’s the kind of knowledge we want everyone on
our team to slowly pick up their ability in doing and being aware of

what issues are involved.” — Developer1, P3

An interesting contradiction occurred for P3 where the one participant,
quoted above, preferred a team of generalists, the other participant from
P3 highlighted the need for specialisation:

[P3.282] “Yes I support the notion of having interaction designers as
part of the team. I think it’s necessary to have that specialised knowl-
edge in the team because, I think, if you don’t have it it’s easy to get

the attitude that it’s just basically common sense.” — Developer2, P3

8.5. INTERACTION DESIGNER: SHARED VS. TOTAL CONTROL 155

For the rest of the teams who distinguished between interaction designer
and developer roles, the preference for specialists was clear. The exception
was the engineering manager from P1, who expressed the view that inter-
action designers should tend towards generality, i.e., that the interaction
designer should ideally possess a certain level of technical knowledge, as
well as skill in interaction design, in order to ensure an optimal front end

design that matched the technology of the back end:

[P1.109] “We want to hire a new UI designer. We want to get someone
who is much more technical ...who is still not a full time engineer,
but who actually can give [interaction designer] a lot of feedback, a
lot of ideas. Say if you wanna do this, look, you could use this and
JavaScript or we could do this or we could do that ... where he just
knows, hey, these are all the technical things that I could do, how can
I make my UI design better.” — Engineering manager, P1

The generalist and specialist teams differed most notably with respect to
the amount of control the interaction designer was seen to have over the
interaction design of the product. The teams of generalists felt that the
developers were also able to come up with valid interaction design and
advocated shared ownership of the UI design, in the same way that they

advocated shared code ownership.

[P3.219,220] “In terms of the code it’s definitely shared. It's common
code ownership XP-style. The user interface, that’s effectively com-

mon ownership as well.” — Developer1, P3

[P1.176] “We'll take the user interface and the user stories into an it-
eration ...and people will start asking more detailed questions, chal-
lenging some of the ideas.” — Product manager/User interface designer,
P1

[P1.112] “In the future comes the developer and he says, 'Ok, maybe
we actually do it like this, maybe we use that colour, or maybe we
just do this element or that element.” And that was something that

[interaction designer] really had to get used to. He initially found

156 CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

it as a loss of control. He doesn’t control everything in the UL” —

Engineering manager, P1

[P1.188] “I think usability is the responsibility of everybody, not just
the developers and if your XP process is insulated to just the engi-
neering team then I think that’s probably the wrong approach. If
you don’t have product management on board, if you don’t have all
stakeholders involved with XP, then you're in a bad situation, "cause
the guy who's coding, you know, he’s not a user interface expert. He
doesn’t know a lot about usability testing. Probably doesn’t think it’s
his responsibility” — Product manager/User interface designer, P1

[P1.158] “You typically go through the functionality with the engi-
neers and the engineers will poke as many holes in it as they can to
really get their heads around it and, you know, a lot of times I'll end
up making tweaks or sometimes mass changes to the Ul based on an
assumption I made that really doesn’t work.” — Product manager/UI

designer, P1

[P6.469] “Any programmer who works on the user interface portion
of our code will largely be responsible for that and they are responsi-
ble for the design as well.” — Developer, P6

The teams of specialists felt that interaction designers should have full
say in interaction design matters. P2, P4, P5, P7, P8 and P9 preferred to
delineate the responsibility of the interaction designers as being only the
interaction design, since having interaction designers and developers con-

centrate on their own domain makes their work more efficient:

[P4.341] “But actually the current status, and I think that it’s very
good, is the fact that the user interface designers do the design, it’s
their responsibility, because in this project, this has gone well.” —

Interaction designer, P4

[P5.426] “I would say that because we’ve driven the project so that
the customer develops the idea and the user interface designs by

themselves, and not leaking any information out of it before they get

8.5. INTERACTION DESIGNER: SHARED VS. TOTAL CONTROL

it ready ...It makes work efficient but it can also become a bottle-
neck.” — Developer, P5

[2.32,97] “Pretty much design-wise whatever the interaction design-
ers say goes ...it takes a lot of responsibility away from my job. If I
don’t have to worry about ui concerns, I can get more work done
and get it done better ... From that point of view I am able to draw a
line between what is my problem and what'’s [interaction designer’s]
problem, or rather what’s my responsibility and what’s [interaction
designer]’s responsibility to put it in a nicer way and to concentrate
on what I do really well.” — Developer, P2

157

Their UI design created before implementation began, combined with the

almost total control of the interaction designers over the interaction de-

sign, ensured that the adjustments based on developer feedback was mi-

nor:

[P2.23] “There wouldn’t be that many changes once it goes into the

development iterations.” — Interaction designer, P2

[P8.639] “It [UI design] does change because of technical challenges,
and so on. It happens often but on minor things, right. There’s a lot
of tweaking on minor things, ‘I can’t put this here because of this or

this.” ” — Project manager, P§

Further, participants on specialist teams distinguished between the UI de-

sign and the code that implements that design, seeing the UI design as the

interaction designer’s responsibility and the code that implements it as

shared among the developers:

[P4.342] “The UI is owned by the user interface designer, but the
code underneath is owned by everybody. ... But the responsibility is
clearly the user interface designer’s and the code ownership is shared

between those who write the code.” — Interaction designer, P4

The teams based whether it was appropriate for developers to give inter-

action designers feedback about interaction design on their attitude about

158

CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

which role had responsibility for the interaction design. The teams of spe-

cialists felt that developers should not give feedback on UI design issues,

as they are not qualified to do this:

In the teams of generalists, discussion and debate about UI design issues
were encouraged. These teams saw this as the way in which they created

[P2.31] “I have to say in our team here, each of us have great respect
for each other’s work. We as designers have great respect for what
the developers do and the developers have great respect for us. Even
with great communication going, we’d never assume to make a sug-
gestion about something we don’t know very much about.” — Inter-

action designer, P2

[P4.397] “From the user’s point of view what the user interface is,
is it’s this design and the other design not the same thing, so that if
there’s a good design for that, there’s a reason why the design is good
and there is no reason for the implementer to create something else,

if what’s a good design is buildable.” — Interaction designer, P4

the best Ul designs:

[P1.105,106] “Makes actually [interaction designer’s] life hell some-
times because he’s the UI designer, the product manager. He comes
to the meeting and says ‘Ok, here’s the Ul and here’s how we do this
and this feature.” And there’s ten engineers sitting there and saying
‘Look, nobody works like this. What are you doing? It’s like, no-
body’s doing this” and so sometimes it’s really, really hard for him
to, like, tell them, ‘Look, you might not work like this but I think
outside, people who use our application, they will work like this,
they will appreciate this feature.” But its a fantastic thing; you have
these sometimes very opinionated discussions up front and some-
times even during development ...it’s just two different opinions:
you can do this or this. I think it’s fantastic.” — Engineering manager,
P1

[P1.159] “So, you typically go through the functionality with the en-

gineers and the engineers will poke as many holes in it as they can to

8.6. SUMMARY 159

really get their heads around it and, you know, a lot of times I'll end
up making tweaks or sometimes mass changes to the Ul based on an
assumption I made that really doesn’t work. You know, like, some-
thing I thought that would work that isn’t very logical.” — Product
manager/User interface designer, P1

[P1.168] “And you know, we’ve reviewed it with the engineers and
basically blew it to pieces and they have better ideas about this so, we
need to go back to the drawing board and figure this out.” — Product
manager/User interface designer, P1

8.6 Summary

This chapter discussed the valued role of the interaction designer on an
agile team. Developing usable products was of high priority for our par-
ticipants, which requires a special skill that can not be easily deferred to
the developers. Within the agile context, interaction design was seen to be
a more collaborative activity than traditional interaction design. Interac-
tion designers set the target for the usability of the product and were con-
tinually involved during the course of development to ensure that those
targets were reached.

Pitfalls of the interaction designer role in agile development were also
identified. The first concerned the level of authority of the interaction de-
signer within the team. The second concerned the case where developers
are also expected to be interaction designers. Both situations have the po-
tential to compromise the overall interaction design.

Finally, the discussion on whether the view of generalist or special-
ist teams extended to the interaction designer/developer roles saw teams
advocating both. On the generalist teams, there was the view that devel-
opers have valuable contributions to make to the interaction design and
discussions and debates were encouraged. The specialist teams opposed
the generalist views and considered the role of developer, with respect to

160 CHAPTER 8. AGILITY AND THE INTERACTION DESIGNER

the UI, as simply the role of implementer — any feedback from the de-
veloper about the interaction design should only concern implementation

issues.

Chapter 9
Conclusion

The intention of our grounded theory study was to investigate how real-
world agile teams combine interaction design with their agile develop-
ment activities. During the analysis of the data, the empirical categories
that emerged, led to the findings discussed in chapters 5 to 8. In section
3.6, we identified risks that could compromise the reliability and validity
of our study, and we adopted specific measures to address each risk. Even
so, this grounded theory study can not be considered to be a complete
sampling of the topic, and can not claim to be a complete reflection on
practice in the field. As explained in section 3.1, the strength of a qualita-
tive grounded theory study is to help develop understanding of the phe-
nomena of the research topic by providing rich descriptions, rather than a
quantitative summary.

Here we present our contributions, present topics for future discussion
and suggest further work.

9.1 Contributions

Overall, the results contribute to a better understanding of the place of
interaction design in agile development. Next, we present our specific

contributions:

161

162

CHAPTER 9. CONCLUSION

1. Up-front interaction design happens

For a development project to even begin, all teams underlined the
importance of studying their end users and researching the scope of
the product under development — especially for the teams whose
development projects were organised such that their time with end
users once implementation had begun was minimal, or non-existent.
The teams gained a holistic view of what their product was to be-
come, which together with the knowledge about their users, guided
the rest of the development effort. Up-front design was credited with
cost and time savings, increasing user satisfaction, increasing usabil-
ity testing productivity, mitigating the risks of the developers” work
and anchoring the UI design. The amount of interaction design com-
pleted at this time depended on what the team’s approach to interac-
tion design throughout the development effort was going to be. Cer-
tain teams completed all their interaction design up front whereas
others completed just enough to get started and then evolved the

interaction design during the implementation stage.

Agile development can be structured by four approaches to
interaction design

Our analysis showed that the teams organised and structured their
interaction design and agile development activities according to their
"Interaction Design Approach’, which consisted of a design strategy
and an implementation strategy for the interaction design. There
emerged two design strategies — Comprehensive Design and Evo-
lutionary Design — and three implementation strategies — Refine-
ment, Looking Ahead, Parallelisation — that the teams combined
in four different ways. The Comprehensive Design strategy, com-
bined with Refinement, was characterised by teams completing a
large proportion of their interaction design up front, designing for
all the features that would be included in the final product, and fol-

lowing this with implementing and refining the interaction design

9.1. CONTRIBUTIONS 163

during the agile development iterations. The Evolutionary Design
strategy, combined with Looking Ahead, was characterised by teams
completing just enough interaction design to start implementation
and then evolving the interaction design, along with the rest of the
system, during implementation. The interaction design always in-
cluded only features for the current iteration and those that had been
selected for a set number of iterations ahead of the current iteration.
Parallelisation was combined with both Comprehensive Design and
Evolutionary Design strategies, and was characterised by the inter-
action design and agile development occurring in parallel. This was
possible since the interaction design and the system code were not
dependent on each other to progress.

3. Agile development iterations are opportunities for feedback and
change in the interaction design
Within the structure of agile development iterations, our study iden-
tified four aspects that provided opportunities for feedback and change

in the interaction design:

(a) Development iterations drive usability testing
(b) Usability testing results in changes in development
(c) Iterating with working software brings insights

(d) Iteration planning affects interaction design

These points show a coherent picture of how interaction design and
agile development can work together for considerable advantage.
Agile development iterations were found to be opportunities for gen-
erating feedback about the interaction design and for incorporating
that feedback back into the interaction design. An important insight
was that the combination of interaction design and agile develop-

ment was the result of constant experimentation and adjustment of

164 CHAPTER 9. CONCLUSION

process, in order to improve the productivity of the interaction de-

signers and developers, and to meet the goals of the end user better.

