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Abstract

Suspensions of multiarm star polymers are studied as models for soft colloidal inter-
actions in colloidal glasses. Establishing a pre-shearing protocol which ensures a re-
producible initial state (the “rejuvenation” of the system), we report here the stress
evolution from startup for two different concentrations for a range of shear rates us-
ing conventional rheological techniques. We show the existence of critical shear rates
which are functions of the concentration. When the suspensions are sheared at rates
below the critical rates, the stress rises to a common value which is also a function of
the concentration. The system thus evolves into a yield stress-like fluid. This behavior
manifests itself as an evolution from a monotonic, slightly shear-thinning flow curve
to a flow curve dominated by a stress plateau.

Complementary to the controlled-rate measurements, stress-controlled measure-
ments show that for a stress below the critical stress, the rate at which strain is ac-
quired drops several orders of magnitude, providing evidence of a lower branch of the
flow curve. In stress-controlled ageing experiments, the material recovers an increas-
ing fraction of the strain acquired under stress with waiting time upon cessation of
the (less than critical) stress. The freshly rejuvenated suspension recovers a mere 2 %
of the acquired strain, while for a waiting time of 10* s the material recovers 97 % of
the acquired strain. The material thus appears to evolve from a nearly ideal fluid to a
nearly ideal solid.

We relate this bulk evolution to spatially and temporally resolved Rheo-NMR ve-
locity profiles which clearly show an evolution to a strongly shear-banded state. The
velocity of the suspension in the lower shear band is below the uncertainty of the ex-
periment. The growth of the (assumed) zero-shear band is well described by a Gom-
pertz relation. The effects of shear-rate, temperature and waiting time on the Gompertz
parameters are investigated.

Phenomenological understanding is provided through a scalar model that describes
the stress-dependent free-energy landscape. Using a dual-minimum free-energy land-
scape, the model is able to replicate the behaviour of the stress after startup in shear-



rate controlled experiments, the flow curve and the velocity profiles across the gap of
a Couette geometry.

The Large-Amplitude-Oscillatory-Shear (LAOS) response is reported along with
discussions of current LAOS analysis techniques. The stress response to LAOS of the
star suspensions is well described in a Cox-Merz manner by a modified Cross model.
The modified Cross model highlights an asymmetry in the LAOS response. This con-
stitutes the first ever report of asymmetric LAOS responses. The asymmetry is fol-
lowed as a function of time using two complementary scalar variables. A speculative

interpretation is given to account for the evolution of the asymmetry.
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Chapter 1
Introduction

The dramatic complexity of the biological world, encompassing systems inherently far
from equilibrium, is elucidated through the study of soft matter. Such studies have
significance for many industrial applications and contain some science so bold and
shocking that potential applications are still decades away.

"My own suspicion is that the universe is not only queerer than we suppose, but
queerer than we can suppose.” The British geneticist and evolutionary biologist J. B.
S. Haldane’s famous quote [1] alludes not only to science’s main goal of replacing the
queerness of the natural world with simple understanding, but it also makes clear his
personal feelings that mankind may not be able to unravel the queer intricacies we
see around us. While the latter point may forever remain an expression of personal
opinion, the former is the driving force behind science.

The biological world that Haldane’s work helped to shed light upon is rich in its
queerness. It is a world where events occur on time scales that range from billionths of
a second up to hours, where length scales range from billionths of a metre up to metres.
It is a world where biology meets chemistry and physics in a scientific ménage a trois.
The physical understanding of what happens in this amalgam of sciences, collectively
referred to as ‘soft matter science’, has been the topic of much research and heated
debate over the last two decades.

Soft matter is comprised primarily of polymers and polymer-like substances. Per-
haps the most challenging and enlightening work has come from understanding the
behaviour of these molecules that form a sort of ‘shape spectrum’” with long chains at
one end and hard spheres at the other. Forming the intervening parts of this spectrum
are branched polymers which are referred to as stars and pom-poms. While we can eas-
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ily imagine how these stars look (think of tiny pom-poms and koosh balls with varying
numbers of arms), the queerness of the natural world rears its head when we examine
how these materials respond to forces and strains. Most industrial applications and all
biological occurrences take these materials far from their equilibrium configurations
by applying strains and stresses.

The ultimate goal of this thesis is to elucidate the behaviour of such a system of star
polymers when taken far from its equilibrium configuration via mechanical stresses
and strains. While numerous techniques have been employed in the study of soft mat-
ter systems such as Dynamic Light Scattering (DLS), high frequency Ultrasonic Speckle
Velocimetry (USV), Particle Imaging Velocimetry (PIV) and Laser Doppler Velocimetry
(LDV) the results presented in this thesis have been gathered primarily from the use
of traditional rheological methods. These methods often hint at, but cannot confirm,
the existence of heterogenous flow in soft materials. In order to relate heterogeneous
flow to the time dependent stress or strain rate constitutive properties, an experimental
technique should combine rheomechanics with noninvasive velocimetry. In this the-
sis time-resolved nuclear magnetic resonance (NMR) microscopy is the velocimetry of
choice. The use of nuclear magnetic resonance techniques is not limited solely to ve-
locimetry; nuclear magnetic resonance spectroscopy adds molecular-level information

to the macroscopic flow information.

1.1 Thesis organisation

It is necessary to divide such a body of work into discrete sections that present informa-
tion that is gathered from a particular experimental technique, or relates to a particular
behaviour. As such, this thesis has been divided into chapters with the aim of present-
ing the information in a logical progression. The first three chapters following this one
are intended to give the reader an introduction to the experimental techniques used
in the later chapters, to introduce the field of soft matter physics and in particular the
star polymers studied in this work. The experimental and theoretical work that is the
subject of this thesis is presented in the next four chapters with the conclusions of the
thesis coming after these. In particular the layout of the thesis is as follows:

Chapter 2 introduces the concepts of rheology including providing the reader a
definition of Hookean solids and Newtonian fluids. Chapter 2 also features an intro-
duction to viscoelasticity and non-Newtonian fluids. The chapter is rounded out with
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a discussion of rheometry, the way rheological information is gathered, and factors a
successful rheologist must be aware of.

Chapter 3 introduces the Zeeman interaction, magnetic resonance imaging and
other concepts relating to nuclear magnetic resonance that will be necessary to un-
derstand the experimental results presented in later chapters.

Chapter 4 gives an introduction to the field of soft matter physics with a particular
focus on ageing in soft matter. Star polymers are introduced, followed by a discussion
on the need to study their flow and ageing behaviours.

Chapter 5 is the first chapter to contain the new work that is the focus of this thesis.
The initial focus of this chapter is the determination of a protocol that is able to place
the material in a well defined and reproducible starting state. The focus of this chapter
then shifts to the rheological characterisation of the steady flow behaviour and how it
changes as the material ages. In this chapter, a dramatic stiffening of the material is
presented at shear rates and stresses below critical values. The results presented in this
chapter are interpreted with respect to previously published results.

Chapter 6 focusses almost entirely on the evolution of the material in a concentric-
cylinder Couette geometry by the use of rheo-NMR velocimetry under different ap-
plied shear-rate, age and temperature conditions. These results are used in conjunction
with spectroscopic information to add to the interpretation gained from the previous
two chapters.

The thesis then takes a turn, and shifts the focus from experimental behaviours
to understanding the results in terms of a coherent theoretical framework. Chapter
7 introduces a number of theoretical approaches that have proved to have varying
degrees of success in terms of modelling the behaviour of soft materials and moves on
to discuss a simple approach that mimics the dramatic experimental results presented
previously.

In Chapter 8, the temporally changing response of the material to oscillatory flow
is investigated with a particular emphasis on two novel analysis techniques for large-
amplitude oscillatory shear responses. The changing shape of the response is inter-
preted with respect to the stiffening presented in the previous chapter.

Chapter 9 presents a summary of the conclusions from each chapter.
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Chapter 2
Rheology

When discussing how complex fluids behave, it is necessary to discuss their ‘rheol-
ogy’. What follows will be an introduction to the rheological concepts that are salient
to this thesis and some points that are of interest to the author. The interested reader
is directed to [2] for an excellent introduction to rheological tests and theory, [3] for a
more thorough handling of fluid dynamics and [4] for a fairly complete discussion of

the rheology of many types of complex fluids.

‘Rheology’ is the study of the flow and deformation of materials. The name comes
from the Greek word por meaning flow and ‘ology” meaning study of. The name was
coined by Professor Eugene Cook Bingham of Lafayette College, Indiana, who was the
founding father of the Society of Rheology which was formed in 1929. The ideas of
rheology are much older than that date suggests however and many cite the words
of the Greek philosopher Heraclitus (born somewhere between 535 and 540 B.C. in
Ephesos, and died 475 B.C.) as the first rheological expressions. Heraclitus is reported
to have said

TAUTQ PEL KOl OVOEV [LEVEL

which translates as everything flows and nothing abides. IldvTa pei is now the official
motto of the Society of Rheology and features on every cover of the Society’s own
publication, the Journal of Rheology. This statement says that everything is a liquid,
even though common sense tells us otherwise. The way out of this quandary had
been given by the prophetess Deborah in the fifth chapter of the book of Judges in the
Old Testament when, after defeating the Philistines she sang, “The mountains flowed
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before the Lord.” Professor Marcus Reiner who worked with Bingham said [5]

“Deborah knew two things. First, that the mountains flow, as everything
flows. But, secondly, that they flowed before the Lord, and not before man,
for the simple reason that man in his short lifetime cannot see them flowing
while the time of observation of God is infinite.”

Thus he defined the dimensionless Deborah number as
D.=1/T .1)

where 7 is a characteristic time of the material and 7 is the time of observation. The
difference between solids and liquids is then defined by the magnitude of D.: for large
observation times or, conversely, very short characteristic times (D. < O(unity)), the
material will appear to flow whereas if the characteristic time is very long compared

to the observation time (D, > 1), the material will act as a solid.

In the traditional sense, solids and liquids sit at opposite ends of a (discontinuous)
spectrum. We learn at an early age that solids and liquids are different. As discussed
in the next section, the works that describe these traditional views come from two men
who achieved many advancements in their careers and whose views, like the types of
materials they described, often sat at opposite ends of a spectrum.

2.1 Hookean Solids and Newtonian Liquids

2.1.1 Hookean Solids
In Robert Hooke’s 1678 work “True Theory of Elasticity” he states
“the power of any spring is in the same proportion with the tension thereof”

This law is taught in high school science classes as ‘Hooke’s Law’. To modernise the
language slightly, one may say in relation to springs if the force is doubled, the extension
is doubled. Applying this idea to all solids we can say that if a force is applied to a
solid block, the deformation achieved will be in direct proportion to that force. In
three dimensions forces are applied to areas and so we define the stress, o applied
to a material as 0 = F/A, where F' is the force applied to an area A. Stress has the
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{

Figure 2.1: When a stress o is applied to a Hookean solid, an instantaneous deformation of magnitude
~ = [/ L results. Upon cessation of the stress, the material returns to the original configuration. Here the
stress is shown to act in one direction only.

familiar units of pressure, Pa. Applying a stress of o to a Hookean solid yields an
instantaneous deformation called the strain, denoted by ~. Strain is defined as the
deformation relative to a reference configuration of length, area or volume [2]. Thus in
Fig. 2.1 if the top of a block of height L is moved by a linear amount [ relative to the
bottom, a configuration known as shearing, the strain is equal to [/ L. Strains are usually
quoted in units of % so that a strain of I = L is referred to as 100 %. The amount of strain
is related to the shear stress by the rigidity modulus or shear modulus of the material, G
(corresponding to the spring constant, k in the familiar form of Hooke’s Law F' = kx)
so that

o= Gh. (2.2)

When a constant stress is applied to a Hookean solid, the spring-like solid deforms
instantly by an amount v and remains deformed until the stress ceases in which case it
immediately returns to its original conformation. It is common to refer to this type of

behaviour as being elastic.

2.1.2 Newtonian Liquids

In his 1687 work “Philosophiae Naturalis Principia Mathematica” Isaac Newton wrote
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Figure 2.2: Two parallel plates in relative motion create a velocity gradient in the fluid between them
equal to U/d.

“The resistance which arises from the lack of slipperyness of the parts of the
liquid, other things being equal, is proportional to the velocity with which
the parts of the liquid are separated from one another.”

The velocity with which the parts of the liquid are separated from one another is
known as the shear rate, 4 (where the usual notation of @ = Ja/0t applies). In the
simple case of two parallel plates with relative velocity U as in Fig. 2.2 the shear rate is
equal to the velocity gradient U/d. The lack of slipperyness is now called the “viscosity’
and is often denoted by 7. Viscosity is defined by the relation

— (23)

When a constant stress is applied to a Newtonian liquid, it deforms instantly and
continuously at a rate ¥ until the applied stress ceases. The strain attained over the
time in which the stress was applied is not recovered. It is common to refer to this type

of behaviour as being viscous.

2.2 Viscoelasticity

In the previous section we introduced the ideas of viscous and elastic behaviours. Vis-
cous materials were defined to be materials that respond to constant stresses, o, by

flowing at a constant rate  until the stresses are ceased. Elastic materials were defined
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Figure 2.3: A schematic representation of the Maxwell model. A dashpot with viscosity 7 is connected
in series with a spring with elastic modulus G.

to be materials that instantly acquire strain when stressed and instantly recover that
strain when the stresses are ceased. These are both ideal behaviours and it can be ar-
gued that all real materials exhibit a mixture of the two as suggested by equation 2.1.
This mixture of viscous and elastic behaviours is referred to as viscoelasticity.

2.2.1 Maxwell Model

A simple model of a viscoelastic material was proposed by James Clerk Maxwell in a
paper entitled “On the dynamical theory of gases” in 1867. The model consists of a vis-
cous element called a dashpot in series with an elastic element, a spring and is shown
in Fig. 2.3. The dashpot is described by a viscosity, 7, and the spring by an elastic mod-
ulus, G. The Maxwell model has the property that strains, and hence strain-rates are
additive. This property allows us to simply sum the strain-rates of the two elements to

obtain the total strain-rate of the model [2],

;Ytotal = ;YV + ’YE (24)

We can rewrite this using equations 2.2 and 2.3 as

. o o
Vtotal = E + 5 (25)

The stress response to a strain, or strain-rate of the Maxwell model can be found by

introducing the time constant 7,; = J and rearranging equation 2.5 to yield
o+ Tvo =17. (2.6)

In the case of the application of a constant strain-rate, 7y, at time ¢ = 0 in which the
strain rate is applied for all time ¢ > 0, we can solve equation 2.6 to show

o (t) = 1 [1 exp (_—t)} . 2.7)

T™
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1.0 = 1.0 =
bo bo
° 5
0.0 0.0 —
(a) time (b) time

Figure 2.4: Stress evolution upon startup (a) and cessation (b) of shear in a Maxwell model where

g0 = NYo-

This result means that the stress does not immediately rise to a steady value, rather it
approaches a steady value with a time constant 7, as shown in Fig. 2.4(a). It can also
be shown that if a shear rate, 7y, has existed for times ¢ < 0 and ceases at t = 0 the

stress relaxes as

o(t) = njoexp (_t) (2.8)

™
for times ¢t > 0. Thus the stress relaxes exponentially from the equilibrium value of 7
to 0 with relaxation time 7, as shown in Fig. 2.4(b).
If a constant stress, 0 is applied to the Maxwell model instead of a constant strain-

rate at time ¢ = 0, the strain acquired can be expressed as
Y(t)= =+ —t (2.9)

where the first term describes the strain acquired by (the extension of) the elastic ele-
ment and the second term describes the strain acquired by the viscous element. When
the stress is ceased, the strain acquired by the elastic element, 0(/G, is recovered imme-
diately whereas the strain acquired by the viscous element, (o/n)t is not. Because the
long time characteristics of the Maxwell model approach those of Newtonian liquids,

it is said that the Maxwell model describes a viscoelastic liquid.

2.2.2 Kelvin-Voigt Model

Another simple viscoelastic model is named after the British physicist and engineer
William Thomson, 1st Baron Kelvin and German physicist Woldemar Voigt and can be
represented as a spring of elastic modulus G in parallel with a dashpot of viscosity 7.
A schematic representation of this model is shown in Fig. 2.5.
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G

n

Figure 2.5: A schematic representation of the Kelvin-Voigt model. A dashpot with viscosity 7 is
connected in parallel with a spring with elastic modulus G.

In this model the stresses are additive [2] so that
Ototal = OV + OF (2.10)

which can be rewritten as
Ototal = G’Y + 777 (211)

It is easy to imagine that when a stress o, is suddenly applied to the Kelvin-Voigt model
that the spring will eventually reach the strain o,/G but the evolution of the strain will
be retarded by the dashpot. That is, equation 2.11 can be solved to show

A(t) = % [1 — exp <%)} 2.12)

where 7y = 1/G as before. We can likewise solve for the case where after a time t* > 0
the stress is ceased to find that the stress in the Kelvin model relaxes as

1) = A(t")exp (i) , 213)

TKV

which confirms that in both sudden startup and sudden cessation of an applied exter-
nal stress, the strain acquired or recovered by the Kelvin model is retarded in time by
the time constant 74y as shown in Fig. 2.6. Because the long time characteristics of the
Kelvin-Voigt model approach those of Hookean solids, it is said that the Kelvin-Voigt
model describes a viscoelastic solid.

2.3 Tensorial Representation of Stress and Strain

We have thus far dealt with stresses and strains as scalar quantities used to describe
one-dimensional dynamics. In reality, stresses and strains are applied to volumes of
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time

Figure 2.6: Strain evolution upon startup and cessation of stress in the Kelvin-Voigt model where

Yo = Oo/G.

material which respond in three spatial dimensions. In the following discussion of the
tensorial description of stresses and strain the nomenclature used in Larson [4] shall
be adhered to.

We shall begin by defining the vector x = (1, x3, x3) to be a point in three-dimensional
space with Cartesian coordinates x4,z and x3. The velocity vector at a point x is de-
fined as being v = (v1(x), v2(x), v3(x)) where v; is the component of the velocity parallel
to direction “1” and likewise for v, and vs. The velocity gradient tensor Vv, which de-
scribes the steepness of velocity variation is then given by the array [4]

v vy Oug
o0x1 o0z or1
Ovi vz Oug
81‘2 8(22 8272 : (2'14)
dui Jvz  Quz
Oxrs Oxz Oxs

Vv

The velocity gradient tensor of simple planar Couette flow depicted in Fig. 2.2 thus
only has one non-zero component, v;, and it varies in one direction only, the direction

orthogonal to the plates. In this case, the velocity gradient tensor is [4]

Vv (2.15)

I
o 2 o
o o o
o o o

where 4 = Jv; /0.
The symmetric part of the velocity gradient is called the rate-of-deformation tensor
and is denoted D [4]:

2D = Vv + (Vv)T, (2.16)
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Figure 2.7: Components of the extra stress tensor visualized on a finite volume element. The first
subscript refers to the normal of the face and the second subscript refers to the direction along which
the stress acts.

We express the three-dimensional stress as the state-of-stress tensor:

Fi Fip Fis
T = Fy Fy F23
Fs1 Fyy I3

where Fj; is the component of the total force acting on a face perpendicular to the ith
direction in the jth direction. T = o — pl is a symmetric tensor in all but the most
unusual cases [4]. o is the extra stress tensor, p is the hydrostatic pressure and 1 is
the identity tensor of the same rank. Using this convention, it should be noted that a
positive hydrostatic pressure results in a negative stress. Stresses that exist in addition
to a hydrostatic pressure are expressed as the extra stress tensor, . The components
of the extra stress tensor are denoted o,; and represent a component of stress acting
in the j* direction on the elemental plane whose normal is in the i"* direction. This
is visualized in Fig. 2.7. It is common to refer to the components o;; as the normal
components or normal stresses because they act in the same direction as the normals to
the faces (these are often just written as 0;, a convention that will not be adhered to
in this work) and the components o;;, (¢ # j) as the shear components or shear stresses
because they act perpendicular to the normals. In the case of an incompressible fluid,
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it is possible to completely define the stress by the three shear stresses o1,, 013, 093 and
the normal stress differences where the first normal stress difference is defined as N; =
011 — 092 and the second as N, = 093 — 033. If the volume is finite then, strictly, these are
average stresses. In the limit when the volume approaches zero, the stresses become
stresses at the point that lies at the centre of the volume. In general, stress varies from
point to point and so is a tensor field.

The stress in a complex fluid depends not only on the instantaneous velocity gradi-
ent, but also on the time over which that velocity gradient has been imposed. Consider
the point in the fluid that at a past time ¢’ occupied position x’ but at a time ¢ resides at
the point x. Using similar notational conventions to represent orientations, we express
the deformation history of the material using the tensor E:

Oz Ozy O

oz oz} oz

F = 22 — | Oz Oz Oas
B )=o = & 5 5 | (2.17)

Oz Ozy Oz

ozl Oxf  Oxf

The tensor E contains information on the rotation of the fluid in addition to the stretch-
ing of the fluid element in each of its three dimensions. If a material is rotated only and
is not stretched, there are no extra stresses induced. In order to remove the solid-body
rotational information from E to leave us with only the stress-causing stretching, we
define the Finger tensor, B:

B=E"-E. (2.18)

For the case of simple shear illustrated in Fig. 2.1, the Finger tensor is [4]

1+9% v 0
B=| ~+ 10 2.19)
0 01

where v = (t', t) is the strain accumulated between times ¢’ and ¢.
The results of sections 2.1 and 2.2 can thus be generalized to the respective tensorial
quantities.

2.4 Linear Viscoelasticity

In section 2.2 viscoelasticity was mentioned as a combination of viscous and elastic

properties. In this section we formalize the idea of viscoelasticity and introduce the
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concepts of linear and non-linear viscoelasticity.

The behaviour of viscoelastic materials under certain conditions, which will be de-
fined shortly, can be described by linear differential equations in time with constant
coefficients. If the coefficients change with a parameter other than time, the behaviour
is no longer linear, it is said to be non-linear. We can express a general relation between

stress and strain in linear viscoelastic materials as

0 0? o 0 0? am
<1+041§+062@+~.+06n%>0= <ﬁ0+ﬁ1§+ﬁ2@+”'+@n8t_’") v, (2.20)

where n = m or n = m — 1. We have reverted back to the scalar representation of stress
and strain for simplicity and we have assumed the simple type of shear as shown
in Fig. 2.2. It is possible to use the same generalized linear viscoelastic equation for
other types of shear by replacing the scalar quantities with their tensorial counterparts.
Note that equation 2.20 is written in terms of ordinary partial derivatives which further
restricts the bounds of the linear theory to small changes in the variables.

If we assume the only non-zero coefficient in equation 2.20 is 3,, we end up with

o = Po7, (2.21)

which is the same as equation 2.2 for a Hookean solid, where 3, = G, the rigidity

modulus. If 3; is the only non-zero term in equation 2.20, we obtain
vy
= 1=, 2.22
g 51 ot ) ( )

which is the same as equation 2.3, which describes a Newtonian liquid of viscosity
n = (1. If we now allow 3, and /3, to be the only non-zero coefficients and write them
in the more familiar ways just described, equation 2.20 becomes

o=Gvy+ny, (2.23)

which is the Kelvin-Voigt model we derived in equation 2.11 through purely geometric
arguments. It comes as no surprise then, that the Maxwell model of equation 2.5 can
also be obtained from equation 2.20 by setting «; = 7y and 3; = 7 as the only non-zero
coefficients.

The generalized Maxwell model assumes a number of relaxation processes take

place in real materials and accounts for this by a parallel connection of a finite number
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N, or an enumerable infinity of Maxwell elements. Assuming a continuous distribu-
tion of relaxation times leads to an expression of the stress as a function of time as a

homogeneous Volterra equation of the first type:

t
o(t) = / G(t —t")y(t")dt (2.24)
where G(t — ') is called the relaxation modulus. In the case of dilute complex fluids
where one can think of the Maxwell elements as being dilute in the solvent, there will
be a need to express the stress as a function of time in terms of an inhomogeneous

Volterra equation of the first type:

t
o(t) = nsy + / GM (t — )5t dt' (2.25)
where the first term represents the property of the solvent and the second term repre-

sents the contribution from the Maxwell elements. If we measure the shear strain from
t = 0, we can integrate equation 2.24 by parts:

ot) = / "Gl — (2.26)

LOG(t —t)

/ /
o7 y(tdt

— (G-t - [

—0o0

= —/t M(t —t")y(t, t")dt’

where M(t — ') = 2G(t — ') is called the memory function. An important feature of
both equations 2.24 and 2.26 is that they equate functions that relate to the material
properties viscosity and relaxation time as well as the flow properties of shear rate,

and equivalently deformation.

24.1 Measurements of Linear Viscoelasticity

Measurements of linear viscoelastic properties are divided into two distinct methods
which are classed as either static or dynamic. Static measurements consist of step-wise
applications of constant stresses/strains while the strain/stress response of the mate-
rial is recorded as a function of time. Dynamic measurements involve an oscillatory

application of strain where the stress response is recorded.
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Figure 2.8: Static methods of measuring viscoelastic properties. (a) A step-wise application of strain
top results in a stress relaxation bottom. (b) A step-wise application of stress top results in an initial
instantaneous acquisition of strain, followed by a period of retarded growth and then a steady increase
until the stress ceases. Upon cessation, an identical instantaneous amount of strain is recovered. The
strain acquired in the steady period is not recovered.

Consider the case where a constant (small) strain v is applied step-wise to a material
atatime ¢’ = 0 as shown in Fig. 2.8(a). We can replace (') in equation 2.24 with a Dirac
delta function v,d(¢'). Equation 2.24 then reduces to

o(t) = nG(1), (2.27)

which provides a direct determination of G(¢). In the case where G(t) is constant, this is
identically the behaviour of a Hookean solid. If, instead of applying a constant strain,

a constant strain rate, - is applied in a step-like manner, then equation 2.24 becomes

o(t) =7+ /t G(t—t)dt' =+ /OOO G(t)dt. (2.28)

—00

From equation 2.28 we can thus relate 7(t) = f(f G(t), and in the case where this is a
constant it is said that the material behaves as a Newtonian fluid.

A test that involves an application of a constant stress is referred to as a creep ex-
periment. A typical creep experiment is depicted in Fig. 2.8(b). A constant stress is
applied to the material in a step-wise manner (Fig. 2.8(b) top) and the strain is recorded
as a function of time (Fig. 2.8(b) bottom). There is an initial instantaneous (as near to in-

stantaneous as is possible due to the experimental geometry having some finite inertia)
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acquisition of strain which is the elastic response of the material. There is then a pe-
riod where the acquisition of strain is retarded which is, in turn, followed by a period
of time where the material flows (acquires strain) at a constant rate. Upon cessation of
the stress at some later time, the elastic strain is recovered. The strain acquired during
steady flow is not.

As previously mentioned, the dynamic method of measuring linear viscoelastic
properties consists of an oscillatory application of strain while simultaneously record-

ing the stress response of the material. The strain and strain rate are thus
Y(t) = o sin(wt), ¥(t) = ~ow cos(wt) = YowR [exp(iwt)] , (2.29)

where 7 is the amplitude of oscillation and w is the (angular) frequency and R refers
to the real part. Substituting these terms into equation 2.24 yields

o(t) = /t yow cos(wt)G(t — t")dt’ (2.30)

—00

= ’YQCL)/ cos(wlt — ")) G(t")dt"
0

= {w/ sin(wt”)dt" sin(wt) +w/ cos(wt")G(t")dt" cos(wt)
0 0

= 7 [G sin(wt) + G" cos(wt)]

where G’ and G” are called the storage modulus and loss modulus, respectively and rep-
resent the in- and out-of-phase response of the material. It can be seen from equations
2.2 and 2.3 that an in-phase response corresponds to solid-like behaviour and and out-
of-phase response corresponds to liquid-like behaviour. In general terms then, the
storage modulus represents the solid-like response of a material and the loss modulus
represents the liquid-like response. The storage and loss moduli can be combined to

give the complex modulus, G*(w):
G*(w) = G (w) +iG"(w) (2.31)

This behaviour can be expressed in another way where it is assumed that the stress
response to an oscillatory strain can be expressed in the same form with a phase in
advance of the strain by an amount 9, called the loss angle. Recalling equation 2.29 the
stress is then

o(t) = oo¥ [exp(i(wt 4 9))] (2.32)
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Figure 2.9: Dynamic method of measuring viscoelastic properties. (a) Stress response (solid lines)
calculated from equation 2.32 compared with the strain input (dashed line) as functions of time for phase
differences (light to dark) 6 = 0,7/4,7/2. (b) Parametric Lissajous curves displaying the normalized
stress as a function of the normalized strain for the same phase shifts.

where

tand = G" /G, (2.33)

This relation is displayed in the left of Fig. 2.9, where the normalized-strain input
as a function of time is depicted as a dashed line while the normalized-stress output
as a function of time is displayed as a solid red line for loss angles of § = 0° (cor-
responding to a purely elastic response), 45° (a viscoelastic response that is an equal
mixture of elastic and viscous responses) and 90° (corresponding to a purely viscous
response). The right of Fig. 2.9 displays the same information in a series of Lissajous
curves, named after the French mathematician Jules Antoine Lissajous (March 4, 1822
- June 24, 1880). A general Lissajous curve is the graph of the system of parametric
equations = Asin(at + §), y = Bsin(bt). In rheological Lissajous figures the abscissa
(x-coordinate) is the (normalized) strain and the ordinate (y-coordinate) is the (normal-
ized) stress. Lissajous curves have the immediately recognizable benefit, compared to
plots of the input and output variables as functions of time, of compactness. A Lis-
sajous curve of purely Hookean elastic behaviour is a straight line whose gradient is
the elastic modulus and the Lissajous curve of purely Newtonian viscous behaviour is

an ellipse where the ratio of semimajor axis to semiminor axis is nw.
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The area enclosed by a rheological Lissajous curve is equal to the energy dissipated
per unit volume per cycle, E,;. That is

By - 74 ody — Ja{ o (1) (t)dt (2.34)

which, using equation 2.30, can be expressed as
27w
E; = Yw / [G' sin(wt) + G” cos(wt)] cos(wt)dt (2.35)
0

2w

= vng"/ cos?(wt)dt
0

= vrG".

This result shows that the dissipative nature of a material depends on only one material
function, G”.

In summary, the dynamic response of a material to a sinusoidally oscillating strain
is said to be linear providing the dynamic moduli, the storage and loss moduli, show
no amplitude dependence and the stress response is sinusoidal. Typically, nonlinear-
ities appear above a critical strain amplitude v,. Nonlinear oscillatory flow is often

referred to as Large-Amplitude-Oscillatory-Shear (LAOS) because of this.

2.5 Non-Newtonian Fluids

The discussion of fluid behaviour up to this point has been concerned with fluids that
obey a linear relation between shear rate and shear stress so that

o=ny. (2.36)

The coefficient of proportionality is called the viscosity and is a measure of the ‘slip-
periness’ of a fluid. Equation 2.36 implies a constant viscosity for all applied shear
rates/shear stresses. For many fluids, this behaviour is exhibited only over a range
of shear rates/shear stresses, and for some fluids, it is not exhibited at all. In general,
n = 1(¥). Fluids which show behaviours that deviate from equation 2.36 are referred to
as non-Newtonian fluids. The next section will introduce some simple models of non-
Newtonian fluids, starting with a model first introduced by Malcolm Cross in 1965 [6]
from which a number of important models can be simply derived. The Cross model
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assumes that a type of irreversible flow is associated with the formation and rupture
of structural linkages in non-Newtonian fluids and describes a viscosity that varies as

N o — Moo
n(9) = o + T ramym () (2.37)

where 7y and 7., are the asymptotic values of the viscosity at very low and very high
shear rates. C' is known as the Cross time constant and has units of time. The inverse
of C'is a shear rate that indicates the change from 7, towards 7... m is a dimensionless
number that is called the (Cross) rate constant and is a measure of the degree of de-
pendence of viscosity on shear rate in the region between 7, and 7,,. When m = 0, the
Cross model reduces to that of Newton.

If n < ng and 1 > 1., such that we can assume 7y — 7 =~ 1y and 7 — 7, ~ 1, then the
Cross model reduces to

n(y) = Ky"! (2.38)

called the power law model. In the power law model the coefficient K is called the
consistency index, with units of Pa.s” and n the (dimensionless) power-law exponent.
When the power-law index n is identically 1, Newtonian behaviour is recovered with
the consistency index K = 7. If n < 1, the viscosity lowers as higher shear rates
are applied and the material is said to be shear thinning. Likewise when n > 1, the
viscosity increases at higher shear rates and the material is said to be shear thickening.
These behaviours are depicted in Fig. 2.10 for the case of steady shear in figures that
are usually referred to as flow curves. A flow curve is a rheogram with the shear stress
as the ordinate and the applied shear rate as the abscissa.

