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1. ABSTRACT 
 

Aquaculture is the fastest growing industry in the food sector and demand for 

aquaculture products is continuing to grow as many wild stocks from capture 

fisheries continue to decline. It is imperative that water quality in an aquaculture 

system is closely controlled in order to maintain the health of the species under 

culture and maximize production. New Zealand Prawns Limited (NZPL) is an 

aquaculture facility in Wairakei, New Zealand that cultures the freshwater prawn 

Macrobrachium rosenbergii. Dramatically reduced yields of prawns have been 

observed in ponds following periodic blooms of benthic algae. In this study, water 

quality variables were measured in grow out ponds at 9-11 day intervals. I measured 

temperature, phytoplankton abundance, phytoplankton diversity, turbidity, and 

concentrations of ammonia, nitrate, orthophosphate, dissolved oxygen and 

chlorophyll a. This data was combined with information on pond depth and prawn 

yield in order to investigate what variables influence the abundance and diversity of 

phytoplankton, benthic algal blooms and prawn yield. The difficulty of combining 

scientific endeavour with commercial enterprises resulted in only a small data set 

being available for analysis but it appears that benthic algal blooms at NZPL may be 

due to excessive light penetration to the benthos due to shallow pond depths, and 

reduced shading of the benthos when phytoplankton abundance is low. Low 

phytoplankton abundance may possibly be a result of low orthophosphate. There was 

insufficient data to determine what impacts, if any, the variables investigated have on 

prawn yield or how water quality variables change with time. Future studies and 

experiments are recommended in order to increase knowledge of farming M. 

rosenbergii; a valuable crustacean that has been shown to have a lower social and 

environmental impact than many other more common aquaculture species. 
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2. INTRODUCTION 
 
 
2.1.1 Aquaculture 

The Food and Agriculture Organization of the United Nations (FAO) defines 

aquaculture as “the farming of aquatic organisms in inland and coastal areas, 

involving intervention in the rearing process to enhance production and the 

individual or corporate ownership of the stock being cultivated” (FAO 2007a). 

Naylor et al. (2000) state that two key criteria separate aquaculture from wild capture 

fisheries: 1) ownership of stock, and 2) intervention in the lifecycle or husbandry of 

the cultured species. It involves the culture of both animals (such as fish, molluscs, 

crustaceans etc) and plants (such as algae) and occurs in both freshwater and saline 

water, the latter often being referred to as ‘mariculture’ to distinguish it from 

freshwater aquaculture.  

 

A variety of forms of aquaculture exist, distinguished from one another by their 

intensity (output of product per unit of area) although it may not always be clear 

what category a farm may fall into. The FAO (2007a) uses the following criteria: 

 

• Extensive - Production system characterized by (i) a low degree of control 

(e.g. of environment, nutrition, predators, competitors, disease agents); (ii) 

low initial costs, low-level technology, and low production efficiency 

(yielding no more than 500 kg/ha/yr); (iii) high dependence on local climate 

and water quality; use of natural waterbodies (e.g. lagoons, bays, 

embayments) and of natural often unspecified food organisms. 
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• Semi-intensive - Systems of culture characterized by a production of 2 to 20 

tonnes/ha/yr, which are dependent largely on natural food, which is 

augmented by fertilization or complemented by use of supplementary feed, 

stocking with hatchery-reared fry, regular use of fertilisers, some water 

exchange or aeration, often pumped or gravity supplied water, and normally 

in improved ponds, some enclosures, or simple cage systems.  

 

• Intensive - System of culture characterized by (i) a production of up to 200 

tonnes/ha/yr; (ii) a high degree of control; (iii) high initial costs, high-level 

technology, and high production efficiency; (iv) tendency towards increased 

independence of local climate and water quality; (v) use of man-made culture 

systems. 

 

Aquaculture is the fastest growing industry within the food sector (Kutty 2005). In 

1950, total world aquaculture totalled less than one million metric tonnes. By 2004, 

total world aquaculture production had increased to 59.4 million metric tonnes 

valued at $US 70.3 billion (FAO 2007b). The aquaculture industry continues to 

diversify (develop new products) and intensify (increase output per unit area). With 

the increasing human population and decline of wild capture fisheries, the FAO 

estimates that global aquaculture production will need to reach 80 million metric 

tonnes by 2050 (FAO 2007b). 

 

This is not without its problems however, as aquaculture can cause severe social, 

economic and ecological problems. Examples of these problems are discussed in the 

next section, with particular reference to Decapod aquaculture.  
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Management of water quality is also a central concern in aquaculture and can be a 

complicated task involving many different variables that are often difficult to control. 

In order to include the focal aquaculture species of this study (the giant river prawn 

Macrobrachium rosenbergii) water quality and its common management strategies 

will be discussed later in the chapter (see section 2.3: ‘Water quality in aquaculture’). 

  

2.1.2 Decapod aquaculture 

Most farmed decapods are shrimps or prawns (usually referred to as shrimps) 

although some crabs are also commercially cultured, such as the mud crab Scylla 

serrata (Ruscoe et al. 2004). The commercial-scale farming of shrimps began in the 

1970s. There are a wide variety of shrimps under culture around the world but the 

majority of them are marine shrimp of the family Penaeidae. In 2003, the estimated 

farmed production of shrimps totalled 2.7 million metric tonnes worth almost $US 

10.6 billion (FAO 2007d). 

 

Like many forms of aquaculture, the culture of shrimps has received much criticism 

for its detrimental environmental impacts such as habitat modification and pollution. 

In particular, the destruction of mangrove forests to make way for shrimp farms has 

been cited as one of the worst effects. Since the 1980s, it has been estimated that 

around 35% of the world’s mangrove forests have been lost and of these losses, 52% 

has been attributed to clearance for mariculture, with shrimp culture contributing to 

38% alone (Valiela et al. 2001). Mangroves provide important ecosystem services 

such as nursery grounds for the juvenile stages of a variety of marine life such as a 

number of Barracuda species, mullet, bream, flathead and (wild) Penaeid prawns 

(Little et al. 1988, Laegdsgaard and Johnson 1995, Primavera 1997a), many of which 
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are of economic importance in wild capture fisheries. Mangroves have also been 

found to reduce coastal erosion (Mazda et al. 2002) and their soils have been shown 

to remove heavy metals and nutrients from water such as copper and phosphorous 

(Tam and Wong 1999), reducing the amount that reaches estuaries and open ocean. 

 

Aquaculture has been championed by many as the saviour of wild capture fisheries, 

supposedly relieving pressure on stocks by providing an alternative source of fish. 

The reverse is often true as carnivorous species under culture require large amounts 

of wild-caught fish for feed (Naylor et al. 2000), increasing or at best sustaining the 

pressure on wild fisheries. Further stress is placed on wild fisheries through the 

ecological impacts that aquaculture can have, such as the introduction of exotic 

species and pathogens, collection of wild seed stock, nutrient enrichment, habitat 

modification and alteration of food web dynamics and shrimp aquaculture is no 

exception to this (Naylor et al. 2000).  

 

Disease has also had a significantly detrimental impact on shrimp farming, 

particularly in intensive systems where stock may be overcrowded. In particular the 

white spot syndrome virus (WSSV) has caused massive problems in shrimp farms 

around the world (Wang et al. 1997, Rajendran et al. 1999, Kutty 2005), costing jobs, 

millions of dollars and could potentially infect wild populations of crustaceans 

(Naylor et al. 2000). 

 

Shrimp culture, can also have serious socio-economic impacts. Traditional 

livelihoods such as rice farming are displaced or rice farmers are forced to sell their 

land when it becomes polluted by adjacent shrimp farms (Primavera 1997b). In India, 
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the costs of shrimp farming have been found to outweigh the benefits, and in 

particular is associated with increasing unemployment (Primavera 1997b). The 

productivity of shrimp ponds decreases at a rate of 3%-8% per production cycle due 

to deterioration in pond sediment and soil quality and poor pond management 

(Dierberg and Kiattisimkul 1996). After a period of around seven years, ponds cease 

to be profitable and are abandoned. This sees farmers switch to new sites, leaving 

useless salinated land in their wake. In Thailand alone it is estimated that between 

4,500 and 16,000 hectares of shrimp ponds have been abandoned, the majority of 

which continue to lay idle (Dierberg and Kiattisimkul 1996). Rice farming cannot be 

resumed following farm closure due to salinization of soil. 

 

2.1.3 Freshwater Decapod aquaculture 

There are three species of freshwater prawns cultured around the world, all of which 

belong to the genus Macrobrachium. The feasibility of large-scale commercial 

culture of the monsoon river prawn (Macrobrachium malcolmsonii) is currently 

underway in India (New 2005). The Oriental river prawn Macrobrachium 

nipponense is farmed in China where approximately 120,000 tonnes was produced in 

2001, rapidly catching up to the giant river prawn M. rosenbergii (approximately 

130,000 tonnes produced in China in 2001). At current rates of expansion, global 

production of all Macrobrachium species combined is expected to be between 

700,000 and 1.4 million metric tonnes by 2010 (New 2005). Currently, M. 

rosenbergii is by far, the biggest overall contributor to freshwater prawn culture and 

is farmed in many countries around the world.  
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The complete life cycle of M. rosenbergii was closed (all life history stages observed 

and understood) in 1962 when the first laboratory-hatched larvae were successfully 

reared through to adulthood (Ling 1977). While M. rosenbergii had for some time 

been captured from the wild and grown to marketable size (~25g+) in captivity, it 

was proper understanding of the life cycle that allowed true culture systems to 

develop. The Anuenue Fisheries Research Centre in Hawaii pioneered technology 

for mass-rearing of M. rosenbergii larvae in 1965 (Fujimura and Okamoto 1972). 

This was followed by a series of successful growout experiments and the 

development of a number of commercial farms in the USA during the 1970s. At 

around the same time, Thailand and Taiwan both began developing what would 

become significant industries for both countries (Chen 1976). 

 

By 1987 global production of farmed M. rosenbergii was estimated to be around 

27,000 metric tonnes per annum (New 1990). Global production increased to 

213,861mt by 2001 as more countries (particularly China) began to culture the 

species (New 2005). While the vast majority of M. rosenbergii is farmed in Asia, 

significant producers also include Africa, Israel, and Central and South America. 

Production also occurs in countries that at first seem unlikely candidates for a 

tropical species. The temperate country of New Zealand has just one M. rosenbergii 

farm, New Zealand Prawns Ltd (NZPL). NZPL uses heat exchange with geothermal 

water to warm fresh water to the optimum culture temperature of 28°C. A joint 

venture has seen this technology being used to culture M. rosenbergii in Iceland 

(New Zealand Prawns Ltd, personal communication). Russia has also recently begun 

to culture the species using heated effluent from electrical power generation (New 

2005).  
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The freshwater farming of M. rosenbergii has a number of advantages over marine 

farming. The territorial nature of the males (see section 2.2 Biology of 

Macrobrachium rosenbergii) requires that culture is less intensive than is typically 

seen in marine shrimp farms. This means that pollution of land and adjacent 

waterways through nutrient enrichment is lower and the incidence and severity of 

disease among the prawns is reduced (Kutty 2005). There is also good potential for 

integration with other aquaculture species such as carps and tilapia (Kutty 2005). 

With the growout phase occurring entirely in freshwater, land does not become 

salinated and can be used for other purposes such as growing crops following a 

farm’s closure. Freshwater culture also means that farming can take place much 

farther inland than marine species, allowing for a far greater number of potential 

farm sites. Farms can also be situated in close proximity to large, lucrative inland 

urban markets and deliver fresh or even live product in short time-frames and at 

lower transport costs (Tidwell et al. 2005). 

 

2.1.4 Aquaculture in New Zealand 

Aquaculture is a significant industry in New Zealand. In 2005, total aquaculture 

production was approximately 105,301 metric tonnes worth over $US 204 million 

(FAO 2007c). The New Zealand Seafood Industry Council (Seafic) reports that the 

industry in NZ as a whole is aiming to be worth $NZ 1 billion by the year 2025 

(Seafic 2007). Green-lip mussels (Perna canaliculus) are by far the biggest 

contributor to the aquaculture industry in NZ (Gall et al. 2000, Markowitz et al. 

2004), followed by king salmon and pacific oysters (Seafic 2007). The paua (abalone) 

industry for both meat and pearls is a growing industry and kingfish, eel, turbot, rock 
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lobster, seahorses and some species of seaweed and sponges are also showing 

potential (Seafic 2007). 

Aquaculture facilities span the length of the country, from Stewart Island in the far 

south to Kaitaia and beyond in the far north. The vast majority though are located in 

the Marlborough Sounds, the centre for mussel farming. Of 520 mussel farms 

operating in New Zealand in 2000, 455 were located in the Marlborough Sounds 

(Gall et al. 2000).  

Like the rest of the world, aquaculture in New Zealand can have detrimental 

environmental and socio-economic impacts. Mussel farming has been found to 

significantly lower phytoplankton abundance in Beatrix Bay, Marlborough Sounds 

(Ogilvie et al. 2000). Chlorophyll a is the primary photosynthetic pigment in plants 

and algae, frequently used as an index of phytoplankton biomass (Desortova 1981, 

Canfield et al. 1985, Voros and Padisak 1991). In their 1997/1998 study, Ogilvie et 

al. measured chlorophyll a levels both within and outside four mussel farms and 

found that chlorophyll a was significantly lower inside farms compared to outside, 

attributing this to filter feeding by mussels. This poses potential problems for higher 

trophic levels in the ecosystem and the sustainability of the mussel farming industry 

if it continues to intensify and farm sites increase in number.  

 

Farms may also compete for space with marine mammals such as the dusky dolphin. 

Over the course of five consecutive winters Markowitz et al. (2004) observed the 

occurrence, distribution, abundance, and behaviour of dusky dolphins in the 

Marlborough Sounds. In particular they focussed on Admiralty Bay, where dolphins 

were observed to spend significantly less time inside mussel farm boundaries 
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compared with outside farm boundaries. It is thought that the suspended lines on 

which mussels are grown obstruct foraging and that the floats used to keep lines 

suspended may impair dolphin echo-location, essential for dolphins to find food. 

This could pose a serious problem for dusky dolphins, who spend much of the winter 

in Admiralty Bay, and whose observed distribution within the bay overlaps 

significantly with areas where many more mussel farm sites are being proposed 

(Markowitz et al. 2004). 

 

Salmon farming in New Zealand can also have detrimental effects on the ecosystem. 

The sedimentation rate directly under salmon cages in the Marlborough Sounds has 

been found to be very high, and its physical and chemical characteristics 

(particularly for nitrogen and phosphorous) very different to those of sediments 

nearby (Kaspar et al. 1988). Similar effects on the benthos have been found for 

mussel farming in Keneperu Sound where sediment beneath a mussel farm was 

found to contain twice as much ammonium as a comparable reference site with no 

mussel farming (Kaspar et al. 1985). Infauna of the mussel farm sediment consisted 

only of polychaete worms whereas the reference site consisted of polychaete worms, 

brittle stars, bivalve molluscs and crustaceans. 

 

The mussel farming industry alone employs approximately 2,500 people (NZMFA 

2007), most of this in the Marlborough Sounds. Other important human activities 

take place in the Marlborough Sounds as well, such as tourism, commercial fishing 

and the area sees much boat traffic (Markowitz et al. 2004) including the 

Interislander ferries that link road and rail traffic between the North and South 

Islands of the country. New Zealand’s mussel farming industry illustrates that much 
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like the rest of the world, aquaculture in New Zealand can have important 

environmental and socio-economic consequences. 

 

2.2.1 Biology of Macrobrachium rosenbergii 

Macrobrachium rosenbergii (de Man, 1879) are Decapod crustaceans of the family 

Palaemonidae. They are not strictly ‘prawns’ such as the more familiar tiger prawn 

(Penaeus monodon, family Penaeidae) but the term “prawn” is still used informally. 

The species is found throughout much of Southeast Asia and the tropical regions of 

northern Australia (New 2002).  

 

The species is found in lakes, rivers, swamps and irrigation canals with a preference 

for turbid conditions. They are capable of climbing waterfalls and can also traverse 

land where there is plenty of moist vegetation (New 1990). The adult stage of the life 

cycle is spent entirely in freshwater although they are euryhaline (tolerant of a wide 

variety of salinities). Armstrong et al. (1981) found that M. rosenbergii transferred 

from freshwater to water of 24 psu (practical salinity units) without acclimation 

showed no signs of stress or decrease in activity. At least one aquaculture farm, New 

Zealand Prawns Ltd, keeps egg-bearing females in full strength seawater so that 

larvae immediately find themselves in the required conditions on hatching (see 

below).    

 

Macrobrachium rosenbergii are sexually dimorphic. Males are larger than females 

and have much larger second periopods (the prominent clawed arms, see Appendix 1, 

Diagram 1), and larger cephalothoraxes (the fused structure comprised of the head 

and thorax, Appendix 1, Diagram 1). For males, society is highly structured with 
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three distinct morphotypes being recognized, each with differing growth rates and 

behaviour (Kuris et al. 1987). All three morphotypes are sexually active but with 

different success and mating strategies.  

 

The first of the male morphotypes is the small or ‘SM’ male (Appendix 1, Photo 1, 

lower specimen). As the name might suggest they are the smallest of the three and 

make up around 50% of the male population (Ra'anan and Sagi 1985). They are 

characterized by short, relatively un-pigmented claws and are subordinate to the 

other morphotypes. They also exhibit “sneak” reproductive behaviour, quickly 

copulating with females when opportunity permits (Ra'anan and Sagi 1985). The age 

at which they become capable of sexual reproduction varies, but usually occurs at a 

carapace length of just 10mm (Kuris et al. 1987).  