4. The interaction designer role is a highly collaborative role on agile
teams
Within the agile context, interaction design was seen to be a more
collaborative activity than traditional interaction design. Interaction
designers set the target for the usability of the product and were con-
tinually involved during the course of development to ensure that
those targets were reached. The effectiveness of the interaction de-
signer role was found to be dependent on the level of authority of the
interaction designer within the team and whether developers were
also expected to be interaction designers. Finally, the teams that con-
sidered themselves teams of generalists, encouraged discussions and
debates regarding the interaction design. The teams that considered
themselves teams of specialists, considered it appropriate that the
developers only feed back implementation issues about the interac-
tion design.

9.2 Returning to the literature

Referring back to the related studies mentioned in section 2.5.3, we now
examine their process descriptions in terms of the interaction design ap-
proaches we have identified in our data.

The first relevant study is the collection of refereed papers and tutori-
als by Patton, in which Usage-Centered Design is combined with a typi-
cal agile development methodology [110]. Information on the amount of
interaction design suggested to be performed up front is not clear, how-
ever from the description of how Usage-Centered Design can be ‘inserted’
into the agile iteration, it can be inferred that either combination of Com-
prehensive Design with Refinement or Evolutionary Design with Looking

9.2. RETURNING TO THE LITERATURE 165

Ahead would be possible.

The study by Beyer Holtzblatt and Baker highlights the need to deter-
mine the Ul up front and to “separate design from engineering” [13]. This
is reminiscent of the Comprehensive Design and Refinement approach de-
scribed in this thesis, in which participants using this approach see the

interaction design and agile development processes as separate.

In the studies by both Miller [96] and Sy [137] the interaction design-
ers were doing detailed design for the iteration that the developers would
do next, and doing evaluation of the iteration that the developers did last.
This agrees with the Evolutionary Design and Looking Ahead approach
described in this thesis, where the interaction designers were creating an
interaction design for a set number of iterations ahead of what the de-
velopers were implementing. This is not Parallelisation, however, as the
interaction design was progressing along with the system code at every
iteration.

The study by Chamberlain, Sharp and Maiden [23] cites projects that
included up-front work, such as requirements gathering and understand-
ing users. This agrees with the observations in this thesis, that all teams
attempted some of this type of work before implementation began. There
is not much further discussion regarding the organisation of activities once
implementation had begun, and again, one would have to infer that their
five principles for integrating user-centered design and agile development
would apply to both Comprehensive Design and Evolutionary Design ap-
proaches.

Finally, our findings about the inevitability of up-front design agrees
with the study by McInerney and Maurer [93]. Their participants were
also able to undertake activities such as contextual inquiries and develop-
ing personas prior to coding, in order to drive subsequent design activi-
ties. Issues discussed in this thesis, such as the continual involvement of
the interaction designer during development in guiding the direction of
the interaction design, and involvement of the whole team in interaction

166 CHAPTER 9. CONCLUSION

design decisions were identified by McInerney and Maurer’s participants,
but not explored further in their study.

9.3 Topics for further discussion

During the course of our analysis for this study, we identified categories
that addressed the research questions we set out to investigate, however
there also emerged categories that described important phenomena out-
side the scope of this thesis. We describe two phenomena here as subjects
for further discussion.

The first concerns the idea of design — how interaction designers and
developers make use of the same word to refer to different concepts — and
how these ideas influence the attitude to combining interaction design and
agile development. The second concerns the timing of interaction design
iterations and agile development iterations, with particular reference to
the timing of the feedback from evaluations.

9.3.1 Design: Agile values and cost of change

Throughout our investigation into how teams combined interaction de-
sign and agile development, and whether a comprehensive or evolution-
ary approach was employed, a key issue emerged relating to the idea of
design. In agile development even the word is regarded with caution. The
agile manifesto includes the preferences: “Working software over com-
prehensive documentation” and “’Responding to change over following
a plan”, and while these preferences are intended to discourage fixing re-
quirements with plans and documentation, they are often interpreted as a
reduction of emphasis on design of any kind [55].

In the literature, much of the discussion relating to up-front design ap-
pears in the context of the design of the system code, and yet the aversion
to up-front design was seen to be transferred to interaction design on agile

9.3. TOPICS FOR FURTHER DISCUSSION 167

projects as well. P4’s project management was one such example. In sec-
tion 7.5, the participant from P4 is quoted as saying that “it has been quite
difficult to put design up front.” due to:

[P4.398] “Some people who see themselves as very agile, they think

design up front is something reckless.” — Interaction designer, P4

Even among out participants, we encountered divided opinions regarding
the gains of doing design and the cost of doing so before development be-
gins, hence the different approaches to designing and implementing their

interaction designs.

A question of nomenclature

Agile development advocates are wary of up-front design because it repre-
sents premature commitment. Most emphatically, agile development has
typically warned of the dangers of BDUF [2, 53], suggesting that the more
the design is determined up front, the more expensive it is to change in
the future, when time and experience may make change desirable. Fur-
ther, when change is inevitable, the time and effort put into creating the
big design up front is seen as wasted [9, 87].

Consideration of the place of interaction design in agile development is
therefore affected by the nature of interaction design as a kind of design,
and the attitude to design within agile development. Interaction design
includes the term design, and the term has persisted through changes in
nomenclature and disciplinary emphasis from user interface design, user
interaction design and more recently to user experience design. In fact,
interaction designers, including those in our study will sometimes refer
to their work as simply “design”, implicitly meaning the interaction de-
sign — the aspects of the software that the user will see and with which
they will interact. At the same time, software developers will use the term
“design” to mean the design of the internal structure of the software, the
aspects of the software that affect functionality and execution performance

168 CHAPTER 9. CONCLUSION

([128] for example). It is important to realise these differences in nomen-
clature. In particular, it means that agile software developers who have
ideas about the places of design tend to apply them to interaction design,
even if they have little experience of the interaction design process.

An important consideration, however, is that the up-front interaction
design activities observed in our study, involved much close work with
business analysts, markets, clients, and end users. Our participants agreed
that this work was part of what they regarded as interaction design. On
the other hand, this kind of work might also be seen by developers as
constituting analysis rather than design. So while this kind of work can be
argued as a reason for a large proportion of up-front interaction design, it
might also be seen as an argument for up-front analysis.

If up-front design does not imply fixing the requirements up front and
if up-front design is analysis and does not involve commitment, then it

does not constitute the same kind of danger.

Fowler and design

Martin Fowler asked: “Is Design Dead?” [52]. In considering an an-
swer to this question, he distinguishes planned design from evolutionary
design. In particular, he highlights how iterations and refactoring can mean

that evolutionary design can turn out well. He explains:

In its common usage, evolutionary design is a disaster. The design
ends up being the aggregation of a bunch of ad-hoc tactical decisions,

each of which makes the code harder to alter.

But then goes on to say that the practices of eXtreme Programming make

a significant difference:

These enabling practices of continuous integration, testing, and refac-
toring, provide a new environment that makes evolutionary design

plausible.

9.3. TOPICS FOR FURTHER DISCUSSION 169

For some of our participants, following an evolutionary strategy for cre-
ating the interaction design worked well, but the process was not perfect
and seemed to be one of trial and error. For example, one of the insights
that working with an implemented interaction design brought was the
over-specifying by the interaction designers of what developers could im-
plement in an iteration (see section 7.3). The challenge appears to be to
find the right amount of interaction design up-front that avoids prema-
ture commitment, and therefore wastage of resources, but provides the
developers with enough guidance to get through the iteration:

[P7.609] “That a certain amount of information has to be known up
front ...How much you have to do before you say that’s enough,
I think that’s a skill and the experience of working with agile: To
say you've done enough and feel comfortable about proceeding with
this.” — Developer2, P7

[P8.655] “I can see that the developers aren’t happy because they're
saying, “Well, there’s not enough details.” ... We’re meeting our ob-
jectives about 50% right now, because the interaction designer is not
looking at iterations three and four. So he’s not being forward-thinking.
He’s not being a visionary ...He’s providing very little detail about
iteration three — enough to get about here and not getting it the
whole way through [the iteration]. They have to do enough.” —
Project manager, P8

This suggests a poor understanding of incremental design in terms of the
interaction design. The practices of XP allow the incremental design in
evolutionary design to be successful, however there is a noticeable lack of
guidance in the literature regarding incremental interaction design. Until
this concept is better understood, interaction designers on agile teams may

have to continue their work by trial and error.

170 CHAPTER 9. CONCLUSION

9.3.2 Implemented software vs. unimplemented prototype

While our participants had an understanding that the issues of cost and
time determine whether the interaction design should have iterations, and
therefore evaluations, with a prototype rather than working software, there
was also the observation that interaction design iterations and agile devel-
opment iterations may have trouble keeping up with one another. One
participant admitted that the interaction design iterations often had trou-
ble keeping up with the fast-paced coding iterations:

[P3.328] “With faster and quicker iterations in agile maybe sometimes
you need the slower; With the user interface it takes longer to get

feedback, so it doesn’t always line up.” — Developer2, P3

In the debate organised by Nelson [97], Cooper suggests that the im-
plementation process is too slow and expensive to be used in the iterative
process of interaction design and evaluation. In the literature, the view
that interaction design iterations are faster than coding iterations, often

refers to evaluation with users in the form of an unimplemented proto-

type.

High vs low fidelity

Usability testing is a fundamental concept of user-centered design. In
practice, evaluation of an interaction design involves using both imple-
mented and unimplemented forms. Unimplemented interaction designs
may be evaluated in the form of pen and paper or wizard of Oz proto-
types during walkthroughs or heuristic evaluations, while evaluation of
an implemented interaction design involves evaluating the actual work-
ing software, which can be subjected to more formal testing in the field or
in the laboratory.

In the literature there is a related debate which authors refer to as
the “Low-versus-High-Fidelity-Prototyping” debate [120], where evalu-

ation of implemented and unimplemented forms of the interaction de-

9.3. TOPICS FOR FURTHER DISCUSSION 171

sign are debated with respect to their strengths and weaknesses in terms
of the type of feedback they elicit from users. Typically, unimplemented
forms of the interaction design are good for eliciting feedback regarding
the requirements for the product under development [120]. Pen and paper
sketches, for example, can act as an aid for users involved in the evalua-
tions to communicate ideas to the evaluator, that they would otherwise
find difficult to verbalise, but does not provide the exact experience of
using the actual software [120]. Implemented interaction designs, on the
other hand, are better for providing the user with a more accurate sense of

what it would be like using the actual product.

The teams in our study evaluated their interaction designs using both
unimplemented prototypes and implemented software and considered not
only the type of feedback of the form of the interaction design, but also
how easy it was to create and change. Participants echoed the reasons
cited in the literature for evaluating an interaction design with an unim-
plemented interaction design, i.e., the low cost of creating and changing
designs in this form [34, 120]. Teams who evaluated their product’s in-
teraction design using lightweight prototypes, in the form of pen and pa-
per sketches or PowerPoint slides, reasoned that these prototypes were
faster to create and easier to change than working software. Having a
lightweight prototype made it possible for the teams to go through the
design of the whole product with the customer and obtain valuable feed-
back early on in the development process, before implementation began

(see section 5.5).