The dynamic response of power-law fluids to oscillatory strain is shown in Fig. 2.11.
Shear-thinning fluids, where n < 1 dissipate more energy per unit volume per cycle as
can be seen by the area their Lissajous curves enclose. It is common in the rheological
literature to refer to the behaviours exhibited in Fig. 2.11 as strain-hardening (corre-
sponding to n > 1) and strain-softening (n < 1) behaviours to discern between steady
shear and oscillatory responses. These terms match the responses in that as the strain
is increased, the stress increases faster for an n > 1 material, a sign of the hardening of
the material. For an n < 1 material, the stress levels off with increasing strain, a sign of
the material softening.

If n ~ O(ns) and 1 < ng such that ny — n & ny then the Cross model reduces to

() = oo + K4 (2.39)
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Shear stress

Shear rate

Figure 2.10: Flow curves showing Newtonian flow (n = 1, orange), shear-thinning (n < 1, red) and
shear-thickening (n > 1, yellow) behaviours.

which is known as the Sisko model. If n = 0 in the Sisko model then the model reduces

to
n(y) = ne + K57 (2.40)

which is known as the Bingham model after the founder of the Society of Rheology. The
stress defined by the Bingham model can then be written, with a change in parameters,
as

o(}) = oy +mp¥ (2.41)

where o, is referred to as the yield stress. The yield stress must be exceeded for the
material to flow. The concept of a yield stress, though helpful in many circumstances,

is strongly argued against on the basis that
TAVTQ PEL Kol OVOEV LEVEL,

i.e. every material flows given enough time. If stresses below the yield stress are ap-
plied to a Bingham-type material the deformation achieved is purely elastic and will be
recovered upon stress cessation. If a strain is applied instead of a stress to a Bingham
material, the stress will rise until reaching the yield stress. Any strain acquired by the
material after the yield stress has been reached will not be recovered upon cessation.
This behaviour is known as plasticity and the deformation acquired after yielding is

known as plastic deformation.
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Figure 2.11: Dynamic response of power-law fluids for power-law indices (light to dark) n =
0.01,0.5,1.0, 1.5. (a) Stress response (solid line) calculated from equation 2.38 compared with the strain
input (dashed line) as functions of time. (b) Parametric Lissajous curves displaying the normalized
stress as a function of the normalized strain for the same power-law indices.

2.6 Rheometry

The generic title of rheometry refers to the experimental techniques used to determine
the rheological properties of materials and in this section we will introduce and dis-
cuss a few of the most common geometries for rotational devices. Rheometric devices
that involve flow through constrictions or flow around obstructions, while important
industrially and academically, will not be discussed. The simplest conceptual configu-
ration of shear is that of two infinite, parallel plates separated by a distance d in relative
motion (see Fig. 2.2). This is generally called planar Couette flow after the French rhe-
ologist Maurice Marie Alfred Couette (1858 - 1943). While important theoretically, in
practice this particular configuration is impossible to create and finite-sized approx-
imations are inconvenient, so other configurations must be used in order to acquire
rheological information.

Rotational rheometers involve two surfaces in relative rotational motion with the
sample placed in the gap between them. The geometries we will discuss here are
concentric-cylinder Couette in which a cylinder of radius R; is placed inside a cylinder
with an inner radius of R with the two cylinders sharing a common axis of rotation,

cone-and-plate, in which a small-angle cone of radius R, and angle ¢, is in relative-
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rotational motion a distance h above a flat plate and plate-and-plate, in which two
flat, circular plates of radius R are a distance h apart and in relative-rotational motion

about a common axis.

2.6.1 Geometries
Concentric-cylinder Couette geometry

We will start our discussion of geometries with the concentric-cylinder Couette geom-
etry shown schematically in Fig. 2.12. In the limit where the radii of both cylinders
is 0o, this geometry reduces to the planar Couette configuration previously discussed.
Practically, however, the radii are finite and the obvious coordinate system to work in
is cylindrical coordinates shown also in Fig. 2.12. In cylindrical coordinates the velocity

field that results from a relative rotational motion of vy(r) is

vg = wg(r)
v, = 0 (2.42)
v, = 0
and the shear rate is equal to
g = 12 (M> . (2.43)
or r

If a Newtonian fluid is placed in the gap and the relative rotational velocity between
the two cylinders is €, then the limiting velocities are vy(r = R;) = QoR; and vp(r =
Ro) = 0. This gives a velocity profile of
0 2 2
ofts {RO ] (2.44)

v(r) = 55—55 | — — 7| -
olr) R —R: | r
And we can define a ‘gap average’ shear rate using the conventions set up in Fig. 2.2,
that is taking the limit as the radius of curvature tends to infinity, as being

Qo Ry

= 245

;77“9
It should be noted that equation 2.45 merely defines the average shear rate over the gap
and not the actual local shear rate. To obtain the exact local shear rate, equation 2.43

should be used.
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Figure 2.12: Concentric-cylinder Couette geometry: Cylinders of radius R; and Ro are coaxial and

| e

are rotated with a relative-angular velocity. The sample to be tested is placed in the gap between the
cylinders to form an annulus of height H. Cylindrical polar coordinates are used in the discussion of
this geometry and are shown for reference.

If the torque exerted by the (Newtonian) material on the inner cylinder is denoted

by I' and the cylinders are a height H, the viscosity can be expressed by

I'(Ro — Ry)

Using equation 2.43 in conjunction with equations 2.44 and 2.36, we can see that the
only non-zero component of the stress tensor is 0,9 which can be conveniently written

as

S % (2.47)

which tells us that the stress across the gap of a concentric-cylinder Couette geometry

decays as 2.
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Cone-and-Plate

In the cone-and-plate geometry shown in Fig. 2.13, a small angle cone of angle ¢, (the
angle is typically only a few degrees and is exaggerated in Fig. 2.13 for visual purposes)
and radius Ry has its apex touching a coaxial flat plate. There is a relative-rotational
motion about the common axis. Spherical polar coordinates are used to simplify the
discussion of this geometry and a representation of these is also shown in Fig. 2.13.

If the cone is turned (we can always treat this as the case via a simple change of
reference frame. The physics remains the same.) with an angular velocity of (2, then
any part of the cone a distance r from the cone apex will have a velocity U = Qor
and the distance between the cone and the plate can be written as d = rsin ¢y, which,
because of the small angle can be approximated as d = r¢,. From this approximation
we can say the velocity gradient i.e. the shear rate is U/d which simplifies to

L or Do (2.48)
Yo ¥o
Equally, we can say that to a good approximation for a Newtonian fluid, the velocity
profile will be
v, = 0
vy = 0 (249)

9 _
vg = SQor <—7T/ S0)
%o

and the only non-zero component of the shear rate tensor, 7, is equal to

i sinp 0 Vg .10 Qo
= Iy = ——2 2.50
et r Oy (sin <p> r@@ve ©o ( )

which is the same as equation 2.48.

This result is important because it makes clear that the shear rate is the same ev-
erywhere in the gap, providing the angle of the cone is small enough for sin¢ to be
approximated by 1.

Because the shear rate is the same everywhere in the gap, the stress also will be the
same everywhere in the gap. Calculating the non-zero component of the stress tensor,
0,9, is done by working out the torque, I, required to keep a constant motion. This is

done by integrating the product of the force o,9|,—r/2rdrdf and the lever arm r over
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Figure 2.13: Cone-and-plate geometry: A cone of angle ¢, (here greatly exaggerated for visual pur-
poses) and radius R is coaxial to a plate typically of radius Rpiate = Rcone OF Rpiate >> Reone and
rotated with a relative angular velocity. The sample to be tested is placed in the gap between the two.
Spherical polar coordinates are used in the discussion of this geometry and are shown for reference.

the surface of the plate
2T R
= / / ot g jordrdd (2.51)
o Jo

which can be performed easily and rearranged to give

3

=5 T (2.52)

g

Combining equations 2.50 and 2.52 we can express the viscosity of a Newtonian
fluid in the gap of a cone and plate geometry as

_ 00 _ 3lwo

- , 2.53
Yoo 2mR3Q, (2:58)

Plate-and-Plate

In the plate-and-plate geometry shown in Fig. 2.14, two coaxial circular plates, radius
Ry, are separated by a distance h. There is a relative-rotational motion about the com-
mon axis. Cylindrical polar coordinates are used to simplify the discussion of this
geometry and a representation of these is also shown in Fig. 2.14.
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The velocity field set up by a relative rotational velocity of {2y in a Newtonian fluid

is

ve(r,2) = (2.54)

v, = 0

10v, Ovg
Ve = - — 2.
40 r 00 * 0z (2:55)
which means the only non-zero component is

. Qr
Yoo = - (2.56)

and the shear rate is equal to

and by extension the stress tensor’s only non-zero component is

. nSdor
T

The torque exerted on the stationary plate can again be calculated by integrating

(2.57)

020 =

the product of the shear stress 0.y and the lever arm r over the differential surface area
of the plate, 2mrdr:

R Q 2 R Q 4
I = / —og2mrdr = — 0T / By — — BT (2.58)
; ), 2h

2.6.2 Slip

The results derived in the previous section all assume that when liquid flows over a
solid surface, the liquid molecules adjacent to the solid are stationary relative to the
solid. This is known as the Non-Slip Boundary Condition (NSBC). When this assump-
tion does not hold and slip occurs, there is a non-zero relative velocity. Navier [7]
defined the ‘slip length’ b, characterising the slip boundary condition in 1827. For flow
adjacent to a planar, impermeable solid surface he defined the slip length by
| (z,1)

?J”g(t) = b az |Z:0

(2.59)
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Figure 2.14: Plate-and-plate geometry: Two coaxial plates of radius R are separated by a distance h
and have a relative rotational velocity about their common axis. The sample to be tested is placed in the
gap between the two. Cylindrical polar coordinates are used in the discussion of this geometry and are
shown for reference.

where v is the shear velocity relative to and parallel with the shearing surface and vy
is the value of v at z = 0. This effectively defines a distance b into the shearing surface
where the velocity would be expected to be zero. A visualisation of this definition is
presented in Fig. 2.15. The difference between the NSBC shown in Fig. 2.2 and the slip
shown in Fig. 2.15 is clear.

For a long period of time following the work of Navier, the NSBC was an adequate
boundary condition for the study of both Newtonian and non-Newtonian fluids. In
the second half of the 20th century, however, many investigations into non-Newtonian
polymer solutions showed the existence of slip with slip lengths on the order of ~ pm.
See, for example [8]. Recent work on Newtonian fluids has shown slip lengths on the
order of 10 — 100 nm [9, 10].

A common approach to reducing the effect of slip is to increase the roughness of
the shearing surface, thus increasing the surface area between the fluid and the solid
surface.

The existence, or lack, of slip must be foremost in the mind of the experimenter
when investigating the viscoelastic regime of non-Newtonian fluids. Spurious results
can often be explained by the existence of slip.
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Figure 2.15: Flow with non-zero slip. The ‘slip length’, b, is defined as being the distance into the
shearing surface where the velocity would be expected to be zero.



Chapter 3
Nuclear Magnetic Resonance (NMR)

Nuclear magnetic resonance, or NMR, is a physical phenomenon that is based on the
interaction between the magnetic moments of nuclei and magnetic fields. The physics
that describes this phenomenon is quantum mechanical and relies on the idea of quan-
tisation at the nuclear level. NMR experiments are carried out on large numbers of par-
ticles simultaneously, referred to as an ensemble, which means the discrete values pos-
sible in the quantum regime manifest themselves as continuous macroscopic relations
that can be described semi-classically. This chapter will introduce the quantum me-
chanics necessary to explain the phenomenon of NMR and then adopt a semi-classical
approach in dealing with some of the key experimental details used later in this thesis.

For some comprehensive texts on all areas of NMR see [11, 12, 13, 14, 15, 16, 17].

3.1 Nuclear spin and magnetic moment

Atomic nuclei are comprised of combinations of protons and neutrons which have in-
trinsic angular momentum called spin. Spin, like charge and mass, is a fundamental
property of nature. Protons and neutrons, collectively referred to as nucleons, are both
fermions and as such have spin //2, where h is Planck’s constant divided by 27 (also
known as Planck’s reduced constant). To make the rest of this discussion simpler, we
shall adopt a system of units such that 7 = 1 so that angular momentum will be ex-
pressed as numbers with the assumption of units of 4. Under this system protons and
neutrons can be called spin-1/2 particles. Their fermionic nature makes them suscep-

tible to Pauli’s exclusion principle, just as are electrons. When protons and neutrons
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group together to form atomic nuclei, their individual spins act to give the nucleus a
spin of its own, characterised by the spin quantum number I. There is evidence [18]
that nucleons form a shell structure in nuclei similar to the orbital-filling manner of
electrons, a behaviour that is captured in a theory known as the nuclear shell model.
The pairing hypothesis is an important idea that suggests that nucleons, unlike electrons,
pair up even when a shell is unfilled. This limits the number of unpaired nucleons and

accounts for the spin properties of ground-state nuclei, some of which are listed in
Table 3.1.

Table 3.1: Some nuclei that have spin quantum numbers, 1

I Nuclei (Spin value)
0 12C 16O 32S
1H 3H 13C

1/2 15N, 19F, 31P
1 ’H, “N
1B (3/2), *Na (3/2)
>1 17 10
O (5/2), B (3)

The magnetic dipole moment of a nucleus, u, is proportional to the angular mo-
mentum I with the proportionality constant, v, known as the gyromagnetic ratio. Note
that the angular momentum associated with nuclear spin is a vector and is written in

bold, whereas the scalar spin quantum number, /, is not. Formally,

u = ~I. (3.1)

The gyromagnetic ratio is a property of the particular nucleus and in the case of protons
is equal to 2.675 x 10%rad s~ T~'. Only nuclei with I # 0 (that is to say, nuclei with
unpaired protons or neutrons) concern us because only nuclei with non-zero spin have
non-zero magnetic moments and hence are NMR-active.

The angular momentum, I, associated with nuclear spin and the corresponding
magnetic moment, ;1 are quantised. The eigenstates, or energy levels corresponding to
the quansitsation, are characterised by the magnetic quantum number m. The eigen-

values of the angular momentum along the z-axis, I, are given by

L=m (3.2)
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and the z-component of the magnetic moment is

The magnetic quantum number m can take any integer value between I and —/, mean-
ing there are 2/ + 1 distinct angular momentum states. For a nucleus with / = 1/2 there
are thus two distinct angular momentum states that, in the absence of an external mag-
netic field, are at the same energy and will be populated by exactly the same number

of nuclei at thermal equilibrium. Such states are said to be degenerate.

3.2 Zeeman interaction

When nuclei with non-zero spin, and hence non-zero magnetic moments, are placed
in a magnetic field, B,, they experience torques which tend to align them with the
direction of the field. The classical and quantum mechanical interaction energy is given
by the Hamiltonian

H = —pu - Bo. (3.4)

If we use the direction of the magnetic field to define the z-axis, we can write the
Hamiltonian as

This form of the Hamiltonian is known as the Zeeman interaction after Dutch physicist
Pieter Zeeman (May 25, 1865 - October 9, 1943) who won the Nobel Prize for physics
along with Hendrik Lorentz in 1902 for its discovery. As a result of this relation, differ-
ent spin states will have different energies. The energy associated with these different
spin states differs by an amount AE = yhB, thatis linearly proportional to the strength
of the magnetic field as shown in Fig. 3.1 for a spin 1/2 system. Transitions between
energy levels, as shown in Fig. 3.1 can be induced when photons with energies that
match the difference between levels are absorbed. The energy of a photon is expressed
as E,poton = hv where h is Planck’s constant and v is the frequency. The frequency
required to cause a transition from the lower energy state to the higher energy state is

therefore
. E . vBy

Vy = — =
h 27
which gives an angular frequency of

(3.6)

Wy = 27TVO == ")/Bo (37)
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Figure 3.1: The application of a magnetic field splits the energy levels of a spin 1/2 system by an
amount yhBy. Transitions from the lower energy state to the higher energy state can be induced via the
absorption of a photon at the Larmor frequency wy.

This is known as the Larmor frequency, named after the Irish physicist Joseph Larmor
(11 July 1857 - 19 May 1942).

When a nucleus with a non-zero magnetic moment is placed in a magnetic field,
the torque exerted on it is additional to an already existing angular momentum. This
results in the nucleus precessing about the magnetic field at a characteristic frequency,
the Larmor frequency. We can also understand this phenomenon in terms of the evo-

lution operator, which is defined as
U(t) = exp(—iHt/h) (3.8)

which, in the present case is U(t) = exp(iyByl.t). This is equivalent to a clockwise
rotation about the z axis by an angle vB,t. The presence of the field thus causes all the

states to precess at the Larmor frequency, wy, given by
Wy = ’)/B() (39)

This is the same result as equation 3.7.
For a large laboratory superconducting magnet with a B, field of 9.4 Tesla, the
precession frequency of a proton is 400 MHz, which corresponds to the UHF part of

the radio-frequency spectrum.
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3.3 Other interactions

The largest nuclear interaction in the high-field case is the coupling of the nuclear mag-
netic moment to an external field, the Zeeman interaction previously discussed. Other
weaker interactions exist when spins interact with each other and when spins inter-
act with additional local and applied magnetic fields. The total Hamiltonian of a spin
system is the sum of the operators for each interaction such that the total Hamiltonian
may be expressed as

H=H;+Hy+H,; +Hp +Hes +Hj. (3.10)

This expression lists the interactions in decreasing strength so that the Hamiltonian
for the Zeeman interaction, H is listed before the Hamiltonians for the quadrupolar
interaction, Hy, the coupling of the spins to the exciting r.f. field, H,; (which takes the
same form as the Zeeman interaction for the applied B, r.f. field and so will not be
discussed further), the dipolar coupling, Hp, the chemical shift, Hcs, and the indirect
coupling H;. The energy levels of the system are the eigenvalues of the Hamiltonian.
This section will provide an elementary introduction of the interactions relevant to
this thesis. A more complete discussion of nuclear interactions may be found in any
standard NMR text such as Abragam [11].

3.3.1 The quadrupolar interaction

Nuclei that possess spin greater than 3 are non-spherical and hence have electric
quadrupole moments that interact with the electric field gradients established by the
electrons surrounding them. In the laboratory frame, in the high-field limit, the Hamil-
tonian for the quadrupolar interaction takes the form [11]

e’qQ

H, =
@ 8I(2I—1)

(312 — I(I +1)] [(3cos® 8 — 1) + nsin®f cos(2¢)] (3.11)
where 0 and ¢ are the polar and azimuthal angles of By, in the principal axis system
of the electric field gradient , 1 is the asymmetry parameter defined as V”ﬁ/;zvy” where
Vap = %, a, 3 = x,y, 2z with V = V3 being the electric field gradient tensor, and ) is
the nuclear quadrupole moment, which is a property of the nucleus. The quadrupole
moment, () is positive for prolate (relative to the field direction) nuclei and negative for

oblate nuclei. For a system of nuclei with / = 1 in an axially symmetric electric field



36 Nuclear Magnetic Resonance (NMR)

(making the asymmetry parameter 7 equal to zero), the Hamiltonian can be rewritten

as

e’qQ
8

If the only interactions taken into account are the Zeeman and quadrupolar interac-

H, = (317 —2) (3cos® —1). (3.12)

tions, the total Hamiltonian of the system has just two components:
H=H;+H (3.13)

that has eigen-values to first order of

e?qQ
8

where we note that for a system with spin I = 1, the magnetic quantum number can

E.., = vBomr + (Smf — 2) (3 cos? ) — 1) (3.14)

take values of (—1,0,1). Such a system of energy levels is illustrated in Fig. 3.2. From
equation 3.14 it can be seen that we obtain two resonance lines at wy = w’ where ' =
MT‘IQ (3cos? § — 1), such that the splitting, Aw = 2w’ is equal to

_ 3¢%qQ
4

The §-dependence on the splitting is an important feature of equation 3.15 worth mak-

Aw (3cos®6 —1). (3.15)

ing note of. For nuclei with spin / > 1 in a rigid lattice, the quadrupolar interaction
disappears when cos = 1/+/3, leading to a critical angle for which no quadrupolar
effects are seen, allowing measurements of weaker interactions. In liquids, the random
molecular tumbling tends to average the quadrupolar term out to zero, unless there
is physical structure present. This means the quadrupole interaction is important in

determining alignment in liquids.

3.3.2 The dipolar interaction

The dipolar interaction occurs between magnetic moments associated with individual
spins in a system. For two like dipoles (associated with like nuclei with identical val-
ues for v), I, and I, separated by a vector r, the Hamiltonian for this dipole-dipole

interaction can be written as

(3.16)

Generally, the fast molecular tumbling associated with liquids causes the dipolar inter-
action to average to zero.
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m, = - 1
m, = 0
m, =+ 1
Zeeman + quadrupole

Figure 3.2: The presence of a quadrupole interaction for nuclei with spin I > 1 alters the energy levels,
and hence the splitting, caused by the Zeeman interaction.

3.3.3 Chemical shift

Electrons orbiting nuclei in an external field act to alter the strength of the field ex-
perienced at the nucleus. This shielding is characteristic of the local electronic envi-
ronment and causes shifts in the Larmor frequency at the nuclei which depend on the
local chemistry. The chemical shift, as it is known, can provide a spectral fingerprint
of a given molecule, aiding in the determination of the structure. The discovery of
the chemical shift in the 1950s changed chemistry forever. The Hamiltonian for this

interaction is
Hes=-1-S: By (3.17)
where S is known as the chemical shift tensor or shielding tensor. The off-diagonal

terms of S are zero for fluids due to averaging by molecular tumbling. Chemical shifts,
9, are normally expressed in units of parts per million (p.p.m.) which are calculated as

_ frequency of signal - frequency of reference
~ frequency of spectrometer (in MHz)

5 (3.18)

The reference signal used to calculate chemical shifts for 'H, *C, and ?°Si nuclei is
tetramethylsilane (TMS) which is ascribed a chemical shift of 0.
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3.4 Bulk Magnetisation

In the absence of a magnetic field, the energy levels of a non-zero spin system are
degenerate and are populated by an equal number of nuclei. We have, in the preced-
ing section, seen that a magnetic field splits those energies via the Zeeman interaction
causing one state to be energetically more favourable than the others as in Fig. 3.1.
How these states are populated at thermal equilibrium in a magnetic field is explained
through the use of Boltzmann statistics.

We will treat the case of / = 1/2 where there are two distinct energy states and
denote the population of the m = +1/2 by n, and the population of the m = —1/2
state by n_. The spins in the m = +1/2 state can be thought of as aligning parallel
and the spins in the m = —1/2 state antiparallel to the field. At thermal equilibrium at
some temperature 7' > 0 K, the number of spins in the lower energy m = +1/2 state,
n., will slightly outnumber the number of spins in the higher energy m = —1/2 state,

n_, and the relative populations can be expressed as

(3.19)

— =
ny P kBT

where AFE is the difference in energy between the states, kp is Boltzmann’s constant

and has a value of 1.3805 x 1072*J K ! and T is the temperature measured in Kelvin.

The population difference can be worked out using the fact that all spins, N, are ac-

counted for by ny + n_, using equation 3.19:

ne . LA PBo ks T)
1 + exp(—vyhBy/kgT)

(3.20)

Expanding equation 3.20 using the Taylor series for exp(—z) yields

o Lo (L= yhBo/kpT + PR By [2KET — . )
T T U 14 (1 —hBy/kpT +42h2B2J2k2T? — ..)

At room temperature, kg1 >> YhB, and so the squared and higher terms can be

neglected to give
N~hBy kT

N A RBy kT

Again we make the note that at room temperature 2 >> ~hB,/kgT and so we can

ny —n-

simplify the above to give NP
. Yo

2kpT

(3.21)

ny —n_
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The magnetisation of the bulk, M, is found by multiplying the spin population differ-
ence by the magnetic moment from equation 3.3:

N’}/2h230 . CBO
AkgT T

My = (ny —n_)yhm =~ (3.22)
This is known as Curie’s law. It relates the temperature-dependent paramagnetism,
M,, to the magnetic field, By and the material-dependent Curie constant. Curie’s law

is a high-temperature approximation to Langevin’s paramagnetic relation

- ILLBO B kBT
Mo = Ny {coth <_k:BT) _uB } : (3.23)

Using equation 3.22, often referred to as the Curie regime of equation 3.23, we can see
that higher temperatures lead to a reduction in paramagnetism. This can be under-
stood as thermal agitations reducing the amount of alignment of individual spins with
the field, thereby reducing the paramagnetism of the bulk.

The fundamental result of this section is that for a spin-1/2 system at any finite
temperature, there is an abundance of spins parallel compared with antiparallel to the
tield that results in a net magnetisation in the direction of the magnetic field. This
magnetisation is a vector, My and is displayed in Fig. 3.3 lying in the same direction as
both Bj and the z axis.

3.5 Semi-classical description

The motion of an ensemble of spin(1/2)s can be described in terms of what happens
to the magnetisation vector M. The macroscopic angular momentum vector is simply
M/~, where 7 is the gyromagnetic ratio of the nuclei in question. When a magnetic
moment is placed in a magnetic field, it experiences a torque equal to the cross product
of the magnetisation and field vectors, M x B. This is equal to the rate of change of

angular momentum so that
dM

When the magnetic field is oriented in the +z direction with magnitude B, as we have

previously defined, the solution to equation 3.24 can be expressed in component form
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z|B

X N

Figure 3.3: A bulk magnetisation results from a population difference between the upper and lower
levels in a spin-1/2 system. It is represented by a vector My that lies in the same direction as By and the
z axis at thermal equilibrium.

as

M,(t) o< Mpysinwt
M,(t) o< Mycoswpt (3.25)

which describes the precession of the magnetisation about the z axis at the Larmor
frequency, 7B, as shown in Fig. 3.4.

3.5.1 Excitation and the rotating frame

Spins can be disturbed from their equilibrium states via the absorption of a Larmor-
frequency photon. These photons are added to the system via the application of a
linearly-polarised oscillating magnetic field of amplitude B, whose orientation is trans-
verse to By. It is conventional to represent this linearly polarised field as a sum of two
counter-rotating circularly polarised components of magnitude B, as shown in Fig. 3.5.
One of these components will rotate in the same direction as the nuclear precession and
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Figure 3.4: The bulk magnetisation vector M precesses about the z axis in the presence of a static
magnetic field at the Larmor frequency.

the other will rotate in the opposite sense. We can neglect the counter-rotating compo-
nent providing By, >> B; which will invariably be the case. The component rotating
with the nuclear spin precession will be responsible for the resonance phenomenon
when the frequency of rotation is equal to the Larmor frequency, that is when w = wj.
We can write this vector as

B, (t) = By coswti — By sin wtj (3.26)

where i, j and k are the unit vectors in the z, y and z directions. Equation 3.24 then

gives component-separated equations of

M,
ddtx = v [M,By+ M,B; sin wyt]
dM

dty = ~[M,B; coswot + M, By (3.27)
dM,

a 7 [— M, By sinwgt — M, By coswyt]
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2B cos(wt)

Figure 3.5: Itis conventional to represent the linearly-polarised oscillating field (large vector) as a sum
of two counter-rotating circularly polarised components of magnitude B; (small vectors).

that, given the initial condition of M(0) = Mk have solutions

M, = M;ysinw;tsinwgt
M, = M;jsinw;tcoswyt (3.28)
M, = Mgycoswit

where w; = vB;. Equations 3.28 imply that under the influence of both a static lon-
gitudinal B, field and an oscillating transverse r.f. field B;, the spin magnetisation
vector precesses about both. M will precess about By at wy and about B, at w;. This is
illustrated in Fig. 3.7 (a).

We make the coordinate transformation to a reference frame rotating about the z
axis at a frequency w such that B; appears stationary. The new coordinates will be
denoted 2/, ¥’ and z as illustrated in Fig. 3.6 and will be used virtually exclusively
throughout the rest of this and subsequent chapters. In this new rotating frame, the
longitudinal field experienced by the spins is reduced by an amount w/~ so that the



3.5. Semi-classical description 43

e

o~

)

r

Y map—

ot

Figure 3.6: We make a transformation to a reference frame that rotates about the z axis at a frequency
w in the same sense as the transverse B; field. The new coordinates are denoted z’, 3y and 2. This
reduces the complexity of the analysis and will be used virtually exclusively throughout the rest of this
and subsequent chapters.

total field experienced by the spins is

Beff = B/+Bl
— By,- “k+B, (3.29)
Y
= Bo(l—u.)/wo)—i—Bl

Thus, in the absence of a transverse B, field when the rotating frame oscillates at the
NMR frequency wy, the longitudinal field vanishes and the magnetisation vector ap-
pears stationary. If the frequency of the transverse r.f. field B; matches the NMR fre-
quency wy, the only field felt by the spins is the transverse one, and the spins will
precess about it at w; as shown in Fig. 3.7(b).

If the transverse field is applied at a frequency w # w then the effective field expe-
rienced by the spins is a linear superposition of the diminished longitudinal field,
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(b)

Figure 3.7: The evolution of the bulk magnetisation in the presence of a longitudinal static field By
and an oscillating transverse field B;. (a) As seen in the laboratory frame. The spin magnetisation vector
(shown in blue) precesses about B, oriented along the z axis, at wy, and the rotating B; (shown in green)
at wy. (b) As seen in the rotating frame. The influence of the longitudinal By field disappears and the
spins precess only about the transverse B; field at w;.
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Figure 3.8: The effect of applying a transverse field, B; off resonance as seen in the rotating frame.

w

The effective field felt by the spins is a linear superposition of the diminished longitudinal field, B, —
and the transverse field B;. The spin magnetisation vector will precess about the resultant field B. s at

a frequency weyyt.

B, — %k and the transverse field, B, as established in equation 3.29. This situation
is illustrated in Fig. 3.8. The spin magnetisation vector will therefore precess about the
effective field at a frequency of w. s given by wesy = vB.yy.

The longer the transverse field is applied for, the larger that the angle the mag-
netisation vector is tipped through will be. If the B, field is applied for a period of
time ¢, the angle tipped through, 6 will be equal to vBt,. In Fig. 3.7, the B, field has
been arbitrarily chosen to lie along the 2’ axis and the magnetisation vector has been
tipped through 90°. The pulse of r.f. radiation that results in this condition is known
as a 90, pulse and leaves the magnetisation in the experimentally detectable 'y’ plane
with components M, = 0, M, = M,. A pulse that rotates the magnetisation vector
about the 2’ axis through 180° is called a 180, pulse. When a 180, pulse is applied to
a group of spins in thermal equilibrium with their surroundings, the populations of
the energy levels are inverted and the magnetisation ends up oriented along the —z
axis with components M, = —M,, M, = M, = 0. We shall use the convention O,
when referring to pulses of r.f. radiation, where © = w;t is the angle, in degrees, the
spins are tipped through and the subscript refers to the rotating frame axis about which
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they are tipped. Combinations of various pulses of sometimes different durations with
carefully selected intervals of time between them are collectively known as pulse se-
quences and are the NMR-scientists toolbox from which they select the appropriate tool
to measure the specific behaviour they are interested in. To understand the specifics
of what information can be gathered from each pulse sequence, we must understand
more about the nature of pulses and how the spins relax to their equilibrium positions,

the subject of the next sections.

3.6 Pulses

Spins can be disturbed from their equilibrium position via the application of a pulse of
r.f. radiation. The frequency, duration, amplitude and shape of the pulse in the time
domain determines which spins are disturbed and this relationship can be understood
via the Fourier transform which is defined by the relationship

Fw) = /00 f(t) exp(—iwt)dt
1 o

f&) = F(w) exp(iwt)dw. (3.30)

2r ) o

Equation 3.30 is only exactly true, however, for small tip angles. Figure 3.9(a) shows a
time-domain representation of what is often called a hard pulse. A hard pulse is a burst
of r.f. radiation modulated by a hat function of duration ¢,. Figure 3.9(b) illustrates
the frequency-domain response of the hard pulse. In the frequency domain, the hard
pulse excites a sinc function defined as sinc(aw) = W The bandwidth of a hard
pulse of duration ¢, is of order 2t,'. Thus, if the B, field is applied at a frequency w,
spins precessing at frequencies within ¢, will be excited. Typical bandwidths of hard
pulses are in excess of 20 kHz, which is large enough in most cases to excite all nuclei

for a given spin species.