 

The second male morphotype is the orange-claw or OC male (Appendix 1, Photo 2) 

comprising around 40% of the male population (Ra'anan and Sagi 1985), and is 

characterized (unsurprisingly) by having orange claws. The transition from SM to 

OC male is gradual, with an intermediate form, the “weak OC” being recognisable 

(Kuris et al. 1987). They are dominant over small males but subordinate to blue-claw 

males (the third morphotype, see below) and hence have poor mating success.  

 

The largest of the three castes are the dominant blue-claw or ‘BC’ males (Appendix 

1, Photo 3), making up the remaining 10% of the male population (Ra'anan and Sagi 

1985). They are characterized by their large body size and especially large second 

periopods (see diagram 1, Appendix 1) that are deep-blue in colour. BC males are 
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dominant over both SM and OC males, are territorial, and gather harems of soft-

shelled females in preparation for mating (Kuris et al. 1987).  

 

Growth rates for both males and females vary, involving genetic and environmental 

factors, as well as the social factors outlined above. In males, OCs has the highest 

somatic growth rates of all three morphotypes. Eventually OC males will grow large 

enough to overthrow a territory’s BC male, take over his harem and transform into a 

BC male at a single metamorphic moult (Kuris et al. 1987) at which point growth 

ceases (Ra'anan et al. 1991). This is an ongoing process, known as the “leapfrog” 

phenomenon (Ra'anan et al. 1991) and sees BC males becoming increasingly larger 

with each successive generation.  

 

Unlike the male population there is only one morphotype for females (Appendix 1, 

Photo 4) and no territoriality. Growth effectively ceases at sexual maturation. The 

length of time taken to reach sexual maturity for females is variable, but observations 

of a captive population by Ra’anan et al. (1991) ranged from 6-20 weeks with 

weights ranging from 12-32g.  

 

Mating occurs between recently moulted, ovigerous (egg-bearing) females and hard-

shelled males. External fertilization takes place when the male deposits a gelatinous 

sperm-packet (spermatophore) around the gonopores between the walking legs of the 

female. Fertilized eggs are transferred to a ventral brood chamber beneath the 

abdomen and are periodically ventilated through beating of the pleopods (paired 

structures under the abdomen used primarily for swimming, (see Diagram 1, 
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Appendix 1). Eggs will hatch in 18-23 days under the optimum temperature of 28°C 

(New 1990). 

 

Unlike adults, larvae in the early stages of development require brackish water to 

survive and will die if they don’t find themselves in such conditions within five days 

of hatching (Ling 1977). Typically, newly hatched larvae are washed down 

freshwater streams and rivers until they reach the required brackish conditions of 

estuaries. There are generally 11 recognized larval stages before metamorphosis into 

post larvae, although Gomez Diaz and Kasahara (1987) have reported another six 

instars, bringing the total to 17. As they develop into post-larvae, they move further 

upstream away from estuaries into progressively less saline water, over a period of 

around three to six weeks (New and Singholka 1985). At adulthood, they live 

exclusively in fresh water. 

 

2.3 Water quality in aquaculture 

Water quality is important in natural environments, particularly for the health of the 

organisms that live within it. It can be described as “physical, chemical and 

biological factors that influence the beneficial use of water” (Aquaculture 1999). 

Water quality parameters are often closely linked to and dependent on one another. 

Of particular concern in water quality is eutrophication, described by Nixon (1995) 

as “the process of increased organic enrichment of an ecosystem, generally through 

increased nutrient inputs”. These “inputs” Nixon refers to are most often nitrogen 

and phosphorous, important limiting nutrients for photosynthetic organisms (Lobban 

and Harrison 1994). Human activities such as sewage discharge and run-off from 

agriculture and aquaculture are common sources of these nutrients (Anderson et al. 
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2002). In particular, harmful algal blooms linked to eutrophication are of concern to 

resource managers. Harmful algal blooms can have a variety of detrimental effects 

including oxygen depletion when blooms crash, alteration of habitat through shading 

of the benthos, contamination of drinking water and mass mortality of fish and 

shellfish. The latter has the potential to cause human illness and even death when 

contaminated water or fish and shellfish are consumed (Anderson et al. 2002).  

 

Despite their artificiality, aquaculture environments such as prawn ponds share many 

similarities with natural ecosystems. As in natural environments, good quality water 

is essential in aquaculture in order to maintain the health, optimal growth and 

survival of the cultured species, prevent eutrophication and maximize value for the 

farmer. Many water quality variables are often closely linked to one another, and 

maintaining appropriate levels of each in aquaculture is often a ‘balancing act’. This 

may require the farmer to compromise on the ideal level of one variable in order to 

avoid the detrimental level of another. For example, the level of feed that may allow 

for optimal nutrition may not necessarily be the best option if the system is not able 

to adequately deal with the level of ammonia excreted by stock. Management in 

aquaculture often involves trade-offs, and optimal targets may shift, for instance due 

to the biomass of stock, day length or temperature etc. Common water quality 

parameters of interest to farm managers are discussed in the next section, with 

special reference to M. rosenbergii where possible. 

 

2.3.1 Phytoplankton & chlorophyll a 

Phytoplankton is essential in maintaining good water quality. Phytoplankton affects 

oxygen levels, nutrient concentrations, light levels, and zooplankton biomass (Chien 
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1992). Farm managers often deliberately fertilize aquaculture ponds to stimulate 

phytoplankton blooms. These blooms shade stock, prevent growth of benthic algae 

(by shading the benthos), oxygenate water, reduce toxic ammonia levels and provide 

a food source for zooplankton which in turn can provide a food source for higher 

trophic levels that may be eaten by stock (Burford 1997).  

 

Chlorophyll a is present in all photosynthetic organisms including algae. Its 

measurement as an index of water quality (Papista et al. 2002) and phytoplankton 

biomass (Desortova 1981, Canfield et al. 1985, Voros and Padisak 1991) is widely 

accepted. Generally, higher chlorophyll a concentrations translate into higher 

individual cell counts and biomass of phytoplankton, though not always, as not all 

algal cells produce equal amounts of chlorophyll a (Felip and Catalan 2000). For this 

reason it is also important to identify and count phytoplankton cells in water samples.  

 

The identification of algal species and cell number is also important as some species 

can produce toxins that are harmful to animals and humans. For example, the deaths 

of many dogs, cattle, sheep and horses have been reported in Australia and Scotland 

after ingestion of a number of neurotoxin-producing cyanobacteria and benthic 

Oscillatoria species in lakes and rivers (Codd et al. 1992, Steffensen et al. 1999). 

Some species of cyanobacteria and dinoflagellates produce Paralytic Shellfish 

Poisons or PSPs, which have been widely documented to affect humans, sometimes 

lethally (Rodrigue et al. 1990, Anderson et al. 2002). PSP events have also been 

associated with the products of aquaculture such as bivalve molluscs (Paez-Osuna et 

al. 1998). Certain species of cyanobacteria have also been found to affect the flavour 

of some cultured species (Tucker 2000). The bottom line for farm managers is the 
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value of their product. With certain algal species being able to affect the safety and 

flavour of aquaculture products, management of phytoplankton is essential. 

 

If phytoplankton levels are too high farm managers may reduce the level of feeding 

to reduce nutrient inputs and/or flush ponds with clean fresh water. If phytoplankton 

levels are not sufficient they may deliberately fertilize ponds to encourage growth 

(Burford 1997). 

 

2.3.2 Nutrients: nitrate, ammonia & orthophosphate 

Nutrient levels are an important consideration in farm management. Adequate 

nutrient levels will allow for the right structure and biomass of phytoplankton 

(Alonso-Rodriguez and Paez-Osuna 2003). In terms of aquaculture this means 

phytoplankton species composition and abundance that allows for maximum 

production, health and ultimately value of the cultured species. Both species 

composition and biomass of phytoplankton communities can be influenced by 

nutrient concentrations (Smith 1982, Hecky and Kilham 1988) which in turn can 

influence other dynamics in aquaculture ponds.   

 

Nitrogen is an essential nutrient for the growth of phytoplankton, and is an important 

component of metabolic compounds such as amino acids (Lobban and Harrison 

1994). Nearly all phytoplankton will utilize nitrate (Burford and Pearson 1998). 

Inorganic nitrate (NO3
- must be converted to nitrite (NO2

-) by the enzyme nitrate 

reductase, and then converted further to ammonium by nitrite reductase (Lobban and 

Harrison 1994). This process is known as denitrification. The end-product of 

ammonium can then be directly incorporated into amino acids and proteins. The 
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enzymes involved in this process are produced by algae and the conversions occur 

within algal cells, although some bacteria found in water are also capable of 

denitrification (Betlach and Tiedje 1981). Some bacteria can also convert nitrogen 

back from ammonia into nitrite and then nitrate (Durborow et al. 1997). 

 

Ammonia enters aquatic systems mainly through excretion by living organisms, 

especially by the species under culture, and through the decay of organic material 

including dead organisms and uneaten feed. Given the abundance of sources, 

nitrogen is not expected to be limiting to phytoplankton growth in aquaculture, 

particularly in intensive systems. 

 

Aside from being a nutrient source for phytoplankton, ammonia is of interest to farm 

managers because it can be highly toxic to aquatic animals (Chin and Chen 1987, 

Noor-Hamid et al. 1994, Ostrensky and Wasielesky 1995, Naqvi et al. 2007) and has 

been found to affect prawn growth and cause mortality (Wickins 1976, Armstrong et 

al. 1978, Mallasen and Valenti 2005). Problems can occur at concentrations as low 

as 0.5 parts per million, or ppm (Naqvi et al. 2007). In juveniles of the crab 

Callinectes sapidus it has been demonstrated that ammonia accumulates in the body, 

altering growth and causing death (Kormanik and Cameron 1981). Mallasen and 

Valenti (2005) offer a similar explanation for altered larval development and growth 

in M. rosenbergii.   

 

In crustaceans, ion exchange with the environment occurs mainly through the gills 

(Henry and Wheatly 1992). Mallasen and Valenti (2005) found that in M. 

rosenbergii, larvae in later stages of development were more sensitive to ammonia 
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than those in the earlier stages, attributing this to having more developed gills with a 

larger surface area. In a controlled experiment Naqvi et al. (2007) found that for late 

juveniles (4.13-4.49g) of M. rosenbergii, mortality increased and growth decreased 

significantly as ammonia levels increased. They also found significantly reduced 

feeding activity in ammonia levels as low as 0.5 ppm. As well as stunting growth 

through poor nutrition, reduced feeding activity results in further increases in 

ammonia and decreased oxygen as feed goes uneaten and pollutes the water during 

bacterial decomposition of the material.  

 

Phosphorous is generally the least abundant of essential (and therefore limiting) 

nutrients required by photosynthetic organisms in freshwater systems, including 

phytoplankton (Schindler 1977). For the majority of algae, it is most readily 

available in the form of the orthophosphate ion, PO4
-3 (Lobban and Harrison 1994, 

Correll 1998). Phosphorous is an important component of nucleic acids, proteins, 

phospholipids and ATP (Correll 1998), the latter being essential for the transport of 

energy in cells for metabolism (Lobban and Harrison 1994).  

 

Nutrient enrichment may cause algal blooms which can cause water to become 

hypoxic (low in oxygen) or even anoxic (no oxygen) (Anderson et al. 2002),   

particularly at night. As in the day time, oxygen continues to be consumed at night 

by all the organisms in the pond, including algae which are now consuming more 

oxygen than they produce in the day time while photosynthesizing. This creates what 

is known as a deficit in the oxygen budget (Brunson et al. 1994) where the demand 

for oxygen of all the organisms in the water exceeds the production of oxygen. 
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A number of management strategies exist to control ammonia and other nutrient 

levels (Aquaculture 1999). These include: 

• Stopping or reducing feeding (this reduces nutrient input). 

• Flushing ponds with fresh water (to dilute the nutrient concentrations). 

• Reduce stocking density (reduces the level of feed needed and reduces the 

level of nitrogenous excretion by the cultured species). 

• Reduce pH level of the pond (reduces the conversion of non-toxic 

ammonium into toxic ammonia ions). 

 

2.3.3 Temperature 

Being ectothermic, M. rosenbergii obtain their heat from the water in which they live. 

Temperature affects the chemical and biological processes of ectothermic organisms 

in the water which in turn affects many other important variables such as oxygen 

consumption, feeding rates and growth. Depending on the type of farm, temperature 

may not be controlled at all, or it may be heated by a number of methods such as 

solar, electrical and geothermal energy. 

 

New (1990) reports temperatures below 14°C and above 35°C as lethal for M. 

rosenbergii, with 29-31°C being optimal. Niu et al. (2003) reported 33°C as 

significantly increasing feeding rates and being optimal for growth. However, in 

their experiment water had to be artificially saturated with oxygen. This was to 

compensate for the increase in oxygen consumption by prawns due to the increased 

feeding activity (and hence decreased dissolved oxygen) that resulted from the high 

temperature. Rearing prawns at this temperature in a commercial situation would 
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require a highly effective method of aeration which would increase operating costs, 

offsetting benefits from higher growth rates. 

 

2.3.4 Turbidity 

Turbidity (clarity of water) in aquaculture systems is also an important water quality 

variable. Turbidity is affected by zooplankton and phytoplankton densities in the 

water column and also suspended particulate matter such as silt, faecal matter and 

uneaten feed.  

 

Turbidity affects the level of light penetration in the water column which has 

influential effects on photosynthesis and hence algal growth. Highly turbid ponds 

have shallow light penetration which lowers the temperature as well as 

photosynthetic activity. Highly turbid ponds often have decreased amounts of algae 

growing on the bottom of ponds. In ponds with low turbidity, we see the opposite 

effect (Aquaculture 1999). Evidence for light limiting phytoplankton growth has 

been found in both commercial penaeid prawn ponds (Burford 1997) and in M. 

rosenbergii ponds (Costa-Pierce et al. 1984).  

 

When ponds are too turbid, farmers may flush ponds with fresh, clean water to 

reduce nutrient levels to discourage phytoplankton growth. Flushing can also dilute 

the amount of particulate matter to reduce turbidity. If not sufficiently turbid they 

may add fertilizer to stimulate phytoplankton blooms. 
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2.3.5 Dissolved oxygen 

Dissolved oxygen is recognized as one of the most important water quality 

parameters for aquatic organisms, affecting a variety of physiological processes. 

Low oxygen, or hypoxia, has been found to inhibit moulting and growth and cause 

mortality in Penaeid prawns (Clark 1986, Allan and Maguire 1991). In freshwater 

habitats, dissolved oxygen levels can fluctuate markedly, particularly on the bottom 

of growout ponds where prawns spend most of their time (Cheng et al. 2003).  

 

Hypoxia (low oxygen) in aquaculture ponds is due in particular to the respiration of 

all present organisms, water temperature and the decomposition of faecal matter and 

uneaten feed. Farm managers try to control dissolved oxygen levels by controlling 

stocking densities of the cultured species, feeding level, paddle-wheel aeration, 

temperature control, and by managing algal species composition and abundance.   

 

In aquaculture, high dissolved oxygen is vital (Costa-Pierce et al. 1984). In M. 

rosenbergii, survival rate is most closely linked to dissolved oxygen than any other 

water quality parameter (New 1990).  Dissolved oxygen levels down to 1 ppm can 

be tolerated (Avault 1987) but stress is visible when levels drop below around 4 ppm. 

Farm managers generally aim to keep levels at 6-8 ppm (New 1990).  

 

 

2.4 New Zealand Prawns Limited 

New Zealand Prawns Ltd (NZPL) is a commercial freshwater prawn farm located 

just north of Taupo in Wairakei, New Zealand. It was established in 1987 to 

investigate the feasibility of culturing M. rosenbergii in a temperate country using 
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geothermal water to heat fresh water from the Waikato River to the species’ optimal 

temperature of 28°C.  

 

The current population of M. rosenbergii at NZPL was founded in 1987 by 20 males 

and 5 females imported live from Malaysia. A further 25 males and 30,000 post-

larvae were imported from the same source one year later (Wear 1996). Importing 

the foreign species into New Zealand was helped by the fact that they would be 

unable to establish themselves in the wild and compete with native species if they 

ever escaped the confines of the farm (Wear 1991). This is because the tropical 

species would be unable to tolerate the cold winter temperatures of New Zealand; the 

warming of freshwater with geothermal water within the prawn farm is the key to 

their survival. 

 

NZPL now consists of indoor brood-stock holding tanks, hatchery facilities and 

nursery tanks for culturing larvae and nursing post-larvae, and 19 outdoor growout 

ponds with depths ranging from 0.8 to 1.2 metres (see Diagram 1, below). Good 

quality freshwater (well oxygenated, low in nutrients) from the Waikato River is 

brought up to the required temperature using a plate heat exchange device (similar in 

principal to a car radiator) with waste geothermal water from a neighbouring 

geothermal power plant run by Contact Energy Ltd. Geothermal water cannot be 

used directly because the heavy metal content is far too toxic for aquaculture. 
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 Diagram 1 – site layout, New Zealand Prawns Ltd 

 

Post-larval prawns of between 0.5 and 5.0 grams are stocked from nursery tanks into 

empty growout ponds. Harvest occurs around three months later if a sub-sample of 

prawns shows that the mean weight of individuals is marketable (25g+). When a 

pond is ready for harvesting, water is completely drained and prawns are collected 

by hand from the bottom once the pond is empty.  