Teams who evaluated their product’s interaction design as imple-
mented software talked about users’ (and developers’) insights that using
actual software brought (see section 7.3). This observation is not surpris-
ing as Coyne et al. discuss the ability of different media to reveal and
conceal properties of the design [38]. Studies have shown that the higher
the fidelity of the prototype used to evaluate a product’s interaction de-
sign, the more reliably the user’s behaviour with respect to the interaction

172 CHAPTER 9. CONCLUSION

design can be captured, i.e., the prototype should be “as realistic as possi-
ble” [86, 34]. However, evaluating working software with a user is only
worthwhile after considerable effort has been invested in development
and changing the design once it is implemented is comparatively more
costly than changing an unimplemented prototype. One participant ex-
plained the difficulty with which an implemented interaction design was

made more consistent:

[P1.155] “I'd designed this task manager application and then de-
signed the document manager application and the two things were
just so different. So it was like ok, well these are really, really differ-
ent. I didn’t have any holistic view of all the applications and every-
thing. So, we designed the third application and then ‘Oh wow;, I see
a lot of commonality now between the three.” So, we refactored and
changed the Ul model...sonow if you look at it, creating a document
is very similar to creating a task, which is very similar to creating an
issue. So, you know, we had to iterate on those things and it was
pretty painful for the engineers. We're working with a web applica-
tion and the amount of UI work to get things done precisely as we
wanted them is a lot. So, you know, it was just an incredible amount
of work to change them. It was like, huge amounts of redoing pages

and going through stuff.” — Product manager/UI designer, P1

Understanding feedback and change

Not only did we see evidence that implemented interaction designs are
difficult to change, there is also evidence that feedback from user evalua-
tions causes the interaction design iterations to be far slower than the agile
development iterations.

Formal usability evaluations with working software was found to be
the most problematic for the teams, not only in terms of coordinating the
testing with the development iterations, but also in terms of accessing the

appropriate end users:

9.3. TOPICS FOR FURTHER DISCUSSION 173

[P1.98] “I think I wouldn’t know when, in our process to perform

usability testing.” — Engineering manager, P1

[P3.254] “The task based testing, we generally try and plan for that
and try and fit that in at some stage and that can actually be quite
different from the time you do the work — which tends to be prob-
lematic because that feedback isn’t coming at the right time. But it’s
one of those constraints. The people that you really want to give you
feedback also have their own jobs if they didn’t they wouldn’t be
particularly useful people for that [testing]. It's a catch twenty-two”
— Developer, P3

Whereas the agile workflow for coding — test-code-refactor — can
be performed repeatedly in a matter of hours, maintaining an equiva-
lent design-evaluation workflow for the implemented interaction design
is problematic. The feedback cycles of an implemented interaction design
take longer than the feedback cycles for coding, since organising evalu-
ations with end users takes much preparation and organisation and the
customer is not necessarily available continuously throughout the imple-
mentation stage of development.

In traditional software engineering processes, unimplemented proto-
types of the interaction design are evaluated during the requirements elic-
itation stage of a development project, while the interaction design of
the implemented software is evaluated during usability testing of the fi-
nal product [21]. The structure of agile development however, differs to
the traditional structure, with new requirements emerging continuously
throughout the development effort and developers performing continu-
ous testing. Agile development produces software through not only it-
erative but also incremental development. In section 9.3.1 above, Fowler
cites the XP practices as allowing an iterative and incremental approach
(evolutionary design).

The teams in our study who followed the Comprehensive Design strat-
egy understood that the UI design process involved iterative development

174 CHAPTER 9. CONCLUSION

of prototypes, which were carried out before any implementation began.
Usability testing was completed using lightweight prototypes created be-
fore development began, and thus did not feature in iterative cycles of
development. This approach to interaction design allows only iterative
development of the interaction design.

Teams in our study who followed the Evolutionary Design strategy al-
lowed the interaction design to evolve in a more incremental fashion. Us-
ability tests were performed using lightweight prototypes created before
implementation — on an interaction design that did not include the entire
set of features of the final product — but fitting user evaluations with an
implemented interaction design into the structure of agile iterations were
problematic. Again, we point out the lack in the literature regarding in-
cremental interaction design, and that even when the term ‘incremental’
is used in an interaction design context, the process described is more akin
to iterative interaction design ([41, 66], for example). This creates confu-
sion not only with respect to how evolutionary interaction design work
can be governed less by trial and error, but also to the understanding of
how to maximise the benefit of interaction design feedback and change

within the structure of agile iterations.

9.4 Further work

This thesis has answered the question of how interaction design and agile
development are being combined in practice, but time and location con-
straints limited the research activities that could actually be performed. To
build on the results we suggest the following improvements to the study

we have undertaken here:
e To collect data at different stages of development on the same projects.

e To collect data from different sources (e.g. participant interviews, in

situ observations and team documents) for better triangulation.

9.4. FURTHER WORK 175

e To follow up with end users of the projects to determine and compare

user satisfaction.

Further, we suggest that for a better understanding of the most efficient
combination of interaction design and agile development, that the issues
of the type of interaction design feedback and the cost of change is investi-
gated more fully. In particular, that the forms of interaction design used in
evaluations in an agile context be explored and how incremental interac-
tion design can contribute to the understanding of how interaction design

and agile development can work together.

Appendix A

Project profiles

Our study is based on interviews relating to real projects, and no two
real projects are exactly the same. In our study, for example, some of the
projects involved completely new software and new UI designs (P2, P4,
P5, P6, P8.2), while others were new versions of existing software and ex-
isting UI designs (P1, P3, P7, P8.1, P8.3). Each project had its own story.
Here we present some of these stories to highlight the variety of actual

practice.

Al P1

The first project, P1, involved a new version of existing software. They
did not do any overall Ul design up front, and their UI designer would
have the Ul design (HTML mock-up) ready only for the next iteration,
sometimes for the next release, designed only for the user stories for that
iteration or release. Before the next release (sometimes during the pre-
vious release), the user stories and the Ul were fleshed out in order to
obtain high-level estimates for that release, avoiding these activities from
holding up the development process. It was understood that the UI could
and should change during development. The development team and UI
designer discussed Ul issues and their implementation on a daily basis

177

178 APPENDIX A. PROJECT PROFILES

during development, so both the Ul designer and the development team
understood how the Ul design worked and how it was changing. Over-
all, the developers had significant input into the UI design. Participants
mentioned that the UI could change due to features being cut out and
changed during the development process, and so they believed it saved
them time to not have a complete UI designed up front. Their UI could
also change due to customer feedback or as a result of a usability study.
Before an iteration planning meeting, the UI designer and the engineering
manager would go through the Ul and the user stories it implemented for
that iteration. Ideas for the Ul design were exchanged at that time. Then
the interaction designer would go through the UI and user stories with
the whole engineering team, making sure that the developers understood
the Ul, and again developer feedback and discussions sometimes led to
changes to the UI design. Next, in the iteration planning meeting, devel-
opers and the Ul designer had further discussions about the UI and if the
resulting changes were not too major, they could still be incorporated into
the UI design. The UI designer also made sure that the Ul design was
based on how much work it was going to take to implement that design,
and that the developers did not have to spend too much time on Ul im-
plementation. At this meeting the Ul designer, engineering manager and
project manager decided on which cards would go into an iteration. Then
the cards were implemented by the pair programmers and once they had
tinished, the cards were ready for acceptance. During acceptance testing
the team walked through the Ul features manually, checking their usabil-
ity and how well they worked. The team had the HTML mock-up pro-
jected on one screen and the actual application projected on another screen
side by side. Large fixes were then written as new user stories for another
iteration and smaller fixes were given back to the engineers to fix straight
away. The Ul was iteratively designed and implemented with an overall
goal or metaphor in mind an idea that was never written down, but was

understood by everyone in the team. This idea guided the development

A2 P2 179

of the UL It was seen as a waste of time to design too far ahead, as during
the development process features were often changed or dropped and the
discussions between the UI designer and the rest of the team could lead to
changes in the UL

A2 P2

The second project, P2, began with the marketing department verifying
that the product was viable. Once this had been done, the UI designers
started the Ul design of the product. XP was seen to begin only after the
Ul design had been completed, and the Ul designers had passed the prod-
uct on to the developers. According to P2s participants XP began with the
development planning meetings. During the first meeting of the process,
cards were created from the user stories and prioritized to determine the
order of development. Each card took 2 weeks to implement. In this pre-
release planning meeting, they also estimated when the product was going
to be released. Development of their products usually lasted three to four
iterations in total and each iteration lasted 2 weeks. Before each iteration,
an iteration planning meeting was held. P2s participants described their
implementation process as a “tight development cycle.” Within the iter-
ations, the developers performed unit testing and refactoring every five
minutes and created builds hourly. As a component of the product was
implemented, all the tests, including the acceptance tests for that compo-
nent were created at the same time. The UI designers then tested these
builds daily. They checked the cards that were implemented the day be-
fore, from the perspective of the Ul, and if they were happy with them the
builds were signed off. If not, feedback regarding changes or omissions
were given to the developers. Every few days the domain expert tested the
UI too. In both instances large fixes could result in new cards being cre-
ated, in which case the domain expert, developers and Ul designers would
negotiate about which iterations would include the new cards. Ul issues

180 APPENDIX A. PROJECT PROFILES

were dealt with in the same way as any other development issue was dealt
with: for large fixes new cards were created, new price calculations made
and all cards were re-prioritized for iterative implementation. However,
since the UI was 90% defined before development iterations began, there
was little room for changes in the Ul from one iteration to the next. Other
tests for the Ul included a check that heuristics and navigational design
rules were met, and usually after the first iteration, the product was tested
with the client.

A3 P3

The third project, P3, also involved a new version of an existing prod-
uct. They had adopted a set of XP practices to suit their needs, but the
process was still not quite where they envisioned it to be. Up front a writ-
ten requirements specifications document was created for the basis of the
sales agreement with the customer and the user stories and estimates were
created from that document. However, during development, Ul require-
ments could still change sometimes every three months, sometimes daily.
The development team gathered just enough information needed to get
started on the Ul, e.g., what the Ul needed to do and what interactions
made up a function, and then they evolved the design from that. The
Ul design started out as either a pen and paper or PowerPoint prototype,
which was then shown to their customers or users for feedback. The pro-
totyping phase sometimes consisted of several iterations of prototyping
and obtaining user or customer feedback. Then the prototype was imple-
mented and a concrete piece of software could be shown to the users or
customers for feedback. The front end was explained to be well-separated
from the back end so that it was easy to switch between different Uls if
they changed. The prototyping phase took place in parallel with the cod-
ing phase and were not seen to drive development of the system. The
requirements specification document formed the basis of the teams long

A3. P3 181

term plan for the product. This plan was recapped weekly, to determine
the teams progress and to decide on the work for the next week. Current
bugs, user feedback and other issues with the software would also be dis-
cussed on a weekly basis and incorporated into the work for the week.
Then the developers went off and did what had been decided on for that
week. Interaction design issues were not planned for, it was just seen as
part of the work done in an iteration. After the standard XP activities for
an iteration had been completed (code, unit test, acceptance test), the Ul
was run on a simulator and checked. Fixes could result from being run on
the simulator (and dealt with as any development fix) or the UI could be
left alone for several iterations, without further development or changes.
During development, team members designed Ul screens and asked fel-
low team members for feedback as they went, essentially performing ex-
pert reviews. Taskbased testing (with users) was more explicitly planned
for, but this was performed only when there was enough time. As a result,
the feedback from these tests were not coming at the right time for them to
be useful or easily incorporated into development, especially when there
was a big time lag between the development of the UI and the test. Small
fixes resulting from these tests and the expert reviews could be fixed right
away, whereas larger fixes were made into new user stories. Sometimes,
however, the product was released without the UI being tested at all. The
interaction designer saw this as one of the main challenges of incorporat-
ing Ul design with XP that the Ul activities have trouble keeping up with
the fast paced coding iterations. Although usability was seen as beneficial,
participants admitted that its techniques were traded off against develop-
ment time. The teams lack of experience was cited as a reason why formal
usability techniques were not a part of their process. It was one partici-
pants opinion that developers dont need to be the best at solving usability
issues, they just need to take into consideration the fact that their prod-
ucts will be used by other people, and that the teams skills and experience

would improve over time. The team also had Ul guidelines and standards

182 APPENDIX A. PROJECT PROFILES

to adhere to during implementation. At the time of the interviews, P3s

main aim was to have working software at all times.