3.7 Relaxation

The thermal equilibrium of an ensemble of spins in a static magnetic field is charac-
terised by a state of polarisation with magnetisation M, directed along the longitudi-
nal magnetic field By,. The application of a resonant r.f. pulse of radiation disturbs
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Figure 3.9: (a) A time-domain representation of a hard pulse, a burst of r.f. radiation modulated by
a hat function of duration ¢,. (b) The frequency spectrum associated with (a) as calculated by Fourier
theory. The bandwidth of a hard pulse of duration ¢, is of order 2¢,*.

the system from this equilibrium. In time, the equilibrium will be restored via a pro-
cess known as spin-lattice relaxation whereby spins exchange (thermal) energy with the
surrounding thermal reservoir known as the lattice. Another relaxation mode that is
of great importance is the process through which spins come to thermal equilibrium
among themselves, a phenomenon known as spin-spin relaxation. These two processes
contribute differently to the overall relaxation depending on the vibrational, rotational
and translational motions of the spins. A study of these processes thus reveals im-
portant information about the molecular dynamics on a range of timescales. While a
thorough understanding of these processes is beyond the scope of this thesis, a brief
introduction will be presented. A more thorough handling is given in [11, 12, 14].

3.7.1 Spin-lattice relaxation

After the application of a resonant r.f. pulse has disturbed the system, the spins begin
to return to their thermal equilibrium as illustrated in Fig. 3.10 via an energy trans-
ter process known as spin-lattice relaxation. Fig. 3.10 shows the special case where a
180, , pulse has left the system in a state where M, = —M, and the transverse magneti-
sation, M, , is zero. There is thus only longitudinal relaxation taking place in Fig. 3.10.
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(a) (b) (©) (d)

Figure 3.10: Spin-lattice (longitudinal) relaxation: The evolution of the longitudinal component of the
bulk magnetisation following a 180, r.f. pulse. The magnetisation can be said to recover to thermal
equilibrium in an exponential manner with a time constant 77 via exchange of (thermal) energy with
the lattice.

As section 3.4 (and the name itself) suggests, spin-lattice relaxation is a process that in-
volves the exchange of energy between the excited spins and the thermal motion of the
molecules which make up the lattice. A phenomenological description of this process
is given by the relation

dMm, 1

G =g (M= Mo) (3.31)

where T} is known as the spin-lattice relaxation time. Equation 3.31 has the solution
M. (t) = M.(0) exp(—t/Tx) + Mo(1 — exp(—t/T1)). (3.32)

Values of T typically range from 0.1 to 10 seconds at room temperature for protons in

dielectric materials.
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3.7.2 Spin-spin relaxation

Transverse magnetisation is characterised by a state of phase coherence between spin
states as discussed in section 3.5.1. The reduction of transverse magnetisation is due to
the spins coming to thermal equilibrium among themselves and so is called spin-spin
relaxation. This reduction in coherence results in an overall reduction of the transverse
magnetisation. A phenomenological description of this process is given by the relation

dM,, —M,,

T (3.33)

where 75 is called the spin-spin relaxation time and is the time over which the trans-

verse magnetisation reduces by a factor of e. Equation 3.33 has solution
My (t) = My, (0) exp(—t/T3). (3.34)

While energy exchange with the lattice may play a role in the transverse relaxation,
other terms that lead to dephasing of the spins are also responsible for the loss of trans-
verse magnetisation. This leads to the result 7, < T;.

Equation 3.34 describes, albeit phenomenologically, what is referred to as ‘pure 75’
relaxation. In practice, there is another major cause of transverse relaxation, that of
magnetic field inhomogeneities. The magnitude of the inhomogeneity in the field is
denoted AB,. Any lack of homogeneity in B, will mean that spins will precess at
different rates based on their physical position. This leads to an increase in the rate of

relaxation which is described by the parameter 75

Ty T, 2«

. (3.35)

It is important to note that phase coherence loss due to pure 7; relaxation is random
and irreversible, whereas the relaxation caused by inhomogeneity in B is ordered and

can be reversed with appropriate care.
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3.7.3 The Bloch equations

The fusion of equations 3.24, 3.31 and 3.33 in the rotating frame shown in Fig. 3.6 results
in a set of relationships known as the Bloch equations. They are named after the Swiss
physicist Felix Bloch (October 23, 1905 September 10, 1983) who won the 1952 Nobel

Prize for Physics for his work on nuclear magnetism.

dM, M,

T - YMy(Bo —w/7) — T,
dM. M,

dty = FyMzBl - ’ny(BO - w/’7> - T; (336)
dM, (M, — M)

dt —M, By = Ty '

These provide a valuable tool for describing many nuclear magnetic phenomena.

Figure 3.11: Spins that initially dephase due to 7% relaxation will eventually relax back to thermal
equilibrium via spin-lattice energy exchange. Shown here is the case where 75 << T; and the spins
dephase quickly compared with their longitudinal relaxation.
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3.8 Signal detection and the FID

Faraday’s law of induction states that the induced electromotive force (e.m.f.) in a
closed loop is directly proportional to the time rate of change of magnetic flux through
the loop. Thus, in the laboratory frame following a pulse that results in a non-zero
transverse magnetisation, a coil whose symmetry axis is perpendicular to the direction
of the static B, field will experience an oscillatory e.m.f. at wy, due to spins precessing
at the Larmor frequency. The magnitude of the e.m.f. is proportional to the amount
of transverse magnetisation that exists within the coil. The primary NMR signal is
measured in the time domain as a decaying oscillating signal caused by the free pre-
cession of the magnetisation. For this reason, it is known as the free induction decay
and is usually referred to simply as the FID. The r.f. receivers used in the detection of
NMR signals employ a method known as heterodyning. Heterodyning is the process
whereby an oscillating signal is mixed with the output from a reference oscillator. The
result of mixing two frequencies is two new frequencies, one which is the sum of the
input frequencies and the other that is the difference between the two inputs. It is an
extremely phase-sensitive method that allows the mixing of the NMR signal with two
heterodyne frequencies 90° out of phase with each other. This allows for detection of
the orthogonal phases of the magnetisation, in effect allowing the detection of M, and
M,. A perfect 90° r.f. pulse applied to the equilibrium state where M = Mk leaves the
magnetisation entirely in the 2’ — 3’ plane. In the laboratory frame, the magnetisation
evolves as [14]

M(t) = [Mycos(wot)i+ Mosin(wot)j] exp(—t/T3)
= Myexp(iwgt) exp(—t/T3) (3.37)

and the heterodyne signal at offset Aw is
S(t) = Sopexp(ig) exp(iAwt) exp(—t/T3) (3.38)

where ¢ is the absolute receiver phase and S is the signal amplitude immediately fol-
lowing the pulse, a value that is proportional to the equilibrium magnetisation M,. Al-
though the FID is a continuous signal, it is digitally sampled in NV discrete steps over an
interval of time T". A Fourier transform of the time-domain signal reveals the spectrum
in the frequency domain with a bandwidth equal to 1/7" as shown in Fig. 3.12. The
spacing of the discretely sampled points is thus 1/N7 in the frequency domain. The
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discrete nature of the sampling is represented in Fig. 3.12 by the temporally evenly
spaced black points, while the continuous nature of the process is represented by the
red line. Fourier transformation of the real part of the signal results in a Lorentzian
whose full-width at half-maximum (FWHM) is 2/T5, a spectrum known as the absorp-
tion spectrum. Fourier transformation of the imaginary part of the time-domain signal
is known as the dispersion spectrum and is also illustrated in Fig. 3.12.

90,

H

real signal real spectrum
t
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Figure 3.12: Free induction decay (FID) following a 90, pulse. Acquisition begins immediately follow-
ing the pulse where N points (black) are sampled over an interval of time T'. The red line illustrates the
continuous nature of the process in contrast to the discrete nature of the sampling. Fourier transforma-
tion of the real part of the time-domain signal results in the absorption spectrum which is characterised
by a Lorentzian of FWHM 2/T5 centred at the offset frequency. Fourier transformation of the imaginary
part of the time-domain signal results in what is known as the dispersion spectrum.

3.9 Signal averaging and phase cycling

The observation of weak effects in NMR requires high sensitivity and noise- and artefact-
free signals. The best measure of these factors is the signal-to-noise (S/N) ratio. The
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higher the signal-to-noise ratio, the more trustworthy peaks are and the less chance
there is of erroneously assigning a peak, or missing an important yet weak feature. The
two causes of a low signal-to-noise ratio are noise and artefacts. The main source of
noise is Brownian motion of electrons in the receiver coil. “‘White noise” is characterised
by statistically-distributed frequency components that are impossible to eliminate (at
a non-zero temperature), whereas artefacts are unwanted signals at well-defined fre-
quencies that can often be eliminated by carefully designed pulse sequences. It is ex-
ceedingly difficult to distinguish artefacts from genuine signals via post-experimental
data processing and so the best methods are those that reduce or eliminate artefacts
completely. The simplest method for reducing the effect the noise has on the signal-to-
noise ratio is to add the signal from N experiments. The signal amplitude will grow
in proportion to the number of acquisitions whereas, because of its random nature,
the amplitude of the noise will only grow as v/N. That is to say, the noise does not
add coherently while the signal does. The signal-to-noise ratio will thus increase by
a factor of /N with N successive experiments. For full signal to be measured each
time, there must be an interval of time waited at the end of each experiment that is
sufficient for full relaxation of the magnetisation to take place. This delay is usually
of the order of several 7} relaxation times. The term ‘phase cycling” refers to the peri-
odic changes made to the phase of the applied B, field in order to reduce or eliminate
artefacts caused by imperfections in the r.f. pulses and imperfections in the receiver.
Perhaps the simplest phase cycle is inversion which is achieved by incrementing the
r.f. pulse transmitter and receiver phases by 180° in conjunction with an alternating
addition and subtraction of the signal. Such a phase cycle coherently adds the desired
FID signal while suppressing the unwanted signal.

3.10 Elementary pulse sequences

Sequences of pulses of various lengths and phases with carefully selected delays be-
tween them are known as pulse sequences and are the NMR scientists tools with
which they examine molecular behaviours and structures. An exhaustive list of pulse
sequences is not necessary in any NMR text, but it is a worthwhile exercise to dis-
cuss some elementary sequences. Some complex sequences are similar to simpler se-
quences, with extra features added in to examine specific effects with fewer distortions

from artefacts. In this section we shall introduce two of the most important pulse
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Figure 3.13: A spin echo pulse sequence. The initial 90, pulse puts the spins into the 2y’ plane,
where they begin to dephase at a rate 7. After dephasing for a time 7, a 180, pulse reorients the spins
so the spins that are precessing faster (exemplified by the red vector) are now behind those precessing
slower (in blue). After a time 27, the spins come back into phase, creating an echo. The evolution of
the magnetisation vector is illustrated in the rotating frame, though it should be noted that the signal is
measured in the laboratory frame.

sequences used in this thesis and also introduce two methods of measuring nuclear

relaxation.

3.10.1 Spin and stimulated echoes

A simple two-pulse sequence was proposed by Hahn [19] in 1950 and is illustrated in
Fig. 3.13. The sequence begins with a 90, pulse that tips the spins into the z'y’ plane
where they subsequently begin to dephase due to 75 relaxation. Field inhomogeneities,
a major contribution to 75 relaxation, cause the spins to lose coherence faster than due
to pure 7T, relaxation alone. A time 7 after the initial pulse, a 180, pulse is applied
to the system. The 180, pulse inverts the spins in the z'y’ plane so that spins that
were precessing faster, exemplified by the red vector in Fig. 3.13, are now behind the
average and those precessing slower are now ahead. This difference in precession rates
causes the spins to reestablish coherence at a time 27, causing a spin echo as indicated
in Fig. 3.13.

In some materials, including those where the molecular motion is slow compared

with the Larmor precession, the transverse relaxation can be much more rapid than
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the longitudinal relaxation. When such a scenario exists, it is often preferable to ‘store’
the magnetisation out of the 2y’ plane so that the spins undergo 7} relaxation only. A
pulse sequence that performs this is shown in Fig. 3.14. The initial 90, pulse acts in
the same way as for the spin echo case shown in Fig. 3.13. After a time 7, another 90,
pulse is applied which acts to tip the spins into the 2’z plane. There is no effect on the
spins that are oriented along the 2" axis and so only half the magnetisation is stored.
The spins are ‘stored” along the z axis for a time 7" subject only to 7} relaxation before
being tipped into the z'y’ axis again by the third 90, pulse. Coherence is reestablished
in the transverse plane a time 7 after the third pulse, giving rise to an echo. Because the
spins are stimulated back into the transverse plane after being stored for a time 7' < T
along the z axis, this type of sequence is called a stimulated echo. It should be noted
that there are two spin echoes formed in this sequence, and special care must be taken
in order to separate the stimulated echo from the spin echoes. A particularly effective
technique for doing this is to incorporate a pulse of magnetic field gradient in the 2y’
plane while the magnetisation is stored along the z axis. This pulse destroys any F1.D
caused by the second 90, pulse and is referred to as a homospoil and is shown in green
in Fig. 3.14.

3.10.2 Measurements of nuclear relaxation

In principle, the spin echo method of the previous section is capable of eliminating
the relaxation caused by field inhomogeneities so the amplitude of the spin echo is
governed by 7T, relaxation alone. Carr and Purcell suggested [20] an extension to the
spin echo of Hahn that consisted of repeating 180, pulses after the initial 90, pulse.
In such a sequence, echoes are formed at times 27, 47, (2n)7 with alternating sign. By
plotting the maximum amplitude of the echo as a function of time, the relaxation curve
can be obtained. This method relies on perfect pulses, which in practice do not occur.
The result of accumulated phase errors in the 180, pulses is a relaxation curve that
relaxes faster than the pure 75 relaxation curve. The problem of accumulated phase
errors was overcome by Meiboom and Gill [21] when they suggested the 180° pulses
have a different phase from the initial 90’ pulse. Orienting the inversion pulses along
the 3’ axis means that any phase errors from one pulse are cancelled by the following
pulse and all echoes have the same sign. This sequence, known as the Carr-Purcell-
Meiboom-Gill (CPMG) echo train, is illustrated in Fig. 3.15. The envelope of the echoes
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Figure 3.14: A stimulated echo pulse sequence. The initial 90° pulse tips the spins into the transverse
plane where they begin to dephase. The second 90° pulse tips the (dephased) spins into the 'z plane
after a time 7, where the longitudinal component is subject to 7 relaxation while the transverse compo-
nent continues to dephase and is lost. The magnetisation is ‘stored” along the z axis for a time 7" before
being brought back into the transverse plane. During this time, a pulse of magnetic gradient called a
homospoil, applied in the 2’y’ plane, destroys the FELD. from the second 90, pulse. A time 7 after the
spins are brought back into the z'y’ plane, partial coherence is established and an echo is formed.

in a CPMG experiment can be used to determine the spin-spin relaxation constant 75
in a single experiment.

Measurement of the spin-Lattice relaxation constant, 77 is easiest performed via the
inversion recovery method illustrated in Fig. 3.16. The magnetisation is inverted by
a 180, r.f. pulse and then allowed to relax vis spin-lattice energy exchange. A time
T after initial inversion, the spins are tipped into the transverse plane and the FID is
measured. The magnetisation measured in the transverse plane immediately following
the 90, pulse is equal to the longitudinal magnetisation prior to the pulse. The signal
amplitude is described by

M(T) = My [l — 2exp(~T/T1)] (3.39)

so that a series of experiments where the time between inversion and inspection, 7', is
varied will yield the spin-lattice relaxation curve. It is worth noting that a null signal
is measured when 7" = In 27} so that 7} can be measured in a single experiment. The

fact that the magnetisation has a definite null can also be used to suppress the signal
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Figure 3.15: The Carr-Purcell-Meiboom-Gill pulse train. A series of spin echoes are formed at times
2n7. The envelope of the echoes is governed by 75 relaxation only.

from a spin with a specific 77 value by applying an inversion pulse In 27} before the

sequence.

3.11 Imaging

In NMR spectroscopy, it is preferable to have highly homogeneous magnetic fields
inside the sample to ensure the broadening due to inhomogeneities is small compared
to the natural linewidth of spectral features. In contrast, known inhomogeneities, in
the form of constant magnetic field gradients, can be imposed to encode for spatial
position. This principle lies behind magnetic resonance imaging (MRI).

3.11.1 Spin density and k-space

When a linear magnetic field gradient, G, is applied to a collection of spins in the
presence of a polarising field B, the local Larmor frequency is altered so that we may

write
w(r) =vBy+7G-r. (3.40)

where r is the vector representing the nuclear spin coordinate. The field gradient G is
defined as the grad of the pulsed field component parallel to By. Consider the collec-
tion of spins at a point r occupying a volume element dV. There will thus be p(r)dV
spins in this volume if the density can be written as p(r). Equation 3.37 can then be

employed to express the signal obtained from the volume as

dS(G,t) x p(r)dV expliw(r)t] = p(r)dV expli(yBy + G - r)t] (3.41)
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Figure 3.16: The inversion recovery method for measuring spin-lattice relaxation. The magnetisation
is initially inverted and then allowed to relax via spin-lattice energy exchange for a time 7" when it
is tipped into the experimentally measurable transverse plane. The magnitude of the magnetisation
immediately following the 90, pulse is equal to the longitudinal magnetisation immediately prior to the
pulse.

where, for simplicity, we have dropped the constant of proportionality and reduced the
relation to an equality. Equation 3.41 assumes the spin dephasing caused by the appli-
cation of the gradient is much more rapid than that due to spin-spin relaxation. Under
these circumstances, the coherence loss due to transverse relaxation can be ignored.
The contribution of the 75, term in equation 3.41 can be eliminated via heterodyne
mixing using a reference frequency of vB so that the final signal oscillates at vG - r.
The integrated signal amplitude may then be expressed as

st = [ [ [ ot explinG slar (3.42)

where dr is a volume element and it is assumed the integration is over all space. We
now introduce the reciprocal space vector k defined by

Gt

k .
2T

(3.43)

k has the units of inverse space, m~'. Movement through k-space can be achieved by
altering the magnitude of the gradient, or by moving through time. The direction of
travel through k-space is dictated by the sign of the gradient. We can now express the
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total signal of equation 3.42 using the formalism of k-space as

S(k) = / / / p(x) explizrk - dr. (3.44)

The Fourier inverse of the signal is

pr) = / / / S(k) exp[—i2rk - 1]dk. (3.45)

Equations 3.44 and 3.45 state that the signal, S(k), and the spin density, p(r) are mutu-
ally conjugate. This is the fundamental relationship of NMR imaging.

3.11.2 Selective pulses

In NMR imaging, it is important to have the ability to selectively excite part of the
sample only. This is carried out through the use of ‘soft’, spatially-selective pulses.
Recalling section 3.6, we note that the frequency response of a pulse is found from its
Fourier transform. To excite a narrow, sharply-defined band of spins in a sample, a
sinc-modulated pulse is employed in conjunction with a magnetic field gradient. As
illustrated in Fig. 3.17 and alluded to by Fig. 3.9, the frequency response of an r.f. pulse
modulated by a sinc function is a rectangular hat function. Consequently, only spins
precessing at frequencies covered by the hat function are excited and these spins will
lie in a band perpendicular to the magnetic field gradient. In practice, the sinc function
is truncated to a number of lobes which distorts the frequency response. In Fig. 3.17
the sinc function has been truncated to one lobe which causes distortions in the form of
small side lobes in the frequency domain. This has the effect of exciting spins outside
of the selected frequency range. When a 90° soft pulse of duration 7" is applied to a sys-
tem, the spins will dephase in the transverse plane due to the applied field gradient. To
undo this dephasing, a negative gradient (that is, a gradient of opposite sign from that
applied simultaneously to the soft pulse) of duration 7'/2 is required. Such a rephasing
gradient pulse is not required when using a 180° pulse due to symmetry arguments.
To excite a band of spins of physical width Az with a soft pulse with bandwidth of Aw

a gradient of magnitude G, = % needs to be applied.

3.11.3 Motion and g-space

Motion due to flow and diffusion can be measured through the use of pulsed gradients.
A pulsed-gradient-spin-echo (PGSE) sequence is shown in Fig. 3.18(a) and consists of
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Figure 3.17: A “soft’ sinc-modulated r.f. pulse used for slice slection (a) in the time domain and (b)
the frequency domain. The sinc modulation is truncated to one lobe which causes oscillations in the
ideally-rectangular spectral response. This leads to a number of spins outside of the selected area being
excited.

two gradients of duration ¢, a time A apart, either side of a 180, pulse in a spin echo
sequence. Figure 3.18(b) shows a pulsed-gradient-stimulated-echo (PGSTE), in which
the gradient pulses are applied just before the spins are tilted into the z’z plane and
just after their return to the transverse plane. In both cases, after the initial 90, pulse,
the first gradient imposes a phase shift equal to vdg - r on a spin located at r. The
180, pulse in the PGSE and the combination of the two 90, pulses in the PGSTE invert
the original phase shift so that a molecule that has moved to a position ¥ during the
observation time A experiences a total phase shift of 7dg - (r' — r). If we express the
spatial probability a molecule will move from r to r’ in a time A as Ps(r|r', A) then the
total echo signal, E(g, J, A), which we define as the amplitude of the echo at its centre,
has the form

E(g,0,A) = /p(r) /Ps(r|r’, A) expliydg - (¥ — r)]dr'dr. (3.46)
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It is now convenient to introduce the dynamic displacement R, which is defined as
R = r — 1, and the average propagator P,(R,A), which gives the average probability
that any particle will have a dynamic displacement R during the observation time A.
The average propagator is defined [22] by the relation

P,(R,A) = /Ps(r]r + R, A)p(r)dr. (3.47)
We can now express the total echo signal of equation 3.46 in terms of the dynamic
displacement and average propagator as

E(g,6,A) = /E(R, A) explivog - R|dR. (3.48)

The signal attenuation has been removed by normalisation using the amplitude of the
signal at zero gradient. It is clear from equation 3.48 that E(g, 5, A) and P(R, A) are
Fourier conjugates. Analogous to the k-space definition of section 3.11.1, we define
another reciprocal space ¢ by

_ %8
9= (3.49)

Equation 3.48 can be expressed in terms of the formalism of g-space as
B(q,A) = / PL(R, A) explizrq - RIR. (3.50)

Acquisition of the signal in q-space will thus allow the imaging of the average prop-
agator, P;(R, A), in the same way that acquiring signal in k-space allows for imaging
of the spin density. As suggested in section 3.10.1, materials that have spin-spin relax-
ations approximately equal to their spin-lattice relaxation time are well suited for the
PGSE shown in Fig. 3.18(a) and materials that have spin-spin relaxation that is much
more rapid than their spin lattice relaxation are better suited to the PGSTE illustrated
in Fig. 3.18(b).

3.11.4 Translational dynamics - self diffusion and flow

Random translational motion of individual spins due to thermal fluctuations, known
as self-diffusion, is described statistically by the rate of change of the probability a
particle will change positions by R in a time ¢. This is sometimes known as Fick’s
second law,

P,
aats = DV?P, (3.51)




62 Nuclear Magnetic Resonance (NMR)

where D is the molecular self-diffusion coefficient. Setting the boundary condition for
unrestricted self-diffusion (the probability of a particle diffusing a long distance is less
than a particle diffusing a short distance) and using the initial condition Ps(r|r+R,0) =
d(R) (the chance of finding a particle at its starting point is 1), the solution is

P,(R,t) = (4nDt)*% exp[—R?/4Dt]. (3.52)

That P,(R,t) relies only on the displacement R and not the initial location, (r), reflects
the Markov nature (that is to say that given the current state, the future states are inde-
pendent of the past states) of Brownian motion statistics. When measuring diffusion
in one direction only, the z-direction for instance, we can integrate over the remaining
two directions and the result is then

P,(Z,t) = (4nDt)~Y/? exp|— 2% /ADt] (3.53)

with signal attenuation from a PGSE experiment given by
E(q,t) = exp[—4m2¢* DA] (3.54)
Equation 3.54 was achieved by assuming no motion during the time, ¢ the gradient
pulses are applied. In reality, there is some motion during this time and a correction

of A — §/3 must replace A [14]. For the case where a coherent flow of velocity v is

imposed on the system, equation 3.51 must have a term V - vP; ammended to the right

side: 5P
ats =V -vP, + DV?P, (3.55)
If v is constant, then equation 3.55 has solution
P,(R,t) = (47 Dt)*/% exp[—R?/4Dt]. (3.56)

If we again consider the case where the motion is measured in one direction only, and
taking this direction to lie along the z-axis, we can express the average propagator and

echo signal attenuation as
P,(Z,t) = (4rDt)"'?exp|—(Z — v.t)?/4Dt] (3.57)
E(q,t) = exp|—4n?¢°D(A — §/3) + i2mqu.A. (3.58)
The position of the peak of the average propagator is thus a function of the component
of velocity examined, v, while the width of the propagator is a function of the diffusion
coefficient, D as shown in Fig. 3.19. It is therefore possible to create a velocity map of

a fluid under flow by measuring the average propagator for the system for a discrete

number of spatial points and plotting the position of the peak.
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Figure 3.18: (a)Pulsed gradient spin echo (PGSE) sequence and (b) pulsed gradient stimulated echo
(PGSTE) for measuring motion. PGSE is generally used for materials where 7% ~ T}, and PGSTE when
Ty << Ty.
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Figure 3.19: Behaviour of the average propagator, P for an ensemble of particles undergoing diffusive
motion and flow. The position of the peak is proportional to the bulk flow velocity, v, while the width is
proportional to the diffusion coefficient, D.



Chapter 4

Soft Matter

4.1 Introduction

If the experimental and theoretical work contained in this thesis can be grouped under
a single name that is inherently interdisciplinary, that name is soft condensed matter
physics. Soft condensed matter physics addresses fundamental research problems and
has widespread technological applications. Experimental work in this field has shown
that materials with different three-dimensional geometries often display similar be-
haviours, implying a potential universality. One example of a shared characteristic ob-
served in complex fluids under conditions of high volume fraction is the phenomenon
of “jamming” [23]. Jamming is also known as kinetic frustration, and one important

class of jammed /kinetically frustrated systems is that of the glasses.

4.2 Experimental Systems

Much of the initial work in the field of soft glasses was carried out on densely packed
hard sphere or linear polymeric chain systems. Experiments have suggested that these
two topologically different classes of soft glass share many physical properties. They
both, for example, share solid-like properties and show a strong dependence of self dif-
fusion coefficient on volume fraction. It is possible to think of these two classes of soft
glass as sitting at either end of a ‘shape spectrum’. The differences in shape between
these two classes, as well as the scale differences makes the study of the intervening

parts of the spectrum necessary. The intervening parts are made of star polymers with
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varying functionalities. Highly functional stars, that is, stars with many arms, are ge-
ometrically similar to hard spheres while low functionality stars are closely related to
linear chains [24, 25, 26, 27].

It has been shown that star pair interactions depend strongly on functionality, f
[26]. Suspensions of stars form glasses similar to hard spheres and other soft col-
loids [28, 29]. Multi-arm star polymers with functionality, f, higher than about 80 may
be found in frustrated glassy states when their effective volume fraction is increased
above a critical value. Systems of stars with nominal functionalities f = 128 and vari-
ous molecular weight arms are considered to be soft (they can be thought of as ultrasoft
colloidal spheres with a very small deformable core and a corona consisting of arms)
and have been shown to have intriguing thermal and flow properties [30, 31]. It has
been shown by Kapnistos et al. [30] that an increase in temperature causes suspensions
of these stars at 10 — 15 times the overlap concentration, ¢*, to stiffen due to thermal
swelling of the stars. Holmes et al. [31] showed a marked hysteresis in the response
to flow of a dense solution of stars with nominal functionalities f = 128 when probed
with an upward and downward rate sweep.

The anionic synthesis of nearly monodisperse multiarm star 1,4-polybutadienes
based on chlorosilane chemistry with nominal functionality, f, of 128 arms, each hav-
ing nominal molecular mass, },, of 80000 g/mol, has been described in detail else-
where [25]. All samples were prepared in squalene (molecular weight 410.73 g/mol,
T, = 558 K @25 mmH g). The raw material was left in vacuum at room temperature
for a period of 3 hours to remove all moisture before preparation. In squalene at 293 K
the 128-arm stars have a Ry = 53 nm, measured by light scattering techniques. An-
tioxidant (4-methyl-2, 6-ditert-butylphenol) was added to ensure no oxidation of the

sample took place.

4.3 Behaviour of dense colloids

When considering how dense systems behave, the primary concern is that of the topo-
logical constraints placed upon each constituent by its nearest neighbours. In the case
of densely packed linear polymeric chains at high volume fraction, ¢, the large number
of neighbours causes entanglements which confine a given chain to a tube [32, 33, 34]
as suggested by the illustration of Fig. 4.1 (a). The dynamics of this system evolve

by constituents diffusing out of their tubes, a process named ‘reptation” [35]. When
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hard spheres reach a volume fraction ¢ ~ 0.58, they form a glass [36]. In this situation,
the movement of each colloid is hindered by its neighbours. That is, the neighbours
form an effective cage [37, 38, 39] which must be broken for macroscopic flow to take
place as illustrated in Fig. 4.1 (b). Motions within cages are not hindered and occur
on (fast) timescales. This process is referred to as -relaxation, whereas cage breaking
is a slower process and is known as a-relaxation. In the intermediate case of colloidal
stars, macroscopic flow is induced in a similar way to hard spheres; the cage formed
by the nearest neighbours must be broken. However, the dynamics are not completely
identical and the cage model must be modified to describe the interactions possible
with stars. Because of the conformation of the stars, interpenetration of arms must also
be overcome in order to break a cage. The process that describes this retraction of arms
is similar to the idea of reptation with a tethered end. The case of overlapping star
polymers is illustrated in Fig. 4.1 (c).

Pearson and Helfand [40] considered the problem of stress relaxation for a single
star polymer in a fixed network of entanglements after a small affine step strain. As
stated above, a single star cannot reptate to recover any equilibrium conformation, but
must instead undergo a series of arm retraction events. In such events, the free (un-
tethered) ends of the arms of the star must retract back along the tube which confines
them (called the ‘primitive path’ of the arm) and then poke into a new section of tube.
The stress associated with the star-arm being confined to the old tube is thus forgotten.
For the entire stress to be forgotten, the arms of the star must relax back to within an
entanglement length of the junction point of the star.

If the length of the arms of the star, NV, is many times greater than the entangle-
ment length V., then retraction is very unlikely. There exists an entropically generated
‘thermal tension” that pulls the free ends of the arms outward to explore new confor-
mations. Arm retraction is opposed by this thermal tension.

As the arm retracts fractional distances s (0 < s < 1) back along its primitive path,
it can be thought of as moving in a potential U(s) given by Pearson and Helfand [40] as
U(s) = 1‘2%:2 (in units where kgT' = 1). When N/N. is large, the activation barrier for
arm retraction back along its primitive path a fractional distance s is many kz7". The

time 7(s) for this retraction to take place is thus exponentially long, 7(s) = 79 exp[U(s)].
Ball and McLeish [41] added to the theory of Pearson and Helfand by realising that
individual stars surrounded by other stars do not relax in a rigid environment. The

arm-retraction process that one star undergoes is also exhibited by the stars surround-
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(a) Entangled polymers:
tube model

(b) Colloidal hard spheres:
cage model

s c) Colloidal star polymers:
cage model

Figure 4.1: Schematic representation of crowded systems. (a) Polymers are confined to tubes at high
concentrations and are said to be ‘entangled” and relax via reptation. (b) Colloidal hard spheres are
kinetically arrested above a volume fraction ¢ ~ 0.58. Neighbours form effective cages which must
be broken for macroscopic flow. (c) Colloidal star polymers are kinetically arrested at higher volume
fractions, ¢ ~ 1.4 than hard spheres although the same ideas of caging are applied to their macroscopic
behavior. Additional to the idea of local cages is the idea of retraction which is directly analogous to
reptation with one tethered end. A combination of retraction and caging must be used to fully describe

the behavior of stars.
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ing it. There is thus a diluted entanglement network seen by the relaxing segments at
s. Put simply, a portion of star arm must explore a tube made larger by dilution before
relaxing by arm retraction. Ball and McLeish further assume that in such a diluted
network with a volume fraction ¢ of chains, the entanglement length N.(¢) is given by
N.() = Nofé, No(s) = Nof(1 — 5).

Milner and McLeish [42] added to the theory of stress relaxation in star polymers
by assuming that retraction for small s such that U.;; < kg7 (now an effective po-
tential due to dilution effects), and thus also short times, is not activated but is rather
that of the end of a long Rouse chain, which moves faster than diffusively. Milner
and McLeish also note that Colby and Rubenstein [43] had pointed out that scaling of
the entanglement length, N.(¢) = N./¢ is not supported by experimental data. Colby
and Rubenstein present an alternative scaling argument that leads to N.(¢) = N./¢*/3,
which is supported by rheological data. The only parameters of the theory of Milner
and McLeish, which are the plateau modulus G|, the entanglement molecular weight
N,, and the Rouse time of an entanglement segment 7., can be obtained from rheologi-
cal data on linear chains [42].