 

In order to help keep ponds oxygenated and warm, water is constantly flowing into 

and out of the ponds. Complete turnover of water in each pond takes an average of 

three days in summer, and one and a half days in winter. Turnover is higher in winter 

because the colder ambient air temperature cools pond water more rapidly than in 

summer. Water flowing out of ponds (including water drained at harvest) ends up in 

a ‘settling pond’ rather than being expelled into the Waikato River. Water from the 
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settling pond is pumped back to the heat exchanger where it is brought back up to the 

required temperature. This ranges from 39°C in the peak of summer to 58°C in the 

peak of winter. These differences in water heating temperatures are again due to 

differences in ambient air temperatures between seasons. Water is then recycled back 

into the growout ponds.  

 

While water first entering grow out ponds is hot enough to be lethal to prawns, it 

cools rapidly to the optimum temperature of 28°C, and prawns do not inhabit the 

ends of ponds where water enters. Fresh water is taken from the Waikato River when 

water levels in the growout ponds get low. This is due mainly to evaporative loss 

which on a daily basis farm managers estimate to be around 1% of total farm water 

volume in summer and 2% in winter. Once again, this is due to the seasonal 

differences in ambient air temperature. 

 

2.5 Algal blooms in freshwater prawn culture 

Algal blooms have had detrimental impacts in the culture of M. rosenbergii. Green et 

al. (1977) reported anoxic conditions following an algal bloom as being responsible 

for a mass kill (45%) of pond-reared M. rosenbergii in an experiment on an outdoor 

culture pond at the University of Malaya. The algal bloom was believed to have been 

caused by over-fertilization of the pond with feed, exacerbated by heavy rain causing 

suspension of organic material which in turn stimulated bacterial growth. The 

combination of algal and bacterial respiration at night caused the pond to become 

anoxic, causing the kill. On the morning the kill was discovered, dissolved oxygen 

was 0.5 ppm, lower than the 1 ppm reported by Avault (1987) as being the lower 

limit M. rosenbergii can tolerate. 
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Blooms of benthic algae in spring and summer have been observed in growout ponds 

at NZPL. Farm managers have noticed that ponds in which these blooms occur often 

have dramatically reduced yield. Qualitative notes included with the production data 

dating back as far as 2000 show that on many occasions benthic algal blooms have 

coincided with very low yields, often less than 2 marketable tonnes per hectare 

(MTPH) and as low as 1 MTPH, while the overall mean for all ponds is 4.14 MTPH 

(calculated from data from January 1st 2000 to 28th March 2007). The lowest 

recorded harvest is 0.8 MTPH on April 8th 2004 but there are no notes included to 

suggest why the harvest was so poor. It is thought that benthic algae impair the 

ability of prawns to forage for food, which is of great concern in the farming of M. 

rosenbergii. Allan and Maguire (1994) found that in model ponds used to culture the 

Penaeid prawn Penaeus monodon, individual prawn growth (weight gain), biomass 

gain and food conversion efficiency were significantly lower (p < 0.05) in ponds 

where filamentous benthic algae was stimulated to bloom compared to ponds where 

phytoplankton was stimulated to bloom.    

While pelleted feed is used at NZPL, Δ-carbon studies on prawns have shown they 

depend mainly on naturally occurring food regardless of whether pelleted feed is 

available or not (Schroeder 1983). In an experiment by Tidwell et al. (1997) M. 

rosenbergii were grown in ponds receiving three different treatments for four months. 

Prawns in treatment one were fed a complete diet of pelleted feed containing 32% 

protein. In treatment two prawns were not fed but the ponds in which they were 

grown were organically fertilized with distillers dried grains with solubles at a rate 

determined to be equal in nitrogen content with treatment one. Prawns in the third 

treatment were unfed and the ponds received no fertilizer. They found that prawns in 

treatment three were significantly smaller than those in treatments one and two, but 
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prawns in treatments one and two were not significantly different from one another 

in size, indicating that natural productivity could be at least as important as 

supplementary feeding. Green et al. (1977) also report that most food obtained by 

prawns is from naturally occurring sources.  

In an experiment by Correia et al. (2002), M. rosenbergii grown for 63 days had 

significantly greater growth (more than double) in older ponds than in newer ones. 

Older ponds displayed higher levels of natural productivity, greater 

macroinvertebrate diversity and had 200 times more zoobenthos than newer ponds. 

The greater diversity and abundance of macroinvertebrates in older ponds was also 

reflected in the stomach contents of prawns grown in older ponds when compared to 

prawns grown in newer ponds. With the importance of naturally occurring food 

having been well demonstrated for M. rosenbergii, impairment in their ability to 

forage is of great concern.       

The omnivorous diet of M. rosenbergii includes aquatic insects and larvae, algae, 

nuts, seeds, grains, fruits, molluscs, crustaceans, fish flesh and offal (New 1990). 

Insects, insect larvae, algae, crustaceans and fish have all been observed in growout 

ponds at NZPL by farm staff and myself. It is quite possible that fruits, grains and 

seeds dispersed by wind could be present at NZPL too. Any impairment in prawn 

foraging ability at NZPL is therefore of great concern. 

 

Filamentous algae have also been found in the gill cavities of some prawns at harvest 

by farm staff, suggesting that algae may affect prawns directly through choking. 

Harvests after algal blooms appear to show a reduction in the number of individual 
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prawns as well as overall biomass. This suggests that blooms might cause mortality 

directly, as well as cause stunted growth through impaired foraging.  

 

This study aims to investigate what variables related to water quality differ between 

ponds at NZPL, the effect these variables have on abundance and species 

composition of phytoplankton, and the effects they may have on the production of 

marketable prawns. Funding was gratefully received from a Technology Industry 

Fellowship provided by the Foundation for Research, Science & Technology (FRST). 
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3. MATERIALS AND METHODS 
 
3.1 Field collection 

Water samples were taken at 9-11 day intervals between 8th November 2006 and 

28th March 2007 (for the complete sampling schedule and raw data see the attached 

compact disc). All sampling in the field was done at the same time each day 

(approximately 10:00am-noon). Water samples were taken from all 19 growout 

ponds. Ponds 10 and 19 were later randomly selected to be dropped from sampling 

due to budget constraints. Pond 12 was later dropped from the study as it did not get 

harvested during the sampling period. Samples were also taken from the farm’s 

settling pond, as well as the Waikato River to enable monitoring of any changes that 

may occur in the farm’s water source during the study. 

 

500ml of pond water was taken from the centre of each pond, within 50cm of the 

bottom (the area of the ponds actually inhabited by prawns). Half of each water 

sample was fixed in Lugol’s iodine solution (Montagnes et al. 1994) for 

identification and quantification of phytoplankton. The other half was frozen at -

20°C for nutrient and chlorophyll a analysis. 

 

Water temperature was measured using a Check-Temp 100-model (Aircon Ennis Ltd, 

Noughaville, Ireland) and dissolved oxygen was measured at the same time as water 

collection using an Insight IG 3100 dissolved oxygen meter.  

 

Pond turbidity was measured using standard procedures with a 20cm diameter secchi 

disk (Koenings and Edmundson 1991). A secchi disk is a weighted disk divided into 

quarters. Two of the quarters are black and the other two are white to provide 
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contrast. The secchi disk was suspended by a cord marked at every centimetre and 

lowered into the water column. The disk was lowered until it could no longer be seen 

from the surface and this depth was recorded to the nearest centimetre using the 

markings on the cord. 

 

3.2 Chlorophyll a analysis 

Chlorophyll a was measured as an index of phytoplankton biomass. Measurement of 

chlorophyll a does not give a direct measure of phytoplankton biomass nor is there a 

standard formula to convert chlorophyll a readings into biomass, but several studies 

that have measured both have found significant positive correlations between the two 

(Desortova 1981, Canfield et al. 1985, Voros and Padisak 1991).    

 

25ml sub-samples of water were taken from each 500ml sample and filtered through 

47mm Whatman GF/F (catalogue number 1825 047) glass microfibre filters using a 

Millipore vacuum filter apparatus (model XX1004700) in a dimly-lit laboratory. 

Filters were wrapped in aluminium foil and kept frozen at -20°C in total darkness 

until chlorophyll a was ready for methanol extraction. 

 

Chlorophyll a was extracted from filters by soaking them in 10 ml of analytical 

grade methanol (99.9%) for 24 hours in total darkness. While in the past acetone has 

been commonly used as an extraction solvent, methanol has been found to extract 

chlorophyll a faster and more thoroughly from phytoplankton than acetone, and does 

not interfere with fluorometric analysis (Holm-Hansen and Riemann 1978) which 

this study used. A Turner Designs Fluorometer (Model # 10-AU-005, Sunnyvale, 

California, USA) was used to take an initial reading from a 3ml sub-sample of the 
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methanol extract. Five drops of 1M hydrochloric acid was added to the 3ml sub-

sample and another reading taken to correct for phaeophytins as per the fluorometer 

manufacturer’s instructions. The difference between the two readings gives the 

actual measure of chlorophyll a (parts per million, ppm).  

 

When chlorophyll a degrades (for instance, due to the death of an algal cell) waste 

products known as phaeophytins can remain in the water. Phaeophytins fluoresce at 

a similar but slightly shorter wavelength in the red light spectrum than chlorophyll a 

(Lorenzen 1967) and contribute to the reading given by the fluorometer. 

Phaeophytins must therefore be accounted for in fluorometric analysis to avoid 

obtaining falsely high chlorophyll a readings (Richards and Thompson 1952). 

Adding acid to the methanol extract converts the chlorophyll a molecules it contains 

into phaeophytins and the fluorescence of the extract is reduced (due to the shorter 

wavelength at which phaeophytins fluoresce). Thus we can calculate the 

concentration of chlorophyll a in the methanol extract by taking the difference in 

fluorometer readings from before and after the addition of acid.  

 

All steps in the analysis of chlorophyll a were carried out in a dimly lit laboratory 

and all samples were stored in total darkness between steps in the process. This was 

to prevent degradation of chlorophyll a into phaeophytins by sunlight and 

fluorescent light, as recommended in the Turner Designs fluorometer instruction 

manual, which would have resulted in falsely low readings of chlorophyll a. 
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3.3 Nutrient analysis 

Orthophosphate and ammonia levels were measured using an Aqua Analyzer 

(Orbeco-Hellige, model 952, Farmingdale, New York, USA). The catalogue 

numbers for the orthophosphate and ammonia test kits were 957-77 and 957-43 

respectively. Nitrate was measured using an Analyst (Orbeco-Hellige, model 975MP, 

Farmingdale, New York, USA). The catalogue number for the nitrate test kits was 

975-07. 

 

The Aqua-Analyzer 952 measures nutrient levels by colorimetric analysis. 

Procedures vary depending on the nutrient being analyzed but typically a ‘blank’ 

sample is poured into a vial. This is sample water that has not had any chemical 

reagents added to it. The vial is placed in the Aqua-Analyzer and light is passed 

through it. The machine measures the amount of light transmitted (as a percentage) 

through the blank vial and the machine is then calibrated so that the transmittance 

reads 100%. The sample then has various chemical reagent(s) added to it and left for 

a specified time (the reagents used and the time varies depending on the nutrient 

being measured) during which it will change colour. The darkness of this colour will 

depend on the concentration of the chemical in the sample being analyzed. After the 

specified time the vial is placed back in the Aqua-Analyzer which will give a 

different reading to the blank due to the change in colour after the addition of 

reagents. The percentage of light transmitted through the sample is looked up in 

tables in the manual which gives a corresponding concentration of the nutrient in 

parts per million.  
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The Analyst 975MP also measures nutrients colorimetrically but differs from the 

Aqua-Analyzer in that it gives a direct reading of the nutrient concentration in parts 

per million, with no need to consult tables. The use of blanks and chemical reagents 

is still required. Exact details of the test procedures are available in the manuals of 

these machines. 

 

While phytoplankton can assimilate and use a variety of forms of nitrogen (e.g. 

nitrate, nitrite, ammonia) the budget and available equipment prevented all forms of 

nitrogen from being measured. Given that pond water is recycled at NZPL, and 

prawns are fed a high protein diet and farmed semi-intensively, nitrogen is not 

expected to be a limiting factor for algae. Ammonia was measured because of its 

potential toxicity to prawns (Naqvi et al. 2007) and because it is the most preferred 

form of nitrogen for phytoplankton (Hargreaves 1998). Nitrate was measured 

because it is also utilized, although it requires enzymatic reduction to ammonia 

within phytoplankton cells before it can be incorporated into amino acids. This 

makes it a less energy-efficient alternative to ammonia (Hargreaves 1998). 

 

 

3.4 Phytoplankton identification & quantification 

Phytoplankton identification was carried out using an inverted microscope and 

sedimentation chamber using the method described by Utermohl (1958). Samples 

fixed by Lugol’s solution were well shaken to evenly distribute algal cells that may 

have settled to the bottom of sample jars. Without shaking the samples would have 

been biased towards those algal cells that sink slowly and stay in the water column 

near the top of the jar. After shaking, 0.5ml sub-sample of water was placed into 
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each sedimentation chamber and allowed to settle for 24 hours. Where possible, 

phytoplankton were identified down to genus level. Where not possible, they were 

grouped into either “pennate diatoms” or “coccoid unicells” as the case may be. 

Texts used to identify phytoplankton were Moore (2000) and Wehr & Sheath (2003). 

One other alga was noticed in multiple ponds on two sampling dates and could not 

be identified from texts. This alga was referred to in all ponds on both dates as “Eyes 

sp.” See Appendix 2 for photographs of phytoplankton identified in this study. 

 

Different algal taxa were identified and counted under each field of view (FOV) 

under the microscope within each sedimentation chamber. Counting stopped when 

enough FOVs within each chamber had been viewed to reach 200 or more algal cells 

total (N.B. all cells within the FOV in which the 200th cell was counted were also 

counted and included). The number of FOVs required to reach 200 cells or more was 

also noted so that the mean number of algal cells per FOV could be calculated (no. 

algal cells counted/no. of FOVs). 

 

The volume of water within each FOV was also calculated so that total cell counts 

could be standardized to cells/ml using the following equation:  

 

Average no. of cells per ml = average no. of cells per FOV × no. of FOVs per ml 

 

The Shannon Index of Diversity (Shannon and Weaver 1949) was then calculated for 

each pond for each sampling date using mathematical functions available in 

Microsoft Excel 2003. The Shannon Index of Diversity (H’) is commonly used in 

biological monitoring programmes and to measure species richness or diversity 
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(Spellerberg and Fedor 2003) and can be applied to both terrestrial and aquatic 

ecosystems, and plants and animals (Baker 1992, Abbot et al. 2006, Smith and 

Lester 2006) and is the most commonly used diversity index for phytoplankton 

(Figueredo and Giani 2001). The index is given by the equation: 

 
s 

H• = –  (Pi 1n[P ]) 
= 1 

 
where P  is the proportion of individuals in the ith species, s is the total number of 
species and ln is the natural logarithm.  

 
The Shannon Index of Diversity is being used in this study to investigate 1) if the 

species diversity of the phytoplankton community in ponds at NZPL may affect 

prawn yield, and 2) if the species diversity is influenced by the water quality 

parameters measured. If it turns out that phytoplankton species diversity does in fact 

influence prawn yield, it would then be useful to know what influences species 

diversity (and therefore prawn yield). 

 

 

3.5 Statistical analyses 

All statistical analyses were carried out using SPSS 14.0 for Windows. 

 

Measurements of average depth for each pond were obtained from NZPL, as was 

prawn yield at harvest. Yield was standardized to MTPH (Marketable Tonnes Per 

Hectare) to allow for the differences in pond size. Production data from January 1st 

2000 was also compiled in order to assess if there were any historical differences in 

prawn yield between ponds. 
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One-way Analysis of Variance (ANOVA) is a statistical technique used to determine 

whether there are any differences in mean between groups or treatments for a given 

variable of interest (Quinn and Keough 2003). Differences in mean values between 

ponds were analysed for each variable measured using one-way ANOVA. When 

ANOVA assumptions of normality and homoscedacity were violated, natural log 

transformations of data were made. If the ANOVA assumption of normality was still 

violated after transformation, Kruskal-Wallis tests were used in place of ANOVA to 

compare medians between ponds (Quinn and Keough 2003). If after transformation 

the assumption of equality of variance was still violated, Brown-Forsythe tests were 

used to compare means (Quinn and Keough 2003). Unfortunately, both the Kruskal-

Wallis and Brown-Forsythe tests have less power than ANOVA to detect departures 

from the null hypothesis (in this case that there are differences in means of measured 

variables between ponds) where such departures exist. Therefore one-way ANOVA 

was used over Kruskal-Wallis and Brown-Forsythe tests wherever possible. 

 

Three different step-wise multiple linear regressions were run to investigate which 

variables were most influential on prawn yield, the number algal cells per ml and 

phytoplankton diversity. This method uses one or more explanatory or predictor 

variables to explain or predict a response variable (Moore and McCabe 2003). An 

initial multiple linear regression is performed, after which the explanatory variable 

with the least statistical significance is removed from the analysis. The procedure is 

repeated and the explanatory variable with the least significance is again removed. 