A.4 P4 and P5

P4 and P5, involve two participants who were not working on the same
project, but they described very similar processes in use at their organi-
sation. Both participants were involved in Scrum development processes.
The UI team designed the UI 90-95% up front, and their UI design was
regarded as the specification for their developers. The Ul design process
was seen as a separate process from the development process and Scrum
was seen to kick in after UI design had been completed. They preferred to
remove the Ul design from the implementation process, as the Ul design,
and feedback about the design, was seen as coming too late in the process.
The Ul design was used to create the backlog items and estimates for ne-
gotiation with the customer. Once the customer had given their approval,
implementation began. Before each iteration, the work for that iteration
was planned. Any unfinished features from the previous iteration and the
highest priority back-log items became work for that iteration. UI related
work during the iteration was request-based — the developer would re-
quest help from the Ul designer when issues with implementation arose.
It was found that some UI decisions could only be made once the inter-
nals of the system were known. This meant that some Ul design deci-
sions could only be made once implementation had begun. At these times
the developers were able to give feedback about Ul issues. There was no
user involvement during the implementation process, as all user testing
took place up front. The UI designers were approached by the develop-
ers during the development process to check usability informally. So the
UI was occasionally checked (mainly to ensure that the UI matched the
requiremetns specification) in an unsystematic way. If the customer did
not think it was necessary, there was no formal usability testing of the fi-

A.4. P4 AND P5 183

nal product. This was seen as a disadvantage, since relying on developers
to approach the UI designers with issues, was found to be unreliable. If
developers had forgotten to clear some Ul issue up with the UI designers,
and that issue happened to affect usability, the product was released to the
users with that defect. This meant that users suffered with this defect for
several months, before the development team got to correct the problem.
At the time of the interviews, the Ul designer felt that the release plan was
very vague. The release dates were fixed, whereas the features that would
be included in that release were not. This meant that features were often
shipped in a state that the Ul designer was not happy with, who would
have preferred the release plan to be tied to completed functionality.

Appendix B

Interview questionnaires

B.1 Initial

B.1.1 Background

e Could you give me a little background about the project you are
working on? Can you describe very briefly what it is that your team
is building?

Project size and duration?

Roles in the team?

B.1.2 Requirements

e Can you describe the process of gathering the requirements for your

system?
Do you collect any requirements especially for the user interface?

Would you say that the requirements change much from one it-

eration to the next — in terms of the ui and the system as a whole?

185

186

APPENDIX B. INTERVIEW QUESTIONNAIRES

B.1.3 Teams

Which team members are involved in ui/interaction design and how
would their roles be described?

Who owns the ui and/or its code?

Do you support the notion of having one or several ui/interaction
design specialists as part of the team?

Do you have experience of working in teams including ui/interaction
design specialist(s)?

Would you have this team make-up again in future projects?

Have you had an XP coach on board to help out the team and what
was their contribution to the Ul/interaction design side of develop-

ment?

B.1.4 Process

Do you experience any bottlenecks during the course of the project
due to ui/interaction design issues (such as testing)?

Can you describe what one iteration of your agile process consists
of?

Does your process incorporate any other cycles?

How do you incorporate ui/interaction design issues into a release

plan (if there is one)?

What tools do you use for user interface design/implementation and
why?

What ui design tools have you used in the past (agile projects) and
why did you change?

B.1. INITIAL 187

How much up front design do you do and what do you see as the

advantages of doing up front design?

What techniques are used to communicate between the designers
and developers?

B.1.5 Usability

How important are usability issues to your projects?

Have you set any usability goals for any of the projects? e.g. effective
to use, efficient to use, safe to use, have good utility, easy to learn,
easy to remember how to use etc.

Were they achieved? (If not, why?)
Have you set any user experience goals for any of the projects? e.g.

stasfying, enjoyable to use, aesthetically pleasing, helpful, motivat-
ing, supporting creativity etc.

Were they achieved? (If not, why?)

What do you do (if anything) during development to ensure usabil-

ity is built into the software/usability goals are met?

Has this made a difference to the user satisfaction of software that

was developed without much attention to usabiltiy practices?

What techniques do you use during development to take into ac-

count the different users of the system?

B.1.6 Testing and refactoring

Do you do any usability /UI testing?

How do you integrate usability testing within the development cy-
cle? e.g. how often do you test and when?

188 APPENDIX B. INTERVIEW QUESTIONNAIRES

e How do you go about planning the fixes that result from the usabil-
ity /Ul testing?

e Would you see releasing the software to the users as a type of usabil-
ity testing?

¢ In your experience, would you say that the merciless refactoring of
code has a significant effect/not much effect at all on the design of
the user interface?

e Would you say that you have refactored the UI?

Do you use specific tools for this job?

e Any other tests you do that involve the user interface?

B.1.7 Users/customers

e Do you follow up with users to determine how satisfied they are

with your product?

How do you do that?
e On site customer?

e Is the customer the end user?

B.1.8 Wrap-up

e What has been the biggest challenge with respect to the user interface

in developing your system?

e Are there any issues that you think are important, that we haven't
discussed?

B.2. REVISED 189

B.2 Revised

B.2.1 Background

e Could you give me a little background about the project you are
working on? Can you describe very briefly what it is that your team
is building?

Project size and duration?
Roles in the team? Dedicated interaction design specialist?

On site customer?

Is the customer the end user?

B.2.2 Experience with combining interaction design and

agile development

e Where would you say your interaction design process ends and agile
development begins? Should there be boundaries?

e Do you think your process works well? Why?

e Where do you see differences between the interaction design process
and the agile development process - that might either cause difficul-
ties of enhance the overall development process?

B.2.3 Process

e Are requirements fixed up front? What are the advantages/ disad-
vantages of this?

e What else happens up front before any development begins?
e What techniques do you use for interaction design?

e How does the implementation process influence the UI?

190 APPENDIX B. INTERVIEW QUESTIONNAIRES

e When, during the development iteration, does work on the UI hap-
pen?

Where does testing the Ul fit into the iteration?
When do you test with users?
How do you go about planning the fixes that result from the us-

ability /UI testing?

e Do interaction design issues result in bottlenecks during the course
of development?

e Is up front design (if it is done) enough to ensure usability is built
into the software?
How would you describe the user satisfaction of your product?

Why?

e Are there aspects of your development process that have changed

over time?

B.2.4 Teams

e Do you consider the code of the UI to be owned by the whole team?

e What are the responsibilities of the developers with respect to the
ur?

e How would you describe the communication between developers
and designers?
Frequent, daily, etc.
What does that communication mainly consist of?

e Have you had a coach on board to help out the team and what was
their contribution to the Ul/interaction design side of development?

B.2. REVISED 191

B.2.5 Wrap-up

e What has been the biggest challenge with respect to combining in-
teraction design and your agile process? Has it been difficult to com-
bine interaction design with your agile development process?

e Are there any issues that you think are important, that we haven't
discussed?

Appendix C

Participant information and

approved HEC application

193

Victoria

UNIVERSITY OF WELLINGTON

Te Whare Wananga
o te Upoko o te Ika a Maui

E v

HUMAN ETHICS COMMITTEE
Application for Approval of Research Projects

Please email applications to your supervisor who will then email it to an Informatics HEC member for a preliminary

review.

Note: The Human Ethics Committee attempts to have all applications approved within three weeks but a longer
period may be necessary if applications require substantial revision.

1

NATURE OF PROPOSED RESEARCH.:
(a) Student Research
(b) If Student Research: Degree: MSc (part-time)

(c) Project Title: User Interface Design in an Agile Environment

INVESTIGATORS:

(a) Principal Investigator

Name Jennifer Ferreira

e-mail address: jennifer@mcs.vuw.ac.nz

School/Dept/Group Mathematics, Statistics, and Computer Science

(b) Other Researchers Name Position
Roger Cliffe technician

(c) Supervisor (in the case of student research projects)

James Noble Professor
Robert Biddle Associate Professor

DURATION OF RESEARCH

(a) Proposed starting date for data collection — After HEC approval has been granted.
(Note: that NO part of the research requiring ethical approval may commence prior to approval
being given)

(b) Proposed date of completion of project as a whole : 04/04/2007

4 PROPOSED SOURCE/S OF FUNDING AND OTHER ETHICAL
CONSIDERATIONS

(a) Sources of funding for the project
Please indicate any ethical issues or conflicts of interest that may arise because of sources of funding
e.g. restrictions on publication of results

None

(b) Is any professional code of ethics to be followed N
If yes, name

(c) Is ethical approval required from any other body N

If yes, name and indicate when/if approval will be given

5 DETAILS OF PROJECT
Briefly Outline:
(@) The objectives of the project

To assist research objectives for MSc thesis and to explore the process and practices of
user interface design in an agile environment. Agile software development projects pose
special challenges to the design of the user interface. Inherent in agile processes are
certain characteristics that conflict with traditional user interface design, especially the
fact that no detailed over-arching plan exists for the system under development and
changes to requirements are frequent.

In the literature there exist clear-cut rules and recommendations for how to develop and
manage the code of a system under agile development and these are well documented.
Yet, this is not the case for the user interface. For this reason it would be extremely
valuable to attempt to understand the process as it is played out in real projects and
document the findings. In previous research on agile methods, interviews with
practitioners have proved very successful in helping to understand agile development
practices. After an interview, if the participant agrees, an observation session (of the
work environment and processes) could be held to reinforce the information gained
through an interview.

(b) Method of data collection

These observations will be recorded with the following methods:
« handwritten or typed notes

« voice recorder (if the participant agrees)

« still pictures (if the participant agrees)

« video (if the participant agrees)

Some time after the interview, interviewees will be shown the transcript, to provide them
with the opportunity to ensure factual material is recorded accurately. At this point they
may withdraw from the study and have their data discarded without question or penalty,
if they wish.

(c) The benefits and scientific value of the project

This project should provide valuable insights into how user interfaces are developed as
part of an agile software development project. This would also be an opportunity to
contribute to the literature on user interface design in an agile environment.

(d) Characteristics of the participants

Members of software development teams that use agile methodologies such as XP,
SCRUM etc. during product development. These team members may include developers,
user interface designers, technical writers and software architects.

(e) Method of recruitment

Members of software development teams that use agile development methodologies will
be asked on a voluntary basis to participate in an interview. These contacts are
established during conference attendance or via email and determined by availability
and location.

(f) Payments that are to be made/expenses to be reimbursed to participants
Participants will not be paid for taking part in an interview.

(g) Other assistance (e.g. meals, transport) that is to be given to participants
None, unless specifically requested and approved beforehand.

(h) Any special hazards and/or inconvenience (including deception) that
participants will encounter

The interviewees will be verbally interviewed in a location that is most convenient to
both them and the interviewer (Jennifer Ferreira). No special hazards or inconvenience
will be involved beyond those inherent in conversation. No deception will be involved.

If participants agree to an observation session, then video and still images may be taken
in order to record the work environment and processes that are observed during the
session. This is to aid the memory of the investigator and there will be no special
hazards or inconvenience involved beyond those inherent in having a picture taken and
being videoed. Again, no deception will be involved.

(i) State whether consent is for: (Please indicate as many as it applies)

(i) the collection of data Y
(i) attribution of opinions or information N
(iii) release of data to others N
(Y
(Y

~

iv) use for a conference report or a publication
v) use for some particular purpose (specify)

The consent is for the collection of data. This data will be analysed and presented in the
investigator's research project. Publications and reports may also be produced as a
result of this study and participants will be notified of any report or publication that
results, if they wish to know.