4.4 Ageing in soft matter

Many soft materials exhibit relaxations on a slow time scale that are strongly remi-
niscent of the glassy dynamics observed in hard condensed matter. The temporal ex-
tension of these relaxations is commonly referred to as ‘ageing’ in analogy with the
slowing down of the dynamics in ageing hard glasses and is due to the materials being
far from their thermodynamical equilibrium. The continuous evolution of the mechan-
ical and dynamical properties towards equilibrium is termed ageing and has been the
focus of much research.

Ageing phenomena have been reported for a wide range of soft materials which
include multilamellar vesicles [44], polymer nanocomposites [45], colloidal suspen-
sions [46, 47, 48, 49, 29, 50], clays [51, 52, 53, 54, 55, 56, 57], pastes [58], emulsions [59],
foams [60], and even in the cytoskeleton of human muscle cells [61]. Experimental
techniques employed in these investigations include light scattering techniques such
as diffusing wave spectroscopy [54, 51], dynamic and multispeckle dynamic light scat-
tering [46, 44, 56, 55, 48, 49], x-ray photon correlation spectroscopy (XPCS) [53], local
rheological methods [57], conventional rheology [45, 47, 61, 44, 58, 29] and simultane-
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ous optical and rheological measurements [60]. Typical of these reports is the temporal
re-scaling of relaxation dynamics with the waiting time (¢,,)#, where the ageing ex-
ponential ;1 < 1, to show universality curves. The interested reader is directed to a
review on this topic [62]. In [47], age-dependent shear start-up experiments have been
performed on a colloidal suspension of silica particles stabilized by a layer of adsorbed
polymer suspended in water. It has been shown in this case that the value the stress
rises to before the onset of flow, 0,,,s, increases with ¢,,, as does the time it takes the sys-
tem to settle to the steady-state value o, which determines the steady-state flow curve.
This phenomenology matches, to a certain degree, that predicted by [47, 63, 64, 65].

4.5 Heterogeneous flow in soft materials

Shear banding has been observed in worm-like micelles [66, 67], emulsions near their
yield stress [68], entangled polymer solutions [69], liquid crystalline polymers [70], re-
cently in a nearly random close packed, hard-sphere colloidal suspension [71] and has
also been reported in dense pastes of large (0.29 mm) polystyrene beads [72]. Shear
banding, identified experimentally through the coexistence of two or more bands of
different viscosity or microstructure, is typically accounted for theoretically by a con-
stitutive flow curve with an unstable branch of negative slope. When shear-rate con-
ditions that correspond to the region of unstable flow are imposed, these systems can
separate into phases of different local shear rates that coexist at a common stress. A re-
cent review by Moller et al. [73] suggests shear banding and thixotropy can be viewed
as two effects of the same underlying cause. The fascinating question as to whether
non-monotonic constitutive behavior might be inherent to glassy yield-stress systems,

remains open.

4.6 Previous work on star polymer systems

In [29], a two-stage evolution of the storage modulus G’ is reported in the linear rheol-
ogy of a colloidal glass made of stars with functionality f = 110 and molecular weight
74100 g/mol at two different concentrations, ¢ = 1.6 ¢* and ¢ = 2.1 ¢*. The focus of the
work presented herein is on suspensions of stars with functionality f = 128 and molec-
ular weight 80000 g/mol and will build the non-linear rheological picture that preceded
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the two-stage evolution reported in [29]. We show the evolution from a monotonic
flow curve to a flow curve that is dominated by a stress plateau and show the expected

velocity profiles in concentric cylinder couette geometry.

Recent studies on high functionality star polymer [25] solutions have suggested
both glassy dynamics and anomalous shear behavior [31]. In this thesis the relation-
ship between ageing and shear banding is investigated. Star pair interactions depend
strongly on their number of arms (functionality f)[26] and as f increases the tendency
to hard sphere behavior is increased. Helgeson et al. have shown suspensions of
such stars form glasses [29] while reversible gelation due to thermal swelling has been
found [30] in suspensions of these stars. Such properties suggest hitherto unknown be-
haviors that challenge conventional models of glassy behavior. Furthermore, the soft
stars studied here provide one of the few examples of soft matter in which the glass
transition can be easily crossed via temperature and not volume fraction. In order to
relate heterogeneous flow to the time dependent stress/strain-rate constitutive prop-
erties, an experimental technique should combine rheo-mechanics with non-invasive
velocimetry. In our approach time-resolved nuclear magnetic resonance (NMR) mi-

croscopy is the velocimetry of choice.

The main contribution of the present work is to perform the first experimental study
of the interplay of ageing and shear banding in a soft material where a distinct 2-step
evolution is seen. Rheological and rheo-NMR measurements on a system of star poly-
mers with nominal functionality f, of 128 arms are reported, each having nominal
molecular mass, M,, of 80000 g/mol at a temperature of 293 K and at a concentration
of ¢ = 2¢*. Such stars exhibit behaviors intermediate between linear polymers and
hard spheres, with evidence of both caging effects and soft interactions of the type
associated with polymer entanglement. The current system therefore assists in eluci-
dating how soft interactions that are not present in many hard-sphere systems man-
ifest themselves on a macroscopic scale. An earlier Rheo-NMR study by Holmes et
al [31] indicated intermittent shear rate heterogeneity. However that work, while on
the same star polymer, was for a different solvent and at lower concentration, closer
to c*. It utilized a wide gap Couette cell with correspondingly wide stress variation
across the gap, and used pre-shear protocols that differed in the case of the NMR and
rheo-mechanical data. We here report on dynamics, involving both ageing effects and
shear banding, in the ¢ = 2 ¢* star polymer in squalene, for which consistent protocols
are used and in which the Rheo-NMR experiments are performed in a much narrower
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gap cell.



Chapter 5

Experimental: Conventional Rheology

5.1 Introduction

The ageing dynamics of the soft glass that are investigated in this thesis are highly
dependent on the shear history. A detailed analysis of the mechanical and dynamical
changes due to ageing thus requires a reproducible, fully rejuvenated initial state. Thus
the first tests reported focus on determining the conditions under which a sample can
be fluidized, or “rejuvenated”, and the response to oscillatory shear in the linear regime
directly after fluidisation. Once this protocol is determined, transient non-linear tests
are performed, the results of which show evidence of a stress plateau in the flow curves
at low shear rates and long times of two 128-arm samples at two different concentra-

tions. The two concentrations reported here are ¢ = 1.5¢* and ¢ = 2 ¢*, where c* is the

3fMa
4TNLR3,

M, is the molecular weight of each arm and Ry is the equivalent hard-sphere radius

overlap concentration and is defined as ¢* = where N, is Avogadro’s number,

of the polymer coil.

Rheological measurements presented here were performed on an ARES-HR strain-
controlled rheometer fitted with cone-plate geometry of diameter 25 mm, angle 0.04 rad
and a truncation of 48 ym. To ensure a saturated atmosphere and one on which air
currents have negligible effects, a trap system containing mats soaked with squalene

surrounded the geometry. All experiments were carried out at 293 K, 20° C
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5.2 Determining the conditions for rejuvenation: Estab-

lishing a protocol

When determining the properties of materials as they age, it is paramount that there
exists a way to determine the age of a sample and ‘reset’ it. This requires a knowledge
of how the material behaves in its fully rejuvenated state, hereafter referred to as the
‘youthful state” and an ability to reverse any ageing that takes place. The ‘youthful
state” of the material refers to the response shortly after such a rejuvenation. In the
early years of work on soft glasses, the resetting of physical ageing was often referred
to as a ‘quench’. The term ‘quench’ is a layover from the language of hard glasses,
where, to bring the glass far from thermodynamic equilibrium, the temperature of the
material was lowered quickly after a high-temperature fluidization. In the case of soft
glasses, it is possible to fluidise a sample via mechanical means. We comment here that
recent simulation work by Isner and Lacks [74] and a review of experimental work by
McKenna [75] suggest a distinction be made between mechanical ‘rejuvenation” and
thermal quenching. It is conjectured that large mechanical stimuli do not entirely re-
juvenate or erase all effects of ageing. However, a reproducible shear protocol with a
large amplitude oscillatory shear or steady shear with large rate that takes the sample
well in the shear-thinning regime might at least bring the sample reproducibly to a
certain state. The precise meaning of ‘shortly” changes for each material. For many
soft materials the ageing is seen as a stiffening or partial solidification. This can of-
ten be “‘undone’ by a simple addition of energy via shear and/or heating to re-fluidize
the entire sample. An application of large amplitude oscillatory shearing ensures an
identical state is reached before each experiment and the conditions for such a rejuve-
nation need to be determined before any meaningful ageing experimentation can be

conducted.

5.2.1 Nonlinear Strain Response to Oscillatory Shear

An experiment where an oscillatory strain is applied at a constant angular frequency
while the strain is swept over many orders of magnitude is designed to establish the
limits of the linear and nonlinear regimes by way of tracking the dynamic moduli.
Such a test was carried out on a fully aged sample of 12880 stars in squalene at a

concentration of ¢ = 2¢* at a frequency of 1rad s~ to help formulate a preshearing
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protocol (Fig. 5.1(a)). At small strains G’ is almost ten times larger than G” and both
are relatively constant, indicating the material behaves as a viscoelastic solid under
these conditions. The strain that separates the linear regime from the non-linear at this
frequency is approximately 2.5 %. As the amount of deformation is increased, G” goes
through a maximum value suggesting a breaking of cages at the onset of flow. The
point where G” reaches a maximum and crosses G’ indicates a yield strain of ~ 10 %.
Above the crossover point the sample is flowing, which is our condition for rejuvena-
tion. The large amplitude, shear-thinning behaviour of G’ and G” were fit with a power
law. The fit yields thinning exponents for G’ of 1.328 £ 0.001 and G” of 0.632 £ 0.001.
The values are lower than those expected by a recent approximate extension of MCT
to nonlinear rheology, [76] and the ratio of the two, within experimental uncertainty,
is higher. This result agrees with a finding in PNIPAM microgels [77]. The reasons
for this may include the assumption that the contribution of higher harmonics in the
Fourier spectrum is negligible [76]. Similar results are obtained for ¢ = 1.5 ¢*. It follows
that a successful preshear will be achieved by applying an oscillatory strain at 1 rad s
with amplitude 100 %. Such conditions were applied for an arbitrary time of 200 s by

way of a constant amplitude and frequency oscillatory strain experiment for all tests.

These conditions establish a protocol for resetting the age of the system for the start
of each test. It was determined empirically that after this preshear the material gave
reproducible mechanical responses. We use the end of this preshear as the definition
of the origin of time for all experiments presented herein. For all experiments where
ageing effects are important there is a useful convention which will be used throughout
this work. While the absolute time, ¢ is reset directly after rejuvenation, it will be
necessary to let the system evolve spontaneously for a time ¢,,, traditionally called the
waiting time, before applying stresses or strains. We then define the experimental time
ast' =1t —t,.

Having found conditions that place the sample in a reproducible fluid state, the
frequency response of the youthful material in the linear regime is determined as a
benchmark for all other ageing experiments. The determination of the youthful re-
sponse is achieved by applying an oscillatory shear of constant amplitude of 1 % and
varying the frequency while recording the storage and loss moduli. The results of such
a test are displayed in Fig. 5.1(b). The storage modulus shows a very weak power-law

0.087+0.003

type dependence G’ o w over the three orders of magnitude. At frequen-

—0.19£0.05

ciesw < 0.5rads ! G" x w . For frequencies 1rads™ > w > 10rads™! the
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Figure 5.1: (a) A log-log plot of the strain amplitude dependence of the storage and loss moduli, G’/
and G” at 1 rad s~! for a sample of stars in squalene at ¢ = 2 ¢*. At low amplitudes the material behaves
linearly and solid-like. As the deformation increases, the moduli cross over and the material shows a
shear-thinning liquid response at amplitudes above 10 %. Solid lines represent asymptotic predictions
for hard spheres. (b) Log-log plot of the frequency dependence of G’ and G” at a fixed strain amplitude
of 1% directly after rejuvenation. The storage modulus shows a weak power-law dependence and
G" shows a minimum typical of glassy colloidal systems. This non-aged, solid-like behaviour is the

benchmark for further investigations. Similar results are found for stars in squalene at ¢ = 1.5 ¢*.
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power-law exponent describing the loss modulus increases and changes sign so that
for frequencies w > 10rad s~!, G" o W9-49£0.02,

These responses, and others to follow are very similar in nature to those seen by
Derec et al. [47] in their investigation of the rheology of PEO-protected silica particles,
by Mason and Weitz [78] in their investigation of uncoated silica spheres in ethylene
glycol and by Helgeson et al. [29] in their study of stars similar to those of this work.
The wide variety of systems that show similar behaviours indicates a potential univer-

sality.

5.3 Transient response to continuous steady shear

The transient response of the material to continuous steady shear at various rates with
various waiting times was investigated. In order to examine the response of the ma-
terial without filtering from the software controlling the rheometer, direct measure-
ments of the output voltage of the rheometer were made. The TORQUE OUT and
STRAIN/NORMAL OUT connectors of an ARES strain control rheometer were con-
nected to an ADC and a PC as described by Wilhelm et al. in [57]. The TORQUE OUT
channel of the rheometer outputs a DC voltage that is proportional to the transducer
torque. When in dynamic mode, the STRAIN/NORMAL OUT channel outputs a volt-
age that is proportional to the actual motor angular deflection and when in steady
mode it outputs a voltage that is proportional to the transducer normal force. Lab-
VIEW ™software was used to access the raw torque/strain data from the ADC while
RSI Orchestrator was used to control the rheometer in the usual way.

A series of start-up flow measurements in the cone-and-plate geometry were made.
The system was presheared according to the established protocol and then allowed to
evolve spontaneously for a time ¢,, before the application of a constant shear rate. The
waiting times were varied from 0 s to 2500 s. The stress was measured as a function of
the experimental time t' = ¢ — t,,.

Of primary note is the reported stress at very short times. Orchestrator reports
that the stress always starts at zero, regardless of waiting time. This suggests that any
internal stress left in the sample from the mechanical fluidification protocol dissipates
instantaneously. In practice, the time control of the rheometer has a finite time between
finishing the oscillatory rejuvenation and the application of a continuous, steady shear
rate, which will henceforth be referred to as 0*, and so any internal stresses must dis-
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Figure 5.2: Shear startup for star concentration of 2¢* and 4 = 0.0025 s~! in the cone-and-plate geom-
etry: Lin-log plots of the stress response as reported by RSI Orchestrator adjusted to make the stresses
att’ = 1000 s equate for waiting times ¢,, = 0%, 5, 7, 10, 25, 50, 100, 500, 1000 and 2500 s. Any disparities
due to the software setting the initial stress to zero have been eliminated.

sipate in a maximum of that time in order for the Orchestrator-reported stresses to be
true. Contrary to the stresses reported by Orchestrator, the TORQUE OUT channel of
the rheometer reports non-zero stresses at t' = 0 for ¢,, > 500s. A non-zero stress at
short times suggests there is a significant amount of internal stress left in the system
by the mechanical rejuvenation protocol that takes between 50 and 500 s to dissipate.
The stress evolution reported by RSI Orchestrator can be adjusted so the stresses
reported at ¢’ = 1000 s equate. The results of such adjustments are displayed in Fig. 5.2
for an applied shear rate of ¥ = 0.0025 s~ . Any disparities at long times reported by
Orchestrator caused by the setting of the initial stress to zero have been eliminated.
The values of the initial stress and stress overshoots shown in Fig. 5.2 are displayed
in Fig. 5.3. The stress residual from the preshear decays with waiting time as a power
law with exponent —0.57 = 0.05. Similar results to [47] are found for the plastic over-
shoot: the older the sample is, the more stress it stores before flowing. The stress at the
plastic overshoot increases with waiting time with a power-law exponent 0.096 £ 0.005
for waiting times ¢,, < 2500 s. Like the results in [47], the data presented here also sug-
gest that the time/strain at which rearrangements take place and flow begins is not a

function of ¢,,.

The stress response to a step-wise application of a constant shear rate follows three
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Figure 5.3: (a) The stress residual from the preshear (points) decays with a power-law exponent
—0.57 £ 0.05 (solid line). (b) The maximum stress achieved at the plastic overshoot (points) increases as
a power-law with exponent 0.096 £ 0.005 (solid line).

distinctly different behaviours as exhibited by Figs. 5.4 and 5.5. The waiting time
is kept constant at a value of ¢, = 0* and a stress corresponding to ¢, = 0* found
previously is added to the Orchestrator-reported data. The response of the material to
shear rates greater than the critical rate of 0.08 s™! in the ¢ = 1.5 ¢* sample is as follows:
initially the stress rises linearly before reaching a maximum plastic overshoot value at
the onset of flow. Once flowing, the stress then settles to a stable value for all time.
For shear rates less than 0.05s7! and greater than 0.0025 s™! there is a similar stress
overshoot followed by an interval of steady stress response. We refer to this period as
‘adolescence’. As the time under constant shearing reaches ~ 2000 s for all rates less
than 0.05 s7!, the stress rises and appears to overshoot again before settling to a value
around 8 £ 0.25 Pa. The third type of behaviour observed is that of the material when
subjected to shear rates less than or equal to 0.0025 s~!. At shear rates equal to or below
this value, there is no initial stress overshoot as the stress rises to its adolescent value,
where it stays for a time before exhibiting the same rise and overshoot to a stress of
8 £ 0.25 Pa.

The critical shear rates and stress values are concentration dependent. In the ¢ = 2 ¢*
sample, the higher stressed regime occurs at a stress of 11 £+ 0.25 Pa and when the
concentration is 1.5 ¢* it occurs at a stress of 8 £ 0.25 Pa. In the ¢ = 2¢* sample, the
critical shear rate below which there is no increase in stress at long times is 0.035 s™*
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iure S ear startup, i,y — or star concentration of ¢ = 1.5 ¢* in the cone-and-plate geometry:
Figure 5.4: Shear startup, t,, = 0* for st tration of ¢ = 1.5¢* in th d-plate g try

Note the three types of shear rate-dependent response: an overshoot with no stress increase at long

times (continual adolescence); an overshoot followed by a steady adolescent response and then stress

increase; no overshoot with stress increase at long times. The strain of the stress overshoot shown in (b)

is an increasing function of strain rate. The strain at which the small kink, visible just above a strain of

102 at all rates, is also an increasing function of strain rate. The solid blue line is a logarithmic fit to the

stress increase.
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Figure 5.5: Shear startup for star concentration of 2¢* in the cone-and-plate geometry: Lin-log plots

of the t,, = 0* stress response as a function of time (a) and strain (b) to three steady shear rates after

preshear. The same features as seen in the data of Fig. 5.4 are evident though the plateau occurs at a

higher stress. Note the small kink visible at strains of ~ 4.6 % as indicated by the arrows in (b). This

feature is clearer at the two lower rates than in the higher and, like the strain position of the stress
overshoot, occurs at larger strains for higher rates.
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(as determined from the flow curve displayed in Fig. 5.8, shown in the next section)

-1

whereas in the ¢ = 1.5¢* case it is 0.05 s The rate below which no initial stress

overshoot occurs is 0.001 s~ at ¢ = 2 ex and 0.0025 s~ when the concentration is 1.5 ¢*.

There is a small non-linearity in the stress response at a strain of ~ 1.1% in the
¢ = 1.5¢" case and at a strain of ~ 4.6 % in the ¢ = 2¢* case at all rates. The sim-
ilar strain-alignment of these features alludes to a structural rearrangement. In the
¢ = 1.5¢" case, the non-linearity is seen as a change in the rate at which the stress
increases at a strain of ~ 1.1%. In the ¢ = 2¢* case, the non-linearity is manifested
as a dip in the stress response at strains ~ 4.6 %. For both concentrations, the non-
linearity occurs at smaller strains for lower rates than at higher rates. This is related
to the increasing strain at which the stress overshoot maximum occurs, which is in-
dicative of the material’s ability to acquire more strain at higher rates before yielding
and beginning to flow. This rate-dependent yield strain is supported by the oscilla-
tory data of Helgeson et al. [29] for two systems of identical stars at concentrations of
c = 1.5 and 2.1 ¢*. The relationship between shear rate and the absolute strain at which
the nonlinear inflection and stress overshoot occur in the ¢ = 1.5 ¢* sample is displayed
in Fig. 5.6. From the data of Fig. 5.5(b) it can be deduced that cages break at strains of
~ 10 % for rates ¥ < 0.1 s7!. The data of Fig. 5.1 support this and also suggest the small
non-linearities correspond to a regime between the onset of nonlinear flow and shear
melting.

The difference between the maximum stress achieved in the initial overshoot and
the adolescent stress increases with shear rate. Derec et al. [47] comment on the size
of the stress overshoot, o,4st:c in their study of a suspension of silica spheres: “the
smaller the inverse of the strain rate compared to some intrinsic time characteristic of
rearrangement in the system, the larger the stress stored before rearrangements occur.”
This condition indicates some intrinsic time characteristic of ~ 400 s for the ¢ = 1.5¢*
sample and ~ 1000 s in the ¢ = 2 ¢* sample corresponding to the inverse of the largest

shear rate at which no overshoot is seen in each case.

The response of the material in the regime of higher stresses is less stable and fluc-
tuates in time, indicating a possible transition to an agglomerated state where larger
clusters are in a continual state of breakup and renewal. Derec et al. [47] measured for
10% s to check for steady state with waiting times up to 10* s with no evidence of any
stress plateau. The system studied by Derec et al. [47] is a suspension of silica particles
stabilized by a 7nm layer of PEO on the surface of each particle. The phenomeno-
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Figure 5.6: The absolute strains of the nonlinear inflection and stress overshoot maximum as a function
of shear rate for the ¢ = 1.5 ¢* sample. The strain at which the nonlinear inflection occurs is constant for
shear rates of two orders of magnitude from 4 = 0.001 — 0.1. The strain at which the stress overshoot
maximum occurs is an increasing function of shear rate for the rates at which an overshoot is seen.

logical response in both the linear and non-linear rheological regimes of the stars is
reminiscent of the response of Derec et al.§ [47] suspension of stabilized silica particles
with the exception of the slow evolution of the stress plateau. That latter behaviour is
a particular feature of the star polymer system, though stress plateaux have been pre-
viously seen in many other systems. See for example [79, 80, 66, 67, 81, 82, 68, 69, 70]
for investigations into a suspension of nearly equal-sized colloidal hard spheres, the
worm-like surfactant solution cetylpyridinium chloride /sodium salicylate 100 mM /60
mM, the worm-like micelle system 10% w /v cetylpyridinium chloride and sodium sal-
icylate (molar ratio 2:1) in 0.5 M ?H,O NaCl brine, suspensions of the synthetic clay
bentonite and water at two different solid fractions, and white-cement (Ciment Super
Blanc, Calcia, France) (water to solid weight ratio = 0.5). This slow evolution could be
an indication that the delicate interactions of the arms of the stars are responsible for
the long-time behaviour while for short times the behaviour of the star suspension is
dominated by the star’s soft sphere-like properties.

The transition to the higher stressed regime and the strain at which maximum stress
is reached in the initial overshoot are logarithmic functions of the strain as indicated
by the data of Figs. 5.4 and 5.5.
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5.3.1 The Flow Curves

The long-time stress response to steady shear rates indicates the existence of a transi-
tion to a higher stress state for all shear rates below a critical shear rate . where 7. is a
function of concentration. As an exhibition of this behaviour in more general terms, the
flow curves (i.e. the steady-state stress response as a function of applied shear rate) for
the two concentrations were measured. The beginning and end states of the evolution
of the ¢ = 1.5¢* case are shown in Fig. 5.7 and the evolution of the ¢ = 2¢* sample is
shown in Fig. 5.8. The data displayed in Fig. 5.8 were measured using different waiting
protocols and therefore indicate the general behaviour at different parts of the stress
evolution of the material. In all cases the material was mechanically fluidized and a
decreasing succession of shear rates was applied, starting at 100s~*. All of the data
shown in yellow in Fig. 5.8 represent the stress averaged over a 10 s interval after a
waiting time of 10 s at each shear rate. Only the data above 0.05s™! in the ¢ = 2¢* case
and 0.05s™! in the ¢ = 1.5 ¢* case, shown in Fig. 5.7(b) were acquired this way. For all
other rates, the waiting time was at least 5000 s for both concentrations (for rates below
0.003 s71) and at most 30000 s (for 0.025 s~ ! in the ¢ = 2¢* case). The time over which
the stress was averaged was also increased to 1000 s to accommodate for the unsteady
nature of the higher stressed regime. Thus, the yellow points of Fig. 5.7 and Fig. 5.8(b)
should be thought of as rheograms of the adolescent states of the materials. At the
lower shear rates in these youthful representations, the stress sampled is the leading
edge of the initial increase to the pseudo-steady state stress and cannot be thought of
as steady-state in any way. The evolution of the flow curves displayed in Figs. 5.8 and
5.7 reflect the interplay between shear effects and ageing. The rate of ageing slows as
the shear rate is increased so that higher shear rates lead to slower ageing. Figure 5.7
shows an incomplete evolution where a slight minimum is still evident. The disap-
pearance of the apparent minimum and subsequent increase of viscosity as the shear
rate drops is thus the effect of this interplay and not of a bifurcation of viscosity as sug-
gested by Bonn et al. [83] in studies on the synthetic clay Laponite. The stress plateaux
of Figs. 5.7 and 5.8 indicate the possibility of shear banding at both concentrations
measured. The lower branches of the flow curves, which would give a value to ¥, the
lower shear rate in the banded structure, must be at least lower than 2 x 10~*s~! for
both concentrations as indicated by the lowest shear-rate measurements possible with
the rheometer.
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Figure 5.7: Flow curve for a star concentration of 1.5¢* in the cone-and-plate geometry: Log-log plots
of the steady state stress as a function of applied steady shear rate. (yellow) Each datum is acquired
after shearing for a time ¢ = 10 s after rejuvenation. (dark red) Each datum is acquired after shearing for
time on the order of 10* s to reach a steady state. The plateau clearly visible in the long time limit is thus
easily missed in a fast measurement. The lines are guides to the eye.

Figure 5.9 is a generic stress transient which includes definitions to clarify a discus-
sion of the salient points of this investigation. When strained continuously, the stress
response o (t) first increases proportionally to the strain and then overshoots to a value
Oplas- Once o(t) = 04, i.€. the system has been deformed plastically, the system is
forced to flow and the stress relaxes to its pseudo-steady-state value o,_,. After a pe-
riod of time, the stress increases to a common critical stress, o = o.. We note that all
three of these stress definitions are concentration-dependent and two of these stresses
are also shear rate dependent, that is, 005 = Tpias(¢, ), 0p—s = 0p—s(c,¥) and §. = 7.(c).
We use these stresses to define two critical shear rates. We define 73 as the shear rate at
which 0,5 = 0,_, that is, the highest rate where the stress does not overshoot initially.
See, for example, ¥ = 0.001 s~! in Fig. 5.5. We also define 7. as being the shear rate at
which o,_; = 0, that is, the lowest rate where a transition to a second stress state is not
observed. This latter definition is equivalent to defining +. as being the highest shear
rate on the stress plateau as seen in Figs. 5.8 and 5.7. For rates 7 > ., where there is
no transition to a second stress state, we simply refer to the steady state value of the

stress o,_;.

To paraphrase: the stress evolution is found to be rate-dependent and yields one of
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Figure 5.8: Flow curve evolution for star concentration of 2¢* in the cone-and-plate geometry: Log-log
plots of the stress as a function of applied steady shear rate for different ages of the sample. Each datum
is an average over O(100) s acquired after shearing for a time indicated in the plot. Note the evolution
of the plateau from lower shear rates towards higher rates. For clarity, a closeup of the critical region is
displayed.
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Figure 5.9: Definitions of the key stresses involved in a full description of the transient response to
continuous strain.

three typical behaviours:

e for rates y < 73, the stress rises to a pseudo-steady value 0,_s and remains at this

value for a time on the order of 1000 s before rising to a common critical stress o,

e for rates Y5 < % < 4., the stress rises and overshoots to 0,5 before relaxing back
to o,_s. Further, 0,,,s — 0,_ increases as 7 — 73 increases. The stress remains at
op—s for time on the order of 1000 s before rising to to the common critical stress

Oc

e forrates <, < 7, the stress overshoots to 0,,,s before relaxing back to o,_;. Further,
Oplas — Os—s INCreases as y — 7, increases (the subscript s-s is used in this case

because there is no pseudo-steady state, only a steady state.).

The corresponding values of these critical shear rates/stresses for the two concentra-
tions presented here are displayed in table 5.1.

Table 5.1: Critical shear rates/stresses
Concentration  5(s™') Fe(s™1)  0.(Pa)
1.5¢* 0.005 0.050 840.25
2.0c* 0.001 0.035 1140.25
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The strain at which the pseudo-steady stress o, starts increasing towards the com-
mon critical stress o, is a function of the shear rate and scales as log(y) as can be seen by
the solid blue line in Fig. 5.4(b). This relation suggests a minimum strain of v = 0.1 is
required for the stress to rise to the critical value. The rise in stress to o, can be thought
of as being a complex interplay between ageing and shear effects. In all cases where
4 > 43, the duration of the stress overshoot is a linear function of time and hence also
of strain.

The common critical stress for all rates ¥ < 4. at long times manifests itself as a
plateau in the flow curve at ¢ = o.. The plateau extends from §y = 4., correspond-
ing to the rate at which o,_; = 0., down to ¥ ~ 10~%s7!. Such plateaux have been
suggested as originating from an underlying constitutive flow curve that contains a
mechanically unstable region of negative slope. In this case, that underlying constitu-
tive curve, if it exists, is itself evolving from a mechanically stable monotonic curve.
At long times, when the plateau is fully formed and the shear rate is kept constant at a
value 107°s7! < 4 < 4, spatially heterogeneous flow is expected.

We compare these results to those of a similar system of stars suspended in an in-
termediate solvent, decane, at ¢ = 1.2¢* [31]. In [31], Holmes et al. found significant
hysteresis (thixotropy) in the flow curve and interpreted this as evidence for dynamic
jamming /unjamming processes. There was found to be a time dependence between
the length of time a shear rate was held and the shear stress achieved by the system
that was thought to be due to sub-critical strain rates being applied. The results of the
current work cannot discount this idea but through the use of the defined preshear-
ing protocol, which has allowed accurate measurement of the sample’s age, can offer
further explanation. The thixotropy observed previously can be accounted for by the
complex nature of the interplay between shear effects and ageing. In the language of
the trap models [84, 85, 86, 87], there appears to be a balance found between the energy
given to the system via shearing and the depth of the deepest traps. We note that this
language may lead to a confusion between the shear-induced kinetics of the system
and the role that energy plays in ageing the system. The authors would like the reader
to think of this as merely a description in terms of the language of the trap models. At
low shear rates, there is a small amount of energy given to the system such that traps
of medium depth are able to trap an ‘element’. As the shear rate increases, the energy
given to the system also increases as well as the depth of the trap required to trap an
element. As there are fewer deep traps, more time is needed for the system to fully
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explore the free energy landscape to find the traps capable of trapping the high energy
‘elements’. This is reflected in the results of the transient start-up tests shown in Figs.
5.5 and 5.4 which show that as shear rate is increased (provided 4 < 4.), steady state,
that is the time required for the stress to reach the plateau value, is achieved at longer
times. As the shear rate is increased further, eventually enough energy is given to the
system such that there are no traps deep enough to trap ‘elements” and all the material
flows for all time.

5.3.2 Creep

Complementary to the strain-rate controlled experiments of the previous subsection
are stress-controlled experiments commonly referred to as creep experiments (see sec-
tion 2.2). In a creep experiment the material is stressed and the subsequent acquisition
of strain is measured. From this data the rate of strain accumulation can be calculated.
This, in effect, allows an examination of the evolution of the flow curve with the stress
axis as the abscissa and the rate axis as the ordinate. The fluidisation protocol remains
unchanged. A stress of 8 Pa is applied to the ¢ = 2 ¢* material following spontaneous
evolution for a time ¢,, following fluidisation. The applied stress is specifically selected
to be lower than the critical stress seen in the flow curves and shear start-up experi-
ments in order to observe the evolution of the lower branch of the flow curve.

The results illustrated in Fig. 5.10 indicate that for ¢ < 200 s following waiting times
tw < 5000 s the material eventually acquires strain at a rate identical to that indicated
by the short-time flow curve displayed as the yellow points in Fig. 5.8. For ¢’ < 200 s
following waiting times ¢,, > 5000 s the accumulation of strain is orders of magnitude
slower with a minimum accumulation rate of 107 s~! after waiting ¢,, = 10000 s after
fluidisation, suggesting the position of the lower branch of the flow curve.