This continues until only statistically significant explanatory variable(s) remain. If 

there are none left, then none of the explanatory variables are satisfactory predictors 

of the response variable.  
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All measured water quality variables (dissolved oxygen, temperature, chlorophyll a, 

ammonia, orthophosphate, nitrate, turbidity, phytoplankton cells per ml and Shannon 

Index of Diversity) were used as explanatory variables as well as mean pond depth, 

with prawn yield in Marketable Tonnes Per Hectare (MTPH) as the response 

variable. Only production data from within the sampling period was used in this 

analysis.  

 

For the multiple regression on prawn yield for the sampling period, the mean value 

of each predictor variable for each grow out period was used. For example, while the 

overall mean ammonia concentration in Pond 4 for the entire study was 0.0163 ppm, 

the mean ammonia concentration was 0.0217 ppm between stocking of Pond 4 on 

22/11/06 until its harvest on 27/2/07, so the latter value was used in the regression. 

This was done for each predictor variable for each pond. Where information on 

water quality variables for an entire grow out period was incomplete, the information 

available was used. 

 

 

A second multiple regression was done to see what variables measured were the 

most influential on phytoplankton species richness. The water quality parameters 

chlorophyll a, dissolved oxygen, temperature, turbidity, nitrate, ammonia and 

orthophosphate were used as the explanatory variables with the Shannon Index of 

Diversity as the response variable. 
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A third and final multiple regression was carried out in order to see what water 

quality parameters were most influential on phytoplankton biomass. Chlorophyll a 

(the index of phytoplankton biomass for this study) was used as the response 

variable with dissolved oxygen, temperature, turbidity, nitrate, ammonia, 

orthophosphate, turbidity, and the Shannon Index of Diversity as explanatory 

variables.  

 

To test for changes over time in the different variables, repeated measures ANOVA 

(Quinn and Keough 2003) was used.  In repeated measures ANOVA, it is the 

difference or change in response variable(s) over time that we are investigating, 

rather than differences in mean between groups or treatments for variable(s) of 

interest as in regular ANOVA. For example, we may use regular ANOVA to test 

whether or not there is a significant difference between ponds for the mean number 

of phytoplankton cells per ml of water at NZPL, and we may use repeated measures 

ANOVA to see if there is a change over time in the number of phytoplankton cells 

per ml of water. 
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4. RESULTS 
 
This study sought to investigate what water quality variables impact prawn yield, 

and what water quality variables impact phytoplankton diversity and abundance at 

New Zealand Prawns Ltd, how these variables change over time, and whether they 

differ between ponds. For investigating impacts on prawn yield, phytoplankton 

diversity and abundance were themselves included in analyses as water quality 

variables of potential influence. Water samples were taken at 9-11 day intervals 

between November 8th 2006 and March 28th 2007. The following water quality 

parameters were measured from water samples: 

 

• Phytoplankton abundance and diversity 

• Chlorophyll a concentration 

• Ammonia 

• Nitrate 

• Orthophosphate 

• Secchi disk depth (turbidity) 

• Temperature 

• Dissolved oxygen 

 

The water quality variables measured were compared between ponds to investigate 

any differences. Yield of marketable prawns was also recorded during the sampling 

period and used as the response variable in a multiple regression to investigate what 

(if any) impacts recorded water quality variables may have on prawn production. A 

further two multiple regressions were also carried out with chlorophyll a and the 

Shannon Index of Diversity as response variables. Repeated measures ANOVA 
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could not be used to investigate changes over time in different variables due to gaps 

in the data.  

 

4.1 Differences between ponds 

Few differences were found between ponds for the water quality variables sampled 

and yield of marketable prawns. Table 3 summarises the outcomes of tests for 

differences in water quality variables between ponds.  

 

Phytoplankton abundance & diversity, and chlorophyll a 

One way ANOVA showed a significant difference between ponds for the mean 

number of phytoplankton cells per pond (p = 0.003, natural log transformed data). 

Post-hoc pair-wise comparisons (Tukey tests) found Ponds 2, 3 and 4 all had 

significantly higher numbers of algal cells per ml than Pond 18 (p = 0.031, 0.027 and 

0.043 respectively). A barplot of the mean number of phytoplankton cells per ml for 

each pond is shown in Figure 1. 

 

The highest number of cells per ml was 2.99 × 105 in Pond 3 on 17th January 2007 

and lowest in Pond 17 on 8th December 2006 at 1.58 × 104 cells per ml. The overall 

mean number of cells per ml for the entire sampling period was 6.95 × 104. Coccoid 

unicellular green algae were by far the dominant group, on average accounting for 

69.9% of total cell counts. A complete list of all phytoplankton taxa and mean 

proportion of each taxa for the sampling period is shown here in Table 1. 
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Table 1: Complete list of phytoplankton taxa found at New Zealand Prawns Ltd, 
listed in descending order of abundance 
    
Algal taxa   Mean proportion of total 
Coccoid unicellular green algae  0.699 
Coelastrum   0.093 
Filamentous cyanobacteria  0.039 
Scenedesmus   0.037 
Anabaena   0.035 
Merismopedia   0.027 
Pennate diatoms   0.023 
Dictyosphaerium   0.017 
Pediastrum   0.014 
"Eyes sp."   0.006 
Staurastrum   0.004 
Golenkinia   0.002 
Oscillatoria   0.002 
Thinner filamentous 
cyanobacteria  0.001 
Euglena   0.001 
Ceratium   0.001 
Oocystis   7.46-5 
Lyngbya   4.33-5 
Spirogyra   2.05-5 

 
 
No significant difference in phytoplankton diversity was found between ponds 

(Kruskal-Wallis test, p = 0.06). The highest score for the Shannon Index of Diversity 

was 1.76, recorded in Pond 3 on 17th January 2007. The lowest diversity score was 

0.42 in Pond 9 on 14th February 2007. Overall mean species diversity for all ponds 

was 1.02 for the entire sampling period. Mean species diversity for all ponds is 

shown in Figure 2. 
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Figure 1: Mean number of phytoplankton cells per ml for all 
sampled ponds, entire sampling period (error bars are standard 

deviations).
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Figure 2: Mean phytoplankton diversity (H' ) for all sampled 
ponds, entire sampling period (error bars are standard 

deviations).
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Figure 3: Mean chlorophyll a  levels for all sampled ponds, 
entire sampling period (error bars are standard deviations).
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No difference in chlorophyll a was found between ponds (Kruskal-Wallis test, p = 

0.278). Chlorophyll a levels peaked at 571 parts per million (ppm) in Pond 3 on 25th 

February and were lowest in Pond 13 at 6.14 ppm on 8th November 2006. A lot of 

filamentous benthic algae, consisting mainly of Oedogonium sp. was observed in 

Pond 13 on this day and throughout much of the sampling period. Farm managers 

decided on manual removal of the benthic algae from this pond. Overall mean 

chlorophyll a was 204.5 ppm for the entire sampling period. Mean chlorophyll a 

levels for each pond during the sampling period are shown in Figure 3. Mean 

chlorophyll a levels by date are shown in Figure 4. 

 

Figure 4: Mean chlorophyll a levels by date (error bars are 
standard deviations).
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Nutrients 

There were no significant differences between mean ammonia levels between ponds 

(Browne-Forsythe test, p = 0.172). The highest recorded ammonia level for the 

sampling period was 0.670 parts per million (ppm) in Pond 15 on 8th November, 

2006. The lowest detected level of ammonia was 0.003 ppm recorded in most ponds 

on multiple occasions. All ponds had at least one occasion during the sampling 

period where ammonia levels were too low to be detected. The overall mean 
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ammonia level for the sampling period was 0.066 ppm. Mean ammonia levels for 

each pond are shown in Figure 5. 

 

No significant differences between ponds were detected for mean nitrate levels 

(Browne-Forsythe test, p = 0.571). Pond 7 had the highest recorded nitrate level on 

18th December 2006 with 0.22 ppm. The lowest recorded nitrate level was 0.01 ppm 

and was shared by all ponds except Pond 6 at least once in the sampling period. 

Nitrate was also too low to be detected on multiple occasions for several ponds. The 

overall mean nitrate level for the sampling period was 0.034 ppm. Mean nitrate 

levels for each pond are shown in Figure 6. 

 

Mean orthophosphate did not differ significantly between ponds (Kruskal-Wallis test, 

p = 0.218). The highest recorded orthophosphate concentration was 0.71 ppm 

recorded in Pond 2 on 26th January 2007. Ponds 3, 9 & 16 all share the lowest 

recorded concentration of 0.05 ppm. Mean orthophosphate for the sampling period 

was 0.21 ppm. Mean orthophosphate levels for each pond are shown in Figure 7. 
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Figure 5: Mean ammonia levels for all sampled ponds, entire 
sampling period (error bars are standard deviations).
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Figure 6: Mean nitrate levels for all sampled ponds, entire 
sampling period (error bars are standard deviations).
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Figure 7: Mean orthosphosphate levels for all sampled ponds, 
entire sampling period (error bars are standard deviations).
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Temperature 

Mean temperature did not differ significantly between ponds (Kruskal-Wallis test, p 

= 0.971). The highest recorded was in Pond 3 at 30.2°C on 8th November 2006. The 

lowest temperature recorded was 25.5°C in Pond 4 on 28th November 2006. This 

abnormally low temperature occurred during maintenance by Contact Energy Ltd on 

their power plant (during which time the prawn farm had no geothermal water 

supply). The overall mean temperature for the sampling period was 27.7°C, close to 

the optimum temperature. Mean temperatures for each pond are shown in Figure 8. 

 

Dissolved oxygen 

There were no significant differences between ponds for mean dissolved oxygen 

(one-way ANOVA, p = 0.720). The highest dissolved oxygen level was in Pond 15 

on 25th February 2007 with a concentration of 11.6 ppm. The lowest recorded level 

was in Pond 8, 4.5 ppm on 17th March 2007. Overall mean for the sampling period 

was 8.4 ppm, and the mean dissolved oxygen levels for each pond are shown in 

Figure 9. 

 

Secchi depth (turbidity) 

Mean secchi depth was significantly different between ponds (Kruskal-Wallis test, p 

= 0.007). Unfortunately no post-hoc pair-wise comparison tests exist for the Kruskal-

Wallis test so we cannot determine which ponds were different in turbidity. The 

highest secchi depth (lowest turbidity) recorded during the sampling period was 

124cm, shared by Ponds 3 & 18 on 8th November 2006 and 17th January 2007 

respectively. As well as sharing the lowest turbidity recording, Pond 3 also had the 

highest turbidity recording with a secchi depth of 30cm on 25th February 2007. The 
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overall mean secchi depth for the sampling period was 59.47 cm, with a standard 

deviation of 18.31cm. Mean secchi depth for all ponds is shown in Figure 10. 

 

Prawn yield 

From the historical data, yield of marketable sized prawns was significantly different 

between ponds (one-way ANOVA, p = 0.007). A post-hoc Tukey test found Ponds 3 

and 16 differ significantly from each other with mean yields of 4.86 and 2.83 

marketable tonnes per hectare (MTPH) respectively. The highest recorded yield ever 

came from Pond 11 on 8th September 2004 with 7.1 MTPH. Pond 16 has the lowest 

recorded yield of 0.8 MTPH on 8th April 2004. Mean prawn yield for all ponds 

between 1 January 2000 and 28 March 2007 is shown in Figure 11. A comparison 

between Ponds 3 and 16 for all variables measured during the sampling period is 

shown in Table 2. No information is available for these variables for the period in 

which historical yield data has been compiled.  
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Table 2: Comparison between Ponds 3 & 16 for all variables, entire sampling 
period.  

Variable 
Pond 
no. Mean 

Std. 
Dev. Range 

3 8.24 1.76 5.6-11.1 
DO2(mg/L) 16 8.96 1.43 7-10.7 

3 27.7 1.4 25.5-30.2 
Temp°C 16 27.81 1.22 25.5-28.8 

3 49.38 23.88 30-124 
Secchi(cm) 16 56.67 11.99 21-77 

3 303.48 155.52 19-571 
Chlorophyll a (ppm) 16 210.35 137.9 34-417 

3 0.02 0.03 0-0.1 
Ammonia (ppm) 16 0.1 0.14 0-0.38 

3 0.26 0.11 0.05-0.48 
Orthophosphate (ppm) 16 0.18 0.11 0.05-0.39 

3 0.02 0.02 0-0.08 
Nitrate (ppm) 16 0.02 0.01 0.01-0.04 

3 1×105 6.7×104 
3.1×104 - 
2.99×105 

Cells per ml 16 6.03×104 1.63×104 
3.82×104-
8.53×104 

3 1155 n/a 1000-1310 
Pond depth (mm) 16 1085 n/a 1070-1100 

3 1.15 0.4 0.65-1.76 
Shannon Index 16 1.07 0.22 0.64-1.34 

3 5.12 n/a 5.12-5.12 Yield (marketable tonnes per 
hectare) 16 3.04 n/a 3.04-3.04 

 
 
Due to the low number of harvests (1-2 harvesting events per pond) mean yield 

between ponds cannot be compared for the sampling period. The highest yield for 

the sampling period came from Pond 4 with 5.88 MTPH, harvested on 16th 

November 2006. The lowest yield came from Pond 7 with 2.86 MTPH, harvested on 

19th December 2006. Pond 6 had the lowest mean yield of 2.9 MTPH and Pond 1 

had the highest mean yield with 5.42 MTPH. Overall mean yield was 4.18 MTPH. 

The mean yield for each pond during the sampling period is shown in Figure 12. As 

most ponds were only harvested once during the sampling period most of these 

‘mean’ values are actually values from single harvests (and hence error bars 

displaying standard deviations are not present for most ponds in Figure 12). 
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Figure 8: Mean temperature for all sampled ponds, entire 
sampling period (error bars are standard deviations).
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Figure 9: Mean dissolved oxygen for all sampled ponds, entire 
sampling period (error bars are standard deviations).
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Figure 10: Mean secchi depth for all sampled ponds, entire 
sampling period (error bars are standard deviations).
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Figure 11: Mean prawn yield for all ponds between January 1st 
2000 and March 28th 2007 (error bars are standard deviations).
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Figure 12: Mean prawn yield for all sampled ponds, entire 
sampling period (error bars are standard deviations).
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Table 3: Summary of outcomes of tests for differences between ponds for water 
quality variables. 
      
Variable Test used P-value Significant?   
      
Historical prawn yield (MTPH) ANOVA 0.007 Yes   
Algal cells per ml ANOVA 0.003 Yes   
Secchi depth (cm) Kruskal-Wallis 0.007 Yes   
Chlorophyll a (ppm) Kruskal-Wallis 0.287 No   
Phytoplankton diversity (H') Kruskal-Wallis 0.06 No   
Temperature (°C) Kruskal-Wallis 0.971 No   
Ammonia (ppm) Kruskal-Wallis 0.459 No   
Nitrate (ppm) Kruskal-Wallis 0.304 No   
Orthophosphate (ppm) Kruskal-Wallis 0.218 No   
Dissolved oxygen (ppm) ANOVA 0.72 No   
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4.2 Step-wise multiple linear regressions 
 
Prawn yield 

None of the water quality parameters sampled were found to be statistically 

significant predictors of yield as a response variable. We cannot make any valid 

future predictions of yield based on water quality parameters based on the data from 

this study. 

 
Table 4: Summary of multiple regression of water quality variables on 
prawn yield 
    
Predictor variable P-value  Significant? 
Ammonia 0.171  No 
Nitrate 0.267  No 
Orthophosphate 0.304  No 
Chlorophyll a 0.478  No 
Temperature 0.592  No 
H' 0.606  No 
Secchi depth 0.623  No 
Phytoplankton cells per ml 0.634  No 
Dissolved oxygen 0.972  No 

 
 
Shannon Index of Diversity 

Dissolved oxygen, orthophosphate and temperature were found to be significant 

predictors of phytoplankton diversity (p = 0.000, 0.003 & 0.007 respectively). 

Phytoplankton cells per ml, nitrate, ammonia, secchi depth and chlorophyll a were 

not significant predictors (p = 0.208, 0.381, 0.426, 0.533 & 0.845 respectively). 

 
Table 5: Summary of multiple regression of water quality variables on Shannon Index of 
Diversity 
         
Predictor variable P-value   Significant?    
Dissolved oxygen 0.000  Yes     
Orthophosphate 0.003  Yes     
Temperature 0.007  Yes     
Phytoplankton cells per ml 0.208  No     
Nitrate  0.381  No     
Ammonia  0.426  No     
Secchi depth 0.533  No     
Chlorophyll a 0.845  No     
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Algal biomass (chlorophyll a) 

Secchi depth, orthophosphate, ammonia and dissolved oxygen were all found to be 

significant predictors of chlorophyll a (p = 0.000, 0.002, 0.011 & 0.011 respectively). 

Temperature, nitrate, phytoplankton cells per ml and the Shannon Index of Diversity 

were not found to be significant predictors of algal biomass (p = 0.054, 0.471, 0.513 

& 0.845 respectively). 