Attach a copy of any questionnaire or interview schedule to the application

Y

(j) How is informed consent to be obtained (see paragraphs 4.31(g), 5.2, 5.5 and 5.61 of
the Guidelines)

(i)

the research is strictly anonymous, an information sheet is supplied and
informed consent is implied by voluntary participation in filling out a
questionnaire for example (include a copy of the information sheet)

N
the research is not anonymous but is confidential and informed consent will
be obtained through a signed consent form (include a copy of the consent
form and information sheet) Y
the research is neither anonymous nor confidential and informed consent will
be obtained through a signed consent form (include a copy of the consent

form and information sheet) N
informed consent will be obtained by some other method (please specify and
provide details) N

The individual identity of an interviewee or observed person is not relevant to the
research, so no personal information will be collected. Only the investigator and the
supervisors will have access to the original notes that allow participants to be
individually identified. In any report or publication, individuals will be referred to by
number, code, or pseudonym. Original notes will be kept in secure storage at the
university, and destroyed one to two years after the completion of the project.

With the exception of anonymous research as in (i), if it is proposed that written
consent will not be obtained, please explain why

(k) If the research will not be conducted on a strictly anonymous basis state how
issues of confidentiality of participants are to be ensured if this is intended. (See
paragraph 4.3.1(e) of the Guidelines). (e.g. who will listen to tapes, see questionnaires
or have access to data). Please ensure that you distinquish clearly between
anonymity and confidentiality. Indicate which of these are applicable.

(i) access to the research data will be restricted to the investigator

N
access to the research data will be restricted to the investigator and their

supervisor (student research) Y

all opinions and data will be reported in aggregated form in such a way that
individual persons or organisations are not identifiable Y

Other (please specify)

Only the investigator, technician and the supervisors will have access to the
data.

(I) Procedure for the storage of, access to and disposal of data, both during and at
the conclusion of the research. (see section 7 of the guidelines). Indicate which are
applicable:

(i) all written material (questionnaires, interview notes, etc) will be kept in a

locked file and access is restricted to the investigator Y

(i) all electronic information will be kept in a password-protected file and access
will be restricted to the investigator Y

(iii) all questionnaires, interview notes and similar materials will be destroyed:
(a) at the conclusion of the research N

or (b)_2 years after the conclusion of the research 'Y
(iv) any audio or video recordings will be returned to participants and/or

electronically wiped Y
(v) other procedures (please specify):

If data and material are not to be destroyed please indicate why and the procedures
envisaged for ongoing storage and security

Any original notes or recordings will be kept in a locked file and will be accessible only
to the investigator and the supervisors. These notes or recordings will be destroyed by
shredding (notes) and deletion (computer files, video and voice recordings) at the end of
the project.

(m) Feedback procedures (See section 8 of the Guidelines). You should indicate
whether feedback will be provided to participants and in what form. |If
feedback will not be given, indicate the reasons why.

Participants will be notified of the availability of the electronic form of the thesis on the
web via email, as well as of any report or publication based on their participation, if they
wish. The thesis will be available at the conclusion of the principal investigator’s MSc. A
prospective date for this is April 2007. The first publication will be made available in
June 2006.

Some time after the interview, interviewees will be shown the transcript, to provide them
with the opportunity to ensure factual material is recorded accurately. At this point they
may withdraw from the study and have their data discarded without question or penalty,
if they wish.

(n) Reporting and publication of results. Please indicate which of the following are
appropriate. The proposed form of publications should be indicated on the
information sheet and/or consent form.

() publication in academic or professional journals Y

(i) dissemination at academic or professional conferences Y
(i) deposit of the research paper or thesis in the University Library (student

research) Y
(iv) a case study used for teaching purposes Y
(v) other (please specify) N

Signature of investigators as listed on page 1 (including supervisors) and Chair of
Informatics HEC.

NB: All investigators and the Chair of Informatics HEC must sign the form, then
send it to Perumal Pillai for filing in the University’s Research Office once the
electronic application has been approved.

Chair of Informatics HEC:

INFORMATICS
APPLICATIONS FOR HUMAN ETHICS APPROVAL

CHECKLIST
N Have you read the Human Ethics Committee Policy?
?;f Have you read the Informatics HEC Guide?
1;1(Is ethical approval required for your project?
X Have you established whether informed consent needs to be obtained for your project?

X In the case of student projects, have you consulted your supervisor about any human ethics implications of your
research?

2 Have you included an information sheet for participants which explains the nature and purpose of your research, the
proposed use of the material collected, who will have access to it, whether the data will be kept confidential to you,
how anonymity or confidentiality is to be guaranteed?

y Have you included a written consent form?
W If not, have you explained on the application form why you do not need to get written consent?
Are you asking participants to give consent to:

\ 4 collect data from them

o attribute information to them

o release that information to others
v use the data for particular purposes

N Have you indicated clearly to participants on the information sheet and/or consent form how they will be able to get
feedback on the research from you (e.g. they may tick a box on the consent form indicating that they would like to
be sent a summary), and how the data will be stored or disposed of at the conclusion of the research?

N Have you included a copy of any questionnaire or interview checklist you propose using?

POINTERS TO AVOID HAVING APPLICATIONS RETURNED BEFORE HEC REVIEW

» The approval process is speeded up by not requiring the hard copy of your application form with the
signatures on it at the initial review process. The complete application (HEC application form, info sheet,
consent form, covering letter, questionnaire etc.) is to be emailed as an attachment in one file to your
supervisor who will email it to an INFORMATICS HEC member for a preliminary review.

» Do notinsert a date into item 3 a.

» Delete the “Y” or “N” option that is not required. DO NOT remove any other text from the application form.
4 BOLD your answers if you wish but do not alter the font anywhere else in the form.

Victoria

UNIVERSITY OF WELLINGTON

Te Whare Wananga
o te Upoko o te Ika a Maui

iy
User Interface Design in an Agile Environment: Consent Form

| consent to take part in an interview/observation session about User Interface Design in an Agile
Environment.

| agree to let Jennifer Ferreira use the data collected to assist her research objectives for her Masters degree,
subject to the conditions below:

e | have been fully informed of the purpose and methods to be applied during this interview/observation
session,

| have had the opportunity to ask questions and have them answered to my satisfaction,

My participation will remain confidential,

Data presented or published will be stripped of my identity as well as any identifying information,

| retain the right to withdraw, without question, up until before data analysis begins, two weeks after |
receive the interview transcript.

NAME:

SIGNATURE:

DATE:

| agree to have the interview tape-recorded YES / NO

| agree to being observed in my work environment YES / NO
If YES:
| agree to have still pictures taken YES / NO
| agree to having the investigator video my work environment YES / NO

| agree to further discussion at a time other than the time of this interview, if there is any material that is
important to the principal investigator’s research falling outside the scope of the interview agenda YES /NO

| would like to receive feedback regarding any reports/publications that result from this study YES / NO
If YES: EMAIL:

Thank you for your cooperation. If you have any further questions, please contact either of the following:
Principal researcher

Jennifer Ferreira (Student)

School of Mathematics, Statistics and Computer Science, jennifer@mcs.vuw.ac.nz

Supervisor

Prof. James Noble

School of Mathematics, Statistics and Computer Science, kix@mcs.vuw.ac.nz, +64 4 463 6736

Victoria

UNIVERSITY OF WELLINGTON

Te Whare Wananga
o te Upoko o te Ika a Maui

i

User Interface Design in an Agile Environment: Information Sheet

| am a Master of Science student at Victoria University of Wellington, researching issues in
user interface design in an agile environment. As part of my research | would like to
conduct an interview/observation session with you, an agile practitioner, in order to learn
more about the way user interfaces are developed on agile projects. | value your
experiences, opinions and insights into this topic.

Conditions
This interview is conducted by me, Jennifer Ferreira, under the following conditions

e You are fully informed of the purpose and methods to be applied during this interview/observation
session,
You have the opportunity to ask questions and have them answered to your satisfaction,

e Your participation will remain confidential. Any written or electronic material will be stored securely and
will not be retained after the completion of the research project,

e Data presented or published will be stripped of your identity as well as any identifying information,

e You have the right to withdraw, without question, up until before data analysis begins, two weeks after
you receive the interview transcript,

e You have indicated whether you will allow the interview to be tape-recorded or not,

¢ You have indicated whether you will allow an observation session to take place or not and whether or
not still pictures and video footage may be taken during this observation session,

¢ You have indicated whether or not you would like to receive feedback of any publications or reports
that result from this study.

There will be an opportunity to review any written notes that result from the interview/observation session to
ensure factual material is recorded accurately.

Prior to conducting the interview, Victoria University of Wellington require that | obtain your written informed
consent. This consent is a normal part of any research project and forms one criterion of the Human Ethics
Committee guidelines that | must meet. Therefore you will be provided with a consent form to sign. You will
also be provided with an interview agenda.

Scope

An interview agenda has been attached to this information sheet, outlining what information will be sought
during the interview. If there is any material that you would like to communicate to the interviewer that falls
outside the scope of the interview agenda, the interviewer will make a note in a separate register for further
discussion at another time. No personal details or information will be collected in either the interview or the
observation session.

Duration and Feedback
The interview will take at most one hour. If you so wish, feedback regarding this study will be made available
to you via electronic mail, in which you will be notified of the availability of any reports or publications.

The observation session will last the amount of time that you, the participant will allow. You may end the
observation session without question at such a time as you feel is reasonable.

Structure of Discussion

Before commencing the interview you will be provided with this information sheet, a consent form and an
interview agenda. If you consent in writing to the interview as described on this information sheet and
accompanying interview agenda, then the interview will begin. The discussion will be voice recorded if you
consent to it. The interview will not last longer than 60 minutes but as per the consent sheet, you may
terminate the discussion at any point during the interview, without question. The transcription of the interview
and subsequent findings will be provided to you to ensure all information has been recorded and interpreted
accurately. The interview agenda provides the scope of the interview questions but any discussion concerning
development practices that fall outside the scope of the interview agenda will be noted in a register for further
discussion at another time, if you agree.

Contacts
Thank you for your cooperation. If you have any further questions, please contact Jennifer Ferreira or James
Noble:

Principal researcher
Jennifer Ferreira (Student)
School of Mathematics, Statistics and Computer Science, jennifer@mcs.vuw.ac.nz

Supervisor
Prof. James Noble
School of Mathematics, Statistics and Computer Science, kix@mcs.vuw.ac.nz, +64 4 463 6736

Victoria

UNIVERSITY OF WELLINGTON

Te Whare Wananga
o te Upoko o te Ika a Maui

a5

User Interface Design in an Agile Environment: Interview Agenda

Interview Details

Date: To be decided

Topic: User interface design in practice on an agile development project
Outcome

e To learn more about the process of developing the user interface as part of an agile project.
e To note the experiences and opinions of an agile practitioner about the practices that currently exist.

Agenda
No. Description Duration
1. Agree outcome, agenda and rules for the interview 5 minutes
2. Current project involvement 5 minutes
3. Requirements, teams, process/tools, 20 minutes
4, Usability, testing, refactoring, follow-up 25 minutes
6. Wrap-up 5 minutes
review progress
next steps
Total | 1 hour
Rules

e The interview will be tape recorded, if the interviewee gives their your approval, to reduce the risk of
the interviewer not obtaining all of the information provided by the interviewee during the interview

e The transcription of the interview and subsequent findings will be provided to the interviewee to
ensure all information has been recorded and interpreted accurately.

e To ensure all items are covered in sufficient detail, any discussion concerning development practices
outside the scope of the interview agenda will be noted in a register for further discussion at another
time, if the participant agrees.

Victoria

UNIVERSITY OF WELLINGTON

Te Whare Wananga
o te Upoko o te Ika a Maui

a5

User Interface Design in an Agile Environment: Interview Questions

Background/Current Project Involvement

1. Could you give me a little background about the project you are working on? Can you describe very briefly
what it is that your team is building?