The proportion of acquired strain recovered following the cessation of an 8 Pa stress
is displayed in Fig. 5.11(a) for various waiting times. An interesting pattern is observed
providing some insight into the evolution of the viscoelastic nature of the material. For
waiting times ¢,, < 1000 s the material recovers less than 4 % of the strain acquired
while under stress with the older sample recovering slightly more than the younger.
When the waiting time is increased to 5000 s, the material recovers nearly 20 % of the
strain acquired under stressing, indicating an evolution to a more elastic state. If al-

lowed to evolve for 10000 s spontaneously, the amount of strain recovered 3000 s after
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Figure 5.10: Rate of strain accumulation upon stressing the material at a constant 8 Pa after a waiting
time t,, indicated. For waiting times ¢,, < 5000 s the material is accumulating strain at the rate given
by the early response of the flow curve (Fig. 5.8). For waiting times ¢,, > 5000 s the material accumu-
lates strain orders of magnitude slower than for shorter waiting times, such that for a waiting time of
t,, = 10000 s the material accumulates strain at a rate of 107> s~*. This result gives an indication of the
position of the lower branch of the flow curve at long times for stresses below the critical stress.

stress cessation is 97 % of what is acquired under stress, indicating an almost perfectly
elastic material. The material thus evolves from a nearly ideal liquid to a nearly ideal
solid over the course of 10000 s. Because the material does creep, and because there
is not a perfect recovery of strain, the material still has a viscous nature, albeit signif-
icantly weaker than the elastic nature at an age greater than 10000 s. Figure 5.11(b)
shows a closeup of the strain recovery for a time 5s after cessation of stress, high-
lighting the ringing nature at early times in the strain recovery. The amplitude of the
exponential decay window of the ringing is approximately logarithmic. For a waiting
time of ¢,, = 100s, the ringing has a maximum amplitude of approximately 0.5 % of
the acquired strain. For a waiting time ¢,, = 10000 s the ringing has a maximum ampli-
tude of approximately 110 % of the acquired strain; that is, the material momentarily
recovers more strain than it had previously acquired.
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Figure 5.11: The percentage of acquired strain recovered following cessation after 200 s of an 8 Pa
stress as a function of time for different waiting times, ¢,,. (a) The long-time behaviour. (b) The first five

seconds after stress cessation clearly showing ringing characteristic of elastic materials. The magnitude
of the ringing increases with t,,.

5.4 Stress Relaxation

Having elucidated the form of the flow curve, we now report the effects of ageing on
the ¢ = 2 ¢* sample. An identical protocol to that previously mentioned is employed to
fluidise the sample, placing it in a history-independent state. After the fluidisation, the
sample is left to evolve spontaneously for a time t,, before a strain of 1%, chosen so as
to be in the linear regime, is imposed. The stress o (t) is recorded as a function of time
and the results are displayed in Fig. 5.12. The relaxation of the stress depends on the
waiting time, ¢,, in a complex way. For values of t,, up to 500 s, the stress progressively
takes longer to relax. For times 500 s < ¢,, < 3000 s the stress relaxes in an almost iden-
tical fashion as seen by the overlapping nature of the corresponding lines in Fig. 5.12.
This overlapping for values of t,, in the range 500 — 3000 s precludes any temporal
rescaling such as used by Derec et al. in [47] that would allow a universal relaxation
curve to be found. When t,, is on the order of the time taken to reach the plateau in the
flow curve, the stress no longer relaxes in a smooth, continuous manner but rather by
a series of jumps which punctuate an otherwise very slow relaxation. That the stress
relaxes completely, even for the longest ¢,, measured suggests that the material does
not form a glass, at least in the traditional sense. Instead the material behaves as a

glass for times on the order of 500 s, retaining internal stresses before reorganizing and
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Figure 5.12: Stress relaxation as a function of time as response to a 1% strain following pre-shearing
and varied waiting time ¢,,. Waiting times are indicated.

relaxing. Thus we have a ‘short-lived” glass.

It is worth noting that the data displayed in Figs. 5.10 and 5.12 lead to the same
conclusion: the evolution of the structure responsible for causing the plateau in the
flow curves is not a result of shearing. Rather, it is a process that shearing disturbs in

complex ways by way of adding more energy to the system via kinetics.

The effects of ageing on the stress relaxation after a step strain in the linear regime
for the ¢ = 2 ¢* case are not able to be temporally rescaled to fit a single master curve.
The slow relaxation of the stress when ¢,, = 10000 s as compared to when ¢,, = 0* s indi-
cates a transition to a material where stresses are nearly conserved upon application of
a strain, i.e. a weak solid. We speculate that over the course of the waiting time ¢,,, the
stars agglomerate into clusters. When a strain is applied, the clusters initially respond
solidly. The clusters will then slowly relax the stored stress via retraction of the indi-
vidual arms. Many retraction events later, an individual star, or group of stars, on the
periphery may no longer be able to remain bound to the cluster and separates, relaxing
large amounts of stress in a short amount of time. This speculative description offers a
possible explanation for the slow relaxation punctuated by a series of finite jumps for
the stress relaxation after the longest waiting time tested.
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5.5 Ageing under oscillatory flow

It has been shown in the previous sections that a suspension of star polymers in squa-
lene undergoes a stiffening at times ¢ = O(10000s) after fluidisation when sheared
continuously, where the specific time is a function of the applied shear rate. It has also
been shown that when left to evolve spontaneously for a time ¢,, after rejuvenation, the
strain response to stresses below some critical stress changes from liquid-like for wait-
ing times t,, < 1000 s to solid-like for waiting times ¢,, = 10000 s. When small strains
are applied after a time of spontaneous evolution t,,, the material relaxes the developed
stresses much slower and in a discrete, stepwise manner. In this final section of exper-
imental results for this chapter, data are presented which examine the ageing response

of the material via oscillatory strains.

Figure 5.13 is a plot of the evolution of the dynamic moduli when strained at an
angular frequency of w = 1rads™' with an amplitude of 7y = 0.1% immediately
following fluidisation. From the data of Fig. 5.1, it can be noted that such straining
yields a response in the linear regime; that is, such strains do not break cages. The
response of the material yields values identical to those displayed in Fig. 5.1 for times
t' =t <4000s. Betweent’ = ¢t = 4000 s and ¢’ = t = 10000 s the material undergoes a
transition to a stiffer state, characterised by an increase in the storage modulus, G’ of

~ 25% and an ~ 80 % reduction in the loss modulus, G”.

Figure 5.13 has an identical form to results published by Helgeson et al. [29] for a
system of identical star polymers in squalene at a concentration of ¢ = 2.1¢* under
oscillatory shear at an angular frequency of w = 107ad s~! with a strain amplitude
7o = 1%. Small angle neutron scattering experiments exploring the microstructure of
star polymer dispersions [88] show no evidence of crystallisation. It is not, therefore,
believed that the stiffening observed is associated with a phase transition.

The evolution of the frequency response of the dynamic moduli in the linear regime
has been examined and is displayed in Fig. 5.14. An identical fluidisation process was
used to place the material in the same initial state. Immediately following fluidisa-
tion, the frequency dependence of the dynamic moduli was found, beginning at high
frequencies. The strain amplitude 7, = 0.1% ensured a response that corresponds
to deep in the linear regime, two orders of strain-magnitude below the point where
the dynamic moduli cross. Such a sweeping of frequencies lasted for 1900 s. Upon
cessation of the frequency sweep, a time ¢t = 1000 s was allowed to elapse in which
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Figure 5.13: Evolution of the dynamic moduli under oscillatory shear of angular frequency w =
Lrad s~ with strain amplitude of 7y = 0.1 % showing the loss modulus (which is proportional to the
energy dissipated per unit volume per cycle via equation 2.35) nearly disappear completely while the
storage modulus increases by ~ 25 % indicating an evolution to a more solid-like response.

the material evolved spontaneously. Once 1000 s had elapsed since the end of the ini-
tial frequency sweep, a subsequent frequency sweep was carried out. This pattern of
“frequency sweep - 1000 s - frequency sweep - 1000 s” was repeated many times. The
results are depicted in Fig. 5.14 with power-law fits in the short- and long-time limits
for both G’ and G”. Low- and high-frequency limit power-law fits, with associated
exponents are displayed for the loss modulus, G”.

Initially, the frequency response is identical to the data shown in Fig. 5.1(b), as
expected. After the third frequency-sweep at a time ¢’ = 8700 s after fluidisation,
a different response is obtained from the material that remains for the duration of
the experiment: the storage modulus flattens over the frequencies applied so that

G o WO028£0003; 5t Jow frequencies the loss modulus decreases to approximately a

third of the #' = 0 value and becomes noisier so that G”(w < 0.5rads!) oc w™045+02;
at higher frequencies, the power-law exponent describing the loss modulus increases
so that G"(w > 7.5rads™!) oc w®™£002 The broad minimum exhibited by the loss
modulus of the youthful response of the material around ~ 2rad s! has lowered to
~ 0.6rad s™!, indicating an increase in size of particles being tested, suggesting the

formation of clusters of stars.
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Figure 5.14: Evolution of the frequency response of the dynamic moduli with a strain amplitude of
0.1 %. Solid lines correspond to initial and final power-law fits.

5.6 Conclusions

The star polymers studied in the current work form a short-lived glass which, because
of the stars’ ability to interpenetrate, can be called a soft glass. The effects of the com-
plex nature of the softness can be seen in the two-step stress evolution at shear rates
below .. This is not a phenomenon seen in hard glasses. There is an equivalence
between the behaviour of the stars presented in this work and attraction-dominated
colloidal glasses [89]. The interpenetration of the stars at concentrations above ¢ = c¢*
can be thought of as an effective attraction that must be overcome along with the break-
ing of the local cage in order for flow to occur. It is speculated that the two-step stress
evolution is due to this dual-mode behaviour. It may be that at short times the stress
response is dominated by arm-disengagement while at longer times the response is a
combination of disengagements and the breaking of cages.

An oscillatory fluidisation protocol has been established and implemented in the
investigation of the stress evolution and ageing of a colloidal glass made of star poly-
mers of nominal functionality f = 128 at two concentrations above the overlap concen-
tration suspended in squalene at 293 K. The protocol has allowed the elucidation of
a complex dual-mode stress evolution under strain rate controlled conditions, below
critical a value, 4.. This dual-mode evolution is seen in more general terms as a shear

thinning, monotonic flow curve at early times after fluidisation which evolves into a
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flow curve dominated by a plateau at times on the order of 10* s after fluidisation. The
time taken for the system to reach the plateau stress increases as the applied shear rate
approaches the critical value. It can thus be concluded that the stress plateau, and
the corresponding steady increase in viscosity towards lower shear rates in the flow
curve is a result of the interplay and eventual balance between ageing and shear ef-
tects. When sheared at rates above the critical value, i.e. for y > 4, the system behaves

as a shear-thinning fluid for all times.

Under stress-controlled conditions, it has been shown that the ¢ = 2¢* material
evolves from a nearly ideal liquid to a nearly ideal solid over the course of 10000 s,
provided the stress applied is below the critical stress. Creep experiments have shown
that for waiting times ¢,, < 1000 s, the material retains a nearly ideal-fluid response to
a stress 0 < o,. If allowed to evolve spontaneously for a time ¢,, = 10000 s, the material
recovers 97 % of the strain acquired while under stress indicating a nearly ideal elastic
solid-like response.

The fluidisation protocol has also allowed the study of ageing in the absence of
shear via t,-varied stress relaxation tests. No simple temporal rescaling exists which
could be used to find a universal curve onto which all stress relaxations would fall.
This can be seen by the overlap of stress relaxation for waiting times t,, = 500 — 3000 s
and by the dramatically different mode of relaxation for ¢,, = 10*s. The stress caused
by a sudden imposition of a strain of 1% relaxes even for the longest waiting time
investigated (¢,, = 10000 s), indicating the solid formed is not a glass in the traditional
sense, but rather a short-lived glass that is able to relax stresses via rearrangements. It
is postulated that over the course of a strain less period of time equal to ~ 10000 s that
individual stars coalesce into clusters that when strained break up in discrete events
in order to relax stress. Under shearing, it is thought that the stress caused by the
shearing acts as a growth inhibitor for clusters. Clusters that are limited in size are
also limited in the amount of extra stress they can store. The idea of strain rate-limited
cluster sizes offers an explanation for the evolution of the stress plateau in the flow
curve. In the absence of shear, the uninhibited growth of clusters offers an explanation
for the results seen in stress relaxation experiments and creep experiments where the
applied stress is below that required to break the clusters apart.

The transition to a stiffer state has also been seen under linear-regime oscillatory
flow via changes in the dynamic moduli. Constant frequency - constant amplitude

shearing results in a two-step evolution of the storage and loss moduli similar to the
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stress response to continuous steady shear. It is thought that the initial response is
dominated by individual stars and the long-time response by clusters of stars whose
ability to flow past one another is far less than that of individual stars. This is further
supported by the frequency response as a function of age, which shows the character-
istic size of the particles increases as the material ages.






Chapter 6

Experimental: Velocimetry

6.1 Introduction

In the previous chapters we have established the existence of a change in the behaviour
of the concentrated suspension of stars in squalene under specific shear conditions.
When the material is sheared in a constant uni-directional manner, the material exhibits
a stiffening at times that are dependent on the shear rate. This stiffening manifests
itself in the flow curve as a change from a shear-thinning fluid over all shear rates, to
a flow curve dominated by a horizontal plateau, strongly suggestive of an evolution
to some spatial heterogeneity in the flow behaviour. When sheared in an oscillatory
manner, the stress response of the material shows a characteristic decrease that can also
be associated with a spatial heterogeneity. The conventional rheological techniques
used up to this point produce results that are indicative of the average behaviour of
the entire experimental sample and are unable to resolve any spatial information. In
this chapter, we use the techniques of theo-NMR velocimetry [90] and conventional

NMR to add a spatial dimension to our investigation.

6.2 Geometry

The geometry used to gain spatial and temporal information was a concentric cylinder
rheo-NMR Couette device pictured in Fig. 6.1. It consists of an NMR tube of outer
diameter 15 mm held in the centre of another NMR tube of outer diameter 20 mm. The

outer tube has a wall thickness of 1 mm to give a gap width of 1.5mm. The sample



100 Experimental: Velocimetry

fluid, shown in red in Fig. 6.1 is placed in the gap between the two tubes and tracer
fluid, shown in blue, is placed inside the central tube to allow slip measurements to
be made simultaneously. The outer tube is held stationary by the NMR coil assembly
while the inner tube is turned by a stepper motor connected to the inner tube via a
rigid mechanical shaft. The stepper motor is able to apply rotations in the frequency
range 0.1 — 14 Hz. Between the mechanical shaft and stepper motor is a gearbox that
allows low shear rates to be applied. The gearbox utilised in the experiments presented
below has a ratio of 1:500. This ratio allows gap-average shear rates, 7, in the crossover
region of the flow curve shown in Fig. 5.8 to be imposed on the sample fluid and
velocity measurements to be made. We note that while it is possible to experimentally
tix the average shear rate over the gap by fixing the rotational velocity of the inner
wall, it is not possible to fix, or even measure, the stress. The shear stress will depend
inversely on radius squared, as per equation 2.47 and the range of stresses attained by
the material for a given gap-average shear rate is fixed by the (time-dependent) flow

curve.

6.3 Signal detection

In practice, signal is acquired from a thin slice across the sample. Velocities perpendic-
ular to that plane are detected via a pulse program that is a combination of a PGSTE
(see section 3.11.3 and Fig. 3.18) with an imaging sequence (the addition of k-gradients,
see section 3.11.1). A timing diagram for the sequence is shown in Fig. 6.2. The first
soft pulse works in conjunction with a gradient in the x-direction to selectively excite
spins in a slice 1 mm across the entire geometry. The second soft pulse, applied si-
multaneously with a gradient in the z-direction, selectively excites spins in a 20 mm
slice transverse to the first slice so that the signal comes from a small fraction of the
total sample. This scheme is illustrated in Fig. 6.3. The signal acquired produces two-
dimensional data files with 1024 k£ points and 32 ¢ points (see equation 3.49 in section
3.11.3). Fourier transformation in the % direction yields one-dimensional spatial infor-
mation with a resolution of approximately 20 zm while Fourier transformation along
q results in velocity probability distributions known as propagators (see section 3.11.4
and Fig. 3.19). The peaks of the propagators for each pixel across the gap give the most
probable velocity for a given spin sited in the region covered by the pixel.

Experiments were carried out with gradient durations of 6 = 20 ms and an obser-
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Figure 6.1: Representation of the experimental geometry. An NMR tube with outer diameter 15 mm
is held coaxially inside another NMR tube of inner diameter 18 mm by way of two teflon spacers. A
marker fluid, shown in blue, is placed in the inner tube and the sample to be tested, shown in red, is
placed in the gap between the tubes. The outer tube is held stationary by the NMR coil, while the inner
tube is rotated by a stepper motor.
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Figure 6.2: Timing diagram of the pulse sequence used to acquire velocimetry data. A combination
of a PGSTE and an imaging sequence, the pulse sequence utilises dual slice selections to acquire one-
dimensional velocity profiles.

vation time of A = 200ms. A total of eight scans were acquired in order to improve
the signal-to-noise ratio. A single experiment lasts 150 s and makes up one ‘frame” of
a longer experiment when concatenated with successive frames. Typical larger experi-
ments consist of 200 ‘frames” and last 30000 s or slightly shorter than 83 hours.

6.4 Experimental protocol

The experimental protocol employed in the rheo-NMR experiments presented here
is an altered version of that used in the traditional rheology measurements. At the
time these experiments were carried out, smooth oscillatory shear had yet to be imple-
mented in the rheo-NMR framework. As such, an oscillatory preshear was not pos-
sible and was replaced with a high-rate steady preshear. A gap-average shear rate of
0.767 s—! was applied for 120 s. The direction of the shear imposed during the experi-
ment was the same as that imposed during the preshear. It was empirically determined
that this preshear placed the material in a reproducible initial state.

The preshear was followed by a period of no shearing, referred to as the waiting
time and denoted ¢,,, where the material is allowed to evolve spontaneously. The ex-
perimental time is denoted ¢’ and has its origin at the end of the waiting period while

the absolute time, simply denoted ¢, is set to zero at the end of the preshear. The abso-
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Figure 6.3: The signal is obtained from selective excitation of sample in a slice 1 mm wide and 20 mm
thick.
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lute time, ¢, thus includes the waiting time while the experimental time, ¢’ does not.
The temperature of the sample is held stable to within a tenth of a Kelvin by a
temperature control unit that consists of a heating element working in combination
with a constant gas flow. A thermocouple at the base of the Couette geometry records
the temperature. A feedback loop determines the current through the heating element,
allowing the temperature to be held within half a Kelvin of the set value. All samples
were allowed to come into thermal equilibrium over a period of three hours before

experimentation began.

6.5 Evidence of shear banding

Typical time-averaged one-dimensional velocity profiles with an imposed gap-average
shear rate of 0.0314 5! at a temperature of 296 K with zero waiting time are displayed
in Fig. 6.4. The imposed gap-average shear rate corresponds to a shear rate just below
the critical value determined in the classical rheological experiments of chapter 5. The
data of Fig. 6.4 show the different responses of the material at two different times. The
blue points in Fig. 6.4 (a) and (c) indicate the velocity of the unsheared tracer fluid
(see Fig. 6.1) while the red points indicate the velocity of the sheared sample fluid.
Figure 6.4 (b) and (d) show closeups of the velocity profile taken from one side of
the geometry. Initially, Fig. 6.4 (a), the velocity profile indicates an entirely liquid-like
response with no slip. After shearing at a constant shear rate for 30000 s, the material is
divided into two distinct shear bands as indicated by Fig. 6.4 (c) and (d). One band has
a shear rate on the order of, but higher than, the gap-average shear rate of 0.0314 s,
while the other band has a shear rate below the noise so that we may approximate it
as being 0 s~!. The banded state is consistent with the existence of the plateau in the
flow curve as shown in Fig. 5.8. While the plateau in the flow curve can only hint at
the existence of some spatial heterogeneity, the methods of rheo-NMR allow a direct

measurement of such shear banding.

6.6 Evolution of banded structure

The zero-shear band does not feature at all times in the evolution of the material re-
sponse from preshear onwards. It is a spatial feature that has its inception at the outer
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Figure 6.4: A one-dimensional velocity profile taken at times (a) ¢ = 150 s and (c) t = 30000 s for an
imposed gap-average shear rate of 0.0314 s~tata temperature of 296 K with a waiting time ¢,, = 0.
The purpose of the marker fluid is to allow for velocity extrapolation to determine the presence, or lack,
of slip. No slip is seen during the entire experimental time-frame. (c) and (d) show close-ups of the
velocity profile of the sample in the gap. A clear change can be seen from an initially liquid-everywhere
response to a strongly banded state where one branch does not move. The dotted lines represent the

limits used to track the evolution of the solid branch.
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edge of the Couette cell, where the stress is lowest. From this nascence at the stress
minimum, the zero-shear band grows toward the inner wall, eventually reaching a
stable limit. It is worth noting at this point that all velocity profiles taken in this study
have a temporal resolution of 150s. Any temporal features whose periods are less
than this limiting time are averaged out. Such time averaging is crucial for obtaining a

reasonable signal-to-noise ratio from such little sample.

There are numerous methods available for calculating the relative proportion of gap
displacement in the zero-shear band. The simplest may be to calculate the shear rate
from the given velocity profile. This leads to problems, however, because of the noise
inherent in the measurements. Numerical derivatives of noisy data tend to amplify
the noise, making them hard to gather meaningful information from. The velocity
data that comprise a single experiment consist of ~ 200 velocity profiles similar to
those displayed in Fig. 6.4. Imperfections in the cylindricity of the inner tube of the
Couette geometry on the order of a few microns will affect the spatial position of the
velocity profile and also the velocities measured. To obtain a value for how much of
the gap is in the zero-shear band we adopt the following approach. A lower limit on
the resolvable velocities of 1.5 um s™! is set and the number of points across the gap
whose velocity is lower than that limit is recorded. This limit is depicted by the dotted
lines in Fig. 6.4 (c) and (d). The ratio of this number to the total number of points across
the gap is calculated and this fraction is taken to represent the relative proportion of
gap displacement that is in the zero-shear band.

There is an obvious limitation inherent in this method. There is always a non-zero
proportion calculated, as shown by the data in Fig. 6.4 (b), even before the band has
tormed. This has greater consequences for calculating the proportional size of the zero-
shear band at lower velocities, where a shallower profile is expected, but still allows
some information to be gathered regarding size and growth rate.

A typical plot of the evolution of the relative proportion of gap displacement con-
sidered to be in the zero-shear band for an imposed gap-average shear rate of 0.0314 s~*
at a temperature of 296 K is shown as Fig. 6.5. The data of Fig. 6.5 correspond to track-
ing the extent of the gap displacement of the zero-shear band in the same experiment
as the velocity profiles displayed in Fig. 6.4. It can be seen, from the data presented in
Fig. 6.5, that up to approximately 4000 s the relative proportion of gap displacement
of the zero-shear band is indiscernible from the noise. Therefore, the zero-shear band

cannot conclusively be said to exist up to this time. After this initial period of latency,
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Figure 6.5: The evolution of the relative proportion of the gap displacement in the solid branch for an
imposed gap-average shear rate of 0.0314 s~ ! at a temperature of 296 K with a waiting time ¢,, = 0 for a
single experiment. The ordinates correspond to the proportion of the sample that has a velocity within
the values represented by the dotted lines in Fig. 6.4. The solid line corresponds to a Gompertz function

and describes the data well.

there exists a growth phase that lasts approximately 15000 s. During this growth phase,
the existing proportion monotonically approaches a final value. It will be shown that
the final proportion of gap displacement in the zero-shear band is dependent on the

imposed shear rate.

6.7 Characterising the growth of the zero-shear band

A growth relationship proposed by Gompertz [91] can phenomenologically be used to
represent the growth of the zero-shear band. The Gompertz equation

e~ B(t—M)

f(t) = fo+ (foo = fo)e (6.1)
is a solution to the differential equation
df(t) _ foo
1 = Bt (W) (6.2)

where f(t) is the relative proportion of the gap displacement in the zero-shear band,
fo is the initial proportion (the lower asymptote), f is the final proportion (the long-
time limit), B is the growth rate and M is the time of maximum growth. The equation
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predicts growth at a rate proportional to the subject’s size where the proportionality
decreases as the size of the subject approaches an upper limit. The equation was ini-
tially proposed to account for age-dependent mortality rates in people [91], but has
also been successfully used to describe mortality rates in many animals, see for exam-
ple [92, 93, 94] as well as growth of populations, organs and tumors [95, 96, 97, 98].
The equation has also been used to describe economic and social growth patterns as
well as modelling the total number of papers in online scientific databases, for example
[99, 100, 101].

The Gompertz growth equation has been used in the current study to represent the
growth of the zero-shear band across the gap of a concentric-cylinder Couette geom-
etry under various experimental conditions. The solid line in Fig. 6.5 is a Gompertz
tit to the data, a fit that follows the evolution well. The following sections will focus
on how the evolution of the zero-shear band changes, by way of changes in the fitting

parameters when gap-average shear rate, waiting time, and temperature are altered.

6.8 Experimental parameter effects on banding evolution

6.8.1 Imposed shear rate effects

The data presented in Fig. 6.5 correspond to an imposed gap-average shear rate of
0.0314s~* at a temperature of 296 K with a waiting time of zero. The long-time limit
as a function of imposed gap-average shear rate is displayed in Fig. 6.6 for three tem-
peratures with no waiting time. The solid lines are linear fits. The range of imposed
gap-average shear rates spans the critical rate of 0.035s~! determined by the classical
rheological experiments of chapter 5.

There are two conclusions to be drawn from the data of Fig. 6.6. One is that the
total proportion of gap displacement in the zero-shear band decreases linearly, or very
close to linearly, with increasing gap-average shear rate. The other is that an increase in
temperature increases the proportion of the gap displacement in the zero-shear band.

The first of these conclusions can be understood in terms of the stress applied to the
sample. While the exact stress is unknown and is not controllable in a controlled shear
rate experiment, it is known that the stress varies across the gap in inverse squared
proportion to the radius. This range of stresses means that when a gap-average shear

rate is applied that correlates closely to the critical shear rate in the flow curve, Fig. 5.8,
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Figure 6.6: The long-time asymptotic proportion of relative gap displacement in the gap in the solid
branch as a function of gap-average shear rate for three different temperatures with no waiting time
between the end of the preshear and the beginning of the experimental shearing. Points correspond to
Gompertz-fit parameters and their associated uncertainties and the lines are linear fits.

as the rates in Fig. 6.6 do, a portion of the gap will have a stress less then the critical
stress, while the rest will have a stress above the critical stress. Fig. 6.6 thus allows
a tracing of the critical stress across the gap of the Couette cell both as functions of
imposed shear rate and temperature.

As a check, several experiments were performed where, once the relative propor-
tion of gap displacement in the zero-shear band had plateaued, the imposed shear rate
was changed. Typical results are displayed in Figs. 6.7 and 6.8, with fits, where the
imposed gap-average shear rates were changed from 0.0471 s~ and 0.0157 s !, respec-
tively to 0.0314 s~*. The fits were applied to each shear rate data set separately. The
long-time limits of the relative proportion of gap displacement in the zero-shear band
at each shear rate are identical to those found when a single shear rate is imposed on
the sample.

The growth rate, B (see equation 6.1) as a function of imposed gap-average shear
rate is displayed in Fig. 6.9 for three different temperatures. The waiting time for all
the experiments whose fitting parameters are displayed in Fig. 6.9 is zero. Within the
uncertainties (+5 %), the power law exponents that can be used to describe the relation-
ships between growth rate and gap-average shear rate are all —1 so that the growth rate
may be described by a direct proportionality with 1/5. 1/7 is the time taken for unit
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Figure 6.7: Relative proportion of gap displacement in the zero-shear band when the imposed gap-
average shear rate is decreased from 0.0471 57! to 0.0314 s~ ! at a temperature of 296 K with a waiting
time ¢,, = 0. The solid lines are Gompertz fits and were applied to each shear rate data set separately.
The vertical line indicates the time at which the imposed shear rate was changed.
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Figure 6.8: Relative proportion of gap displacement in the zero-shear band when the imposed gap-
average shear rate is increased from 0.0157 s~ ! to 0.0314 s~ ! at a temperature of 296 K with a waiting
time ¢,, = 0. The vertical line indicates the time at which the imposed shear rate was changed. The high
initial proportion is due to the shallow nature of the velocity profile as discussed in section 6.6 of the
text.
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Figure 6.9: The growth rate of the proportion of sample in the solid band as a function of gap-average
shear rate for three different temperatures with zero waiting time. Points correspond to Gompertz-fit
parameters and their associated uncertainties and the lines are power-law fits.

strain to occur in the material and the characteristic time scale of the experiment.

The maximum growth time as a function of imposed gap-average shear rate for
experiments with zero waiting time is displayed in Fig. 6.10 for three different temper-
atures. The maximum growth time shows an exponential dependence on the imposed
gap-average shear rate with the exponential constant also being a function of temper-
ature. The zero-shear band thus forms faster at higher temperatures and lower shear
rates.

The data presented in Figs. 6.6 - 6.10 indicate that an increase in shear rate decreases
the overall proportion of gap displacement in the zero-shear band. The growth of the
zero-shear band is also slowed by shearing, with the time of greatest growth occurring
later when higher shear rates are imposed.

6.8.2 Waiting time effects

Non-zero waiting times have the effect of allowing the material to relax stresses resid-
ual from the preshear over the course of ¢,, and evolve spontaneously. The spontaneous
evolution occurs in the absence of forced kinetics and involves predominantly ther-
modynamic processes, thus allowing insight into the interplay between the two. The
effects of non-zero waiting times on the evolution of the zero-shear band have been in-
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Figure 6.10: The time of maximum growth of the relative proportion of gap displacement in the
solid band as a function of gap-average shear rate for three different temperatures with zero waiting
time. Points correspond to Gompertz-fit parameters and their associated uncertainties and the lines are
exponential fits.

vestigated. While varying the waiting time has no effect on the long-time asymptotic
proportion, as would be expected, varying the waiting time does have an effect on the
timing and rate at which the zero-shear band approaches the maximum extent.

The growth rate as a function of waiting time for a gap-average shear rate of 0.0314 s~*
is displayed in Fig. 6.11 for three different temperatures. The data exhibit a minimum
around 100 s. For waiting times ¢,, < 100 s the trend is weakly decreasing growth rates
with increasing waiting time and the trend for waiting times ¢,, > 100 s is a power-
law dependence of the growth rate on the waiting time. Within the uncertainties, all
the power-law exponents are the same, a sub-linear value of 0.69 = 0.04. From the
data of Fig. 5.3, it can be gathered that over the course of 100 s of spontaneous evo-
lution, the stress residual from the preshear drops to ~ 15% of its initial value. The
data of Fig. 6.11 can then possibly be interpreted as suggesting stresses residual from
the preshear hinder the growth of the structure responsible for the zero-shear band.
The zero-shear band thus forms as a competition between the (relaxing) stress residual
from preshear and the underlying minimisation of energy in the presence of kinetic

processes.

Figure 6.12 is a plot of the absolute time of maximum growth, ¢, + t,, as a function
of waiting time for three different temperatures. There is a clear distinction to be made
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Figure 6.11: The growth rate of the relative proportion of gap displacement in the solid band as
a function of waiting time for three different temperatures for an imposed gap-average shear rate of
0.0314 s~1. Points correspond to Gompertz-fit parameters and their associated uncertainties and the
lines are power-law fits.

between the experimental time of maximum growth, which does not include the wait-
ing time, and the absolute time of maximum growth, which does. It is clear from the
data of Fig. 6.12 that the absolute time of maximum growth has two distinct regimes
on either side of a critical value of the waiting time, t,,(.). For waiting times ¢, < t,c),
the absolute time at which maximum growth occurs is a decreasing linear function
of the waiting time, while for waiting times t,, > t,,(¢), the maximum growth time is
a constant. The time of maximum growth, for a given value of the waiting time, is
shorter for higher temperatures. The critical waiting time, t,,(.) is lower for higher tem-
peratures. That is, for a greater input of thermal energy, maximal growth is achieved

sooner.