 
Table 6: Summary of multiple regression of water quality variables on 
chlorophyll a 
    
Predictor variable P-value  Significant? 
Secchi depth 0.000  Yes 
Orthophosphate 0.002  Yes 
Ammonia 0.011  Yes 
Dissolved oxygen 0.011  Yes 
Temperature 0.054  No 
Nitrate 0.471  No 
Phytoplankton cells per ml 0.513  No 
H' 0.845  No 

 
 
 
Pairwise scatter plots of all water quality variables are shown in Figure 13. 
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Figure 13: Pairwise scatterplots of all variables sampled during the study period
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4.3 Changes in variables over time 
 
Unfortunately, repeated measures ANOVAs could not be performed for any of the 

variables measured. This is because there are too many missing data values for all 

variables measured, due to the number of sampling events where ponds were either 

being harvested, refilling or being brought back up to temperature before stocking. 

Graphs of all water quality variables for each pond by sampling date are shown in 

Figures 1-9 of Appendix 3.  
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5. DISCUSSION 
 
Aquaculture is the fastest growing sector in the food industry (Kutty 2005). 

Increasing global human population, increasing demand for sea food and declining 

wild capture fisheries (FAO 2007b) means that aquaculture is an important industry. 

Therefore it is important that we expand our knowledge of aquaculture and improve 

techniques to maximize production while minimizing the detrimental social and 

environmental impacts it may incur. Due to semi-intensive stocking densities and its 

freshwater habit, the focal species of this study, Macrobrachium rosenbergii has 

been identified as having a light social and environmental footprint (Kutty 2005). 

 

This study sought to investigate what variables related to water quality differ 

between ponds at New Zealand Prawns Ltd, the effect these variables have on the 

abundance and species composition of phytoplankton, the effects they may have on 

the production of marketable prawns, and how they vary over time. A lack of 

phytoplankton in the water column can lead to excess light reaching the bottom of 

ponds, resulting in the proliferation of benthic algae (Burford 1997, Aquaculture 

1999). This process has been associated with reduced growth in cultured penaeid 

prawns (Allan and Maguire 1994) and is thought to be a significant cause of reduced 

prawn yield at NZPL.  

 

Budget constraints and the difficulty of combining sampling with normal farm 

operations resulted in only a small data set being available for analysis and few 

statistically significant conclusions. Based on observation and literature searches on 

similar environments, it appears that blooms of benthic algae at NZPL probably 

occur mainly:  
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• In shallower ponds where more sunlight can reach the benthos allowing 

benthic algae to photosynthesize and proliferate. 

• During summer months when there is increased intensity and duration of 

sunlight. 

• When orthophosphate in pond water is low, reducing the amount of 

phytoplankton, which shade the benthos. 

 

Eutrophication of waters by increased nutrient inputs is a serious problem in marine 

and freshwater, and natural and aquaculture habitats. Increased nutrients can 

stimulate phytoplankton blooms to detrimental levels which can be directly harmful 

through the toxins they may produce (Anderson et al. 2002) or cause anoxic 

conditions when blooms crash and decompose, which has the potential to kill 

animals living in these anoxic conditions (Burford 1997). This is of paramount 

concern to aquaculture farmers, hence knowledge of conditions that lead to 

eutrophication and any appropriate steps that can be taken to prevent or minimize it 

are of great value. Such knowledge may also have useful applications in the 

management of other settings such as lakes, rivers, estuaries and bays.  

 

What constitutes eutrophication can be subjective and also depends in part on what 

the intended purpose of the water body is, and whether or not factors that influence 

eutrophication prevent that water body from serving its full potential (Correll 1998). 

At NZPL this full potential is maximum production of marketable sized prawns. 

Variable production at NZPL demonstrates that ponds are not consistently fulfilling 

their potential. If it is a lack of phytoplankton that causes yield-reducing benthic 

algae, I would suggest that conditions at NZPL are not eutrophic.  
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Unfortunately, a lack of algal blooms and a small number of harvests during the 

sampling period prevented any conclusion as to whether or not such blooms actually 

had a significant impact on prawn yield. Gaps in the data due to normal farm 

operations (harvesting, pond refilling and reheating) prevented rigorous statistical 

analyses of how variables changed over the study period. 

 

Chlorophyll a concentration was used as an index of phytoplankton biomass and at 

NZPL is probably driven by ammonia and orthophosphate levels in the water. Of 

nitrate and ammonia, the latter is the more energy efficient form of nitrogen for algae 

to utilize (Hargreaves 1998) and is unlikely to be in short supply in a semi-intensive 

re-circulating aquaculture system. Phosphorous is often regarded as the most 

important limiting nutrient in freshwater systems (Schindler 1977) and has often 

been used to successfully predict phytoplankton abundance (Schindler 1978). 

Orthophosphate was also a significant predictor of phytoplankton diversity at NZPL. 

Changes in phytoplankton species composition with changes in orthophosphate are 

well documented (Anderson et al. 2002). Other variables found to be significant 

predictors of chlorophyll a and phytoplankton diversity are more likely to be their 

by-products than directly influential variables.  

 

No water quality variables were found to be significant predictors of prawn yield. 

This could be due to the small sample size for prawn yield during the sampling 

period. 
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5.1 Differences in prawn yield between ponds 

Significant differences were found between ponds for historical prawn yield, with 

Pond 3 having significantly higher mean yield than Pond 16. Table 2 in the results 

section summarises the differences in water quality variables between Ponds 3 and 

16 for the sampling period. Although none of these variables were found to be 

significantly different between Ponds 3 and 16 it is interesting to note that Pond 3 

has higher mean turbidity, chlorophyll a, phytoplankton diversity, phytoplankton 

cells per ml, pond depth and orthophosphate. It also had lower mean ammonia than 

Pond 16. Pond 3 also yielded more marketable prawns than Pond 16 during the 

sampling period (5.12 MTPH compared to 3.12 MTPH).  

 

Unfortunately no information on water quality parameters is available for the period 

covered by historical yield. That there are differences in yield between ponds could 

be viewed as quite surprising. One would have hoped that in the past, all ponds were 

managed identically with consistent management practices across ponds. When 

management practices change, hopefully those changes are applied to all ponds, not 

just some. This raises the question of why there are differences between ponds. 

Unfortunately production data was not available from pre-2000. That production 

would be significantly higher now than when the prawn farm started 20 years ago 

would not be surprising as techniques, methods and knowledge improve with 

experience. Andrew Harrison has been managing biological aspects of NZPL since 

2001. Since his appointment he has been able to raise production of prawns from one 

tonne per hectare to around 6-7 tonnes per hectare and has sought to make practices 

as consistent as possible (NZPL, personal communication).  
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But any improvements we’d assume were applied simultaneously to all ponds, which 

should result in proportionally equal improvements in yield between ponds. Not all 

ponds are the same size but yield was standardized to marketable tonnes per hectare 

(MTPH) to account for this.  

Figure 14: Mean annual prawn yield at NZPL, 2000-2006
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Figure 14 shows mean yield per harvest for each pond from 2000 to 2006. The year 

2000 appears to have dramatically lower mean yield than the following years which 

appear fairly steady, with a possible decline in mean yield in 2003. With no 

information regarding water quality parameters for these years we can only speculate 

as to the causes of the apparent jump in production after the year 2000. As 

mentioned above, Andrew Harrison has been managing biological aspects of NZPL 

since 2001 and has since raised production of prawns from one tonne per hectare to 

around 6-7 tonnes per hectare and has always sought to make practices as consistent 

as possible (NZPL, personal communication). Perhaps having one person in charge 

consistently has translated into consistent and improved production. Prior to his 

appointment a number of different people had handled biological aspects of 

production and the future viability of the farm had often been in doubt, with the need 

for outside investment to keep it running (Wear 1996). The past environment of 
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uncertainty combined with frequently changing farm management practices was 

unlikely to make for a consistent and successful operation. 

 

Mean prawn yield for each pond from January 1st 2000 to 28th March 2007 is shown 

in Figure 11 of the results section. Ponds 1-6 look like they may produce slightly 

higher yields than Ponds 7-19. Farm managers report anecdotally that the “bottom 

series” of ponds (Ponds1-10, see NZPL site lay-out, Appendix 4) are better 

producers than the “top series (Ponds 11-19), with Ponds 1-5 appearing to be the best 

and most consistent. Ponds 1-5 were in fact originally the only ponds at NZPL, built 

in 1987 while feasibility of the farm was being investigated. Farm managers report 

that the worst yields seem to come from ponds in the top series. The most obvious 

difference between the top and bottom series is that the top series are shallower on 

average than the bottom series (mean depth 954.4mm in the top series compared to 

1098.5mm in the bottom series) and have been observed to suffer from benthic algal 

blooms far more often (NZPL, personal communication). 

 

Unfortunately we cannot test statistically whether there were any differences in yield 

during the sampling period (November 8, 2006 – March 28, 2007) because the data 

set is far too small. Most ponds were only harvested once or at the most twice during 

this time. Ponds 1-5 at least appear to have produced higher yields than the rest of 

the ponds (see Figure 12, results section) during the sampling period. Ponds 3 and 16 

yielded 5.12 and 3.02 MTPH respectively during the sampling period. While there 

may be a difference in yield of more than two tonnes between Ponds 3 and 16 we 

cannot say statistically whether the difference is significant as each pond was only 

harvested once during the sampling period.  
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Historical differences in yield between Ponds 3 & 16 were found to be statistically 

significant. Water is recycled among all ponds from the same source and ponds were 

found in nearly all cases to be the same with regards to the water quality parameters 

that were measured. This may suggest that something inherently different about the 

design of the ponds leads to the difference in yield. This could possibly be due to 

depth if say, ponds that were too shallow experience excessive benthic algal growth, 

impairing prawn foraging ability, which farm managers believe is the cause of 

reduced yield. A search of the literature failed to find any information on benthic 

algae causing impaired foraging ability in M. rosenbergii in either natural habitats or 

aquaculture situations. Allan and Maguire (1994) however conducted an experiment 

with the Penaeid prawn Penaeus monodon in fibreglass pools. They found that in 

pools where filamentous benthic was stimulated to grow individual prawn growth 

(weight gain), overall prawn biomass and food conversion efficiency were all 

significantly lower (p < 0.05) than in pools where phytoplankton blooms were 

stimulated. Differences in water quality arose between the two treatments due to 

different fertilization strategies needed to achieve the desired conditions, but these 

were not found to explain the differences in prawn growth observed. They believed 

the effect of the benthic algae was impairment of prawn’s ability to forage for food, 

as well as entanglement of post-larvae. It is possible that benthic algae has the same 

effect on M. rosenbergii at NZPL. 

 

Having too deep a pond can also be a problem if light starts to limit the growth of 

phytoplankton lower in the water column (Burford 1997) which shade the benthos 

and prevents the growth of benthic algae (see ‘Cells per ml’ below). This could well 
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be the case here as it was Pond 18 which had the deepest average pond depth (and 

deepest average secchi depth) that was found to have significantly lower cells per ml 

than Ponds 2, 3 & 4, which have pond depths in the middle of the range seen at 

NZPL and secchi depths at the lower end of the range seen at NZPL. While there is 

no evidence to suggest that M. rosenbergii require phytoplankton directly, New 

(1990) reports that they have a preference for turbid conditions, and phytoplankton 

contribute to turbidity. As discussed in the introduction, the right abundance and 

composition of phytoplankton for a given system contributes positively to water 

quality in ways other than shading the benthos such as oxygenation of water, 

reduction of toxic ammonia and forming the basis of food webs that may ultimately 

benefit stock (Burford 1997). 

 

Deeper ponds may also develop thermal stratification (Aquaculture 1999). While 

water flows through ponds at NZPL a stratified layer could potentially result in only 

the upper layer of water being turned over. This could result in the build up of 

nutrients on the bottom layer which in turn could be toxic to prawns if say, ammonia 

levels were too high and were not able to be flushed out. The out takes in ponds at 

NZPL remove water at the surface. If stratification is a problem this could potentially 

be solved by having another water out take beneath the surface, below the stratified 

layer to keep both layers moving and turning over. The speed of the out take could 

be adjusted to compensate for the increased rate of turn over from having two out 

takes per pond.  

 

Water samples in this study were taken from close to the bottom of the ponds 

because prawns live within about 50cm of the bottom (the maximum height of the 
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artificial habitats used to increase habitable surface area in the ponds is 

approximately 50cm). Had the budget allowed, it would have been interesting to see 

if the water quality parameters sampled in this study differ with depth. Burford (1997) 

conducted a study on the phytoplankton dynamics in a Penaeid prawn farm on the 

Gold Coast of Australia and found that chlorophyll a levels were significantly lower 

at the surface of the ponds compared to the bottom despite a paddle-wheel mixing 

regime that resulted in all other water quality variables being evenly concentrated 

through the water column (including nutrients). Burford did not examine grazing by 

zooplankton in his study and offers different grazing rates at different depths as a 

possible explanation. Zooplankton was not examined in this study either and may 

help to explain why phytoplankton cell counts were significantly different between 

ponds (although this would then raise the question of why there are differential 

grazing rates by zooplankton in some ponds). Sampling at different depths would 

also be beneficial because while the prawns may all live within 50cm of the bottom, 

it is possible that prawns are affected by water quality dynamics occurring at other 

depths.       

 

5.2 Chlorophyll a 

Chlorophyll a levels in this study ranged from 6.14 to 571 ppm with a mean of 204.5 

ppm (±116.5 ppm SD). These are similar values to those found in M. rosenbergii 

ponds by Costa-Pierce et al. (1984), which ranged from 2.3 to 693.7 ppm with a 

mean of 194.6 (±206.5 ppm SD). Both their results and mine show how wide 

ranging chlorophyll a levels can be in ponds. Burford (1997) found chlorophyll a 

levels in a Penaeid prawn farm can fluctuate markedly on even a daily time scale. 

Burford also reports that these fast-changing dynamics can be witnessed by farm 
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managers with the naked eye as ponds change colour during the course of a single 

day. Further studies may well require more frequent sampling than the 9-10 days 

used in this study in order to reflect how rapidly chlorophyll a levels can change. 

Burford (1997) recommends daily sampling of chlorophyll a with automated loggers 

but these were not available for this study.  

 

That chlorophyll a did not differ significantly between ponds is perhaps surprising 

given that the number of algal cell per ml did. This could be a result of the Kruskal-

Wallis test (required for chlorophyll a) having less power to detect differences than 

does ANOVA (used for cells per ml). Alternatively, the different cell counts may 

have produced the same level of chlorophyll a if cell sizes were larger, or if there 

had been a shift to species producing more chlorophyll a during times when cell 

counts were lower. Not all phytoplankton species produce equal amounts of 

chlorophyll a per unit of biomass, and even within a species the same biomass can 

produce different amounts of chlorophyll a depending on factors such as light 

intensity and temperature (Felip and Catalan 2000). 

 

Chlorophyll a levels for each pond on each sampling date over the study period are 

shown in Appendix 3, Figure 3. While repeated measures ANOVA couldn’t be 

performed for chlorophyll a (or any other variables) it appears that chlorophyll a 

levels built up, peaked around the middle and then started to taper off towards the 

end of the study period. A similar pattern is seen for mean chlorophyll a levels by 

sampling date (Figure 4, results section). Perhaps this is due to daylight hours 

increasing at the start of the study period (late spring), allowing phytoplankton to 

photosynthesise for longer each day and multiply more often. As daylight hours 
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decrease towards the end of the study period (early autumn), so do chlorophyll a 

levels. Burford (1997) found that in a commercial Penaeid prawn farm primary 

production was related to chlorophyll a concentration (r2 = 0.668) with higher 

primary production being associated with higher light intensities. Both Winter et al. 

(1975) and Anderson and Sullivan (1986) concluded that in Puget Sound, USA, 

spring increases in phytoplankton were due mainly to increased solar irradiance, and 

thought that the decrease of phytoplankton in autumn was due to decreasing solar 

irradiance. Hence it would make sense that chlorophyll a at NZPL is lower in late 

spring, increases over summer and then starts to decrease in early autumn as light 

intensity and duration builds, peaks and then decreases.  

 

While no significant difference was found between ponds, it does also appear that 

there is more chlorophyll a overall in the historically more productive bottom series 

of ponds (1-9) than in the top series (11-18) (See Appendix 3, Figure 3) 

 

5.3 Ammonia 

During the study period, ammonia concentrations ranged from levels too low to 

detect up to 0.67 ppm with an overall mean of 0.066 ppm. This mean value is below 

the level of 0.5 reported by Naqvi et al. (2007) as being problematic for M. 

rosenbergii, and below the level of 0.1 ppm reported by Boyd (1998) as being the 

maximum acceptable level of ammonia for freshwater aquaculture in general. It is 

also lower than the mean of 0.3 ppm reported by Burford (1997) in a Penaeid prawn 

farm on the Gold Coast of Australia. However, on a number of occasions ammonia 

levels were higher than the 0.5 ppm reported by Naqvi et al. (2007) as being the 

beginning of problematic levels for M. rosenbergii. It is possible therefore that 
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ammonia had detrimental effects on prawn health and growth during the study. It is 

also interesting to note that Pond 3, which has historically been significantly more 

productive than Pond 16 had a mean ammonia concentration only one-fifth that of 

Pond 16 (0.02 ppm compared to 0.1 ppm).  However, a scatter plot of mean 

ammonia for each growout period for each pond vs. each grow out period’s yield 

shows only a very weak correlation (r2 = 0.069) and is displayed in Figure 15.  

Figure 15: Mean ammonia vs mean yield, entire sampling 
period.
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Like the majority of water quality parameters sampled, ammonia was not found to 

differ between ponds, likely due to the homogenizing effect of the water recycling 

system in use at NZPL. 