1.1. Project size and duration?
Requirements
2. Where do you get the requirements for the user interface from?

2.1 Would you say that user stories can provide enough information for user interface design?
2.2 Do you use any other techniques to get requirements?

Teams

3. Which team members are involved in ui design and how would their roles be described?
4. Do you support the notion of having one or several ui specialists as part of the team?

5. Do you have experience of working in teams including ui specialists(s)?

6. Would you have this team make-up again in future projects?

Process and Tools

7. Do you experience any bottlenecks during the course of the project due to ui issues (such as testing)?
8. Can you describe what one iteration of your agile process consists of?

9. Does your process incorporate any other cycles?

10. How do you incorporate ui issues into a release plan (if there is one)?

11. What tools do you use for user interface design and why?

12. What ui design tools have you used in the past (agile projects) and why did you change?

13. XP warns against doing up-front design. In your opinion, does this impair user interface design?
13.1. If your method is not XP, do you do any up-front design - particularly for the user interface?

Usability
14. Some say the reason why there is so little in the literature about agile usability is that usability is not
important to XP projects, or the developers are ignoring it.
Can you Comment?
15. Have you set any usability goals for any of the projects?

15.1 Were they achieved? (If not, why?)

16. What do you do (if anything) during development to ensure usability is built into the software/usability goals
are met?

16.1 Has this made a difference to the user satisfaction of software that was developed without much
attention to usabiltiy practices?

Testing and Refactoring

17. Do you do any usability testing?

17.1 What type?
18. How do you go about planning the fixes that result from the usability testing?
19. Would you see releasing the software to the users as a type of usability testing?
20. Do you do/have you done unit testing of the user interface?

20.1 Do you unit test both appearance and behaviour or only one of appearance and behaviour?
20.2 How did you do this?

21. In your experience, would you say that the merciless refactoring of code has a significant effect/not much
effect at all on the design of the user interface?

22. Is refactoring the user interface important to you?

22.1. Do you use specific tools for this job?

Follow-up with users/customers

23. Do you follow up with users to determine how satisfied they are with your product?
23.1. How do you do that?
24. Co-located customer?

25. Is the customer the end user?

Wrap-Up
26. How do you see the future of Ul design in agile environments?

27. Are there any issues that you think are important, that we haven't discussed?

Bibliography

[1] ABRAHAMSSON, P., WARSTA, J., SIPONEN, M., AND RONKAINEN,
J. New directions on agile methods: A comparative analysis. In ICSE
'03: Proceedings of the 25th International Conference on Software Engi-
neering, Portland, Oregon, USA, May 3-10 (Washington, DC, USA,
2003), IEEE Computer Society, pp. 244-254.

[2] AMBLER, S. Quality in an agile world. Software Quality Professional
7,4 (2005), 34-40.

[B] AMBLER, S. Survey says: Agile works in practice. Dr. Dobb’s Journal
(August 2006). Available at http://www.ddj.com/architect/
191800169?pgno=1. Last accessed 7 Nov 2007.

[4] ARMITAGE, J. Are agile methods good for design? interactions 11, 1
(2004), 14-23.

[5] ARUNACHALAM, V., AND SASSO, W. Cognitive processes in pro-
gram comprehension: An empirical analysis in the context of soft-
ware reengineering. Systems and Software 34 (1996), 177-189.

[6] AUER, K., AND MILLER, R. Extreme Programming Applied: Playing
To Win. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[7] BECK, K. Extreme programming: A humanistic discipline of soft-
ware development. In FASE "98: Proceedings of the 1st International

195

196

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

Conference on Fundamental Approaches to Software Engineering, Lisbon,
Portugal, March 28—-April 4 (1998), E. Astesiano, Ed., vol. 1382 of Lec-
ture Notes in Computer Science, Springer, pp. 1-6.

BECK, K. Embracing change with extreme programming. Computer
32,10 (1999), 70-77.

BECK, K. Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading, MA, USA, 1999.

BECK, K., AND ANDRES, C. Extreme Programming Explained: Embrace
Change, 2 ed. Addison-Wesley, Boston, MA, USA, 2004.

BECK, K., AND FOWLER, M. Planning Extreme Programming.
Addison-Wesley, Boston, MA, USA, 2001.

BEEDLE, M., DEVOS, M., SHARON, Y., SCHWABER, K., AND
SUTHERLAND, J. Scrum: An extension pattern language for hy-
perproductive software development. In Pattern Languages of Pro-
gram Design 4, N. Harrison, B. Foote, and H. Rohnert, Eds. Addison-
Wesley, 1999.

BEYER, H., HOLTZBLATT, K., AND BAKER, L. An agile customer-
centered method: Rapid contextual design. In XP/Agile Universe '04:
Extreme Programming and Agile Methods, Calgary, Alberta, Canada, Au-
qust 15-18 (2004), C. Zannier, H. Erdogmus, and L. Lindstrom, Eds.,
vol. 3134 of Lecture Notes in Computer Science, Springer, pp. 50-59.

BOEHM, B. W. Software Engineering Economics. Prentice Hall, Engle-
wood Cliffs, NJ, USA, 1981.

BOEHM, B. W. A spiral model of software development and en-
hancement. Computer 21, 5 (1988), 61-72.

BIBLIOGRAPHY 197

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BOEHM, B. W. Some future trends and implications for systems and
software engineering processes. Systems Engineering 9, 1 (2006), 1-
19.

BOLLES, G. A., AND KIRKPATRICK, T. A. Research, E-Business. CIO
Insight (December 2001). Available at http://www.cioinsight.
com/article2/0,1540,2325, 00.asp. Last accessed on 7 Nov
2007.

BRAITHWAITE, K., AND JOYCE, T. XP expanded: Distributed ex-
treme programming. In XP ‘05: Proceedings of the 6th International
Conference on Extreme Programming and Agile Processes in Software En-
gineering, Sheffield, UK, June 18-23 (2005), H. Baumeister, M. March-
esi, and M. Holcombe, Eds., vol. 3556 of Lecture Notes in Computer
Science, Springer, pp. 180-188.

BROOKS, F. P. The Mythical Man-Month. Addison-Wesley, 1975.

BROOKS, F. P. No silver bullet: Essence and accidents of software
engineering. Computer 20, 4 (1987), 10-19.

BRUEGGE, B., AND DUTOIT, A. H. Object-Oriented Software Engineer-
ing: Conquering Complex and Changing Systems. Prentice Hall, Upper
Saddle River, NJ, USA, 2000.

CARROLL, J. M. Scenario-Based Design. Wiley, New York, NY, USA,
1995.

CHAMBERLAIN, S., SHARP, H., AND MAIDEN, N. A. M. Towards a
framework for integrating agile development and user-centred de-
sign. In XP "06: Proceedings of the 7th International Conference on Ex-
treme Programming and Agile Processes in Software Engineering, Oulu,
Finland, June 17-22 (2006), pp. 143-153.

198

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

BIBLIOGRAPHY

CHARMAZ, K. Grounded theory. In Rethinking Methods in Psychol-
ogy, J. A. Smith, R. Harr, and L. V. Langenhove, Eds. Sage Publica-
tions Inc., London, UK, 1995, pp. 27-49.

CHARMAZ, K. Grounded theory: Objectivist and constructivist
methods. In Handbook of Qualitative Research, N. K. Denzin and
Y. S. Lincoln, Eds., 2nd ed. Sage, Thousand Oaks, CA, USA, 2000,
pp. 509-535.

CLEGG, C., AXTELL, C., DAMODARAN, L., FARBY, B., HULL,
R., LLOYD-JONES, R., NICHOLLS, J., SELL, R., TOMLINSON, C.,
AINGER, A., AND STEWART, T. The performance of informa-
tion technology and the role of human and organizational factors.
Organisational Aspects of Information Technology Special Interest
Group. University of Sheffield, 1996.

CLOKE, G. Get your agile freak on!: Agile adoption at Yahoo! Mu-
sic. In Agile '07: Proceedings of the AGILE 2007 Conference, Washington,
DC, USA, August 13-17 (2007), IEEE Computer Society, pp. 240-248.

COCKBURN, A. Agile Software Development. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002.

COCKBURN, A. Learning from agile software development — Part
two. CrossTalk: Journal of Defense Software Engineering (November
2002), 9-12.

COCKBURN, A. People and Methodologies in Software Development.
PhD thesis, Faculty of Mathematics and Natural Sciences, Univer-
sity of Oslo, Norway, February 2003.

COCKBURN, A. Crystal Clear: A Human-Powered Methodology for
Small Teams. Addison-Wesley Professional, 2004.

BIBLIOGRAPHY 199

[32] COMPUTER AID, INC. A CAI state of the practice interview with
Tom Gilb. IT Metrics and Productivity Institute: Covering Best Practices
in Software Development, Management and Maintenance. Published on-
line at http://www.itmpi.org/default.aspx?pageid=290.
Last accessed on 7 Nov 2007, 2005.

[33] CONSTANTINE, L. L. Process agility and software usability: Toward
lightweight usage-centered design. Information Age 8,2 (2001).

[34] CONSTANTINE, L. L., AND LOCKWOOD, L. A. D. Software for Use:
A Practical Guide to the Models and Methods of Usage-Centered Design.
ACM Press, 1999.

[35] COOPER, A. About Face: The Essentials of User Interface Design. IDG
Books, Boston, MA, USA, 1995.

[36] COOPER, A. The Inmates Are Running the Asylum: Why High Tech
Products Drive Us Crazy and How to Restore the Sanity. SAMS, 1999.

[37] COOPER, A., REIMANN, R., REIMANN, R. M., AND DUBBERLY, H.
About Face 2.0: The Essentials of Interaction Design. John Wiley & Sons,
Inc., New York, NY, USA, 2003.

[38] COYNE, R., PARK, H., AND WISZNIEWSKI, D. Design devices: Digi-
tal drawing and the pursuit of difference. Design Studies 23, 3 (2002),
263-286.

[39] CRESWELL, J. W. Research Design: Qualitative and Quantitative Ap-
proaches. Sage Publications Inc., Thousand Oaks, CA, USA, 1994.

[40] CRITTENDEN, K. S., AND HILL, R. J. Coding reliability and validity
of interview data. American Sociological Review 36 (December 1971),
1070-1080.

200 BIBLIOGRAPHY

[41] DA SILVA, P. P. User interface declarative models and development
environments: A survey. In DSV-IS 00: Proceedings of the 7th Inter-
national Workshop on Design, Specification and Verification of Interactive
Systems, Limerick, Ireland, June 5-6 (2000), P. A. Palanque and F. Pa-
terno, Eds., vol. 1946 of Lecture Notes in Computer Science, Springer,
pp- 207-226.

[42] DERBY, E., LARSEN, D., AND SCHWABER, K. Agile Retrospectives:
Making Good Teams Great. Pragmatic Bookshelf, 2006.

[43] Dix, A., FINLAY, J., ABOWD, G., AND BEALE, R. Human-Computer
Interaction, 2nd ed. Prentice Hall, 1998.

[44] DUVALL, L. A study of software management: The state of practice
in the United States and Japan. Journal of Systems and Software 31, 2
(1995), 109-124.

[45] EARTHY, J., JONES, B. S., AND BEVAN, N. The improvement of
human-centred processes — facing the challenge and reaping the
benefit of ISO 13407. Int.]. Hum.-Comput. Stud. 55, 4 (2001), 553-585.

[46] EISENHARDT, K. M. Building theories from case study research.
Academy of Management. The Academy of Management Review 14, 4
(1989), 532-550.

[47] FERRE, X., JURISTO, N., WINDL, H., AND CONSTANTINE, L. Us-
ability basics for software developers. Software, IEEE 18, 1 (Jan/Feb
2001), 22-29.

[48] FERREIRA, J., NOBLE, J., AND BIDDLE, R. Agile development it-
erations and Ul design. In Agile '07: Proceedings of the AGILE 2007
Conference, Washington, DC, USA, August 13-17 (2007), IEEE Com-
puter Society, pp. 50-58.