The data of Figs. 6.11 and 6.12 suggest that non-zero waiting times have multiple
effects on the evolution of the zero-shear band. The two-regime data of Fig. 6.11 sug-
gest that a waiting time ¢,, <~ 100 s acts to allow stresses residual from the preshear,
stresses that inhibit growth of the zero-shear band, to dissipate. This effect is mani-
fested in the decrease of growth time for waiting times up to this limit. For waiting
times t,, >~ 100 s, any stress residual from the preshear has dissipated and the mate-
rial is allowed to spontaneously evolve.

If the waiting time is greater than some temperature-dependent value, ¢, then the
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Figure 6.12: The time of maximum growth of the relative proportion of gap displacement in the solid
band as a function of waiting time for three different temperatures for an imposed gap-average shear
rate of 0.0314 s~ 1. Points correspond to Gompertz-fit parameters and their associated uncertainties and
the lines are linear fits.

relative proportion of gap displacement in the zero-shear band will be greater than
the noise at ¢’ = 0. This is illustrated by the data of Fig. 6.13, where the evolution
of the relative proportion of gap displacement in the zero-shear band is plotted as a
function of experimental time, ¢/, for two different values of the waiting time, t,, =
O(red) and ¢,, = 1800 s(yellow) at a temperature of 333 K and an imposed gap-average
shear rate of 0.0314 s~*. The proportion of gap displacement in the zero-shear band at
an experimental time ¢’ = 0 after a waiting time of ¢,, = 1800 s (yellow points) is equal
to the long-time limit of the zero waiting time example, indicating the zero-shear band
is not a consequence of flow. Rather, flow allows us a method of probing the extent of
the structure responsible for the zero-shear band. It is also apparent from the data of
Fig. 6.9 that shearing slows the growth of the structure responsible for the zero-shear
band. The data of Fig. 6.13 suggest that in the absence of shearing, all the sample in the
gap would eventually become part of the structure responsible for what, under shear,
becomes the zero-shear band.
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Figure 6.13: Evolution of the relative proportion of gap displacement in the zero-shear band at a
temperature of 333 K for waiting times, t,, = 0s (red) and ¢,, = 1800 s (yellow) for an imposed gap-
average shear rate of 0.0314 s~! with their associated Gompertz fits (solid lines).

6.8.3 Temperature effects

The major emphasis of this chapter up to now has been on determining the effects
on the Gompertzian fitting parameters of altering the imposed gap-average shear rate
and waiting time. Figures 6.6 - 6.12 have focussed on these experimental parameters
with a minor emphasis on temperature effects. In this last section, a closer look is taken
into how altering the temperature effects the evolution of the zero-shear band when the
applied gap-average shear rate is 0.0314 s~ and there is zero waiting time. Kapnistos et
al. [30] have shown the existence of a reversible thermal gelation in systems of identical
stars in decane. The gelation is attributed to the swelling of the stars with an increase
in temperature. Unpublished dynamic light scattering data from the same group show
the stars have a nearly constant hydrodynamic radius of 50 nm in squalene over the
temperature range 288 — 333 K. Changes in temperature over this range will therefore
only act to change the amount of thermal energy in the system and not the physical
properties of the system itself.

The long-time limit as a function of temperature is shown in Fig. 6.14. It is clear
from the data of Fig. 6.14 that the zero-shear band extends further across the gap at
higher temperatures. The data of Fig. 6.14 can been described by an exponential as a
function of shifted temperature, 7' — 7™, over the temperature range covered, with an
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Figure 6.14: The upper asymptotic relative proportion of gap displacement in the solid branch as a
function of temperature with an applied gap-average shear rate of 0.0314 s~! and a waiting time ¢,, = 0.
Points correspond to Gompertz-fit parameters and their associated uncertainties and the solid line is an
exponential fit.

upper limit of 0.67 £ 0.01 and a temperature-constant of (10 + 2) K. The temperature
shift is found to be 278 + 2.5 K. This dependence on shifted temperature suggests
that for temperatures 7' < T the zero-shear band does not form, although there is no
data in this temperature range to support this. It is possible to interpret this result as
the existence of a minimum amount of thermal energy required for entanglements that
lead to kinetic arrest.

The natural logarithm of the growth rate is plotted as a function of inverse tem-
perature in an Arrhenius manner in Fig. 6.15. The Arrhenius equation gives the rate
constant of a chemical reaction, £’s dependence on the temperature, 7', and activation

energy, E,:

-E,
B

where A is referred to as the prefactor and kg is the Boltzmann constant. If the data of
Fig. 6.15 is interpreted as being Arrhenius-like, a plot of In(growth rate, B) as a func-
tion of T~! ought to be in the form of a straight line with a y-intercept of In(A) and a
gradient of —F, /kp. A linear fit is applied to the data of Fig. 6.15 that yields a prefactor
of A = 1426 + 180s™! and an activation temperature, E,/kp, of 4530 + 280 K. From
kinetic theory, the fraction of molecules that have a kinetic energy greater than F, in
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Figure 6.15: The logarithm of the growth rate of the relative proportion of gap displacement in the
solid band as a function of inverse temperature with an applied gap-average shear rate of 0.0314 s~! and
a waiting time ¢,, = 0. Points correspond to Gompertz-fit parameters and their associated uncertainties

and the solid line is an Arrhenius fit.

a macroscopic sample can be calculated from the Maxwell-Boltzmann distribution of

~Ea/ksT  Treating the stars as perfectly

statistical mechanics, and is proportional to e
elastic hard spheres thus yields a very small fraction of interacting stars responsible
for clustering. At a temperature of 312 K, the growth rate will be twice as fast as that
when the temperature is 296 K.

The temperature dependence of the maximum growth time is plotted in Fig. 6.16.
The fundamental relation is that higher temperatures cause maximal growth sooner
than lower temperatures. There is a linear relation between the time of maximum
growth and inverse of the shifted temperature, (7' — T*) ! with a temperature shift of
T* = 281.5 £ 0.5 K. This temperature shift is equal, within the experimental uncertain-
ties, to that found in the temperature dependence of the long-time limit and suggests

the same physics.

6.9 Regarding the Gompertz equation

Before continuing further, it is worth making a note about a possible physical meaning
of the Gompertz equation in the present context and the way it describes the data suc-

cessfully. It is the main thesis of this work that the stiffening observed in conventional
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Figure 6.16: The time of maximum growth of the relative proportion of gap displacement in the solid
band as a function of inverse shifted temperature, (I' — T*)~!, with an applied gap-average shear rate
of 0.0314 s~! and zero waiting time. Points correspond to Gompertz-fit parameters and their associated
uncertainties and the solid line is a linear fit. The shift temperature is 281.5 + 0.5 K.

rheological experiments, the spatial heterogeneity suggested by LAOS measurements
and the existence of the zero-shear band in NMR velocimetry experiments is due to
the presence and growth of clusters of stars. The growth and extent of the zero-shear
band has been seen in the previous sections to be limited by shearing. Rather than
being shear-rate dependent, the data of chapter 5 suggest that the limiting factor is the
proximity to some critical stress. We can thus interpret the Gompertz equation’s expo-
nential growth phase at early times as describing the initial enlargement of the clusters
due only to their size. A smaller cluster has less surface area than a larger one, and
so larger clusters initially grow faster. The initial exponential growth is curbed by the
decreasing surface-to-volume ratio. Cluster size is limited by the extra stress caused
by the presence of clusters, and so the growth slows and asymptotically approaches an

upper limit set by the stress profile of the containing geometry.

6.10 Structure of the ‘zero-shear band’

The results presented in the previous section make clear the existence of some age-
dependent structure that manifests itself as a zero-shear band in velocimetry experi-

ments. It has been shown that under shear this structure is limited in size, with the
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extent of the structure being dependent on the applied gap-average shear rate. In the
absence of shear, the structure is not limited in size and can grow to encompass the en-
tire sample volume. Factors that control the growth of the structure include imposed
shear rate, temperature and waiting time. The nature of this structure shall be the

subject of this concluding section.

Recall the discussion of section 3.3.1 where it was shown that nuclei with spin 7 > 1
in a liquid exhibit a spectral splitting that is dependent on physical alignment. The
physical alignment can be caused by the experimental apparatus or be flow related.
Such results have been seen in the spectral analysis of a lamellar system doped with
heavy water confined to a narrow-gap Couette geometry [102]. Unlike the work of
Lutti et al. [102], where the lamellar system has a definite orientation that changes with
tflow, the arms of the stars investigated in this study are isotropically distributed about
the central core. Nevertheless, it is worthwhile to test for alignment that may be present
in the structure that manifests itself as the zero-shear band in the velocimetry experi-

ments.

Per-deuterated stars were treated using an identical shear protocol to the proto-
nated stars. Spectra were acquired immediately following preshear and after shearing
at an imposed gap-average shear rate of 0.0314 s for 36000 s, a period of time long
enough so that the banding had reached the steady state. The spectra are expected
to be composed of two peaks with an intensity ratio of 2:1 corresponding to twice as
much signal coming from twice as many deuterons in CD, groups as CD groups in
the 1,4 poly-butadiene arms as displayed in Fig. 6.17 where a monomer is pictured.
The two spectra are overlaid in Fig. 6.18 and show no difference in linewidth or any
splitting within the noise of the experiments (< 1 %), which is an indication of a lack of
physical alignment in the arms of the stars in the structure responsible for the banded
state. The evidence presented here also suggests isotropic rotation on length scales of
the order of the size of the central core of the stars. This raises an interesting question
of how to resolve the dichotomy between the macroscopically jammed state and the
freedom of movement that individual stars possess. It is likely that the answer lies
in the structure of the deuterated stars. The per-deuterated arms are not deuterated
all the way to the central junction. The process of making deuterated stars involves
chemically fixing deuterated polymer arms to short, flexible, protonated arms which
are themselves attached to the core. This structure means that the results presented in
Fig. 6.18 are to be expected as the deuterium signal comes from arms that have no fixed
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Figure 6.17: A graphical representation of a per-deuterated poly-butadiene monomer showing twice

as many deuterons in CD; environments as in CD environments.

point and are thus freely moving.

6.11 Conclusions

The results presented in this chapter support the idea of cluster formation in a sus-
pension of stars in squalene. Velocimetry experiments have conclusively shown the
evolution to a shear-banded state following fluidisation with the local shear rate of the
low shear band being within the noise of the experiments. The growth of the ‘zero-
shear band” under shear can be described by the Gompertz equation, an equation that
describes growth that is initially proportional to the size of the subject then slows and
asymptotically approaches an upper limit. The effects of shear rate, waiting time and
temperature on the Gompertz parameters allow some general conclusions to be drawn:

e There is a negative linear correlation between applied gap-average shear rate and
long-time asymptotic extent of the zero-shear band. Changing the applied shear
rate at any stage changes the long-time asymptote to that which corresponds to

the new shear rate.

e The growth rate of the zero-shear band is proportional to the inverse of the ap-

plied shear rate, the time taken to reach unit strain.



6.11. Conclusions 121

—— immediately after preshear | co,
final banded state 1

chemical shift (ppm)

Figure 6.18: Comparison of the ?H spectra immediately following preshear, that is, when the sample
is completely fluidised, and after shearing at an imposed gap-average shear rate of 0.0314 s~* for 36000 s
so that the sample has reached the steady limit of the banded state. The spectra are identical to within
the noise (< 1 %) indicating a lack of alignment in the arms of the stars.

e There exists an exponential relation between the time of maximum growth and

applied shear rate.

e Waiting time has no effect on the long-time asymptote of the extent of the zero-
shear band.

e For waiting times ¢,, < 100 s the growth rate is weakly negatively correlated to
g g y neg y

waiting time.

e For waiting times ¢,, > 100 s there is a power-law relation between waiting time
and growth rate with an exponent of 0.69 & 0.04.

e Increasing the waiting time has the effect of bringing forward the time of maxi-
mum growth up to a limit. Once that limit is exceeded, the size of the zero-shear
band at ¢’ = 0 will be greater than the noise. If sufficient time is allowed to elapse
between preshear and the start of the experiment, the size of the zero-shear band
will be greater than the long-time limit associated with the applied shear rate.

e Over a range of temperatures 290 — 333 K there is 1 — exp(—1") relation between
the long-time limit of the extent of the zero-shear band and temperature with a
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temperature of 278 £ 2.5 K corresponding to the point at which the zero-shear
band does not exist.

e Over the same temperature range, there is an Arrhenius relation between growth
rate and temperature with a prefactor A = 1426 + 180s~! and an activation
energy E,/kp = 4530 + 280 K.

e The time of maximum growth is proportional to (' — T*)~! where T* = 280 =+
1 K is a shifted temperature origin that is equal, within the uncertainties, to that

found from the long-time limit as a function of temperature.

e Individual stars are not deformed enough for H-NMR to show any change in
the NMR spectrum from the fluidised state to the final state dominated by the

zero-shear band.

Based on the data presented in this chapter, it is possible to examine the interplay
between thermodynamic and kinetic effects on the evolution of a structure that mani-
fests itself as the zero-shear band when sheared below a critical stress. In general, more
thermal energy causes more of the sample to be included in the zero-shear band and
also makes the zero-shear band grow faster and sooner. The data of Figs. 6.14 and 6.16
suggest that below a critical temperature of 7% ~ 280 £ 1 K there is not enough ther-
mal energy for kinetic arrest to occur. Higher stresses caused by higher applied shear
rates act to slow the growth and limit the extent of the zero-shear band. This interplay
is akin to following the evolution of a chemical reaction where reactants and products
form an equilibrium subject to two different rate constants: thermodynamics, which
dictates the arm-disengagement rate, tends to push the system towards the zero-shear
band (the ‘product” end) and modified kinetics (‘modified” in that only kinetics that
involve stresses above the critical stress count), which is responsible for the breaking
of cages, tends to restore fluidity (the ‘reactants’ end). This is a mesoscopic physical
example of a molecular-level chemical phenomenon.

Ageing, and specifically ageing under shear, consists of a careful balance between
thermodynamically-driven arm disengagement and kinetically-driven breaking of nearest-
neighbour cages. In the absence of shear, there is a natural hierarchy in timescales be-
tween the arm-disengagement rate and cage-breaking rate that is artificially altered by
shearing. Ageing under shear will only proceed when the kinetics are sufficiently weak
such that their magnitude is less than the magnitude of the thermodynamic effects. The
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rejuvenation process consists of driven kinetics with little or no thermodynamic com-
ponent. Mechanical rejuvenation is not, therefore, the temporal reverse of ageing but
rather a separate path in free-energy space. This idea is supported by the simulation
work of Isner and Lacks [74] and the review by McKenna [75] which suggest that large
mechanical stimuli do not entirely rejuvenate or erase all effects of ageing. The idea
of different paths in free-energy space has previously been encountered in the work of
Jabbari-Farouji et al. [103] and also in the previous chapter, 8, where it was suggested
that there is a difference between the final states reached under oscillatory and con-
tinuous shear. The ideas presented in this chapter take the traversal of free-energy
space thesis one step further and suggest that the preshear and ageing processes are

themselves different paths that lead to reproducible initial and final states.






Chapter 7

A theoretical approach

7.1 Introduction

The previous chapters have introduced the remarkable experimental behaviour exhib-
ited by a solution of (nominally) 128-arm star polymers suspended in squalene. Using
a well-defined preshearing protocol that places the system in a reproducible liquid
state (“rejuvenation” of the system) it has been shown with conventional rheological
techniques that the material evolves in a “two-step” manner [29]. The spatial resolu-
tion of theo-NMR has shown that this two-step evolution manifests itself as a separa-
tion into bands of two widely different shear rates in a cylindrical Couette geometry.

It is apparent from the evolution of the flow curve from being monotonically in-
creasing to one dominated by a stress plateau, see Fig. 5.8, and the response to creep
experiments shown in Figs. 5.10 and 5.11 that the experimental parameter that affects
the evolution of the mechanical response of the material is the applied stress. If the
applied stress, o, is below the critical stress, 0., then the material will solidify, while if
o > o., the material will remain in the liquid state for all time. In this chapter, some
theoretical approaches to modelling the data will be discussed that lead to a richer
understanding of the physics present in this system.

The continuous evolution of the mechanical and dynamical properties of glassy flu-
ids towards steady state has been the focus of much research. In particular, advance-
ments have been made in the understanding of ageing effects with the trap model in-
troduced by Bouchaud [85, 84] and later developed by Sollich et al. into the Soft Glassy
Rheology (SGR) theory [86, 87, 64]. This chapter will begin with a brief review of their
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features and predictions.

7.2 The trap model of Bouchaud

Bouchaud [85, 84] suggested a simple picture that had been advocated by many au-
thors [104, 105, 106, 107, 108, 109, 110] prior, based on the idea that individual con-
stituent particles of glass formers were ‘caged’ by their neighbours in a potential well.
Bouchaud made the asumption that the ‘cages’ could be broken, i.e. the potential wells
escaped from, by thermal activation alone. Bouchaud’s model considers the thermal
dynamics of independent particles in a space of traps characterised by a given prob-
ability distribution pe for the depth ¢ of traps [85]. Activation in this model is purely
thermally driven so that each particle may escape from its current trap of depth ¢ with

a rate of [ye~</ksT

, where I'y is a constant ‘attempt rate’. The depth of the new trap
hopped into by a particle, ¢, is arbitrarily chosen with probability p(¢’). The probability
density, P(e, t), that a particle will be in a trap of depth ¢ at a time ¢, evolves according

to
OP(e,t)

ot
The term w(t) = [deP(e,t) exp(—¢/kpT) is the average hopping rate at time ¢ and an

— —Tgexp(—e/kgT)P(e,t) + Tow(t)p(e). (7.1)

initial condition of P(e,t = 0) = Py(¢) is imposed.

The steady-state solution to equation 7.1, if one exists, is given by P,,(¢) o exp(e/kgT).
The Boltzmann factor exp(c/kgT) is proportional to the average residence time of a
particle in a trap of depth ¢. If the density of traps has an exponential tail p(c) ~
exp(—e/kpT,), then at a temperature 7" = T}, the Boltzmann factor is canceled by the
density of traps and the equilibrium probability distribution P,,(¢) tends to a constant
for large ¢, making it non-normalisable. The model thus predicts a glass transition at
T,. For temperatures T' < T}, the model has no steady state and evolves by ‘ageing’
into deeper and deeper traps; it is ‘weakly” non-ergodic.

While the model of Bouchaud is able to propose a rather simple explanation of the
glass transition, it does so with some major limitations for the study of soft glasses.
Fundamental to the theory is the assumption that cages are broken/potential wells are
escaped from by purely thermal processes. The activation barrier for the simplest local
rearrangement in a foam, for example, is of the order of the surface energy of a single

droplet. This sets a basic scale for the yield energies . Typical values for the surface
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tension of a droplet radius of the order of 1 yum or greater gives potentials ¢ > 10* k5T
Related to this problem is that Bouchaud’s model takes no account for strains, either
micro- or macroscopic and therefore lacks the ability to effectively describe the kinetics
of the system.

A theory based on Bouchaud’s trap model that does take into account strains was
proposed by Sollich et al. [86, 87, 64] and is known as the theory of ‘Soft Glassy Rheol-
ogy’, (SGR).

7.3 The SGR theory

The SGR theory was proposed to account for similar rheological behaviours in a variety
of soft glassy materials (SGMs): Herschel-Bulkeley or power-law equations are often
used to describe the nonlinear flow behaviour [2, 111, 112] and their viscoelastic stor-
age and loss moduli, G'(w) and G"(w), are often weak power laws of shear frequency
[113,114, 115,78, 116, 117, 118]. The presence of similar behaviours in a wide range of
SGMs is seen as being suggestive of a common cause. It has been argued [86, 87] that
such shared behaviours are symptomatic of common slow, glassy dynamics in these
materials. The generic traits of such materials are noted as being structural disorder
and metastability. To overcome the large energy barriers (compared to typical thermal
energies) associated with structural rearrangements, it was proposed that energy came
from a combination of thermal, strain and rearrangement processes. The denominator
of the Boltzmann factor in Bouchaud’s trap model was changed to an ‘effective noise
temperature’, z, to account for these additional kinetic and energetic processes.

Sollich et al. noted that rather than working with individual particles, as Bouchaud
had, their theory necessarily needed to involve mesoscopic ‘elements’ consisting of
many constituents to ensure two conditions were satisfied: (i) the ‘elements” must be
small enough so that a macroscopic piece of the material contains so many of them that
an ensemble average over elements may be used to describe the macrosopic properties;
and (ii) the elements had to be large enough so that deformations of an element can be
described by an elastic strain variable. An example is given in [87] of a single droplet
in foam having a non-affine deformation and not being usable as an ‘element’. In such
a case, the size of an element would need to be several droplet diameters.

In addition to the ‘noise temperature” that arises from a combination of thermal,

strain and rearrangement processes, it was noted that straining an element increased
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Figure 7.1: Tllustration of the dynamics of the SGR theory. A representative element, 1, may hop out of
its current trap by activated hopping. Macroscopic straining by an amount A, lifts the energy (2 — 3)
of the element, making a hopping event (3 — 4) more likely. The spatial positioning of the quadratic
traps is arbitrary; each trap has a local strain origin at its centre. Successive traps are randomly selected

from a prior distribution p(e).

its energetic position in a trap, taking a representative element closer to the edge of
the trap and making a hopping even more likely. The second condition listed above
allowed Sollich et al. to treat SGMs like elastic solids so that the energy is altered ac-
cording to the square of the local strain, [2, times the elastic constant, k (it is further
assumed that the local strain rate [ is equal to the macroscopic strain rate ). This fur-
ther alters the Boltzmann factor so that the numerator is no longer just the depth of the
trap an element is currently in, ¢, but rather the difference between the depth of the
trap and the energy given by straining, ¢ — $k{*. The SGR theory thus treats SGMs as
elastic solids with yielding events able to dissipate stress, giving a mechanism for flow
to occur.

In a similar way to Bouchaud, Sollich et al. assumed that after a yield event, an
element randomly finds a new trap from the density of traps p(¢) and enters that trap
in an unstrained position. This idea is illustrated in Fig. 7.1.

The probability of finding an element in a trap of depth ¢ with local strain [/ at a
time ¢, according to SGR theory, evolves according to

OP(e,l,t) P

S0 5O ryexp(— (e — Sk)/)P + T(0)p()50) 72)
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where I'(t) =T [ dedlP(e, 1, t) exp(—(e — s ki*)/z) is the total yielding rate. The macro-
scopic stress is calculated by multiplying the (constant) elastic modulus by the average

of the local strains:
o(t) = k(l)p = k / dediP(z, 1, )l (73)

The activation processes that cause hopping between traps can be thought of as aris-
ing from either purely thermal processes, or from kinetic rearrangements elsewhere in
the sample propagating through the material, causing further yield events. For this
reason, the effective noise temperature, z, at the very heart of the SGR theory, is very
difficult to write in a functional form [87]. It ought to be related to the shear rate and
time: the majority of the energy x represents comes from kinetic yield events propagat-
ing through the material and a higher shear rate necessarily causes more yield events
per unit time. Under no strain, = is predominantly thermal in composition. When
strained, some elements will be in deeper traps simply because of the arbitrary choice
of p(¢) and thus take more straining before a yield event becomes likely. The effective
noise temperature x thus requires some sort of start-up of its own under steady shear
conditions. When the strain is applied in a step-wise manner, x ought to have some
initially high value (or low if the system has aged significantly without shear), but de-
cay off as a function of time as rearrangements become less likely due to the one-time
application of strain.

In the units used by Sollich et al. a value of z = 1 corresponds to the glass transition
temperature. The model has different behaviours based on whether or not the effective
noise temperature is greater than, or less than, the glass transition temperature. With-
out going into further details, it can be noted that early-time stresses in shear startup
experiments (see Figs. 5.2, 5.4 and 5.5) are phenomenologically matched by theoretical
simulations at an effective noise temperature x = 1.5 (see Fig. 12 of [87]). Several fea-
tures of the nonlinear oscillatory rheology presented in chapter 8 are also captured by
SGR theory with an effective noise temperature of z = 1.1, in particular the form of the
dynamic moduli in a strain sweep (see Figs. 15 and 16 of [87] for example). SGR the-
ory, with an effective noise temperature greater than the glass transition temperature,
also predicts an increasing yield strain with frequency, an experimental effect noted in
chapter 5 and in [29].

For all of the features of the experimental data presented in previous chapters on
(nominally) 128-arm star polymers in squalene SGR theory offers explanations for,
there is one glaring omission; the failure to offer an explanation of the two-stage evo-
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lution witnessed in rheological experiments.
In the fourth section of this chapter, a model that offers some explanation for the
extraordinary experimental phenomena that has been the subject of the experimental

chapters of this thesis is presented.

7.4 A two-step model

One potential problem with SGR theory is its requirement for an a priori definition of
the density of traps. This requirement is identical to fixing the free-energy landscape
regardless of the experimental conditions imposed. Assuming a fixed free-energy land-
scape may not physically make sense: deep traps correspond to tightly bound ele-
ments. If there is some yield stress inherent in the physical system, then an application
of stress that exceeds the yield stress would eliminate the deepest traps, changing the
free-energy landscape.

Motivated by the two-state evolution apparent in previous chapters, we suggest the
following physical picture. The large stresses that arise during the oscillatory preshear
ensure a fluidised state at the start of each experiment. In this state, the system flows
homogeneously with a flow curve shown by 5.8. At stresses below the critical yield
value 0., however, this fluidised state is metastable. Under conditions of imposed
shear rate 4 < 4., this results in the formation of a solidified band that coexists with a
fluid band at the critical stress o.. At stresses above o, in contrast, the system remains
fluidised. In summary: the system undergoes stress dependent switching between
solidified and fluidised states, which can coexist under conditions of imposed shear
rate.

A simple though useful guide to understand the interplay between nonlinear rhe-
ology and ageing properties for soft glassy materials was initially proposed by Derec
et al. [63] and later developed by Picard et al. [119]. The model describes the local state
of the system by a single scalar variable. For convenience, the scalar variable is taken

to be the local relaxation frequency of the stress as expressed by a Maxwell equation
0o = G¥ — d’o. (7.4)

The first term on the right hand side of equation 7.4 corresponds to the elastic devel-
opment of stress under an applied shear. The second term confers stress relaxation
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on a timescale 1/a®. a” is referred to as the “fluidity” (it is squared to ensure it re-
mains positive and hence physically meaningful) and it is the way it evolves that
defines the dynamics of the model. To allow for shear banded states, the shear rate
¥ = 4(y,t) is allowed to depend on the distance y across the rheometer gap. The fluid-
ity evolves as a competition between ageing processes and flow-induced rejuvenation
so that 0,a = —f(a) + g(a,0,%) where f and ¢ are positive functions. The specific
dynamics of the corresponding fluidity a* obey

o0V (o, a)

- M
ata(y7t) 5@

+P0%a+ N(y,t). (7.5)

Suppressing for the moment any spatial dependence upon y such that a = a(t), N =
N(t) only, at a fixed stress o the first term on the right hand side describes descent
in an effective potential V' at a rate set by the mobility M. Alone, this term would
ensure that the system descends until its first encounter with a local minimum of V,
in which it would remain thereafter. The delta correlated noise N models thermal and
mechanical agitation, and confers a stochastic way of exploring the potential landscape
such that the system can eventually find the global minimum. This is an important
part of the way the theory works and warrants further discussion. It is the presence
of the noise that allows the system to explore the potential landscape and hence to
display the dynamics presented below. Without any noise present, or with not enough
noise, the system simply remains in the first potential minimum it encounters. With too
much noise, the system explores the potential landscape too rapidly and the dynamics
of the model occur much quicker than the experiments suggest. The noise term in
equation 7.5 needs to combine the Brownian movements and rearrangements caused
by shearing in order to successfully model the system dynamics.
We show in Fig. 7.2 the form of V' chosen to match the two-state phenomenology
seen in the experiments. To incorporate both fluidised and solidified states, we take
a® _ [a(o) + B(o)]a’

V=" _

3 5 + a(0)B(o)a? (7.6)

with 0 < a < B. By construction, this has a minimum representing a high fluidity
state at «> = [3; and a minimum representing a solidified state at « = 0. It can be
shown that for 3 less (resp. greater) than 3« the solidified (resp. fluidised) state is the
global minimum. Stress dependent switching between these two states is captured by

letting & = a(0) and 3 = (o), with § a more steeply increasing function of ¢ such
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that switching occurs at the critical value of the stress ¢ = o, for which § = 3a. For
convenience, we choose the following functional forms:

a=A+Bo", and (= B+ Bo™, (7.7)

with m > n. From equations 7.6 and 7.7 it can be shown that o, is the stress at which
a = /3 and in our parametrization takes the value 11.2 Pa. The model thus elimi-
nates one of the problems of the SGR theory by allowing the free-energy landscape to
be stress dependent. Physically, what the model allows for, is the elimination of the
solidified state when the stress in the system exceeds the yield stress.

While the basic phenomenology of the model is quite robust with respect to dif-
ferent values of the parameters A, B,n, m and [, here specific choices are made: A =
4.2 x 1073, B =83 x 1073 n = 2.845,m = 3.3, = 0.01. These were obtained by first
adjusting the parameters A, B,n and m to represent the two limiting flow curves dis-
played in Fig. 5.8, obtained respectively at the limits of short and long time, and [ along
with the noise term N, to represent the time dependence of o(t) (Fig. 7.3). This noise is
represented by a random value from a Gaussian distribution such that the standard de-
viation equals % (« — 3)?, the height of the barrier between the two fluidity minima. By
making such a choice of the functional form of the noise, the size of the barrier between
fluidised and solidified states becomes the determining factor of the model’s dynamics.
The size of the barrier is always larger when attempting to leave the most energetically
favourable state. This ensures that if a single element does leave the global minimum,
it is more likely to make a hop over the (now smaller) energy barrier and re-enter the
energetic minimum. This ensures the global minimum is the state most populated. By
making the noise proportional to the stress experienced by the system, the model also
accounts for the kinetics via rearrangement rates, a failure of the SGR theory of Sollich
etal..

7.4.1 Application of the model

Having established the model, some features of the experimental data are now briefly
reviewed along with the corresponding predictions of the model. In each experiment,
a mechanical pre-shear protocol was followed comprising a large amplitude oscillatory
shear (79 = 100 %,w = 1rad s~') applied for a time 200 s. This placed the system in a
reproducible history-independent state.
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Figure 7.2: The shape of the free-energy-type function for stresses below and above the critical stress.

Stress upon shear start-up

The dotted lines in Fig. 7.3 are plots of the experimental stress response to a step-
wise application of a shear rate for three different rates, ¥ = 0.001s7', 0.0025s7*
and 0.05s7!, performed on a strain-controlled ARES-HR rheometer equipped with
a cone-and-plate geometry of diameter 25 mm, angle 0.047ad and truncation 48 um.
For 4 = 0.001s™!, the stress initially rises linearly with time/strain before reaching
a metastable state where the stress, o(%), is a function of the applied shear rate after
~ 100s. For 4 = 0.0025s~!, the stress overshoots to a plastic limit before relaxing
back to the metastable state. The system remains in this metastable state for ~ 2000 s
before the stress begins to increase towards the equilibrium value of ~ 11 £ 0.25 Pa.
The duration of the metastable state increases with increasing shear rate up to a critical
rate of 4. = 0.035 s '. It is thought that the time spent in the metastable state, clearly
a function of the shear rate, is dictated by caging and entanglement effects. Above 7.,
the metastable state is indistinguishable from the stable equilibrium state. The dotted
lines in Fig. 7.3 represent the experimental data and the solid lines correspond to the
theoretical predictions. It is easy to see that while the stress overshoot at short times is

not captured by the model the two-step stress evolution is well described.
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Figure 7.3: Dotted black lines: Experimental stress evolution upon shear startup immediately follow-
ing preshear, measured in a cone-and-plate geometry for the star polymer system and for shear rates
4 = 0.00157! (lower line) and % = 0.0025s~! (middle line) and ¥ = 0.05s~! (upper line). Coloured
lines: Behaviour of the phenomenological model under identical shear conditions.