 

Ammonia concentrations for each pond on each sampling date of the study period 

are shown in Appendix 3, Figure 4. In all ponds, ammonia levels appear to be 

consistently very low, and below problematic levels. A number of ponds, however 

appear to have sudden spikes where ammonia levels increase dramatically and then 

drop just as suddenly. This is quite curious as it doesn’t appear to coincide with any 

sudden changes in any other water quality parameters. The spikes in ammonia 

concentration appear to be more common in the top series of ponds which are also 
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shallower on average and are observed to experience more frequent and severe 

benthic algal blooms than the bottom series. Figure 5 (results section) also shows 

higher mean ammonia levels in the top series (Ponds 11-19) compared to the bottom 

series (Ponds 1-10), although no significant differences were found. If benthic algae 

is impairing foraging ability of prawns perhaps more of their high protein pelleted 

feed is going uneaten and is serving more to fertilize ponds than feed prawns, as 

protein-rich feed is a substantial contributor to ammonia levels in aquaculture ponds 

(Avnimelech 1999). This may explain the ammonia spikes, and it would be 

interesting in future to investigate if such spikes are associated with increased 

benthic algae. 

 

5.4 Nitrate 

Nitrate was not significantly different between ponds and appears to be consistently 

low over the sampling period for all ponds (Appendix 3, Figure 5) with a curious 

increase in Pond 7 on the third and fourth sampling dates (I can find no apparent 

reason for this). As ammonia is the preferred source of nitrogen for algae (Lobban 

and Harrison 1994) and is likely to be in fair supply due to the semi-intensive 

stocking density of prawns, and with phosphorous being the typical limiting nutrient 

in freshwater systems (Hecky and Kilham 1988), I am doubtful that nitrate has much 

influence at NZPL. 

 

5.5 Orthophosphate 

Boyd (1998) reports a range of 0.005 – 0.2 ppm as acceptable for orthophosphate in 

freshwater aquaculture ponds. At no time in the study period was orthophosphate 

below this level (minimum value 0.05 ppm). However the mean orthophosphate 
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level exceeded 0.2 ppm (0.21 ppm) and the highest recorded value of 0.71 ppm is 

more than three and a half times the recommended concentration. Phosphate is often 

cited as the major cause of eutrophication in freshwaters (Correll 1998, Anderson et 

al. 2002) and it may be a driving force behind phytoplankton abundance at NZPL 

(see ‘Predicting chlorophyll a levels’ below). However, mean orthophosphate during 

the study only slightly exceeded Boyd’s recommendation by 0.01ppm. Boyd’s 

recommendation is also only a general guide for freshwater aquaculture, and not 

specific to M. rosenbergii. 

 

Perhaps higher orthophosphate may even be good for the culture of M. rosenbergii. 

Elwood et al. (1981) conducted and experiment in which they enriched two stretches 

of a wooded stream in Tennessee with 60 and 450 μg of phosphate per litre for a 

period of 95 days. The result in both stretches was an increase in the amount of 

periphyton chlorophyll a, higher rates of leaf litter decomposition and increased 

secondary production in the form of populations of snails and leaf shredding 

macroinvertebrates. Peterson et al. (1985) enriched an Alaskan tundra river with 10 

μg of phosphate per litre and also found an increase in periphyton and an increase in 

the mean size of aquatic insects. Given the demonstrated importance of secondary 

production (including snails, aquatic insects and other macroinvertebrates) to the 

nutrition of cultured M. rosenbergii (as discussed in the introduction) higher levels 

of orthophosphate than is recommended for aquaculture of other species may 

actually be beneficial to M. rosenbergii culture.  

 

It would be interesting to study whether or not ponds with higher orthophosphate 

levels at NZPL also had higher levels of secondary production and/or higher yields 
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than ponds with lower orthophosphate levels. Although the differences were not 

found to be statistically significant, Pond 3 had a greater mean orthophosphate level 

than Pond 16 during the sampling period (0.26 ppm compared to 0.18 ppm) and 

greater yield (5.12 MTPH compared to 3.04 MTPH). Pond 3 has also had a higher 

mean yield than Pond 16 historically, a difference that has been found to be 

statistically significant. 

 

It appears there was little change in orthophosphate over time in any ponds 

(Appendix 3, Figure 6). Phosphorous is retained in aquatic systems fairly efficiently 

by biological assimilation and the deposition of sediments and biota to bottom 

sediments (Correll 1998). In eutrophic systems when excessive algal blooms cause 

anoxia at night, bottom sediments often release excess orthophosphate into the water, 

which exacerbates the situation (Correll 1998). Dissolved oxygen levels were at 

satisfactory levels during the study period and certainly never anoxic (Appendix 3, 

Figure 8). I believe that the constant orthophosphate levels seen across ponds reflect 

the efficient retention of phosphorous typical of aquatic systems and the constant 

dissolved oxygen levels during the study period. 

 

5.6 Phytoplankton cells per ml 

Pond 18 had the lowest mean number of algal cells per ml for the sampling period. It 

is also the pond with the highest recorded secchi depth (124cm), highest mean 

secchi depth (74.2cm) and greatest mean pond depth (1185mm). Burford (1997) 

found that phytoplankton growth is light limited in Penaeid prawn ponds as did 

Costa-Pierce et al. (1984) in M. rosenbergii ponds. Being the deepest pond may 

result in not enough light penetrating to the lower depths of the water column in 
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Pond 18 for photosynthesis, resulting in lower numbers of phytoplankton at depth. 

Ponds 2, 3 and 4 were all found to have significantly greater mean numbers of algal 

cells per ml than Pond 18, and are all slightly shallower too at 1140, 1150 and 1075 

respectively. Perhaps Ponds 2, 3 & 4 are at the right depth for optimal phytoplankton 

growth (sufficient light for photosynthesis penetrating to all depths of the water 

column) whereas Pond 18 is too deep. Water samples in this study were taken from 

near the bottom of ponds because prawns live within around 50cm of the bottom. As 

Pond 18 has the deepest mean depth, perhaps it was found to have significantly 

lower phytoplankton cells than Ponds 2, 3, and 4 (which are all shallower than Pond 

18) because phytoplankton at the bottom of Pond 18 were limited by light and hence 

less abundant. Burford et al. (1997) suggest a shallower pond depth to counter light 

limitation in ponds but also note that this measure requires that phytoplankton 

blooms are maintained to prevent the growth of benthic algae (by shading the 

benthos which inhibits photosynthesis by, and proliferation of benthic algae, one of 

the reasons phytoplankton is desirable).  

 

The growth of benthic algae has been a major problem at times at NZPL and was the 

impetus of this study. It is interesting to note that ponds in which benthic algae has 

been observed to be the worst are also the shallowest ponds (NZPL, personal 

communication). No benthic algal blooms were observed during the study period, 

but Pond 13 (one of the shallowest ponds at just 900mm deep,) was coming close 

until farm managers decided to manually remove the benthic algae before it got out 

of hand. It could well be of value to conduct experimental studies to ascertain 

optimal pond depths for M. rosenbergii culture.  
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Figure 1 of Appendix 3 shows that the number of phytoplankton cells per ml can 

vary somewhat and also appear to be higher in the bottom series compared to the top 

series. This is backed up by the ANOVA and Tukey tests, which found that Ponds 2, 

3 & 4 (bottom series of ponds) all had significantly more phytoplankton cells per ml 

than Pond 18 (top series). There is however no clear trend over the sampling period 

(Appendix 3, Figure 1) and we do not see the same pattern of rise, peak and fall as 

we did for chlorophyll a. This may be due to shifts in the phytoplankton community 

to species that produce differing amounts of chlorophyll a, or phytoplankton being 

able to produce more chlorophyll a when daylight hours are longer.  

 

5.7 Secchi depth (turbidity) 

Secchi depth was one of the three variables found to differ between ponds. Turbidity 

and phytoplankton density can be closely related variables, often regarded as similar 

measures, although suspended particulate matter such as uneaten feed and faecal 

matter also contribute to turbidity. Further investigations will also need to be done in 

order to discover why secchi depth is different between ponds and which ponds 

actually differ. As a Kruskal-Wallis test was used to determine that there was a 

difference in secchi depth between ponds we are unable to do a post-hoc pair-wise 

comparison as we did with Tukey tests for cells per ml (analyzed by ANOVA).  

 

While it may not be entirely surprising that secchi depth differs between ponds after 

finding that algal cell number does too, we cannot assume that ponds for which there 

are differences in secchi depth are the same as ponds for which there are differences 

in cell number. Further investigation is needed to determine this, and the relative 



 75

contributions of different factors to turbidity also need to be determined (as 

phytoplankton, silt, uneaten feed, faecal matter etc also contribute to turbidity).  

 

However, it is worth noting that Ponds 2, 3, & 4 all have lower mean secchi depths 

(higher turbidity) than Pond 18 (see Figure 10, results section). In fact Pond 18, 

which had the deepest recorded secchi depth (lowest turbidity) for the study was also 

found to have statistically significantly less phytoplankton cells per ml than Pond 3, 

which also had the shallowest recorded secchi depth (highest turbidity) for the study. 

Secchi depths of between 30cm and 60cm are recommended for freshwater 

aquaculture (Aquaculture 1999). Mean secchi depths for Ponds 2, 3, and 4 all fall 

within this range (49, 49.4 and 59.4cm respectively) whereas the mean secchi depth 

of 74.2cm for Pond 18 exceeds this recommended range. New (1990) also reports 

that M. rosenbergii have a preference for turbid conditions. The overall mean secchi 

depth for the sampling period of 59.47cm, standard deviation ± 18.68 cm is similar 

to that found by Correia et al. (2002) of 53.92 ± 15.85cm SD and 57.06 ± 15.09cm 

SD for 1-3 month old and 8-10 month old M. rosenbergii ponds respectively. 

 

It is possible that factors contributing to turbidity other than phytoplankton are more 

important. While secchi depth was found to be significantly different between ponds 

chlorophyll a was not. It may also be reasonable to assume that like chlorophyll a, 

phytoplankton biomass is also not significantly different between ponds, as strong 

positive correlations have been found between phytoplankton biomass and 

chlorophyll a concentration (Desortova 1981, Canfield et al. 1985, Voros and 

Padisak 1991). Future studies on phytoplankton biomass at NZPL may be helpful. 

Given this we may well find that the ponds for which secchi depth differ are not the 
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same as those for which cell number are different. However it is worth noting a 

strong negative correlation between the number of phytoplankton cells per ml and 

secchi depth (r = -0.41, 2d.p.). Fewer algal cells are associated with lower turbidity 

or deeper secchi depths (see Figure 16, below). 

Figure 16: Secchi depth vs phytoplankton cells/ml, all ponds, 
entire sampling period.
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Much like phytoplankton cells per ml, there is no clear trend over the sampling 

period for secchi depths (Appendix 3, Figure 9). Once again though there appear to 

be differences between the bottom series and top series of ponds, with the bottom 

series having lower secchi depths than the top series.  

 

5.8 Temperature 

New (1990) reports temperatures below 14°C and above 35°C as being lethal to M. 

rosenbergii. At no point in the study did temperatures become lethal. Temperature 

was not significantly different between ponds. At the start of the study period 

temperatures were lower than usual for NZPL due to a temporary cut off of the 

geothermal water supply for maintenance by Contact Energy Ltd of their geothermal 

power plant. This caused temperatures to fall below the optimal level of 29-31°C 

(New 1990), and would almost certainly have slowed growth. However the overall 
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mean of 27.7°C is close to the optimum temperature, and the lowest temperatures 

recorded during this study are an unusual event (Contact Energy Ltd carries out this 

maintenance only once a decade) and all ponds were equally affected. Temperatures 

also dropped below the optimum at other times during the study (e.g. sampling date 

13, 17th March 2007, see Appendix 3, Figure 7) but again all ponds appeared to be 

affected so if there are current differences in yield between ponds temperature is 

unlikely to be the cause.  

 

5.9 Dissolved oxygen 

Dissolved oxygen was not significantly different between ponds and Figure 8 of 

Appendix 3 shows that across the sampling period levels were consistently at 

acceptable levels for the culture of M. rosenbergii. The overall mean of 8.4 ppm is 

well above the 4 ppm at which prawns start to get stressed (Avault 1987), although 

slightly above the 6-8 ppm New (1990) claims as being the usual target 

concentration in M. rosenbergii culture. There is nothing in the literature to suggest 

that the range of dissolved oxygen concentrations observed during the study period 

at NZPL would have been detrimental to prawns. When dissolved oxygen reaches 6 

ppm or below farm mangers use paddle wheel aeration to increase oxygen levels 

(NZPL, personal communication). Dissolved oxygen does not appear to be 

problematic at NZPL. 

 

5.10 Shannon Index of Diversity 

The Shannon Index of Diversity (H’) for phytoplankton did not differ significantly 

between ponds. A search of the literature failed to find H’ values of phytoplankton in 

M. rosenbergii culture to compare to the values observed in this study. Cremen et al. 
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(2007) in a study looking at phytoplankton in the culture of the tiger shrimp Penaeus 

monodon for two stocking density treatments of 10 and 15 post larvae per m2 

obtained mean H’ values of 1.39 (range 0.6 to 2.23) and 1.56 (range 0.82 to 2.81) 

respectively. These stocking densities are comparable to NZPL’s mean stocking 

density of 10.03 post larvae per m2 per pond during the study period. The mean H’ 

value of 1.02, and range of 0.42 to 1.76 observed at NZPL is lower than the values 

reported by Cremen et al. (2007) but this may be due to the rough grouping of some 

phytoplankton taxa in this study. This could be particularly true for the coccoid 

unicellular green algae, which are difficult to identify by light microscopy, especially 

after being fixed with Lugol’s solution. During the study this group accounted for 

the vast majority of cells by number (69.9% on average) and is probably comprised 

of many different species. Unfortunately the resources were not available to identify 

this group down to a lower taxonomic level, had it been possible to identify 

unicellular green algae to level of genus, we may well have seen higher values of H’. 

No clear pattern in species diversity is seen over the sampling period (See Appendix 

3, Figure 2). 

 

5.11 Comparisons between Ponds 3 and 16 

As stated earlier, Pond 3 had a significantly higher mean yield than Pond 16 

historically. Here I discuss comparisons between these ponds with regards to the 

water quality parameters sampled during the study. Although no significant 

differences were found between Ponds 3 and 16 for these variables, and do not cover 

the period covered by historical yield, I believe it is still worth discussing as future 

investigations carried out over a longer time frame and with more frequent sampling 

may provide more significant results.  
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For mean dissolved oxygen, the difference between Ponds 3 and 16 is only 0.72 ppm. 

With means of 8.24 and 8.96 respectively both ponds’ mean dissolved oxygen is 

well above the 4 ppm at which M. rosenbergii begin to get stressed (Avault 1987). 

The ranges of observed dissolved oxygen for both ponds are also within acceptable 

limits. 

 

Mean temperature for Ponds 3 and 16 were 27.7 and 27.81°C respectively, the 

difference of 0.11°C is negligible. While these temperatures are slightly below the 

optimal 29-31°C reported by New (1990) this difference is also probably negligible. 

Both have similar ranges for temperature and are comfortably within non-lethal 

limits of 14-35°C and close to the optimal for M. rosenbergii (New 1990). 

 

Nutrient levels are similar for both ponds. Pond 3 has a slightly higher mean 

orthophosphate level than Pond 16 (0.26 and 0.18 ppm respectively) and identical 

mean nitrate levels (0.02 ppm). Mean ammonia is five times higher in Pond 16 than 

in Pond 3 (0.1 ppm compared to 0.02 ppm) but neither of these values are reported as 

being problematic for M. rosenbergii, and the range seen in both ponds during the 

sampling period is below levels at which ammonia is toxic. 

 

Both ponds have similar mean values for the Shannon Index of Diversity with 1.15 

and 1.05 for Ponds 3 and 16 respectively. While these values are lower than that seen 

in other prawn culture systems such as was seen in P. monodon by Cremen et al. 

(2007), this could be due to the potential grouping of many different species into the 

‘coccoid unicellular green algae’ group as discussed earlier. With such similar values 
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to one another anyway, it is not likely a good explanation for differences in yield 

between the ponds.  

 

Although Pond 3 shared the highest recording for secchi depth (with Pond 18, 

124cm) its overall mean turbidity was higher than Pond 16 with a mean secchi depth 

7.3cm shallower. The lower turbidity of Pond 16 may also be exacerbated by having 

a shallower mean depth than Pond 3 (1085mm compared to 1155mm). Pond 3 also 

had a mean chlorophyll a concentration 44.3% higher than Pond 16 (303.48 ppm 

compared to 210.3 ppm), and Pond 3’s mean number of phytoplankton cells per ml 

was 66.7% higher than Pond 16 (1 × 105 cells/ml compared to 6.03 × 104 cells/ml). 