BIBLIOGRAPHY 201

[49]

[51]

[52]

[53]

[55]

[56]

FERREIRA, J., NOBLE, J., AND BIDDLE, R. Interaction designers on
extreme programming teams: Case studies from the real world. In
NZCSRSC '07: Proceedings of the 5th New Zealand Computer Science Re-
search Student Conference, Hamilton, New Zealand, April 10-13 (2007).

FERREIRA, J., NOBLE, J., AND BIDDLE, R. Up-front interaction de-
sign in agile development. In XP ‘07: Proceedings of the 8th Interna-
tional Conference on eXtreme Programming and Agile Processes in Soft-
ware Engineering, Como, Italy, June 18-22 (2007), G. Concas, E. Dami-
ani, M. Scotto, and G. Succi, Eds., vol. 4536 of Lecture Notes in Com-
puter Science, Springer, pp. 9-16.

FONTANA, A., AND FREY, J. Interviewing: The art of science. In
Handbook of Qualitative Research, N. K. Denzin and Y. S. Lincoln, Eds.
Sage, Thousand Oaks, CA, USA, 1994, pp. 361-376.

FOWLER, M. Is design dead? In Extreme Programming Examined.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001, pp. 3-17.

FOWLER, M. Put your process on a diet. Dr. Dobb’s Journal (June
2001). Available at http://www.ddj.com/dept/architect/
184414675. Last accessed on 7 Nov 2007.

FOWLER, M. The New Methodology. Published online at http://

www.martinfowler.com/articles/newMethodology.html,

Last accessed on 4 Jul 2007.

FOWLER, M., AND HIGHSMITH, J. The agile manifesto. Software
Development (August 2001), 28-32.

FUGGETTA, A. Software Process: A Roadmap. In ICSE "00: Proceed-
ings of the Conference on The Future of Software Engineering, Limerick,
Ireland, June 4-11 (New York, NY, USA, 2000), ACM Press, pp. 25-34.

202 BIBLIOGRAPHY

[57] GARRETT, J.]. The Elements of User Experience: User-Centered Design
for the Web. New Riders Publishers, Indianapolis, IN, USA, 2002.

[58] GARTNER, L. The rookie primer. Radcliffe Rugby Football Club.
Available at http://www.hcs.harvard.edu/ radrugby/
rookie_primer.html. Last accessed on 7 Nov 2007, 1996.

[59] GHEZzzI, C., JAZAYERI, M., AND MANDRIOLI, D. Fundamentals of
Software Engineering. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1991.

[60] GILB, T. Principles of Software Engineering Management. Addison-
Wesley, Wokingham, UK, 1988.

[61] GLASER, B. Theoretical Sensitivity: Advances in the methodology of
Grounded Theory. Sociology Press, Mill Valley, CA, USA, 1978.

[62] GLASER, B. Emergence vs. Forcing: Basics of Grounded Theory Analysis.
Sociology Press, Mill Valley, CA, USA, 1992.

[63] GLASER, B. Conceptualization: On theory and theorizing using
grounded theory. International Journal of Qualitative Methods 1, 2
(2002).

[64] GLASER, B., AND STRAUSS, A. The discovery of grounded theory:
Strategies for qualitative research. Aldine Atherton, NY, US, 1967.

[65] GLASS, R. Elementary level discussion of compiler/interpreter writ-
ing. ACM Computing Surveys (March 1969), 64—68.

[66] GROSS, M. D., AND Do, E. Y.-L. Ambiguous intentions: A paper-
like interface for creative design. In UIST "96: Proceedings of the 9th
Annual ACM Symposium on User Interface Software and Technology,
Seattle, WA, USA, November 6—8 (New York, NY, USA, 1996), ACM,
pp. 183-192.

BIBLIOGRAPHY 203

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

GROSSMAN, F., BERGIN, J., LEIP, D., MERRITT, S., AND GOTEL,
O. One XP experience: Introducing agile (XP) software develop-
ment into a culture that is willing but not ready. In CASCON "04:
Proceedings of the 2004 conference of the Centre for Advanced Studies on
Collaborative Research, Markham, Ontario, Canada, October 5-7 (2004),
IBM Press, pp. 242-254.

HANSEN, B. H., AND KAUTZ, K. Grounded theory applied —
studying information systems development methodologies in prac-
tice. In HICSS ’05: Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, Big Island, HI, USA, January 3—6 (2005),
IEEE Computer Society, p. 264.2.

HATINEN, A.]. Extreme programming and goal oriented user in-
terface design in practice. Research Seminar on Software Engineer-
ing. Available at http://www.pharazon.org/publications/
GO—XP .pdf. Last accessed on 7 Nov 2007, 2002.

HIGHSMITH,]. Agile Software Development Ecosystems. Pearson Edu-
cation, 2002.

HIGHSMITH, J., AND COCKBURN, A. Agile software development:
The business of innovation. Computer 34,9 (2001), 120-127.

HODGETTS, P., AND PHILLIPS, D. Extreme adoption experiences of
a B2B start up. In Extreme Programming Perspectives, M. Marchesi,
G. Succi, D. Wells, and L. Williams, Eds. Addison Wesley Profes-
sional, 2002.

ISO TC 159/5C 4; ISO Standards ICS: 13.180. Human-centred design
processes for interactive systems. International Organization for Stan-
dardization, Geneva, Switzerland, 1999.

KAPLAN, B., AND MAXWELL, J. Qualitative research methods for

evaluating computer information systems. In Evaluating Health Care

204

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

BIBLIOGRAPHY

Information Systems: Methods and Applications, J. Anderson, C. Aydin,
and S. Jay, Eds. Sage, Thousand Oaks, CA, USA, 1994, pp. 45-68.

KARLSTROM, D. Introducing Extreme Programming: An Experi-
ence Report. In XP '02: Proceedings of the 3rd International Conference
on Extreme Programming and Agile Processes in Software Engineering,
Sardinia, Italy, May 26-29 (2002), Springer, pp. 24-29.

KHALIFA, M., AND VERNER, J. M. Drivers for software develop-
ment method usage. Engineering Management, IEEE Transactions on

47,3 (Aug 2000), 360-369.

KNIBERG, H. Scrum and XP from the Trenches. Published online
athttp://www.lulu.com/content/8993409. Lastaccessed on7
Nov 2007, 2007.

KRUCHTEN, P. Agility with the RUP. Cutter IT Journal 14,12 (2001),
27-33.

LAN, C., MOHAN, K., PENG, X., AND RAMESH, B. How extreme
does extreme programming have to be? Adapting XP practices to
large-scale projects. In Proceedings of the 37th Annual Hawaii Interna-
tional Conference on System Sciences, Big Island, HI, USA, January 5-8
(Washington, DC, USA, 2004), IEEE Computer Society, p. 30083.3.

LARMAN, C., AND BASILI, V. R. Iterative and incremental develop-
ment: A brief history. Computer 36, 6 (2003), 47-56.

LARSEN, D. Agile Alliance survey: Are we there yet? In-
foQ (September 2006). Available at http://www.infoq.com/
articles/agile—-alliance-survey—-2006. Last accessed on 7
Nov 2007.

LAYMAN, L., WILLIAMS, L., AND CUNNINGHAM, L. Exploring ex-
treme programming in context: An industrial case study. In ADC

BIBLIOGRAPHY 205

[83]

[84]

(871

[88]

'04: Proceedings of the 2004 Agile Development Conference, Salt Lake
City, UT, USA, June 22-26 (Washington, DC, USA, 2004), IEEE Com-
puter Society, pp. 32—41.

LENZ, M., BENO, J., BURNS, M., AND MEANEY, S. Unifying the
cisco intranet through hierarchical navigation. In CHI Extended Ab-
stracts (2005), G. C. van der Veer and C. Gale, Eds., ACM, pp. 1004—
1021.

LETOVSKY, S. Cognitive processes in program comprehension. In
Papers presented at the first workshop on empirical studies of programmers
on empirical studies of programmers (Norwood, NJ, USA, 1986), Ablex
Publishing Corp., pp. 58-79.

L1, M., BOEHM, B., AND OSTERWEIL, L. Unifying the software pro-
cess spectrum. Journal of Software 17, 4 (2006), 649-657.

LIFE, A., SALTER, 1., TEMEM, J., BERNARD, F., ROSSET, S., BEN-
NACEF, S., AND LAMEL, L. Data collection for the mask kiosk: Woz
vs. prototype system. In ICSLP "96: Proceedings of the 4th International
Conference on Spoken Language Processing, Philadelphia, PA, USA, Oc-
tober 3—6 (1996), vol. 3, pp. 1672-1675.

LINDVALL, M., BASILI, V., BOEHM, B., CosTA, P.,, DANGLE, K.,
SHULL, F., TESORIERO, R., WILLIAMS, L., AND ZELKOWITZ, M.
Empirical findings in agile methods. In XP/Agile Universe ‘02: Pro-
ceedings of the Second XP Universe and First Agile Universe Conference,
Chicago, IL, USA, August 4-7 (London, UK, 2002), Springer-Verlag,
pp- 197-207.

LINDVALL, M., MUTHIG, D., DAGNINO, A., WALLIN, C., STUP-
PERICH, M., KIEFER, D., MAY, J., AND KAHKONEN, T. Agile soft-

ware development in large organizations. Computer 37, 12 (Decem-
ber 2004), 26-34.

206 BIBLIOGRAPHY

[89] LINGS, B., AND LUNDELL, B. On the adaptation of grounded the-
ory procedures: Insights from the evolution of the 2G. Information
Technology and People 18, 3 (2005), 196-211.

[90] MARSHALL, C., AND ROSSMAN, G. B. Designing Qualitative Re-
search. Sage Publications Inc., 1989.

[91] MARTIN, A., BIDDLE, R., AND NOBLE, J. The XP customer role
in practice: Three studies. In ADC '04: Proceedings of the 2004 Agile
Development Conference, Salt Lake City, UT, USA, June 22-26 (Wash-
ington, DC, USA, 2004), IEEE Computer Society, pp. 42-54.

[92] MARTIN, P. Y., AND TURNER, B. A. Grounded theory and organ-
isational research. Journal of Applied Behavioural Science 22 (1986),
141-157.

[93] MCINERNEY, P., AND MAURER, F. UCD in agile projects: Dream
team or odd couple? interactions 12, 6 (2005), 19-23.

[94] MICHAEL, D. M. Qualitative research in information systems.
MISQ Discovery (June 1997).

[95] MILES, M., AND HUBERMAN, A. Qualitative Data Analysis, 2nd ed.
Sage Publications Inc., 1994.

[96] MILLER, L. Case study of customer input for a successful product.
In ADC “05: Proceedings of the 2005 Agile Development Conference, Den-
ver, CO, USA, July 24-29 (Washington, DC, USA, 2005), IEEE Com-
puter Society, pp. 225-234.

[97] NELSON, E. Extreme programming vs. interaction design. FTP On-
line. Available at http://www.ftponline.com/interviews/
beck_cooper/. Last accessed on 7 Nov 2007, 2002.

[98] NIELSEN, J. Enhancing the explanatory power of usability heuris-
tics. In CHI "94: Proceedings of the SIGCHI conference on Human factors

BIBLIOGRAPHY 207

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

in computing systems, Boston, MA, USA, April 24-28 (New York, NY,
USA, 1994), ACM Press, pp. 152-158.

NIELSEN, J. Guerilla HCI: Using discount usability engineering to
penetrate the intimidation barrier. In Cost-Justifying Usability, R. G.
Bias and D.]J. Mayhew, Eds. Academic Press, Boston, MA, USA,
1994, pp. 245-272.

NIELSEN, J. Heuristic Evaluation. In Usability Inspection Methods,
J. Nielsen and R. L. Mack, Eds. John Wiley & Sons Inc., 1994.