Evolution of the flow curve

Figure 7.4 shows a closeup of the flow curve (full curve displayed in Fig. 5.8), mea-
sured in a downward rate sweep started at a time ¢,, = 0* after the preshear (0* de-
notes a small delay, set by the control software, being between the end of the preshear
and the beginning of the rate sweep). At a shear rate sweep residence time of 10s
per point, (yellow crosses) the flow curve indicates the material behaves like a shear-
thinning fluid. Figure 7.3 indicates that a residence time of 10 s samples the stress
before reaching the metastable state at low shear rates. Having also seen from Fig. 7.3
that the stress takes on the order of 10000 s to reach the stable state we show a second
rate sweep where the residence time is also of the order of 10000 s (dark red crosses).
What is apparent is a stress plateau that develops after thousands of seconds, with the
plateau taking longer to reach as 4 approaches 5. from below. At intermediate times
when the plateau is not fully formed, the flow curve exhibits a local minimum that can
appear as a viscosity bifurcation in stress-controlled tests. When sufficient time has
elapsed that the plateau is fully formed, no such bifurcation exists. Rates lower than
107* s are difficult to access with the controlled strain rheometer. This evolutionary
behaviour is contrasted with the case of worm-like micelles where any stress plateaux

form rapidly. The solid lines in Fig. 7.4 are the theoretical predictions for identical con-
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Figure 7.4: Yellow crosses: Flow curve measured in cone-and-plate geometry on the star polymer sys-
tem with a residence time of 10 s per point. Dark red circles: Flow curve where the residence time is on
the order of 30000 s. Solid lines: Behaviour of the phenomenological model under identical conditions.

ditions to the experimental data, shown as crosses. The plateau and the evolution are
well described by the model.

A note on the possible lower branch of the flow curve

Creep experiments (see Figs. 5.10 and 5.11) suggest a lower branch of the flow curve
exists around 107° s~! — 107% s7!, visible by slow accumulation of strain at long times
for stresses o < o.. This is accounted for by the model via a small value of the fluidity.
The small value is a result of each element finding its way into the global potential
minimum located at a fluidity of @ = 0 and having small ‘boosts’ in energy from the
effective noise inherent in the system (a combination of thermal and kinetic processes).
In such a state, the noise would be predominantly thermal in nature due to a lack of
rearrangements taking place. A series of creep experiments where the applied stress
is below the critical yield stress would thus elucidate the lower branch, and hence, the

amount of thermal noise in the system.

Banded velocity profiles from rheo-NMR

Shear banding is not peculiar to glassy materials, but has been observed in worm-like

micelles [66, 67], emulsions near their yield stress [68], entangled polymer solutions
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[69], liquid crystalline polymers [70] and recently in a nearly random close packed,
hard-sphere colloidal suspension [71]. Shear banding has also been reported in dense
pastes of large (0.29 mm) polystyrene beads [72]. Shear banding, identified experi-
mentally through the coexistence of two or more bands of different viscosity or mi-
crostructure, is typically accounted for theoretically by a constitutive flow curve with
an unstable branch of negative slope. When shear-rate conditions that correspond to
the region of unstable flow are imposed, these systems can separate into phases of dif-
ferent local shear rates that coexist at a common stress. A recent review by Moller et al.
[73] suggests shear banding and thixotropy can be viewed as two effects of the same
underlying cause. The fascinating question as to whether non-monotonic constitutive

behaviour might be inherent to glassy yield-stress systems, remains open.

Stress plateaux in flow curves have been linked to the phenomenon of shear band-
ing. Figure 7.5 shows two velocity profiles across the 1.5 mm gap of a cylindrical Cou-
ette theo-NMR cell at an apparent shear rate of 0.0314 s7!, just below the critical strain
rate, and obtained at different times following the preshear protocol. The cell has in-
ner and outer radii of 7.5 mm and 9 mm. The yellow crosses show the velocity profile
across the cell at time ¢’ = 150 s which corresponds to the yellow crosses of Fig. 7.4. The
dark red crosses show the velocity profile at ' = 25000 s and reveal a banded structure
where the lower shear rate band has a shear rate ~ 0s~'. The small value of the shear
rate indicates an increase in the viscosity, similar to that observed by Coussot et al.
[120]. However, the data of Fig. 7.3, in particular the lack of thixotropy, the stress over-
shoot and the long time before stiffening, suggests that different physics is responsible.
The central cylinder is filled with a marker fluid so the inner wall velocity is known.
No slip is seen during the evolution. The low shear rate band evolves across the gap
from the outer wall to reach a final fraction dictated by the applied shear rate.

The predictive power of the model can be tested by using the previously listed
parameter set to generate the velocity profiles of Fig. 7.5. The description of shear
banding at an imposed shear rate ¥ = [ dyj(y,t) requires the term *92a to correctly
represent the structure of the interface between the bands, with a characteristic width
[, expressed as a fraction of the gap traversed by y. As shown in Figs. 7.3 and 7.4 the
model captures the basic phenomenology, and further, predicts good agreement with
the velocimetry data shown in Fig. 7.5. In a shear startup experiment, and following
the pre-shear protocol, (Figs. 7.3 and 7.5) the stress attains the fluidised branch of the
flow curve, on which the system flows homogeneously. For values of the shear rate 7 <
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Figure 7.5: Yellow crosses: Velocity profile across the 1.5mm gap of the cylindrical Couette at an
apparent shear rate of 0.0314 s~ ' at time ¢’ = 150 s following preshear. Dark red crosses: Velocity profile
under the same conditions at a time ¢’ = 25000 s. Solid lines: Behaviour of the phenomenological model

under identical conditions.

Y., the stress subsequently evolves towards its final value o, at which a solidified band
coexists with a fluid band. Likewise in a shear rate sweep (Fig. 7.4), the model predicts
the fluidised homogeneous flow branch shown by the yellow line for fast sweep rates;
and a yield stress at which fluidised and solidified bands coexist for slow sweep rates.

7.5 Conclusions

The model system examined here manifests a two-step ageing property that may un-
derpin a wide class of yield-stress fluids. The dynamics of the model are dictated
by a combination of stress-dependent parameters: the free-energy landscape alters as
a function of stress, making the solidified state less likely at higher stresses, and an
effective noise that depends on the stress, reflecting the physical kinetic nature of rear-
rangement rates. That the time-dependence of both the stress and shear rate profile on
steady shear start-up, as well as the time-dependent flow curve is captured by using
such a simple phenomenological model suggests the possibility of a universal descrip-

tion for ageing-rejuvenation and shear banding dynamics in soft glasses.






Chapter 8

Large-Amplitude Oscillatory Shear
(LAOS) Response

8.1 Introduction

A Lissajous curve is the graph of a system of parametric equations which describe

complex harmonic motion:

z(t) = Asin(at + 9)
y(t) = Bsin(bt).

These curves were initially studied by the American mathematician Nathaniel Bowditch
in the early 19th century who created them by means of a pendulum suspended from
two points. In the mid-19th century French mathematician Jules Antoine Lissajous
studied the curves in more detail and they now bear his name. Lissajous was inter-
ested in waves and created an apparatus where a beam of light was reflected off a
mirror attached to a vibrating tuning fork and then off another mirror attached to a
perpendicularly vibrating second tuning fork and then onto a wall creating a ‘Lissajous
tigure’. Lissajous curves can take the form of lines or closed loops. A Lissajous curve
will be closed, if and only if, the ratio of frequencies, a/b is rational.

In the rheological literature a Lissajous curve is typically a parametric plot of the
oscillating stress response as a function of the sinusoidally oscillating strain input. In
this case, a purely elastic response is a straight line of gradient G and a purely viscous
response is elliptical with minor/major axes along the stress/strain axes. The ratio
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Figure 8.1: Typical Lissajous curve of the response of gastropod pedal mucus to oscillatory strains
taken from the MS thesis of Randy Ewoldt [121] showing how the elastic stiffening ratio is calculated.

of major-to-minor axis is equal to the product of the angular frequency and viscos-
ity, wn. Equally, a purely elastic response is in phase with the oscillating strain and a
purely viscous response is in phase with the oscillating strain-rate (which oscillates at
the same frequency as the strain and leads by 7/2rad). A viscoelastic response is a
combination of these behaviours and forms an ellipse in a Lissajous plot. If the stress
is plotted as a function not of strain but of strain-rate, then the Lissajous curve is an
‘oscillatory flow curve” where the ratio of stress to strain-rate at any part of the curve
is the instantaneous viscosity. Any nonlinearities distort the ellipse. The main goal of
any quantitative analysis technique is to characterise the nonlinearities present in the
response of the material being studied. Several methods of analysis are currently in
the literature.

The method of Ewoldt et al. [121] consists of measuring the ratio of the large-
strain elastic modulus, L = (7 |,=4,)/(£7), to the small-strain elastic modulus, M =
(d1)/(dv |y=0). This result, called the elastic-stiffening ratio S(w,~o) = L(w, v0)/M (w, Yo)
gives an indication of the amount of strain-stiffening that takes place. A value S > 1
indicates strain-stiffening behaviour and a value S < 1 indicates strain-softening be-
haviour. This particular analysis method works well for the hysteresis-type responses
seen in the application of oscillatory strains to gastropod pedal mucus illustrated in
Fig. 8.1.

The method of Klein et al. [122] assumes a more general approach. The approach
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is to characterize the stress response in terms of an addition of four basis states called
characteristic responses: sine wave, rectangular wave, triangle wave and sawtooth
wave. To each of these contributions a physical process is attached: a sine wave repre-
sents linear behaviour, a rectangular wave corresponds to strain softening, a triangular
wave component reflects the strain hardening and a sawtooth wave is used to model
shear bands. The analysis then follows as a direct fitting of these four characteristic
responses varying the amplitude, frequency and phase of each response to fit the time
domain data as well as the frequency domain data. This approach assumes ideal be-
haviours for all the specified physical processes.

Cho et al. [123] describe the stress response of a material subjected to LAOS via
two derived quantities referred to as the elastic and viscous stress components and de-
noted ¢’ and o” respectively. Cho et al. use a formalism where = = v and y = §/w and
invoke an assumed symmetry of response, o(—z, —y) = —o(x,y), to derive the quan-
tities 0’ = [o(z,y) — o(—=x,y)] /2 and ¢" = [o(x,y) — o(z, —y)] /2 where ¢’ + ¢" = 0.
These quantities are used to define generalised dynamic moduli, I and I'”, via the rela-
tions o’ = I[(z,v0)z, o/ = I"(y, v0)y. In the linear viscoelastic limit, lim., ., ['(z,v) =
G'(w), im0 I (y, 70) = G"(w). McKinley and Ewoldt [124] have recently suggested
using Chebyshev polynomials of the first kind (an orthogonal set of polynomials) to
model the elastic and viscous stresses. The benefit of this approach is that unambigu-
ous coefficients of the orthogonal Chebyshev polynomial basis set are acquired, lead-
ing to a physical interpretation that a direct Fourier transform of the raw data cannot
give.

The system of star polymers studied here has a very rich nonlinear rheology. A
typical normalised stress response to an oscillatory strain (w = 1rads™, v = 20 %) is
shown in Fig. 8.2 as a function of time and as two Lissajous curves (normalised stress

as a function of normalised strain and as a function of normalised strain rate).

The most striking feature of the data presented in Fig. 8.2 is the concavity of the
response at max/min stresses. At strain amplitudes 7y > 20 % the small strain elastic
modulus M = dr/dy |,—o is negative or zero, which, according to the method of Ewoldt
et al. [121], would give the unphysical results of negative or infinite elastic stiffening
ratios. The approach of Klein et al. has been shown in [122] to give a reasonable fit
to the oscillatory-stress response of dispersions of monomer of size between 50 and
500 nm in a continuous water phase. The result of the application of this method to the
experimental data of Fig. 8.2 is shown in Fig. 8.3. While the method of Klein et al. [122]
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Figure 8.2: (a) The normalised stress response of star polymers (solid line) to an oscillatory strain of
20 % as a function of time. Normalised oscillatory strain (dashed line) and strain rate (dotted line) are
shown also. (b) Lissajous curve of the normalised stress as a function of normalised strain. Note the
concavity at max/min stresses. (c) ‘Oscillatory flow curve”: Lissajous curve of the normalised stress
as a function of the normalised strain rate. Note that the two Lissajous curves are traced in alternate
directions; the stress as a function of strain, shown in (b), progresses clockwise and when plotted against
strain rate as shown in (c), the curve is traced out in an anticlockwise direction.
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Figure 8.3: The method of Klein et al. applied to the data of Fig. 8.2. The solid black line is the ex-
perimental data of Fig. 8.2 and the coloured line is a combination of a sine wave representing linear
behaviour, a rectangular wave representing strain softening, a triangular wave representing strain hard-
ening and a sawtooth wave representing slip /shear bands according to the method of Klein et al. This
method does not account for the shape of the response observed experimentally.

is able to produce a stress decrease, it does so in a discontinuous manner and fails to
match the symmetry of the response. In general, this method falls significantly short
of reproducing the smooth stress response.

It is universally assumed that the response of materials to small- and large-amplitude
oscillatory shear display particular types of symmetry. The material responses are as-
sumed to belong to a class of mathematical objects known as friezes. They are named
after the friezes occurring in art where decorations are obtained by repeating a sym-
metric or antisymmetric motif. In an attempt to assist the reader in understanding
some of the fundamental points of this chapter, appendix A introduces some of the
mathematical properties of frieze groups and introduce Conway’s [125] orbifold nota-

tion.

8.2 Proposed method

The methods of Ewoldt et al. and of Klein et al. characterise the oscillatory shape of the
stress response in terms of non-linearities. In the method of Ewoldt et al. this happens
via the determinism of a single parameter that relates the large- to small-strain elastic
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moduli. In the method of Klein et al. the nonlinear response comes from the non-zero
amplitudes of the nonlinear basis states which gives information about the relative
intensities of four idealised responses.

In an oscillatory experiment there is a continuous range of shear rates being tra-
versed with an amplitude of yw. The long-time, low-frequency, large amplitude limit
of an oscillated strain rate experiment produces the flow curve of the material. A short-
time, high-frequency, small amplitude experiment can be thought of as producing an
approximation to the steady-state flow curve, or better yet, as elucidating a version
of the flow curve at an earlier time in its evolution. Thus, it is reasonable to use the
considerable knowledge of constitutive curves (model flow curves) in the literature
to model the stress response to oscillatory strains. Regardless of the approximation
being valid, it is still a worthwhile exercise to determine the flow curves traversed in
oscillatory experiments. This is essentially the current proposal; instead of starting the
analysis by trying to quantify the amount of nonlinear behaviour, we first find the form
of the underlying ‘oscillatory flow curve’ that is followed. Thus, a series of oscillatory
experiments of various strain amplitudes and frequencies can map out the early-time
evolution of what becomes the steady-state flow curve. This is effectively an extension
of the Cox-Merz rule. The Cox-Merz rule is an empirical rule that states the flow curve
obtained by oscillatory experiments is essentially the same as the flow curve obtained
from steady-state shear experiments. Indeed, in the long-time, low frequency, large
amplitude limit, this is exactly what happens. The usefulness of the Cox-Merz rule is
in the time required to obtain each ‘version’ of the flow curve; a single, large ampli-
tude oscillatory experiment can produce a flow curve that requires many steady-shear
experiments. The current proposal extends the idea of the Cox-Merz rule to suggest
that the entire evolution of the flow curve may be mapped by a series of oscillatory ex-
periments rather than only elucidating the final steady-state flow curve with a single
oscillatory experiment. With this idea in mind, the partly concave shape formed by the
data of Fig. 8.2 suggests a stress response that is characteristic of a flow curve being
traversed that contains a branch of negative slope. A simple flow equation that allows
for a negative branch was proposed by Cross [6] and is based on the assumption that
pseudoplastic flow is associated with the formation and rupture of structural linkages.
The exact form of the Cross equation is

Mo — Moo
= O —— '1
n noo+(1+om> (8.1)
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Figure 8.4: A fit to the data of Fig. 8.2 using the Cross model of equation 8.1. The phenomenology of
the stress decrease is well modelled in this way.

where a > 1 implies a relatively large shear dependent contribution to structural
breakdown and the other symbols have their usual meanings. Figure 8.4 shows the
result of using this equation with parameters 7., = 141 Pa s, 9 = 37 Pas, @« = 6 and
n = 6, with a phase shift incorporated into the strain-rate term to model the experi-
mental data of Fig. 8.2. The phenomenology of the stress decrease is well modelled
in this way, although the Cross model produces a 2 * oo (spinning sidle) frieze group,
where the data more closely matches an ooz (step) frieze group.

We note here that the equation presented by Cross, equation 8.1, was derived as
the steady state representation of some presumed dynamics and was not originally in-

tended to model any transients. That the Cross model describes the material response
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to LAOS presented here suggests that the same dynamics may be present in the phys-
ical processes that lead eventually to the steady flow state. Equation 8.1 was derived
from the assumption that linkages between material constituents form via Brownian
movements and that effective rate constant for the rupture of those same linkages by
shearing is a power-law. Cross argues further

“that the rate of rupture of linkages must be an even function of the shear

rate because it must be independent of the direction of applied shear”

. This idea is investigated in more depth in following sections.

It is apparent from the data displayed in Fig. 8.2 that there does not exist a verti-
cal line of symmetry for each stress lobe, that is, the data do not constitute a 2 * oo
(spinning sidle) frieze group. This lack of symmetry suggests that the upward stress
sweep is different to the downward stress sweep. That is, a different flow curve is
traversed upwards to the one followed on the downwards sweep. The upward stress
sweep causes structural rearrangements in reaching the maximum strain rate and so
the downward sweep necessarily follows a different stress path. The fitting proce-
dure may then be broken into two parts, modelling the upward rate sweep separately
from the downward in order to produce an cox (step) frieze group. This approach
is demonstrated in Figs. 8.5 and 8.6 with the “active” flow curve shown in dark blue
and the ‘inactive’ curve in light blue. The parameters that give the lower curve are
Neo = 113 Pas, ny = 29 Pas, « = 5.4 and n = 6. These are specifically chosen to re-
produce the experimental LAOS data. Note the flow curve that is being traversed is
only elucidated as far as the maximum shear rate achieved in the experiment and any
part of the flow curve that is higher than the maximum shear rate, in the case of Figs.
8.5 and 8.6, of yow = 0.20 s, must be viewed as conjecture only and not supported by
experimental data.

The progression of the red line in successive rows of Fig. 8.5 indicates the passage
of time. In the top two rows of Fig. 8.5, the first stress peak is successfully modelled by
the higher flow curve shown in dark blue. The “inactive’ flow curve, the one followed
on a downward sweep, is shown in light blue. When the strain reaches the maximum,
the active flow curve switches and the lower stress sweep follows the lower flow curve.
Both stress peaks are well described by this switching procedure.

Figure 8.6 illustrates the changing of the active flow curve followed when the strain

reaches zero again.
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Figure 8.5: The experimental data of Fig. 8.2 in grey with the fit from the method outlined in the text
in blue. The three rows correspond to different times in the experiment and the right column shows the
stress decrease in the flow curve. A section of the non-monotonic branch of the flow curve is traversed in
the course of an experiment which causes the characteristic concave shape of the stress response shown
on the left. To account for the change in stress peaks seen, the downward rate sweep is assumed to
follow a different flow curve as shown in the right column. The grey crosses shown in the flow curve
are the measured flow curves of residence times 10 s and ~ 10000 s.
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Figure 8.7: The evolution of the Cross model fitting to the upward rate sweep of the LAOS data where
the oscillatory shear is applied at a frequency of 1rad s~! with an amplitude of 7o = 20 %.

Figures 8.5 and 8.6 both show a large discrepancy between the ‘oscillatory flow
curve’ in solid lines and the ‘steady-shear flow curve’ shown with the discrete + sym-
bols. The use of the symbols and lines make clear the difference in the two methods
used to obtain them: the steady-shear curve was measured at discrete shear rates with
the pseudo-steady- and steady-state stresses plotted as ‘+’s and the lines indicate a
continuous sweep over all rates ¥ < +7,,,,. The discrepancy is interpreted with the
visualisation of the startup stress as a function of time, shown in Beris et al. [126] and
Rogers et al. [127]. In these step-rate tests, the stress takes the order of 10 s to reach the
steady values shown by the + points displayed in Figs. 8.5 and 8.6. In the oscillatory
tests, each shear rate is passed on the way to a higher/lower shear rate with residence
times that are much smaller than the 10 s required to reach even the pseudo-steady
state. Thus, the oscillatory tests allow a glimpse of the evolution of the short-time
stress response with higher frequency tests probing the shorter times and lower fre-
quency tests approximating the steady-shear case. The evolution of the Cross model
fits to the LAOS data (wo = 1rad s, o = 20 %) is illustrated in Fig. 8.7. While the res-
idence time at each particular rate is infinitely small, the evolution of the form of the
oscillatory flow curve towards that of the steady-shear flow curve is obvious, though
not complete. The oscillatory curve measured at 1rad s,y = 20 % does not match
the steady-shear curve even after 50000 s of shearing.

We also show the complete figure obtained via this method for the data of Fig. 8.2
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in Fig. 8.8.

The data of Fig. 8.8 show the effectiveness of this method for capturing the essential
features of the experimental data that the methods of Ewoldt et al. and Klein et al. fail
to. The current method also highlights the asymmetry in the data; an excellent fit
is obtained for positive stresses but some discrepancies remain for negative stresses.
This asymmetry suggests that there exists a preferred direction of shear which may be
a consequence of the preshear protocol, an effect that has previously been seen in the
non-zero stress at short times in shear startup experiments (see Fig. 5.2 and Fig. 5.3(a))
as well as an asymmetry in stress relaxation tests.

It is worth making a further comment about the experimental results displayed
in this chapter. The LAOS data suggest that at very short times, the flow curve of
this material displays a region of unstable negative slope that evolves into a stable
branch of positive slope at long times. This material is not alone in displaying this
behaviour. Chopra et al. in their investigation of the partially miscible polymer blend
poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) [128], saw similar be-
haviour suggesting a more universal behaviour.

This part of the work is concluded by showing fits for other strain amplitudes at
a frequency of 1rad s™! in Fig. 8.9 and a few fits to data at a frequency of 100rad s~*
in Fig. 8.10. The parameters used to obtain the Cross model fits are displayed in table
8.1. Note the fit is poorer at higher strain amplitudes and frequencies due to the ap-
proximation (that the oscillatory data can be modelled using a steady-shear approach)
being less valid. Unfortunately, due to a lack of data, no conclusions can be drawn on

the range of experimental variables over which the approximation is valid.

Table 8.1: Cross model parameters

w(rads™) ~o (%) parameters (upward sweep) parameters (downward sweep)
[T]oo (Pa8)77]0 (P(IS),OQTL] [T]OO<PCLS),T]0(PGS),O[77L]

1 10 200,10,9.2, 8 170,70, 8.6, 4
1 20 141,36,6,6 113,29,5.4,6
1 100 64,19.8,1.8,4 40,22,1.8,4

100 25 197,20,3.8, 8 147,90, 3.8, 8

100 20 185,1,2.02,8 105,75,2.02,8
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Figure 8.8: The full fit to the data of Fig. 8.2 via the method described in the text. The phenomenology
of the stress decrease is now well followed and the asymmetry in the experimental data is highlighted.

The asymmetry suggests a preferred direction of shear that may be a layover from the preshear protocol.
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8.3 Parametrization

Having successfully mapped both the increasing and decreasing shear-rate branches of
the traversed flow curve, it remains to make a few comments on a simple parametriza-
tion under the current model. The Cross model involves four parameters (), 1., @ and
n) which do not lend themselves readily to a single parameter from which something
can be gathered regarding the nonlinearity of a response. It can be stated that for shear
rates ¥ << a‘%, the response will be linear and able to be modelled by a viscosity 7
and for shear rates 4 ~ o, the response will be nonlinear, but using this formality
requires prior knowledge of the values of these parameters. Instead, we look to the
energy dissipated per unit volume per cycle, £;, which is defined as

B, - ]{ oy — jf o ()58 dt. (82)

E,; is thus the area enclosed by a Lissajous curve of (non-normalised) stress, o, as a
function of (non-normalised) strain, 7. The ratio of energy dissipated by the sample
under specific experimental conditions, E.,, to the energy dissipated by a Newtonian

fluid whose viscosity matches that of the test substance at small strains, Enecwtonian
Eel‘p
ewtonian

response, less than 1 for a response that includes a stiffening and greater than 1 for

gives a ‘linear ratio’, . The linear ratio is identically 1 for a completely linear
a response that includes a softening. The Newtonian response required can be found
by fitting a sinusoid to the small-strain stress response. The amplitude of the fitted
sinusoid divided by the strain amplitude gives an approximation to 7, the zero-shear
viscosity. In the Cross model the two limiting cases are: for small strains the ratio is
identically 1 as the stress response is Newtonian with a viscosity 7,; for large strains
the ratio is equal to =, the ratio of limiting viscosities. Figure 8.11 illustrates this
procedure carried out on the experimental data of Fig. 8.2. A linear ratio of 0.64 is

found, indicating a nonlinear response, as expected.

8.4 Symmetry of response

The methods of Ewoldt et al. Klein et al. the Cross model fitting described above and
the traditional method of assigning dynamic moduli assume a symmetric stress re-
sponse for all oscillatory-strain experiments. In the technical sense, using Conway’s

orbifold notation, these methods assume the stress response is an ooz (step) frieze
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Figure 8.11: (a) A sinusoid (light blue broken line) is fitted to the small-strain stress response of the
sample. The viscosity of the sinusoidal response is 79, the zero-shear viscosity, which is a continuation
of the lower branch of the flow curve as indicated in (b). The ratio of areas swept by the Lissajous curves
of the experimental result to the Newtonian case gives a linear ratio of 0.64. The maximum shear rate
reached is indicated by the red line.
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group. That is, an assumption is made that the stress response from one direction of
strain is identical to the response from the other. The results of the Cross model fitting
method described above make clear that this is not necessarily the case and that the
data is actually more closely related to an cooco (hop) frieze with an entire stress-period
being the repeating unit.

It is of interest to quantify by how much the positive and negative lobes differ from
each other and how this changes over the course of an experiment. The most obvious
step in such an analysis may be to look at the extrema and amplitude of the stress
response as a function of time. The extrema are defined as being the most positive and
most negative stress values achieved each period and the amplitude is the absolute
difference between the two. Such information is shown in Figs. 8.12 - 8.14 for 1 rad s+,
v = 0.1,1, 10, 20, 100 and 500 %.

The maximum and minimum stress as a function of time is shown on the left of
Figs. 8.12 - 8.14 and shows an asymmetric evolution of the stress extrema in each case.
The amplitude is plotted as a function of time on the right of Figs. 8.12 - 8.14 and shows
a maximum change of more than 2 Pa over the course of 10* s when vy = 10%. The
data of Figs. 8.12 and 8.13 indicate the presence of oscillations in the stress responses to
oscillatory strains of amplitudes v, = 0.1, 1 and 10 %. The oscillations share a common
period of ~ 360 s. These oscillations are associated with the temperature control cycle
of the air conditioner unit over the course of the experiments. Such oscillations are
visible throughout the data presented in this chapter and are not thought to be asso-
ciated with some previously unknown physics of the material. Rather, they represent
the response to unknown variations in temperature.

The data of Figs. 8.12 - 8.14 show a lack of symmetry in terms of the stress extrema
and Fig. 8.8 shows a lack of symmetry in terms of the shape of the stress response. We
can therefore state that the stress response, while assumed to be an cox (step) frieze
group, though more closely resembling an cooco (hop) frieze, is actually neither. The
data do not constitute a frieze group at all for the experimental times investigated here.
Any analysis technique that assumes otherwise necessarily discards some information
and risks obtaining misleading or incomplete conclusions.

In order to more exhaustively analyse the current data sets, we begin by quantifying
how close to a frieze group the responses are; that is, the symmetry is quantified. To
quantify the symmetry, the amount of energy dissipated in each lobe is calculated via
equation 8.2. The energy dissipated in the positive-stress lobe is divided by the energy
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Figure 8.12: (a) The maximum (top) and minimum (bottom) stresses and (b) stress amplitude as a
function of time for an oscillatory strain of w = 1rads™', vo = 0.1%. (c) and (d) show corresponding
data for 79 = 1%. The oscillations present are due to temperature variations and the response cycle
of the air conditioning unit. The amplitude of these oscillations in the stress response when vy = 1%
increases by 0.1 Pa between 4000 and 8000 s.
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Figure 8.13: (a) The maximum (top) and minimum (bottom) stresses and (b) stress amplitude as a
function of time for an oscillatory strain of w = 1rads™!, 79 = 10%. (c) and (d) show corresponding
data for 79 = 20 %. Note the difference in time scale for (c) and (d). Under both strain conditions, the
amplitude of the stress response rises sharply initially. (b) shows the amplitude of the stress response
to a strain amplitude of 10 % beginning to oscillate after ~ 6000 s and the amplitude of the oscillation
increasing up to the end of the experiment, reflecting the response of the air conditioner to the changing
temperature in the laboratory during the experiment.
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Figure 8.14: (a) The maximum (top) and minimum (bottom) stresses and (b) stress amplitude as a
function of time for an oscillatory strain of w = 1rads™!, 7o = 100%. (c) and (d) show corresponding
data for vy = 500 %. The amplitude of the stress response to a strain amplitude of 100 % (b) shows
a maximum amplitude is reached around 2000 s, after which the amplitude steadily decreases for the
remainder of the experiment. The amplitude of the stress response to oscillatory strain of vy = 500 %

decreases linearly over the entire experimental time of 10* s, dropping by ~ 0.4 Pa.
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dissipated in the negative-stress lobe so that a dimensionless number is achieved that
represents the contribution to the total energy dissipation from each lobe. A value
of this energy-dissipation ratio of 1 corresponds to equal energy dissipated in each
direction while a value greater than 1 means more energy is dissipated in the positive-
stress direction and a value less than 1 means more energy is dissipated in the negative-
stress direction. It is useful to note that an increase in energy dissipation corresponds
to a more liquid-like response and so the energy-dissipation ratio gives an indication
of a preferred direction of flow. As a reference for the rest of this section, the dynamic

moduli as functions of strain amplitude are shown in Fig. 8.15.

The evolution of the energy-dissipation ratio for various strain amplitudes at a fre-
quency of 1rad s! is shown in Figs. 8.16 - 8.20. The data of Fig. 8.15 suggest a linear
behaviour for strain amplitudes 7y < 2%. The response of materials in this region
is normally considered to be well characterised and so it may be assumed that the
evolution of the correlation magnitude would be a random scatter about 1. The data
of Fig. 8.16 supports this assumption for shear conditions far from the traditionally-
defined crossover region. The data of Fig. 8.17 suggests that the linear region ends
before any change in the dynamic moduli is detected. The evolution of the energy-
dissipation ratio when the strain amplitude is 1 %, Fig. 8.17, shows definite structure,
with fluctuations of period ~ 360 s and increasing amplitude being the most obvious
teature. It is noted again that these oscillations are due to the response cycle of the
air conditioning unit used to control the temperature in the laboratory. Underlying
the periodic oscillations is an initial trend away from 1 for the first 3000s. At a time
of ~ 3000 s after preshearing, the energy-dissipation ratio turns and for the remain-
der of the experimental observation time of 10000 s approaches 1, with the periodic
(temperature-related) oscillation increasing in amplitude over the entire experimental

time.

When the strain amplitude is increased so that, from Fig. 8.15, the shear-melting
regime is probed, the energy-dissipation ratio evolves as shown in Fig. 8.18. In the
case where v, = 10 %, the air conditioning-related oscillations observed in Fig. 8.17 are
apparent at times ¢ > 2000 s. This is accounted for by noting the experiment began at
10 : 54am and ended at 1 : 34 pm, during which the outdoor temperature increased,
placing a greater load on the in-lab air-conditioning unit. There is a more dramatic
structure observed in the evolution of the energy-dissipation for both the v, = 10%
and vy = 20 % cases. This structure takes the form of non-periodic oscillations. In both
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Figure 8.15: Dynamic moduli as functions of strain amplitude for a frequency of 1rad s~
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Figure 8.16: Energy-dissipation ratio as a function of time for a strain amplitude of 7o = 0.1%. The
noise in the data combined with the extremely small areas involved make for a noisy energy-dissipation
ratio. Inset: Inset: Dynamic moduli as functions of strain amplitude showing relative position (red line)
of the strain conditions.
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Figure 8.17: Energy-dissipation ratio for a strain amplitude of 7o = 1%. As suggested by Fig. 8.12(c),
the ratio is susceptible to the ~ 360 s oscillations of the air conditioning unit, while slowly approach-
ing 1. Inset: Dynamic moduli as functions of strain amplitude showing relative position of the strain
conditions.

cases, the first feature is a decrease in the energy-dissipation ratio. In the vy = 10%
case, this ‘dip’ is replaced by a longer-period oscillation that takes the ratio above 1 for
~ 5000 s before returning below 1 for the remainder of the experiment. In the v, = 20 %

case, the initial oscillation gives way to a steady approach toward 1 after ~ 500 s.

The evolution of the energy-dissipation ratio for w = lrads™, v = 20%, t <
50000 s is shown in Fig. 8.19. The behaviour of the energy-dissipation ratio for times
10000s < t < 50000 s differs from that of earlier times in that there is a stepwise ap-
proach towards 1, suggesting stepwise, discrete physics is responsible.