These factors could all well contribute to more light reaching the bottom of Pond 16 

than Pond 3, resulting in the proliferation of benthic algal blooms. Farm managers 

have observed that Pond 16 is one of the ponds to most frequently experience 

benthic algal blooms whereas Pond 3 seldom does. Most of the ponds in the top 

series (Ponds 11-19) are shallower than the bottom series (Ponds 1-10) and all have 

been observed to have benthic algal blooms more frequently than the bottom series. I 

suggest as a possible explanation that a combination of shallower pond depth and 

lower turbidity (the latter due mainly to lower phytoplankton numbers) causes the 

proliferation of benthic algae, which has contributed to significantly reduced yields 

in Pond 16 compared to Pond 3. As the data on which this possible explanation is 

based (apart from pond depth) has been obtained outside of the period covered by the 

historical yield data, we must however treat this explanation with caution.  
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5.12 Nutrient levels with regards to eutrophication 

Based on comparisons with Pampulha Reservoir, a eutrophic tropical reservoir in 

Brazil studied by Figueredo & Giani (2001), I do not think that the water at NZPL is 

eutrophic. I have chosen to compare NZPL to a tropical reservoir because I believe 

that of the eutrophic water body types for which I could find nutrient concentration 

information in the literature, Pampulha is probably the most like NZPL. Although 

New Zealand is a temperate country, Macrobrachium rosenbergii is a tropical 

species and hence the conditions at NZPL are designed to mimic the tropical 

conditions in which the species has evolved and requires in order to flourish. 

Furthermore, the recycling system at NZPL means that the water and the nutrients it 

contains have a long residence time, similar to a reservoir (and unlike a river). 

 

Figueredo & Giani (2001) took water samples at fortnightly intervals at Pampulha 

Reservoir for one year from February 1996 to January 1997. During this time the 

overall mean nitrate level was 0.65 ppm, nearly double that observed at NZPL (0.34 

ppm). Ammonia at Pampulha ranged from 2 ppm to more than 6 ppm. Mean 

ammonia at NZPL was 0.071 ppm, just one-twenty-eighth the minimum observed at 

Pampulha. The maximum ammonia concentration of 0.67 ppm at NZPL is still only 

one-third of the minimum at Pampulha. 

 

Orthophosphate is however higher at NZPL than it is at Pampulha. The maximum 

value of 0.07 ppm seen at Pampulha is only one-third of the mean value at NZPL 

(0.21 ppm) and one-tenth of NZPL’s maximum orthophosphate concentration. 

Correll (1998) claims that for most lakes, streams, reservoirs and estuaries 

concentrations of total phosphorous (of which orthophosphate is only a fraction) 
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should not exceed 100μg/L, or 0.1 ppm. This is only half of NZPL’s mean 

orthophosphate concentration. 

 

So if orthophosphate is so high at NZPL, and phosphates are the typical cause of 

eutrophication in freshwater systems, why does NZPL not appear to be a eutrophic 

system? First of all, Correll (1998) concedes that there is no clear, widely accepted 

consensus as to what is an ‘acceptable’ phosphorous level, despite his suggestion 

that it should not be more than 100μg/L. Second, the mean concentration of 0.21 

ppm at NZPL is only just in excess of what Boyd (1998) recommends as the upper 

limit of orthophosphate in freshwater aquaculture. Third, the answer could lie in the 

water recycling and heat exchange system. As discussed in the introduction, water at 

NZPL reaches temperatures of between 39 and 58°C (depending on seasonal 

ambient air temperatures) when it is reheated in the geothermal heat exchanger 

before being pumped back into grow out ponds where it cools to 28°C. This 

probably sterilizes the water, the high temperature of the heat exchanger killing the 

phytoplankton so that while water and nutrients are continually recycled, 

phytoplankton is not. If this is the case it may be that eutrophication does not occur 

at NZPL because the phytoplankton population is being continually culled through 

heat exposure. 

 

It could be useful to investigate the thermal tolerance of the different phytoplankton 

taxa at NZPL. Renaud et al. (2002) studied the effects of five different temperatures 

(25, 27, 30, 33 and 35°C) on the growth and nutritional quality on each of five 

different Australian tropical phytoplankton species. Only one, Chaetoceros sp. grew 

well at the highest temperature of 35°C while Cryptomonas sp. was killed outright. 
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All species grew best at 25-27°C. If the temperatures in the study by Renaud et al. 

(2002) had such a negative effect on the growth of tropical species of phytoplankton, 

it would seem unlikely that phytoplankton in New Zealand that have evolved in a 

temperate climate would fare any better when exposed to temperatures even higher 

than those used by Renaud et al. (2002). If phytoplankton are killed when water is 

reheated, then the temperature of the heat exchanger may need to be lowered, 

provided that this doesn’t result in temperatures in the grow out ponds becoming too 

cold. If so, ponds in which phytoplankton levels are too low could be fertilized to 

help maintain satisfactory levels.  

 

As in the natural world, phytoplankton can be important in aquaculture in forming 

the basis of food webs, ultimately providing nutrition for organisms at higher trophic 

levels (Burford 1997). Farmers may even stimulate blooms of phytoplankton for this 

very reason (Burford 1997). Therefore the nutritional value of phytoplankton will 

have implications for the nutrition of organisms feeding on phytoplankton, and 

therefore the nutrition of anything feeding on those organisms. Secondary production 

has been demonstrated as important in the culture of M. rosenbergii (Green et al. 

1977, Schroeder 1983, New 1990, Tidwell et al. 1997, Correia et al. 2002). Renaud 

et al. (2002) also looked at the effects on the nutritional quality of the species in their 

study as they are sometimes used as feed for filter-feeding cultured bivalves. All 

species were found to have significantly reduced protein content at temperatures 

above 27°C and significantly lower energy content at the highest temperatures of 33 

and 35°C. With respect to nutritional quality, Chaetoceros sp. was again the only 

species that did well at the highest temperature of 35°C. As Cryptomonas sp. was 

killed outright at 35°C chemical analyses of protein, lipid and carbohydrate was 
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impossible, as it was for the other three species because they were so few in number 

due to the high temperature. As with growth, all five species had the highest 

nutritional value at the lower temperatures of 25 and 27°C.  

 

High growth rates of zooplankton have been related to high lipid and protein content 

in phytoplankton (Parsons et al. 1961). At NZPL, the heat exchanger reheats water to 

between 39 and 58°C depending on season. This is 4 to 24°C higher than the 

temperatures used in the experiment by Renaud et al. (2002). If phytoplankton at 

NZPL are affected by temperature in a similar way to the species studied by Renaud 

et al. (2002) then there could be potential consequences for the nutrition of prawns 

further up the food web if the high temperature they are subjected to are either 

killing them or reducing their nutritional content.  

 

Phytoplankton is also more abundant at NZPL than in Pampulha (despite the 

possibility that phytoplankton are being killed by heat) but that doesn’t necessarily 

mean that conditions at NZPL are eutrophic. Correll (1998) states that “From the 

human perspective it is desirable to prevent or minimize eutrophication of receiving 

waters for aesthetics and to maintain the productivity of animal species preferred for 

recreation and commercial fisheries”. So eutrophication could be considered to be a 

relative term. If conditions identical to NZPL were found in a drinking water supply 

they probably would be considered eutrophic, but for the purposes of culturing M. 

rosenbergii they are not. If benthic algae proliferates due to inadequate shading of 

the benthos, phytoplankton levels at NZPL are actually not high enough. 
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5.13 Predicting chlorophyll a levels (phytoplankton biomass) 

Neither ammonia nor nitrate were found to be significantly different between ponds. 

Ammonia was found to be a significant predictor of chlorophyll a. Nitrogen in the 

forms of both nitrate and ammonia are used by phytoplankton but ammonia is the 

preferred form as it can be directly assimilated and utilized. Phytoplankton must 

reduce nitrate to nitrite and then to ammonia before it can be utilized (Hargreaves 

1998). As ammonia doesn’t require reduction, it is the most metabolically efficient 

form of nitrogen, requiring the least amount of energy to meet nutritional 

requirements. Ammonia is unlikely to be in short supply in a system in which water 

is recycled, high protein feed is used and prawns are stocked semi-intensively. This 

may explain why ammonia but not nitrate was found to be a significant predictor of 

chlorophyll a. If ammonia had been in short supply, then perhaps nitrate would have 

been found to be a significant predictor of chlorophyll a, as phytoplankton would 

have been required to use nitrate more as a source of nitrogen. 

 

Unsurprisingly, orthophosphate was also found to be a significant predictor of 

chlorophyll a. Orthophosphate is an essential limiting nutrient for phytoplankton, 

particularly in freshwater systems (Schindler 1977) and is required for a variety of 

metabolic functions (Lobban and Harrison 1994) as outlined in the introduction. 

Using data compiled from many studies from around the world, Schindler (1978) 

found a very strong relationship between mean annual total phosphorous 

concentration and mean annual chlorophyll a production. Soballe & Kimmel (1987) 

also analyzed data from 345 streams and 812 lakes and reservoirs. They found 

significant relationships between total phosphorous and algal cell abundance (closely 

related to chlorophyll a abundance), although they were different for each type of 
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water body. They also found that statistical models showed lakes, followed by 

reservoirs as being the water body types most susceptible to additions of 

phosphorous due to long residence time. Orthophosphate had the least impact 

(though still important) on phytoplankton abundance in rivers. Although water is 

constantly moving at NZPL, due to the recycling system I would suggest that 

orthophosphate would have residence times more similar to lakes than rivers, and 

hence may also be very sensitive to any additions of phosphorous. Knowing the 

mean annual phosphorous levels of lakes has been found to allow managers to quite 

accurately predict the mean phytoplankton standing crop (Schindler 1978). NZPL 

could also possibly predict chlorophyll a levels by monitoring phosphorous levels. If 

the main source(s) of phosphorous in water at NZPL are identified they could 

potentially be controlled and increased or decreased depending on the state of 

phytoplankton levels at any given time. The Waikato River is unlikely to be a 

significant source of orthophosphate directly with a mean concentration of only 0.03 

ppm for the study period compared to 0.21 for the prawn farm. However total 

phosphorous should be measured in the Waikato River (and prawn farm) as the 

various forms of phosphorous can be chemically and enzymatically transformed into 

orthophosphate and become available to phytoplankton (Correll 1998).    

 

Oxygen was also found to be significant predictor of chlorophyll a. As oxygen is a 

by-product of photosynthesis this is not entirely surprising and it is probably more 

likely that dissolved oxygen levels in the water are a result of chlorophyll a levels, 

rather than the other way around. To investigate this possibility I ran another 

stepwise multiple regression with dissolved oxygen as the response variable and all 

the other water quality variables as predictor variables and found that chlorophyll a 
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was indeed a significant predictor of dissolved oxygen (p = 0.003) as well as secchi 

depth, Shannon Index of Diversity, temperature, and ammonia (p = 0.000, 0.000, 

0.010, 0.002, & 0.003 respectively). Dissolved oxygen could however be a 

significant predictor as low dissolved oxygen can cause orthophosphate (an essential 

limiting nutrient, also found to be a significant predictor of chlorophyll a in this 

study) to precipitate out of bottom sediments (Correll 1998) and hence be more 

readily available to phytoplankton in the water column. As dissolved oxygen levels 

never reached anoxic levels during the study, this is unlikely to be the case here. 

 

Secchi depth was also found to be a significant predictor of chlorophyll a levels. 

This is quite likely to be a significant predictor for much the same reason as 

dissolved oxygen. Chlorophyll a is an index of phytoplankton biomass and so we 

expect higher values of chlorophyll a to correspond to higher turbidity (lower secchi 

depth) as phytoplankton contribute substantially to turbidity. As was done above for 

dissolved oxygen, I ran another stepwise multiple regression with secchi depth as the 

response variable, and found that chlorophyll a was indeed a significant predictor of 

secchi depth (the only other being dissolved oxygen, p = 0.000 for both variables). It 

could be possible though, that if turbidity is caused by suspended particulate matter 

more than phytoplankton density, chlorophyll a levels are reduced because 

photosynthesis is inhibited by the lack of light. In such a situation secchi depth 

would not be a valid predictor of chlorophyll a. This is not likely however as a 

scatter plot of chlorophyll a against secchi depth (Figure 17) shows a negative 

correlation between the two variables with an R2 value of 0.23. Deeper secchi depths 

(i.e. low turbidity) are associated with lower chlorophyll a levels because 
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phytoplankton biomass (which chlorophyll a is an index of) are an important 

contributor to turbidity.  

Figure 17: Secchi depth vs chlorohyll a , all ponds, entire 
sampling period.

R2 = 0.2319

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

Secchi depth (cm)

C
hl

or
op

hy
ll 

a
 (p

pm
)

 

5.14 Predicting phytoplankton diversity 

Like they were for chlorophyll a, orthophosphate and dissolved oxygen were found 

to be significant predictors of phytoplankton diversity (H’). Temperature was also 

interestingly found to be a significant predictor of diversity. Ammonia, which was 

found to be a significant predictor of chlorophyll a, was not found to be a significant 

predictor of phytoplankton diversity.  

 

As mentioned earlier in the discussion, this study may underestimate phytoplankton 

diversity due to the ‘lumping’ of species based on gross morphology into one 

taxonomic group that comprised the vast bulk of the different algal taxa by number 

(coccoid unicellular green algae, 69.9% of phytoplankton by number). If it had been 

possible to identify individuals in this group to lower taxonomic levels we may have 

seen both higher values of H’ and more variation in H’. In this situation, ammonia 

may possibly have been a significant predictor of phytoplankton diversity as it was 

for chlorophyll a. 
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Given that orthophosphate is such an important limiting nutrient for phytoplankton 

its significance as a predictor of phytoplankton diversity is not a big surprise. 

Changes in phytoplankton species compositions with changes in nutrient regimes are 

well documented (Anderson et al. 2002). In freshwater systems, phosphorous is 

generally recognized as being the most important limiting nutrient for phytoplankton, 

so much so that often regulation of inputs into waterways from human activities (for 

example fertilizing agricultural land) has centred around limiting phosphorous use 

(Hecky and Kilham 1988, Correll 1998, Anderson et al. 2002). Algal blooms as a 

result of human-induced eutrophication tend to have low species diversity, and are in 

fact often nearly mono-specific (Hecky and Kilham 1988). If phytoplankton 

diversity is important for culturing M. rosenbergii, like most things in aquaculture, 

attaining the optimum level will be a trade-off with optimizing other key variables, 

including orthophosphate.   

 

Temperature is necessarily tightly controlled at NZPL. The optimum temperature for 

farming M. rosenbergii is 29-31°C (New 1990). The mean temperature during the 

sampling period was 27.7°C (± 1.3°C SD) close to the optimum temperature. The 

range of recorded temperatures was narrow, 24.5 to 30.2°C. Temperatures in the 

mid-twenties were recorded in all ponds on November 28th 2006 following a shut 

down of the farms geothermal hot water supply. This was due to ten-yearly 

maintenance by Contact Energy Ltd of their geothermal power plant who supply the 

geothermal water NZPL uses. Had this not occurred during the sampling period, we 

would expect the temperature range to have been even narrower. With temperature 

being so controlled and varying little, it comes as some surprise that it was found to 
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be a significant predictor of phytoplankton diversity. Perhaps if even wider 

variations in temperature were seen we’d have seen even wider variations in 

phytoplankton diversity. Experiments investigating phytoplankton diversity at 

different temperatures would be necessary for this. Given that phytoplankton 

diversity was not found to be a significant predictor of yield, and that the farm’s 

main objective is to make money, such an experiment actually taking place is not 

likely in the foreseeable future. 

 

Appropriate levels of nitrogen must also be maintained in order to have the right 

balance of phytoplankton in the ponds. Ratios of nutrients are important for 

phytoplankton species composition, in particular the ratio of total nitrogen to 

phosphorous, or N:P ratio (Smith 1983). While nitrogen in the form of ammonia may 

be toxic to prawns, the removal of too much nitrogen from the system may lower the 

N:P ratio to the point where species of nitrogen-fixing cyanobacteria become 

favoured (< 29N:1P by weight) and form blooms (Schindler 1977, Smith 1983). This 

could be especially problematic if the bloom-forming species are of types that affect 

the flavour and odour of the product (and therefore value) such as cyanobacteria in 

the order Hormogonales (Tucker 2000). During this study Anabaena spp. were 

observed on a number of occasions to be more abundant in ponds during the early 

stages of grow out than they were in the later stages. This might possibly be due to 

lower prawn biomass in early stages of grow out excreting less ammonia into ponds. 

If ammonia is lower at earlier stages of grow out, this may reduce competitive 

pressure on Anabaena spp. which can fix their own nitrogen, and are at other times 

less abundant due to being inferior phosphorous competitors compared with other 

phytoplankton (Smith 1983). 
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Unfortunately total nitrogen (all forms of nitrogen) could not be measured for this 

study. However, it seems unlikely that the N:P ratio would have dropped below 

29N:1P due to the use of high-protein feed, semi-intensive stocking, and water 

recycling system used at NZPL. Also, cyanobacteria were on no occasion the 

dominant phytoplankton group in any pond on any sampling event. Further, no 

problems with flavour or odour have been reported by customers at the prawn farm’s 

on-site restaurant where nearly all of the product from the farm is sold and eaten. 

Nitrogen levels should however continue to be monitored to ensure that it does not 

get high enough to significantly impact prawn health, or low enough where 

undesirable cyanobacteria species may have an advantage over other phytoplankton 

species.  