NIELSEN, J. Return on investment for usability. Jakob Nielsen's
Alertbox (7 January 2003). Available at http://www.useit.com/
alertbox/20030107.html. Last accessed on 7 Nov 2007.

NIELSEN, J. Usability 101: Introduction to usability. Jakob Nielsen’s
Alertbox (25 August 2003). Available at http://www.useit.com/
alertbox/20030825.html. Last accessed on 7 Nov 2007.

NIELSEN, J., AND MCMUNN, D. The Agile Journey: Adopting XP
in a Large Financial Services Organization. In XP ‘05: Proceedings
of the 6th International Conference on Extreme Programming and Ag-
ile Processes in Software Engineering, Sheffield, UK, June 18-23 (2005),
H. Baumeister, M. Marchesi, and M. Holcombe, Eds., vol. 3556 of
Lecture Notes in Computer Science, Springer, pp. 28-37.

NORMAN, D. The Design of Everyday Things. Doubleday, New York,
NY, USA, 1988.

NORMAN, D. Why doing user observations first is wrong. interac-
tions 13, 4 (2006), 50-63.

NORMAN, D. A., AND DRAPER, S. W. User-Centered System Design:
New Perspectives on Human-Computer Interaction. Lawrence Erlbaum
Associates, Inc., Mahwah, NJ, USA, 1986.

208

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

BIBLIOGRAPHY

PALMER, S. R., AND FELSING, M. A Practical Guide to Feature-Driven
Development. Pearson Education, 2001.

PANDIT, N. R. The creation of theory: A recent application of the
grounded theory method. The Qualitative Report 2, 4 (December
1996). Awvailable at http://www.nova.edu/ssss/QR/QR2-4/
pandit.html. Last accessed on 7 Nov 2007.

PATTON, J. Hitting the target: Adding interaction design to agile
software development. In OOPSLA ’02: Proceedings of the OOP-
SLA 2002 Conference, Seattle, WA, USA, November 4-8 (New York, NY,
USA, 2002), ACM Press, pp. 1-7.

PATTON, J. Improving on agility: Adding usage-centered design to
a typical agile software development environment. In ForUse2003:
Proceedings of the Second International Conference on Usage-Centered
Design, Portsmouth, NH, USA, October 18-22 (2003).

POOLE, C., AND HUISMAN, J. W. Using extreme programming in
a maintenance environment. Software, IEEE 18, 6 (Nov/Dec 2001),
42-50.

PORTER, S., AND PORTER, J. M. Designing for usability: Input of
ergonomics information at an appropriate point, and appropriate
form, in the design process. In Human Factors in Product Design: Cur-
rent Practice and Future Trends. Taylor & Francis, London, UK, 1999,
pp- 15-25.

PUNCH, K. F. Introduction to Social Research. Quantitative and Quali-
tative Approaches. Sage Publications Inc., 1998.

RASMUSSEN, J. Introducing XP into greenfields projects: Lessons
learned. Software, IEEE 20, 3 (May/Jun 2003), 21-28.

BIBLIOGRAPHY 209

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

ROBEY, D., WELKE, R., AND TURK, D. Traditional, iterative, and
component-based development: A social analysis of software devel-
opment paradigms. Information Technology and Management 2 (2001),
53-70.

ROBINSON, H.AND SHARP, H. XP culture: Why the twelve practices
both are and are not the most significant thing. In ADC "03: Proceed-
ings of the 2003 Agile Development Conference, Salt Lake City, UT, USA,
June 25-28 (Washington, DC, USA, June 2003), IEEE Computer Soci-
ety, pp. 12-21.

RODRIGUES, A., AND BOWERS, J. The role of system dynamics in

project management. International Journal of Project Management 14,
4 (1996), 213-220.

ROYCE, W. W. Managing the development of large software sys-
tems: Concepts and techniques. In ICSE '87: Proceedings of the 9th
international conference on Software Engineering, Monterey, CA, USA,
March 30-April 2 (Los Alamitos, CA, USA, 1987), IEEE Computer
Society Press, pp. 328-338.

RUBINSTEIN, D. Standish group report: There’s less de-
velopment chaos today. Software Development Times (March
2007). Available at http://www.sdtimes.com/article/
story—-20070301-01.html. Last accessed on 7 Nov 2007.

RUDD, J., STERN, K., AND ISENSEE, S. Low vs. high-fidelity proto-
typing debate. interactions 3, 1 (1996), 76-85.

SCHENSUL, S. L., SCHENSUL, J. J., AND LECOMPTE, M. D. Essen-
tial Ethnographic Methods: Observations, Interviews, and Questionnaires.
Altamira Press, Walnut Creek, CA, USA, 1999.

SCHWABER, K. Scrum development process. In Business Object
Design and Implementation: OOPSLA’95 Workshop Proceedings (1995),

210 BIBLIOGRAPHY

D. Patel, C. Casanave, G. Hollowell, and J. Miller, Eds., Springer-
Verlag.

[123] SCHWABER, K. Controlled chaos: Living on the edge. American Pro-
grammer (April 1996). Available at http://www.controlchaos.
com/download/Living%$20on%20the%$20Edge.pdf. Last
accessed on 7 Nov 2007.

[124] SCHWABER, K., AND BEEDLE, M. Agile Software Development with
Scrum. Prentice Hall, 2002.

[125] SHARP, H., AND ROBINSON, H. An ethnographic study of XP prac-
tice. Empirical Software Engineering 9, 4 (December 2004).

[126] SHARP, H., ROGERS, Y., AND PREECE, J. Interaction Design: Beyond
HumanComputer Interaction, 2nd ed. John Wiley & Sons, 2007.

[127] SHNEIDERMAN, B., AND PLAISANT, C. Designing the User Interface:
Strategies for Effective Human-Computer Interaction, 4th ed. Addison-
Wesley, 2004.

[128] SHORE, J. Continuous design. Software, IEEE 21, 1 (Jan—Feb 2004),
20-22.

[129] SINGH, S., BARTOLO, K. C., AND SATCHELL, C. Grounded theory
and user requirements: A challenge for qualitative research. Aus-
tralasian Journal of Information Systems 12, 2 (2005).

[130] SMITH, S., AND MOSIER, J. Guidelines for designing user interface
software. Tech. Rep. ESD-TR-86-278, The MITRE Corporation, Bed-
ford, MA, USA, August 1986. Available at http://www.hcibib.
org/sam/. Last accessed on 7 Nov 2007.

[131] SmiTs, H., AND PSHIGODA, G. Implementing scrum in a dis-

tributed software development environment. In Agile ‘07: Proceed-

BIBLIOGRAPHY 211

ings of the AGILE 2007 Conference, Washington, DC, USA, August 13—
17 (2007), IEEE Computer Society, pp. 371-375.

[132] STRAUSS, A., AND CORBIN, J. Basics of Qualitative Research:
Grounded Theory Procedures and Techniques. Sage Publications Inc.,
1990.

[133] SUTHERLAND, J. Agile can scale: Inventing and reinventing scrum
in five companies. Cutter IT Journal 14,12 (2001), 5-11.

[134] SUTHERLAND, J. The roots of scrum: How Japanese manufacturing
changed global software development practices. In Talk presented at
JAOOQO ’05: The 9th annual Conference on Software Engineering, Methods
and Best Practices, Aarhus, Denmark, September 25-30 (2005).

[135] SUTHERLAND, J., JAKOBSEN, C., AND JOHNSON, K. Scrum and
CMMI Level 5: A Magic Potion for Code Warriors. In Agile "07: Pro-
ceedings of the AGILE 2007 Conference, Washington, DC, USA, August
13-17 (2007), IEEE Computer Society, pp. 272-277.

[136] SWALLOW, D., BLYTHE, M., AND WRIGHT, P. Grounding experi-
ence: Relating theory and method to evaluate the user experience
of smartphones. In EACE 05: Proceedings of the 2005 annual confer-
ence on European association of cognitive ergonomics, Chania, Greece, 29
September—1 October (2005), University of Athens, pp. 91-98.

[137] Sy, D. Adapting usability investigations for agile user-centered de-
sign. Journal of Usability Studies 2, 3 (May 2007), 112-132.

[138] TAKEUCHI, H., AND NONAKA, I. The New New Product Develop-
ment Game. Harvard Business Review (Jan/Feb 1986), 137-146.

[139] TAYLOR, R. N., AND VAN DER HOEK, A. Software design and archi-
tecture: The once and future focus of software engineering. In FOSE

212

[140]

[141]

[142]

[143]

[144]

[145]

[146]

BIBLIOGRAPHY

'07: Proceedings of the 2007 Conference on the Future of Software Engi-
neering, Washington, DC, USA, March 20-22 (Washington, DC, USA,
2007), IEEE Computer Society, pp. 226-243.

THE C3 TEAM. Chrysler goes to “Extremes”. Distrib. Comput. (Oc-
tober 1998), 24-28.

THE STANDISH GROUP. The CHAOS report. Available at URL: www .
standishgroup.com/sample_research/index.php, 1995.

VENNERS, B. Evolutionary design: A conversation with Martin
Fowler, part iii. Artima Developer (November 2002). Available
at http://www.artima.com/intv/evolution.html. Last ac-
cessed on 7 Nov 2007.

VERNER, J. M., AND CERPA, N. Prototyping: Does your view of its
advantages depend on your job? Journal of Systems and Software 36,
1 (January 1997), 3-16.

VERPLANK, W., FULTON, J., BLACK, A., AND MOGGRIDGE, W. Ob-
servation and invention: The use of scenarios in interaction design.
In Tutorial at the ACM Conference on Human Aspects in Computing Sys-
tems, Amsterdam, The Netherlands, April 24-29 (1993), ACM Press.

WHITWORTH, E., AND BIDDLE, R. Motivation and cohesion in agile
teams. In Proceedings of the 8th International Conference on eXtreme
Programming and Agile Processes in Software Engineering, Como, Italy,
June 18-22 (2007), G. Concas, E. Damiani, M. Scotto, and G. Succi,
Eds., vol. 4536 of Lecture Notes in Computer Science, Springer, pp. 62—
69.

WHITWORTH, E., AND BIDDLE, R. The social nature of agile teams.
In Agile "07: Proceedings of the AGILE 2007 Conference, Washington,
DC, USA, August 13-17 (2007), IEEE Computer Society, pp. 26-36.

BIBLIOGRAPHY 213

[147]

[148]

[149]

[150]

[151]

[152]

WILLIAMS, L., AND COCKBURN, A. Agile software development:
It's about feedback and change. Computer 36, 6 (June 2003), 39-43.

WILLIAMS, L., AND KESSLER, R. All I really need to know about

pair programming I learned in kindergarten. Communications of the
ACM 43, 5 (2000), 108-114.

WINOGRAD, T. From computing machinery to interaction design.
In Beyond Calculation: The Next Fifty Years of Computing. Springer-
Verlag, 1997, pp. 149-162.

WITHROW, J., BRINCK, T., AND SPEREDELOZZI, A. Comparative
usability evaluation for an e-government portal. Diamond Bullet De-
sign Report no. U1-00-2. Whitepaper (December 2000). Ann Arbor, MI,
USA.

WIXON, D., AND JONES, S. Usability for fun and profit: A case
study of the design of DEC Rally version 2. In Proceedings of the
Workshop on Human-Computer Interface Design : Success stories, emerg-
ing methods, and real-world context, Boulder, CO, USA (San Francisco,
CA, USA, 1995), Morgan Kaufmann Publishers Inc., pp. 3-35.

WRIGHT, P., BLYTHE, M., AND MCCARTHY, J. User experience and
the idea of design in HCI. In DSV-IS '05: Proceedings of the 12th In-
ternational Workshop on Design, Specification and Verification of Interac-
tive Systems, Newcastle-upon-Tyne, UK, July 13-15, vol. 3941 of Lecture
Notes in Computer Science. Springer, 2006.