The evolution of the energy-dissipation ratio in the shear-thinning regime is dis-
played in Fig. 8.20. At such large strain amplitudes the energy-dissipation ratio tends
toward 1 in a stepwise manner similar to the long-time response when v, = 20 %. The
larger the amplitude the more symmetric the initial response is and the slower the
symmetry limit is approached.

The data displayed in Figs. 8.16, 8.17, 8.18 and 8.19 suggest two separate regimes
with a wide transition between them similar to those discernable in Fig. 8.15. In the
linear regime at strain amplitudes far below the crossing of the dynamic moduli, the
evolution of the correlation magnitude is characterised by random scatter about 1

(Fig. 8.16). Far into the shear-thinning regime, the energy-dissipation ratio approaches
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Figure 8.19: A temporally extended version of Fig. 8.18 showing the evolution of the 20 % case up to
5 x 10* s. The smooth approach towards 1 that was characteristic of Fig. 8.18 has given way to a discrete

step-wise approach.
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Figure 8.20: Energy-dissipation ratios for strain amplitudes of 79 = 100 (blue) and 500 % (red). A
discrete step-wise approach towards 1 is observed throughout the experiment in both cases.

1 in a stepwise manner. The farther into the shear-thinning regime a set of experi-
mental conditions are, the more symmetric the initial response is and the slower the
approach towards 1. These two extreme behaviours correspond to the classical linear
and shear-thinning regimes well. In between is a large transition regime that shows
combinations of both extreme cases.

At the low-strain amplitude end of the transition region, see Fig. 8.17 for instance,
the energy-dissipation ratio ultimately tends to 1 (ignoring the oscillations related to
the temperature variations due to the cycle of the temperature control unit of the air
conditioning unit) suggesting the physics occurring is different from that of the true
linear region, displayed in Fig. 8.16. At long times at the high-strain amplitude end
of the transition region (as displayed in Fig. 8.19), the energy-dissipation ratio evolves
as if the sample was deep in the shear-thinning regime, that is, asymptotically ap-
proaching 1 in a stepwise, discrete manner. At a strain amplitude that correlates to the
crossover of the dynamic moduli the energy-dissipation ratio is unstable and oscillates
about, but never asymptotically approach 1. This analysis technique suggests that the
linear regime does not extend to strain amplitudes as large as the dynamic moduli
suggest.

While the energy-dissipation ratio provides a useful way of quantifying the sym-
metry, it can be equal to 1 without the two lobes being identical shapes. To avoid any
possible misinterpretation, a second parameter is calculated simultaneously that al-
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lows for differences in shape to be accounted for. An ideal parameter for such a task
is the path-length difference. We define the path-length difference to be the difference
in the path length between the positive lobe and the negative lobe. This difference is
normalised by division by the path-length of the positive lobe such that the difference
is expressed as a percentage of the path length of the positive lobe. The path length of
a lobe is defined by the relation

path length = / ds (8.3)
L

where the subscript L means the integral is over a lobe and ds is an elementary arc

length defined for a discrete data set (7;,;) as

ds = \/(Ti+1 —7)° + (i1 — )% (8:4)

A perfectly symmetric response in the (energy-dissipation ratio)-(path-length differ-
ence) plane corresponds to an energy-dissipation ratio of 1 and a path-length difference
of 0. An energy-dissipation ratio of 1 and a positive path-length difference is indicative
of a more curved positive lobe while an energy-dissipation ratio of 1 with a negative
path-length difference is indicative of a more curved negative lobe.

The extra information gathered by following the trace in (energy-dissipation ratio)-
(path-length difference) space only seems to be valuable in the shear melting regime.
In the linear and shear-thinning regimes, the path-length difference is characterised
by nearly random scatter about 0. The trace through (energy-dissipation ratio)-(path-
length difference) space is depicted in Fig. 8.21 for an oscillatory shear of w = 1rad s, vy =
10 (a) and 20 % (b). The type of asymmetry in each case changes as a function of time,
as indicated by the evolution into different quadrants of (energy-dissipation ratio)-
(path-length difference) space. As a comparison, the trace through (energy-dissipation
ratio)-(path-length difference) space is also shown in Fig. 8.22 for an oscillatory shear in
the shear-thinning regime of v, = 100 % showing the asymmetry reduces throughout

the entire experiment.

8.5 Total energy dissipation

The previous section examined the evolution of the symmetry of the response with
respect to a number of ‘symmetry parameters’. Each parameter showed that the re-
sponse to LAOS, and indeed SAQOS, cannot be considered a frieze group, which would
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Figure 8.21: Following the trace through (energy-dissipation ratio)-(path-length difference) space in-

dicates the lack of symmetry in the response to oscillatory strains of w = 1rads™!, 7o = 10 %(a) and

20 %(b). The type of asymmetry in each case changes as a function of time, as indicated by the evolution

into different quadrants of (energy-dissipation ratio)-(path-length difference) space.
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Figure 8.22: The evolution of the LAOS response to a strain of frequency wy = lrads~' and an

amplitude of 79 = 100%. In contrast to the data presented in Fig. 8.21, the path-length difference

oscillates about 0% for the entire experiment. The step-wise decreases in the energy-dissipation ratio

are seen in this figure as horizontal bands.
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enable the symmetric analysis techniques to be employed with absolute faith in the
conclusions drawn from their results. The parameters examined were the stress ex-
trema, taken directly from the raw data, the path-length difference, which gives a mea-
sure of curvature differences and the energy-dissipation ratio, which is the relative
proportion of energy dissipated in the positive stress lobe to the negative. The com-
bination of the shape of the LAOS response with all these parameters, especially the
energy-dissipation ratio, produce compelling evidence of a preferred stress direction
and hence a spatial heterogeneity. This evidence will be used to argue the existence of
clustering and of rearrangements of clusters. To add further weight to that discussion,
this section will present the evolution of total energy dissipated per unit volume per
cycle as per equation 8.2.

Before the data is presented we note that if the stress response can be represented
as a Fourier series involving the dynamic moduli and their harmonics (as explained in
section 2.4.1),

N

a(t) = Z (Gl (w,Y0) sin(nwt) + G (w, 7o) cos(nwt)] (8.5)

n=1

then equation 8.2 reads
E; = j{adv = %J(t)ﬁ(t)dt
o2r/w N
= 'ygw/ Z |G, sin(nwt) + G cos(nwt)] cos(wt)dt
0 n=1

27w
= yng'l’/ cos?(wt)dt
0

= vrGY. (8.6)

That is, the traditionally used loss modulus, G” is the energy dissipated per unit vol-
ume per cycle scaled by 137. In this chapter, we will use E, preferentially over G” and
retain the units of Jm ™. In this way, it is hoped a more physical understanding of the
processes involved will be provided.

Presented in Figs. 8.23 - 8.27 are the evolutions of the total energy dissipated per
unit volume per cycle for an angular frequency of w = 1rad s~ and strain amplitudes
of 7o = 1% (Fig. 8.23), o = 10 % (Fig. 8.24), 7o = 20 % (Fig. 8.25), v = 100 % (Fig. 8.26)
and vy = 500 % (Fig. 8.27). Appended to each figure is a representation of the form
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Figure 8.23: The evolution of the total energy dissipated per unit volume per cycle plotted against the
rescaled stress amplitude for a strain amplitude v = 1 %.

of the evolution of the amplitude of the stress response, scaled to fit each figure. It is
interesting to note that for strain conditions defined by Fig. 8.15 as being in the linear
region, the forms of the amplitude and energy dissipation evolutions are markedly
different. This is understood to confirm a predominantly solid-like response from the
material under such strain conditions.

When the applied strain amplitude is vy = 10 %, the energy dissipation initially
drops rapidly, indicating a response that tends towards that of an elastic solid. The
energy dissipated then quickly rises again suggesting a reverse of the process that is
responsible for the short time response; the material response is more liquid-like. This
rapid change can be interpreted as being due to an ensemble average of cage-breaking
events: initially individual stars are sheared into each other, creating highly strained
cages that eventually yield. The data of Fig. 8.15 suggests that 7, = 10 % is in the shear-
melting regime but suggest no time frame over which the melting occurs. One possible
interpretation of the data of Fig. 8.24 is that a time of ~ 150 s is required to break the
majority of cages before the onset of macroscopic flow. The comparatively long time
for a microscopic process can be understood by noting that cage-breaking is a strain-
related phenomenon and the applied frequency of 1rad s~' means that in ~ 150 s, only
~ 24 strain cycles have been completed. With an upper strain limit of v, = 10 %, the
time spent in conditions where the strain is large enough to break a cage is significantly
shorter than 150 s. The manner in which the form of the amplitude evolution matches
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Figure 8.24: The evolution of the total energy dissipated per unit volume per cycle plotted against the
rescaled stress amplitude for a strain amplitude v = 10 %.

that of the evolution of the energy dissipation at longer times is strongly suggestive
of macroscopic flow. It is interesting to note also that once the majority of cages have
been broken, the general trend is for the amount of energy dissipated per unit volume
per cycle to decrease. This is indicative of a slow stiffening of the material.

The data of Fig. 8.24 can be understood in terms of the response of a material whose
constituents are undergoing cage straining followed quickly by cage breaking. The
data of Fig. 8.15 suggest that 7y = 20% is large enough to be in the shear-thinning
regime where the cages are broken and macroscopic flow is predominant. The data of
Fig. 8.25, and in particular the lack of correlation between the forms of the evolutions
of the stress amplitude and the energy dissipated, suggests more complex physics than
simply cage breaking and flow is responsible for the response when v, = 20 %. Like
the response to v, = 10 %, the amount of energy in the vy = 20 % response initially
decreases rapidly. Unlike the response to vy = 10 %, the response to vy, = 20 % shows no
corresponding rapid increase but instead slowly increases in a step-wise manner that
is modulated by the ~ 360 s oscillations attributed to the air conditioning temperature
control cycle.

The high degree of correlation between the forms of the evolutions of the stress
amplitude and energy dissipation for v, = 100 % displayed in Fig. 8.26 and ~, = 500 %
displayed in Fig. 8.27 is indicative of macroscopically flowing material. For the first
2000 s while being sheared with an amplitude of 7, = 100 %, the dissipation of energy
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Figure 8.25: The evolution of the total energy dissipated per unit volume per cycle plotted against the
rescaled stress amplitude for a strain amplitude v = 20 %.

per unit volume per cycle increases; the response gets more liquid-like. After the first
2000 s at 79 = 100 % and for the entire experimental time at 7y, = 500 %, the energy
dissipated per unit volume per cycle decreases; the material gets progressively stiffer.

8.6 Discussion

While much of the steady-state rheology has already been elucidated [29, 127, 126],
the data and methods presented in this chapter correspond to the first attempt to un-
derstand the LAOS behaviour. One particular aspect of the steady-state start-up be-
haviour that is important in understanding these data is the stress overshoot observed
for shear rates 4 > 0.001 s~ with ¢,, ~ 0 shown in Fig. 8.28 (a). The characteristic
shapes seen in the LAOS data could be interpreted as being an overshoot followed by
a further increase in stress related to the increase in strain. Previous measurements
have suggested a yield strain of ~ 10 % which would mean an overshoot would be
expected for an oscillatory test with vy = 20 %. For strain amplitudes vy >~ 20% at
an angular frequency of 1rads™!, the stress maximum occurs at negative strains which
suggests that the absolute strain is not as important as the direction of strain once cages
have been strain-broken.

The stress overshoot has been suggested as correlating to cage breaking and the
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Figure 8.26: The evolution of the total energy dissipated per unit volume per cycle plotted against the
rescaled stress amplitude for a strain amplitude vy = 100 %.
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Figure 8.27: The evolution of the total energy dissipated per unit volume per cycle plotted against the
rescaled stress amplitude for a strain amplitude vy = 500 %.
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Figure 8.28: (a) The stress overshoot observed in steady-shear start-up experiments occurs for shear
rates i > 0.001 s~ 1. (b) The stress response to an oscillatory strain of w = 1rad s™1, o = 20 %. Note the
first stress maximum occurs while the strain is still negative, but moving in the positive direction and

the second stress maximum occurs at very nearly the maximum strain.

onset of flow [47] and the Cross model of eqn. 8.1 is based on the idea of formation
and rupture of structural linkages. The quality of the fits achieved when the Cross
model is applied to the oscillatory data shown above makes it reasonable to view the
form of the stress response seen as part of the underlying flow curve that is traversed.
This method gives a possible pathway of mapping the early-time evolution of the flow

curve.

A two-peak shape exhibited by the stress response to LAOS has been previously
reported by Chopra et al. in their study of the miscible polymer blend poly(styrene-co-
maleic anhydride)/poly(methyl methacrylate) and was attributed to the phase separa-
tion of the blend. A similar shaped response is reported here and fit with a Cross model
in an extended Cox-Merz rule. It is suggested that such analysis allows the monitoring
of the early-time evolution of the flow curve toward the steady-state form. Under this
assumption, a two-peak LAOS response corresponds to a flow curve with a branch of
negative slope - a branch that is unstable under steady-flow conditions. It has long
been suggested that such branches are characteristic of spatial heterogeneities such as
phase separations and shear bands, a phenomenon that has previously been reported
for this system under steady-shear conditions at times much longer than a period of
the LAOS investigated here. The evolution of symmetry factors reported here in the
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response to LAOS also suggests that this spatial heterogeneity changes as a function of
time. At large strain amplitudes, where the two-peak shape is observed in the stress
response to LAOS, the symmetry factors reported here tend towards the symmetric

limits in discrete jumps.

A speculative picture is suggested to explain these results using the idea of clus-
tering. Clustering has been attributed to the reversible vitrification upon heating in
systems of stars [30], a phenomenon that is common to soft materials that can increase
their volume fraction at constant number concentration. The idea of clustering has
also been used in the discussion of the physics of the polymer-mediated melting phe-
nomenon where large chains (with respect to the star arm) create an osmotic force
that shrinks individual stars and eventually yields star-star clustering at high concen-
trations. With regards to the stress response to LAOS, the two-peak shape is highly
suggestive of some degree of spatial heterogeneity. The smooth way the two-peak
shape evolves and the constancy of the shape suggests the spatial heterogeneity is not
macroscopic shear banding, but rather some other sort of small-scale heterogeneity
that appears homogeneous on the large scale. This idea is consistent with clustering
and is a subtle point that deserves more discussion. Macroscopic shear banding has
been observed in this sample starting from identical initial conditions under steady
shearing. Such banding takes on the order of 10® s to occur under such conditions,
whereas the spatial heterogeneity present in the LAOS response manifests itself after
times on the order of 10 s. The magnitude and evolution of the symmetry factors can

be interpreted as suggesting a polydispersity in clusters.

There are two types of polydispersity possible in such situations; polydispersity in
cluster size due to numbers of stars and polydispersity of cluster shape. Each change
in a cluster would have a distinctly different manifestation in the parameters presented
here. Assuming a uniform shape, an increase in cluster size would naturally decrease
the amount of energy dissipated per unit volume per cycle, as depicted in the long time
response displayed in Figs. 8.24, 8.26 and 8.27. Imagine a cigar-shaped cluster (this
argument works for any nonspherical cluster shape but the cigar is an easy shape to
visualise). Such a cluster would be able to store more energy along its major axis when
strained compared to along its minor axis. However, this theoretical cluster would be
subject to larger torques when undergoing oscillatory shear due to its asphericity. This
would lead to a higher energy cost in remaining cigar shaped (nonspherical). Spherical
clusters would have lower torques acting upon them and thus be more stable. For a
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constant number of stars in a group of clusters, the amount of energy dissipated per
unit volume per cycle would increase as the average cluster became more spherical.
This would also mean there is a decrease in the asymmetry of the stress response as
any preferred strain direction disappears.

The data presented in section IV suggest that once cages are broken at strain ampli-
tudes 7o > 10 % at an angular frequency of 1 rad s, there is a tendency for the average
cluster size to increase, as indicated by the long time decrease in energy dissipation.
The exception to this general rule is the response to v, = 20 %. It is thought that in this
case, cages are easily and quickly broken, leaving the system in a state of small, oddly-
shaped and -sized clusters. These clusters undergo changes in both size and shape that
act to increase the amount of energy dissipated by the material. These changes occur
discretely which gives the characteristic stepwise response displayed in Figs. 8.13, 8.19
and 8.25.

That the symmetry factors tend towards absolute symmetry suggests the polydis-
persity of clusters decreases as a function of time; that is, cluster sizes and shapes tend
towards a common average size (which itself increases as a function of time) and a
common spherical shape. If cluster size is the most important feature, the discrete
nature of the changes in the symmetry factors suggests that significant fractions of
cluster sizes are involved in those changes through a series of catastrophic events. This
could mean that for cluster sizes on the order of tens of stars, changes occur by pairs
or triplets of stars leaving larger clusters, or for smaller clusters of approximately ten
stars, the changes could be indicative of individual stars breaking away from the clus-
ters. The lack of turbidity in the sample, even at the longest times probed experimen-
tally suggests the clusters formed are at least smaller than optical wavelengths. This
puts an upper limit of ~ 300 nm, approximately sixty stars, on the diameter of the
clusters. The mechanism that restricts cluster size to below this upper limit is thought
to be a combination of thermal agitation and the changing sense of the mechanical
shear. If cluster shape contributes more to the stress response than size, then the dis-
crete changes suggest a “clicking” of clusters into more spherical shapes. Most likely, a
combination of size and shape is important in determining the stress response and so
both processes will take place simultaneously, eventually leading towards clusters of

relatively constant size and shape.

The system evolves into a macroscopically flowing state characterised by nearly

uniform cluster size and shape under oscillatory shear, and into a shear banded state,
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where there are little or no restrictions on cluster formation, when submitted to steady
shear. Under steady-shear conditions, the shearing is always in the same sense, mean-
ing the torques applied to any newly-forming clusters are steady. When the material
is sheared in an oscillatory fashion, cluster formation takes place in an environment
where local torques change magnitude and direction, subjecting the newly-forming
clusters to unequal forces. These unequal forces act to create more uniform cluster sizes
and shapes in LAOS. The mechanism controlling cluster shape is therefore weaker un-
der steady-shear conditions than under oscillatory conditions.

An idea put forward by Jabbari-Farouji et al. [103] can be applied to the current
situation. Starting with identical initial conditions, it is possible to evolve the system
through the free-energy landscape to a macroscopically shear banded state via the ap-
plication of steady shear below a critical shear rate, a homogeneous liquid for steady
shear above the critical rate and a state dominated by nearly-uniform sized and shaped

clusters via the application of large amplitude oscillatory shear.



Chapter 9
Conclusions

The flow and ageing properties of a system of ultrasoft colloidal spheres have been
studied. The flow properties have been studied using conventional rheological tech-
niques, which give the bulk response of the material, in conjunction with non-invasive
rheo-NMR velocimetry, which attaches spatial information to the measured response.
Experimentally altered parameters included shear rate, 7, shear stress, o, waiting time,
t, and temperature, 7. The ultrasoft colloidal spheres investigated are star polymers
with a nominal functionality, f, of f = 128 arms suspended in squalene at two concen-
trations: 1.5 and 2 ¢*, where c* is the overlap concentration.

An oscillatory preshearing protocol has been established and implemented that has
allowed the system to be placed in a reproducible fluidised initial condition. The pro-
tocol enabled a careful study of the changing mechanical response of the material as
a function of time. Using the protocol, it has been shown that under controlled shear
rate conditions, the system evolves from a shear-thinning fluid under all shear rates at
times ¢t <~ 1000 s to a material whose response is characterised by a plateau in the flow
curve atastress 0. = 8 £+ 0.25 Pa (¢ = 1.5¢*),11 + 0.25 Pa (¢ = 2 ¢*), for all shear rates
measured below 4 = 0.05s57! (¢ = 1.5¢%),0.035 57! (¢ = 2¢*) for times ¢t >~ 3 x 10%s.
The evolution of the stress plateau alludes to, but cannot definitively confirm, the pres-
ence of spatially heterogenous flow. The time at which the stress response of the ma-
terial reaches the critical value o, has been shown to be an approximately logarithmic
function of shear rate, with the material sheared at shear rates closer to the critical rate,
4, requiring more time to reach o..

The form of the stress evolution under the application of a constant shear-rate has
been shown to follow one of three different behaviours:
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e for rates iy < 73, the stress rises to a pseudo-steady value o,_, and remains at this
value for a time on the order of 1000 s before rising to a common critical stress o,

e for rates 93 < 4 < 4., the stress rises and overshoots to o, before relaxing back
to o,_. Further, 0,,,s — 0,_ increases as 7 — 73 increases. The stress remains at
op—s for time on the order of 1000 s before rising to to the common critical stress

Oc

e forrates 4. < 7, the stress overshoots to 0,,,s before relaxing back to o,_;. Further,
Oplas — Os—s INCreases as y — 7. increases (the subscript s-s is used in this case

because there is no pseudo-steady state, only a steady state.).

The values of 45 have been found to be 553 =~ 0.005s7! (¢ = 1.5¢*),~ 0.001s7 ! (¢ =
2¢).

It has also been shown, by bypassing the controlling software of the rheometer, that
the preshearing protocol leaves the system in a stressed state, with the stress relaxing to
~ 10% of its initial value after ¢,, =~ 200 s of spontaneous evolution (no shear). When
sheared after a waiting time ¢,,, the maximum stress achieved at the plastic overshoot,
Oplas Tises as a power-law with waiting time, ¢,,, indicating that the material begins to
rearrange to a stiffer configuration immediately following preshearing if left to evolve
spontaneously under zero-shear conditions.

A series of constant-stress experiments have shown that when stressed at a stress
o < o, after a time t,, following fluidisation, the material initially acquires strain at a
slower rate when t,, is longer. For waiting times ¢,, >~ 5000 s, the material acquires
strain at a rate that is several orders of magnitude slower than that exhibited when
tw = 0. When the application of stress is ceased, the material recovers an increasing
proportion of its acquired strain when ¢,, is longer. When the waiting time is on the
order of t,, ~ 10* s, 97% of the acquired strain is recovered. This suggests once again
that a rearrangement to a configuration, the response of which resembles a perfectly
elastic solid, takes place following fluidisation when the material is allowed to evolve
spontaneously. Furthermore, a stress of o > o, is required to destroy such a configura-
tion.

When a uniform strain of 1% is applied to the material after a waiting time ¢,,, the
evolution to the more rigid state manifests itself as an increase in the stress developed

in the system and a series of discrete jumps relaxing that stress. An ideal glass would
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retain that stress indefinitely. The state formed can thus be thought of as a short-lived
glass lasting approximately 500 s.

Conventional rheological experiments have also shown that the transition to the
stiffer state takes place under oscillatory shear, provided the critical stress is not ex-
ceeded, as indicated by a dramatic change in dynamic moduli. The lowering of the
broad minimum exhibited by the loss modulus as a function of age is highly suggestive
of an increase in size of the constituent particles, adding more weight to the argument
for cluster formation.

Spatially resolved rheo-NMR velocimetry experiments clearly show the material
evolves into a shear-banded structure when sheared at a constant gap-average shear
rate such that the range of stresses across the Couette geometry gap includes stresses
below the critical stress o.. The velocity of the material in the lower band was be-
low the experimental uncertainty of 1.5 um s~! and so was assumed, for convenience,
to be 0s'. The growth of the zero-shear band was found to follow a Gompertzian
growth curve, suggesting the structure responsible for the zero-shear band grows at
a rate proportional to its size. The proportionality decreases as the size of the struc-
ture approaches an upper limit. This has been interpreted as further supporting the
concept of cluster growth and requires a limiting mechanism. The results of the con-
ventional rheology experiments when examined simultaneously with the velocimetry
results suggest that the size and growth rate of the structure responsible for the zero-
shear band is limited by the stress inherent in the system. Indeed, the relative propor-
tion of gap displacement has been found to be dependent on the applied gap-average
shear rate such that higher rates, which correspond to higher stresses on the material,
lead to smaller proportions of the sample in the zero-shear band.

*H NMR spectroscopy on per-deuterated stars has shown a complete lack of align-
ment in the arms of the stars immediately following fluidisation and also in the jammed
state.

Physical insight has been gained by the application of a theoretical model. The
model is based on a dual minimum stress-dependent free-energy landscape. One min-
imum is at high ‘fluidity’, corresponding to the fluid state, the other at zero fluid-
ity, corresponding to the solidified state. Stresses higher than the critical stress make
the high-fluidity state the global minimum and stresses below the critical stress make
the zero fluidity state the preferred one. The mechanical fluidisation protocol initially
places the sample in a state of high fluidity. Energy ‘kicks’ are given to the system by a
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stress-dependent noise term that is designed to mimic the combination of thermal and
rearrangement energies present in such soft systems. The model replicates the main
teatures of the experimental results; it predicts an evolution from a shear-thinning flow
curve to one dominated by a stress plateau and also replicates the form of the veloc-
ity profiles seen in theo-NMR experiments. The model also offers an explanation as
to why the stress plateau takes longer to reach at rates/stresses closer to, but still less
than, the critical values: the energy barrier that separates the two free-energy minima
is largest when the stress is closer to the critical stress, while necessarily keeping the
zero-fluidity state the global minimum.

Investigations into the response to LAOS have shown a characteristic decrease in
the stress of the material that can be fit with a modified Cross model. These results
are interpreted as supporting the idea of cage-breaking in the onset of flow and also
provide a way of watching the early-time evolution of the flow curve. The decrease
of the stress is also interpreted as providing further evidence of some form of spatial
heterogeneity in the flow of the material. Further, the response to LAOS has been
shown not to be a frieze group, as implicitly assumed in the literature. The degree to
which the response does constitute a frieze group, i.e. the symmetry of the response to
LAOS, has been followed by way of two parameters, the energy-dissipation ratio and
the path-length difference. Both of these parameters give a scalar measure of symmetry
between the positive and negative-stress lobes. When followed in tandem they provide
a symmetry vector that has proved useful in determining the ideality of the response.
The evolution of these parameters has been interpreted as providing further support
for cluster formation. Further, the tendency of the symmetry parameters towards the
symmetric limit is thought to be caused by the reduction in polydispersity of cluster
sizes and shapes. The symmetry parameters have also been interpreted as giving a
more accurate gauge of the limits of the linear regime as compared with the response

of the dynamic moduli.

The part of the soft matter universe populated by densely-packed star polymers
may be queerer than we had supposed, as evidenced by the previously unseen be-
haviours presented in this thesis, but it is certainly not, as Haldane had suspected,

queerer than we can suppose.
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9.1 Concluding remarks

The conventional rheological component of this thesis (the work presented in chap-
ters 5 and 8) was carried out at the Foundation Of Research and Technology, Hellas
(FORTH), in Greece, under the supervision of Prof. Dimitris Vlassopoulos as part of
an ongoing collaboration. The work was carried out in two separate visits with the
work of chapter 5 taking place in one six-week period in 2005 and the work of chapter
8 being completed in one two-week visit in 2007. At the end of the first visit, a series of
experiments were suggested as being interesting based on the results presented here.
The experiments suggested included detailed creep measurements above and below
o, for the same system and further stress relaxation measurements. The suggestions of
the author formed the basis of a project for a graduate student of Dr. George Petekidis,
Christina Christopoulou. The results of these experiments suggest a lower branch of

the flow curve exists around shear rates of ¥ ~ 107¢ 571,

The major difference between the stars studied in this work and the linear chains
and hard spheres that dominate the literature is the soft interaction potential of the
stars. It is the soft potential, the ability of the arms of stars to interpenetrate, that ulti-
mately leads to the extraordinary behaviours reported in this thesis. To study materials
that possess potentials of varying degrees of softness is the obvious next step follow-
ing this work. It would be particularly interesting to study the long-time behaviours
and critical stresses/strain rates to determine just how ‘softness’ of the interaction po-
tential plays a part in the dynamics of soft materials. To study such materials with
techniques that allow temporal resolutions of milliseconds and spatial resolutions of
sub-microns would enable some of the speculation ventured here to be confirmed or
dispelled. Rheo-NMR is capable of such spatial and temporal resolution, but limited
sample quantities (sample sizes used in this thesis were on the order of milligrams)
restricted the scope of this thesis. Stars are notoriously difficult and time-consuming
to produce, so having a steady supply of easily produced soft-interaction materials
would facilitate testing larger sample sizes.

It would be interesting if a soft material could be produced that had a soft interac-
tion potential similar to the stars studied here, but also possessed a simple morphology

such that experiments could determine physical alignments.

While the model presented in chapter 7 replicates many of the features of the ex-
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perimental responses, it does so in a limited way. Many of the parameters are chosen
so that the results of the calculations match the data. The experimental results indicate
that many of the model parameters ought to be functions of one, or several, experimen-
tally controlled variables. Further work on the model presented would be necessary to
reveal these relations and may yield a deeper understanding than that gathered here.
The interesting results displayed in chapter 8 form the first ever detailed inves-
tigation into the nature of the symmetry of the response of a material to LAOS. As
such, it would be extremely interesting to investigate more soft materials using a sim-
ilar analysis to find just how reasonable the apparently global, but in the current case,
false, assumption of LAOS responses being cox (step) frieze groups is. Such experi-
ments ought to encompass not just temporal changes, but also strain amplitude and

frequency.



Appendix A: Frieze Groups

A frieze group is a mathematical concept that classifies geometrical patterns on two-
dimensional surfaces which are repetitive in one direction, based on symmetries present
in the pattern. Formally, a frieze group is a class of infinite discrete symmetry groups
for patterns on an infinitely wide rectangle, hence a class of groups of isometries of a
plane, or of a strip. Frieze groups are related to the more complex wallpaper groups,
but whereas wallpaper groups extend over the entire plane, frieze groups extend over
a strip only. Because of the spatial limitations on frieze groups, the isometries allowed
for frieze groups only include translations in one direction, reflections parallel and
perpendicular to the direction of propagation of the frieze and rotations or order two.
A rotation is said to be of order n if the smallest angle of symmetry about a point is
27 /n. A rotation of order two is thus a rotation of 7 radians, or 180°. There exist seven
different frieze groups that are composed of combinations of these isometries.

The system used to identify the frieze groups used in this thesis was popularised by
the mathematician John Horton Conway and is called ‘orbifold notation’. An orbifold
(a conjunction of “orbit manifold”) is a mathematically generalised manifold. In orb-
ifold notation, each frieze group is denoted by a finite string made of positive integers,
the infinity symbol, oo, the asterisk, *, and the symbol z, called a miracle. Each symbol
has a meaning attached to it: an integer to the left of an asterisk indicates a rotation of
order n around a point, an integer to the right of an asterisk indicates a transformation
of order 2n which rotates around a point and reflects through a line, an x indicates a
glide reflection (a combination of a reflection and translation) and the co symbol indi-
cates infinite rotational symmetry about a line. Conway also attached names to each
frieze, based on the pattern made by footprints as illustrated in Fig. 9.1.



184 Appendix A: Frieze Groups

Using orbifold notation, the seven frieze groups are:

oooco (hop) Translations only.

oox (step) Glide reflections and translations.

oo (jump) Translations and a reflection in the horizontal axis.
x0000 (sidle) Translations and reflections across vertical lines.
2200 (spinning hop) Translations and 180° rotations.

2 x 0o (spinning sidle) Reflections across certain vertical lines, glide reflections, trans-

lations and rotations.

*2200 (spinning jump) Translations, glide reflections, reflections in both axes and 180°

rotations.

Having established what constitutes a frieze group we are now in a position to
make some comments about the assumptions made in the literature (as of January
2009) regarding material responses to LAOS. It is universally assumed the response of
materials to large-amplitude oscillatory shear constitutes a cox (step) frieze group (a
linear response to small-amplitude oscillatory shear is assumed to constitute a 2 * co
(spinning sidle) frieze group, just as a graph of sin(¢) as a function of ¢ does). This
is explicitly stated by Cho et al. [123] where they make the substitutions x = ~ and
y = 4/w and state the assumption in the form o(—z,—y) = —o(z,y). It appears as
though this assumption is ‘fundamental” enough for others not to feel the need to state.
This assumption is shown incorrect in the present case, in chapter 8.

The method of Klein et al. when applied to the experimental data of Fig. 8.2 pro-
duces a 2200 (spinning hop) frieze group as seen in Fig. 8.3 and thus does not produce
a good description of the material’s response.
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¢ ¢ &V

Figure 9.1: The seven frieze groups illustrated with a single left foot motif. Using orbifold notation,
these are denoted (a) cooco (hop), (b) cox (step), (c) cox (jump), (d) *xoooo (sidle), (e) 2200 (spinning hop),
(f) 2 x oo (spinning sidle) and (g) *2200 (spinning jump). It is assumed universally, outside of this work,
that the stress response of all materials to oscillatory shearing constitutes an cox (step) frieze group.
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