 

5.15 Comparison of water quality parameters between Pond 13 and the rest of 

NZPL 

Of all ponds, Pond 13 came the closest to having a benthic algal bloom during the 

study. Manual removal of the algae took place before a full blown bloom actually 

occurred but I believe it is still worthwhile to compare Pond 13 to the rest of the 

farm as a whole. Table 7 shows the mean values of various parameters sampled 

during the study for Pond 13 in comparison to the mean values for farm as a whole. 
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Table 7: Comparison of water quality parameters of Pond 13 with overall 
farm means 

Water quality parameter 
Pond 13 

mean
Farm 
mean Difference 

Dissolved oxygen (ppm) 8.35 8.4 0.05 
Temperature (°C) 27.7 27.7 0 
Secchi depth (cm) 65.77 59.47 -6.3 
Chlorophyll a (ppm) 144.46 204.5 60.04 
Phytoplankton cells/ml 6.98 × 104 6.95 × 104 -.03 × 104 
Ammonia (ppm) 0.09 0.066 -0.03 
Orthophosphate (ppm) 0.17 0.211 0.04 
Nitrate (ppm) 0.03 0.034 0.004 
Shannon Index of Diversity (H') 1.05 1.022 -0.028 
Pond depth (mm) 900 1030 130 
Yield (MTPH) 4.05 4.18 0.13 

  
Pond 13 has a mean depth 130mm shallower than the farm mean, and slightly lower 

yield. While Pond 13 had a slightly higher mean number of phytoplankton cells per 

ml, it had 29% less chlorophyll a (the phytoplankton biomass index for this study) 

than the farm as a whole. Interestingly, there are also differences for dissolved 

oxygen, secchi depth, ammonia, and orthophosphate. These four water quality 

parameters were found to be significant predictors of chlorophyll a which as 

discussed earlier plays an important role in shading the benthos and preventing the 

growth of benthic algae. When compared to the overall farm mean, Pond 13 was 

lower in dissolved oxygen, turbidity (higher secchi depth), and orthophosphate, all of 

which were positively correlated with chlorophyll a. Dissolved oxygen and turbidity 

are most likely by-products of chlorophyll a (phytoplankton contributing to turbidity, 

and producing oxygen through photosynthesis). As the most important limiting 

nutrient for phytoplankton in freshwater systems however, orthophosphate levels 

probably contribute directly to chlorophyll a levels and lower orthophosphate in 

Pond 13 may directly result in its lower chlorophyll a concentration.  
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Although Pond 13 was not found to have significantly different mean values for any 

water quality parameters to any other pond the results are nonetheless interesting. I 

believe it is quite possible that a combination of shallow pond depth and less shading 

of the benthos by phytoplankton at the very least exacerbates the proliferation of 

benthic algae and further study in this area would be valuable. 

 

5.16 Difficulties in this study 

Combining controlled science with practical commercial enterprises is a difficult 

undertaking. Altering management practices to suit scientific endeavours will often 

be a gamble and could result in loss of profit. This study was no exception, and had 

to be a purely observational one in order not to interfere with the commercial 

imperatives of the business.      

 

Often during sampling events one or more ponds were either in a state of being 

harvested, empty, refilling or being brought back up to temperature prior to stocking. 

This resulted in a lot of missing data and meant that SPSS could not perform 

repeated measures ANOVAs for any of the variables measured. Because of this we 

cannot make statistically validated claims about how variables changed over the 

study period. 

 

Another major problem with this study was that no two ponds are at the same stage 

of the grow out cycle at any one time at NZPL. There is usually one pond harvested 

each week, occasionally two. After harvest, a pond is usually refilled, reheated and 

re-stocked with juveniles from the hatchery within a few days, and will be ready for 

harvest again by the time the other 18 ponds have been harvested. This creates 
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difficulties when comparing ponds: while all ponds receive identical water due to the 

recycling system used at NZPL, the water may not necessarily affect prawns in the 

same way due to differences in prawn age between ponds.  

 

This may be particularly true where ammonia is concerned. Mallasen and Valenti 

(2005) found that larvae of M. rosenbergii increase in their sensitivity to ammonia as 

they develop, attributing this to increased gill surface area. Perhaps this sensitivity 

continues to increase as prawns continue to grow (assuming that gill surface area 

continues to increase with growth). This could well be a worthwhile area of future 

study in M. rosenbergii culture. With respect to NZPL, what may be a problematic 

ammonia concentration in one pond may not be in another because of differences in 

gill surface area associated with prawn age between ponds. Naqvi et al. (2007) 

reported that survival rate, feeding activity and growth were significantly reduced at 

ammonia concentrations as low as 0.5ppm for late juveniles (4.13-4.49g). Ponds at 

NZPL are often stocked with prawns smaller than this, (although sometimes even 

less than 1 gram). As ammonia has been recorded at levels higher than 0.5ppm on 

some occasions at NZPL there is the potential for juveniles (especially late juveniles) 

being stocked into water that is going to be very toxic to them. I would recommend 

that ammonia levels are monitored especially closely prior to stocking, especially 

when stocking with late juveniles. Ammonia must remain closely monitored even if 

stocking with early juveniles, as they will of course have to pass through the size 

range Naqvi et al. (2007) report as being sensitive to ammonia before reaching 

marketable size. Therefore there is real potential for ammonia to reduce survival, 

feeding, and growth rates at NZPL. 
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Ponds were not harvested at the same time during the sampling period either which 

creates difficulties when trying to make direct comparisons between ponds. 

Unfortunately, due to the nature of the operation at NZPL there is no way around this 

problem other than to drain all ponds, refill and restock them at the same time. This 

is not feasible for a number of reasons: 

• Only a small fraction of the ponds contain marketable sized prawns at any 

one time. Draining all the ponds simultaneously would incur a severe 

economic loss for the farm. 

• The capacity of the settling pond is not great enough to receive the water 

from all 19 grow out ponds. Draining all 19 ponds simultaneously would 

require emptying nutrient enriched water into the Waikato River. 

• Harvesting all 19 ponds at once would require an upgrade of harvesting 

facilities (bigger processing area, more casual workers for harvest, increased 

freezer capacity etc). 

• Even if production at NZPL was synchronized, the majority of each harvest 

would have to be frozen to prevent spoilage, and fresh prawns would only be 

available for a few days immediately after harvest. This would reduce the 

value of the prawns as fresh product is of higher value than frozen product.  

 

Unfortunately (from a scientific point of view) there were none of the problematic 

blooms of benthic algae at NZPL over the sampling period. Pond 13, one of the 

shallowest ponds with an average depth of 900mm came close. Filamentous benthic 

algae could be seen around the shallower edges of the pond and also in deeper areas 

where it had grown long enough to be visible at the surface. Farm managers decided 

to manually remove the benthic algae before it got too out of hand. No other ponds 
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had benthic algal blooms and even if more had it would be impossible to 

conclusively prove that this reduced yield because of the low number of harvests 

during the sampling period. 

 

It would also have been difficult to determine the severity of benthic algal blooms. 

Turbidity means that the bottom of ponds is almost never visible from the surface. 

Ponds that may have bloomed could potentially have had the proportion of their 

bottom covered by algae measured after being drained for harvesting. That may not 

necessarily have been sufficient though as that would only have allowed us to know 

how much benthic algae was present in the pond at the very end of the grow out 

period, not the entire period, which is what we’d need to know in order to know how 

long prawn foraging (and therefore nutrition and growth) may have been inhibited.  

 

Budget constraints also prevented the sampling from being carried out more often 

and for a longer period of time. Many farm managers report observing very rapid, 

even daily changes in algal conditions in ponds (Burford 1997). Burford 

recommends daily sampling for extended periods of time to accurately reflect the 

rapid changes in chlorophyll a that can occur. 

 

The homogeneity of the variables measured may also be due to the gradation of 

prawn ages blurring any differences, not just the fact that the water is recycled 

amongst all the ponds. While a number of variables might be vastly different 

between a pond that has just been stocked compared to one that is about to be 

harvested, in between are another 17 ponds that cover the whole spectrum of grow-

out stages between stocking and harvest. Over two separate grow out seasons in a 
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penaeid prawn farm, Burford (1997) found that in both cases, ammonia increased 

during the season as prawn biomass increased. If prawns at NZPL have a similar 

effect on ammonia concentration, or are able to influence other water quality 

variables we may just see a blur that statistical analyses wouldn’t be able to detect 

any differences in due to the gradation of production stages between ponds. 

 

5.17 The ideal scenario in a perfect world… 

In an ideal situation, the following conditions would be permissible for an 

experiment. 

 

1) All ponds would be drained and prawns removed regardless of size. 

2) All ponds would be refilled and restocked at the same time with juveniles of 

the same size from the hatchery. 

3) All relevant variables would be measured daily. 

4) Farm managers would not alter any management practices for the duration of 

the study, and any benthic algal blooms would be allowed to occur. 

5) Phytoplankton identification would be improved by identifying 

phytoplankton down to species level wherever possible. 

6) All ponds would be harvested at the same time. 

7) A method of quantifying benthic algae for each grow out cycle would be 

developed. 

8) Several grow out cycles for each pond would be carried out in order to 

compare differences in yield between ponds and over time. 
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5. 18 Conclusions 

The impetus for this study was the occurrence of benthic algal blooms which farm 

managers believed caused greatly reduced yields of prawns through foraging 

impairment. Unfortunately during the study period there were no such blooms of 

benthic algae so the cause(s) of benthic algal blooms cannot be determined. Had 

there been more benthic algal blooms the study would have required a longer 

duration to gain a larger sample size for yield in order to determine whether or not 

benthic algae does in fact have an impact on yield. 

 

Based on observation of Pond 13, which came closest to having a benthic algal 

bloom, I suggest that such blooms are due to excess light reaching the benthos, 

allowing benthic algae to photosynthesize and proliferate. The conditions stimulating 

this appear to be: 

• Shallower pond depths. 

• Decreased shading of the benthos by phytoplankton, possibly due to lower 

orthophosphate.  

• As past blooms have been observed to occur in summer the intensity and 

duration of sunlight also probably contributes to the proliferation of benthic 

algae. As had been found for phytoplankton, solar irradiance was found by 

Thom & Albright (1990) to trigger the build up of benthic vegetation in 

Puget Sound, USA, with a decrease in irradiance in autumn seeing a die-back 

of benthic vegetation.  

 

Despite this though we cannot conclude that benthic algal blooms cause a reduction 

in prawn yield. The short time frame of the study meant that the sample size for yield 
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was small. During the study Pond 13 was harvested once, producing 4.05 marketable 

tonnes per hectare which is only slightly less than the mean yield of 4.18 for the farm 

as a whole during the study. There would also need to be a higher number of benthic 

algal blooms as well as a bigger sample size for yield before we can start to conclude 

that the former impacts the latter. Based on the information available though I would 

recommend that the shallower ponds have their depths increased to match those of 

Ponds 1-5 which are observed to very rarely (if ever) suffer benthic algal blooms. 

Pond 18, the deepest pond should be made shallower. Another alternative for 

shading the benthos is to stimulate phytoplankton blooms by fertilizing the water 

(Burford 1997), although this is not without its own problems if excess 

phytoplankton cause conditions to become anoxic at night. The use of shade cloth to 

prevent sunlight reaching the benthos would also reduce the sunlight available for 

phytoplankton. 

 

Changes over time in water quality parameters could not be analysed statistically due 

to gaps in the data cause by normal farm operations (i.e. harvesting the product). 

This highlights the difficulty of combining controlled science with practical 

commercial operations. 

 

Aquaculture can have detrimental impacts on the environment and there is an 

increasing worldwide demand of aquaculture species as wild stocks decline. Due to 

its semi-intensive nature and use of freshwater the farming of Macrobrachium 

rosenbergii has a low environmental footprint compared with other aquaculture 

species. The use of geothermal water to heat water at NZPL means that energy 

requirements also have a low impact. The prawns are a high value product at NZD 
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$50 per kilogram and the farm provides high levels of employment. Due to its 

popularity as a tourist destination (with an estimated 90,000 visitors per annum) 

there are further economic spin-offs for the farm beyond the sale of the product 

which also benefit the economy of Wairakei and the nearby tourist town of Taupo. 

As such I believe that the culture of Macrobrachium rosenbergii should be 

encouraged in New Zealand (and elsewhere in the world), culture practices refined 

and further research be put into optimizing production. 
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APPENDIX 1: Morphology and morphotypes of Macrobrachium 
rosenbergii. 
 

Diagram 1 – anatomy of Macrobrachium rosenbergii. 
Diagram: http://www.fao.org 
\ 

 
Photo 1 – small males (SMs). 
Photo: http://aquaculture.ako.net.nz/?cat=9&paged=2 
 

 
Photo 2 – orange claw male (OC). 
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Photo: Daniel MacGibbon 

 
Photo 3 – blue claw male (BC). 
Photo: Daniel MacGibbon 
 

 
Photo 4 – female. 
Photo: Daniel MacGibbon 
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APPENDIX 2: Phytoplankton identified during the study. 
 

  
Coccoid unicells  
Photo: http://www.ndsu.nodak.edu/instruct/fawley/coccoids/Itasca/newspp.htm 
 
 

  
Coelastrum sp. 
Photo: Daniel MacGibbon 
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Filamentous cyanobacteria 
Photo: Daniel MacGibbon 
 

 
Scenedesmus sp. 
Photo: Daniel MacGibbon 
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Anabaena sp. 
Photo: Daniel MacGibbon 

 
Merismopedia sp. 
Photo: http://www.microscopy-uk.org.uk/mag/wimsmall/bacdr.html 
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Pennate diatom 
Photo: Daniel MacGibbon 
 

 
Dictyosphaerium sp. 
Photo: Daniel MacGibbon 
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Pediastrum sp. 
Photo: Daniel MacGibbon 
 

 
Eyes sp. 
Photo: Daniel MacGibbon 
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Staurastrum sp. 
Photo: Daniel MacGibbon 
 
 

 
Golenkinia sp. 
Photo: http://protist.i.hosei.ac.jp/PDB/Images/Chlorophyta/Golenkinia/index.html 
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Oscillatoria sp. 
Photo: 
http://botit.botany.wisc.edu/images/130/Bacteria/Cyanobacteria/Oscillatoria/Oscillat
oria_MC.html 
 
 

 
Euglena sp. 
Photo: http://www.xtec.cat/~jfarre13/hot-potatoes/cellula-1.htm 
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Ceratium sp. 
Photo: http://blocs.xtec.cat/epsavidaalmar/42-els-dinoflagel%C2%B7lats/ 
 

 
Oocystis sp. 
Photo: http://protist.i.hosei.ac.jp/PDB/Images/Chlorophyta/Oocystis/index.html 
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Lyngbya sp. 
Photo: 
http://microbes.arc.nasa.gov/images/content/gallery/lightms/preview/lyngbya.jpg\ 
 

 
Spirogyra  sp. 
Photo: http://www.biologie.uni-hamburg.de/b-
online/library/webb/BOT311/Chlorophyta/SpirogyraBig500.jpg 
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APPENDIX 3: Water quality variables of all sampled ponds on all 
sampling dates. 
 
The following bar charts are of each water quality variable for each pond on each 

sampling date. The sampling date numbers on the x-axis of each plot refer to the 

following actual dates: 

Sampling date number Actual date 
1  8 November 2006 
2  28 November 2006 
3  8 December 2006 
4  18 December 2006 
5  28 December 2006 
6  7 January 2007 
7  17 January 2007 
8  26 January 2007 
9  5 February 2007 

10  14 February 2007 
11  25 February 2007 
12  7 March 2007 
13  17 March 2007 
14  28 March 2007 
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Figure 1:Number of phytoplankton cells per ml for each pond on each sampling date
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Figure 2:Shannon Index of Diversity (H') for each pond on each sampling date
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Figure 3:Chlorophyll a concentrations for each pond on each sampling date

Sampling date

C
hl

or
op

hy
ll 

a 
(p

pm
)

0
100
200
300
400
500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

4

5 6 7

0
100
200
300
400
500

8
0

100
200
300
400
500

9 11 13 14

15 16 17

0
100
200
300
400
500

18

 

 

 

 

Figure 4:Ammonia concentrations for each pond on each sampling date

Sampling date

A
m

m
on

ia
 (p

pm
)

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

4

5 6 7

0.0

0.2

0.4

0.6

8
0.0

0.2

0.4

0.6

9 11 13 14

15 16 17

0.0

0.2

0.4

0.6

18

 



 115

Figure 5:Nitrate concentrations for each pond on each sampling date
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Figure 6:Orthophosphate concentrations for each pond on each sampling date
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Figure 7:Temperatures for each pond on each sampling date
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Figure 8:Dissolved oxygen concentration for each pond on each sampling date
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Figure 9:Secchi disk depths for each pond on each sampling date
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APPENDIX4: Aerial diagram of New Zealand Prawns Ltd.  
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APPENDIX 5: Photos of New Zealand Prawns Ltd. 

 
Photo 1: Grow out ponds (bottom series). 
Photo: Daniel MacGibbon 
 

 
Photo 2: Grow out ponds (top series). 
Photo: Daniel MacGibbon 
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Photo 3: Settling pond. 
Photo: Daniel MacGibbon 
 

 
Photo 4: Heat exchange device. 
Photo: Daniel MacGibbon 
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Photo 5: Drained pond (post-harvest). 
Photo: Daniel MacGibbon 
 

 
Photo 6: Harvesting of prawns. 
Photo: Daniel MacGibbon 
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Photo 7: Sorting of harvested prawns. 

Photo: Daniel MacGibbon 
 

 
Photo 8: Artificial prawn habitats. 
Photo: Daniel MacGibbon 
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Photo 9: Post-larvae nursery tanks. 
Photo: Daniel MacGibbon 
 

 
Photo 10: Post-larvae. 
Photo: Daniel MacGibbon 
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